
On Placement of Controllers and Hypervisors

in Software Defined Networks

Bala Prakasa Rao Killi

On Placement of Controllers and Hypervisors

in Software Defined Networks

Thesis submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

by

Bala Prakasa Rao Killi

Under the Supervision of

Prof. S. V. Rao

Department of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Guwahati 781039, India
November 2018

Dedicated to

My parents

For their blessings, constant inspiration, and love

Declaration

I certify that

a. The work contained in this thesis is original, and has been done by
myself under the general supervision of my supervisor.

b. The work has not been submitted to any other institute for any
degree or diploma.

c. Whenever I have used materials (data, theoretical analysis, results)
from other sources, I have given due credit to them by citing them
in the text of the thesis and giving their details in the references.

d. Whenever I have quoted written materials from other sources, I
have put them under quotation marks and given due credit to the
sources by citing them and giving required details in the references.

Place: IIT Guwahati Bala Prakasa Rao Killi
Research Scholar

Date: Dept of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati 781039, India.

CERTIFICATE

This is to certify that this thesis entitled “ On Placement of
Controllers and Hypervisors in Software Defined Networks”
being submitted by Mr. Bala Prakasa Rao Killi to the Department
of Computer Science and Engineering, Indian Institute of Technology
Guwahati, is a record of bona fide research work under my supervision
and is worthy of consideration for the award of the degree of Doctor of
Philosophy of the Institute.

The results contained in this thesis have not been submitted in part or
full to any other university or institute for the award of any degree or
diploma.

Place: IIT Guwahati Prof. S. V. Rao
Department of Computer Science and Engineering,

Date: Indian Institute of Technology Guwahati,
Guwahati 781039, India.

Acknowledgements

I would like to take this opportunity to thank many individuals who
directly or indirectly supported me during my PhD process.

First, I want to thank my advisor Prof. S. V. Rao for his guidance
and constant encouragement throughout my PhD. He has helped me
understand what research truly is and constantly motivated me to pursue
research. Despite his preoccupation with several assignments, he has
been kind enough to spare his valuable time and gave me necessary
council and guidance. I am thankful for all that I learned from him. I
also want to thank my doctoral committee members, Dr. T. Venkatesh,
Prof. S. K. Bose, and Dr. Arnab Sarkar, for their valuable comments
and suggestions during my PhD. I am also thankful to the faculty, Dr.
R. Inkulu, Prof. S. K. Bose, Dr. T. Venkatesh, Dr. Samit Bhattacharya,
Dr. Aryabhatta Sahu, Dr. Santosh Biswas, Dr. Susantha Karmakar,
Prof. G. Sajith, Prof. Sukanth Pati and Prof. Sriparna Bandopadhyay,
for imparting knowledge through various courses. I also want to
thank the department technical officers, technical superintendents and
administrative staff for their wholehearted and unconditional support.

Next, I would also like to express my heartfelt gratitude to the Director,
the Deans, and other management of IIT Guwahati, whose collective
effort has made this institute a place for world-class studies and research.
I am thankful to all the faculty and the staff of the Department of CSE
for the support received. I thank all my friends, Chiranjeevi, Rakesh,
Ghalib, Manoj, Hema, Sukarn, Saptharsi, Deepak, Surajit, Rajesh,
Pawan, Debanjan, Vignesh, Akash, Subhrendu, Sandeep, Shounak,
Panthadeep, Abhishek, Awnish, Sunil, Moustafa, Sanjeev, Amit, Bhidu,
Jogen, Ashish and Pappu only to name a few, with whom I have spent
most of the time.

Place: IIT Guwahati

Date: Bala Prakasa Rao Killi

Abstract

Software defined networking shifts the control plane of forwarding devices to one
or more external entities known as controllers. The placement of controllers in the
network influences every aspect of a decoupled control plane, from state distribution
options to fault tolerance to performance metrics. Determining the number and
placement of controllers is an important problem in software defined networking.
Failure of a controller results in disconnections between the controller and the
switches that are assigned to it. The administrator can reassign each switch of
the failed controller to a working controller with enough capacity that is nearest to
the switch. However, the reassignment of switches result in a significant upsurge in
the worst case latency.

In this thesis, we propose optimization models for the failure foresight
capacitated controller placement that avoids disconnections, repeated administrative
intervention, and drastic increase in the worst case latency in case of controller
failures by maintaining a list of µ(> 1) reference controllers for every switch. The
objective is to minimize the worst-case latency between switches and their µth

reference controllers while satisfying the capacity and closest assignment constraints.
First, we design an optimization model for a single controller failure and extend it to
multiple controller failures. We also design a variant of failure foresight capacitated
controller placement that minimizes the sum of worst-case latencies from switches
to their 1st, 2nd ,. . . , µth reference controllers. Next, we relax the failure foresight
assumption of switches and investigate a capacitated next controller placement
strategy that not only considers capacity and reliability of controllers but also plans
ahead for controller failures. We design an optimization model for a single controller
failure and extend it to multiple controller failures. We also present a simulated
annealing heuristic to produce fast and viable solution on large networks.

When deploying controllers in real networks, large networks such as wide area
networks are always partitioned into several smaller ones. To this end, we propose a
controller placement strategy that partitions the network using k-means algorithm
with cooperative game theory based initialization and deploys a controller in each

9

ABSTRACT

of the partitions. We model the partitioning of the network into subnetworks as
a cooperative game with the set of all switches as the players of the game. The
switches try to form coalitions with other switches so as to maximize their value.
We also propose two variants of the cooperative k-means strategy that tries to
produce partitions that are balanced in terms of size.

The locations of the hypervisors and controllers together determines the latency
of network elements in a virtualized software defined network. In this thesis, we
propose two strategies for determining the placement of hypervisors and controller
in a virtualized software defined network. The first strategy fixes the hypervisor(s)
in the physical network and then determines the placement of controllers in each of
the virtual network. It allows the network operator to dynamically add new virtual
networks on demand basis. The second approach jointly determines the placement
of hypervisors in the physical network and controllers in each virtual network.

All the proposed strategies are evaluated on various networks from the Internet
Topology Zoo and Internet 2 OS3E. Results demonstrated that, it is possible to avoid
disconnections, repeated administrative intervention, and drastic increase in the
worst case latency in case of controller failures by planning ahead for failures. Our
proposed models not only performs better in terms of the worst case latency in the
event of failures but also in terms of maximum and average inter controller latencies.
Results also show that the simulated annealing heuristic is able to achieve near
optimal solutions in less than half of the time required by the optimized formulations.
The k-means algorithm with cooperative game theory based initialization not only
results in solutions that are close to optimal solution but also deterministic in
nature. The load aware cooperative k-means strategies results in solutions with
less partition imbalance when compared to the load unaware cooperative k-means
approach. Determining the placement in each of the virtual network while fixing
the hypervisor(s) in the physical network and jointly determining the placement
of hypervisors in the physical network and controllers in each virtual network are
efficient than determining the hypervisor(s) in the physical network while fixing the
controllers in each of the virtual network.

10

Contents

List of Figures 15

List of Tables 19

List of Abbreviations 21

1 Introduction 23
1.1 Motivation of the Research Work . 28
1.2 Contributions of the Thesis . 32

1.2.1 Failure Foresight Capacitated Controller Placement in SDNs . 32
1.2.2 Capacitated Next Controller Placement in SDNs 33
1.2.3 Cooperative Game Theory based Network Partition for Con-

troller Placement in SDNs . 35
1.2.4 Controller and Hypervisor Placement in Virtualized SDNs . . 36
1.2.5 Organisation of the Thesis . 37

2 Background and Literature Survey 39
2.1 Need for New Network Architecture 39
2.2 Limitations of traditional network architecture 41
2.3 Software Defined Network . 43
2.4 Precursors to SDN . 46

2.4.1 Programmability of the control plane 46
2.4.2 Control plane and data plane separation 47

2.5 OpenFlow . 50
2.6 Related Work . 53

2.6.1 Controller Placement . 53
2.6.2 Hypervisor Placement in SDNs 69

2.7 Summary . 69

3 Failure Foresight Capacitated Controller Placement in SDNs 71
3.1 Motivation . 71
3.2 Problem Formulation . 74

11

CONTENTS

3.2.1 Input parameters . 74
3.2.2 Assumptions . 74
3.2.3 FFCCP for single controller failure 76
3.2.4 FFCCP for multiple failures 78
3.2.5 FFCCP with Combined Objective 80
3.2.6 Controller Failover . 81

3.3 Performance metrics . 82
3.4 Numerical Results . 83

3.4.1 Evaluation Setup . 83
3.4.2 Results . 84
3.4.3 Complexity analysis . 89

3.5 Conclusion . 90

4 Capacitated Next Controller Placement in SDNs 93
4.1 Problem Formulation . 94

4.1.1 Input Parameters . 95
4.1.2 Assumptions . 95
4.1.3 CNCP Formulation with two-indexed variables 96
4.1.4 CNCP Formulation with three-indexed variables 101
4.1.5 CNCP Formulation for multiple failures 102
4.1.6 Controller Failover . 105

4.2 Performance metrics . 106
4.3 Heuristic Solution . 107
4.4 Numerical Results . 110

4.4.1 Evaluation Setup . 110
4.4.2 Results . 110
4.4.3 Complexity analysis . 121

4.5 Conclusion . 122

5 Cooperative Game Theory based Network Partitioning for Con-
troller Placement in SDNs 125
5.1 Background . 127

5.1.1 Cooperative game . 127
5.1.2 Core of the game . 127
5.1.3 Shapley value . 128
5.1.4 Convex game . 128
5.1.5 Shapley value of a convex game 129

5.2 Problem Formulation . 129
5.2.1 Input Parameters . 129
5.2.2 Network Partitioning . 130
5.2.3 Cooperative k-means Network Partitioning 130

12

CONTENTS

5.2.4 Load aware Cooperative k-means Network Partitioning 133
5.3 Numerical Results . 136

5.3.1 System Setup . 136
5.3.2 Results . 137

5.4 Summary . 143

6 Placement of Hypervisors and Controllers in Virutalized SDNs 145
6.1 Motivation . 146
6.2 Problem Formulation . 148

6.2.1 Input parameters . 148
6.2.2 Assumptions . 149
6.2.3 Controller Placement in VSDNs 150
6.2.4 Joint Hypervisor and Controller Placement 152
6.2.5 Generalized JHCP . 156
6.2.6 Other Objectives . 159

6.3 Numerical Results . 160
6.3.1 Evaluation Setup . 160
6.3.2 Performance analysis of VCPP in static scenario 161
6.3.3 Performance analysis of VCPP in dynamic scenario 163
6.3.4 Performance analysis of JHCP 164
6.3.5 Impact of number of hypervisors and controllers 167
6.3.6 Complexity analysis . 169

6.4 Conclusion . 170

7 Summary and Future Directions 171
7.1 Conclusions . 173
7.2 Future Directions . 174

13

List of Figures

1.1 High-level overview of HyperFlow [1]. 25

1.2 Partitioning WAN into multiple domains. 26

2.1 Basic structure of a network element 44

2.2 Software Defined Network architecture [2] 45

2.3 Block diagram of an OpenFlow switch 52

2.4 Taxonomy of controller placement problems in SDNs 54

3.1 Worst case Latency of Internet 2 OS3E topology without planning a)
Without failure. b) Disconnections after a failure c) Drastic increase
in latency after reassignment. 72

3.2 Worst case switch to controller latency of CCP, FFCCP, and CO-
FFCCP with one controller failure . 85

3.3 Worst case switch to controller latency of CCP, FFCCP, and CO-
FFCCP with two controller failures 86

3.4 Worst case inter controller latency of CCP, FFCCP, and CO-FFCCP
with one controller failure . 87

3.5 Average inter controller latency of CCP, FFCCP, and CO-FFCCP
with one controller failure . 87

3.6 Worst case inter-controller latency with two controller failures 88

3.7 Average inter-controller latency with two controller failures 88

4.1 Worst case latency and maximum worst case latency of CCP and
CNCP on various networks. 112

4.2 Switch to controller latency distribution of CCP and CNCP on
various networks when p=4. 113

4.3 Maximum inter controller latency of CCP and CNCP on various
networks. 114

4.4 Average inter controller latency of CCP and CNCP on various networks.114

4.5 Worst case latency and maximum worst case latency of CCP and
CNCP while restricting the maximum inter controller latency. 116

15

LIST OF FIGURES

4.6 Impact of restricting the inter controller latency on worst case latency
and maximum worst case latency of CNCP on various networks. . . . 117

4.7 Average inter controller latency of CCP and CNCP while restricting
the maximum inter controller latency. 117

4.8 Worst case latency and maximum worst case latency of CCP and
CNCP while evaluating for two controller failures. 118

4.9 Maximum inter controller latency of CCP and CNCP while evaluating
for two controller failures. 118

4.10 Average inter controller latency of CCP and CNCP while evaluating
for two controller failures. 119

4.11 Performance of Simulated Annealing heuristic on GEANT topology . 120

4.12 Progress of simulated annealing heuristic on GEANT topology 120

5.1 Worst case latency of standard k-means on various topologies when
executed for 100 times. 126

5.2 Partitioning Internet 2 OS3E topology using cooperative k-means. . . 137

5.3 Worst case latency of standard k-means and cooperative k-means
strategies on various networks. 138

5.4 Distribution of worst case latencies of cooperative k-means and
standard k-means on BT North America topology when evaluated
for 100 times . 139

5.5 Distribution of worst case latencies of cooperative k-means and
standard k-means on Chinanet topology when evaluated for 100 times 140

5.6 Distribution of worst case latencies of cooperative k-means and
standard k-means on Interoute topology when evaluated for 100 times 140

5.7 Partition imbalance of cooperative k-means strategy under uncapac-
itated, capacitated and equipartition approaches. 141

5.8 Worst case latency of cooperative k-means strategy under uncapaci-
tated, capacitated and equipartition approaches. 142

6.1 Placement of Hypervisor and controllers in Internet 2 OS3E topology. 147

6.2 Performance of VCPP and HPP while optimized for the worst case
latency. (a) AT&T network. (b) Internet 2 OS3E topology. 161

6.3 Performance of VCPP and HPP while optimized for the average
latency. (a) AT&T network. (b) Internet 2 OS3E topology. 162

6.4 Performance of Dynamic VCPP and Dynamic HPP while optimized
for the worst case latency. (a) AT&T network. (b) Internet 2 OS3E
topology. 163

6.5 Performance of Dynamic VCPP and Dynamic HPP while optimized
for the average latency. (a) AT&T network. (b) Internet 2 OS3E
topology. 164

16

LIST OF FIGURES

6.6 Performance of JHCP and HPP on ATT network while optimized for
various metrics. (a) Worst case latency. (b) Average latency. (c)
Maximum Average latency. (d) Average Maximum latency. 165

6.7 Performance of JHCP and HPP on Internet 2 OS3E network while
optimized for various metrics. (a) Worst case latency. (b) Average
latency. (c) Maximum Average latency. (d) Average Maximum
latency. 166

6.8 Effect of hypervisors on latency when optimized for the average latency167

17

List of Tables

2.1 List of commodity switches that respect OpenFlow standard 51
2.2 List of controller implementations that respect OpenFlow standard . 51
2.3 Header fields used to define the flow 52
2.4 COMPARISON OF CONTROLLER PLACEMENT STRATEGIES 68

3.1 Notations used in FFCCP . 75
3.2 Decision variables used in FFCCP formulation 76
3.3 Characteristics of input networks . 84
3.4 Complexity analysis of CCP, FFCCP and CO-FFCCP 90

4.1 Decision variables used in CNCP formulation 97
4.2 Complexity analysis of CCP and CNCP 122

6.1 Notations . 149
6.2 Decision variables for VCPP . 150
6.3 Decision variables for JHCP . 153
6.4 Complexity analysis of HPP, VCPP and JHCP 168

19

List of Abbreviations

ACL Access Control List
AS Autonomous System
BGP Border Gateway Protocol
BIP Binary Integer Program
BIRD Bird Internet Routing Daemon
CCO Controller to controller Communication Overhead
CE Control Element
CP Controller Placement
CCP Capacitated Controller Placement
CNCP Capacitated Next Controller Placement
CO-FFCCP Combined Objective Failure Foresight Capacitated Controller Placement
DC Data Center
FIB Forward Information Base
FFCCP Failure Foresight Capacitated Controller Placement
ForCES Forwarding and Control Element Separation
FTCP Fault Tolerant Controller Placement
HPP Hypervisor Placement Problem
IBGP Internal Border Gateway Protocol
IETF Internet Engineering Task Force
IGP Interior Gateway
ILP Integer Linear Program
IS-IS Intermediate System to Intermediate System
JHCP Joint Hypervisor Controller Placement
LDP Label Distribution Protocol
LPM Longest Prefix Match
MDO Multiple Data Ownership
MGAP Multi-objective Generalized Assignment Problem
MPLS Multi Protocol Label Switching
NAT Network Address Translator
OLSR Optimized Link State Routing
OSPF Open Shortest Path First

21

LIST OF ABBREVIATIONS

PCE Path Computing Element
POCO Pareto Optimal COntroller Placement
QoS Quality of Service
RCP Routing Control Protocol
RCS Route Control Server
RIP Routing Information Protocol
RR Routing Reflector
RSVP Resource Reservation Protocol
SCO Switch to controller Communication Overhead
SDN Software Defined Networking
SDNs Software Defined Networks
SDO Single Data Ownership
TED Traffic Engineering Database
VCPP Controller Placement in Virtualized Software Defined Network
VSDNs Virtulized Software Defined Networks
WAN Wide Area Network
Z-DNO Zone based Distributed Network Optimization

22

Chapter 1

Introduction

Software Defined Networking (SDN), often referred as “radical idea in networking”,

is an emerging network architecture in which the control plane functionalities

of network elements such as routing, signaling and label distribution are moved

to one or more external entities known as controllers. However, the data

plane functionalities such as forwarding, queuing and policing remain within the

network elements. It also supports programmability of the control plane via

open interfaces. Neither programmability of the control plane nor decoupling

control from forwarding is new to the networking community. Active networking

solution such as Switchware [3] and software routing suites such as Click modular

router [4] and Bird Internet Routing Daemon (BIRD) [5] are released prior to SDN

that supports programmability of the control plane. Routing Control platform

(RCP) [6], Forwarding and Control Element Separation (ForCES) framework

released by Internet Engineering Task Force (IETF) [7, 8], 4D design of network

architecture [9], Path Computation Element (PCE) architecture [10,11], Ethane [12]

and OpenFlow [13] are released prior to SDN that supports separation of the control

and data planes. What’s new in SDN is, programmability of the control plane is

achieved by decoupling data and control planes.

23

1 Introduction

The switches/routers are of no intelligence, simply accept rules from the

controller and forward packets. Each forwarding element maintains a flow table

whose entries are supplied by the controller. Upon the arrival of a packet, the

switch matches the header of the packet with the entries of the flow table. If there

is a match, then the action corresponding to the matched entry is performed on the

packet, otherwise the switch sends a PACKET IN message to the controller. The

controller then install rules to forward the packet.

A single controller within a network is beneficial as it provides centralized

management. That is, routing decisions and policies are based on the global

network view. However, this significantly increases the latency of switches that

are far away from the controller. Hence, a single controller is clearly a bottleneck in

terms of processing power and is the single point of failure for the entire network.

Therefore, the control plane is logically centralized, but physically distributed across

multiple controllers to satisfy both the response time and fault tolerant requirements.

HyperFlow [1] and Onix [14] are logically centralized but physically distributed

implementations of the control plane. Fig. 1.1 describes the distributed architecture

of HyperFlow. Each controller runs NOX [15] with the HyperFlow application atop,

subscribes to control, data, and its own channel in the publish/subscribe system

(depicted with a cloud). Events are published to the data channel and periodic

controller advertisements are sent to the control channel. Controllers directly publish

the commands targeted to a controller to its channel. Replies to the commands

are published in the source controller. The publish and subscribe mechanism is

implemented using WheelFS [16]. All the controllers maintain a consistent global

view to ensure proper network operation. A switch can be assigned to more than

one controller (one as primary and others as backup) to ensure reliability.

The placement of controllers in the network influences every aspect of a

decoupled control plane, from state distribution options to fault tolerance to

24

Figure 1.1: High-level overview of HyperFlow [1].

performance metrics. In long-propagation-delay Wide Area Networks (WANs),

it places fundamental limits on availability and convergence time. Deploying

the controllers at random locations in the network may not result in optimal

performance. Therefore, determining the number and placement of controllers is

an important problem in Software Defined Networks (SDNs). Heller et al. initiated

the study of the Controller Placement (CP) problem in SDNs [17]. They analyzed

the impact of number of controllers and their placement on latency, and the choice of

metric on placement. However, they did not considered the capacity of controllers.

Tootoonchian et al. varied the controller load from 211 to 215 requests and observed

that there is a substantial increase in the processing delay of the controller when the

load reaches a threshold [18]. Therefore, the capacity of controllers is an important

factor to be considered. Guang Yao et al. proposed a controller placement strategy

by incorporating a constraint on controller capacity [19]. The controller placement

problem mainly deals with the following:

� What is the optimal number and location of controllers for a given network?

25

1 Introduction

Domain 1
Domain 2

Domain 3

Figure 1.2: Partitioning WAN into multiple domains.

� What is the optimal assignment of switches to the controllers?

When deploying SDN in real networks, large networks such as WAN are always

partitioned into several smaller ones due to numerous reasons: privacy, scalability,

incremental deployment, security and so on [20,21]. The central idea is to partition

the WAN into multiple domains and assign a controller to each domain as depicted

in Fig 1.2. A domain can be a sub-network in a Data Center (DC), an enterprise

network or an Autonomous System (AS). Hence, the controller placement problem

in a WAN mainly deals with the following:

� How to partition the WAN into multiple domains?

� What is the location of controller(s) in each domain?

Failure of a controller results in disconnections between the controller and the

switches that are assigned to it. Since the controller software runs on a server,

characterization of server failures in a production environment or cluster give us

characterization of controller failures. The server failures can be due to hardware

or software failures [22]. In addition, physical network elements may also suffer

from hardware problems and stop working. The failure of the link connecting the

26

controller and the switch where the controller is deployed is also logically same as the

controller failure. Hence, the switches are disconnected from controllers whenever

there is a controller failure (hardware or software) or a link failure (connecting the

controller and the switch where the controller is deployed). Therefore, the reliability

of controllers is an important factor to be considered while deploying controllers.

Network virtualization allows multiple tenants to coexist on the shared

physical substrate in isolation from one another. The virtualization of software

defined networks facilitates to leverage the combined benefits of SDN and network

virtualization. That is, each tenant can bring their own controller to control their

slice of the network. This can be realized by using the network hypervisor, which

we refer as hypervisor for brevity. The hypervisor abstracts the physical substrate

into multiple virtual networks and provides isolation among multiple tenants [23].

FlowVisor is the first and seminal hypervisor for sharing and virtualizing SDNs [24].

It is a switch level virtualization platform that enables sharing the same forwarding

plane among multiple virtual networks, each with different forwarding logic. Many

network hypervisors such as AdVisor [25], VeRTIGO [26], Enhanced FlowVisor [27]

etc. are built using the FlowVisor. A complete survey on network virtualization

hypervisors for SDN is presented in [28]. In order to meet the scalability and

fault tolerant requirements, the hypervisors are generally distributed across the

network. In Virtualized SDNs (VSDNs), the PACKET IN messages of switches

must pass through the hypervisor in order to reach the corresponding controller. The

latency experienced by a network element is the sum of latency from the network

element to the hypervisor and the latency from the hypervisor to the controller

corresponding to the network element. Further, the locations of the hypervisors and

controllers together determine the latency of network elements in VSDNs. Therefore,

determining the placement of controllers and hypevisors are two important problems

in VSDNs.

27

1.1 Motivation of the Research Work

In this thesis, we focus on leveraging planning ahead for controller failures

in minimizing worst case latency in the event of controller failures. We address

the problem of controller placement with planning ahead for failures with and

without failure foresight assumption of switches, so that the worst case latency

in the event of controller failures is minimized while satisfying constraints such as

placement, demand, closest assignment and multi-level closest assignment. For a

wide area network, the controller placement strategy is addressed using k-means

network partition approach with cooperative game theory based initialization. The

placement of both the controllers and hypervisors in VSDNs is important to reduce

the latency experienced by the switches. For this, we address various approaches

for minimizing the latency of a network element in VSDNs.

1.1 Motivation of the Research Work

Given a set of switches, an integer indicating the number of controllers to be

deployed, and a set of locations for installing controllers as input, the Capacitated

Controller Placement (CCP) select a subset of locations to deploy controllers and

assign switches to them so as to minimize the worst-case latency from any switch

to its controller while satisfying the capacity constraints. The CCP corresponds to

the capacitated p-center problem [29]. It is formulated as follows:

min z

Subject to: ∑
j∈P

yj = p (1.1)

∑
j∈P

rij = 1 ∀i ∈ S (1.2)

rij ≤ yj ∀i ∈ S ∀j ∈ P (1.3)

28

1.1 Motivation of the Research Work

∑
i∈S

Lirij ≤ Ujyj ∀j ∈ P (1.4)

z ≥
∑
j∈P

dijrij ∀i ∈ S (1.5)

yj, rij ∈ {0, 1} ∀i ∈ S,∀j ∈ P (1.6)

where yj and rij are decision variables, S is the set of switches, P is the set of

locations for installing controllers, and p is the number of controllers to be deployed

in the network. If a controller is deployed at j then yj = 1, otherwise yj = 0.

Similarly, if a switch i is assigned to the controller j then rij = 1, otherwise

rij = 0. Constraint (1.1) ensures that exactly p controllers are deployed in the

network. Constraint (1.2) guarantees that every switch is assigned to a unique

controller. Constraint (1.3) prevents a switch from an assignment to a location

where a controller is not deployed. Constraint (1.4) is known as demand constraint,

which ensures that the total demand of switches assigned to a controller does not

exceed its capacity. Constraint (1.5) ensures that, for every switch, the objective

value is greater than the latency between the switch and its controller.

Planning ahead for failures: Deploying controller at a location is equivalent

to deploying a server at that location because the controller software runs on a

server. Hence, the controller placement problem is off-line in nature which needs

to be solved once in the beginning to determine suitable locations for deploying

controllers and assignment of switches to these controllers. Failure of a controller

results in disconnections between the controller and the switches that are assigned

to it. Let C be the set of controllers deployed in the network and FC ⊆ C be the

set of controllers that are failed due to hardware or software issues. Note that the

hardware failures can have long recovery times compared to the software failures.

The disconnected switches (S
′ ⊂ S) need to be reassigned to one of the working

controllers (WC = C −FC) with enough capacity in case of failures. The adminis-

trator can reassign each switch of the failed controller to a working controller with

29

1.1 Motivation of the Research Work

enough capacity that is nearest to the switch by solving the following assignment

problem:

min z

Subject to the following constraints:

∑
k∈WC

rik = 1 ∀i ∈ S ′ (1.7)

∑
i∈S′

Lirik ≤ U
′

k ∀k ∈ WC (1.8)

z ≥
∑
k∈WC

dikrik ∀i ∈ S
′

(1.9)

rik ∈ {0, 1} ∀i ∈ S
′
,∀k ∈ WC (1.10)

where U
′

k is the residual capacity of controller k. Constraint (1.7) guarantees

that every switch is reassigned to a unique working controller. Constraint (1.8)

ensures that the total demand of switches reassigned to a controller k does not

exceed its residual capacity U
′

k. Therefore, the goal is to reassign the switches of

failed controllers to other working controllers with enough spare capacity so as to

minimize the worst case latency. This reassignment generally requires administrative

intervention1. However, the reassignment of switches result in a significant upsurge

in the worst case latency. Therefore, we think there is a need for planning ahead to

avoid disconnections, repeated administrative intervention, and drastic increase in

the worst case latency in case of controller failures.

1Self-Organizing Networks (SONs) replace human intervention through automation. SON is

organized without any external or central dedicated control entity [30]. Self organization also

appears in the context of failure resilience and network restoration [31]. Here, the main goal is to

design self-healing or self stabilizing networks that react to link and node failures. Protocols are

needed to detect such events quickly and reroute the affected traffic in a self-organized manner.

30

1.1 Motivation of the Research Work

Judicious initialization of k-means for network partitioning: A single

centralized controller may satisfy response time requirements of a small and medium

scale network. However, a single controller does not satisfy the fault tolerant

requirements of any network as it is the single point of failure. A potential solution

is to divide the network into domains and assign a controller to each of these

domains. The standard k-means algorithm with random initialization can be used

for partitioning the network into different domains. However, the solution produced

by standard k-means algorithm varies with different execution instances. Further,

it results in solutions that are far from optimal. Hence, we argue that judicious

initialization k-means algorithm with results in near optimal solutions.

Jointly determining placement of hypervisors and controllers: Blenk et al.

proposed a Hypervisor Placement Problem (HPP) that determines the optimal

location for deploying the hypervisor in VSDNs [32]. It assumes that the controllers

are deployed in each virtual network before determining the location of hypervisor.

HPP necessitates the number of virtual networks to be known before hand because it

deploys the hypervisors after fixing the controllers in each virtual network. However,

the virtual networks are being added dynamically (on demand) in a SDN-based

cloud environment. Since the PACKET IN messages of switches must pass through

the hypervisor in order to reach the corresponding controller, the order in which

we determine the locations of hypervisors and controllers effects the control plane

latency. That is, determining the location of controllers in each virtual network

while fixing the hypervisors is preferable than determining the location of the

hypervisors while fixing controllers in each virtual network. Moreover, it allows the

network operator to dynamically add new virtual networks on demand. However,

determining the location of hypervisors and controllers in a sequential way results

in a sub optimal performance. Therefore, the location of hypervisors and controllers

must be determined jointly to obtain optimal performance. It is beneficial in a

31

1.2 Contributions of the Thesis

SDN-based private cloud environment where the administrator has control over

deployment of hypervisors and controllers.

1.2 Contributions of the Thesis

Based on the several motivation factors mentioned so far, we formulated a set of

problems for controller placement and hypervisor placement in SDNs. We briefly

describe the problems addressed in this thesis. For each problem, we discuss the

optimization formulation and mention the key observations from our evaluation.

The details of these are presented in subsequent chapters of the thesis.

1.2.1 Failure Foresight Capacitated Controller Placement in

SDNs

Problem statement: What is the optimal placement of controllers and

assignment of switches to them such that the worst case switch to

controller latency is minimized in the event of controller failures while

satisfying the capacity and closest assignment constraints?

We investigate the Failure Foresight Capacitated Controller Placement (FFCCP)

problem in SDNs that avoid disconnections, repeated administrative intervention,

and drastic increase in the worst case latency in case of controller failures. We for-

mulate it as an optimization model, for a single controller failure using two-indexed

decision variables. The objective is to minimize the worst-case latency between

switches and their second reference controllers. We extend our optimization model

for multiple controller failures. We also design a variant of our model, known as

Combined Objective FFCCP (CO-FFCCP) that minimizes the sum of worst-case

latencies in failure free and failure scenarios. We solve our models on real-world net-

works from Internet Topology Zoo and compare the performance obtained with the

32

1.2 Contributions of the Thesis

standard CCP; one that minimized the worst case latency in failure free scenario.

In the following, we summarize the key observations from the numerical evaluation.

� The FFCCP performs better than CCP and CO-FFCCP in the event of

failures, because it is optimized for failures.

� The CO-FFCCP neither performs best in failure free case nor in case of failures

because it is optimized for neither of these two cases. But, CO-FFCCP

performs better than FFCCP in failure free case and better than CCP in

case of failures because it minimizes the worst-case latencies with and without

failures together.

� The FFCCP results in lesser maximum and average inter controller latencies

when compared to CCP and CO-FFCCP. Since the latency between the

farthest controllers increases with the number of controllers in the network,

the maximum inter controller latency of FFCCP is lower than the CCP and

CO-FFCCP when fewer number of controllers are deployed in the network and

it is close to CCP and CO-FFCCP when more than the required number of

controllers are deployed in the network.

1.2.2 Capacitated Next Controller Placement in SDNs

Problem statement: What is the optimal placement of controllers and

assignment of switches to them such that the worst case switch to

controller latency is minimized in the event of controller failures while

relaxing the failure foresight assumption of switches and satisfying the

capacity and closest assignment constraints?

We address a Capacitaed Next Controller Placement (CNCP) problem in SDNs

that not only considers capacity and reliability of controllers but also plans ahead

for controller failures without assuming that the switches have failure foresight.

33

1.2 Contributions of the Thesis

In addition to the first reference controller, we also maintain a second reference

controller for every switch. It is formulated as an Integer Linear Program (ILP).

The objective is to minimize the maximum, for all switches, of the sum of the

latency from the switch to the nearest controller with enough capacity (first reference

controller) and the latency from the first reference controller to its closest controller

with enough capacity (second reference controller). We also proposed a generalized

model which can be used to minimize the average latency and extended it for

multiple controller failures. Further, we present a simulated annealing heuristic

to produce fast and viable solutions. We solve our models and heuristic on real-

world networks from Internet Topology Zoo and compare the performance obtained

with the standard CCP. In the following, we summarize the key observations from

the numerical evaluation.

� We demonstrate that the worst case switch to controller latency of the

proposed model is better than CCP in case of controller failure.

� We demonstrate the impact of restricting the maximum inter controller latency

on worst case switch to controller latency in failure free and failure scenarios of

CNCP. The worst case latency with and without failures of CCP and CNCP

with inter controller latency constraints are higher when compared to the

CNCP and CCP without these constraints.

� The CNCP results in lesser maximum and average inter controller latencies

when compared to CCP. Since the latency between the farthest controllers

increases with the number of controllers in the network, the maximum inter

controller latency of CNCP is lower than the CCP when fewer number of

controllers are deployed in the network and it is close to CCP when more than

the required number of controllers are deployed in the network

� The heuristic achieves near optimal solutions in less than half of the time

34

1.2 Contributions of the Thesis

required by the optimized formulations.

1.2.3 Cooperative Game Theory based Network Partition

for Controller Placement in SDNs

Problem statement: How to partition the wide area network using k-

means algorithm and deploy controllers while producing close to optimal

solutions in deterministic way?

In this problem, we address a controller placement strategy that partition the

network using k-means algorithm with cooperative game theory based initialization.

It is referred as cooperative k-means for brevity. We model the partitioning of the

network into subnetworks as a cooperative game with the set of all switches as the

players of the game. The switches try to form coalitions with other switches so

as to maximize their value. We also propose two variants of cooperative k-means

strategy that tries to produce partitions that are balanced in terms of size. The

performance of our proposed strategy is evaluated on networks from Internet 2 OS3E

topology and Internet Topology Zoo and compared it with the k-means algorithm

with random initialization. In the following, we summarize the key observations

from the numerical evaluation.

� The worst case latency of the solutions induced by cooperative k-means

outperforms standard k-means and is very close to the optimal solution.

� The standard k-means algorithm randomly selects initial controller locations.

Therefore, the solution produced by standard k-means algorithm varies with

different execution instances. Since cooperative k-means algorithm does not

involve any randomization or probability distribution, it is deterministic in

nature.

35

1.2 Contributions of the Thesis

� The partition imbalance of load aware cooperative k-means strategies is less

when compared to the load unaware cooperative k-means approach.

1.2.4 Controller and Hypervisor Placement in Virtualized

SDNs

Problem statement: What is the optimal placement of hypervisors and

controllers in a virtualized software defined network such that the worst

case latency of network element, i.e, the sum of latency from the network

element to the hypervisor and the latency from the hypervisor to the

controller corresponding to the network element is minimized?

We formulate the problem of determining the placement of controllers in

VSDNs while fixing the hypervisor(s) in the physical network as ILP. It is referred

as controller placement problem in VSDNs (VCPP) for brevity. We also present an

approach for jointly optimizing the placement of hypervisors and controllers in a

VSDNs. The objective is to minimize the worst case latency between the network

element and its corresponding controller. It is referred as Joint Hypervisor and

Controller Placement (JHCP) problem for brevity. We also present a generalized

ILP model for JHCP which can be used to optimize other objectives such as the

average latency, the maximum average latency, and the average maximum latency.

We evaluate the performance of our proposed strategies on the ATT network of

Internet Topology Zoo [33] and the results are compared with the existing hypevisor

placement [32]. In the following, we summarize the key observations from the

numerical evaluation.

� The worst case latency, average latency, maximum average latency and average

maximum latency of VCCP is less than HPP when they are optimized for the

worst case latency. Similarly, VCCP performs better than HPP when they are

optimized for average latency objective.

36

1.2 Contributions of the Thesis

� The worst case latency of both the methods VCPP and HPP increases with

the number of virtual networks. However, the gap between the worst case

latencies of VCPP and HPP increases with the number of virtual networks.

� The worst case latency, average latency, maximum average latency and average

maximum latency of JHCP is less than HPP when they are optimized for the

worst case latency. Similarly, JHCP performs better than HPP when they are

optimized for other objectives.

� The complexity of JHCP and HPP in terms of the number of equality

constraints and the number of inequality constraints are asymptotically equal.

However, the complexity of VCPP is asymptotically smaller than JHCP and

HPP.

1.2.5 Organisation of the Thesis

The rest of the thesis is organized as follows: In the next chapter, we present

the background material required to understand the setting in which we addressed

the problems discussed. We also present the state-of art literature on controller

placement and hypervisor placement in SDNs. In Chapter 3, we address the problem

of failure foresight capacitaed controller placement in SDNs that plans ahead for

controller failures. We propose an optimization model to reduce the worst case

switch to controller latency in case of controller failures. In Chapter 4, we relax

the failure foresight assumption of switches (switches do not know the status of

controllers) and present various mathematical models while considering single and

multiple failures. We also present a simulated annealing heuristic to provide fast and

viable solutions on large networks. In Chapter 5, we present a controller placement

strategy that partition the network using k-means algorithm with cooperative game

theory based initialization. The partitioning of the network into subnetworks is

37

1.2 Contributions of the Thesis

modeled as a cooperative game with the set of all switches as the players of the

game. We also propose two variants of cooperative k-means strategies that tries to

produce partitions that are balanced in terms of size. In Chapter 6, we investigate

a strategy for determining the placement of controllers in VSDNs while fixing the

hypervisor(s) in the physical network. We also present an approach for jointly

optimizing the placement of hypervisors and controllers in VSDNs. Finally, the

thesis ends with summary and future work in Chapter 7.

38

Chapter 2

Background and Literature Survey

In this chapter we present some material describing the need for a network

architecture and the limitations of the traditional network architecture. We also

discuss the architecture of SDN and some of the precursors to SDN that supported

programmability of control plane or decoupling control and data planes. Finally,

the chapter discusses the state-of-art literature related to controller and hypervisor

placement in SDNs.

2.1 Need for New Network Architecture

The emergence of cloud services and server virtualization, the explosion of mobile

and social networks, multimedia content, and the growing popularity of big data

analytics are among the trends driving the networking industry to reexamine

traditional network architectures. Many conventional networks are hierarchical,

built with tiers of Ethernet switches arranged in a tree structure. This design made

sense when client-server computing is dominant, but such a static architecture is

ill-suited to the dynamic computing and storage needs of todays’ enterprise data

centers, campuses, and carrier environments. Some of the key computing trends

39

2.1 Need for New Network Architecture

driving the need for a new network paradigm [34] include:

� Changing network traffic patterns: The network traffic patterns of the

enterprise data centers have changed significantly. Most of the applications

generates huge amounts of east-west traffic before returning the data to the

user. Therefore, the traditional client-server architecture where most of the

communication is between user and server is no longer suitable to current

changing traffic patterns.

� Changing user traffic patterns: The explosion of mobile and social

networks resulted in drastic changes in user traffic patterns. The number of

users who are using mobile personal devices such as smart phones, tablets, and

notebooks to access applications and content has grown significantly. However,

accessing applications and content from anywhere and at any time demands

ubiquitous communication.

� The rise of cloud services: Emergence of the public and private cloud

services resulted in on demand access to infrastructure, applications and

other resources. Both the public and private clouds provide self-service

provisioning which requires elastic scaling of computing, storage, and network

resources. Planning for cloud services must be done in an environment of

increased security, compliance, and auditing requirements, along with business

reorganizations, consolidations, and mergers that can change assumptions

overnight.

� Increasing demand for Big data applications: The growing popularity

of big data applications which requires parallel processing of massive data on

thousands of servers. These servers must be connected and communicated

with each other to produce the final result. However, communication between

thousands of servers requires a huge amount of network bandwidth.

40

2.2 Limitations of traditional network architecture

2.2 Limitations of traditional network architec-

ture

In traditional network architecture, both the control plane and data plane are tightly

coupled in the network element. This tight coupling of control and data plane means

the hardware and the software innovations of a network element are tightly coupled.

Furthermore, network management becomes very tedious, error prone and time

consuming process. Some of the limitations of traditional network architecture are

given below.

� Protracted network innovation: The pace of network innovation is far

too slow because hardware and software innovation are bundled together.

The path from prototype demonstration to deployment, which involves

standardization, incorporation into vendor hardware, user procurement, and

installation is a long-delayed process. This time consuming process is an

impediment to integrating new technologies, standards and services into the

existing architecture. We can expedite the network innovation by decoupling

hardware and software innovations.

� Strenuous network management: Typical computer networks constitute

of variety of the devices such as routers, switches and middle boxes such

as proxy servers, Network Address Translators (NATs), and firewalls etc.

The network operators are responsible for setting the policies that are in

line with the continuous network events. They have to manually transform

these high level-policies into low-level configuration commands while adapting

to changing network conditions. Often, they also need to accomplish these

very complex tasks with access to very limited tools. As a result, network

management and performance tuning is quite challenging and thus error-prone.

The fact that network devices are usually vertically-integrated black boxes

41

2.2 Limitations of traditional network architecture

exacerbates the challenge network operators and administrators face [35].

� Internet Ossification: The increasing popularity of cloud computing, mo-

bile and social networks, multimedia content and big data analytics demands

dynamic network management, ubiquitous communication, and higher band-

width of computer networks. The capability of existing computer networks can

be enhanced by investing more money on the network infrastructure. How-

ever, it will increase the complexity of the network due to the presence of

heterogeneous nature and vast number of network elements. Therefore, the

Internet has become extremely difficult to evolve both in terms of its physical

infrastructure as well as its protocols and performance [35].

� Inconsistent policies: To implement a network-wide policy, IT may have

to configure thousands of devices and mechanisms. For example, every time

a new virtual machine is brought up, it can take hours, in some cases days,

for IT to reconfigure Access Control Lists (ACL) across the entire network.

The complexity of todays networks makes it very difficult for IT to apply

a consistent set of access, security, Quality of Service (QoS), and other

policies to increasingly mobile users, which leaves the enterprise vulnerable

to security breaches, noncompliance with regulations, and other negative

consequences [34].

� Vendor dependence: Carriers and enterprises seek to integrate new

technologies, standards and services into the existing architecture in rapid

response to changing business needs or user demands. However, vendor’s

equipment product cycle generally takes three years or more. This time

consuming process is an impediment to deploying new capabilities and services

into the existing architecture. Lack of standard and open interfaces limits

the ability of network operators to tailor the network to their individual

42

2.3 Software Defined Network

environments [34].

2.3 Software Defined Network

Software Defined Networking (SDN) is a network paradigm that separates the con-

trol plane of the network devices from the data plane. The control plane, where

routing and signaling decisions are made, is offloaded to a separate entity called the

controller. The switches/routers in SDN are of no intelligence, simply accept rules

from the controller and forward packets. Additionally, SDN supports programmabil-

ity of the control plane through open northbound and southbound interfaces. SDN

architecture offers numerous benefits over the traditional networking architecture

such as increased network infrastructure utilization, centralized network manage-

ment and so on. Programmability of the control plane allows us to experiment and

deploy new ideas and applications without disturbing the existing network. Fun-

damental structure of a network element in both traditional networking and SDN

is shown in Fig. 2.1. The traditional architecture keeps both the control and data

planes within the network element. We can observe from Fig. 2.1b that the control

plane is not part of the network element in SDN architecture.

The reference architecture of the software defined network is shown in Fig. 2.2.

It consists of three layers namely an infrastructure layer at bottom, a control layer

in middle, and an application layer at top.

� Infrastructure layer: It consists of forwarding elements such as routers,

switches and wireless access points etc. These forwarding devices are

responsible for collecting network status information and sending it to the

controller. Furthermore, they are also responsible for forwarding packets using

the rules received from the controller. Forwarding devices communicate with

the controller using the northbound interface. Every switch maintains a flow

43

2.3 Software Defined Network

Applications

Control Plane

Data Plane

Network Element

Network Operating System

API

(a) Traditional network

Applications

Control Plane

Data Plane

Network Element

SDN Stack

API

Network Opearing System

Application Programming

 Interface (API)

API

(b) SDN network

Figure 2.1: Basic structure of a network element

table whose entries are supplied by the controller. Each flow table entry

consists of three fields namely entry identifier, action, and statistics. Upon

a packet arrival, the header of the packet is matched with the flow table

entries. If there is a match, then the action corresponding to that entry, such

as forward packet on to a port or drop the packet, is performed. If there is no

match, then the packet is sent to the controller for processing. The statistics

portion of an entry keeps track of information such as the number of packets

of each flow, and time since the last packet matched a flow and so on.

� Control layer: It consists of one or more controllers for controlling the

infrastructure elements. These controllers are responsible for maintaining

the global view of the network using the information collected by forwarding

devices. Furthermore, they are also responsible for sending forwarding rules to

switches. These controllers communicate with the forwarding devices using the

northbound interface. When there are multiple controllers in the control layer,

44

2.3 Software Defined Network

Figure 2.2: Software Defined Network architecture [2]

they communicates with each other using east and west bound interfaces.

� Application layer: As we can see from Fig. 2.2, the application layer

is present above the control layer. SDN eliminates the usage of middle

boxes such as load balancers, firewalls, and NAT by implementing their

functionality as an application in software on a server. These applications

communicates with the controllers using the northbound interface. Mobility

management [36, 37], access control [38], energy efficient networking [39], VM

migration [40], adaptive routing, load balancing [41, 42], multicast [43, 44],

network virtualization [24], and security monitoring [45, 46] are some of the

functionalities that can be implemented in the application layer.

45

2.4 Precursors to SDN

2.4 Precursors to SDN

Neither programmability of the control plane nor decoupling control from forwarding

is new to the networking community. Whats new in SDN is, programmability of the

control plane is achieved by decoupling data and control planes. In this section, we

present the precursors to SDN that supported programmability of the control plane

or decoupling control and data planes.

2.4.1 Programmability of the control plane

Active networking solution such as SwitchWare and software routing suites such as

Click and BIRD are released prior to SDN that supports programmability of the

control plane.

Active networking solutions:

Active networking architecture, emerged in mid 1990s, proposed the idea of

programmable networks to expedite the network innovation. SwitchWare is an

active networking solution which supported programmable switches that perform

customized computations (i.e. per user or application basis) on packets flowing

through them [3]. Capsule approach is another active networking solution in which

the packets carry procedures along with embedded data.

Software routing suites:

Software routing suites on PC hardware such as Click [4], BIRD [5] and Quagga [47]

attempted to create extensible software routers by making network devices pro-

grammable. Behavior of these network devices can be modified by loading different

or modifying existing routing software. Quagga Routing Suite supports routing

protocols such as Routing Information Protocol (RIP), Intermediate System to In-

46

2.4 Precursors to SDN

termediate System (IS-IS), Open Shortest Path First (OSPF) and Optimized Link

State Routing Protocol (OLSR), and label distribution protocols such as Multi Pro-

tocol Label Switching (MPLS). BIRD is a portable,efficient, and modular Internet

routing daemon which supports IPv6, multiple routing tables, multiple routers on a

single system and most of the routing protocols.

2.4.2 Control plane and data plane separation

Routing Control Platform (RCP), Forwarding and Control Element Separation

(ForCES) framework released by IETF, 4D design of network architecture, Path

Computation Element (PCE) architecture, Ethane and OpenFlow are released prior

to SDN that supports separation of control and data planes.

Routing Control Platform:

It offloads the task of computing the best Border Gateway Protocol (BGP) route for

a destination prefix from router to an external entity known as Route Control Server

(RCS) to overcome the limitations of full mesh Internal Border Gateway Protocol

(IBGP) and Route Reflector (RR) [6]. RCP constitute three modules which includes

the Interior Gateway Protocol (IGP) Viewer, the BGP Engine and the RCS. The

RCS computes, on behalf of each router, the best BGP route for each destination

prefix using the IGP topology information and the routes to external destinations

that are provided by the IGP Viewer and the BGP Engine respectively. RCP

achieves simultaneously the scalability benefits of route reflectors and correctness of

a full mesh IBGP.

Forwarding and Control Element Separation Framework:

This framework is released by the IETF which aimed at standardizing the

communication between forwarding and control elements [7, 8]. Routing protocols

47

2.4 Precursors to SDN

such as RIP, OSPF, and BGP and signaling protocols such as Resource Reservation

Protocol (RSVP) and Label Distribution Protocol (LDP) for MPLS can be

implemented in the control plane. Functions such as Longest Prefix Match (LPM)

forwarder, classifiers, traffic shaper, meter, NAT, etc can be implemented in

forwarding devices. This standardization allows for the separation of Control

Elements (CEs) from the Forwarding Elements (FEs). Furthermore, it also allows

CEs and FEs from different component vendors to inter-operate with each other,

which results in increased design choices.

4D architecture:

In order to overcome the limitations of traditional networks being fragile and

difficult to manage, Greenberg et al. proposed 4D architecture for the network

control and management which separates the network control and management

into four components (i.e. decision, dissemination, discovery, and data planes)

without changing the format of data packets [9]. Replacing today’s management

plane, the decision plane makes all decisions driving network control, including

reachability, load balancing, access control, security, and interface configuration.

The dissemination plane provides a robust and efficient communication substrate

which is used to move the control information created by the decision plane

to the data plane and state identified by the discovery plane to the decision

plane. The discovery plane is responsible for discovering neighbors, identifying box

level characteristics such as the number of interfaces on a router, the number of

Forwarding Information Base (FIB) entries a router can hold, and identifying link

characteristics such as capacity of the interfaces. The data plane handles packets

based on the state, which includes forwarding table, packet filters, link scheduling

weights, and tunnel and network address translation mappings, that is sent by

the decision plane. The three major design principles of 4D architecture includes

48

2.4 Precursors to SDN

network-level objectives, network-wide views, and direct control. Furthermore,

it also considers the design principles of traditional systems such as scalability,

reliability and consistency.

Path Computation Element architecture:

This architecture offloads the task of computing the paths that satisfies specific

constraints to an entity known as the Path Computation Element (PCE) [10, 11].

The PCE is an application running either within the network element or on an

external entity (out-of-network). The scenarios in which the PCE entity is offloaded

to an external server are listed below:

� If constraints based path computation is highly CPU intensive, then the

network element which has limited computing power may not be able to

compute the paths.

� When the network element may not have the complete topology information

to compute the path to a destination. This happens when the destination

resides in a different domain.

� If the network elements do not have the control plane functionality.

� If the Traffic Engineering Database (TED) may require a lot of memory, then

the network element with limited memory is not a viable option to perform

constraints based path computation etc.

Ethane architecture:

Casado et al. proposed a network architecture known as Ethane that makes the

enterprise networks more manageable and more secure [12]. Ethane follows the lead

of 4D architecture [9] and adopted the centralized control of the network rather

than distributed control. Ethane offloads control of the network to a centralized

49

2.5 OpenFlow

component called the controller. The switches in the networks are not allowed to

communicate directly without controller permission. The switches in the network

are dumb entities which takes the instructions from the controller to forward the

packets. Generally the controller is replicated for fault-tolerance and scalability

purposes.

2.5 OpenFlow

Nick McKeown et al. proposed OpenFlow that allows researchers to run experiments

on the networks they use everyday [13]. OpenFlow enables the administrators to

partition the traffic into research and production traffic. While the production traffic

can be processed in the same way as before, researchers can control the way research

traffic to be processed. In this way, researchers can try new routing protocols,

security models, addressing schemes and even alternatives to IP. OpenFlow consists

of controller, OpenFlow enabled switch and a protocol for communication between

controller and switch. Controller is responsible for adding and removing entries

from the flow table of the switch. The list of commodity switches from various

vendors that respect the OpenFlow standard are presented in Table. 2.1. The list of

controller implementations from various organizations that respect the OpenFlow

standard are presented in Table. 2.2. Most of the controller implementations are

open source.

Fig. 2.3 depicts the block diagram of an OpenFlow switch. It comprises of

three parts namely flow table(s) which is a collection of entries, a secure channel for

connecting switch and controller and OpenFlow protocol for communication between

controller and switch. Each entry of flow table has three fields namely header, action

and statistics. The packet header section of a flow table entry is used to define the

flow. The structure of header is shown in Table 2.3:

The action field of a flow table entry specifies how packets should be processed.

50

2.5 OpenFlow

Table 2.1: List of commodity switches that respect OpenFlow standard

Vendor Switch Model

Hewlett-Packard
8200zl, 6600, 6200zl,

5400zl, and 3500/3500yl

Brocade NetIron CES 2000 Series

IBM RackSwitch G8264

NEC PF5240 PF5820

Pronto 3290 and 3780

Juniper Junos MX-Series

Pica8 P-3290, P-3295, P-3780 and P-3920

Table 2.2: List of controller implementations that respect OpenFlow standard

Controller Platform
Open

Source
Developer

NOX [48] Python, C++ Yes Stanford

POX [49] Python Yes Stanford

Ryu [50] Python Yes NTT, OSRG group

Beacon [51] Java Yes Stanford

Maestro [52] Java Yes Rice University

Floodlight [53] Java Yes BigSwitch

Jaxon [54] Java Yes Independent Developers

Trema [55] C Yes NEC

OpenDaylight [56] Java Yes Linux Foundation

Helios [57] C No NEC

ovs-controller [58] C Yes Independent Developers

51

2.5 OpenFlow

Figure 2.3: Block diagram of an OpenFlow switch

Table 2.3: Header fields used to define the flow

In

Port

VLAN

ID

Etherenet IP TCP

SA DA Type SA DA Protocol Src Dst

The possible actions for each flow entry are one of the following:

� Forward packets corresponding to the flow to a port(s).

� Forward packets corresponding to the flow to controller.

� Drop packets corresponding to the flow.

� Forward packets corresponding to the flow through normal switch operation.

The statistics part of a flow entry keeps tracks of information such as the number

of packets of each flow, and time since the last packet matched a flow etc.

OpenFlow switches can be classified into two types based on the functionality.

52

2.6 Related Work

� Dedicated OpenFlow switches: Does not support normal Layer 2 or Layer

3 functionality. It only supports OpenFlow functionality.

� OpenFlow enabled general purpose commercial switches: It supports

both normal Layer 2 or Layer 3 functionality in addition to OpenFlow

functionality.

2.6 Related Work

In this section, we briefly discuss the survey of related works on controller placement

and hypervisor placement in SDNs.

2.6.1 Controller Placement

The controller placement problems in literature can be classified into different

categories based on the controller capacity, network traffic characteristics, reliability

of network elements, solution approach, and performance metrics. A controller

placement strategy can be either uncapacitated or capacitated based on the

controller capacity. If a controller placement strategy assumes that the capacity of

controllers is limited, then it is capacitated; otherwise it is uncapacitated. Similarly,

a controller placement problem can be either static or dynamic depending on the

network traffic characteristics. In a dynamic controller placement strategy, the

number of controller instances and switch to controller assignment changes with

the varying load of switches, whereas in a static controller placement, the number

of controllers and switch to controller assignment is fixed, i.e., does not change

with the varying load of switches. A controller placement strategy that considers

the failure of nodes, controllers or links into account while deploying controllers is

known as reliability aware controller placement. Furthermore, the existing literature

on the controller placement problems in SDNs can be classified into latency aware,

53

2.6 Related Work

Figure 2.4: Taxonomy of controller placement problems in SDNs

54

2.6 Related Work

connectivity aware, cost aware, energy aware, quality of service aware and/or control

plane overhead aware placement depending on the objective of the problem. The

complete taxonomy of controller placement strategies is depicted in Fig. 2.4.

In this section, we summarize some important works that deal with latency,

connectivity, cost, QoS and/or control plane overhead aware controller placement

strategies and some network partitioning based controller placement strategies in

SDNs.

Latency aware controller placement:

Heller et al. initiated the study of the Controller Placement (CP) problem in

SDNs [17]. Given a network topology, the authors investigated the answers to the

following two questions: how many controllers are required and where to deploy

them? They considered metrics such as the average case latency and the worst case

latency which are determined using k-median and k-center problems respectively.

Given a network graph G(V,E) with forwarding devices as nodes and latency as edge

weights, the average case and the worst case latency for a placement P of controllers

is given as

AvgLatency(P) =
1

n

∑
(v∈V)

min
(w∈P)

d(v, w) (2.1)

WorstLatency(P) = max
(v∈V)

min
(w∈P)

d(v, w) (2.2)

where d(v, w) is the shortest path from the switch v ∈ V to the controller w ∈ P

and n is the total number of forwarding nodes in the topology.

The performance of the placement strategy is evaluated using networks from

Internet OS3E and Internet Topology Zoo. They also analyzed the following:

� The effect of placement on latency.

� The effect of the number of controllers on latency.

� Whether one controller is enough for the entire network or not?

55

2.6 Related Work

Capacity of the controller is a crucial aspect to be considered, because latency

between the switches and controllers increase with the load of controllers and heavily

loaded controllers are more prone to failures. Guang Yao et al. considered capacity

of the controllers and proposed a solution to the Capacitated Controller Placement

(CCP) problem [19]. The goal is to minimize the worst case latency between switches

and controllers while satisfying the capacity constrains. They also proposed a

heuristic using linear relaxation and binary search to solve large scale instances

of the problem. Their results show that the number of controllers required to avoid

overload are lesser when capacity of controllers is taken into account than without

considering capacity. Furthermore, it also avoids the load on the busiest controller.

A Pareto Optimal COntroller placements (POCO) framework that determines

the pareto optimal frontier with respect to various performance metrics is presented

in [59–61]. Multiple competing objectives like latency between switches and

controllers, inter controller latency, controller imbalance and resilience against node

and link failures are considered. In case of small and medium sized networks,

the POCO framework exhaustively evaluates the entire search space to find the

pareto optimal frontier (set of all pareto optimal placements). They also proposed a

pareto simulated annealing heuristic for solving the problem on large sized networks.

Resilience against failures is achieved by deploying controllers at locations that

results in better latency in case of failure. Their method is neither optimized for

latency in case of failures nor considered capacity of controllers. An extended version

of the POCO framework named POCO-PLC is presented in [62] that works under

dynamic conditions.

Huque et al. proposed a dynamic controller placement strategy that changes

the number of controllers depending on the varying load of switches [63]. Since

changing the location of a controller dynamically is not practically feasible, they

deployed the controller modules at locations that minimize the latency using Bowyer-

56

2.6 Related Work

Watson algorithm. Here the controller module is a set of controllers that generally

run on a multi-core processor. Then they used a dynamic flow management

algorithm to activate/deactivate controllers in controller modules depending on load

variations.

In [64], the authors proposed a controller placement strategy to minimize the

communication overhead between switches and controllers while ensuring that the

communication overhead between controllers does not exceed a threshold. They

also proposed a controller placement strategy to minimize the communication

overhead between controllers while ensuring that the communication overhead

between switches and controllers do not exceed a threshold. They formalized the

problems using linear programming. Additionally, the nash bargaining game theory

is used to compute a trade-off between the above mentioned objectives.

In [65, 66], the authors proposed an analytical model for the response time

of controller in distributed SDNs while considering the switch to controller latency

and the inter controller latency. They utilized two data-ownership models namely

Single Data-Ownership (SDO) and Multiple Data-Ownership (MDO) that provides

strong consistency and eventual consistency respectively. They concluded that both

the switch to controller latency and the inter controller latency affects the response

time of a controller in a SDO model. Further, the switch to controller latency is the

only crucial factor that affects the response time of a controller in a MDO model.

They proposed two mathematical models for determining the optimal placement

of controllers that minimize the reaction time of controllers in SDO model and

MDO model respectively. They also proposed a strategy that exhaustively checks

all possible placements to determine the pareto optimal placements with respect

to the switch to controller latency and the inter controller latency. To efficiently

solve the problem on large networks, they presented an evolutionary method to

determine pareto optimal placements. oftware Defined Networking In [67], the

57

2.6 Related Work

authors proposed two strategies for deploying controllers in SDNs while achieving

resilience against link and node failures. The first strategy, reliable controller

placement with disjoint control paths, maps each switch to a unique controller,

but maintains two edge disjoint paths to reach the controller. The second strategy,

referred to as reliable controller placement with disjoint control replicas, assigns each

switch to two controllers (primary and backup) and maintains edge disjoint paths

to reach those controllers. The impact of topology and number of controllers on the

average path length is analyzed using networks from SNDlib topology. They also

analyzed the expected control path loss and availability by varying the link failure

probability.

In [68], the authors proposed two controller placement schemes. All possible

link and node failures are considered while formulating the first problem. However,

only single link failures are considered while formulating the second problem. The

objective is to minimize the worst case latency between switches and controllers

under switch and link failures. The authors also proposed a state search algorithm

and a greedy algorithm for solving the problem that gives optimal and near optimal

solutions respectively. The state search algorithm exhaustively evaluates all possible

network states to determine the worst case latency. It takes exponential time which is

computationally intractable for larger problem instances. Therefore, they proposed

a polynomial time greedy algorithm which iteratively determines the location of

controllers. Furthermore, the performance of the algorithms are evaluated using

topologies from the Internet Topology Zoo, Internet2, and Cernet2.

A mathematical model that takes the number of controllers as an input and

produces optimal traffic distribution in terms of flow setup latency is proposed

in [69]. The traffic distribution matrix comprises of fraction of switch demand

assigned to a controller. The demand of a switch is served by multiple controllers.

Hence, their approach ensures that some fraction of switch demand is not affected in

58

2.6 Related Work

the event of controller failures. The same authors proposed a mathematical model

to generate a short term plan that adjusts the traffic distribution fractions with

the dynamic traffic conditions [70]. They also introduced a model that adjusts

the traffic distribution fractions in the event of a controller failure. Further, they

presented algorithms for computing long term traffic distribution, short term traffic

adjustment, traffic adjustment in the event of controller failures.

To address the limitations of a static switch to controller assignment, Dixit et al.

proposed a controller architecture that dynamically changes the number of con-

trollers with traffic conditions [71, 72]. They also proposed a switch migration pro-

tocol and a load adaptation module to balance the load across controllers with the

variation in traffic dynamics. The switch migration protocol ensures liveness, safety

and serializability properties by operating in four phases. The load adaptation

module computes the load on each controller by periodically collecting load mea-

surements. Then, the module invokes re-balancing and resizing operations which

evenly distribute the load across controllers and increase/decrease the number of

controllers respectively.

Connectivity aware controller placement:

Zhang et al. are the first one to address resilience aspects of the controller placement

problem [73]. The authors used the probability of disconnection between nodes as

a metric to locate the controllers. They used min-cut algorithm to partition the

network into domains, then a controller is deployed at the centroid of each domain.

The proposed min-cut based controller placement is compared with greedy based

and random controller placement algorithms.

Guo and Bhattacharya et al. used interdependence network analysis to improve

the resilience of SDNs [74]. They analyzed the cascading failures of nodes due to link

and other node failures using the interdependence graph. The authors introduced

59

2.6 Related Work

an expected fraction of nodes that are both survived and connected to a controller in

case of link and node failures as a metric to locate the controller. Since the problem

is NP-hard, they used partition and selection approach to find the best placement of

controllers. Greedy modular optimization technique is used to partition the networks

into k clusters and a controller is placed at the centroid of the cluster. Three different

topologies with 50 nodes are generated using igraph library to evaluate their model.

Muller et al. proposed a controller placement strategy named survivor that

improves the survivability of SDNs [75]. The authors formulated the problem as an

ILP model by considering capacity, connectivity, and backup controllers. Capacity of

controllers is considered to avoid overload, path diversity to ensure the connectivity

and survivability and backup controllers is used to recover from failures. The goal is

to maximize the connectivity while satisfying the capacity and placement constrains.

In order to maximize the connectivity, controllers are placed at locations having

a maximum number of node disjoint paths to the switches. Two heuristics are

proposed in which proximity and residual capacity of controllers is used to determine

the list of backup controllers. Three different topologies from Internet Topology

Zoo are used to evaluate their model. Four different metrics are used, the first two

quantify resilience and other two measures overload.

Yannan et al. proposed a controller placement strategy that improves the

reliability of the control plane [76–78]. The goal is to deploy controllers at

locations that minimize the expected percentage of control path loss due to network

failures. This problem is shown as NP-hard by reducing it from the dominating

set problem. Different heuristics such as simulated annealing, greedy, and random

placement strategies are used to solve the problem. The performance of the

algorithms are evaluated using topologies from Internet2 OS3E and Rocketfuel

projcet. Their results show that simulated annealing performs better than other

methods. Furthermore, the results of simulated annealing are used to analyze the

60

2.6 Related Work

impact of the number of controllers on the reliability and trade off between reliability

and latency.

Cost aware controller placement:

Sallahi and St-Hilaire proposed an optimal model for the controller placement

which determines optimal number, location, type of controllers, and interconnection

between network elements [79]. The goal of the model is to minimize the cost of the

network while satisfying capacity and latency constraints. Different factors such as

the capacity of controllers, the cost of the links, the cost of switches and controllers,

and the latency of the paths are considered in the model. The results shows that,

for a fixed number of controllers cost of the network increases with switches, and

for a fixed number of switches cost decreases as the number of potential locations

for the placement increases. The same authors proposed a mathematical model

to minimize the cost of expanding the existing network by adding new switches

while satisfying controller capacity and switch latency constraints [80]. It produces

number of controllers of a specific type to be added/removed, links of a specific type

to be added/removed.

Francisco and Pedro studied Fault Tolerant Controller Placement (FTCP)

problem that aims at achieving five nines of reliability between controllers and

switches [81]. They formulated the FTCP as well known fault tolerant facility

location problem. The goal is to determine the number and placement of controllers

that minimizes the cost while satisfy the reliability constrain. As the FTCP is NP-

hard, they proposed a heuristic to solve large scale instances of the problem. The

proposed FTCP is evaluated on WAN topologies from the Internet Topology Zoo.

A topology independent for determining the optimal number of controllers in

SDNs is proposed in [82]. It dynamically changes the number of controllers in the

network with varying load conditions. The authors assumed that each controller

61

2.6 Related Work

runs on a virtual machine thus facilitating the dynamic addition and deletion of

controllers on a server. The objective is to minimize the cost of the controllers

which includes CAPEX and OPEX. An upper bound on the delay and utilization

of the controller are included as constraints. They solved the global optimization

problem for an initial load condition to decide the optimal location of controllers.

As load of the network changes, each controller decides whether to add or delete new

controllers instances using a non-zero sum game. Each controller computes a payoff

value which is a function of current utilization and current delay of the controller.

If the current payoff value of a controller is greater than an upper bound, then it

offloads all of its switches to neighbor controllers and triggers self deletion. On the

other hand, if the payoff value of a controller is less than a lower bound, then it

either offload some of its switches for load balancing or triggers a new controller

addition.

A controller placement strategy that adjusts the number of controllers with

the changing network conditions is proposed in [83]. The authors also presented a

framework that contains three modules namely monitoring module, reassignment

module, and provisioning module. The monitoring module uses heartbeat messages

to monitor the aliveness of controllers and collects statistics from them. The

reassignment module is responsible for deciding whether to reassign the switches to

other controllers or not based on the statistics collected by the monitoring module.

The initial controller provisioning and reassigning switches to other controllers is

done by the provisioning module. The problem is formulated as an integer linear

program to minimize the weighted sum of switch reassignment cost, communication

cost and the flow setup cost. The authors also presented a greedy knapsack and

simulated annealing heuristics to solve the problem efficiently.

A controller placement strategy to minimize the number of controllers in the

network is formulated as a integer linear program [84]. The authors introduced

62

2.6 Related Work

constraints for limiting the maximum inter controller latency and the maximum

load imbalance across controllers and a constraint for closest assignment between

switches and controllers. They also proposed a resilient controller placement strategy

that assigns each switch to 1 + γ controllers for resilience against controller failures.

It is formulated as a integer linear program by assuming that the failure probability

of controllers is equal. In addition to minimizing the number of controllers, penalty

cost for increase in the latency due to controller failures is also included in the

objective.

Tanha et al. investigated a controller placement strategy to minimize the cost of

deploying controllers and the expected cost of routing the traffic from controllers to

switches while satisfying controller capacity constraints [85]. It is mathematically

modeled as an integer linear program. It corresponds to the capacitated reliable

fixed-charge location problem [86]. Reliability against controller failures is achieved

by assigning each switch to one primary controller and multiple levels of backup

controllers. Their approach is evaluated on various networks from Internet Topology

Zoo by assuming that the controllers fail independent of each other. Results

demonstrated that increasing the cost of the network increases with the increase

in resilience level, i.e., number of backup controllers for each switch. Additionally,

the load imbalance across controllers also increases with the increase in resilience

level.

The authors in [87] proposed a controller placement strategy that minimizes

the number of controllers in the network while limiting the maximum switch to

controller latency and inter controller latency. The authors, initially, formulated

it as a integer linear program by taking capacity and reliability of controllers into

account and extended for single link failures also. They assigned each switch to r

controllers for resilience against controller failures. Since assigning switches to the

closest controllers results in load imbalance among controllers, they have relaxed the

63

2.6 Related Work

closest assignment constraint, i.e., the primary controller of a switch is the closest

one in terms of propagation latency. Further, they proposed two heuristics that

takes exponential and polynomial time respectively. Given an input graph G and

parameter r, the polynomial time heuristic works as follows: constructs a complete

graph Go of G as a overlay, remove edges in Go that violates the inter controller

latency constraint, compute all cliques A of size r and r + 1, for each switch i,

determine subset of cliques computed in previous step that contain i and satisfies

switch to controller latency constraints, sort the switches in increasing order of the

number of associated cliques and finally it determines a feasible maximal clique of

an element of A.

Energy aware controller placement:

Alejandro Ruiz-Rivera et al. proposed an energy aware controller association

algorithm for SDNs named GreCo using Binary Integer Program (BIP) [88]. The

goal is to assign switches to the controllers so as to switch off the maximum number of

links while satisfying latency, capacity, and connectivity constraints. As the problem

is NP-hard, they proposed a heuristic with O(|v|5) time complexity to solve large

scale instances. Four topologies from Internet Topology Zoo are used to evaluate

their heuristic and BIP. Results shows that GreCo saves up to 55% of energy during

peak hours and the heuristic uses 20% more links compared to the optimal solution.

QoS aware controller placement:

The authors of [89] investigated the controller placement problem while considering

topology, the load of switches, and the response time of controftware Defined

Networkingollers. They analyzed the impact of the number of switches and the

load of switches on the flow setup time and the number of controllers required

to reduce the queuing. Finally, they concluded that the controller placement

64

2.6 Related Work

problem can be transformed to a controller selection problem that adaptively selects

controllers depending on the varying load of switches, topology while satisfying the

QoS constraints of switches.

In [90], the authors proposed a strategy to minimize the number of controllers

with an upper bound on the QoS [90]. The mean response time of a switch is used

as a QoS parameter. The latency perceived by a switch is the sum of two times

propagation delay between the switch and its controller and the service time of

the controller. The service time of a controller is modeled using M/M/1 queuing

system. The authors also proposed incremental greedy, primal-dual, and network

partitioning heuristics to solve the problem.

In [91], the authors proposed a controller placement strategy that minimizes

the average response time and control plane overhead by dynamically changing

the number of controllers with varying traffic conditions. It is mathematically

formulated as a variant of well known, NP-hard, Multi-objective Generalized

Assignment Problem (MGAP) [92]. To solve the problem efficiently on large scale

networks, they transformed the variant of MGAP problem to a two phase problem

which uses the idea of stable matching in its first phase and uses the cooperative

game theory in the second phase. The authors proposed an algorithm with

O(MNlog(N)) complexity for the first phase using a variant of deferred acceptance

algorithm. Further, they proposed a coalition formation algorithm with O(MN)

complexity for the second phase. Here, M and N are the number of controllers and

switches respectively. The two phase algorithm is evaluated on fat-tree and VL2

topologies using trace based simulations.

Controller plane overhead aware controller placement:

Xu Li et al. proposed a zone-based distributed network optimization (Z-DNO)

to deploy controllers in very large scale SDNs [93]. To minimize the control

65

2.6 Related Work

plane overhead, they partitioned the entire network into regions and zones and

assigned a dedicated controller to each of them. Note that a region itself may

comprises of one or more zones. That is, zone is the smallest logical division of

the network. The overhead of the network involves state collection overhead in

each zone, coordination overhead for each zone, and interaction overhead between

controllers in different zones. However, only the state collection overhead and the

interaction overhead is considered in the objective. The authors modeled the Z-

DNO using a binary integer programming model which is NP-hard. Therefore, they

proposed clustering, partitioning, and assignment heuristics to efficiently solve the

problem. The assignment heuristic allows the trade-off between load of controllers

and interaction overhead. Su and Hamdi proposed a measurement aware distributed

controller placement strategy for SDNs [94]. The objective is to minimize the sum

of statistics collection cost and synchronization cost. The authors formulated it as

a quadratic integer programming problem. They also presented an approximate

algorithm with 1.61 approximation factor.

Network partitioning based controller placement:

Xiao et al. considered controller placement problem for the WAN topology [95].

They investigated the answers to the following two questions: given a WAN

topology, how to partition the network into domains, and where should the controller

go in each domain? They considered the min-max cut function (Mcut) as the

metric, which minimizes the inter domain similarity and maximize the intra domain

similarity, to partition the network into domains using spectral clustering. The

network graph is represented by G(V,E,W), where V represents forwarding devices

in the network, E represents latencies, and the weight matrix W represents the

bandwidth of the links. The Mcut metric for partitioning the network into k domains

66

2.6 Related Work

is defined as follows

Mcut(SDN1, SDN2, . . . , SDNk) =
1

2

k∑
i=1

xTi (D −W)xi
xTi Wxi

(2.3)

where D is the degree matrix and x is the n dimensional indicator vector.

They have considered the average case latency shown in (2.1) as a metric

to determine the placement. The authors solved the facility location problem

to determine the location of the controller within the domain. Their method is

evaluated on WAN networks from Internet OS3E, and Internet Topology Zoo.

In [96], the authors proposed an approach for partitioning the network into

multiple domains while considering density and latency. They defined the density of

a switch i as the number of switches that are less than a threshold distance dc from

i. Additionally, the latency metric of a switch i is defined as the minimum distance

between switch i and other switches with higher density. Given an input graph and

threshold distance, their method determines the number of clusters using the density

and latency metrics of switches. Then, it selects the switches with large latency

value as controllers and assigns remaining switches to the same cluster as its nearest

neighbor with higher density. Further, they proposed a strategy for partitioning the

network into multiple domains by taking controller capacities into account. The

performance of their density based approaches are compared with the mincut based

method for partitioning [73] and POCO [60]. Disconnections between switches and

controllers in case of link failures is used to measure the network reliability.

Table 2.4 compares various controller placement strategies presented in this

subsection. For brevity, we used UC, C, S and D to denote Uncapacitated,

Capacitated, Static, and Dynamic respectively. The solution approaches OPT,

HEU, NP and GT denote the OPTimal, HEUristic, Network Partitioning, and Game

Theory respectively. Further, we used SCL, ICL, and FSL to denote Switch to

Controller Latency, Inter Controller Latency, and Flow Setup Latency respectively.

67

2.6 Related Work

Table 2.4: COMPARISON OF CONTROLLER PLACEMENT STRATEGIES

Strategy

Controller

Characteristics
Traffic Solution Approach

Objective

UC C S D OPT HEU NP GT

[17] X X X SCL

[19] X X X X SCL

[59] X X X SCL, ICL and Load imbalance

[60] X X X SCL, ICL and Load imbalance

[61] X X X X SCL, ICL and Load imbalance

[62] X X SCL, ICL and Load imbalance

[63] X X X SCL

[64] X X X X SCL and ICL

[65] X X X X SCL and ICL

[66] X X X X SCL and ICL

[67] X X X X Average path length

[68] X X X X SCL

[69] X X X FSL

[70] X X X X X FSL

[71] X X X Load balancing

[72] X X X Load balancing

[73] X X X Probability of disconnections

[74] X X X Expected fraction of connections

[75] X X X X Number of node disjoint paths

[76] X X X X Expected fraction of disconnections

[77] X X X X Expected fraction of connections

[78] X X X X Expected fraction of connections

[79] X X X Capital expenditure

[80] X X X Capital expenditure

[81] X X X X Capital and operational cost

[82] X X X X Capital and operational cost

[83] X X X X Capital and operational cost

[84] X X X Capital expenditure

[85] X X X Capital and operational cost

[87] X X X X Capital expenditure

[88] X X X X Number of active links

[89] X X X FSL and cost

[90] X X X Capital expenditure

[91] X X X Response time and overhead

[93] X X X Control plane overhead

[94] X X X X Control plane overhead

[95] X X X Min-max cut

[96] X X X Control plane overhead

68

2.7 Summary

2.6.2 Hypervisor Placement in SDNs

Blenk et al. proposed a hypervisor placement problem (HPP) that determines

the optimal locations for deploying hypervisors in VSDNs [32, 97]. They also pre-

sented the multi-controller switch deployment problem wherein switches support the

multi-controller functionality. That is, switches can be assigned to multiple hyper-

visors/controllers in order to reduce the control plane latency. The performance

of HPP is analyzed by considering various controller placement strategies such as

deploying at random locations, locations that minimize the worst case latency and

locations that minimize the average case latency. They assumed that the controllers

are deployed in each virtual network before determining the location of hypervisor(s)

which results in sub optimal performance.

2.7 Summary

In summary, we discussed the need for a network architecture and the limitations

of the traditional network architecture. We also discussed the architecture of SDN

and some of the precursors to SDN that supported programmability of the control

plane or decoupling control and data planes. We classified the controller placement

problem in SDN also reviewed important literature related to controller placement

and hypervisor placement in SDNs. Most of the works in the existing literature

did not considered controller failures. Few works considered backup controllers, but

they are not planned ahead to optimized the worst case latency in case of failures.

Although the existing literature addressed the controller placement problem using

network partitioning, to the best of our knowledge, there is no work on controller

placement that used cooperative game theory for network partitioning. Furthermore,

there is no work in literature that jointly optimizes the placement of hypervisors and

controllers in VSDNs.

69

Chapter 3

Failure Foresight Capacitated

Controller Placement in SDNs

The standard Capacitated Controller Placement (CCP) problem selects p locations

for installing controllers while taking switch demands and controller capacities

into account. More precisely, given the number of controllers to be deployed, it

determines simultaneously the location of controllers and the assignment of switches

to them. Each switch receives forwarding rules from a unique controller at any point

of time. The objective is to minimize the maximum, for all switches, of the sum of

the latency from the switch to the nearest controller. However, CCP does not take

the reliability of controllers into account while deploying the controllers.

3.1 Motivation

The worst case latency of the CCP without and with failures when three controllers

are deployed in Internet 2 OS3E topology [98] is shown in Fig. 3.1. The switches

assigned to a controller are shown with the same color and shape as that of the

controller. The worst case latency path between the switch and its controller

71

3.1 Motivation

(a)

(b)

(c)

Switch Controller Failed Controller

Figure 3.1: Worst case Latency of Internet 2 OS3E topology without planning

a) Without failure. b) Disconnections after a failure c) Drastic increase in latency

after reassignment.

72

3.1 Motivation

is highlighted in both cases. The worst case latency in failure free case is 7.68

ms. Failure of a controller results in disconnections between the controller and the

switches that are assigned to it as shown in Fig. 3.1b. The disconnected switches

need to be reassigned to one of the working controllers with enough capacity in

case of failures. This reassignment can be done by solving the assignment problem

presented in Section 1.1, which generally requires administrative intervention.

However, the reassignment of switches result in significant upsurge in the worst case

latency from 7.68 ms to 19.66 ms which can be observed in Fig. 3.1c. Therefore,

we think there is a need for planning ahead to avoid disconnections, repeated

administrative intervention, and drastic increase in the worst case latency in case

of controller failures. To the best of our knowledge, this is the first work that plans

ahead for the failure of controllers to avoid a drastic increase in the worst-case

latency and disconnections.

In this chapter, we propose three mathematical models for the controller

placement problem in SDNs that plans ahead for the controller failures. We avoid

disconnections due to controller failures by maintaining a list of µ(> 1) reference

controllers for every switch, where µ is a constant fixed by the network designer. The

objective of our first model is to minimize the worst-case latency between switches

and their second reference controllers while satisfying the capacity and closest

assignment constraints. This helps in reassigning switches of the failed controllers

to next reference controllers without a drastic increase in latency. This problem is

named as Failure Foresight Capacitated Controller Placement (FFCCP) problem.

This problem is a generalization of the Capacitated Second p-center problem [99].

We extend our model to multiple controller failures that minimizes the worst-case

latency between switches and their µth reference controllers while satisfying the

capacity, closest assignment and multi level closest assignment constraints. We also

introduce a variant of FFCCP that minimizes the sum of worst-case latencies from

73

3.2 Problem Formulation

switches to their 1st, 2nd ,. . . , µth reference controllers.

The remainder of the chapter is organized as follows: In Section 3.2 we present

the assumptions, input parameters, and various optimization formulations of the

FFCCP problem. Section 3.3 introduces various performance metrics. Numerical

results demonstrating the advantages of the proposed models over the existing ones

are reported in Section 3.4. We conclude the chapter in Section 3.5.

3.2 Problem Formulation

In this section, we first present the input parameters and state the assumptions of

the models. Next, we present the mathematical formulations of the FFCCP problem

and also present the performance metrics.

3.2.1 Input parameters

In this section, we define the input parameters used in the formulation. Table 3.1

lists all the input parameters in the model.

We denote the network by a graph G = (S,E) where S = {1, 2, . . . , n} is a finite

set of switches/routers and E is the set of physical links between the switches. Let

C = {c1, c2, . . . , cp} be the set of controllers to be installed and P be the potential

locations for installing controllers. We denote the capacity of cj by Uj. We denote

the minimum propagation latency from switch i to j by dij, 1 ≤ i, j ≤ n, and the

number of PACKET IN1 messages generated by the ith switch by Li.

3.2.2 Assumptions

The following assumptions are used in the model.

1Packets whose header fields do not match with any of the flow table entries trigger a

PACKET IN message to the OpenFlow controller

74

3.2 Problem Formulation

Table 3.1: Notations used in FFCCP

Input Parameter Description

G(S,E) Physical network

S Set of network elements

E Physical links between the network elements

p Number of controllers to be deployed in the network

C = {c1, c2, . . . , cp} Set of controllers for deploying in the network

P Set of potential locations for deploying controllers

Li Number of PACKET IN messages generated by the switch i

Uj Capacity of controller cj

µ Parameter that decides level of planning

dij Latency of the shortest path between i and j

� We assume that all the switches are OpenFlow capable, thus every switch acts

as a potential location for deploying a controller.

� We assume that the number of controllers to be deployed in the network is

known and given as an input parameter.

� We assume that there can be at most µ− 1 controller failures at a time where

µ is a constant fixed by the network designer which depends on the level of

planning.

� We assume that the switches know in advance the unavailability of controllers,

that is, the switches have failure foresight.

� The controllers are homogeneous in terms of capacity, that is, the number of

requests they can process are same.

75

3.2 Problem Formulation

Table 3.2: Decision variables used in FFCCP formulation

Variable Description

yj =1, if a controller is deployed at location j;

=0, otherwise

xij
=1, if j is the first reference controller of switch i;

=0, otherwise

wij
=1, if j is the second reference controller of switch i;

=0, otherwise

3.2.3 FFCCP for single controller failure

Here, we formulate the FFCCP by assuming that at most one controller can fail

at any time. Therefore, the goal is to select a subset Q ⊆ P of locations of size

p to deploy controllers and assign switches to them so as to minimize the worst-

case latency from any switch to its second reference controller while satisfying

the capacity constraint and the closest assignment between switches and their first

reference controllers.

min
Q⊆P
|Q|=p

{z} = min
Q⊆P
|Q|=p

{
max
i∈S

δ(i, j)

}
(3.1)

where δ(i, j) represents the minimum delay from switch i to its nearest second

reference controller at j.

Let the decision variables used in the formulation are yj, xij, and wij, where

i ∈ S, j ∈ P . The variable yj specifies whether a controller is installed at location

j ∈ P . Note that the variable is set to one if a controller is deployed at location

j. For a switch i, the variable xij is set to one if j is the first reference controller

of switch i, otherwise set to zero. The variable wij is set to one if j is the second

reference controller of switch i, otherwise set to zero. Table 3.2 lists all the decision

variables used in the formulation.

76

3.2 Problem Formulation

The FFCCP is formulated as follows:

min z

Subject to the following constraints:∑
j∈P

xij = 1 ∀i ∈ S (3.2)

∑
j∈P
j 6=i

wij = 1 ∀i ∈ S (3.3)

∑
j∈P

yj = p (3.4)

xij + wij ≤ yj ∀i ∈ S, j ∈ P (3.5)∑
a∈P

dia≤dij

xia ≥ yj ∀i ∈ S, j ∈ P (3.6)

∑
i∈S

Lixij +
∑
i∈S

Liwij ≤ Ujyj ∀j ∈ P (3.7)

z ≥
∑
j∈P

dijwij ∀i ∈ S (3.8)

yj ∈ {0, 1} ∀j ∈ P (3.9)

xij, wij ∈ {0, 1} ∀i ∈ S, j ∈ P (3.10)

Constraints (3.2) and (3.3) ensure that each switch maintains exactly one first

reference controller and second reference controller respectively. Notice that the first

reference controller to switch i need not be different from i, if the controller is at

location i. Whereas for switch i, the second reference controller must be different

from i. Constraint (3.4) guarantees that the number of controllers deployed is equal

to p. Usage of the constraint (3.5) is twofold. Firstly, it ensures that j is either the

first reference controller or second reference controller to a switch i. Secondly, it

avoids assigning switches to controllers that are not active. Constraint (3.6) ensures

that the first reference controller of a switch i must be the controller that is closest

77

3.2 Problem Formulation

to the switch i [100]. It works as follows: if switch i is neither assigned to the

controller located at j nor to the controller that is not farther from i than j, i.e.,{∑
a∈P, dia≤dij xia = 0

}
, then there can not be a controller at j2. Constraint (3.7)

ensures that the sum of loads of all switches for which j is either the first or second

reference controller does not exceed j’s capacity. Constraint (3.8) ensures that the

objective value is greater than or equal to the minimum delay from any switch to

its second reference controller. Constraints (3.9) and (3.10) enforce the decision

variables to be binary.

The above formulation can be extended to the average latency objective by

replacing the inequality in (3.8) by an equality as shown below:

z =
∑
i∈S

∑
j∈P

dijwij (3.11)

3.2.4 FFCCP for multiple failures

We extend the formulation presented in the previous subsection to multiple

controller failures. The goal here is to select a subset Q ⊆ P of locations of size p

to deploy controllers and assign switches to them so as to minimize the worst-case

latency from any switch to its µth reference controller while satisfying the capacity

constraint and the closest assignment between switches and their other reference

controllers.

min
Q⊆P
|Q|=p

{z} = min
Q⊆P
|Q|=p

{
max
i∈S

δµ(i, j)

}
(3.12)

where δµ(i, j) represents the minimum delay from switch i to its nearest µth reference

controller at j.

Let the decision variable rlij, ∀i ∈ S, j ∈ P , l = 1, 2, . . . , µ, be defined as follows.

For a switch i, the variable rlij is set to one if j is the lth reference controller of switch

2Note that, all the delay constraints used in this thesis are based on distance. However, the

smallest delay is not always with the closest node due to link speed, high volume of traffic, etc.

78

3.2 Problem Formulation

i, otherwise set to zero.

The FFCCP for multiple failures is formulated as follows:

min z

Subject to (3.4), (3.9) and the following constraints:∑
j∈P

r1
ij = 1 ∀i ∈ S (3.13)

∑
j∈P
j 6=i

rlij = 1 ∀i ∈ S, l = 2, 3, . . . , µ (3.14)

µ∑
l=1

rlij ≤ yj ∀i ∈ S, j ∈ P (3.15)

∑
a∈P

dia≤dij

r1
ia ≥ yj ∀i ∈ S, j ∈ P (3.16)

∑
a∈P

dia≤dij

rlia + (rl−1
ij + rl−2

ij + · · ·+ r1
ij) ≥ yj,

∀i ∈ S, j ∈ P, l = 2, 3, . . . , µ (3.17)

µ∑
l=1

∑
i∈S

Lir
l
ij ≤ Ujyj ∀j ∈ P (3.18)

z ≥
∑
j∈P

dijr
µ
ij ∀i ∈ S (3.19)

rlij ∈ {0, 1} ∀i ∈ S, j ∈ P, l = 1, 2, . . . , µ (3.20)

Constraints (3.13) and (3.14) ensure that each switch maintains exactly one lth

reference controller. Notice that the first reference controller to switch i need not

be different from i, if the controller is at location i. Whereas for switch i, the lth

reference controller, for l > 1, must be different from i. Usage of the constraint

(3.15) is twofold. Firstly, it ensures that j is only one of the lth reference controllers,

79

3.2 Problem Formulation

for l = 1, 2, . . . , µ, to a switch i. Secondly, it avoids assigning switches to controllers

that are not active. Constraint (3.16) ensures that the first reference controller of

a switch i must be the controller that is closest to the switch i [100]. It works

as follows: if switch i is neither assigned to the controller located at j nor to the

controller that is not farther from i than j, i.e.,
{∑

a∈P, dia≤dij r
1
ia = 0

}
, then there

can not be a controller at j. Constraint (3.17) guarantees that the lth reference

controller, for l > 1, of switch i is the lth closest controller to switch i [101]. It

works as follows: if a controller located at j is not the 1st, 2nd, . . . , (l− 1)th closest

controller to a switch i, then either j or some controller closer than j is the lth

closest controller to the switch i. Constraint (3.18) ensures that the sum of loads

of all switches for which j is the lth reference controller, for l = 1, 2, . . . , µ, does not

exceed j’s capacity. If yj = 1, the load on the controller located at j due to the

switches having it as lth reference controller, is
∑
i∈S

Lir
l
ij. The controller at j can be

lth reference controller, for l = 1, 2, , . . . , µ, to a switch. Hence, the total load on the

controller at j is
µ∑
l=1

∑
i∈S

Lir
l
ij, which should not exceed j’s capacity. If yj = 0, rlij = 0

for l = 1, 2, . . . , µ from (3.15). The equation (3.18) is trivially satisfied. Constraint

(3.19) ensures that the objective value is greater than or equal to the minimum

delay from any switch to its µth reference controller. Constraint (3.20) enforce the

decision variables, rlij, to be binary.

3.2.5 FFCCP with Combined Objective

CCP minimizes the worst-case latency in failure free case at the expense of increasing

the worst case latency in case of failures. FFCCP minimize the worst-case latency

in case of failures at the expense of increasing the worst case latency in failure free

scenario. Since the network will operate without failures for the major portion of

the time, we proposed a variant of FFCCP that is not optimized for failures alone,

but optimized for the worst-case latencies with and without failures together. More

80

3.2 Problem Formulation

specifically, we introduced a variant of FFCCP that minimizes the sum of worst-

case latencies from switches to their lth reference controllers, ∀l = 1, 2, . . . , µ. It

minimizes the sum of worst-case latencies from switches to their 1st, 2nd ,. . . , µth

reference controllers. Since it minimizes the combined worst case latencies of all µ

reference controllers, it is named as Combined Objective FFCCP (CO-FFCCP). CO-

FFCCP minimize the worst-case latency in failure free and failure cases together. It

is formulated as

min
Q⊆P
|Q|=p

{
z1 + z2 + · · ·+ zµ

}
= min

Q⊆P
|Q|=p

{
µ∑
l=1

max
i∈S

δl(i, j)

}
, (3.21)

where δl(i, j) represents the minimum delay from switch i to its nearest lth reference

controller at j and zl, for l = 1, 2, . . . , µ, is the worst case latency between switches

and their lth reference controllers.

Subject to (3.4), (3.9), (3.13)-(3.18), (3.20) and

zl ≥
∑
j∈P

dijr
l
ij ∀i ∈ S, l = 1, 2, . . . , µ (3.22)

3.2.6 Controller Failover

OpenFlow v1.2 and above allows each controller to be in one of the three roles for

a switch: master, equal, or slave. Controllers that are in either master or equal

role for a switch receive the PACKET IN messages sent by the switch. Initially,

the first reference controller of a switch is in master role and all other reference

controllers of that switch are in slave role. Detecting failure of controllers is an

essential part in controller failover, which can be done using the methods proposed

in [1, 102–110]. Controller failover can be performed using the pre-partitioning

failover method proposed in [109]. The following controller failure detection and

controller failover method can be used for FFCCP. Each controller in the network

periodically exchange heartbeat messages with all other controllers to keep track

of liveness. These heartbeat messages are useful in checking the liveness of the

81

3.3 Performance metrics

controllers. Failure of a controller is detected by all other working controllers if

they do not receive three consecutive heartbeat messages from the controller. Two

controllers j and k are said to be peers if they are the lth and mth reference controllers

respectively for a non empty subset of switches where 1 ≤ l 6= m ≤ q. The lth

reference controller (2 ≤ l ≤ µ) sends a role request message to change its role from

slave to master to all the switches in the peering domain when it detects the failure of

other (l−1) peering controllers. It also periodically sends failover messages to other

(l− 1) peering controllers. When one of the (l− 1) peering controllers recovers from

failure, it sends a role request message to all the switches in the peering domain

to change its role from slave to master. Note that whenever a switch receives a

role request message from a controller to change its role from slave to master, it

does not only changes the role of the requesting controller from slave to master but

also changes the role of other peering controllers from master to slave if any. If

all µ reference controllers of a switch fails, then it can fall back to traditional local

control. However, the switch should support both OpenFlow pipeline and traditional

Ethernet operation, i.e., the switch should be hybrid.

3.3 Performance metrics

We introduce two metrics for comparing FFCCP and CCP in failure free case and

failure case, which we refer as worst case latency and maximum worst case latency

for brevity, in (3.23) and (3.24) respectively. The worst case latency defined in

(3.23) is the maximum, for all switches, of the latency from the switch to its nearest

controller. The maximum worst case latency defined in (3.24) is the maximum, for

all possible failure scenarios, of the worst case latencies. Hence, we have to consider

all possible failure scenarios while determining the maximum worst case latency.

Lworst = max
i∈S

{
min
j∈C

dij

}
(3.23)

82

3.4 Numerical Results

LFmax worst = max
f∈F

{
max
i∈S

{
min
k∈C

dfik

}}
(3.24)

Here, F is the set of all possible failure scenarios, n is the number of switches in the

network, and dfik is the latency from switch i to controller k under a failure scenario

f .

Moreover, we also introduce two metrics for comparing the inter controller

latency of FFCCP and CCP in (3.25) and (3.26). The maximum inter controller

latency presented in (3.25) is the maximum, for every pair of controllers, of the

inter controller latencies. The average inter controller latency defined in (3.26) is

the average, for every pair of controllers, of the inter controller latencies.

ICLmax = max
j,k∈C

djk (3.25)

ICLavg =
1

|C|
∑
j,k∈S

djk (3.26)

3.4 Numerical Results

In this section, we solve the proposed FFCCP models using real-world network

topologies and compare the performance obtained with the standard capacitated

controller placement problem from the literature.

3.4.1 Evaluation Setup

We evaluated our proposed formulations on AT&T and GEANT networks of Internet

Topology Zoo [33]. Table 3.3 describes the number of nodes, the number of edges,

minimum degree, maximum degree, average degree, and diameter of input networks

used for evaluation. Longitude and latitude of the nodes are used to determine the

propagation latencies. The demand of the switches is randomly generated between

100K and 400K requests/second [19, 111]. We assumed that each controller runs

on a single server with 10 Gbps access bandwidth. Since the size of a PACKET IN

83

3.4 Numerical Results

Table 3.3: Characteristics of input networks

Parameter/Network AT&T GEANT

Nodes 25 40

Edges 57 61

Min degree 2 1

Max degree 10 10

Avg degree 4.56 3.05

Diameter 24.1 ms 28 ms

message according to OpenFlow v1.2 is 160 bytes, the capacity of controllers is set to

7800 Kilo packets/s. We considered all possible failure scenarios while determining

the worst case latency in case of failures [99], [61]. The integer linear programming

input file is generated from MATLAB [112] and sent to the CPLEX optimizer

12.6.2 [113].

3.4.2 Results

The worst case latency defined in (3.23) is used to compare the performance of CCP,

FFCCP, and CO-FFCCP in failure free case. We used the maximum worst case

latency defined in (3.24) as a metric to compare CCP, FFCCP, and CO-FFCCP in

case of controller failures. The maximum worst case latency of our proposed method

in case of controller failures refers to the maximum, for all switches, the latency from

the switch to its second reference controller when µ = 2 and the latency from the

switch to its third reference controller when µ = 3 and so on. We evaluated the worst

case latency for all possible failure scenarios (i.e failure of each individual controller

when µ = 2 or all possible combinations of two controller failures when µ = 3 and so

on) and the maximum among these is taken as the maximum worst case latency in

case of failures. The same procedure is applied to CCP while determining the worst

84

3.4 Numerical Results

 0

 5

 10

 15

 20

 25

 2 3 4 5 6 7 8

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(a) AT&T(25 Nodes)

 0

 5

 10

 15

 20

 3 4 5 6 7 8 9

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(b) GEANT(40 Nodes)

CCP Without Failures

CCP With One Failure

CO-FFCCP Without Failures

CO-FFCCP With One Failure

FFCCP Without Failures

FFCCP With One Failure

Figure 3.2: Worst case switch to controller latency of CCP, FFCCP, and CO-FFCCP

with one controller failure

case latency in case of failures. Since exhaustive search of all failure scenarios is

sufficient to determine the maximum worst case latencies in case of failures, we did

not explicitly considered the spatial and temporal distribution of controller failures.

Hence, the results we obtain are deterministic in nature.

The comparison between the performance of the CCP, FFCCP, and CO-

FFCCP with one controller failure (i.e. µ = 2) for different p values starting from

the minimum number of controllers required is shown in Fig. 3.2. Please note that

the minimum number of controllers for topology depends on the number of nodes

and the number of reference controllers for each node. In case of controller failure,

there is a drastic increase in the worst-case latency of CCP and it is much higher

than that of FFCCP. Due to lack of backup controllers and planning ahead for the

failures in CCP, requests from switches of failed controllers need to be serviced by

other controllers with enough capacity, which need not be next nearest. This in turn

increases the worst-case latency drastically. However, the increase in the worst-case

latency of FFCCP is much lower, because of planning ahead for the failures. FFCCP

85

3.4 Numerical Results

 0

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(a) AT&T(25 Nodes)

 0

 5

 10

 15

 20

 5 6 7 8 9 10 11

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(b) GEANT(40 Nodes)

CCP Without Failures

CCP With Two Failures

CO-FFCCP Without Failures

CO-FFCCP With Two Failures

FFCCP Without Failures

FFCCP With Two Failures

Figure 3.3: Worst case switch to controller latency of CCP, FFCCP, and CO-FFCCP

with two controller failures

performs better than CO-FFCCP also, because FFCCP is optimized for failures,

whereas CO-FFCCP is not optimized for failures alone, but it is optimized for the

worst-case latencies with and without failures together. The worst-case latency

of FFCCP is higher than CCP, when there is no failure, because FFCCP is not

optimized for the worst-case latency between switches to first reference controllers.

The results for two controller failures (i.e µ = 3) are given in Fig. 3.3, which

follow the similar performance of CCP, FFCCP, and CO-FFCCP. When the number

of controllers is much more than the minimum number, there are many working

controllers with enough spare capacity to serve the switches of the failed controllers.

This leads to decrease in the worst case latency of CCP. That is, the gap between

CCP and FFCCP decreases in case of failures as shown in Fig. 3.2a, Fig. 3.3a.

However, the same trend can be realized in GEANT when the number of controllers

is increased up to 15 because they have more number of nodes.

We can observe that CO-FFCCP neither performs best in failure free case

nor in case of failures because it is optimized for neither of these two cases. But,

86

3.4 Numerical Results

 0

 5

 10

 15

 20

 25

 30

2 3 4 5 6 7 8 9M
ax

 i
n
te

r
co

n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(a) AT&T(25 Nodes)

 0

 5

 10

 15

 20

 25

 30

 35

 40

3 4 5 6 7 8 9 10M
ax

 i
n
te

r
co

n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(b) GEANT(40 Nodes)

Figure 3.4: Worst case inter controller latency of CCP, FFCCP, and CO-FFCCP

with one controller failure

 0

 5

 10

 15

 20

2 3 4 5 6 7 8 9A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(a) AT&T(25 Nodes)

 0

 5

 10

 15

 20

 25

3 4 5 6 7 8 9 10A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(b) GEANT(40 Nodes)

Figure 3.5: Average inter controller latency of CCP, FFCCP, and CO-FFCCP with

one controller failure

CO-FFCCP performs better than FFCCP in failure free case and better than CCP

in case of failures because it minimizes the worst-case latencies with and without

failures together. We can also observe that the worst-case latency of CO-FFCCP

is close to CCP in failure free case and it is close to FFCCP in case of failures.

Hence, CO-FFCCP performs better than FFCCP and CCP when we consider both

failure free and failure cases. Thus, FFCCP and CO-FFCCP are generally beneficial

than CCP and it is better to plan ahead for the failures. In turn, the number of

controllers required by FFCCP and CO-FFCCP is more than CCP because they

87

3.4 Numerical Results

 0

 5

 10

 15

 20

 25

 30

3 4 5 6 7 8 9 10M
ax

 i
n
te

r
co

n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(a) AT&T(25 Nodes)

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 6 7 8 9 10 11 12M
ax

 i
n
te

r
co

n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(b) GEANT(40 Nodes)

Figure 3.6: Worst case inter-controller latency with two controller failures

maintain µ reference controllers for every switch whereas CCP maintains only one.

 0

 5

 10

 15

 20

3 4 5 6 7 8 9 10A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(a) AT&T(25 Nodes)

 0

 5

 10

 15

 20

 25

5 6 7 8 9 10 11 12A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy
 (

m
s)

Number of Controllers

CCP

CO-FFCCP

FFCCP

(b) GEANT(40 Nodes)

Figure 3.7: Average inter-controller latency with two controller failures

In distributed SDNs, all the controllers must be communicated with each other

to maintain a consistent global view of the network so as to ensure proper network

operation. The worst inter controller latency and the average inter controller

latency characterizes the latency between the farthest controllers in the network

and the distribution of controllers across the network respectively. Therefore, the

maximum and average inter controller latencies of CCP and FFCCP with single

controller failure (i.e. µ = 2) for different p values starting from the minimum

number of controllers required is shown in Fig. 3.4 and Fig. 3.5 respectively. We

88

3.4 Numerical Results

can observe that the FFCCP results in lesser maximum and average inter controller

latencies when compared to CCP and CO-FFCCP. The latency between the farthest

controllers increases with the number of controllers in the network. Therefore, the

maximum inter controller latency of FFCCP is lower than the CCP and CO-FFCCP

when fewer number of controllers are deployed in the network and it is close to CCP

and CO-FFCCP when more than the required number of controllers are deployed

in the network which is evident from Fig. 3.4. However, the cost of the network

increases when much more than the required number of controllers are deployed in

the network. Therefore, the designer of the network typically avoids deploying more

than the required number of controllers. We can observe similar trends with respect

to the maximum and average inter controller latencies of CCP and FFCCP for two

controller failures (i.e. µ = 3) from Fig. 3.6 and Fig. 3.7 respectively.

3.4.3 Complexity analysis

The complexity of CCP, FFCCP for single failure, FFCCP for multiple failures

and CO-FFCCP is presented in terms of the number of decision variables, and

the number of inequality and equality constraints in Table 3.4. Since P = S, the

number of decision variables in CCP, FFCCP, and CO-FFCCP is asymptotically

equal to O(|S| ∗ |S|). The number of equality constraints and inequality constraints

in CCP, FFCCP, CO-FFCCP are asymptotically equal to O(|S|) and O(|S| ∗ |S|)

respectively. However, the actual number of decision variables and constraints in

FFCCP for single failures are nearly two times more than the number of decision

variables and constraints in CCP. Further, the actual number of decision variables

and constraints in FFCCP for multiple failures and CO-FFCCP are nearly µ times

more than the number of decision variables and constraints in CCP. Therefore,

FFCCP and CO-FFCCP demands more physical memory for large scale networks

when compared to CCP.

89

3.5 Conclusion

Table 3.4: Complexity analysis of CCP, FFCCP and CO-FFCCP

CCP

Number of Decision Variables 1 + |P |+ |S| ∗ |P |
Number of equality constraints 1 + |S|
Number of inequality constraints |S|+ |P |+ |S| ∗ |P |

FFCCP for

single

failure

Number of Decision Variables 1 + |P |+ 2 ∗ |S| ∗ |P |
Number of equality constraints 1 + 2 ∗ |S|
Number of inequality constraints |S|+ |P |+ 2 ∗ |S| ∗ |P |

FFCCP for

multiple

failures

Number of Decision Variables 1 + |P |+ µ ∗ |S| ∗ |P |
Number of equality constraints 1 + µ ∗ |S|
Number of inequality constraints |S|+ |P |+ (1 + µ) ∗ |S| ∗ |P |

CO-FFCCP

Number of Decision Variables µ+ |P |+ µ ∗ |S| ∗ |P |
Number of equality constraints 1 + µ ∗ |S|
Number of inequality constraints µ ∗ |S|+ |P |+ (1 + µ) ∗ |S| ∗ |P |

3.5 Conclusion

In this chapter, we investigated the failure foresight capacitated controller placement

problem in SDNs that avoid disconnections, repeated administrative intervention,

and drastic increase in the worst case latency in case of controller failures. We

designed an optimization model, for a single controller failure using two-indexed

decision variables. The objective is to minimize the worst-case latency between

switches and their second reference controllers. We extended our optimization model

for multiple controller failures. The objective is to minimize the worst-case latency

between switches and their µth reference controllers while satisfying the capacity

and closest assignment constraints. We also designed a variant of FFCCP that

minimizes the sum of worst-case latencies from switches to their 1st, 2nd ,. . . , µth

reference controllers. The proposed formulations are evaluated on various networks

from the Internet Topology Zoo. Our results show that the proposed FFCCP and

CO-FFCCP perform better than CCP in case of failures. Simulation results also

demonstrated that the CO-FFCCP perform better than FFCCP and close to CCP

90

3.5 Conclusion

in failure free case.

In this chapter, we assumed that the switches know the status of controllers,

which is not always possible. In the next chapter, we investigate a controller

placement strategy that not only considers capacity and reliability of controllers,

but also plans ahead for controller failures without assuming the failure foresight of

switches. We seek to minimize the maximum, for all switches, of the sum of two

latencies, the latency from the switch to the nearest controller and the latency from

the nearest controller to its closest controller.

91

Chapter 4

Capacitated Next Controller

Placement in SDNs

In previous chapter, we assumed that the switches have failure foresight. That is, the

switches know the status of controllers, which is not always possible. Here, we relax

the failure foresight assumption of switches. Hence, the switch where a controller

is deployed knows the availability of the corresponding controller whereas other

switches do not know the status of this controller. To the best of our knowledge,

this is the first work that plans ahead for the failure of controllers, without assuming

failure foresight of switches, to avoid a drastic increase in worst-case latency and

disconnections.

In this chapter, we propose a controller placement problem in SDNs that

not only considers capacity and reliability of controllers but also plans ahead

for controller failures without assuming that the switches have failure foresight.

Note that the switch where a controller is deployed knows the availability of the

corresponding controller whereas other switches does not know the status of this

controller. Thus, the switches always forward the PACKET IN messages to their

respective nearest controller irrespective of whether it is available or not. In addition

93

4.1 Problem Formulation

to the first reference controller, we also maintain a second reference controller for

every switch. The objective is to minimize the maximum, for all switches, of the

sum of the latency from the switch to the nearest controller with enough capacity

(first reference controller) and the latency from the first reference controller to its

closest controller with enough capacity (second reference controller). Henceforth,

it is referred as Capacitated Next Controller Placement (CNCP) for brevity. The

CNCP corresponds to the capacitated version of the next p-center problem [114,115].

We formulated the CNCP as ILP using two-indexed binary variables. However, it

is not straightforward to extend the formulation to the average latency objective.

Hence, we formulated the problem as ILP using three-indexed binary variables

which can be easily extended for the average latency objective. We also extended

the formulation to include multiple controller failures. Furthermore, we presented

a simulated annealing heuristic that efficiently solves the problem on large scale

networks.

The remainder of the chapter is organized as follows: In Section 4.1 we present

the assumptions, input parameters, and various ILP formulations of the CNCP

problem. Section 4.2 introduces various performance metrics. A simulated annealing

heuristic to efficiently solve the problem on large scale networks is presented in

Section 4.3. Numerical results demonstrating the advantages of the proposed model

over the existing ones are reported in Section 4.4. We conclude the chapter in

Section 4.5.

4.1 Problem Formulation

In this section, we first present the input parameters and state the assumptions of

the models. Next, we present the ILP formulations of the CNCP problem and also

present the performance metrics.

94

4.1 Problem Formulation

4.1.1 Input Parameters

The input parameters used in the problem formulation are same as those used in

previous chapter. For better readability and completeness, we present the input

parameters in this subsection.

The network is represented by a graph G(S,E), where S = {s1, s2, . . . , sn}

be the set of switches and E be the set of physical links between switches. Let

C = {c1, c2, . . . , cp} be the set of controllers to be deployed and P be the potential

locations for deploying controllers. We denote the load of si by Li and the capacity

of cj by Uj. Please note that the load of a switch refers to the number of messages

whose header does not match with any of the flow table entries. All unmatched

messages are forwarded to the corresponding controller. Let dij be the minimum

propagation latency between switch si and controller cj, for i ∈ S, j ∈ P .

4.1.2 Assumptions

We have relaxed the failure foresight assumption of switches. All other assumptions

from Chapter 3 are used in this problem formulation. For better readability and

completeness, we present the list of assumptions in this subsection.

� We assume that all the switches are OpenFlow capable, hence, acts as potential

locations for deploying controllers, i.e., P = S.

� We assume that the number of controllers to be deployed in the network is

known and given as an input parameter.

� We assume that there can be at most µ− 1 controller failures at a time where

µ is a constant fixed by the network designer which depends on the level of

planning. If the designer plans ahead for two controller failures, then µ is set

to 3.

95

4.1 Problem Formulation

� The controllers are homogeneous in terms of capacity, i.e, the number of

requests they can process are same.

4.1.3 CNCP Formulation with two-indexed variables

In this subsection, we assume that at the most one controller fails at any time,

i.e., µ = 2. The controller deployed at switch j means the controller is immediately

connected to switch j. Thus, the latency from the switch j to the controller deployed

at j is negligible. Therefore, this switch is the only entity that forwards the incoming

requests and outgoing replies to and from the controller. Thus, the switches always

forward the PACKET IN messages to their nearest controller with enough capacity,

which we refer as the first reference controller for brevity, irrespective of whether

it is available or not. Note that if a controller is deployed at location j, then

it is the first reference controller to the switch j. When PACKET IN messages

arrives at the switch, where the corresponding first reference controller is deployed,

the switch forward packets to the first reference controller if it is available else to

a controller nearest to the first reference controller, which we refer as the second

reference controller for brevity. Here, the controller nearest to the first reference

controller j is nothing but the controller other than j that is nearest to the switch to

which j is immediately connected and also satisfies the capacity constraint. Hence,

the objective is to minimize the maximum, for all switches, of the sum of the

latency from the switch to the first reference controller and the latency from the

first reference controller to its second reference controller.

min
Q⊆P
|Q|=p

{z} = min
Q⊆P
|Q|=p

max
i∈S

min
j∈P

dij + min
j′∈argmin

j∈P
dij

min
k∈P
k 6=j′

dj‘k

 (4.1)

Let the two-indexed decision variables used in CNCP formulation are yj, r
1
ij,

r2
ij and wjk, where i ∈ S, j ∈ P . The variable yj specifies whether a controller is

installed at location j ∈ P . Note that the variable is set to one if a controller is

96

4.1 Problem Formulation

Table 4.1: Decision variables used in CNCP formulation

Variable Description

yj =1, if a controller is deployed at location j

=0, otherwise

r1
ij

=1, if j is the first reference controller of switch i

=0, otherwise

r2
ij

=1, if j is the second reference controller of switch i

=0, otherwise

wjk
=1, if controllers are deployed at both j and k

=0, otherwise

deployed at location j. For a switch i, the variable r1
ij is set to one if j is the first

reference controller of switch i, otherwise set to zero. The variable r2
ij is set to one

if j is the second reference controller of switch i, otherwise set to zero. The variable

wjk determines whether controllers are deployed at locations j, k ∈ P . Note that

the variable is set to one if controllers are deployed at both the locations j and k.

The CNCP is formulated as follows:

min
Q⊆P,|Q|=p

{z}

Subject to: ∑
j∈P

yj = p (4.2)

∑
j∈P

r1
ij = 1 ∀i ∈ S (4.3)

∑
j∈P
j 6=i

r2
ij = 1 ∀i ∈ S (4.4)

r1
ij + r2

ij ≤ yj ∀i ∈ S,∀j ∈ P (4.5)

wjkdjk ≤ γGd ∀j, k ∈ P (4.6)

97

4.1 Problem Formulation

wjk ≥ yj + yk − 1 ∀j, k ∈ P (4.7)

wjk ≤ yj ∀j, k ∈ P (4.8)

wjk ≤ yk ∀j, k ∈ P (4.9)

yj +
∑
h∈P

dih>dij

r1
ih ≤ 1 ∀i ∈ S,∀j ∈ P (4.10)

∑
i∈S

Lir
1
ij +

∑
i∈S

Lir
2
ij ≤ Ujyj ∀j ∈ P (4.11)

z ≥ (dij + djk)(r
1
ij + r2

ik − 1) ∀i ∈ S, j, k ∈ P (4.12)

yj ∈ {0, 1} ∀j ∈ P (4.13)

r1
ij, r

2
ij ∈ {0, 1} ∀i ∈ S, j ∈ P (4.14)

wjk ∈ {0, 1} ∀j, k ∈ P (4.15)

Constraint (4.2) guarantees that exactly p controllers are deployed in the network.

Constraints (4.3) and (4.4) ensures that each switch has unique first and second

reference controllers respectively. Constraint (4.4) also specifies that the second

reference controller of switch i must be different from the one that is deployed at

i. However, the first reference controller of switch i need not be different from the

one that is deployed at i. Constraint (4.5) ensures that j is either the first or the

second reference controller to a switch i. That is, the first and second reference

controllers of a switch must be different. It also checks the validity of assignments.

If no controller is deployed at j, i.e., yj = 0, then the assignment of switches to

j are not allowed, i.e., r1
ij = 0 and r2

ij = 0. Constraint (4.6) guarantees that the

latency between any pair of active controllers is less than γGd, i.e., the maximum

allowable inter controller latency. Here Gd is the diameter of the network graph

and γ is a parameter supplied by the designer of the network. Please note that the

maximum allowable inter controller latency is expressed as a fraction of the graph

diameter to maintain consistency across various network topologies. The variable

98

4.1 Problem Formulation

wjk = 1 if both yj = 1 and yk = 1, i.e., wjk = yjyk which makes the formulation non

linear. Therefore, we use the constraints (4.7)-(4.9) to avoid the non linear term in

the formulation and make it linear. Constraint (4.7) ensures that the variable wjk

takes a value one when yj is one. Constraint (4.8) guarantees that the variable wjk

takes a value one when yk is one. Constraints (4.7)-(4.9) together ensures that the

variable wjk takes a value one when both yj and yk are one.

Since all the PACKET IN messages of a switch are forwarded to the first

reference controller when there are no failures, we have to ensure the closest

assignment between switches and their first reference controllers. We adopted the

closest assignment constraint introduced by Wagner and Falkson in [116]. The

original constraint is proposed to ensures the closest center behavior in a location-

allocation model. Therefore, we can safely use it to ensure that the first reference

controller of a switch i is the one that is closest to it as shown in (4.10). It works

as follows: if a controller is deployed at j (yj = 1), then the assignment of switch

i to any controller farther from i than j is not allowed (
∑

h∈P ;dih>dij
r1
ih = 0). The

closest assignment between a switch and its second reference controller is implicitly

ensured by the objective function. Constraint (4.11) is the demand constraint which

guarantees that the total demand of the switches served by a controller j does not

exceed it’s capacity Uj. Here the total demand includes the demand of switches for

which j is the first or second reference controller. Constraint (4.12) ensures that,

for any switch i ∈ S, the objective value is greater than or equal to the sum of

latency from switch i to its nearest controller l and the latency from l to its nearest

controller j. When both r1
ij = 1 and r2

ik = 1, the term r1
ij + r2

ik− 1 on the right hand

side of (4.12) is positive. Therefore, the right hand side of (4.12) effectively reduces

to (dij + djk) which is equivalent to the sum of latency from switch i to its first

nearest controller l and the latency from l to its nearest controller j. In all other

cases, the right hand side of (4.12) is non positive. Constraints (4.13) and (4.14) are

99

4.1 Problem Formulation

integral constraints which ensures that all the decision variables take values either

0 or 1.

The objective of the above formulation is to minimize the worst case latency in

case of controller failure. If the objective is to minimize the average latency in case

of controller failure, then the straightforward extension of the above formulation,

replacing the inequality in (4.12) by equality, does not function correctly. This is

due to the fact that the right term (r1
ij + r2

ik − 1) of (4.12) is negative when both

r1
ij and r2

ij are equal to zero. However, we can extend the above formulation to the

average latency objective by replacing the term r1
ij + r2

ik − 1 with r1
ijr

2
ik. However,

this replacement makes the formulation non linear. Therefore, to circumvent the

non linear term and to extend the above formulation for the average case objective,

we need to introduce a set of additional variables rijk, ∀i ∈ S,∀j, k ∈ P , defined as

follows:

rijk =


1, if the first and second reference controllers to

switch i are j and k respectively.

0, otherwise.

The CNCP formulation for the average case objective is given as follows:

min
Q⊆P,|Q|=p

{z}

Subject to (4.2)-(4.11), (4.13)-(4.15) and

z =
1

|S|
∑
i∈S

∑
j∈P

∑
k∈P

(dij + djk)rijk (4.16)

However, the variables r1
ij and r2

ik are redundant if we introduce variable rijk.

Therefore, we formulate the CNCP using only three indexed variables rijk to avoid

both non linear terms and redundant variables in the next formulation.

100

4.1 Problem Formulation

4.1.4 CNCP Formulation with three-indexed variables

In this subsection we formulate the CNCP as ILP using three-indexed binary

variables. Let the decision variables rijk, wjk and yj ∀i ∈ S, j, k ∈ P , are defined as

above. The CNCP formulation with three-indexed variables is given as follows:

min z

Subject to (4.2), (4.6)-(4.9), (4.13), (4.15) and

∑
j∈P

∑
k∈P
k 6=i,j
dij≤dik

rijk = 1 ∀i ∈ S (4.17)

∑
k∈P
k 6=i,j
dij≤dik

rijk +
∑
k∈P
k 6=j

dik≤dij

rikj ≤ yj ∀i ∈ S,∀j ∈ P (4.18)

yj +
∑
h∈P

dih>dij

∑
k∈P

rihk ≤ 1 ∀i, j ∈ S, i 6= j (4.19)

∑
i∈S

∑
k∈P

Lirijk +
∑
i∈S

∑
k∈S

Lirikj ≤ Ujyj ∀j ∈ P (4.20)

z ≥
∑
j∈P

∑
k∈P

(dij + djk)rijk ∀i ∈ S (4.21)

rijk ∈ {0, 1} ∀i ∈ S,∀j, k ∈ P (4.22)

Constraint (4.17) guarantees that each switch has unique first and second reference

controllers, which are ensured by (4.3) and (4.4) in the earlier formulation.

Constraint (4.18) corresponds to (4.5), which guarantees that j is either the first or

the second reference controller to a switch i. Constraint (4.19) corresponds to (4.10),

which ensures the closest assignment between switches and their respective first

reference controller. It works as follows: if a controller is deployed at j (yj = 1), then

any controller that is farther from the switch i than j cannot be the first reference

101

4.1 Problem Formulation

controller of the switch i, i.e., the second term on the left hand side of (4.19) must be

zero. Constraint (4.20) is demand constraint corresponding to (4.11). The first and

second terms on the left hand side of (4.20) corresponds to the sum of demand of

the switches for which j is the first and the second reference controller respectively.

Constraint (4.21) corresponds to (4.11) which ensures that the objective value is

greater than or equal to the sum of latency from any switch i to its nearest controller

l and the latency from l to its nearest controller j. Constraints (4.13) and (4.22)

are domain constraints which guarantees that all the decision variables take values

either 0 or 1.

4.1.5 CNCP Formulation for multiple failures

In this subsection, we relax the assumption that at the most one controller fails at

any time. We extend the three-indexed CNCP formulation to multiple controller

failures. Let the decision variables rlijk, ∀i ∈ S, ∀j, k ∈ P , l ∈ {1, 2, . . . , µ} be

defined as follows:

rlijk =


1, if the controller nearest to the (l − 1)th reference

controller j of switch i is k

0, otherwise.

When l = 1, the (l − 1)th reference controller of a switch refers to the zeroth

reference controller which is meaning less. Thus, to maintain consistency in notation

the zeroth reference controller of a switch is defined as itself. The first reference

controller of a switch i is the controller nearest to i and the lth (l > 1) reference

controller of a switch i is the controller that is nearest to the (l − 1)th reference

controller of i. Please note that the PACKET IN messages of a switch is served by

its lth reference controller whenever the first (l − 1)th reference controllers of that

switch fail. Therefore, the objective is to minimize the maximum, for all switches

102

4.1 Problem Formulation

i ∈ S, of the sum of latency from switch i to its first reference controller and the

sum of latencies from (l − 1)th (2 ≤ l ≤ µ) reference controller of switch i to its

lth reference controller of i. Here, µ is a parameter supplied by the designer of the

network, whose value is decided by the level of planning.

min
Q⊆P
|Q|=p

max
i∈S
{dijr1

iij +
∑

l∈{2,3,...,µ}

∑
k∈P

djkr
l
ijk}

 (4.23)

The CNCP formulation for multiple failures is given as follows:

min z

Subject to (4.2), (4.6)-(4.9), (4.13), (4.15) and∑
j∈P

r1
iij = 1 ∀i ∈ S (4.24)

∑
j∈P

∑
k∈P

k 6=i,k 6=j

rlijk = 1 ∀i ∈ S, l ∈ {2, 3, . . . , µ} (4.25)

∑
j∈P

rl−1
ijk −

∑
w∈P

w 6=i,w 6=k
dik≤diw

rlikw = 0 ∀i ∈ S,∀k ∈ P, l ∈ {2, 3, . . . , µ} (4.26)

r1
iik +

∑
l∈{2,3,...,µ}

∑
j∈P

rlijk ≤ yk ∀i ∈ S, k ∈ P (4.27)

∑
h∈P

dih≤dij

r1
iih ≥ yj ∀i ∈ S, j ∈ P (4.28)

∑
j∈P

∑
h∈P

h6=i,h 6=j
djh≤djk

rlijh +
∑
a∈P

rl−1
iak + · · ·+

∑
a∈P

r2
iak + r1

iik ≥ yk

∀i ∈ S, k ∈ P, k 6= i, l ∈ {2, 3, . . . , µ} (4.29)∑
i∈S

Lir
1
iik +

∑
l∈{2,...,µ}

∑
i∈S

∑
j∈P

Lir
l
ijk ≤ Ukyk ∀k ∈ P (4.30)

103

4.1 Problem Formulation

z ≥
∑
j∈P

dijr
1
iij +

∑
l∈{2,...,µ}

∑
j∈P

∑
k∈P

k 6=i,k 6=j
dij≤dik

djkr
l
ijk ∀i ∈ S (4.31)

rlijk ∈ {0, 1} ∀i ∈ S,∀j, k ∈ P, l ∈ {1, 2, 3, . . . , µ} (4.32)

Constraints (4.24) and (4.25) together guarantees that each switch has exactly one

lth reference controller, for l = 1, 2, . . . , µ. Constraint (4.26) works as follows: if the

PACKET IN messages of the switch travels from the controller at j to the controller

at k in case of (l−1) controller failures, then the packets must move from k to some

controller w in case of lth controller failure. That is, if the lth reference controller

of switch i is k, then some controller w must be assigned as the (l + 1)th reference

controller of switch i. Constraint (4.27) ensures that j can be one of the µ reference

controllers of switch i. That is, it guarantees that all the µ reference controllers

of a switch are different from each other. Constraint (4.28) assures the closest

assignment between switches and their first reference controllers. It was adopted

from the Church and Cohon constraint presented in [117]. It works as follows: if a

controller is deployed at j (yj = 1), then either j or some other controller closer than

j is the first reference controller of i. Constraint (4.29) is known as multi level closest

assignment constraint which is adopted from the generalized Church and Cohon

constraint presented in [101]. It assures the closest assignment between switches and

their lth reference controllers, for l = 2, 3, . . . µ−1. It works as follows: if a controller

is deployed at k (yk = 1), j is the (l − 1)th (2 ≤ l ≤ µ − 1) reference controller of

switch i, and k is not the 1st, 2nd, . . . , (l − 1)th reference controller of i, then

either k or some other controller closer than k from j is the lth reference controller

of i. Please note that the closest assignment between switches and their last (µth)

reference controller is implicitly ensured by the objective function. Constraint (4.30)

is the capacity constraint which guarantees that, for any controller, the sum of

demands of the switches assigned to it is less than or equal to its capacity. The

first term on the left hand side of (4.30) corresponds to the sum of demand of the

104

4.1 Problem Formulation

switches for which j is the first reference controller. The second term on the left

hand side of (4.30) corresponds to the sum of demand of the switches for which j

is lth reference controller, for l = 2, 3, . . . , q. The first term on the right hand side

of (4.31) corresponds to the latency from the switch to its first reference controller.

The second term on the right hand side of (4.31) corresponds to the sum of latencies

from the (l − 1)th reference controller of the switch to lth reference controller of the

switch, for l = 2, 3, . . . , µ. Therefore, constraint (4.31) ensures the correct objective

value. Constraint (4.32) guarantees that all the decision variables are binary.

4.1.6 Controller Failover

CNCP not only generates the initial controller locations and the switch to controller

assignment as output but also generates all the µ reference controllers for every

switch. This entire information is stored at each controller. OpenFlow v1.2 and

above allows each controller to be in one of the three roles for a switch: master,

equal, or slave. Controllers that are in either master or equal role for a switch

receive the PACKET IN messages sent by the switch. Initially, the first reference

controller of a switch is in master role and all other reference controllers of that

switch are in slave role. The lth reference controller of a switch becomes master

whenever the first (l − 1) reference controllers of the switch fail, for 2 ≤ l ≤ µ.

Detecting failure of controllers is an essential part in controller failover, which can

be done using the methods proposed in [1,102–110]. The switch that is immediately

connected to a controller can also detect the failure of the controller using the switch

discovery mechanism proposed in [109]. Controller failover can be performed using

the greedy failover method proposed in [109]. If all µ reference controllers of a switch

fails, then it can fall back to traditional local control. However, the switch should

support both OpenFlow pipeline and traditional Ethernet operation, i.e., the switch

should be hybrid.

105

4.2 Performance metrics

4.2 Performance metrics

We introduce two metrics for comparing CNCP and CCP in failure free case and

failure case, which we refer as worst case latency and maximum worst case latency

for brevity, in (4.33) and (4.34) respectively. The worst case latency defined in

(4.33) is the maximum, for all switches, of the latency from the switch to its nearest

controller. The maximum worst case latency defined in (4.34) is the maximum, for

all possible failure scenarios, of the worst case latencies. Hence, we have to consider

all possible failure scenarios while determining the maximum worst case latency.

Lworst = max
i∈S

{
min
j∈C

dij

}
(4.33)

LFmax worst = max
f∈F

{
max
i∈S

{
min
k∈C

dfik

}}
(4.34)

Here, F is the set of all possible failure scenarios, n is the number of switches in the

network, and dfik is the latency from switch i to controller k under a failure scenario

f . Note that the way in which the term dfik is defined for CCP is different from

CNCP. It is defined for CCP and CNCP in (4.35) and (4.36) respectively.

dfik = dik (4.35)

dfik = dij + djk (4.36)

In case of controller failures, CCP reassigns the switches of failed controllers to other

working controllers with enough spare capacity that is nearest to the switch. Hence,

the term dfik in CCP is the latency between switch i and controller k to which it is

reassigned. However, the term dfik in CNCP is the sum of the latency from a switch

i to its first reference controller j and the latency from the first reference controller

j to the second reference controller k. Moreover, we also used the maximum inter

controller latency and the average inter controller latency metrics presented in (3.25)

and (3.26) for comparing the inter controller latency of CNCP and CCP.

106

4.3 Heuristic Solution

4.3 Heuristic Solution

The optimal formulation with two indexed decision variables presented in the

previous section consists of quadratic number of constraints and variables. Similarly,

the formulation with three indexed decision variables consists of cubic number of

constraints and variables. The memory consumed by an ILP is proportional to the

(number of constrains × number of decision variables). The number of decision

variables and constraints increase with the network size. Hence, the running time

and memory requirement of an ILP increases with the network size. In this section,

we apply a heuristic technique to provide viable and faster solutions on large scale

networks. Different heuristic solutions have been applied, in literature, on problems

such as controller placement [61, 75, 78, 118], network embedding [119–121] etc.

Simulated annealing is a popular choice for finding a global optimum of the problems

that have large search space and many local optimums.

Simulated annealing is a probabilistic method proposed independently by

Kirkpatrick, Gelatt and Vecchi [122], and Cerny [123]. It was motivated from the

metropolis algorithm that deals with cooling of materials by slowly lowering the

temperature. The main characteristic of the algorithm is to accept solutions that

are worse than the current one with some probability in order to avoid getting

caught at a local optimum. This can be done by using a control parameter

known as temperature. The probability of accepting worse solutions decreases

with the temperature. Hence, it allows the algorithm to explore the search

space at higher temperatures and helps in the convergence at lower temperatures.

Furthermore, the probability of accepting worse solutions decreases with the

difference between objectives of current and new solution. The algorithm takes

as input the network graph G(S,E) and the annealing schedule and returns the

best solution encountered during the traversal. The annealing schedule contains

parameters starting temperature (T0), number of iterations at each temperature

107

4.3 Heuristic Solution

(Imax), temperature decrement (α) and ending temperature (Te).

Algorithm 1: Simulated Annealing

Input: G(S,E), T0, Te, Imax, α

Output: S∗, v∗

1: T=T0, v∗ = inf, i = 1 ;

2: S=GenerateRandomInitialSolution () ;

3: v=EvaluateObjective (S) ;

4: while T ≥ Te do

5: if Feasibility (S)==1 and v < v∗ then

6: S∗ = S, v∗ = v

7: end if

8: S
′
=GenerateRandomNeighbour (S) ;

9: v
′
=EvaluateObjective (S

′
) ;

10: ∆=v
′ − v ;

11: r=Generate a random number between 0 and 1

12: if P (S
′
,∆, T) ≥ r then

13: S = S
′
, v = v

′

14: end if

15: i = i+ 1 ;

16: if Imax iterations are performed at T then

17: T = Tα, i = 1 ;

18: end if

19: end while

20: return S∗, v∗

The algorithm begins with an initial temperature and gradually decrements

until it reaches an ending temperature. The starting temperature must be selected

very carefully i.e., it should not be too high or too low. Generally, the starting

108

4.3 Heuristic Solution

temperature is set to 1 and ending temperature is set to a small value such as 0.00001.

The ending temperature need not be zero because the probability of accepting the

worst moves approaches zero as the temperature approaches zero. The algorithm

picks a randomly chosen solution as the starting point in step 2 and computes its

objective value in step 3. Nevertheless, we can also use a solution obtained by

greedy or greedy randomized strategy as a starting point. Each solution is a triplet

S =< A,C1, C2 >, where A is the set of active controllers and Cl, l ∈ {1, 2}, is the

vector representing the lth reference controller of switches, i.e., Cl(i) = j ⇔ rlij = 1.

Step 5-7 keeps track of the best feasible solution seen so far and its objective value.

A solution is said to be feasible if it satisfies (4.17), (4.18) and (4.20). In each

iteration, a random neighbor S
′

of the current solution S is generated in step 8 and

its objective value is computed in step 9. The new solution is accepted and becomes

the current solution for the next iteration with a probability, P (S
′
,∆, T). If it is not

accepted then another neighbor of the current solution is generated and the process

continues until the temperature reaches an ending temperature. The probability of

accepting a solution is a function of temperature and change in objective value as

shown in (4.37). It is evident from (4.37) that the new solution that is better than

the current one is always accepted because exp(−∆
T

) is greater than 1. On the other

hand, the new solution that is worse than the current one is accepted if exp(−∆
T

) ≥ r.

Where ∆ is the change in objective value, i.e., difference between objectives of new

and current solutions and r is a random number generated between 0 and 1. Two

solutions are said to be neighbors if they differ by at most one active controller.

Furthermore, two solutions which are having the same set of active controllers, but

differs in at least one switch assignment are also treated as neighbors. At each

temperature the algorithm must run long enough to reach the stable state. Typical

number of iterations at each temperature level are in [100,1000]. After every Imax

iterations, the temperature is modified according to the step 17 of Algorithm 1.

109

4.4 Numerical Results

Typical value of α is in [0.8, 0.99]. Please note that the higher the value of α the

more time it takes for the algorithm to terminate.

P (S
′
,∆, T) = exp(−∆

T
) = exp(−v

′ − v
T

) ≥ r (4.37)

4.4 Numerical Results

In this section, we evaluate the CNCP models using real-world network topologies

and compare the performance obtained with the standard capacitated controller

placement problem from the literature. We also compared the performance of the

simulated annealing heuristic with the ILP.

4.4.1 Evaluation Setup

The proposed CNCP formulation is evaluated on various networks from Internet

Topology Zoo [33] and compared its performance with CCP. The networks include:

AT&T (25 nodes) and GEANT (40 nodes). All the selected networks have latitude

and longitude information which are used to calculate the delay between the nodes.

The demand of switches are randomly generated between 100 to 400 kilo requests

per second [111], [19]. We assumed that the controller software runs on a server

with maximum access bandwidth of 10Gbps. The capacity of each controller is

set to 7.8 ∗ 106 packets/second because the size of a packet is 160 bytes according

to the OpenFlow v 1.2 specification. The input file of the ILP is generated using

MATLAB [112] and sent it to CPLEX optimizer [113].

4.4.2 Results

The worst case and maximum worst case latencies of CNCP and CCP in failure free

and failure scenarios while considering a single controller failure are presented in

Fig. 4.1. While evaluating for one controller failure, we need at least two controllers

110

4.4 Numerical Results

so that the controller that survives can serve the switches. When the number of

nodes in the network is less than or equal to 30, two controllers are sufficient for

CCP and CNCP in failure free and failure cases because on average a controller can

serve up to 30 nodes. Hence, we varied the number of controllers from 2 to 9 for

AT&T network and the results are presented in Fig. 4.1a. CNCP requires at least

3 controllers when the number of nodes are greater than 30. Although the CCP

in failure free case works well with two controllers, failure of a controller leaves the

network with a single controller which cannot serve all the switches. Therefore, we

varied the number of controllers from 3 to 10 for GEANT network and the results

are presented in Fig. 4.1b. These results do not include the time required to reassign

the switches of the failed controllers in the performance of CCP.

The worst case latency defined in (4.33) is used to compare the performance

of CNCP with CCP in failure free case. When there are no failures, CCP results in

lower worst case latency than CNCP which can be observed from Fig. 4.1 because

it is optimized for the worst case latency. However, the worst case latency of CCP

drastically increases in case of controller failures due to lack of planning for failures.

We used the maximum worst case latency defined in (4.34) as a metric to

compare CNCP with CCP in case of controller failures. The maximum worst case

latency of our proposed method in case of controller failures refers to the maximum,

for all switches, the latency from the switch to its second reference controller when

µ = 2 and the latency from the switch to its third reference controller when µ = 3

and so on. Note that the latency from a switch to its lth reference controller is the

sum of latency from the switch to its first reference controller and sum of the latencies

from (m− 1)th reference controller of the switch to its mth reference controller, for

2 ≤ m ≤ l. We evaluated the worst case latency for all possible failure scenarios

(i.e failure of each individual controller when µ = 2 or all possible combinations of

two controller failures when µ = 3 and so on) and the maximum among these is

111

4.4 Numerical Results

 0

 5

 10

 15

 20

 25

 2 3 4 5 6 7 8 9

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(a) AT&T (25 Nodes)

 0

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9 10

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(b) GEANT (40 Nodes)

CCP Without Failures

CNCP Without Failures

CCP With Failure

CNCP With Failures

Figure 4.1: Worst case latency and maximum worst case latency of CCP and CNCP

on various networks.

taken as the maximum worst case latency in case of failures. The same procedure is

applied to CCP while determining the worst case latency in case of failures. Since

exhaustive search of all failure scenarios is sufficient to determine the maximum

worst case latencies in case of failures, we did not explicitly considered the spatial

and temporal distribution of controller failures. Hence, the results we obtain are

deterministic in nature. It is evident from Fig. 4.1 that CNCP performs better than

CCP in case of controller failure because it is optimized for the maximum worst case

latency.

In case of controller failures, the maximum worst case latency of CNCP

decreases as the number of controllers in the network increases because its objective

is to minimize the maximum worst case latency. However, the worst case latency

of CNCP does not follow this trend in failure free case which can be observed in

Fig. 4.1b because deploying controllers at locations that minimize the maximum

worst case latency does not ensure that the worst case latency decreases as the

number of controllers increases. Please note, deploying controllers at locations that

112

4.4 Numerical Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(a) AT&T (25 Nodes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(b) GEANT (40 Nodes)

CCP Without Failures

CNCP Without Failures

CCP With Failure

CNCP With Failures

Figure 4.2: Switch to controller latency distribution of CCP and CNCP on various

networks when p=4.

minimize the worst case latency guarantees that the worst case latency decreases

as the number of controllers increases. Since the objective of CCP is to minimize

the worst case latency, CCP follows the above specified trend in failure free case.

However, deploying controllers at locations that minimize the worst case latency

does not ensure that the maximum worst case latency decreases as the number of

controllers increases. Therefore, CCP does not follow the trend in case of failures

which can be observed in Fig. 4.1a and Fig. 4.1b.

The worst case latency does not characterize the distribution of switch to

controller latencies in the network. Therefore, we presented the cumulative

distribution of switch to controller latencies in Fig. 4.2. We can observe from

Fig. 4.2a that the maximum latency experienced by each switch in case of failures

is lower in CNCP when compared to the CCP. This trend is not followed by all the

switches in GEANT network which can be observed from Fig. 4.2b. But majority of

the switches in GEANT network follows this trend. However, the switch to controller

latencies of CCP, in failure free case, are lower than the CNCP. Therefore, we argue

113

4.4 Numerical Results

 0

 5

 10

 15

 20

 25

2 3 4 5 6 7 8 9

M
ax

.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(a) AT&T (25 Nodes)

 0

 5

 10

 15

 20

 25

 30

3 4 5 6 7 8 9 10

M
ax

.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(b) GEANT (40 Nodes)

Figure 4.3: Maximum inter controller latency of CCP and CNCP on various

networks.

that the average latency of CNCP is better than CCP in case of failures even though

it is optimized for the maximum worst case latency.

 0

 2

 4

 6

 8

 10

2 3 4 5 6 7 8 9

A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(a) AT&T (25 Nodes)

 0

 2

 4

 6

 8

 10

3 4 5 6 7 8 9 10

A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(b) GEANT (40 Nodes)

Figure 4.4: Average inter controller latency of CCP and CNCP on various networks.

In distributed SDNs, all the controllers must be communicated with each other

to maintain a consistent global view of the network so as to ensure proper network

operation. Since the worst inter controller latency characterizes the latency between

the farthest controllers in the network, we presented those comparison results in

Fig. 4.3. Since the second reference controller of a switch is the controller that is

nearest to the first reference controller of the switch and the objective of CNCP

114

4.4 Numerical Results

is to minimize the worst case latency between switches and their second reference

controllers, CNCP forces the first and second reference controllers of a switch to

be deployed close to each other. However, this does not force the controllers of

different switches to be deployed near to each other. Furthermore, the latency

between the farthest controllers increases with the number of controllers in the

network. Therefore, the maximum inter controller latency of CNCP is lower than

the CCP when fewer number of controllers are deployed in the network and it is

close to CCP when more than the required number of controllers are deployed in

the network. However, the cost of the network increases when much more than

the required number of controllers are deployed in the network. Therefore, the

designer of the network typically avoids deploying more than the required number of

controllers. Since the average inter controller latency characterizes the distribution

of controllers across the network, we presented those results in Fig. 4.4. It is evident

that the average inter controller latency of CNCP is lower than the CCP.

We can observe that the maximum inter controller latency of CNCP and CCP

increases with the number of controllers and it eventually reaches the diameter of

the network. The latency between the farthest switches, i.e., the diameter of AT&T

and GEANT networks is nearly 24 ms and 28 ms respectively. Therefore, we solved

the problem by limiting the inter controller latency using constraints (4.6)-(4.9) with

γ set to 0.6. That is, we restricted the maximum inter controller latency of AT&T

and GEANT networks at 14.4 ms and 16.8 ms respectively. The results comparing

the worst case latency and maximum worst case latency of CCP and CNCP when

the maximum inter controller latency is restricted to 60% of the network diameter

are presented in Fig. 4.5. It is evident that CNCP performs better than CCP in

case of controller failure and CCP performs better than CNCP in failure free case.

The switch to controller latency and the inter controller latency are two

competing objectives. Therefore, we presented the impact of restricting the

115

4.4 Numerical Results

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 3 4 5 6 7 8 9

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(a) AT&T (25 Nodes)

 12

 14

 16

 18

 20

 22

 3 4 5 6 7 8 9 10

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(b) GEANT (40 Nodes)

CCP_Without_Failures (γ=0.6)

CNCP_Without_Failures (γ=0.6)

CCP_With_Failure (γ=0.6)

CNCP_With_Failures (γ=0.6)

Figure 4.5: Worst case latency and maximum worst case latency of CCP and CNCP

while restricting the maximum inter controller latency.

maximum inter controller latency on worst case latency and maximum worst case

latency of CNCP in Fig. 4.6. There is an upsurge in the maximum worst case

latency of CNCP when we restrict the maximum inter controller latency. The

maximum inter controller latency of CNCP without restricting the inter controller

latency (γ = 1) for ATT network is more than the upper bound (14.4 ms) when

the number of controllers is greater than or equal to 4 which can be observed from

Fig. 4.6a. Therefore, the upsurge in the maximum worst case latency of CNCP

in Fig. 4.6a started at p=4. Similarly, for GEANT network it is more than 16.8

ms when the number of controllers is greater than or equal to 5. Therefore, the

upsurge in Fig. 4.6b started at p=5. The worst case latency and maximum worst

case latency of CCP and CNCP with inter controller latency constraints are higher

when compared to the CNCP and CCP without these constraints.

The average inter controller latency of CNCP and CCP are presented in

Fig. 4.7. It is evident that the average inter controller latency of CNCP is lower

than the CCP when fewer number of controllers are deployed in the network and

116

4.4 Numerical Results

 4

 6

 8

 10

 12

 14

 16

 18

 2 3 4 5 6 7 8 9

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(a) AT&T (25 Nodes)

 9

 10

 11

 12

 13

 14

 15

 16

 17

 3 4 5 6 7 8 9 10

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(b) GEANT (40 Nodes)

CNCP_Without_Failures (γ=1)

CNCP_Without_Failures (γ=0.6)

CNCP_With_Failure (γ=1)

CNCP_With_Failures (γ=0.6)

Figure 4.6: Impact of restricting the inter controller latency on worst case latency

and maximum worst case latency of CNCP on various networks.

 0

 2

 4

 6

 8

 10

2 3 4 5 6 7 8 9

A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(a) AT&T (25 Nodes)

 0

 2

 4

 6

 8

 10

3 4 5 6 7 8 9 10

A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(b) GEANT (40 Nodes)

Figure 4.7: Average inter controller latency of CCP and CNCP while restricting the

maximum inter controller latency.

it is close to CCP when more than the required number of controllers are deployed

in the network. The designer of the network typically avoids deploying more than

the required number of controllers because the cost of the network increases when

much more than the required number of controllers are deployed in the network.

The maximum inter controller latency comparison between CNCP and CCP is not

117

4.4 Numerical Results

 0

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9 10

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(a) AT&T (25 Nodes)

 0

 5

 10

 15

 20

 25

 4 5 6 7 8 9 10 11

W
o
rs

t
C

as
e

L
at

en
cy

 (
in

 m
s)

Number of Controllers

(b) GEANT (40 Nodes)

CCP_Without_Failures

CNCP_Without_Failures

CCP_WithTwo_Failure

CNCP_With_Two_Failures

Figure 4.8: Worst case latency and maximum worst case latency of CCP and CNCP

while evaluating for two controller failures.

presented because it is bounded by 60% of the network diameter.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

3 4 5 6 7 8 9 10

M
ax

.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(a) AT&T (25 Nodes)

 0

 5

 10

 15

 20

 25

 30

4 5 6 7 8 9 10 11

M
ax

.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(b) GEANT (40 Nodes)

Figure 4.9: Maximum inter controller latency of CCP and CNCP while evaluating

for two controller failures.

Figure 4.8 illustrates the worst case latency and maximum worst case latency

of CNCP and CCP while considering two controller failures. While evaluating for

two controller failures, we need at least three controllers so that the controller that

survives can serve the switches. When the number of nodes in the network is less

118

4.4 Numerical Results

than or equal to 30, three controllers are sufficient for CCP and CNCP in failure free

and failure cases because on average a controller can serve up to 30 nodes. Hence,

we varied the number of controllers from 3 to 10 for AT&T network and the results

are presented in Fig. 4.8a. CNCP requires at least 4 controllers when the number

of nodes are greater than 30. Although the CCP in failure free case works well with

three controllers, failure of a controller leaves the network with a single controller

which cannot serve all the switches. Therefore, we varied the number of controllers

from 4 to 11 for GEANT networks and the results are presented in Fig. 4.8b. We

can observe that both CNCP and CCP follow trends similar to that of the single

controller failure case. That is, CNCP performs better than CCP in case of failures

and CCP performs better than the CNCP in failure free case.

 0

 2

 4

 6

 8

 10

3 4 5 6 7 8 9 10

A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(a) AT&T (25 Nodes)

 0

 2

 4

 6

 8

 10

4 5 6 7 8 9 10 11

A
v
g
.
in

te
r

co
n
tr

o
ll

er
 l

at
en

cy

Number of Controllers

CCP CNCP

(b) GEANT (40 Nodes)

Figure 4.10: Average inter controller latency of CCP and CNCP while evaluating

for two controller failures.

When the number of controllers deployed are much more than the required,

CCP reassign switches of the failed controllers to nearest working controller with

enough spare capacity without much increase in the worst case latency because

there are many working controllers with enough spare capacity which can serve

the switches of the failed controllers. We can observe that the worst case latency

of CCP in Fig. 4.8a is slightly less than CNCP when p=7 and p=9 because the

119

4.4 Numerical Results

 0

 5

 10

 15

 20

 25

3 4 5 6 7 8 9

L
at

en
cy

 i
n
 m

s

Number of Controllers

Opt value

Heuristic value

(a) Objective comparison

 0

 20

 40

 60

 80

 100

 120

 140

3 4 5 6 7 8 9

E
x
e
c
u
ti

o
n
 T

im
e
 i

n
 s

e
c

Number of Controllers

ILP time

Heuristic Time

(b) Running time comparison

Figure 4.11: Performance of Simulated Annealing heuristic on GEANT topology

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10

O
b
je

ct
iv

e
v
al

u
e

Temperature

Optimal solution

Heuristic solution

(a) p=3

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10

O
b
je

ct
iv

e
v
al

u
e

Temperature

Optimal solution

Heuristic solution

(b) p=4

Figure 4.12: Progress of simulated annealing heuristic on GEANT topology

number of controllers are more than required and we did not included the time

required to reassign the switches of the failed controllers in the performance of CCP.

The maximum inter controller latency and average inter controller latency of CNCP

and CCP while considering two controller failures were presented in Fig. 4.9 and

Fig. 4.10 respectively. We can observe that CNCP performs better than CCP when

fewer number of controllers are deployed in the network and it is close to CCP when

much more than the required number of controllers are deployed in the network.

The simulated annealing heuristic is implemented in MATLAB and its

performance is compared with the ILP. The starting and ending temperatures are

120

4.4 Numerical Results

set to 10 and 0.0001 respectively. Similarly, the number of iterations at each

temperature level, Imax, is set to 500 and the temperature decrement α is set to

0.95. Each instance is executed for 100 times and the average results are presented

for statistical reliability. Figure 4.11a illustrates the performance of the simulated

annealing heuristic on GEANT topology for different p values. It shows that the gap

between the optimal value and the value returned by the heuristic is very less. This

gap can be further reduced by increasing Imax and α values. However, it increases

the running time of the heuristic. Figure 4.11b illustrates the running times of the

ILP and the simulated annealing heuristic on GEANT network. We can observe

that the simulated annealing heuristic takes less than the half of the time taken by

ILP. The progress of simulated annealing heuristic on GEANT network for p=3 and

p=4 were presented in Fig. 4.12a and Fig. 4.12b respectively. The gap between

the heuristic objective value and optimal value is more at higher temperatures

because the simulated annealing heuristic explores the search space by accepting

worse solutions with high probability at higher temperatures. Since the probability

of accepting worse solutions decreases with the temperature, the simulated annealing

heuristic converge towards the optimal value at lower temperatures.

4.4.3 Complexity analysis

The complexity of CCP, CNCP for worst case latency, CNCP for average latency

and CNCP for multiple failures is presented in terms of the number of decision

variables, and the number of inequality and equality constraints in Table 4.2. Since

P = S, the number of decision variables in CCP and CNCP for worst case latency

is asymptotically equal to O(|S| ∗ |S|). CNCP for average latency and CNCP for

multiple failures has O(|S|∗|S|∗|S|) decision variables which is asymptotically larger

than the number of decision variables in CCP and CNCP for worst case latency.

The number of equality constraints in CCP, CNCP for worst case latency and

121

4.5 Conclusion

CNCP for average latency are asymptotically equal to O(|S|). CNCP for multiple

failures has O(|S| ∗ |S|) equality constraints which is asymptotically larger than the

number of equality constraints in other three approaches. The number of inequality

constraints in CCP, CNCP for average latency, and CNCP for multiple failures are

asymptotically equal to O(|S|∗|S|). CNCP for worst case latency has O(|S|∗|S|∗|S|)

inequality constraints which is asymptotically larger than the number of inequality

constraints in other three approaches. Therefore, CNCP demands more physical

memory for large scale networks when compared to CCP.

Table 4.2: Complexity analysis of CCP and CNCP

CCP

Number of Decision Variables 1 + |P |+ |S| ∗ |P |
Number of equality constraints 1 + |S|
Number of inequality constraints |S|+ |P |+ |S| ∗ |P |

CNCP for

worst case

latency

Number of Decision Variables 1 + |P |+ 2 ∗ |S| ∗ |P |+ |P | ∗ |P |
Number of equality constraints 1 + 2 ∗ |S|

Number of inequality constraints
|P |+ 2 ∗ |S| ∗ |P |+
4 ∗ |P | ∗ |P |+ |S| ∗ |P | ∗ |P |

CNCP for

average

latency

Number of Decision Variables 1 + |P |+ |P | ∗ |P |+ |S| ∗ |P | ∗ |P |
Number of equality constraints 1 + |S|

Number of inequality constraints
|S|+ |P |+ |S| ∗ |S|+
|S| ∗ |P |+ 4 ∗ |P | ∗ |P |

CNCP for

multiple

failures

Number of Decision Variables
1 + |P |+ |P | ∗ |P |+
µ ∗ |S| ∗ |P | ∗ |P |

Number of equality constraints 1 + µ ∗ |S|+ (µ− 1) ∗ |S| ∗ |P |
Number of inequality constraints |S|+ |P |+ (µ+ 5) ∗ |S| ∗ |P |

4.5 Conclusion

We investigated the capacitated next controller placement problem in SDNs that

not only considers capacity and reliability of controllers but also plans ahead for

122

4.5 Conclusion

controller failures without assuming that the switches have failure foresight. We

designed an optimization model, for a single controller failure, using two-indexed

decision variables. The objective is to minimize the maximum, for all switches,

of the sum of the latency from the switch to the nearest controller and the latency

from the nearest controller to its closest controller. We also designed an optimization

model using three-indexed decision variables which can be easily generalized for the

average latency objective and extended it to multiple controller failures. Further,

we presented a simulated annealing heuristic to efficiently solve the problem. The

proposed formulations are evaluated on various networks from the Internet Topology

Zoo. Simulation results show that our proposed method performs better than CCP

in case of failures. Results also show that the heuristic is able to achieve near optimal

solutions in less than half of the time required by the optimized formulations.

123

Chapter 5

Cooperative Game Theory based

Network Partitioning for

Controller Placement in SDNs

A single centralized controller may satisfy response time requirements of a small

and medium scale network. However, a single controller does not satisfy the fault

tolerant requirements of any network as it is the single point of failure. Therefore,

the control plane is logically centralized, but physically distributed across multiple

controllers to satisfy both the response time and fault tolerant requirements. In last

two chapters, we proposed LP based solutions for the controller placement problem

in SDNs. Another potential solution is to divide the network into domains and

assign a controller to each of these domains. The standard k-means strategy is used

to partition the Chinanet and Interoute networks and the worst case latency for 100

different runs is depicted in Fig. 5.1. It can be observed from Fig. 5.1a that the worst

case latency of Chinanet topology varied from 9 ms to 18.76 ms when the network

is partitioned into four subnetworks. The worst case latency of Interoute topology

varied from 4.9 ms to 12.1 ms when the network is partitioned into six subnetworks

125

5 Cooperative Game Theory based Network Partitioning for Controller
Placement in SDNs

as shown in Fig. 5.1b. Moreover, the average worst case latency, computed over

100 runs, of Chinanet and Interoute networks is 17.45 ms and 8.7 ms respectively.

However, the optimal worst case latency obtained by solving the optimal k-center

problem [124] is 8.47 ms and 3.8 ms respectively. Therefore, we argue that k-means

algorithm with random initialization results in solutions that are far from optimal.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

W
o
rs

t
ca

se
 l

at
en

cy
 (

in
 m

s)

Run Number

(a) Chinanet topology with four partitions.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

W
o
rs

t
ca

se
 l

at
en

cy
 (

in
 m

s)

Run Number

(b) Interoute topology with six partitions.

Figure 5.1: Worst case latency of standard k-means on various topologies when

executed for 100 times.

Motivated by this, we propose a controller placement strategy that partition the

network using k-means algorithm with cooperative game theory based initialization.

Henceforth, we refer it as cooperative k-means for brevity. The partitioning of the

network into subnetworks is modeled as a cooperative game with the set of all

switches as the players of the game. The switches try to form coalitions with other

switches so as to maximize their value. We also propose two variants of cooperative

k-means strategy that tries to produce partitions that are balanced in terms of size.

The performance of our proposed strategy is evaluated on networks from Internet

2 OS3E topology and Internet Topology Zoo and compared it with the standard

k-means algorithm.

The remainder of the chapter is organized as follows. In Section 5.1, we present

126

5.1 Background

the background concepts of cooperative game theory and introduce our cooperative

game theory based k-means algorithm for controller placement in Section 5.2. We

report our evaluation results in Section 5.3. We finally conclude the chapter in

Section 5.4.

5.1 Background

In this section, we present the background concepts of the cooperative game theory

that are used in formulating the problem.

5.1.1 Cooperative game

A cooperative game is defined as a pair (N, v), where N is the set of all players in

the game and v is value function or characteristic function. v(F), F ⊆ N is known

as the value of the coalition F and v(N) is known as the value of the grand coalition

A cooperative game can be analyzed using two solution concepts namely the core

of the game and Shapley value.

5.1.2 Core of the game

Let x = (x1, x2, . . . , xn) ∈ Rn be the payoff allocation with xi being the payoff

of switch i. A payoff allocation x = (x1, x2, . . . , xn) is said to be individually

rational if xi ≥ v({i}), ∀i ∈ N . A payoff allocation x is said to be coalitionally

rational if
∑
i∈F

xi ≥ v(F), ∀F ⊆ N . Additionally, a payoff allocation x is said

to be collectively rational if
∑
i∈N

xi = v(N). The core of a cooperative game is set

of all payoff allocations that are individually rational, coalitionally rational, and

collectively rational. Every coalitionally rational payoff allocation is an individually

rational allocation. Thus, the set of all coalitionally rational and collectively rational

127

5.1 Background

payoff allocations constitutes the core of a cooperative game.

C(N, v) =
{

(x1, x2, . . . , xn) ∈ Rn :
∑
i∈N

xi = v(N);

∑
i∈F

xi ≥ v(F), ∀F ⊆ N
}

(5.1)

5.1.3 Shapley value

The Shapley Value is a solution concept that fairly allocates the gains obtained by

cooperation among the players while considering the relative importance of players

in the game. Let φ(N, v) = (φ1(N, v), φ2(N, v), . . . , φn(N, v)) and φi(N, v) be the

Shapley value of the cooperative game and player i respectively. φi(N, v) specifies

the expected payoff to player i and is given by,

φi(N, v) =
∑

F⊆N−i

|F |!(n− |F | − 1)!

n!
{v(F ∪ {i})− v(F)} (5.2)

5.1.4 Convex game

A cooperative game (N, v) is said to be convex if the marginal contribution of a

player is higher in larger coalitions.

v(F ∪ {i}))− v(F) ≥ v(B ∪ {i}))− v(B),

∀B ⊆ F ⊆ N \ {i}, i ∈ N (5.3)

Here, v(F ∪{i}))−v(F) and v(B∪{i}))−v(B) are the marginal contributions

of player i with respect to the coalition F and B respectively.

Equivalently (5.3) can be written as follows:

v(F ∪ {i}))− v(B ∪ {i})) ≥ v(F)− v(B),

∀B ⊆ F ⊆ N \ {i}, i ∈ N (5.4)

128

5.2 Problem Formulation

5.1.5 Shapley value of a convex game

Let Π be the set of all orderings of N = {1, 2, . . . , n} and π ∈ Π be a specific ordering

of the players. The initial segments of the ordering π are given by,

Rπ,m = {i ∈ N : π(i) ≤ m}, m ∈ {0, 1, 2, . . . , n}. (5.5)

The core for a specific ordering π can be computed by solving the following

equations.

sπi (Rπ,m) = v(Rπ,m),m ∈ {1, 2, . . . , n} (5.6)

The solution to these equations returns the coordinates of the intersection of

the hyperplanes HRπ,m .

sπi = v(Rπ,π(i))− v(Rπ,π(i)−1), i ∈ {1, 2, . . . , n} (5.7)

The Shapley of a convex game belongs to the core of the game and is the center

of gravity of above intersection points sπ. Therefore, it is given by,

φi =
1

n!

∑
π∈Π

sπi . (5.8)

5.2 Problem Formulation

In this section, we first present input parameters of the problem. Then, we formulate

the network partitioning problem using cooperative k-means strategy. Finally, we

present two variants of cooperative k-means strategy that tries to produce partitions

that are balanced in terms of size.

5.2.1 Input Parameters

The physical network is denoted with the graph G(S,E) where S = {s1, s2, . . . , sn}

is the set of switches and E is the set of edges between the switches. We denote

129

5.2 Problem Formulation

all pairs shortest path latency matrix with D, where the entry D(si, sj) represents

the shortest path latency between switch i and switch j. We use the terms D(si, sj)

and dij interchangeably in this thesis. Let P be the finite non empty set of potential

locations for deploying controllers in the network. We assume that every switch is

a potential location for deploying a controller, i.e., P = S.

5.2.2 Network Partitioning

The goal is to partition the network G(S,E) into k subnetworks Gi(Si, Ei), i =

1, 2, . . . , k, subject to the following:

k⋃
i=1

Si = S,
k⋃
i=1

Ei = E (5.9)

Si ∩ Sj = ∅, ∀i, j ∈ {1, 2, . . . , k}, i 6= j (5.10)

Gi is a connected sub graph, ∀i ∈ {1, 2, . . . , k} (5.11)

Eq 5.9 specifies that all the subnetworks together should cover the entire network.

That is, the switches and edges of all the subnetworks together need to cover

respectively the switches and edges of the entire network. Eq 5.10 indicates that

each switch is part of exactly one subnetwork. Eq 5.11 specifies that the switches

in a partition are connected.

5.2.3 Cooperative k-means Network Partitioning

We utilized the cooperative game theory based clustering method proposed in [125].

The partitioning of the network into subnetworks is modeled as a cooperative game

(S, v) where the set of all switches S = {s1, s2, . . . , sn} are the players of the game

and v : 2|S| → R is the value function with v(φ) = 0. The switches try to form

coalitions with other switches so as to maximize their value. The value function

130

5.2 Problem Formulation

that we employed is as follows:

v(F) =
1

2

∑
si,sj∈F
si 6=sj

U(d(i, j)), F ⊆ S, F 6= φ (5.12)

where U : R+ ∪ {0} → (0, 1] is a monotonically non increasing similarity function

defined in (5.13). Note that Dmax in (5.13) is the diameter of the network which is

the maximum latency between any two switches.

U(D(i, j)) = 1− D(i, j)

1 +Dmax

(5.13)

Let B and F be any two coalitions with B ⊆ F ⊆ S \ {sk}, sk ∈ S. Then

v(F ∪ {sk})− v(B ∪ {sk}) is given by,

=
1

2

∑
si,sj∈F
si 6=sj

U(d(si, sj)) +
∑
si∈F

U(d(si, sk))−
1

2

∑
si,sj∈B
si 6=sj

U(d(si, sj))−
∑
si∈B

U(d(si, sk))

=
1

2

∑
si,sj∈F\B
si 6=sj

U(d(si, sj)) +
∑

si∈F\B
sj∈B

U(d(si, sj)) +
∑

si∈F\B

U(d(si, sk))

=v(F)− v(B) +
∑

si∈F\B

U(d(si, sk))

≥v(F)− v(B)

Hence, the cooperative game (S, v) with the value function defined in (5.12) is

131

5.2 Problem Formulation

convex. Consequently, the Shapley value can be computed using (5.8) as follows:

φi =
1

n!

∑
π∈Π

sπi

it can be written, using (5.7), as

φi =
1

n!

∑
π∈Π

v(Rπ,π(i))− v(Rπ,π(i)−1)

it can be written, using (5.5) and (5.12), as

=
1

n!

∑
π∈Π

[1

2

∑
sg ,sh∈Rπ,π(i)

sg 6=sh

U(d(sg, sh))−
1

2

∑
sg ,sh∈Rπ,π(i)−1

sg 6=sh

U(d(sg, sh))
]

avoiding duplicate pairs, gives us

=
1

n!

∑
π∈Π

[∑
π(g)≤π(i)
π(h)<π(g)

U(d(sg, sh))−
∑

π(g)≤π(i)−1
π(h)<π(g)

U(d(sg, sh))
]

=
1

n!

∑
π∈Π

∑
π(j)<π(i)

U(d(si, sj))

=
[1

n!

∑
π∈Π
π(i)=1

π(j)<π(i)

U(d(si, sj)) +
1

n!

∑
π∈Π
π(i)=2

π(j)<π(i)

U(d(si, sj)) + · · ·+ 1

n!

∑
π∈Π
π(i)=n
π(j)<π(i)

U(d(si, sj))
]

(5.14)

There are total (n − 1)! orderings while fixing the position of the player i. In

each of these orderings, every player other than i can occur in a position preceding

i in i−1
n−1

ways. Therefore, summing over all orderings gives us:

φi =
1

n!

(n∑
i=1

i− 1

n− 1

)
(n− 1)!

∑
sj∈S
j 6=i

U(d(si, sj))

φi =
1

2

∑
sj∈S
j 6=i

U(d(si, sj)) (5.15)

The Shapley value of player i can be computed using (5.15). We present

an algorithm for initializing the controller locations using the cooperative game

132

5.2 Problem Formulation

theory in Algorithm 2. It takes as an input set of potential locations for deploying

controllers, all pairs shortest path latency matrix and a threshold parameter, and

returns initial controller location as output. Every switch is a potential location

for deploying a controller, hence, step 1 of the algorithm initializes P with S and

starts with an empty set of initial controller locations C0. The Shapley value of

each location is computed in steps 2 - 4. Then, the algorithm iteratively does the

following in steps 6 - 9 until the set P is empty: selects a switch m from P with

the highest Shapley value (ties are broken in favor of the switch with lower index),

add m to the set of initial locations for deploying controllers, assign to m, all those

switches Tm that are at least α similar to m, and updates the set P . Note that the

parameter α determines the number of subnetworks.

The k-means algorithm for partitioning the nodes in a physical network is

described in Algorithm 3. It takes as an input set of switches in the network,

all pairs shortest path latency matrix and a threshold parameter and returns final

locations for deploying controllers and switch to controller assignment. Step 1 of the

algorithm initializes the locations for installing controllers using cooperative game

theory initialization as shown in Algorithm 2. Step 2 of the algorithm initializes the

updated controller locations Cnew to empty. Then, the algorithm iteratively does the

following until the current and updated controller locations are same: update the

partitions in steps 4 - 7 by assigning switches to the nearest controller and update

the controller location of each partition in steps 8 - 11.

5.2.4 Load aware Cooperative k-means Network Partition-

ing

Algorithm 3 presented in the previous section divides the network into partitions

and then deploy a controller in each of the partition. However, it produce partitions

that are imbalance in terms of size which is defined in (5.16). It is the difference

133

5.2 Problem Formulation

Algorithm 2: Cooperative game theory initialization

Input: Set of switches: N = S = {1, 2, . . . , n}

All pairs shortest path matrix: D

Threshold: α ∈ (0, 1]

Output: Initial controller locations: C0

1 P=S, C0 = ∅

2 for (i = 1, 2, . . . , n) do

3 φi = 1
2

∑
j∈N
j 6=i

U(d(i, j))

4 end

5 while (P 6= ∅) do

6 m = arg max
i∈P

φi

7 C0 = C0 ∪ {m}

8 Tm = {i ∈ P : U(d(si, sk) ≥ α}

9 P = P \ T

10 end

between the number of switches in the partition with largest size and the partition

with smallest size.

Partition Imbalance = max
cj∈C
|Aj| −min

cj∈C
|Aj| (5.16)

Consequently, controllers deployed in large partitions are being overloaded and

controllers deployed in smaller partitions are being lightly loaded. Therefore, we

propose two strategies in this section which takes into account the cluster imbalance.

Capacity of controllers

We can reduce the cluster imbalance by taking the capacity of controllers into

account. Henceforth, it is referred as capacitated cooperative k-means for brevity.

134

5.2 Problem Formulation

Algorithm 3: Cooperative k-means for network topologies

Input: Set of switches: S = {1, 2, . . . , n}

All pairs shortest path matrix: D

Threshold: α ∈ (0, 1]

Output: Final locations for deploying controllers: C

Switch to controller assignment: Aj,∀cj ∈ C

1 C=Cooperative game theory based initialization (S,D,α)

2 Cnew = ∅

3 while (1) do

4 for (i = 1, 2, . . . , n) do

5 m = arg min
j:cj∈C

D(i, cj)

6 Am = Am ∪ {i}

7 end

8 for (j = 1, 2, . . . , |C|) do

9 m= arg min
i:i∈Aj

∑
l:l∈Aj

D(i, l)

10 Cnew = Cnew ∪ {m}

11 end

12 if (C and Cnew are not equal) then

13 C = Cnew

14 Aj = ∅, ∀cj ∈ C

15 Cnew = ∅

16 else

17 exit

18 end

135

5.3 Numerical Results

This can be implemented by replacing Step 5 of Algorithm 3 with the following step.

m = arg min
j:cj∈C

L(si)<R(cj)

D(i, cj) (5.17)

Here, R(cj) is the residual capacity of controller in partition j and L(si) is the

demand of switch i. (5.17) ensures that each switch is assigned to a nearest controller

with residual capacity more than the demand of switch i.

Equipartition

The alternative way to circumvent the cluster imbalance is to divide the network

into equal sized partitions. Henceforth, it is referred as equipartition cooperative

k-means for brevity. This can be implemented by replacing Step 5 of Algorithm 3

with the following step.

m = arg min
j:cj∈C
|Aj |< |S|k

D(i, cj) (5.18)

Here, |S| is the total number of switches in the network and k is the number of

partitions, i.e., number of initial controllers returned by the Algorithm 2. (5.18)

ensures that each switch is assigned to a nearest partition whose size is less than

|S|/k.

5.3 Numerical Results

In this section, we compare and analyze the performance of the proposed algorithm

with the standard k-means strategy with random initialization.

5.3.1 System Setup

The proposed cooperative k-means strategy is implemented in Python and evaluated

its performance on both small scale and large scale network scenarios. We considered

136

5.3 Numerical Results

(a) Four subnetworks.

(b) Five subnetworks.

Figure 5.2: Partitioning Internet 2 OS3E topology using cooperative k-means.

Internet 2 OS3E topology [98] with 34 nodes, BT North America network with 36

nodes and Chinanet [33] network with 42 nodes for a small network scenario, and

Interoute network with 110 nodes for a large network scenario.

5.3.2 Results

Fig. 5.2a and Fig. 5.2b illustrates the partitioning of the Internet 2 OS3E topology

into four and five subnetworks using cooperative k-means algorithm. Nodes within a

subnetwork are depicted with the same symbol and the controller of the subnetwork

is highlighted by superimposing it with the same symbol multiple times. The

maximum switch to controller latency path in each subnetwork is highlighted in

137

5.3 Numerical Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 3 4

W
o
rs

t
ca

se
 l

at
en

cy
 i

n
 m

s

Number of partitions

Standard k-means

Cooperative k-means

Optimal

(a) BT North America.

 0

 5

 10

 15

 20

 25

4 5 6

W
o
rs

t
ca

se
 l

at
en

cy
 i

n
 m

s

Number of partitions

Standard k-means

Cooperative k-means

Optimal

(b) Chinanet

 0

 2

 4

 6

 8

 10

 12

 14

6 7 8

W
o
rs

t
ca

se
 l

at
en

cy
 i

n
 m

s

Number of partitions

Standard k-means

Cooperative k-means

Optimal

(c) Interoute

Figure 5.3: Worst case latency of standard k-means and cooperative k-means

strategies on various networks.

blue color. The worst case latency path of the network is highlighted in red color.

The cooperative k-means strategy resulted in a worst case latency of 9.26 ms and

7.55 ms when the network is partitioned into four and five subnetworks respectively.

k-means algorithm with random initialization, which is also known as standard

k-means, is used as a baseline method for comparison with our proposed strategy.

We also compared the solution induced by our proposed strategy with the optimal

solution obtained by solving the k-center problem [124]. Given an undirected graph

with edge costs satisfying the triangle inequality and an integer k as input, the

k-center problem selects a set of k nodes for which the maximum latency from

138

5.3 Numerical Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 10.5 11 11.5 12

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(a) k=2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 7 8 9 10 11 12

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(b) k=3.

Standard k-means for CP

Cooperative game theory k-means for CP

Figure 5.4: Distribution of worst case latencies of cooperative k-means and standard

k-means on BT North America topology when evaluated for 100 times

any node to its closest node in the k-set is minimum. Fig. 5.3a, Fig. 5.3b and

Fig. 5.3c demonstrate the worst case latency, average computed over 100 runs, of

cooperative k-means, standard k-means and optimal k-center [124] strategies on BT

North America, Chinanet and Interoute networks respectively. We can observe that

the worst case latency of the solution induced by cooperative k-means outperforms

standard k-means and is very close to the optimal solution in all the networks.

The average worst case latency, computed over 100 runs, presented in Fig. 5.3

does not characterize the distribution of worst case latencies over these 100 execution

instances. Hence, the worst case latency distribution of cooperative k-means

and standard k-means when evaluated on BT North America network for 100

times is presented in Fig. 5.4. The standard k-means algorithm randomly selects

initial controller locations. Therefore, the solution produced by standard k-means

algorithm varies with different execution instances. On the contrary, the only step

in the proposed cooperative k-means algorithm that involves some randomization

is step 6. That is, selecting a switch m from P with the highest Shapley value.

139

5.3 Numerical Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(a) k=4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(b) k=5.

Standard k-means for CP

Cooperative game theory k-means for CP

Figure 5.5: Distribution of worst case latencies of cooperative k-means and standard

k-means on Chinanet topology when evaluated for 100 times

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(a) k=6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

C
u
n
u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Latency (in ms)

(b) k=7.

Standard k-means

Cooperative game theory k-means

Figure 5.6: Distribution of worst case latencies of cooperative k-means and standard

k-means on Interoute topology when evaluated for 100 times

However, the ties are broken in favor of the switch with lower index. Hence, step

6 is also deterministic in nature. Since cooperative k-means algorithm does not

involve any randomization or probability distribution, it is deterministic in nature.

140

5.3 Numerical Results

 0

 5

 10

 15

 20

 25

2 3 4

P
ar

ti
ti

o
n

 i
m

b
al

an
ce

Number of partitions

Uncapcitated

Capacitated

Equipartitioning

(a) BT North America.

 0

 5

 10

 15

 20

 25

 30

4 5 6

P
ar

ti
ti

o
n

 i
m

b
al

an
ce

Number of partitions

Uncapacitated

Capacitated

Equipartitioning

(b) Chinanet.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 7 8

P
ar

ti
ti

o
n

 i
m

b
al

an
ce

Number of partitions

Uncapacitated

Capacitated

Equipartitioning

(c) Interoute.

Figure 5.7: Partition imbalance of cooperative k-means strategy under uncapaci-

tated, capacitated and equipartition approaches.

The solution produced by a deterministic algorithm remains same across different

execution instances. Therefore, the distribution curve of the cooperative k-means

approach is a deterministic line. We can observe that the worst case latency of the

solution generated by cooperative k-means is equal to the best solution generated by

the standard k-means in 100 runs. Fig. 5.5 and Fig. 5.6 describe the distribution of

worst case latencies of cooperative k-means and standard k-means when evaluated

for 100 times on Chinanet and Interoute networks respectively. Similar trends can

be observed with respect to the distribution of worst case latencies on Chinanet and

Interoute networks.

We also evaluated the performance of capacitated cooperative k-means and

equipartition cooperative k-means strategies on BT North America, Chinanet and

141

5.3 Numerical Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 3 3

W
o

rs
t

ca
se

 l
at

en
cy

 i
n

 m
s

Number of partitions

Uncapcitated

Capacitated

Equipartitioning

(a) BT North America.

 0

 5

 10

 15

 20

 25

 30

4 5 6

W
o

rs
t

ca
se

 l
at

en
cy

 i
n

 m
s

Number of partitions

Uncapacitated

Capacitated

Equipartitioning

(b) Chinanet.

 0

 2

 4

 6

 8

 10

 12

6 7 8

W
o

rs
t

ca
se

 l
at

en
cy

 i
n

 m
s

Number of partitions

Uncapacitated

Capacitated

Equipartitioning

(c) Interoute.

Figure 5.8: Worst case latency of cooperative k-means strategy under uncapacitated,

capacitated and equipartition approaches.

Interoute networks. While evaluating the capacitated cooperative k-means, the

demand of switches is set to 400 K/s [19, 111] and capacity of controllers is set

to 7800 Kilo packets/s [19, 111]. That is, at most 7800/400=19 switches can be

part of a partition. The partition imbalance of uncapacitated cooperative k-means,

capacitated cooperative k-means and equipartition cooperative k-means strategies

on different networks is presented in Fig. 5.7. We can observe from Fig. 5.7a that

capacitated cooperative k-means approach performs better than the uncapacitated

approach on BT North America when the number of partitions are two. However, the

partition imbalance of both the approaches are same when the number of partitions

are more than two. We can observe similar trends on Chinanet network with respect

to the uncapacitated and capacitated strategies. It is evident from Fig. 5.7c that the

142

5.4 Summary

capacitated cooperative k-means approach performs better than the uncapacitated

approach on Interoute network. Since equipartition approach ensures that all

partition are of nearly same size, we can observe that it outperforms both capacitated

and uncapacitated cooperative k-means strategies on all the networks.

The worst case latency of uncapacitated cooperative k-means, capacitated

cooperative k-means and equipartition cooperative k-means strategies on different

networks is presented in Fig. 5.8. We can observe from Fig. 5.8a that the

uncapacitated cooperative k-means approach performs better than the capacitated

approach on BT North America when the number of partitions are two. However, the

worst case latency of both the approaches are same when the number of partitions

are more than two. We can observe similar trends on Chinanet network with

respect to the uncapacitated and capacitated strategies. It is evident from Fig. 5.8c

that the uncapacitated cooperative k-means approach performs better than the

capacitated approach on Interoute network. Since equipartition approach ensures

that all partition are of nearly same size, we can observe that it results in higher

worst case latency when compared to uncapacitated and capacitated cooperative

k-means strategies on all the networks.

5.4 Summary

In this chapter, we proposed a controller placement strategy that partitions the

network using k-means algorithm with cooperative game theory based initialization

and deploys a controller in each of the partitions. The partitioning of the network

into subnetworks is modeled as a cooperative game with the set of all switches as

the players of the game. We also proposed two variants of cooperative k-means

strategy that tries to produce partitions that are balanced in terms of size. The

performance of our proposed strategy is evaluated on networks from Internet 2

OS3E and Internet Topology Zoo and compared it with the k-means algorithm

143

5.4 Summary

with random initialization. Results show that our strategy produces near optimal

solutions and outperforms the standard k-means for controller placement. The load

aware cooperative k-means strategies result in solutions with less partition imbalance

when compared to the load unaware cooperative k-means approach.

144

Chapter 6

Placement of Hypervisors and

Controllers in Virutalized SDNs

The virtualization of SDNs facilitates to leverage the combined benefits of SDN

and network virtualization. That is, each tenant can bring their own controller

to control their slice of the network. This can be realized by using the network

hypervisor, which we refer as hypervisor for brevity. The hypervisor abstracts

the physical substrate into multiple virtual networks and provides isolation among

multiple tenants [23]. In a virtualized environment, the PACKET IN messages

of switches must pass through the hypervisor in order to reach the corresponding

controller. The latency experienced by a network element is the sum of latency

from the network element to the hypervisor and the latency from the hypervisor

to the controller corresponding to the network element. Throughout the chapter,

unless specified otherwise, latency refers to the sum of these two terms. Hence,

the locations of the hypervisors and controllers together determines the latency of

network elements in a virtualized environment.

145

6.1 Motivation

6.1 Motivation

Blenk et al. proposed a Hypervisor Placement Problem (HPP) that determine the

optimal locations for deploying hypervisors in VSDNs while fixing controllers in each

virtual network [32]. When evaluated on Internet 2 OS3E network with three virtual

networks, the placement of controllers in each virtual network and hypervisor in the

physical network computed using HPP strategy is shown in Fig. 6.1a. It results

in a worst case virtual node to controller latency of 27.35 ms. Nodes marked with

similar color belong to the same virtual network. On the other hand, determining

optimal placement of controllers in each virtual network while fixing the hypervisors

in the physical network is shown in Fig. 6.1b. It results in a worst case virtual

node to controller latency of 20.43 ms. Therefore, determining the location of

controllers in each virtual network while fixing the hypervisors is preferable than

determining the location of the hypervisors while fixing controllers in each virtual

network. Furthermore, jointly determining the placement of controllers in each

virtual network and hypervisors in the physical network is shown in Fig. 6.1c. It

results in an optimal worst case virtual node to controller latency of 18.39 ms.

Motivated by this, we present different strategies for determining the placement

of hypervisors and controllers in VSDNs. Since the packets sent by a network

element pass through the hypervisor before reaching the controller in VSDNs, we

present a strategy for determining the placement of controllers in VSDNs while fixing

the hypervisor(s) in the physical network. It also allows the network operator to

dynamically add new virtual networks on demand, therefore, beneficial in a SDN-

based public cloud environment. The proposed problem, referred to as Controller

Placement Problem in VSDNs (VCPP), is formulated as an ILP. We also present

an approach for jointly optimizing the placement of hypervisors and controllers

in VSDNs. It is beneficial in a SDN-based private cloud environment where the

administrator has control over deployment of hypervisors and controllers. The

146

6.1 Motivation

(a) Determining controllers in each virtual network followed

by hypervisor in the physical network.

(b) Determining hypervisor in the physical network followed

by controllers in each virtual network.

(c) Jointly determining placement of Hypervisors and Con-

trollers.

Figure 6.1: Placement of Hypervisor and controllers in Internet 2 OS3E topology.

147

6.2 Problem Formulation

objective is to minimize the worst case latency between the network element and

its corresponding controller. This problem, referred to as Joint Hypervisor and

Controller Placement (JHCP) problem , is also formulated as an ILP. We also present

a generalized ILP model for JHCP which can be used not only to optimize the worst

case latency, but also to optimize other objectives such as the average latency, the

maximum average latency, and the average maximum latency. Henceforth, it is

referred to as generalized JHCP. To the best of our knowledge, this is the first work

that analyzes various strategies for determining the placement of hypervisors and

controllers in VSDNs.

The rest of this chapter is organized as follows. The formulation of the proposed

problems are presented in Section 6.2. Results from a numerical evaluation of the

proposed models are presented in Section 6.3. Section 6.4 concludes the chapter.

6.2 Problem Formulation

In this section, we first present the input parameters and state the assumptions of

the models. Next, we present the optimization formulations of the problems and

also present various other performance metrics.

6.2.1 Input parameters

In this section, we define the input parameters used in the formulation. Table 6.1

lists all the input parameters in the model.

The physical substrate is represented by G(S,E), where S is the set of physical

network elements and E is the set of links connecting the network elements. Let

M be the set of virtual networks. We denote mth virtual network by V SDNm.

Let Vm, m ∈ M , be the set of virtual nodes in the V SDNm. Let q be the total

number of hypervisors to be installed in the network. We denote the set of potential

148

6.2 Problem Formulation

Table 6.1: Notations

Symbol Description

G(S,E) Graph representing the substrate network

S Set of physical nodes in the substrate

E Set of links between the physical nodes

M Set of virtual networks

V SDNm mth virtual network

Vm Set of virtual nodes in the V SDNm

H Set of potential locations for deploying hypervisors

q Total number of hypervisors to be installed in the network

Cm Potential locations for installing controllers in V SDNm

pm Number of controllers to be deployed in V SDNm

φ Mapping from virtual node to physical node

locations for installing hypervisors with H. Let pm be the number of controllers

to be deployed in V SDNm. We denote the set of potential locations for deploying

controllers in V SDNm with Cm. Let φ(.) be a function that maps the virtual nodes

to the corresponding physical nodes.

6.2.2 Assumptions

The following assumptions are used in the model.

� We assume that set of all physical nodes are the potential locations for

installing hypervisors, i.e., H = S.

� We assume that set of all virtual nodes in V SDNm are the potential locations

for installing controllers, i.e., Cm=Vm.

149

6.2 Problem Formulation

Table 6.2: Decision variables for VCPP

Variable Description

ymk
=1, If the controller of V SDNm is deployed at k ∈ Vm
=0, otherwise

rmv,k

=1, If the virtual node v ∈ Vm of V SDNm is

assigned to the controller at k ∈ Vm
=0, otherwise

6.2.3 Controller Placement in VSDNs

In this subsection, we describe a strategy for determining the placement of controllers

in VSDNs while fixing the hypervisor(s) in the physical network.

Decision variables

The variable ymk is set to one if the controller of V SDNm is deployed at k ∈ Vm,

otherwise set to zero. The variable rmv,k is set to one if the virtual node v ∈ Vm is

assigned to the controller at k ∈ Vm, otherwise set to zero.

Optimization Model

Given a virtual network and potential locations for deploying controllers, the goal of

VCPP is to determine the locations for deploying controllers so as to minimize the

worst case latency between the network element and its corresponding controller.

min

{
max
v∈Vm
k∈Vm

(d(φ(v), h(φ(v))) + d(h(φ(v)), φ(k)))

}
(6.1)

Here, h(φ(v)) is the hypervisor of the physical node on which the virtual node v

is embedded. Hence, the objective is to minimize the maximum latency, for all

switches, the sum of latency from the switch to the hypervisor and the latency from

150

6.2 Problem Formulation

the hypervisor to the controller corresponding to the switch. Therefore, VCPP is

formulated as follows:

min z (6.2)

Subject to the following constraints:∑
k∈Vm

ymk = pm (6.3)

∑
k∈Vm

rmv,k = 1 ∀v ∈ Vm (6.4)

rmv,k ≤ ymk ∀v ∈ Vm, ∀k ∈ Vm (6.5)

z ≥ (d(φ(v), h(φ(v))) + d(h(φ(v)), φ(k)))rmv,k

∀v ∈ Vm,∀k ∈ Vm (6.6)

ymk ∈ {0, 1} ∀k ∈ Vm (6.7)

rmv,k ∈ {0, 1} ∀v ∈ Vm,∀k ∈ Vm (6.8)

Constraint (6.3) limits the number of controllers to be installed in a virtual network.

It ensures that exactly pm controllers have to be installed in virtual network

V SDNm. Constraint (6.4) guarantees that each virtual node v ∈ Vm is assigned

to exactly one controller. Constraint (6.5) ensures that each virtual node v ∈ Vm
is assigned to a valid controller. Constraint (6.6) guarantees that, for all switches,

the objective value is greater than or equal to the sum of latency from virtual node

to hypervisor and latency from hypervisor to controller corresponding to the virtual

node. Constraints (6.7)-(6.8) force all the decision variables to take values either

zero or one.

The above formulation can be extended to the average latency objective by

replacing constraint (6.6) with the following constraint:

z =
1

Vm

∑
v∈Vm
k∈Vm

(d(φ(v), h(φ(v))) + d(h(φ(v)), φ(k)))rmv,k (6.9)

151

6.2 Problem Formulation

Note that VCPP can be applied independently on a set of virtual networks and the

worst case latency and average latency across the set of virtual networks can be

determined as shown in (6.10) and (6.11) respectively.

min

{
max
m∈M
v∈Vm
k∈Vm

(d(φ(v), h(φ(v))) + d(h(φ(v)), φ(k)))

}
(6.10)

1∑
m∈M

Vm

∑
m∈M
v∈Vm
k∈Vm

(d(φ(v), h(φ(v))) + d(h(φ(v)), φ(k)))rmv,k (6.11)

6.2.4 Joint Hypervisor and Controller Placement

In this subsection, we describe a strategy for jointly optimizing the placement of

hypervisors and controllers in VSDNs.

Decision variables

The variable xj specifies whether a hypervisor is installed at location j ∈ H or not.

It is set to one if a hypervisor is installed at location j ∈ H, otherwise set to zero.

The variable wmv,j determines the path followed by the virtual node v ∈ Vm to reach

the controller. It is set to one if the demand of the virtual node v ∈ Vm traverses

through the hypervisor deployed at location j ∈ H to reach the corresponding

controller, otherwise set to zero. For a physical node i ∈ N , the variable hi,j is set

to one if it is controlled by the hypervisor deployed at j ∈ H, otherwise set to zero.

Optimization Model

The goal of JHCP is to jointly determine the locations for deploying hypervisors and

controllers so as to minimize the worst case latency between the network element and

its corresponding controller. Therefore, the objective is to minimize the maximum

152

6.2 Problem Formulation

Table 6.3: Decision variables for JHCP

Variable Description

xj

=1, If a hypervisor is deployed at potential

hypervisor location j ∈ H

=0, otherwise

wmv,j

=1, If the demand of the virtual node v ∈ Vm
traverses through the hypervisor deployed at

potential location j ∈ H to reach the

corresponding controller

=0, otherwise

hi,j

=1, If the physical node i ∈ N is controlled by the

hypervisor deployed at j ∈ H

=0, otherwise

wmv,j,k

=1, If the demand of the virtual node v ∈ Vm of

V SDNm traverse through the hypervisor deployed at

potential hypervisor location j ∈ H to reach the

controller installed at k ∈ Vm
=0, otherwise

tmj,k
=1, If xj = 1 and ymk = 1

=0, otherwise

153

6.2 Problem Formulation

latency, for all switches, the sum of latency from the switch to the hypervisor and

the latency from the hypervisor to the controller corresponding to the switch.

min

{
max
m∈M
v∈Vm

(d(φ(v), j) + d(j, φ(k)))

}

where d(φ(v), j) is the minimum latency from the physical node i (where the virtual

node v is embedded, i.e., φ(v) = i) to the location j ∈ H and d(j, φ(k)) is the

minimum latency from the hypervisor at j to the physical node φ(k). Note that

the controllers of a virtual network V SDNm are deployed on virtual nodes Vm. The

JHCP can be formulated as follows:

min z (6.12)

Subject to the following constraints∑
k∈Vm

ymk = pm ∀m ∈M (6.13)

∑
k∈Vm

rmv,k = 1 ∀m ∈M,∀v ∈ Vm (6.14)

rmv,k ≤ ymk ∀m ∈M,∀v ∈ Vm,∀k ∈ Vm (6.15)∑
j∈H

xj = q (6.16)

∑
j∈H

wmv,j = 1 ∀m ∈M,∀v ∈ Vm (6.17)

∑
v∈Vm

wmv,j ≤ |Vm|xj ∀m ∈M,∀j ∈ H (6.18)

wmv,j ≤ hi,j

∀m ∈M, ∀v ∈ Vm, ∀j ∈ H,∀i ∈ N : φ(v) = i
(6.19)

hi,j ≤
∑
m∈M

∑
{v∈Vm: φ(v)=i}

wmv,j ∀i ∈ N, ∀j ∈ H (6.20)

∑
j∈H

hi,j ≤ 1 ∀i ∈ N (6.21)

154

6.2 Problem Formulation

z ≥ (d(φ(v), j) + d(j, k))(wmv,j + rmv,k − 1)

∀m ∈M,∀v ∈ Vm,∀j ∈ H,∀k ∈ Vm
(6.22)

ymk ∈ {0, 1} ∀m ∈M,∀k ∈ Vm (6.23)

rmv,k ∈ {0, 1} ∀m ∈M, ∀v ∈ Vm,∀k ∈ Vm (6.24)

xj ∈ {0, 1} ∀j ∈ H (6.25)

wmv,j ∈ {0, 1} ∀m ∈M,∀v ∈ Vm,∀j ∈ H (6.26)

hi,j ∈ {0, 1} ∀i ∈ N,∀j ∈ H (6.27)

Constraint (6.13) limits the number of controllers to be installed in a virtual

network. It ensures that exactly pm controllers have to be installed in each virtual

network V SDNm. Constraint (6.14) guarantees that each virtual node v ∈ Vm

is assigned to exactly one controller. Constraint (6.15) ensures that each virtual

node v ∈ Vm is assigned to a valid controller. Constraint (6.16) guarantees that

the total number of hypervisors installed in the network is exactly equal to q.

Constraint (6.17) ensures that the demand of each virtual node v ∈ Vm traverses

through exactly one hypervisor to reach the controller. That is, each virtual node

v ∈ Vm is assigned to exactly one hypervisor. Constraint (6.18) guarantees that a

hypervisor is installed at location j, if at least one virtual node v ∈ Vm is connected

to its controller via the hypervisor j. Constraint (6.19) sets a hypervisor node j

to be the controller of the physical node i (ti,j = 1) if the virtual node v ∈ Vm

is embedded at i (φ(v) = i) uses the hypervisor deployed at j ∈ H to reach the

corresponding controller. Constraint (6.20) forces the variable hi,j to zero if none of

the virtual node v ∈ Vm uses the hypervisor deployed at j ∈ H for sending requests

to the corresponding controller. Constraint (6.21) ensures that each physical node

is controlled by at most one hypervisor. Note that each virtual node resides on a

physical node. If none of the virtual nodes resides in a physical node, then there is no

need of assigning a hypervisor. Constraint (6.22) guarantees that, for all switches,

155

6.2 Problem Formulation

the objective value is greater than or equal to the sum of latency from switch to

hypervisor and latency from hypervisor to controller corresponding to the switch.

Constraints (6.23)-(6.27) force all the decision variables to take values either zero or

one.

6.2.5 Generalized JHCP

In this subsection, we describe a generalized ILP model for JHCP which can be used

not only to optimize the worst case latency, but also to optimize other objectives such

as the average latency, the maximum average latency, and the average maximum

latency.

The objective of the JHCP formulation presented in Section 6.2.4 is to

minimize, for all virtual nodes in the network, the maximum latency from the virtual

node to its controller. If the objective is to minimize the average latency of the

network, the simple and direct extension of (6.22) as shown below is erroneous.

z =
1∑

m∈M
Vm

∑
m∈M
v∈Vm

∑
j∈H
k∈Vm

(d(φ(v), j) + d(j, k))(wmv,j + rmv,k − 1) (6.28)

Because the term (d(φ(v), j) + d(j, k))(wmv,j + rmv,k − 1) in (6.28) is negative when

wmv,j = 0 and rmv,k = 0. For the equation (6.28) to work correctly, the term

(d(φ(v), j) + d(j, k))(wmv,j + rmv,k − 1) should be zero in all other cases except when

wmv,j = 1 and rmv,k = 1. The product of the terms wmv,j and rmv,k, i.e., wmv,jr
m
v,k is zero in

all other cases except when wmv,j = 1 and rmv,k = 1. Thus, the term (wmv,j + rmv,k − 1)

in (6.28) can be replaced with wmv,jr
m
v,k as shown below:

z =
1∑

m∈M
Vm

∑
m∈M
v∈Vm

∑
j∈H

∑
k∈Vm

(d(φ(v), j) + d(j, k))wmv,jr
m
v,k (6.29)

Constraint (6.29) ensures the correct objective value, i.e., the average latency of the

network. However, the term wmv,jr
m
v,k in the constraint (6.29) makes it non linear.

156

6.2 Problem Formulation

We can transform it to a linear constraint by introducing a new variable wmv,j,k by

combining wmv,j and rmv,k. The variable wmv,j,k determines the path taken by the virtual

node v ∈ Vm to reach the controller installed at k ∈ Vm. It is set to one if the demand

of the virtual node v ∈ Vm traverses through the hypervisor deployed at potential

hypervisor location j ∈ H to reach the controller installed at k ∈ Vm, otherwise set

to zero.

The goal of JHCP, in this subsection, is to jointly determine the locations for

deploying hypervisors and controllers so as to minimize, for all virtual nodes in the

network, the average latency between the network element and its corresponding

controller. That is, the objective is to minimize the average, for all virtual nodes

in the network, the sum of latency from the virtual node to the hypervisor and the

latency from the hypervisor to the controller corresponding to the virtual node.

min

 1∑
m∈M

Vm

∑
m∈M
v∈Vm

∑
j∈H

∑
k∈C

(d(φ(v), j) + d(j, k))wmv,j,k


The JHCP for average latency objective is formulated as follows:

min z (6.30)

Subject to (6.13)- (6.16), (6.21), (6.23) - (6.25), (6.27) and

∑
j∈H

∑
k∈Vm

wmv,j,k = 1 ∀m ∈M,∀v ∈ Vm (6.31)

∑
v∈Vm

wmv,j,k ≤ |Vm|xjymk ∀m ∈M, ∀j ∈ H,∀k ∈ Vm (6.32)

∑
k∈Vm

wmv,j,k ≤ hi,j

∀m ∈M,∀v ∈ Vm,∀j ∈ H,∀i ∈ N : φ(v) = i

(6.33)

hi,j ≤
∑
m∈M

∑
{v∈Vm:φ(v)=i}

∑
k∈Vm

wmv,j,k ∀i ∈ N,∀j ∈ H (6.34)

157

6.2 Problem Formulation

z ≥ 1∑
m∈M

Vm

∑
m∈M
v∈Vm

∑
j∈H

∑
k∈C

(d(φ(v), j) + d(j, k))wmv,j,k (6.35)

wmv,j,k ∈ {0, 1}

∀m ∈M, ∀v ∈ Vm,∀j ∈ H,∀k ∈ Vm,∀i ∈ N
(6.36)

Constraint (6.31) ensures that each virtual node v ∈ Vm is assigned to exactly

one controller and the demand of v traverses through exactly one hypervisor to

reach the controller. That is, each virtual node v ∈ Vm uses exactly one pair of

hypervisor and controller. Constraint (6.32) guarantees that a hypervisor is installed

at location j and a controller for V SDNm is deployed at k, if at least one virtual

node v ∈ Vm is connected to its controller via the hypervisor j. It also upper bounds

the number of virtual nodes connected to their controllers via the hypervisor j at

Vm. Constraint (6.33) sets a hypervisor node j to be the controller of the physical

node i (hi,j = 1) if the virtual node v ∈ Vm is embedded at i (φ(v) = i) uses the

hypervisor deployed at j ∈ H to reach the controller installed at k ∈ C (wmv,j,k = 1).

Constraint (6.34) forces the variable zi,j to zero if none of the virtual node v ∈ Vm
uses the hypervisor deployed at j ∈ H for sending requests to the controller installed

at k ∈ C. Constraint (6.36) ensures that the decision variables take values either

zero or one.

Note that the term xjy
m
k in the constraint (6.32) makes it non linear. We can

transform it to a linear constraint by introducing an additional variable tmj,k and

some extra constraints. The variable tmj,k is set to one if both xj and ymk are one,

otherwise set to zero. Thus, we can replace the constraint (6.32) with the following

additional constraints.∑
v∈Vm

wmv,j,k ≤ |Vm|tmj,k ∀m ∈M, ∀j ∈ H,∀k ∈ Vm (6.37)

tmj,k ≥ xj + ymk − 1 ∀m ∈M,∀j ∈ H,∀k ∈ Vm (6.38)

tmj,k ≤ xj ∀m ∈M,∀j ∈ H,∀k ∈ Vm (6.39)

158

6.2 Problem Formulation

tmj,k ≤ ymk ∀m ∈M,∀j ∈ H,∀k ∈ Vm (6.40)

tmj,k ∈ {0, 1} ∀m ∈M,∀j ∈ H,∀k ∈ Vm (6.41)

Constraint (6.37) is the linear constraint corresponding to (6.32). Constraints

(6.38)-(6.40) together ensures that the variable tmj,k takes a value one when both xj

and ymk are one. Constraint (6.41) guarantees that the variable tmj,k takes a binary

value. Constraints (6.38)-(6.41) together ensures that the variable tmj,k takes a value

zero when either of xj or ymk is zero or both of them are zero.

6.2.6 Other Objectives

Besides optimizing for the worst case latency or average latency, one can deploy

hypervisors and controllers at locations that minimize the maximum average latency

or the average maximum latency of the network.

Maximum Average Latency

It is the maximum over the average latencies of the individual virtual networks.

max
m∈M

1

|Vm|
∑
v∈Vm

∑
j∈H

∑
k∈C

(d(φ(v), j) + d(j, k))wmv,j,k (6.42)

This can be implemented by replacing the constraint (6.35) in Section 6.2.5

with the following constraint:

z ≥ 1

|Vm|
∑
v∈Vm

∑
j∈H

∑
k∈C

(d(φ(v), j) + d(j, k))wmv,j,k ∀m ∈M (6.43)

Average Maximum Latency

It is the average over the maximum latencies of the individual virtual networks.

1

|M |
∑
m∈M

max
v∈Vm

∑
j∈H

∑
k∈C

(d(φ(v), j) + d(j, k))wmv,j,k (6.44)

159

6.3 Numerical Results

The worst case latency of each virtual network can be determined by

introducing an additional decision variable for each virtual network, and the

following constraints:

zm ≥
∑
j∈H

∑
k∈c

(d(φ(v), j) + d(j, k))wmv,j,k ∀m ∈M, ∀v ∈ Vm (6.45)

Therefore, the average maximum latency objective can be implemented by

replacing constraint (6.35) in Section 6.2.5 with (6.45) and (6.30) in Section 6.2.5

with the following:

min
1

|M |
∑
m∈M

zm (6.46)

6.3 Numerical Results

In this section, we evaluate the proposed models and present the results obtained.

We compare the proposed models with the hypervisor placement problem from the

literature.

6.3.1 Evaluation Setup

The proposed VCPP and JHCP placement strategies are evaluated on the AT&T

Norh America network (25 nodes and 57 links) of Internet Topology Zoo [33] and

Internet 2 OS3E topology (34 nodes and 41 edges) [98]. The longitude and latitude

information of nodes obtained from [33, 126] are used to compute the shortest

path propagation delay between nodes in the networks. While evaluating the

performance of VCPP, we considered various hypervisor placement strategies such as

deploying at random locations (VCPP-RndHP), locations that minimize the worst

case latency (VCPP-WorstHP), and locations that minimize the average latency

(VCPP-AvgHP). The efficacy of proposed placement strategies are compared with

HPP. While evaluating the performance of HPP, we considered various controller

160

6.3 Numerical Results

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 5 10 15 20 30 40 50

W
o

rs
t

ca
se

 L
at

en
cy

Number of VSDN's

(a)

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 5 10 15 20 30 40 50

W
o
rs

t
ca

se
 L

at
en

cy

Number of VSDN's

(b)

HPP-WorstCP

VCPP-WorstHPP

HPP-AvgCP

VCPP-AvgHPP

Figure 6.2: Performance of VCPP and HPP while optimized for the worst case

latency. (a) AT&T network. (b) Internet 2 OS3E topology.

placement strategies such as deploying at random locations (HPP-RndCP), locations

that minimize the worst case latency (HPP-WorstCP), and locations that minimize

the average latency (HPP-AvgCP). The number of hypervisors in the network is set

to one. We assume that each virtual network is controlled by a single controller. The

number of virtual nodes in each virtual network are uniformly generated between

3 and 7. The proposed models are implemented in MATLAB [112] and solved

using IBM CPLEX solver [113]. Each instance is executed for 100 times and 95%

confidence intervals are presented for statistical reliability.

6.3.2 Performance analysis of VCPP in static scenario

Fig. 6.2 illustrates the performance of VCPP and HPP when optimized for the worst

case latency. We can observe that VCPP outperforms HPP because VCPP first fixes

the hypervisors in the network and then determines the location of controllers in

each virtual network whereas HPP first deploys controllers in each virtual network

161

6.3 Numerical Results

 10

 11

 12

 13

 14

 15

 16

 5 10 15 20 30 40 50

A
v
g
 L

at
en

cy

Number of VSDN's

(a)

 10

 11

 12

 13

 14

 15

 16

 5 10 15 20 30 40 50

A
v
g
 L

at
en

cy

Number of VSDN's

(b)

HPP-WorstCP

VCPP-WorstHPP

HPP-AvgCP

VCPP-AvgHPP

Figure 6.3: Performance of VCPP and HPP while optimized for the average latency.

(a) AT&T network. (b) Internet 2 OS3E topology.

and then determine the locations of the hypervisors. We can also observe from

Fig. 6.2a and Fig. 6.2b that the worst case latency of VCPP and HPP increases

with the number of virtual networks. The gap between the worst case latencies of

VCPP and HPP increases with the number of virtual networks. In other words, the

performance of HPP deteriorates with the increasing number of virtual networks.

Therefore, the network designer prefers VCPP over HPP when there are a higher

number of virtual networks. VCPP-WorstHPP and VCPP-AvgHPP in Fig. 6.2a and

Fig. 6.2b deploy the controllers at locations that minimize the worst case latency

of the virtual network. However, they deploy the hypervisors at locations that

minimize the worst case latency and the average latency between network element

and hypervisor respectively. Therefore, the worst case latency of VCPP-WorstHPP

is less than the VCPP-AvgHPP.

Fig. 6.3 demonstrate the efficacy of VCPP over HPP on when they are

optimized for the average latency. We can observe similar trends, i.e., VCPP

performs better than HPP. VCPP-WorstHPP and VCPP-AvgHPP in Fig. 6.3a and

162

6.3 Numerical Results

 24

 26

 28

 30

 32

 5 10 15 20 30 40 50

W
o
rs

t
ca

se
 L

at
en

cy

Number of newly added VSDN's

Dynamic_HPP

Dynamic_VCPP

(a)

 22

 24

 26

 28

 30

 32

 5 10 15 20 30 40 50

W
o
rs

t
ca

se
 L

at
en

cy

Number of newly added VSDN's

Dynamic_HPP

Dynamic_VCPP

(b)

Figure 6.4: Performance of Dynamic VCPP and Dynamic HPP while optimized for

the worst case latency. (a) AT&T network. (b) Internet 2 OS3E topology.

Fig. 6.3b deploy the controllers at locations that minimize the average latency of the

virtual network. However, they deploy the hypervisors at locations that minimize the

worst case latency and the average latency between network element and hypervisor

respectively. Therefore, the average latency of VCPP-AvgHPP is less than the

VCPP-WorstHPP.

6.3.3 Performance analysis of VCPP in dynamic scenario

HPP necessitate the number of virtual networks to be known before hand because

it deploys the hypervisors after fixing the controllers in every virtual network.

However, the virtual networks are being added dynamically (on demand basis) in

a SDN-based public cloud environment. Hence, after deploying controllers for an

initial number of virtual networks and hypervisors in the physical network, HPP

must fall-back to VCPP for determining controller locations in newly added virtual

networks. We computed the location of controllers and hypervisors using VCPP and

HPP while fixing the initial number of virtual networks to 50. Then, we evaluated

the performance of VCPP and HPP by adding new virtual networks ranging from

163

6.3 Numerical Results

 9

 10

 11

 12

 13

 14

 15

 5 10 15 20 30 40 50

A
v
g
 L

at
en

cy

Number of newly added VSDN's

Dynamic_HPP

Dynamic_VCPP

(a)

 9

 10

 11

 12

 13

 14

 15

 5 10 15 20 30 40 50

A
v
g
 L

at
en

cy

Number of newly added VSDN's

Dynamic_HPP

Dynamic_VCPP

(b)

Figure 6.5: Performance of Dynamic VCPP and Dynamic HPP while optimized for

the average latency. (a) AT&T network. (b) Internet 2 OS3E topology.

5 to 50. We use the terms Dynamic VCPP and Dynamic HPP to refer VCPP

and HPP when the virtual networks are added on demand basis. Fig. 6.4 and

Fig. 6.5 demonstrate the efficacy of Dynamic VCPP over Dynamic HPP when they

are optimized for the worst case latency and average latency respectively. It is

evident that Dynamic VCPP performs better than Dynamic HPP.

6.3.4 Performance analysis of JHCP

Fig. 6.6 and Fig. 6.7 illustrate the efficacy of JHCP over HPP on AT&T and Internet

2 OS3E networks when they are optimized for the worst case latency and average

latency respectively. We can observe from Fig. 6.6a and Fig. 6.7a that JHCP

results in a lower worst case latency when compared to HPP because JHCP jointly

determine the locations of hypervisors and controllers whereas HPP determines

the location of hypervisors in the physical network and controllers in each virtual

network separately. The worst case latency of JHCP and HPP increases with the

number of virtual networks. Additionally, the gap between the worst case latencies

of JHCP and HPP increases with the number of virtual networks. Furthermore, the

164

6.3 Numerical Results

 14

 16

 18

 20

 22

 24

 26

 28

 30

 2 3 5 7 9 12 15 20

W
o
rs

t
ca

se
 L

at
en

cy

Number of VSDN's

(a) Worst case latency.

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 3 5 7 9 12 15 20
A

v
g
 L

at
en

cy

Number of VSDN's

(b) Average latency.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 2 3 5 7 9 12 15 20

M
ax

im
u
m

 A
v
er

g
ae

 L
at

en
cy

Number of VSDN's

(c) Maximum Average latency.

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 2 3 5 7 9 12 15 20

A
v
er

ag
e

M
ax

im
u
m

 L
at

en
cy

Number of VSDN's

(d) Average Maximum latency.

JHCP HPP-RndCP HPP-WorstCP HPP-AvgCP

Figure 6.6: Performance of JHCP and HPP on ATT network while optimized for

various metrics. (a) Worst case latency. (b) Average latency. (c) Maximum Average

latency. (d) Average Maximum latency.

165

6.3 Numerical Results

 14

 16

 18

 20

 22

 24

 26

 28

 30

 2 3 5 7 9 12 15 20

W
o
rs

t
ca

se
 L

at
en

cy

Number of VSDN's

(a) Worst case latency.

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 3 5 7 9 12 15 20

A
v
g
 L

at
en

cy

Number of VSDN's

(b) Average latency.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 2 3 5 7 9 12 15 20

M
ax

im
u
m

 A
v
er

g
ae

 L
at

en
cy

Number of VSDN's

(c) Maximum Average latency.

 14

 15

 16

 17

 18

 19

 20

 21

 22

 2 3 5 7 9 12 15 20

A
v
er

ag
e

M
ax

im
u
m

 L
at

en
cy

Number of VSDN's

(d) Average Maximum latency.

JHCP HPP-RndCP HPP-WorstCP HPP-AvgCP

Figure 6.7: Performance of JHCP and HPP on Internet 2 OS3E network while

optimized for various metrics. (a) Worst case latency. (b) Average latency. (c)

Maximum Average latency. (d) Average Maximum latency.

166

6.3 Numerical Results

 7

 8

 9

 10

 11

 12

 13

 1 2 3 4 5 6

L
at

en
cy

 (
in

 m
s)

Number of hypervisors

HPP

JHCP

(a) AT&T network

 7

 8

 9

 10

 11

 12

 13

 14

 1 2 3 4 5 6

L
at

en
cy

 (
in

 m
s)

Number of hypervisors

HPP

JHCP

(b) Internet 2 OS3E network

Figure 6.8: Effect of hypervisors on latency when optimized for the average latency

average latency, the maximum average latency, and the average maximum latency of

JHCP is also less than HPP which is evident from Fig. 6.6b - Fig. 6.6d and Fig. 6.7b -

Fig. 6.7d. JHCP can be used to optimally deploy hypervisors and controllers in a

SDN-based private cloud environment in which the administrator has control over

deployment of hypervisors and controllers. However, after deploying controllers

in an initial number of virtual networks and hypervisors in the physical network,

JHCP fall-back to VCPP for deploying controllers in a SDN-based public cloud

environment.

6.3.5 Impact of number of hypervisors and controllers

The impact of number of hypervisors on the latency when HPP and JHCP are

evaluated on AT&T and Internet 2 OS3E networks is presented in Fig. 6.8a and

Fig. 6.8b respectively. We have optimized for the average latency because it

characterizes the distribution of virtual node latencies. The number of virtual

networks is fixed at 12 and the number of hypervisors are varied from one to six. We

can observe that the average latency of HPP and JHCP decreases with the increasing

number of hypervisor instances in the physical network. We can also observe that

167

6.3 Numerical Results

Table 6.4: Complexity analysis of HPP, VCPP and JHCP

HPP

Number of Decision Variables 1 + |H|+ |N | ∗ |H|+
∑
m∈M

|Vm| ∗ |N |

Number of equality constraints 1 +
∑
m∈M

|Vm|

Number of inequality constraints

|H|+ |N |+
∑
m∈M

|Vm|+∑
m∈M

|Vm| ∗ |N | ∗ |H|

VCPP

Number of Decision Variables 1 + |H|+
∑
m∈M

|Vm|+
∑
m∈M

|Vm|2

Number of equality constraints 1 + |M |+
∑
m∈M

|Vm|

Number of inequality constraints
∑
m∈M

2 ∗ |Vm|2

JHCP for

Worst case

latency

Number of Decision Variables

1 + |H|+ |N | ∗ |H|+
∑
m∈M

|Vm|+∑
m∈M

|Vm|2 +
∑
m∈M

|Vm| ∗ |H|

Number of equality constraints 1 + |M |+ 2 ∗
∑
m∈M

|Vm|

Number of inequality constraints

|N |+ |M | ∗ |H|+ |H| ∗ |N |+∑
m∈M

|Vm|2 +
∑
m∈M

|Vm| ∗ |N |+∑
m∈M

|Vm|2 ∗ |H|

Generalized

JHCP for all

objectives

Number of Decision Variables

1 + |H|+ |N | ∗ |H|+
∑
m∈M

|Vm|+∑
m∈M

|Vm|2 +
∑
m∈M

|Vm| ∗ |H|+∑
m∈M

|Vm|2 ∗ |H|

Number of equality constraints 2 + |M |+ 2 ∗
∑
m∈M

|Vm|

Number of inequality constraints

|N |+ |H| ∗ |N |+
∑
m∈M

|Vm|2+

5 ∗
∑
m∈M

|Vm| ∗ |H|+
∑
m∈M

|Vm|2 ∗ |H|

168

6.3 Numerical Results

JHCP performs better than HPP in every scenario. Similarly, we argue that the

latency experienced by the nodes in a virtual network reduces with the increasing

number of controller instances in the virtual network.

6.3.6 Complexity analysis

The complexity of HPP, VCPP, JHCP for worst case latency and generalized JHCP

is presented in terms of the number of decision variables, and the number of

inequality and equality constraints in Table 6.4. Since H = N and |Vm| ⊆ N ,

the number of decision variables in JHCP for worst case latency and HPP is

asymptotically equal to O(
∑
m∈M

|Vm| ∗ |N |). VCPP has O(
∑
m∈M

|Vm| ∗ |Vm|) decision

variables which is asymptotically smaller than HPP and JHCP for worst case latency

because Vm ⊆ N . Additionally, generalized JHCP has O(
∑
m∈M

|Vm|2 ∗ |H|) decision

variables which is asymptotically larger than the number of decision variables in

HPP, VCPP and JHCP for worst case latency. The number of equality constraints

and inequality constraints in HPP are asymptotically equal to O(
∑
m∈M

|Vm|) and

O(
∑
m∈M

|Vm|∗|H|) respectively. VCPP, JHCP for worst case latency, and generalized

JHCP has O(
∑
m∈M

|Vm|) equality constraints which is asymptotically equal to the

number of equality constraints in HPP. VCPP has O(
∑
m∈M

|Vm| ∗ |Vm|) inequality

constraints which is asymptotically smaller than the number of inequality constraints

in HPP because Vm ⊆ N . Furthermore, JHCP for worst case latency and generalized

JHCP has O(
∑
m∈M

|Vm|2 ∗ |H|) inequality constraints which is asymptotically larger

than the number of inequality constraints in HPP and VCPP. Therefore, the amount

of physical memory required by JHCP for worst case latency and k-HPP is same.

Generalized JHCP demands more physical memory for large scale networks when

compared to HPP. The amount of physical memory required by VCPP is less than

other approaches because it has a fewer number of decision variables and inequality

constraints.

169

6.4 Conclusion

6.4 Conclusion

In this chapter, we addressed two strategies, namely VCPP and JHCP, for

determining the placement of hypervisors and controller in VSDNs. VCPP fixes

the hypervisor(s) in the physical network and then determines the placement of

controllers in each of the virtual network. It allows the network operator to

dynamically add new virtual networks on demand basis. JHCP jointly determines

the placement of hypervisors in the physical network and controllers in each virtual

network. The performance of our proposed strategies are evaluated on AT&T

network of Internet Topology Zoo and Internet 2 OS3E topology, and the results

are compared with the existing HPP model. We considered different objective

functions such as max latency, average latency, maximum average latency, and

average maximum latency. The complexity of JHCP in terms of decision variables

and constraints is asymptotically larger than HPP whereas the complexity of

VCCP is asymptotically smaller than HPP and JHCP. Evaluation results show

that VCPP and JHCP perform better than k- HPP with respect to the different

performance metrics. Extensive evaluation using real world network topologies show

that proposed models perform better than k- HPP with respect to the different

performance metrics.

170

Chapter 7

Summary and Future Directions

The work in this thesis addressed the research problems of controller placement and

hypervisor placement in SDNs. We proposed optimization models for minimizing the

worst case latency between network element and controller while satisfying various

constraints.

First, we addressed the failure foresight capacitated controller placement

problem in SDNs that avoid disconnections, repeated administrative intervention,

and drastic increase in the worst case latency in case of controller failures. We

designed an optimization model for a single controller failure and extended it to

multiple controller failures. The objective is to minimize the worst-case latency

between switches and their µth reference controllers while satisfying the capacity

and closest assignment constraints. We also designed a variant of failure foresight

capacitated controller placement that minimizes the sum of worst-case latencies

from switches to their 1st, 2nd ,. . . , µth reference controllers. Further, we relaxed

the failure foresight assumption of switches and investigated a capacitated next

controller placement strategy that not only considers capacity and reliability of

controllers but also plans ahead for controller failures. We designed an optimization

model for a single controller failure and extended it to multiple controller failures.

171

7 Summary and Future Directions

We also presented a simulated annealing heuristic to produce fast and viable solution

on large networks. The proposed formulations and heuristic are evaluated on various

networks from the Internet Topology Zoo. The proposed models achieve a significant

improvement in the worst case latency in the event of failures and inter controller

latency. Results also shows that the heuristic is able to achieve near optimal solutions

in less than half of the time required by the optimized formulations.

Next, we proposed a controller placement strategy that partitions the network

using k-means algorithm with cooperative game theory based initialization and

deploys a controller in each of the partitions. The partitioning of the network

into subnetworks is modeled as a cooperative game with the set of all switches

as the players of the game. We also proposed two variants of cooperative k-means

strategy that tries to produce partitions that are balanced in terms of size. The

performance of our proposed strategy is evaluated on networks from Internet 2

OS3E and Internet Topology Zoo and compared it with the k-means algorithm with

random initialization. Results show that our strategy produce near optimal solutions

and outperforms the standard k-means for controller placement. The partition

imbalance of load aware cooperative k-means strategies is less when compared to

the load unaware cooperative k-means approach.

Finally, we addressed two strategies for determining the placement of hyper-

visors and controller in VSDNs. The first strategy fixes the hypervisor(s) in the

physical network and then determines the placement of controllers in each of the

virtual network. It allows the network operator to dynamically add new virtual

networks on demand basis. The second approach jointly determines the placement

of hypervisors in the physical network and controllers in each virtual network. The

performance of our proposed strategies are evaluated on ATT network of Internet

Topology Zoo and the results are compared with the existing hypervisor placement

model. We considered different objective functions such as max latency, average

172

7.1 Conclusions

latency, maximum average latency, and average maximum latency. Extensive evalu-

ation using real world network topologies show that proposed models perform better

than the existing hypervisor placement model with respect to the different perfor-

mance metrics.

7.1 Conclusions

From this work, we conclude that it is indeed possible to avoid disconnections,

repeated administrative intervention, and drastic increase in the worst case latency

in case of controller failures by planning ahead for the failures while deploying

controllers in the network. Our proposed models not only performs better in terms

of the worst case latency in the event of failures but also in terms of maximum

and average inter controller latencies. Next, we conclude that k-means algorithm

with cooperative game theory based initialization not only results in solutions that

are close to optimal solution but also deterministic in nature. The load aware

cooperative k-means strategies results in solutions with less partition imbalance

when compared to the load unaware cooperative k-means approach. Finally, we

conclude that determining the placement in each of the virtual network while fixing

the hypervisor(s) in the physical network and jointly determining the placement

of hypervisors in the physical network and controllers in each virtual network are

efficient than determining the hypervisor(s) in the physical network while fixing the

controllers in each of the virtual network.

If a network planner wants to deal with placement of controllers, our proposed

FFCCP and CNCP approaches are recommended when the controller failures

are more often in the network and standard CCP is recommended when the

network operates under normal conditons for the major portion of time. Since

the network operates under combination of normal and failure conditions together,

we recommend the CO-FFCCP with appropriate weights to the network planner.

173

7.2 Future Directions

Further, we recommend our proposed cooperative k-means approach and its variants

while dealing with placement of controllers in a wide area network. Our proposed

JHCP approach is recommended in a SDN-based private cloud environment where

the administrator has control over deployment of hypervisors and controllers.

7.2 Future Directions

There are several possible directions in which the work in this thesis can be extended.

We list a few immediate extensions of our work.

� Only the failure of controllers has been considered in our work. One can extend

our models to consider the failure of network links, networking elements and

a combination of these.

� In this thesis, we reserved the capacity on backup controllers so that they

serve the switches in the event of primary controller failure. We can extend

our model to consider assigning the 1
µ−1

fraction of a switch load to µ different

controllers, thereby, minimizing the backup capacity reserved on the controllers

while ensuring the reliability. In failure free case, first µ − 1 controllers of a

switch serve its PACKET IN messages. In case of a controller failure, the

remaining µ− 1 controllers of a switch serve its PACKET IN messages.

� In this thesis, we considered latency and controller load as performance metrics

for network partitioning based controller placement strategy. Considering fault

tolerant requirements would be an interesting extension.

� While determining the placement of controllers and hypervisors in virtualized

software defined network, capacity is not considered in our work. One can

extend our models to consider the capacity of controllers, hypervisors and a

combination of these.

174

7.2 Future Directions

� The models presented in this thesis can be implemented on Mininet kind of

platforms to measure how the performance improvement of optimal placement

of controllers is getting reflected in reality.

175

References

[1] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane for

openflow,” in Proc. Internet Network Management Conference on Research on

Enterprise Networking (INM/WREN’10), 2010, pp. 3–3.

[2] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation

challenges for software-defined networks,” IEEE Communications Magazine,

vol. 51, no. 7, pp. 36–43, July 2013.

[3] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis,

J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith, “The switchware

active network architecture,” IEEE Network, vol. 12, no. 3, pp. 29–36, May

1998.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click

modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297, Aug.

2000.

[5] The BIRD internet routing daemon. [Online]. Available: http:

//bird.network.cz/

[6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe, “Design and implementation of a routing control platform,” in

177

REFERENCES

Proc. 2Nd Conference on Symposium on Networked Systems Design &

Implementation (NSDI), 2005, pp. 15–28.

[7] Forward and Control Element Separation framework. [Online]. Available:

https://tools.ietf.org/html/rfc3746

[8] Forward and Control Element Separation Protocol. [Online]. Available:

https://tools.ietf.org/html/rfc5810

[9] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach to network control

and management,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp.

41–54, Oct. 2005.

[10] Path Comutation Element architecture. [Online]. Available: https:

//tools.ietf.org/html/rfc4655

[11] Path Comutation Element Communication Protocol. [Online]. Available:

https://tools.ietf.org/html/rfc5440

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: Taking control of the enterprise,” SIGCOMM Comput. Commun.

Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in

campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.

69–74, Mar. 2008.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: A

distributed control platform for large-scale production networks,” in Proc.

178

REFERENCES

9th USENIX Conference on Operating Systems Design and Implementation

(OSDI), 2010, pp. 351–364.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “Nox: Towards an operating system for networks,” SIGCOMM

Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008.

[16] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek,

and R. Morris, “Flexible, wide-area storage for distributed systems with

wheelfs,” in Proc. 6th USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2009, pp. 43–58.

[17] B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” in Proc. First workshop on Hot topics in software defined networks

(HotSDN), 2012, pp. 7–12.

[18] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On

controller performance in software-defined networks,” in Proc. 2Nd USENIX

Conference on Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services (Hot-ICE), April 2012, pp. 1–6.

[19] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller placement

problem in software defined networks,” IEEE Communication Letters, vol. 18,

pp. 1339–1342, Aug. 2014.

[20] H. Xie, T. T., L. D., Y. H., and G. V, “Use cases for alto with software defined

networks,” IETF Internet-Draft, 2012.

[21] P. Lin, J. Bi, and Y. Wang, East-West Bridge for SDN Network Peering.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 170–181.

179

REFERENCES

[22] Z. Xue, X. Dong, S. Ma, and W. Dong, “A survey on failure prediction of

large-scale server clusters,” in Proc. International Conference on Software En-

gineering, Artificial Intelligence, Networking, and Parallel/Distributed Com-

puting (SNPD), July 2007, pp. 733–738.

[23] S. Huang, J. Griffioen, and K. L. Calvert, “Network hypervisors: Enhancing

sdn infrastructure,” Computer Communications, vol. 46, pp. 87 – 96, 2014.

[24] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,

and G. Parulkar, “Flowvisor: A network virtualization layer,” Tech. Rep.,

2009.

[25] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola, “Generalizing virtual

network topologies in openflow-based networks,” in Proc. IEEE Global

Telecommunications Conference (GLOBECOM), Dec. 2011, pp. 1–6.

[26] R. D. Corin, M. Gerola, R. Riggio, F. D. Pellegrini, and E. Salvadori, “Vertigo:

Network virtualization and beyond,” in Proc. European Workshop on Software

Defined Networking (EWSDN), Oct. 2012, pp. 24–29.

[27] S. Min, S. Kim, J. Lee, B. Kim, W. Hong, and J. Kong, “Implementation of

an openflow network virtualization for multi-controller environment,” in Proc.

International Conference on Advanced Communication Technology (ICACT),

Feb. 2012, pp. 589–592.

[28] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network virtu-

alization hypervisors for software defined networking,” IEEE Communications

Surveys Tutorials, vol. 18, no. 1, pp. 655–685, 2016.

[29] S. Khuller and Y. J. Sussmann, “The capacitated k-center problem,” SIAM

J. Discret. Math., vol. 13, no. 3, pp. 403–418, May 2000.

180

REFERENCES

[30] C. Prehofer and C. Bettstetter, “Self-organization in communication networks:

principles and design paradigms,” IEEE Communications Magazine, vol. 43,

no. 7, pp. 78–85, July 2005.

[31] W. D. Grover, “Self-organizing broad-band transport networks,” Proceedings

of the IEEE, vol. 85, no. 10, pp. 1582–1611, Oct 1997.

[32] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, “Pairing sdn with network

virtualization: The network hypervisor placement problem,” in Proc. IEEE

Conference on Network Function Virtualization and Software Defined Network

(NFV-SDN), Nov. 2015, pp. 198–204.

[33] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas of Communication,

vol. 29, pp. 1765–1775, Sep. 2011.

[34] Open Networking Foundation White Paper. [Online]. Avail-

able: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf

[35] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti,

“A survey of software-defined networking: Past, present, and future of

programmable networks,” IEEE Communications Surveys Tutorials, vol. 16,

no. 3, pp. 1617–1634, Mar. 2014.

[36] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol,

and N. McKeown, “Openroads: Empowering research in mobile networks,”

SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 125–126, Jan. 2010.

[37] K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Delivering capacity for

the mobile internet by stitching together networks,” in Proc. ACM Workshop

181

REFERENCES

on Wireless of the Students, by the Students, for the Students, Sep. 2010, pp.

41–44.

[38] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic

access control for enterprise networks,” in Proc. 1st ACM Workshop on

Research on Enterprise Networking, Aug. 2009, pp. 11–18.

[39] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Baner-

jee, and N. McKeown, “Elastictree: Saving energy in data center networks,”

in Proc. 7th USENIX Conference on Networked Systems Design and Imple-

mentation (NSDI), Aug. 2010, pp. 17–17.

[40] P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho, M. D. D. Moreira, M. E. M.

Campista, L. H. M. K. Costa, and O. C. M. B. Duarte, “Openflow and xen-

based virtual network migration,” in Communications: Wireless in Developing

Countries and Networks of the Future. Berlin, Heidelberg: Springer-verlag,

2010, pp. 170–181.

[41] R. Wang, D. Butnariu, and J. Rexford, “Openflow-based server load balancing

gone wild,” in Proc. 11th USENIX Conference on Hot Topics in Management

of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE), March

2011, pp. 12–12.

[42] M. Koerner and O. Kao, “Multiple service load-balancing with openflow,” in

Proc. IEEE 13th International Conference on High Performance Switching

and Routing (HPSR), June 2012, pp. 210–214.

[43] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of ip

multicast in overlay networks using openflow,” in Proc. First Workshop on

Hot Topics in Software Defined Networks (HotSDN), 2012, pp. 91–96.

182

REFERENCES

[44] D. Kotani, K. Suzuki, and H. Shimonishi, “A design and implementation of

openflow controller handling ip multicast with fast tree switching,” in Proc.

IEEE/IPSJ 12th International Symposium on Applications and the Internet

(SAINT), July 2012, pp. 60–67.

[45] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using cpu as a traffic co-processing

unit in commodity switches,” in Proc. First Workshop on Hot Topics in

Software Defined Networks (HotSDN), August 2012, pp. 31–36.

[46] A. Ramachandran, Y. Mundada, M. B. Tariq, and N. Feamster, “Securing

enterprise networks using traffic tainting,” Georgia Inst. Technol., Atlanta,

GA, USA, Tech. Rep. GTCS-09-15, Oct 2009.

[47] Quagga Routing Suite. [Online]. Available: http://www.nongnu.org/quagga/

[48] NOX. [Online]. Available: http://www.noxrepo.org/

[49] POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox/.

[50] Ryu. [Online]. Available: http://osrg.github.com/ryu/

[51] Beacon. [Online]. Available: http://openflow.stanford.edu/display/Beacon/

Home

[52] Maestro. [Online]. Available: http://code.google.com/p/maestro-platform

[53] Floodlight. [Online]. Available: http://www.projectfloodlight.org/

[54] Jaxon:java-based openflow controller. [Online]. Available: http:

//jaxon.onuos.org/.

[55] Trema openflow controller framework. [Online]. Available: https:

//github.com/trema/trema

183

REFERENCES

[56] Opendaylight. [Online]. Available: http://www.opendaylight.org/.

[57] Helios. [Online]. Available: http://www.nec.com/.

[58] ovs-controller. [Online]. Available: http://openvswitch.org/.

[59] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “Poco-

framework for pareto-optimal resilient controller placement in sdn-based core

networks,” in Proc. IEEE Network Operations and Management Symposium

(NOMS), May 2014, pp. 1–2.

[60] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia,

“Pareto-optimal resilient controller placement in sdn-based core networks,” in

Proc. 25th International Teletraffic Congress (ITC), Sept. 2013, pp. 1–9.

[61] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and

M. Hoffmann, “Heuristic approaches to the controller placement problem in

large scale sdn networks,” IEEE Trans. Netw. Service Manag., vol. 12, pp.

4–17, March 2015.

[62] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, “Poco-plc:

Enabling dynamic pareto-optimal resilient controller placement in sdn net-

works,” in Proc. IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), April 2014, pp. 115–116.

[63] M. T. I. ul Huque, G. Jourjon, and V. Gramoli, “Revisiting the controller

placement problem,” in Proc. IEEE 40th Conference on Local Computer

Networks (LCN), Oct. 2015, pp. 450–453.

[64] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using bargaining

game for optimal placement of sdn controllers,” in Proc. IEEE International

Conference on Communications (ICC), May 2016, pp. 1–6.

184

REFERENCES

[65] T. Zhang, A. Bianco, and P. Giaccone, “The role of inter-controller traffic in

sdn controllers placement,” in Proc. IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), Nov. 2016, pp.

87–92.

[66] T. Zhang, P. Giaccone, A. Bianco, and S. D. Domenico, “The role of the inter-

controller consensus in the placement of distributed sdn controllers,” Computer

Communications, vol. 113, no. Supplement C, pp. 1 – 13, 2017.

[67] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement

strategies for a resilient sdn control plane,” in Proc. 8th International

Workshop on Resilient Networks Design and Modeling (RNDM), Sept 2016,

pp. 253–259.

[68] S. Guo, S. Yang, Q. Li, and Y. Jiang, “Towards controller placement for robust

software-defined networks,” in Proc. IEEE 34th International Performance

Computing and Communications Conference (IPCCC), Dec. 2015, pp. 1–8.

[69] V. Sridharan, M. Gurusamy, and T. Truong-Huu, “On multiple controller

mapping in software defined networks with resilience constraints,” IEEE

Communications Letters, vol. PP, no. 99, pp. 1–1, 2017.

[70] ——, “Multi-controller traffic engineering in software defined networks,” in

Proc. IEEE 42nd Conference on Local Computer Networks (LCN), Oct. 2017,

pp. 137–145.

[71] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards

an elastic distributed sdn controller,” SIGCOMM Comput. Commun. Rev.,

vol. 43, no. 4, pp. 7–12, Aug. 2013.

[72] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Elasticon:

An elastic distributed sdn controller,” in Proc. Tenth ACM/IEEE Symposium

185

REFERENCES

on Architectures for Networking and Communications Systems (ANCS), 2014,

pp. 17–28.

[73] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-architecture

networks,” in Proc. IEEE Global Communications Conference (GLOBECOM),

Dec. 2011, pp. 1–6.

[74] M. Guo and P. Bhattacharya, “Controller placement for improving resilience

of software-defined networks,” in Proc. IEEE International Conference on

Networking and Distributed Computing (ICNDC), Dec. 2013, pp. 23–27.

[75] L. F. Muller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcel-

los, “Survivor: an enhanced controller placement strategy for improving sdn

survivability,” in Proc. IEEE Global Communications Conference(GLOBE-

COM), Dec. 2014, pp. 1909–1915.

[76] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-aware

controller placement for software-defined networks,” in Proc. IFIP/IEEE

International Symposium on Integrated Network Management (IM), May 2013,

pp. 672–675.

[77] Y. nan HU, W. dong WANG, X. yang GONG, X. rong QUE, and S. duan

CHENG, “On the placement of controllers in software-defined networks,” The

Journal of China Universities of Posts and Telecommunications, vol. 19, no. 2,

pp. 92–171, oct 2012.

[78] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-optimized

controller placement for software-defined networks,” China Communications,

vol. 11, pp. 38–54, Feb. 2014.

186

REFERENCES

[79] A. Sallahi and M. St-Hilaire, “Optimal model for the controller placement

problem in software defined networks,” IEEE Communication Letters, vol. 19,

pp. 30–33, Jan. 2015.

[80] ——, “Expansion model for the controller placement problem in software

defined networks,” IEEE Communications Letters, vol. 21, no. 2, pp. 274–

277, Feb. 2017.

[81] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in software-

defined networks,” in Proc. Third workshop on Hot topics in software defined

networking (HotSDN), 2014, pp. 31–36.

[82] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha, “Optimal controller

placement in software defined networks (sdn) using a non-zero-sum game,” in

Proc. of IEEE International Symposium on a World of Wireless, Mobile and

Multimedia Networks (WoWMoM), June 2014, pp. 1–6.

[83] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed,

and R. Boutaba, “Dynamic controller provisioning in software defined net-

works,” in Proc. 9th International Conference on Network and Service Man-

agement (CNSM), Oct. 2013, pp. 18–25.

[84] N. Perrot and T. Reynaud, “Optimal placement of controllers in a resilient

sdn architecture,” in Proc. 12th International Conference on the Design of

Reliable Communication Networks (DRCN), March 2016, pp. 145–151.

[85] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through resilient

controller placement for software defined networks,” in Proc. IEEE Global

Communications Conference (GLOBECOM), Dec. 2016, pp. 1–7.

187

REFERENCES

[86] L. V. Snyder and M. S. Daskin, “Reliability models for facility location: The

expected failure cost case,” Transportation Science, vol. 39, no. 3, pp. 400–416,

2005.

[87] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-

guaranteed resilient controller placement for software-defined wans,” IEEE

Transactions on Network and Service Management, pp. 1–1, 2018 [Accepted].

[88] A. Ruiz-Rivera, K. W. Chin, and S. Soh, “Greco: An energy aware controller

association algorithm for software defined networks,” IEEE Communications

Letters, vol. 19, no. 4, pp. 541–544, April 2015.

[89] K. Sood and Y. Xiang, “The controller placement problem or the controller

selection problem?” Journal of Communications and Information Networks,

vol. 2, no. 3, pp. 1–9, Sep. 2017.

[90] T. Y. Cheng, M. Wang, and X. Jia, “Qos-guaranteed controller placement

in sdn,” in Proc. IEEE Global Communications Conference (GLOBECOM),

Dec. 2015, pp. 1–6.

[91] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment

in data center networks: Stable matching with transfers,” in Proc. IEEE

International Conference on Computer Communications (INFOCOM), April

2016, pp. 1–9.

[92] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the

generalized assignment problem,” Information Processing Letters, vol. 100,

no. 4, pp. 162 – 166, 2006.

[93] X. Li, P. Djukic, and H. Zhang, “Zoning for hierarchical network optimization

in software defined networks,” in Proc. IEEE Network Operations and

Management Symposium (NOMS), May 2014, pp. 1–8.

188

REFERENCES

[94] Z. Su and M. Hamdi, “Mdcp: Measurement-aware distributed controller

placement for software defined networks,” in Proc. IEEE 21st International

Conference on Parallel and Distributed Systems (ICPADS), Dec. 2015, pp.

380–387.

[95] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The sdn controller placement

problem for wan,” in Proc. IEEE/CIC International Conference on Commu-

nications in China (ICCC), Oct. 2014, pp. 220–224.

[96] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, “Density cluster based

approach for controller placement problem in large-scale software defined

networkings,” Computer Networks, vol. 112, pp. 24 – 35, 2017.

[97] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control plane

latency with sdn network hypervisors: The cost of virtualization,” IEEE

Trans. Netw. Service Manag., vol. 13, no. 3, pp. 366–380, 2016.

[98] Internet2 open science, scholarship and services exchange. [Online]. Available:

http://www.internet2.edu/network/ose/

[99] I. Espejo, A. Maŕın, and A. M. Rodŕıguez-Ch́ıa, “Capacitated p-center

problem with failure foresight,” European Journal of Operational Research,

vol. 247, pp. 229–244, Nov. 2015.

[100] ——, “Closest assignment constraints in discrete location problems,” European

Journal of Operational Research, vol. 219, no. 1, pp. 49–58, 2012.

[101] T. L. Lei and R. L. Church, “Constructs for multilevel closest assignment in

location modeling,” International Regional Science Review, vol. 34, no. 3, pp.

339–367, 2011.

189

REFERENCES

[102] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller

fault-tolerance in software-defined networking,” in Proc. 1st ACM SIGCOMM

Symposium on Software Defined Networking Research (SOSR), 2015, pp. 4:1–

4:12.

[103] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service of failure

detectors,” IEEE Trans. Comput., vol. 51, no. 5, pp. 561–580, May 2002.

[104] R. Y. Xavier Defago, Naohiro Hayashibara and T. Katayama, “The ϕ accrual

failure detector,” IEEE Symposium on Reliable Distributed Systems, pp. 66–

78, Oct 2004.

[105] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A new adaptive

accrual failure detector for dependable distributed systems,” in Proc. ACM

Symposium on Applied Computing (SAC), 2007, pp. 551–555.

[106] T.-W. Yang and K. Wang, “Failure detection service with low mistake rates for

sdn controllers,” in Proc. Asia-Pacific Network Operations and Management

Symposium (APNOMS), 2016, pp. 1–6.

[107] A. S. W. Tam, K. Xi, and H. J. Chao, “Use of devolved controllers in data

center networks,” in Proc. IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), April 2011, pp. 596–601.

[108] K. Kuroki, N. Matsumoto, and M. Hayashi, “Scalable openflow controller

redundancy tackling local and global recoveries,” in Proc. The Fifth Inter-

national Conference on Advances in Future Internet (AIFN), Dec. 2013, pp.

61–66.

[109] M. Obadia, M. Bouet, J. Leguay, K. Phemius, and L. Iannone, “Failover

mechanisms for distributed sdn controllers,” in Proc. International Conference

and Workshop on the Network of the Future (NOF), Dec 2014, pp. 1–6.

190

REFERENCES

[110] Y.-C. Chan, K. Wang, and Y.-H. Hsu, “Fast controller failover for multi-

domain software-defined networks,” in Proc. European Conference on Net-

works and Communications (EuCNC), 2015, pp. 370–374.

[111] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature

of data center traffic: measurements & analysis,” in Proc. ACM Internet

measurement conference (IMC), Nov. 2009, pp. 202–208.

[112] MATLAB version 8.5.0.197613 (R2015a), The Mathworks, Inc., Natick,

Massachusetts, 2015.

[113] IBM ILOG CPLEX. [Online]. Available: http://www-01.ibm. com/

software/integration/optimization/cplex-optimizer

[114] M. Albareda-Sambola, Y. Hinojosa, A. Marn, and J. Puerto, “When centers

can fail: A close second opportunity,” Computers & Operations Research,

vol. 62, pp. 145–156, Oct. 2015.

[115] O. Berman, D. Krass, and M. B. C. Menezes, “Locating facilities in the

presence of disruptions and incomplete information*,” Decision Sciences,

vol. 40, no. 4, pp. 845–868, 2009.

[116] J. L. Wagner and L. M. Falkson, “The optimal nodal location of public facilities

with price-sensitive demand,” Geographical Analysis, vol. 7, no. 1, pp. 69–83,

1975.

[117] R. Church and J. Cohon, “Multiobjective location analysis of regional energy

facility siting problems,” Brookhaven National Lab., Upton, New York, United

States, Tech. Rep. BNL 50567, Oct 1976.

[118] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed,

and R. Boutaba, “Dynamic controller provisioning in software defined net-

191

REFERENCES

works,” in Proc. International Conference on Network and Service Manage-

ment (CNSM), Oct. 2013, pp. 18–25.

[119] D. Dietrich, A. Abujoda, and P. Papadimitriou, “Network service embedding

across multiple providers with nestor,” in Proc. IFIP Networking Conference

(Networking), May 2015, pp. 1–9.

[120] A. Abujoda and P. Papadimitriou, “Distnse: Distributed network service

embedding across multiple providers,” in Proc. International Conference on

Communication Systems and Networks (COMSNETS), Jan 2016, pp. 1–8.

[121] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider

service chain embedding with nestor,” IEEE Trans. on Netw. and Service

Mang., vol. 14, no. 1, pp. 91–105, March 2017.

[122] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[123] V. Černý, “Thermodynamical approach to the traveling salesman problem:

An efficient simulation algorithm,” Journal of Optimization Theory and

Applications, vol. 45, no. 1, pp. 41–51, 1985.

[124] V. Vazirani, Approximation Algorithms. Springer-Verlag New York, Inc.,

2001.

[125] V. K. Garg, Y. Narahari, and M. N. Murty, “Novel biobjective clustering

(bigc) based on cooperative game theory,” IEEE Transactions on Knowledge

and Data Engineering, vol. 25, no. 5, pp. 1070–1082, May 2013.

[126] Tools for analyzing the Controller Placement Problem in Software-Defined

Networks. [Online]. Available: https://www.github.com/brandonheller/cpp/

blob/master/src/geo/

192

Publications Related to Thesis

Journals

1. Bala Prakasa Rao Killi and S. V. Rao, “Failure Foresight Controller

Placement in Software Defined Networks”, IEEE Communications Letters,

vol. 20, no. 6, pp. 11081111, 2016. [Chapter 3]

2. Bala Prakasa Rao Killi and S. V. Rao, “Capacitated Next Controller

Placement in Software Defined Networks”, IEEE Transactions on Network

and Service Management, vol. 14, no. 3, pp. 514-527, 2017. [Chapter 4]

3. Bala Prakasa Rao Killi and S. V. Rao,“On Placement of Hypervisors and

Controllers in Virtualized Software Defined Network”, IEEE Transactions

on Network and Service Management, vol. 15, no. 2, pp. 840-853, 2018.

[Chapter 6]

4. Bala Prakasa Rao Killi and S. V. Rao,“Controller Placement in Software

Defined Networks: A Comprehensive Survey”, IEEE Communications Surveys

& Tutorials. [Under Review]

193

Publications Related to Thesis

Book Chapter

1. Bala Prakasa Rao Killi, Akhil Reddy Ellore, and S. V. Rao,“Game Theo-

retic approaches for Controller Placement in SDN”, Communication Systems

and Networks, Lecture Notes in Computer Science, Springer. [Accepted]

Conference Proceedings

1. Bala Prakasa Rao Killi, Akhil Reddy Ellore, and S. V. Rao,“Cooperative

Game Theory based Network Partitioning for Controller Placement in SDN”,

Proc. of 10th International Conference on COMmunication Systems &

NETworkS (COMSNETS), Jan. 2018, pp. 105-112. [Chapter 6] [Best Paper

Award]

2. Bala Prakasa Rao Killi and S. V. Rao,“Controller Placement with Planning

for Failures in Software Defined Networks”, Proc. of IEEE International

Conference on Advanced Networks and Telecommunication Systems (ANTS),

Nov. 2016, pp. 1-6.

194

Publications Outside Thesis

1. Bala Prakasa Rao Killi and S. V. Rao,“Link Failure Aware Capacitated

Controller Placement in Software Defined Networks”, Proc. of International

Conference on Information Networking (ICOIN), Jan. 2018, pp. 292-297.

2. Bala Prakasa Rao Killi and S. V. Rao,“Towards Improving Resilience of

Controller Placement with Minimum Backup Capacity in Software Defined

Networks”, Elsevier Computer Networks. [Under Revision]

195

