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Abstract

Many critical e-commerce and financial services are deployed on geo-distributed data
centers (GDCs) for scalability and availability. Recent market surveys show that
failures are common in the data centers and this results in a huge financial loss.
Designing data centers for high availability includes spare capacity provisioning
across the data centers. The work in this thesis addresses the problems of cost-
aware capacity provisioning and load balancing in fault-tolerant GDCs (to mask the
failures at a site). We propose optimization models for cost-effective planning and
operation of the GDCs and propose algorithms for solving these. First, we propose
an optimization model to distribute the servers across the GDC such that, the total
cost of ownership (TCO) for an operator is minimized. The model identifies the
optimal server distribution and optimal request routing policy to exploit the spatio-
temporal variation in the electricity prices and user demand for minimizing the TCO.
Next, we extend the optimization model for capacity planning in GDCs collocated
with renewable energy sources. Using this model, the operators can reduce their
carbon footprint by maximizing the green energy usage, while minimizing the TCO.
We also extend this model to consider GDCs powered by both brown and green
energy sources. In such a case, we use an objective to minimize the total cost while
ensuring that a certain percentage of green energy is always used.

In this thesis, we also address another important problem, cost-aware load
balancing in large-scale fault-tolerant GDCs. We use game theory to formulate
the problem of cost-aware distributed load balancing in GDCs. We use a non-
cooperative game executed across a finite number of front-end proxy servers, with
an objective of minimizing the linear combination of operating cost and revenue loss
due to increased latency. Based on the structure of Nash equilibrium, a distributed
load balancing algorithm is proposed. The proposed algorithm is decentralized, has
a low complexity, and offers fairness in average latency perceived by the clients.
Lastly, we propose a two-stage distributed algorithm for load balancing after the
failure of a data center. The proposed algorithm spreads the load of failed data
center minimizing the operating cost and then, re-routes the requests considering
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ABSTRACT

the delay and green energy usage constraints. All the proposed algorithms are
evaluated using real-world data set.

Results shows that the proposed approaches yield optimal results in planning
and operation of fault-tolerant GDCs, powered by both brown and green energy
sources. We conclude that it is indeed possible to minimize the cost of running
GDCs considering the spatio-temporal dynamics and it is possible to mask single
data center failure with no additional cost using the proposed models. We conclude
that with a suitable model, green energy integration lowers the cost of designing
fault-tolerant GDCs(despite green energy being costlier). Our model works well even
with uncertainty in the available wind energy and achieves a significant reduction
in the cost as the technology advances. We also show that online load balancing
algorithms should be cost-aware in distributing the requests so that, the operating
cost is also minimized apart from the latency. We designed an algorithm that ensures
delay fairness to the clients without increasing the operating cost.
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Chapter 1

Introduction

Geo-distributed data centers (GDCs) have drawn increasing attention from both

academia and industry as emerging underlying physical infrastructure for cloud

computing or Internet-scale web services. A GDC is collection of small, geograph-

ically distributed, fully automated and orchestrated data centers interconnected

with transparent transport mechanism like Virtual Private LAN Service (VPLS)

or Multi-protocol Label Switching (MPLS), dark fiber or Overlay Transport Vir-

tualization (OTV) [1]. Fig. 1.1 illustrates a typical GDC spanning different parts

of the world. These data centers are owned and managed by several large service

providers like Amazon, Apple, Yahoo, BOA (Bank of America) and Microsoft, and

offer web services, HPC, Map reduce services, banking and financial services, ERP,

and other business critical applications. Apart from these large service providers,

content providers such as Akamai and Chinacache also invest widely in GDCs. A

GDC consists of collection of data centers placed behind front-end proxy servers.

The front-end proxies are responsible for forwarding the requests to one of the data

centers, according to a load balancing policy.

The main advantages of GDCs are:

• Reduced latency to the clients as their requests are served by nearby data

21



1 Introduction

centers [2].

• High availability: Geo-distribution can safeguard against unplanned outage

of entire data center, which component level redundancy like power backup

or RAID cannot guarantee and the downtime during planned shutdown is

lower [2].

• Migration of applications or data between data centers across space and time

is possible to minimize delay, energy consumption or cost [3, 4].

• Local law may prohibit data being taken beyond the territory boundaries.

Data center

Leased line

Figure 1.1: Illustration of a typical geo-distributed data center

Typically, two types of workloads are supported by these data centers. First, mice-

type/request-response/delay sensitive, where each request of this type has a small

transaction size and they have tight response time constraints. For example, web

services and e-commerce transactions fall under this category. Second, elephant-

type/delay tolerant/batch requests, where each request of this type has a large

transaction size and can last for a long time. These are throughput-sensitive like,

map reduce jobs, social network analysis, and HPC applications. In this thesis,

we focus on web transaction requests (like e-commerce, business and financial

transactions), where the response size is very small. We use geo-distributed data
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centers (GDCs), distributed data centers or data centers interchangeably in the

entire thesis.

Need for high availability: Any critical e-commerce and financial services running

on GDCs demand high availability. By high availability we mean that the data

center continues to deliver original service after the failure at a single site (may be

with slightly degraded performance). A survey by Gartner estimated that 60% of

companies incurred a loss to the tune of $250,000-$500,000 for an hour of downtime,

and one sixth of the companies incurred a loss of $1 million or more [5]. Another

survey by Ponemon Institute reported that the frequency of data center outage

(complete or partial) could be as high as once a month with an average duration

of three hours. It was reported to cause a loss of $1,734,433 per organization with

an average cost of $690,204 per incident [6]. Instances of a data center failure at

a site have been reported by many cloud service providers like Amazon, Facebook,

and Google [7]. Thus, to prevent huge loss of revenue associated with downtime,

designing a fault-tolerant distributed data center is important.

Energy consumption: Past decade has seen sky-rocketing proliferation of web

services, which in turn prompted rapid growth in the number and scale of data

centers. Due to this, there has been enormous and growing energy demand for data

centers. Currently, data centers that power Internet-scale applications consume

about 1.3% of the worldwide electricity supply with an estimated growth rate of

12% per year and this fraction is expected to grow to 8% by 2020 [8]. Moreover,

large data centers consuming many megawatts of power, pay annual electricity bills

to the tune of tens of millions of dollars. Google pays for 1,120 GWh of power

$67 M, and Microsoft pays $36 M for power consumption of over 600 GWh [9].

Therefore, for sustainable design of data center it is critical to intelligently address

the problem of capping the ever-increasing cost due to power consumption.

Green data centers: Besides the monetary cost, there are also environmental
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considerations [10]. High energy consumption not only results in huge electricity

cost but also in increased carbon emissions. This is due to the fact that most

of the electricity produced worldwide comes from burning coal or natural gas (a

carbon-intensive approach). In the United States, generating 1 kWh of electricity

emits about 500g of CO2 on an average [8]. In general, each 100MW power station

costs $60-100 million dollars to build and emits 50 million tons of CO2 during

its operation [11]. As a result, IT companies currently contribute 2% of global

greenhouse gas emissions [12]. Therefore, there is a pressing need for renewable

energy integration for sustainable geo-distributed data centers. Renewable energy

refers to the energy that is collected from renewable resources like sunlight, wind,

rain, and tides., which are naturally replenished on a human timescale [13].

There are many ways these data center operators can reduce their impacts on

environment. They can invest in renewable energy by installing or financing new

plants either on-site (collocated with data center) or off-site (remote installation),

where the energy produced is pumped directly or through electrical grid to the data

center. In fact, Google and Apple currently use this approach. Otherwise, they

can also contribute in reducing carbon footprint by purchasing renewable energy

products like Renewable Energy Certificates (REC) or Power Purchase Agreement

(PPA) [14]. The current trend is that some power utilities are allowing large

electricity consumers to select a mixture of brown and green energy. Based on

the power requirement, the utility promises to pump a sufficient amount of green

energy into the electricity grid.

Load balancing: In a typical distributed data center, the client requests are

accepted by front-end proxy servers and are further redirected to a suitable data

center for processing. This mechanism is known as geographical load balancing

(GLB) in the literature [15]. The rules for wide-area workload distribution by

front-end elements depend on several mutually interacting objectives such as,
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electricity price and cost [4], carbon-footprint [16], and maximizing the use of

renewable energy [17], and reducing transmission delay [18]. For example, energy

consumption cost could be lowered by forwarding more workload towards a data

center where electricity price is cheaper or towards a data center in colder regions.

Carbon footprint can be reduced by forwarding requests towards data center where

renewable energy is readily available. The problem of load balancing is challenging

as these forwarding decisions also need to satisfy several constraints to meet QoS

requirements, data center compute capacity, power capacity, and other service-level-

agreements (SLAs).

As the electricity prices, green energy availability, and demand vary substan-

tially during the day and across geographic regions, the workload processing cost

across all the data centers does not remain the same. This spatio-temporal vari-

ation provides ample opportunity in distributed data centers to intelligently route

requests to locations, where the electricity is cheaper, renewable energy is abundant,

or efficient utilization is possible owing to demand multiplexing. This can help data

center operators to significantly reduce their operating cost or carbon footprint.

In this thesis, we focus on leveraging such spatio-temporal variation, in

minimizing the total cost of capacity provisioning and load balancing in fault-

tolerant GDCs. We address the problem of spare capacity provisioning, which

involves allocation of additional servers across different data center sites, so that

the total cost of ownership (includes capital cost and operating cost) is minimized

while satisfying a set of constraints like client latency, demand, and green energy

bound. It is also important to decide online load balancing policy in the distributed

data center, which is efficient and cost optimal. For this the load balancing algorithm

should be intelligent enough to exploit spatio-temporal variation in the energy cost,

available green energy, demand, and available compute capacity (even after the

failure of a data center).

25



1.1 Motivation of the Research Work

1.1 Motivation of the Research Work

Several organizations delivering services using GDCs demand high availability

because of huge loss of revenue, cost of idle employees, and loss of productivity

associated with downtime. For high availability, mitigating disaster risks to

applications and data is the ultimate goal, which can be achieved by having multiple

data centers, with sufficient reserve capacity [19]. Designing a fault-tolerant GDC

usually involves spare capacity provisioning (allocation of additional servers to mask

the failure) across different data center sites such that failure of data center (at a

site, at any time) could be tolerated while satisfying client latency requirement and

demand. Spare capacity requirement across a GDC to mask failure at a single data

center site is explained by a simple example. Consider a distributed data center

with 5 sites with a compute capacity of 20 units at each site. To mask the failure of

any one data center at a time, we require a spare capacity of 5 units at each of the

remaining data centers. Therefore, the total spare capacity required is 25 and the

cost in building a fault-tolerant data center that can mask single failure increases

by 25%.

Considering operating cost in capacity planning: Next, we describe the

motivation behind considering the operating cost in spare capacity provisioning for

data centers giving an example. Let us consider the cost of a server to be $2000, and

its lifetime to be 4 years [20]. We calculate the energy to acquisition cost (EAC)

defined to be the ratio of cost of running a server for 4 years to its acquisition cost,

as given below in Eqs. (1.1) and (1.2).

Power cost = 4 years ∗ (8760 hours/year) ∗ (electricity cost) ∗ server power ∗ PUE

(1.1)

EAC =
power cost

server cost
∗ 100 (1.2)
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In the above equation, power usage effectiveness (PUE) of a data center is defined

as the ratio of the total power entering the data center to the power used by the

computing equipment.

Using the electricity prices from [21–24], an average value for server power

consumption as 300W, and the PUE as 1.5, we obtain the EAC values as listed in

Table 1.1. The EAC values indicate that for most of the countries, the cost of power

and cooling exceeds the cost of buying servers. This suggests that greater attention

should be put on optimizing data center power consumption cost instead of only

minimizing the number of servers while designing fault-tolerant data centers.

Country/City Electricity Price($/kWh) Cost(in $) EAC

Canada 0.06 946 47

Oregon, USA 0.06 946 47

Virginia, USA 0.07 1104 55

Switzerland 0.07 1230 62

Netherlands 0.09 1419 71

Japan 0.10 17 84

California, USA 0.12 1971 99

Ireland 0.13 2050 103

UK 0.13 2050 103

Hongkong 0.17 2680 134

Table 1.1: EAC for different countries

The main challenge in designing fault-tolerant distributed data center is to

provision spare capacity so that the total cost of ownership (TCO), which includes

capital cost (cost of spare servers) and operating cost is minimized while satisfying

the client latency even after the failure. Note that cost-aware capacity provisioning

is a variant of facility location problem known to be in NP-hard [25].
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Considering data centers with collocated renewable energy sources: Rise

in the scale and number of data centers not only results in high energy cost but also in

carbon emissions. Renewable energy has matured enough to become utility power

and maximizing on-site renewable energy usage by collocating renewable energy

sources along with data center sites is a cost-effective solution [11]. Apple has

used 20MW solar array for its data center [26]. Even though renewable energy

availability is known to be highly intermittent, it turns out that renewable energy

actually becomes more predictable as the number of renewable energy generators

connected to the grid increases. This is due to the effect of geographic diversity and

the law of large numbers i.e., large number of geographically distributed renewable

energy generation units installed lead to renewable energy being more predictable

with certain degree of accuracy [14,27,28]. The authors in [27] established that it is

possible for distributed data centers to exploit uncorrelated wind sources to satisfy

95% of energy requirement following a wind power-aware routing policy. Integrating

renewable energy sources into projects are also driven by the growth of corporate

social responsibility program, government imposed caps on carbon emission as well

as government incentive associated with carbon neutrality. Therefore, the operator

must intelligently provision compute capacity which minimizes the operating cost

and at the same time maximizes the available green energy usage, while satisfying

a given set of constraints.

Imposing green energy usage requirements for GDCs: Multiple options

of greening data centers exist like, data centers collocated with renewable energy

sources, using off-site renewable energy sources, where data centers are powered

through renewable energy generated at remote locations, and indirect renewable

energy options like, REC and PPA [14]. In this thesis we consider two renewable

energy usage models for designing green data centers. First, maximize green energy

freely available from collocated green energy sources. Second, purchasing green
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energy so that a certain amount of total energy is procured from renewable energy

sources. Owing to huge upfront installation cost associated with renewable energy

sources, major operators have developed an interim goal for its 100% renewable

energy commitment and set a target of partial renewable energy integration

annually [29]. For example, Facebook aimed to be 25% green by the end of 2015, and

met the benchmark [30]. Therefore, it is a good idea to start with partial renewable

energy bound. That is, out of the total power consumed by data center at least

a fraction of energy should come from renewable energy sources which is termed

“green energy bound” [31]. Hence, it is crucial for data center operators to consider

green energy cost apart from brown energy cost while satisfying the green energy

bound. At the same time, other set of constraints like latency bound, demand, and

availability requirements should also be satisfied.

Cost-awareness and latency fairness in distributed load balancing: Load

balancing in fault-tolerant distributed data center is another important issue, both

from perspective of data center operators and end-users as well. While operators’

objective is to minimize operating cost complying to latency and availability

requirements, the end-user would like to minimize the response time. Each

data center is characterized by spatio-temporal variation in the electricity price,

renewable energy availability, and failure percentage. The load balancing mechanism

that distributes load leveraging these factors and minimizes the operating cost is

profitable for the operators, but ignores the users’ perspective. Users consuming

the same resources may pay the same price, but experience variable delay. Ensuring

fairness in service latency across the requests from different clients is also important.

The load balancing algorithms in the literature designed to provide fairness, did

not consider the energy cost. Therefore, it is important to consider the linear

combination of operating cost (or energy cost) and revenue loss due to latency

(including the network and queuing delays) as the objective function in designing
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the load balancing policy. Addition of revenue loss model due to latency in objective

function, captures the notion of fairness in latency perceived across the clients.

Most of the work in literature on load balancing in distributed data center

considers solving proposed solution centrally. Few works proposed decentralized

algorithm for load balancing but their drawback was that either they did not consider

operating cost or that the proposed solution approach is computationally expensive.

Therefore, designing decentralized algorithms for better performance, and scalability

is important for large-scale distributed data centers.

Efficient failure detection and recovery in distributed load balancing: Most

of the popular load balancing approaches discussed in the literature [15] use some

sort of a central controller that solves an optimization problem and pushes the

policy for load balancing to all front-end proxy servers and capacity provisioning

information to the data centers. This could be useful when the controller has to

solve the optimization formulation periodically (say every hour), when the system

state information (like electricity price, available green energy, and demand) remains

fixed for the entire duration [32]. But in fault tolerant systems, central controllers or

front-end proxy servers have to periodically send heartbeat messages to data centers

in local and remote locations detect the failure (either partial or complete). This

probing could be expensive in terms of message and time complexity [33]. Hence,

there is need for efficient failure detection and recovery mechanism for distributed

data centers.

1.2 Contributions of the Thesis

Based on the several motivation factors mentioned so far, we formulated a set of

problems for cost-aware capacity provisioning and load balancing in fault-tolerant

GDCs. We briefly describe the five problems addressed in this thesis. For each

problem, we discuss the formulation, broad solution approach, and mention the
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key observations from our evaluation. The details of these are presented in various

chapters of the thesis.

1.2.1 Cost-aware Provisioning of Spare Capacity for Fault-

tolerant GDCs

Problem statement: What is the optimal server distribution across

various locations such that, the failure of any data center at a site is

masked while the total cost of ownership (TCO) is also minimized?

Designing a fault-tolerant GDC usually involves spare capacity provisioning

(allocation of additional servers to mask the failure) across different data center

sites, satisfying a set of constraints related to handling the demand at each location,

and satisfying the delay requirement of the clients. The objective to guarantee high

availability, where the system continues to provide the same level of service even

after the failure should not increase the TCO for an operator significantly.

We formulate the problem of cost-aware capacity provisioning (CACP), in fault-

tolerant distributed data centers using mixed integer linear programming (MILP),

with an objective of minimizing the TCO. The model considers the heterogeneity in

client demand, various data replication strategies (single and multiple site), spatio-

temporal variation in electricity price and demand, while computing the spare

capacity distribution across the locations. The outcome of solving the optimization

model gives the optimal number of servers across the sites and optimal request

allocation to the data centers. We solve the CACP model using real-world data and

compare the TCO obtained with two other models: one that minimizes only the total

number of servers (MS model), and the other that minimizes the average response

time (CDN model). The proposed CACP model results in significant savings in

the TCO compared to the existing models. In the following, we summarize the key

conclusions from the numerical evaluation of the CACP model.
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Key Observations:

• The CACP model provisions more servers but reduces the TCO up to 35%

compared to the MS model, and up to 43% compared to the CDN model. The

proposed model is observed to be better than the existing models due to its

ability to multiplex demand considering the spatio-temporal variation in the

electricity prices and the demand.

• Numerical results demonstrate that the approach of minimizing the TCO is

beneficial when the electricity price varies significantly, which appears to be

the case for most of the cloud providers operating GDCs.

• Our model is also useful to study the effect of the replication cost on the TCO

for planning distributed data centers. We show that it is possible to achieve

availability against single data center failure with no additional cost using the

CACP model. We show that the contribution of the replication cost to the

TCO, in multi-site replication is significantly high, when the number of data

centers increases.

• The CACP model is cost effective when the latency requirement is not stringent

and a data center does not operate at its peak utilization. Under heavy load,

the CACP model can help the provider determine an optimal data center

upgrade plan while minimizing the TCO.

• We also prove that the CACP problem for the design of a fault-tolerant

distributed data center is NP-hard.
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1.2.2 Capacity Planning in Fault-tolerant GDCs Collocated

with Renewable Energy Sources

Problem statement: For designing a fault-tolerant distributed data center

collocated with renewable energy sources, how should the servers be

distributed to minimize the total cost while maximizing the usage of

green energy available?

While the existing models minimize the number of servers, we seek to use more

green energy for data centers to reduce brown energy consumption. In our system

model, we consider data centers collocated with multiple green energy source. We

extend our previous CACP model and propose new optimization model (termed

GCACP) for spare capacity provisioning, which distributes the servers across the

sites to minimize the TCO while maximizing the usage of freely available renewable

energy. In this, we consider the variation in demand, battery storing surplus

green energy, variability in green energy availability, and renewable energy sell-back

revenue. To understand the advantage of considering the operating cost in spare

capacity provisioning while maximizing the available renewable energy, we compare

the cost of solution obtained using our model with that of two other models (MS

and CDN). To compare against the two models, we extend them with the same set

of constraints as GCACP model. After solving both the models to arrive at the

server and load distribution, we use the same cost factors to calculate the TCO in

each case.

Key Observations:

• We demonstrate that the proposed model reduces the TCO by 48% compared

to CDN model (minimize latency), and by 24% compared to the MS model

(which minimizes server cost). We see that the TCO for GCACP model

reduces with increasing number of data centers due to demand multiplexing as

well as increased options for leveraging variations in the electricity price and
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renewable energy available.

• With relaxed latency bound, we notice that GCACP model achieves a

reduction in the TCO of upto 29% and 52% with respect to MS and CDN

models, respectively. Due to the choice in the data centers capable of serving a

client region, we see better multiplexing of resources, exploitation of variation

in the green energy and electricity prices. We conclude that under relaxed

latency constraints GCACP model is more beneficial.

• We also observe that GCACP model is advantageous when green energy and

electricity prices vary significantly across data centers in time, which appears

to be the case in most of the GDCs.

1.2.3 Optimizing Energy Cost in Fault-tolerant GDCs Sat-

isfying Green Energy Bound

Problem statement: How should spare capacity be distributed across the

data centers powered by a combination of brown and multiple renewable

energy sources, while the data center operators try to meet a target green

energy bound at minimal cost?

In this problem, we seek to exploit the green energy available to reduce brown

energy consumption. We extend our model by considering that data centers can

have on-site renewable energy generation (considered in previous problem) or get

the power from a combination of green and brown energy sources through the

utility apart from collocated renewable energy sources. We model the problem of

capacity planning as optimization problem (termed as GACED) with the objective

of minimizing power consumption cost ( which includes brown energy and green

energy cost) for fault-tolerant data center while satisfying minimum bound on green

energy usage requirement. For comparison, we designed a baseline model (termed
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CED-B) that minimizes the TCO, where the data centers are powered only with

brown energy while retaining other constraints.

Key Observations:

• For full data center site failure, percentage gain in the TCO using GACED

model compared to the CED-B model is 2%. The gain reduces with increase

in green energy usage because, our model increases the amount of (expensive)

green energy purchased to meet the constraint. On the other hand, CED-B

model has no cost from green energy usage. Hence, with the GACED model,

unless we target high renewable energy usage, greening can be achieved with

very little or no extra cost.

• We observed that the GACED model can lead to greener data center

deployment with no or little additional cost (though green energy is costlier).

In particular, we found that at 40% green usage bound, the TCO is almost

same for both the models (GACED and CED-B) due to the fact that, the

GACED model optimally uses cheaper renewable energy to reduce the TCO.

• Solving our model shows that spare capacity provisioning while considering

green energy integration, not only lowers carbon footprint but also reduces

the TCO.

• If the forecasted green energy availability is inaccurate, the GACED model

has only 3% higher TCO with 20% green energy bound.

• Our model works well with improvement in technology and higher capacity

factor (i.e., lower renewable energy cost).
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1.2.4 Game-theoretic Model for Load Balancing in Fault-

tolerant GDCs

Problem statement: How to design a distributed load balancing algorithm

which provides better fairness to the clients (in terms of service latency)

without increasing the operating cost in fault-tolerant GDCs?

We formulate the load balancing problem in GDCs as a non-cooperative game

executed across a finite number of front-end proxy servers. The objective of the

game is to minimize the sum of the energy cost and the revenue loss due to delayed

service. We consider the spatio-temporal variation in the electricity price, the

offered load, and the availability in the model. In the game, each front-end proxy

tries to minimize the cost while satisfying the demand constraint. We prove that

the objective function is convex and the first order KKT condition is necessary

and sufficient for optimality. This closed form solution is termed best reply and

it provides a minimum cost for that player, given the other players’ load balancing

strategies. The Nash equilibrium exists for our game because the proposed objective

function is continuous, convex and increasing [34,35]. At the Nash equilibrium, the

strategy profile is such that every player’s load balancing strategy is a best reply given

the other players’ strategies. For the characterized Nash equilibrium, we propose

a distributed algorithm to compute the same. We also perform the complexity

analysis of our proposed algorithm. We compare the performance of the proposed

algorithm with the existing approaches. The execution of this algorithm is restarted

periodically when the data center system parameters (e.g., electricity price, demand)

change or a failure occurs. Once the equilibrium is reached, the front-end proxies

continue to use the same strategy and the system remains in equilibrium until a new

execution is initiated. We evaluate the performance of the non-cooperative game

theoretic algorithm (abbreviated as NCG) along with the existing ones, such as

the proportional scheme(PS) and the global optimal scheme(GOS), using real-world
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data.

Key Observations:

• For all scenarios like, increasing the system size, varying the demand, latency,

and latency weight factor numerical results demonstrate that the solution

achieved by the proposed algorithm (NCG) approximates the global optimal

solution in terms of the cost.

• The main advantage of NCG algorithm is that it is decentralized, it has a low

complexity (close to the optimal GOS), and it offers fairness and good average

latency across all the client regions.

1.2.5 Distributed Failure Detection and Efficient Load Bal-

ancing in Fault-tolerant GDCs

Problem statement: How to devise a data center-initiated load balancing

algorithm so that failure could be detected early and corresponding

updated load balancing policy can be determined quickly?

We assumed in the NCG algorithm that efficient failure detection mechanism

is in place. The problem of load balancing becomes more challenging when it has

to consider failure of data center (either partial or complete), since it can happen

at anytime and with any frequency [6]. When front-end proxy sends keep-alive

message periodically for health checking, it could be computationally expensive in

terms of message and time complexity. Therefore, load balancing strategy has to be

determined, which takes into account the over-provisioned servers, renewable energy

usage requirement, and the power consumption cost to minimize the TCO.

For a scalable, fault-tolerant load balancing system, we propose a data center-

initiated distributed load balancing approach to ensure post-failure QoS while

minimizing the TCO. Our approach makes an early attempt to balance the load
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on a failed data center to mask the failure with a marginal increase in the operating

cost. We model the problem of load balancing in fault-tolerant data centers using

linear programming (LP) to optimize both the cost of energy consumption and the

client latency. For scalability, we also propose a two-stage distributed algorithm

based on greedy heuristic method. In the first stage, we propose an algorithm

to distribute the load on a failed data center across the remaining ones targeting

minimal increase in the operating cost. Next, the min-cost network flow model is

used to derive an optimal request mapping policy, where the cost function considers

the propagation delay to account for QoS requirements.

Key observations:

• For all scenarios like varying number of data centers, demand, and failure

percentage, the proposed algorithm achieves same TCO as the centralized

global solution.

• Analysis shows that the proposed algorithm has low computational complexity,

yet exactly matches the cost obtained using global optimal solution (which is

a centralized approach).

1.2.6 Organisation of the Thesis

The rest of the thesis is organized as follows: In the next chapter, we present the

background material required to understand the setting in which we addressed the

problems discussed. We also present the state-of art literature on cost-aware data

center placement, capacity provisioning, and load balancing in GDCs. In Chapter 3,

we addressed the problem of cost-aware spare capacity provisioning in GDCs capable

of masking single data center failure. We propose an MILP model to reduce the TCO

in spare capacity provisioning. In Chapter 4, we present an extended model that

considers the data centers collocated with green energy sources. Here, we determine
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the optimal server distribution that minimizes the TCO while maximizing the usage

of available green energy. In Chapter 5, we consider data centers powered by multiple

on-site and off-site renewable energy sources, for which we propose a model for

optimal server distribution to minimize the total cost of energy consumption (which

includes brown energy and green energy cost), while meeting the requirements for the

green energy usage. Next, we proposed two distributed load balancing algorithms for

fault-tolerant GDCs with an objective function to minimize the TCO while meeting

the delay constraints. In Chapter 6, we used non-cooperative game theory to model

the load balancing problem. The model is designed to ensure that there is fairness in

the latency perceived by the clients while minimizing the operating cost. In Chapter

7, we propose a data center-initiated distributed load balancing algorithm to ensure

post-failure QoS while minimizing the operating cost. Finally, the thesis ends with

summary and future work in Chapter 8.
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Chapter 2

Background and Literature Survey

In this chapter we present some background material regarding the architecture

of the GDCs we consider in this thesis. We discuss the popular model to ensure

high availability in GDCs and the efforts to minimize the operating cost. We also

present the current models used for greening the GDCs, using renewable energy

sources and reducing the carbon footprint. We also show how demand multiplexing

can be exploited in minimizing the operating cost of GDCs. Finally, the chapter

discusses the state-of-art literature related to cost-aware spare capacity provisioning

and energy cost-aware load balancing in GDCs.

2.1 Architecture of a GDC

A typical GDC has front-end proxy servers and back-end data centers as shown

in Fig. 2.1 [36]. The front-end proxies inspect incoming requests from clients and

transparently direct them to the appropriate back-end data centers that can serve

them. While there is a logical separation between the front-end and back-end, they

can be physically in the same data center. The data in back-end data centers are

usually replicated across multiple data centers (typically two or three), so that there
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is high performance and the data center or network failures can be tolerated [36].

The number of mirrors is typically smaller because, replicating content across many

sites would increase state-coherence traffic without a commensurate benefit in the

availability or performance. The front-end proxies spread the load based on policies

defined to meet certain objectives like, minimizing the service latency or minimizing

the operating cost. Load balancing is implemented using different protocol level

mechanisms like DNS/HTTP redirection and persistent HTTP proxy connections.

Internet

Front-end1

Front-end2

Data center1

Data center2

Data center3

Figure 2.1: Architecture of a typical geo-distributed data center

2.2 High Availability Requirement

The failures in a data center leading to degraded performance could lead to huge

financial loss for any organization. According to a report by Fierce Enterprise

Communications, downtime of large data centers costs businesses $26 million dollars

each year in North America alone [37]. A survey by Ponemon Institute reported that

59% of Fortune 500 companies experience at least 1.6 hours of downtime a week,

which is about 83 hours an year [6]. Data center failures can be due to reasons

such as, building fire, power outage, human errors, software bugs, Internet attacks,

hardware failures, and natural disasters among which, 70% are reportedly due to
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human errors [38]. There are many instances of complete data center failure in the

recent past. For example, because of a software bug Amazon suffered an outage

during which many companies using Amazon Web Services (AWS) EC2 instances

suffered loss of service. The failure lasted more than 3 days after which some data

were permanently lost [39].

The amount of downtime acceptable for different customers depends significantly

on their services deployed on data centers. For example, some may survive being

off-line for a day and later restore all the data from the backup site. For large

organizations offering e-commerce or financial services, downtime of a minute lead

to huge loss in revenue and therefore, the service needs to be delivered from an

alternate site within a minute or almost instantly with no noticeable disruption.

The most common strategy to counter failures in a distributed system is based on

redundancy. In redundancy-based approach, critical system components are backed-

up with spare components. Provisioning spare capacity ensures that the system

is available even after the failures and continues to deliver services with same or

degraded performance.

Generally in a GDC, if data center at a site fails, other data center housing

sufficient spare capacity can be used to serve the load of the failed data center and

thus mask the failure. We consider this approach of provisioning spare capacity

across the sites to mask the unavailability of the data center at any site. We

assumed that the failure of the data center at a site is an independent process,

i.e., simultaneous failure of data center at more than one location is rare. This

holds because the data centers at different locations are not susceptible to common

disaster-like situations [40]. For example, the power outage, building fire or any

natural calamity at one data center site does not affect the functioning of other data

centers. This is done by choosing two locations sufficiently farther apart so that

each data center is operationally isolated from the other one. Further, all the data
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centers are designed in identical fashion so that, any site is capable of serving any

request and there is sufficient spare capacity for fail-over operation.

2.3 Energy Cost Components and their Dynamics

This section gives a brief introduction to the various sources of energy powering

GDCs, their costing models and the important dynamics that can be used to

minimize cost incurred due to power consumption.

2.3.1 Brown Energy Pricing

Utilities typically offer their customers three types of contracts [9]: (i) fixed, where

the customer has to pay fixed price throughout the usage; (ii) time of use (TOU),

where the price varies with time of the day; (iii) dynamic pricing, where the customer

pays variable price based on the supply and demand. In TOU pricing, for example,

there might be two prices, one for 8 AM to 8 PM of weekdays (called on-peak

price), and another for all the other times (called off-peak price). Dynamic pricing

is further classified into three types depending on how far ahead the price is set:

day-ahead pricing, hour-ahead (or 30 minutes in the UK), and real-time pricing (set

5 minutes ahead). The fact that electricity prices vary substantially during the day

(because of dynamic pricing) and across geographic regions (because of difference

in demand and supply and/or time zones), means that intelligently routing requests

to locations where electricity is cheaper can help the operators significantly reduce

their power bill.

2.3.2 Renewable Energy Sources and Cost Model

Most of the electricity produced across the globe comes from burning coal or natural

gas (a carbon-intensive approach). To avoid consuming brown electricity, GDC
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Figure 2.2: Various renewable energy options

owners can use renewable or green energy sources such as solar cells, wind mills,

geo-thermal and bio-mass plants. These energy sources reduce reliance on fossil

fuel thereby, minimizing carbon dioxide emissions and other greenhouse gases which

contribute to global warming. Various renewable energy options available to a data

center are depicted in Fig. 2.2. There are different ways of incorporating renewable

energy power into their overall energy portfolio as discussed below.

• On-site renewable energy generation: In this model, renewable energy

sources such as solar panels and wind turbines, are collocated with the data

center as shown in Fig. 2.2. They are used to supply some of the power required

at the data center facility. Many major companies use some type of on-site

renewable energy generators to provide power to their facilities. For example,

Apple uses 200MW solar array power plant for its data centers [41].
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• Off-site renewable energy generation: This involves installation of

renewable energy plants at a location with more abundant renewable energy

generation potential. The power generated by an off-site source is transported

through grid to a data center located at any remote location. The grid

essentially acts as the “carrier” of the energy produced for which the utility

charges the data center a fee termed as wheeling charge [14]. The data center

is given incentive for its contribution to greening via some form of discount in

its utility bill.

• Implicit renewable energy products: Apart from direct installation and

provisioning of renewable energy generators by data center operators, there

are multiple ways to implicitly incorporate renewable energy into their energy

portfolio. In these options, data centers avail renewable energy by paying for

it in some fashion as discussed below:

– Renewable energy certificate(REC): Also know as green certificate, it is

a market-based instrument to promote renewable energy and facilitate

compliance of renewable purchase obligations (RPO). It is aimed at

addressing the mismatch between availability of renewable energy and the

requirement of the obligated organization to meet the RPO. Purchasing

an REC allows the operators to claim that the corresponding portion of

its overall energy consumed was green. Finally, installation of renewable

energy generators not only permits data center operators to achieve

greener data centers but also enables them to derive RECs directly

through an audit/accreditation process, which the data center operators

can choose to sell to the REC market [42].

– Power purchase agreement (PPA): It involves a contract between a

consumer and a renewable energy producer which allows the consumer

to purchase a portion or all the electricity generated by the producer at
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a negotiated price for which it accumulates some form of credits such as

RECs [9, 14].

Carbon offsetting target: A carbon offset is a reduction in emission of carbon

dioxide or greenhouse gases to compensate for, or to offset an emission made

elsewhere [43]. In recent years, numerous carbon cap policies and regulations

have been introduced world-wide. They are either government-mandated, utility-

imposed, or voluntary. For example, European Union Emissions Trading System

(EU ETS) has imposed cap on EU members’ national carbon emission volume.

In these countries large carbon emitters who fail to offset or reduce their carbon

footprint face heavy penalty. Further, alternative forms of carbon pricing also exist

like carbon tax, which is an environmental tax levied on corporate carbon footprints.

Apart from taxing, government also provides incentives to set up renewable energy

generation plants. For example, federal and state incentives in New Jersey reduced

the capital costs of deploying renewable energy plants by 60 percent [11].

Renewable energy cost model: The generating cost of renewable energy seems

to reduce over the time due to the technological improvements in the equipment

efficiency and increasing deployment. In particular, power generation efficiency

and reduction in cost/Watt of renewable energy will reduce the deployment cost

significantly in the future. For example, the efficiency of solar panels is expected to

triple and the cost/Watt of solar panels is expected to be halved by 2030 [11, 44].

Further, a report from Lawrence Berkeley National Lab found that the average

capacity factor among projects built in 2014 reached 41.2 %, compared to an average

of 31.2% for the period 2004–2011 and just 25.8% for the period 1998–2003 [45,46].

Similarly, from 2006 to 2014, world-wide average photo-voltaic solar cell prices have

dropped by about 78% [47]. These can promote the usage of green energy over long

term. Installation cost and capacity factor are used to calculate the green energy
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cost for every hour (h) (in $/Kwh) as defined below [14]:

Cost($/kWh) =
Installation Cost($/KW )

Total Lifetime(in hr) ∗ Capacity Factor(h)
(2.1)

where, Capacity Factor(h) is the ratio of the actual power output during an hour

to the maximum potential output during the hour, when operated at full-rated

capacity.

2.3.3 Demand Multiplexing for Improving Utilization

Under the condition that the requests from different client regions are independent

and negatively correlated, and the infrastructure is provisioned for peak requirement,

multiplexing of demand from different client regions onto data centers (lying in

different time zone) results in higher utilization. The resultant under-utilized

resources could be used to make up for a capacity loss in failure. This can be

quantified formally as discussed below [48].

At a data center indexed i, let Di(t) be the load at time t,(for 0 < i < N

and 0 < t < T ), Pi be the peak load, defined as max(Di(t)), µi be the mean

load, and σi be the standard deviation of the load. Let the demand from n traffic

generating sources indexed by i be served at a data center with the aggregate load

being
∑

iDi(t). Then,

E
[
load

]
= E

[∑
Di(t)

]
=
∑

E
[
Di(t)

]
=
∑

µi

(2.2)

Effective coefficient of variation after multiplexing is√∑
σ2
i∑

µi
(2.3)

It can be observed that when the mean and standard deviation are same for all traffic

sources, the coefficient of variation reduces by a factor of 1√
n

i.e., peak to mean ratio
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in aggregated traffic is minimized which ensures better resource utilization [48].

In general, multiplexing demand from multiple sources will reduce the coefficient

of variation, when the demand is not correlated or simultaneous peaks do not

occur. This perfectly suits workload in GDCs which exhibits diurnal pattern due to

different time zones. The demand seen across two client regions as shown in Fig. 2.3,

demonstrates that the peaks are shifted in time and do not coincide in time. Now

we argue that intelligent demand multiplexing improves resource utilization and the

under-utilized resources could be used to mask failure. This could be quantified as

discussed below.

Spare capacity for fault-tolerance: Let the demand at two data centers be

denoted by the random variables D1(t) and D2(t), with mean µ1 and µ2. The total

demand at any point of time is given by D1(t) + D2(t) and the expected load is

given by

E
[
load

]
= E

[
D1(t) +D2(t)

]
= E

[
D1(t)

]
+ E

[
D2(t)

]
= µ1 + µ2

< P1 + P2

(2.4)

The workload from interactive applications is dynamic with high peak to mean ratio

and the average utilization of a server is typically around 18% [10]. The spare/excess

capacity can be used for masking failures by intelligent request routing [49]. This

can be illustrated using a simple example. Fig. 2.3 depicts the real-time work load

in two data centers at New York and Oregon, obtained from [2]. Let the capacity

of each data center be sufficient enough to meet the peak demand. It can be seen

that the normalized aggregate compute capacity required at both locations is 1.45,

when each client region is served by a data center and it is provisioned in accordance

to its peak load. However, intelligent request routing of work load from Oregon to

New York would require a maximum aggregate compute capacity of 1.13 i.e., 22%
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Figure 2.3: Variation in the demand across regions

of compute capacity can be freed by intelligent routing that can be utilized to mask

failure.

2.3.4 Geographical Load Balancing

As discussed earlier, the front-end proxy servers map the client requests to the

appropriate data centers. GLB defines the request distribution policy to be actuated

by the front-end proxies in GDCs. It also decides the number of servers to be

activated across data centers (in power saving scheduling mechanisms). The problem

addressed in intelligent GLB is to determine routing and capacity provisioning

across data centers with the primary objective of minimizing the operating cost or

minimizing the average service latency. The challenge in this is to leverage spatio-

temporal variation in the electricity price, available green energy, replication cost,

and considering demand multiplexing under a predicted demand pattern.

In general, a load balancing strategy can be classified as static, semi-static

or dynamic. In the static approach, all the information necessary for the decision

making is available before the execution of the algorithm and it remains constant

during the execution [50]. In the semi-static approach, the required information is
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available at the beginning of each time step or a well defined point [51]. For example,

the load on the system and the cost of serving the same is available with reasonable

accuracy just before the time slot. In the dynamic approach, the information is

not known till the point of execution and it might change during the course of

execution [52]. Further, depending upon the way this computation is performed,

load balancing algorithms can also be classified as centralized or decentralized. In

the centralized approach, one node in the system collects the information necessary

to decide the strategy for load balancing. For example, central node could be

responsible for solving load balancing algorithm or framework and pushes the load

balancing policy to nodes responsible for request routing. In the decentralized

approach, multiple nodes participate to decide the load balancing strategy, either

cooperatively or independently. Decentralized approach (cooperative or otherwise)

is resilient and scalable compared to the centralized one, particularly for large-scale

GDCs.

2.4 Related Work

In this section, we summarise some important papers that deal with cost-aware data

center placement and capacity provisioning, and energy cost-aware load balancing

in GDCs. We present only the literature that considered various approaches in

minimizing the operating cost of data centers. To the best of our knowledge, there

are very few papers that consider these problems in the context of fault-tolerant

GDCs.

2.4.1 Data Center Placement and Capacity Provisioning

The location of data center has direct impact on service response time, capital

and operational cost. Selecting a location involves many important considerations,
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including its proximity to population centers, power plants, and network backbones;

the source of the electricity in the region; the electricity, land, and water prices

at the location; and the average temperatures at the location. As there can be

many potential locations and many issues to consider for each of them, the selection

process can be extremely involved and time-consuming.

The authors of [16], studied how to select an optimal subset of data center

locations from a probable set, and how many servers should be deployed at each

data center to satisfy the customer QoS requirements. The costs considered were

electricity cost and bandwidth cost between data center and client locations. Three

objectives were used namely, to minimize total carbon footprint, to minimize total

cost with carbon tax and to minimize average service latency. However, the land

cost, infrastructure cost and inter-data center latency were not considered and failure

of data center was not considered. Similarly, in [20], an optimization framework for

selecting additional data center locations to upgrade the capacity of an existing

data center was proposed. The objective was to minimize the TCO subject to

response time, consistency and availability constraints. The cost factors considered

in computing the capital cost were: land, data center construction, transmission line

to nearest power grid, OFC line to nearest network backbone, cooling infrastructure,

and internal networking. For the operating cost the factors were: electricity,

bandwidth, cooling the data center, carbon tax, and administration cost. The work

in [53], addressed how to maximize the profit while building a new data center

or expanding the existing data center (increase the number of servers) to meet

the increasing demand. Annual inflation rate was also taken into account while

computing the cost of bandwidth, cooling infrastructure, electricity and the revenue

generated. An optimization framework was proposed that takes as input, the current

data center locations along with the number of servers and suggests the best option

to maximize revenue (either building new data center or expanding existing data

52



2.4 Related Work

center). The authors of [18] proposed an optimization framework for data center

placement/capacity provisioning and request flow control/resource allocation in a

joint manner. The objective was to minimize the average cost for new and upgrading

data centers in the network subject to a maximum allowed average latency for each

user.

The authors of [40] proposed general guidelines to design a disaster-resilient

GDC which includes site placement and topology design, selection of VM placement

and backup strategies. The authors of [2] proposed a simple optimization framework

to find the minimum number of additional servers required and how many of them

need to be placed at each data center such that latency constraints are satisfied and

any failure of a single data center is masked.

Global Content Balancing model introduced in [54], advocates the placement

of data center with the associated data in the ISP network closer to client regions.

This makes sure that the client requests are routed to a nearby data center, which

also avoids expensive fetching of overseas content and excessive delay. Our model

assumes the data center to be optimally placed and the client data is placed locally

at a nearby data center (could also be multiple data centers).

In summary, the literature mostly addressed the problem of cost-aware data

center placement and capacity provisioning for GDCs considering the demand and

QoS constraints, it does not address the problem of handling failures in a data center

with minimum TCO.

2.4.2 Geo-Distributed Load Balancing Approaches

The central idea of a GLB algorithm is wide-area workload placement. Informed load

balancing policy exploits spatio-temporal variation in the electricity price, available

renewable energy, demand multiplexing with the objectives of reducing power

consumption cost [4], maximizing the use of renewable energy [11], or minimizing
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the number of servers used [2]. We classify the existing literature on load balancing

algorithms in GDC based on their primary objectives as discussed below

Electricity Price-aware Load Balancing

One of the earliest works that leverages electricity price differential was [4]. In this

work, for a given system of servers distributed geographically, the problem addressed

was to map client requests to cluster such that the total power consumption of the

system is minimized. They considered different variations in the price such as, daily

price fluctuations, different market types, and hour-to-hour volatility. They used

Akamai trace to show that leveraging price differential yields substantial savings in

cost. In particular, they proposed cost-aware routing heuristics which map client

requests to cheaper price regions lying within its radial geographical distance.

The authors of [32] have proposed request distribution policy that minimizes

the electricity cost, moving jobs where energy is cheaper subject to latency

constraints. However, they did not consider network latency or time varying

workload. They showed that significant cost saving can be achieved using an

intelligent request distribution scheme. In [55], the authors proposed on-line

algorithm for migrating batch jobs between data centers based on electricity price

differential. However, job migration comes with non-trivial bandwidth cost. Their

work differs from the others in that, they incorporated bandwidth cost in the

objective. Unlike other works, they considered delay-tolerant batch jobs.

The work in [56], used the concept of electricity price capping, arguing that

large scale data centers are not only price-takers but also price makers in dynamic

electricity market. They proposed two step cost-capping electricity minimization

algorithm. In the first step, they model the effect of power demand on electricity

price and the effect of power consumption on the electricity cost. In the second step,

their solution forces the electricity cost capping by providing QoS to premium users
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and best effort service to occasional users, when the power consumption cost exceeds

the monthly budget. Their solution not only achieved significant reduction in the

electricity cost but also maximized their throughput while capping the desired cost.

In [57], the authors demonstrated the effect of relaxing delay constraint for

delay-tolerant work load. Their solution exploits temporal and spatial variation of

both workload and electricity prices. They demonstrated a power cost-delay trade-

off which can be exploited to achieve further reduction in cost at the expense of

service delay. Authors of [58], proposed a simple heuristic of mapping HPC workload

or web search in accordance to electricity price variability as search query workload

and electricity prices show similar spatio-temporal variation.

From the above discussion it can be observed that one of the primary objectives

being considered by most of the works is to leverage the variation in the electricity

price to achieve substantial savings in cost. In all these works the secondary objective

was service latency reduction, bandwidth cost reduction, or capping monthly power

budget.

Renewable Energy-aware Load Balancing

To reduce the carbon footprint and for sustainable design of data centers, research

efforts were made to efficiently integrate renewable energy sources along with

traditional brown sources in powering data centers. In [11], the authors presented

an excellent summary of the efforts made for integration of renewable energy sources

in data centers for scheduling and load balancing. There are a few studies that have

considered additional factors like powering of data center using renewable energy

sources (at-least partially). In [27] authors showed that it is possible for a GDC

to exploit uncorrelated wind sources to satisfy 95% of energy consumption by wind

power following power-aware routing policy.

In [28] authors have addressed the problem of sitting and provisioning green
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data centers, where the objective is to minimize the data center and renewable

plant building cost while satisfying bound on green energy integration, availability,

and delay guarantees. The authors of [59], first observed that the renewable

energy production is highly unpredictable and expensive. Owing to high upfront

installation cost maximizing renewable energy may overburden the service operator.

Therefore, they proposed fractional linear programming to determine request

distribution policy maximizing renewable energy usage under monthly budget and

QoS constraints. The work in [60], proposed an optimization framework to optimize

the energy cost of GDC with QoS constraints, under the assumption that each data

center is equipped with renewable energy power generators, where the data center

draws power from grid only if the consumption exceeds the green power available.

In [36], authors proposed optimization framework for enabling GDCs to

cap their brown energy usage leveraging green energy, while satisfying SLA and

minimizing the energy cost. The outcome of the framework is request distribution

policy to be implemented at the front-end proxy server. Every hour, request

distribution policy is arrived by considering electricity price variability, estimated

load, and renewable energy availability. In [61], the authors used online load

balancing policy that follows the available renewable energy to provide significant

environmental benefit and reduction in cost. Here, the benefit comes from

dynamically adjusting the routing and service capacity at each location. However,

achieving the objective is challenging due to inaccurate prediction in future

workload, renewable energy availability (that highly variable and intermittent) and

the electricity prices beyond a short time interval.

In [62], the authors claimed that using GLB to reduce energy cost leveraging

electricity price variability across the regions, might lead to increase in total energy

use while reducing the energy cost. This is mainly due to the fact that data centers

at locations with cheaper energy may serve demand at higher frequency to satisfy the
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delay bound. The authors proposed two distributed algorithms for achieving optimal

load balancing and showed the advantages of integrating renewable energy into the

grid using a long-term energy model. In [8], the authors formulated optimization

model and proposed greedy heuristics for request-routing and traffic engineering in

GDCs. They presented the three-way trade-off between access latency, electricity

cost, and carbon footprint. They also highlighted the impact of carbon taxes on

data-center carbon footprint reduction and reported that carbon tax is not effective

because taxes are only about 5% of the electricity price.

From the above, it is evident that renewable energy integration is not only a

obligation for reducing carbon footprint but also an economically and technically

viable solution. Further, the generating cost of renewable energy tends to reduce

with time due to the technological improvements in the equipment efficiency and

the increasing deployment. This can benefit the usage of green energy over the

long-term. Hence, integration of renewable energy is crucial for sustainable growth

of data centers and GLB strategies can be designed intelligently to minimize the

operating cost while greening the data centers.

2.5 Summary

In summary, we discussed the issues in minimizing the cost due to power

consumption in GDCs. While the most common strategy to tolerate failure at a

data center site is to provision sufficient spare capacity at the other sites, exploiting

spatio-temporal variation in the electricity price, renewable energy availability, and

demand multiplexing will lead to lower TCO. The motivation for the work in this

thesis is primarily based on the aforementioned factors in capacity provisioning and

load balancing to reduce the TCO. We also reviewed important literature in these

areas and observed that there is not much work in cost-aware capacity provisioning

and load balancing for fault-tolerant GDCs. Because of requirement of large spare
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capacity to handle failures at a site, sufficient care needs to be taken to minimize

the CAPEX and OPEX while handling failures. Accordingly, the work in this thesis

proposes optimization models and algorithms for cost-aware design of fault-tolerant

GDCs and load balancing thereof. In the next chapter, we discuss the problem of

cost-aware spare capacity provisioning and the optimization model for the same.
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Chapter 3

Cost-aware Provisioning of Spare

Capacity for Fault-tolerant GDCs

3.1 Introduction

Designing a fault-tolerant GDC usually involves spare capacity provisioning (i.e.,

allocation of additional servers to mask the failure) across different data center

sites. A naive approach uniformly distributes the spare capacity. However, all data

centers do not have the same capacity and are characterized by different electricity

prices, bandwidth cost, carbon tax and varying user demand over time. Along with

service restoration, it is also important that the required data is available at an

alternate location after failure. This is handled by replication of data according to a

pre-determined policy. There are two options possible for data replication namely,

single site replication and multiple site replication. In single site replication, the data

is replicated to another nearby data center. In case of a failure, if the replicated

site is overloaded, client requests are directed to any other data center meeting

the latency requirement. In this case, the data would be pulled from the replica,

which results in greater latency and bandwidth cost (we call this a post-failure
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penalty). In order to ensure co-location of data with the compute servers, the data

is often replicated at multiple sites. However, multi-site replication involves large

replication cost since the data center operators are typically charged for the number

of bytes transfered [63] and/or the bandwidth cost between the replication sites [16].

Therefore, the replication cost should be considered while designing the data centers

for high availability.

In summary, designing a fault-tolerant, highly available, GDC involves mini-

mizing the spare capacity (number of servers) across the data centers considering

the cost of power consumed and data replication, subject to a set of constraints re-

lated to client demand, delay bound, and the power and capacity available. We call

this problem cost-aware capacity provisioning (CACP) wherein, the main challenge

is to minimize the TCO for data center operators by leveraging the spatio-temporal

variation in electricity price and user demand.

3.1.1 Motivation

The work in this chapter is motivated by the following observations about the GDCs

currently in use.

• Electricity price variation: In a de-regulated electricity market, electricity

prices vary across space and time. Recent trends show that the operating cost

exceeds the server cost at many data center locations. Therefore, we argue that

greater attention should be put on optimizing data center power consumption

cost instead of only minimizing the servers while designing fault-tolerant data

centers.

• Replication Cost: Usually, cloud service providers connect their data centers

with dedicated wide area network (WAN) links that are significantly expensive.

Therefore, informed data replication must be carried out in order to minimize

60



3.1 Introduction

the operating cost involved. For example, Amazon Web Services (AWS)

charges an inter-data center transfer at around $0.12-0.2/GB across geographic

regions and $0.01/GB in the same region [63]. Literature also suggests that the

data replication may be charged based on the distance between the replicating

sites, e.g., $1 to transfer 2.7 GB of data over 100km [16].

To the best of our knowledge, the only work that advocated the importance

of fault-tolerant capacity provisioning in a distributed data center was that in [2].

Though the basic problem was similar, we used minimization of the TCO as the

objective apart from handling the replication cost. As reported in Table 1.1, the

electricity cost of powering a server is comparable to (or higher than) the server

acquisition cost. Therefore, we used minimization of the TCO as an objective in

spare capacity provisioning while considering different models for data replication.

In this chapter, we give an MILP-based solution for the CACP problem to

optimize the TCO, while complying to the customer demand, latency requirements,

and being cost effective while masking the failure of any one data center (at a time).

We modelled two strategies for data replication, single site and multiple site for data

affinity. Evaluation of our model suggests that although the multiple site model is

costlier, it is preferable when the post-failure penalty is large in the single site

model. Numerical results show that the CACP model results in significant saving

in the TCO compared to the existing models.

The rest of the chapter is organized as follows: In Section 3.2 we present the

cost models used, formulation of the CACP problem and discussed the complexity of

the formulation. We also illustrate the working of the model with a small example.

Numerical results demonstrating the advantages of the proposed model over the

existing ones are reported in Section 3.3. We conclude the chapter in Section 3.4.
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3.2 MILP Model Formulation

In this section, we first state the assumptions used in the model and present the

models considered for various cost factors. Next, we present the MILP formulation

of the CACP problem and also prove that the problem is NP hard.

3.2.1 Assumptions

The following assumptions are used in the model.

• We assume that the failure of the data center at a site is an independent pro-

cess, i.e., data centers are not susceptible to common disaster situations [40].

For example, a power outage, building fire or any local disaster at one data

center location will not effect the remaining data centers.

• Data replication is handled with any popular geo-distributed data replication

strategy.

• Failure detection and request re-routing is handled by the load balancer proxy.

• Data centers are connected using dedicated virtual links and the cost of the

data transfer is based on the actual usage.

• The demand from a client region is proportional to the population. Propaga-

tion delay within the client region is assumed to be negligible.

• All the servers have similar configuration and can serve requests for any service.

However, the response sizes can be variable.

3.2.2 System Model

In this section, we define the variables and cost models used in the formulation.

Table 3.1 lists all the input parameters, decision variables, and cost components in
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Variable Meaning

Input Parameters

S set of data center locations

U set of client locations

A set of application types

H total time horizon

s index for data center location

u index for client region

f index for failed data center

h index for time slot in time horizon

a index for application request type

B processing rate of server in bits per second

Ja job size for request of type a in kB

P fh
s power consumed at data center s for application a during hour

h with failed data center f

Ph max
s maximum power available at data center s during hour h

γfhs average server utilization at data center s during hour h and

failed data center f

γmax maximum value of γ to avoid waiting

Lah
u total number of requests generated for application A from user

location u during hour h

Dsu propagation delay between client region u and data center s

Dmax the maximum tolerable latency

θhs electricity price per kWh at data center s at hour h

ρs transmission loss of electricity at data center s

α server acquisition cost

δs carbon tax at data center s

Mmin minimum number of servers at any data center

Mmax maximum number of servers at any data center

νsi bandwidth cost for data center s to data center i

ξ number of bytes required for data replication of single request

Decision Variables

ms number of servers in data center s

λafhsu number of requests for application a from user location u,

served by data center s during hour h and failed data center

f

ysu binary variable that denotes whether client location u lies

within the latency bound of data center s

Cost Components

z total cost of ownership, including server acquisition cost,

operating cost and data replication cost

Φ server acquisition cost

η cost of data replication to nearest data center for durability

κ cost of multi-site data replication

Θ power consumption cost

τ carbon tax incurred

Table 3.1: Summary of notation used in the model
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the model.

Failures: Let S denote the set of data centers. The data centers are indexed

between 1 and |S|. We use an index variable f to represent the failure of a data

center. f takes values from the set {0, |S|}, where f = 0 indicates the case of no

failure and f = s indicates that the data center indexed s ∈ {1, 2, . . . , |S|} has failed.

We assume that the probability of a single data center failure, i.e., f 6= 0, is very

small.

Demand: Let λafhsu denote the number of requests for an application type a, from

a client region u, served by the data center at site s, during hour h after the data

center indexed f ∈ {1, |S|} has failed. Let Lhu be the total demand from the client

region u at hour h.

Server Provisioning: Let ms denote the number of servers required in a data

center at s. We define Mmin and Mmax to be the minimum and maximum number

of servers that can be provisioned at any data center based on the space and power

availability.

Delay: Let Dmax be the maximum latency for the service and Dsu be the

propagation delay between client region u and data center site s. A data center

must be assigned to the client region such that even after the failure of a site, the

latency continues to be lower than Dmax.

Server Utilization: Let the processing rate of the server be B bps and let Ja

be the response size for an application type a ∈ A. The service rate for type a is

defined by B
Ja

requests per second. There are three approaches to model the average

utilization of servers as given below:

1. Mutually Exclusive (ME) approach: Each type of application is assigned to a

pre-defined set of servers. Let msa be the number of servers allocated to serve

the requests of type a. Requests for different services are queued in a single

queue, from which a scheduler dispatches the requests to the corresponding
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servers. The average utilization of servers serving the requests of type a can

be defined as

γfhs =

∑
u λ

afh
su Ja

msaB
, (3.1)

This approach of scheduling simplifies the resource provisioning but leads to

under-utilization of servers.

2. Maximum (MAX) approach: Assuming all the requests to be homogeneous, the

servers can be provisioned according to the highest processing rate required.

In this case, the average utilization of any server can be defined as

γfhs =

∑
u,a λ

afh
su Jmax

msB
, (3.2)

where Jmax is the maximum mean file size across different application types.

This approach also suffers from resource under-utilization. On the other hand,

provisioning based on the smallest processing rate leads to under-provisioning

of resources.

3. Multiplexed (MUX) approach: In a virtualized environment, any type of

workload can be served by one of the free servers. All the requests are placed

in a common queue and served by a set of identical servers. This model is

followed in most of the recent papers [64]. The average utilization of a server

in this case can be defined as

γfhs =

∑
u,a λ

afh
su Ja

msB
(3.3)

In this chapter, we consider this model for server utilization but study the

implications of other models in Section 3.3.2.

3.2.3 Cost Models

Next, we define the various cost factors used in the formulation and define the models

for them.
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Server Acquisition: Let the cost of a server normalized over the duration

considered for evaluation be denoted by α. The total cost of servers across all

the data centers, denoted by Φ is simply given as

Φ = α
∑
s

ms (3.4)

Data Replication: Let νsg be the bandwidth cost for data replication from data

centers s to g. For every request served by a data center s, let ξ be the volume of

data to be replicated. We consider two possible replication models.

1. Single site replication: In this case, the data from a primary data center is

replicated to the nearest data center.

2. Multiple site replication: In this case, the data from a primary data center is

replicated to all possible data centers where the client’s request may be routed

without exceeding the latency bound, denoted by PDs.

We define the cost of replication R for these two options using the equation below.

R =


∑

a,f,u,s,h

(
λafhsu ξ νsg

)
Case 1∑

a,f,u,s,h

(
λafhsu ξ

∑
i∈PDs

νsi
)

Case 2

(3.5)

Power Consumption: Let θhs denote the electricity price at data center location

s in hour h of the day. Let Pidle be the average power consumed in idle condition

and Ppeak be the power consumed at peak utilization. Let Es be the PUE of a data

center. The total power consumed at s over an hour h can be expressed as [16]

P fh
s = ms(Pidle + (Es − 1)Ppeak) + ms(Ppeak − Pidle)γ

fh
s . (3.6)

The cost of power consumed at all data centers Θ can be expressed as

Θ =
∑
s,h,f

θhsP
fh
s (3.7)
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Carbon tax: Let δs denote the carbon tax levied at data center location s and ρs

denote the transmission loss incurred. The total cost due to carbon tax is

τ =
∑
s,f,h

δs(ρs + 1)P fh
s (3.8)

3.2.4 CACP Model

Considering all the cost factors defined above, we can define the CACP problem

as the problem of minimizing the TCO subject to the set of constraints on latency

and availability. The TCO, denoted by z is the sum of the server cost Φ, data

replication cost R, electricity cost Θ, and carbon tax τ . For notational simplicity,

we define the following decision variables:

m , [ms,∀s ∈ S],

λ , [λafusu ,∀s ∈ S, ∀u ∈ U, ∀a ∈ A, ∀h ∈ H,∀f ∈ {0, 1, 2.., S}] and

y , [ysu,∀s ∈ S, ∀u ∈ U ]

The CACP problem can be formally expressed as an optimization model given

below.

minimize
m,λ,y

z = Φ +R + Θ + τ (3.9)

subject to,
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∑
s∈S

λafhsu = Lahu ∀u, a, h, f (3.10)

0 ≤ λafhsu ≤ ysuL
ah
u ∀s, u, a, h, f (3.11)

Mmin ≤ ms ≤Mmax ∀s (3.12)

P fh
s ≤ P h max

s ∀s, h, f (3.13)

2Dsu ysu ≤ Dmax ∀s, u (3.14)

γfhs ≤ γmax ∀s, h, f (3.15)

λafhsu = 0 ∀u, a, h, s = f (3.16)

Among the constraints, Eq. (3.10) ensures that the demands of all client regions

in every hour are met. Eq. (3.11) ensures that all the client requests are served by

data centers within the latency limit. Eq. (3.12) ensures that capacity limit of a data

center (in terms of number of servers) is not exceeded. The constraint on the total

power available at a data center is taken care of in Eq. (3.13). Eq. (3.14) ensures

that the delay experienced by a client lies within the maximum bound. Eq. (3.15)

is used to limit the queuing delay at a data center by bounding the average server

utilization to a constant value (γmax ∈ (0, 1]), similar to that in [16]. Eq. (3.16)

ensures that no demand is served by the failed data center.

The inputs to the CACP problem are as follows: the set of data center locations

with the associated costs, maximum average utilization of servers, processing rate

of the servers, maximum latency, demand distribution, maximum number of servers

at each site, and maximum power available at each site. The model then gives the

number of servers across the sites, request assignment to the data centers and the

data centers within the latency limit for each client location.
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3.2.5 Example for Working of the CACP Model

In this section, we give a simple example to illustrate the impact of the CACP model

on the TCO. The proposed CACP model mainly reduces the TCO by exploiting

demand multiplexing and spatio-temporal variation in the demand and electricity

price. For easier understanding on how this works, we show two examples for (a)

the impact of demand multiplexing on capacity provisioning and (b) the impact of

demand multiplexing and electricity price variation on the TCO.

Impact of demand multiplexing on capacity provisioning

Both the CACP and MS models take into account demand multiplexing while

provisioning capacity when the CDN model trivially maps requests to the nearest

data center to minimize the latency. Consider a scenario with three data centers

and three client regions with a maximum latency bound of 25 ms for the service.

Fig. 3.1 shows the system used for illustration. Data centers DC1, DC2, and DC3

serve the requests from client regions C1, C2, and C3 given in Table 3.2. Each edge

between a data center and client region is weighted by the propagation delay. For

simplicity, we considered a case where all the data centers were within the latency

bound (25ms) for all the client regions.
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Figure 3.1: System used for illustration
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Timeslot 1 (in hrs) Timeslot 2 (in hrs) Timeslot 3 (in hrs)

Client 1 100 50 50

Client 2 50 100 50

Client 3 50 50 100

Table 3.2: Demand across different intervals
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Figure 3.2: Capacity allocation using (a) CDN model, (b) MS model

Considering the case of a data center failure, a demand of 200 units generated

from all the client regions needs to be served by the remaining two data centers. In

the MS model, we distribute the workload equally across all the active data centers.

This gives 100 servers at each data center and the total number of servers to tolerate

any data center failure is 300, as shown in Fig. 3.2b. In case of the CDN model, a

client region is always served by the nearest data center after failure. For example,

C1 was served by DC1 before failure, whereas it is served by DC2 after failure.

Therefore, DC2 should be provisioned not only to satisfy C2’s demand but also with

sufficient spare capacity to make up for the failed data center DC1. This gives rise

to DC2 being provisioned with 150 servers to meet the demand across any interval

(when DC1 might fail). Accounting for the possibility of any data center failure, the

server distribution across all the data centers is obtained to be 150 units as shown
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three chosen client regions

in Fig. 3.2a. We can conclude that the MS model exploits demand multiplexing

while satisfying the latency bound of 25 ms and requires only 300 servers against

450 units with the CDN model. CACP model also gives the same result if we ignore

the variation in the operating cost across the data centers.

Impact of demand multiplexing and electricity price variation on the TCO

Consider the three data centers shown in Fig. 3.1 with the electricity price variation

as shown in Fig. 3.3. It may be noted that the electricity price is highest at DC2.

The demand across the three regions C1, C2, and C3 is shown in Fig. 3.4. For

simplicity, we considered the processing rate as 100/sec, Ppeak and Pidle as 400 W

and 200 W, respectively, and the server cost as $2000 (17 cents/hr, assuming 4

years life). We assumed that all the data centers are within the latency limit for any

client region. The server distribution obtained after solving the optimization model

for CDN (minimize average latency), MS (minimize number of servers), CACP

(minimize total cost) is shown in Fig. 3.5a, Fig. 3.5b, and Fig. 3.5c, respectively.

The number of servers allocated across all the data center locations is the same with

the MS model. However, the CACP model allocates fewer servers at DC2, where

the electricity price is higher. The CACP model always allocates more capacity at
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a site where the electricity price is cheaper while satisfying the latency and other

constraints.

The normalized TCO obtained using the model is given in Table 3.3. Even though

CACP model allocates a larger number of servers than the MS model, the TCO

is lowered by exploiting the spatio-temporal variation in the electricity prices for

demand distribution. Though the MS model minimizes the number of servers

provisioned at each location, it does not give the minimum TCO because of being

oblivious to operating cost.
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Figure 3.5: Capacity allocation using (a) CDN model, (b) MS model, (c) CACP

model

Models Normalized TCO

CDN 1

MS 0.89

CACP 0.62

Table 3.3: Normalized TCO with various models
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3.2.6 Complexity Analysis

The number of variables in the above formulation is S + (S + 1)SUAH

and the number of constraints is S+(S+1){UAH+SUAH+2SH}+SUAH+SU .

The asymptotic complexity of proposed CACP model is O(S2UAH). With an

increase in the number of data centers, the complexity increases quadratically but

linearly with the number of client locations, time slots, and application types. The

following theorem states the complexity of the problem.

Theorem 3.1. The feasibility problem of CACP in a distributed data center is in

NP-hard.

Proof. The CACP problem in a distributed data center (without fault tolerance)

is in NP-hard, even when resources are of unit size and unit operating cost. The

reduction is from the set cover problem.

In a basic formulation, the cost aware capacity provisioning problem (without failure

considerations) consists of a set of data center locations DC where the cost of running

servers at a data center i is given by Costi, and a set of client locations C generating

a demand to be served. Each client can be served by a data center lying within a

given latency bound Delay. The goal is to provision a number of servers across data

centers so that the total cost incurred is minimum while satisfying client demand

and latency bound.

In Lemma 3.1 we reduce the decision version of the set cover problem to the

decision version of the CACP problem, which is sufficient to show that Theorem 3.1

holds. The decision version of the CACP problem can be stated as follows. Given a

set of data centers and their server running costs, a set of demand generating client

regions and latency bound, does there exist a subset of data centers that can satisfy

the client demand with the total cost incurred being at most k?

Lemma 3.1. The decision version of the CACP problem is in NP-hard.
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Proof. The decision version of the set cover problem is defined as follows. Given a

set system (U ,S) with
⋃
S∈S S = U and a positive integer k. The question is does

there exist a collection of k or fewer sets of S that cover U [65]? This problem is

known to be NP-complete and we give a reduction of this problem to the decision

version of the CACP problem as follows.

Given an instance of the set cover problem IS, let us map it to an instance IC
of the decision version of the CACP problem. For each u ∈ U , we assign a client

region cu that generates a demand of unit compute capacity to meet its needs. For

each S ∈ S, we assign a data center dS that is within the delay bound for the

clients specified as its elements. For instance, if S = {u1, u2, . . . , um} then, dS has

cu1 , cu2 , . . . , cum within the delay bound constraint. The cost associated with each

data center is 1 unit and each of them has infinite capacity. This completes the

reduction of instance IS to IC . It is easy to observe that the reduction from IS to

IC is in polynomial time in the input size of instance IS. To complete the proof, we

need to show that IS admits a solution if and only if IC has a solution that costs

at most, k units.

Suppose IC has a solution with less than or equal to cost k units. Without

loss of generality, let dS1 , dS2 , . . . , dSl
be the solution to IC that meets demands

of all client regions. Note that l ≤ k as each data center consumes 1 unit of

energy. Each of the clients cu is served by at least one data center in dS1 , dS2 , . . . , dSl
.

Correspondingly, the S1, S2, . . . , Sl cover each u ∈ U and thus, it is a solution to IS
having the size of l ≤ k.

Conversely, if IS admits a solution S1, S2, . . . , Sj with j ≤ k we can construct

a solution to IC that costs at most, k units. The set of data centers dS1 , dS2 , . . . , dSj

is able to meet the demand of all the client regions cu as
⋃

1≤i≤j Si = U . Thus we

have constructed a solution to IC that costs j ≤ k units.
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Comments: Though the problem is in NP-hard, solving it is a one-time effort only

at the time of design. We do not see the running time to be a matter of concern

since the CACP problem is always solved offline. We solved all the models centrally

using CPLEX with MATLAB on a server with an Intel Xeon processor, 64 GB of

RAM, and 64-bit OS. We could not solve the model for more than ten data centers

on this server in a reasonable amount of time (few minutes) for an evaluation period

of one day (24 hourly slots). We can solve the model optimally for capacity planning

in large data centers with higher computational power. For much larger number of

variables, we need to go for online heuristics or approximate algorithms.

3.3 Numerical Results

In this section, we solve the CACP model using real-world data and compare the

TCO obtained with two other models from the literature. The MILP is solved using

CPLEX (Interactive Optimizer 12.6.2.0.) with MATLAB on a Ubuntu 14.04 server

based on an Intel Xeon processor with 64 GB of RAM. All the models were evaluated

under identical constraints and we used the same cost factors for all the models. The

two other models considered were as follows:

• MS model: A rudimentary version of this model was defined in [2]. The main

objective of this model is to minimize the total number of servers deployed

across all the data centers. The TCO for this model would be the cost of that

data center provisioned after minimizing the number of servers.

• CDN model: In this model, the objective is to balance the load across the data

centers so that the average response time is minimized. The provisioning of

servers in this model would be done so that the client latency is minimal [66].

We compared the TCO obtained using all three models in the results. We also

studied the advantages of the CACP model by varying the number of data centers,
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demand, request rate, and latency bound. We also studied the impact of server

utilization models and replication models discussed earlier on the TCO. We first

provide details on the scenarios used and the data set used for the evaluation.

3.3.1 System Parameters

Data center locations: The locations for the data centers are (10 of them):

California, Oregon, Virginia, Switzerland, U.K, Ireland, Netherlands, Hong Kong,

Japan and Canada. At each location, the number of servers was varied between

1000 and 100,000. This would help us consider both smaller and mega data centers

across the world.

Client locations: Based on the data collected for the number of Internet users

from [67] we selected the following client regions (15 of them): Brazil, China, Egypt,

France, Germany, India, Indonesia, Japan, Mexico, Nigeria, Russia, South Korea,

UK, USA, and Vietnam. The propagation delay between the data center locations

and client locations was varied linearly with geographical distance in the order of

10 ms for every 1000 km [16].

Electricity prices: We used historical industrial electricity price data ($ per MWh)

from publicly available government databases corresponding to various data center

locations [21–24]. For the sake of brevity, we do not discuss regulated electricity

market prices. Interested readers may see [21]. We use the electricity price model

similar to the one in [53], where the price for each location varies during on-peak

hours (7 A.M. to 11 A.M. and 5 P.M. to 7 P.M.), mid-peak hours (11 A.M to 5

P.M.)and off-peak hours (7 P.M. to 7 A.M.). The price varies across the periods by

as much as 3 cents/kWh [53]. Some states in the USA (like California and Colorado)

also add about $0.04 to $0.6/kWh as carbon tax for power consumed from brown

energy sources. We ignore the same in the results due to its small contribution in

the TCO (less than 1%).
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Traffic model: We used the trace of requests to Wikipedia services downloaded

from [68]. We downloaded the workload traces for the month of December 2015,

containing the total number of requests and aggregate response size for different

services of Wikipedia. The demand profile for a 24 hour period, averaged over a

month, is plotted in Fig. 3.6. Since the demand had a diurnal pattern we used

H = 24. This distribution of requests was used to derive an hourly demand for

different client regions. We upscaled the number of requests by a factor of 3000 to

reflect the traffic handled by larger service providers [4]. For each client region, we

divided the workload proportional to the number of Internet users in that region.

Table 3.4 shows the split of workload across different client regions obtained from

the number of Internet users. Fig. 3.7 shows the hourly demand for a few client

regions. The demand during the on-peak period was kept as 1.4 times the mid-peak

demand and the demand during the off-peak period was kept at 0.6 times that in

the mid-peak period.
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Figure 3.7: Demand distribution from

representative client regions

Inter-DC communication cost: For the inter-data center communication cost

we used a pricing model similar to the one charged by AWS EC2 services [69]. For

example, AWS charges $0.12− $0.2/GB across geographical regions.

Other parameters: Pidle and Ppeak were set to 200W and 400W, respectively [70].
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Country Brazil China Egypt France Germany India Indonesia

% Demand 5.33% 31.76% 2.17% 2.78% 3.50% 15.43% 2.04%

Japan Mexico Nigeria Russia S. Korea UK USA Vietnam

5.64% 2.65% 3.37% 4.50% 2.13% 2.93% 13.69% 2.09%

Table 3.4: Percentage of demand from different regions

The average PUE was set to 1.5 [71]. Pmax was taken as 100MW/hr for all the

locations [53]. The default value for maximum latency was set to 300ms. The

size of data to be replicated per request was assumed to be 10KB [72]. We set

γmax = 0.8 [73]. We set the probability of a single data center failure to be 0.005

that corresponded to 1.8 days of failure per year.

3.3.2 Results

In this section, we present the numerical results from evaluating the models by

varying the number of data centers, demand, and latency bound. We also study

the effect of different models for server utilization and data replication (single site

and multi-site) on the TCO. In all the results, we show the normalized values of

TCO, where the normalization was done using the maximum TCO seen across all

the experiments.

TCO comparison

In this experiment, we varied the number of data centers between 6 and 10 in order

to serve the client requests as reported earlier within a maximum latency of 300 ms.

Fig. 3.8 shows the normalized TCO for all the models with various numbers of data

centers. In this experiment, we used the single site replication model.

Table 3.5 reports the normalized TCO for different cases (third row from the

bottom). Reduction in the TCO (in percentage) with the CACP model (compared
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Country 6 data centers 8 data centers 10 data centers

CACP MS CDN CACP MS CDN CACP MS CDN

Japan 20000 15592 20000 20000 11138 20000 16072 8663 20000

Ireland 20000 15592 20000 200 11138 13463 200 8663 13463

California 20000 15592 20000 17360 11138 20000 200 8663 20000

Hong Kong 200 15592 20000 200 11132 20000 200 8663 20000

Virginia 20000 15592 20000 20000 11138 20000 20000 8663 12052

UK 17760 15592 20000 200 11138 20000 200 8663 20000

Netherlands - - - 20000 11138 20000 1089 8663 20000

Switzerland - - - 20000 11138 20000 20000 8663 20000

Canada - - - - - - 20000 8656 15723

Oregon - - - - - - 20000 8663 8035

No of servers 97960 93552 120000 97960 89098 153463 97961 86623 169273

Normalized TCO 0.69 0.89 0.9 0.63 0.89 0.95 0.57 0.88 1

% reduction (w.r.t CDN) 23.35 0.51 33.34 5.66 42.62 12.39

% reduction (w.r.t MS) 22.96 29.34 34.5

Table 3.5: Comparison of number of servers provisioned and TCO for all models

to the MS and CDN models) is shown in the last two rows. The fourth row from the

bottom shows the total number of servers provisioned with each model across the

data centers. The table also shows the locations chosen and the number of servers at

each location as the number of locations increases. Since the CACP model exploits

the spatio-temporal variation in the electricity prices, the TCO is lowest in the

case of the CACP model. Though the MS model minimizes the number of servers

provisioned at each location, it does not lead to minimum TCO because, it does not

consider the operating cost in capacity provisioning.

From Table 3.5 it can be observed that even with six data centers, the benefit of

the CACP model is significant, while the other two models have a similar TCO. This

is due to the fact that with fewer data centers, there is not much scope for demand

multiplexing. On the other hand, the CACP model assigns a larger workload at

a data center location with a lower electricity price. With the addition of another

location (the Netherlands, with a lower electricity price compared to the U.K. and
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Figure 3.8: Normalized TCO with varying number of data centers

Ireland) the CACP model shifts the servers provisioned in the U.K. and Ireland to

the Netherlands (see Table 3.5). This improves the TCO in the CACP model by

about 3.5%. While the CACP model suggests more servers, the TCO is minimized

due to shifting them to locations with a lower operating cost. This can be observed

from the table that shows the MS model gives the same number of servers at each

location. We can observe that the CACP model achieved a TCO reduction of up to

35% compared to the MS model, and up to 43% compared to the CDN model.

Impact of data center locations on the TCO

We also studied how the choice of data center locations affects the TCO with the

CACP model. We evaluated our model for the sets of locations listed in Table 3.6.

The TCO obtained with the CACP model is shown in Fig. 3.9. Between Set 2 and

Set 5, Oregon replaced Ireland, where the electricity price was lower (refer Table 1.1).

Oregon (being in the USA) also meets the latency constraints for the largest number

of users (from Americas as reported in Table 3.4). Both these factors lead to a lower

TCO for Set 2 than Set 5.

To understand the contribution of the replication cost to the TCO, we evaluated

the CACP model considering the single site replication (SR) and multiple site
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Set 1 : California, Japan, Hong Kong, Ireland, Switzerland, Virginia

Set 2 : California, Japan, Hong Kong, Netherlands, Oregon, UK

Set 3 : Japan, Hong Kong, Netherlands, Oregon, Switzerland, Virginia

Set 4 : California, Japan, Hong Kong, Ireland, Netherlands, UK

Set 5 : California, Japan, Hong Kong, Ireland, Netherlands, UK

Table 3.6: Different sets of locations
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Figure 3.9: Normalized TCO with different sets of locations

replication (MR) models with various numbers of data centers. The maximum

latency was set to 300ms and the demand was generated as reported in Section 3.3.1.

Fig. 3.10 shows the TCO split into the replication cost and the cost due to power

consumed for both the replication models. It can be observed that in the SR model,

the contribution of the replication cost is small in the TCO. On the other hand,

the MR model is costly for replication and the replication cost increases with the

number of data centers as shown in Fig. 3.10. Therefore, this approach may be

preferred only when the post-failure penalty is very high.

Fig. 3.11 shows the TCO for the CACP model with and without the replication

cost being considered as the number of data centers varies. It can be observed that
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the single site replication cost alone accounts for 20% of the TCO. Therefore, the

CACP model (without replication cost) lowers the TCO by about 20% compared to

the model with replication.

In all the subsequent experiments, we considered only a single site replication

model while evaluating the TCO.
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Figure 3.10: Split up in TCO: Replica-

tion cost and electricity cost
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cation cost on TCO

TCO vs. Worst-case Latency

Next, we studied the impact of maximum latency bound on the TCO. We evaluated

the models for 8 data centers, 15 client regions, and the aggregate demand as

mentioned in Section 3.3.1. The maximum latency was chosen in the range of

150− 350 ms. Fig. 3.12 shows the normalized TCO for all the models with varying

latency. We can observe that the CACP model results in a lower TCO by upto

38% and 32% compared to the CDN and MS models, respectively. In the CACP

model, there is a choice in the number of data centers capable of serving the requests

from a particular client region that leads to better multiplexing of resources and a

reduced TCO. Apart from this, the CACP model also selects the data centers in

regions with lower electricity prices while meeting the latency bound. Although the
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CDN model gives minimum latency, request routing is oblivious to the variation in

the electricity price. Therefore, the TCO is higher for the CDN model particularly

when the latency requirements are not very stringent. We conclude that the CACP

model is more advantageous for services without stringent latency requirement.

In Table 3.7, we report the increase in worst-case latency (compared against

the CDN model), when the CACP model targets TCO reduction. At a worst-case

latency of 150 ms, our model has about a 25% lower TCO. When we target a higher

reduction in the TCO, the worst-case latency in the CACP model increases. For

about 40% reduction in the TCO, our model leads to worst-case latency of 300 ms.

The reduction in the TCO is due to the fact that the CACP model exploits demand

multiplexing and variation in the electricity prices, when the latency requirement is

relaxed.
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ing maximum latency bound
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ing demand

Impact of Demand

We evaluated all the models varying the total demand with 8 data centers and a

maximum latency bound of 300ms. Results in Fig. 3.13 show that as the demand

increases the TCO for the CACP model reduces compared to other models. Due to
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Target Reduction in the TCO (%) Worst-case Latency (ms)

25 150

30 200

35 250

40 300

Table 3.7: Worst-case latency with the CACP model corresponding to the TCO

reduction (compared to CDN model)

the capacity limit of a data center, higher demand causes saturation of all the data

centers in the regions with cheaper electricity. This reduces the choices available

and leads to the selection of other locations with costlier electricity prices. The

proposed model is advantageous only when the data center does not operate at peak

utilization. Under a heavy load, the CACP model can help the provider determine

an optimal data center upgrade plan while minimizing the TCO.

Impact of demand multiplexing

To study the impact of demand multiplexing on the TCO, we evaluated the models

by varying the number of data centers from 6 to 10. The electricity price for all the

data centers was fixed at 10 cents per kWh throughout the day and the replication

cost was fixed to $0.2/GB. The delay bound was set to 300ms. It can be observed

from Fig. 3.14 that CACP and MS models have the same TCO, which is lower

than that with the CDN model. This is because, the CDN model does not use

demand multiplexing due to the latency minimization objective. The CACP model

reduces the TCO by almost 45% compared to the CDN model. We also noticed that

the CACP model eventually gives the same TCO as the MS model, because cost

reduction is only possible by demand multiplexing that minimizes the total number

of servers (due to a uniform electricity price). The TCO reduction of about 10%
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can be attributed to demand multiplexing as the number of data centers increases.
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Figure 3.14: Effect of demand multiplex-

ing

 30

 40

 50

 60

 70

 80

 90

 100

 110

6 8 10

N
or

m
al

iz
ed

 T
C

O

Number of Data centers

CACP-w/ ft
CACP-w/o ft

MS-w/ ft
MS-w/o ft

CDN-w/ ft
CDN-w/o ft

Figure 3.15: Cost of provisioning with

and without failure

Cost of over provisioning

To study the cost of over-provisioning for fault tolerance, we evaluated all the models

by varying the number of data centers. Fig. 3.15 shows the normalized TCO obtained

with and without fault tolerance using each model (normalized with respect to the

largest TCO across all the cases). In the plot, CACP-w/ft and CACP-w/o ft indicate

the TCO achieved using the CACP model with and without failure, respectively.

Results show that when fault tolerance is not considered, the TCO is always lower,

because fault-tolerance demands over-provisioning of servers. This increases both

CAPEX and OPEX and hence, the TCO. For the case of 6 data centers, provisioning

for fault-tolerance increases the TCO for the CACP, MS, and CDN models by 47%,

55%, and 28%, respectively. On the other hand, when the number of data centers

increases to 10, the cost of over-provisioning is 49%, 61%, and 34% for the CACP,

MS, and CDN models, respectively. We also notice that the CACP model with

failure leads to a lower TCO than the CDN model without failure across all scenarios.

This means that the CACP model provides resilience against a single data center
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failure with no additional cost compared to the CDN model.

Server models for heterogeneous workload
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Figure 3.16: Normalized TCO considering different approaches to address workload

heterogeneity

We evaluate the CACP model using each of the three models discussed in

Section 3.2.2 to understand their impact on the TCO. We set the delay bound to

300ms and used the same demand as in other cases. Fig. 3.16 shows the TCO for

different server utilization models. It can be seen that the MUX approach results in

a maximum reduction in the TCO (about 22% and 18% compared to the ME and

MAX, respectively). This is due to the fact that compute resources are effectively

utilized in this approach. The ME and MAX approach both have a drawback of

resource under-utilization (due to over-provisioning of resources). The ME approach

leads to the maximum cost because there is no scope for multiplexing demand across

servers assigned for different types of services. In the MAX approach, there is a scope

for multiplexing of servers due to the use of a single server pool.

Key Observations:

• The CACP model provisions more servers but reduces the TCO up to 35%

compared to the MS model, and up to 43% compared to the CDN model.
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• The CACP model is cost effective when the latency requirement is not stringent

and a data center does not operate at its peak utilization.

• It is possible to achieve availability against single data center failure with no

additional cost using the CACP model compared to the CDN model. Choice

of replication strategy (SR and MR) plays an important role in determining

the TCO. Particularly, the contribution of the replication cost to the TCO

is significantly high when the number of data centers increases with the MR

approach. Therefore, the MR approach is good only when the post-failure

migration penalty is high.

• The MUX approach to handle a heterogeneous workload at a data center

results in a maximum reduction in the TCO, and this is a viable approach due

to virtualization.

3.4 Conclusion

In this chapter, we addressed the problem of cost-aware capacity provisioning for

geo-distributed data centers capable of masking single data center failure. We proved

that this problem is NP-hard and proposed an MILP formulation to reduce the TCO.

The proposed model leads to a lower TCO than the MS and CDN models due to its

ability to multiplex demand considering the spatio-temporal variation in electricity

prices and the demand. We also modeled different approaches to serve heterogeneous

demand and data replication. The CACP model achieves a cost reduction of up to

34% and 50% compared to the MS and CDN models, respectively. Our model

leads to a lower cost in designing a fault-tolerant data center particularly, when the

electricity costs vary widely across the data center locations along with higher PUE

values, which appears to be the case with most of the GDCs. Our model is also

useful to study the effect of the replication cost on the TCO for planning distributed
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data centers.

In this chapter, we assumed complete failure of a data center at a site and also

that the data centers are powered by brown energy sources only. However, there

is a pressing need for renewable energy integration for greener GDCs. In the next

chapter, we consider a generalized failure model (partial and complete failure at a

site) and data centers collocated with renewable energy sources. For such GDCs,

we seek to determine the optimal server distribution that minimizes the total cost

while maximizing the usage of renewable energy.

88



Chapter 4

Capacity Planning in

Fault-tolerant GDCs Collocated

with Renewable Energy Sources

4.1 Introduction

It is reported that data centers consume about 1.3% of electricity worldwide with an

estimated growth rate of 12% per year and by 2020 this fraction is estimated to grow

upto 8% [11]. High energy consumption not only results in electricity cost but also in

increased carbon emissions. Hence, there is a pressing need for integrating renewable

energy sources for greener GDCs. As discussed in Chapter 2, multiple options exist

for integration of renewable energy sources with a data center. In this chapter,

we consider renewable energy-powered data center (or green data center), where

the renewable energy generators are collocated with a data center. We consider

wind and solar power plants, which have a great potential for use as green power

sources [11, 14].

Designing a fault-tolerant green GDC requires over-provisioning servers across
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sites, taking into account various factors like green energy availability, electricity

price variation, user demand, delay and availability requirements. Availability

requirements demand the capability of masking partial or complete data center

failures. An interesting aspect of capacity provisioning in green data centers is that

the cost of powering the servers depends heavily on the spatio-temporal variation

in the electricity price, green energy availability, and user demand (for diurnal

applications). Therefore, the operator must intelligently provision compute capacity

to maximize the green energy usage while satisfying the delay and availability

constraints. We call this problem green energy cost-aware capacity provisioning

(GCACP) problem. It may be noted that capacity provisioning problem is a variant

of facility location problem which is proved to be NP-hard.

Motivation: The work in this chapter is motivated by the following observations

from the literature.

• Even though renewable energy production is highly intermittent, it turns out

that it becomes more predictable with an increase in the number of renewable

energy sources connected to the grid across multiple locations [74]. This is due

to the effect of geographic diversity and the law of large numbers i.e., large

number of geographically distributed renewable energy sources installed makes

the availability of renewable energy more predictable with a certain degree of

accuracy [27, 28]. The work in [27] established that it is possible for GDCs

to exploit uncorrelated wind sources to satisfy 95% of energy requirement

following a wind power-aware routing policy.

• Electricity price variations: In the current de-regulated electricity market,

electricity prices vary across space and time. Recent trends show that server

operating cost is gradually exceeding the acquisition cost and it could be 1.5

times the server cost.

To the best of our knowledge there is no earlier work on capacity provisioning
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for fault-tolerant green data centers. With the pressing need to use green energy

in data center operations, it is critical to provision compute capacity taking into

account operating cost and optimal renewable energy usage simultaneously. Note

that green energy is costlier than brown energy. In order to design fault-tolerant

green GDCs, we propose an MILP model to maximize the use of renewable energy

while minimizing the total cost of spare capacity provisioning.

The rest of the chapter is organized as follows. The optimization model is

discussed in Section 4.2 and results that validate and demonstrate the impact of

proposed model on TCO are presented in Section 4.3. The chapter is concluded in

Section 4.4.

4.2 MILP Framework

In this section we discuss the proposed optimization model for GCACP problem in

data centers powered by renewable energy sources. First, we present the architecture

of a typical renewable energy powered GDC along with the assumptions used in the

model.

4.2.1 System Setup and Assumptions

The schematic of a renewable energy-powered GDC is shown in Fig. 4.1. S is the

set of data centers each housing ms number of servers (s ∈ S), and powered through

grid as well as on-site renewable energy sources (wind and/or solar). Energy storage

devices (ESDs) are used to store green energy. Besides using ESD, our model also

considers selling the surplus green energy back into the grid at utility sell back

price (this approach is called net metering) [14]. There are front-end proxy servers

associated with each client region handling a load of Lahu to map the requests to

backend data centers as shown in Fig. 4.1. Let λfahsu be the number of requests from
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Figure 4.1: Architecture of renewable energy powered GDC

client region u to data center s at hour h for application type a when data center

indexed f has failed (f ∈ {1, 2, . . . S}). In our optimization model, ms and λfahsu are

the decision variables while other parameters like Lahu , brown electricity price and

green energy availability are the input parameters.

Assumptions: The following assumptions are used for the model.

• We consider on-site renewable energy generation as several companies like

Apple and McGraw Hill, have built or announced plans to use a similar

setup [28].

• We assume fully replicated data center model where backup is taken care by

popular replication mechanism [72].

• Each data center performs optimal workload consolidation and its power

consumption is proportional to the workload being serviced in the data

center [77].

• Failure of at most single data center has been considered. Failure of more

than one data center simultaneously is unlikely since the choice of locations

guarantee that no two sites share a common resource group.
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• We assume that a data center has already been installed at a location that

has the right renewable energy potential for a profitable deployment and

provisioned with fixed generation capacity.

• We assume that it is possible to perform capacity planning based on

intermittent renewable energy supply based on the studies and results reported

in [14,27,28].

• Client demand at a location is proportional to the number of Internet users.

Propagation delay within the client region is assumed to be negligible [2].

• All servers are homogeneous in capacity and capable of serving all types of

requests (for heterogeneous applications) [64].

4.2.2 Definitions and Cost Model

In this section, we define the various parameters used in GCACP problem

formulation and also define the cost models considered in the objective function.

The notation used in this chapter is listed in Table 4.1.

Demand: Given that there is reasonably accurate information on workload across

different client regions in a time window, let Lahu denote the total demand generated

from a client region u for an application type a during the hour h ∈ T .

Delay: Let Dsu be the propagation delay between user location u and data center

location s. Let Dmax be the maximum latency allowed for a client based on the

SLA with the cloud provider. We also define a binary variable, ysu to represent the

ability of data center s to serve requests from client region u.

Mean service rate: Let the mean service rate of each server be B bps and each

application is characterized by a request generation rate and job size. To model,

change in service rate before and after failure, we assume the mean file size for an

application to vary between J0
a to J1

a . The mean service rate of application type a
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Input Symbol Description

Data

center

p Percentage of total servers failed at any data center

Mmin Minimum number of servers at any data center

Mmax Maximum number of servers at any data center

α Server acquisition cost

Client

Lahu Total number of requests generated for application a from

user location u during hour h

Dsu Propagation delay between client region u and data center s

Dmax The maximum tolerable latency

Server

Utilization

B Service rate of server in bits per second

Joa Mean file size of application a in kB

γfhs Average server utilization at data center s during hour h

and failed data center f

γmax Maximum value of γfhs to avoid waiting

Energy

θhs Electricity price per kWh at data center s at hour h

Ghs Total available green energy at data center location s during

hour h

δhs Utility sell-back price at data center s during hour h

Emax Maximum capacity of the battery

ZD Maximum energy that can be withdrawn from the battery (

during hour h)

ZC Maximum energy that can be supplied to the battery (

during hour h)

Table 4.1: Summary of notation used in the chapter

can be defined as B
Jo
a

jobs per second, where o denotes the occurrence of failure (0

without failure, 1 with failure).

Average data center utilization: We have considered that the data center failure
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at a site can be partial or complete, with p percentage of servers failing during an

event of failure and therefore the available compute capacity reduces to (1− p)ms.

Assuming that requests are first placed in a common queue, before being served by

any of the available servers, we define the average utilization, γfhs to be

γfhs =



∑
u,a λ

afh
su Jo

a

msB
∀s, h, f 6= s∑

u,a λ
afh
su J1

a

(1−p)msB
f = s, p < 1

0 f = s, p = 1

(4.1)

i.e., data center offers degraded service to the applications after the failure at a site.

Power consumption: Let Pidle be the average power drawn in idle condition and

Ppeak be the power consumed when server is running at peak utilization. Then total

power consumed at a data center location s ∈ S, at hour h ∈ H is given by [16]

P fh
s = ms(Pidle + (Es − 1)Ppeak) + ms(Ppeak − Pidle)γ

fh
s + ε, ∀s, h, f

(4.2)

where Es is the PUE of a data center at s and ε is an empirical constant.

Power model: The power from various renewable energy generators is assumed

to be known based on the meteorological data (may be obtained from [31]). Gh
s

is the actual renewable energy generated (both wind and solar energy) at a data

center s during hour h. For each data center s, hour h and failed data center f , we

denote GU fh
s as the renewable energy used, GSfhs as the renewable energy sold (net

metering) and Zfh
s as the energy supplied to the battery (when Zfh

s > 0) or that

consumed from the battery (when Zfh
s < 0). Thus, the available green energy can

be expressed as

Gh
s = GU fh

s + Zfh
s +GSfhs ∀s, h, f

We also define PBfh
s as the total brown energy drawn from utility at a data center s

during hour h and failed data center f . PBfh
s is calculated as the difference between
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the power consumed at a data center (P fh
s ) and the amount of renewable energy

used (GU fh
s ), given by

PBfh
s = P fh

s −GU fh
s ∀s, h, f (4.3)

Battery model: For each data center s, during hour h, we denote Emax as the

maximum battery capacity1, and ZD and ZC as the maximum power that can be

supplied and withdrawn, respectively. The battery level at any data center s, during

hour h, after f th data center failed is given by

Ef(h+1)
s = Efh

s + Zfh
s ∀s, h, f (4.4)

Cost models: The TCO consists of the following components:

• Server cost: Let α be the server acquisition cost. The total cost of servers

across the data centers is

Φ = α
∑
s

ms (4.5)

• Brown energy cost: To account for the spatio-temporal variation in the

electricity price, we define θhs as the electricity price at location s during hour

h of the day. We also express the cumulative brown energy cost across all data

centers throughout the time horizon as

Θ =
∑
s,h,f

θhsPB
fh
s (4.6)

• Renewable energy sell-back revenue: We denote the utility sell-back price by

δhs at a data center s during hour h. Let R be the cumulative on-site sell back

revenue generated across all the data centers throughout the time horizon,

defined as

R =
∑
s,h,f

δhsGS
fh
s (4.7)

1Energy storage devices are known to have enough capacity to power a data center at its

maximum load between 5− 30 minutes [78].

96



4.2 MILP Framework

4.2.3 Optimization Problem Formulation

Based on the cost factors and input parameters defined above, the GCACP problem

is expressed as the following MILP.

minimize Ψ = Φ + Θ +R (4.8)

subject to,

GU fh
s + Zfh

s +GSfhs = Gh
s , ∀s, h, f (4.9)

Zfh
s ≤ min{ZC , Emax − Efh

s }, ∀s, h, f (4.10)

Zfh
s ≥ −min{ZD, Efh

s }, ∀s, h, f (4.11)∑
s∈S

λafhsu = Lahu , ∀u, h, f (4.12)

2Dsu ysu ≤ Dmax, ∀s, u (4.13)

0 ≤ λafhsu ≤ ysuL
ah
u , ∀s, u, h, a, f (4.14)

γfhs ≤ γmax, ∀s, h, f (4.15)

Mmin ≤ ms ≤Mmax, ∀s (4.16)

0 ≤ Efh
s ≤ Emax, ∀s, h, f (4.17)

λafhsu = 0, ∀u, a, h, s = f (4.18)

ysu ∈ {0, 1} , ∀s, u (4.19)

Eq. (4.9) ensures that the sum of the green energy used to service workload at a

data center, energy involved in battery charge (or discharge) and the surplus energy

being sold to the grid is bounded by the available green energy. Eq. (4.10) limits

the charging rate between the maximum charging rate and remaining capacity to

be charged. Similarly, Eq. (4.11) is the constraint for the battery level. Eq. (4.12)

ensures that the demand of all client regions in every hour is met. Eq. (4.13)

ensures that the delay experienced by a client lies within the maximum delay bound.
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Eq. (4.14) ensures that all the client requests are served by the data centers within

the latency limit. Eq. (4.15) is used to limit the queuing delay at a data center, by

bounding the average server utilization at each data center to γmax ∈ (0, 1] [16]. This

constraint also ensures that in event of failure, workload assigned to a failed data

center is bounded by its available compute capacity based on utilization defined in

Eq. (4.1). Eq. (4.16) ensures that capacity limit of a data center (in terms of number

of servers) is not exceeded. Eq. (4.17) is used to ensure that battery level is always

non-negative and is limited by the capacity of the battery. Eq. (4.18) ensures that

no request is served by a failed data center

Table 4.2 summarizes the decision variables used in the proposed optimization

model.

4.3 Numerical Results

In this section, we evaluate the advantages obtained with the GCACP model under

different scenarios. The proposed MILP framework is solved using CPLEX with

Matlab on a server with Intel Xeon processor and 64 GB of RAM, running Ubuntu

14.04 (64 bit) OS. To understand the advantage of considering the operating cost

in spare capacity provisioning, we compare the cost of solutions obtained using our

model with that of the other two models (MS and CDN) as defined below.

• MS model: A rudimentary version of this model has been defined in [2]. The

main objective is to minimize the total number of servers deployed across all

the data centers.

• CDN model:In this model, the objective is to balance the load across data

centers such that average response time is minimized.

We extended both the models with the same set of constraints as GCACP model

(Eq. (4.9)-Eq. (4.19)) for fair comparison. After solving both the models to arrive
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Variable Description

ms Number of servers in data center s

λafhsu Number of requests for application type a from user

location u, served by data center s during hour h

after f th data center failed

ysu Binary variable that denotes whether client location

u lies within the latency bound of data center s

PBfh
s Brown energy required at data center s during hour

h after f th data center failed

GUfhs Green energy used at data center s during hour h

after f th data center failed

GSfhs Green energy sold at data center s during hour h

after f th data center failed

Efhs Battery level at data center s during hour h after f th

data center failed

Zfhs Energy supplied to/discharged from the battery at

data center s during hour h after f th data center

failed

Table 4.2: Decision variables of the model

at the server and load distribution, we used the same cost factors (used for GCACP

model) to calculate the TCO in each case. In the following, we present results based

on evaluation of the three models to show the advantage of GCACP model.

4.3.1 Experimental Setup

To evaluate the models we used real-world meteorological data, workload trace, and

electricity prices from utility companies.

Data center parameters: In our evaluation, we simulate a GDC composed of
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six data centers located in the US. The locations are: California, Iowa, Arizona,

Colorado, Oklahoma and Texas. Other parameters used are shown in Table 4.3.

Electricity prices at these locations at different times are taken from [21].

Parameter Value

Min. No. of Servers 200

Max. No. of Servers 50000

Pidle, Ppeak 200 W,400W

Server acquisition cost $2000 for 4 years

No. of clients 9

PUE 1.5

Max delay 50 ms

Table 4.3: Input parameters

Renewable energy availability: We used meteorological data from MIDC of

National Renewable Energy Laboratory [31] to estimate the power generated from

solar and wind energy based on hourly weather data. We used power generation

models for wind and solar energy from [59] and [79]. We assumed that there are

200 NE-3000 wind turbines and 10,000 BP-MSX 120 solar panels except for Iowa

and Oklahoma [17]. In order to account for full span of weather conditions and

workload, we took quarterly average of renewable energy available for every hour

of the day. Therefore, we have 96 time slots in our time horizon each spanning an

hour.

Demand: We used trace of traffic from Wiki dump [68] to build the workload

profile. We took quarterly average of client demand for every hour of the day.

Considering the hourly workload, we distribute demand across different client

locations proportional to the number of Internet users at each location. The peak

demand from the trace is of the order of thousand requests per second, whereas

literature suggests that data centers serve requests to the tune of million requests
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per second [4]. Therefore we have upscaled the demand by a factor of 3000. We

considered two types of applications with service rates as listed in Table 4.4 under

the assumption that server processing rate is 1.6 MBps.

Type
Pre-failure Post-failure

Reply size (KB) Service rate(Req/s) Reply size (KB) Service rate(Req/s)

I 26 61 14 113

II 15 105 15 105

Table 4.4: Application service rates

4.3.2 Results

We present the results obtained from solving the GCACP model by varying the

number of data centers, demand, latency bound, and failure percentage. The metric

used to compare the three optimization models is the TCO as defined in Eq. 4.8.

In all the plots, we show the normalized values of TCO seen with respect to the

maximum TCO across all the models for an experiment.

TCO Comparison

In this experiment, we compare the TCO for GCACP model with the existing

models. We increased the number of data centers from three to six with nine

client regions and maximum latency of 50ms. Fig. 4.2 shows the normalized TCO

for all the three models. We see that the TCO for GCACP model reduces with

increasing number of data centers due to demand multiplexing and variations in the

electricity prices and renewable energy availability. Though MS model uses demand

multiplexing to reduce the number of servers, it is not cost-aware while multiplexing

the demand and using the renewable energy. Therefore, as we see in Fig. 4.2, there is

a slight increase in the cost with increasing number of data centers with MS model.

We can observe that GCACP model achieves improvement upto 24% and 48% with
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Figure 4.3: Variation in the TCO with

latency bound

respect to MS and CDN models, respectively. We conclude that GCACP model is

advantageous when green energy availability and electricity prices vary significantly

across data centers in time, which appears to be the case in most of the real scenarios

where data centers are geographically distributed .

Impact of Latency

In this experiment, we studied the impact of maximum latency bound on the TCO.

We evaluate the models with six data centers and nine client regions. The maximum

latency was chosen between 40 and 100 ms. Fig. 4.3 shows the normalized TCO for

the three models. We notice that GCACP model achieves a reduction in the TCO of

upto 29% and 52% with respect to MS and CDN models, respectively. In our model,

we get more choice in the data centers capable of serving a client region with relaxed

latency bound, which leads to better multiplexing of resources and exploitation of

variation in the green energy prices. Although CDN model minimizes latency, its

capacity provisioning is oblivious to both demand multiplexing and operating cost.

Therefore the TCO is higher when latency requirement is not stringent. We conclude

that under relaxed latency constraints GCACP model is more advantageous.
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Impact of Demand

To understand the impact of increase in demand on TCO, we evaluate all the models

for 6 data centers with varying demand (kx which is multiple of baseline demand x,

where k ∈ {0.5, 1, 1.5, 2, 2.5}). From Fig. 4.4 it can be observed that with an increase

in demand, TCO increases for all the models which is quite intuitive. Fig. 4.5 depicts

the percentage reduction in the TCO for GCACP model with respect to the other

models. It can be seen that with an increase in demand, the TCO decreases by 31%

to 20% with respect to MS model, and by 62% to 38% with respect to the CDN

model. This is mainly due to the fact that increasing the demand saturates data

centers located in regions with cheaper electricity prices. The excess demand is then

served from data centers in regions with higher electricity prices. We can conclude

that GCACP model is advantageous when all the data centers do not operate at

peak utilization.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 1.5 2 2.5

N
or

m
al

iz
ed

 T
C

O

Demand (x the actual demand)

GCACP MS CDN

Figure 4.4: Variation in the TCO with

demand

 0

 20

 40

 60

0.5 1 1.5 2 2.5

%
 re

du
ct

io
n 

in
 T

C
O

Demand (x the actual demand)

MS CDN

Figure 4.5: Percentage reduction in

TCO with GCACP by varying demand

Impact of failure percentage

We evaluated the optimization models on six data centers with maximum latency

of 50ms. We varied the fraction of servers failing at a data center and Fig. 4.6

shows the TCO with GCACP model. We notice that with increased failure rate,
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Figure 4.6: Variation in the TCO as the fraction of failed servers changes

the TCO increases due to the fact that more compute servers are required to mask

failure. However, we can see that even if a data center fails completely, GCACP

solution gives about 19% and 46% lower cost with respect to MS and CDN models,

respectively. We conclude that with partial failure, GCACP model is advantageous

because of lower spare capacity requirement and lower brown energy consumption

(since the available renewable energy is constant).

4.4 Conclusion

We investigated the problem of capacity planning for fault-tolerant data centers

powered by renewable energy sources. We designed an optimization model to

provision the spare capacity and allocate requests with least TCO. We used real-

world data to compare the proposed GCACP model against the baseline models

considering various scenarios. We conclude that the GCACP model achieves cost

reduction of upto 24% and 48% with respect to MS and CDN models, respectively.

We also conclude that the GCACP model is beneficial for designing green data

centers, when the available green energy and the electricity prices vary widely, and

the utilization of data center is not near its peak.

In this chapter we assumed that renewable energy sources are collocated with
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data centers. In the next chapter, other ways of greening data center are also

considered. Considering the fact that the data center operators try to gradually

increase their renewable energy usage, we model the problem of spare capacity

provisioning to satisfy a target green energy usage at a minimal cost, when the

data center is powered by a combination of brown and green energy sources.
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Chapter 5

Optimizing Energy Cost in

Fault-tolerant GDCs Satisfying

Green Energy Bound

5.1 Introduction

Owing to huge installation cost associated with renewable energy sources, major

operators set a target of partial renewable energy integration every year [29]. For

example, Facebook targeted being 25% powered by green energy by the end of

2015 [30]. Many GDC operators start with partial renewable energy bound i.e.,

the green energy used should be at least some fraction of the total power demand.

We call this green energy bound in this thesis. Therefore, for cost-aware capacity

provisioning, we consider both green energy cost and brown energy cost, while

satisfying green energy bound along with the other constraints. In this chapter,

we consider the cost of green energy procurement while optimizing the operating

cost for the GDCs powered by both brown and multiple renewable energy sources.

We address the problem of capacity provisioning while forcing the green energy

107



5.2 Optimization Model

usage which is essential for sustainable green data center design [11]. We consider a

generalized failure model that can accommodate both partial and complete failures.

It is mostly observed that the frequency of partial data center failure is very high,

while complete data center failure is rare (may be once in two years) [80].

Our work is the first one to consider the real-time price of electricity (while

enforcing a minimum green energy usage), to design cost-efficient fault-tolerant

GDC. We provision spare capacity across the data centers so that the demand is

met even after the failure at a data center site (either partial or complete), while

minimizing the TCO. We consider both green and brown energy cost in minimizing

the operational cost. We model the problem using MILP, where the main constraints

include: green energy usage bound, latency bound, and the failure probability at a

site (partial or complete). Solving our model gives the optimal server distribution

across the sites and the demand distribution that minimizes the TCO.

The rest of the chapter is organized as follows. Section 5.2 discusses the

optimization model. Section 5.3 presents the numerical results that demonstrate the

impact of green energy cost on the TCO. The chapter is concluded in Section 5.4.

5.2 Optimization Model

In this section, we formulate the green energy cost-aware, capacity provisioning

problem (termed GACED) for fault-tolerant GDCs as a constrained optimization

problem. Before that, we discuss the architecture of the data center powered

by different renewable energy sources considered in our work, followed by the

assumptions and input parameters used.

We considered a GDC powered by multiple renewable energy sources as

illustrated in Fig. 5.1. There are |S| data centers housing ms number of servers

(we use the index s for data center). To achieve carbon footprint and energy cost

reduction, each data center is integrated with multiple green energy sources such as,
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on-site renewable generator (wind and/or solar), off-site renewable generator, PPA,

and utility power transmitted through grid. ESD is used to store surplus green

energy. There are front-end proxy servers collocated with each client region, which

map the requests to multiple data centers as shown in Fig. 5.1. Lahu denotes the

demand generated per hour (h) from each client region u, corresponding to each

application type a. λhsu denotes the number of requests mapped from client region u

to data center s at hour h for application type a. In this model, ms and λhsu are the

decision variables while other parameters like Lhu, brown electricity price and green

energy availability are the input parameters.

5.2.1 System Architecture

The following assumptions are used in the model.

• Each data center consolidates the workload to keep the power consumption

proportional to the workload served.

• Service time (including queuing delay) is same for all the data centers and the

latency is due to the propagation delay.

• The requests are placed in a single queue to be served by any server.
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Figure 5.1: Architecture of the GDC powered by multiple green energy sources
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• Only one data center can completely or partially fail at any point in time [2].

Failure of more than one data center at the same time is avoided by the choice

of locations.

5.2.2 System Model

Demand: Let S be the set of data centers housing ms number of servers. Let Lahu

denote the demand from a client region u during hour h for application type a. Let

λafhsu denote the number of requests mapped from client region u to data center s

(s ∈ S), at hour h for an application type a. Here f = 0 indicates the case of no

data center failure and f ∈ 1, 2, . . . , |S| indicates the failure of f th data center.

Heterogeneous workload: Since we assume that a data center can serve different

types of workload, we explicitly considered the heterogeneity while calculating the

server utilization. Let the processing rate of the server be B bps and the mean job

size be Ja for application type a. The effective service rate is B
Ja

. We define the

average utilization as

γfhs =

∑
u,a λ

afh
su Ja

msB
(5.1)

Failure model: Let p be the fraction of servers failing at any given site. The

processing rate of a failed data center reduces to (1 − p)msB. The data center

utilization after the failure can be expressed as

γfhs =



Eq.(5.1) ∀f 6= s

∑
u,a λ

afh
su Ja

(1−p)msB
f = s, p < 1

0 f = s, p = 1

(5.2)

Delay: Let Dsu be the propagation delay between the data center s and the client

region u. We define a target delay of Dmax for all types of workloads (with different

processing rate), when no data center has failed and Df
max (Df

max ≥ Dmax) for the
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case of a data center failure. We use a binary variable, yfsu to indicate the ability

of data center s to serve the requests from client region u when data center f has

failed.

Power consumption: Let Pidle be the average power drawn in idle condition and

Ppeak be the power consumed when server is running at peak utilization. The total

power consumed by s ∈ S, at hour h ∈ H is modeled as [16]

P fh
s = ms(Pidle + (Es − 1)Ppeak) + ms(Ppeak − Pidle)γ

fh
s + ε, (5.3)

where Es is the PUE of a data center at s and ε is an empirical constant.

Modeling brown energy usage: Let θhs be the price of brown energy at a data

center s during hour h and δhsi be the price of green energy of type i, i ∈ {1, 2, 3, 4, 5}

corresponding to onsite wind, offsite wind, onsite solar, offsite solar and PPA,

respectively. Let PBfh
s denote the amount of brown energy drawn at hour h and

∆fh
si denotes the amount of renewable energy drawn from source i. Since the brown

energy is used only after exhausting the green energy available, the brown energy

drawn from the grid is given by

PBfh
s = P fh

s −
∑
i

∆fh
si ∀s, h, f (5.4)

5.2.3 Cost Model

Next, we define the cost components used in the objective function of the MILP

formulation.

• Server cost: Let α be the cost of acquiring a server. The total cost of the

servers in all the data centers is

Φ = α
∑
s

ms (5.5)
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• Brown energy cost: The cost of brown energy consumed across all the

data centers is given by

Θ =
∑
s,h,f

θhsPB
fh
s (5.6)

• Renewable energy cost: The total cost incurred in using renewable energy

across all the data centers is given by

R =
∑
s,h,f

δhsi∆
fh
si (5.7)

MILP model: The objective for capacity provisioning in fault-tolerant green

GDC is to minimize the TCO, denoted by z, which is simply the sum of all the

aforementioned costs while satisfying constraints on delay, green energy usage and

availability. Formally, the problem is expressed as

minimize z = Φ + Θ +R; (5.8)

subject to ∑
s,i,h

∆fh
si ≥ ρP fh

s , ∀f (5.9)

∑
s

λafhsu = Lahu , ∀u, a, h, f (5.10)

2Dsu y
f
su ≤ Dmax, ∀s, u, f = 0 (5.11)

2Dsu y
f
su ≤ Df

max, ∀s, u, f ≥ 1 (5.12)

0 ≤ λafhsu ≤ yfsuL
ah
u , ∀s, u, a, h, f (5.13)

γfhs ≤ γmax, ∀s, h, f (5.14)

Mmin ≤ ms ≤Mmax, ∀s (5.15)

λafhsu = 0, ∀u, a, h, s = f (5.16)

yfsu ∈ {0, 1} , ∀s, u, f (5.17)
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Among the constraints, Eq. (5.9) ensures that the power from green energy sources

is at least ρ percentage of the total power demand. Eq. (5.10) makes sure that the

demand during every hour is met. Eq. (5.11), (5.12), and (5.13) ensure that all types

of workload are served within the latency bound (before and after failure). Eq. (5.14)

is used to limit the queuing delay by bounding the average server utilization to

γmax ∈ (0, 1]. It also ensures that workload assigned to a failed data center is

bounded by its capacity. Eq. (5.15) ensures that capacity limit of a data center (in

terms of number of servers) is not exceeded. Eq. (5.16) ensures that no request is

served by a failed data center.

The decision variables in the MILP are: ms, the number of servers in a data

center s, λafhsu , the number of requests from client region u mapped to data center s

at hour h for workload type a, and ∆fh
si , the renewable energy drawn from source i.

5.3 Numerical Results

The proposed MILP model (termed GACED) is solved centrally using CPLEX and

MATLAB tools on a Linux server with Intel Xeon processor and 64 GB of RAM.

Since spare capacity provisioning in data centers is a one-time effort at the time of

design, the running time is not a matter of concern. We obtained the meteorological

data for three locations: Texas, Illinois, and California from [31]. The server

processing rate is set to 1.6 MBps. Two types of workload are considered with

the mean job size 13KB and 26KB, and the service rate of 120 and 60 requests/sec.

Dmax and Df
max are set to 40 ms and 80 ms, respectively. PPA price for TX,

CA, IL is taken as 8, 8, 4 cents/kWh, respectively. All the other parameters

are same as those mentioned in 3.3.1. The client demand was generated from

traces of Wikipedia [68]. We chose nine regions of USA: Illinois, Tennessee, New

York, Arizona, Massachusetts, California, Florida, Missouri, and Louisiana. The

demand at each location was proportional to the number of Internet users [67].
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Table 5.1 reports on-site and off-site renewable energy sources at each location with

the corresponding average capacity factor (CF), defined as the ratio of the actual

power output to the maximum rated capacity.

Source Location Avg CF(%)

Onsite

Wind California 27

Wind Illinois 32

Wind Texas 33.6

Solar California 22.8

Solar Texas 23.46

Offsite

Wind Arizona 30

Wind Colorado 43

Wind Iowa 34

Solar Arizona 27.74

Solar Colorado 24.61

Table 5.1: Capacity factor for various green energy sources

We used the models from NREL [79] and [59] for solar and wind energy

generation, respectively. Based on the meteorological data from NREL [31], we

calculated the total power generated. At each site, we considered 20 wind turbines of

capacity 1.5MW, each and 10,000 solar panels of 120W, each. The cost of generating

wind and solar power is obtained by taking the installation cost of 1630$/kW and

3100$/kW, and life time of 20 yrs and 25 yrs, respectively [14]. We took quarterly

average of client demand and renewable energy generated for every hour of the day.

The brown electricity price at different locations is taken from US energy information

administration website [21].
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5.3.1 TCO Comparison

To show the TCO reduction with our model, we designed a baseline model (termed

CED-B) that minimizes the TCO when the data centers are powered only with

brown energy keeping the other constraints same. For a full-site failure scenario,

Fig. 5.2 shows the percentage gain in the TCO using GACED model compared to

the CED-B model. Even after failure, the gain is 2% with the green energy usage

of 20%. The gain reduces with increase in green energy usage because, our model

increases the amount of (expensive) green energy purchased to satisfy the constraint.

On the other hand, CED-B model has no cost from green energy usage. With the

GACED model, greening can be achieved with very little or no extra cost unless we

target high renewable energy usage.
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Figure 5.2: Impact of varying green energy usage on the TCO of GACED model

5.3.2 Impact of Failure Percentage

In this experiment we studied the impact of varying the failure percentage on the

TCO while green usage bound is satisfied. Fig. 5.3 compares the TCO for the two

models while forcing 40% green energy usage. We see that the TCO is almost similar

for both the models due to the fact that, the GACED model optimally uses cheaper

renewable energy to reduce the TCO. Fig. 5.4 illustrates the offsite wind energy

usage in the GACED model and its corresponding price at the Texas data center.
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usage

When the wind energy is cheaper, GACED uses more of it to maintain the same

TCO (as with CED-B), albeit with reduced carbon footprint. Due to intelligent

usage of green energy, GACED meets the target renewable energy usage of 40% at

all times. We conclude that the GACED model can lead to greener data center

deployment with no or little additional cost (though green energy procurement is

costlier).

5.3.3 Impact of Demand

To understand the impact of increase in demand on TCO, we evaluate the models for

6 data centers with varying demand. The demand is varied as a multiple of baseline

demand. The multiplicative factor is varied between 1 and 5. Fig. 5.5 shows the

impact of increase in demand on the TCO and green energy procurement decision.

We set green energy usage and failure percentage to 40% and 20%, respectively. As

demand increases, the TCO for both the models increases due to obvious reasons.

However, TCO with GACED model increases with the demand due to the green

energy usage constraint. We note that, even with five-fold increase in the demand

(with a cost of almost 30 cents/kW for wind energy at Texas), it is possible to meet

the 40% green energy usage constraint with a meagre 4% increase in the TCO.
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Figure 5.5: Impact of demand variation on the TCO of GACED model

5.3.4 Impact of Latency

In this experiment we studied the impact of relaxing the latency bound on the

TCO. Fig. 5.6 shows the impact of relaxing latency requirement on the TCO. Df
max

is set to twice Dmax. We notice that both the models reduce the TCO for relaxed

latency bound, since there is more choice in selecting the data center to serve the

requests. However, GACED model lowers the TCO by considering locations powered

by cheaper green energy.
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Figure 5.6: Impact of latency relaxation on the TCO of GACED model

117



5.3 Numerical Results

5.3.5 Sensitivity Analysis

We quantitatively evaluate the impact of uncertainty in the renewable energy

availability on the performance of GACED model. For the case of complete data

center failure and 40 % green energy usage requirement, the capacity factor was

varied between −40% and 40%. Fig. 5.7 shows the percentage gain in the TCO

with GACED model (compared to the CED-B model). Since, the cost of renewable

energy decreases with increasing capacity factor [14], the GACED model has lower

TCO compared to the CED-B model (by about 4%). This is because it efficiently

exploits cheaper green energy.

We also conducted another experiment here to demonstrate that, if the fore-

casted green energy availability is inaccurate, we can work with 20% green energy

usage requirement, where GACED model has only 3% higher TCO. To do this, we

vary the capacity factor by −40% and the result is shown in Fig. 5.8.

The cost of generating renewable energy tends to reduce with time due to

the technological improvements in the equipment efficiency and the increasing

deployment. Harnessing green energy depends upon the cost and efficiency of

technology, which is constantly improving thereby reducing the cost. In order to

understand the impact of long term prediction of green energy cost on both models,
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Figure 5.7: Gain in TCO for GACED and CED-B models varying CF
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model) with varying CF and 20% green energy usage

we optimistically assume an yearly reduction of 10% in green energy cost [47].

Therefore, after 10 years the cost will effectively decrease by 65 %. Considering this

reduction in the price after 10 years, we evaluate both the models by varying green

energy bound and assuming complete data center failure. Fig. 5.9 shows the gain in

the TCO with GACED model (compared to CED-B model) with increasing green

energy usage. We notice that the reduction in the TCO with GACED model will

be atleast 10 % even if 80% of the power used is from green energy sources. Hence,

our model is sustainable and economically viable with improvement in technology

and capacity factor (reduction in the price of renewable energy).

5.4 Conclusion

We used MILP to formulate the cost-aware capacity provisioning problem for fault-

tolerant data centers ensuring a minimum green energy usage (GACED model).

The proposed model outperforms the baseline model (CED-B) which minimizes the

TCO considering only brown energy. Results demonstrate that even with renewable

energy integration, the TCO can be lowered with GACED model, despite green

energy being costlier. Even forcing a green energy usage of upto 80% leads to
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Figure 5.9: Percentage gain in the TCO with GACED compared to CED-B

considering reduced cost of green energy after 10 years

an additional cost of only 15% compared to the CED-B model. The proposed

model optimally schedules demand considering the availability of green energy and

its price variation to minimize the TCO. We conclude that with an appropriate

model, green energy integration lowers the cost of designing fault-tolerant GDCs

with reduced carbon footprint. Our model would be further beneficial with an

improvement in technology leading to larger capacity factor (lower renewable energy

cost). Therefore, we expect that our work can help data center operators make

informed decision about capacity planning in presence of green energy usage target

and variation in the electricity prices, demand, and failure rate. In the next chapters,

we address the problem of distributed load balancing in fault-tolerant GDCs which

have already been provisioned with spare capacity to counter failures. We formulate

the load balancing problem with an objective of minimizing the operating cost while

ensuring that the latency constraints are met.
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Chapter 6

Game-theoretic Model for Load

Balancing in Fault-tolerant GDCs

6.1 Introduction

As discussed earlier, the operational cost of a data center is influenced by factors such

as electricity prices, server/data center failure, green energy availability, and client

demand. Therefore, geographical load balancing is challenging as the policy must

consider the spatio-temporal variation in these factors to minimize the operating

cost. Most of the literature on load balancing in GDCs considered minimizing the

operating cost, which is profitable for the operators, but has ignored the users’

perspective [4, 32]. Users consuming the same resources may pay the same price,

but experience variable delays. From a business perspective, ensuring fairness in

service latency across the requests from different clients is also important. The load

balancing algorithms in the literature designed to provide fairness, did not consider

the operating cost. Therefore, we consider the linear combination of operating cost

(or energy cost) and revenue loss due to latency (including the network and queuing

delays) as the objective function.
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6.1 Introduction

In a GDC, the user requests are served by the front-end proxy servers

independent of each other. Each proxy server prefers to get its requests served by the

data center first to minimize the service delay. In order to model this selfish nature in

distributed load balancing, we use the non-cooperative game theory approach. Load

balancing and resource management in distributed systems have been addressed

using non-cooperative game theory in earlier works like [81] and [82]. The work

in [81] addressed the problem of load balancing in a system consisting of n computers

(or nodes) shared by m clients (classes). They proposed a distributed algorithm for

load balancing using non-cooperative game theory. The work in [81] also considered

that the jobs submitted to a heavily-loaded computer are transferred to other lightly-

loaded computers. Their objective function included communication delay along

with the computational delay. In their model, a player has a selfish interest of

optimizing his/her own expected response time. The problem is formulated as a

non-cooperative game among the users, who try to minimize the expected response

time of their own jobs.

We propose a game-theoretic distributed load balancing algorithm, that is

executed across a finite number of front-end proxy servers. The objective of the

game is to minimize the sum of the operating cost and the revenue loss due to

delayed service. The proposed approach reduces the cost compared to an earlier

approach [59] that only minimizes the operating cost. In summary, the main

contributions of this work are as follows.

• For the first time, we model the load balancing in GDCs as a non-cooperative

game among the front-end proxies. We consider the spatio-temporal variation

in the electricity price, the offered load, and the availability in the model.

We prove that the Nash equilibrium is the solution of this game, which is

guaranteed to exist since the proposed objective function is continuous, convex

and increasing [34, 35]. We characterize the Nash equilibrium and propose a
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distributed algorithm for computing the same.

• We evaluate the performance of the non-cooperative game theoretic algorithm

(abbreviated as NCG) along with the existing ones, such as the proportional

scheme and the global optimal scheme, using real-world data. The proposed

NCG algorithm shows better fairness (in service latency) at a comparable cost.

The rest of this chapter is organized as follows. In Section 6.2 we present

the architecture and the cost model used in the formulation. We present the non-

cooperative game model and derive the structure of Nash equilibrium in Section 6.3.

A distributed algorithm to solve the game and its analysis are given in Section 6.4.

In Section 6.5, we present numerical results that compare the performance of our

algorithm against the optimal approach. Section 6.6 concludes the chapter.

6.2 System Model
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Figure 6.1: Illustration of the architecture of GDC used in the model

Fig. 6.1 shows the architecture of the GDC used in our model. It shows a set

of n data centers denoted by S and a set of m front-end proxy servers denoted by
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U . For simplicity, we consider the client regions to be co-located with the front-end

proxy servers. Each data center houses ms number of servers and is modeled as an

M/M/1 queueing system. It is characterized by an expected (or average) processing

rate µs = msµ, where µ is the processing rate of each server, s = 1, ...n. The

arrival rate of demand from each client region is represented by Lu, u = 1, ...m. A

front-end proxy server maps the client requests to multiple data centers, where λsu

is the portion of the demand mapped from a client region u to a data center s. The

utilization of a data center, denoted by η, is defined as

η =
∑
u

λsu/µs ms (6.1)

The following conditions need to be satisfied.

• To ensure that all the requests are served,∑
s

λsu = Lu ∀u (6.2)

• Since the number of requests served cannot be negative,

λsu ≥ 0 ∀s, u (6.3)

• To ensure the stability of the system,∑
u

λsu < µs ∀s (6.4)

Power consumption cost: As reported in [83], the power consumption of a server

varies linearly with the load. Let Pidle be the average power drawn by the server

in idle condition, Ppeak be the power consumed at the peak utilization, and Es be

the PUE of a data center s. The data center power consumption includes three

components: the power consumed by idle servers, given by ms(Pidle); the power

consumed by the servers operating at a utilization η, given by ms(Ppeak − Pidle)η;
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and the power consumed by the cooling and auxiliary equipment, given by (ms(Es −

1)Ppeak). Therefore, the total power consumed at a data center location s ∈ S can

be expressed as [16],

Ps = ms(Pidle + (Es − 1)Ppeak) +
∑
u

λsums(Ppeak − Pidle)/µsms (6.5)

Eq. (6.5) can also be expressed as an affine function of the total workload at a data

center as

Ps =

(Ppeak − Pidle)
∑
u

λsu

µs
+ ε′ (6.6)

where ε′ = ms(Pidle + (Es − 1)Ppeak).

Due to the recent advances in hardware, DVFS scaling, and processor

scheduling, it is possible to keep the power consumption proportional to the

utilization [84]. Due to efficient cooling systems, PUE has also been significantly

lowered [85]. The state-of-the-art average PUE could be as low as 1.02 [86]. When

PUE is close to unity and Pidle is very low compared to Ppeak [87], ε′ is very low

compared to the actual power consumed. Therefore, we assume ε′ = 0 [8,36].

This assumption makes Eq. (6.6) to be linear in terms of the load. Thus, we

can easily determine the power consumed to serve the requests λsu from a client

region u at a data center s as

Psu =
(Ppeak − Pidle)λsu

µs
(6.7)

Given the load λsu and a unit electricity price ρs, the cost incurred due to the

power consumed at a data center (also termed the operating cost in this chapter),

is given by

Θsu = ρs
(Ppeak − Pidle)

µs
λsu (6.8)

Θsu = θsλsu (6.9)

where θs = ρ
(Ppeak−Pidle)

µs
is constant.
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6.3 Load Balancing as a Non-cooperative Game

Delay cost: Let dsu be the propagation delay between the data center s and a

client region u. We assume an M/M/1 model for the queue at the proxy, so that the

expected average queuing delay at a data center s for a request from a client region

u is given by

Dsu =
1

µs −
∑

u λsu
(6.10)

Therefore, the total delay incurred by a request, δsu is given by

δsu = dsu +Dsu (6.11)

Since we assumed Web workload, the transmission delay is neglected. We use a

linear model for the loss in revenue due to the delay incurred [62]. The cost incurred

due to the delay experienced by a request λsu of client region u at a data center s,

denoted by ∆su is given by

∆su = βλsuδsu (6.12)

= βλsu(Dsu + dsu)

= β(
λsu

µs −
∑

u λsu
+ dsuλsu) (6.13)

where β is a constant.

6.3 Load Balancing as a Non-cooperative Game

In this section, we model the load balancing problem as a non-cooperative game.

In a non-cooperative game there could be finite (or infinite) number of players

who try to minimize/maximize their objective independently, but eventually reach

an equilibrium. For a finite number of players, this equilibrium is called Nash

equilibrium, whereas for infinite number of players this equilibrium is called Wardrop

equilibrium [34].

In distributed load balancing, the problem at hand for each front-end proxy

server is to determine λsu, which we model as a non-cooperative game among the
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6.3 Load Balancing as a Non-cooperative Game

front-end proxies. We define the vector λu = (λ1u, λ2u, ..., λnu) as the load balancing

strategy of a user u, u = 1, 2, ...,m and the vector λ = (λ1, λ2, ..., λm) as the load

balancing strategy profile of the entire system.

Objective function: The objective function we use has two components, the power

consumption cost defined in Eq. 6.9 and the delay cost defined in Eq. 6.13. Let Ψu

denote the expected cost incurred for a client region (CIC). We define the objective

function for a front-end proxy serving a client region u as

Ψu(λ) =
n∑
s=1

(Θsu + ∆su) (6.14)

Ψu(λ) =
n∑
s=1

(
θsλsu + βλsu(

1

µs −
∑

i λsi
+ dsu)

)
(6.15)

The goal of a front-end proxy at u is to find a feasible load balancing strategy λu

such that Ψu(λ) is minimized. The strategy of u depends on the strategies of other

front-end proxies as Ψu is a function of λ.

Definition 6.1. Feasible strategy profile is a strategy λ that satisfies the following

1. Positivity: λsu ≥ 0, ∀s, u;

2. Conservation:
∑

s λsu = Lu ∀u;

3. Stability:
∑

u λsu < µs ∀s;

Definition 6.2. The non-cooperative load balancing game is a game played among

a set of players. Each player has a set of strategies and an associated cost with each

strategy. The game in our scenario is a normal form game with continuous objective

function and can be described as follows.

• Players: A finite set of players m denoted as U, U = {1, 2, . . . ,m}

• Strategy sets: Strategy sets: λu = λ1u, . . . , λsu, . . . , λnu where,

λsu ∈ [0, Lu] ∀u ∈ {1, 2, . . . ,m}, ∀s ∈ {1, 2, . . . , n}, s.t.
∑

s λsu = Lu ∀u

127



6.3 Load Balancing as a Non-cooperative Game

• Cost: The cost of a player u is represented by Ψu. Each player wants to

minimize the cost.

Claim 1. We can get an upper bound on the objective function in Eq. 6.15, denoted

by UBnd(Ψu).

Proof: From Eq. 6.15 we have

Ψu(λ) =
n∑
s=1

(
θsλsu + βλsu(

1

µs −
∑

i λsi
+ dsu)

)
(6.16)

Ψu(λ) =
n∑
s=1

θsλsu + β
n∑
s=1

λsu(
1

µs −
∑

i λsi
) + β

n∑
s=1

λsudsu (6.17)

Note that, according to Eq. 6.2 we have
∑

s λsu = Lu.

Therefore, all three terms of Eq. 6.17 can be expressed as

n∑
s=1

θsλsu = Lu

n∑
s=1

θs (6.18)

β
n∑
s=1

λsu(
1

µs −
∑

i λsi
) = βLu

n∑
s=1

(
1

µs −
∑

i λsi
) (6.19)

β
n∑
s=1

λsudsu = βLu

n∑
s=1

dsu (6.20)

A lower bound of the objective function is zero because all terms are non-negative

in the Eq. 6.15. We can get an upper bound of the objective function by noting the

sum of the three terms above is less than Lu[
∑n

s=1 θs +β+β
∑n

s=1 dsu]. Each of the

variables Lu,θs,dsu has an upper bound, which can be used to get an upper bound

UBnd(Ψu) for the objective function.

Typically, the payoff or cost function used in normal form game is maximiza-

tion. Even though in our game we are minimizing the cost function, we can transform

the minimization objective into maximization as discussed further.

Claim 2: It can be shown that the proposed game is equivalent to a game where the

objective function is maximized.
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6.3 Load Balancing as a Non-cooperative Game

Proof. We note that minimizing Ψu is equivalent to maximizing UBnd(Ψu) − Ψu.

Thus, our game definition with this objective is in normal form as the players max-

imize the objective function: Φ = UBnd(Ψu)−Ψu [88].

In order to obtain the load balancing strategy for the GDC, the above game

has to be solved. The Nash equilibrium is the most commonly used solution for such

games.

Definition 6.3. Nash equilibrium of the above mentioned load balancing game is a

load balancing strategy λ such that, for every front-end proxy u

λu ∈ arg min
λu

Ψu(λ1, ..,λu, ..,λm) (6.21)

A strategy λ is a Nash equilibrium if no player can gain by changing its

current strategy to another feasible one. In our load balancing game, the Nash

equilibrium has the property that no player can decrease the total cost incurred

by choosing a different load balancing strategy λu given the other players’ load

balancing strategies. The Nash equilibrium exists for our game because Ψu is

continuous, convex and increasing. At the Nash equilibrium, the strategy profile

is such that every player’s load balancing strategy is a best reply given the other

players’ strategies. This best reply for a player provides a minimum cost for that

player’s demand given the other players’ strategies. Thus, we first determine the

best reply strategy λu for every player u and then we determine λ = (λ1,λ2, ..,λm).

Let µus = µs −
∑m

k=1,k 6=u λsk be the available processing rate at a data center s as

perceived by front-end proxy u. Hence, the problem of determining the best reply

strategy reduces to finding the optimal job distribution for a system with one front-

end proxy u ( ∀u ∈ U), n GDCs with rates µus , ( ∀s ∈ S). We can now express the

above problem in the following optimization model, denoted by Best-replyu.

min
λu

Ψu(λ) (6.22)
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6.3 Load Balancing as a Non-cooperative Game

subject to the following constraints.

λsu ≥ 0, ∀s ∈ S (6.23)

n∑
s=1

λsu = Lu (6.24)

m∑
u=1

λsu < µs, ∀s ∈ S (6.25)

The decision variables involved in this optimization problem are λu = (λ1u, λ2u, .., λnu),

as the strategies of other players are assumed to be fixed. As our optimization frame-

work has the objective of minimizing the CIC, we sort the data centers in ascending

order of Cs, where Cs is defined as

Cs = θs + βdsu (6.26)

The following theorem defines the best reply strategy of player u i.e., the solution

to the Best-replyu.

Theorem 6.1. Assuming that data centers are sorted based on Cs, the solution λu

for Best-replyu is given by

λsu =

µ
u
s −

√
βµus
α−Cs

if 1 ≤ s < qu

0 if qu ≤ s ≤ n

(6.27)

where qu is the smallest integer satisfying

qu∑
i=1

√
βµus
α− Ci

≤
qu∑
i=1

µui − Lu (6.28)

The above constraint ensures that the demand is served from a cheaper data center

first and the expensive one is used only when all the cheaper data centers are full.

α is a Lagrangian multiplier whose value is given by

α = θqu + β(
1

µuqu
+ dsu) (6.29)
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Proof.

Feasibility: Of the three constraints of the optimization framework, we observe

that stability (Eq. 6.25) is always satisfied by the Nash equilibrium solution because

of Eq. (6.21) and the fact that total compute capacity of data center is greater than

the cumulative client demand. Hence, we need to consider, Eq. (6.23) and Eq. (6.24)

as the constraints for our optimization framework.

We first prove that Ψu(λ) is a convex function in λu and that the feasible

solution set formed by Eq. (6.24) and Eq. (6.23) is convex.

It can be easily shown from Eq. (6.15) that ∂Ψu(λ)
∂λsu

> 0 and ∂2Ψu(λ)
∂(λsu)2

> 0 for

s = 1, 2, .., n. Hence the Hessian of Ψu(λ) is positive implying that Ψu(λ) is a

convex function of λu. All the constraints are linear and hence they define a convex

polyhedron.

Hence Best-replyu is an optimization problem with a goal of minimizing a

convex function over a convex feasible region. The first order KKT conditions are

necessary and sufficient conditions for optimality.

Let α > 0, κs > 0, s = 1, 2, .., n denote the Lagrangian multipliers. The

Lagrangian is given by

L(λ1u, λ2u, .., λnu, α, κ1, κ2, .., κn)

=
n∑
s=1

(
θsλsu + βλsu(

1

µus − λsu
+ dsu)

)
− α

( n∑
s=1

λsu − Lu
)
−

n∑
s=1

κsλsu (6.30)

The KKT conditions imply that λsu, s = 1, 2, ..n is the optimal solution to

Best-replyu if and only if there exists α > 0, κs > 0, s = 1, 2, ..n such that,

∂L

∂λsu
= 0, (6.31)

∂L

∂α
= 0, (6.32)

κsλsu = 0, κs > 0, λsu > 0, s = 1, 2, .., n (6.33)
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Solving Eq.(6.31),Eq.(6.32) and Eq.(6.33), we get

θs + β
( µus

(µus − λsu)2
+ dsu

)
− α− κs = 0 (6.34)

n∑
s=1

λsu = Lu (6.35)

κsλsu = 0, κs > 0, λsu > 0, s = 1, 2, .., n (6.36)

These are equivalent to

α = θs + β
( µus

(µus − λsu)2
+ dsu

)
, if λsu > 0, 1 6 s 6 n (6.37)

α 6 θs + β
( µus

(µus − λsu)2
+ dsu

)
, if λsu = 0, 1 6 s 6 n (6.38)

n∑
s=1

λsu = Lu, λsu > 0, 1 6 s 6 n (6.39)

From Eq.(6.37), we get the value of λsu as

λsu = µus −

√
βµus

α− θs − βdsu
if λsu > 0, 1 6 s 6 n (6.40)

Claim.Since our objective is to minimize the CIC, we sort the data centers based

on the cost factor (Cs = θs + βdsu), i.e., C1 6 C2 6 .. 6 Cn. Under the

given assumption on ordering of data centers, we have the following order on load

fraction:λ1u 6 λ2u 6 ..,6 λnu. This implies that there may be a case in which no

load has been assigned to a costlier data center while there it can be handled with a

cheaper one. This mean that there exist an index qu, 1 6 qu 6 n such that

λsu > 0, s = 1, .., qu − 1 (6.41)

λsu = 0, s = qu, .., n (6.42)
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The Lagrangian multiplier α has to be chosen suitably to satisfy the conservation

constraint Eq (6.24). Using Eq. (6.40) and Eq. (6.24), we get

qu−1∑
i=1

√
βµus

α− θs − βdsu
=

qu−1∑
i=1

µui − Lu (6.43)

Using Eq. (6.26) the above equation becomes

qu−1∑
i=1

√
βµus
α− Ci

=

qu−1∑
i=1

µui − Lu (6.44)

where qu is the minimum index which satisfies

qu∑
i=1

√
βµus
α− Ci

6
qu∑
i=1

µui − Lu (6.45)

From the above discussion, we know that one or more λsu is positive, due to

Eq. (6.23). Hence at the optimal qu, we have λquu = 0. Using this in Eq. (6.40)

gives

α = θqu + β(
1

µuqu
+ dsu) (6.46)

Based on the above theorem, we formulate Algorithm 1 for determining the

best reply for a proxy u. Algorithm 1 provides the steps to find Best-replyu. In Step

1, we sort the data centers based on the cost factor Eq. (6.26). Our aim is to assign

greater load to cheaper data centers. In Steps 2 and 3, we initialize the value of p

and t according to Eq. (6.28). The sum has been taken over all the data centers. In

order to determine the first data center that satisfies Eq. (6.28), while loop in Step

4 is used. In particular, we assign load to nth data center as 0, if the (n− 1)thdata

center processing rate is capable of satisfying Eq. (6.28). This loop continues till

control condition (p > t) is met and the corresponding λnu is set to 0, and n and p

are updated accordingly. Finally in Step 5, we assign load to data centers according

to Eq. (6.27).
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Algorithm 1: Best-reply

Input: Total job arrival rate: Lu

Available processing rate at data centers: µu1 , µ
u
2 , .., µ

u
n

CIC of data centers: C1, C2, ..Cn

Output: Load balancing strategy:λu = (λ1u, λ2u, .., λnu)

1 Sort the data centers in the ascending order of CIC i.e.,

(C1 ≤ C2 ≤ .. ≤ Cn)

2 p←
∑n

i=1 µ
u
i − Lu

3 t←
∑n

i=1

√
βµui
α−Ci

4 while p > t do
λnu ← 0

p← p− µun
n← n− 1

t←
∑n

i=1

√
βµui
α−Ci

5 for i = 1, 2, .., n do

λiu ← µus −
√

βµus
α−Cs

Theorem 6.2. The load balancing strategy λ = (λ1, λ2, ..., λm), given by the Best-

reply algorithm is the best strategy for front-end proxy u and it solves the Best-replyu

problem.

Proof. The while loop in step 4 finds the minimum index qu for which

qu∑
i=1

√
βµus
α− Ci

6
qu∑
i=1

µui − Lu (6.47)

In the same loop, λiu are set to zero for i = qu, ..., n. In step 5, λiu is set equal to

µus −
√

βµus
α−Cs

for i = 1, ..., qu − 1. These are in accordance to Theorem 1. Thus, the

allocation λu = (λ1u, λ2u, .., λnu) computed by Best-reply algorithm is the optimal

solution of Best-replyu.
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Remarks: (i) The execution time of this algorithm is O(nlgn). This is due to

the sorting procedure in Step 1. (ii) In order to execute this algorithm each front-end

proxy needs to know all the necessary information such as electricity price, expected

delay and available processing capacity at each data center location and estimated

demand [89]. In most of the cases, all the proxies and data centers are owned by

the same operator. It is possible that all data centers and proxy servers exchange

the estimated load, capacity, and electricity prices in real-time.

6.4 A Distributed Load Balancing Algorithm

Based on the Best-reply algorithm discussed in the previous section, we design a

greedy algorithm for computing the Nash equilibrium of the non-cooperative game.

The proposed algorithm is given in Algorithm 2. In addition to the notation

mentioned in Sections 6.2 and 6.3, let l denote the iteration index and u denote the

front-end proxy index. Let λlu denote the strategy of front-end proxy u at iteration

l. Let Ψl
u be the CIC of client region u at iteration l, ε be the selected acceptance

tolerance. We define norm as
∑m

u=1 |Ψ
(l−1)
u − Ψl

u|. The function Send(u, (p, q, r))

denotes sending message (p, q, r) to front-end proxy u, where p is the current sum of

|Ψ(l−1)
u −Ψl

u|, q is the iteration number, and r is CONTINUE/STOP tag. Similarly,

Recv(u, (p, q, r)) denotes receiving message (p, q, r) from the front-end proxy u.

In this algorithm, each front-end proxy computes its Best-reply strategy for

every time slot using the current load balancing strategies of other front-end proxies

and updates its strategy. In an iteration l of while loop, each front-end proxy

server computes its Best-reply strategy. It then adds to the sum, the difference in its

achieved operating cost compared to previous (l−1) iteration. Then, it sends the sum

to its neighbour in a round robin fashion. This continues for several iterations and

finally stops when the difference in the total operating cost across all the front-end

proxy servers, in successive iterations, is less than the norm stopping criterion. We
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Algorithm 2: Nash distributed load balancing algorithm

Input: Total Arrival rate: Lu
Available processing rate at data centers: µu1 , µ

u
2 , . . . , µ

u
n

Cost factors of data center: C1, C2, . . . , Cn
Output: Load balancing strategy at equilibrium:λ = (λu,∀u)
Front-end proxy u, u = 1, 2, . . . ,m executes:

1 Initialization:
λlu ← 0
Ψ0
u ← 0

l← 0
norm← 1
sum← 0
tag ← CONTINUE
left = [(u− 2)modm] + 1
right = [umodm] + 1

2 while (1) do
if (u = 1) then

if l 6= 0 then
Recv(left, (norm, l, tag))
if norm < ε then

Send(right, (norm, l, STOP ))
exit

sum← 0
l← l + 1

else
Recv(left, (sum, l, tag))
if tag = STOP then

if u 6= m then
Send(right, (sum, l, STOP ))

exit
for s = 1, 2, . . . , n do

µus ← µs −
∑m

k=1,k 6=u λsk
λu ← Best-reply(µu1 , . . . , µ

u
n, C1, . . . , Cn, Lu)

Compute Ψu

sum← sum+ |Ψ(l−1)
u −Ψl

u|
Send(right, (sum, l, CONTINUE))
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assume that the front-end proxies synchronously update their Best-reply strategies

in a round robin manner.

The execution of this algorithm is restarted periodically when the data center

system parameters (e.g., electricity price, demand) change or a failure occurs. Once

the equilibrium is reached, the front-end proxies continue to use the same strategy

and the system remains in equilibrium until a new execution is initiated.

Discussion: We examine the message complexity of Algorithm 2. We assume that

all the front-end proxy servers (collocated client regions) are logically connected in

a ring topology. In every iteration, each front-end proxy server gathers the available

capacity at each data center, which requires O(n) messages. Each front-end proxy

server also needs to share its updated sum with the adjacent node, which requires

O(1) messages. Thus, in each iteration all the front-end proxy servers require

O(mn+m) messages, where n and m are the number of data centers and front-end

proxy servers, respectively. The asymptotic message complexity is O(mn).

6.5 Numerical Results

In this section, we compare and analyze the performance of the proposed algorithm

with different existing strategies. The proposed algorithm is abbreviated as NCG.

In addition, we also implement for comparison two other models in literature:

Proportional scheme (PS) and Global optimal scheme (GOS).

• Proportional scheme(PS): It is distributed and decentralized approach, where

each front-end proxy allocates load in proportion to the processing rate at

each data center. It can be noted that proportional scheme does not take

into account either the operating cost or the communication delay between

front-end proxy and data center.

• Global optimal Scheme(GOS): This scheme minimizes the CIC defined in
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Section 6.3. The load values (λ) are obtained by solving the following non-

linear optimization problem:

min
λ

∑
u

Ψu(λ) (6.48)

subject to the following constraints.

λsu ≥ 0, ∀s ∈ S,∀u ∈ U (6.49)

n∑
s=1

λsu = Lu ∀u ∈ U (6.50)

m∑
u=1

λsu < µs, ∀s ∈ S (6.51)

GOS is evaluated (at a centralized location) using the optimization tool fmin-

con of MATLAB. The parameters used with fmincon are presented in Ta-

ble 6.1. We use default values for other parameters such as choice of optimiza-

tion algorithm, optimality tolerance, step tolerance, and checkgradient [90].

GOS provides optimal solution, but does not provide fairness to users.

Parameter Value

MaxFunctionEvaluations 10000

MaxIterations 5000

FunctionTolerance 10−6

ConstraintTolerance 10−6

OptimalityTolerance 10−6

StepTolerance 10−10

Other parameters Default values

Table 6.1: fmincon parameters
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The main performance metrics used in our numerical results are normalized

cost, expected response time and the fairness index. The fairness index F (x) is

calculated as

F (x) =
[
∑m

u=1 xu]
2

m
∑m

u=1 x
2
u

(6.52)

where xu is the expected latency at client region u. The sum of expected cost across

for all client regions C is calculated as

C(λ) =
m∑
u=1

Ψu(λ) (6.53)

where λ is the strategy at the equilibrium. The normalized cost is obtained by

normalization with respect to the maximum cost across all approaches.

6.5.1 System Setup

Data center locations: We considered data center locations in the USA based on

power availability as mentioned in [53]. The locations are: Arizona, Illinois, Iowa,

Mississippi, New Hampshire, Oklahoma, Oregon, Pennsylvania, South Carolina, and

Utah. The service rate of server is 60 requests per second. Relative processing rate

available across all the data centers is given in Table 6.2, where relative processing

rate of a data center is calculated with respect to the fastest data center processing

rate. The average electricity price across all the data center locations is given in

Table 6.2 [21].

Client locations: We considered 12 states of the USA, where a large number of

Internet users are located [67], viz, California, Florida, Georgia, Illinois, Michigan,

New Jersey, New York, North Carolina, Ohio, Pennsylvania, Texas and Virginia.

Demand from different client locations is kept proportional to the number of Internet

users from that region [67].
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DC

Locations
Arizona Illinois Iowa Mississippi

New

Hampshire
Oklahoma Oregon Pennsylvania

South

Carolina
Utah

Electricity

Price (in

cents/kWh)

5.54 6.34 5.20 6.03 12.33 4.62 6.38 6.78 5.55 5.58

Relative

processing

rate

0.4 1.0 0.2 0.6 0.2 0.6 0.4 1.0 0.4 1.0

Table 6.2: Average electricity price and processing rate across data center location

Client Locations California Florida Georgia Illinois Michigan New Jersey

Relative job arrival rate 0.17 0.11 0.03 0.11 0.04 0.04

Client Locations New York North Carolina Ohio Pennsylvania Texas Virginia

Relative job arrival rate 0.12 0.03 0.06 0.1 0.13 0.02

Table 6.3: Relative job arrival rate of each client location

Demand: We used trace of traffic from Wiki dump [68] to build the workload profile.

Considering hourly wikipedia workload as an aggregate demand for every hour, we

distribute demand across different client locations proportional to the number of

Internet users at each location. The peak demand from the trace is of the order of

thousand requests per second whereas, literature suggests that data centers serve

requests to the tune of million requests per second [4]. Therefore we have upscaled

the demand by a factor of 3000. The relative job arrival rate for each client location

is given in Table 6.3. The propagation delay between data center and client location

is considered proportional to the distance between them, and it increases by 10 ms

for every 1000 km [16]. The energy consumption of an idle server at any given time

could be 30% of the peak power [87, 91], Pidle and Ppeak are taken to be 300W and

100W, respectively [92].

6.5.2 Results

We present and discuss the results obtained after evaluating NCG, PS and GOS

models by varying the number of data centers, system workload and factor term
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β (see Eq. 6.12). For each case, we plot the normalized value of cost wherein, the

normalization is done with respect to maximum cost across all experiments. We

evaluate the models for a period of one day with the system state changing every

hour. The results presented here are average values obtained over this time horizon.

Effect of System size

We vary the number of data centers in the system from 6 to 10 and investigate its

effect on the cost and fairness. We set demand as mentioned in the earlier section and

β as 0.1. Fig. 6.2 shows the normalized cost for all the models. It can be observed

that the cost obtained using NCG and GOS is almost the same because these models

are aware of electricity price, propagation delay and data center processing rates

and therefore perform load balancing in a cost-effective manner whereas, PS does

not obtain optimum cost as it uniformly distributes the load without taking into

consideration the electricity prices, propagation delays and data center processing

rates. It can also be observed from Fig. 6.3 that NCG model achieves better fairness

in average latency across all the client regions when compared to GOS whereas, the

fairness of PS is approximately 1 across different number of data centers. The

NCG approach has an additional advantage of being a decentralized load balancing

scheme.

6.5.3 Impact of Demand

In order to understand the impact of demand on cost, we evaluate the proposed

algorithm and other models on 10 data centers and 12 client regions. We vary the

client demand from 0.2 to 2 times the original client demand obtained from [68]. It

may be noted that demand is chosen such that it covers a broad range of data center

utilization, where utilization is defined as the ratio of total arrival rate to aggregate

processing rate of the system. Demand of 1 corresponds to a utilization of 44%. We
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set β to 0.1. We show the results obtained in Fig. 6.4. It can be seen that with

increase in demand NCG yields almost the same cost as the GOS approach, which

means that NCG approach is as effective as GOS. From Fig. 6.5 it can be seen that

NCG and PS maintain a fairness close to 1. Therefore the NCG scheme, apart from

being decentralized, has the additional advantage of user optimality with respect to

fairness in latency.
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Figure 6.7: Average latency perceived across various regions

6.5.4 Impact of β

In order to understand the impact of β (delay cost factor) on cost and fairness index,

we evaluate the proposed and existing schemes with 10 data centers and 12 client

regions, and β ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5}. It can be observed from Fig. 6.6

that across all β values our model approximates the cost of GOS. With increase in

β the cost also increases for all models which is quite intuitive as increase in weight

of latency factor yields a higher cost.
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6.5.5 Client Latency

In Fig. 6.7, we present the expected latency experienced by each client region.

Though the PS scheme guarantees fairness in latency across all client regions, it

has a higher expected latency. It can also be observed that with GOS scheme, there

is a huge variation in the expected latency across all client regions, while NCG gives

the lowest expected latency for each client region. In many cases, it can be observed

that GOS is better and gives optimal solution that minimizes both the operating

cost and the delay.

6.5.6 Convergence of NCG Algorithm

In order to determine the number of iterations required for NCG to converge, we

consider two scenarios. First we determine the number of iterations required for

norm ∈ {1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1}, with 10 data centers and 12 clients

regions. We set the demand as mentioned in Section 6.5.1 and β as 0.1. Fig. 6.8

shows the number of iterations required for the converge. From this, we see that the

proposed algorithm converges after a reasonable number of iterations for the input

size considered.
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6.6 Summary

In this chapter, we formulated the load balancing problem in GDC as a non-

cooperative game among front-end proxy servers (which are collocated with client

regions). For the proposed game we characterized the structure of Nash equilibrium.

Based on the Nash equilibrium structure, we derived a distributed load balancing

algorithm for computing the same. We compared the performance of our non-

cooperative game (NCG) with the existing proportional sharing and global optimal

approaches. The main advantages of NCG algorithm is that it is decentralized, it

has a low complexity (yet close to the optimal GOS), and it offers fairness in average

latency across all the client regions.

In this chapter we assume that there is an efficient failure detection and recovery

mechanism. The distributed load balancing algorithm is executed every time state

of the system changes. Since the data center can fail at any time, probing to detect

failures and thereby computing the fail-over load balancing policy is computationally

expensive. In the next chapter, we propose a data center-initiated load balancing

approach, which is efficient and quickly converges to the optimal load balancing

policy.

145





Chapter 7

Distributed Failure Detection and

Efficient Load Balancing in

Fault-tolerant GDCs

7.1 Introduction

In the previous chapter, we addressed the problem of distributed load balancing

in fault-tolerant GDCs to minimize the operating cost while ensuring the fairness

in latency perceived across the clients. Once we have a model to provision spare

capacity across the data centers to handle failures without increasing the TCO, we

need a cost-aware load balancing strategy. After the failure, the front-end proxies

need to locate the failure quickly and a new load balancing policy should be worked

out that re-routes the requests to the available data centers. Keeping our philosophy

of designing cost-effective fault-tolerant GDCs, the updated load balancing policy

should also minimize the operating cost.

The problem of load balancing becomes challenging when it has to consider

the failure of a data center (either partial or complete), since failure can happen at
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anytime and with any frequency [6]. In fault-tolerant GDCs, failure detection could

be carried out by central controller [15] or in a distributed manner by front-end proxy

servers [33]. In the distributed approach, front-end proxies send keep-alive messages

periodically for health monitoring. This could be computationally expensive in terms

of message and time complexity. A cost-aware load balancing strategy working in the

presence of failures, has to select a new data center for request re-routing considering

renewable energy usage requirement, electricity cost, and QoS requirements. For

a scalable load balancing system, we propose a data center-initiated, distributed

load balancing strategy to satisfy post-failure QoS requirements while minimizing

the operating cost. Our approach makes an early attempt to shift the load on a

failed data center to mask the failure with a marginal increase in the operating

cost. We model the problem of load balancing in fault-tolerant data centers using

linear programming (LP) to optimize both the cost of energy consumption and to

minimize the client latency even after failure. We propose a two-stage distributed

scalable algorithm based on greedy method to solve the problem.

First, at a failed data center, we determine the surplus load and use Shift

Workload algorithm to distribute the load across the remaining data centers, while

minimising the operating cost (considering the energy consumption cost). This

algorithm considers the queuing delay due to additional load on the remaining data

centers (due to a failed data center). Second, we use Request Re-routing algorithm

based on minimum cost network flow model, at the front-end proxy to minimize

the latency in serving the client requests. We evaluate the proposed algorithm using

real-world data to show its closeness to the optimal strategy, which makes it suitable

for cost-aware online load balancing.

The rest of this chapter is organized as follows. The proposed system model and

the formulation of the optimization problem are presented in Section 7.2. Section 7.3

discusses the two-stage distributed algorithm for load balancing. We also prove the
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optimality and discuss the complexity of the algorithm. Few important results

from a numerical evaluation of the proposed algorithm are presented in Section 7.4.

Section 7.5 concludes the chapter.

7.2 Problem Formulation

We cast the problem of load balancing in fault-tolerant GDCs as two sub-problems,

workload shifting and request re-routing problems. We use LP to model these

problems. The solution to the workload shifting problem determines the amount

of workload assigned (re-assigned) to each data center after the failure. Solving the

request re-routing problem minimizes the latency for the client requests considering

the increased workload on the remaining data centers.

Fig. 7.1 shows a schematic representation of the GDC architecture considered

in this model. Each data center is powered by multiple renewable energy sources. S

denotes the set of data center locations each housing ms number of servers (s ∈ S).

A set of front-end proxy servers U is associated with each client region generating a

load Lu (u ∈ U). Each data center houses a resource manager, responsible to detect

failures and to run the algorithms for workload shifting and request re-routing after

the failure. The outputs from the algorithm are λufs : the number of requests from

client region u served by data center s when f th data center has failed, and mf
s :

the number of active servers at data center s when f th data center has failed. The

load balancing policy governed by λufs is pushed to the front-end proxy servers (as

indicated by the dotted lines in Fig. 7.1) and the number of servers required to

handle the load of the failed data center is updated due to mf
s (as indicated by

green lines in Fig. 7.1).
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Figure 7.1: The system architecture used for load balancing

7.2.1 System Model

We first describe the assumptions used in the formulation and define various

components used in the formulation. Table 7.1 summarises the notation used in

this chapter.

Assumptions: The data centers are over-provisioned with sufficient compute

capacity across various locations to accommodate single data center failure. Every

data center is aware of the volume of workload being served across all the other data

centers.

We now define the input parameters used in the formulation.

Demand: We define λufs as the number of requests mapped from client region u

to data center s. Here f = 0 represents no data center failed and f ∈ 1, 2..|S|

represents the failure of the f th data center.

Number of active servers: Let the processing rate of the server be µ requests

per second. We assume that among ms servers at a data center, mf
s are activated

after f th data center has failed. A data center is modeled as an M/M/n queue.

The number of servers required to satisfy workload l within the maximum tolerable
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Input Symbol Description

Data

center

S Set of data center locations

s Index of data center

Ms Total number of servers available at data center s

mf
s Number of active servers at data center s when data center f has failed

p Percentage of total servers failed at any data center

Client

U Set of client regions

u Index of client region

Lu Total number of requests generated from user location u

Pidle Power consumed by server when idle

Ppeak Power consumed by server when running at its peak

Server µ Service rate of server (in number of requests per second)

γf
s Average utilization of active servers at data center s when data center f has failed

L′ Total workload served by failed data center before failure

L Total workload required to be distributed

Lg Workload required to be served by green energy sources

Lr Workload which can be served by any energy source

λuf
s The number of requests from client region u served by data center s when data center

f has failed

Demand

and

λf Vector formed using λuf
s , which denotes the load balancing strategy

workload

distri-

bution

Φuf
si The number of requests from client region u being served at data center s being served

by consuming energy of type i when data center f has failed

Φf
si The cumulative workload at data center s by consuming energy of type i when data

center f has failed

Φf
s Vector of Φf

si for data center s when data center f has failed.

Φf Vector of Φf
s , which signifies the total workload distribution among different data

centers and energy sources

i Index of energy type

θsi Electricity price per kWh at data center s for energy of type i

θ Vector of different electricity prices across all data centers

P f
si Total power of type i consumed at data center s when data center f has failed

Energy Θf
s The total cost of energy consumed at data center s when data center f has failed

ρ The minimum green energy usage bound

Es PUE at data center s

Pmax
si Maximum available power of type i at data center s

Delay
Wsu Propagation delay between data center s and client region u

T Maximum tolerable queuing delay

Table 7.1: Summary of notation used in the chapter

151



7.2 Problem Formulation

queuing delay T is given by the equation

1

mf
sµ− l

= T ∀s, f (7.1)

l = f(mf
s ) = mf

sµ−
1

T
∀s, f (7.2)

In Eq. (7.2), the function f(mf
s ) gives the workload that can be served using mf

s

servers while meeting the queuing delay constraint. Similarly, we define mf
s by

mf
s =

1

µ
(

1

T
+ l) ∀s, f (7.3)

Server utilization: We define γfs to be the average utilization of active servers at

the sth data center after f th data center failed, given by

γfs =

∑
u λ

uf
s

µmf
s

(7.4)

Power consumption model: Let Pidle be the average power drawn in idle

condition and Ppeak be the power consumed when server is running at peak

utilization. We express the power consumed at a data center s, given workload

l, after f th data center failed, as [16]:

P f
s = mf

s (Pidle + (Es − 1)Ppeak) + mf
s (Ppeak − Pidle)γ

f
s (7.5)

= c1m
f
s + c2l (7.6)

where c1 = (Pidle + (Es − 1)Ppeak), c2 =
(Ppeak − Pidle)

µ
, and Es is the PUE of a data

center at s. Substituting mf
s and γfs in Eq. (7.6) from Eq. (7.3) and Eq. (7.4) gives

P f
s =

c1

µ
(

1

T
+ l) + c2l

= (
c1

µ
+ c2)l +

c1

Tµ
(7.7)

Surplus workload: Let L′ be the workload served by a failed data center f , before

the failure. After the failure, let mf
f be the number of servers available. The surplus
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workload violating the queuing delay constraint at failed data center can be obtained

as

L = L′ − f(mf
f ) ∀f (7.8)

Workload partitioning: We partition the workload into two components: (i)

green workload, Lg which is served by servers powered with green energy and (ii)

remaining workload, Lr served by other servers. Due to workload conservation rule,

the following equation has to be satisfied.

Lg + Lr = L (7.9)

Let ρ denote the minimum fraction of workload to be served by servers powered

with green energy. The green energy usage constraint is represented by

Lg ≥ ρL (7.10)

In our model, we consider 4 types of energy sources namely, solar, wind, PPA and

brown (indexed in the same order). Φuf
si denotes the workload from client region u

at data center s being served by consuming energy of type i, after f th data center

had failed.

The following equation makes sure that all the client demand is served.

4∑
i=1

Φuf
si = λufs ∀s, u (7.11)

Φf
si denotes the cumulative workload at data center s being served by consuming

energy of type i (i.e., Φf
si =

∑
u Φuf

si ). Therefore, in order to satisfy the green energy

usage we have

∑
s

3∑
i=1

Φf
si ≥ Lg ∀s (7.12)

Energy cost: Let θsi be the cost of energy of type i consumed at a data center s

and θ be the vector of different energy prices across all data centers. The cost of

153



7.2 Problem Formulation

energy consumed at data center s after f th data center has failed can be expressed

as

Θf
s =

∑
i

θsiP
f
si ∀s, f (7.13)

where P f
si is the energy of type i is consumed at data center s when data center f

has failed.

7.2.2 Optimization Model

As mentioned earlier, the load balancing problem is formulated as two sub-problems,

both of which are modeled using LP. We use the cost factors discussed previously

along with the necessary constraints in the formulation for the two sub-problems.

Workload shifting

In this problem, the load on a failed data center is shifted to alternate data

centers such that the total operating cost is minimized. The input parameters

are: L, the aggregate demand and ρ, the minimum green energy usage requirement.

The decision variable is Φf
si, the number of requests that data center s will serve

consuming energy of type i after failure of f th data center. The workload shifting

problem ( denoted by P1) is formally defined as

P1: minimize Ψ =
∑
s

Θf
s (7.14)

subject to, ∑
s,i

Φf
si = L (7.15)

∑
s

3∑
i=1

Φf
si ≥ ρL (7.16)

Φf
si ≥ 0 ∀s, i, f (7.17)
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Request re-routing

In this stage, the front-end proxy tries to minimize the client latency. This problem

is modeled with an objective to minimize the total network latency subject to client

demand and data center capacity constraints. The input parameters are: Lu−the

total number of requests generated from user location u, Wsu−the RTT between

data center s and client region u, and Φs−the total workload to be served by data

center s in presence of any data center failure f (where Φs =
3∑
i=1

Φf
si). The decision

variable is λufs , the number of requests to be served by each data center. The request

re-routing problem (denoted by P2), is formally defined as

P2: minimize
∑
s,u

Wsuλ
uf
s (7.18)

subject to, ∑
u

λufs = Φs ∀s (7.19)

∑
s

λufs = Lu ∀u (7.20)

λufs ≥ 0 ∀s, u (7.21)

7.3 Distributed Load Balancing Algorithms

In this section, we present online algorithms to solve the two problems P1 and

P2 defined previously. For problem P1, we propose a heuristic Shift Workload

Algorithm. For problem P2, we show that it can be casted as minimum cost flow

problem, which can be solved by any existing strongly polynomial-time algorithms,

like the one in [93].

Algorithm 3 gives an overview of the approach taken to solve both P1 and

P2. The input parameters for these algorithms include: surplus workload (L),
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electricity prices across different data centers (θ), green energy usage bound (ρ),

propagation delay matrix (PD) between client regions and data center, and the

workload being served by different data centers using various energy options(S).

Line 1 solves the Workload Shifting problem, to determine the distribution of surplus

load across remaining data centers with minimal operating cost while satisfying the

queuing delay and green energy usage constraints. Line 2 solves the Request Re-

routing problem to distribute the client requests among the data centers based on

propagation delay and the current workload ( as determined by the output from Line

1). The updated load balancing strategy is pushed to the front-end proxy servers

and the number of servers to be switched on is passed on to the active data centers.

Algorithm 3: Load balancing in the event of a failure

Input:

L: Surplus workload that violates QoS at failed data center

θ = (θ11, θ12, .., θn4): Price of different types of energy sources at data

centers.

ρ: Minimum green energy usage bound

PD: Propagation delay matrix

Output:

Load balancing strategy:λf = (λ1f
1 , λ

2f
1 , .., λ

mf
n )

In the event of a failure during time slot t,

1 Φf ← ShiftWorkload(L,θ,ρ,S)

2 λf ← Request Rerouting

3 Update the new load balancing strategy λf to all front end proxies and

data centers
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7.3.1 Shift Workload Algorithm

First, we present an online algorithm to solve P1 defined in Section 7.2.2 taking

into account green energy usage bound, real-time electricity prices, and QoS

requirements. Algorithm 4 given below presents the complete algorithm used to

solve P1.

Let us define the following functions. f(Ms): the workload that can be served

using Ms servers while satisfying the queuing delay constraint (from Eq. (7.2)),

g(P f
si): the workload that can be served using the available energy P f

si (from

Eq. (7.7)), h(Φf
si): the energy required to serve the workload Φf

si (from Eq. (7.7)),

and q(s,Φf
s ): the costliest renewable energy source being used at data center s.

First, the percentage of failure p is estimated by the resource manager at f th

data center. Next, the workload that needs to be migrated to other data centers

is estimated using Eq. (7.2). Finally, the data centers that would handle the load

of failed data center are determined based on the cost of power consumption. The

excess workload L is divided as Lg and Lr, where Lg is assigned to servers powered by

green sources (to meet green energy usage bound). In Algorithm 4, line 3 determines

the value of Lr which is the workload assigned to servers powered by brown energy

before failure at f . Line 6 determines Lg, using q(s,Φf
s ) (uses decreasing order of the

cost of green energy sources). Line 7 distributes Lg across different sites powered

by green sources, while Line 8 distributes Lr across the data centers considering

cheaper electricity price.

7.3.2 Request Re-routing Algorithm

We model the request re-routing problem as a minimum cost network flow problem.

Fig. 7.2 depicts the network flow graph with S and T denoting the source and

sink respectively. A set of front-end proxy servers, denoted by Fi, i = 1, 2, . . . |U |,

distribute the requests across data centers, denoted by DCj, j = 1, 2, . . . |S|. The
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Algorithm 4: Shift Workload (L,f,θ,ρ,S)
Input:

L: Surplus workload that violates QoS at failed data center

θ = (θ11, θ12, .., θn4): Price of different types of energy sources at data centers.

ρ: Minimum green energy usage bound

S: Current system state which includes the volume of workload being serverd by different

data centers using various energy options.

Output:

Φf = (Φ11,Φ12, ..,Φn4)

1 ν ← θ(1 : n,1 : 3)

2 Mf ← (1− p)Ms

/* workload served by brown energy before failure */

3 Lr ← min[L,Φf4]

4 L← L− Lr

5 Lg ← 0

/* determine workload (Lg) served by green sources, required to be shifted to

mask failure and keep green energy usage requirement intact */

6 while L > 0 do

i← q(f,Φf
f )

δ ←min[L,Φf
fi]

L← L− δ
Lg ← Lg + δ

Φf
fi ← Φf

fi − δ

/* spreads the load Lg across data centers with minimum green energy cost */

7 while Lg > 0 do

s, i← arg-min[ν]

δsi ← min[Lg, f(Ms)−
∑
i

Φsi , g(Pmax
si )]

Lg ← Lg − δsi
Φsi ← Φsi + δsi

Pmax
si ← Pmax

si − h(δsi)

/* spreads the remaining load Lr across data centers with minimum energy cost */

8 while Lr > 0 do

s, i← arg-min[θ]

δsi ← min[Lr, f(Ms)−
∑
i

Φsi , g(Pmax
si )]

Lr ← Lr − δsi
Φsi ← Φsi + δsi

Pmax
si ← Pmax

si − h(δsi)
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edge between S and Fi is weighted with capacity Li, which also corresponds to load

at front-end Fi, and a cost of zero. For the sake of simplicity, we assume the capacity

of edge between Fi and DCj to be Li and cost to be Wij, which is based on network

latency between data center j and the front-end proxy i (serving client region i).

Similarly, the edge between DCj and T is assigned a capacity of Φj (obtained from

Algorithm 4) which is the total workload that can be served at data center j and the

cost is zero. This capacitated minimum cost network flow problem can be efficiently

solved with an algorithm like the one proposed in [93].
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Figure 7.2: Illustration of min-cost network flow model for P2

Next, we prove that the algorithm presented in 7.3.1 will give an optimal

solution for P1. Let L denote the surplus workload due to data center failure, of

which Lg and Lr denote the demand to be served by green energy sources and brown

energy sources, respectively.

Lemma 7.1. All the demand previously served by a failed data center is allocated

to servers in the remaining data centers.

Proof. Let us consider a request l ∈ L that could not be served by any data center,

which implies that no compute capacity is available in remaining data center to

satisfy l within the delay constraint, which could not be the case as spare capacity

provisioning is already done. The other reason could be that there is insufficient
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green energy to satisfy the green energy bound, which again could not happen as

renewable energy installation is already ensured to be sufficient to handle post-

failure scenario. This gives a contradiction and hence the statement of the lemma

is proved.

Lemma 7.2. At the end of Algorithm 4, the cost incurred in serving the total

workload even after the failure is the lowest.

Proof. As discussed in the formulation, we split the workload of failed data

center into two components Lg and Lr. Our greedy algorithm requires maximum

2 iterations at each data center, one to find cheaper green energy sources and the

other to find any other cheaper energy source to serve the workload components Lg

and Lr. As a part of the execution, we maintain two sorted lists of data centers,

one sorted in increasing order of the cost of green energy source and other one in

increasing order of the cost of any available energy source.

For the sake of simplicity, we focus on one iteration that satisfies the workload

Lr (henceforth, denoted by L). Let Li denote the number of requests served so

far by the algorithm, where i is the index of data center (from the list sorted in

increasing order of energy cost). For any Li served in an iteration of allocating

workload to DCj, j = 1, 2, . . . |S|, let the cost incurred be Ci. Our argument is that

the optimal algorithm would also allocate the demand to data center in ascending

order of energy cost while serving the workload. This is because, the objective of

any optimal algorithm would also be to minimize the cost of energy consumption.

Therefore, the cost incurred to serve the total workload in the greedy solution is

same as that of the optimal solution. This proves the statement of the lemma.

160



7.4 Numerical Results

7.3.3 Time Complexity Analysis

Time complexity of Shift Workload Algorithm: Let n be the number of data

centers and i be the number of energy sources. In Algorithm 4, line 6 has the running

time O(ni), whereas lines 7 and 8 each have the worst case running time of O((ni)2).

Therefore, the overall worst case running time of the algorithm is O((ni)2). In most

of the practical scenarios i ≤ 6 and hence, the worst case running time reduces to

O(n2).

Time complexity of Request re-routing: We consider a network flow graph

with number of nodes v = n+m+ 2 and number of edges e = nm+m+ n, where

n is the number of data centers and m is the number of client regions. The best

known algorithm to solve the minimum cost network flow problem has the worst

case running time of O(e log v(e + v log v)) [93]. By formulating the problem

using minimum cost network flow model, we have a polynomial-time algorithm for

fault-tolerant load balancing in GDCs. For the global optimal solution (GOS),

two linear optimization sub-problems need to be solved and the worst-case running

complexity of the best known algorithm is O(n3.5L), where the number of decision

variables n can be encoded in L input bits. For P1 and P2, the number of decision

variables is ni and nm, respectively. Therefore, the combined worst case running

time is O((nm)3.5L). Hence, the asymptotic worst-case time complexity of the

proposed algorithm is significantly better than the best known pseudo-polynomial

time algorithm for solving the LP version.

7.4 Numerical Results

In this section we evaluate the proposed algorithm (abbreviated as FTLB) and

present the results obtained. We compare FTLB with the global optimal solution

(abbreviated as GOS) by solving the optimization problems P1 and P2. The
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proposed algorithm and optimization problems are solved using MATLAB and

CPLEX on a server with Intel Xeon processor and 64 GB of RAM, running Ubuntu

14.04 64-bit OS. The performance metric considered is the normalized average energy

cost with respect to the maximum energy cost across both the solutions for a given

scenario. In order to quantify the quality of approximation (by FTLB), we define

an approximation ratio as

R =
Energy cost by FTLB

Energy cost by GOS
(7.22)

7.4.1 Experimental Setup

We evaluated the proposed algorithm based on real-world data for data center

locations, traffic workload, renewable energy availability, and electricity prices as

described below.

Data center characteristics: We considered six data center locations in the USA:

California, Iowa, Arizona, Colorado, Illinois and Texas. Electricity prices at these

locations are taken from US energy information website [21]. Other parameters used

are shown in Table 7.2.

Parameter Value

PUE 1.5

Server power (idle,peak) 100W,200W

Queuing delay (T ) .001

Server processing rate (µ) 30

Mmin,Mmax 200, 100000

γmax 80%

Empirical Constant, ε 0

Table 7.2: Input parameters

Renewable energy availability: We collected meteorological data from NREL [31]
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for year 2016. We used power generation models for wind and solar energy described

in [59] and [79], respectively. At each site, we considered 20 wind turbines of ca-

pacity 1.5MW each and 10,000 solar panels of 120W each. The cost of generating

wind and solar power is obtained by taking the installation cost of 1630 and 3100

$/kW, and life time of 20 and 25 yrs, respectively. We took quarterly average of

client demand and renewable energy generated for every hour of the day. Therefore,

we use 96 time slots each spanning an hour for the evaluation.

Demand: We used trace of traffic from Wiki dump [68] to build the workload

profile. We took quarterly average of client demand for every hour of the day.

Considering hourly wikipedia workload as an aggregate demand for every hour, we

distribute demand across different client locations proportional to the number of

Internet users at each location. The peak demand from the trace is of the order of

thousand requests per second, whereas literature suggests that data centers serve

requests to the tune of million requests per second [4]. Therefore we have upscaled

the demand by a factor of 3000. We took quarterly average of client demand to

generate workload across 96 time slots. For every hour we distribute the demand

across different client locations proportional to the number of Internet users at each

location [67]. We chose nine regions for the demand: Illinois, Tennessee, New York,

Arizona, Massachusetts, California, Florida, Missouri, and Louisiana.

7.4.2 Results

We present the results obtained by varying the number of data centers and

percentage of failure. In each scenario, we run the FTLB and GOS for various

combinations of failure percentage (p) for every hour of the day. Therefore we have

n× 96 data points for each scenario (where n is the number of data centers).
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Energy cost comparision

In this experiment we compare the energy cost for FTLB solution with the GOS. We

increase the number of data centers from 3 to 6 with 9 client regions, a maximum

queuing delay bound of 1ms, and p = 0.5. Fig. 7.3 shows the normalized average

energy cost for both the algorithms. It can be seen that the cost with FTLB exactly

matches the value obtained by GOS. It can be observed that with increasing number

of data centers, the energy cost decreases due to more options available to leverage

demand multiplexing and electricity price variation.

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

20 40 60 80 100

N
or

m
al

iz
ed

 T
C

O

Percentage of failed servers in a data center

FTLB GOS

Figure 7.4: Energy cost with varying failure percentage
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Impact of failure percentage

In order to understand the impact of failure percentage on energy cost, we evaluate

the algorithms with 3 data centers, 9 client regions and set queuing delay bound to

1ms. We vary the percentage of failure from 10% to 100%. Fig. 7.4 shows the results

obtained. It can be observed that with increase in failure percentage the energy

consumption cost increases. This is because, the system is operating at optimal

operating point before failure and after failure, the system has to use the costlier

options. We see that across all the scenarios our algorithm closely approximates the

GOS.

Impact of demand

To understand the impact of variation of demand on energy cost, we evaluate the

algorithm with 3 data centers, 9 client regions, and with varying demand (kx which

is the multiple of baseline demand x, where k ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6}).

We set the queuing delay bound to 1 ms. From Fig. 7.5 it can be observed that

with increasing demand, energy cost also increases for both the approaches which is

quite intuitive.
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Figure 7.5: Comparing energy cost when demand varies
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7.5 Conclusion

In this chapter, we addressed the problem of load balancing in fault-tolerant data

centers powered by co-located green energy sources. We modeled the problem using

linear programming in two stages. We proposed a distributed algorithm which first

spreads the load of failed data center, while minimizing the operating cost (which

includes brown and renewable energy cost) and then, re-routes requests to satisfy

the delay and green energy usage constraints. Extensive evaluation using real world

data shows that the proposed algorithm yields nearly the same results as the global

optimal solution, yet it has lower complexity. We conclude that online load balancing

algorithms should be more cost-aware to distribute the requests so that the operating

cost is also minimized along with the latency.
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Chapter 8

Summary and Future Directions

The work in this thesis addressed the research problems of spare capacity planning

and load balancing in fault-tolerant GDC. Our objective was to help the operators

design and manage GDCs that can tolerate the failure of a single data center without

a significant increase in the TCO. We proposed optimization models for cost-aware

distribution of spare capacity across the locations and also arrive at optimal load

balancing algorithms that minimize the TCO while satisfying the delay constraints.

First, we addressed the problem of cost-aware capacity provisioning for GDCs

so that the failure of a single data center failure is masked. We proved that this

problem is in NP-hard and proposed an MILP formulation to reduce the TCO. The

proposed model is observed to be better than the existing ones, due to its ability to

multiplex demand considering the spatio-temporal variation in the electricity prices

and the demand. We then extended the model for fault-tolerant GDCs collocated

with renewable energy sources. We evaluated the model considering factors such

as, green energy availability, demand, delay, and failure percentage, where we

observed that the proposed model achieves significant improvement in the TCO

despite using costlier green energy. Further, we extended the optimization model

for spare capacity provisioning in GDCs powered by both brown and renewable
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energy sources, where the data center operators try to meet a target green energy

bound with a marginal increase in cost. We showed that even though green energy

is costlier, intelligent scheduling of requests and capacity provisioning could lower

the operating cost.

Next, we proposed a non-cooperative game theoretic model for load balancing

(among front-end proxy servers) with an objective of minimizing the operating cost

and obtained the structure of Nash equilibrium. Based on this structure, we designed

a distributed load balancing algorithm which provides better fairness to the clients

(in terms of service latency) without increasing the operating cost. We compared the

performance of the proposed algorithm with the existing approaches to demonstrate

that the proposed algorithm approximates the global optimal solution. Finally, we

devised a data center-initiated load balancing algorithm to detect the failure early

and correspondingly update the load balancing policy quickly. Results showed that

the proposed algorithm has a low computational complexity, yet exactly matches

the cost obtained using global optimal solution.

Conclusions: From this work, we conclude that it is indeed possible to minimize the

cost of running GDCs considering the spatio-temporal dynamics and it is possible

to mask single data center failure with no additional cost using the proposed model.

Our model leads to a lower cost in designing a fault-tolerant GDC, particularly when

the electricity costs vary widely across the data center locations along with higher

PUE values. The CACP model is cost effective when the latency requirement is not

stringent and a data center does not operate at its peak utilization. Under heavy

load, the CACP model can help the provider determine an optimal data center

upgrade plan while minimizing the TCO. Next, we conclude that with a suitable

model, green energy integration lowers the cost of designing fault-tolerant GDCs

(despite green energy being costlier). Our model works well even with uncertainty

in the available wind energy and achieves significant reduction in the cost as the
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technology advances. We also show that online load balancing algorithms should be

cost-aware in allocating the requests so that, the operating cost is also minimized

along with the latency. We designed an algorithm that ensures delay fairness to the

clients without increasing the operating cost. We expect that our work can help

data center operators make informed decisions about capacity planning with green

energy usage bounds, different renewable energy sources, spatio-temporal dynamics

in electricity price and demand, and varying failure rates.

Future Directions: There are several possible directions in which the work in this

thesis can be extended. We list a few immediate extensions of the work related to

the problems of capacity provisioning and load balancing.

• Data centers owned by different operators lying in different time zones

may form a federation, thereby pooling their resources to improve resource

utilization and minimize the operating cost. In such a federation, the load

balancing problem can be formulated as a cooperative game among the data

center operators. Based on the Nash bargaining solution (NBS) which provides

Pareto-optimal and fair solution, one could design an algorithm to compute

the optimal load balancing problem policy.

• In this thesis, we considered workload of only short request-response type.

However, cloud service operators receive requests for a long-time VM alloca-

tion. Modeling the capacity planning across different data centers, based on

the expected arrival rate of workload and considering diverse QoS requirements

for the application would be an interesting extension.

• We considered a simple queuing model i.e., M/M/n for the server. A more

realistic queuing model for production data centers could be used in the work.

One can model capacity provisioning in distributed data centers, where the

objective would be to keep the expected response time or blocking probability
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below a predefined value.

• Only the failure of servers has been considered in our work. We can extend

the model to consider the failure of power distribution network, network links,

networking elements and a combination of these.
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[28] J. L. Berral, Í. Goiri, T. D. Nguyen, R. Gavalda, J. Torres, and R. Bianchini,

“Building green cloud services at low cost,” in Proc. of ICDCS, June 2014, pp.

449–460.

[29] “Google, Apple, Facebook race towards 100% renewable energy target,”

https://www.theguardian.com/sustainable-business/2016/dec/06/google-

renewable-energy-target-solar-wind-power.

[30] “Adding clean and renewable energy to the grid,” https://sustainability.fb.com/

clean-and-renewable-energy/.

[31] “Renewable Resources Maps and Data,” http://www.nrel.gov/midc/.

[32] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: optimization

of distributed internet data centers in a multi-electricity-market environment,”

in Proc. of IEEE INFOCOM, 2010, pp. 1–9.

[33] Z. Naseh, “Disaster Recovery & Global Site Load Balancing for Dis-

tributed Data Center Applications,” https://www.nanog.org/meetings/38/

presentations/naseh.pdf.

[34] M. J. Osborne and A. Rubinstein, A Course in Game Theory. MIT press,

1994.

[35] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-

theoretic, and Logical Foundations. Cambridge University Press, 2008.

174



REFERENCES

[36] K. Le, R. Bianchini, T. Nguyen, O. Bilgir, and M. Martonosi, “Capping the

brown energy consumption of internet services at low cost,” in Proc. of IEEE

Green Computing Conference and Workshops (IGCC), Aug 2010, pp. 3–14.

[37] D. Weldon, “Downtime numbers are downright distressing,” http:

//www.fierceenterprisecommunications.com/story/downtime-numbers-are-

downright-distressing/2013-07-25, 2013.

[38] “Help! My Data Center is Down!” http://www.availabilitydigest.com/public

articles/0704/data center outages-lessons.pdf, 2012.

[39] “Amazon Cloud Outage,” http://www.datacenterknowledge.com/archives/

2012/10/22/amazon-cloud-outage-affecting-many-sites/.

[40] R. Souza Couto, S. Secci, M. Mitre Campista, and L. Kosmalski Costa,

“Network design requirements for disaster resilience in iaas clouds,” IEEE

Communications Magazine, vol. 52, no. 10, pp. 52–58, October 2014.

[41] “ Sun, wind and sea: Apple details data center renewable energy ini-

tiatives,” http://www.datacenterdynamics.com/content-tracks/power-

cooling/sun-wind-and-sea-apple-details-data-center-renewable-energy-

initiatives/98193.fullarticle.

[42] “Renewable Energy Certificate (REC) mechanism,” https://www.

recregistryindia.nic.in/index.php/general/publics/faqs.

[43] “Carbon offset,” https://en.wikipedia.org/wiki/Carbon offset.

[44] R. Bianchini, “Leveraging renewable energy in data centers: Present and

future,” in Proc. of ACM International Symposium on High-Performance

Parallel and Distributed Computing, 2012, pp. 135–136.

175



REFERENCES

[45] “2015 wind technologies market report,” https://emp.lbl.gov/publications/

2015-wind-technologies-market-report.

[46] “7 charts that show wind power is surging in the us and abroad,”

http://www.greentechmedia.com/articles/read/7-Charts-That-Show-Wind-

Power-is-Surging-in-the-US-and-Abroad.

[47] “Solar electricity cost,” http://solarcellcentral.com/cost page.html.

[48] J. Weinman, “Cloudonomics: a rigorous approach to cloud benefit quantifica-

tion,” J. Software Technol, vol. 14, no. 4, pp. 10–18, 2011.

[49] H. Xu and B. Li, “Joint request mapping and response routing for geo-

distributed cloud services,” in Proc. of IEEE INFOCOM, 2013, pp. 854–862.

[50] C. Kim and H. Kameda, “An algorithm for optimal static load balancing in

distributed computer systems,” IEEE Transactions on Computers, vol. 41,

no. 3, pp. 381–384, 1992.

[51] M. Guo and L. Yang, New Horizons of Parallel and Distributed Computing.

Springer US, 2006.

[52] K. Lu, R. Subrata, and A. Y. Zomaya, “Towards decentralized load balancing

in a computational grid environment,” in Proc. of International Conference on

Grid and Pervasive Computing, 2006, pp. 466–477.

[53] M. Wardat, M. Al-Ayyoub, Y. Jararweh, and A. Khreishah, “To build or not

to build? addressing the expansion strategies of cloud providers,” in Proc. of

FiCloud, Aug 2014, pp. 477–482.

[54] A. Gumaste, P. Gokhale, T. Das, M. Purohit, and P. Agrawal, “Using global

content balancing to solve the broadband penetration problem in the developing

world: case study, india,” IEEE Communications Magazine, vol. 50, no. 5, 2012.

176



REFERENCES

[55] N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for reducing

the electricity bill in the cloud,” in NETWORKING 2011. Springer, 2011, pp.

172–185.

[56] Y. Zhang, Y. Wang, and X. Wang, “Capping the electricity cost of cloud-scale

data centers with impacts on power markets,” in Proc. of ACM International

Symposium on High Performance Distributed Computing, 2011, pp. 271–272.

[57] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data centers power

reduction: A two time scale approach for delay tolerant workloads,” in Proc.

of IEEE INFOCOM, 2012, pp. 1431–1439.

[58] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P. Junqueira, and C. Aykanat,

“Energy-price-driven query processing in multi-center web search engines,” in

Proc. of ACM SIGIR, 2011, pp. 983–992.

[59] Y. Zhang, Y. Wang, and X. Wang, “Greenware: Greening cloud-scale data

centers to maximize the use of renewable energy,” in Middleware 2011.

Springer, 2011, pp. 143–164.

[60] M. Ghamkhari and H. Mohsenian-Rad, “Data centers to offer ancillary

services,” in Proc. of IEEE SmartGridComm, 2012, pp. 436–441.

[61] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online algorithms for

geographical load balancing,” in Proc. of IEEE Green Computing Conference

and Workshops (IGCC), 2012, pp. 1–10.

[62] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. Andrew, “Greening geographical

load balancing,” IEEE/ACM Transactions on Networking (TON), vol. 23, no. 2,

pp. 657–671, 2015.

[63] “Amazon EC2 pricing,” http://aws.amazon.com/ec2/pricing.

177



REFERENCES

[64] M. Ghamkhari and H. Mohsenian-Rad, “Energy and performance management

of green data centers: A profit maximization approach,” IEEE Transactions on

Smart Grid, vol. 4, no. 2, pp. 1017–1025, 2013.

[65] J. Kleinberg and É. Tardos, Algorithm Design. Pearson Education India, 2006.

[66] B. Molina, C. E. Palau, and M. Esteve, “Modeling content delivery networks

and their performance,” Computer Communications, vol. 27, no. 15, pp. 1401–

1411, 2004.

[67] “Internet World Stats,” http://www.internetworldstats.com/unitedstates.htm.

[68] “Page view statistics for Wikimedia projects,” http://dumps.wikimedia.org/

other/pagecounts-raw/.

[69] “Amazon EC2 Pricing,” https://aws.amazon.com/ec2/pricing/.

[70] Y. Li, H. Wang, J. Dong, J. Li, and S. Cheng, “Operating Cost Reduction

for Distributed Internet Data Centers,” in Proc. of IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, May 2013, pp. 589–596.

[71] “Is PUE Still Above 2.0 for Most Data Centers? ,” http://www.vertatique.

com/no-one-can-agree-typical-pue.

[72] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha,

“Spanstore: Cost-effective geo-replicated storage spanning multiple cloud

services,” in Proc. of ACM Symposium on Operating Systems Principles, 2013,

pp. 292–308.

[73] M. Al-Ayyoub, M. Wardat, Y. Jararweh, and A. A. Khreishah, “Optimizing

expansion strategies for ultrascale cloud computing data centers,” Simulation

Modelling Practice and Theory, vol. 58, pp. 15–29, 2015.

178



REFERENCES

[74] “Renewable Energy Intermittency Explained: Challenges, Solutions, and

Opportunities,” https://blogs.scientificamerican.com/plugged-in/renewable-

energy-intermittency-explained-challenges-solutions-and-opportunities/.

[75] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy, “Energy

storage in datacenters: what, where, and how much?” in ACM SIGMETRICS

Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp. 187–198.
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