
Formal Modeling of Network-on-Chip
and its Applications in Starvation and

Deadlock Detection and in
Developing Deadlock Free Routing

Algorithms

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by

Surajit Das

Under the guidance of

Dr. Chandan Karfa and Prof. Santosh Biswas

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
December, 2021

mailto:d.surajit@iitg.ac.in
https://www.iitg.ac.in/ckarfa/
https://www.iitbhilai.ac.in/index.php?pid=santosh
http://www.iitg.ac.in/cse/
http://www.iitg.ernet.in

Copyright © Surajit Das 2021. All Rights Reserved.

mailto:d.surajit@iitg.ac.in

Dedicated to my

Aradhya

and

Parents & Wife

and

All Other Family Members

Who always picked me up on time
and encouraged me to go on every adventure,

specially this one.

Declaration

I, Surajit Das, hereby confirm that:

• The work contained in this thesis is original and has been done by myself

and under the general supervision of my supervisors.

• The work reported herein has not been submitted to any other Institute

for any degree or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data,

graphs, diagrams, theoretical analysis, results, etc.) from other sources, I

have given due credit by citing them in the text of the thesis and giving

their details in the references. Elaborate sentences used verbatim from

published work have been clearly identified and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the

best of my knowledge and understanding and take complete responsibility

if any complaint arises.

..
Surajit Das
Research Scholar
Department of SCE
IIT Guwahati
Guwahati, Assam, India 781039
d.surajit@iitg.ac.in
Date:
Place:

https://www.iitbhilai.ac.in/index.php?pid=santosh

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my super-

visor Dr. Chandan Karfa for his consistent support, inexhaustible patience and

positive guidance during my doctoral research. I am thankful for his ethical

beliefs and philosophy which made me mature not only as a scientific researcher

but also as a human. I am grateful to my second supervisor Prof. Santosh

Biswas, who guided me, encourage me in critical phase of my research. I am

thankful for his motivation and consistent support during my research.

I am highly grateful to Prof. Jatindra Kumar Deka for his invaluable support

and encouragement throughout my Ph.D. I would also like to thank the other

members of my Doctoral Committee - Prof. Purandar Bhaduri and Dr. John

Jose for their insightful comments and suggestions which made me improve the

quality and clarity of my work.

I want to thank the heads of the Department of Computer Science and Engineer-

ing during my Ph.D. at IITG - Prof. Diganta Goswami, Prof. S. V. Rao and

Prof. Jatindra Kumar Deka for allowing me to use the facilities and the avail-

able resources. I would like to thank Prof. Sukumar Nandi, Prof. Hemangee K.

Kapoor, Dr. Aryabartta Sahu, Dr. John Jose and all the other faculty members

of Computer Science and Engineering, IITG, from whom I get opportunity to

learn during my PhD.

I acknowledge the Technical staff of the Department of Computer Science and

Engineering - Mr. Nanu Alan Kachari, Mr. Bhriguraj Borah, Mr. Hemanta

Kumar Nath, Mr. Pranjitt Talukdar, Mr. Raktajit Pathak and Mr. Nava

Kumar Boro for solving any engineering related issues. I am deeply thankful

to - Mr. Monojit Bhattacharjee, Ms. Gauri Khuttiya Deori and Mr. Prabin

Bharali for efficiently handling the administrative work. I am obliged to all the

the staff and security personnel for their constant help and support. I would

also like to thank the staff at the Academic Affairs office who were supportive

to process my applications and grant requests.

I would like to gratefully acknowledge MHRD, Govt. of India for the financial

support rendered throughout my years of Ph.D. without which this research

could not have taken shape.

I am indeed thankful to my fellow lab mates Ramanuj, Debabrata, Priyanka,

Mohammad, Nilotpala, Alakesh, Ujjwal, Dipojwal, Swarup, Chitra, Pawan, Ar-

ijit, Palash, Parikshit, Partha, Pallabi, Nayantara, Dipika, Deepak, Sukarn,

Saptarchi, Balaprakash, Manoj, Hemakumar and many more for creating a won-

derful experience during my PhD. It was a good experience to work with Ajinka

and Pavan for a few months and I like to thank them for being part of my PhD

journey. I would like to thank my senior lab mates Dr. Shirshendu Das for his

support and helping me in PARSEC benchmark. I would like to thank other se-

nior lab mates Dr. Shounak Chakraborty , Dr. Mayank Agarwal, Dr. Pradeep

Kumar Biswal, Dr. Shilpa Budhkar, Dr. Nilakanta Sahu, Dr. Manojit Gosh

for their guidance. I would also like to thank all the research scholars of the

department of Computer Science and Engineering at IITG for creating a warm

atmosphere of mutual support and encouragement. The stimulating discussions,

brainstorming and sleepless night working together contribute a significant por-

tion towards my development as an independent researcher.

I want to thank the friends from my school days - Biswajit, Dipankar, Mukul,

Pankaj, Rupam, Pulin, Pranab and many more for the beautiful memories and

their encouragement for PhD. Finally yet importantly, I would like to thank Lord

Krishna and my family - Maa, Deuta, Aradhya, Junuk, Dishant, Kakali, Dada,

Baideu, Bau, Vindeu, Mama, Mami and Partha for their unconditional love, sup-

port, caring, warmth and profound encouragement all these years. They never

doubted my intentions and whole-heartedly supported me in all my endeavours.

I fall short of words to express my gratitude to them.

Surajit Das
Research Scholar
Department of SCE
IIT Guwahati
Guwahati, Assam, India 781039
d.surajit@iitg.ac.in

https://www.iitbhilai.ac.in/index.php?pid=santosh

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati - 781039, Assam, India

This is to certify that this thesis entitled, “Formal Modeling of Network-on-Chip

and its Applications in Starvation and Deadlock Detection and in Developing

Deadlock Free Routing Algorithms”, being submitted by Mr. Surajit Das, to the

Department of Computer Science and Engineering, Indian Institute of Technology Guwahati,

for partial fulfillment of the award of the degree of Doctor of Philosophy, is a bonafide work

carried out by him under my supervision and guidance. The thesis, in my opinion, is

worthy of consideration for award of the degree of Doctor of Philosophy in accordance with

the regulation of the institute.

To the best of my knowledge, this thesis has not been submitted in part or full to any

other university or institute for the award of any degree or diploma.

... ...

Dr. Chandan Karfa Prof. Santosh Biswas
Associate Professor Professor
Department of Computer Science
and Engineering

Department of Electrical Engineer-
ing and Computer Science

IIT Guwahati IIT Bhilai
Date: Date:
Place: Place:

mailto:d.surajit@iitg.ac.in
http://www.iitg.ernet.in
https://www.iitg.ac.in/ckarfa/
https://www.iitbhilai.ac.in/index.php?pid=santosh

Abstract

The increasing demand for high computation speed in devices ranging from a handheld

smartphone to a time critical missile defense system along with the issue of heat generated

by a high frequency processor motivates the researchers to explore Chip Multi-Processors

(CMP) architecture. In CMP, multiple processors with moderate clock frequencies are

integrated into single chip. For facilitating a fast and efficient communicating infrastructure

between processors, a programmable network having routers connected to each processor

is used in CMPs which is formally known as Network-on-Chip (NoC). A routing algorithm

in NoC helps in directing packets efficiently between processors via routers. While routing

packets, situations like starvation or deadlock may occur that degrade the performance of

NoC. Formal modeling of NoC is helpful to detect such scenarios either by using a model

checker or by developing a simulation framework on the formal model.

In this thesis, formal modeling of NoC using Finite State Machines (FSMs) is presented

first. NoC components like a buffer for the temporary storage of packets, switch for directing

packets towards proper output ports and arbiter for resolving conflict at an output port

are modeled using FSMs. Two arbitration logic, namely fixed-priority arbiter and round-

robin arbiter, are modeled as FSMs. The synchronization between NoC components is

maintained using dedicated FSMs. The correctness of the FSM based NoC model is checked

and verification of starvation freedom is also presented using model checker in this work.

Since modeling synchronization amongst components in an NoC is a complex task in FSM

model and model checking based verification of global properties like deadlock is not feasible

due to large state space, we next model the NoC using Communicating Finite State Machines

(CFSMs). In CFSM based NoC model, the synchronization between NoC components is

maintained with the help of message passing. No special state machine for maintaining

system wide synchronization is required. We have automated the CFSM based NoC model

generation process for Mesh and Torus NoCs. A CFSM based formal simulation framework

is then developed for application specific deadlock detection in NoC. The CFSM based

simulation framework detects confirmed deadlock conditions in given traffic with respect

to a given routing algorithm and given topology. On detecting a confirmed deadlock, the

framework reports the deadlock with the instance of cyclic resource dependencies.

The instance of cyclic resource dependency obtained as an output from the CFSM based

framework helps in formulating deadlock avoidance. Representation of deadlock in a formal

and informative way helps in understanding the root cause of deadlock and in turn helps

in avoiding them. The Turn model [1] and Channel Dependency Graph (CDG) [2] are two

classical approaches used for theoretical deadlock detection and representation of deadlock

scenarios. We have proposed Directional Dependency Graph (DDG) for representing dead-

viii

lock cycles in an informative way by incorporating Turn, wraparound channel and direction

information with CDG in a simplified form. The DDG is helpful in showing deadlock scenar-

ios or deadlock freedom for a routing procedure. It is found that Torus NoC is more deadlock

prone in comparison to Mesh NoC due to the presence of ring networks with inherent cyclic

paths. Virtual Channels (VCs) or additional buffers are mostly used for avoiding deadlock

in Torus NoC. Therefore, an Arc model is proposed for avoiding deadlock in Torus NoC

without using additional resources like VC or additional buffer. Deadlock behaviour of the

proposed Arc model with respect to XY-Turns is also presented. An approach of developing

deadlock free routing algorithms using a subset of Arcs and a given set of Turns is also

presented. Finally, the utility of the Arc Model and DDG are presented by demonstrating

the deadlock free algorithms for Torus NoC. Our proposed Arc based routing algorithms

are found to be efficient than the competitive deadlock free routing algorithms in Torus NoC.

Keywords- Network-on-Chip, Formal Verification, Starvation, Deadlock Detection, Dead-

lock Avoidance, Finite State Machine, Communicating Finite State Machine

;;=8=<<

Contents

1 Introduction 1

1.1 Network-on-Chip . 2

1.1.1 Correct Functioning of NoC . 4

1.1.2 Verification of NoC . 5

1.2 Challenges in Formal Modeling and Verification of NoC 6

1.2.1 Starvation Freedom in NoC . 6

1.2.2 Deadlock Detection in NoC . 6

1.2.2.1 Application Specific Deadlock Detection 7

1.2.3 Deadlock Representation and its Avoidance 9

1.2.3.1 Channel Dependency Graph 9

1.2.3.2 Turn Model . 10

1.2.3.3 Deadlock in Torus NoC and its Avoidance 11

1.2.4 Formal Modeling of NoC . 12

1.3 Thesis Objectives . 13

1.4 Contributions of the Thesis . 15

1.4.1 Formal Modeling of NoC using FSM and Verification of Starvation

using Model Checker . 15

1.4.2 Formal Modeling of NoC using CFSM and Developing a Simulation

Framework for Deadlock Detection 17

1.4.3 Deadlock Avoidance in Torus NoC using Arc Model and DDG 18

1.4.4 Deadlock Free Routing Algorithms for Torus NoC using Arc Model . 19

1.5 Organization of the Thesis . 20

2 Background and Literature Survey 23

2.1 Formal Verification Techniques . 24

2.1.1 Model Checking . 24

2.1.2 Equivalent Checking . 26

2.1.3 Theorem Prover . 26

2.2 Formal Modeling and Verification of NoC . 26

x

2.2.1 Formal Modeling using Different Formalism 27

2.2.2 Formal Modeling using xMAS Primitives 30

2.2.3 Modeling using FSM and CFSM . 31

2.2.4 Traffic Modeling using Queuing Approach 32

2.2.5 Run-time Deadlock Detection . 33

2.2.6 Challenges and Objective . 33

2.3 Routing Algorithms for NoC . 34

2.4 Deadlock Avoidance in a Routing Algorithm 36

2.4.1 Up*/Down* and Turn Model Approach 37

2.4.2 FirstHop Routing for Avoiding Deadlock in Torus NoC 37

2.4.3 Dally’s Approach with Virtual Channel 38

2.4.4 Duato’s Approach with Escape Path and Virtual Channel 38

2.4.5 Bubble Flow Control with Dedicated Buffer 39

2.4.6 Other Approaches . 39

2.4.7 Challenges and Objectives . 40

2.5 Conclusions . 40

3 Formal Modeling of NoC using FSM and Verification of Starvation using

Model Checker 43

3.1 Introduction . 43

3.1.1 NoC Router Components . 44

3.1.2 Contributions . 45

3.2 Finite State Machine and the Naming Convention 46

3.2.1 Finite State Machine . 46

3.2.2 Short forms and the Naming Convention 47

3.3 Formal Modeling of NoC using FSM . 48

3.3.1 High-Level Overview of the Movement of Packets 49

3.3.2 Synchronization between NoC Components 50

3.3.2.1 Synchronization between two Routers 50

3.3.2.2 Synchronization within Router Components 50

3.3.3 Modeling Buffer using FSM . 51

3.3.3.1 FSM model of Sync . 51

3.3.3.2 FSM model of Buffer . 53

3.3.4 FSM Model of Switch . 53

3.3.5 FSM Model of Return . 55

3.3.6 Approach for Designing Virtual Channels 56

3.3.7 FSM Model of an Arbiter . 56

3.3.7.1 FSM Model of Fixed-priority Arbiter 57

3.3.7.2 FSM Model of Round-robin Arbiter 58

3.4 Correctness of the Model . 61

3.4.1 Progress in Router Components . 61

3.4.1.1 Progress in a Buffer . 62

3.4.1.2 Progress in a Switch . 62

3.4.1.3 Progress in a Fixed-priority and Round-robin Arbiters . . . 62

3.4.2 Synchronization within a Router . 63

3.4.3 Correctness of a Priority Generator 64

3.5 Application of the Model . 64

3.5.1 Verification of Starvation-freedom . 65

3.5.2 Verification of Transfer of Packets . 66

3.5.3 Verification of Overall NoC . 66

3.5.3.1 Number of FSMs in an NoC 66

3.5.3.2 Active Windows . 68

3.6 Experimental Results and Analysis . 69

3.6.1 Verification of Progress, Synchronization and Priority Generation within

a Router . 69

3.6.1.1 Runtime Improvement with Parallel Execution considering

Individual Router . 70

3.6.2 Verification of Transfer of Packets and Starvation Freedom considering

Active Windows . 71

3.6.2.1 Analysis of the Findings on Starvation Freedom 72

3.6.2.2 Runtime Improvement with Parallel Execution for the Ac-

tive Windows . 73

3.7 Conclusion . 74

4 Formal Modeling of NoC using CFSM and Developing a Simulation Frame-

work for Deadlock Detection 77

4.1 Introduction . 77

4.2 Contributions . 78

4.2.1 Formal Modeling of NoCs using CFSM 78

4.2.2 Development of CFSM based Simulation Framework 79

4.3 Background of Communicating Finite State Machine based Modeling 81

4.4 Formal Modeling of NoC using CFSM . 84

4.4.1 Naming Convention . 85

4.4.2 Modeling Buffer . 85

4.4.2.1 Buffer with single slot . 87

4.4.2.2 Buffer with more than one slots 87

4.4.3 Modeling Switch and Route Computation 89

4.4.4 Modeling Arbiter and Scheduler . 91

4.4.4.1 Changing of priority in round-robin fashion 91

4.4.4.2 Transmitting the packet from current router to the next router 93

4.4.5 Modeling Virtual Channel . 93

4.5 Proposed Scheme for Deadlock Detection . 95

4.5.1 Delayed Reception . 95

4.5.2 Representation of Deadlock in NoC using CFSM 97

4.5.3 Deadlock Detection Framework . 102

4.6 Automation of CFSM Model Generation . 103

4.6.1 Bounded Communication . 105

4.6.2 Complexity of the CFSM Model . 106

4.7 Experimental Results and Analysis . 107

4.7.1 Experiment I: XY-routing on Mesh and Torus of Different Sizes . . . 108

4.7.2 Experiment II: XY-routing on Mesh and Torus with Different Traffic

Size . 110

4.7.3 Experiment III: Deadlock Detection on Dynamic XY-routing and Mod-

ified West-First routing . 111

4.7.4 Experiment IV: Deadlock Avoidance with Increasing Buffer Size . . . 113

4.7.5 Experiment V: Detection of False Positive Deadlock Warning in Book-

sim Simulator . 115

4.7.6 Justification for Deadlock in Adaptive Routing Algorithms 115

4.8 Conclusion . 116

5 Deadlock Avoidance in Torus NoC Using Arc Model and DDG 119

5.1 Introduction . 119

5.1.1 Cyclic Resource Dependency in Torus NoC 120

5.1.2 Deadlock and its Representation in NoC 122

5.1.2.1 Channel Dependency Graph 122

5.1.2.2 Turn Model . 123

5.1.3 Does Deadlock Always Possible in Torus due to Wraparound Channel? 124

5.2 Motivation and Contribution . 125

5.2.1 Deadlock Representation in Torus NoC 126

5.2.2 Deadlock Avoidance in Torus NoC 126

5.2.3 Contributions . 127

5.3 The Arc Model for Avoiding Deadlock in Torus 128

5.3.1 Restricted Move via Wraparound Channel 128

5.3.2 Classification of Wraparound Channels 129

5.3.3 The Proposed Arc Model . 130

5.3.4 Effect of Arcs with the Permitted Turns in the Mesh Sub-network . . 132

5.4 Directional Dependency Graph . 133

5.4.1 Application of Arc Model and DDG 135

5.5 Case Study: Arcs with XY-Turns . 135

5.5.1 Single Arc with XY-Turns . 136

5.5.1.1 Turns Introduced due to Arcs 136

5.5.1.2 Deadlock Freedom for Individual Arc 137

5.5.2 Deadlock Detection for Arc Pairs with XY-Turns 138

5.5.2.1 Deadlock in Arc Pairs from the same Wraparound Channel . 138

5.5.2.2 Deadlock due to Added Turns by Arcs 140

5.5.2.3 Deadlock with a Combination of X-Arc and Y-Arc 141

5.5.3 Deadlock Avoidance using DDG Representation 143

5.5.3.1 Deadlock avoidance for (EWs + WEn) Arcs with XY-Turns 143

5.5.3.2 Deadlock avoidance for (NSw + EWn) Arcs with XY-Turns 143

5.5.4 Checking Deadlock Freedom using DDG 144

5.6 Experimental Deadlock Detection . 145

5.6.1 Experimental Results for Arc Pairs with XY-Turns 145

5.6.2 Deadlock Scenarios generated by CFSM Framework 147

5.6.2.1 Deadlock Scenarios for (EWs + EWn) Arc with XY-Turn . 147

5.6.2.2 Deadlock Scenarios for (EWs + WEn) Arc with XY-Turn . 149

5.6.2.3 Deadlock Scenarios for (EWn + NSw) Arc with XY-Turn . 150

5.7 Conclusion . 150

6 Deadlock Free Routing Algorithms for Torus NoC using Arc Model 151

6.1 Introduction . 151

6.1.1 Contributions . 153

6.2 Deadlock Free Routing Algorithm Design Approach using Arc Model 155

6.3 Routing using Two Arcs along with XY-Turns 156

6.3.1 Routing steps for Algorithm 1 . 156

6.3.2 Deadlock freedom for Algorithm 1 . 159

6.4 Maximum Possible Arcs with XY-Turns in a Routing Algorithm 160

6.4.1 Evaluation plan . 160

6.4.2 Considering deadlock free Arc pairs in X-direction 161

6.4.3 Considering deadlock free Arc pairs in Y-direction 162

6.5 Routing using Three Arcs with XY-Turns 162

6.5.1 Routing steps for Algorithm 2 . 162

6.5.2 Deadlock Freedom for Algorithm 2 164

6.6 Combination of Arc Model and FirstHop Method 165

6.6.1 DDG for Wraparound Channel with FirstHop Restriction 166

6.6.2 Routing using Algorithm 2 and Wraparound Channel with FirstHop

Restriction . 166

6.6.2.1 Wraparound Channel Compatible with Algorithm 2 167

6.6.2.2 Routing steps for Algorithm 3 168

6.6.2.3 DDG to show Deadlock Freedom for Algorithm 3 171

6.7 Experimental Results . 172

6.7.1 Comparing FirstHop Algorithm with the Algorithm 1 173

6.7.1.1 Effects of the Percentage of Traffic Injected from the Bound-

ary Routers . 174

6.7.2 Comparisons of Algorithm 2 with Algorithm 1, Up*/Down* Algo-

rithm and FirstHop Algorithm . 176

6.7.3 Comparison for the Algorithm 3 with Algorithm 2 and FirstHop Al-

gorithm . 178

6.7.3.1 Effects of the Percentage of Traffic Injected from the Bound-

ary Routers . 178

6.7.4 Hop Count Savings for PARSEC Benchmark Suites 179

6.8 Conclusions . 180

7 Conclusions and Future Perspectives 183

7.1 Summary of Contributions . 183

7.1.1 FSM based NoC Model for Verification of Starvation 183

7.1.2 Application Specific Deadlock Detection using CFSM based NoC Model184

7.1.3 Deadlock Representation and Avoidance Approach in Torus NoC . . 185

7.1.4 Deadlock Free Routing Algorithms for Torus NoC 185

7.2 Future Directions . 186

7.3 Conclusions . 187

Publications 189

References 190

List of Figures

1.1 A 4x4 Mesh NoC . 2

1.2 5 Port NoC router . 2

1.3 Simplified block diagram depicting functional units in an NoC router [3] . . . 3

1.4 Deadlock example: (a) Traffic patterns leads to deadlock, (b) No deadlock in

another traffic pattern. 8

1.5 Channel Dependency Graph: (a) Deadlock cycle, (b) No deadlock 9

1.6 Turn model: (a) All possible Turns create deadlock, (b) XY-Turns (solid

lines) and YX-Turns (dotted lines) are deadlock free 10

1.7 Deadlock cycle from Turn model: (a) Permitted Turns by a routing algorithm,

(b) Deadlock cycle . 10

1.8 A 5x5 Torus NoC composed of ring networks 11

1.9 A high-level overview of the contributions from the thesis 16

1.10 Avoid deadlock by discontinuing the cyclic path 18

3.1 A 3x3 Mesh NoC and five bidirectional ports in a router 44

3.2 Movement of packets from router R5 to R2, and synchronization using Return

and Sync FSMs . 49

3.3 Buffer and sync: (a) Packets from R5 to R2, (b) R2SyncS: Synchronizing

between R2BufferS and R5ArbiterN, (c) R2BufferS: Buffer at S input port of

R2 . 52

3.4 R2SwitchS: Switch at South Port of R2 . 54

3.5 R2ReturnS: Synchronization between S port Buffer, S port Switch and Ar-

biters at L, E and W ports . 55

3.6 R2ArbiterS: Fixed-priority arbiter at S port of router R2 57

3.7 R2PriorityS (Round-robin priority generator at the S output port of router

R2) . 58

3.8 R2ArbiterS (Round-robin arbiter at South port of Router R2) 60

3.9 Partitioning NoC: Active Windows for the Router R5 and R9 68

3.10 Speed up with the increase in the number of routers 70

xvi

4.1 Deadlock Detection using CFSM based NoC Model 81

4.2 Three CFSM processes communicating with each other 83

4.3 Buffer with single slot: (a) 2x2 NoC as a reference for modeling (b) Overall

communication for buffer at the North port of router R3 (c) CFSM model

for buffer with capacity=1 . 87

4.4 Buffer with three slots: (a) Overall communication for buffer at the North

port of router R3 (b) Three buffer slots as a FIFO (c) CFSM model for buffer

with three slots . 88

4.5 CFSM model for a switch: (a) Switch at the North port of router R3 (b)

Route computation (c) Communication overview for SwitchN3 with other

NoC components . 89

4.6 Arbiter and Scheduler at the South Port of Router R1: (a) CFSM model for

ArbiterS1, (b) CFSM model for SchedulerS1, (c) Communication overview

for ArbiterS1 . 92

4.7 Virtual channel: (a) Buffer with four slots, (b) Buffer restructuring for two

virtual channels, (c) Buffer restructuring for four virtual channels 94

4.8 An example of delayed reception . 96

4.9 CFSMs with Cyclic Dependency . 99

4.10 Global State Transitions of CFSMs in Fig. 4.9 100

4.11 Cyclic Dependency Graph for the CFSMs in Fig. 4.9 101

4.12 Experiment I: XY Algorithm on Mesh and Torus NoCs with traffic pattern

of 100000 packets. Run-time increases with the increase of NoC size if there

is no deadlock. Deadlock is detected in Torus NoC if NoC size is bigger than

4x4. 108

4.13 Experiment II: XY Algorithm on a 3x3 NoC (Mesh and Torus) applying

traffic patterns of different sizes. (T.M.B2: Time taken by Mesh with buffer

size 2, T.T.B2: Time taken by Torus with buffer size 2, I.M.B2: Iterations

for Mesh with buffer size 2, I.T.B2: Iterations for Torus with buffer size 2 etc.)110

4.14 Experiment III: Dynamic XY Algorithm and Modified West-First Algorithm

(NW Turn Restricted) on traffic patterns of 100000 packets. Deadlock detec-

tion time depends on the pattern of the input traffic. 111

4.15 Deadlock Detection: Dynamic XY Algorithm and Modified West-First Al-

gorithm (NW Turn Restricted) using PARSEC benchmarks in an 8x8 Mesh

NoC. 112

4.16 Turn model for routing algorithms: (a) XY-routing, (b) Dynamic XY-routing,

(c) West-First routing and (d) Modified West-First routing 116

5.1 Visualising 5x5 Torus NoC as a combination of Mesh sub-network and wraparound

channels. 120

5.2 (a) Resource dependency scenarios for a set of packets (source and destina-

tion are shown in the bracket), (b) Channel Dependency Graph representing

deadlock scenario, (c) Channel Dependency Graph showing a resource de-

pendency. 121

5.3 Turn model: (a) Anti-clockwise cycle, (b) Clockwise cycle, (c) XY-Turns, (d)

YX-Turns . 124

5.4 Wraparound channels in a single row of a 3x3 and 4x4 Torus NoC 125

5.5 (a) Potential Deadlock, (b) Deadlock Avoidance, (c) EWn Arc, (d)EWs Arc. 128

5.6 Wraparound channels: (a) NS, (b) SN, (c) EW, (d) WE 129

5.7 Arc model: Eight possible Arcs in Torus NoC 130

5.8 (a) Channel-buffer combination as a vertex, (b) Dependency cycle with EWn,

(c) Dependency cycle with EWn and EWs. 131

5.9 (a) Resource dependency for a set of packets (source and destination are

shown in the bracket, b) Directional Dependency Graph representing a dead-

lock scenario, (c) Directional Dependency Graph representing a resource de-

pendency scenario. 134

5.10 Additional Turns introduced with respect to XY-Turns a) EWn Arc adds NE

Turn, b) EWs Arc adds SE Turn, c) WEn Arc adds NW Turn, and d) WEs

Arc adds SW Turn . 136

5.11 Deadlock freedom for (a) NSe, (b) NSw, (c) EWn, (d) EWs Arcs with XY-Turns137

5.12 a) EWn and EWs Arcs, b) Deadlock Scenario with EWn Arc, EWs Arc and

XY-Turn . 139

5.13 a) NSe and NSw Arcs, b) Deadlock Scenario due to combination of NSe and

NSw . 140

5.14 a) EWs and WEn Arcs, b) Deadlock Scenario due to combination of EWs

and WEn . 140

5.15 (a) EWn and NSw Arcs (b) Deadlock Scenario due to combination of EWn

and NSw . 141

5.16 (a) SNe and NSe Arcs (b) Dependency graph: deadlock is not possible by

SNe and NSe Arcs . 144

5.17 Experimental deadlock scenario in a 5x5 Torus NoC for EWn and EWs Arcs

with XY-routing as per Lemma 5.5.1 . 147

5.18 Experimental deadlock scenario in a 5x5 Torus NoC for EWs and WEn Arcs

with XY-routing due to new Turns introduced by Arcs 148

5.19 Experimental deadlock scenario in a 5x5 Torus NoC for EWn and NSw Arcs

with XY-routing as per Lemma 5.5.2 . 149

6.1 5x5 Torus NoC . 153

6.2 Designing deadlock free routing for Torus NoC using Arcs 154

6.3 Paths for packet p1(47, 10), p2(60, 14) and p3(21, 39) as per Algorithm 1 . . 158

6.4 (a) EWs and NSe Arcs (b) Dependency graph: deadlock is not possible by

EWs and NSe Arcs . 159

6.5 Deadlock freedom: (a) EWs, WEs and NSe Arcs (b) DDG representing

deadlock freedom for EWs, WEs and NSe Arcs with XY-Turns 164

6.6 Directional Dependency graphs for (a) EW, (b) WE, (c) NS and (d) SN

wraparound channel with FirstHop restriction 165

6.7 Directional Dependency graphs for (a) EWs, (b) EW, (c) EWs and EW, (d)

WEs, (e) WE, (f) WEs and WE . 167

6.8 Directional Dependency Graph for (a) NSe, (b) NS, (c) NSe and NS. 168

6.9 Paths for packet p4(34, 23), p5(3, 51) and p6(10, 51) as per Algorithm 3 . . 170

6.10 Deadlock freedom: (a) EWs, WEs, NSe Arcs and SN wraparound channel in

first hop (b) DDG representing deadlock freedom for EWs, WEs, NSe Arcs

and SN wraparound channel in first hop with XY-Turns 171

6.11 Percentage of Hop counts saved by FirstHop Algorithm and Algorithm 1

using uniform traffic. 173

6.12 Percentage of Hop counts saved by FirstHop Algorithm and Algorithm 1 using

traffic samples with 10% and 25% packets injected from boundary routers. . 175

6.13 Percentage of Hop counts saved by FirstHop Algorithm, Algorithm 2 and

Algorithm 3 using uniform traffic. 177

6.14 Percentage of Hop counts saved by FirstHop Algorithm, Algorithm 2 and Al-

gorithm 3 using traffic with 10% and 25% packets are injected from boundary

routers. 179

6.15 Hop count saved by Up*/Down* Algorithm, FirstHop Algorithm, Algorithm 1,

Algorithm 2 and Algorithm 3 using PARSEC benchmarks in an 8x8 Torus

NoC. 179

List of Tables

3.1 Short form used for describing transitions in FSMs 48

3.2 Number of FSMs in an NoC with Fixed-priority (FP) and Round-robin (RR)

arbiter . 67

3.3 Verification of progress, synchronization and priority with fixed-priority (FP)

and round-robin (RR) arbiter (A) within individual routers 70

3.4 Starvation-freedom for fixed-priority (FP) and round-robin (RR) arbiters . . 72

3.5 Verification time for transfer of packets and starvation freedom considering

fixed-priority (FP) and round-robin (RR) arbiter (A) in Active Windows . . 73

4.1 Naming convention for Messages in CFSM 86

4.2 Number of CFSMs in Mesh NoC . 95

4.3 Number of states on different CFSM model 104

4.4 Experiment IV: Dynamic XY (DyXY) and Modified West-First (MWF) Al-

gorithm in 5x5 NoC (Mesh and Torus) for 1600 packets. (D: Deadlock, T:

Time in Second, I: Iterations) . 113

4.5 Experiment V: Booksim result on applying Uniform (U) and Tornado (T)

traffic pattern with different injection rate (0.05 and 0.08). 114

4.6 Experiment V: CFSM results on applying Uniform (U) and Tornado (T)

traffic pattern with different injection rate (0.05 and 0.08). 114

5.1 Deadlock prone and deadlock free Arc pairs with respect to XY-routing . . . 142

5.2 Deadlock detection for Arc pairs with XY-Turns 146

6.1 Percentage of boundary routers in a Torus NoC 174

6.2 Hop count saved by Up*/Down*, FirstHop, Two Arcs (EWs + NSe) and

Three Arcs (EWs+WEs+NSe) algorithms 176

xx

List of Abbreviation

BDD Binary Decision Diagram

CDG Channel Dependency Graph

CFSM Communicating Finite State Machine

CMP Chip Multi Processor

DDG Directional Dependency Graph

DFA Deterministic Finite Automata

DP Dynamic Programming

FIFO First In First Out

FP Fixed-Priority Arbiter

FSM Finite State Machine

IoT Internet of Things

LTL Linear Temporal Logic

NoC Network-on-Chip

NuSMV New Symbolic Model Verifier

RC Route Computation

RR Round-Robin Arbiter

SGM State Graph Manipulator

SMV Symbolic Model Verifier

SoC System-on-Chip

VC Virtual Channel

xxi

1
Introduction

Moore’s law states that the number of transistors on a microchip doubles in every two

years [4]. On the flip side, Dennard scaling states that it is feasible to reduce transistor

dimension and put more transistors in the same die area where overall power consumption

remains almost the same [5]. To take advantage of the Dennard scaling, more number of

transistors are packed into a die by reducing the transistor dimension. To keep the dynamic

power consumption in a limit, clock frequencies in a processor are also drastically raised

at the same time. After a certain point, the thermal limitation creates a bottleneck on

increasing the number of transistors in single processor due to electric leakage and heat

up problems. The state-of-the-art cooling mechanism also fails to dissipate the generated

heat, which might burn out the chip. Therefore, computer architects are forced to move

1

Introduction

into Chip Multiprocessor (CMP) architecture to cope with the ever increasing demand

for high computation speed in various fields ranging from a smartphone to a time critical

missile defence system. The CMP is a multi-core system architecture with the integration

of multiple processing units in the same die [6]. Instead of using a single processor with

high frequency, multiple processors with moderate frequency are used in CMP to achieve

the computation demand.

1.1 Network-on-Chip

Performance in a CMP is limited by the communication between cores or processing units.

Therefore, an efficient means of communication between cores in a CMP is required for

better performance. Using dedicated wire or common bus communication has lot of over-

head including area and power. The use of an interconnection network where processors

communicate via routers and share the bandwidth to route packets amongst processors is

more efficient rather than dedicated wire connections. This interconnection network in CMP

is called Network-On-Chip (NoC). In simple terms, NoC is a programmable network that

transfers data between the processors (cores) via routers [3].

Processor

Router

Figure 1.1: A 4x4 Mesh NoC

n_out

e_out

e_int

w_in

w_out

l_in

l_out

s_outs_in

n_in

Figure 1.2: 5 Port NoC router

Router is considered as the backbone of NoC. Based on the router interconnection,

different topologies like Mesh, Torus, Butterfly, etc. have evolved [3]. A 4x4 Mesh NoC is

shown in Fig. 1.1. The associated processors, routers and communication wires are shown

2

Network-on-Chip

in that figure. Routers are present at the intersection of the wires. Block diagram of a five

port NoC router is shown in Fig. 1.2. A router has five input ports and five output ports

named as Local (L), East (E), West (W), North (N) and South (S). Local input and output

ports are used to communicate with the local core. The East input port channel is used

to get packet from its neighbour in the East direction and the East output port channel is

used to transmit packet towards the East neighbour. All other ports are used in a similar

way.

Channels

from
output

ports

Channels

connecting
input

ports

Buffer

Buffer

Buffer

Buffer

Buffer

Crossbar Switch

Arbiters

W

N

E

L

S

Figure 1.3: Simplified block diagram depicting functional units in an NoC router [3]

A simplified block diagram showing components of an NoC router with input buffers

is shown in Fig. 1.3. The solid lines in the left hand side are input channels connecting

input ports. A buffer is associated with each input channel where an incoming packet is

stored until it is transmitted through the desired output port. The solid lines in the right

hand side are channels from the output ports connecting adjacent routers or the local core.

Connections between buffers and output ports within a router is configured by crossbar

switch. Routing algorithms help in choosing the connection between an input port buffer

and an output port. Some routing algorithms are static in nature, where the route to be

followed is fixed based on the source and destination of the packet. On the other hand,

3

Introduction

some routing algorithms are adaptive in nature, where routes are decided based on current

network parameters like congestion and connection failure [7, 8]. When packets from more

than one input ports request the same output port at the same time, the conflict is resolved

by an Arbiter. Arbiter resolves the conflict between packets at an output port using different

scheduling policies like Round-robin or Fixed-priority or Weighted-round-robin, etc.

1.1.1 Correct Functioning of NoC

An NoC might suffer from scenarios like starvation or deadlock or livelock if sufficient

measures are not taken according to the design specification in selecting a suitable routing

algorithm or NoC topology or resource allocation scheme during the design phase [3]. Ideally,

an NoC must be free from these issues. Deadlock is said to occur in an NoC when a group

of packets are unable to make any progress because of the cyclic wait on one another

for the release of resources e.g., channels or buffers [3]. Deadlock has catastrophic effects

on a network. Initially, a few resources are occupied in holding and waiting mode by

a set of packets. Eventually, more packets keep on getting blocked on these resources.

These resource dependencies are spread across the network that halt the overall network

functionalities. To get rid of such situation, deadlock avoidance or deadlock recovery has

to be incorporated in an NoC. Designing a routing algorithm which is deadlock free with

respect to a given topology has utmost importance in NoC. In deadlock avoidance approach,

different precautionary measures like routing restrictions, using of Virtual Channels (VCs)

or dedicated buffers are implemented to guarantee that deadlock does not occur [1, 9–14].

On the other hand, the deadlock is permitted to occur in deadlock recovery approach. With

help of periodic operation, deadlock cycle is detected and actions are taken to break the

resource dependency cycle for deadlock recovery [15–17]. Livelock, on the other hand, is a

situation when packets keep on traveling indefinitely through the network without reaching

their destinations [3]. An NoC is subject to starvation when some packets keep on waiting for

resources indefinitely and are unable to make progress because access to certain resources

are not granted to them [3]. This is due to accessing of those resources continuously by

4

Network-on-Chip

another class of packets. It is the responsibility of a designer to avoid these issues by

applying suitable measures. This work aims at detection of such scenarios with the help of

formal models. The detected scenario helps in understanding root causes of failure and in

formulating their prevention as well.

1.1.2 Verification of NoC

In the pre-silicon evaluation of a system design, the design is tested or verified against a

given set of design specifications before the actual chip is manufactured. This process tar-

gets verification of functional correctness and reliability of the design along with detection

of different bugs [18–20]. It helps in rectifying defects in design phase itself. Pre-silicon eval-

uation is performed to avoid huge costs and time involved in post-silicon fixes. Full system

simulators and formal verification methods are used for evaluating a system before manu-

facturing the actual hardware. In simulation based verification of a system, it needs to be

evaluated for all possible inputs and checks if outputs are the same with the golden outputs.

Exhaustive checking of all system behaviors covering all possible test cases is practically not

feasible for a huge system. While simulators help for evaluating NoC in terms of throughput,

overall performance, delay, power consumption, etc., formal verification method is suitable

for ensuring compliance with crucial properties like starvation-freedom, deadlock-freedom,

livelock-lock freedom, etc.. In formal verification, no exhaustive simulation is required. One

requirement for formal verification is the need of a formal model of the system. The verifica-

tion of the system is done by providing a formal proof on the formal model of the system. If

the system under consideration has a large number of functional units, performing exhaus-

tive testing to cover all possible corner cases for a crucial property is challenging as well as

time consuming. Formal modeling and verification is helpful for such purposes. To ensure

that verified properties function correctly after manufacturing the real hardware, modeling

of NoC components in detail level is essential.

5

Introduction

1.2 Challenges in Formal Modeling and Verification of

NoC

This thesis targets verification of two properties, starvation and deadlock in NoC using

its formal models. In the following, we have discussed about challenges in starvation and

deadlock detection in NoC. We have also briefly discussed the existing works on formal

modeling of NoC and their applications.

1.2.1 Starvation Freedom in NoC

Starvation-freedom ensures fairness in resource allocation. In NoC context, the output port

and its corresponding buffer in the next router is the resource for conflict. If multiple

packets from different input ports in a router try to exit through the same output port

continuously, there should be a fairness such that competing packets from all input ports

get a fair chance to be transmitted. Starvation freedom primarily depends upon the output

port allocation policies by an arbiter. For verification of starvation-freedom, considering

input port selection policies within a router for the next transmission via an output port is

sufficient, instead of considering every router in an NoC. Therefore, starvation is considered

as a locally dependent property in an NoC router. Since complete NoC need not be con-

sidered, state space explosion [21] is avoided for verification of starvation freedom. Model

checkers like NuSMV or Spin can also be used for verification of starvation-freedom [22,23].

1.2.2 Deadlock Detection in NoC

In case of a deadlock in NoC, a group of packets are involved in a cyclic wait by holding

and waiting for resources on one another. The resource dependency cycle might spread

across a large number of NoC routers. Thus, deadlock might involve overall NoC and it

has to be considered as globally dependent scenarios. Deadlock is considered as a globally

dependent property since all routers in an NoC need to be examined at a time to detect

deadlock scenarios. Therefore, detection of deadlock in an NoC is a challenging task, due

6

Challenges in Formal Modeling and Verification of NoC

to the prohibitive state space required to encode the complete NoC model and the routing

algorithm therein. The use of model checker like NuSMV [22] for detection of deadlock in

NoC is not feasible due to extensive state space.

NoC simulators handle deadlock in a different way. Booksim2.0 [24] is a cycle accurate

NoC simulator that simulates NoC on a cycle by cycle basis. This simulator uses a threshold

number of cycles to determine deadlock. If the number of cycles exceeds the threshold and

yet packets remain to be delivered, simulation is aborted giving a warning message for

possible deadlock. No deadlock scenario showing resource dependency is produced after

a deadlock warning which would be helpful in understanding real cause of deadlock and

to avoid them. Gem5 [25] is another widely used full system simulator that uses a similar

philosophy for deadlock detection. It internally uses Garnet [26], an interconnection network

model, for NoC simulation. It may be noted that since cyclic dependency for the resource

is not checked in Booksim or in Gem5, it does not give a guarantee that the scenario, in

fact, is a deadlock. Also, the threshold value may overshoot due to other circumstances like

failure, livelock or starvation.

Since neither model checker is suitable for deadlock detection nor simulator gives con-

firmed deadlock with deadlock snapshot, there is a requirement of an alternate approach

for detecting confirmed experimental deadlock which can provide the instance of the dead-

lock scenario as well. In experimental deadlock detection, whether deadlock is present or

not in a given traffic pattern with respect to a given routing algorithm and topology is

reported. Whereas, theoretical approach considers all possible scenarios while predicting

deadlock [1, 2, 9]

1.2.2.1 Application Specific Deadlock Detection

A certain input traffic may or may not lead to deadlock even though the routing method

is deadlock prone as per theoretical deadlock analysis. We have illustrated this with two

examples.

Two traffic patterns are considered for a 2x2 Mesh NoC with buffer capacity of one in

7

Introduction

p1 (1, 2)

p2 (2, 1)

p3 (4, 3)

p4 (3, 1)

p5 (1, 4)

p6 (2, 3)

p7 (4, 2)

p8 (3, 2)

p1 (1, 2)

p2 (2, 4)

p3 (4, 3)

p4 (3, 1)

p5 (1, 4)

p6 (2, 3)

p7 (4, 1)

p8 (3, 2)

E

E

W

W

N N

S S

p1 (1, 2)

p2 (2, 4)

p3 (4, 3)

p4 (3, 1)

p5 (1, 4)

R1

R3

R2

R4

p6 (2, 3)

p7 (4, 1)

p8 (3, 2)

E

E

W

W

N N

S S

R1

R3

R2

R4

p1 (1, 2)

p2 (2, 1)

p4 (3, 1)

p3 (4, 3)

p5 (1, 4)
p6 (2, 3)

p7 (4, 2)

p8 (3, 2)

Traffic Pattern

Traffic Pattern

a) Traffic Pattern Leads To Deadlock

b) No Deadlock for This Traffic Patter

Figure 1.4: Deadlock example: (a) Traffic patterns leads to deadlock, (b) No deadlock in another
traffic pattern.

Fig. 1.4. Deadlock appears for one traffic pattern as shown in Fig. 1.4(a) but no deadlock

is found for the second traffic pattern in Fig. 1.4(b). In Fig. 1.4(a), eight packets are

considered. For each packet, the source and destination addresses are written in bracket.

Here, p1(1, 2) means, the source and destination of Packet1 is router R1 and router R2,

respectively. Let us assume, p1(1, 2), p2(2, 4), p3(4, 3) and p4(3, 1) are transmitted from

Router R1, R2, R4 and R3 at a same time. These packets have just occupied the buffer

of the next router before getting delivered at its destination, as shown with black arrow

in Fig. 1.4(a). We assume, at this moment p5(1, 4), p6(2, 3), p7(4, 1) and p8(3, 2) are

transmitted towards their destination from routers R1, R2, R4 and R3, respectively. They

follow the path indicated by the red arrow, as the buffer in the path shown by the black

arrow are fully occupied. The current buffer position of p5, p6, p7 and p8 are also shown

with red arrow in Fig. 1.4(a). As there is no resource dependency for packet p1, p2, p3 and

p4, eventually they would be delivered at the destination core. Whereas, the scenario is

different for packet p5, p6, p7 and p8. Here, p5 is waiting for the buffer being held by p8,

8

Challenges in Formal Modeling and Verification of NoC

p8 is waiting for the buffer being held by p7, p7 is waiting for the buffer being held by p6

and p6 is waiting for the buffer being held by p5. Thus it creates a cyclic dependency on

holding and waiting for resources. Thus, this traffic pattern in Fig. 1.4(a) leads to deadlock.

Another sequence of eight packets are shown in Fig. 1.4(b). Current positions of the packets

in the buffer of adjacent routers are shown. In this case all packets would gets delivered

eventually. There is no dependency cycle formation.

Reporting a confirmed deadlock with a deadlock scenario on a given traffic pattern with

respect to a given routing algorithm and topology is useful. It has also importance in context

of deadlock avoidance or deadlock recovery. In this work, we, therefore, target application

specific deadlock detection.

1.2.3 Deadlock Representation and its Avoidance

An informative way of deadlock representation helps in formulating deadlock avoidance.

Channel Dependency Graph (CDG) [2] and Turn model [1, 9] are two classical theoretical

approaches used for deadlock detection and its representation.

c2_3
c3_4

c4_5

c5_1

c6_7

c7_8
c8_9

c9_10

c1_2

c10_11

c11_12

(a) (b)

Figure 1.5: Channel Dependency Graph: (a) Deadlock cycle, (b) No deadlock

1.2.3.1 Channel Dependency Graph

Deadlock occurs in an NoC due to channel and buffer dependency across a path. The CDG

is used for presenting channel-buffer dependency across a path in NoC [2]. Each router in a

CDG represents a combination of channel with its associated buffer. Dally’s theory states

that a routing algorithm is deadlock free if there is no cycle in any CDG and vice versa [2].

Fig. 1.5(a) shows a deadlock cycle represented using CDG. All vertices in CDG represent

9

Introduction

a channel-buffer combination. Here, the vertex ci j represents the channel from router i to

router j associating with connected buffer in router j. Another CDG representing buffer

dependency without forming cycle is shown in Fig. 1.5(b).

Four Turns are Restricted: Deadlock free(b)

EW

S

NWS NE ES

ENSE SWWN

All possible Turns: Deadlock(a)

NW

Figure 1.6: Turn model: (a) All possible Turns create deadlock, (b) XY-Turns (solid lines) and
YX-Turns (dotted lines) are deadlock free

a) Permitted Turns b) Deadlock Cycle

Figure 1.7: Deadlock cycle from Turn model: (a) Permitted Turns by a routing algorithm, (b)
Deadlock cycle

1.2.3.2 Turn Model

Turn model is an approach to avoid deadlock in NoC by restricting certain Turns by packets

[1]. Turn represents the change in direction by a packet. There are four clock wise Turns

and four anti-clock wise Turns as shown in Fig. 1.6(a). A routing is deadlock prone if

permitted Turns in that routing algorithm complete either a clockwise or anti-clockwise

cycle. If a packet is moving towards X-direction, i.e., in East or West direction, and changes

its direction towards Y-direction, i.e., towards North or South direction, the Turn involved

is called XY-Turns. Similarly, a packet is moving in Y-direction and changes its direction

towards X-direction is called YX-Turns. The solid Turns in Fig. 1.6(b) are XY-Turns and

the dotted Turns are YX-Turns. XY-Turns and YX-Turns are individually deadlock free

because they can not complete a cycle as shown in Fig. 1.6(b). An algorithm is deadlock

10

Challenges in Formal Modeling and Verification of NoC

prone if it is possible to form a direct or indirect cycle by using all permitted Turns in a

routing algorithm. A set of permitted Turns and a possible deadlock representation using

these Turns are shown in Fig. 1.7(a) and Fig. 1.7(b), respectively. It is possible to avoid

deadlock by restricting certain Turn involved in the formation of a deadlock cycle. Therefore,

representation of a CDG cycle along with Turn information will help in deadlock avoidance.

However, Turn information is not used in CDG.

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

7 8 9 10

1 2 3 4 5

6

Figure 1.8: A 5x5 Torus NoC composed of ring networks

1.2.3.3 Deadlock in Torus NoC and its Avoidance

A Torus topology is composed of a set of ring networks. A 5x5 Torus NoC is shown in

Fig. 1.8. Inherent cyclic path due to ring network in each row and column of a Torus NoC

makes the topology deadlock prone. Though, the Torus NoC is a symmetric structure and

looks like a both ended closed pipe, it is convenient to visualise Torus as a combination of

wraparound channels and Mesh sub-network. Wraparound channels are the channels that

connect two routers in opposite boundary of a Mesh NoC. Literally, all channels in a Torus

NoC are symmetric and of same characteristics. For convenience in formulating deadlock

avoidance in a routing algorithm, a set of channels are marked as wraparound channels.

Using Up*/Down* [10] and FirstHop [1] routing approaches, resource dependency through

wraparound channels are discontinued. In Up*/Down* routing, a spanning tree is formed to

11

Introduction

obtain an acyclic routing path corresponding to the given Torus NoC. In FirstHop routing,

a packet is allowed to use the wraparound channel only at its first hop so that cyclic path

is discontinued. The leverage of wraparound channels are not utilised for packets that do

not originate from a boundary router [1]. Thought Virtual Channels (VC) [11, 13, 27] or

additional buffer [28–30] are used for avoiding deadlock in Torus, there are scopes for new

research if deadlock in Torus NoC can be avoided without using any additional buffer or

VC and at the same time increase the utility of wraparound channels.

1.2.4 Formal Modeling of NoC

In this subsection we have discussed briefly about a few relevant works on formal modeling

and verification of NoC.

In [31, 32], the communication infrastructure verification of NoC is targeted. A formal

model for NoC is developed and implemented in ACL2 theorem prover. Reachability of

packets between routers are verified in these works where detailed modeling of individual

NoC components are not considered [31], [32]. Progress verification of a communication

network is performed using xMAS based model in [33]. Since verification of global progress

for huge system is not scalable due to state space explosion, global progress is broken

down into localized progress property. Verifying local progress between components leads

to verification of overall progress. A credit based flow control is designed to control number

of packets that enter system and to maintain synchronization. A formal model of the Hermes

NoC router architecture with its communication scheme is presented in [34]. Heterogeneous

Protocol Automata (HPA) is proposed as a language to model Hermes NoC. Reachability

of packets are verified in that work using Spin model checker [23]. Hermes NoC router

is a five bi-directional port router with a buffer at each input port [35]. Verification of

bidirectional NoC is performed in [36]. That work uses State Graph Manipulator (SGM)

for model checking. Starvation freedom and mutual exclusion are verified in that work.

In [37], process-algebra is used for formal verification of fault tolerant NoC. Scalability is

not achieved in that work as only 2x2 NoC model is considered for experiments.

12

Thesis Objectives

Due to the complexity and extensive number of NoC functional units, detailed modeling

of NoCs are not performed in most of the existing works. Scalability of NoC or lack of

internal details of a router are main issues in most of the existing NoC verification related

works. The detailed modeling of NoC is important so that the verification results remain

valid in real NoC as well. Therefore, we target a detailed modeling of NoC considering all

functional units in this thesis.

1.3 Thesis Objectives

In most of the existing NoC verification works, the detailed modeling of the complete sys-

tem is missing [31–34,36,38,39]. Without the detailed modeling of NoC, the formal analysis

would not be complete. Moreover, the abstract model does not represent the actual im-

plementation of the NoC. As discussed already, there are two primary challenges in NoC

verification - modeling of NoC considering functional units in detail and achieving scal-

ability of the verification method using the detailed model. Though it is not feasible to

verify the complete NoC at a time due to state space explosion problem, it is possible to

verify locally dependent properties like starvation-freedom using model checker. Therefore,

a detailed modeling of NoC using Finite State Machine (FSM) for verification of locally

dependent properties like starvation-freedom is demonstrated in this thesis. There are some

specifications like deadlock-freedom that require global information of overall system for its

verification. Model checker is not capable of handling the huge state space of the complete

NoC. An application specific simulation framework that works on a formal model seems

promising in that regard. Therefore, it motivates us to do a formal modeling of NoC using

a formalism named as Communicating Finite State Machine (CFSM) [40]. Due to inherent

synchronization in CFSM, it is convenient to automate simulation and construct a simu-

lation framework using CFSM based model. In case of confirmed deadlock detection, it is

convenient to obtain resource dependency scenario from the CFSM based framework. The

deadlock scenario with resource dependency helps us in formulating deadlock avoidance. It

motivates us to generate experimental deadlock scenario while detecting confirmed deadlock

13

Introduction

using our CFSM based simulation framework [41].

Representation of deadlock scenarios in an informative way helps in formulating deadlock

avoidance. Since Turn information is not used in CDG, an approach of combining both Turn

information and CDG for deadlock representation would be more informative and helpful for

avoiding deadlock. Therefore, it motivates us to propose a deadlock representation approach

by incorporating Turn information along with CDG. Deadlock primarily depends upon the

underlying routing policy in a given topology. If there are many inherent cyclic paths

in a given topology that topology structure may also be the culprit in inducing deadlock

in NoC. Torus NoC consists of many connected rings as shown in Fig. 1.8. Due to the

presence of inherent cyclic paths via ring networks, Torus NoC is more vulnerable to deadlock

as compared to Mesh NoC. Avoiding deadlock for Torus NoC is possible using VC and

additional buffers [12,28]. Whereas, there is a scope for formulating deadlock avoidance for

Torus without using VC or additional buffer by applying restricted routing. There are not

many deadlock free routing algorithms in Torus without using VCs or additional buffers.

Inspired from Turn model, our another objective is proposing an deadlock avoidance approach

applying restriction on packet movement in Torus NoC.

From the above motivations, the following four objectives are identified:

• Formal modeling of NoC components in detail level using FSM. Verification of cor-

rectness of the model and locally dependent properties like starvation using model

checker within a manageable state space.

• Formal modeling of NoC components in detail level using CFSM. Automate the process

of NoC model creation by taking NoC grid size as input for avoiding human error in

model creation. Develop a formal model based simulation framework using the CFSM

based NoC model to detect globally dependent deadlock with respect to a given traffic

pattern and a given routing algorithm. Report the deadlock scenario with the detailed

resource dependency in case of a confirmed deadlock.

• Propose an approach for representing deadlock in a more informative way named

14

Contributions of the Thesis

as Direction Dependency Graph (DDG). The DDG has to obey basic characteristics

of Channel Dependency Graph (CDG). The Turn information is also needed to be

incorporated in DDG to obtain direction information. Formulate a deadlock avoidance

approach named as Arc model for Torus NoC.

• Demonstrate deadlock free routing algorithms using the proposed Arc model for Torus

NoC. Use the proposed DDG for theoretical deadlock analysis while using the Arc

model.

1.4 Contributions of the Thesis

The contribution of the thesis to meet the objectives identified are briefly described in this

section. A high-level overview of our contributions is shown in Fig. 1.9, which is elaborated

in the sub-sequence sections.

1.4.1 Formal Modeling of NoC using FSM and Verification of

Starvation using Model Checker

In our first work, we have used Finite State Machine (FSM) for modeling NoC in detail

level. FSM is chosen for modeling because it is convenient to implement an FSM based

model in a model checker like NuSMV [22]. The NoC components like buffer, switch,

arbiter are modeled using FSM. Synchronization between these components are maintained

using dedicated FSMs. Two arbitration policies namely Fixed-priority arbiter and Round-

robin arbiter are also modeled. Model of all these NoC functional units are encoded using

NuSMV model checker. For verifying a property, its specification is represented using linear

temporal logic (LTL) [42, 43] and given as input to the model checker. NuSMV internally

composes all the FSMs and checks for all possible scenarios [43]. The model checker reports

whether given LTL property is satisfied or not. For ensuring correctness of the FSM based

model, the synchronization within a router, progress between router components, transfer of

15

Introduction

Verification using

NuSMV Model Checker

FSM Based Model
 CFSM Based Model

Simulation Framework

Formally Modeled

Useful for
Global Properties

Formal Modeling of NoC

local properties

Useful for

Progress
 Transfer of

Packet

Starvation

Freedm
 Application Specific

Deadlock Detection

Deadlock in

Dynamic XY−routing

False−positive

Warning in Booksim

Deadlock Analysis
in Torus NoC

Arc Model and DDG

Arc Model: Deadlock Free

Routing Algorithms
 Deadlock Detection

DDG: Theoretical

Figure 1.9: A high-level overview of the contributions from the thesis

packets between routers, correctness in setting priority for Round-robin arbiter are verified.

Progress property in a model implies that current state of an FSM does not stuck in a state,

i.e., state of an FSM keeps on changing provided that there is a packet present as input for

transmission.

As an application of the model, starvation-freedom for Fixed-priority arbiter and Round-

robin arbiter are verified. Since starvation-freedom primarily depends upon resource alloca-

tion logic, it is possible to verify starvation without considering the complete NoC at a time.

We partition the NoC into active regions and perform verification on each active region in

parallel to improve the overall verification time. Experimental results show that starvation

freedom is satisfied for all input ports when Round-robin arbiter is used. For Fixed-priority

arbiter, we have considered the priority order for input ports as Local > East > West >

16

Contributions of the Thesis

North > South. Though it seems the starvation-freedom should be satisfied only for the

highest priority port, experimental results show that starvation-freedom is satisfied for both

first and second highest priority ports. This happens due to the synchronization latency

after transferring a packet in the model.

1.4.2 Formal Modeling of NoC using CFSM and Developing a

Simulation Framework for Deadlock Detection

Our second contribution is to confirm whether deadlock is present or not on a given input

traffic pattern with respect to a given routing algorithm and given topology. We have devel-

oped a simulation framework using a formally modeled NoC with help of Communicating

Finite State Machine (CFSM) [41]. When a deadlock is confirmed, the deadlock scenario

representing the cyclic resource dependency is also reported by the simulation framework.

We model NoC components using CFSM in this work. Transitions in all CFSMs are

carried out with help of sending and receiving of unique messages [40]. The synchronization

between interacting functional units or CFSMs are inherently controlled by this process of

sending and receiving of unique messages. Therefore, no dedicated CFSM unit is required

to maintain synchronization between functional units. This is one advantage of using CFSM

over FSM for modeling a system like NoC where a large number of units continue functioning

in parallel. Therefore, it is convenient to develop a simulation framework for NoC using

CFSM based model.

When a system is halted due to occurrence of deadlock, no transitions are possible

in the equivalent CFSM design of the complete system. If all packets have not reached

their destinations and no further transition is occurring in the CFSM model, it is a clear

indication of deadlock. Due to these behaviours, the CFSM is a suitable modeling formalism

for detection of deadlock in a complex system like NoC. In case of occurrence of deadlock,

using the current global state of CFSMs along with associated packets, an exact deadlock

scenario depicting the resource dependency is obtained from the simulation framework.

We have detected deadlock in dynamic XY-routing [8] using the CFSM based simulation

17

Introduction

framework. Deadlock is detected for XY-routing in Torus NoC as well. Thus, experimental

findings reinforce that besides NoC routing algorithm deadlock is dependent on NoC topol-

ogy as well. The deadlock scenarios obtained from experimental resource dependency help

us to carry forward our next research on formulating deadlock avoidance and developing

deadlock free routing algorithm for Torus NoC.

1.4.3 Deadlock Avoidance in Torus NoC using Arc Model and

DDG

The third work of this thesis is on deadlock avoidance in Torus NoC. For representing

deadlock with additional information like Turn and directional information, Directional

Dependency Graph (DDG) is proposed in this work. An Arc model is also proposed to

avoid deadlock in Torus NoC.

2 3 4 51 6

(a) Cyclic path leads to deadlock

EW wraparound channel

S

N

W E

1 2 3 4 5 6

EWn and EWs Arcs from EW wraparound channel

N

S

(b) Discontinue the cyclic path

Figure 1.10: Avoid deadlock by discontinuing the cyclic path

The proposed DDG has taken advantage from both the Turn model and Channel De-

pendency Graph. DDG is useful for predicting deadlock theoretically by creating possible

deadlock cycle. These deadlock cycles are helpful in formulating deadlock avoidance as well.

A cyclic path in Torus NoC is shown in Fig. 1.10(a). Torus NoC consists of a number of

ring networks that contribute to many such cyclic paths in Torus NoC. Though all channels

are symmetric in Torus NoC, let the channel connecting router R6 and R1 be considered

as wraparound channel in Fig. 1.10(a). Since this channel is from the East direction to the

18

Contributions of the Thesis

West direction, we termed this as EW wraparound channel. One approach of discontinuing

this cyclic path via wraparound channel is to restrict the immediate backward movement

just after traversing through EW wraparound channel. After taking EW wraparound chan-

nel, it has to move towards the North (EWn) or South (EWs) direction for at least one hop.

Thus, the EW wraparound channel is subdivided into EWn and EWs Arcs in Fig. 1.10(b).

In this approach, there are four types of wraparound channels (EW, WE, NS, SN) and each

wraparound channels are subdivided to obtain eight Arcs namely EWn, EWs, WEn, WEs,

NSe, NSw, SNe and SNw.

We consider Torus NoC as a combination Mesh sub-network and wraparound chan-

nels for convenience. The Arc model is helpful in avoiding the immediate deadlock cycle.

Nevertheless, behaviour of Arc model with respect to the set of permitted Turns in Mesh

sub-network need to be analysed. We have analysed deadlock behaviour of Arc model with

respect to XY-Turns in the Mesh sub-network using DDG. The analysis shows that all eight

Arcs are individually deadlock free with respect to XY-Turns. We also performed deadlock

analysis for all possible Arc pairs. From 8 Arcs, total
(
8
2

)
= 28 Arc pairs are possible. Using

DDG, we have identified 14 Arc pairs as deadlock prone and 14 Arc pairs as deadlock free

with respect to XY-routing in the Mesh sub-network. The experimental results from the

CFSM based framework also support the findings from DDG analysis.

The Arc model helps in avoiding deadlock in Torus NoC where additional buffer or VC

are not needed. In our next work, we have demonstrated deadlock free routing algorithms

for Torus NoC using deadlock free Arc pairs with respect to XY-Turns.

1.4.4 Deadlock Free Routing Algorithms for Torus NoC using Arc

Model

The fourth work of this thesis is the application of Arc model for designing deadlock free

routing for Torus NoC. With the help of DDG analysis and CFSM based framework, we

have already identified 14 deadlock free Arc pairs with respect to XY-Turns. Therefore, 14

deadlock free routing algorithms are possible using different Arc pairs with XY-Turns. We

19

Introduction

have presented one of them in this work. FirstHop [1] and Up*/Down* [10] routing are

two other approaches for deadlock avoidance in Torus that do not use additional buffer or

VC as like Arc model. We compare Arc based algorithm with FirstHop and Up*/Down*

methods. The wraparound channels are helpful in saving overall hop count in a given

traffic. Experimentally it is found that algorithm with two Arcs save more hop counts

in comparison to Up*/Down* routing. In FirstHop routing [1], since a packet is allowed

to use the wraparound channel only at its first hop, saving in hop count depends upon

the percentage of traffic originated from boundary router. There are more percentage of

boundary routers in a smaller Torus NoC. The percentage of boundary routers decreases

with the increase of NoC grid size. Therefore, saving in hop count also decreases significantly

with increase of NoC size in case of FirstHop algorithm. In our Arc based algorithm, saving

in hop counts are not affected drastically by the changes in NoC size. The saving in hop

counts by algorithms with two Arcs are closer to FirstHop algorithm. We have enhanced

our Arc based algorithm by using three Arcs with XY-Turns. The saving in hop count by

algorithm with three Arc is better than that of FirstHop algorithm for NoC with grid size

9x9 onward. To improve further, we have used three Arc based algorithm with FirstHop

approach by applying it for one wraparound channel. The resultant algorithm further

improves the saving in hop counts. We have used DDG to prove deadlock freedom for the

proposed Arc based algorithms. No deadlock is detected as well for Arc based algorithms

by the CFSM based framework while different input traffic patterns are applied.

1.5 Organization of the Thesis

The thesis is organized as follows:

Chapter 1 Introduction, motivation and contribution of the thesis are presented in this

chapter.

Chapter 2 Detailed literature survey on formal modeling and verification of NoC, NoC

routing algorithms, existing works on deadlock detection and avoidance approaches are pre-

sented in this chapter. We have identified research gaps in those areas and stated our

20

Organization of the Thesis

objectives to bridge them.

Chapter 3 Formal modeling of NoC using FSM, verifying correctness of the NoC model and

application of the FSM model in verifying starvation-freedom are presented in this chapter.

Chapter 4 Detailed modeling of NoC components using CFSM and automated NoC model

generation are presented in this chapter. Detection of application specific confirmed dead-

lock with deadlock scenario using a CFSM based NoC model is also presented.

Chapter 5 Deadlock avoidance using Arc model for Torus NoC is presented in this chap-

ter. DDG is also presented for representing and analysing deadlock with Turn and direction

information.

Chapter 6 Application of Arc model in designing deadlock free routing algorithm for Torus

NoC is presented in this chapter.

Chapter 7 The thesis concludes in this chapter indicating the scope for future direction of

our research.

21

2
Background and Literature Survey

In this chapter we have discussed the existing works related to our research. At first, we

discuss about formal verification techniques. For applying formal methods, formal modeling

of the system is the prerequisite. An overview of existing works on formal modeling and ver-

ification of NoC is then presented in this chapter. Application of the existing formal models

in detection of starvation, progress, deadlock along with the limitation of those approaches

are also presented. We have discussed the challenges and research gap in formal modeling

and verification of NoCs based on the existing works and then stated our objective. Next,

we have briefly described about different routing algorithms for NoC. Deadlock freedom

is an important aspect of NoC routing algorithms. The state-of-the-art works on deadlock

avoidance approaches for NoC routing algorithms are presented. Research gaps for deadlock

23

Background and Literature Survey

avoidance in Torus NoC are also identified. To bridge the research gap, we have identified

our objectives in this chapter.

2.1 Formal Verification Techniques

Simulation and testing are widely used for verifying the correct functionality of System-on-

Chip (SoC) and NoC. Formal methods have potential to offer early integration of verification

in the design phase of an SoC and NoC [43]. The growing complexity and the pressure to

reduce development cycle (time-to-market) make the delivery of no-defect system is an

enormously challenging activity. Preventing bugs in hardware design has more importance.

Because, hardware is subject to high fabrication cost and fixing them after delivery to

customer is very costly and sometimes is not feasible. Whereas, software bugs can be handled

by providing users with new updates or patches. Manufacturing of bug free products are

essential to the growth and even survival of a company. In the early nineties, due to the

floating point division unit bug in Intel’s Pentium II, the company has to replace processors.

This bug cost a loss of approximately 475 million US dollars and damaged Intel’s reputation.

Such errors when occurs in safety-critical control system such as chemical plants, nuclear

power plants, automated traffic controller can have catastrophic consequences as well. The

Ariane-5 space launch vehicle by European Space Agency (ESA) was crashed in 36 seconds

on June 4, 1996. For the software flow in the controller of a radiation therapy machine

named Therac-25 causes overdose of radiation. As a result six cancer patients were died

during 1985 and 1987. Investigations on these incidence have shown that formal verification

procedures would have detect the error in Ariane-5 space launch vehicle, Intel’s Pentium II

processor and Therac-25 radiation machine beforehand.

2.1.1 Model Checking

Model checking is a formal verification technique that explores all possible system states.

Model checking approach is an automated technique where a finite-state system model and

24

Formal Verification Techniques

a set of formal properties are given as input. Model checker systematically checks whether

these properties hold for that model. This technique is based on models which describe the

behaviour of the system in a mathematically accurate design. The accurate modeling of

a system discovers any incompleteness or inconsistency in the system. Such problems are

usually discover at much later stage. Verification using a model is as accurate as the accuracy

in designing the system model [43]. The major challenge in model checking is to examine

the largest possible state space. State space of a system model increases exponentially with

the incorporation of every new functional units.

Besides the model of the system under consideration, formal representation of the prop-

erty to be checked are the prerequisite input for model checking. Characteristic of a transi-

tion system with respect to time is represented using temporal logic. Sequence of state in a

transition system is called computation path. The expected change of state with respect to

time and current state in computation paths are represented using Linear Temporal Logic

(LTL). We have used LTL to represent properties in a given model in this work. These LTL

specifications are given as input to the model checker. Model checker determines whether

a given LTL specification is satisfied or not with a True or False value. If an LTL does not

hold True a debug trace representing how the give LTL is not satisfied is given as output.

SMV (Symbolic Model Verifier) is a model checking tools developed by K. L. McMil-

lan under the guidance of E. M. Clarke at Carnegie-Mellon University (Pittsburgh, PA,

USA) [44]. It performs model checking of a system under consideration using BDD (Bi-

nary Decision Diagram). NuSMV [22] is the extended and reimplemented version of SMV.

NuSMV symbolic model checker developed as a joint project between FBK (Future Built

on Knowledge) research institute in Italy, Carnegie Mellon University (CMU), University of

Genova and University of Trento. Version 2 of NuSMV [45] was developed in 2002 inherit-

ing all functionalities of previous version with the integration of model checking techniques

based on propositional satisfiability (SAT). The aim of NuSMV open source project is to

provide a common research platform to the model checking community.

25

Background and Literature Survey

2.1.2 Equivalent Checking

Equivalence checking is another technique used for formal verification. This technique is used

to prove that two representations of the same system using formal model exhibit the same

behavior. Model checking is a functional verification process and is different from equivalence

checking. Exhaustive simulation are used in functional verification to verify the correctness

of a model. In case of equivalent checking, at first, a system model has to be verified. Let

an alternate representation of the same system is available. Equivalence checking can be

used for determining if the second alternative model exhibits same behaviour as that of

the verified version. For example, equivalent checking is used in industry for determining

whether functionality of a model has changed after applying synthesis operation. Finite state

machines with data path (FSMDs) are mostly used in equivalent checking for modeling the

system specification [46].

2.1.3 Theorem Prover

Theorem prover accepts a set of axioms and a theorem as input and returns as output a

formal mathematical proof for the theorem [47]. Instead of proving new theorem, theorem

prover formalises the outline of a proof. It provides mathematical reasoning on the cor-

rectness of system properties. Theorem proving reasons about the state space using system

constraints only. All states on state space are not used as like a model checker. A theorem

provers are used for software and hardware verifications. It is also used in assisting human

mathematicians in conducting complex proofs. Usually a time limit is set for a theorem

prover on a given theorem for its proof. If time limit expires and neither proof is complete

nor a counter example is found, the prover terminates in such cases [48].

2.2 Formal Modeling and Verification of NoC

In this section, we discuss works related to formal modeling of NoC targeting different

properties, formal model based and run-time deadlock detection and traffic modeling for

26

Formal Modeling and Verification of NoC

performance analysis of NoC.

2.2.1 Formal Modeling using Different Formalism

Due to the enormous benefits of the formal models [43], there have been efforts on formal

verification of NoC and deadlock detection using both model checker and theorem prover. D.

Borrione et al. target validation of the communication infrastructure of NoC [31]. Generic

NoC is based on an abstract view of the communications network of NoC is presented in this

work. This work has node considered router components in detail. The generic NoC model

is modeled as the composition of key components like routing, scheduling and interfaces.

This model includes topologies, routing algorithms and scheduling policies. A finite number

of routers are connected to generic NoC communication architecture. A generic formal

model for NoC is implemented using ACL2 theorem prover and simulator. ACL2 provides

two functionalities, as a theorem prover and as an execution engine in the same modeling

environment. Timing information is not considered in that work, which is incorporated in

their next work [32]. This work describes an extension work on generic model for NoC [31].

It is implemented in ACL2 theorem prover, which contains the executable logic as well.

This model is useful for serving as a formal reference for the validation and simulation of

NoC at the initial design phase. The work demonstrated the transmission of messages on

generic communication architecture, with an arbitrary network topology and node interfaces,

routing algorithm and switching technique. The model considers its main input, as a list

of messages that can be injected in the network. Before injecting in the network, these

messages are first encoded. Properties like deadlocks, starvation are not considered in this

work and it considers only high-level description of NoC while modeling.

A polynomial-time algorithm using ACL2 interactive theorem prover for deadlock free-

dom in NoC is proposed in [49]. They identified the sufficient condition for occurrence of

deadlock in wormhole networks. However, checking a necessary and sufficient condition is

co-NP-complete [49]. Therefore, this approach cannot detect all possible deadlocks. In their

next work [50], the author present proof for deadlock, livelock, starvation and functional

27

Background and Literature Survey

correctness. They consider three main functionalities viz. an injection method for injecting

message into the NoC, a routing function and a decision making function if a message can

advance to next node. It considers high level of abstraction for the NoC. More refinement is

needed to ensure that the properties established at the abstract level also hold on implemen-

tation of different NoC architectures. One main contributions of this work [50] are designing

a new generic NoC model with capability of adaptive routing algorithms. It has added two

new global theorems, namely evacuation and starvation freedom. The generic NoC ap-

proach has three main functionalities. There is an injection method which chooses messages

amongst pending messages that can go into the network and can access network resources.

The routing function determines the all possible next hops from the current position and the

destination of hop for a message under consideration. The switching policy takes decision

if a message can advance to a node. Generic NoC combines these three functionalities to

form a network simulator. A network in generic NoC contains a set of resources R. Each

resource R has a certain number of buffers. There are two special resources, source and

sink. Source generates message and sink is used to consume messages.This work presents

proof for deadlock, live lock, functional correctness, and starvation freedom in ACL2. But

it considers only high-level descriptions of NoC. However, more refinement is needed to en-

sure that properties established on the abstract model keeps hold on the actual hardware

implementation.

V. A. Palaniveloo et al. present a new formal model of the existing Hermes NoC router

architecture along with its communication scheme in [34]. They propose Heterogeneous

Protocol Automata (HPA) as a language to model Hermes NoC as an event based transition

system. This work verifies reachability of flits using Spin model checker [23]. At input port

of the Hermes Router [35] it models five bi-directional ports and the bounded buffers. It

also includes the XY-routing algorithm, wormhole switching, arbitration logic with priority,

and a handshake protocol of the communication scheme. With help of PROMELA, the

automata model is mapped manually. PROMELA is specification language for the SPIN

model checker [51]. It models XY-routing algorithm by writing codes in PROMELA. This

28

Formal Modeling and Verification of NoC

work models NoC components like switch, arbitration by defining Heterogeneous Protocol

Automata. It verifies reachability of a flit using SPIN model checker. This work has not

checked critical issues like starvation, deadlock, livelock etc.

Y. C. Lan et al. [52] proposes a bidirectional channel Network-on-Chip architecture to

enhance the performance of on-chip communication. It allows each communication channel

between two routers to be dynamically self configured to transmit flits in either direction. It

makes better utilization of on chip hardware resources. This bidirectional channel promises

better bandwidth utilization, lower packet delivery latency, and higher packet consumption

rate at each on-chip router. To implement this bidirectional traffic, this work proposed a con-

trol algorithm between two neighbouring routers. It allows neighboring routers to coordinate

in setting the specific directions for the pair of channels between them for transmitting and

receiving packet. A novel router architecture which supports dynamic self re-configurable

bidirectional channels is also proposed. This paper claims that the hardware overhead is

negligible for bidirectional channels. Y. R. Chen et al. present a verification approach on

bidirectional NoC in [36]. They have verified mutual exclusion and starvation freedom. For-

mal Modeling of NoC presented in this work considering the proposed Bidirectional NoC

design [52]. A channel has three states: free, idle and waits. One end of a channel is con-

figured as free state and data are transmitted from that end. Receiving end of a channel

is in idle state. To change a state from idle to free, it goes through the intermediate state

called wait state. BiNoC design is converted into Extended Time Automata for verification.

State Graph Manipulator (SGM) [53] is used as model checking tool in all the experiments.

Due to state space explosion, the work can not verify deadlock freedom. The model used

in this work considers only one router and has not considered detailed model of the NoC

components. The approach may not scale for a complete NoC. In a Ph.D. dissertation on

formal verification of fault tolerant NoC [37], process-algebra is used for modeling. For all

the experiments in this work a 2x2 NoC model is considered. Scalability is not achieved in

this work. Deadlock verification fails due to state space explosion problem.

29

Background and Literature Survey

2.2.2 Formal Modeling using xMAS Primitives

There is another approach of modeling interconnection network using executable micro ar-

chitectural specification (xMAS) [54, 55]. A richer set of micro architectural primitives are

identified that allow describing complete system by composition methods. The xMAS prim-

itives help to build models faster as models are now simply wiring diagrams at some level

of abstraction. It is claimed that xMAS based models are closed to hardware implementa-

tion. Models designed using xMAS can be used for model checking as well as for dynamic

validation and for performance modeling. Some of the basic xMAS primitives are queue,

function, source, sink, fork, join, switch and merge. Source can generate packet infinitely

and a sink can absorb them without delay. By applying a function in a channel, data can

be modified. The xMAS primitives are used as basic design units to describe complete

system by composition. They are useful as a modeling framework for validating existing

micro architecture. These are recent works that usages xMAS as modeling framework in

their works [33,56–62].

Some existing verification works on communication network [33], [56], [63] use xMAS

for modeling the system. S. Ray et al. present progress verification on a communication

fabric by breaking end-to-end progress property of a virtual channel into localized progress

property [33]. This paper considers a virtual channel which is designed using xMAS [33].

This work focuses on progress property. Progress means whenever there is a packet trying

to enter the virtual channel, it will pass through the channel. In this work [33], end-to-end

progress property is broken down into localized progress properties. Localized progress are

more easily provable, and leads to a formal proof of overall progress. ABC verification

engine is used for verification [64]. The authors conclude that some more study is needed to

apply the same approach for progress verification in NoC. D. E. Holcomb et al. [56] present

compositional performance verification of NoC. The overall latency in a routing path is

calculated using xMAS model. The overall latency bound problem is divided into a number

of smaller sub-problems, termed latency lemmas. Firstly, the network is modeled using

xMAS primitives. Next, the network model is converted into stage graph. Each stage is

30

Formal Modeling and Verification of NoC

associated with a worst case latency calculated from latency lemma. By considering latency

in every stage, overall latency of a packet is calculated. This approach may fail in cyclic

network. Worst case latency are only be considered in all stages which is too extreme. Our

focus is not on performance verification on NoC. In [63], formal modeling and deadlock

verification of NoC are demonstrated without considering any specific routing algorithm.

The work scales up to 8x8 grid. Intuition behind this work is to find inactive channel in

an architecture, that leads to deadlock. In [65], we verify progress property on a xMAS

based NoC model using NuSMV [22]. Buffer is not considered in that work. Considering

buffer, verification of this model using NuSMV does not scale even upto 2x2 NoC. Using

this approach, deadlock verification of NoC is found to be infeasible due to state space

exposition problem.

2.2.3 Modeling using FSM and CFSM

Finite State Machine (FSM) is a popular modeling formalism suitable to use with model

checker. NuSMV internally composes all the FSMs present in the system model and verifies

the truth value for any given specification with respect to that composed model [43]. In

verification process, state space increases exponentially in case of a huge system like NoC.

This is called state space explosion problem [21]. Besides formal verification purpose, FSM

are being used for various other applications by the research community [66–73]. In this

thesis, we have modeled the NoC using FSM first to check locally dependent properties like

starvation. We have modeled NoC considering detailed components. Synchronization be-

tween NoC components is essential for proper functioning. For maintaining synchronization

between NoC components we have used dedicated FSM in our FSM based NoC model.

Communicating finite state machine (CFSM) is another modeling formalism suitable

for modeling a system with number of functional units executing synchronously in paral-

lel [40]. The synchronization between the units in a system are maintained with help of

sending and receiving messages between the functional units. Message communication be-

tween functional units take place with help of blocking message queues. There are existing

31

Background and Literature Survey

works on verification of communication protocol and deadlock detection using CFSM. A

communication protocol validation approach using CFSM model consisting of two machines

are presented in [74–76]. Fair reachability [74, 75] is applicable to CFSM consisting of two

machines. Gouda et al. proposed an deadlock detection algorithm on a system consisting of

two CFSMs only [76]. A theorem for checking bounded communication between two CFSMs

is presented in [77]. These works [74–76], have not demonstrated systems where more than

two CFSMs are present.

In general, the deadlock is identified by detecting cyclic dependencies of resources in NoC.

Since CFSM is suitable to maintain synchronization between parallel system and gives clear

indication in case of deadlock, we have chosen CFSM for modeling NoC. In this thesis, we

have shown that the cyclic dependencies for resources are equivalent to the identifying a

global state with no further transitions in the CFSM models. Moreover, this work is the first

attempt to model a large distributed and parallel system like NoC in detail using CFSM.

2.2.4 Traffic Modeling using Queuing Approach

There are several attempts to model traffic characteristics for accurate performance analysis.

Queuing-based approaches are widely used for network performance analysis and they are

mostly based on Poisson distribution. However, the issues with queuing-based approaches

is that, such models cannot efficiently account for many of the traffic characteristics e.g.,

non-stationarity, self-similarity etc, which are vital for multicore designs. To address these

limitations, Bogdan et al. [78, 79] propose statistical physics inspired approach to model

the traffic dynamics in multi-core systems. The model presented in [79] can investigate

buffer overflow probability in NoC. In another work [80], a mathematical router model for

NoC performance analysis is presented. This model is primarily based on number of FIFO

buffers connected with switches. Different parameters like buffer size, packet size, packet

transmission rate, packet waiting time, channel bandwidth etc. are used in the model. This

model reports throughput, buffer utilization and average latency per router in an NoC. Qian

et al. [81] present a learning based support vector regression (SVR) model for analyzing the

32

Formal Modeling and Verification of NoC

latency performance in NoC. In [82], Qian et al. propose an accurate and scalable latency

model for NoC performance analysis. Channel waiting time is estimated using queuing-

based approach. In prior queuing-based work [83], the traffic arrival model uses Poisson

approximations. It is extended to a generalized exponential traffic arrival in work [82]. The

model in [82] can handle bursty traffic and dependent arrival times with general service time

distributions. However, our focus is not performance analysis of NoC. It may interesting to

study if our NoC model can be utilised for performance analysis as well.

2.2.5 Run-time Deadlock Detection

Some existing works target run-time deadlock detection and recovery in NoC [84, 85]. Pri-

marily, they are all based on a predetermined time-out values. Therefore, these techniques

may give false-positive results. In another run-time deadlock detection work [86], a dis-

tributed and parallel transitive closure (TC) network is tightly coupled with the original

NoC. A TC computation unit is connected with each router. All TC units are connected

with its neighbouring TC units and share transitive closure computation information for

deadlock detection. Our work is some what different. Our aim is to work on a deadlock

detection approach without relying on predetermined time-out values. Our approach is

to check resource dependency explicitly with help of formal method and report the exact

deadlock scenario.

2.2.6 Challenges and Objective

Formal modeling and verification of a complete NoC challenging due to the presence of large

number of functional units and the necessary interaction between all these components. The

state space explosion problem is a major issue in the scalability of verification of a complete

NoC model [21]. Detailed modeling of complete NoCs are not performed so far in the

existing works as discussed in this section. The importance for detailed modeling of NoC is

to keep the verification results consistent in real hardware as well. Therefore, our objective

in this thesis is to work on detailed modeling of NoC considering individual functional unit

33

Background and Literature Survey

and their interaction in details.

2.3 Routing Algorithms for NoC

NoC became an alternative to the bus technology with the evolution of System-on-Chip

(SoC). Among the different NoC topologies, the Mesh and Torus topology have been a

popular NoC topology for constructing massively parallel processors [87,88]. In Mesh NoC,

each router is connected with four or three or two routers in the topology. There is more

connectivity towards the central region and less connectivity in the boundary routers. Torus

is another topology where each router is connected with four other routers. In Torus NoC,

the communicating distance between boundary routers are reduced by interconnecting the

boundary routers of the Mesh NoC. Routing algorithm plays a key role in the functioning of

an NoC. There are numbers of alternative paths between a source and destination routers

in an NoC. Routing algorithm determines the path that a packet will follow to reach to

its destination from its source. Efficiency of an NoC depends on the underlying routing

in an NoC. High performance, load balancing, fault tolerance, freedom from deadlock are

some of the parameters for a routing algorithm. Based on the adaptive nature that the

routing algorithms facilitated to packets, routing algorithms are broadly classified into three

categories: deterministic routing, partially adaptive routing and fully adaptive routing [7].

In the deterministic routing algorithms, paths are determined based on a predefined rule

and packets have to pass through predefined paths. The routing process is simplified in

deterministic routing. One drawback is, packets cannot use alternative paths to avoid

congested channels along the predefined paths. Adaptive routing are capable of changing

its path based on the congestion in the network channels. In the partially adaptive routing

algorithms, they use the advantages from both the deterministic and fully adaptive routing.

A fully adaptive routing exercises higher path diversity and less restriction regarding path

in comparison to deterministic and partially adaptive routing.

In case of deterministic routing, it offers only one path for each source and destination

router pair. XY-routing is a deterministic routing where a packet is routed first along the

34

Routing Algorithms for NoC

X-dimension in a 2D Mesh NoC [89]. After X-distance is covered, the packet is routed along

the Y-dimension until the packet reaches its final destination. XY routing is a minimal

routing algorithm. The path between the source and destination used by this algorithm

are always the same and is one of the shortest paths. XY-routing is deadlock free in Mesh

NoC. Though XY routing can not handle faulty paths, it is very simple to implement and

has lower overhead than implementing an adaptive routing. Deterministic routing helps in

reducing router complexity and power consumption has a direct relation to the number of

routers a packet traverse, i.e., the hop counts. The procedure of implementing XY-routing

for Torus NoC is given in [3]. Two alternate paths are available for both X-distance and

Y-distance in Torus NoC. One path is in clockwise direction and another path in in anti-

clockwise direction. The shorter path is considered from the clockwise and anti-clockwise

alternatives.

In partially adaptive routing some moves are pre-determined and some moves are de-

termined based on the network congestion. Three partially adaptive routing for Mesh NoC

are presented using Turn model in [1, 9]. The core idea of Turn model is to prohibit a few

Turns to break all of the cycles so that deadlock can be avoided. Three partially adaptive

routing algorithms are namely West-First, North-Last and Negative-First that are presented

in [1]. For implementing the same algorithms in Torus NoC as well, Glass et al. [1] propose

FirstHop routing approach by imposing certain restriction. Applying the traffic distribution

helps in improving performance of a routing algorithm. An improved routing algorithm on

traffic distribution namely Odd-even routing with a better traffic distribution is presented

for Mesh NoC in [90]. Odd-even routing is based on Turn model concept. Odd-even routing

restricts some Turns based on its location so that deadlock can be avoided. The basic idea

of Odd-even routing is to restrict some Turns with respect to location so that cycle forma-

tion can be prevented. For example, EN and NW Turns could be the part of same cycle.

Therefore, EN and NW are not permitted in the same column of a Mesh NoC. Similarly,

ES and SW Turns are also not permitted in the same column.

Adaptive routing considers the network status, typically buffer occupancy when selecting

35

Background and Literature Survey

between alternative routing paths [3]. An adaptive routing that make routing decisions

based only upon the local network state might results in global imbalance. Therefore, a

global network information is necessary for a good adaptive routing algorithm. An adaptive

routing for Mesh NoC using dynamic programming (DP) is proposed in [91]. A DP network

with routing mechanism and routing table updating strategies are presented. This DP

network is integrated with the NoC architecture. The NoC with DP network function as

a dual network. Another approach for designing adaptive routing algorithm applicable to

both Mesh and Torus NoC is presented by Duato in [11]. Virtual Channels (VCs) are use in

this approach. Each physical channel is shared between k (k > 1) VCs. VCs are categorised

into two classes: deterministic class and adaptive class. Thus the network is divided into

deterministic and adaptive networks. Deadlock handling policy need to apply while virtual

channels are requested by group of packets packets. An adaptive routing algorithm using

dedicated buffer for flow control is presented in [92]. The NoC router architecture becomes

complex on embedding adaptive routing algorithms in the router. In many adaptive routing,

virtual channels are used to avoid deadlock. Due to use of virtual channel and complex router

architecture, power consumption increases in adaptive routing.

2.4 Deadlock Avoidance in a Routing Algorithm

Deadlock is a circumstance in NoC where a group of packets are unable to make any progress

because they are holding and waiting on another in a cyclic manner to release buffer [3].

Occurrence of deadlock in an NoC has the potential to halt the complete system eventually.

The deadlock avoidance in NoC has been drawing attention of researchers for a few decades

[1, 2, 11–14, 29]. In this section we discuss the important works on deadlock avoidance in

NoC context and figure out the possible research gap.

36

Deadlock Avoidance in a Routing Algorithm

2.4.1 Up*/Down* and Turn Model Approach

Up*/Down* and Turn model are two deadlock avoidance approaches where certain restric-

tion are imposed on movement of packets. For avoiding deadlock in any topology, the

Up*/Down* routing approach uses spanning tree corresponding to the given network [10].

Due to the absence of cycle in a spanning tree, deadlock due to cyclic dependency between

channels are eliminated. No additional resources are used for avoiding deadlock in this

approach. A deadlock free dynamic reconfiguration network based on Up*/Down* routing

is presented in [93]. Routing paths are highly restricted and most of the packets use non

minimal paths in Up*/Down* routing approach [94].

Turn model theory [1, 9] is used for detecting cyclic dependency and designing dead-

lock free routing algorithms by avoiding those cycles. No additional resources are used for

avoiding deadlock in this approach. In case of Torus NoC, it is not possible to create a

minimal routing algorithm without using VCs [95]. According to Turn model, a packet is

allowed to use a wraparound channels only at its first hop [1]. Thus, the scope of using

wraparound channel is limited in this approach. In our work, we propose a design approach

for routing algorithm for Torus NoC that uses wraparound channels efficiently. Another

approach based on Turn model concept is presented in EbDa [14]. The author claims it to

be scalable for arbitrarily large dimension. It partitions channels into disjoint sets without

containing any cyclic dependency. Transitions between the partitions are allowed with a

defined order. EbDa method is applicable for Torus NoC with help of VC for breaking the

cyclic dependency across a ring.

2.4.2 FirstHop Routing for Avoiding Deadlock in Torus NoC

Torus NoC needs special care as the topology is more vulnerable towards deadlock due

to the inherent cyclic paths via wraparound channels [95]. It is not so obvious to predict

deadlock accurately in Torus NoC using the available Turns presented in Turn model [1] .

For formation of dependency cycle between packets in a deadlock situation, one necessary

criteria to fulfil is that the destination for each packet in that dependency cycle are at

37

Background and Literature Survey

least two routers away from the source router. Because, if source and destination are only

single hop away, i.e., next to each other, all such packets will get delivered eventually after

being transmitted from the source routers as there is no chance for dependency with a third

party. Based on the same principle, the FirstHop routing approach is proposed to break the

dependency at certain point. In FirstHop approach, wraparound channels are allowed to

use only from the boundary router. Since packets from rest of the routers cannot move to

boundary for using a wraparound channel, the resource dependency is discontinued. Other

approaches of avoiding deadlock in Torus includes the use VCs.

2.4.3 Dally’s Approach with Virtual Channel

Dally et al. [2, 96] propose a theorem that a routing algorithm is deadlock free if there is

no cycle in the channel dependency graph. A Torus routing chip is developed by using

[96]. In their next work [2], constructing deadlock free routing algorithm for an arbitrary

communication network using VCs are shown. The cycles in the channel dependency graph

are removed by splitting physical channels into group of VCs [2]. For eliminating the cycles,

VCs are ordered and routing algorithm is restricted to route packets in decreasing order

of VCs. In date line approach [3], two classes of VCs are used. A packet is forced to use

another VC class after crossing the date line. Date line is just a marking on a row and a

column. Crossing that row or column, a separate VC class need to be used. Thus it prevents

from forming a cyclic resource dependency.

2.4.4 Duato’s Approach with Escape Path and Virtual Channel

Duato et al. [11, 27] present an approach of designing deadlock free adaptive routing using

VCs. An approach of constructing adaptive routing function allowing cyclic dependencies

between channels, provided that there are alternative paths without cyclic dependencies for

forwarding a packet towards destination are presented [13, 27]. Xiang et al. [97] proposed

an adaptive routing algorithm on Torus NoC using VCs and additional buffer in the input

port. In their proposed algorithm, two VCs are required. One set of channels are used by

38

Deadlock Avoidance in a Routing Algorithm

a known deadlock free routing in a Mesh sub-network. The other set of channels are used

for making the algorithm adaptive.

2.4.5 Bubble Flow Control with Dedicated Buffer

Bubble flow control is a flow control technique used for avoiding deadlock in Torus NoC

[28,29,92,98–100]. Packet injection or changing direction of a packet is only allowed if there

are at least two empty buffer slots in the direction required by the packet. Therefore, at

least one empty buffer slot always remains free in the ring. That free buffer acts as bubble

guaranteeing that at least one packet is able to progress. Flit bubble flow control [30]

works on the same principle. It maintains one free flit size buffer slot inside a ring to avoid

deadlock. Forwarding a flit does not reduce overall free buffer in a ring since it leaves it

previously occupied free slot. Only injection of packet into ring reduces free buffer amount.

Injecting a packet or changing direction is allowed if the receiver’s input port has one more

free slot remains after receiving the packet.

2.4.6 Other Approaches

A survey on different approaches for designing routing algorithms is presented in [95]. In that

work, deadlock avoidance approaches like dropping packets, numbering network resources for

resource allocation in a specific order, putting restrictions on changes of routing directions

for packets are presented. This work claims that for a k-ary n-cube topology with k > 4,

it is impossible to construct a minimal deadlock free routing algorithm without using extra

channels [95]. In [17], cyclic dependency is broken by applying in place swapping of packets

between adjacent router. No extra buffer is used in this approach. Applying in place swap

process periodically is one overhead in this approach and the router micro-architecture needs

to be upgraded accordingly for this in place swap operation.

39

Background and Literature Survey

2.4.7 Challenges and Objectives

The inherent cyclic path in each row and column of a Torus NoC makes the topology

deadlock prone. VCs or extra buffers need to used for developing a deadlock free routing

algorithm in Torus NoC. Though, Up*/Down* routing approach avoid deadlock without

using additional resources [10], routing paths are mostly non minimal or lengthy [94]. In

FirstHop routing, a packet is allowed to use the wraparound channel only at its first hop

so that cyclic path is discontinued for avoiding deadlock in Torus NoC [1]. Therefore, the

leverage of wraparound channels are not utilised for most of the packets. To the best of

our knowledge, there is no other approach available for avoiding deadlock in Torus NoC

without additional buffer or virtual channels (VC). The objective identified from this back-

ground study is to work on a deadlock avoidance approach for Torus NoC without using any

additional buffer or VC and at the same time increase utility of wraparound channels.

Detecting confirmed deadlock with an exact deadlock scenario is a challenging task due

to the huge state space of NoC [41]. Popular NoC simulator like Booksim [24] and Gem5 [25]

report a warning message for possible deadlock scenarios based on a predefined threshold

value. It is very helpful to get the exact deadlock scenario after a deadlock is detected.

This deadlock scenario would be helpful is formulating deadlock avoidance. A formal model

of NoC considering detailed NoC components would be helpful to detect confirmed deadlock

along with deadlock scenarios. One objective of this thesis is to develop a deadlock detection

framework using formal model of NoC considering NoC component in detail.

2.5 Conclusions

In this chapter we survey the literature on formal modeling and verification of NoC and

different deadlock avoidance approaches in NoC. We have identified research gaps in the

verification of NoC using detailed level modeling. Detecting confirmed deadlock with dead-

lock scenarios are missing in the existing works. We have also identified lack of deadlock

avoidance approaches that are applicable to Torus NoC without using any additional re-

40

Conclusions

sources. There is a scope for developing deterministic deadlock free routing algorithms for

Torus NoC. In this thesis we will address these problems.

41

3
Formal Modeling of NoC using FSM and

Verification of Starvation using Model Checker

3.1 Introduction

Modeling NoC components in detail level is essential for formal verification to ensure that

an NoC works correctly after manufacturing of the real hardware. Modeling NoC close

to hardware functionality and scalability of the verification method are the two primary

challenges in NoC verification. In most of the existing NoC verification works, detailed

modeling of the complete NoC is system is missing [31–34,36,38,39,101]. We have considered

NoC functional units in a comprehensive way in this thesis. It is convenient to implement

43

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

NoC using Finite State Machine (FSM) in a model checker like NuSMV [22]. Therefore, we

have chosen FSM for modeling NoC so that the model can be easily encoded and various

properties can be checked using a state-of-the-art model checker.

R1 R2 R3

R4 R5 R6

R7 R8 R9

Processor

Router

(a) 3x3 Mesh NoC

North (N)

South (S)

East (E)

(b) Five ports in a router

West (W)

Local (L)

Figure 3.1: A 3x3 Mesh NoC and five bidirectional ports in a router

3.1.1 NoC Router Components

A 3x3 mesh NoC with routers and the connected processors is shown in Fig. 3.1(a).

R1, R2, R3, etc., are the routers shown with square boxes. The brown oval shaped units

represent the processors. Each router constitutes of buffers for storing packets, switch for

computing the route for a packet and diverting it to desired output port and an arbiter to

control the transmission of packets via an output port. We have considered NoC functional

units or NoC components like buffer, switch and arbiter for modeling NoC. An NoC works

with help of the collaborative efforts between all these units. Buffers are present at the input

ports of a router. The five bidirectional ports in a router are shown in Fig. 3.1(b). They

are used as temporary storage for a packet before being transmitted in the desired path.

The route computation of a packet is performed by another functional unit called switch.

After the route computation is performed, the packet requests for the expected output port.

There may be multiple packets competing for the same output port at the same time. In

44

Introduction

each output port, an arbiter is present that resolves the conflict by picking one packet from

the competing packets. The selected packet is transmitted to the next router.

In NoC context, the output port and its connection to the next router are considered

as a resource of conflict. If multiple packets from different input ports in a router try to

access that output port continuously, there should be fairness such that competing packets

from all input ports get a fair chance to be transmitted. This is called starvation-freedom.

Starvation-freedom ensures fairness in resource allocation for the packets from all input

ports. In this chapter, we present verification of starvation-freedom using our FSM based

NoC model.

3.1.2 Contributions

We have modeled an NoC using FSM, considering buffer, switch and arbiter as individual

functional units. Synchronization between these functional units is maintained using ded-

icated FSMs. As an application of our model, we target verification of starvation-freedom

considering fixed-priority and round-robin arbiters in this work. We encode our FSM based

NoC models in NuSMV model checker [22] and give the starvation-freedom specification

using Linear Temporal Logic (LTL) [43] for verification. The model checker reports if the

given property is satisfied or not. Specifically, the contribution of our work is summarized

as follows:

• Detailed modeling of NoC router components like buffer, switch, arbiter using FSMs

are presented.

• Demonstrate the designing of fixed-priority and round-robin arbitration policies using

FSMs for selecting a packet from more than one competing packets.

• For the correctness of the NoC model, verification of synchronization within a router,

progress between NoC components and loss-less transfer of packets are performed.

• As an application of the FSM based model, verification of starvation-freedom for fixed-

priority and round-robin arbitration are demonstrated.

45

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

• Verification time is reduced significantly by invoking parallel threads for individual

routers.

The rest of this chapter is organized as follows. A brief description of FSM and the

short form used for describing NoC model is presented in Section 3.2. Formal modeling of

NoC using FSM is presented in Section 3.3. Verifying the correctness of the FSM model

is described in Section 3.4. Application of the FSM model is described in Section 3.5.

Experimental results are presented in Section 3.6. Finally, we conclude the chapter in

Section 3.7.

3.2 Finite State Machine and the Naming Convention

In this section, we briefly describe Finite State Machine (FSM). The numbers of NoC routers

and NoC components vary depending on the size of the NoC. We consider a 3x3 Mesh NoC

as a reference NoC for the convenience in presenting our FSM based NoC Model. The same

procedure is applied while modeling and implementing NoC of bigger sizes in the thesis.

3.2.1 Finite State Machine

The Finite State Machine (FSM) is being used by research community for modeling of

transition systems in various applications [66–73]. Each FSM has a finite number of states

and a transition takes place from one state to another state based on predefined transition

rules. Deterministic Finite Automata (DFA) is a special class of FSM where each transition

is a unique path from one particular state to another particular state with respect to a

specific input or with respect to the truth value of a specific condition. A formal definition

of a DFA is given below [102].

Definition 3.2.1. A Deterministic Finite Automata is represented using a quintuple,

{Q, Σ, δ, qo, F}.

Here, Q represents a finite set of states that constitute the automata,

Σ represents the input symbol that are used for state transition,

46

Finite State Machine and the Naming Convention

δ represents the transition function δ : Q x Σ→ Q,

qo represents the initial state, qo ∈ Q,

F represents the set of final sets, F ⊆ Q.

In this thesis, corresponding to each NoC functional unit a FSM is modeled. A FSM

state indicates current status of the corresponding NoC functional unit. Each FSM starts

from an initial or starting state qo, indicated with an incoming arrow. The current state of

a FMS keeps on changing with respect to the movement of packet. Once the transmission of

a packet is over, the FSMs corresponding to that transmission return to their initial states

again. Therefore, we consider the initial state as the final state as well, i.e., F = {q0} in our

FSM based NoC modeling. This process continues for the transmission of other packets.

This is a continuous process and the states of FSMs keep changing.

There present numbers of FSMs in a complete NoC model. In an NoC, each of the

functional unit interacts with some other NoC functional units for proper functioning of the

system. In the same context, each of the FSM interacts with other FSMs in the NoC model.

All the transitions in a FSM are controlled by the states of other FSMs with whom the FSM

interacts and all transitions happen with a hand checking fashion. Transitions for the FSMs

are described as δ : Q x Σ → Q. In context of our FSM based NoC model, Q represents

the states in the FSM under consideration and Σ represents the FSM states information

for the complete NoC model. Alternately, Σ represents the global states information of the

complete NoC that are used for defining state transitions δ in each individual FSM.

3.2.2 Short forms and the Naming Convention

We have used the Fig. 3.1(a) as a reference while describing FSM model for different NoC

components. We consider the the South port of router R2 in Fig. 3.1(a) while demonstrating

FSM model for buffer, switch and arbiter. The five ports present in a router are shown in

Fig. 3.1(b). While describing buffer and switch at the South port of router R2, we are

considering the movement of packet towards router R2 from router R5. While describing

the arbiter at the South port of router R2, we are considering the movement of packet from

47

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

Table 3.1: Short form used for describing transitions in FSMs

Functional Unit Short Form Functional Unit Short Form

Arbiter Ar Buffer Bu

Priority Pr Return Re

Switch Sw Sync Sy

router R2 towards router R5. Every time we mention a router in describing the FSM model,

that router corresponds to Fig. 3.1(a).

For accommodating space while describing the transitions in a FSM diagram, we use the

short form1 as shown in Table 3.1. For a buffer we use “Bu”, for an arbiter we use “Ar”, for

a switch we use “Sw”, etc. in the FSM diagrams in this chapter. Besides these short forms

in Table 3.1, we use L, E, W, N and S for the Local port, East port, the West port, the

North port and the South port, respectively. The Name of an NoC component is associated

with the router name as a prefix and the port name as a postfix to the component name.

For example, R2BufferS indicates the buffer associated the S port of router R2, R5ArbiterN

indicates the arbiter present at the North port of router R5, etc. These component names

are used with short form in the FSM diagrams. For example, R2BufS is used for R2BufferS,

R5ArN is used for R5ArbiterN and so on as per the Table 3.1. Thus, the information about

the associated router and associated port of NoC components are made self explanatory by

using the naming convention for the NoC components.

3.3 Formal Modeling of NoC using FSM

In this section, we describe the FSM models of various components of the NoC and their

synchronization. We have modeled buffer, switch and arbiter for an NoC router. Synchro-

nization between them is maintained by using dedicated FSMs. Considering components

from all NoC routers and maintaining the synchronization between them give a complete

model for the NoC.

1Short form in Table. 3.1 are used only in FSM diagrams for representing state transitions for clarity
of the figures. We use full forms in other places for better readability.

48

Formal Modeling of NoC using FSM

E Input Port
W Input Port

R5ArbiterN

R2BufferS

R2SwitchSR2ArbiterW R2ArbiterE

R2ArbiterL
R2ReturnS

R2SyncS

L Input Port
S Input Port

S input port

R5

R2

Figure 3.2: Movement of packets from router R5 to R2, and synchronization using Return and
Sync FSMs

3.3.1 High-Level Overview of the Movement of Packets

We have shown the movement of packets from router R5 to router R2 (of Fig. 3.1) in

the Fig. 3.2. The blue solid arrows in Fig. 3.2 show the possible paths for the movement

of packets from router R5 to router R2. Movements of packets are shown from the North

output port of router R5 to the South input port of router R2. An arbiter named R5ArbiterN

is present at the North output port of router R5 as shown in the Fig. 3.2. The packets from

four input ports, namely the Local, East, West and South, can transmit packet via the

North output port of router R5. If packets from more than one input ports compete for

the same output port at a time, the R5ArbiterN has to select only one packet at a time

based on the arbitration policy. The arbiter transmits the selected packet to the router R2.

The transmitted packet is stored in the South input port buffer of router R2. This buffer is

named as R2BufferS as shown in Fig. 3.2. The route computation for the packet is performed

at the R2SwitchS. As per the position of router R2 in the reference Fig. 3.1, there are three

possible directions where the packet can move. These directions are towards the East port

or towards the West port or towards the Local port. Based on the destination address of

the packet, R2SwitchS determines the output port and requests the corresponding arbiter

for transmission. If R2 is the destination router for the packet, it has already reached the

destination router. In such case, the packet would be directed to the arbiter at the local

49

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

port and will eventually be delivered to the local core. If R2 is not the destination router,

the packet would move to the adjacent router in the East or West direction based on the

routing decisions.

3.3.2 Synchronization between NoC Components

Once a packet is moved to the next router, the buffer storage in the previous router needs to

be cleared. The switch and the arbiter are also ready for processing the next packet only after

transmitting the current packet. Therefore, maintaining synchronization between buffer,

switch and arbiter and between two adjacent routers are important for smooth functioning

and lossless packet transmission in NoC routers. We maintain the synchronization between

the buffer, switch and arbiter with help of two dedicated FSMs named sync and return in

each input port. The synchronization between FSM models are maintained with the help

of the handshaking principle.

3.3.2.1 Synchronization between two Routers

The synchronization between two routers is controlled by a sync FSM in our FSM based

NoC model. A buffer that presents at the input port of an NoC router, accepts packets from

an arbiter in the adjacent router. Before transmitting a packet, the arbiter has to ensure

that the buffer in the next router is free. Moreover, the packet cannot be deleted from the

previous router until it is safely transferred to the next router. The sync FSM maintains the

synchronization between the arbiter and buffer between two routers as shown in Fig. 3.2.

The detailed modeling of a sync FSM is described in the Subsection 3.3.3. The high level

overview depicting the interaction of a sync FSM with other NoC functional units at the

S input port of router R2 is shown in Fig. 3.2. The dotted double ended arrow connecting

R5ArbiterN and R2BufferS via R2SyncS indicates synchronization between two routers.

3.3.2.2 Synchronization within Router Components

50

Formal Modeling of NoC using FSM

The synchronization between NoC components within a router are maintained using a

dedicated FSM named return in our FSM based NoC model. After transmitting a packet

from a router, all FSMs in that router that are involved in that transmission need to return

to their initial states. The detailed model for a return FSM is described in the Subsection

3.3.5. The high level overview depicting the interaction of a return FSM with other NoC

functional units at the S input port of router R2 is shown in Fig. 3.2. The dotted double-

ended arrows connecting R2ReturnS with R2BufferS, R2SwitchS and all the arbiters in

roueter R2 represents the synchronization between components in R2.

The paths for packets movements are shown with the blue solid arrows in Fig. 3.2. In

a five-port router, we have five such synchronization FSMs corresponding to each port. In

this work, we present an input buffer router model. Design of an output buffer router model

is similar with minor changes in synchronization.

3.3.3 Modeling Buffer using FSM

Buffer is present at the input port of a router for storing an incoming packet until it is

transmitted. Synchronization between two routers has to be taken care of before storing a

packet into the buffer. The sync FSM maintains synchronization between the buffer and

the adjacent router from which the buffer accepts packet. The basic idea here is that the

sync will read the current state of the buffer and the arbiter in the adjacent router. It allows

transfer of packets only if there is a slot free in the buffer and allows the buffer to change

its state. Therefore, we present the FSM model for sync and buffer together.

3.3.3.1 FSM model of Sync

A sync FSM synchronized with the arbiter in the adjacent router. The FSM model for

sync is shown in Fig. 3.3(b). We consider the sync FSM at the S input port of router R2,

with reference to the 3x3 Mesh NoC in Fig. 3.1(a), for explaining the synchronization with

buffer at the same input port. Following the naming convention, we name this sync FSM

as R2SyncS. Here, R2 indicates the associated router name and S indicates the associated

port name. The FSM model for R2SyncS and all transitions are shown in Fig. 3.3(b).

51

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

01

0 1 2

02

R2

R5

N

S

EW

N

E

S

W

C3= (R2ReS!=0) C6= (R2ReS!=0)

C4= (R2BuS=1
& R5ArN!=Start

& R2ReS=0)

C5= (R2BuS=2 &
R5ArN=Start)C1= (R2BuS=0 &

R2ReS=0)
R5ArN!=Start & R5ArN=Start)

C2= (R2BuS=1 &

C7 = (R2SyS = 01)

C8 = (R2SyS = 0) C10 = (R2SyS = 1)

C9 = (R2SyS = 02)

0 1 2

(b) R2SyncS

(c) R2BufferS

(a) Packet

from R5 to R2

Figure 3.3: Buffer and sync: (a) Packets from R5 to R2, (b) R2SyncS: Synchronizing between
R2BufferS and R5ArbiterN, (c) R2BufferS: Buffer at S input port of R2

Current state of R2SyncS = 0/ 1/ 2 means the R2BufferS contains zero/ one/ two

packet(s). R2SyncS = 01/ 02 are the intermediate transition states used by the corre-

sponding buffer to change its state. Initially R2SyncS is in state 0. The condition for the

transition from (0 → 01) in Fig. 3.3(b) is C1 = (R2BuS = 0 ∧ R5ArN 6= Start ∧ R2ReS

= 0). Here, (R2BuS = 0) means buffer is free as no packet is stored in R2BufferS. The

second condition (R5ArN!=Start) means the R5ArbiterN is ready to transmit a packet.

The third condition (R2ReS=0) means the South input port is ready to receive a packet for

the transmission. If all three conditions are satisfied, the transition (0 → 01) takes place.

The next transition (01→ 1) in Fig. 3.3(b) takes place if the R5ArbiterN of router R5 has

returned to its initial state after transmitting the packet and the R2BufferS also stored the

packet and updated its state. This is represented by the condition C2 = (R2BuS = 1 ∧

R5ArN = Start). Two transitions are possible from the state 1 as shown in Fig. 3.3(b). If

the transmission for the packet is over, i.e. C3 = (R2ReS 6= 0), the FSM returns to the

initial state (1→ 0). Here, (R2ReS 6= 0) means transmission of a packet is completed. On

52

Formal Modeling of NoC using FSM

the other hand, if another packet has arrived before the transmission is completed, i.e. , C4

= (R2BuS = 1 ∧ R5ArN 6= Start ∧ R2ReS = 0), the FSM state changes with the transition

(1 → 02). Here, (R2BuS = 1) indicates that one packet is stored in the buffer and it can

accommodate another packet. We consider a two slot buffer in this example. In similar way,

all other transitions in Fig. 3.3(b) take place.

3.3.3.2 FSM model of Buffer

We consider a buffer (R2BufferS) that has the capacity for storing two packets in the pre-

sented model. All the transition in a buffer is controlled by the status of the corresponding

Sync FSM. R2BufferS uses the current states of R2SyncS FSM for its transitions. The

FSM models and transitions for R2BufferS are shown in Fig. 3.3(c). The condition C7 =

(R2SyS = 01) in Fig. 3.3(c) indicates that a packet is transmitted from the adjacent router.

R2BufferS stores that packet and changes its state (0 → 1). The condition C8 = (R2SyS

= 0) indicates that the transmission is over and buffer has to return to initial state. The

condition C3 = (R2SyncS = 02) indicates that another packet has arrived when the buffer

is already storing one packet. Therefore, the second packet is accommodated and the tran-

sition (1 → 2) takes place Fig. 3.3(c). In this way, the state of a buffer is controlled by a

sync FSM.

3.3.4 FSM Model of Switch

A switch accepts packets from the buffer and diverts it to the desired output port for

transmitting into the next router. We consider the R2SwitchS at S port of router R2 for

explaining the design. The FSM representation of switch R2SwitchS is shown in Fig. 3.4. It

remains in its initial state Wt (Wait) until no packet arrives in the buffer. When a packet

arrives and the condition C1 = (R2BuS 6= 0 ∧ R2ReS = 0) is satisfied, the FSM changes its

state to C (Wait→ C). Here, (R2BuS 6= 0) in C1 indicates the buffer is not empty. At least

one packet is stored in the buffer which needs to be transmitted towards its destination.

The condition (R2ReS = 0) in C1 means the input port is ready for processing a packet.

53

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

The state C stands for compute where routing decision is taken.

C E

W

L

C2=(Route=0)

C4=(Route=2)

C3=(Route=1)

C7=(R2ReS!=0)

C5=(R2ReS!=0)

C1=(R2BuS!=0 & R2ReS=0)

C6=(R2ReS!=0)

Wt

Figure 3.4: R2SwitchS: Switch at South Port of R2

All possible routing directions of a packet is possible. One routing direction is selected

based on the given routing algorithm. At the state C, a variable named Route is considered.

It takes any values from 0, 1 and 2, indicating the direction towards L, E and W ports,

respectively. We have not considered any specific routing algorithm here. Considering a

routing algorithm demands for packet information as well. Instead, all possible paths would

be considered in the verification by taking one path at a time. In simulation approach, the

routing direction of a packet is decided by invoking a routing algorithm. Since this work does

not intend to develop a simulation framework, specific routing algorithm is not considered.

For implementing a formal model based simulation framework using the proposed FSM

model, routing algorithm will be invoked when the FSM reaches the state C. We have

presented this approach in our next work [41]. Based on the routing direction, R2SwitchS

reaches the appropriate state. Once the packet is transmitted, the condition C5(/C6/C7)

becomes True and the FSM returns back to the initial state Wt. Here, C5 = C6 = C7

= (R2ReS 6= 0). It means the packet is transmitted and all the respective FSMs need to

return to their respective initial states. Until then R2ReturnS would not changes its state

and the condition (R2ReS 6= 0) remains True.

54

Formal Modeling of NoC using FSM

1L

1E

1W 2W

2E

2L

C3 = (R2BuS=1 &

R2SwS=E &
R2ArE=(1TS | 2TS))

C7 = (R2BuS=2 &

R2SwS=L &
R2ArL=(1TS | 2TS))

C1 = (R2BuS=1 &

R2SwS=L &
R2ArL=(1TS | 2TS))

C9 = (R2BuS=2 &

R2SwS=E &
R2ArE=(1TS | 2TS))

C5 = (R2BuS=1 &

R2SwS=W &
R2ArW=(1TS | 2TS)) C11 = (R2BuS=2 &

R2SwS=W &
R2ArW=(1TS | 2TS))

0

C2

C1

C3
C4

C6

C8

C7

C9

C10

C11

C12

C5

C2 = (R2BuS=0 &

R2ArL=S)

C4 = (R2BuS=0 &

R2ArE=S)

C6 = (R2BuS=0 &

R2ArW=S)
C12 = (R2BuS=1 &

R2ArW=S)

C10 = (R2BuS=1 &

R2ArE=S)

C8 = (R2BuS=1 &

R2ArL=S)

R2SwS=Wt &

R2SwS=Wt &

R2SwS=Wt &

R2SwS=Wt &

R2SwS=Wt &

R2SwS=Wt &

Figure 3.5: R2ReturnS: Synchronization between S port Buffer, S port Switch and Arbiters at L,
E and W ports

3.3.5 FSM Model of Return

After transmitting a packet, the corresponding buffer, switch and arbiter return to their

initial states by checking the status of the return FSM. If the current state of the return

FSM is other than 0, it indicates that the packet is transmitted and corresponding FSMs

involved in that transmission must return to their initial states. Once corresponding FSMs

return to their initial state, the state of the return FSM changes to initial state 0. The

return FSM R2ReturnS at the S input port of router R2 is shown in Fig. 3.5.

The initial state of R2ReturnS is 0. If R2BufferS contains one(/two) packet(/packets)

and a packet is transmitted via E output port and the condition C3(/C9) is satisfied, the

state of the R2ReturnS changes to 1E(/2E) . If the condition C3 = ((R2BuS = 1) ∧

(R2SwS = East) ∧ (R2ArE = (1TS ∨ 2TS)) is satisfied the transition (0 → 1E) takes

place. The meaning of C3 is that the packet at R2BuS is destined toward the East output

port and it has won the arbitration at R2ArE. Here, (R2BuS = 1) means the buffer contains

55

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

one packet, (R2SwS = East) means the packet is heading toward the East output port and

(R2ArE = (1TS ∨ 2TS) means the packet from the South input port has won the arbitration

at the East output port. If the condition C4 = ((R2BuS = 0) ∧ (R2SwS = Wait) ∧ (R2ArE

= Start)) is satisfied the transition (1E → 0) takes place. The meaning for (R2BuS = 0)

is the buffer return to initial state, (R2SwS = Wait) means R2SwitchS return to its initial

states and (R2ArE = Start) means R2ArbiterE returns to its initial state. Therefore, if

C4 is satisfied the transition (1E → 0) takes place, i.e., R2ReturnS returns to initial state.

After all the corresponding FSMs related to this transmission return to their initial states,

the condition C4 is satisfied and the R2ReturnS also returns to its initial state. For the

condition C9 buffer is considered as (R2BuS = 2). Other conditions are same as that of

the condition C3. Similarly, for the condition C10, the sate of the buffer becomes (R2BuS

= 1) from the state (R2BuS = 2). Other conditions are same as that of the condition C4.

In similar way, all other transitions for R2ReturnS takes place as shown in Fig. 3.5.

3.3.6 Approach for Designing Virtual Channels

Blocking problem of one packet by another packet is resolved with the help of virtual

channels (VCs) where a set of VCs share the same physical channel [41, 103]. In VC, a

buffer is restructured into separate smaller buffers. Corresponding to each VC there is a

need for separate buffer (smaller buffers) with corresponding sync, switch and return FSM.

An arbiter resolves conflict for physical channel at an output port which is shared by a set

of VCs. If the number of VCs increases, the states in an arbiter also increase. For the sake

of simplicity, in this work we present arbiter with single VC only.

3.3.7 FSM Model of an Arbiter

Multiple packets from different input ports compete for the same output port at the same

time. These conflicts are resolved by an arbiter with the help of an arbitration policy like

round-robin, weighted round-robin, first-come-first-serve, fixed-priority, etc.. In this work,

we design fixed-priority and round-robin policies in the arbiter.

56

Formal Modeling of NoC using FSM

2TL

2TE

1TW

1TE

1TL

2TW

C1=(R2SwL=S &
R2ReL=0 &
R5BuN=0)

C2= (R2ReL!=0 &
R5BuN=1)

C4= (R2ReE!=0 &
R5BuN=1)

R2SwW=S &

C5= (R2SwL!=S &
R2SwE!=S &

R2ReW=0 &
R5BuN=0)

C6= (R2ReW!=0
& R5BuN=1)

C7=(R2SwL=S &
R2ReL=0 &
R5BuN=1)

C8= (R2ReL!=0 &
R5BuN=2)

C3= (R2SwL!=S &
R2SwE=S & R2ReE=0
& R5BuN=0)

C9= (R2SwL!=S &
R2SwE=S & R2ReE=0
& R5BuN=1)

C10= (R2ReE!=0 &
R5BuN=2)

R2SwW=S &

C11= (R2SwL!=S &
R2SwE!=S &

R2ReW=0 &
R5BuN=1)

C12= (R2ReW!=0
& R5BuN=2)

R5

R2
Start

C1

C2

C5

C7

C8

C9
C10

C12

C3
C4

C6

C11

N

EW

s

N

s

EW

(b) Fixed−priority: R2ArbiterS
(a) Packet

from R2 to R5

Figure 3.6: R2ArbiterS: Fixed-priority arbiter at S port of router R2

3.3.7.1 FSM Model of Fixed-priority Arbiter

In the fixed-priority arbiter, priority is fixed. We choose the priority sequence of Local> East

> West > North > South. It means, packets from the L input port has the highest priority

and the packet from the S input port has the lowest priority. The FSM representation for

the fixed-priority arbiter, (R2ArbiterS), present at the S port of a R2 is shown in Fig. 3.6. It

transmits packet to the buffer R5BufferN in the adjacent router R5. Initially, the arbiter is

in initial state Start. If the buffer R5BufferN in the adjacent router R5 contains zero(/one)

packet and the condition C1(/C7) is satisfied, a packet from L input port wins arbitration

at R2ArbiterS. The arbiter changes its state to 1TL(/2TL) from the initial state Start. Here

the condition C1 = ((R2SwL = S) ∧ (R2ReL = 0) ∧ (R5BuN = 0)). The condition (R2SwL

= S) indicates a packet at the Local input port is destined towards the South output port.

The condition (R2ReL = 0) indicates the Local input port is ready for processing a packet

and the (R5BuN = 0) indicates the buffer in the adjacent router R5 contains no packet and

57

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

is free to receive packets. If C1 is satisfied, the transition (Start → 1TL) takes place in

Fig. 3.6. It means that the R5BufferN in the next router is free and the Local input port

wins the arbitration. Once the transmission is over and the R5BufferN receives the packet

and the condition C2(/C8) is satisfied, the arbiter returns to its initial state Start and the

transition (1TL → Start) takes place. Here, the condition C2 = ((R2ReL 6= 0) ∧ (R5BuN

= 1)). The condition (R5BuN = 1) indicates the packet is transferred to the next router

R5. The condition (R2ReL 6= 0) indicates that all the FSMs related to this transmission

have to return to their respective initial states as the transmission is over. The transitions

due to condition C7 and C8 takes place in similar way. The only difference is the buffer

in the adjacent router contains one packet and it can store another packet. All the other

transitions for R2ArbiterS are carried out in a similar way as shown in the Fig. 3.6.

3.3.7.2 FSM Model of Round-robin Arbiter

In round-robin arbiter, the priority is not fixed but keeps on updating dynamically. After

transmitting a packet from one port, the priority of that port is set to lowest. It helps in

getting a fair chance for the packets from other ports. For simplicity, we have designed

round-robin priority generator and round-robin arbiter in two separate FSMs.

1

33

11 2

22

3

& R2ReL=0)
C1= (R2SwL=S &

C3= (R2SwL!=S & R2SwE=S
& R2ReE=0)

C5= (R2SwE=S
& R2ReE=0)

C1

C8

C12

C9= (R2SwW=S & R2ReW=0)

C6= (R2ReE!=0)

C10= (R2ReW!=0)

C10

C4= (R2SwL!=S & R2SwE!=S
& R2SwW=S & R2ReW=0)

C4

C3

C7

C7= (R2SwE!=S &
R2SwW=S & R2ReW=0)

C2= (R2ReL!=0)

C11= (R2SwW!=S

C11

& R2ReL=0)
& R2SwL=S

C12= (R2SwW!=S &
R2SwL!=S & R2SwE=S
& R2ReE=0)

C8= (R2SwE!=S &
R2SwW!=S &
R2SwL=S &
R2ReL=0)

Figure 3.7: R2PriorityS (Round-robin priority generator at the S output port of router R2)

58

Formal Modeling of NoC using FSM

Round-robin priority generator: A round-robin priority generator is shown in

Fig. 3.7. Each state represents a priority value. Initially, it is in the initial state 1. The

priority values 1, 2, 3 indicate the next preferable ports to win arbitration are L, E and

W port, respectively. If current state is 1 and there is packet from L input port, the

state changes to 11. The priority 11 indicates that L input port wins the arbitration.

Similarly, the priority 22 (/33) indicates that a packet presents at the E (/W) input port

wins the arbitration. Transitions in round-robin priority generator set priority to a packet

corresponding to an input port in round-robin fashion as shown in Fig. 3.7. Let the current

state is 1 and there is no packet from L input port. Let there is a packet competing from

E input port and the condition C3 is satisfied. The East input port wins arbitration and

the priority changes from state 1 to state 22 in such case. Here, the condition C3 =

((R2SwL 6= S) ∧ (R2SwE = S) ∧ (R2ReE = 0)). The condition (R2SwL 6= S) means that

there is no competing packet from the Local port towards the South output port and the

condition (R2SwE = S) means that there is a packet from the East input port towards the

South output port. The condition (R2ReE = 0) says that the East input port is ready for

processing a packet. If C3 is satisfied, the transition (1 → 22) takes place. It indicates

that there is a packet from the East port to the South port and no packet is from the Local

port to the South port is competing. Therefore, priority changes to 22 in favour of the East

port. Similarly, if there is no packet from the Local and East input ports towards the South

output port and at the same time, there is a packet from the West input port towards the

South output port, then the condition C4 is satisfied. The priority changes to 33 in favour

of the West input port. The other transitions in the priority generator of Fig. 3.7 can be

explained in the similar fashion.

Round-robin Arbiter: The round-robin arbiter uses the priority set by the corre-

sponding round-robin priority generator. The FSM states and transitions of round-robin

arbiter R2ArbiterS are shown in Fig. 3.8(b). In round-robin arbiter, we use priority informa-

tion generated by a priority generator as shown in Fig. 3.7. The priority values (11, 22, 33)

indicate the packet from the input port that wins the arbitration. Therefore, the state of the

59

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

2TL

2TE

1TW

1TE

1TL

2TW

C2= (R2ReL!=0 &
R5BuN=1)

C3= (R2PrS=22 &
R2ReE=0 &
R5BuN=0)

C4= (R2ReE!=0 &
R5BuN=1)

C5= (R2PrS=33 &
R2ReW=0 &

R5BuN=0)

C6= (R2ReW!=0
& R5BuN=1)

C1=(R2PrS=11 &
R2ReL=0 &
R5BuN=0) C7=(R2PrS=11 &

R2ReL=0 &
R5BuN=1)

C8= (R2ReL!=0 &
R5BuN=2)

C9= (R2PrS=22 &
R2ReE=0 &
R5BuN=1)

C10= (R2ReE!=0 &
R5BuN=2)

C11= (R2PrS=33 &
R2ReW=0 &

R5BuN=1)

C12= (R2ReW!=0
& R5BuN=2)

R5

R2
Start

C7

C8

C9C3
C4

C11

C6

C5

C2

C1

C12

C10

N

EW

s

N

s

EW

(a) Packet

from R2 to R5 (b) Round−robin: R2ArbiterS

Figure 3.8: R2ArbiterS (Round-robin arbiter at South port of Router R2)

switch FSMs are not explicitly considered in the transitions for round-robin arbiter as they

are considered during determining the priority. The FSMs for round-robin arbiter is similar

with the FSM for fixed-priority arbiter in the remaining other aspects.. If the priority is set

to 11, a packet from L port gets a chance for transmission when buffer in the next router

is free (condition C1 or C7 in Fig. 3.8). The new state of the R2ArbiterS becomes 1TL

or 2TL. Here, the condition C1 = ((R2PrS = 11) ∧ (R2ReL = 0) ∧ (R5BuN = 0)). The

condition (R2PrS = 11) indicates that the priority is set for the packet from the Local input

port. The condition (R2ReL = 0) indicates that the Local input port is ready and (R5BuN

= 0) indicates that the corresponding buffer in the adjacent router R5 is empty. Therefore,

the transition (Start → 1TL) takes place with an indication that the Local input port wins

the arbitration. On satisfying the condition C2 = ((R2ReL 6= 0) ∧ (R5BuN = 1)), the

transition (1TL → Start) takes place. It means the R2ArbiterS returns to its initial state

after transmitting a packet from the Local port. Here, the condition (R5BuN = 1) means

that the buffer in the adjacent router R5 is updated from (R5BuN = 0) after receiving the

60

Correctness of the Model

packet. The condition (R2ReL 6= 0) means all the FSMs corresponding to this transmission

has to return to their respective initial states. The other condition regarding the transfer

of packet from the local port C7 = (R2PrS = 11 ∧ R2ReL = 0 ∧ R5BuN = 1) is similar

to C1. Only difference is, in case of C1 the adjacent router buffer was empty and in case

of C7 the adjacent router buffer contains one packet and has capacity for storing one more

packet. On satisfying C7, the transition (Start → 2TL) takes place. Here, the state 2TL

means R5BufferN in the next router already contains one packet and can store one more

packet. The state 1TL means R5BufferN in the next router contains no packet. In similar

way, all other transitions in the round-robin arbiter in Fig. 3.8 are carried out.

3.4 Correctness of the Model

We have verified progress and synchronization between functional units for ensuring the

correctness of our FSM based NoC model. Progress in a communication network ensures

liveness of the system [33]. That means a system component should not stuck in a state

and each component of the system is functioning. Satisfying progress in the proposed NoC

model implies that current state of an FSM does not stuck permanently in a state, i.e.,

the state of an FSM keeps on changing provided that there presents a packet as input

for transmission. In NoC context, simply satisfying progress property locally does not

guarantee deadlock freedom. Satisfying progress ensures only the correctness of the system.

For deadlock-freedom, global deadlock needs to be avoided in consideration with a specific

routing algorithm.

3.4.1 Progress in Router Components

In this subsection we have presented the LTL specifications for the progress in the router

components: buffer, switch and arbiter.

61

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

3.4.1.1 Progress in a Buffer

The change of states in a buffer is controlled by the state of the sync FSM. Initially both the

buffer and sync FSMs are at their initial state 0. If the sync FSM changes its state to 01 with

the transition (0→ 01) in Fig. 3.3(b), the corresponding buffer also needs to change its state

with the transition (0 → 1) in Fig. 3.3(c) in the next cycle. Formally this property is written

as, “If the current state of sync FSM is 01, the next state of the corresponding buffer changes

to 1 in the next cycle”. The Linear Temporal Logic (LTL) for this property is, G((R2SyncS

= 01) =⇒ X(R2BufferS = 1)). Similarly, LTL specification for the progress property

when another packet is stored in the buffer is, G((R2SyncS = 02) =⇒ X(R2BufferS =

2)). Satisfying these properties ensures the correctness of the buffer model.

3.4.1.2 Progress in a Switch

If there present at least one packet in a buffer, the corresponding switch should compute

routing direction for transmitting the packet. Formally this property is written as, “If the

input buffer is non-empty and the switch is currently in waiting(Wt) state, the switch state

will eventually change to compute(C) state”. The specification using LTL for this property

is, G(((R2BufferS != 0) ∧ (R2SwitchS = Wt) =⇒ F((R2SwitchS = C)). Similarly,

“If switch is currently in compute(C) state, the switch state will eventually change to L or

E or W based on the routing direction”. The LTL representation is, G((R2SwitchS = C)

=⇒ F(R2SwitchS = L ∨ R2SwitchS = E ∨ R2SwitchS = W)).

3.4.1.3 Progress in a Fixed-priority and Round-robin Arbiters

When a packet from an input port intends to get transmitted via a particular output port,

the corresponding arbiter in that output port must acts to select the packet for transmission.

Formally this property is written as, “If an arbiter is in initial state (Start) and there is at

least one packet requesting that output port, the state of the arbiter will eventually change”.

The LTL representation is, G((R2ArbiterS=Start) ∧ ((R2SwitchL = S) ∨ (R2SwitchE

= S) ∨ (R2SwitchW = S)) =⇒ F(R2ArbiterS != Start)). In both the fixed-priority

62

Correctness of the Model

arbiter and round-robin arbiter, the progress does not ensure the starvation freedom. Since

states are same for the fixed-priority arbiter in Fig. 3.6 and the round-robin arbiter in

Fig. 3.8, same LTL specification is used for both the arbiters.

3.4.2 Synchronization within a Router

The synchronization within a router is controlled by a return FSM present at each input

port. Initial state of return FSM is 0. If (Return!=0), it indicates that a packet is selected

for transmission and the corresponding FSMs involved in that transmission must return to

their respective initial states. Once the corresponding FSMs return to their initial states,

the state of return FSM changes to (Return=0). A new transmission from that port starts

only after that point. Correct execution of these transitions in order indicates proper syn-

chronization inside a router. One synchronization property is, “When an input port packet

is selected for transmission by an arbiter, the state of the return FSM corresponding to

that input port changes from its initial state”. Its LTL representation is, G((R2ReturnE

= 0) ∧ (R2BufferE = 1) ∧ (R2SwitchE = S) ∧ (R2ArbiterS = (1TE ∨ 2TE)) =⇒

X(R2ReturnE = 1S)). After transmitting the packet from E input port via S output port

in router R2, the E input port is not ready for a new packet until the corresponding buffer,

switch and arbiter return to their initial states. After all these FSMs return to their ini-

tial states, the return FSM returns to its initial state (R2ReturnE=0) again, as shown

in Fig. 3.5. Processing of new packets are enabled only when (R2ReturnE=0). This

synchronization property can be expressed as, “After transmitting a packet from an input

port if the corresponding buffer sets its buffer slot as free, corresponding switch and ar-

biter return to their initial states then the corresponding return FSM also returns to its

initial state”. In LTL, G(((R2ReturnE=1S) ∧ (R2BufferE = 0) ∧ (R2SwitchE = Wt)

∧ (R2ArbiterS = Start) =⇒ X((R2ReturnE = 0)). In similar way, synchronization

between FSMs within a router for all ports can be represented using LTL properties for

verification.

63

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

3.4.3 Correctness of a Priority Generator

The priority generated by a priority generator for a round-robin arbiter has to be checked if

the priorities are generated correctly. Since no priority is used for the fixed-priority arbiter

we have not checked this for the fixed-priority arbiter.

For proper functioning of the round-robin arbiter, the priority needs to be set eventually

for each input port by the corresponding round-robin priority generator in Fig. 3.7. For

example, in router R2, packets from L input port (priority 1, 11), E input port (priority 2,

22) and W input port (priority 3, 33) compete for S output port. If current state of the

priority generator is 1 and a packet from W input port competes for S output port, even-

tually the priority should be set to 33 so that the packet from W input port gets a chance

for transmission. This is represented in LTL as, G((R2PriorityS = 1) ∧ (R2SwitchW =

S) ∧ (R2ReturnW = 0) =⇒ F(R2PriorityS = 33)). Satisfying this LTL specification

indicates correct functioning of the round-robin priority generator. Similarly, in router R5,

if a packet from S input port is competing for the N output port, the priority for S input

port competing for the N output port must set to 44 eventually. To verify this, its LTL spec-

ification is represented as, G((R5PriorityN = 1) ∧ (R5SwitchS = N) ∧ (R5ReturnS =

0) =⇒ F(R5PriorityN = 44)). Verification results for all such LTL specifications must

be True for assuring the correctness in the design of round-robin priority generator.

3.5 Application of the Model

As applications of the presented FSM based NoC models, verification of starvation-freedom

and transfer of packets across routers are presented in this section. We also discuss the

challenges of extensive state space in a complete NoC and our approach to verify overall

NoC considering the NoC in part-by-part.

64

Application of the Model

3.5.1 Verification of Starvation-freedom

Starvation-freedom is defined as fairness in resource allocation between competing agents.

Starvation at an output port of an NoC depends upon the underlying arbitration logic.

As already described, two arbitration policies, fixed-priority and round-robin policies are

considered in this work for arbitration. There may be more than one packets from different

input ports that want to exit through the same output channel. If only one input port

packet keeps on getting preference, the packets from other ports have to wait indefinitely

and they suffer from starvation. Starvation-freedom in NoC context can be expressed as,

“If a packet from an input port is competing for an output port, eventually the output port

arbiter has to select that input port for transmitting the packet”. For example, “If there is

a packet from W input port intending to exit through S output port in router 2, the packet

should get a chance to exit through S output port in future.” The LTL representation of

the same is, G((R2ArbiterS=start) ∧ (R2SwitchW = S) =⇒ F((R2ArbiterS = 1TW)

∨ (R2ArbiterS = 2TW)). By satisfying this property, it indicates that every packets from

W input port intending S output port will be transmitted in future. If this property fails, it

indicates that there are some possible scenarios where packets from W input port to S output

port never gets transmitted. In router R1 of Fig. 3.1, R1ArbiterE accepts packets from L

and S input ports. The LTL representation of starvation-freedom for S port at R1ArbiterE

is, G(((R1ArbiterE = Start) ∧ (R1SwitchS = E)) =⇒ F((R1ArbiterE = 1TS) ∨

(R1ArbiterE = 2TS)). It means, globally when the FSM R1ArbiterE is in state Start and

FSM R1SwitchS is in state E, eventually the state of R1ArbiterE will be 1TS or 2TS. The

arbiter state 1TS or 2TS indicates that the arbiter has selected a packet from S input port.

By satisfying this property, the starvation-freedom for packets from S input port is ensured

at R1ArbiterE. In a similar way, the starvation-freedom for any input port at a given output

port is represented using LTL properties.

65

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

3.5.2 Verification of Transfer of Packets

The correct synchronization between two routers implies the transfer of packets between

two routers in a proper way. A desirable property for a buffer is, “If a buffer is empty

and the corresponding arbiter in the adjacent router has selected a packet for transmission,

the state of the buffer changes eventually to store the packet.” The LTL representation of

the same is, G((R5ArbiterN != Start) ∧ (R2BufferS = 0) ∧ (R2ReturnS = 0) =⇒

F(R2BufferS = 1)). The same property can be expressed as, “An arbiter is ready for

transmitting a packet and the corresponding buffer in the next router is free for accommo-

dating a packet, eventually the packet is stored in the next router buffer”. Thus, the LTL

representation for transfer of packets between two routers are presented for each pairs of

connected routers in an NoC.

3.5.3 Verification of Overall NoC

Considering all the routers in a complete NoC along with the respective router components

results in extensive state space. In this section we discuss the state space for our FSM based

NoC model by considering the number of FSMs needed for the complete NoC model. We

have also presented the active window concept where a part of NoC is considered instead of

considering the complete NoC at a time.

3.5.3.1 Number of FSMs in an NoC

The number of active ports in an NoC router depends upon its position. All ports may

not be active in an NoC router. Considering the 3x3 Mesh NoC in Fig. 3.1(a), for all the

corner routers namely R1, R3, R7 and R9 has three ports active. Two ports connect its

two neighbour and another port is for its local core. There present 4 such corner routers

in a Mesh NoC of any size. The router R2 in Fig. 3.1(a) has three neighbours. Therefore,

router R2 has four active ports, three ports connecting each neighbour and another port

connecting the local core. We get (N-2)*4 such routers having four active ports in a NxN

Mesh NoC. The router R5 in Fig. 3.1(a) has four neighbours. Therefore, all the five ports

66

Application of the Model

Table 3.2: Number of FSMs in an NoC with Fixed-priority (FP) and Round-robin (RR) arbiter

NoC Number of FSMs considering Fixed-priority (FP) arbiter Total

Active ports = 3 Active ports = 4 Active ports = 5 FSMs

a = (R3 ∗ FP3) b = (R4 ∗ FP4) c = (R5 ∗ FP5) (a+ b+ c)

2x2 4 * 15 = 60 0 * 20 = 0 0 * 25 = 0 60

3x3 4 * 15 = 60 4 * 20 = 80 1 * 25 = 25 165

4x4 4 * 15 = 60 8 * 20 = 160 4 * 25 = 100 320

5x5 4 * 15 = 60 12 * 20 = 240 9 * 25 = 225 525

6x6 4 * 15 = 60 16 * 20 = 320 16 * 25 = 400 780

7x7 4 * 15 = 60 20 * 20 = 400 25 * 25 = 625 1085

8x8 4 * 15 = 60 24 * 20 = 480 36 * 25 = 900 1440

NoC Number of FSMs considering Round-robin (RR) arbiter Total

Active ports = 3 Active ports = 4 Active ports = 5 FSMs

a = (R3 ∗RR3) b = (R4 ∗RR4) c = (R5 ∗RR5) (a+ b+ c)

2x2 4 * 18 = 72 0 * 24 = 0 0 * 30 = 0 72

3x3 4 * 18 = 72 4 * 24 = 96 1 * 30 = 30 198

4x4 4 * 18 = 72 8 * 24 = 192 4 * 30 = 120 384

5x5 4 * 18 = 72 12 * 24 = 288 9 * 30 = 270 630

6x6 4 * 18 = 72 16 * 24 = 384 16 * 30 = 480 936

7x7 4 * 18 = 72 20 * 24 = 480 25 * 30 = 750 1302

8x8 4 * 18 = 72 24 * 24 = 576 36 * 30 = 1080 1728

active for router R5. There are (N-2)*(N-2) such routers with five active ports in a N*N

Mesh NoC.

In our FSM model for a router with fixed-priority arbiter we need 5 FSMs corresponding

to each port of that router. These five FSMs are namely switch, buffer, sync, return and

fixed-priority arbiter. If a router with fixed-priority arbiter has three active port, we need

15 (3 ∗ 5 = 15) such FSMs to model the router. Therefore, we consider FP3 = 15 in

Table 3.2. Similarly, for a router having fixed-priority arbiter with 4 active ports, FP4 = 20

(4 ∗ 5) and with 5 active ports, FP5 = 25 (5 ∗ 5). These values are used in Table 3.2 for

calculating the number of FSMs in a Mesh NoC model. If we consider round-robin arbiter

in the router, one additional FSM is needed for priority generation. Therefore, for a router

with round-robin arbiter we need 6 FSMs corresponding to each port of that router. If a

67

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

router with round-robin arbiter has three active port, we need 18 (3 ∗ 6 = 18) such FSMs

to model the router. Therefore, we consider RR3 = 18 in Table 3.2. Similarly, for a router

having round-robin arbiter with 4 active ports, RR4 = 24 (4 ∗ 6) and with 5 active ports,

RR5 = 30 (5 ∗ 6). The total number of FSMs needed while designing a complete NoC using

fixed-priority arbiter and round-robin arbiter is shown in Table 3.2. The number of FSMs

needed for modeling a 8x8 Mesh NoC is 1440 considering FP arbiter. This number is even

more while considering round-robin arbiter. For 8x8 Mesh NoC we need 1728 FSMs. The

number of states in each FSM is multiplied while a complete NoC is encoded using a model

checker. It gives the total state space for a complete NoC. State space for a complete NoC

is a too high for achieving scalabilty using model checker. State space for even for a 2x2

NoC is 2138.24 while using fixed-priority arbiter and is 2169.2 while using round-robin Arbiter.

These numbers explode with the increase of NoC sizes. Therefore, we have considered the

active windows next for each NoC router instead of considering a complete NoC at a time.

R1 R2 R3

R4 R5 R6

R7 R8 R9

Figure 3.9: Partitioning NoC: Active Windows for the Router R5 and R9

3.5.3.2 Active Windows

Due to the state space explosion problem a complete NoC system along with its detailed

components cannot be encoded with a state-of-the-art model checker. Therefore, we par-

tition the NoC into active regions and perform verification for starvation and transfer of

packets in each active region. Router R9 interact with its two neighbours R6 and R8.

Therefore, we consider router {R6, R8, R9} at a time as the active window for R9, as shown

68

Experimental Results and Analysis

in Fig. 3.9. Similarly, active window for R5 is {R2, R4, R5, R6, R8} and for R8 is {R5,

R7, R8, R9} and so on. The communication between two routers are present in a active

window. Therefore, properties involving two routers can be checked using active windows.

All these active windows can be executed using parallel threads to save verification time.

To verify global properties like deadlock and livelock, we need to consider the complete

NoC at a time. Even active window would not be able to facilitate that. Therefore, global

properties like deadlock and livelock can not be verified due to state space explosion even

by using active windows.

3.6 Experimental Results and Analysis

We have created all FSM models manually from 2x2 to 8x8 Mesh NoC. The FSM models are

encoded in NuSMV [22] for verification. Individually executing each router for verification

of progress, synchronization, proper priority generation for round-robin arbiter, transfer of

packets and starvation are time consuming operations. In this section, experimental results

and analysis for all the experiments are presented. In all the experiments, an Intel Xenon(R)

2.10GHz X 32 processor, 64 GB RAM machine is used.

3.6.1 Verification of Progress, Synchronization and Priority Gen-

eration within a Router

In this experiment, we have used all routers in an NoC individually and execute them

both serially and in parallel threads. We have verified the progress in NoC router compo-

nents, synchronization within a router and correctness in priority generation using the LTL

specifications as described in Section 3.4. Experimental results show that synchronization

properties within a router and progress within a router are satisfied to be True for all routers.

The LTL specification for priority generation for a round-robin arbiter also satisfied in all

the experiments.

69

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

Table 3.3: Verification of progress, synchronization and priority with fixed-priority (FP) and
round-robin (RR) arbiter (A) within individual routers

Mesh Serial Exe. (H:M:S) Parallel Exe. (H:M:S) Seep Up
NoC FP A. RR A. FP A. RR A. FP A. RR A.

2x2 0.0.2 0.0.8 0.0.2 0.0.7 1x 1.1x
3x3 1.20.02 3.38.16 1.10.09 2.26.34 1.1x 1.3x
4x4 4.0.17 11.36.23 1.17.09 2.35.16 3.1x 4.5x
5x5 8.02.11 23.54.51 1.26.07 2.41.02 5.6x 8.9x
6x6 13.20.31 40.32.56 1.36.27 2.58.21 8.3x 13.7x
7x7 20.12.03 61.30.42 2.05.03 3.57.06 9.6x 15.6x
8x8 28.02.16 86.48.02 2.38.56 4.49.27 10.6x 18.0x

3.6.1.1 Runtime Improvement with Parallel Execution considering Individual

Router

The execution time for the experiments is shown in Table 3.3. State-space increases due

to the implementation of dynamic priority in round-robin arbiter as compared to fixed-

priority arbiter. Therefore, verification time for NoC with a round-robin arbiter increases

significantly than that of NoC with a fixed-priority arbiter. Table 3.3 shows that verification

time increases with the increase of NoC sizes as well. In case of larger NoC, the number of

routers increases. Therefore, verification time increases with the increase of NoC grid size.

The verification time needed for both the serial and parallel execution along with speed ups

are shown in Table 3.3. The speed up is calculated as the ratio of serial execution time

to the parallel execution time. The experimental results show that using parallel threads

speed ups the verification process for individual router up to 18x times over its equivalent

serial execution for bigger NoCs.

Figure 3.10: Speed up with the increase in the number of routers

70

Experimental Results and Analysis

We put the speed up trend for parallel execution of individual routers in Fig. 3.10.

Though, theoretically we could expect the speedup proportional to the router numbers

i.e., n2 for an nxn NoC, practically, we are getting lesser than that. Even the speed up

trend is not the same for both the Fixed Priority and Round Robin arbiter. Besides the

number of routers, other factors like thread overhead, operating system details, and memory

requirements for the verification also affect the speed up. The speed up trend continues until

the memory is not saturated.

3.6.2 Verification of Transfer of Packets and Starvation Freedom

considering Active Windows

For verifying the transfer of packets, we need to consider an arbiter and the corresponding

buffer in the adjacent router, i.e., the connected port of adjacent router. Similarly, for

verification of starvation, we need to consider the arbiter which communicates with the

buffer of adjacent router. For considering the communication with an adjacent router, we

have considered active windows in this experiment. Example for active windows are shown

in Fig. 3.9. We have used active window corresponding to each router in an NoC. All active

windows are executed using parallel threads for saving the verification time.

Successful transfer of packets indicates correct synchronization between an arbiter and a

buffer in the adjacent router as well. The LTL specification that are used for the verification

of transfer of packets are presented in Section 3.5. All the specifications for transfer of

packets corresponding to each pair of arbiter and connected buffer are verified to be True

in all the experiments. We have verified starvation freedom as well in this experiment.

The verification results of starvation-freedom for router R5 in a 3x3 Mesh NoC (Fig. 3.1)

are shown in Table. 3.4. We get similar results for all the other routers up to 8x8 Mesh

NoC. Some ports are inactive (W and N ports in R1 of Fig. 3.1) and starvation-freedom is

not applicable (NA) for some other ports. Such ports in router R5 with respect to different

arbiters are denoted as “not applicable (NA)” in Table. 3.4. In router R5 (Fig. 3.1), packets

from L, W, N and S input ports compete for E output port (R5ArbiterE). Incoming packets

71

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

from E input ports do not compete for E output port. Therefore, starvation-freedom at

R5ArbiterE from E input port is not applicable and is denoted as NA in Table 3.4. For

packets from L, W, N and S input ports, whether starvation-freedom specification is satisfied

or not is denoted by T (True) or F (False).

Table 3.4: Starvation-freedom for fixed-priority (FP) and round-robin (RR) arbiters

Packets Starvation-freedom at the output port of an Arbiter

from in- R5ArL R5ArE R5ArW R5ArN R5ArS

put ports FP RR FP RR FP RR FP RR FP RR

L NA NA T T T T T T T T

E T T NA NA T T T T T T

W T T T T NA NA F F F T

N F T F T F T NA NA F T

S F T F T F T F F NA NA

3.6.2.1 Analysis of the Findings on Starvation Freedom

For fixed priority arbiter, it seems obvious that starvation-freedom is satisfied only for

highest priority port. On the other hand, experimental results in Table. 3.4 shows that

starvation-freedom is satisfied for both highest and second highest priority ports. We con-

sider the priority order as L > E > W > N > S, i.e., packets from L and S input ports

have the highest and the lowest priority, respectively. At the N output port of router R5

(R5ArbiterN), Table. 3.4 shows that W and S input port suffer from starvation whereas L

and E input ports are free from starvation. The reason behind these findings are analysed

from the the debug trace. Debug trace shows that there are continuous packets from L, E, W,

S input ports competing for the N output port (R5ArbiterN). The packet from the L input

port (highest priority port) is transferred to the next router. There present other consecutive

packets from the L port. After transmitting a packet from an input port there involves some

delay in performing synchronization with the buffer (clearing buffer) and switch using the

return FSM, that are present in the same router. On the other hand, the packet from the E

input port (next highest priority port) is ready and is waiting for the same N output port.

72

Experimental Results and Analysis

Therefore, the packet from E input port gets transmitted. The synchronization latency in

the highest priority port is the reason for satisfaction of starvation-freedom property for

the second-highest priority port as well in fixed-priority arbiter. If synchronization latency

can be nullified in a model, packets only from the highest priority port, i.e., the Local port

in this case, get chance for transmission. We believe that such delay would present in the

actual hardware as well unless it is nullified using extra resources like extra buffers. By the

time the E input port packet is transferred, the L input port is synchronized and a packet

from L input port gets a chance for the next transmission. In this way, packets only from

L and E input port get transmitted alternatively though there are continuous packets from

L, E, W and S ports. Packets from W and S input ports suffer from starvation. On the

other hand, round-robin arbiter is a dynamic arbitration policy. The priority is dynamically

changing by the priority FSM shown in Fig. 3.7. Therefore, no input port suffers from

starvation in round-robin arbiter as shown in Table. 3.4. Experimental results reinforce

that our design and implementation are correct.

Table 3.5: Verification time for transfer of packets and starvation freedom considering fixed-
priority (FP) and round-robin (RR) arbiter (A) in Active Windows

Time (H:M:S) for Fixed-priority (FP) and Round-robin (RR) Arbiter

NoC Serial execution (H:M:S) Parallel execution (H:M:S) Seep Up

FP A. RR A. FP A. RR A. FP A. RR A.

2x2 0.0.4 0.0.56 0.0.2 0.0.24 2x 2.3x

3x3 7.33.04 70.02.56 6.23.09 38.03.21 1.2x 1.8x

4x4 26.12.04 234.08.56 10.01.13 53.50.09 2.6x 4.4x

5x5 57.57.04 492.18.56 10.21.05 90.45.12 5.6x 5.4x

6x6 102.08.04 844.32.56 11.09.17 152.03.51 9.1x 5.5x

7x7 158.45.04 1290.50.56 13.10.03 226.01.07 12x 5.7x

8x8 227.48.04 1836.57.56 16.58.10 315.12.32 13.4x 5.8x

3.6.2.2 Runtime Improvement with Parallel Execution for the Active Windows

The execution time for transfer of packets and starvation verification using active window

is shown in Table. 3.5. Similar to the previous experiments considering individual routers,

73

Formal Modeling of NoC using FSM and Verification of Starvation using
Model Checker

NoC with a round-robin arbitration policy takes more time than that of NoC with a fixed-

priority arbitration policy. Experimental results in Table 3.5 shows that verification time

increases with the increase of NoC sizes as well. In case of smaller NoC, the number of

routers are less. Moreover, corner routers and boundary routers have less number of active

ports. For example, the router R1 in Fig. 3.1 has three active ports (L, E and S). But for

the middle router like R5, all five ports are active. Larger NoC has more number of such

routers where all ports are active. Therefore, verification time increases with the increase

of NoC grid size. In case of parallel execution, execution time is significantly saved for NoC

of higher grid size. Therefore, the parallelization of the verification process is very effective

in the verification of starvation. As shown in Table 3.5, running starvation verification for

fixed-priority arbiter using parallel threads speed ups the verification process up to 13.4x times

over serial execution for bigger NoCs. This runtime improvement for round-robin arbiter

using parallel thread is 5.8x times over serial execution. The improvement is not significant

for round-robin arbiter after a 5x5 NoC. Because the round-robin arbiter demands more

state space.

3.7 Conclusion

In this chapter, we have presented formal modeling NoC components using FSM by con-

sidering NoC components in detail. Synchronization between different functional units is

taken care for error-free functioning of the overall system. We have verified the correctness

of the model by verifying progress property and synchronization between NoC components.

Transfer of packets between routers is also verified. Verification of starvation-freedom using

fixed-priority policy and round-robin policy are demonstrated in this chapter. Due to state

space explosion problem, it is practically not feasible to verify globally dependent properties

like deadlock using a detailed NoC model with help of model checker. Since formal verifi-

cation is a time consuming procedure, we have used thread level parallelism for verifying

routers individually and verifying active windows corresponding to each router in an NoC in

our experiments. The properties that are internal to a router are verified considering indi-

74

Conclusion

vidual router. Active windows are used for verifying properties that involve communication

between two routers. Experimental results show a significant improvement in verification

time for thread level parallelism over its equivalent serial execution.

75

4
Formal Modeling of NoC using CFSM and

Developing a Simulation Framework for

Deadlock Detection

4.1 Introduction

A deadlock scenario in an NoC involves resource dependency that might spread across the

complete NoC. Therefore, formal model of the complete NoC is needed to be considered

to detect deadlock. Whereas, it is not feasible to verify a complete NoC with detailed

modeling due to unmanageable state space. Encoding of a huge system like the complete

NoC is not supported by the state-of-the-art model checkers due to the state space explosion

problem. On the other hand, while considering the state-of-the-art NoC simulators, they

give only warning message about possible deadlock, which does not guarantee a real deadlock

situation. Therefore, a simulation framework on a formally modelled NoC which can detect

confirm deadlock is promising. Here, formal model ensures correctness in detecting deadlock

and the simulation on that formal model detects deadlock specific to an application.

77

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

Maintaining synchronization between all NoC components during simulation is a difficult

task. A large number of synchronization FSMs are needed to be implemented explicitly for

this purpose. Therefore, our FSM based model presented in the previous chapter may not

be suitable for developing formal simulator. In contrast, in Communicating Finite State

Machines (CFSMs), synchronization between functional units are maintained automatically

with help of message passing. No dedicated CFSMs for synchronization are required. There-

fore, we use CFSMs for developing formal simulator of NoCs. A formal modeling of NoC

using CFSM is presented first. We have automated the CFSM model generation for NoC

with Mesh and Torus topologies. We have then presented the CFSM based formal simulator.

4.2 Contributions

Contributions of this chapter are classified into two categories:

a) Formal modeling of NoC using CFSM and automation of NoC model generation.

b) Developing a simulation framework using the generated NoC model to be used for appli-

cation specific deadlock detection.

4.2.1 Formal Modeling of NoCs using CFSM

The formal method for performance analysis and study of the reachability of packets in

NoCs is a computationally complex task. So, scalable formal models of the NoC compo-

nents which support parallel execution are needed. Moreover, analysis of properties like

deadlock, starvation, livelock require detailed level modeling. CFSM is one such formal

model, proposed by Daniel Brand and Pitro Zafiropulo from IBM Research Laboratory in

1983 [40]. This model can be used to represent distributed computing, parallel process-

ing, computer network, and communication protocols. In such systems, a huge number of

functional units work in parallel. The CFSM models these units as processes and the com-

munication between them are captured by sequence of sending and receiving operations.

78

Contributions

The same approach can be applied to NoC, where router components are the processes and

communication between them takes place using the packets. Therefore, in this work, we use

CFSM for modeling the NoC components. To the best of our knowledge, detailed formal

modeling of NoCs is not explored enough in the literature (discussed in the Chapter 2).

There are some abstract level models of NoCs in the literature [80], [31], [50] that do not

capture the detailed behaviour of the NoC architecture. Specifically, the contributions of

this work on modeling NoCs are as follows:

• This work demonstrates an approach for formal modeling of Mesh and Torus topologies

using CFSMs. A similar approach can be followed for designing other NoC topologies

as well.

• We formulate the naming convention of each component of the CFSM model so that

each component is uniquely identifiable.

• It is error-prone to create formal models of NoC manually, which requires a large num-

ber of CFSMs for its representation. Therefore, a programming interface is developed

to automatically generate the formal CFSM models of Mesh and Torus based NoCs

of any size.

• The condition required for deadlock in CFSM based model of NoCs is formally cap-

tured in Theorem 4.5.2. Moreover, we formally show the bounded communication of

our CFSM models using Lemma 4.6.1 and Lemma 4.6.2.

• The proposed CFSM based model of NoCs is generic in terms of routing algorithms,

i.e., any routing algorithm can be symbolically simulated on it.

4.2.2 Development of CFSM based Simulation Framework

We further develop a formal simulator based on our CFSM model. As an application of

our CFSM based simulator, we focus on detecting deadlock of a routing algorithm for a

given application in the next phase of the work. Several techniques on deadlock avoidance

79

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

like restriction on packets from taking certain turns [9], increasing the buffer size and the

number of virtual channels [103] etc. have been proposed. Most of these schemes require

additional overhead in terms of system resources, area, and power consumption. Further,

such avoidance techniques are designed to prevent deadlocks for a given routing algorithm.

A routing algorithm may have deadlock for an NoC topology. However, the same routing

algorithm may not reach in deadlock state for a given set of applications in the same NoC

topology. If deadlock avoidance techniques can be designed to work only for a given set of

applications the NoC currently executes, system resource overhead can be minimized. To

elaborate, if application specific deadlock detector is designed, it can be used to enable or

disable deadlock avoidance scheme based on the requirement. In this work, we aim at the

development of an application specific deadlock detector for NoC using our CFSM based

models.

Detection of deadlock in an NoC is a challenging task, due to the prohibitive state

space required to model the NoC and the routing algorithms therein. Booksim2.0 [24] is

a cycle accurate NoC simulator that simulates the NoC components including routers in

parallel. This simulator uses a threshold number of cycles to determine deadlock. If the

number of cycles exceeds the threshold and yet packets remain to be delivered, simulation

is aborted giving warning message for possible deadlock. Gem5 [25] is another widely used

full system simulator that uses a similar philosophy for deadlock detection. It internally

uses Garnet [26], an interconnection network model, for NoC simulation. It may be noted

that since cyclic dependency for the resource is not checked in Booksim or in Gem5, it does

not give a guarantee that the scenario, in fact, is a deadlock. The threshold value may

overshoot due to other circumstances like failure, livelock or starvation.

The second contribution of this work is an application specific simulation framework

using our CFSM based NoC models. Our framework accurately detects the occurrence of a

deadlock situation for a given routing algorithm and an input traffic sequence. Specifically,

the contributions of the second part of the work are as follows:

• A CFSM based simulation framework is developed to detect confirmed deadlock sce-

80

Background of Communicating Finite State Machine based Modeling

Formal Simulator /
Deadlock Detector

CFSM Based NoC Model

Traffic Pattern

Routing Algorithm

Deadlock present / not present

Figure 4.1: Deadlock Detection using CFSM based NoC Model

nario in an NoC on a given traffic pattern for a given routing algorithm. The overview

of the simulator is given in Fig. 4.1.

• We have tested our framework for three routing algorithms namely, XY routing (static)

and Dynamic-XY routing [8] (adaptive) and a modified version of West-First routing

(adaptive) [9] on Mesh and Torus NoCs. The experimental results are presented for

various network sizes and for various traffic patterns. Our CFSM based framework

identifies false-positive deadlock warnings of the Booksim simulator.

The rest of the chapter is organized as follows. Section 4.3 covers the background the-

ory of CFSMs. Section 4.4 demonstrates the modeling of NoC using CFSM. Our proposed

approach to NoC deadlock detection and representation of cyclic dependencies using CFSM

are described in Section 4.5. Automated NoC model generation and computational feasibil-

ity of our models are described in Section 4.6. Experimental results and their analysis are

presented in Section 4.7. Finally, we conclude the chapter in Section 5.7.

4.3 Background of Communicating Finite State Ma-

chine based Modeling

A communicating finite state machine (CFSM) is an automata with directed labelled graph

having two types of edges, namely sending and receiving edges [75]. Each node in a CFSM

represents the current state of the CFSM and has at least one outgoing edge. For each

81

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

message, there is a sending edge where the message is generated and there is a corresponding

receiving edge where the message is consumed. For a message m, the sending edge (message

generation) and the receiving edge (message consumption) are labelled as −m and +m,

respectively. The −m and +m messages are part of two different CFSMs, i.e., a message

generated by one CFSM is consumed by another CFSM. If each outgoing edge of a CFSM

has distinct label, then the CFSM is called deterministic; otherwise, the CFSM is called

nondeterministic [77].

Each component of the communicating system is represented as a process with the help

of a finite state machine. All the processes can communicate with each other by passing

messages. To store a message temporarily before being received by a process, a message

queue is used between each pair of communicating processes. The processes are synchronized

by blocking read of the message queues. Unless an expected message is generated by a

process and is stored in a specific message queue, the receiving process cannot make a

transition by receiving that expected message. For each pair of communicating processes,

massage sending and massage receiving take place with the help of two dedicated message

queues. Message queues, that are virtually present between a pair of communicating CFSMs,

are different from the buffer, that are used to store packets in NoC. When a message m is

transmitted from a CFSM Px at a state Gen, there should be an transition labeled −m

from the state Gen (for generating). Similarly, when a message m is received by an another

CFSM Py at a state Rcv, there should be an transition labeled +m from the state Rcv

(for receiving). If a CFSM is in a receiving state, it cannot make progress until it receives

desired message from the corresponding CFSM.

Example 4.1. Fig. 4.2 shows an example of three communicating processes, namely P1,

P2 and P3 with their initial states Gen1, Rcv2 and Rcv3, respectively. P1 sends a message

to P3 via P2. On receiving the message, P3 sends back an acknowledgment to P1 via P2. In

this example, all the messages with prefix “(+/−)a” act as acknowledgments. P1 generates

a message −m1 to indicate a specific event. This message is received as +m1 by P2 in

the state Rcv2. This event triggers the generation of another message −m2 at state Tr2

82

Background of Communicating Finite State Machine based Modeling

Gen1 Ret1

−m1

+a2

Rcv2
Tr2 Ret2

+m1

−a2

−m2

+a3

Rcv3 Ret3

+m2

−a3

P1

P2

P3

Figure 4.2: Three CFSM processes communicating with each other

(transmit) of P2. This message is received by P3 as +m2 in the state Rcv3. P3 generates a

message −a3 making a transition from Ret3 (return) to its initial state Rcv3. This message

is consumed at P2 in the state Ret2 and makes a transition from the state Ret2 to Tr2. P2

then generates message −a2 and makes a transition from its current state Tr2 to its initial

state Rcv2. By consuming +a2 in the state Ret1, P1 makes a transition to its initial state

Gen1. After these cycles of messages P1, P2 and P3 again go back to their respective initial

states.

The formal definition of a CFSM is presented as follows [40].

Definition 4.3.1. A communication system in CFSM is represented using a quadruple,

{(Si)
n
i=1, (Ii)

n
i=1, (Mij)

n
i,j=1, succ}. Here, n is a positive integer representing the number of

processes. Si represents the set of states of process Pi. Ii is a member of Si that represents

the initial state of process Pi. (Mij)
n
i,j=1 are n2 disjoint finite sets. Mij represents the

messages that can be sent from Pi to Pj. Mii is empty for all Pi. The succ is a partial

function mapping for each Pi and Pj, Si ×Mij → Si and Si ×Mji → Si. The succ(s, x)

indicates the next state after the transition when the process transmits or receives message

x in the state s, i.e., if t = succ(s, x), the current state s of Pi is changed to t, after it

83

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

transmits (/receives) a message x to (/from) the process Pj.

Example 4.2. We represent the CFSM in Fig. 4.2 using the formal notation of the CFSM

definition where n = 3, S1 = {Gen1, Ret1}, S2 = {Rcv2, T r2, Ret2}, S3 = {Rcv3, Ret3},

I1 = Gen1, I2 = Rcv2, I3 = Rcv3, M12 = {m1}, M21 = {a2}, M23 = {m2}, M32 = {a3},

succ(Gen1, m1) = Ret1, succ(Tr2, a2) = Rcv2 and so on.

An execution of a CFSM based system is represented as sequence of global states. The

formal definition of global state in a CFSM execution is follows [40].

Definition 4.3.2. A global state is a pair [S, Q]. Here, S is an n-tuple of states {s1, s2, s3,

. . . , sn}, where si is a state of process Pi. Q is an n2-tuple {q11, q12, . . . , q1n, q21, q22, . . . , q2n,

. . . , qn1, qn2, . . . , qnn}, where each qij is a sequence of messages from Mij, i.e., qij ⊆Mij.

The sequence of messages qij in the channel from process Pi to process Pj are stored

in a message queue Qij. Process Pj can consume messages from Pi present in the message

queue Qij, in first-in-first-out (FIFO) basis.

Example 4.3. With this notation, the initial global state of the system in Fig. 4.2 is ex-

pressed as G0 = [Gen1, Rcv2, Rcv3, Q12 = {φ}, Q21 = {φ}, Q23 = {φ}, Q32 = {φ}]. Af-

term1 is generated by P1, the new global state is expressed asG1 = [Ret1, Rcv2, Rcv3, Q12 =

{m1}, Q21 = {φ}, Q23 = {φ}, Q32 = {φ}]. In this way, we express the execution of a

system in terms of a sequence of global states.

4.4 Formal Modeling of NoC using CFSM

In this section, we model major NoC components like buffer, switch, arbiter and scheduler

using CFSMs. For identifying different CFSMs and different messages by unique names in

our CFSM based model, we first present the naming convention of each component in this

section.

84

Formal Modeling of NoC using CFSM

4.4.1 Naming Convention

The CFSM model presented in this section are with reference to the functional unit of the

2x2 Mesh NoC shown in Fig. 4.3(a). We consider a unique number for each router. To save

space and for reading convenience, we are describing the names of functional units using

short forms. For example, the North port of router R3 in Fig. 4.3(a) is indicated as N port

of R3. The arbiter present at the South port of the router R1 is denoted by ArbiterS1.

Similarly, the buffer present at the North port of the router R3 is indicated by BufferN3.

We use the similar naming convention for describing our CFSM based NoC model.

There are large number of messages on a CFSM based model of an NoC. To keep the

message names unique and meaningful, we follow a naming convention. Formation of all

types of messages used in our CFSM based NoC model are presented with examples in Table

4.1. In this table, three symbols namely Rn, Pn and Bn are used to represent message

formation structure. Here, Rn indicates the router number, Pn indicates the port name

(L, E, W, N, S), and Bn indicates the buffer slot number. Each message ends with router

number (Rn) preceded with port name (Pn), i.e., PnRn. It indicates the associated port

name and associated router number of the message. We maintain unique name and unique

number for each CFSM while generating the CFSM model. Even though we have not

followed strict naming convention for the CFSM states, we can distinguish each CFSM

state uniquely with help of unique CFSM name and CFSM number. Purpose and meaning

of different message types are given in short in Table 4.1. More detailed information are

elaborated while describing different CFSM models.

4.4.2 Modeling Buffer

Buffer is used as a temporary storage for a packet at the input port of a router. We present

CFSM models for one buffer with single slot and another buffer with three slots in this

subsection.

85

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

Table 4.1: Naming convention for Messages in CFSM

Prefix Formation Example Meaning

A (Arbiter) PnRn AS1 Indication of packet transmission from
South port arbiter at router 1 to the next
router.

B (Buffer) PnRn BN3 North port buffer of router 3 is free to re-
ceive a packet. This is indicated to the
connected adjacent router.

B (Buffer) BnPnRn B2N3 Indicates that a packet presents at the
North port 2nd buffer slot of Router 3 is
moving to the next buffer slot.

BT (Buffer
Transmit)

PnRn BTN3 North port buffer of router 3 requests con-
nected switch for start processing a packet
for transmission.

comp (Com-
pute)

PnRn compN3 Request for route computation (RC).
North port switch of router 3 requests cor-
responding RC unit.

C (Compute) PnPnRn CEN3 RC result is determined. North port RC
unit of router 3 calculates output port to
be E (East) and inform the switch.

SS (Switch
Scheduler)

PnPnRn SSNE3 Message to scheduler. North port switch of
router 3 requests East output port sched-
uler of the same router to generate priority.

S (Switch) PnPnRn SNE3 Message to arbiter. North port switch of
router 3 requests East port arbiter of the
same router for transmitting a packet from
North input port.

priority (0, 1,
2, 3)

PnRn 0S1 South port scheduler of router 1 sends pri-
ority value 0 to South port arbiter of the
same router.

ret (Return) PnRn retN3 North port switch of router 3 requests the
last buffer slot at North port to return to
its initial state.

ret (Return) PnPnRn retSE1 South port Arbiter of router 1 requests the
switch at East port of router 1 to return to
its initial state.

retB (Return
Buffer)

BnPnRn retB3N3 A packet is transferred from 2nd buffer slot
to 3rd buffer slot of North port of router 3.
The 3rd buffer slot inform the 2nd buffer
slot at the same port to return to its initial
state using this return message.

retComp
(Return
Compute)

PnRn retCompN3 North port switch at router 3 requests
route computation unit at North port to
return to its initial state.

86

Formal Modeling of NoC using CFSM

R1 R2

R3 R4

S S

N N

E

E W

W

ArbiterS1 SwitchN3

+BTN3 −retN3+BN3 −AS1

−BTN3

I Ir WTAk

+retN3

+AS1−BN3

(b) Communication overview

(c) Buffer1N3

(a)

Figure 4.3: Buffer with single slot: (a) 2x2 NoC as a reference for modeling (b) Overall com-
munication for buffer at the North port of router R3 (c) CFSM model for buffer with capacity=1

4.4.2.1 Buffer with single slot

A single slot buffer (Buffer1N3) is shown in Fig. 4.3(c). It is present at the North port of

router R3, shown in the 2x2 NoC in Fig. 4.3(a). The communication overview of Buffer1N3

is shown in Fig. 4.3(b). The Buffer1N3 is connected from the arbiter at the South port

of router R1 (ArbiterS1) and receives packet from that arbiter. The buffer communicates

with the North port switch, i.e., SwitchN3, for route computation. If Buffer1N3 is free, it

sends −BN3 message to ArbiterS1 indicating that buffer is free for receiving a packet. If

router R1 needs to send a packet to router R3, ArbiterS1 sends −AS1 message to Buffer1N3

(Fig. 4.3(b)). This message is consumed as +AS1 by Buffer1N3 and the new state becomes

Ak (acknowledgment), as shown in Fig. 4.3(c). From the state Ak, it generates message

−BTN3 towards SwitchN3, to process the packet in switch for transmission. The new state

of Buffer1N3 becomes WT , where it waits for SwitchN3 until it does the necessary operation

for the packet and sends a message +retN3.

4.4.2.2 Buffer with more than one slots

For modeling buffer with more than one slots we need CFSMs corresponding to each buffer

slot. Transferring packet from one slot to another slot are modeled using CFSMs.

87

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

+BN3 +BTN3

−retN3
ArbiterS1 SwitchN3

−AS1

Buffer1N3 Buffer2N3 Buffer3N3

+B2N3 −retB3N3 −BTN3

+retN3

I3 Ir3 Ak3 WT3

Buffer3N3

+B1N3 −retB2N3 −B2N3

+retB3N3

I2 Ir2 Ak2 WT2

Buffer2N3

−B1N3

+retB2N3

I1 Ak1Ir1 WT1

−BN3 +AS1

Buffer1N3

(b) Buffer with three slots

(a) Communication overview

(c) CFSM for each buffer slot

Figure 4.4: Buffer with three slots: (a) Overall communication for buffer at the North port of
router R3 (b) Three buffer slots as a FIFO (c) CFSM model for buffer with three slots

Communication of a buffer with its corresponding NoC components and a three slots

buffer are shown in Fig. 4.4(a) and Fig. 4.4(b), respectively. Modeling of the buffer with

three slots, at the North port of router R3, is shown in Fig. 4.4(c). Three CFSMs, namely

Buffer1N3, Buffer2N3 and Buffer3N3, are used for this purpose. Each CFSM in Fig. 4.4(c)

represents a buffer slot from the Fig. 4.4(b). Since the buffer is a FIFO, a packet is first

placed at the first slot from the adjacent router (ArbiterS1) and is transmitted to the switch

of that port (SwitchN3) from the third slot. The packet is moved to slot three through the

intermediate buffer slot, i.e., second slot in this case. In the CFSM model of Fig. 4.4(c), at

first, a packet enters Buffer1N3. It sends the necessary synchronization message to ArbiterS1

and forwards the packet to Buffer2N3, as shown in Fig. 4.4(c). If Buffer2N3 is free (in state

88

Formal Modeling of NoC using CFSM

I2), it sends acknowledgment −retB2N3 to Buffer1N3 and passes the packet to Buffer3N3

(by sending message −B2N3). In case, Buffer2N3 is not free (not in state I2), that means it

is holding some other packet and has to wait for processing of a new packet. If Buffer3N3 is

free and gets a new packet (indicated by message +B2N3), it requests SwitchN3 to process

the packet by sending −BTN3 message and waits in the state WT3. All the transitions in

a buffer for storing and forwarding packets are self explanatory from Fig. 4.4(c). Using the

same approach, we can model a buffer of capacity n with help of n such CFSMs.

st comp

L

E

+compN3

−CLN3

−CEN3

+retCompN3

+retCompN3

(b) ComputeN3

ArbiterE3
+SNE3

−retEN3

ArbiterL3
+SNL3

−retLN3

SchedulerL3

SchedulerE3

+SSNL3

+SSNE3

+retN3

−BTN3
BufferN3

compwt st

L0 L1

E1E0

+BTN3 −compN3

+CLN3

+CEN3

−SNL3

−SNE3

L2

E2

RetS

+retLN3

+retEN3

RetB

−retN3

−retCompN3

−SSNL3

−SSNE3

(a) SwitchN3

(c) Communication overview

Figure 4.5: CFSM model for a switch: (a) Switch at the North port of router R3 (b) Route
computation (c) Communication overview for SwitchN3 with other NoC components

4.4.3 Modeling Switch and Route Computation

A switch considers a packet stored in the input port buffer for route computation. Route

computation decides the output port through which the packet has to transmit. If the

89

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

packet has already reached its destination router it is deliver to the local port. Modeling of

a switch, a route computation unit and the overall communication with a switch is shown

in Fig. 4.5(a), Fig. 4.5(b) and Fig. 4.5(c), respectively. A packet is directed to a switch

from a buffer at the input port of a router. Switch gets the routing information for the

packet from another CFSM (compute machine) and forwards the packet to the arbiter

present at the intended output port. The CFSM representation of SwitchN3 is shown in

Fig. 4.5(a). Buffer1N3 sends −BTN3 message to the SwitchN3 as shown in Fig. 4.3. By

consuming +BTN3 message, the switch moves from waiting state (wt) to starting state (st)

and starts processing the packet. SwitchN3 sends −compN3 message to ComputeN3, where

routing algorithm is implemented. ComputeN3 is shown in Fig. 4.5(b). Routing algorithm

determines the direction of output port through which data packet should traverse to reach

the destination router. The route computation is performed in compute machine and route

information is passed to switch by sending −CLN3 or −CEN3 message. If the packet

reaches its destination router, −CLN3 message is sent to SwitchN3. If the routing algorithm

under consideration decides the packet has to move towards the East, −CEN3 message

is transmitted to SwitchN3. After consuming +CEN3, a message −SSNE3 is sent to

SchedulerE3 requesting scheduler at the East port of router R3 to set priority for the packet.

Another message −SNE3 is sent towards ArbiterE3 requesting the East output port for

transmission. Once output port is granted, SwitchN3 receives an acknowledgment message

+retEN3 from ArbiterE3. After consuming this message, SwitchN3 sends acknowledgment

message −retN3 towards Buffer1N3 of Fig. 4.3. Finally, SwitchN3 returns to its initial state

wt by sending −retCompN3 message towards ComputeN3. By consuming this message,

ComputeN3 also returns to its initial state st. SwitchN3 and ComputeN3 wait for a new

packet in their initial states wt and st, respectively.

Referring to the 2x2 NoC in Fig. 4.3(a), it may be noted that the North port switch

of router R3 (SwitchN3) can send packets only in two ways: either towards the local port

of router R3 or towards router R4 via the East output port. In generic case, for a router

with four neighbours in a 3x3 NoC or NoC of higher sizes, all the ports will be active and

90

Formal Modeling of NoC using CFSM

the packet can move in four directions. In such case, the comp state of the switch will

have four outgoing edges or four outgoing transitions. Thus, the number of outgoing edges

for a switch depends upon the number of neighbours or number of active ports. A router

can have two or three or four neighbours depending upon its position in a Mesh or Torus

NoC. In our NoC model, we modelled all such types of routers. For sake of simplicity in

representation, we present CFSM model with reference to a 2x2 NoC shown in Fig. 4.3(a).

4.4.4 Modeling Arbiter and Scheduler

An arbiter is present at the output port of a router and resolves the conflict if multiple pack-

ets are requesting the same output port at the same time. Switch sends a packet towards

an appropriate output port based on the decision of the routing algorithm. At each output

port, an arbiter is present. Multiple packets may compete for the same output port at the

same time. These conflicts are resolved by an arbiter with the help of a scheduling pol-

icy, like round-robin policy, first-come-first-serve policy, priority based policy, etc.. In this

work, we use round-robin policy. The CFSM representations of ArbiterS1 along with Sched-

ulerS1 (round-robin scheduler) at the South port of router R1 (refer Fig. 4.3(a)) is shown

in Fig. 4.6(a) and Fig. 4.6(b), respectively. The communication overview for ArbiterS1 is

shown in Fig. 4.6(c). ArbiterS1 accepts packets from SwitchL1 and SwitchE1 based on the

priority set by SchedulerS1. The two states L and E in ArbiterS1 are corresponding to

incoming packets from SwitchL1 and SwitchE1, respectively. In SchedulerS1, state named

as ‘0’ indicates priority 0 and a packet from SwitchL1 gets preference. State named as ‘1’

indicates priority 1 and a packet from SwitchE1 gets preference. Before setting priority, the

scheduler goes through some intermediate states (00, 11, 01 and 10) as shown in Fig. 4.6.

4.4.4.1 Changing of priority in round-robin fashion

Here we describe how the priority keeps on changing so that packets from both the switches,

i.e., SwitchL1 and SwitchE1, get chance in round-robin fashion in Fig. 4.6(b). Initially,

ArbiterS1 and SchedulerS1 are in their initial states L and 0, respectively. State 0 in

91

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

−SLS1

SwitchL1

SwitchE1

BufferN3

−SSLS1

+retSL1

−SES1

−SSES1

+retSE1

−BN3

−AS1

L

retS

E

L0

E0

Tr

−retSE1

+SLS1

+0S1 +BN3 −AS1

−retSL1

+1S1

+SES1

+1S1

+0S1

0 00

111

01 10

+SSLS1

+SSES1

−1S1

−0S1

+SSES1

+SSLS1

−0S1

−1S1

(a) ArbiterS1

(b) SchedulerS1

(c) Communication overview

Figure 4.6: Arbiter and Scheduler at the South Port of Router R1: (a) CFSM model for ArbiterS1,
(b) CFSM model for SchedulerS1, (c) Communication overview for ArbiterS1

scheduler means, packet from SwitchL1 gets first preference in the arbiter. Similarly, state

1 in scheduler means packet from SwitchE1 gets first preference in the arbiter. Therefore,

if the current state of the scheduler is 0 and both +SSLS1 and +SSES1 messages are

available for consumption, +SSLS1 is consumed and the scheduler moves to state 00. A

node in a CFSM has computation power to decide as like deciding the routing path for a

switch. In deterministic CFSM, using of same message for transition into two different states

are not permitted. Since each outgoing edge of the CFSM has distinct label, the CFSM is

deterministic [77]. The message +SSLS1 is generated by SwitchL1 to make the priority

keep on changing so that packets from other ports get chance for transmission. SchedulerS1

generates −1S1 for ArbiterS1 and moves to state 1. At this point, one observation from

the switch in Fig. 4.5(a) is that +SSLS1 and +SLS1 are generated consecutively by a

92

Formal Modeling of NoC using CFSM

switch. Therefore, +SSLS1 is available for consumption by SchedulerS1 means +SLS1 is

also available for consumption by the corresponding ArbiterS1 in the next cycle. The current

state of ArbiterS1 is L. Since +SLS1 is available for consumption, ArbiterS1 consumes this

message and moves to the state S.

4.4.4.2 Transmitting the packet from current router to the next router

The transfer of packets to the next router takes place if the buffer in the next router is

free. If the corresponding buffer in the next router is full, the arbiter has to wait till

the buffer becomes free. Our CFSM based model of the arbiter takes care of all such

situations. ArbiterS1 waits for the buffer (Buffer1N3) in the next router at the state S if

the buffer is full. Buffer1N3 of router R3 (Fig. 4.3(a)) generates −BN3, if it has free slot

to receive a packet. At this state, ArbiterS1 consumes +BN3 and moves to the state Tr

as shown in Fig. 4.6(a). After coming to the state Tr, ArbiterS1 of router R1 generates

−AS1 message towards Buffer1N3 of router R3 and moves to the state ret. The message

−AS1 indicates that ArbiterS1 sends a packet towards Buffer1N3. Another message +1S1

is already waiting for consumption by ArbiterS1. By consuming this message, it moves to

the state E0. ArbiterS1 generates −retSL1 from the state E0, and returns to state E. At

this state, packet from SwitchE1 gets higher priority in ArbiterS1. Thus, packets from all

input ports get a chance for transmission in a round robin fashion.

4.4.5 Modeling Virtual Channel

In an NoC router with Virtual Channel (VC), a single physical channel is shared by a

number of VCs. Adding virtual channels do not increase bandwidth to the physical channel.

A separate buffer is allocated for each virtual channel [103]. Organization of VCs in an input

port, as described in [103], is shown in Fig. 4.7. In this diagram, four packets are present

in a buffer. The buffer, shown in Fig. 4.7(a), is associated with a single VC. The alphabet

in each buffer slot indicates the output port, the packet is intended to move. In this mode,

one packet may block rest of the packets behind it. For the example in Fig. 4.7(a), if the

93

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

VC1

VC2

EW

NS

E

N

S

W

VC1

VC2

VC3

VC4

EWNS

(c)

(a)

Buffer with capacity of four packets

(b)

Figure 4.7: Virtual channel: (a) Buffer with four slots, (b) Buffer restructuring for two virtual
channels, (c) Buffer restructuring for four virtual channels

first packet is blocked, other subsequent packets in the same buffer are also blocked. For

implementing two VCs, the same buffer of capacity four packets is organized as two separate

buffer each with a capacity for two packets, as shown in Fig. 4.7(b). In this arrangement one

more packet gets chance to move towards North port. Similarly, it can be organized as four

VCs by splitting into four separate buffers each with capacity one, as shown in Fig. 4.7(c).

In this case, all four packets get a chance to compete for their desired output ports. Thus

VC reduces the chance of blocking one packet by another packet.

If there are two VCs, i.e., VC1 and VC2, in an input port, we have to store the buffering

information and routing information for both VCs distinctly. Therefore we need separate

Buffer (Fig. 4.3), Switch and Compute (Fig. 4.5) for each VC. Thus, more numbers of

CFSMs are added into the CFSM based NoC model for handling VCs. The increase of

CFSMs in NoC model with the increase of VCs is reflected in Table 4.2. For keeping

all the CFSMs unique, we need minor modifications, to the NoC models described in the

Section 4.4. Suppose the number of VCs is two. Therefore we need two Buffer1N3 shown

in Fig. 4.3(b). For distinguishing the CFSMs, we append VC number (V) to the CFSM

name. Thus we get two buffers with name Buffer1N3 1 and Buffer1N3 2, if there are two

VCs. Similarly, we need to distinguish each message with its corresponding VC. To do so,

each message in Buffer1N3 1 and Buffer1N3 2 are modified by appending VC number 1 and

2 , respectively. In general, by adding VC number (V) to the corresponding machine name

94

Proposed Scheme for Deadlock Detection

Table 4.2: Number of CFSMs in Mesh NoC

NoC VC Size = 1 VC Size = 2
Size #VC=1 #VC=2 #VC=3 #VC=1 #VC=2 #VC=3
2x2 60 96 132 68 112 156
3x3 165 264 363 189 312 435
4x4 320 512 704 368 608 848
5x5 525 840 1155 605 1000 1395
6x6 780 1248 1716 900 1488 2076
7x7 1085 1736 2387 1253 2072 2891
8x8 1440 2304 3168 1664 2752 3840

and each message of the corresponding Buffer, Switch and Compute, we keep all CFSMs

unique. Arbiter and Scheduler (Fig. 4.6) control the physical link between routers. Since

adding virtual channels do not increase the physical link from one router to another router,

the number of Arbiters and Schedulers are not required to be increased with increase of VCs.

Arbiter and Scheduler identify different VCs by looking at the VC number (V) attached

after each message. They send the corresponding message to the appropriate CFSM by

appending the correct VC number (V).

4.5 Proposed Scheme for Deadlock Detection

In an NoC, when more than one packet is competing for the same port, there involves waiting

time for gaining access to the buffer in the desired port. If the waiting time is finite, we

term this as delayed reception in CFSM representation. In this section, we present Lemma

4.5.1 on delayed reception. We also define deadlock situation in CFSM with respect to NoC.

In this section, we also show that our deadlock definition actually represents a situation of

cyclic dependency using Theorem 4.5.2.

4.5.1 Delayed Reception

For a system modeled using CFSM, if a message +m1 arrives at a process P1 whose current

state is Sm but the system model does not specify any transition for consuming message

+m1 in state Sm, such a situation is called unspecified reception [40]. Unspecified reception

95

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

is considered as design error. On the other hand, for a complex system, it may be possible

that P1 is waiting for another message +m2 from another process P2, receiving which, P1

makes a transition to state Sn. At the state Sn, transition for consumption of the message

+m1 is defined. We are considering this as delayed reception instead of considering it as

design error. The behavior of NoC allows delay in receiving a message. To represent this

situation, in our CFSM based NoC model, certain scenario appears where a message gets

consumed only after the consumption of other messages with a finite delay. If the state Sn

is reachable from the state Sm with a number of finite and feasible transitions, eventually

the message +m1 will be consumed by process P1. This observation is stated as Lemma

4.5.1.

Lemma 4.5.1. Let a message x from a CFSM Pi arrives at a CFSM Pj, when Pj is in state

Sm. Even though no transition is specified for receiving x in state Sm, it is possible to reach

a future state Sn (at Pj) from the state Sm in finite time, where transition for receiving x

at Pj is specified. This situation is termed as delayed reception.

−p4p3 +p3p4

P4

−p1p2 +p2p1

P1

+p1p2

+p3p2

−p2p1 −p2p3

I1 Ir1 Ak1 WT1

−p3p2 −p3p4

+p4p3

+p2p3

I2 Ir2 WT2Ak2

P2

P3

Figure 4.8: An example of delayed reception

96

Proposed Scheme for Deadlock Detection

Example 4.4. Let assume that processes that P1 and P4 in Fig. 4.8 have many states and

transitions. All transitions of P1 and P4 are not shown to keep the example simple. The blue

states and green edges indicate the visited states and edges, respectively. The magenta states

are the last visited states in this example. The black edges indicate the edges not visited yet.

P2 receives a message +p1p2 from P1 and moves from initial state I1 to intermediate state

Ir1. To acknowledge the consumption of +p1p2, it makes another transition by generating

the message −p2p1 towards P1. P2 makes a transition from state Ak1 (acknowledged state)

to waiting state WT1 by generating the message −p2p3 towards P3. P3 consumes this

message and acknowledges it by sending -p3p2 towards P2. Consuming this, P2 returns to

its initial state I1 and P3 is in acknowledged state Ak2. P3 generates a message −p3p4

towards P4 and moves to state WT2 and waits for acknowledgment message +p4p3 from

P4. Let us assume, P4 is busy in doing other operations and there is a delay in consuming

+p3p4 and returning of −p4p3 towards P3. By this time, similar transitions are repeated in

P1 and P2. Let P2 be in state WT1 by transmitting message −p2p3 towards P3. P3 is in

state WT2 and cannot consume +p2p3 (from P2) until +p4p3 has arrived (from P4). This

situation is an example of delayed reception where transition is possible with a delay (i.e.,

once +p4p3 is received and P3 moves to initial state I2).

The important point is to be noted that the transition is possible at process Pj from

state Sm after a finite time period in case of delayed reception. However, no transition is

possible within finite time period in case of a deadlock situation. We define the deadlock in

CFSMs next.

4.5.2 Representation of Deadlock in NoC using CFSM

A transition in a CFSM based system is possible iff a message generation or message con-

sumption is possible. Gouda et al. [77] describe deadlock as a reachable global state [S,Q].

A global state [S,Q] is said to be a deadlock state iff i) all states ∈ S, are in receiving

state, and ii) all message queues ∈ Q, are empty. Since all states are in receiving state, a

transition due to the generation of a new message is not possible. A transition due to the

97

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

consumption of a new message is also not possible due to the absence of any message in the

message queue. In a system, modeled using CFSM, if neither message generation nor mes-

sage consumption is possible, it indicates no transition is possible in the system. Therefore,

no further transition is possible from a deadlock state of a system. The deadlock description

in [77] has not considered the possibility of delayed reception. In this work, we have defined

the deadlock in a CFSM based network model where delayed reception is permitted.

Definition 4.5.1. Consider a CFSM model of a system with n number of processes, where

delayed reception is permitted. A reachable global state [S,Q] is said to be a deadlock state

iff i) All states ∈ S, are in receiving state and ii) Either all message queues are empty or

some other message queues are not empty but no further transition is possible.

The condition, “All message queues are empty”- is already mentioned in the deadlock

definition in [77]. The other case, where some message queues are not empty becomes

applicable due to presence of delayed reception. Let us consider each process Pi, where

i = 1, 2, 3, . . . , n and the current state of Pi is si. The state si is a receiving state and

waiting for message from some process Pj, i.e., from message queue Qji. The message queues

from where Pi receives messages are Qki, where k = 1, 2, 3, . . . , j, . . . , n and j 6= i. If Qji is

empty even though some other message queues in Qki are not empty, the transition from the

current state si of process Pi cannot consume any message from any other message queue

Qki. In such a situation, no transition is possible from any process Pi and the global state

[S,Q] is a deadlock state of the CFSMs.

Example 4.5. We have illustrated deadlock in a CFSM model with delayed reception in

Fig. 4.9. The color of the states and the edges have the same meaning as mentioned in

the previous example in Fig. 4.8. There are six processes in this example. Initially, all

processes are in the respective initial states, represented by the global state G0. A possible

sequence of global state transitions for these CFSMs are shown in Fig. 4.10. Suppose P1

transmits message −p1p3 towards P3. At the same moment, P4 also transmits message

−p4p6 towards P6. The new global state is G1. After consuming these messages by P3

and P6, global state changes to G2. In this way, there is a possible sequence of global state

98

Proposed Scheme for Deadlock Detection

−p1p3

+p3p1

WT1I1

+p6p2 −p2p6 −p2p3

+p3p2

I2 Ir2 Ak2 WT2

−p3p1

+p1p3

−p3p5 +p5p3

+p2p3 −p3p5 +p5p3

−p3p2

I3

st3 tr3 ret3

stw3 trw3 retw3

−p4p6

+p6p4

I4 WT4

+p3p5 −p5p3 −p5p6

+p6p5

I5 Ir5 Ak5 WT5

−p6p4

−p6p2 +p2p6

+p4p6

+p5p6 −p6p2 +p2p6

−p6p5

I6

st6 tr6 ret6

stw6 trw6 retw6

P2P1

P3

P5P4

P6

Figure 4.9: CFSMs with Cyclic Dependency

transitions that are illustrated in Fig. 4.10. Finally, the system reaches a global state Gf :

[WT1,WT2, trw3,WT4,WT5, trw6, Q13 = {p1p3}, Q35 = {p3p5}, Q46 = {p4p6}, Q62 =

{p6p2}]. From the global state Gf , all the processes are in receiving states and no further

transition is possible although some of the message queues are not empty. If we observe

carefully, it reveals that processes P2, P3, P5 and P6 are waiting for each other and they

form a cycle of dependency. The dependency graph is shown in Fig. 4.11. In this graph, the

current state of each CFSM and the message for which the CFSM is waiting is shown. There

is no further transition possible after reaching global state Gf , due to cyclic dependency

99

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

G
0
 = [I1, I2, I3, I4, I5, I6]

G
1
 = [WT1, I2, I3, WT4, I5, I6, Q

13
 = {p1p3}, Q

46
 = {p4p6}]

G
2
 = [WT1, I2, st3, WT4, I5, st6]

G
3
 = [WT1, I2, tr3, WT4, I5, tr6, Q

35
 = {p3p5}, Q

62
 = {p6p2}]

G
4
 = [WT1, Ir2, tr3, WT4, Ir5, tr6]

G
5
 = [WT1, Ak2, tr3, WT4, Ak5, tr6, Q

26
 = {p2p6}, Q

53
 = {p5p3}]

G
7
 = [WT1, WT2, I3, WT4, WT5, I6,

 Q
23

 = {p2p3}, Q
56

 = {p5p6}, Q
31

 = {p3p1}, Q
64

 = {p6p4}]

G
8
 = [I1, WT2, stw3, I4, WT5, stw6]

G
f
 = [WT1, WT2, trw3, WT4, WT5, trw6,

 Q
13

= {p1p3}, Q
46

 = {p4p6}, Q
35

={p3p5}, Q
62

 = {p6p2}]

 G
6
 = [WT1, WT2, ret3, WT4, WT5, ret6, Q

23
 ={p2p3}, Q

56
 ={p5p6}]

Figure 4.10: Global State Transitions of CFSMs in Fig. 4.9

even if some messages (p1p3, p3p5, p4p6, p6p2) are present in the message queues. This is

a deadlock situation defined in Definition 4.5.1, where message queues are not empty. This

behavior can be exploited for deadlock detection of NoC. We put forth this behavior in our

proposed Theorem 4.5.2.

Theorem 4.5.2. Consider a communication system with n CFSMs, where delayed reception

is present but no unspecified reception is present. If all CFSMs are in receiving states and no

transition is possible in those CFSMs, it is a deadlock situation due to cyclic dependencies

on waiting for messages amongst CFSMs to proceed with further transitions.

100

Proposed Scheme for Deadlock Detection

(WT2)

P3P2
(trw3)

(WT1)

P1

P4
(WT4)

P6
(trw6) (WT5)

P5

+p3p2
+p3p1

+p2p6

+p6p5

+p5p3

+p6p4

Figure 4.11: Cyclic Dependency Graph for the CFSMs in Fig. 4.9

Proof. Let us consider a CFSM based communication system with n number of processes

P1, P2, P3, . . . , Pn, with no unspecified reception or design error. After some transitions,

the system reaches a global state Gf . Let there be no further transition possible from Gf

and all CFSMs are in receiving states. Let Gf = [s1, s2, . . . , sn, Q] and current states of

P1, P2, P3, . . . , Pn are s1, s2, . . . , sn, respectively. It is given that all CFSMs are in receiving

states. Therefore, they cannot generate any message and no transition is possible due to

generation of new messages. The set of messages that are waiting at their specific message

queues to be consumed are represented by Q. There are two possible scenarios in Q. i) All

message queues are empty, i.e., Q = φ. If there is no message in the message queues, there

is no chance of consuming a message. or ii) There are some messages present in the message

queue. For each process Pi, i = 1, 2, 3, . . . , n, is waiting for message from some process Pj,

i.e., from message queue qji. Since it is given that no transition is possible, any message

consumption is also not possible. Therefore, the message queue qji must be empty, even

though other message queues from where Pi can receive message may not be empty.

In both the cases, no transition is possible from any process and the global state Gf is

in a deadlock state. Now we have to prove that the deadlock is due to the presence of a

cyclic dependency in the system. We are proving this by the method of contradiction. Let

us assume, there is no cyclic dependency for messages in the system. Since all processes

are in receiving state and no transition is possible, each process is waiting for a specific

101

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

message from one specific machine. Let us assume, P1 is waiting for a message from P2.

Similarly, P2 is waiting for a process P3 and P3 is waiting for a process P4. If P4 is waiting

for P1 or P2 or P3, it creates a cyclic dependency. Therefore, P4 must be waiting for some

process, other than P1, P2 and P3, say P5. In similar fashion, the waiting chain continues

and reaches a situation where Pn−1 is waiting for Pn. It is given that, no transition is

possible from Pn as well. It must be waiting for a message from another processes Px. We

assume that there is no cyclic dependency in the system. If Px ∈ {P1, P2, P3, . . . , Pn−1},

it creates a dependency cycle. Therefore, to satisfy our assumption, it must be true that,

Px 6∈ {P1, P2, P3, . . . , Pn−1}. But there is no other process left in the system. Therefore,

Px ∈ {P1, P2, P3, . . . , Pn−1}. Thus, Px completes a cycle where processes are waiting for each

other. Thus we reach a contradiction of our assumption that there is no cyclic dependency

present in the system. Hence, we conclude that, if all CFSMs are in receiving states and no

transition is possible in those CFSMs, there are cyclic dependencies on waiting for messages

amongst CFSMs that create a deadlock.

4.5.3 Deadlock Detection Framework

For detecting deadlock, our CFSM based NoC models need to be analysed with respect

to different routing algorithms and traffic patterns. In this subsection, we describe our

application specific framework and methodology used for this purpose.

Our framework accepts packets corresponding to an application and determines if it is

possible to deliver all the packets to its destination. An application is given as a sequence

of packets. For each packet, the source and destination router and the time stamp of its

generation are mentioned. If a deadlock situation is detected, the program exits reporting

deadlock along with the packets that are stuck in cyclic dependency. Let us consider, we

have n number of CFSMs in a Mesh NoC. Specific message queues are maintained between

each pair of communicating CFSMs. Synchronization between the CFSMs are maintained

by blocking read of message queues. Initially, all such message queues are empty and all the

CFSMs are in their initial states. The current state of each machine and messages present

102

Automation of CFSM Model Generation

in each message queues in the CFSM system are represented using global state, as defined in

Section 4.3. Global state of the system is updated after generation or consumption of each

message during each transition by any CFSM, by changing CFSM state and by addition

or deletion of a message from the specific message queue. We are using a term iteration

in our working methodology. By one iteration, it means generation or consumption of all

possible messages in parallel by all the CFSMs from their current states and updating the

global state accordingly. The concept of one iteration in our CFSM based system is identical

with a global clock tick of a hardware system where many units execute in parallel.

Before starting each iteration, the input traffic sample is checked, if there is any packet

left which is not delivered. If all the packets from the input traffic pattern are delivered,

the program exits gracefully reporting delivery for all packets and no deadlock is detected.

On the other hand, if some packets in the input traffic sample, are not yet delivered, the

iterations continue. Each time a message is generated, it is added to the exact message

queue and is updated in the global state. If a message is consumed, it is deleted from the

message queue and is updated in the global state. Our framework has the flexibility of

embedding different routing algorithms. ComputeN3, shown in Fig. 4.5(b), invokes routing

algorithm when the state of ComputeN3 is comp. Packet information like source address,

destination address, its current router location, its delivery status are maintained globally.

Suppose some packets are not delivered yet and a new iteration is started. In that new

iteration, let there be no generation or consumption of new message is possible in any of

the CFSMs. It indicates that all CFSMs are in receiving states and no transition is possible

from the current global state of the NoC model. According to Theorem 4.5.2, it infers

that some packets are waiting for each other in cyclic dependency and not able to progress.

Deadlock is reported in such cases and the program terminates.

4.6 Automation of CFSM Model Generation

An NoC may contain hundreds of routers along with the associated core. The number of

CFSMs used in this work for modeling Mesh NoCs of different sizes are shown in Table 4.2.

103

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

Table 4.3: Number of states on different CFSM model

No of states on different CFSM model

Active Buffer Switch Route Arbiter Scheduler

Ports (1 slot) Copmute

3 4 11 4 7 6

4 4 14 5 9 12

5 4 17 6 11 20

The number of states for different NoC components are shown the Table 4.3. Manually

creating thousands of such CFSMs is a time consuming and error prone job. Therefore,

we develop an automated NoC model generator. In a NxN Mesh NoC, each row and each

column contains N number of routers. Our CFSM based NoC model generator takes the

value of N and the number of available buffer slots in the input port and the number of

virtual channels as inputs from the user. Based on that inputs, our program determines

the number of active ports for each router and generates the appropriate CFSMs for each

component in the router. The CFSMs of same functionality consist of different number of

states, based on its position in NxN Mesh and the number of active ports in that position.

The Table 4.3 shows different number of states in different functional units. Our program

generates a text file containing all the CFSMs represented in matrix format. Comments are

added for each CFSM for better readability of the generated model. Name of the functional

units (Buffer, Switch, Arbiter, etc.), port name, router number, etc. are added in the

comments. The message names across different CFSMs are unique to avoid confusion and

to avoid processing of the wrong messages by a program. Therefore, the naming convention

described in the Table 4.1 is followed in our automated model generation. The NoC model

described in this work is generic. Any routing algorithm can be embedded in our simulation

framework. It may be noted that a routing algorithm is invoked from the state comp of

the ComputeN3 in Fig. 4.5(b). We associate a unique number and a unique name to the

CFSMs generated by our application.

104

Automation of CFSM Model Generation

4.6.1 Bounded Communication

A CFSM model is said to be bounded if length of each message queue is finite during all of

its possible transitions [77]. It is important that the CFSM model of a system is bounded.

In case, communications are not bounded in a design, checking of deadlock and progress

properties are undecidable in that CFSM model [77]. A communication system with n

functional units, represented with n CFSMs, is said to be bounded by a non negative finite

number K iff for each reachable global states, the length lij of the each message queue Qij,

i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , n, is bounded by K, i.e., lij ≤ K.

A communicating machine is called alternating iff each of its sending edges is followed by

receiving edges only. Gouda et al. [77] proposed a theorem for boundedness on alternating

communicating machines. According to that theorem, the communication of any network

with two alternating machines (CFSMs) is bounded by two. In that work, a communication

network consisting of only two machines is considered. Motivated from this work [77], we

put forth Lemma 4.6.1 and Lemma 4.6.2, applicable to any number of CFSMs. These two

lemmas are applicable to our model as well for analyzing bounded communication.

Lemma 4.6.1. In a communication system with finite number of CFSMs, a specific com-

munication between two machines M1 and M2 is said to be alternating iff there are no

consecutive sending edges where messages are sent from machine M1 to M2 or from ma-

chine M2 to M1. Such communication is bounded as the concerned message queues are

bounded.

Lemma 4.6.2. In a communication system, let a machine M0 be communicating with n ma-

chines. If all the communication between {(M0,M1), (M0,M2), ..., (M0,Mn)} are bounded,

we term the communication of machine M0 as bounded communication.

A self loop in a CFSM contributes to infinite message queue size and unbounded commu-

nication. There is no self loop present in the CFSM model described in Section 4.4. Most of

the CFSMs presented in this work exhibit alternating communication with the other CFSMs

with whom it is communicating. All such CFSMs are bounded. For a communication that

105

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

is not alternating in our design, deducing the maxmimum possible size of message queue by

careful analysis of the transitions gives a finite message queue size only. By applying these

two lemmas and with minute analysis of the transitions, we found that all our CFSM model

are bounded.

4.6.2 Complexity of the CFSM Model

The complexity of our framework grows with the modeling parameters like NoC size, buffer

size and number of VCs. The number of CFSMs in an NoC model depends on the total

number of active ports in the NoC model. Let us consider a NxN Mesh NoC. Each corner

router has three active ports. Number of such routers are four. Each boundary routers,

other than the four corner routers, has four active ports. The number of such routers are

(N−2)×4. Each non boundary router has five active ports. The number of such routers are

(N−2)×(N−2). Therefore, total number of active ports A = (4×3)+(N−2)×4×4+(N−

2)×(N−2)×5 = 5N2−4N . For each active port, five CFSMs are associated with, if buffer

capacity B = 1. For A number of active ports with buffer size B = 1, the total number of

CFSMs will be A×5. If buffer size B > 1, we can calculate the additional number of CFSMs

for additional buffer size as (A−N ×N)× (B− 1). Therefore, the total number of CFSMs

for N ×N NoC with buffer size B is A× 5 + (A−N ×N)× (B − 1). Putting the value of

A, after simplification we find that total number of CFSMs = 21N2− 16N + 4BN2− 4BN .

Therefore, the complexity of our CFSM model is O(BN2). Adding VCs to our NoC model

results in increasing the number of CFSMs in the model. In an N ×N NoC let the buffer

capacity be B and number of VCs be V . Calculating in similar manner the required number

of CFSMs is found to be 10N2 + 11V N2 + 4BV N2 − 8N − 8V N − 4BV N . Therefore, the

complexity of our CFSM model with VCs is O(BV N2).

106

Experimental Results and Analysis

4.7 Experimental Results and Analysis

In this section, we put forth experimental results and analysis of deadlock detection, con-

sidering three routing algorithms on Mesh and Torus NoCs. We consider both randomly

generated traffic patterns and synthetic traffic patterns in our experiments. We also com-

pare our deadlock detection results with the results of Booksim simulator. Justification for

the presence of deadlock in adaptive routing algorithm is also presented in this section.

We have implemented three minimal path routing algorithms, XY-routing (determin-

istic) [8], dynamic-XY routing (adaptive) [8] and modified West-First routing (adaptive),

for Mesh and Torus NoCs. In XY-algorithm for Mesh NoC, a packet first moves towards

X-direction. After the distance in X-direction is covered, it starts moving in Y-direction. In

case of XY-algorithm for Torus, to traverse in X-direction (or Y-direction), the packet may

traverse in clockwise or anti-clockwise direction to reach the destination. Out of these two

directions, XY-routing in Torus chooses the shortest path as elaborated in [103]. In case

of dynamic-XY routing, a packet moves on X-direction or Y-direction towards destination,

based on the stress value of the current router’s neighbours towards the destination. Stress

value indicates the number of packets present in the buffer of a router. If more packets

are present in the adjacent router’s buffer in X-direction and fewer packets are present in

the adjacent router’s buffer in Y-direction, a packet traverses in Y-direction towards the

destination. This flexibility is not provided in XY-routing. West-First routing is described

in [9], where two turns are restricted. In modified West-First routing we have restricted

only one turn (North-West turn) to make it deadlock prone as per Turn model as shown in

Fig. 4.16. If the destination of a packet is towards North-West direction, first the packet has

to traverse in West direction first to avoid North-West turn. For the rest of the directions,

it is similar to dynamic-XY routing.

For all the experiments, a single Intel Core i5 3.20GHz, 8GB RAM machine is used. We

apply randomly generated traffic patterns for Experiments I, II, III and IV. In Experiment

I, the impact on the execution time with the increase in NoC size (Mesh and Torus) for

XY-routing is analysed. Deadlock is detected in Torus NoC for some cases and we analysed

107

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

the reason behind it. In Experiment II, the impact on the execution time with the increase

of packets (in input traffic pattern) for XY-routing is analysed for Mesh and Torus NoCs.

Deadlock detection using dynamic XY routing and modified West-First routing are analysed

in the Experiment III. In Experiment IV, we analyse deadlock avoidance by increasing the

buffer size. In the Experiment V, we compare our deadlock detection results with Booksim

simulator by applying synthetic traffic patterns extracted from the Booksim simulator.

Figure 4.12: Experiment I: XY Algorithm on Mesh and Torus NoCs with traffic pattern of 100000
packets. Run-time increases with the increase of NoC size if there is no deadlock. Deadlock is
detected in Torus NoC if NoC size is bigger than 4x4.

4.7.1 Experiment I: XY-routing on Mesh and Torus of Different

Sizes

In Experiment I, a randomly generated sample of 100000 packets is taken as input for Mesh

and Torus NoCs with buffer size of two. The number of packets is the same in all the samples,

only the source and destination addresses and the time stamps are different according to the

size of NoC. The XY algorithm is considered for both the cases. With the increase in number

of routers in NoC, the number of CFSMs required for modeling also increases. Therefore,

execution time is higher for verifying larger NoCs even if the same number of packets are

given as input. In Fig. 4.12, the execution time is given in seconds by the run-time graph

108

Experimental Results and Analysis

(solid lines) for Mesh and Torus NoCs. In Mesh NoC, no deadlock has been found and the

process terminated after all packets get delivered. On the other hand, deadlock is detected

by our framework in Torus NoC after it exceeds the size of 4x4. There are cyclic paths in

each row and each column of a Torus NoC due to the wraparound channels connecting the

routers at the opposite end. Deadlock occurs because of the presence of cyclic paths. In case

of 2x2, 3x3 and 4x4 Torus, the added external communication link is only utilised by packets

with the source and destination addresses in the exact opposite boundaries. Other packets

do not use the wraparound channels, as it is not helpful in reducing the hop count (number

of routers in the path). Therefore, no deadlock situation arises for 2x2, 3x3 and 4x4 Torus

NoC. From 5x5 Torus, not only the packets with source and destination pair in the exact

opposite boundaries, but also other types of packets (source or destination addresses not

in boundary line) utilize the wraparound channels. Therefore, there is a chance for cyclic

dependency and deadlock after 5x5 Torus.

In Experiment I, we have also shown the number of iterations taken by each execution.

Number of iterations are normalized in the graph of Fig. 4.12 by dividing them with 10

for representation convenience. By one iteration, we mean generation or consumption of

all possible messages by all the CFSMs from their current states at the present moment as

described in Subsection 4.5.3. For processing the same number of input packets, with increase

in NoC size, the number of iterations decrease. For bigger NoC, in a single iteration, more

number of transitions happens in parallel and more number of packets move. For example,

100000 packets are distributed across 4 routers in a 2x2 NoC. Whereas, the same number of

packets are distributed across 144 routers in a 12x12 NoC. Therefore, in a real scenario, 144

routers should take less time to process 100000 packets than the time taken by 4 routers.

This is reflected by the iteration graph for Mesh NoC (dotted line) in Fig. 4.12. For 2x2,

3x3 and 4x4 NoC, no deadlock occurs for both Torus and Mesh. For these three NoCs,

Torus takes less number of iterations as compared to Mesh. It indicates that Torus is more

efficient than Mesh in terms of delivering packets. But one drawback is that deadlock is

possible even with XY-routing in higher dimensions in this topology due to the presence of

109

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

cyclic path.

Figure 4.13: Experiment II: XY Algorithm on a 3x3 NoC (Mesh and Torus) applying traffic
patterns of different sizes. (T.M.B2: Time taken by Mesh with buffer size 2, T.T.B2: Time taken
by Torus with buffer size 2, I.M.B2: Iterations for Mesh with buffer size 2, I.T.B2: Iterations for
Torus with buffer size 2 etc.)

4.7.2 Experiment II: XY-routing on Mesh and Torus with Differ-

ent Traffic Size

In Experiment II, we apply different numbers of packets on a 3x3 Mesh and Torus NoCs

with XY-routing. There is no deadlock and all packets get delivered at their destination.

The execution time in solid lines and the number of iterations in dotted lines in Mesh and

Torus NoC for buffer sizes 2 and 3 are shown in Fig. 4.13. In Fig. 4.13, T.M.B2 indicates

the time taken by Mesh with buffer size two. Similarly, I.T.B3 indicates the number of

iterations in Torus for buffer size 3. The iterations in the graph are normalized by dividing

them with 10 for representation convenience. Iteration graph (dotted) shows that Torus

is performing better in delivering packets in less number of iterations than that of Mesh.

We also observe the change in behavior by varying the buffer size from two to three. NoC

with buffer size of three takes fewer iterations than buffer size of two. It implies the better

performance for NoC with buffer size of three as compared to buffer size two. By increasing

numbers of packets, both execution time and number of iterations increase.

110

Experimental Results and Analysis

Figure 4.14: Experiment III: Dynamic XY Algorithm and Modified West-First Algorithm (NW
Turn Restricted) on traffic patterns of 100000 packets. Deadlock detection time depends on the
pattern of the input traffic.

4.7.3 Experiment III: Deadlock Detection on Dynamic XY-routing

and Modified West-First routing

Experiment III reflects the behavior of dynamic XY (adaptive) and modified West-First

(adaptive) routing in both Mesh and Torus NoCs. Samples of randomly generated 100000

packets are applied to different NoC with buffer size one. In all the cases, deadlock is

detected. Using solid line (dynamic XY) and dotted line (modified West-First), the deadlock

detection time is depicted in the graph in Fig. 4.14. The graph indicates that modified West-

First algorithm survives more time in some traffic patterns without stuck into deadlock

and in some other cases, dynamic XY survives longer without facing deadlock. The time

required for detecting deadlock depends on the traffic pattern of the input. Since Torus

topology uses shorter path to deliver packets, it survives more time without deadlock than

that of Mesh NoC for the same traffic pattern. Once deadlock is detected, the simulation

is terminated reporting deadlock. It may be noted in Fig. 4.14 that our method is able

to detect deadlocks within 400 seconds in all the cases. All the deadlocks detected by our

method are real deadlocks.

111

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

Figure 4.15: Deadlock Detection: Dynamic XY Algorithm and Modified West-First Algorithm
(NW Turn Restricted) using PARSEC benchmarks in an 8x8 Mesh NoC.

We have performed similar experiments using traffic patterns from the PARSEC (Prince-

ton Application Repository for Shared-Memory Computers) benchmark suite [104]. PAR-

SEC benchmark suites are used for the research on multiprocessor system architecture.

We have used five workloads from PARSEC benchmark suites that are related to diverse

application domain. They are namely Bodytrack, Facesim, Ferret, x264 and Vips. Body-

track workload is related to computer vision and artificial intelligence application domain,

Facesim is related to animation application, Ferret is related to similarity search application,

and both x264 and Vips are related to media file processing applications. Using PARSEC

benchmark suites with the Gem5 [25] simulator, we have extracted the corresponding traffic

patterns. The traffic pattern corresponding to these different workloads are simulated in

an 8x8 Mesh NoC using both Dynamic XY Algorithm and Modified West-First Algorithm.

Experimental results are plotted in Fig. 4.15. Deadlocks are detected for all the cases.

Experimental results show that deadlock detection time for PARSEC benchmark suites is

higher than that of randomly generated traffic shown in Fig. 4.14. The traffic patterns from

PARSEC benchmark suites sustain more time without involving in deadlock. Experimental

results show that deadlock detection time for PARSEC benchmark suites are higher than

that of randomly generated traffic shown in Fig. 4.14. The traffic patterns from PARSEC

112

Experimental Results and Analysis

benchmark suites sustain more time without involving in deadlock.

Table 4.4: Experiment IV: Dynamic XY (DyXY) and Modified West-First (MWF) Algorithm in
5x5 NoC (Mesh and Torus) for 1600 packets. (D: Deadlock, T: Time in Second, I: Iterations)

#Buffer Mesh NoC Torus NoC

DyXY MWF DyXY MWF

D T I D T I D T I D T I

1 Y 31 283 Y 27 534 Y 49 1219 Y 60 1483

2 Y 55 607 Y 33 816 N 73 1699 N 71 1662

3 Y 54 1367 Y 47 1120 N 93 1506 N 91 1521

4 N 114 2995 Y 403 794 N 97 1428 N 96 1464

5 N 116 2534 N 102 2031 N 106 1481 N 105 1451

4.7.4 Experiment IV: Deadlock Avoidance with Increasing Buffer

Size

In Experiment IV, the relation of deadlock with buffer size is analysed. Buffer size is one

major factor on which occurrence of a deadlock in a given traffic pattern depends. By

increasing buffer size, some deadlock scenarios can be avoided in a given traffic pattern.

Considering dynamic XY routing and modified West-First routing on a 5x5 NoC (with

different buffer sizes), we have applied traffic sample of 1600 randomly generated packets

in Mesh and Torus NoC. We have considered moderate size packet sample (1600 packet) so

that for each algorithm we get deadlock with buffer size one in all cases. Table 4.4 shows

the verification results of this experiment. Deadlock is detected for all the cases when buffer

capacity is one. After increasing buffer capacity to two, the deadlock disappears for both

the algorithms in Torus NoC. Deadlock still appears in Mesh NoC even after increasing

the buffer size to three. With buffer size four, the deadlock disappears for dynamic XY

algorithm (Mesh). Modified West-First is still faces deadlock for this traffic pattern in

Mesh NoC when buffer size is four. Finally, with buffer size five, the deadlock disappears

113

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

for modified West-First in Mesh NoC. Experimental results indicate that for this traffic

pattern, the optimum buffer capacity to avoid deadlock in case of dynamic XY routing in

Mesh and Torus NoC is four and two, respectively.

Table 4.5: Experiment V: Booksim result on applying Uniform (U) and Tornado (T) traffic
pattern with different injection rate (0.05 and 0.08).

Booksim results
NoC Deadlock (W = Warning, N = No) Booksim Time (second)

U .05 U .08 T .05 T .08 U .05 U .08 T .05 T .08

2x2 W W N N 7 4 31 52
3x3 W W W W 5 5 37 8
4x4 W W W W 10 11 10 11
5x5 W W W W 17 20 18 19
6x6 W W W W 26 30 28 31
7x7 W W W W 39 34 40 43
8x8 W W W W 54 58 51 55
9x9 W W W W 69 75 65 72

10x10 W W W W 99 101 83 86
11x11 W W W W 139 122 109 113
12x12 W W W W 169 153 141 165

Table 4.6: Experiment V: CFSM results on applying Uniform (U) and Tornado (T) traffic pattern
with different injection rate (0.05 and 0.08).

CFSM results
NoC Deadlock (Y = Confirmed, N = No) CFSM Time (second)

U .05 U .08 T .05 T .08 U .05 U .08 T .05 T .08

2x2 Y Y N N 30 25 64 94
3x3 Y Y Y Y 27 43 156 117
4x4 N Y Y Y 24 14 232 33
5x5 Y Y Y Y 21 34 31 29
6x6 Y Y Y Y 49 31 36 44
7x7 Y N Y Y 52 68 55 52
8x8 Y Y Y Y 100 93 70 81
9x9 Y Y Y Y 121 137 90 115

10x10 Y Y Y Y 216 182 169 190
11x11 N Y Y Y 490 258 140 230
12x12 Y Y Y Y 239 444 393 479

114

Experimental Results and Analysis

4.7.5 Experiment V: Detection of False Positive Deadlock Warn-

ing in Booksim Simulator

In Experiment V, we compare our deadlock detection results with Booksim simulator [24].

In Booksim simulator, we invoke dynamic XY routing for the purpose of reproducing the

possible deadlock warning messages. In addition, for reproducing deadlock warning in Book-

sim, we configure synthetic traffic patterns as uniform and tornado, injection rates as 0.05

and 0.08, the number of VC as one, buffer size as one and packet size as one. By consider-

ing NoC of different sizes, we are able to reproduce possible deadlock warning in Booksim

simulator as shown in Table 4.5. It may be noted that the simulator stops with a possi-

ble deadlock warning in these scenarios. We have extracted the same traffic pattern from

Booksim and apply it to our CFSM based deadlock detection framework to compare the

results. Experimental results from CFSM based simulation are shown in Table 4.6. From

the experimental results in Table 4.5 and Table 4.6, most of the cases, our CFSM framework

gives confirmed deadlock where Booksim is giving deadlock warning. Out of 42 test scenar-

ios with deadlock warning in Booksim, we found confirm deadlock in 39 cases in our CFSM

based framework. In three cases, all packets get delivered and no deadlock is reported by

our framework. Therefore, our framework finds false-positive deadlock warning in Booksim.

This shows the usefulness of our method in detecting application specific deadlocks. Since

the CFSM based formal model rigorously checks the system, our framework is taking more

time than that of Booksim. However, the run-time of our tool is less than 9 minutes for

all cases. Both the experimental results and theoretical proof presented in Subsection 4.5.2

indicate that CFSM based model can detect deadlock accurately.

4.7.6 Justification for Deadlock in Adaptive Routing Algorithms

For the purpose of designing a deadlock free routing algorithm some turns are prohibited

in the turn model work [9]. Fig. 4.16 shows the restricted turn for XY routing, West-First

routing and modified West-First routing. In XY routing all possible turns from Y-direction

115

Formal Modeling of NoC using CFSM and Developing a Simulation
Framework for Deadlock Detection

(a) XY−Routing: Four Turns are Restricted

(c) Dynamic XY−Routing: No Turn is Restricted (d) Modified West−First−Routing:

North−West Turn is Restricted

(b) West−First−Routing:

Two Turns are Restricted

Figure 4.16: Turn model for routing algorithms: (a) XY-routing, (b) Dynamic XY-routing, (c)
West-First routing and (d) Modified West-First routing

to X-direction are restricted to make it deadlock free. West-First algorithm is a partially

adaptive deadlock free algorithm [9] with restriction for two turns as shown in Fig. 4.16.

In modified West-First routing, we have restricted one turn as shown in Fig. 4.16. As per

the theorem on turn model [9], the minimum number of turns that must be prohibited to

prevent deadlock in a two dimensional Mesh is two. On the contrary, there is no restriction

on any turn in dynamic XY [8] routing and only one turn is restricted on modified West-

First algorithm as shown in Fig. 4.16. Since no turn is restricted in dynamic XY algorithm

and only one turn is restricted in modified West-First routing, the deadlock is possible for

both dynamic XY routing and modified West-First routing algorithm. Our CFSM based

framework also confirms the same under different traffic patterns.

4.8 Conclusion

In this chapter, we have presented an approach of creating NoC model with different topolo-

gies using CFSM. The CFSM based NoC model generation process is automated. We have

developed a simulation framework on top of the CFSM based NoC model. It detects appli-

116

Conclusion

cation specific deadlock with respect to a given routing algorithm. We have demonstrated

the working of our approach for one static and two adaptive routing algorithms in Mesh

and Torus topologies. Experimental results show that our framework is scalable and robust

to handle a large number of packets. Deadlocks are detected for dynamic XY-routing in

Mesh NoC and for XY-routing in Torus NoC by this framework. This approach reports

confirmed deadlock instead of a warning given by a commonly used NoC simulator. In

fact, our framework identifies that some deadlock warnings of Booksim simulator are false-

positives. As the proposed scheme is based on formal models, it does not report any false

deadlocks. Moreover, on detecting a deadlock, this framework reports the deadlock scenario

with detailed resource dependency. Deadlock scenarios with detailed resource dependency

are helpful on deadlock avoidance in NoC.

117

5
Deadlock Avoidance in Torus NoC Using Arc

Model and Directional Dependency Graph

5.1 Introduction

Torus NoC is a symmetric NoC topology where each router has an equal number of neigh-

bors. The folded structure of a two dimensional Torus NoC looks like a hollow pipe with

both ends are connected. A router is connected with its neighbours via a communica-

tion channel. The folded structure helps to avoid having wraparound channel substantially

longer than the rest of the channels. The wraparound channels connect two routers present

in two boundaries in opposite directions. Wraparound channels facilitate an alternate path

119

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

between a given source and destination pairs. It is useful in reducing hop counts on a given

traffic when the source and destination are near to the boundaries of the opposite side of

the plain. For convenience, a Torus NoC is visualised as a combination of Mesh sub-network

and wraparound channels as shown in Fig. 5.1. Here, the channels in red color are the

wraparound channels and the rest of the channels are from the Mesh sub-network. Torus

NoC is deadlock prone due to the inherent cyclic path created by the wraparound channel.

Even for XY-routing, where sufficient routing restrictions are imposed for avoiding deadlock,

if we use the algorithm in Torus without any additional precautions, it results in deadlock.

R16(0,3)

R1(0,0)

R6(0,1)

R11(0,2)

R21(0,4)

R2(1,0)

R22(1,4)

R17(1,3)

R12(1,2)

R7(1,1)

R18(2,3)

R23(2,4)

R13(2,2)

R8(2,1)

R3(2,0)

R19(3,3)

R24(3,4)

R14(3,2)

R9(3,1)

R4(3,0)

R25(4,4)

R20(4,3)

R15(4,2)

R10(4,1)

R5(4,0)

Router

Processor

Figure 5.1: Visualising 5x5 Torus NoC as a combination of Mesh sub-network and wraparound
channels.

5.1.1 Cyclic Resource Dependency in Torus NoC

In an NoC, packets traverse from their sources to respective destinations via passing through

many intermediate routers. While reaching another intermediate router, a packet needs to

be stored in the input port buffer of that router. If the buffer in that router is full, the packet

has to wait until the intended buffer becomes free. The packet has to hold its current buffer

during this waiting time. If a set of packets are involved in such hold and wait, and form a

cycle of dependencies, no packet can make progress due to occurrence of deadlock. We have

illustrated such a cyclic resource dependency scenario with help of the following example.

120

Introduction

R1 R2 R3 R4 R5

R6 R7 R8 R9 R10

R25

R11 R12 R13 R14 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24

c1_2

c2_3
c3_4

c4_5

c5_1

(b)

c6_7

c7_8
c8_9

c9_10

c15_20

c10_15

(c)

c1_2 c2_3 c3_4 c4_5

c5_1

p5 (5, 2) p3(3, 5)p1(1, 3) p2(2, 4) p4(4, 1)

c6_7 c7_8 c8_9 c9_10

c10_15

p11(15, 25)

p10(10, 20)

p6(6, 8) p7(7, 9) p8(8, 10) p9(9, 15)

(a)

c15_20

c20_25

p12(20, 25)

Figure 5.2: (a) Resource dependency scenarios for a set of packets (source and destination are
shown in the bracket), (b) Channel Dependency Graph representing deadlock scenario, (c) Channel
Dependency Graph showing a resource dependency.

Example 5.1. Let us consider five packets p1(1, 3), p2(2, 4), p3(3, 5), p4(4, 1) and p5(5,

2) in a 5x5 Torus NoC in Fig. 5.2(a). For each packet, the source and destination router

numbers are put in the bracket. We have considered XY-routing along with wraparound

channel for the traversal of the packets [3]. Wraparound channels are used only if the con-

sidered path using wraparound channel is shorter than the path permitted by XY-routing.

Each packet has arrived the input buffer of the adjacent router towards destination from

the source in their first hop movement as depicted in Fig. 5.2(a). For example, the packet

p1(1, 3) has started from the source router R1 and moves towards the destination router

R3. The packet has reached the West input port buffer of router R2 as shown in the fig-

ure. For the packet p4(4, 1), the shortest path is R4 → R5 → R1 with the wraparound

channel. In similar way, path to be followed for p2(2, 4) is R2→ R3→ R4, for p3(3, 5) is

R3 → R4 → R5, and for p5(5, 2) is R5 → R1 → R2. Packets p1, p2, p3, p4, and p5 are

transmitted at the same time from their respective source routers. They have reached the

input buffer of their next router, R2, R3, R4, R5, R1, respectively, as shown in Fig. 5.2(a).

Let us assume that each router has a buffer with a capacity of one packet. Therefore, the

121

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

West input port buffer of each router in Fig. 5.2(a) is full at this moment. Packet p1(1, 3)

is occupying West buffer of router R2, waiting for the release of West buffer of R3. Packet

p2(2, 4) is occupying the same R3 buffer and is requesting R4 buffer. Packet p3(3, 5) is

occupying R4 buffer and is requesting R5 buffer. Packet p4(4, 1) is occupying R5 buffer

and is requesting R1 buffer. Lastly, packet p5(5, 2) is occupying R1 buffer and is request-

ing R2 buffer, currently occupied by packet p1. Thus, all five packets are waiting for each

other for the release of buffer in a cyclic manner. This is an example of deadlock in Torus

NoC. The other example with packets p6, p7, p8, p9, p10, p11 and p12 do no create cyclic

dependency or deadlock. Dependency cycle is broken as the packet p12 has already arrived

the destination router R25 and it would get delivered to the local core.

One point worth to be noted from the Example 5.1 is that the source and destination

for each of the packets are considered to be two hops away from each other. We consider

this because the resource dependency is possible amongst a group of packets iff the source

and destinations are at least two hops away from each other [2]

5.1.2 Deadlock and its Representation in NoC

Representing deadlock in an informative way helps in understanding the root cause of dead-

lock and to work on its avoidance as well. Classically, there are two approaches namely

Channel Dependency Graph (CDG) and Turn model that are used for this purpose.

5.1.2.1 Channel Dependency Graph

Deadlock in an interconnection network occurs when no packet can advance towards its des-

tination as the respective queues in the network cycle is full [2,105]. Dally et al. [2] propose

an approach for analysing resource dependency in a network by considering dependency

across communication channels. In this approach, each channel and the connected queue

(i.e., buffer) are represented together as a single unit [2]. The combination of channel with

its associated buffer are considered as a vertex and a graph can be constructed by applying

a routing algorithm in a given topology. This graph is called Channel Dependency Graph

122

Introduction

(CDG). This approach facilitate sufficient information for representing resource dependency.

A vertex (channel-buffer combination) is connected with another vertex with a directed edge

permitted by a routing algorithm. The directed edge represents a communication channel.

A directed path in a CDG connecting several vertices represents a possible path permitted

by a routing algorithm. For constructing a CDG, it is convenient to consider a set of packets

and the graph is formed by applying the routing algorithm on those packets. However, it is

not mandatory to consider a set of packets for constructing a CDG. A given topology and

given routing algorithm is sufficient to form CDGs [2]. Several such CDGs are possible with

respect to a given routing algorithm and a given topology. With respect to a given routing

algorithm, if cycle formation is possible in any of the CDGs then the routing algorithm is

deadlock prone. There might present sequence of packets in that cyclic path represented by

CDG to form a deadlock. As per Dally’s theory, a routing algorithm in a given topology is

deadlock free if no cycle exists in any of the CDGs for the given routing algorithm [2].

Two resource dependency scenarios are shown in Fig. 5.2(a). Out of them, one leads

to a deadlock situation due to cyclic resource dependency and the other one is a resource

dependency which would be resolved eventually. Both these scenarios are represented using

CDG in Fig. 5.2(b) and Fig. 5.2(c), respectively. A unique name is given to each channel

and the associated buffer. For example, the channel from router R1 to router R2 and the

connected buffer at W input port of the router R2 are combined and is denoted as c1 2 in

the figure. The CDG in Fig. 5.2(b) represents a deadlock. The other CDG in Fig. 5.2(c) is

not a deadlock scenario.

5.1.2.2 Turn Model

In Mesh NoC, a packet exercises suitable Turn to reach its destination from the eight

possible Turns shown in Fig. 5.3. An anti-clockwise cycle is formed by the four Turns

namely West-South (WS), South-East (SE), East-North (EN) and North-West (NW) are

shown in Fig. 5.3(a). Allowing these four Turns in a routing algorithm makes the algorithm

deadlock prone [1, 9]. Similarly, allowing ES (East-South), SW (South-West), WN (West-

123

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

WN SW

ESNE

SE

WS NW

EN

WS

EN

ES

WN

SE
NW NE SW

(a) Anti−clockwise cycle (b) Clockwise cycle

(c) XY−Turns

(d) YX−Turns

Figure 5.3: Turn model: (a) Anti-clockwise cycle, (b) Clockwise cycle, (c) XY-Turns, (d) YX-
Turns

North) and NE (North-East) in a routing algorithm has the potential of creating cyclic

dependency in clockwise direction that leads to a deadlock. The set of Turns that are

sufficient for creating a clockwise cycle are shown in Fig. 5.3(b). All possible Turns in a

Mesh NoC are classified into two groups: XY-turns and YX-turns. In XY-turns, a packet

first moves in a X-direction (East or West) and then it changes the direction by moving

towards a Y-direction (North or South). Four possible XY-turns are shown in Fig. 5.3(c).

In XY-routing algorithm [8] for Mesh NoC, only XY-turns are permitted. A packet first

traverses in X-direction towards the destination. After X-distance is covered, it moves in Y-

direction. YX-turns are restricted in XY-routing. The four possible YX-turns are shown in

Fig. 5.3(d). XY-algorithm is deadlock free in Mesh NoC as per Turn model [9] since neither

clockwise nor anti-clockwise cycle formation is possible with permitted Turns. Similarly,

many deadlock free routing algorithms like West-First routing, Negative-First routing etc.

are proposed for Mesh NoC based on the Turn model in [1, 9].

5.1.3 Does Deadlock Always Possible in Torus due to Wraparound

Channel?

For 3x3 and 4x4 Torus NoCs, the wraparound channel is used only for communication

between the boundary routers because the use of wraparound channel will not reduce the

hop count for any other pairs of source and destination. One such scenario is shown in

124

Motivation and Contribution

(b)

R1 R2 R3 R4

p1 (1, 3) p2 (2, 4)

p3 (3, 1) p4 (4, 2)

(a)

R1 R2 R3

p2 (2, 1) p3 (3, 2)

p1 (1, 3)

Figure 5.4: Wraparound channels in a single row of a 3x3 and 4x4 Torus NoC

Fig. 5.4(a). Here, wraparound channel is used for sending packet from router R1 to router

R3. Therefore, it would not create any cyclic dependency. Similarly for a 4x4 Torus NoC, the

wraparound channel is used only for communication between boundary routers R1 and R4

as shown in Fig. 5.4(b). Any communication to R2 and R3 would not take the wraparound

channel. Therefore, there is no deadlock in 4x4 Torus NoC as well. The deadlock scenario

arises only when a packet takes the wraparound channel and then moves backward in the

same row/column. This case arises when communication to the router which are not in

the boundary takes the wraparound channel. In Fig. 5.2(a), the packet p5(5, 2) takes the

wraparound channel and then needs to move backward from R1 to R2. This observation is

concluded in Lemma 5.1.1. We, therefore, consider NoC of size 5x5 or higher in all of our

experiments.

Lemma 5.1.1. Deadlock due to cycle path involving wraparound channel is possible in a

NxN Torus NoC iff N ≥ 5.

5.2 Motivation and Contribution

In this section we describe our motivation for the work on deadlock avoidance in Torus NoC.

We also highlight the contributions from this chapter.

125

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

5.2.1 Deadlock Representation in Torus NoC

For a given source and destination addresses in a Torus NoC, there presence alternate paths

for both X-direction and Y-direction due to the presence of cyclic paths via wraparound

channel. The first step for XY-routing in Torus NoC is to decide whether wraparound

channel is applicable or not. Each of the X-direction and Y-direction of a Torus NoC can

be traversed either in clockwise or in anti-clockwise direction. Therefore, the first step is to

determine the clock wise or in anti-clock wise path for both X-direction and Y-direction to

obtain the shortest or the preferred path [3]. Then a packet traverse using XY-routing.

Whether wraparound channel is taken or not, in either cases, the packet has to traverse

through a path that belongs to an inherent a cyclic path. Therefore, deadlock freedom

for XY-routing in Torus NoC cannot concluded with help of the Turn model because the

behaviour of wraparound channel cannot be covered with help of the given set of Turns in

the Turn model. Therefore, the deadlock scenario in Fig. 5.2(a) cannot be represented with

help of the turns shown in Fig. 5.3. The method of representing resource dependency with

help of CDG is helpful for all scenarios including scenarios for Torus NoC. The deadlock

scenario of Fig. 5.2(a) is represented in Fig. 5.3(b) with help of CDG. Presence of the Turn

information and wraparound channel information in a deadlock scenario are helpful to take

needed measure for avoiding that deadlock. Whereas, there is no wraparound channel in

the CDG representation. Therefore, we propose a Directional Dependency Graph (DDG)

in this chapter incorporating Turn information, wraparound channel information and cycle

information.

5.2.2 Deadlock Avoidance in Torus NoC

Inherent cyclic path via wraparound channel in each row and column of a Torus NoC makes

the topology deadlock prone. Such a deadlock scenario is demonstrated with an example

in Fig. 5.5(a). For avoiding deadlock in Torus NoC, one approach is to create a spanning

tree corresponding to a given topology. In a spanning tree, there exist no cyclic path.

Deadlock is avoided in Up*/Down* routing algorithm by following only the available paths

126

Motivation and Contribution

permitted by a spanning tree [10]. Many edges (channels connecting routers) remain absent

in the spanning tree and such channels are remained unused in that approach. In another

approach, a packet is permitted to use the wraparound channel only during its first hop

so that the cyclic resource dependency can be discontinued [1]. Many packets are deprived

from using wraparound channel if the condition of using wraparound channel only at its

first hop does not satisfy. Therefore, the leverage of wraparound channels cannot be used

for most of the packets in this approach.

There are other approaches that uses additional resources to avoid deadlock. Virtual

Channel (VC) is commonly used for designing deadlock free routing algorithm in Torus

[2, 11, 27] to overcome the inherent cyclic dependencies. However, VCs have overheads in

terms of system resource usage and power consumption. Alternatively, bubble flow control

is also used for avoiding deadlock in Torus NoC with the help of additional buffer [28, 29].

In this method, injection of new packet or change of direction of a packet is restricted based

on availability of an extra buffer.

To the best of our knowledge, there is no other approach available for designing deadlock

free routing algorithms for Torus NoC without using additional resources. The question that

motivates us is “can we develop a deadlock avoidance approach without using any additional

buffer or VC for Torus NoC that reduce overall hop counts by increasing utility of wraparound

channels?”.

5.2.3 Contributions

The motivation of the work in this chapter is to avoid deadlock in Torus NoC without using

any additional buffer or VC and at the same time increase utility of wraparound channels.

For achieving that an Arc model is proposed. A Directional dependency graph (DDG) is

also proposed for deadlock representation and deadlock detection while using Arc model

with a set of permitted Turns in the mesh sub-network. Specifically, the contributions of

this chapter are as follows:

• An Arc model is proposed for avoiding deadlock in Torus NoC due to cyclic paths via

127

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

wraparound channels.

• A Directional Dependency Graph (DDG) is proposed by combining Dally’s CDG with

Turn model. DDG is useful for deadlock representation, deadlock detection, formu-

lating deadlock avoidance and showing deadlock freedom in Torus NoC.

• The applicability of our proposed Arc and DDG are shown with respect to XY-turns.

Behaviour of XY-Turns with respect to different Arcs are demonstrated in this work.

5.3 The Arc Model for Avoiding Deadlock in Torus

In this section, we have proposed the Arc model by restricting certain move after using the

wraparound channel to avoid deadlock in Torus NoC.

N

S

EW

(c) EWn
(d) EWs

2 3 4 51

1 2 3 4 5

(a) Cyclic path leads to deadlock

(b) Discontinuing the cyclic path using Arc

Figure 5.5: (a) Potential Deadlock, (b) Deadlock Avoidance, (c) EWn Arc, (d)EWs Arc.

5.3.1 Restricted Move via Wraparound Channel

The cyclic path through wraparound channel has potential for deadlock. Such an example

for deadlock via wraparound channel is already shown in Example 5.1 and Fig. 5.2(a).

128

The Arc Model for Avoiding Deadlock in Torus

For forming a cyclic buffer dependency, the source and destination pairs for each packets

involved in that dependency should be at least two hops away [2]. A cyclic path via East to

West (EW) wraparound channel is shown in Fig. 5.5(a). To break that potential cycle, the

immediate backward movement just after taking the EW wraparound channel is prohibited

in this work. Two alternate directions either towards North or South are permitted after

the EW wraparound channel. The restricted movements after the EW wraparound channel

are shown in Fig. 5.5(b). The EW wraparound channel is sub-divided into EWn and EWs

Arcs that are shown in Fig. 5.5(c) and Fig. 5.5(d), respectively.

EW

WE

(c)

(d)

asdb

bdsa
SN

(b)

b

d

a

s

NS

(a)

a

s

d
b

N

W E

S

Figure 5.6: Wraparound channels: (a) NS, (b) SN, (c) EW, (d) WE

5.3.2 Classification of Wraparound Channels

The wraparound channels in a Torus NoC are classified into four categories in this thesis

based on their direction. The wraparound around channels from the North to the South

boundary (NS), from the South to the North boundary (SN), from the East to the West

boundary (EW) and from the West to the East boundary (WE). In short from, we denote

them as NS, SN, EW and WE, respectively. The obvious cyclic paths via wraparound

channels NS, SN, EW and WE are presented in Fig. 5.6(a), Fig. 5.6(b), Fig. 5.6(c) and

Fig. 5.6(d), respectively. For all the wraparound channels in Fig. 5.6, a possible path is

s → a → b → d → s. A sequence of packets present in that path, holding and waiting on

each other for the buffer, might lead to a deadlock. One possible way to avoid that possible

129

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

cyclic resource dependency is to avoid the backward moves b → d just after taking the

wraparound channel. For achieving this, an Arc model is proposed in this work to design

deadlock free routing algorithms for Torus NoC without using additional resources.

(c) (d)
d

(a) (b)

s

d
(e)

EWs

(f)

d

s

EWn

(g)

s

d

(h)

s

d
WEn

WEs

d
SNe SNw

s s

a a

a

a

a

a

b

b

b

b

b

aNSe

b

NSw

s

a

s

db d b

Figure 5.7: Arc model: Eight possible Arcs in Torus NoC

5.3.3 The Proposed Arc Model

Wraparound channels are used to reach from one boundary row to another boundary row or

from one boundary column to another boundary column. The backward move b → d after

taking the wraparound channel in Fig. 5.6 is restricted to avoid deadlock in the proposed

Arc model. On reaching the opposite boundary row (/column) via a wraparound channels,

the packet moves in the same boundary row (/column) for at least one hop. Only after

that point, the packet can take a backward move if it is required. As a result the obvious

deadlock prone cycle is discontinued. In the proposed Arc model, each wraparound channel

is divided into two Arcs. For example, the NS wraparound channel in Fig. 5.6(a) is divided

into NSe and NSw Arcs, as shown in Fig. 5.7(a) and Fig. 5.7(b), respectively. Essentially,

130

The Arc Model for Avoiding Deadlock in Torus

after taking the NS wraparound channel, the packet will move one hop either in E or W

direction. In a similar way, for breaking the cycle in all the wraparound channels in Fig.

5.6, we have categorised the wraparound channels into eight Arcs. The eight possible Arcs

in our proposed Arc model are shown in Fig. 5.7.

NSe Arc is applicable if NS wraparound channel helps to reduce hop count and the des-

tination is in the South-East direction. A situation of another consecutive EW wraparound

channel just after the NSe Arc does not arises due to the one hop movement towards the

East in the NSe Arc. It is ensured or taken care of by the condition for the applicability of

NSe Arc. Similarly, NSw Arc is applicable if NS wraparound channel reduces hop count and

destination is in South-West direction. The condition for the applicability of NSw Arc en-

sures that the immediate movement towards W after the wraparound channel does not lead

to another wraparound channel WE. The conditions for the applicability of Arcs prevent

all such scenarios of taking two wraparound channels consecutively.

EW

S

N

NE ES

SE

NE

SE

R
s

(a)

s
ab

c

d e

f

(b) (c)

b

c

d

f

g

h

e

s a

Figure 5.8: (a) Channel-buffer combination as a vertex, (b) Dependency cycle with EWn, (c)
Dependency cycle with EWn and EWs.

131

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

5.3.4 Effect of Arcs with the Permitted Turns in the Mesh Sub-

network

The Arc model imposes a restriction to mitigate the immediate deadlock potential via cyclic

paths through wraparound channels. Though the most potential deadlock cycle is broken,

still there are chances for complicated deadlock cycle depending upon the permitted Turns

in the Mesh sub-network. Such cycles are not so straight forward and they might spread

across a large number of routers. Fig. 5.8(b) and Fig. 5.8(c) show two possible deadlock

cycles. Arcs and Turns involved in the cycle formation are also highlighted. The Arcs are

distinguished with a curved arrow. The name of the Turns involved are mentioned in the

diagram. Each alphabet in the graphs represents a vertex that connects two edges in the

graph. We have not separately put a small circle to represent the vertex for the sake of

clarity of the diagram. A vertex represents a channel-buffer combinations as shown in Fig.

5.8(a). A dotted lines are used to represent many intermediate channel-buffer combinations

in the same directions where no Turns are involved.

In Fig. 5.8(b), a sequence of packets form a resource dependency cycle across the path

s → a → b → c → d → e → f → s. Each vertex in the graph is a channel-buffer

combination as like CDG [2], i.e., a vertex represents a channel connected to an input port

buffer in the adjacent router. For example, vertex s represents a channel from West to East

coupled with the West input port buffer in the adjacent router which is shown in Fig. 5.8(a).

Similarly, vertex a in Fig. 5.8(b), is another West input port channel-buffer. Dotted line

between s and a indicates some more such West input port channel-buffer involved in the

dependency cycle. Vertex b represents another West input port buffer coupled with a EW

wraparound channel. Vertex c represents the adjacent South input port channel-buffer. A

solid-line indicates adjacent channel-buffer. Whereas, a dotted-line indicates dependency

across a series of channel-buffers. Vertex d is another South input port channel-buffer from

where dependency cycle spread with a NE Turn. The dependency keeps on spreading in

this manner and finally reaches the starting vertex s to complete the cycle.

In the second cyclic dependency example in Fig. 5.8(c), two Arcs namely EWn and

132

Directional Dependency Graph

EWs and two Turns namely NE and SE are involved. For formal representation of such

dependency cycles Directional Dependency Graph (DDG) is proposed in the next section.

5.4 Directional Dependency Graph

Restricting either NE or SE Turn is sufficient to avoid the cyclic dependency in the ex-

ample shown in Fig. 5.8(c). Since it is possible to avoid deadlock by restricting certain

Turn involved in the formation of a deadlock cycle, correct representation of such cycle

along with Turn information is important. In Turn model approach, it is not mentioned

how to represent deadlock through wraparound channel. Using CDG approach, though it is

possible to represent the deadlock scenarios via wraparound channel (Fig. 5.8(a) and Fig.

5.8(c)), additional information regarding Turns and directions are absent. To meet these

requirements, we proposed DDG inherited from both Turn model and CDG approach. Main

characteristics that distinguish DDG from Turn model and CDG are,

(1) Special representation for wraparound channel (addition to Turn model),

(2) To make it more informative, Turn and direction information are incorporated along

with channel-buffer node (addition to CDG),

(3) To make it simple, some intermediate vertices can be eliminated (dotted line) if there is

no change in direction and wraparound channel is not involved (addition to CDG).

All resource dependency and deadlock cycles in rest of this chapter are represented using

DDG. Formal definition of DDG is presented below.

Definition 5.4.1. Directional Dependency Graph (V, E) represents a possible path

permitted by a routing algorithm with direction information. Each vertex in V represents a

channel coupled with its connected buffer. There are three types of edges in E:

i) A dotted edge with arrow indicates that there is no change in direction and there may be

many intermediate vertices in between.

ii) A solid edge with arrow indicates there is a path between the two adjacent vertices per-

mitted by the routing algorithm.

133

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

iii) A curved edge with arrow indicates the path through wraparound channels between two

adjacent vertices.

R1 R2 R3 R4 R5

R6 R7 R8 R9 R10

R25

R11 R12 R13 R14 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24

c1_2 c2_3 c3_4 c4_5

c5_1

p5 (5, 2) p3(3, 5)p1(1, 3) p2(2, 4) p4(4, 1)

c6_7 c7_8 c8_9 c9_10

c10_15

p11(15, 25)

p10(10, 20)

p6(6, 8) p7(7, 9) p8(8, 10) p9(9, 15)

(a)

c15_20

c20_25

p12(20, 25)

a bc

(b)
a b

c

(c)

Figure 5.9: (a) Resource dependency for a set of packets (source and destination are shown in
the bracket, b) Directional Dependency Graph representing a deadlock scenario, (c) Directional
Dependency Graph representing a resource dependency scenario.

Example 5.2. The resource dependency scenario of Fig. 5.2(a) is given again for con-

venience in Fig. 5.9(a). Both of them represent the same resource dependency situation.

The deadlock scenario of Fig. 5.9(a) is shown using the directional dependency graph in

Fig. 5.9(b). In Fig. 5.9(b), point a, b and c represents the channel c3 4, c4 5 and c5 1

of Fig. 5.9(a), respectively. In Fig. 5.9(c), a directional dependency without deadlock is

shown. Here, point a, b and c represents the channel c6 7, c10 15 and c20 25 (Fig. 5.9(a)),

respectively. The main advantage of the DDG in Fig. 5.9(b) over the CDG in Fig. 5.2(b)

is, the DDG is a simpler representation as it uses less number of vertices. Though both

the DDG and CDG represent a deadlock cycle, the DDG also incorporates the wraparound

channel information which could be useful for deadlock avoidance. In the other example,

the DDG in Fig. 5.9(c) and the CDG in Fig. 5.2(c) represents same resource dependency.

The DDG uses only three vertices instead of six vertices in case of the corresponding CDG.

Moreover, the EN Turn information is attached in the DDG of Fig. 5.9(c) which is absent

in the CDG of Fig. 5.2(c).

134

Case Study: Arcs with XY-Turns

All the graphs in Fig. 5.6, Fig. 5.7 and Fig. 5.8 that shows wraparound channels and

Arcs in Section 5.3 are represented using DDG.

5.4.1 Application of Arc Model and DDG

For developing deadlock free routing algorithms for Torus NoC without using additional

buffer or VC, the Arc model along with a set of permitted Turns in the Mesh Sub-network

are used. DDG is useful in this process for deadlock detection, deadlock avoidance and for

showing deadlock freedom for the given combination of Arcs and Turns. A DDG has different

applications:

1. First application of DDG is in deadlock detection. If a clockwise or anti-clockwise cycle

from a given set of Arcs and Turns are possible, the combination is deadlock prone.

2. Its second application is in deadlock-avoidance by restricting or distributing certain

Turns involved in a deadlock cycle [90, 106].

3. Another application of DDG is its usability in showing deadlock freedom. A given

combination of Turns and Arcs are deadlock free if neither clockwise nor anti-clockwise

cycle formation are possible.

In this thesis, we consider XY-Turns in the Mesh sub-network (i.e., EN, ES, WN, WS Turns

in Fig. 5.3(c)) with Arcs and put forth deadlock detection, deadlock avoidance and deadlock

freedom for different Arc combinations.

5.5 Case Study: Arcs with XY-Turns

The XY-routing is a deterministic routing which is free from deadlock and livelock [107]. The

routing is called XY-routing as it uses only XY-Turns in a Mesh NoC. There are four XY-

Turns, i.e., EN, ES, WN and WS Turns as shown in Fig. 5.3(c). In a Mesh NoC, traversal

within a row is considered as X-direction and traversal within a column is considered as

Y-direction. In XY-routing, all packets are first routed in X-direction. Once the destination

135

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

column is reached, the packet is routed in the Y-direction until the destination router is

reached. In this section we are analysing deadlock behaviour of individual Arc and Arc

pairs with respect to XY-Turns in Torus NoC.

5.5.1 Single Arc with XY-Turns

Torus NoC is considered as a combination of wraparound channel and Mesh sub-network in

this thesis. First we consider each Arc individually with respect to XY-Turns.

s

d

EWs
d

s

EWn

s

d

s

d
WEn

WEs

a

a

a

a

b

b

b

b

(a)
(b)

(c)
(d)

Figure 5.10: Additional Turns introduced with respect to XY-Turns a) EWn Arc adds NE Turn,
b) EWs Arc adds SE Turn, c) WEn Arc adds NW Turn, and d) WEs Arc adds SW Turn

5.5.1.1 Turns Introduced due to Arcs

In case of NSe Arc, after taking the NS channel the packet has to move immediately one hop

distance in East direction. After that, XY-routing is used. No additional Turn is used in

this case because the packet is moving in X-direction first followed by Y-direction and XY-

routing is considered as the background routing algorithm. Following the NS wraparound

channel, the movement of the packet is similar to XY routing in Mesh sub-network. For the

same reason, all Arcs with Y-wraparound channels namely, NSe, NSw, SNe, and SNw, do

not add any extra Turns with respect to XY-routing.

The case is different for Arcs EWn, EWs, WEn, WEs with X-wraparound channels.

After taking the X-wraparound channel, a packet has to move in Y-direction first, then it

136

Case Study: Arcs with XY-Turns

is allowed to follow XY-routing. Therefore, new YX-Turns are enabled. For example, if

destination is in the West-North direction and EW wraparound channel is applicable, EWn

Arc (Fig. 5.10(a)) is to be used. After taking EW wraparound channel, the packet then

moves single hop Y-distance (towards North). After that, the packet follows XY-routing. It

will cover X-distance (towards East) first followed by Y-distance. The movement following

the wraparound channel introduces one additional North-East Turn. North-East Turn is

restricted in XY-routing. The newly added North-East Turn is depicted with red color in

Fig. 5.10(a). Similarly, for all the other Arcs in X-direction, one new Turn is added. The

new Turns are shown using red color in Fig. 5.10. It may be noted that the newly introduced

Turns by the Arc model is applicable only at the corresponding boundary. These Turns are

not permitted in other places of Mesh sub-network.

(a) NSe

s

a

b
c

d
e

h

f

g

(b) NSw

s

a

bc

d e

f

g
h

ab

c

d e

f s

(c) EWn

a
b

c

d
e

f s

(d) EWs

Figure 5.11: Deadlock freedom for (a) NSe, (b) NSw, (c) EWn, (d) EWs Arcs with XY-Turns

5.5.1.2 Deadlock Freedom for Individual Arc

Since XY-Turns are deadlock free, a possibility for deadlock cycle using Arcs and Turns

need to check. One DDG for NSe Arc with XY-Turns are shown in Fig. 5.11(a). Since,

clockwise cycles are not possible involving NSe Arc, anti-clockwise cycles are shown in Fig.

5.11(a). Next step is to justify a cycle with the set of XY-Turns. For a valid cycle, a NW

Turn is needed at some point d or g. The NW is a YX-Turn and is restricted in this case.

Therefore, deadlock cycle is not possible for NSe Arc with XY-Turns and the combination

is deadlock-free. A DDG for NSw Arc is shown in Fig. 5.11(b). For deadlock occurrence a

137

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

NE Turn is needed at some point d or g. Since NE Turn is restricted, NSw Arc is deadlock

free with respect to XY-Turns. In similar way, deadlock freedom for SNe and SNw can be

shown.

A DDG for EWn Arc is shown in Fig. 5.11(c). A YX-Turn NE is enabled at some vertex

d. Still we need another YX-Turn SE at some vertex f to complete a dependency cycle.

Therefore, deadlock is not possible for EWn Arc with XY-Turn as the SE Turn is restricted

in the routing. A similar DDG for EWs Arc with XY-Turns are shown in Fig. 5.11(d).

Deadlock is not possible in this case as the NE Turn is restricted which is shown at vertex

f . In similar way, deadlock freedom for WEn and WEs Arcs can be shown using DDG.

In each case, cycle formation is not possible as some Turns are restricted that can form a

deadlock cycle. Our proposed DDG representation in Fig. 5.11 help us in proving deadlock

freedom of individual Arc with respect to XY-Turns.

5.5.2 Deadlock Detection for Arc Pairs with XY-Turns

Though all eight Arcs are individually deadlock free with XY-routing in the Mesh sub-

network, while using two arcs at a time, their resultant effects might results in a deadlock.

In this section, we identify such deadlock prone Arc pairs and eliminate such pairs from using

in a routing algorithm. From eight possible Arcs, total
(
8
2

)
= 28 such pairs are possible.

Out of them, 14 pairs are identified as deadlock prone.

5.5.2.1 Deadlock in Arc Pairs from the same Wraparound Channel

Each wraparound channel in Torus NoC is divided into two Arcs in the Arc model. For

example, EW wraparound channel is divided into EWn and EWs Arcs. If two such Arcs

are used in the same routing algorithm, they create a deadlock scenario. This is presented

in Lemma 5.5.1. The validity of this Lemma is shown using directional dependency graph.

Lemma 5.5.1. Using of two Arcs from the same wraparound channel along with XY-turns

in the Mesh sub-network in a routing algorithm lead to deadlock.

138

Case Study: Arcs with XY-Turns

From the four wraparound channel four such Arc pairs are possible. These pairs are

(EWn + EWs), (WEn + WEs), (NSe + NSw) and (SNe + SNw).

d

h

EWs
S

EWn
N

s

(b)(a)

a
c

e

f

g

b

Figure 5.12: a) EWn and EWs Arcs, b) Deadlock Scenario with EWn Arc, EWs Arc and XY-
Turn

Considering EWs and EWn Arcs with XY-routing, they introduce two additional Turns

SE and NE that are shown with red color in Fig. 5.12(a). These two additional turns do

not create any cycle with the permitted Turns in XY-routing (Fig. 5.10(a)). Hence, there is

no deadlock as per Turn model. Next we are checking using DDG if any dependency cycle

is possible. One possible DDG cycle is shown in Fig. 5.12(b). A deadlock cycle through

vertices s → a → b → c → d → e → f → g → h → s are shown. The cycle is created

using two Arcs and the SE and NE Turns introduced by the Arcs in the West boundary by

a sequence of packets. SE Turn is introduced at d by a EWs Arcs that takes place in an

adjacent vertex. Similarly, NE Turn is introduced by a EWn Arc. In a similar way, deadlock

is possible for (WEn + WEs) with XY-routing.

Let us consider the directional dependency graph with two Arcs NSe and NSw from a

same wraparound channel in Fig. 5.13. NSe and NSw Arcs do not introduce any additional

Turns. A cycle formation is possible as shown in Fig. 5.13 with vertices s → a → b →

c → d → e → f → g → h → s by a sequence of packets. Here, vertices b and f represents

wraparound channel. The EN Turn at vertex b is permitted by XY-routing. From vertex c,

dependency spread across d, e and reach vertex s. The WN Turn at vertex e is permitted

by XY-routing. Thus, it is possible to form a cyclic dependency or deadlock using NSe and

NSw Arcs with XY-routing. In the same manner, deadlock is possible for (SNe + SNw)

139

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

NSe NSw

E W

s

(a) (b)

a

b
c d

e

gh
f

Figure 5.13: a) NSe and NSw Arcs, b) Deadlock Scenario due to combination of NSe and NSw

with XY-routing.

5.5.2.2 Deadlock due to Added Turns by Arcs

Deadlock is possible if new Turns are introduced by the considered Arcs and they form a

cycle with the permitted Turns in the Mesh sub-network. Two such Arc combinations are

found with respect to the XY-turns in the Mesh sub-network. These two Arc pairs are (EWs

+ WEn) and (EWn + WEs). For the (EWs + WEn) Arc pairs, EWs Arc introduces SE

Turn and WEn Arc introduces NW Turn. These two Turns along with the XY-Turns create

a cycle in the anti-clockwise direction. The XY-Turns are shown in Fig. 5.3(c). Similarly,

(EWn + WEs) introduces NE and SW Turns, respectively. They also create a cycle with

XY-routing in the clockwise direction. Therefore, Arc combinations (EWs + WEn) and

(EWn + WEs) are deadlock prone according to first condition.

c

h

WEn
N

S
EWs

(a) (b)

sa b

d

e
f

g

i

Figure 5.14: a) EWs and WEn Arcs, b) Deadlock Scenario due to combination of EWs and WEn

140

Case Study: Arcs with XY-Turns

Turn introduced by (EWs + WEn) and a corresponding deadlock scenario with XY-

routing are given in Fig. 5.14(a) and Fig. 5.14(b), respectively. The deadlock cycle is

through the vertices c → d → h → i → c. Though, wraparound channels b and g are not

directly included in the cyclic dependency, they enable NW Turns at the East boundary

and SE Turn at the West boundary which lead to deadlock. Similar kind of dependency

cycle formation is possible for (EWn + WEs) with XY-routing.

5.5.2.3 Deadlock with a Combination of X-Arc and Y-Arc

So far, the Arcs whose primary direction are either in X-direction (EW/WE) or Y-direction

(NS/SN) are considered for finding deadlock pair. If one Arc in X-direction and another Arc

in Y-direction are considered with XY-routing, Lemma 5.5.2 is applicable for determining

deadlock pair.

Lemma 5.5.2. If one X-Arc and one Y-Arc are used with XY-routing, there are two types

of Arc combinations that have potential deadlock:

• Arc combination1: Xn and NSx

• Arc combination2: Xs and SNx

Here, X = EW or WE, x = e or w. For any value of X (EW/WE) and x (e/w), deadlock

is possible for these two types of Arc combinations.

hN

W

s

a

b
cd

feg

i

EWn

NSw

Figure 5.15: (a) EWn and NSw Arcs (b) Deadlock Scenario due to combination of EWn and
NSw

141

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

There are eight possible Arc pairs with deadlock potential that fall under Lemma 5.5.2.

These pairs are namely, (EWn + NSw), (EWn + NSe), (EWs + SNw), (EWs + SNe),

(WEn + NSe), (WEn + NSw), (WEs + SNe), and (WEs + SNw). As an example, deadlock

scenario for (EWn + NSw) is shown with dependency graph in Fig. 5.15. There is a possible

cycle through the vertices s → a → b → c → d → h → i → s. Here, b is a wraparound

channel present in the cycle and g is another wraparound channel that enables NE Turn

but not directly present in the cycle. Deadlock scenario in the rest of the seven pairs are

also possible in a similar way.

In this chapter, total fourteen pairwise deadlock prone Arcs pairs are found out. We have

summarised the pairwise deadlock prone Arcs with respect to XY-Turns and the reason for

deadlock in Table. 5.1. Remaining fourteen Arcs pairs out of twenty eight Arcs pairs do

not create deadlock using Lemma 5.5.1 or Lemma 5.5.2 or due to Turns introduced by Arcs.

Analysis for their deadlock freedom using DDG are given in Subsection 5.5.4.

Table 5.1: Deadlock prone and deadlock free Arc pairs with respect to XY-routing

Deadlock prone Arc pairs Deadlock free Arc pairs
Arcs Reason Arcs Reason

SNw + SNe Lemma 5.5.1 SNw + NSw No cycle in DDG
NSw + NSe Lemma 5.5.1 NSe + SNe ”
EWs + EWn Lemma 5.5.1 EWn + WEn ”
WEs + WEn Lemma 5.5.1 EWs + WEs ”
EWs + WEn Added Turns SNw + NSe ”
WEs + EWn Added Turns NSw + SNe ”
EWn + NSe Lemma 5.5.2 EWn + SNe ”
EWn + NSw Lemma 5.5.2 EWn + SNw ”
EWs + SNe Lemma 5.5.2 EWs + NSe ”
EWs + SNw Lemma 5.5.2 EWs + NSw ”
WEn + NSe Lemma 5.5.2 WEn + SNe ”
WEn + NSw Lemma 5.5.2 WEn + SNw ”
WEs + SNe Lemma 5.5.2 WEs + NSe ”
WEs + SNw Lemma 5.5.2 WEs + NSw ”

142

Case Study: Arcs with XY-Turns

5.5.3 Deadlock Avoidance using DDG Representation

Representing a deadlock situations using DDG helps us in understanding the root cause

of deadlock. Because, a DDG highlights all the Turns used and the wraparound channels

involved if any. By restricting such a Turn or wraparound channel, deadlock can be avoided.

Therefore, DDG representation of deadlock cycles could act as useful input in formulating

deadlock avoidance.

5.5.3.1 Deadlock avoidance for (EWs + WEn) Arcs with XY-Turns

For the dependency cycle using (EWs + WEn) Arcs in Fig. 5.14(b), one solution for deadlock

avoidance is to restrict WS Turn at vertex d (or EN Turn at vertex i) and break the cyclic

dependency. Since, dependency cycle forms only via boundary column in Fig. 5.14(b), it

is not necessary to restrict WS Turn across the Mesh. It is better to avoid deadlock for

(EWs + WEn) Arc pair by restricting WS Turn across West boundary column only. This is

known as Turn distribution approach [106]. Moreover, it is feasible to add additional Turns

besides XY-Turns with (EWs + WEn) Arcs safely. Turn distribution would be beneficial

for such deadlock avoidance and for adding additional Turns safely [90,106].

5.5.3.2 Deadlock avoidance for (NSw + EWn) Arcs with XY-Turns

A DDG representation of deadlock scenario for (NSw + EWn) Arcs with XY-Turns is shown

in Fig. 5.15. A YX-Turn, i.e., NE Turn at vertex h, is introduced. An EN Turn, which

is an XY-Turn, is also involved at some vertex i. One possibility for avoiding deadlock in

this scenario is to restrict the EN Turns. Thus, instead of using all XY-Turns, permitting

only ES, WN and WS Turns with (NSw + EWn) Arcs would make the algorithm deadlock

free. Thus by introducing one YX-Turn (NE Turns) and by restricting one XY-Turn (EN)

deadlock freedom for the algorithm can be maintained. I may be possible to add more Turns

to the combination of (NSw + EWn) Arcs with XY-Turns with a careful CDG analysis.

Deadlock avoidance could be applied for all deadlock prone Arc pairs in a similar way.

Information from a deadlock scenario represented using DDG could be useful even for ap-

143

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

plying virtual channel (VC) approach to avoid deadlock. In that approach, instead of

restricting a Turn for breaking the cycle, a separate class of VC needs to be used on taking

that Turn [2, 27].

e

j

SNe

NSe

E

E

(a)

a

b

s

c d

f

g

h i

k

l

m n

(b)

Figure 5.16: (a) SNe and NSe Arcs (b) Dependency graph: deadlock is not possible by SNe and
NSe Arcs

5.5.4 Checking Deadlock Freedom using DDG

In a given topology, starting from a channel-buffer combination or a vertex in DDG, if the

routing algorithm under consideration allows a packet to reach the same vertex (channel-

buffer) via intermediate vertices, we conclude that the routing algorithm is deadlock prone.

We have mentioned about a single packet just for the path discovery purpose. In real

scenario, if such a cyclic path is possible, sequence of packets will present in the different

buffers of that path to form an actual deadlock cycle. If reaching of the starting vertex is not

possible even after trying all possible permitted path by the routing algorithm, we conclude

that the algorithm is deadlock free on that topology. We are applying this principle for

checking deadlock freedom using DDG in this thesis.

For (SNe + NSe) Arcs with XY-Turns, we try to form a channel-buffer dependency

cycle using DDG in Fig. 5.16(b). SNe and NSe Arcs are individually deadlock free with

XY-Turns as shown in Section 5.5.1.2. Whether, SNe and NSe Arc induces each other in

cycle formation that need to be checked. As per the DDG of Fig. 5.16(b), two YX-Turns

either NE(in vertex e) or SE(in vertex j) is needed even to join the two Arcs. It shows

144

Experimental Deadlock Detection

that cycle creation is not possible for (SNe + NSe) Arcs with only XY-Turns. Therefore,

the combination is deadlock free. We perform such analysis for all Arc pairs using DDG. It

is not possible to form any cyclic dependency with 14 Arcs pairs (deadlock-free Arc pairs)

shown in Table. 5.1. Therefore, they are deadlock free.

We have analysed all the twenty eight Arc pairs with respect to XY-Turns. Using DDG,

it is found that no cycle formation is possible for fourteen Arc pairs out off twenty eight

possible Arc pairs. Therefore, these fourteen Arc pairs are deadlock free with respect to

XY-Turns. The deadlock free Arc pairs are shown in Table. 5.1.

5.6 Experimental Deadlock Detection

In this section we check the validity of theoretical analysis presented in Subsection 5.5.2

and Subsection 5.5.4. For detecting experimental deadlock, our formally modeled CFSM

based simulation framework presented in Chapter 4 is used [41]. A traffic sample of 100000

packets generated using a random number generating function (Random traffic) is applied

to 5x5 Torus NoC. All experiments are performed in an Intel Core i5 3.20GHz, 8GB RAM

machine.

5.6.1 Experimental Results for Arc Pairs with XY-Turns

In case of a deadlock situation, simulation reaches a state from where no transition is possible

and simulation is aborted by reporting deadlock. A trace is also generated for such a case

which depicts the snapshot for detailed cyclic resource dependency. For deadlock free Arc

pairs, all packets get delivered and simulation completed. Out of 28 possible Arc pairs, all

packets get delivered for 14 Arc pairs without reporting deadlock. Verification time for these

deadlock free Arcs are shown in the right part of Table 5.2. In the case of Arc pairs with

deadlock, verification time varies significantly as shown in Table 5.2. Only specific traffic

patterns create deadlock to a particular algorithm. Therefore, it takes different time to

come across traffic pattern that leads to deadlock. For (EWn + EWs) Arcs with XY-Turns,

145

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

deadlock is detected in 183.17 seconds as shown in Table 5.2. This deadlock is correctly

predicted using DDG in Fig. 5.12(b). For (EWs + WEn) Arcs, deadlock is detected in

2641.21 seconds. Deadlock is detected using DDG as well for the same Arc pairs (EWs

+ WEn) as shown in Fig. 5.14(b). In few cases, the deadlock scenario does not arises in

the first attempt. We generate further random test cases and tried again. The deadlock

scenario is produced within five attempts in all cases.

Table 5.2: Deadlock detection for Arc pairs with XY-Turns

Deadlock prone Arc pairs Deadlock free Arc pairs
Arcs Deadlock Time (sec) Arcs Deadlock Time (sec)

SNw + SNe Yes 31.62 SNw + NSw No 4281.27
NSw + NSe Yes 155.91 NSe + SNe No 4093.74

EWs + EWn Yes 183.17 EWn + WEn No 4298.65
WEs + WEn Yes 193.38 EWs + WEs No 4532.07
EWs + WEn Yes 2641.21 SNw + NSe No 4609.10
WEs + EWn Yes 930.88 NSw + SNe No 4713.49
EWn + NSe Yes 1655.73 EWn + SNe No 4578.67
EWn + NSw Yes 1556.76 EWn + SNw No 4425.87
EWs + SNe Yes 844.85 EWs + NSe No 4705.92
EWs + SNw Yes 830.87 EWs + NSw No 4321.15
WEn + NSe Yes 615.52 WEn + SNe No 4473.03
WEn + NSw Yes 836.80 WEn + SNw No 4708.56
WEs + SNe Yes 927.53 WEs + NSe No 4345.90
WEs + SNw Yes 734.35 WEs + NSw No 4601.61

Similar experiments are performed using NoC of different grid sizes and using different

traffic patterns containing more than 100000 packets with different injection rates generated

from Booksim simulator [24]. All experiments lead to same conclusions regarding deadlock

free and deadlock prone Arc pairs. Experimental results corresponding to 5x5 Torus NoC

is presented here for convenience in representing the deadlock snapshot. If deadlock is

not detected for a routing algorithm using a given traffic pattern, theoretically it does not

guarantee deadlock freedom. Nevertheless, by using sufficiently large traffic with different

mode, if deadlock is still not detected, it is likely that the routing is deadlock free. The

theoretical analysis in Subsection 5.5.2 and the experimental results do not contradict in

any cases. It indicates correctness of the deadlock detection using DDG.

146

Experimental Deadlock Detection

5.6.2 Deadlock Scenarios generated by CFSM Framework

The CFSM based simulation framework has reported deadlock scenarios for all the fourteen

deadlock prone Arc pairs. In this sub-section, we have presented only three experimental

deadlock scenarios from the experiments in Table 5.2.

R23

EWs

EWn

R21 R22 R24 R25

R1816,9
R16 R1716,25 R1918,20 R20

R13R11 R12 R14 R15

R87,5R6 R76,8 R96,20 R10

R3R1 R2 R4 R5

19,120,12

20,1

15,2

9,1110,22

5,21

15,22

Figure 5.17: Experimental deadlock scenario in a 5x5 Torus NoC for EWn and EWs Arcs with
XY-routing as per Lemma 5.5.1

5.6.2.1 Deadlock Scenarios for (EWs + EWn) Arc with XY-Turn

The (EWs + EWn) Arc pairs are from the same wraparound channel EW. Both of the

EWs and EWn Arcs are part of the same types of wraparound channel EW. As per Lemma

5.5.1, two Arcs from the same wraparound channels create deadlock. Therefore, (EWs +

EWn) Arc pairs are deadlock prone with respect to XY-Turns in the Mesh sub-network.

The experimental deadlock scenario for (EWs + EWn) with XY-routing is shown in Fig.

5.17. (EWs + EWn) Arc pairs introduce new Turns. The NE Turn is introduced Turns

by EWn Arc and SE Turn is introduced by EWs Arcs, respectively. These new Turns are

147

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

shown with red color in Fig 5.17.

The packets shown with red color and italic font have used either EWs Arc or EWn Arc.

The packet (19, 1) is currently present at the West input port of R20. It intends to use the

same EWs Arc between R20 and R16 which is already used by (20, 12) and (20, 1). The

packet (15, 2) has used another EWs Arc between R15 and R11 and has reached the North

port buffer of R6 where it was involved in the deadlock cycle and stuck for ever. It intend

to follow XY-routing for the rest of the path from R6 by taking a SE Turn. In this way the

resource dependency keeps on spreading across packets.

Similarly, the packets that has used or intend to use EWn Arcs are (9, 11), (10, 22),

(5, 21) and (15, 22). They are highlighted with red color. Dependencies between all the

packets are shown with a curved arrow. It is challenging to construct such an experimental

dependency showing resource dependency in detail level by a manual process. Our CFSM

framework has automated this process and make it convenience for us. The experimental

packets wise detailed dependency in Fig. 5.17 matches with the DDG shown in Fig. 5.12.

It implies correctness of the DDG presented in the theory part.

R3

R8

R23

EWs

WEn

R5

R10

R25

R4

R9

R24

R2

R7

R22

R6

R1

R21

R13

R18 19,17

12,4 R15

R20

14,25R14

R19 20,21

13,15R12

R17 18,16

11,3R11

R16 17,11

11,19

20,7

Figure 5.18: Experimental deadlock scenario in a 5x5 Torus NoC for EWs and WEn Arcs with
XY-routing due to new Turns introduced by Arcs

148

Experimental Deadlock Detection

5.6.2.2 Deadlock Scenarios for (EWs + WEn) Arc with XY-Turn

The Arc pair (EWs + WEn) introduces two YX-Turns. WEs introduces SE Turn and

WEn introduces NW Turn. We have already considered all XY-Turns are in the Mesh

sub-network. Due to these two newly introduced YX-Turns deadlock cycle is possible as

described in the Subsection 5.5.2. The experimental deadlock snapshot for (EWs + WEn)

with XY-Turn in the Mesh sub-network is depicted in Fig. 5.18.

In the Fig. 5.18, the packet (11, 19) at the South port buffer of R20 has traversed using

the WEn Arcs between R11 and R15. The packet would follow XY-Turns from R20 to

reach the destination. Thus it intends to take a NW Turn and stuck in the dependency

cycle for ever. Similarly, the packet (20, 7) present at the North port of R11 uses the EWs

Arcs between R20 and R16. It intend to take SE Turn and stuck in the cyclic resource

dependency. The experimental packets wise dependency cycle in Fig. 5.18 is matching with

the dependency graph shown in Fig. 5.14.

EWnNSw

R21 R22 R23 R24 R25

R16 R17 R18 R19 R20

R11 R12 R13 R14 R15

R6 R7 R8 R9 R10

R1 R2 R3 R4 R5

20,4

25, 220,23,122,6

5,7

6,19 7,15 7,15 9,25

6,25

15,25

25, 9

Figure 5.19: Experimental deadlock scenario in a 5x5 Torus NoC for EWn and NSw Arcs with
XY-routing as per Lemma 5.5.2

149

Deadlock Avoidance in Torus NoC Using Arc Model and DDG

5.6.2.3 Deadlock Scenarios for (EWn + NSw) Arc with XY-Turn

In the third example for experimental deadlock scenario, we have considered (EWn + NSw)

Arc pairs. As per Lemma 5.5.2, EWn and NSw Arcs are deadlock prone. Deadlock detection

time for (EWn + NSw) Arc with respect to XY-Turn is 1556.76 seconds from the Table

5.2. The experimental deadlock scenario for (EWn + NSw) with XY-routing is depicted in

Fig. 5.19. This deadlock snapshot complies with the dependency graph shown in Fig. 5.15.

The packet (20, 4) intends to use NSw Arc and reached the South port buffer of R25. The

packet (25, 9) at the South port of R5, (25, 2) at the East port of R4, (20, 2) at the East

port of R3 has already used the NSw Arcs between R25 and R5. The packet (22, 6) at the

East port of R1 has used the NSw Arc between R22 and R2. The EWn Arc between R5 and

R1 is used by the packet (5, 7). The packet has reached the South port of R6 and intend

to use NE Turn to reach its destination. The NE Turn is introduced due to EWn Arc.

5.7 Conclusion

This chapter proposes a deadlock avoidance approach for Torus NoC. An Arc model is

proposed for avoiding deadlock in Torus NoC. It imposes routing restrictions to break the

cyclic path via wraparound channel. A directional dependency graph (DDG) is proposed

which is be convenient for deadlock detection, useful in formulating deadlock avoidance and

showing deadlock freedom. As an application of Arc model and DDG, the use of Arcs are

discussed with XY-Turns. Arc pairs are categorised into deadlock free and deadlock prone

pairs with respect to XY-Turns. Application of deadlock avoidance using DDG cycle of

deadlock prone Arc pairs are shown with examples. All of the 28 possible Arc pairs along

with XY-Turns in the Mesh sub-network are implemented in our CFSM based simulation

framework and deadlock scenarios are experimentally validated by extensive random simu-

lations. The proposed Arc model and DDG would be helpful in formulating deadlock free

routing algorithms for Torus by considering maximum possible Arcs and Turns. We discuss

various routing algorithms using Arc model in the next chapter.

150

6
Deadlock Free Routing Algorithms for Torus

NoC using Arc Model

6.1 Introduction

The wraparound channels help in reducing overall hop counts in a given traffic in Torus

NoC. On the other hand, these inherent circular paths act as a catalyst in the formation

of circular dependency where a sequence of packets are involved. Thus, deadlock arises

and the system stops functioning eventually. For avoiding deadlock in Torus NoC different

techniques like bubble flow control [28, 29] or virtual channels (VC) [3] are used. In the

bubble flow control approach, extra buffers are needed to ensure empty buffer slots at any

151

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

circumstances [28,29]. In the VC approach, different classes of VCs are used to break cyclic

dependencies [2,11,27]. However, these methods use additional resources like buffer or VCs

to prevent from occurring deadlock.

Only a few algorithms exist for Torus NoC that avoids deadlock without using any addi-

tional resources. Up*/Down* routing is a classical deadlock avoidance approach applicable

for any communication network including Torus NoC [10]. A given topology is converted

into a spanning tree in Up*/Down* routing. A spanning tree is acyclic in nature. These

acyclic paths corresponding to a given NoC topology are used for routing packets. Due to

the acyclic routing paths via a spanning tree deadlock is not possible in Up*/Down* routing.

Though deadlock is avoided, most of the packets use longer paths in Up*/Down* routing

approach [94]. Turn model is another approach where deadlock is avoided by controlling

the movements of packets by restricting certain Turns [1, 9]. The primary significance of

Turn model is that it avoids deadlock without using additional buffers and virtual chan-

nels. To deal with the inherent cyclic paths in Torus NoC via wraparound channel, FirstHop

approach is used along with Turn model approach. In FirstHop approach, wraparound chan-

nels in Torus NoC are permitted to use by the packets that are injected from the boundary

routers. This restriction helps in discontinuing the resource dependency via wraparound

channels in Torus. Thus, deadlock is avoided in FirstHop approach.

In this chapter, we have shown that our Arc model is specifically applicable for avoiding

deadlock in Torus NoC without using any additional resources. In Arc model approach,

inevitable cyclic dependency in circular paths via wraparound channels are broken by re-

stricting immediate backward movement just after taking the wraparound channel. Each

wraparound channels are logically subdivided into two Arcs based on next move just af-

ter traversing through wraparound channel. Thus, there are eight logical Arcs from four

wraparound channels. Arcs are needed to be chosen carefully considering a known deadlock

free routing algorithm in the Mesh sub-network such that the combined effects of Turns in

the routing algorithm and the Arcs do not create deadlock. All Arcs cannot be used at a

time as some of the Arcs combinations are deadlock prone. One advantage of Arc over First

152

Introduction

Hop method is that Arcs are applicable not only for packets injected from boundary nodes,

but also for packets injected form non boundary nodes as well. Therefore, combining the

suitable subset of Arcs and a routing algorithm in Mesh sub-network is a promising approach

to develop deadlock free routing algorithms for Torus NoC.

R16(0,3)

R1(0,0)

R6(0,1)

R11(0,2)

R21(0,4)

R2(1,0)

R22(1,4)

R17(1,3)

R12(1,2)

R7(1,1)

R18(2,3)

R23(2,4)

R13(2,2)

R8(2,1)

R3(2,0)

R19(3,3)

R24(3,4)

R14(3,2)

R9(3,1)

R4(3,0)

R25(4,4)

R20(4,3)

R15(4,2)

R10(4,1)

R5(4,0)

Router

Processor

Figure 6.1: 5x5 Torus NoC

6.1.1 Contributions

In this work, we have demonstrated various Arc based routing algorithms in Torus and

have evaluated their effectiveness in saving hop counts in comparison with FirstHop and

Up*/Down* algorithms. We have also shown a way to combine both Arc model and FirstHop

approach without creating deadlock. We have demonstrated the first routing algorithm using

two Arcs, the second routing algorithm using three Arcs and the third routing algorithm by

combining three Arcs along with First Hop approach. The contributions presented in this

chapter are summarised as follows:

• A deadlock free deterministic routing algorithm for Torus using two Arcs with XY-

Turns in the Mesh sub-network is presented.

153

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

• A deterministic deadlock free routing algorithm for Torus using three Arcs with XY-

routing is presented.

• A deterministic deadlock free routing combining three Arcs along with FirstHop ap-

proach is presented.

• Deadlock freedom are shown using DDG for the proposed algorithms. Experimental

deadlock detection is also performed to check if there is any contradiction with DDG

analysis for deadlock freedom.

• Effectiveness of our proposed algorithms in terms of saving in hop counts are evaluated

using different traffic patterns. The proposed Arc based algorithms are compared with

FirstHop and Up*/Down* routing approaches. Experimental results show that the Arc

based routing algorithms are effective in terms of hop counts in a given traffic pattern

in comparison to the FirstHop and the Up*/Down* routing.

The rest of the chapter is organized as follows. Design approach for deadlock free routing

algorithm for Torus NoC using Arc model is presented in Section 6.2. A routing algorithm

using two different Arcs combination and its deadlock freedom are presented in Section 6.3.

Number of maximum Arcs that can be used in a routing algorithm is presented in Section

6.4. Routing using three Arcs, routing using combination of Arc and FirstHop approach

and deadlock freedom for the respective algorithms are presented in Section 6.5 and Section

6.6, respectively. Experimental results are presented in Section 6.7. Finally, the chapter is

concluded in Section 6.8.

+

Arcs from proposed Arc model A set of deadlock free Turns

in the Mesh sub−network

Verify deadlock freedom using DDG

for the resultant algorithm in Torus NoC

Figure 6.2: Designing deadlock free routing for Torus NoC using Arcs

154

Deadlock Free Routing Algorithm Design Approach using Arc Model

6.2 Deadlock Free Routing Algorithm Design Approach

using Arc Model

In a routing algorithm for Torus NoC using Arc model, different deadlock free Arc combi-

nations are possible to be used. A Torus NoC is visualised as a combination of wraparound

channels and Mesh sub-network. Therefore, a set of mutually deadlock free Turns in the

Mesh sub-network are considered along with suitable Arc combinations for designing a

deadlock free routing algorithm for Torus NoC in the thesis. Our approach of designing

a deadlock free routing algorithm for Torus NoC is shown in Fig. 6.2. In our approach,

we consider Arcs from the Arc model along with a set of permitted Turns in the Mesh

sub-network in such a way that their resultant effects do not create cyclic dependency in

the Torus NoC. Since some Arcs introduces new Turns, those new Turns along with the

permitted Turns in the Mesh sub-network might also create cycle in the resultant routing

algorithm for Torus NoC. Considering all such scenarios, we propose the following theorem

to verify deadlock freedom for an Arc based routing algorithm in Torus NoC .

Theorem 6.2.1. A routing algorithm for Torus NoC that uses a set of Arcs for wraparound

channel along with a set of deadlock free Turns for the Mesh sub-network is deadlock free iff

following two conditions are satisfied:

• The new Turn(s) introduced due to use of Arc(s) should not complete a clockwise or

anti-clockwise cycle along with the other permitted Turns in the Mesh sub-network.

• The Arc(s) itself/themselves should not complete a clockwise or anti-clockwise cycle

along with other permitted Turns in a Directional Dependency Graph.

Proof. As per Turn model, deadlock is possible in an algorithm if the permitted Turns form a

cycle. The first condition states that the new Turns introduced by Arcs should not complete

a cycle with the permitted Turns in the Mesh sub-network. Therefore, the first condition of

this Theorem is supported by Turn model theory [1]. The second condition is based on the

properties of Directional Dependency Graph (DDG). If cycle is possible in a DDG, deadlock

155

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

is present in the corresponding routing algorithm. If DDG cycle is not possible it indicates

deadlock freedom for that algorithm. To form a DDG cycle, from any starting vertex s in

that DDG, there is possibility to spread the dependency in such a way that the starting

vertex s is reachable. If formation of such cycle is not possible in any possible DDG, the

routing method is deadlock free. Thus, the second condition of the theorem is supported

by the properties of DDG.

Using this design approach, we are going to propose deadlock free routing algorithms for

Torus NoC. Routing algorithms with different combination of Arcs and with various combi-

nation of deadlock free Turns in the Mesh sub-network are demonstrated in the subsequent

section. We first present deadlock freedom using DDG for the considered Arc and Turn

combinations. Formal algorithm is presented after that. We consider only XY-Turns for

the Mesh sub-network in this thesis. Same procedure is applicable with other combination

of Turns as well.

6.3 Routing using Two Arcs along with XY-Turns

There are fourteen pair wise deadlock free Arc pairs as shown in Table. 5.1. By using any of

these fourteen pairs with XY-routing, fourteen deadlock free routing algorithms for Torus

NoC are possible. In this section, we consider one routing algorithm using (EWs + NSe)

Arcs with XY-Turns. We have presented the algorithmic steps in Algorithm 1 and shown

the deadlock freedom for the algorithm using DDG.

6.3.1 Routing steps for Algorithm 1

A deadlock free routing algorithm using (EWs + NSe) Arcs with XY-routing is presented in

Algorithm 1. EWs Arc is applicable if the packet is destined West-South direction and the

EW wraparound channel could help in reducing hop counts. The condition for applicability

of EWs Arc is given in line# 4 in Algorithm 1. If EWs Arc is applicable (line# 4 in

Algorithm 1), the packet moves towards East boundary until the East boundary of the

156

Routing using Two Arcs along with XY-Turns

Algorithm 1 WS-SE Algorithm

1: function WS-SE(S,D)
2: . S = (xs, ys) and D = (xd, yd) are the source(S) and destination(D) co-ordinates of

a packet in an NxN Torus NoC. Between a source and destination pair, the X-distance
is ∆x = |xd − xs| and the Y-distance is ∆y = |yd − ys|. After each move, S is updated.
The packet reaches destination when S = D.

3: while ((xs 6= xd) ∨ (ys 6= yd)) do
4: if ((ys > yd) ∧ (xs > xd) ∧ (∆x > N/2)) then
5: EWs Arc is applicable. Keeps on moving in East direction.
6: Once East boundary is reached, move using EW wraparound channel.
7: Move one step South for the EWs Arc after taking EW wraparound channel.
8: Follow XY-routing.
9: else if ((xs < xd) ∧ (ys > yd) ∧ (∆y > N/2)) then

10: NSe Arc is applicable. Keeps on moving in North direction.
11: Once North boundary is reached, move using NS channel.
12: Move one step East for NSe Arc after taking the NS wraparound channel.
13: Follow XY-routing.
14: else
15: Follow XY-routing.
16: end if
17: end while
18: end function

Mesh sub-network is reached. At the East boundary, it takes EW wraparound channel and

reaches the West boundary. In the next step, the packet moves one hop distance in the

South direction as per the rules of EWs Arc. After that, XY-routing is followed until it

reaches the destination.

Similarly, NSe Arc is applicable if the packet is destined towards the South-East direction

and the NS wraparound channel helps in reducing the hop counts. A packet traverses using

NSe Arc if the condition (line#9 in Algorithm 1) is satisfied. Conditions for taking Arcs

ensure that EWs would not be taken at bottom row and NSe would not be taken at right

most column. Therefore, none of the packet will use both the Arcs. If neither EWs Arc nor

NSe Arc conditions are applicable, control goes to line#15 and XY-routing is followed until

the packet reaches its destination. If neither EWs nor NSe Arc is applicable, XY-routing

is followed. Even after traversing through EWs or NSe Arc, a packet follows XY-Turns for

the rest of the paths. Since the Arcs are applicable only to the packets that are destined

towards West-South or South-East direction, we term Algorithm 1 as WS-SE algorithm.

157

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

The conditions for EWs and NSe Arcs can be checked at any order in the algorithm and it

would not effect the routing of a packet by the algorithm.

R1 R2 R3 R4 R5 R6 R7 R8

R9 R10 R11 R12 R13 R14 R15 R16

R17 R18 R19 R20 R21 R22 R23 R24

R25 R26 R27 R28 R29 R30 R31 R32

R33 R34 R35 R36 R37 R38 R39 R40

R41 R42 R43 R44 R45 R46 R47 R48

R49 R50 R51 R52 R53 R54 R55 R56

R57 R58 R59 R60 R61 R62 R63 R64

p1(47, 10)

p2 (60, 14)

p3(21, 39)

Figure 6.3: Paths for packet p1(47, 10), p2(60, 14) and p3(21, 39) as per Algorithm 1

Example 6.1. The routing path for packet p1(47, 10), p2(60, 14) and p3(21, 39) in a 8x8

Torus NoC with respect to Algorithm 1 are shown in Fig. 6.3. The packet p1(47, 10) uses

EWs Arc and the hop count saved is 9 - 7 = 2. Here, 9 is the hop count for XY-routing

and 7 is the hop counts due to use of EWs Arc. The packet p2(60, 14) uses NSe Arc and

the hop count saved is 8 - 4 = 4. For the packet p3(21, 39) no Arc is applicable. It follows

XY-routing and hop count traversed is 4. There is no saving in hop counts.

In a similar way, fourteen such routing algorithms are possible from the deadlock free

Arc pairs in Table. 5.1 with XY-Turns in the Mesh sub-network. Hop count savings by Arc

based algorithm depends on the traffic distribution as well. For example, Algorithm 1 would

be more effective if more traffics are destined towards West-South or South-East direction.

For uniform traffic, since traffic distribution is uniform, all of the fourteen algorithms are

expected to perform similar way in their effectiveness in saving hop counts. One packet

158

Routing using Two Arcs along with XY-Turns

using only one Arc in this algorithm. The conditions for Arcs can be checked in any order

in Algorithm 1. It would not effect the routing of a packet.

SE

(b)

SE

NSe

S

E

EWs

(a)

S

N

W E

k

j
s a

b

c

d e

f

g
h

(c)

i

l

Figure 6.4: (a) EWs and NSe Arcs (b) Dependency graph: deadlock is not possible by EWs and
NSe Arcs

6.3.2 Deadlock freedom for Algorithm 1

The EWs Arc introduces SE Turn when a packet has to move back to reach destination

after taking the Arc and shown in Fig. 6.4(a). Therefore, five Turns namely EN, ES, WN,

WS and SE are considered for the movement in the Mesh sub-network. Cycle creation is not

possible with these five Turns which is shown in Fig. 6.4(b). Therefore, the first condition

of Theorem 6.2.1 for deadlock freedom is satisfied.

For checking the second condition, let us consider a directional dependency graph using

EWs and NSe Arcs in Fig. 6.4(c). Since each individual Arcs are deadlock free with respect

to XY-routing, let us check if deadlock is possible by resultant effects of both EWs and NSe

Arcs. Let a sequence of packets produce a directional dependency via vertices s → a →

b → c → d → e → f → g → h → i → l. Though this graph involved both EWs and

159

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

NSe Arcs, cycle creation is still not possible. A NW turn is needed at a point i for creating

two possible cycle via vertices j or k. For another possible cycle, a NE turn is needed at a

point l. Since both NW and NE turns are not permitted here, cycle creation is not possible.

Therefore, Algorithm 1 using EWs and NSe Arcs with XY-routing in the Mesh sub-network

is deadlock free.

6.4 Maximum Possible Arcs with XY-Turns in a Rout-

ing Algorithm

In this section, we evaluate maximum number of Arcs that can be used with XY-Turns in

a deadlock free routing algorithm for Torus NoC. We analyse all possible Arc combinations

for such algorithms in this section and demonstrate such an algorithm in the next section.

6.4.1 Evaluation plan

One approach of determining the maximum possible deadlock free Arc combination is to

start with one deadlock free Arc pair from Table 5.1 and keep on adding Arc from the

remaining six Arcs one by one into the deadlock free Arcs pairs such that deadlock freedom

is maintained. After examining all the six Arcs, we found a combination of possible deadlock

free Arcs.

We categorise the Arcs as X-Arcs and Y-Arcs. X-Arcs are from the two wraparound

channels EW and WE in the X-direction, i.e., EWn, EWs, WEn and WEs Arcs. Similarly,

Y-Arcs are from the two wraparound channels NS and SN in the Y-direction, i.e., NSe,

NSw, SNe and SNw Arcs. First we evaluate the maximum deadlock free Arc combination

using X-Arcs. Y-Arcs are added to the group one by one if no deadlock is created. We then

consider the Y-Arcs and add X-Arcs one by one to analyse the deadlock.

160

Maximum Possible Arcs with XY-Turns in a Routing Algorithm

6.4.2 Considering deadlock free Arc pairs in X-direction

At first, let us consider deadlock free Arc pairs (EWn + WEn). From the remaining six

Arcs namely EWs, WEs, NSe, NSw, SNe and SNw, we check by adding one by one if the

resultant combination is free from deadlock.

• EWs cannot be added to (EWn + WEn) as (EWs + EWn) are from deadlock prone

due to new Turn introduced by Arcs, as explained with example in Subsection 5.5.2.

• WEs cannot be added as (WEs + WEn) are deadlock prone according to Lemma 5.5.1

in Chapter 5.

• NSe cannot be added as per Lemma 5.5.2 in Chapter 5. Both (EWn + NSe) and

(WEn + NSe) are deadlock prone.

• NSw cannot be added as per Lemma 5.5.2. Both (EWn + NSw) and (WEn + NSw)

are deadlock prone.

• SNe does not create deadlock with (EWn + WEn) as per Table 5.1. Therefore, (EWn

+ WEn + SNe) is deadlock free with respect to XY-routing in the Mesh sub-network.

• SNw does not create deadlock with (EWn + WEn) as per Table 5.1. Therefore, (EWn

+ WEn + SNw) is deadlock free.

Either SNe or SNw are safe to add with (EWn + WEn). If we consider both SNe and

SNw Arc, they are (SNe + SNw) mutually deadlock prone as per Lemma 5.5.1. Therefore,

(EWn + WEn + SNe + SNw) is also deadlock prone. Therefore, a deadlock free combination

of four Arcs are not possible while start with (EWn + WEn). Thus, we get two deadlock

free combination with three Arcs, (EWn + WEn + SNe) and (EWn + WEn + SNw). In

similar way, by considering the other deadlock free Arc pairs (EWs + WEs) in X-direction,

we get two other deadlock free Arc combinations (EWs + WEs + NSe) and (EWs + WEs +

NSw). Here, (NSe + NSw) are deadlock prone as per Lemma 5.5.1. Therefore, a deadlock

free combination of four Arcs are not possible with (EWs + WEs + NSe + NSw).

161

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

6.4.3 Considering deadlock free Arc pairs in Y-direction

There are four deadlock free Arc pairs in Y-direction from the Table 5.1. These pairs are,

(SNw + NSw), (NSe + SNe), (SNw + NSe) and (NSw + SNe). Let us consider deadlock

free Arcs pair (NSe + SNe). In this pair no other Arc in Y-direction can be added due to

Lemma 5.5.1 in Chapter 5. Similarly, no Arc in X-direction can be added due to Lemma

5.5.2 in Chapter 5. For other three deadlock free Arcs pair in Y-direction as well, it is not

possible to add any new Arcs. Therefore, four deadlock free Arc combinations only with

three Arcs are possible with respect to XY-routing in a routing algorithm for Torus without

using additional VCs or buffer. These four deadlock free Arc combinations are (EWs +

WEs + NSe), (EWs + WEs + NSw), (EWn + WEn + SNe) and (EWn + WEn + SNw).

6.5 Routing using Three Arcs with XY-Turns

Four routing algorithm using three Arcs are possible as concluded from the previous section.

We consider one such routing algorithm that uses (EWs + WEs + NSe) with XY-Turns

in this section. We have presented the algorithmic steps in Algorithm 2 and shown the

deadlock freedom for the algorithm using DDG.

6.5.1 Routing steps for Algorithm 2

Algorithmic steps for the routing algorithm using (EWs + WEs + NSe) Arcs with XY-

routing is presented in Algorithm 2. If EWs Arc is applicable (line# 4 in Algorithm 2),

the packet keeps on moving towards East boundary. At the East boundary, it takes EW

wraparound channel and reaches the West boundary. In the next step, the packet moves

one hop distance in the South direction for the EWs Arc. After that, XY-routing is followed

until it reaches the destination.

If WEs Arc is applicable (line# 9 in Algorithm 2), the packet keeps on moving towards

West boundary. At the West boundary, it takes WE wraparound channel and reaches the

East boundary. In the next step, the packet moves one hop distance in the South direction

162

Routing using Three Arcs with XY-Turns

Algorithm 2 3Arcs Algorithm

1: function 3Arcs(S,D)
2: . S = (xs, ys) and D = (xd, yd) are the source(S) and destination(D) co-ordinates of

a packet in an NxN Torus NoC. Between a source and destination pair, the X-distance
is ∆x = |xd − xs| and the Y-distance is ∆y = |yd − ys|. After each move, S is updated.
The packet reaches destination when S = D.

3: while ((xs 6= xd) ∨ (ys 6= yd)) do
4: if ((ys > yd) ∧ (xs > xd) ∧ (∆x > N/2)) then
5: EWs Arc is applicable. Keeps on moving in East direction.
6: Once East boundary is reached, move using EW channel.
7: Move one step South for the EWs Arc.
8: Follow XY-routing.
9: else if ((ys > yd) ∧ (xs < xd) ∧ (∆x > N/2)) then

10: WEs Arc is applicable. Keeps on moving in West direction.
11: Once West boundary is reached, move using WE channel.
12: Move one step South for WEs Arc.
13: Follow XY-routing.
14: else if ((xs < xd) ∧ (ys > yd) ∧ (∆y > N/2)) then
15: NSe Arc is applicable. Keeps on moving in North direction.
16: Once North boundary is reached, move using NS channel.
17: Move one step East for NSe Arc after taking the NS wraparound channel.
18: Follow XY-routing.
19: else
20: Follow XY-routing.
21: end if
22: end while
23: end function

for the WEs Arc. After that, XY-routing is followed until it reaches the destination.

Similarly, a packet traverses using NSe Arc if condition of line#14 in Algorithm 2 is

satisfied. Conditions for taking Arcs ensure that EWs and WEs would not be taken at

bottom row and NSe would not be taken at right most column. Therefore, one Arc does not

end up with another consecutive Arc. If none of the (EWs + WEs + NSe) Arc conditions

are satisfied, control goes to line#20 and XY-routing is followed until the packet reaches its

destination. The conditions for EWs, WEs and NSe Arcs can be checked at any order and

it would not effect the algorithm. If none of the Arcs is applicable, XY-routing is applicable

by default. Packets that are destined towards South-East and South-West directions will

get benefited form Arc on reducing hop counts to reach their destinations. A single packet

is allowed to utilize only one Arc in this algorithm. The conditions for Arcs can be checked

163

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

in any order. It would not effect the routing of a packet.

i

j

s a

b

c

d e

f

g
h

k
l

m

(c)

SE SW

(b)

SW

SE

NSe

E

(a)

WEs

EWs

S

N

W E

Figure 6.5: Deadlock freedom: (a) EWs, WEs and NSe Arcs (b) DDG representing deadlock
freedom for EWs, WEs and NSe Arcs with XY-Turns

6.5.2 Deadlock Freedom for Algorithm 2

The EWs, WEs and NSe Arcs are shown in Fig. 6.5(a). The WEs Arc introduces SW Turn

and the EWs Arc introduces SE Turn. The resultant Turn model due to these additional

Turns is shown in Fig. 6.5(b). Since no cycle formation is possible as per Turn model, the

first condition of Theorem 6.2.1 for deadlock freedom is satisfied.

For checking the second condition of Theorem 6.2.1, let us consider a directional de-

pendency graph using EWs, WEs and NSe Arcs in Fig. 6.5. Let us check if deadlock is

possible by resultant effects of EWs, WEs and NSe Arcs. Let a sequence of packets produce

a directional dependency via vertices s→ a→ b→ c→ d→ e→ f → g → h→ i→ j. For

creating a cycle involving EWs Arc, a NE Turn is needed at some vertex i. Similarly, a NW

Turn is needed at a point j for spreading the dependency into WEs Arc. Since both NE

and NW turns are not permitted in this combination, cycle creation is not possible using

164

Combination of Arc Model and FirstHop Method

Arcs and Turns.

Both the conditions of Theorem 6.2.1 are satisfied for Algorithm 2. Therefore, Algorithm

2 using EWs, WEs and NSe Arcs Arcs with XY-routing in the Mesh sub-network is deadlock

free.

6.6 Combination of Arc Model and FirstHop Method

In this section, we explore whether it is feasible to use Arcs and First Hop approach together

to design a deadlock free routing algorithm for Torus NoC. Wraparound channel are safe

to use at its first hop, if the packet is originated from a boundary router and use of the

wraparound channel could reduce the hop counts [1]. In this section, we plan to develop

routing algorithm by using unused wraparound channel in the first hop along with with a set

of deadlock free Arcs to make the algorithm more effective in saving hop counts. Deadlock

free Arcs from the Arc model would use leverage of wraparound channel in a better way.

Using the unused wraparound channel in the same Arc based algorithm in the first hop for

the boundary packets would help in taking advantages from both Arc model and FirstHop

approaches. We combine Algorithm 2 with FirstHop approach and develop Algorithm 3.

The deadlock freedom for the modified algorithm has to check while adding wraparound

channels into the algorithm with the FirstHop restriction.

EW

a

b

c(a)

WE

a b

c (b)

NS

a

b

c

(c) (d)

SN

a

b

c

Figure 6.6: Directional Dependency graphs for (a) EW, (b) WE, (c) NS and (d) SN wraparound
channel with FirstHop restriction

165

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

6.6.1 DDG for Wraparound Channel with FirstHop Restriction

Before combining the FirstHop approach with Arc based algorithm, we elaborate why

FirstHop approach is deadlock free with the help of DDG. The dependency graph for EW,

WE, NS and SN wraparound channels with FirstHop approach is shown in Fig. 6.6(a),

Fig. 6.6(b), Fig. 6.6(c) and Fig. 6.6(d), respectively. For creating a deadlock configuration,

the source and destination of each packet should be at least two hops away [2]. To stop such

spreading of resource dependency between two vertices c and a, in Fig. 6.6(a), Fig. 6.6(b),

Fig. 6.6(c) and Fig. 6.6(d), FirstHop restriction is proposed while using a wraparound chan-

nel [1]. The path from vertex c to a exist, whereas restriction is imposed on reaching vertex

a. In Fig. 6.6(a), if a packet that has reached vertex c, it can also move to the vertex a.

Whereas, the same packet cannot use EW wraparound channel. Specifically, such a packet

cannot travel both the path c → a and a → b, i.e., the path c → a → b is restricted for a

single packet. In other words, if a packet has to move from vertex c to vertex b, the path

c → a → b is restricted and it has to follow c → b via many intermediate routers even

if the hop count increases. Only packet that is injected from the router corresponding to

vertex a are eligible to take the EW wraparound channel. The dependency is thus discontin-

ued between the vertex c and a by applying first hop restrictions in Fig. 6.6(a), Fig. 6.6(b),

Fig. 6.6(c) and Fig. 6.6(d), corresponding to the EW, WE, NS and SN wraparound channels,

respectively.

6.6.2 Routing using Algorithm 2 and Wraparound Channel with

FirstHop Restriction

We consider Algorithm 2 as the Arc based algorithm and use wraparound channels in the

first hop such that the resultant algorithm does not create deadlock. The steps for the

resultant algorithm is presented in Algorithm 3 and the deadlock freedom is also shown

next.

166

Combination of Arc Model and FirstHop Method

EW

EWs

a b

c

d

a

b

c

ab

c

(a)

(b)

(c)

WEs

b a

c

d(d)

WE

a b

c (e)

a b

c (f)

Figure 6.7: Directional Dependency graphs for (a) EWs, (b) EW, (c) EWs and EW, (d) WEs,
(e) WE, (f) WEs and WE

6.6.2.1 Wraparound Channel Compatible with Algorithm 2

The three Arcs present in Algorithm 2 are EWs, WEs and NSe Arcs with XY-Turns in the

Mesh sub-network. Let us check if any wraparound channels form deadlock with Algorithm

2 by considering EW, WE, NS and SN wraparound channel one by one.

Let us consider the EW wraparound channel with FirstHop restriction. The dependency

graph for EWs Arcs and the EW wraparound channel with first hop restriction is shown in

Fig. 6.7(a) and Fig. 6.7(b). The movements through both EWs Arcs and EW wraparound

channel with first hop restriction are applicable to a same path or a same physical channel.

Since there might present sequence of packets following both EWs Arcs and EW wraparound

channel in FirstHop in the same path, the FirstHop restriction is automatically violated due

to use of EWs Arc. The possible path of their resultant effect is shown in Fig. 6.7(c) using

DDG. Thus a deadlock cycle is created while combining EWs Arcs and EW wraparound

channel even with FirstHop restriction. Therefore, it is not feasible to use EW wraparound

channel with Algorithm 2.

Similarly, using WEs Arc and WE wraparound channel with FirstHop creates deadlock as

shown in Fig. 6.7(d), Fig. 6.7(e) and Fig. 6.7(f). Therefore, WE wraparound channel cannot

be added. Similarly, using NS wraparound channel with FirstHop also creates deadlock with

167

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

NSe as shown in Fig. 6.8(a-c).

Let us check for deadlock possibilities while using SN wraparound channel. Since SNe

or SNw Arcs are not present in the considered Arcs combination (EWs + WEs + NSe), SN

wraparound channel cannot create deadlock with SNe or SNw Arcs. Therefore, (EWs +

WEs + NSe + SN) is a compatible combination where SN wraparound channel has to use

only in first hop of a packet. We consider (EWs + WEs + NSe + SN) with XY-Turns as

Algorithm 3 and its deadlock freedom is analysed using DDG.

NSNSe

a

b

c d

a

b

c

(a) (b) (c)

a

b

Figure 6.8: Directional Dependency Graph for (a) NSe, (b) NS, (c) NSe and NS.

6.6.2.2 Routing steps for Algorithm 3

The routing steps using (EWs + WEs + NSe + SN) are presented in Algorithm 3. Routing

steps are similar as that of Algorithm 2. For using SN wraparound channel it is required to

check if the packet is injected from a South boundary router and whether hop count would

be saved due to SN wraparound channel. There is no mandatory movement after using SN.

Just follow XY-routing after SN.

If EWs Arc is applicable (line# 4 in Algorithm 2), the packet keeps on moving towards

East boundary. At the East boundary, it takes EW wraparound channel and reaches the

West boundary. In the next step, the packet moves one hop distance in the South direction

for the EWs Arc. After that, XY-routing is followed until it reaches the destination.

168

Combination of Arc Model and FirstHop Method

Algorithm 3 Arc and First Hop Algorithm

1: function ArcAndFirstHop(S,D)
2: . S = (xs, ys) and D = (xd, yd) are the source(S) and destination(D) co-ordinates of

a packet in an NxN Torus NoC. Between a source and destination pair, the X-distance
is ∆x = |xd − xs| and the Y-distance is ∆y = |yd − ys|. After each move, S is updated.
The packet reaches destination when S = D.

3: while ((xs 6= xd) ∨ (ys 6= yd)) do
4: if ((ys > yd) ∧ (xs > xd) ∧ (∆x > N/2)) then
5: EWs Arc is applicable. Keeps on moving in East direction.
6: Once East boundary is reached, move using EW channel.
7: Move one step South for the EWs Arc.
8: Follow XY-routing.
9: else if ((ys > yd) ∧ (xs < xd) ∧ (∆x > N/2)) then

10: WEs Arc is applicable. Keeps on moving in West direction.
11: Once West boundary is reached, move using WE channel.
12: Move one step South for WEs Arc.
13: Follow XY-routing.
14: else if ((xs < xd) ∧ (ys > yd) ∧ (∆y > N/2)) then
15: NSe Arc is applicable. Keeps on moving in North direction.
16: Once North boundary is reached, move using NS channel.
17: Move one step East for NSe Arc after taking the NS wraparound channel.
18: Follow XY-routing.
19: else if ((ys = 0) ∧ (∆y > N/2)
20: ∧ (The packet injected from current router)) then
21: SN wraparound channel is applicable.
22: The packet is in a south boundary router and injected from that router.
23: Move South(S) to take SN wraparound channel.
24: Follow XY-routing.
25: else
26: Follow XY-routing.
27: end if
28: end while
29: end function

If WEs Arc is applicable (line# 9 in Algorithm 3), the packet keeps on moving towards

West boundary. At the West boundary, it takes WE wraparound channel and reaches the

East boundary. In the next step, the packet moves one hop distance in the South direction

for the WEs Arc. After that, XY-routing is followed until it reaches the destination.

Similarly, a packet traverses using NSe Arc if condition of line#14 in Algorithm 3 is

satisfied. Conditions for taking Arcs ensure that EWs and WEs would not be taken at

bottom row and NSe would not be taken at right most column. Therefore, one Arc does

169

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

not end up with another consecutive Arc.

The condition for SN wraparound channel with first hop is shown in line# 19 in Al-

gorithm 3. The condition for SN wraparound channel is, the packet should injected from

a boundary router and using the wraparound channel helps in reducing hop counts. The

conditions for EWs, WEs, NSe Arcs and SN wraparound channel in first hop can be checked

at any order and it would not effect the algorithm. If none of the conditions for (EWs +

WEs + NSe + SN) are satisfied, control goes to line#26 and XY-routing is followed until

the packet reaches its destination. The conditions for Arcs and wraparound channels can

be checked in any order. It would not effect the routing of a packet even if the first hop

condition is checked first. The packets that are destined towards South-East direction and

South-West direction and the packets that are injected from the South boundary row and

destined towards North would get benefit from Algorithm 2 in saving hop count.

R1 R2 R3 R4 R5 R6 R7 R8

R9 R10 R11 R12 R13 R14 R15 R16

R17 R18 R19 R20 R21 R22 R23 R24

R25 R26 R27 R28 R29 R30 R31 R32

R33 R34 R35 R36 R37 R38 R39 R40

R41 R42 R43 R44 R45 R46 R47 R48

R49 R50 R51 R52 R53 R54 R55 R56

R57 R58 R59 R60 R61 R62 R63 R64

p1(47, 10)

p2 (60, 14)

p4(34, 23)

p3(21, 39)

p5(3, 51)

p6(10, 51)

Figure 6.9: Paths for packet p4(34, 23), p5(3, 51) and p6(10, 51) as per Algorithm 3

Example 6.2. As per Algorithm 3, packet p1(47, 10) and p2(60, 14) use EWs Arc and NSe

Arc, respectively. No Arc is used by the packet p3. The routing paths for packet p1(47, 10),

p2(60, 14) and p3(21, 39) are same as shown in Fig. 6.3. They are not shown here again.

170

Combination of Arc Model and FirstHop Method

The routing path for packet p4(34, 23), p5(3, 51) and p6(10, 51) in a 8x8 Torus NoC are

shown in Fig. 6.9. The packet p4(34, 23) uses WEs Arcs and the hop count saved is 7 - 5 =

2. Here, 7 is the hop count for for XY-distance and 5 is the hop counts due to use of WEs

Arc. For the packet p5(3, 51), SN wraparound channel with FirstHop is applicable. Hop

count saved is 6 - 2 = 4. Considering the packet p6(10, 51), SNe Arc is applicable. Since

SNe Arc is not included in Algorithm 3, the packet has not used any Arc. Hop count for

p6(10, 51) using XY-routing is 6. There is no saving in hop counts for p6(10, 51).

SW

SE

SN

NSe

EWs

E

(a)

WEs

k

l

s

a

b c

d

e

f

h

j

m
n

o

i

g

S

N

W E

SE SW

(b)

(c)

Figure 6.10: Deadlock freedom: (a) EWs, WEs, NSe Arcs and SN wraparound channel in first
hop (b) DDG representing deadlock freedom for EWs, WEs, NSe Arcs and SN wraparound channel
in first hop with XY-Turns

6.6.2.3 DDG to show Deadlock Freedom for Algorithm 3

The EWs, WEs and NSe Arcs with the SN wraparound channel in First Hop is shown in

Fig. 6.10(a). The WEs Arc introduces SW Turn and the EWs Arc introduces SE Turn. The

resultant Turn model due to these additional Turns is shown in Fig. 6.10(b). Since no cycle

formation is possible as per Turn model, the first condition of Theorem 6.2.1 for deadlock

freedom is satisfied.

171

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

For checking the second condition of Theorem 6.2.1, let us consider a directional depen-

dency graph using EWs, WEs and NSe Arcs in Fig. 6.10(b). Let us check if deadlock is

possible by resultant effects of EWs, WEs, NSe Arcs and SN wraparound channel. Let a

sequence of packets produce a directional dependency via vertices s → a → b → c → d →

e → f → g → h → i → j → k → l. For creating a cycle involving EWs Arc a NE Turn

is needed at some vertex k. Similarly, A NW turn is needed at a point k for spreading the

dependency into a WEs Arc. Since both NE and NW turns are not permitted in Algorithm

2, cycle creation is not possible using Arcs and Turns.

Both the conditions of Theorem 6.2.1 are satisfied for Algorithm 3. Therefore, Algorithm

3 using EWs, WEs, NSe Arcs Arcs and SN wraparound channel with XY-routing in the

Mesh sub-network is deadlock free.

6.7 Experimental Results

In this section, we have evaluated the effectiveness of the proposed algorithms for Torus

NoC in terms of saving in hop counts. We have also checked for the absence of deadlock

for the proposed algorithms by applying different traffic patterns to Torus NoCs of varying

grid sizes. The CFSM based simulation framework is used for all the experiments on the

proposed deadlock free routing algorithms for Torus. In case of deadlock, it would reports

deadlock with an exact deadlock scenario. If there is no deadlock, all packets gets delivered

and simulation completes reporting the savings in hop counts. The hop counts saved for a

packet with given source and destination is calculated as

Hop counts saved = (Manhattan distance between source and destination) - (Actual distance

traversed using wraparound channels).

Manhattan distance is simply the XY-distance between source and destination of a packet.

Alternately, Manhattan distance is nothing but the hop count between source and desti-

nation of a packet using XY-routing in Mesh sub-network. All the experiments on the

proposed algorithm are performed in an Intel Core i5 3.20GHz, 8GB RAM machine. All

the experimental results on hop count saving percentage presented in this section are the

172

Experimental Results

average of ten random simulation results.

Figure 6.11: Percentage of Hop counts saved by FirstHop Algorithm and Algorithm 1 using
uniform traffic.

6.7.1 Comparing FirstHop Algorithm with the Algorithm 1

In the first experiment, uniform traffic with injection rate 0.05 and 0.08 are given as input

to NoCs with different grid sizes. Simulation has been completed successfully for all the

experiments without any deadlock. Thus, there is no contradiction of experimental result

with the DDG analysis regarding deadlock freedom. The bar diagram in Fig. 6.11 shows

the percentage of saving in total hop counts by FirstHop Algorithm and Algorithm 1 for

Uniform traffic with injection rates 0.05 and 0.08. Saving in hop count by FirstHop algorithm

is better in comparison to Algorithm 1. The results indicates that saving in hop counts by

FirstHop algorithm decreases with the increase of NoC size. For Algorithm 1, saving in hop

counts does not very significantly with the increase of NoC size.

173

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

Table 6.1: Percentage of boundary routers in a Torus NoC

Torus NoC Total routers Boundary routers Boundary routers (%)

5x5 25 16 64 %

6x6 36 20 56 %

7x7 49 24 49 %

8x8 64 28 43 %

9x9 81 32 40 %

10x10 100 36 36 %

11x11 121 40 33 %

12x12 144 44 31 %

In case of the FirstHop algorithm, wraparound channels are applicable only for the

packets injected from the boundary routers. Therefore, the hop counts saving by FirstHop

Algorithm depends upon the percentage of traffic generated from boundary routers. Total

N*N numbers of routers are present in a NxN Torus NoC. Out of them, N + (N-1)*2 +

(N-2) numbers of routers are considered to be boundary routers that are connected via

wraparound channels. By observing smaller and bigger NoCs in Table 6.1, it is clear that

the percentage of the numbers of boundary routers for a smaller NoC is more than that of a

bigger NoC. Therefore, there are possibilities for more packets to be injected from boundary

routers in smaller NoCs. On the other hand, for bigger NoCs, less number of packets from

overall traffic are likely to be injected from boundary routers. Therefore, effectiveness of

wraparound channels in saving of hop counts decrease with the increase of NoC size in the

FirstHop Algorithm as reflected from the experiments in Fig. 6.11. In case of Arc Model

based algorithm, Arcs are applicable not only for packets generated from boundary nodes.

Therefore, effectiveness of Algorithm 1 does not effected adversely with increase of NoC size

in comparison to the FirstHop Algorithm.

6.7.1.1 Effects of the Percentage of Traffic Injected from the Boundary Routers

In this experiment we consider specific types of traffic where a fixed percentage of packets

are injected from boundary routers, i.e., for a fixed percentage of packets the sources are

174

Experimental Results

Figure 6.12: Percentage of Hop counts saved by FirstHop Algorithm and Algorithm 1 using traffic
samples with 10% and 25% packets injected from boundary routers.

some boundary routers. We use such traffic to compare the saving in hop counts by the

Algorithm 1 and the FirstHop Algorithm. For one experiment, we consider a traffic where

10% of the packets have sources in the boundary routers. For another experiment, we

consider another types of traffic where 25% of total packets are originated from boundary

routers. The saving of hop counts for both the experiments are shown in Fig. 6.12.

Experimental results show that Algorithm 1 saves more hop counts than that of the

FirstHop algorithm in most of the cases. Wraparound channels are applicable in the

FirstHop Algorithm only for the packets originating from boundary routers. Whereas,

this restriction is not imposed for Arcs. Therefore, Arcs are applicable for more number

of packets and saves more hop counts than FirstHop Algorithm. Another observation from

Fig. 6.12 is, saving in hop count increases with the increase of NoC size for both algorithms.

Wraparound channels from bigger NoCs are more effective in saving hop counts in com-

parison to smaller NoC. Therefore, saving in hop count increases with the increase of NoC

size when percentage of traffic injected from boundary routers are fixed. This experiment

shows that the proposed Algorithm 1 performs better than FirstHop algorithm when the

percentage of boundary packets are less than equal to 10%. When percentage of boundary

175

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

packets are 25%, the proposed Algorithm 1 performs better for 7x7 NoC on wards.

6.7.2 Comparisons of Algorithm 2 with Algorithm 1, Up*/Down*

Algorithm and FirstHop Algorithm

The Algorithm 1 and Algorithm 2 are two proposed deadlock free Arc based algorithms

for Torus. They use XY-Turns along with two Arcs and Three Arcs, respectively. In

this experiment, we compare the saving in hop counts by Algorithm 2 with Algorithm 1,

FirstHop algorithm [1] and Up*/Down* [10] algorithm. These experiments are performed

on the uniform traffic with injection rate 0.05.

Table 6.2: Hop count saved by Up*/Down*, FirstHop, Two Arcs (EWs + NSe) and Three Arcs
(EWs+WEs+NSe) algorithms

Torus % Hop count saved Wraparound channels used
NoC Up*/ First Algo 1 Algo 2 Up*/ First Algo 1 Algo 2

Down* Hop (2 Arcs) (3 Arcs) Down* Hop (2 Arcs) (3 Arcs)

5x5 - 21.18 9.71 5.09 7.61 60406 7650 4831 7250
6x6 - 26.03 8.23 4.75 7.12 52694 5267 3413 5024
7x7 - 28.56 7.81 4.79 6.49 64142 5788 3746 7105
8x8 - 29.80 6.92 4.65 6.16 57657 4537 3484 5120
9x9 - 33.89 5.83 4.61 6.11 66535 4613 4673 6739

10x10 - 36.90 5.21 4.48 6.04 59580 3854 3590 5005
11x11 - 39.11 5.13 4.42 5.91 68090 4073 4585 6346
12x12 - 40.03 4.92 4.25 5.66 63910 3473 3664 4922

In FirstHop Algorithm, resource dependency for deadlock is avoided by restricting

wraparound channels only for packets that are injected from boundary nodes [1]. Since

the number of boundary routers decrease with the increase of NoC size, saving of hop

counts also decrease with the increase of NoC size for the FirstHop algorithm as shown in

Table. 6.2. In case of Up*/Down* routing, a spanning tree is generated from the topol-

ogy under consideration. The path between any two routers in a Torus NoC are as per

the path in the corresponding spanning tree [10]. As a result, longer paths with unnec-

essary wraparound channels are used in many scenarios. For example, in one possible

spanning tree corresponding to Fig. 6.1, the path between two adjacent nodes 13 and 14

is 13 → 18 → 23 → 22 → 21 → 25 → 24 → 19 → 14. The number of times wraparound

176

Experimental Results

channels are used in the algorithms are also presented in Table. 6.2. The performance

of Up*/Down* routing is worst among all the algorithms even though the algorithm uses

wraparound channels heavily, as shown in Table. 6.2.

In case of Arc based Algorithms, since wraparound channels are applicable for pack-

ets injected from non boundary nodes as well, utility of wraparound channel decreases in

slower speed with increase of NoC size as compared to FirstHop algorithm with XY-Turns.

Therefore, decrease in saving of hop counts with the increase of NoC size are also slower for

Arc based routing. In the Algorithm 1 that uses two Arcs, savings of hop counts are not as

good as the FirstHop algorithm. In the improved algorithm that uses three Arcs (Algorithm

2), hop counts saving surpasses the FirstHop algorithm after 9x9 Torus NoC as shown in

Table. 6.2. This experiment concludes that the Algorithm 2 saves hop count better than

that of Algorithm 1 and Up*/Down* algorithm for all cases. From 9x9 NoC on wards, the

Algorithm 2 saves more hop counts than that of FirstHop algorithm.

Figure 6.13: Percentage of Hop counts saved by FirstHop Algorithm, Algorithm 2 and Algorithm
3 using uniform traffic.

177

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

6.7.3 Comparison for the Algorithm 3 with Algorithm 2 and FirstHop

Algorithm

In this experiment, we have considered Algorithm 2 which uses three Arcs and Algorithm

3 which uses three Arcs along with a wraparound channel. The wraparound channel is

used only in the first hop, i.e., by applying the FirstHop approach only for one wraparound

channel. These two algorithms are compared with FirstHop algorithm [1]. Since Up*/Down*

approach for deadlock freedom has not saved hop counts as shown in Table 6.2, this approach

is not considered in this experiment. Uniform traffic with injection rate 0.05 and 0.08 are

used for this experiment. The percentage of hop counts saved by FirstHop Algorithm,

Algorithm 2 and Algorithm 3 are shown in Fig. 6.13. Though the experimental results for

Algorithm 2 is already shown in Table. 6.2, we have considered that algorithm again so that

the changes in hop count savings become visible as compared to Algorithm 3. Experimental

results show that the Algorithm 3 saves more hop counts than Algorithm 2 and FirstHop

algorithm for all the cases. The experiment suggest that combining FirstHop approach with

Arc based algorithm results in efficient routing algorithm for Torus NoC without using any

additional resource.

6.7.3.1 Effects of the Percentage of Traffic Injected from the Boundary Routers

As usability of wraparound channels depends upon the traffic that are injected form or near

to boundary routers, we have experimented on this behaviour for Algorithm 2 and Algorithm

3. Fig. 6.14 shows the saving of hop counts when two types of traffic where 10% and 25%

packets of overall traffic are injected from boundary routers. Both the experiments reflect

that, all three algorithm perform better when more traffics are injected from boundary

nodes. If this percentage is reduced, saving in hop count by FirstHop algorithm reduced

drastically. Algorithm 3 and Algorithm 2 save more hop count that First Hop algorithm

when % of packets injected from boundary routers are low. Moreover, if the percentage

of packets injected from the boundary routers are kept fixed irrespective of NoC size, the

saving in hop count gradually increases with the increase of NoC size as shown in Fig. 6.14.

178

Experimental Results

Figure 6.14: Percentage of Hop counts saved by FirstHop Algorithm, Algorithm 2 and Algorithm
3 using traffic with 10% and 25% packets are injected from boundary routers.

Figure 6.15: Hop count saved by Up*/Down* Algorithm, FirstHop Algorithm, Algorithm 1,
Algorithm 2 and Algorithm 3 using PARSEC benchmarks in an 8x8 Torus NoC.

6.7.4 Hop Count Savings for PARSEC Benchmark Suites

We have performed experiments on hop count savings for all the five algorithms, Up*/Down*

Algorithm, FirstHop Algorithm, Algorithm 1, Algorithm 2 and Algorithm 3, using traffic

179

Deadlock Free Routing Algorithms for Torus NoC using Arc Model

patterns from the PARSEC benchmark suites [104]. PARSEC benchmark traffic from five

different workloads, namely Bodyatrack, Facesim, Ferret, x264, and Vips are applied to an

8x8 Torus NoC. No deadlock is detected in any of the algorithms. The experimental results

are shown in Fig. 6.15. For the Up*/Down* routing, there is no saving in hop counts for all

five PARSEC workloads as like the uniform traffic experimental results shown in Table. 6.2.

For the FirstHop routing with the PARSEC benchmark suites, the saving in hop count is less

than 2.5% for all cases. The hop count savings for Up*/Down* and FirstHop algorithms in

PARSEC benchmark traffics are lower than the Arc Model based algorithms. Algorithm 1,

Algorithm 2 and Algorithm 3 save more hop counts in the PARSEC benchmark traffics in

comparison to FirstHop and Up*/Down* routing Algorithms. Algorithm 1 saves more than

5% hop counts for Bodytrack and x264 benchmarks. The hop count saved by Algorithm 2

and Algorithm 3 is almost at the same level for PARSEC benchmark suites. The FirstHop

approach is not so effective in saving hop counts for PARSEC benchmark suites, as re-

flected in the experimental results. Considering the Bodytrack workload, the saving in hop

counts is more than 10% for Algorithm 2 and Algorithm 3. Considering the x264 and Vips

workload, the saving is more than 7% for Algorithm 2 and Algorithm 3. Considering the

Facesim and Ferret, the saving is more than 5% for Algorithm 2 and Algorithm 3. Overall,

our proposed Arc based algorithms outperform the Up*/Down* and FirstHop algorithms

for the PARSEC benchmark suites.

6.8 Conclusions

Arc model is useful for deadlock avoidance in Torus NoC. Avoiding deadlock in Torus NoC

without using dedicated buffer and VC is presented using Arcs in this work. Arc combina-

tions along with a set of permitted Turns in the Mesh sub-network are used for developing

routing algorithms for Torus NoC. The resultant algorithm is analysed for deadlock free-

dom using Directional Dependency Graph. Many Arc based algorithms are possible by

considering different combination of Arcs along with a set of permitted Turns in the Mesh

sub-network. As an application of Arc model three such algorithms are demonstrated using

180

Conclusions

Arcs with XY-Turns in the Mesh sub-network. In Algorithm 3 we have demonstrated the

usability of Arcs along with FirstHop approach as well. Different traffic patterns are also

applied to Torus NoC of different sizes using CFSM based simulation framework for checking

the effectiveness of Arc based algorithms in saving hop counts. Experimental results show

that the Algorithm 2 and Algorithm 3 save overall hop counts better than two well known

competitive algorithms. This work opens up a development approach for many such dead-

lock free routing algorithms for Torus NoC by considering various well known deadlock free

routing algorithms in the Mesh sub-network such as West-first, North-last, Negative-first

etc. and a combination of Arcs from the Arc model.

181

7
Conclusions and Future Perspectives

In this chapter, we summarize the thesis by highlighting our contributions. The possible

future directions of research based on this work also briefly highlighted in this chapter.

7.1 Summary of Contributions

7.1.1 FSM based NoC Model for Verification of Starvation

Modeling components of NoC in detail and maintaining synchronization between them using

FSM are presented in this chapter. We have verified starvation, progress and transfer of

packets between routers using our FSM models. Considering the complete NoC results in

state space explosion problem. Therefore we have introduced the concept of active window

183

Conclusions and Future Perspectives

in this work to expedite the verification process. Specifically, the verification of starvation

in each active window is performed in parallel thread to reduce the overall verification time.

Deadlock is a globally dependent property and complete NoC need to be considered for

verifying deadlock. Therefore, verification of deadlock with detailed NoC model is found to

be infeasible with the FSM models. Even application specific deadlock detection is difficult

in the FSM based model since maintaining the global synchronization in the entire NoC at

a time is a cumbersome process. Therefore, we have taken CFSM based approach in our

next work where simulation is carried out.

7.1.2 Application Specific Deadlock Detection using CFSM based

NoC Model

We have developed a CFSM based NoC model and used that model for developing a formal

simulation framework in this work. In the CFSM based simulation framework, the synchro-

nization amongst NoC components are maintained elegantly using the message queues of

the CFSM model. This framework is useful in detection of application specific deadlock.

Our framework can identify confirm deadlock on a given traffic pattern with a given routing

algorithm. Once deadlock is detected, the exact deadlock scenario for resource dependency

is also reported. The deadlock scenarios with detailed resource dependency help in under-

standing the causes of deadlock and in applying appropriate measures for its removal. We

have also automated the CFSM model generation process for both Mesh and Torus NoC.

With the help of this CFSM based simulation framework, we have experimentally shown

deadlock in dynamic XY-routing [8] in Mesh and Torus NoC. Moreover, our experimental

results have detected deadlock for XY-routing in Torus NoC. Our framework identifies that

some of the deadlock warnings in Booksim simulator are not actually a deadlock. Exper-

imental deadlock scenarios in Torus NoC with detailed resource dependency have shown

that wraparound channels are the root cause of deadlock in Torus NoC. This leads us to

analyse the Torus NoC further and come up with Arc model in our next work.

184

Summary of Contributions

7.1.3 Deadlock Representation and Avoidance Approach in Torus

NoC

We have proposed Directional Dependency Graph (DDG) for representing deadlock in a

more informative way. The DDG is useful for predicting deadlock and showing of deadlock

freedom. The Turn information, cycle information and wraparound channel information

are incorporated in the DDG. Information about intermediate routers, that do not act

as prime factor for causing deadlock, are eliminated in the DDG representation for the

sake of simplicity. For avoiding deadlock in Torus NoC, we have proposed the Arc model.

The Arc model is useful for avoiding deadlock in Torus without using VC or additional

buffers. Behaviour of Arcs with respect to XY-Turns are analysed using DDG. Findings

from these analysis are verified experimentally. We have presented certain thumb rules in

terms of Lemmas for selecting deadlock free Arcs with respect to XY-Turns in the Mesh

sub-network. Using this, we develop various routing algorithms for Torus NoC in the next

chapter.

7.1.4 Deadlock Free Routing Algorithms for Torus NoC

We have presented three deadlock free routing algorithms for Torus NoC that do not use

VC or additional buffer for avoiding deadlocks in this work. Our deadlock free routing

algorithms in Torus NoC use a subset of Arcs and the permitted Turns as a deadlock free

routing algorithm in the Mesh sub-network. The first algorithm is designed using two Arcs

with XY-Turns. The second algorithm is designed using three Arcs with XY-Turns. In the

third algorithm, we have used three Arcs and one wraparound channel. The wraparound

channel is used in the first hop. Deadlock freedom for all the algorithms are shown using

DDG. Experimental results show that our Arc based algorithms take shorter routing paths

in comparison to Up*/Down* and FirstHop approaches.

185

Conclusions and Future Perspectives

7.2 Future Directions

The contribution of this thesis can be extended in a number of ways. Some of the possible

future research directions of this thesis are stated below.

• We believe the FSM based modeling approach demonstrated in this work should suc-

cessfully applicable for verification of system with manageable state space. We have

shown how to model the hand shacking among asynchronous models of NoC using

FSMs and CFSMs. Such hand shacking is widely used in many other Internet of

Things (IoT) applications such as Vehicular Network, Smart Home, Security Moni-

toring Systems, Automated Farming Equipment, Automated Irrigation in Farming,

Wearable Health Monitors, Shipping Container and Logistics Tracking System, etc..

Our modeling concept of handshaking can be adapted in such system as well.

• There is a scope for enhancing our CFSM based simulation framework to verify fault

tolerant capability and verify livelock freedom along with deadlock freedom. Due

to the manufacturing defect or any other faulty circumstances, it is important that

an NoC should have fault tolerant capability. A fault tolerant algorithm is subject

to change or misroute packets on encountering faulty connections. When a routing

algorithm misroutes a packet, the livelock phenomenon can arise [108]. Some of the

packets might end up in loops and suffer from livelock. Therefore, while designing a

fault tolerant routing algorithm, avoiding both deadlock and livelock has importance.

For livelock detection, the use of path tracing technique in our CFSM based simulation

framework is one possible solution as used in [109].

• Another future direction of our work is to upgrade the CFSM based framework so

that it can deal with more topologies like 3D-Mesh topology, butterfly topology, ring

topology and other recently proposed topologies [110–112]. At present, two topologies

namely 2D-Mesh and 2D-Torus are implemented in our CFSM based framework.

• Another possible future direction of our work is to study the behaviour of Arc model

with respect to other routing algorithms. We have presented the behaviour Arc model

186

Conclusions

with only XY-Turns. The example of routing algorithms presented in this work also

considers only XY-Turns. There are scopes for developing better routing algorithms

by considering other combination of Turns. Using Arc model with better Turn distri-

bution based on NoC location, as applied in Odd-even [90] and Abacus routing [106],

is another future direction of our work.

• In future, we also plan to automate the DDG based deadlock detection process while

using Arc model and a set of Turns in Torus NoC. Given a set of permitted Turns

and a set of Arcs as an input, the program should be able to detect possible cycles. If

no cycle is possible, the program should declare deadlock freedom for the given set of

Turns and Arcs.

• Security issues are major concern while developing NoC using different third party

Intellectual Property (IP) [113]. Enhancing the formal model of NoC for detecting

different security attacks in NoC and detection of malicious activity by an intentionally

implanted hardware Trojan in NoC is another future direction from this work.

• Analysis of hardware overheads of Arc Model based algorithms and how to minimize

the overhead is another future direction of our work.

7.3 Conclusions

Formal modeling and verification of a system like NoC is useful to reduce post fabrication

maintenance costs by detecting bugs during design phase before the actual system is man-

ufactured. Formal modeling at a detailed level for a tiny system with manageable state

space is very promising for detecting defects during the early design phase. Whereas, state

space explosion is the major challenge in verification of a vast system like NoC. In such

cases, since model checking based verification using component-wise detailed model is not

feasible, we have shown that simulation on a detailed level formal model is useful. Deadlock

is so fatal to a system like NoC that its avoidance is a prime concern in designing a routing

187

Conclusions and Future Perspectives

algorithm. A framework that can detect confirmed deadlock along with a detailed resource

dependency scenario help in designing deadlock free routing algorithm for NoCs. This work

shows that formal modeling approach could be helpful for finding deadlock and possibly

other flaws as well in a routing algorithm and to rectify them. We have demonstrated such

a deadlock free routing algorithm design approach for Torus NoC with the help of formal

model and have presented three algorithms in the thesis. Many such algorithms are possible

using the different combinations of Arcs and Turns. Turn distribution approach can also

be applied to such algorithms for further improvement. We believe that our formal model

based simulation framework would be useful for other applications like detection of livelock,

verification of fault tolerant NoC, etc..

;;=8=<<

188

Dissemination out of this work

Journals:

1. Surajit Das, Chandan Karfa and Santosh Biswas. “Formal Modeling of Network-on-

Chip Using CFSM and its Application in Detecting Deadlock”, IEEE Transactions on

Very Large Scale Integration Systems (TVLSI) , vol. 28, no. 4, pp. 1016-1029, April

2020.

2. Surajit Das and Chandan Karfa. “Arc Model and DDG: Deadlock Avoidance and

Detection in Torus NoC”, IEEE Embedded Systems Letters (ESL) . pp. 1-4, September

2021.

Conferences:

1. Surajit Das, Chandan Karfa and Santosh Biswas, “xMAS Based Accurate Modeling

and Progress Verification of NoCs”, VLSI Design and Test (VDAT) , vol. 711, pp.

792–804, July 2017.

2. Surajit Das and Chandan Karfa, “Deadlock Avoidance in Torus NoC Applying Con-

trolled Move via Wraparound Channels”, Embedded Computing and System Design

(ISED), Springer Singapore, pp. 87–99, Jan 2022.

3. Surajit Das and Chandan Karfa, “Formal Modeling and Verification of Starvation-

Freedom in NoCs”, Embedded Computing and System Design (ISED) Springer Singa-

pore, pp. 101–114, Jan 2022.

Journals under communication

1. Surajit Das and Chandan Karfa, “A Design Approach of Deadlock Free Routing

Algorithms for Torus NoC”, Communicated in a Leading Journal

2. Surajit Das, Chandan Karfa and Santosh Biswas, “Accelerating NoC Verification

using a Complete Model and Active Window”, Communicated in a Leading Journal

;;=8=<<

189

References

[1] C. J. Glass and L. M. Ni. The turn model for adaptive routing. In JACM, volume 41,

pages 874–902, September 1994.

[2] Dally and Seitz. Deadlock-free message routing in multiprocessor interconnection

networks. IEEE Transactions on Computers, C-36(5):547–553, May 1987.

[3] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann, first edition, 2003.

[4] G.E. Moore. Cramming More Components Onto Integrated Circuits. Proceedings of

the IEEE, 86(1):82–85, jan 1998.

[5] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R.

LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions. IEEE

Journal of Solid-State Circuits, 9(5):256–268, 1974.

[6] Rajeev Balasubramonian, Norman P Jouppi, and Naveen Muralimanohar. Multi-Core

Cache Hierarchies. Morgan and Claypool Publishers, 2011.

[7] Yongfeng Xu, Jianyang Zhou, and Shunkui Liu. Research and analysis of routing

algorithms for noc. In 3rd International Conference on Computer Research and De-

velopment, volume 2, pages 98–102, March 2011.

[8] Ming Li, Qing-An Zeng, and Wen-Ben Jone. Dyxy - a proximity congestion-aware

deadlock-free dynamic routing method for network on chip. In 43rd ACM/IEEE

DAC, pages 849–852, July 2006.

[9] C. J. Glass and L. M. Ni. The turn model for adaptive routing. In [1992] 19th ISCA,

pages 278–287, May 1992.

[10] M.D. Schroeder et al. Autonet: a high-speed, self-configuring local area network using

point-to-point links. IEEE J-SAC, 9(8):1318–1335, 1991.

190

REFERENCES

[11] J. Duato. A new theory of deadlock-free adaptive multicast routing in wormhole

networks. In Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed

Processing, pages 64–71, Dec 1993.

[12] José Duato. A Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole

Networks. IEEE Transactions on Parallel and Distribute System, 6(9):976–987, sep

1995.

[13] J. Duato and T. M. Pinkston. A general theory for deadlock-free adaptive routing

using a mixed set of resources. IEEE TPDS, 12(12):1219–1235, 2001.

[14] M. Ebrahimi and M. Daneshtalab. Ebda: A new theory on design and verification

of deadlock-free interconnection networks. In ACM/IEEE 44th ISCA, pages 703–715,

2017.

[15] M. Parasar, H. Farrokhbakht, N. Enright Jerger, P. V. Gratz, T. Krishna, and J. San

Miguel. Drain: Deadlock removal for arbitrary irregular networks. In HPCA, pages

447–460, 2020.

[16] A. Ramrakhyani, P. V. Gratz, and T. Krishna. Synchronized progress in interconnec-

tion networks (spin): A new theory for deadlock freedom. In ISCA, pages 699–711,

2018.

[17] M. Parasar, N. Jerger, P. Gratz, J. Miguel, and T. Krishna. Swap: Synchronized

weaving of adjacent packets for network deadlock resolution. In 2019 52nd IEEE/ACM

MICRO, 2019.

[18] Balaji Venu and Ashwani Singh. Formal verification methodology considerations for

network on chips. In International Conference on Advances in Computing, Commu-

nications and Informatics (ICACCI-2012), pages 220–225, 2012.

[19] Harry D. Foster. Trends in functional verification: A 2014 industry study. In 2015

52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2015.

[20] Senwen Kan, Matthew Lam, Tyler Porter, and Jennifer Dworak. A case study: Pre-

silicon soc ras validation for noc server processor. In 2016 17th International Workshop

on Microprocessor and SOC Test and Verification (MTV), pages 19–24, 2016.

[21] Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli, Stefano Soffia, and

Marco Roveri. Semi-formal functional verification by efsm traversing via nusmv. In

IEEE International High Level Design Validation and Test Workshop (HLDVT), pages

58–65, 2010.

191

REFERENCES

[22] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic

model verifier. CAV ’99, pages 495–499, London, UK, UK, 1999. Springer-Verlag.

[23] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–

295, May 1997.

[24] Nan Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw,

J. Kim, and W. J. Dally. A detailed and flexible cycle-accurate network-on-chip

simulator. In 2013 IEEE ISPASS, pages 86–96, April 2013.

[25] N. Binkert, B. Beckmann, G. Black, Steven K. Reinhardt, A. Saidi, A. Basu, J. Hest-

ness, Derek R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit.

News, 39(2):1–7, August 2011.

[26] N. Agarwal, T. Krishna, L. Peh, and N. K. Jha. Garnet: A detailed on-chip network

model inside a full-system simulator. In 2009 IEEE ISPASS, pages 33–42, April 2009.

[27] J. Duato. A necessary and sufficient condition for deadlock-free adaptive routing

in wormhole networks. IEEE Transactions on Parallel and Distributed Systems,

6(10):1055–1067, Oct 1995.

[28] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu. Adaptive

bubble router: a design to improve performance in torus networks. In International

Conference on Parallel Processing, pages 58–67, 1999.

[29] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo, and J.M. Prellezo. The

adaptive bubble router. J. Parallel Distrib. Comput., 61(9):1180–1208, September

2001.

[30] S. Ma, Z. Wang, Z. Liu, and N. E. Jerger. Leaving one slot empty: Flit bubble flow

control for torus cache-coherent nocs. IEEE Transactions on Computers, 64(3):763–

777, 2015.

[31] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A generic model for formally

verifying noc communication architectures: A case study. In NOCS’07, pages 127–

136, May 2007.

[32] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. Executable formal specification

and validation of noc communication infrastructures. In Symposium on Integrated

Circuits and System Design, pages 176–181. ACM, 2008.

192

REFERENCES

[33] S. Ray and R. K. Brayton. Scalable progress verification in credit-based flow-control

systems. In DATE, pages 905–910, March 2012.

[34] V. A. Palaniveloo and A. Sowmya. Application of formal methods for system-level

verification of network on chip. In 2011 IEEE Computer Society Annual Symposium

on VLSI, pages 162–169, July 2011.

[35] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. Hermes: an infrastructure

for low area overhead packet-switching networks on chip. Integration, 38(1):69 – 93,

2004.

[36] Y. Chen, W. Su, P. Hsiung, Y. Lan, Y. Hu, and S. Chen. Formal modeling and verifi-

cation for network-on-chip. In The 2010 International Conference on Green Circuits

and Systems, pages 299–304, June 2010.

[37] Z. Zhang. Verification Methodologies for Fault-Tolerant Network-On-Chip Systems.

Ph.D. Dissertation, Department of Electrical and Computer Engineering, The Uni-

versity of Utah, USA, 2016.

[38] D. E. Holcomb, A. Gotmanov, M. Kishinevsky, and S. A. Seshia. Compositional

performance verification of noc designs. In MEMCODE2012, pages 1–10, July 2012.

[39] Surajit Das, Chandan Karfa, and Santosh Biswas. xmas based accurate modeling and

progress verification of nocs. In 21st International Symposium on VLSI Design and

Test (VDAT 2017) (Accepted). IEEE, 2017.

[40] D. Brand and P. Zafiropulo. On communicating finite-state machines. volume 30,

pages 323–342. ACM, April 1983.

[41] S. Das, C. Karfa, and S. Biswas. Formal modeling of network-on-chip using cfsm

and its application in detecting deadlock. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 28(4):1016–1029, 2020.

[42] Michael Huth and Mark Rayan. Logic in Computer Science. Cambridge University

Press, 2004.

[43] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation

and Mind Series). The MIT Press, 2008.

[44] K.K. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[45] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco

Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An

193

REFERENCES

open source tool for symbolic model checking. In Ed Brinksma and Kim Guldstrand

Larsen, editors, CAV ’2002, pages 359–364, Berlin, Heidelberg, 2002. Springer Berlin

Heidelberg.

[46] Kunal Banerjee, Chittaranjan Mandal, and Dipankar Sarkar. Extending the scope

of translation validation by augmenting path based equivalence checkers with smt

solvers. In 18th International Symposium on VLSI Design and Test, pages 1–6, 2014.

[47] Katell Morin-Allory, Marc Boulé, Dominique Borrione, and Zeljko Zilic. Validat-

ing assertion language rewrite rules and semantics with automated theorem provers.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

29(9):1436–1448, 2010.

[48] Alexandre Riazanov and Andrei Voronkov. Limited resource strategy in resolution

theorem proving. Journal of Symbolic Computation, 36(1):101–115, 2003. First Order

Theorem Proving.

[49] F. Verbeek and J. Schmaltz. Automatic verification for deadlock in networks-on-

chips with adaptive routing and wormhole switching. In ACM/IEEE International

Symposium, pages 25–32, May 2011.

[50] F. Verbeek and J. Schmaltz. Easy formal specification and validation of unbounded

networks-on-chips architectures. ACM Trans. Des. Autom. Electron. Syst., 17(1):1:1–

1:28, January 2012.

[51] Sheila Nurul Huda. Semantic on promela dynamic process creation in concurrent sys-

tems. In 2016 International Conference on Instrumentation, Control and Automation

(ICA), pages 44–47, 2016.

[52] Ying-Cherng Lan, Shih-Hsin Lo, Yueh-Chi Lin, Yu-Hen Hu, and Sao-Jie Chen. Binoc:

A bidirectional noc architecture with dynamic self-reconfigurable channel. In Pro-

ceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip,

NOCS ’09, pages 266–275, 2009.

[53] Pao-Ann Hsiung and F. Wang. A state graph manipulator tool for real-time system

specification and verification. In Proceedings Fifth International Conference on Real-

Time Computing Systems and Applications (Cat. No.98EX236), pages 181–188, 1998.

[54] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras. xmas: Quick formal modeling of com-

munication fabrics to enable verification. IEEE Design Test of Computers, 29(3):80–

88, June 2012.

194

REFERENCES

[55] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras. Quick formal modeling of commu-

nication fabrics to enable verification. In 2010 IEEE International High Level Design

Validation and Test Workshop (HLDVT), pages 42–49, June 2010.

[56] D. E. Holcomb, A. Gotmanov, M. Kishinevsky, and S. A. Seshia. Compositional

performance verification of noc designs. In MEMCODE2012, pages 1–10, July 2012.

[57] Alexander Gotmanov, Satrajit Chatterjee, and Michael Kishinevsky. Verifying

deadlock-freedom of communication fabrics. In Proceedings of the 12th International

Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI’11,

pages 214–231, Berlin, Heidelberg, 2011. Springer-Verlag.

[58] F. Verbeek, P. M. Yaghini, A. Eghbal, and N. Bagherzadeh. Advocat: Automated

deadlock verification for on-chip cache coherence and interconnects. In 2016 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1640–1645, March

2016.

[59] S. J. C. Joosten and J. Schmaltz. Automatic extraction of micro-architectural mod-

els of communication fabrics from register transfer level designs. In 2015 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1413–1418, March

2015.

[60] S. J. C. Joosten and J. Schmaltz. Scalable liveness verification for communication

fabrics. In 2014 Design, Automation Test in Europe Conference Exhibition (DATE),

pages 1–6, March 2014.

[61] F. Burns, D. Sokolov, and A. Yakovlev. Gals synthesis and verification for xmas

models. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE),

pages 1419–1424, March 2015.

[62] F. Verbeek and J. Schmaltz. Towards the formal verification of cache coherency at

the architectural level. ACM Trans. Des. Autom. Electron. Syst., pages 20:1–20:16,

July 2012.

[63] P. van Wesel and J. Schmaltz. Formal micro-architectural analysis of on-chip ring

networks. DAC ’18, pages 94:1–94:6. ACM, 2018.

[64] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength veri-

fication tool. In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Computer

Aided Verification, pages 24–40, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[65] S. Das, C. Karfa, and S. Biswas. xmas based accurate modeling and progress verifi-

cation of nocs. In VDAT 2017, June 29-July 2, pages 792–804.

195

REFERENCES

[66] Maryna Miroschnyk, Alexander Shkil, Dariia Rakhlis, Elvira Kulak, Inna Filippenko,

and Mykyta Malakhov. Hardware implementation of timed logical control fsm. In

2020 IEEE East-West Design Test Symposium (EWDTS), pages 1–6, 2020.

[67] Su-Fu Kuo and Cheng-Wen Wu. Symbiotic controller design using a memory-based

fsm model. In 2018 IEEE 27th International Symposium on Industrial Electronics

(ISIE), pages 874–879, 2018.

[68] Xiaomei Wan and Guohua Liu. Complexity of constructing fsm model of artifact

lifecycle. In 2014 10th International Conference on Semantics, Knowledge and Grids,

pages 29–32, 2014.

[69] Ivan Zuzak, Ivan Budiselic, and Goran Delac. Formal modeling of restful systems

using finite-state machines. In Sören Auer, Oscar Dı́az, and George A. Papadopoulos,

editors, Web Engineering, pages 346–360, Berlin, Heidelberg, 2011. Springer Berlin

Heidelberg.

[70] Tao He and Huaikou Miao. Modeling and composition of web application components

using extended fsm. In 2008 Fourth International Conference on Natural Computation,

volume 6, pages 363–368, 2008.

[71] Hrushikesha Mohanty, Jitesh Mulchandani, Deepak Chenthati, and R.K. Shyamasun-

dar. Modeling web services with fsm modules. In First Asia International Conference

on Modelling Simulation (AMS’07), pages 100–105, 2007.

[72] Sunghyun Lee, Sungjoo Yoo, and Kiyoung Choi. An intra-task dynamic voltage scaling

method for soc design with hierarchical fsm and synchronous dataflow model. In

Proceedings of the International Symposium on Low Power Electronics and Design,

pages 84–87, 2002.

[73] Dohyung Kim and Soonhoi Ha. Asynchronous interaction between fsm and dataflow

models. In ICVC ’99. 6th International Conference on VLSI and CAD (Cat.

No.99EX361), pages 103–106, 1999.

[74] J. Rubin and C.H. West. An improved protocol validation technique. Computer

Networks (1976), 6(2):65 – 73, 1982.

[75] Mohamed G. Gouda and Ji Han. Protocol validation by fair progress state exploration.

Technical report, Austin, TX, USA, 1984.

[76] Yao-Tin Yu and M. Gouda. Deadlock detection for a class of communicating finite

state machines. IEEE Transactions on Communications, 30(12):2514–2518, December

1982.

196

REFERENCES

[77] M.G. Gouda, E.G. Manning, and Y.T. Yu. On the progress of communication between

two finite state machines. Information and Control, 63(3):200 – 216, 1984.

[78] P. Bogdan, M. Kas, R. Marculescu, and O. Mutlu. Quale: A quantum-leap inspired

model for non-stationary analysis of noc traffic in chip multi-processors. In Fourth

ACM/IEEE NOCS, pages 241–248, 2010.

[79] P. Bogdan and R. Marculescu. Non-stationary traffic analysis and its implications on

multicore platform design. IEEE TCAD, 30(4):508–519, 2011.

[80] U. Y. Ogras, P. Bogdan, and R. Marculescu. An analytical approach for network-on-

chip performance analysis. IEEE TCAD, 29(12):2001–2013, 2010.

[81] Z. Qian, D. Juan, P. Bogdan, C. Tsui, D. Marculescu, and R. Marculescu. Network-on-

chips using learning-based support vector regression model. In DATE, pages 354–357,

2013.

[82] Z. Qian, D. Juan, P. Bogdan, C. Tsui, D. Marculescu, and R. Marculescu. A com-

prehensive and accurate latency model for network-on-chip performance analysis. In

ASP-DAC, pages 323–328, 2014.

[83] U. Y. Ogras and R. Marculescu. Analytical router modeling for networks-on-chip

performance analysis. In DATE ’07, pages 1–6, April 2007.

[84] J. M. Martinez-Rubio, P. Lopez, and J. Duato. A cost-effective approach to deadlock

handling in wormhole networks. IEEE TPDS, 12(7):716–729, July 2001.

[85] J. M. M. Rubio, P. Lopez, and J. Duato. Fc3d: flow control-based distributed deadlock

detection mechanism for true fully adaptive routing in wormhole networks. IEEE

TPDS, 14(8):765–779, Aug 2003.

[86] R. Al-Dujaily, T. Mak, F. Xia, A. Yakovlev, and M. Palesi. Embedded transitive

closure network for runtime deadlock detection in networks-on-chip. IEEE TPDS,

23(7):1205–1215, July 2012.

[87] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,

M. Horowitz, and M.S. Lam. The stanford dash multiprocessor. Computer, 25(3):63–

79, 1992.

[88] T. G. Mattson and G. Henry. An overview of the intel tflops supercomputer. Intel

Technology J., 1:1–12, 1998.

197

REFERENCES

[89] W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu. Comparison research between xy

and odd-even routing algorithm of a 2-dimension 3x3 mesh topology network-on-chip.

In 2009 WRI Global Congress on Intelligent Systems, volume 3, pages 329–333, May

2009.

[90] Ge-Ming Chiu. The odd-even turn model for adaptive routing. IEEE TPDS,

11(7):729–738, 2000.

[91] Terrence Mak, Peter Y. K. Cheung, Kai-Pui Lam, and Wayne Luk. Adaptive routing

in network-on-chips using a dynamic-programming network. IEEE Transactions on

Industrial Electronics, 58(8):3701–3716, 2011.

[92] Poona Bahrebar and Dirk Stroobandt. Adaptive and reconfigurable bubble routing

technique for 2d torus interconnection networks. In 2017 12th International Sympo-

sium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pages

1–8, 2017.

[93] Antonio Robles-Gomez, Aurelio Bermudez, and Rafael Casado. A deadlock-free dy-

namic reconfiguration scheme for source routing networks using close up*/down*

graphs. IEEE Transactions on Parallel and Distributed Systems, 22(10):1641–1652,

2011.

[94] J.C. Sancho, A. Robles, and J. Duato. An effective methodology to improve the

performance of the up*/down* routing algorithm. IEEE Transactions on Parallel and

Distributed Systems, 15(8):740–754, 2004.

[95] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct

networks. Computer, 26(2):62–76, Feb 1993.

[96] Dally and Seitz. The torus routing chip. Distributed Computing, 1(4):187–196, 1986.

[97] D. Xiang and W. Luo. An efficient adaptive deadlock-free routing algorithm for torus

networks. IEEE TPDS, 23(5):800–808, 2012.

[98] Lizhong Chen and Timothy M. Pinkston. Worm-bubble flow control. In Proceed-

ings of the 2013 IEEE 19th International Symposium on High Performance Computer

Architecture (HPCA), HPCA ’13, page 366–377, USA, 2013. IEEE Computer Society.

[99] C. Carrion, R. Beivide, J.A. Gregorio, and F. Vallejo. A flow control mechanism to

avoid message deadlock in k-ary n-cube networks. In Proceedings Fourth International

Conference on High-Performance Computing, pages 322–329, 1997.

198

REFERENCES

[100] Xiao Canwen, Zhang Minxuan, Dou Yong, and Zhao Zhitong. Dimensional bubble flow

control and fully adaptive routing in the 2-d mesh network on chip. In 2008 IEEE/IFIP

International Conference on Embedded and Ubiquitous Computing, volume 1, pages

353–358, 2008.

[101] S. El-Ashry, M. Khamis, H. Ibrahim, A. Shalaby, M. Abdelsalam, and M. W. El-

Kharashi. On error injection for noc platforms: A uvm-based generic verification

environment. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 39(5):1137–1150, 2020.

[102] Peter Linz. An Introduction to Formal Language and Automata. Jones and Bartlett

Learning, fifth edition, 2012.

[103] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann, first edition, 2003.

[104] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, USA, 2011.

[105] Leonard Kleinrock. Queueing Systems. Wiley, vol2 edition, 1976.

[106] B. Fu et al. An abacus turn model for time/space-efficient reconfigurable routing. In

ISCA, pages 259–270, 2011.

[107] M. Dehyadgari, M. Nickray, A. Afzali-kusha, and Z. Navabi. Evaluation of pseudo

adaptive xy routing using an object oriented model for noc. In 2005 International

Conference on Microelectronics, pages 5 pp.–, 2005.

[108] M. Coli and P. Palazzari. An adaptive deadlock and livelock free routing algorithm.

In Proceedings Euromicro Workshop on Parallel and Distributed Processing, pages

288–295, 1995.

[109] Vahid Janfaza and Elaheh Baharlouei. A new fault-tolerant deadlock-free fully adap-

tive routing in noc. In 2017 IEEE East-West Design Test Symposium (EWDTS),

pages 1–6, 2017.

[110] Chun-Ho Cheng, Hong-Lin Wu, Chi-Hsiu Liang, Chao-Chin Li, Chun-Ming Chen,

Po-Lin Huang, Sang-Lin Huang, and Chi-Chuan Hwang. Equality noc: A novel noc

topology for high performance and energy efficiency. In 2020 International Symposium

on Computer, Consumer and Control (IS3C), pages 83–86, 2020.

[111] Hossein Doroud, Mahsa Ghorbanian, and Reza Sabbaghi-Nadooshan. Square topol-

ogy: A novel topology for nocs. In 2011 NORCHIP, pages 1–4, 2011.

199

REFERENCES

[112] Yung-Chang Chang and Ching-Te Chiu. A study of noc topologies and switching

arbitration mechanisms. In 2012 IEEE 14th International Conference on High Per-

formance Computing and Communication 2012 IEEE 9th International Conference

on Embedded Software and Systems, pages 1643–1647, 2012.

[113] R. Manju, Abhijit Das, John Jose, and Prabhat Mishra. Sectar: Secure noc us-

ing trojan aware routing. In 2020 14th IEEE/ACM International Symposium on

Networks-on-Chip (NOCS), pages 1–8, 2020.

200

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India

	1 Introduction
	1.1 Network-on-Chip
	1.1.1 Correct Functioning of NoC
	1.1.2 Verification of NoC

	1.2 Challenges in Formal Modeling and Verification of NoC
	1.2.1 Starvation Freedom in NoC
	1.2.2 Deadlock Detection in NoC
	1.2.2.1 Application Specific Deadlock Detection

	1.2.3 Deadlock Representation and its Avoidance
	1.2.3.1 Channel Dependency Graph
	1.2.3.2 Turn Model
	1.2.3.3 Deadlock in Torus NoC and its Avoidance

	1.2.4 Formal Modeling of NoC

	1.3 Thesis Objectives
	1.4 Contributions of the Thesis
	1.4.1 Formal Modeling of NoC using FSM and Verification of Starvation using Model Checker
	1.4.2 Formal Modeling of NoC using CFSM and Developing a Simulation Framework for Deadlock Detection
	1.4.3 Deadlock Avoidance in Torus NoC using Arc Model and DDG
	1.4.4 Deadlock Free Routing Algorithms for Torus NoC using Arc Model

	1.5 Organization of the Thesis

	2 Background and Literature Survey
	2.1 Formal Verification Techniques
	2.1.1 Model Checking
	2.1.2 Equivalent Checking
	2.1.3 Theorem Prover

	2.2 Formal Modeling and Verification of NoC
	2.2.1 Formal Modeling using Different Formalism
	2.2.2 Formal Modeling using xMAS Primitives
	2.2.3 Modeling using FSM and CFSM
	2.2.4 Traffic Modeling using Queuing Approach
	2.2.5 Run-time Deadlock Detection
	2.2.6 Challenges and Objective

	2.3 Routing Algorithms for NoC
	2.4 Deadlock Avoidance in a Routing Algorithm
	2.4.1 Up*/Down* and Turn Model Approach
	2.4.2 FirstHop Routing for Avoiding Deadlock in Torus NoC
	2.4.3 Dally's Approach with Virtual Channel
	2.4.4 Duato's Approach with Escape Path and Virtual Channel
	2.4.5 Bubble Flow Control with Dedicated Buffer
	2.4.6 Other Approaches
	2.4.7 Challenges and Objectives

	2.5 Conclusions

	3 Formal Modeling of NoC using FSM and Verification of Starvation using Model Checker
	3.1 Introduction
	3.1.1 NoC Router Components
	3.1.2 Contributions

	3.2 Finite State Machine and the Naming Convention
	3.2.1 Finite State Machine
	3.2.2 Short forms and the Naming Convention

	3.3 Formal Modeling of NoC using FSM
	3.3.1 High-Level Overview of the Movement of Packets
	3.3.2 Synchronization between NoC Components
	3.3.2.1 Synchronization between two Routers
	3.3.2.2 Synchronization within Router Components

	3.3.3 Modeling Buffer using FSM
	3.3.3.1 FSM model of Sync
	3.3.3.2 FSM model of Buffer

	3.3.4 FSM Model of Switch
	3.3.5 FSM Model of Return
	3.3.6 Approach for Designing Virtual Channels
	3.3.7 FSM Model of an Arbiter
	3.3.7.1 FSM Model of Fixed-priority Arbiter
	3.3.7.2 FSM Model of Round-robin Arbiter

	3.4 Correctness of the Model
	3.4.1 Progress in Router Components
	3.4.1.1 Progress in a Buffer
	3.4.1.2 Progress in a Switch
	3.4.1.3 Progress in a Fixed-priority and Round-robin Arbiters

	3.4.2 Synchronization within a Router
	3.4.3 Correctness of a Priority Generator

	3.5 Application of the Model
	3.5.1 Verification of Starvation-freedom
	3.5.2 Verification of Transfer of Packets
	3.5.3 Verification of Overall NoC
	3.5.3.1 Number of FSMs in an NoC
	3.5.3.2 Active Windows

	3.6 Experimental Results and Analysis
	3.6.1 Verification of Progress, Synchronization and Priority Generation within a Router
	3.6.1.1 Runtime Improvement with Parallel Execution considering Individual Router

	3.6.2 Verification of Transfer of Packets and Starvation Freedom considering Active Windows
	3.6.2.1 Analysis of the Findings on Starvation Freedom
	3.6.2.2 Runtime Improvement with Parallel Execution for the Active Windows

	3.7 Conclusion

	4 Formal Modeling of NoC using CFSM and Developing a Simulation Framework for Deadlock Detection
	4.1 Introduction
	4.2 Contributions
	4.2.1 Formal Modeling of NoCs using CFSM
	4.2.2 Development of CFSM based Simulation Framework

	4.3 Background of Communicating Finite State Machine based Modeling
	4.4 Formal Modeling of NoC using CFSM
	4.4.1 Naming Convention
	4.4.2 Modeling Buffer
	4.4.2.1 Buffer with single slot
	4.4.2.2 Buffer with more than one slots

	4.4.3 Modeling Switch and Route Computation
	4.4.4 Modeling Arbiter and Scheduler
	4.4.4.1 Changing of priority in round-robin fashion
	4.4.4.2 Transmitting the packet from current router to the next router

	4.4.5 Modeling Virtual Channel

	4.5 Proposed Scheme for Deadlock Detection
	4.5.1 Delayed Reception
	4.5.2 Representation of Deadlock in NoC using CFSM
	4.5.3 Deadlock Detection Framework

	4.6 Automation of CFSM Model Generation
	4.6.1 Bounded Communication
	4.6.2 Complexity of the CFSM Model

	4.7 Experimental Results and Analysis
	4.7.1 Experiment I: XY-routing on Mesh and Torus of Different Sizes
	4.7.2 Experiment II: XY-routing on Mesh and Torus with Different Traffic Size
	4.7.3 Experiment III: Deadlock Detection on Dynamic XY-routing and Modified West-First routing
	4.7.4 Experiment IV: Deadlock Avoidance with Increasing Buffer Size
	4.7.5 Experiment V: Detection of False Positive Deadlock Warning in Booksim Simulator
	4.7.6 Justification for Deadlock in Adaptive Routing Algorithms

	4.8 Conclusion

	5 Deadlock Avoidance in Torus NoC Using Arc Model and DDG
	5.1 Introduction
	5.1.1 Cyclic Resource Dependency in Torus NoC
	5.1.2 Deadlock and its Representation in NoC
	5.1.2.1 Channel Dependency Graph
	5.1.2.2 Turn Model

	5.1.3 Does Deadlock Always Possible in Torus due to Wraparound Channel?

	5.2 Motivation and Contribution
	5.2.1 Deadlock Representation in Torus NoC
	5.2.2 Deadlock Avoidance in Torus NoC
	5.2.3 Contributions

	5.3 The Arc Model for Avoiding Deadlock in Torus
	5.3.1 Restricted Move via Wraparound Channel
	5.3.2 Classification of Wraparound Channels
	5.3.3 The Proposed Arc Model
	5.3.4 Effect of Arcs with the Permitted Turns in the Mesh Sub-network

	5.4 Directional Dependency Graph
	5.4.1 Application of Arc Model and DDG

	5.5 Case Study: Arcs with XY-Turns
	5.5.1 Single Arc with XY-Turns
	5.5.1.1 Turns Introduced due to Arcs
	5.5.1.2 Deadlock Freedom for Individual Arc

	5.5.2 Deadlock Detection for Arc Pairs with XY-Turns
	5.5.2.1 Deadlock in Arc Pairs from the same Wraparound Channel
	5.5.2.2 Deadlock due to Added Turns by Arcs
	5.5.2.3 Deadlock with a Combination of X-Arc and Y-Arc

	5.5.3 Deadlock Avoidance using DDG Representation
	5.5.3.1 Deadlock avoidance for (EWs + WEn) Arcs with XY-Turns
	5.5.3.2 Deadlock avoidance for (NSw + EWn) Arcs with XY-Turns

	5.5.4 Checking Deadlock Freedom using DDG

	5.6 Experimental Deadlock Detection
	5.6.1 Experimental Results for Arc Pairs with XY-Turns
	5.6.2 Deadlock Scenarios generated by CFSM Framework
	5.6.2.1 Deadlock Scenarios for (EWs + EWn) Arc with XY-Turn
	5.6.2.2 Deadlock Scenarios for (EWs + WEn) Arc with XY-Turn
	5.6.2.3 Deadlock Scenarios for (EWn + NSw) Arc with XY-Turn

	5.7 Conclusion

	6 Deadlock Free Routing Algorithms for Torus NoC using Arc Model
	6.1 Introduction
	6.1.1 Contributions

	6.2 Deadlock Free Routing Algorithm Design Approach using Arc Model
	6.3 Routing using Two Arcs along with XY-Turns
	6.3.1 Routing steps for Algorithm 1
	6.3.2 Deadlock freedom for Algorithm 1

	6.4 Maximum Possible Arcs with XY-Turns in a Routing Algorithm
	6.4.1 Evaluation plan
	6.4.2 Considering deadlock free Arc pairs in X-direction
	6.4.3 Considering deadlock free Arc pairs in Y-direction

	6.5 Routing using Three Arcs with XY-Turns
	6.5.1 Routing steps for Algorithm 2
	6.5.2 Deadlock Freedom for Algorithm 2

	6.6 Combination of Arc Model and FirstHop Method
	6.6.1 DDG for Wraparound Channel with FirstHop Restriction
	6.6.2 Routing using Algorithm 2 and Wraparound Channel with FirstHop Restriction
	6.6.2.1 Wraparound Channel Compatible with Algorithm 2
	6.6.2.2 Routing steps for Algorithm 3
	6.6.2.3 DDG to show Deadlock Freedom for Algorithm 3

	6.7 Experimental Results
	6.7.1 Comparing FirstHop Algorithm with the Algorithm 1
	6.7.1.1 Effects of the Percentage of Traffic Injected from the Boundary Routers

	6.7.2 Comparisons of Algorithm 2 with Algorithm 1, Up*/Down* Algorithm and FirstHop Algorithm
	6.7.3 Comparison for the Algorithm 3 with Algorithm 2 and FirstHop Algorithm
	6.7.3.1 Effects of the Percentage of Traffic Injected from the Boundary Routers

	6.7.4 Hop Count Savings for PARSEC Benchmark Suites

	6.8 Conclusions

	7 Conclusions and Future Perspectives
	7.1 Summary of Contributions
	7.1.1 FSM based NoC Model for Verification of Starvation
	7.1.2 Application Specific Deadlock Detection using CFSM based NoC Model
	7.1.3 Deadlock Representation and Avoidance Approach in Torus NoC
	7.1.4 Deadlock Free Routing Algorithms for Torus NoC

	7.2 Future Directions
	7.3 Conclusions

	Publications
	References

