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Abstract

In this thesis, we study static membership problem which involves the study and

construction of such data structures that can store an arbitrary subset S of size at most

n from the universe U of size m such that membership queries of the form “Is x in S?”

can be answered correctly and efficiently. A special category of the static membership

problem is the bitprobe model in which we evaluate our solutions w.r.t. the following

resources – the size of the data structure, s, required to store the subset S, and the

number of bits, t, of the data structure read to answer membership queries. It is the

second of these resources that lends the name to this model.

In this model, the design of data structures and query algorithms are known as

schemes. For a given universe U and a subset S, the algorithm to set the bits of our

data structure to store the subset is called the storage scheme, whereas the algorithm

to answer membership queries is called the query scheme. Schemes are divided into two

categories depending on the nature of our query scheme. Upon a membership query for

an element, if the decision to probe a particular bit depends upon the answers received in

the previous bitprobes of this query, then such schemes are known as adaptive schemes.

If the locations of the bitprobes are fixed for a given element of U , then such schemes

are called non-adaptive schemes.

Our work in this thesis gives improved bounds for various values of n,m, and

t. Bhurman et. al.[1] gave non explicit adaptive (2,m,O(m3/4), 2)-scheme. This was

further improved by Radhakrishnan et. al. [2] to explicit adaptive (2,m,O(m2/3), 2)-

scheme. We [3, 4] improve the (2,m,O(m2/3), 2)-scheme to (3,m,O(m2/3), 2)-scheme.

Later, Nicholson[5] came up with a (3,m,O(m2/3), 2)-scheme, and posed a problem that

if similar scheme exists for n = 4. We [6] answer their problem with a (4,m,O(m5/6), 2)-

scheme, and further improve the space to O(m4/5). Furthermore, we [7] come up with a

(5,m,O(m10/11), 2)-scheme. And, further we [8] improve the above scheme to O(m5/6).

For subsets of size five (n = 5), the best known lower bound was due to Alon and Feige [9]

which is Ω(m1/2). The Ω(m2/3) lower bound for n = 3 also puts an improved bound



for the n = 5 case. We [8] improve it to Ω(m3/4). Apart from this, we have given some

adaptive and non-adaptive schemes, which improves slightly the existing results in the

literature.
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“It is difficult and often impossible to judge the value of a problem correctly in

advance; for the final award depends upon the gain which science obtains from

the problem. Nevertheless we can ask whether there are general criteria which

mark a good mathematical problem. An old French mathematician said: “A

mathematical theory is not to be considered complete until you have made it

so clear that you can explain it to the first man whom you meet on the street”.

This clearness and ease of comprehension, here insisted on for a mathematical

theory, I should still more demand for a mathematical problem if it is to be

perfect; for what is clear and easily comprehended attracts, the complicated

repels us.”

–David Hilbert, Address to the International Congress of Mathematicians,

1900

1
Introduction

In computer science, data structure refers to a particular way of organizing and

storing data, usually in computer memory, so that it can be used efficiently. In the last

two decades, we have seen a massive increase in online data. For example, there are

billions of web pages on the internet. Further, we know that companies like Google or

DuckDuckGo handles around tens of thousands of queries on those web pages. In this

case, the obvious implementation of data structure where each query passes through all

the data element does not work well. So, we need data structures where every query to

the data set does not pass through all the data elements stored, and still uses minimal

possible space. To sum it up, we need time and space-efficient data structures to handle

the massively growing online data.

In this thesis, we study the space and time efficiency of few data structure problems.

So, we would aim to organize and store data in computer memory in such a way that

query operations on those data sets are optimized. Further, we would like to do this

using a minimum possible space. In the next section, we will first talk about the model

of computation, and then we will move to the problem statement and few definitions. In

the last section, we will talk about the outline of the thesis and our contribution.
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1.1. MODEL OF COMPUTATION

1.1 Model of Computation

The model of computation used in this thesis is named as bitprobe model. Minsky and

Papert first introduced this model in their 1969 book “Perceptron” [10]. This is a simple

model where memory is organized as cells, each capable of storing a single bit. Further,

memory is random access, and each query to the memory returns a single bit stored in

the query location. The complexity of data structure problems in this model is measured

in terms of the size of the data structure denoted by s, and the number of bits of the

data structure accessed denoted by t . It is the later of the two properties which lend its

name bitprobe model.

1.2 The Problem Statement

We study the static membership problem. In this problem– given a universe U containing

m elements, we want to store an arbitrary subset S of U whose size is at most n, such

that we can answer membership queries of the form “Is x in S?” efficiently. This problem

is static in a sense that we do not support insertion or deletion operation.

Solutions to the above-mentioned problems in this model are termed as schemes.

Each scheme consists of two parts, one is the storage scheme, and the other is query

scheme. Storage scheme maps an arbitrary subset S of cardinality n from a universe U

of size m given to be stored to the s bits of the data structure. Query scheme maps every

element belonging to the universem to the t locations of the data structure, and it decides

the membership of the query element by reading those t locations. Formally, storage

scheme is a function of the form φ :
([m]
≤n
)
→ {0, 1}s, that takes a set of size at most n and

returns its s-bit representation. On the other hand, query scheme associates with each

element x the t probe locations (i1(x), ..., it(x)) ∈ [s]t and a function f(x) : {0, 1}t → 0, 1.

The query schemes evaluate to one if and only if the query element is part of the set

given to be stored. The storage and query scheme together gives a (n,m, s, t)-scheme

which stores a subset S of size at most n from a universe U of size m and uses s bits in

such a way that membership query can be answered in t probes.

Let us discuss a few trivial solutions. Given a n elements subset S of universe U of

size m, we store all the elements in sorted order in memory. Storing all the elements will

take at most n lgm bits. Further, given a query element x ∈ U , we can do a binary search

2



1. INTRODUCTION

on the stored elements and find out whether a query element is part of the set given to

be stored or not. Number of queries taken in this solution will be at most (lg n lgm)

bits. If the size of universe U is very large then this solution takes a very small amount

of space, but at the cost of a large number of queries.

Let us now consider another trivial solution to the problem mentioned above. In

this solution, we store a table of size m in a memory, where each cell in the table is

capable of storing a single bit. Our table stores a single bit for each element of the

universe. If the element is part of the subset S given to be stored, then we store one

for that element. On the other hand, if the element is not part of the subset S given to

be stored, then we store zero for that element in the table. Now, given a query element

x ∈ U , we look into the table and say that query element is part of the subset given to

be stored if and only if the stored bit returned is one. Though the number of queries

required in this solution is one, the amount of our space, i.e. m is huge. In this thesis,

we will study the trade-offs between the amount of space taken, and the number of bit

queries made to answer the membership problem.

1.3 Definitions

In this section, we will give a few definitions associated with the schemes in the bitprobe

model.

1.3.1 Adaptive Scheme

If the location where the current bitprobe is going to be depends on the answer obtained

from the previous bitprobes, then such schemes are called adaptive schemes.

1.3.2 Non-Adaptive Scheme

If the location of the current bitprobe is independent of the answers obtained in the

previous bitprobes, then such schemes are called non-adaptive schemes.

1.3.3 Deterministic Scheme

A scheme is said to be deterministic if the answer returned by it is always correct.

3



1.4. HISTORICAL NOTES

1.3.4 Randomized Scheme

In this scheme query scheme has access to random bits. Further, this scheme can answer

incorrectly with a small probability.

1.3.5 Explicit or Non-Explicit Scheme

Non-explicit schemes use a probabilistic technique to show the existence of storage and

query schemes, but it does not tell how to construct it efficiently. Whereas in an explicit

scheme, storage and query scheme can be constructed efficiently. A scheme is said to be

fully explicit if storage scheme can be constructed in time polynomial in s and location

of the probe to be queried can be computed in time polynomial in lgm and t.

Radhakrishnan et al. [2] introduced the notation (n,m, s, t)A and (n,m, s, t)N to

denote the adaptive and non-adaptive schemes, respectively. Sometimes the space re-

quirement of the two classes of schemes will also be denoted as sA(n,m, t) and sN (n,m, t),

respectively.

Nicholson et al. [11] has surveyed the bitprobe model with discussions about the

current state of the art and a selection of open problems.

1.4 Historical Notes

Minsky and Papert in their 1969 book “Perceptron” [10] studied average case bitprobe

complexity of membership problem, this problem was further studied in context of re-

trieval problem by Elias and Flower [12]. Elias and Flower in his paper gave formal

model of retrieval problem. This problem was further studied by Yao [13] in the cell

probe model. In this model unlike bitprobe model each cell is capable of storing one

element, i.e lgm bits, and a single query to to memory returns lgm bits. Buhrman,

Miltersen and Radhakrishnan revived the study of bitprobe model computation. The

static membership problem is a well studied problem over several decades in this model

and it has been discussed in [1, 2, 5, 9, 11, 14, 15] and [16].

1.5 Thesis Outline and Contributions

The thesis is organized as follows:

4



1. INTRODUCTION

1.5.1 Chapter 1

This chapter introduces the static membership problem in bitprobe model. Further, we

give a few definitions and notations in the context of this problem. We end this chapter

with the outline and contribution of the thesis.

1.5.2 Chapter 2

In this chapter, we first give an explicit adaptive (2,m, 2.5m2/3, 2) scheme. This gives an

alternate scheme for the two probes adaptive scheme storing two elements. This scheme

also improves the constant factor of Theorem 2 of Radhakrishnan et al. [2]. Further, we

look into explicit adaptive (9,m, 7m2/3, 3) scheme. Earlier maximum number of elements

that could be handled using three adaptive probe and O(m2/3) space was five due to

Radhakrishnan et al. [2]. At the end of this chapter, we generalize this scheme. The

generalized result slightly improves Theorem 3 of Radhakrishnan et al. [2].

1.5.3 Chapter 3

This chapter starts with few simple explicit non-adaptive upper bounds, and finally uses

it to obtain an explicit non-adaptive scheme which uses slightly fewer bitprobes, and

slightly more space than the existing state of the art results.

1.5.4 Chapter 4

This chapter first presents an explicit adaptive (3,m, 3m2/3, 2) scheme. Earlier maximum

number of elements that could be handled using O(m2/3) space-bound and two adaptive

bitrobes was two due to Radhakrishnan et al. [2]. Further, we look into an explicit non-

adaptive (4,m,O(m2/3), 4) scheme, and improve it further to store the subset of size at

most five using the same amount of space. The earlier scheme for four non-adaptive bit

probe was generalized and non-explicit due to Noga and Alon [9], which uses O(m3/4)

amount of space.

1.5.5 Chapter 5

In this chapter, we give an explicit adaptive (4,m,O(m5/6), 2) scheme. Further, we

improve the space to O(m4/5). This answers an open problem posed by Patrick K.

5



1.5. THESIS OUTLINE AND CONTRIBUTIONS

Nicholson [5] which asked if a scheme using the idea of blocks due to Radhakrishnan

et al. [2] exists that stores four elements and answers membership queries using two

bitprobes.

1.5.6 Chapter 6

This chapter gives an explicit adaptive (5,m,O(m10/11, 2) scheme. Our scheme improves

upon the non-explicit by Garg and Radhakrishnan [15] which takes O(m20/21) space.

Further, our scheme also improves the explicit scheme by Garg [16] which takesO(m18/19)

space.

1.5.7 Chapter 7

In this chapter, we improve the lower bound for two probe scheme storing five elements

using the notion of the universe of sets in Kesh [17]. We also believe that the idea can

be generalized to give a lower bound for an arbitrary subset of size n. Furthermore, we

present an improved scheme for this problem which uses O(m5/6) space.

[[]X]\\

6



“...Ring the bells that still can ring

Forget your perfect offering

There is a crack, a crack in everything

Thats how the light gets in...”

–Leonard Cohen, Selected Poems, 1956-1968

2
Explicit Adaptive Bitprobe Scheme

2.1 Introduction

This chapter focuses on the study of set membership problem. In this problem, we are

given a subset S of size at most n from a universe U of size m, and our goal is to come

up with a succinct storage and query scheme which answers the membership queries of

the form “Is x in S?” We study this problem in the bitprobe model of computation. In

this model, complexity is measured in terms of the amount of space taken by the data

structure and the number of bit queries made to answer the membership query.

Solutions to the abovementioned problem in the bitprobe model are termed as

schemes, and it is represented by (n,m, s, t), where s and t represents the amount of

space taken, and the number of bit queries made to the data structure respectively.

Space required by such a scheme is also denoted as s(n,m, t). Schemes are classified

as adaptive and non-adaptive depending upon the nature of queries made. If, after

the first probe, subsequent probes depend upon the values of the previous probe, then

such schemes are called adaptive, otherwise, they are called non-adaptive. Furthermore,

schemes are also classified into non-explicit and explicit schemes. A non-explicit scheme

guarantees the existence of a scheme for some setting of n,m, s, and t, without showing

its construction. Whereas, explicit schemes give a construction of a scheme.

7



2.2. REVISITING TWO ADAPTIVE BITPROBE SCHEME

2.1.1 Our Contribution

Most of our schemes in this chapter uses the idea of Radhakrishnan et.al [2] to divide

universe U of size m into blocks and superblocks. Our adaptive schemes are based on

Theorem 2 of Radhakrishnan et al. [2]. Our first adaptive scheme (Theorem 2.1) in this

chapter improves the constant factor of Theorem 2 of Radhakrishnan et al. [2]. Our

second theorem (Theorem 2.2) presents an explicit adaptive scheme that can store at

most nine elements , and using O(m2/3) amount of space, i.e sA(9,m, 3) ≤ O(m2/3).

Previously, the maximum number of elements that could be handled using three adap-

tive bitprobe and O(m2/3) amount of space was five due to Radhakrishnan et al. [2].

Furthermore, we generalize this scheme to get (n,m, (2t−1)m2/3, 1+ dlg (d12b
n
2 ce+ 2)e)-

scheme(Theorem 2.3), which slightly improves the theorem 3 of Radhakrishnan et al.

[2].

2.2 Revisiting Two Adaptive Bitprobe Scheme

In this section, we look into adaptive schemes with two bitprobes (t = 2) and subset size

of at most two (n ≤ 2). For subsets of size two (n = 2), Radhakrishnan et al. [2] proposed

a scheme that takes 3m2/3 amount of space, and further conjectured that asymptotically

it is the minimum amount of space required for any scheme. Though progress has been

made to prove the conjecture [2, 14], it as yet remains unproven.

We start this section with a design of data structure which stores an arbitrary subset

S of size at most two from a universe U of size m, and answers membership queries in

two adaptive bitprobes using 2.5m2/3 bits of space.

2.2.1 The Bitprobe Model

The scheme presented in this section is an adaptive scheme that uses two bitprobes to

answer membership queries. We now discuss in detail the bitprobe model in the context

of two adaptive bitprobe.

The data structure in this model consists of three tables – T, T0, and T1 – arranged

as shown in Figure 2.1. Any element e in the universe m has a location in each of these

three tables, which are denoted by T (e), T0(e), and T1(e).

Any bitprobe scheme has two components – the storage scheme, and the query

8



2. EXPLICIT ADAPTIVE BITPROBE SCHEME

T

T0 T1

No Yes No Yes

0 1

0 1 0 1

Figure 2.1: The decision tree of an element.

scheme. Given a subset S, the storage scheme sets the bits in the three tables such that

the membership queries can be answered correctly. The flow of the query scheme is tra-

ditionally captured in a tree structure, called the decision tree of the scheme (Figure 2.1).

It works as follows. Given a query “Is x in S?”, the first bitprobe is made in table T

at location T (x). If the bit stored is 0, the second query is made in table T0, else it is

made in table T1. If the answer received in the second query is 1, then we declare that

the element x is a member of S, otherwise we declare that it is not.

2.2.2 Our Data Structure

Similar to the scheme by Radhakrishnan et al.[2], our scheme divides the universe U into

blocks of size m1/3, and then combines m1/3 consecutive blocks into superblocks. So, our

scheme will have m2/3 blocks, and m1/3 superblocks. We number the superblock from 0

to m1/3 − 1. Further, we name the first superblock as S0, second superblock as S1, and

so on. Superblocks are further divided into two groups, i.e, superblocks numbered even

and the superblocks numbered odd. We number the m1/3 blocks inside a superblock

from 0 to m1/3 − 1. We name the first block inside a superblock as B0, second block as

B1 and so on. Our scheme consist of three tables T, T0 and T1.

Table T contains one bit of space for each of the blocks as shown in Table 2.1 .

Thus, it uses m2/3 bits of space.

Structure of table T0 is shown in Table 2.2. Table T0 consist of m2/3 cells, each

capable of storing single bit. From storage point of view table T0 is divided into two

parts, first m2/3/2 bits are used to map blocks belonging to even superblocks, whereas

the next m2/3/2 bits are used to map blocks from odd superblocks. Further, combining

9



2.2. REVISITING TWO ADAPTIVE BITPROBE SCHEME

m1/3 consecutive bits of each part of the table T0, we get m1/3/2 blocks for the even

and the odd superblocks. Now, since each superblock has m1/3 blocks, and we have only

space for m1/3/2 blocks of a superblock, we superimpose the blocks such that block 0

(B0) and block 1 (B1) maps to the first block, block 1 (B1) and block 2 (B2) maps to

the second block and so on.

Structure of table T1 is shown in Table 2.3. Table T1 consist of m2/3/2 bits of space.

Combining m1/3 consecutive bits, we divide this table into m1/3/2 blocks of size m1/3.

Each block in this table is used to map blocks from two superblocks. Now, since we have

m1/3 superblocks, and the number of blocks in table T1 is m1/3/2, if each block maps

blocks from two superblocks, we can map all the blocks in table T1. So, the blocks from

superblock zero (S0) and the superblock one (S1) are mapped at first block, the blocks

from superblock two (S2) and the superblock three (S3) are mapped at the second block,

and so on.

......................

0 1 2 3 m2/3 − 1

Table 2.1: Mapping of blocks in table T

SE SO

← m1/3 → ← m1/3 →

............. .............

0 m1/3 − 1 m2/3/2− 1 0 m1/3 − 1 m2/3/2− 1

B0

B1

B2

B3

Bm1/3−2

Bm1/3−1

B0

B1

B2

B3

Bm1/3−2

Bm1/3−1

Table 2.2: Mapping of blocks in table T0

← m1/3 →

S0

S1

S2

S3

S4

S5

S6

S7

......................
Sm1/3−2

Sm1/3−1

0 m1/3− 1 2m1/3 − 1 3m1/3 − 1 4m1/3 − 1 m2/3/2− 1

Table 2.3: Mapping of blocks in table T1

10



2. EXPLICIT ADAPTIVE BITPROBE SCHEME

2.2.2.1 Query Scheme

Given a query element e ∈ [m], we first find out the block and the superblock to which

this element belongs. First query is made to the table T . If the bit returned by table T

is zero, next query is made to the table T0 otherwise to the table T1. We say the query

element is part of the set given to be stored if and only if the last bit returned is one.

2.2.2.2 Storage Scheme

Our storage scheme is divided into various cases, which takes into account all possible

way an arbitrary subset of size at most two can be chosen from [m]. Given an arbitrary

subset of size at most two, we set the bit of our three tables according to the following:

Case 1. Both elements belong to same superblock.

Case 1.1 Both elements do not belong to consecutive blocks of superblock. In this

case, we send both the blocks which contain elements given to be stored into table T0,

and store its characteristic vector there. Further, we send rest of the blocks to table T1,

and store its characteristic vector there.

Case 1.2 If both the elements belong to consecutive blocks of a superblock, then send

one of the block to T0, and the other block to T1. Further, all the other blocks of that

superblock are sent to T0, and all the blocks of the superblock conflicting with the ele-

ment sent to T1 is sent to T0, and rest of the block is sent to T1. Since the conflicting

superblock would be of opposite type, i.e, one of them will be even and other will be

odd, blocks having conflicting bit will not map at the same place.

Case 2 Both elements belong to different superblocks.

Case 2.1 If both elements do not belong to consecutive superblocks, then send both

the blocks which contains elements given to be stored to the table T1, and store its char-

acteristic vectors there . Further, rest of the blocks are sent to T0, where all the bits are

set to zero.

11
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Case 2.2 If both elements belongs to consecutive superblocks, then send both the blocks

which contains elements to be stored to table T0, and store its characteristic vector there.

Further, rest all of the blocks are sent to the table T1, where all the bits are set to zero.

2.2.3 Correctness

Blocks having elements are given separate space either in table T0 or in table T1, and

we have stored its characteristic vector there. So, the query belonging to these blocks

will always be answered correctly. Further, empty blocks, i.e, blocks which do not have

any elements given to be stored do not conflict with block having elements given to be

stored either in table T0 or in table T1, and we have stored zero for all of them. So the

query belonging to those blocks will also be answered correctly.

We summaries finding of this section in the following theorem:

Theorem 2.1. There is an explicit adaptive two bitprobe scheme, which stores an arbi-

trary subset of size at most two and uses 2.5m2/3 bits of space.

Let us now choose size of blocks and superblocks more carefully. Let x be the block

size, and we combine k consecutive blocks to form superblocks. So the size of table T

would be m/x. Size of table T0 would be kx. Furthermore, size of table T1 would be

1/2(m/kx) × x. Summing up the space taken by all the tables we get the following

equation:

f(k, x) =
m

x
+ kx+

m

2k
. (2.1)

Substituting x = 2k, and further choosing x = 21/3m1/3, we get space taken by the

data structure to be 3m2/3

21/3
. Which is approximately equal to 2.3811m2/3.

2.3 On the Three Adaptive Bitprobe Scheme

In Section 2.3.3, we present an explicit adaptive scheme that can store at most nine

elements using O(m2/3) amount of space, i.e sA(9,m, 3) ≤ O(m2/3). Previously, the

maximum number of elements that could be handled using three adaptive bitprobe and

O(m2/3) amount of space was five due to Radhakrishnan et al. [2]. Furthermore, in
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Figure 2.2: Decision tree for the three adaptive bitprobe

Section 2.3.4, we generalize this scheme to get (n,m, (2t−1)m2/3, 1+dlg (d12b
n
2 ce+ 2)e)-

scheme, which slightly improves the (n,m,O(n ·m2/3), 1 + dlg (dbn2 ce+ 2)e) of Radhakr-

ishnan et al. [2].

2.3.1 Previous Results

Most of the results in the bitprobe model are discussed in the survey paper by Nicholson

et al. [11]. In this section, we discuss the results in the context of our problem. Rad-

hakrishnan et al. [2] came up with an explicit adaptive (2,m,O(m2/3), 2)-scheme. Using

this scheme they came up with explicit adaptive (n,m, s, t)-scheme with s = O(n ·m2/3)

and t = 1 + dlg (dbn2 ce+ 2)e. They further generalized this scheme to come up with

explicit adaptive (n,m, s, 2 + log log n)-scheme where s is o(m) and n is O(m1/ lg lgm).

For three probes (t = 3), Alon and Feige [9] gave a non-explicit (n,m, s, 3)-scheme with

s = O(n1/3m2/3) and n = o(m). This result has been further improved by Garg and

Radharishnan [15]. They came up with a non-explicit adaptive s(n,m, s, 3)-scheme with

s = O(
√
mn lg 2m

n ).

2.3.2 Our Contribution

In this chapter, we have focused on the design of explicit schemes using blocks and

superblocks idea given by Radhakrishnan et al. [2]. For t = 3 and s = O(m2/3) the

maximum number of elements that can be stored using an explicit scheme is five (n = 5),

which is derived from (n,m,O(n ·m2/3), 1 + dlg (dbn2 ce+ 2)e)-scheme by Radhakrishnan

et al. [2]. Our first result improves this to the following.

13
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Result 2.1 (Theorem 2.2.). There is a three probe explicit adaptive scheme which stores

an arbitrary subset S of size at most nine (n = 9) from a universe U of size m, and uses

7 ·m2/3 bits of space.

Our second result generalizes the aforementioned scheme, and also slightly improves

the (n,m,O(n · m2/3), 1 + dlg (dbn2 ce+ 2)e)-scheme by Radhakrishnan et al. [2] to the

following.

Result 2.2 (Theorem 2.3.). There is an explicit adaptive (n,m, s, t)-scheme with t =

1 + dlg (d12b
n
2 ce+ 2)e and s = (2t − 1)m2/3 .

2.3.3 Our Data Structure for n = 9 and t = 3

In this section, we give a three probe explicit adaptive scheme storing at most nine

elements. Our scheme uses ideas which are similar to Radhakrishnan et al. [2] in the

Theorem 2 and 3, i.e given a universe U of size m, we divide it into blocks of size m1/3. So,

we have m/m1/3 = m2/3 blocks of size m1/3 each. Further, we collect m1/3 consecutive

blocks to form superblocks of size m2/3. So we have m/m2/3 = m1/3 superblocks of size

m2/3.

2.3.3.1 Decision Tree

In this scheme, we have seven tables of size m2/3 bits, as shown in Figure 2.2. Table T1

at the root of the tree contains one bit for each of the blocks. Similar to that table at

left(T2) and right(T3) child of table T1 contains one bit for each of the blocks. At the

leaf, we have four tables named as T4, T5, T6 and T7 from left to right. Table T4 has one

block of space for each superblock, so all the blocks of superblock one can be mapped at

first m1/3 bits of a Table T4. Similarly, all the blocks of superblock two can be mapped

to next m1/3 bits of Table T4 and so on. Now, we will talk about the mapping of blocks

in tables T5, T6 and T7. The first block from every superblock is given first m1/3 bits,

the second block from every superblock is given next m1/3 bits and so on. So we can see

that m2/3 bits of space in these tables are divided into blocks of size m1/3 bits and index

one block from every superblock can be mapped at block one in any of these tables.

Similarly, index two blocks from any superblock can be mapped to block two in any of

this table and so on.

14
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Given a query element x ∈ U , we find out the block which contains this element.

Further, we make a query to the bit contained for this block in table T1. If the bit

returned is zero, we make the next query to the table kept at the left child else to the

table at the right child. We continue in this way, and say the query element is part of

the set given to be stored if and only if the last query returns one.

2.3.3.2 Swap Technique

In Figure 2.3, we have shown that there are two superblocks, superblock A and superblock

B. superblock A is having two elements in it, and superblock B is having one element in

it. Furthermore, there are two tables T0 and T1. Table T0 has one block of space for each

superblock, and its structure is similar to table T4 explained earlier. Furthermore, table

T1 can store a complete superblock, and its structure is similar to table T5 as explained

earlier. In the arrangement shown in Figure 2.3, the second block of the superblock A

and superblock B cannot be stored together in table T1, since their position conflicts in

table T1. In this case, we send the block two of superblock A to table T0 and rest all the

blocks of this superblock to table T1. Furthermore, we send the block two of superblock

B to table T1 and rest all the empty blocks of this superblock are sent to table T0. We

can handle more nonempty blocks using this technique if we have more tables of type

T1. We call the technique described above as the swap technique and it has been used

throughout the chapter.

2.3.3.3 Storage Scheme

Since table T4 contains one block of space for each superblock, we can map all the blocks

of empty superblock there. So now our only concern is superblock having some element

from a set given to be stored. If a superblock contains two or more elements from a set

given to be stored, then we call such superblock as a heavy superblock. We divide our

storage scheme into two parts depending upon the number of heavy superblocks. Now,

since we are given a set of size at most nine, we can have either three or more heavy

superblocks or we can have less than or equal to two heavy superblocks.

Case 1. Let us first consider the case where we have less than or equal to two heavy

superblocks. In this case, we store the characteristic vector of heavy superblocks in the
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Figure 2.3: The swapping technique

tables T6 and T7. Now we could be left with superblocks having only one element. We

send the blocks having elements to table T4 and all the empty blocks to table T5. Now,

since table T4 contains one block of space for each superblock, blocks having an element

will not overlap in the table T4.

Case 2. Now, we are left with the case where we are having three or more heavy

superblocks. In this case, we store the three heavy superblocks in table T5, T6 and T7.

After this, we can be left with at most three blocks having elements in it, and we have

three tables T5, T6 and T7 to store it. So, we can use the swap technique described earlier

to store it.

2.3.3.4 Correctness

The correctness of the scheme relies on the fact that blocks having elements are given

separate space in one of the table. Also, empty and nonempty blocks are not mapped

to the same locations.

We summarize the finding of this section with the following theorem.

Theorem 2.2. There is a three probe explicit adaptive scheme which stores an arbitrary

subset S of size at most nine from a universe U , and uses 7 ·m2/3 bits of space.

In the next section, we will use similar technique to generalize this scheme.
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2.3.4 Generalized Scheme

We follow the same procedure as that of Theorem 2.2. So, we divide the universe into

blocks of size m1/3. We then merge m1/3 consecutive blocks to form superblocks of

size m2/3. So we have m1/3 superblocks of size m2/3. Moreover, we use swap technique

used in previous section to give an explicit adaptive (n,m, (2t− 1)m2/3, t)-scheme where

t = 1 + dlg (d12b
n
2 ce+ 2)e.

2.3.4.1 Our Approach

Given a n elements set from a universe of size m, we can have at most bn2 c superblock

which contains at least two elements. We store d12b
n
2 ce tables each having m2/3 bits

of space in it. Let us name these tables as a table of type T . Mapping of blocks in

these tables is similar to the mapping of blocks in tables T5, T6 and T7 explained in

Theorem 2.2. Apart from these d12b
n
2 ce tables we have two more tables of size m2/3 bits.

Let us call these tables as Table A and Table B. Mapping of blocks in these tables is

similar to that of table T4 in Theorem 2.2. So we have d12b
n
2 ce + 2 tables of size m2/3

bits, which we are using to map a universe of size m. We store these tables at the leaf

of a complete binary tree. Each internal node of this tree contains a table of size m2/3

bits, where we have stored single bit for every block.

2.3.4.2 Storage Scheme

Given a n elements set from a universe U of size m, we construct a decision tree with

d12b
n
2 ce + 2 leaves each capable of holding a table of size m2/3 bits. Such a decision

tree will have a height dlg (d12b
n
2 ce+ 2)e. At each internal node of the decision tree, we

store a table of size m2/3 bits. In these tables, we have one bit for each block. These

internal node guides blocks to the leaves. We follow the following procedure to map ele-

ments into the table. We first map all the blocks which are not having any element from

the set given to be stored to Table B. Now, our only concern is blocks of superblocks

having elements from the set given to be stored. We sort these superblocks according

to the number of elements it contains. The block(s) of superblock which contains a

maximum number of elements is given a place in the first table of type T . Then we

chose next superblock having a maximum number of elements and map the block(s)
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of that superblock having an element(s) in it to the second table of type T . In case

of tie, superblock can be chosen arbitrarily. We repeat this procedure until we have

finished mapping all the blocks having elements, or we have mapped blocks in all the

table of type T . At the end of this procedure, we can be left with the following two cases.

Case 1. We are left with superblocks having at most two elements in it. If the su-

perblocks contain only one element, we store the blocks belonging to those superblocks

containing an element in Table A. For the superblocks having two elements, we follow

the following procedure. Since we were giving preference to superblocks having more el-

ements while mapping, now we can be left with at most d12b
n
2 ce superblock each having

two elements in it. Now, since each superblock has one block of space in table A and

table B, we send one block from remaining superblocks having an element(s) in it to

the table A. Now we can have at most d12b
n
2 ce blocks belonging to different superblocks

having an element in it. We will accommodate these blocks using the swap technique

described earlier, in the table of type T . We pick a block from remaining blocks having

an element in it and map it to the first table of type T , and we map the block which

was initially mapped to that place to the table A. Now we take the second block and

repeat the procedure with the next table of type T . Since the number of blocks left were

at most d12b
n
2 ce, we would be able to accommodate all of them in the different table of

type T .

Case 2. We are left with superblocks having three elements in it. If we are left with a

superblock having three elements, then we must have accommodated at least 3d12b
n
2 ce

elements in the table of type T . Since we were always giving preference to a superblock

having more elements while storing in the table of type T . So we are now left with at

most dn4 e elements which can be part of at most dn4 e blocks. We use swap technique

described in case one to store the blocks in different tables of type T .

2.3.4.3 Query Scheme

Our query scheme has a binary tree of height dlg (d12b
n
2 ce+ 2)e as described above. It

stores the elements in the tables at the leaf nodes. Our query scheme starts from the

root node, and for a given element, it queries the bit corresponding to the block which
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contains it. If the bit returns one, it makes the next query to the table at right child

else; it makes a query to the table at the left child. This process continues until the

query is made at the table at a leaf node. If the last query returns one we say the

query element is part of the set otherwise, we say that the element is not part of the set

given to be stored. Since the height of the tree is dlg (d12b
n
2 ce+ 2)e our query scheme

makes t = 1 + dlg (d12b
n
2 ce+ 2)e queries. Space required by all the nodes of the tree is

s = (2t − 1)m2/3 bits.

2.3.4.4 Correctness

The correctness of the scheme relies on the fact that blocks which contain elements from

the set given to be stored are always given a separate place in one of the tables at the

leaf. Moreover, blocks which do not contain any elements from the set given to be stored

are always given a place in table B where every bit is set to zero. Hence the query

scheme always returns a correct answer.

We summarize the finding of this section with the following theorem.

Theorem 2.3. There is an explicit adaptive (n,m, s, t)-scheme with t = 1+dlg (d12b
n
2 ce+ 2)e

and s = (2t − 1)m2/3.

2.4 Conclusion

In this chapter, we have used the idea of Radhakrishnan et al. [2] to divide a universe U

of size m into blocks and superblocks. Using this idea, we have given an explicit adap-

tive scheme for storing subsets of size at most nine, which answers membership queries

with three bitprobes that improves upon the existing explicit schemes in the literature.

Additionally, we generalize the abovementioned scheme to a (n,m, (2t − 1)m2/3, 1 +

dlg (d12b
n
2 ce+ 2)e)-scheme, which slightly improves the Theorem 3 of Radhakrishnan et

al. [2].

[[]X]\\
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“The intellect has little to do on the road to discovery.

There comes a leap in consciousness, call it Intuition or

what you will, the solution comes to you and you don’t

know how or why”.

–Albert Einstein

3
Explicit Non-Adaptive Bitprobe Scheme

3.1 Introduction

In this chapter, we will present a few explicit non-adaptive schemes. Non-adaptive

schemes are different from adaptive schemes, in a way that in non-adaptive scheme

queries are made in parallel, rather than sequential. Our first non-adaptive scheme uses

a geometric technique proposed by Kesh [18] to map elements from a universe U of size

m on a rectangular grid. Using this technique, we have obtained a n+1 bitprobes scheme

storing n elements. Furthermore, we have used this scheme to come up with a generalized

scheme, which stores an arbitrary subset S of size n2 + 2n, and uses 1 + 2n+ dlg(n+ 1)e

bitprobes. Our scheme uses O(n1.5m2/3) amount of space. There is an explicit non-

adaptive scheme derived from the explicit adaptive scheme by Radhakrishnanet al. [2].

It stores an arbitrary subset S of size n using 2
√
n+ lg(n) non-adaptive bitprobes, and

uses O(n1/2m2/3) amount of space. If we compare this result with our non-adaptive

scheme in Theorem 3.3, we see that our scheme stores slightly more elements for the

same number of non-adaptive bitprobes. However, our scheme uses slightly more space

in terms of size of a subset, i.e. n given to be stored.

3.2 Non-adaptive Upper Bounds

In this section, we present a few simple upper bound on the non-adaptive scheme and

then use it to come up with better bounds for the same.
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3.2.1 A n+ 1 Probes Scheme Storing n Elements

Figure 3.1: Family of lines drawn with slope 1

We place elements from a universe U of size m on the rectangular grid of size x×y.

Further, given a subset S of size at most n from a universe U , we draw family of lines

on the rectangular grid with slope 1, 1/2, 1/3, ..., 1/n+ 1. Family of lines with slope 1 is

shown in Figure 3.1. Our scheme has n+1 tables, named as T1, T2, T3, ..., Tn+1. Table T1

contains one bit of space for each line drawn of slope one. Similarly, Table T2 contains

one bit of space for each line drawn of slope 1/2, and so on.

3.2.1.1 Query Scheme

Given a query element, we see the bit corresponding to all the n+1 lines passing through

it, in all the tables. We say the given query element is part of the set given to be stored

if and only if all the tables return one.

3.2.1.2 Storage Scheme

Given a subset S of size at most n from a universe U , we set the bits of all the lines passing

through these elements on the rectangular grid to be one. Further, bits corresponding

to the rest of the lines are set to zero.

3.2.1.3 Space of the data structure

Looking at the way lines are drawn in Figure 3.1, we can say that number of lines drawn

for the slope 1/i is less than or equal to x+ c · iy, where c is a constant. Summing it up

for all the slopes, we get total number of lines to be less than or equal to

nx+ c1n
2y (3.1)
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, where c1 is a constant. Since all the elements from a universe U of size m are mapped on

the rectangular grid of size m, we have xy = m. Substituting x = m/y in equation 3.1,

we get following equation

S(y) =
mn

y
+ c1n

2y. (3.2)

Further, choosing y = c · mn , we get space taken by our data structure to be O(n1.5m1/2).

3.2.1.4 Correctness

If the point is part of the set given to be stored, we have set the bit corresponding to all

the lines passing through the point to be one. So the query belonging to these elements

will always be answered correctly. Further, if the query element is not part of the set

given to be stored, then it can have at most n lines from elements S to be one. So, the

n+ 1th line passing through that element must have bit zero set for it. So query for this

element will also be answered correctly.

We summarize the finding of this section in the following theorem:

Theorem 3.1. There is a n + 1 probes explicit non adaptive scheme which stores an

arbitrary subset S of size at most n, from a universe U of size m and requires O(n1.5m1/2)

amount of space.

3.2.2 A n+ 3 Probes Scheme Storing 2n+ 1 Elements

In this scheme, we divide the universe U of size m into blocks of size m2/3. So, we have

m1/3 blocks of size m2/3. Further, our scheme has n+3 tables, named as T1, T2, ..., Tn+3.

Given a subset S of size at most 2n+ 1 from a universe U of size m, we use the following

procedure to answer the membership queries correctly.

3.2.2.1 Storage Scheme

In table T1, we store one bit for each block. Since there are m1/3 blocks, size of table

T1 will be m1/3. Further, since the subset given to be stored is of size at most 2n + 1,

there could be at most one block having n + 1 elements or more in it. We store zero

for the block having n+ 1 or more element in it, in table T1. For rest of the blocks, we

store one in table T1. Table T2 stores the characteristic vector of the block having at

least n + 1 elements. If there is not any block having at least n + 1 elements, we store
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all zeros in table T2. Now, we are left with blocks having at most n elements in it, and

we are left with n + 1 tables. There could be at most m1/3 blocks of such kind. We

use Theorem 3.1 to map the elements from such blocks in table T3, T4, ..., Tn+3. Space

taken by Theorem 3.1 would be cm1/3 · n1.5(m2/3)1/2. So the size of our data structure

is O(n1.5m2/3).

3.2.2.2 Query Scheme

Since our scheme is non-adaptive query for each element will be done in all the tables.

But, our query function is designed in such a way that if query is made from a block

having at least n+ 1 elements, it ignores the last n+ 1 queries. Also, our query function

ignore the first two probes if the query is from the block having at most n elements in

it. Our query function is

f(t1, t2, ..., tn+3) = (¬t1 ∧ t2) ∨ (t1 ∧ t3 ∧ t4 ∧ t5 ∧ ..... ∧ tn+3). (3.3)

Where t1, t2, ..., tn+3 are the bits returned for a query element in table T1, T2, ..., Tn+3.

It is easy to see that if the query is made from the block with at least n + 1 elements

in it, then query function ignores last n + 1 query, and since characteristic vector of

the block having at least n + 1 elements is stored in table T2, query will be answered

correctly. Further, if the query is made from other blocks, as these blocks contain at

most n elements from the set given to be stored, and we have n + 1 query left we can

answer correctly using Theorem 3.1.

We summarize the finding of this section in the following theorem.

Theorem 3.2. There is a n + 3 probes explicit non adaptive scheme which stores an

arbitrary subset S of size at most 2n + 1, from a universe U of size m and requires

O(n1.5m2/3) amount of space.

3.2.3 A 1 + 2n+ dlg(n+ 1)e Probes Scheme Storing n2 + 2n Elemnts

We follow the similar technique, mentioned in the description of Theorem 3.2. We divide

the universe U of size m, into blocks of size m2/3. So, we have m1/3 blocks. Given a

n2 + 2n elements subset S from the universe U , we can have at most n blocks with at

least n + 1 elements. We store the characteristic vector of these blocks separately, in
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tables numbered from 2 to n+ 1. In table T1, we have dlg(n+ 1)e bits of space for each

block . For the block having at least n + 1 elements, rank could be any number from

1 to n. For the blocks having at most n elements, we store dlg(n + 1)e zeros. So, the

size of table T1 is m1/3 lg (n+ 1). Furthermore, we use Theorem 3.1 to map the blocks

having at most n elements from the set given to be stored. Since there could be at most

m1/3 blocks of such kind, total space taken by our data structure is

S ≤ m1/3 lg (n+ 1) + nm2/3 + cn1.5m2/3 = O(n1.5m2/3). (3.4)

Our query function behaves similar to Theorem 3.2. If a query is made from the

block having at least n+ 1 elements it ignores all the tables except the table belonging

to its rank, where it’s characteristic vector is stored. On the contrary, if the query is

made from the block having at most n elements, it ignores the bit returned by tables

which stores characteristic vectors of blocks having at least n+ 1 elements, and answer

the query depending upon the last n+ 1 queries. Correctness follows from Theorem 3.2.

We summarize the finding of this subsection in the following theorem.

Theorem 3.3. There is a 1+2n+dlg(n+1)e probes explicit non adaptive scheme which

stores an arbitrary subset S of size at most n2 + 2n, from a universe U of size m and

requires O(n1.5m2/3) amount of space.

3.3 Conclusion

In this chapter, we have come up with a non-adaptive scheme, which stores an arbitrary

subset S of size n. Our scheme uses slightly fewer bitprobes, and slightly more space

than the existing state of the arts results in terms of n.

[[]X]\\
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“Archimedes will be remembered when Aeschylus is for-

gotten, because languages die and mathematical ideas do

not.”

–G.H. Hardy, A Mathematicians Apology

4
Two Improved Bitprobe Scheme for

Storing Small Sets

4.1 Introduction

As discussed in previous chapters, in this chapter as well, we consider a universe U of m

elements. Further, we consider a subset S of U containing n elements. In the bitprobe

model, we study the problem of storing the subset S in a data structure of size s such that

membership queries can be answered by probing at most t bits of the data structure. For

a given m and n, the schemes in this model try to optimize the space used by the data

structure, s, and the number of bitprobes used for membership queries, t. Such schemes

are often denoted by (n,m, s, t). To decide membership of an element of U in the subset

S, the location of a bitprobe might depend on the answers of the previous bitprobes.

Such schemes are called adaptive. If the location of every bitprobe is independent of the

answers we receive in other bitprobes, the schemes are called non-adaptive. Nicholson et

al. [11] has surveyed the bitprobe model with discussions about current state of the art

and a selection of open problems.

In this chapter, we use the idea of Kesh [18] to map the elements from universe U of

size m on integral point of suitable size cube. Further, we draw lines passing through the

integral points of the cube to partition the universe into sets. Specifically, we partition

the cube with respect to X ,Y and Z-axis. Further, we see the interaction of various sets
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to come up with a storage and query scheme to store a subset S given to be stored.

4.1.1 The Problem Statements

In particular, we address the following two problems. The first one is to design an

explicit adaptive scheme for storing three elements and deciding membership queries

using two bitprobes, i.e., an adaptive scheme for the case when n = 3 and t = 2. A

corollary of this scheme would be a non-adaptive scheme for n = 3 and t = 3. The

second problem we tackle is to design a non-adaptive scheme which decides membership

using four non-adaptive bitprobes, i.e., a non-adaptive scheme with t = 4. For four non-

adaptive bitprobes, we give a scheme which stores an arbitrary subset of size at most

four and uses O(m2/3) amount of space. Further, we improve it to store a subset of size

at most five, using asymptotically same space.

4.1.2 Previous Results

Alon and Fiege [9] in their seminal paper presented an adaptive (n,m, s, 2) scheme where

s = o(m). This scheme has been further improved by Garg and Jaikumar Radhakrish-

nan [15], they have proposed a generalised scheme that can store arbitrary subsets of size

n, where n < logm, and uses O(m1− 1
4n+1 ) amount of space. For the particular case of

n = 3, the space requirement turns out to be O(m12/13). Garg [16] further improved the

bounds to O(m1− 1
4n−1 )(for n < (1/4)(logm)1/3), which improved the scheme for n = 3

to O(m10/11). The explicit scheme that accomodates the most number of elements for

t = 2 and uses O(m2/3) amount of space is due to Radhakrishnan et al. [2], where they

present a (2,m,O(m2/3), 2)-scheme.

For the case n = 3 and t = 3 in the non-adaptive bitprobe model, there does not

exist any explicit scheme with s = O(m2/3).

In the non-adaptive bitprobe model, the best known explicit scheme with t = 4

and s = o(m) is due to Blue [19], and their scheme can handle a subset of size at most

three(n = 3); the best known non-explicit scheme is due to Alon and Fiege [9], and it

can handle n = o(m).
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4.1.3 Our Contribution

We present an explicit adaptive scheme for n = 3 and t = 2 that uses s = O(m2/3) bits

of storage. This scheme improves upon the (2,m,O(m2/3), 2) scheme of Radhakrishnan

et al. [2]. It uses a technique by Kesh [18] of mapping the elements of our universe into

the integral points of a three dimensional cube, and then looking into the projections

of the various points onto the two dimensional faces of the cube. A by-product of this

scheme is a non-adaptive scheme for n = 3 and t = 3, and using s = O(m2/3) bits. Our

next scheme is a non-adaptive scheme for n = 4 and t = 4, and uses s = O(m2/3) bits.

This scheme, too, uses the approach described above. Furthermore, we have used idea

of Radhakrishnan et al. [2] to divide a universe into blocks and superblocks. Using this

idea we have improved our non-adaptive scheme to store subset of size five (n = 5) using

four non-adaptive bitprobes (t = 4), and still using s = O(m2/3) bits of space.

4.2 Adaptive Scheme for n = 3 and t = 2

In this section, we present two adaptive bitprobe data structure storing three elements.

4.2.1 Arrangement of Elements

In the three dimensional space with coordinate axes x, y, and z, consider a cube in the

first orthant. The cube has sides of magnitude m1/3, and it is so placed that one of its

vertices lies on the origin, and its sides are parallel to the coordinate axes. The number

of points, within and on the cube, with all integer coordinates is m. We place all of

the m elements of our universe U on those points. Going forward, we would refer to an

element of U by the coordinates of the point on which it lies. As an example, an element

of U lying on the point (a, b, c) will be called as the element (a, b, c). As a consequence,

we will use the words ‘element’ and ‘point’ interchangeably.

Based on simple geometric constructions, we now define four distinct partitions of

our universe U . The partitions are named X ,Y,Z, and D. We start by defining the

partition X .

For an element (a, b, c), the set X(a, b, c) is defined as follows. Draw a line through

the point (a, b, c) which is normal to the yz-plane and parallel to the x-axis. The elements
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y

z

x

Figure 4.1: Elements placed on three dimensional cube

of U that falls on this line belong to the set X(a, b, c). More formally,

X(a, b, c) = { (d, e, f) ∈ U | e = b and f = c } .

The next two observations would prove that for two elements (a, b, c) and (d, e, f) of

our universe, the corresponding sets X(a, b, c) and X(d, e, f) are either equal or disjoint.

Observation 4.1. If an element (d, e, f) belongs to the set X(a, b, c), then the sets

X(a, b, c) and X(d, e, f) are equal.

Proof. From the geometric intuition of the sets X(a, b, c) and X(d, e, f), it is clear that

the two sets must be equal. There is only one line that is normal to the yz-plane, is

parallel to the x-axis, and passes through both the points.

We now argue the same formally. As (d, e, f) belongs to X(a, b, c), we have e = b

and f = c. So, the point (d, e, f) is actually the point (d, b, c). Let (g, h, i) be a member

of X(d, b, c). Then, we must have h = b and i = c. So, the point (g, h, i) is the

same as the point (g, b, c), and hence, it also belongs to X(a, b, c). Therefore, we have

X(d, e, f) ⊆ X(a, b, c).

What we have argued so far is the following – if a point (d, e, f) belongs to the set
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X(a, b, c), then X(d, e, f) ⊆ X(a, b, c). If we can now prove that the point (a, b, c) also

belongs to the set X(d, e, f), then we would have established that X(a, b, c) ⊆ X(d, e, f),

which in turn would prove the observation.

As it is given that (d, e, f) ⊆ X(a, b, c), so, we have e = b and f = c. So, the

point (a, b, c) is actually the point (a, e, f), and from the definition of the set X(d, e, f),

if follows that (a, b, c) = (a, e, f) ∈ X(d, e, f).

Observation 4.2. If an element (d, e, f) does not belong to the set X(a, b, c), then the

sets X(a, b, c) and X(d, e, f) are disjoint.

Proof. The geometric interpretation of the sets X(a, b, c) and X(d, e, f) tells us that if

the point (d, e, f) does not lie on the line defining the set X(a, b, c), then the line defining

the set X(d, e, f) is parallel to the line X(a, b, c). We proceed to argue formally.

As the point (d, e, f) does not lie on the line defining the set X(a, b, c), then either

e 6= b, or f 6= c, or both. Without loss of generality, let us assume that the y-coordinates

of the two points are unequal, i.e. e 6= b. For an arbitrary point (g, h, i) belonging to

the set X(d, e, f), we have h = e 6= b. So, the point (g, h, i) cannot belong to the set

X(a, b, c). This proves that the sets X(a, b, c) and X(d, e, f) are disjoint.

We now define the partition X as follows –

X =
{
X(0, a, b) | 0 ≤ a, b < m1/3

}
.

For X to be a partition, the sets forming X must be disjoint and they must cover the

whole universe U . Observation 4.2 guarantees that the first property is satisfied. We

prove next that every element of U belongs to some member of X . This is easy to see as

an element (a, b, c) lies on the line defining the set X(0, b, c).

The following lemma states the size of the partition.

Lemma 4.1. The size of the partition X is m2/3.

Proof. This is an easy consequence of the definition of X .

The partitions Y and Z are similarly defined. We start by defining the sets Y (a, b, c)
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and Z(a, b, c).

Y (a, b, c) = { (d, e, f) ∈ U | d = a and f = c } ;

Z(a, b, c) = { (d, e, f) ∈ U | d = a and e = b } .

So, the set Y (a, b, c) is defined by the line through the point (a, b, c) which is normal to

the xz-plane and parallel to the y-axis. Similarly, the set Z(a, b, c) is defined by the line

through the point (a, b, c) which is normal to the xy-plane and parallel to the z-axis. We

can now define the partitions Y and Z.

Y =
{
Y (a, 0, b) | 0 ≤ a, b < m1/3

}
Z =

{
Z(a, b, 0) | 0 ≤ a, b < m1/3

}
We can also make the following comment about the size of these partitions.

Lemma 4.2. The size of the partitions Y and Z are both equal to m2/3.

We will not formally argue any of the facts about the partitions Y and Z as the

arguments follows closely along the lines of the proof of the properties of partition X .

The last partition we define is the partition D. It will be used in the next chapter.

As usual, we start by defining the set D(a, b, c). This set consists of all those points that

lie on that line through the point (a, b, c) which lies completely on the xy-plane through

the point and has a slope of 45◦ on that plane. Formally, the set is defined thus.

D(a, b, c) = { (d, e, f) ∈ U | f = c and d− a = e− b }

Finally, the partition D is defined as follows.

D =
{
D(a, 0, b) | 0 ≤ a, b < m1/3

} ⋃ {
D(0, a, b) | 0 ≤ a, b < m1/3

}

The size of this partition is given in the following lemma.

Lemma 4.3. The size of partition D is 2×m2/3.

Again, the proof of the properties of this partition follows directly from the geo-

metric interpretation of the sets that form the partition, and we leave it for the reader

to argue.
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4.2.2 Our Data Structure

Our data structure consists of three tables, one for each of the partitions X ,Y, and Z

of Section 4.2.1. To abstain from introducing too many notations and risk losing clarity,

we abuse the notation for the partitions and use them to denote the tables in our data

structure as well. It will be clear from the context whether the notation X denotes the

partition of U or the table corresponding to that partition.

For every set in the various partitions, we reserve one bit in the corresponding table

in our data structure. Again, we abuse the notation and use the name for a set to also

refer to its corresponding bit in our data structure. To take an example, X(a, b, c) would

refer to a set in partition X and also the bit reserved for the set in the table X .

The following lemma follows directly from the Lemmas 4.1 and 4.2.

Lemma 4.4. The size of our data structure is 3×m2/3.

4.2.3 The Query Scheme

In the adaptive bitprobe model, the query scheme is described by a binary tree, called

in the literature as the decision tree. This tree tells us the location of a bitprobe, given

that the answers of the previous bitprobes are known. The decision tree for our scheme

is shown in Figure 4.2.

Consider an element (a, b, c) of U , and we want to determine whether the element

belongs to the subset S. From the definitions of sets and partitions, we know that the

element belongs to the set X(0, b, c) in table X , the set Y (a, 0, c) in Y, and the set

Z(a, b, 0) in table Z. The decision tree tells us that the first query will be made in table

Z. The location of the bitprobe will be at Z(a, b, 0). If the bit stored in that location is

0, we need to follow the left child and query the location Y (a, 0, c) in table Y. On the

other hand, we need to query the location X(0, b, c) in table X if the bit stored is 1. We

deduce that the element (a, b, c) belongs to the subset S if and only if the second query

returns 1.

4.2.4 The Storage Scheme

Consider an arbitrary subset S = { (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) } of our universe U .

The storage scheme describes how to set the bits of our datastructure so that the query
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Figure 4.2: The decision tree for the adaptive bitprobe scheme.

scheme can answer correctly. The assignment of bits depend on the how the members

of S are chosen from U . We describe each such case separately, and provide the proof of

correctness alongside it.

Case I Let us consider the scenario when the x-coordinate of the three points are

equal, i.e. a1 = a2 = a3 = a (say). The members of S in this case looks like

{ (a, b1, c1), (a, b2, c2), (a, b3, c3) }. We set the bits in table Z as follows – Z(a, b1, 0) =

Z(a, b2, 0) = Z(a, b3, 0) = 1. The rest of the bits in the table is set to 0. In table Y,

all bits are set to 0. In table X , we have the following arrangement – X(0, b1, c1) =

X(0, b2, c2) = X(0, b3, c3) = 1, and the rest of the bits are set to 0.

We now argue that in this case the query algorithm gives correct answers. It is easy

to see that the query scheme for any element of subset S will always return Yes. If any

member of S is queried, the assignment of the bits in table Z tells us that it will get a 1,

and hence query table X . In table X , precisely those bits that correspond to the three

members of S have been set to 1.

Let us now consider an element (a′, b′, c′) of U which upon query in our datastruc-

ture got a Yes. Then it must got the Yes from table X as all the bits of table Y are

set to 0. To go to table X , it must get a 1 from table Z. Without loss of generality,

let it get the 1 from the bit Z(a, b1, 0). So, it must be the case that a′ = a and b′ = b1,

and the element in question is (a′, b′, c′) = (a, b1, c
′). In table X , it will query such a bit

whose y-coordinate is b1, and which has been set to 1. One such bit is X(0, b1, c1). If

b1 = b2, then X(0, b2, c2) could also be a possible candidate. If our element queries the

bit X(0, b1, c1), then c′ = c1. So, the element in question is (a′, b′, c′) = (a, b1, c1), which

34



4. TWO IMPROVED BITPROBE SCHEME FOR STORING SMALL SETS

indeed is a member of S. We can argue similarly in other cases as well.

Case II Let us now consider the scenario where two elements of S have the same

x-coordinate, and the remaining element’s x-coordinate is different from the other two.

Without loss of generality, let a1 = a2 = a (say), and a 6= a3. So, the elements of the set

S are { (a, b1, c1), (a, b2, c2),

(a3, b3, c3) }. We would consider two subcases, one in which the y-coordinate of the third

element is equal to the y-coordinate of one of the first two elements, the other in which

the y-coordinate of the third element is distinct from the y-coordinates of the first two

elements.

Case II(A) We consider the first subcase here, in which the y-coordinate of the

third element is equal to the y-coordinate of one of the first two elements. Without loss of

generality, let b1 = b3 = b (say). So, the elements of S are { (a, b, c1), (a, b2, c2), (a3, b, c3) }.

A further complication might arise if b = b2. We consider the possibility in the subcases

below.

Case II(A)(a) Let us consider the scenario where b 6= b2. So, the elements of

S remain as { (a, b, c1), (a, b2, c2), (a3, b, c3) }. If such is the case, in table Z, we set

Z(a, b′, 0) = 1, for all b′ 6= b. We also set Z(a3, b, 0) = 1. The rest of the bits of table Z

are set to 0. In table Y, we set Y (a, 0, c1) = 1, and all the other bits to 0. Finally, in

table X , we set X(0, b2, c2) = X(0, b, c3) = 1, and the other bits to 0.

We now argue that this arrangement of bits in our datastructure is correct. The

first member of S, namely (a, b, c1), will get a 0 from table Z (Z(a, b, 0) has been set

to 0), go to table Y at Y (a, 0, c1) and get a 1. As Z(a, b2, 0) and Z(a3, b, 0) have both

been set to 1, the second and the third elements of S will go to table X at the locations

X(0, b2, c2) and X(0, b, c3), respectively, and get 1. So, the query scheme for all the

members of S will return Yes.

Consider an element (a′, b′, c′) that got a Yes upon query in our datastructure.

Since both tables Y and X have one or more bits set to 1, (a′, b′, c′) could have got its

Yes answer from either of them.

Let us first consider the case where the element (a′, b′, c′) went to table Y and got

its 1 from there. Y (a, 0, c1) is the only bit in that table that is set to 1. So, we have

a′ = a and c′ = c1, which makes the element (a′, b′, c′) to be (a, b′, c1). The only bit
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in table Z which is set to 0 and has its x-coordinate as a is Z(a, b, 0), and our element

must query this bit. So, we further have b′ = b. Thus the element (a′, b′, c′) = (a, b, c1),

a member of S.

The other case to consider is when the element (a′, b′, c′) went to table X and got

a Yes. The way bits are set in X , we have either b′ = b2, c
′ = c2 or b′ = b, c′ = c3.

So, the element could be one of (a′, b2, c2) and (a′, b, c3). The only way (a′, b2, c2) can

get a 1 in table Z is by querying the bit Z(a, b2, 0), which implies that a′ = a, and

(a′, b′, c′) = (a, b2, c2). (a′, b, c3) can get a 1 from table Z by querying the bit Z(a3, b, 0).

So, we have a′ = a3, and hence (a′, b′, c′) = (a3, b, c3). So, in all of the cases, (a′, b′, c′)

turns out to be a member of S.

Case II(A)(a)(b) We next consider the case where b = b2. The elements of S,

now, would be { (a, b, c1), (a, b, c2), (a3, b, c3) }. This case is not too dissimilar from the

previous case in the arrangement of its elements. The assignment of table Z remains

unchanged. In table Y, we set Y (a, 0, c1) = Y (a, 0, c2) = 1, and all the other bits to 0.

Finally, in table X , we set X(0, b, c3) = 1, and the other bits to 0.

The proof of correctness is similar to the previous case, and we omit it for the sake

of brevity.

Case II(B) We now consider the second subcase where the y-coordinate of the

the third element is distinct from the y-coordinate of the other two elements. So, the set

S is { (a, b1, c1),

(a, b2, c2), (a3, b3, c3) }. If such is the case, we set Z(a, b1, 0) = Z(a, b2, 0) = Z(a3, b3, 0) =

1, and the rest of the bits of table Z to 0. All bits of table Y are set to 0. The table X ,

only the following bits are set to 1 – X(0, b1, c1), X(0, b2, c2), X(0, b3, c3).

We again argue that only elements of S upon query in our datastructure will get a

Yes answer. Only those bits of tables Z and X that correspond to the members of S are

set to 1. So, the members of S will query table Z, get 1 and consequently query table

X and get Yes.

Let (a′, b′, c′) be an arbitrary element which got a Yes from our datastructure. Then,

it must go to table X to get that answer, as all the elements of table Y are set to 0. Let

it be the case that it got a 1 by querying the bit X(0, b1, c1). So, it must be the case that

b′ = b1 and c′ = c1, and hence (a′, b′, c′) = (a′, b1, c1). For such an element to get a 1 from

table Z, it must query Z(a, b1, 0), and thus a′ = a. So, we have (a′, b′, c′) = (a, b1, c1),
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a member of S. We can similarly argue that if (a′, b′, c′) queries some other bit in X to

get a 1, it will still be a member of S.

Case III The last case to consider is when the x-coordinates of all the members of

S are distinct. We set the bits of the three tables as follows. In table Z, Z(a1, b1, 0) =

Z(a2, b2, 0) = Z(a3, b3, 0) = 0, and the rest of the bits are set to 1. In table Y,

Y (a1, 0, c1) = Y (a2, 0, c2) = Y (a3, 0, c3) = 1, and the other bits are set to 0. All bits in

table X are set to 0.

We first prove that the members of S upon query will get Yes. Bits in table Z

corresponding to the three members are set to 0, so the second query for all of the

members will be made in table Y. In table Y, all the bits corresponding to the members

of S have been set to 1, hence they will get a Yes.

Now we argue that if an element, say (a′, b′, c′), upon query in our datastructure

got a Yes, then it must be a member of S. The element can get a Yes only from table

Y. Without loss of generality, let us assume that it queried Y (a1, 0, c1). In this case, we

have a′ = a1, c
′ = c1, and hence (a′, b′, c′) = (a1, b

′, c1). In table Z, it must get a 0 so

that it can go to table Y, and the only bit which is set to 0 and whose x-component is

a1 is the bit Z(a1, b1, 0). This gives us b′ = b1, and thus (a′, b′, c′) = (a1, b1, c1), which is

a member of S.

This concludes the description of the storage scheme and our proof of correctness.

We can now summarise the conclusions of this section as follows.

Theorem 4.5. There is an explicit adaptive (3,m, 3×m2/3, 2) scheme.

This scheme also gives rise to a non-adaptive scheme. If we decide to probe all

the tables of our decision tree irrespective of the findings on our first query in table Z,

then we would have made three bitprobes in our datastructure, instead of two. More

importantly, the scheme now becomes non-adaptive as the location of every query is fixed.

The query scheme, on getting the results of the three queries, can now decide membership

by consulting the decision tree of Figure 5.1. Thus, we can claim the following.

Corollary 4.1. There is an explicit non-adaptive (3,m, 3×m2/3, 3) scheme.
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4.3 A Non-adaptive Scheme for n = 4 and t = 4

We present our final scheme, an explicit non-adaptive scheme for four elements (n = 4)

and four queries (t = 4).

4.3.1 Our Data structure

Our data structure consists of four tables, one for each partition of Section 4.2.1, namely

X ,Y,Z, and D. As in the previous section, we refrain from introducing too many

notations and use the notations for the partitions to denote the tables in our data

structure as well. Furthermore, we reserve one bit for every set in a partition in its

corresponding table. As before, we use the same name for the sets in the partitions and

the corresponding bits in the tables. As an example, D(a, b, c) would refer to a set in

partition D and also the bit reserved for the set in the table D.

The following lemma follows directly from the Lemmas 4.1, 4.2, and 4.3.

Lemma 4.6. The size of our data structure is 5×m2/3.

4.3.2 The Query Scheme

If we want to ascertain the membership in set S of an element (a, b, c) of U , we query its

corresponding bits in each of the tables of our data structure, namely the bit X(0, b, c, )

in table X , the bit Y (a, 0, c, ) in table Y, and so on. Upon receiving the query answers,

we apply the majority function to determine the membership in S. If the majority of

the bits returned is 1, then and only then we declare that the element in question is a

member of S.

4.3.3 The Storage Scheme

In this section, we describe how to set the bits of our data structure such that the query

scheme can correctly answer membership queries. The way bits are set depends upon

how the members of S are chosen. We discuss below each such case, and provide proof

of correctness of the scheme alongside it.

In the following discussion, we assume that S = {(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), (a4, b4, c4)}.
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Case I – Let us assume that all the four members of S lie in the same xy-plane, i.e.

c1 = c2 = c3 = c4 = c(say). In this case, we set the bits corresponding to each member

of S in tables X ,Y, and Z to 1. The rest of the bits in all of the tables, including D, are

set to 0. So, for the element (a1, b1, c), X(0, b1, c) = Y (a1, 0, c) = Z(a1, b1, 0) = 1, and

similarly for the other members of S.

We now provide the correctness proof of our scheme in this scenario. Let us assume

that an element (a′, b′, c′), upon query in our data structure, has got the majority of its

answers as 1. As all of the bits of table D is set to 0, it must get 1 from each of the

tables X ,Y, and Z. As only four bits in table Z are set to 1, let us assume that it got its

1 from the bit Z(a1, b1, 0). This implies that a′ = a1 and b′ = b1, and hence the point in

question is (a1, b1, c
′). This point also got a 1 when it queried table X . This table also

has four bits set to 1 corresponding to the four members of S. The element (a1, b1, c
′)

will query such of bit of X which is set to 1 and whose y-coordinate is b1. X(a1, b1, c)

is one such bit. If b1 = b2, then X(a2, b2, c) is also a possible candidate. Let us assume

that (a1, b1, c
′) queried the set X(a1, b1, c). It immediately gives us c′ = c, and thus the

point (a′, b′, c′) is actually the point (a1, b1, c), which indeed is a member of S. We can

similarly argue if other sets are queried.

Case II – We now assume that three members of S are in one xy-plane, and the other

member is in a different plane. Let the three members in the same plane be the first

three members of S. So, we have c1 = c2 = c3 = c(say), and c4 6= c. This scenario gives

rise to two different arrangement of the elements that have to be handled differently.

Case II(A) – Let us assume that in partition Z, the element (a4, b4, c4) lies in one

of the sets of the other three elements of S. Without loss of generality, let that element

be (a1, b1, c). From Observation 4.1, if (a4, b4, c4) ∈ Z(a1, b1, c) then Z(a4, b4, c4) =

Z(a1, b1, c) = Z(a1, b1, 0). Thus, we have a1 = a4 and b1 = b4. So, the four elements

of S are {(a1, b1, c), (a2, b2, c), (a3, b3, c), (a1, b1, c4)}. If that is the case, we set the bits

corresponding to each member of S in tables X ,Y, and Z to 1. The rest of the bits in

all of the tables, including D, are set to 0.

If an element (a′, b′, c′) got a majority of its query answers as 1, it must get those

from tables X ,Y, and Z. In table Z, it can either query the bit Z(a1, b1, 0) or any of the
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other two sets that are set to 1. If it queries Z(a1, b1, 0), we have a′ = a1 and b′ = b1. In

table X , it will query such a set whose y-coordinate is b1 and which is set to 1. Two such

sets are X(0, b1, c) and X(0, b1, c4). If b1 = b2, then X(0, b2, c2) is another candidate.

If our element queries X(0, b1, c1), then we have c′ = c, and thus (a′, b′, c′) = (a1, b1, c)

which is a member of S. We can similarly argue the other cases.

If instead of querying the set Z(a1, b1, 0) in table Z, if (a′, b′, c′) queries any of the

other sets that are set to 1, say Z(a2, b2, 0), we can similarly argue that the element

(a′, b′, c′) will again be a member of S. We leave the details in such cases to the reader.

Case II(B) – We now consider the scenario when the element (a4, b4, c4) does not

lie in any of the sets of the other three elements in partition Z. Then for the element

(a4, b4, c4), we set the bits X(0, b4, c4) and Y (a4, 0, c4) in tables X and Y, respectively,

to 1. Also in table D, we set one of the bits D(a4 − b4, 0, c4) or D(0, b4 − a4, c4) to 1,

according as a4 is greater than or less than b4. Without loss of generality, let us assume

that a4 ≥ b4. For the other three elements, we set their bits in tables X ,Y, and Z to 1.

All the other bits in all of the tables are set to 0.

Consider an element (a′, b′, c′) which got majority of its queries as 1. The z-

coordinate of the point could either be equal to c, or be equal to c4, or it could be

distinct from both c and c4. We consider each of these cases separately.

Case II(B)(i) – Let c′ be different from c and c4. Then, its queries into the tables

X and Y must return 0. This is due to the fact that the z-coordinates of all the bits

that are set to 1 in tables X and Y are either c or c4. To take an example, if it queried

the bit X(0, b1, c) and hence got a 1, then c′ = c, which contradicts our assumption. So,

in this scenario, the element (a′, b′, c′) cannot get more than two 1s, and hence no such

element can get a Yes answer.

Case II(B)(ii) – Let c′ be equal to c4. To get a majority of its answer as 1, it

must get a 1 from one of the tables X and Y. Let it be the table X . We want such a set

of X which has its z-coordinate equal to c4 and is set to 1. The only set satisfying the

constraints is X(0, b4, c4), which gives us b′ = b4.

We now look at query it made in table D. If it returned a 0, then for the sake of
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majority, its query into table Y must return 1. The set whose z-coordinate is c4 and is set

to 1 in this table is Y (a4, 0, c4), and hence a′ = a4. So, we have (a′, b′, c′) = (a4, b4, c4),

a member of S. If the query made in table D returned a 1, then it must be the

case that a′ − (a4 − b4) = b′ − 0 = b4 − 0, which implies that a′ = a4. So, we have

(a′, b′, c′) = (a4, b4, c4), a member of S. Other cases similarly follows.

Case II(B)(iii) – The final case we look into is when c′ = c. As all bits that are

set to 1 in table D has the z-coordinate equal to c4, the element (a′, b′, c) must get a 0

upon query in this table. So, the query answers from all the other tables must be 1. In

table Z, there are three sets whose corresponding bits are set to 1. If the element queries

the set Z(a1, b1, 0), then we have a′ = a1 and b′ = b1. So, the element (a′, b′, c′) must be

(a1, b1, c), a member of S. We can argue the other cases similarly.

Case III – We now consider the scenario when at most two members of S belong to

the same xy-plane. This case is much simpler that the previous ones – we set the bits

corresponding to the members of S in tables X , Y and D to 1, and the rest of the bits,

including those of table Z to 0.

The proof is this case is also similar to the proofs done in the previous cases. The

only thing that we have to consider is when an xy-plane contains two elements, and when

all the elements are on a separate xy-plane. As a demonstration we prove one such case

next, and leave the rest of the cases to the reader.

Let the first two elements of S, namely (a1, b1, c1) and (a2, b2, c2), belong to the

same xy-plane. We also assume that a1 ≥ b1 and a2 ≥ b2. This implies in the bits

D(a1 − b1, 0, c1) and D(a2 − b2, 0, c2) are set to 1. Consider the element (a′, b′, c′) which

also belongs to this plane. We prove that in this scenario, if the element (a′, b′, c′) upon

query in our data structure got a Yes, then it must be a member of S. From our

assumptions, we have c1 = c2 = c′ = c(say). As all the bits of table Z has its bits set to

0, (a′, b′, c) must get 1 from rest of the tables.

In table X , the only bits set to 1 and with z-coordinate equal to c is X(0, b1, c) and

X(0, b2, c). Let the element query the set X(0, b1, c). This gives us b′ = b1, and hence

the element in question is (a′, b1, c). The bits of table Y that are set to 1 and have the

z-coordinate c are Y (a1, 0, c) and Y (a2, 0, c), and our element must have queried one

41



4.4. A (N = 5, T = 4)-NON-ADAPTIVE SCHEME

of these sets. So, the element (a′, b′, c′) could be one of (a1, b1, c) and (a2, b1, c). If the

element is (a1, b1, c), it is already a member of S and we have nothing to prove.

We now consider the case of (a′, b′, c′) = (a2, b1, c). The bits of table D that are set

to 1 with z-coordinate c are D(a1− b1, 0, c) and D(a2− b2, 0, c). This tells us that if the

element (a′, b′, c′) is actually the element (a1, b2, c), then either a1 = a2 or b1 = b2. In

both of these cases, the element is a member of S.

We now conclude the description of our storage scheme and the proof of correctness.

The following theorem summarises the result of this section.

Theorem 4.7. There is an explicit non-adaptive (4,m, 5×m2/3, 4) scheme.

4.4 A (n = 5, t = 4)-Non-Adaptive Scheme

In this section, we present a non-adaptive scheme that improves upon the scheme of

the previous section. The scheme presented can store five elements (n = 5), uses four

non-adaptive bitprobes (t = 4), and takes up O(m2/3) bits of storage. This scheme is a

departure from the approach taken in the previous scheme in that it uses and extends

the idea presented by Radhakrishnan et al. [2] as part of theorem 2, that of dividing the

universe into blocks and superblocks.

4.4.1 Our Data structure

As alluded to earlier, our scheme is based on the scheme described in theorem 2 of

Radhakrishnan et al. [2], which is an adaptive scheme for storing two elements using two

adaptive bitprobes. Their data structure consists of three tables T, T0, and T1, each of

size m2/3 bits.

In our data structure, we have four tables instead – the three tables of Radhakr-

ishnan et al. [2], and one more table to differentiate those blocks that contain one or

more elements of S from those which doesn’t. For the sake of completeness, we describe

the arrangement of elements in the three tables T, T0, and T1 along with our additional

table.

Every element in our universe U is given a unique tuple (u, v) as its label, where

u, v are non-negative integers. If the size of our universe is m, then u ranges over 0 and
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m2/3 − 1, and v ranges over 0 and m1/3 − 1.

Our data structure, as mentioned earlier, consists of four tables – A,B, C, and D.

Consider the elements (u, v), (u1, v1) and (u2, v2) of our universe U . Let u = qm1/3 +

r, u1 = q1m
1/3 + r1, and u2 = q2m

1/3 + r2, where 0 ≤ r, r1, r2 < m1/3. We now describe

the criteria for any two elements of U to query the same location in a table of our data

structure.

In table A, two elements (u1, v1) and (u2, v2) query the same bit if and only if

u1 = u2. So, the size of table A is m2/3, one bit for every unique value of the first

component of the tuple. For an element (u, v), we will use the notation A(u) to denote

the location the element queries.

In table B, elements (u1, v1) and (u2, v2) will map to the same location if and only

if q1 = q2 and v1 = v2. So, this table will have a unique bit for every pair of values

of the quotient and the second component of the tuple. Hence, the size of table B is

m1/3 ×m1/3 = m2/3. The location where the element (u, v) queries in this table will be

denoted by B(q, v).

As for table C, the two elements will map to the same location if and only if

r1 = r2 and v1 = v2. It is easy to see that in this case too the size of the table is

m1/3 ×m1/3 = m2/3. The location queried by (u, v) here will be denoted by C(r, v).

The structure of table D is exactly same as that of table A, i.e. any two elements

of the universe will query the same bit in this table if and only if their first components

are identical. It follows that the size of the table is m2/3. As was done for table A, the

location queried by an element (u, v) will be denoted by D(u).

We conclude our discussion about the data structure with the following lemma.

Lemma 4.8. The size of our data structure is 4×m2/3.

4.4.2 The Query Scheme

Let (u, v) be an element of our universe U , where u is expressed as qm1/3+r, 0 ≤ r < m1/3.

For this element, our query scheme will query the following locations in our data structure

– A(u),B(q, v), C(r, v), and D(u). The hierarchical structure of the four tables is depicted

in Figure 4.3

For an element (u, v) the query scheme decides its membership in the following way.
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Figure 4.3: The hierarchy of tables in the non-adaptive bitprobe scheme.

If D(u) is 0, then no matter what is stored in the other tables, the scheme will return No.

Let us now consider what happens when D(u) is 1. If A(u) is 0 and B(q, v) is 1, then no

matter what is stored at C(r, v), the scheme returns Yes. On the other hand, if A(u) is

1 and C(r, v) is 1, then no matter what is stored at B(q, v), the scheme also returns Yes.

In all other cases, the scheme returns 0.

Hence, our query scheme will declare the element to be a member of the set S if

the bits stored in the corresponding locations of our data structure conform to one of

the following two patterns.

Pattern 1 A(u) is 0, B(q, v) is 1, and D(u) is 1; we do not care what bit is stored at

C(r, v).

Pattern 2 A(u) is 1, C(r, v) is 1, and D(u) is 1; in this case, the bit stored at B(q, v)

has no bearing on the final answer.

4.4.3 The Storage Scheme

As was done for the previous schemes, in this section we will describe our storage scheme

and provide the proof of correctness alongside it.

For this scheme, the size of our subset S is at most five. Let its members be

denoted by (u1, v1), (u2, v2), (u3, v3), (u4, v4), and (u5, v5). We further express each ui as

qim
1/3 + ri, where ri lies between 0 and m1/3 − 1, and i ranges between 1 and 5. Also,

let (u, v) be an arbitrary element of U , where u = qm1/3 + r, 0 ≤ r < m1/3.

As before, our discussion will be broken up into several cases, each case being char-

acterised by the nature of the members of S.
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Case I – Let us first consider the scenario when all of the qis, 1 ≤ i ≤ 5, are equal. We

set in table A, A(ui) = 1 for all i. The rest of the bits of A could be set in any way we

choose. All of the bits of table B are set to 0. In table C, C(ri, vi) is set to 1, 1 ≤ i ≤ 5,

and the rest of the bits are set to 0. Finally, in table D, D(ui) is set to 1 for 1 ≤ i ≤ 5,

and the rest of its bits are set to 0.

We now proceed to argue that this storage scheme is indeed correct. The assignment

to the four tables tell us that the bits corresponding to the members of S will conform

to pattern 2, and hence the query scheme will return Yes.

Consider an element (u, v) ∈ U which upon query in our data structure was decided

to be a member of S. As mentioned above, u = qm1/3 + r, where 0 ≤ r < m1/3.

In this scenario, it must be the case that D(u) = 1. As only the bits corresponding

to members of S are set to 1 in table D, we have u = ui for some i. Without loss of

generality, let u = u1, and hence q = q1 and r = r1.

As A(u) = A(u1) = 1, the only way it could be deduced that (u, v) is a member of

S is if its bits in the four tables are set according to pattern 2, i.e. if its location in C is

set to 1. One way C(r, v) = C(r1, v) could be 1 is v = v1. So, (u, v) is the same as the

element (u1, v1), a member of S. It could also happen that r1 = r2, and C(r2, v2) is 1,

and (u, v) queries this location and got a 1. In this case, we will have r = r1 = r2 and

v = v2, and hence the element (u, v) is actually the element (u2, v2). One can similarly

verify all the other possibilities.

Case II – Let us now consider the case when four of the five qis are equal. Without loss

of generality, let those four elements be the first four elements of S, and q5 is different

from the rest.

In table A, A(ui) = 1 for 1 ≤ i ≤ 4, and A(u5) = 0. The rest of its bits could be

set in any way we like. In table B, B(q5, v5) = 1, and the rest of the its bits are set to 0.

In table C, C(ri, vi) = 1 for 1 ≤ i ≤ 4, and the remaining bits are equal to 0. In table D,

D(ui) = 1 for 1 ≤ i ≤ 5. The rest of the bits in this table are set to 0.

The above assignment tells us that the bits stored for the first four members of S

will conform to pattern 2, and the bits for the fifth member will conform to pattern 1.

So, the query scheme will correctly answer for the members of S.
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If the arbitrary element (u, v) ∈ U is to be declared a member of S, its bit in table

D must be 1. So, its first component, u, could be either one of the first four elements,

or it could be equal to u5. We consider the two cases separately.

Case II(A) – Let it be the case that u = u5, and hence q = q5. Then, it follows

that A(u) = A(u5) = 0, which can only mean that the bits corresponding to (u, v) should

be set according to pattern 1. More specifically, B(q, v) should be equal to 1. The only

bit in table B set to 1 is B(q5, v5), and thus we have v = v5. So, we have (u, v) ∈ S.

Case II(B) – We now consider the scenario where u is equal to one of u1, . . . , u4.

Without loss of generality, let u = u1, and thus q = q1 and r = r1. As both A(u) = A(u1)

and D(u) = D(u1) are set to 1, the bits of (u, v) must follow pattern 2. So, it must be

the case that C(r, v) = C(r1, v) = 1. One way this is possible is if v = v1, in which case

(u, v) = (u1, v1) ∈ S. Another way it could be possible is if r1 = r2, and v = v2. In that

case, (u, v) = (u2, v2) ∈ S. All the remaining cases can be handled similarly.

Case III – The next scenario to consider is the one in which three of the qis are equal,

and the remaining two are different from these. Without loss of generality, let us assume

that q1 = q2 = q3. In this case, two situations might arise depending on the values of q4

and q5 – one in which q4 = q5, and the other in which q4 6= q5. We handle the easier of

these two cases first.

Case III(A) – We first discuss the case where q1 = q2 = q3, and q4 and q5 are

distinct from everybody else. In table A, A(u1) = A(u2) = A(u3) = 1, and A(u4) =

A(u5) = 0. The rest of its bits could be set in any way whatsoever. In table B,

B(q4, v4) = B(q5, v5) = 1, and the rest of the bits are 0. In table C, C(r1, v1) = C(r2, v2) =

C(r3, v3) = 1, and the remaining bits are set to 0. The only bits of table D that are set

to 1 are those corresponding the the members of S.

From this assignment, the bits of the first three elements of S will conform to

pattern 2, and the bits of the last two elements will conform to pattern 1. So, the query

scheme correctly works for the members of S.

An element (u, v) will be declared to be a member of S if its bits are set in any one
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of the two allowed bit patterns. Let us consider the two scenarios, one at a time.

Let the bits corresponding to the element (u, v) be set according to that in pattern 1.

It follows that its bit in table D is 1 and in table A is 0. Thus, u could be one of u4

and u5. Without loss of generality, let u = u4, implying q = q4. The only bit set to

1 in table B that matches this scenario is B(q4, v4). So, we have v = v4, and hence

(u, v) = (u4, v4) ∈ S.

Let us now consider the scenario where the bits of (u, v) are set according to pat-

tern 2. Similar to the case above, we can deduce by looking at tables A and D that u

must be one of u1, u2, and u3. Without loss of generality, let u = u1, and hence q = q1

and r = r1. One way it is possible that C(r, v) = C(r1, v) = 1 is when v = v1. In that

case, (u, v) = (u1, v1) ∈ S. We could also have r = r1 = r2 and (u, v) queries C(r2, v2).

If that is the case, then we have u = u2 and v = v2, and (u, v) is actually the element

(u2, v2), a member of S. All other cases can be handled similarly.

Case III(B) – Let us now discuss what happens when we have q1 = q2 = q3,

and q4 = q5, but q1 6= q4. For the fourth and the fifth element, we set A(u4) = 1 and

A(u5) = 0.

Here too, two subcases arise depending on whether or not r4 is equal to one of r1, r2

and r3. We handle them separately below.

Case III(B)(a) – Let it be the case that r4 is distinct from all of r1, r2, and r3.

Then the bits of the first three elements in table A are set thus – A(u1) = A(u2) =

(u3) = 1. The rest of the bits of table A can be set in any way whatsoever. In table

B, only the bit B(q5, v5) is set to 1, and all of the other bits to 0. In table C, the bits

corresponding to the first four elements, namely C(ri, vi) where 1 ≤ i ≤ 4, are set to 1

and the rest to 0. In table D, only the bits corresponding to the five members of S are

set to 1, and all the rest are set to 0.

The way the bits are set in the four tables tell us that the first four elements will

conform to bit pattern 2, and the fifth element will conform to bit pattern 1. So, the

query scheme will answer Yes for all the members of S.

If an element (u, v) matches the bit pattern 1, then it must be the case thatA(u) = 0

and D(u) = 1. It is only possible if u = u5. The only bit that is set to 1 in table B is
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B(q5, v5), and hence we have v = v5. So, the element (u, v) is actually the same as the

element (u5, v5), a member of S.

On the other hand, if the element (u, v)’s bit pattern is that of pattern 2, then it

must be the case that u is equal to one of u1, u2, u3, and u4. If u = u4, then, combined

with the fact that q4 is distinct from q1, q2, and q3, and r4 is distinct from r1, r2, and r3,

the only way C(r, v) = C(r4, v) can be 1 is if v = v4, which makes (u, v) equal to (u4, v4).

On the other hand, if u = u1, one way for C(r, v) = C(r1, v) to be 1 is if v = v1. It

can also happen that r = r1 = r2, and C(r, v) queries the bit C(r2, v2). In that case, we

have q = q1 = q2, r = r1 = r2, and v = v2. So, we have u = u2 and thus the element

(u, v) is the same as (u2, v2). In all of the other cases that might arise, we can similarly

show that (u, v) is always a member of S.

Case III(B)(b) – We now handle the case where r4 is equal to one of r1, r2, and

r3. Without loss of generality, let r4 = r1.

The discussion that follows implicitly assumes that r1 6= r2, r3, and thus r4 is

distinct from r2 and r3. If that is not the case, and, say, r1 = r2, then, combined with

the fact that q1 = q2, we have u1 = u2. In this case, the bits of (u2, v2) will be set in the

same way as that of (u1, v1) (described below), and the argument will follow along the

lines laid out below.

In table A, A(u1) is set to 0, and A(u2) = A(u3) = 1. We have already set the

A(u4) to 1, and A(u5) to 0. The other bits can be set in any way we choose. In table B,

B(q1, v1) and B(q5, v5) are set to 1, and all of the other bits are set to 0. In table C, we

have C(r2, v2) = C(r3, v3) = C(r4, v4) = 1, and the remaining bits are 0. In table D, only

the bits corresponding to the members of S are set to 1.

In this case, the bits are set in such a way that those for the first and fifth element

conform to pattern 1, and those for the other three elements conform to pattern 2. So

the query scheme works correctly for the elements of S.

If the bit pattern of an element (u, v) matches that of pattern 1, then it must be

that case that u is either u1 or u5. As q1 6= q5, it cannot be the case that u is equal to

both u1 and u5. If u = u1, implying q = q1 6= q5, B(q, v) can only be 1 if v = v1. So, we

have (u, v) = (u1, v1) ∈ S. The case where u = u5 can be similarly argued.

We now consider the possibility that the bits of (u, v) matches that of pattern 2,
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and thus u is equal to one of u2, u3, and u4. If u = u4, we have q = q4 6= q2, q3, and

r = r4 6= r2, r3. In this scenario, the only way C(r, v) can be 1 is if v = v4, which implies

that (u, v) = (u4, v4) ∈ S. If u = u2, we have q = q2 = q3 and r = r2 6= r4. One way

for C(r, v) = C(r2, v2) to be 1 is if v = v2. It could also be the case that r = r2 = r3. In

that case, we have u = u2 = u3. So, (u, v) could also query C(r3, v3) which means that

v = v3 and thus (u, v) = (u3, v3) ∈ S. Any other case that might arise can be similarly

handled.

Case IV – Next, we handle the case where two of the qis are equal. We need to discuss

the scenarios when one pair of qis are equal, and when two pairs of qis are equal, sepa-

rately.

Case IV(A) – We will discuss the easier of the two scenarios first, that of one pair

of qis being equal. Without loss of generality, let it be the case that q1 = q2, and that

the other qis are distinct from them, and distinct from each other.

In such a case, we have in table A, A(u1) = A(u2) = 1, and A(u3) = A(u4) =

A(u5) = 0. In table B, we set B(q3, v3),B(q4, v4), and B(q5, v5) to 1, and the rest of the

bits to 0. In table C, we set C(r1, v1) and C(r2, v2) to 1 and the remaining bits to 0. In

table D, we set only the bits corresponding to the members of S to 1.

In the assignment above, we see that the bits are so set that the first and the second

elements of S conform to pattern 2 and the remaining elements conform to pattern 1.

Hence, the query scheme works correctly for the elements of S.

An element (u, v) of U can match either of the two patterns and be declared to be

a member of S. If it matches pattern 1, then u has to be one of u3, u4, and u5. Without

loss of generality, let it be u3. This implies that q = q3. Combined with the fact that

q3 is distinct from all other qis, the only way for B(q, v) = B(q3, v) to be 1 is if v = v3,

which results in (u, v) = (u3, v3) ∈ S.

On the other hand, if the bits of (u, v) match pattern 2, then u could be one of u1

and u2. Without loss of generality, let it be u1, which implies that r = r1. In table C, one

way for C(r, v) = C(r1, v) to be 1 is if v = v1, which implies that (u, v) = (u1, v1) ∈ S. It

could also be the case that r = r1 = r2, and (u, v) queries the bit C(r2, v2). This com-

bined with the fact that q = q1 = q2 gives us u = u2 and v = v2. So, (u, v) = (u2, v2) ∈ S.
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Case IV(B) – Let us now discuss the scenario when two pairs of qis are equal, but

the pairs are not equal to each other. Without loss of generality, let is be the case that

q1 = q2, q3 = q4, and q1 6= q3. Moreover, q5 is distinct from everybody else. In this case,

we need to consider two scenarios depending on whether or not r1 is equal to one of r3, r4.

Case IV(B)(a) – Let it be the case that r1 is distinct from both r3 and r4. Then

the bits of our data structure are set in the following way.

In table A, A(u1, v1) = A(u3, v3) = A(u4, v4) = 1, A(u2, v2) = A(u5, v5) = 0, and

the rest of the bits are set in any way we choose. In table B, B(q2, v2) = B(q5, v5) = 1,

and the rest of the bits are 0. In table C, C(r1, v1) = C(r3, v3) = C(r4, v4) = 1, and the

rest of the bits are set to 0. As usual, in table D, only the bits corresponding to the

members of S are set to 1.

In this case, the bits corresponding to the second and fifth elements of S conform

to pattern 1, and those corresponding to the first, third, and fourth elements conform to

pattern 2. Hence, the query scheme returns Yes for the members of S.

If an element (u, v)’s bits match that of pattern 1, then it must be the case that

u is one of u2, u5. If u = u2, implying that q = q2, and combined with the fact that

q2 6= q5, the only way B(q, v) = B(q2, v) can be 1 is if v = v2, which implies that

(u, v) = (u2, v2) ∈ S. The case where u = u5 can be argued similarly.

If the bits of (u, v) match that of pattern 2, then u can only be one of u1, u3, u4.

If u = u1, implying that r = r1, and combined with the fact that r1 is distinct

from r3, r4, the only way C(r, v) = C(r1, v) can be 1 is if v = v1, which implies that

(u, v) = (u1, v1) ∈ S. If, on the other hand, we have u = u3, and hence r = r3, one way

for C(r, v) = C(r3, v) to be 1 is if v = v3, which gives us (u, v) = (u3, v3) ∈ S. It could

also be the case that r = r3 = r4, and (u, v) queried C(r4, v4). In that case, as q3 = q4,

we have u = u3 = u4, and v = v4, which gives us (u, v) = (u4, v4) ∈ S.

Case IV(B)(b) – We now describe the case when r1 is equal to one of r3 and r4.

Without loss of generality, let it be the case that r1 = r3.

Similar to one of the cases before, in the following discussion we implicitly assume

that r3 6= r4. If that is not the case, we will have u3 = u4, and the bits of (u4, v4) will
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be set in the same way as that of (u3, v3), and the correctness can be argued along the

lines laid out below.

In table A, A(u1) = A(u4) = 1, A(u2) = A(u3) = A(u5) = 0, and the rest of the

bits can be set in any way we like. In table B, B(q2, v2) = B(q3, v3) = B(q5, v5) = 1, and

the rest of the bits are set to 0. In table C, C(r1, v1) = C(r4, v4) = 1, and the rest of the

bits are set to 0. As before, only the bits of the members of S are set to 1 in table D.

As can be seen in the assignment above, the bits corresponding to the first and the

fourth element conform to pattern 2, and those corresponding to the remaining elements

conform to pattern 1. So, the query for the elements of S are handled correctly.

If the bits of an element (u, v) ∈ U is set according to pattern 1, then it must be

the case that u is one of u2, u3, u5. If u = u2, implying q = q2, and combined with the

fact that q2 is distinct from q3, q5, the only way B(q, v) = B(q2, v) can be 1 is if v = v2,

which implies that (u, v) = (u2, v2) ∈ S. The other cases can be handled similarly.

On the other hand, if the bits of (u, v) are according to pattern 2, then u can only

be one of u1, u4. If u = u1, implying r = r1, and combined with the fact that r1 6= r4, the

only way C(r, v) = C(r1, v) can be 1 is if v = v1, which implies that (u, v) = (u1, v1) ∈ S.

The case of u = u4 can be argued similarly.

Case V – We come to the final case of our discussion, one in which all of the qis are

distinct. In this case, in table A, all of the bits of the members of S are set to 0, the

rest of the bits to anything we see fit. In table B, the bits of the members of S are set

to 1, and the rest of its bits to 0. In table C, all of the bits are set to 0. Finally, in table

D, the bits of the members of S are set to 1, and the rest to 0.

In this case, the bits corresponding to the members of S are set to 0 in table A,

and those in table B are set to 1. Their bits in table D are also set to 1. This means

that their bits are so set that they conform to pattern 1, and hence the query scheme

works correctly for them.

It also follows that for an element to be declared a member of S, its bits must

conform to pattern 1. So, it must be the case that A(u) = 0 and D(u) = 1. This is true

for only the members of S. Without loss generality, let u = u1, and hence q = q1. As all

the qis of the members of S are distinct, the only way B(q, v) = B(q1, v) be equal to 1 is

if v = v1. So, the element (u, v) is actually the element (u1, v1), an element of S.
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This concludes the description of our storage scheme and its proof of correctness.

The following theorem summarises the result of this section.

Theorem 4.9. There is an explicit non-adaptive (5,m, 4×m2/3, 4) scheme.

4.5 Conclusion

In this chapter, we have used the geometrical technique by Kesh [18] to visualizing

the arrangement of elements by placing them on the integral points of a suitably sized

three-dimensional cube. This gives us, what essentially is, three new results, one in the

domain of adaptive bitprobe model, and two in the non-adaptive model. This technique

can be extended to higher-dimensional cubes and has already given interesting results

in the two queries adaptive bitprobe model (Kesh [18]). Further, we have used the

idea of Radhakrishnan et al. [2] to divide the universe U of size m into blocks and

superblocks. Using this idea, we have improved our non-adaptive scheme to store a

subset S of larger size and still using the same number of bitprobes and space. We

believe that the combination of the above-mentioned technique will give improved results

in several other scenarios in both the adaptive and non-adaptive model.

[[]X]\\
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I only get frightened — and it happens very rarely —

when I think I have an idea.

–J. Robert Oppenheimer, Interview with R. Murrow,

1955

5
Explicit Adaptive Two Bitprobe Scheme

Storing Four Elements

5.1 Introduction

We studied an explicit adaptive two bitprobe (t = 2) scheme which stores an arbitrary

subset S of size three (n = 3) from a universe U of size m, and uses O(m2/3) amount of

space. In this chapter, we study a scheme which extends the subset size to four (n = 4),

i.e., we give an explicit adaptive two bitprobe scheme, which stores an arbitrary subset

of size at most four. The solution to the problem requires ideas form Radhakrishnan [2]

to divide the universe U into blocks and superblocks, and from Kesh [18] to map the

elements on a two dimensional grid.

5.1.1 Previous Results

In this chapter, we look into adaptive schemes with two bitprobes (t = 2). When the

subset size is one (n = 1), the problem is well understood – the space required by the

data structure is Ω(m1/2), and we have a scheme that matches this bound [9, 20].

For subsets of size two (n = 2), Radhakrishnan et al. [2] proposed a scheme that

takes O(m2/3) amount of space, and further conjectured that it is the minimum amount

of space required for any scheme. Though progress has been made to prove the conjec-

ture [2, 14], it as yet remains unproven.
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For subsets of size three (n = 3), Baig and Kesh [3] have recently proposed a scheme

that takes O(m2/3) amount of space. It has been subsequently proven by Kesh [17] that

Ω(m2/3) is the lower bound for this problem. So, the space complexity question for n = 3

stands settled.

5.1.2 Our Contribution

We look into problem where the subset size is four (n = 4), i.e, an adaptive bitprobe

scheme that can store subsets of size atmost four, and answers membership queries using

two bitprobes. Garg and Radhakrishnan [15] have proposed a generalised scheme that

can store arbitrary subsets of size n(< logm), and uses O(m1− 1
4n+1 ) amount of space.

For the particular case of n = 4, the space requirement turns out to be O(m16/17).

Garg [16] further improved the bounds to O(m1− 1
4n−1 )(for n < (1/4)(logm)1/3), which

improved the scheme for n = 4 to O(m14/15).

We propose a scheme for the problem whose space requirement is O(m5/6) (Theo-

rem 5.5), thus improving upon the existing schemes in the literature. Our claim is the

following:

sA(4,m, 2) = O(m5/6). (Theorem 5.5)

Furthermore, we will replace the square grid used in Theorem 5.5 with a rectangular

grid, this improves the space requirement to O(m4/5). So our claim is the following:

sA(4,m, 2) = O(m4/5). (Theorem 5.6)

The existence of such a scheme also answers in the affirmative an open problem

posed by Patrick K. Nicholson [5] which asked if a scheme using the idea of blocks due

to Radhakrishnan et al. [2] exists that stores four elements and answers membership

queries using two bitprobes. As the description of our data structure in the following

section would show that our scheme extends the ideas of blocks and superblocks using a

geometric approach to solve the problem.

Finally, in Section 5.2.11 we provide an instance of a five-element subset of the

universe U which cannot be stored correctly in our data structure, illustrating that a

different construction is required to accommodate subsets of larger size.
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T

T0 T1

No Yes No Yes

0 1

0 1 0 1

Figure 5.1: The decision tree of an element.

5.1.3 The Bitprobe Model

The scheme presented in this paper is an adaptive scheme that uses two bitprobes to

answer membership queries. We now discuss in detail the bitprobe model in the context

of two adaptive bitprobes.

The data structure in this model consists of three tables – T, T0, and T1 – arranged

as shown in Figure 5.1. Any element e in the universe U has a location in each of these

three tables, which are denoted by T (e), T0(e), and T1(e). By a little abuse of notation,

we will use the same symbols to denote the bits stored in those locations.

Any bitprobe scheme has two components – the storage scheme, and the query

scheme. Given a subset S, the storage scheme sets the bits in the three tables such that

the membership queries can be answered correctly. The flow of the query scheme is tra-

ditionally captured in a tree structure, called the decision tree of the scheme (Figure 5.1).

It works as follows. Given a query “Is x in S?”, the first bitprobe is made in table T

at location T (x). If the bit stored is 0, the second query is made in table T0, else it is

made in table T1. If the answer received in the second query is 1, then we declare that

the element x is a member of S, otherwise we declare that it is not.

5.2 Our Data structure

In this section, we provide a detailed description of our data structure. To achieve a

space bound of o(m), more than one element must necessarily share the same location

in each of the three tables. We discuss how we arrange the elements of the universe U ,

and which all elements share the same location in any given table.

Along with the arrangement of elements, we will also talk about the size of our data
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structure. The next few sections prove the following theorem.

Theorem 5.1. The size of our data structure is O(m5/6).

5.2.1 Table T

Given the universe U containing m elements, we partition the universe into sets of size

m1/6. Borrowing the terminology from Radhakrishnan et al. [2], we will refer to these

sets as blocks. It follows that the total number of blocks in our universe is m5/6.

The elements within a block are numbered as 1, 2, 3, . . . ,m1/6. We refer to these

numbers as the index of an element within a block. So, an element of U can be addressed

by the number of the block to which it belongs, and its index within that block.

In table T of our data structure, we will have one bit for every block in our universe.

As there are m5/6 blocks, the size of table T is m5/6.

5.2.2 Superblocks

The blocks in our universe are partitioned into sets of size m4/6. Radhakrishnan et al. [2]

used the term superblocks to refer to these sets of blocks, and we will do the same in our

discussion. As there are m5/6 blocks, the number of superblocks thus formed is m1/6.

These superblocks are numbered as 1, 2, 3, . . . ,m1/6.

For a given superblock, we arrange the m4/6 blocks that it contains into a square

grid, whose sides are of size m2/6. The blocks of the superblock are placed on the integral

points of the grid. The grid is placed at the origin of a two-dimensional coordinate space

with its sides parallel to the coordinate axes. This gives a unique coordinate to each of

the integral points of the grid, and thus to the blocks placed on those points. It follows

that if (x, y) is the coordinate of a point on the grid, then 0 ≤ x, y < m2/6.

We can now have a natural way of addressing the blocks of a given superblock –

we will use the x-coordinate and the y-coordinate of the point on which the block lies.

So, a given block can be uniquely identified by the number of the superblock to which

it belongs, and the x and y coordinates of the point on which it lies. Henceforth, we

will address any block by a three-tuple of the form (s, x, y), where the s is its superblock

number, and (x, y) are the coordinates of the point on which it lies.

To address a particular element of the universe, apart from specifying the block to
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(a, b)

(a+ 2, b+ 1)

Figure 5.2: The figure shows the grid for superblock 2, and some of the lines with slope
1/2. Note that the line passing through (a, b) intersects the y-axis at a non-integral
point.

which it belongs, we need to further state its index within that block. So, an element

will be addressed by a four-tuple such as (s, x, y, i), where the first three components

specify the block to which it belongs, and the fourth component specifies its index.

5.2.3 Table T1

Table T1 of our data structure has the space to store one block for every possible point of

the grid (described in the previous section). So, for the coordinate (x, y) of the grid, table

T1 has space to store one block; similarly for all other coordinates. As every superblock

has one block with coordinate (x, y), all of these blocks share the same location in table

T1. So, we can imagine table T1 as a square grid containing m4/6 points, where each

point can store one block.

There are a total of m4/6 points in the grid, and the size of a block is m1/6, so the

space required by table T1 is m5/6.

5.2.4 Lines for Superblocks

Given a superblock whose number is i, we associate a certain number of lines with

this superblock each of whose slopes is 1/i. In the grid arrangement of the superblock

(Section 5.2.2), we draw enough of these lines of slope 1/i so that every grid point falls

on one of these lines. Figure 5.2 shows the grid and the lines.

So, all lines of a given superblock have the same slope, and lines from different

superblocks have different slopes. As there are m1/6 superblocks, and they are numbered
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1, 2, . . . ,m1/6, so, we have the slopes of the lines vary as

0 < i ≤ m1/6. (5.1)

There are two issues to consider – the number of lines needed to cover every point

of the grid, and the purpose of these lines. We address the issue of the count of the lines

in this section, and that of the purpose of the lines in the next.

We introduce the notation li(a, b) to denote the line that has slope 1/i, and passes

through the point (a, b). We now define the collection of all lines of slope 1/i that we

are going to draw for the superblock i.

Li =
{
li(a, 0) | a ∈ Z, −i(m2/6 − 1) ≤ a < m2/6

}
. (5.2)

In the following three lemmas, we show the properties of this set of lines.

Lemma 5.2. Every line of Li contains at least one point of the grid.

Proof. Consider an arbitrary line li(a, 0) of Li. If 0 ≤ a < m2/6, then (a, 0) itself is a

member of the grid, and li(a, 0) is non-empty.

Let us now consider the scenario where −i(m2/6 − 1) ≤ a < 0. Let −a = qi + r,

where 0 ≤ r < i.

If r = 0, we show that (0, q) is a point that falls on the line through (a, 0), and it

also belongs to the grid. First,

q − 0

0− a
=

q

qi+ 0
=

1

i
,

which shows that the point falls on the required line. Also,

−i(m1/2 − 1) ≤ a < 0

=⇒ −i(m1/2 − 1) ≤ −qi− 0 < 0

=⇒ m1/2 − 1 ≥ q > 0,

which shows that (0, q) belongs to the grid. Together they show that (0, q) ∈ li(a, 0).

On the other hand, if 0 < r < i, the point to consider is (i− r, q+ 1). The following
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equality shows that the point lies on the line through (a, 0) –

q + 1− 0

i− r − a
=

q + 1− 0

i− r + qi+ r
=

1

i
.

To show that the point belongs to the grid, the x-coordinate satisfies the following

0 < i− r < m1/6 (Equation 5.1). As for the y-coordinate, we have

−i(m2/6 − 1) ≤ a < 0

=⇒ −i(m2/6 − 1) ≤ −qi− r < 0

=⇒ m2/6 − 1 ≥ q + r/i > 0

=⇒ m2/6 − 1 ≥ dq + r/ie > 0

=⇒ m2/6 − 1 ≥ q + 1 > 0

This shows that even when r in non-zero, li(a, 0) is non-empty.

Lemma 5.3. Every point of the grid belongs to some line of Li.

Proof. Let (a, b) be an arbitrary element of the grid. By construction, a and b are both

integers, and 0 ≤ a, b < m2/6. If b = 0, then (a, 0) ∈ li(a, 0).

If b 6= 0, consider the point (a− bi, 0). As

a− bi− a
0− b

=
1

i
,

(a, b) falls on the line through (a − bi, 0). And using arguments similar to the one

employed in the previous lemma, one can show that i(m2/6 − 1) ≤ a − bi < m2/6. So,

(a, b) falls on the line li(a− bi, 0).

Lemma 5.4. | Li | = (i+ 1)(m2/6 − 1) + 1.

Proof. The equality is a direct consequence of the definition of Li (Equation 5.2).

5.2.5 Table T0

In table T0, we have space to store one block for every line of every superblock. That

means that for a superblock, say i, all of its blocks that fall on the line li(a, b) share the

same block in table T0; and the same is true for all lines of every superblock.
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The ith superblock contains | Li |= (i+ 1)(m2/6 − 1) + 1 lines (Lemma 5.4), so the

total number of lines from all of the superblocks is

| L1 | + | L2 | + · · ·+ | Lm1/6 |

=
m1/6∑
i=1

(
(i+ 1)(m2/6 − 1) + 1

)
=

(
(m1/6)(m1/6+1)

2 +m1/6
)

(m2/6 − 1) +m1/6

= O(m4/6).

As mentioned earlier, we reserve space for one block for each of these lines. Combined

with the fact that the size of a block is m1/6, we have space required by table T0 is

O(m5/6).

5.2.6 Notations

As described in Section 5.2.2, any element of the universe U can be addressed by a four-

tuple, such as (s, x, y, i), where s is the superblock to which it belongs, (x, y) are the

coordinates of its block within that superblock, and i is its index within the block.

Table T has one bit for each block, so all elements of a block will query the same

location. As the block number of the element (s, x, y, i) is (s, x, y), so the bit correspond-

ing to the element is T (s, x, y); or in other words, the element (s, x, y, i) will query the

location T (s, x, y) in table T .

In table T1, there is space for one block for every possible coordinates of the grid.

The coordinates of the element (s, x, y, i) is (x, y), and T1 has space to store an entire

block for this coordinate. So, there is one bit for every element of a block, or, in other

words, every index of a block. So, the bit corresponding to the element (s, x, y, i) is

T1(x, y, i).

Table T0 has a block reserved for every line of every superblock. The element

(s, x, y, i) belongs to the line ls(x, y), and thus table T0 has space to store one block

corresponding to this line. As the index of the element is i, so the bit corresponding to

the element in table T0 is T0(ls(x, y), i).
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5.2.7 Query Scheme

The query scheme is easy enough to describe once the data structure has been finalised;

it follows the decision tree as discussed earlier (Figure 5.1). Suppose we want to answer

the following membership query – “Is (s, x, y, i) in S?” We would make the first query

in table T at location T (s, x, y). If the bit stored at that location is 0, we query in table

T0 at T0(ls(x, y), i), otherwise we query table T1 at T1(x, y, i). If the answer from the

second query is 1, then we declare the element to be a member of S, else we declare that

it is not a member of S.

5.2.8 The Storage Scheme

The essence of any bitprobe scheme is the storage scheme, i.e. given a subset S of the

universe U , how the bits of the data structure are set such that the query scheme answers

membership questions correctly. We start the description of the storage scheme by giving

an intuition for its construction.

5.2.8.1 Intuition

The basic unit of storage in the tables T0 and T1 of our data structure, in some sense, is a

block – table T0 can store one block of any line of any superblock, and table T1 can store

one block of a given coordinate from any superblock. We show next that our storage

scheme must ensure that an empty and non-empty block cannot be stored together in a

table.

Suppose, the block (s, x, y) of table T is non-empty, and it contains the member

(s, x, y, i) of subset S. If we decide to store this member in table T0, then we have to store

the block (s, x, y) in table T0. So, we have to set in table T the following – T (s, x, y) = 0.

Thus, (s, x, y, i) upon first query will get a 0 and go to table T0. In table T0, we store

the block (s, x, y) at the storage reserved for the line ls(x, y). Particularly, we have to

set T0(ls(x, y), i) = 1.

If (s, x′, y′) is a block that is empty, i.e. it does not contain any member of S, and

it falls on the aforementioned line, i.e. ls(x
′, y′) = ls(x, y), then we cannot store this

block in table T0, and hence T (s, x′, y′) must be set to 1. If this is not the case, and

T (s, x′, y′) = 0, then the first query for the element (s, x′, y′, i) will get a 0, go to table
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T0 and query the location T0(ls(x
′, y′), i) which is same as T0(ls(x, y), i). We have set

this bit to 1, and we would incorrectly deduce that (s, x′, y′, i) is a member of S.

The same discussion holds true for table T1. If we decide to store the block (s, x, y)

in table T1, we have to set T (s, x, y) to 1. In table T1, we have space reserved for every

possible coordinate for a block, and we would store the block at the coordinate (x, y);

particularly, we would set T1(x, y, i) to 1. This implies that all empty blocks from other

superblocks having the same coordinate cannot be stored in table T1, and hence must

necessarily be stored in table T0. To take an example, if (s′, x, y) is empty, then it must

stored it in table T0, and hence T (s′, x, y) = 0.

To summarize, for any configuration of the members of subset S, as long as we

are able to keep the empty and the non-empty blocks separate, our scheme will work

correctly. For the reasons discussed above, we note the following.

1. We have to keep the non-empty blocks and empty blocks separate.

2. We have to keep the non-empty blocks separate from each other; and

3. The empty blocks can be stored together.

Our entire description of the storage scheme would emphasize on how to achieve the

aforementioned objective.

5.2.8.2 Description

Let the four members of subset S be

S =
{

(s1, x1, y1, i1), (s2, x2, y2, i2), (s3, x3, y3, i3), (s4, x4, y4, i4)
}
.

So, the relevant blocks are

{
(s1, x1, y1), (s2, x2, y2), (s3, x3, y3), (s4, x4, y4)

}
,

and the relevant lines are

{
ls1(x1, y1), ls2(x2, y2), ls3(x3, y3), ls4(x4, y4)

}
.
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In the discussion below, we assume that no two members of S belong to the same

block. This implies that there are exactly four non-empty blocks. The scenario where a

block contains multiple members of S is handled in Section 5.2.9.

The lines for the members of S need not be distinct, say when two elements belong

to the same superblock and fall on the same line. We divide the description of our

storage scheme into several cases based on the number of distinct lines we have due

to the members of S, and for each of those cases, we provide the proof of correctness

alongside it.

Case I: Suppose we have four distinct lines for the four members of S. The slopes

of some of these lines could be same, or they could all be different. We know that all

lines of a given superblock have the same slope, and lines from different superblocks have

different slopes (Section 5.2.4). We also know that if two of these lines, say ls1(x1, y1)

and ls2(x2, y2), have the same slope, then the corresponding members of S belong to the

same superblock, i.e. s1 = s2. On the other hand, if their slopes are distinct, then they

belong to different superblocks, and consequently, s1 6= s2.

Table T0 has space to store one block for every line in every superblock. As the lines

for the four members of S are distinct, the space reserved for the lines are also distinct.

So we can store the four non-empty blocks in table T0, and all of the empty blocks in

table T1.

To achieve the objective, we set T (sj , xj , yj) = 0 for 1 ≤ j ≤ 4, and set the bits in

table T for every other block to 1. In table T0, we set the bits T0(lsj (xj , yj), ij) = 1, for

1 ≤ j ≤ 4, and all the rest of the bits to 0. In table T1, all the bits are set to 0.

So, if e is an element that belongs to an empty block, it would, according to the

assignment above, get a 1 upon its first query in table T . Its second query will be in

table T1, and as all the bits of table T1 are set to 0, we would conclude that the element

e is not a member of S.

Suppose, (s, x, y, i) be an element that belongs to one of the non-empty blocks.
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Then, its coordinates must correspond to one of the four members of S. Without loss of

generality let us assume that s = s1, x = x1, and y = y1.

It follows that T (s, x, y), which is same as T (s1, x1, y1), is 0, and hence the second

query for this element will be in table T0. The line corresponding to the element is

ls(x, y), which is same as ls1(x1, y1), and hence the second query will be at the location

T0(ls(x, y), i) = T0(ls1(x1, y1), i). As the four lines for the four members of S are dis-

tinct, so T0(ls1(x1, y1), i) will be 1 if and only if i = i1. So, we will get a Yes answer for

the query if and only if the element (s, x, y, i) is actually the element (s1, x1, y1, i1), a

member of S.

Case II: Let us consider the case when there is just one line for the four members of

S. As all of their lines are identical, and consequently, the slopes of the lines are the same,

all the elements must belong to the same superblock. So, we have s1 = s2 = s3 = s4.

As all the non-empty blocks belong to the same superblock, all of their coordinates

must be distinct. Table T1 can store one block for each distinct coordinate of the grid,

and hence we can store the four non-empty blocks there. All the empty blocks will be

stored in table T0.

To this end, we set T (sj , xj , yj) = 1 for 1 ≤ j ≤ 4, and the rest of the bits of table

T , which correspond to the empty blocks, to 0. In table T0, all bits are set to 0. In table

T1, the bits corresponding to the four elements are set to 1, i.e. T1(xj , yj , ij) = 1 for

1 ≤ j ≤ 4. The rest of the bits of table T1 are set to 0.

The proof of correctness follows directly from the assignment, and the reasoning

follows along the lines of the previous case. If the element e belongs to an empty block,

it will get a 0 from table T upon its first query, consequently go to table T0 for its second

query, and get a 0, implying e is not a member of S.

If the element (s, x, y, i) belongs to a non-empty block, then its coordinates must
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correspond to one of the members of S. Without loss of generality, let s = s1, x = x1,

and y = y1.

The first query of the element will be at the location T (s, x, y) = T (s1, x1, y1), and

hence it will get a 1 from table T , and go to table T1 for its second query. In this table,

it will query the location T1(x, y, i), which is same as T1(x1, y1, i). As the coordinates of

the four members of S are distinct, T1(x1, y1, i) will be 1 if and only if i = i1. So, we get

a 1 in the second query if and only if we have (s, x, y, i) = (s1, x1, y1, i1), a member of S.

Case III: The next case that we consider is when there are two distinct lines cor-

responding to the four members of subset S. The members can be distributed in one

of two ways – one line contains three elements and the other line one, or the elements

might be divided equally among the two lines. We consider the cases separately below.

1

2

3

4

Case III(A): Consider the case when one line contains three elements, and the

other line contains one. Without loss of generality, let the first three members of S belong

to one line, and the fourth one to another one. So, we have ls1(x1, y1) = ls2(x2, y2) =

ls3(x3, y3), and the line ls4(x4, y4) is different from the others. As lines with same slopes

belong to the same superblock, we have s1 = s2 = s3. Whether the fourth member be-

longs to the aforementioned superblock, or to a different superblock depends on whether

the slope of ls4(x4, y4) is same as the other line or it is distinct.

As the first three elements belong to the same superblock, all will have coordinates

distinct from one another. The coordinates of the fourth element could be distinct, or it

could overlap with one of the first three.

The case of the coordinates of the four members of S being distinct is one we have

seen in Case II, where the elements too had distinct coordinates. The assignment for this

scenario will be identical to that case, and consequently, the correctness proof follows.
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Let us say that the coordinates of the fourth element coincides with one of the other

three members. Without loss of generality, let us assume that the third and the fourth

elements have identical coordinates, that is to say x3 = x4 and y3 = y4. As two blocks

of a superblock cannot have the same coordinates, we must have s3 6= s4. Moreover,

different superblocks have different slopes for its lines, implying ls1(x1, y1) = ls2(x2, y2) =

ls3(x3, y3) 6= ls4(x4, y4).

The assignment in this case will be as follows – we will store the blocks corresponding

to the first two elements in table T1, and the blocks corresponding to the last two elements

in table T0. The empty blocks accordingly will have to be distributed among the two

tables.

Accordingly, we set T (s1, x1, y1) and T (s2, x2, y2) to 1, and set T (s3, x3, y3) and

T (s4, x4, y4) to 0. The bits corresponding to the remaining blocks in the two lines, which

are ls1(x1, y1) and ls4(x4, y4), are set to 1. The bits of the blocks of all the other lines in

all of the superblocks are set to 0.

In table T0, the bits corresponding to the third and the fourth element is set to

1, i.e. T0(ls3(x3, y3), i3) = T0(ls4(x4, y4), i4) = 1, and all the remaining bits are set to

0. In table T1, only the bits corresponding to the first two elements are set to 1, i.e.

T1(x1, y1, i1) = T1(x2, y2, i2) = 1; the rest of the bits of this table are set to 0.

We now prove that the assignment above is correct. If an element e belongs to a

line other than the lines ls1(x1, y1) and ls4(x4, y4), then the bit for its block has been set

to 0. Consequently, it will query table T0. Table T0 has separate space for each line, and

only certain bits of the non-empty lines have been set to 1. As e falls on a line different

from ls1(x1, y1) and ls4(x4, y4), so the second query for e will also return a 0.

Suppose e belongs to an empty block falling on one the lines ls1(x1, y1) and ls4(x4, y4).

According to our assignment, the bits of the empty blocks from the lines are set to 1, and

hence the second query for e will go to table T1. All blocks falling on a line have distinct

coordinates, so the coordinates of the block of e will be distinct from the coordinates of

the non-empty blocks of the two lines. As table T1 has space to store one block for each

distinct coordinate, the space for the empty blocks of the two lines will be different from

the non-empty ones. As we have set certain bits of the only the non-empty blocks of

table T1 to 1, all the bits of the block of e must be 0, and hence the answer to second

query for e will be 0.
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It remains to verify whether the queries corresponding to the elements of the four

non-empty blocks give correct answers. We have argued above that the empty blocks

are stored in locations distinct from the non-empty blocks. The assignment tells us that

we have stored the non-empty blocks in its entirety. These two facts together imply that

queries for elements in the non-empty blocks will also give correct answers.

1
3

2

4

Case III(B): We now consider the case when the four members of S are divided

equally among the two lines. Without loss of generality, let us assume that the first two

members belong to one line, and the other two members belong to the other line. So, we

have ls1(x1, y1) = ls2(x2, y2) and ls3(x3, y3) = ls4(x4, y4). Consequently, we have s1 = s2

and s3 = s4.

In this scenario, we may have the four non-empty blocks occupying four distinct

coordinates of the grid. This situation is familiar to us, and we will handle it as we have

done in Case II.

The other scenario is when coordinates of non-empty blocks overlap. As the lines

are distinct, they can have an intersection point if and only if they have different slopes.

It implies that the lines belong to different superblocks, and hence s1 = s2 6= s3 = s4.

Further, as there is only one common point between the two lines, only one pair of non-

empty blocks from the two lines can overlap, i.e. have the same coordinates. Without

loss of generality, let it be the second and fourth member of S. So, we have x2 = x4 and

y2 = y4.

For all blocks which do not fall on any of the two aforementioned lines, and hence

implying that they are empty, we set their bits in table T to 0. So, the second query

for the elements of these blocks will be in table T0. As we already know, table T0 has

seperate space reserved for all lines, and we set all the bits of all of those empty lines to

0.
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An important thing to note so far is we have not stored anything in table T1 yet.

We now look into the assignment of the blocks that fall on the two non-empty lines. The

blocks that fall on a line have distinct coordinates, so the blocks on the line ls1(x1, y1)

have distinct spaces in table T1, and we store all these blocks in table T1. We accordingly

set the corresponding bits in table T and T1.

We now look into the assignment of the blocks on the other line, namely ls3(x3, y3).

There is only one block on this line whose coordinate is same as a point on the other

line – the block corresponding to the fourth member of S has the same coordinate as

the second member of S. Then, we cannot store the block (s4, x4, y4) in table T1 as it

is already occupied by the block (s2, x2, y2) from the other line. We store this block in

table T0 at the space reserved for the line ls3(x3, y3). All other blocks of this line can

then be stored in table T1 without any conflict.

The assignment tells us how the empty and the non-empty blocks have been kept

separate. An explicit proof of correctness follows along the lines of the previous cases.

Case IV: The final case to consider is when the number of distinct lines due to

the non-empty blocks is three. Without loss of generality, let us assume that the blocks

corresponding to the third and fourth elements fall on the same line, i.e. ls3(x3, y3) =

ls4(x4, y4). This also means that these two blocks belong to the same superblock, and

hence, s3 = s4. It further implies that the coordinates of the two blocks are distinct.

As seen in the previous cases, those lines of the superblocks which do not contain

any non-empty block is easy to handle – we simply store them in table T0 at the space

reserved for the respective lines. A point to note is that it also leaves table T1 untouched.

In the discussion below, we will then concentrate on how we handle the blocks from the

three lines which are non-empty.

The discussion will be divided into three parts based on how many of those points

coincide. As the blocks corresponding to the third and the fourth members have distinct

coordinates, it follows that at most three of the non-empty blocks can coincide.
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4

2

3
1

Case IV(A): Let us consider the scenario when three of the non-empty blocks

coincide. Without loss of generality, let it be the first three blocks, i.e. x1 = x2 = x3

and y1 = y2 = y3.

We store all the blocks on the line ls3(x3, y3) in table T1. There is only one point in

each of the other two lines, namely ls1(x1, y1) and ls2(x2, y2), that is common with this

line – we store the blocks corresponding to those points in table T0, and the rest of the

blocks of the other lines in table T1. So, the blocks (s1, x1, y1) and (s2, x2, y2) are stored

in the location reserved in table T0 for the lines ls1(x1, y1) and ls2(x2, y2), and the rest

of the blocks of these lines are stored in table T1.

This assignment keeps the empty blocks and the non-empty blocks separate from

each other, and the correctness follows.

1
3

2

4

Case IV(B): Let us consider the case where two pairs of non-empty blocks coincide.

Without loss of generality, let the first block coincide with the third and the second block

coincide with the fourth.

The assignment that we devised for the previous case works in this scenario as well

– we store the blocks of the line ls3(x3, y3) in table T1, and the blocks (s1, x1, y1) of line

ls1(x1, y1) and (s2, x2, y2) of line ls2(x2, y2) in table T0. The other blocks of the lines

ls1(x1, y1) and ls2(x2, y2) are stored in table T1.

The correctness proof of the previous case holds in this scenario as well.

Case IV(C): Let us next consider the scenario where only one pair of non-empty

blocks coincide. Without loss of generality, let the first block coincide with the third.
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So, we have x1 = x3 and y1 = y3. As only one pair of non-empty blocks coincide, the

block of the second element do not lie on any of the other non-empty blocks, and hence

has coordinates distinct from the rest.

The assignment in this arrangement will depend on the coordinates of the block of

the second block – it lies on the line ls3(x3, y3), or it doesn’t. We address each of these

cases below.

1
3

2

4

Case IV(C)(i): We store all of the blocks on the line ls3(x3, y3) in table T1. From

the line ls1(x1, y1), only one block lies in the previous line, the block containing the

first element. This block will be stored in table T0 at the location reserved for the line

ls1(x1, y1), and the rest of the blocks can be stored in table T1. From the last line, i.e.

ls2(x2, y2), only one block lies on this line, the block that contains the second element.

This blocks will be stored in table T0 at the location for the line ls2(x2, y2), and the rest

of the blocks can be stored in table T1 without conflict.

1
3

2

4

Case IV(C)(ii): We next consider the case when the block for the second element

does not lie on the line ls3(x3, y3). We, in this case, store the second block, i.e. (s2, x2, y2)

in table T1, and the rest of the blocks on its line, i.e. ls2(x2, y2), in table T0 at its alloted

location. We do the same for the block of the first element – store the non-empty block

(s1, x1, y1) in table T1, the rest of the blocks on its line ls1(x1, y1) in table T0.

The only locations used up in table T1 are locations for the first and second block,

and the blocks left to be allocated space are those falling on the line ls3(x3, y3). The

second block do not lie on this line, and hence would not affect the allocations of the
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line. The first block coincide with third block falling on this line, so the third block,

namely (s3, x3, y3) must necessarily be stored in table T0 in the space alloted for the line

ls3(x3, y3). The rest of the blocks of the line ls3(x3, y3) can now be stored in table T1

without conflict.

Case IV(D): This is the final configuration to consider when there are three dis-

tinct lines due to the non-empty blocks - no block coincide with any other block. This

implies that the four non-empty blocks have distinct coordinates, and hence all of them

can be stored in table T1. All the empty blocks can then be stored in table T0, and we

would have avoided all conflict.

5.2.9 Blocks with Multiple Members

In the discussion above, we had assumed that each block can contain at most one member

of the subset S, and we have shown for every configuration of the members of S, the

bits of the data structure can be so arranged that the membership queries are answered

correctly.

In general, a single block can contain upto four members of S, and we need to

propose an assignment for such a scenario. As has been noted in the previous section,

our basic unit of storage is a block and we differentiate between empty and non-empty

blocks. At a given location in table T0 or T1, a block is stored in its entirety, or it isn’t

stored at all. This implies that the number of members of S a non-empty block contains

is of no consequence, as we always store an entire block. The scheme from the previous

section would thus hold true for blocks containing multiple members.

We now summarize the result in the theorem below.

Theorem 5.5. There is an explicit adaptive scheme that stores subsets of size at most

four and answers membership queries using two bitprobes such that

sA(4,m, 2) = O(m5/6).
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5.2.10 Revisiting Space Requirement

In Section 5.2.2, we mapped the blocks of superblocks on a square grid. One can see

that if block size is taken as y and size of grid to be x, then size of table T becomes m/y,

size of table T1 becomes x2y, and the size of table T0 becomes c · ( m
x2y

)2xy = C · ( m2

x3y
).

This gives us following equation for the space:

S(x, y) = x2y + c · (m
2

x3y
) +

m

y
. (5.3)

We get local minima of above equation at x = c1m
1/3 and y = c2m

1/6. Therefore,

we get space requirement for our data structure to be O(m5/6).

Let us now map blocks of size z from a superblock of size xyz to a rectangular grid

of size x × y. Further, following the same steps to get the space requirements we get

following equation to optimize:

S(x, y, z) = xyz +
m

z
+
m

y
+ c · ( m

2

x2yz
). (5.4)

We get local minima of above function at x = m2/5, and y = z = m1/5. So the

space requirement becomes O(m4/5). Since going from square grid to rectangular grid

does not change the storage and query scheme of the Theorem 5.5, so we can still use

the same storage and query scheme to get the following theorem:

Theorem 5.6. There is an explicit adaptive scheme that stores subsets of size at most

four and answers membership queries using two bitprobes such that

sA(4,m, 2) = O(m4/5).

5.2.11 Counterexample

We now provide an instance of a five-member subset of the universe U which cannot be

stored correctly using our scheme; that is to say, if the storage scheme does indeed store

the five elements in our data structure, queries for certain elements will be answered

incorrectly.
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The Arrangment

Consider four lines from four different superblocks which are arranged as shown in

Figure 5.3. Let us suppose that the four superblocks are s1, s2, s3, and s4, and the labels

of the lines are L1, L2, L3, and L4, respectively. We will put in S one element each from

the first three superblocks, and two elements from the fourth superblock.

Our subset S will contain the elements e1 and e2 from the superblocks s1 and s2,

respectively. These elements have the property that the blocks they belong to share the

same coordinates, and hence lie on the intersection of the lines L1 and L2. The fact that

they have the same coordinates also implies thay they share the same location in table

T1. Let the elements be e1 = (s1, x, y, i1) and e2 = (s2, x, y, i2). We would also have

i1 6= i2. This would imply that the two non-empty blocks (s1, x, y) and (s2, x, y) cannot

both be stored in table T1.

Consider that block of superblock s3 that lies on the intersection of the lines L3

and L4. We will put one element from that block in our subset S. Let that element be

e3 = (s3, x3, y3, i3).

Finally we will put two elements of the superblock s4 in S – one element from

that block of s4 which lies on the intersection of the lines L4 and L1, namely e4,1,

and another from the block of s4 which lies on the intersection of the lines L4 and

L2, namely e4,2. These two elements are described as e4,1 = (s4, x4,1, y4,1, i4,1) and

e4,2 = (s4, x4,2, y4,2, i4,2).

The Contradiction

We can store the element e1 of superblock s1 in one of two tables T0 and T1. Let us

assume that we store e1 in table T0. As the block containing e1 lies on the line L1, we

cannot store any of the other empty blocks on the line L1 in table T0, and hence they

must be stored in table T1.

The non-empty block of s4 containing element e4,1 which falls on the line L1, then,

cannot be stored in table T1, and hence must be stored in table T0. So, the other blocks

of L4 must be stored in table T1, including the block containing the element e4,2.

The non-empty block of s3 containing the element e3 falls on the line L4, and hence

must be stored in table T0. So, all blocks on the line L3 must now be store in table T1.

The element e2 of the superblock s2 falls on the line L3 and hence must be stored
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Figure 5.3: Counterexample

in table T0. So, all blocks of line L2 must be stored in table T1.

The block of s4 containing the element e4,2 must be stored in table T0 by the same

argument as above. But we have already argued that e4,2 has to be stored in table T1,

and hence we arrive at a contradiction.

The preceeding argument tells us that we cannot store the element e1 in table T0.

So, we must store it in table T1. If such is the case, and arguing as above, we can show

that this results e2 being stored in table T0, which results in e4,2 being stored in table T0.

This, in turn, results in e3 being stored in table T0, which would force e1 to be stored in

table T0.

But we have started with the premise that e1 is being stored in table T1, and again

we reach a contradiction. So, we conclude that this arrangement of elements cannot be

stored correctly in our data structure, and hence our data structure is not suitable for

storing sets of size five or higher.

In the next chapter, we will avoid this counterexample by mapping blocks of ele-

ments on the integral points of three-dimensional cube.

5.3 Conclusion

In this chapter, we have proposed an adaptive scheme for storing subsets of size four

and answering membership queries with two bitprobes that improves upon the existing

schemes in the literature. This scheme also resolves an open problem due to Patrick
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K. Nicholson [5] about the existence of such a scheme that uses the ideas of blocks and

superblocks due to Radhakrishnan et al. [2]. The technique used is that of arranging

the blocks of a superblock in a two-dimensional grid, and grouping them along lines.

We believe that this technique can be extended to store larger subsets by extending the

idea of an arrangement in a two-dimensional grid to arrangements in three and higher

dimensional grids.

[[]X]\\
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“The geometrical mind is not so closely bound to geome-

try that it cannot be drawn aside and transferred to other

departments of knowledge. A work of morality, politics,

criticism, perhaps even eloquence will be more elegant,

other things being equal, if it is shaped by the hand of

Geometry.”

–Bernard le Bovier de Fontenelle, 1729, ‘Preface sur

l’Utilite des Mathematiques et la Physique’, translated

by F. Cajori 6
Explicit Adaptive Two Bitprobe Scheme

Storing Five Elements

6.1 Introduction

In this chapter, we are dealing with the design of the explicit adaptive scheme in the

bitprobe model to store an arbitrary subset S of size at most five from a universe U of size

m, and answer the membership query in two adaptive bit probes. Our scheme is built on

the counterexample shown in the Section 5.2.11. In the counterexample, we see that line

L4 cuts three lines, i.e L1, L2 and L3 passing through a point at three different points.

Now, if in our scheme, we draw lines in such a way that no three lines passing through a

point lies in a same plane, then the counterexample will not exist. Our scheme uses the

geometric idea of Kesh [18], to overcome the counterexample by mapping the universe

U of size m on the integral point of a three-dimensional cube. Further, we use the idea

of Radhakrishnan [2] to divide the universe U into blocks and superblocks. Superblocks

are nothing but the collection of a suitable number of blocks. Using the combination

of the above ideas, we have a geometric data structure for the aforementioned set and

query sizes.
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6.1.1 Our Contribution

As mentioned earlier, in this chapter we are dealing with the design of explicit adaptive

two bitprobe scheme for the subset S of size five (n = 5). Now, we will talk about

results in the context of this problem. There is a non-explicit (n,m, c · m1− 1
4n+1 , 2)-

scheme by Garg and Radhakrishnan [15], for the set of size five (n = 5), their scheme

takes O(m16/17) space. Furthermore, there is an explicit (n,m, c · m1− 1
4n−1 , 2)-scheme

given by Garg [16], for the set of size four (n = 5) his scheme takes O(m14/15) space. Our

result improves upon the aforementioned schemes for the subset S of size five (n = 5).

Our claim is the following.

Result 6.1 (Theorem 6.3). sA(5,m, 2) = O(m10/11).

The bitprobe model in the context of two adaptive bitprobes is discussed in detail

in Section 5.1.3.

6.2 Our Data Structure

In this section, we present a two adaptive bitprobe data structure which stores an arbi-

trary subset S of size 5 from a universe U of size m.

6.2.1 Our Approach to the Problem

Our scheme has borrowed the idea of the geometric arrangement of elements on a three-

dimensional cube from Kesh [18]. Kesh in his paper used the idea of geometric arrange-

ments of elements on high dimensional cubes to come up with (2,m, c · m1/(t−2−1), t)-

scheme for t ≥ 2. We have also used the idea of dividing the universe into blocks and

superblocks from Radhakrishnan et al. [2]. Baig and Kesh [3] used the combination of

the ideas mentioned above to come up with a tight explicit adaptive scheme for n = 3.

Baig et al. [6] used a similar idea to map elements on a square grid to come up with an

improved scheme for n = 4. In this section, we use this geometrical technique to map

the blocks of elements from a superblock to the integral points of a three-dimensional

cube as shown in Figure 6.1. Moreover, we partition the cube by drawing slices, and

further partitioning the slices by drawing lines. We do this for all the superblocks.
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y

z

x

Figure 6.1: Blocks of Superblocks placed on the integral points of a cube

We divide the universe U of size m into blocks and superblocks similar to the Rad-

hakrishnan et al. [2]. We divide the universe into blocks of size y, so the number of

blocks will be m/y. We then collect x3 consecutive blocks to form a superblock of size

x3y. So we will have m/x3y superblocks of size x3y.

Table T

This table consists of one bit of space for each block. So the size of Table T is m/y bits.

Table T1

Table T1 is arranged in a three-dimensional cube of side x. So in this cube, we have

x3 integral points. Each integral point on or inside the cube contains a block of size y.

So the size of table T1 is x3y. Since the size of each superblock is x3y, all the blocks

belonging to a superblock can be mapped on or inside the integral point of the cube. All

other superblocks can be thought of as superimposed over each other in the cube. So

each point in the cube or table T1 is shared by blocks of m/x3y superblocks.

Table T0
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Figure 6.2: A line with slope 1/n in
the bottom most layer of the cube

L

M

X

Y

Figure 6.3: Figure showing number of
lines drawn between two same slope
lines

While discussing the structure of table T1, we saw that each superblock is mapped on a

three-dimensional cube in such a way that all of them are superimposed. Now, for the

nth superblock, we first draw a family of lines in the bottom-most layer of the cube in

the XY -plane with slope 1/n in such a way that all the integral points are covered by

the lines.

Lemma 6.1. The number of lines passing through all the integral points of a square grid

with slope 1/n is 2x+ (n− 1)(x− 1)− 1, where x is the length of the square grid.

Proof. As shown in Figure 6.3, if the slope of the line M and L is 1/n, then between

them, there can be only n − 1 lines of slope 1/n passing through integral points of the

grid. So the total number of lines that we can draw with slope 1/n is x lines from integral

points on X-axis, x− 1 lines from the integral points on Y axis and (n− 1)(x− 1) lines

between lines from the integral points on Y -axis. So we have 2x + (n − 1)(x − 1) − 1

lines with slope 1/n.

Using Lemma 6.1, we can say that the total number of lines with slope 1/n in the

bottom-most layer can be c · nx, where c is a constant, and x is the side of the cube.

Now, we cut slices of the cube along these lines and perpendicular to XY -plane. So the

total number of slices for the nth superblock will be equal to the number of lines drawn

in the bottom-most layer of the cube for the nth superblock, i.e c · nx. All the slices

have a height equal to the length of the cube, i.e x. Let us now calculate the maximum

width of a slice of slope 1/n. Width of the slice formed by line segment OL as shown

in Figure 6.2 can be calculated to be x/n
√

1 + n2. We can see from Figure 6.2 that all

other slices with this slope will have width less than or equal to x/n
√

1 + n2. So a slice

belonging to nth superblock will have length x and width less than equal to x/n
√

1 + n2.
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We now draw a family of lines in all the slices of all the superblocks. For the

slices belonging to the nth superblock, we draw lines with slope n2/
√

1 + n2 as shown in

Figure 6.4. The lines are drawn in such a way that all the integral points are covered.

Let us now calculate the maximum number of lines drawn on a slice belonging to the

nth superblock. We can see from Figure 6.4 that the total number of lines drawn from

Z-axis is equal to x. Also, number of integral points on the width of the slice is equal to

x/n
√

1 + n2/
√

1 + n2 = x/n. So we can draw x
n lines through those integral points on the

width of the slice. Now from Figure 6.4, we can see that the number of lines that can pass

between two consecutive integral points on the width of the slice is n2 − 1. So the total

number of lines drawn on this slice with slope n2/
√

1 + n2 is equal to x+ x/n+n2 · x/n

i.e c · nx. We say that a slice is having slope 1/n if it’s projection on the XY -plane has

slope 1/n. Now let us bound the total number of lines drawn on slices whose projections

on the XY -plane makes slope 1/n. The total number of lines should be less than the

product of the number of lines drawn on a slice of a maximum width of slope 1/n and

the total number of slices of slope 1/n. So the total number of lines drawn for the nth

superblock is less than c1 · n2x2. We need to sum this for all the superblocks to get the

total number of lines drawn. So the total number of lines drawn is

m/x3y∑
i=1

c1 · i2(x)2 ≤ c · m
3

x7y3
. (6.1)

For each line drawn in a slice, we have a block of space in table T0. So the total size of

table T0 is c ·m3/x7y2 bits. Summing up the space taken by tables T, T0 and T1, we get

the following equation:

S(x, y) = x3y + C · ( m
3

x7y2
) +

m

y
. (6.2)

Choosing x = m3/11 and y = m1/11, we get space taken by our data structure to be

O(m10/11). Now we will prove the following lemma:

Lemma 6.2. No three lines passing through an integral point of the cube lies in the same

plane.

Proof. From the construction of the table, we can see that all the lines drawn in the cube

for a given superblock are parallel to each other. So the lines which pass through the

81



6.2. OUR DATA STRUCTURE

Figure 6.4: A Slice Belonging to nth Superblock

same integral point of the cube belong to the different superblocks. Let us consider the

three arbitrary superblocks to which our lines belong. Without loss of generality let us

say that the projection of these slices on the XY -plane makes angle 1/n1, 1/n2 and 1/n3

with the X-axis. Our lines lie completely in the slices belonging to their superblock.

While drawing lines in the slices for the first, second, and third superblock, we are going

up in Z direction by n21, n
2
2, and n23. Hence our lines cannot lie in the same plane.

From the structure of tables, we may draw the following conclusion. In general, two

blocks having elements should not map at the same location in table T1 or T0. Otherwise,

we may make a mistake on the query belonging to these blocks. Further, if the block

having element is mapped in table T1 or T0, then no other block should be sent to that

table whose position is matched with the block having an element. So if a block having

an element on a line is mapped to table T0, then all other blocks lying on that line should

be sent to table T1. As for each line, we have only one block of space in table T0. On

the contrary, if the block having an element from a line is sent to table T1, then other

blocks lying on the line which contains this block can be sent to table T0 or T1. The

blocks which are not having any elements given to be stored can be mapped at the same

location in table T1 or T0. Further, in the rest of the chapter, whenever we say the line

passing through a block or the line having a block, we always mean the line drawn in

the superblock to which the block belongs.
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6.2.2 The Query Scheme

Given a query element, we find the block and superblock to which it belongs. Further,

we query the first table, if the first table returns zero, we query to table T0 else we query

to table T1. We say that element is part of the set to be stored if and only if the last

query returns one.

6.2.3 The Storage Scheme

In this section, we talk about the way bits of tables are set to store the subset of size

at most five from a universe of size m. We divide the storage scheme into various cases

depending upon the way blocks having elements are distributed on the line belonging

to their superblock. To generate all the cases, first of all, we partition the number five;

then we put those many elements into different superblocks. Further, the positions of

the blocks having elements on the line belonging to their superblocks are considered.

While handling cases, we see the intersections of the lines, which contains blocks having

elements given to be stored. We then decide which block to send to table T0 and which

to T1. As in our data structure, we always send a block to either table T0 or T1, and we

store its bit vector there, so we will always assume that elements which are given to be

stored lies in the different block. Proving the results for elements belonging to different

blocks proves the result when many elements belong to the same block. In this section,

we will discuss few cases. The rest of the cases can be generated and handled similarly,

and are mentioned in Appendix 8.3.

Case 1. If all the elements of S lie in one superblock, then we send the blocks having

elements to table T1 and all the empty blocks to table T0.

Case 2. If four elements S1 = {n1, n2, n3, n4} lie in one superblock and one element

S2 = {n5} in other superblock then we can have two cases, either the block containing

the element n5 coincides with one of the block containing element from S1 in table T1 or

it does not coincides. So if the block containing the element n5 coincides with one of the

blocks containing an element from S1, then we send the block having the element n5 to

table T1 and send the block from which it was coinciding to table T0. All other blocks
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of superblock which contain elements from S1 are sent to table T1. All other blocks

of superblock which contain the element n5 are sent to table T0. Rest all the empty

blocks are sent to table T0. On the other hand, if the block containing element n5 do

not coincide with any of the block having element from S1 in table T1, then we send all

the blocks having elements from S1 and S2 to table T1, and rest all the empty blocks to

table T0.

Case 3. If three elements S1 = {n1, n2, n3} lie in one superblock and two elements

S2 = {n4, n5} in other superblock then we store according to following scheme.

Case 3.1 All the blocks to which elements from S1 belong lies on the same line of

their superblock. From here onwards, whenever we say line passing through a block or

blocks lying on a line, we mean the line drawn in the superblock to which these blocks

belong.

Case 3.1.1 Two blocks to which elements from S2 belong coincides with the blocks

corresponding to the elements from S1 in table T1. In this case, we send the blocks

having elements from S2 to table T0. Further, we send empty blocks lying on the lines

to which elements from S2 belongs to table T1. We send all the blocks which contain

elements from S1 in table T1. Finally, we send the rest of the empty blocks to table T0.

Case 3.1.2

Only one block which contains an element from S2 coincides with the block corre-

sponding to the elements from S1 in table T1. In this case, we send all the blocks which

contain elements from S1 to table T1. We send the coinciding block of the element from

S2 to table T0 and the rest of the blocks, which lies on the line containing this block to

table T1. If after this other nonempty block having an element from S2 is still unassigned,

then we send it to table T1, and all the empty blocks lying on the line containing this

block to table T0 . Rest all the empty blocks are sent to table T0 .

Case 3.1.3 None of the blocks which contain an element from S2 coincides with the

block, which contains an element from S1 in table T1 . In this case, we send all the
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nonempty blocks to table T1 and all the empty blocks to table T0.

Case 3.2 Two blocks that contain elements from S1 lies on the same line, and an-

other lie on a different line.

Case 3.2.1 All the blocks which contain an element from S1 lies in the same slice.

From here onward, whenever we say blocks belonging to a slice, we mean the slice drawn

in a superblock to which these blocks belong.

Case 3.2.1.1 All the blocks which contain elements from S2 coincides with blocks which

contain elements from S1 in table T1. In this case, we can use the assignment made in

Case 3.1.1.

Case 3.2.1.2 Only one block which contains an element from S2 coincides with the

block, which contains an element from S1 in table T1. In this case, we can use the as-

signment made in Case 3.1.2

Case 3.2.1.3 None of the blocks which contain an element from S2 coincides with the

block, which contains an element from S1 in table T1. This case is the same as Case 3.1.3.

Case 3.2.2 Two blocks that contain elements from S1 lies in a slice and another block

that contains an element from S1 in another slice.

Case 3.2.2.1 Both the blocks which contain elements from S2 coincides with blocks

which contain elements from S1 in table T1. If the coinciding blocks lie in the same slices

as that of two blocks that contain elements from S1, then we send both the coinciding

blocks which contain the elements from S2 to table T0. Further, we send all the empty

blocks lying on the lines which contain these blocks to table T1. Two blocks that contain

the elements from S1 and lying in the same slice are sent to table T1. The remaining

block which contains the element is sent to table T0 and all the empty blocks lying on

the line containing this block to table T1. Rest all the empty blocks are sent to table T0.

Now consider the case in which the coinciding blocks which contain the elements

85



6.2. OUR DATA STRUCTURE

from S2 lies in different slices of the superblock, which contains the elements from S1.

In this case, we send the two blocks which contain the elements from S1 lying in a slice

to table T1. The rest of the block, which contains the element from S1 lying in the other

slice, is sent to table T0, and the empty blocks which lie on the line containing this block

are sent to table T1. One of the blocks which contains an element from S2 and is lying

in the slice containing two elements from S1 is sent to table T0 and the rest of the blocks

on this line is sent to table T1. If after this assignment, other block having the element

from S2 is still unassigned, then we send it to table T1, and the empty blocks on the line

containing this block to table T0. Rest all the empty blocks are sent to table T0.

Case 3.2.2.2 Only one block which contains an element from S2 coincides with a block

that contains an element from S1 in table T1. Let us first consider the case where coin-

ciding block having element form S2 lies in the slice, which contains two blocks having

elements from S1. Without loss of generality, let us say that the blocks having elements

n1 and n2 lies in the same slice and the block having the element n4 coincide with the

block having the element n1. In this case, we send the block having the element n4 to

table T0, and all the blocks on the line containing this block is sent to table T1.

If the block which contains an element n3 lies on the line which contains the block

having the element n4, then we send the block having n3 to table T0, and empty blocks

of the line which contains block having n3 to table T1. Now, if the block having the

element n5 is still unassigned, then we send the block having the element n5 to table

T0, and empty blocks on the line containing this block to table T1. We send the block

having the element n2 to table T0, and all the blocks which lie on the line containing

this block table T1. Rest all the empty blocks are sent to table T0.

Further, let us consider the case where the block that contains the element n3 does

not lie on the line, which contains the block having the element n4. In this case, we send

the block having n3 to table T1, and the empty blocks on the line containing this block

are sent to table T0. Now, if the block having the element n5 is still unassigned, then we

send it to table T0, and the empty blocks lying on the line containing this block to table

T1. We send the block having the element n2 to table T0, and all the blocks which lie on

the line containing this block table T1. Rest all the empty blocks are sent to table T0.

Now we are left with the case where coinciding block of S2 having an element n4
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coincides with the block having the element n3. In this case, we send the block having

the element n3 to table T0 and empty block, which lies on the line containing this block

to table T1. We send the block having the element n4 to table T1 and empty blocks

which lies on the line containing this block to table T0.

Now we see the position of the block having the element n5. If the block having

the element n5 lies on the line, which contains block having the element n3, then we

send the block having the element n5 to table T0. Further, we send the empty blocks

of the line, which contains block having the element n5 to table T1. Now, consider the

case where the line containing the block having the element n5 passes through one of the

blocks having the element n1 or n2. Without loss of generality, let us say that the line

containing the block having the element n5 passes through the block having the element

n1. In this case, we send the block having the element n1 to table T0 and rest all the

blocks lying on this line to table T1. Rest all the empty blocks are sent to table T0. If

the line which contains the block having element n5 does not pass through the block

block having element n1 or n2, in this case we can send both the blocks having elements

n1 and n2 to table T1. Rest all the empty blocks are sent to table T0.

Now consider the case where block having the element n5 does not lie on the line,

which contains block having the element n3. In this case, we send the block having the

element n5 to table T1 and all the empty blocks lying on the line containing this block to

table T0. Blocks having elements n1 and n2 are sent to table T1, and rest all the empty

blocks are sent to table T0.

Case 3.2.2.3 None of the blocks which contain elements from S2 coincide with blocks

having elements from S1 in table T1. This case is the same as Case 3.1.3.

Case 3.3 All the blocks which contain elements from S1 lies on the different lines.

Case 3.3.1 Both the blocks having elements n4 and n5 coincides with the blocks having

elements from S1 in table T1. Without loss of generality, let us say that block having

element n1, coincides with the block having the element n4, and the block having the

element n2 coincide with the block having the element n5. In this case, we send the

blocks having elements n1, n2 and n3 to table T0 and all the empty blocks lying on the
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lines which contain these blocks to table T1. Further, we send the blocks having the

element n4 and n5 to table T1. Rest all the empty blocks are sent to table T0.

Case 3.3.2 Only one of the block having element say n4 from S2 coincides with blocks

having element from S1 in table T1. Without loss of generality, let us say that block

having the element n1 coincides with the block having the element n4. Similar to the

last case, in this case also, we send the blocks having elements n1, n2 and n3 to table

T0, and all the empty blocks lying on the lines which contain these blocks to table T1.

Further, We send the block having element n4 to table T1. We send the block having

element n5 to table T0, and all the empty blocks lying on the line containing this block

to table T1. Rest all the empty blocks are sent to table T0.

Case 3.3.3 None of the blocks which contain an element from S2 coincides with the

block, which contains an element from S1. This case is the same as Case 3.1.3.

Correctness: The correctness of the scheme relies on the fact that blocks having

the elements do not coincide in table T1 or in table T0. Also, the blocks which are not

having the elements are not sent to the place where block having elements are mapped.

We summaries the conclusion of this section as follows.

Theorem 6.3. There is a two probe explicit adaptive scheme which stores an arbitrary

subset S of size at most five from a universe U of size m and uses O(m10/11) bits of

space.

6.2.4 Counterexample

In this subsection, we will show that the above-mentioned scheme can not store a subset

S of size six. Let us consider a subset S = {n1, n2, n3, n4, n5, n6} of six elements from

a universe U of size m. Further, let us consider that all these elements belong to the

different blocks. As shown in the Figure 6.5, blocks having the elements n1, n2, n3 and n4

lies on the line L1, L2, L3 and L4 respectively. Whereas, blocks having the elements n5

and n6 lies on the line L5. Now, we claim that if we store the configuration shown in the
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Figure 6.5: A counterexample for a six elements subset

Figure 6.5 in our (5,m,m10/11, 2)-scheme then our query scheme will answer incorrectly.

To show that our claim is true, let us consider the block having the element n1.

Now, this block can either go to table B or to table C. Let us first consider the case

where the block having the element n1 goes to table B.

If the block having the element n1 goes to table B, then rest all the blocks lying

on the line L1 must go to table C. Therefore, the block having the element n2 must go

to table B. Now, rest all the blocks lying on the line L2 must go to table C. Therefore,

blocks having the elements n4 and n5 must go to table B. If the block having the

element n4 goes to table B, then rest all the blocks lying on the line L4 must go to table

C. Therefore, the block having the element n3 must go to table B. Now, rest all the

blocks lying on the line L3 must go to table C. Therefore, block having the element n6

must go to table B. Since we have already sent the block having the element n5 to table

B, so our query scheme will answer incorrectly for the queries belonging to these blocks.

Now, we are left with the case where the block having the element n1 goes to table

C. In this case, the block having the element n6 must go to table B. Therefore, rest all

the blocks lying on the line L5 must go to table C. Now, the block having the element

n4 must go to table B. Therefore, rest all the blocks lying on the line L4 must go to

table C. It forces the block having the element n3 to table B. Therefore, rest all the

blocks lying on the line L3 must go to table C. However, we have already sent the block

having the element n1 to table C. So our query scheme will answer incorrectly for the

queries belonging to the block having the element n1 and the empty block lying on the
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line L3 and coinciding with the block having the element n1.

The block containing the element n1 can either go to table B or to table C, and our

query scheme answers incorrectly in both the cases. Therefore, the above configuration

of the elements cannot be stored in the (5,m,m10/11, 2)-scheme.

6.3 Conclusion

In this chapter we have come up with an explicit adaptive (5,m,O(m10/11), 2)-scheme,

which improves upon the non-explicit scheme by Garg and Radhakrishnan [15] and the

explicit scheme by Garg [16] for the given set and query sizes. We have borrowed the idea

of the geometrical arrangement of elements on the three-dimensional cube from Kesh [18]

and the idea of dividing the universe into blocks and superblocks from Radhakrishnan et

al. [2]. Using these ideas, there are improved schemes for the set of size three, four, and

five. We believe that this technique can be extended to store larger subsets by extending

the idea of an arrangement in a three-dimensional cube to arrangements in the higher

dimensional cube.

[[]X]\\
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“The main hurdle in proving a lower bound is the exis-

tence of an algorithm.”

–Steven Rudich

7
Improved Bounds for Two Bitprobe

Scheme Storing Five Elements

7.1 Introduction

A basic goal of this chapter is to reduce the gap between upper and lower bound for

the two adaptive bitprobe schemes storing five elements (n = 5). To improve the lower

bound, we extend the idea of first-order universe of an element e of a set by Kesh [17] to

a second order universe. Whereas to improve the upper bound, we use the geometrical

technique described in earlier chapters in more clever ways.

Data structures with two bitprobes (t = 2) consist of three tables, namely A,B, and

C. The first bitprobe is always made in table A; the location of the bit being probed,

of course, depends on the element which is being queried. The second bitprobe is made

in table B or in table C, depending on whether 0 was returned in the first bitprobe or

1 was returned. The final answer of the query scheme is Yes if 1 is returned by the

second bitprobe, otherwise it is No. The data structure and the query scheme can be

succintly denoted diagrammatically by what is known as the decision tree of the scheme

(Figure 7.1).
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A

B C

No Yes No Yes

0 1

0 1 0 1

Figure 7.1: The decision tree of an element.

7.1.1 Our Contribution

We study schemes when the number of allowed bitprobes is two (t = 2) and the subset

size is at most five (n = 5). Some progress has been made for subsets of smaller sizes.

When the subset size is odd, the problem is well understood. More particularly,

when n = 1, there exists a scheme that takes O(m1/2) amount of space, and it has been

shown that it matches with the lower bound Ω(m1/2) [1, 9, 20]. When n = 3, Baig and

Kesh [3] have shown that there exists a O(m2/3)-scheme, and Kesh [17] has proven that

it matches with the lower bound Ω(m2/3).

For even sized subsets, tight bounds are yet to be proven. For n = 2, Radhakrishnan

et al. [2] have proposed a scheme that takes O(m2/3) space, and for n = 4, Baig et al. [6]

have presented a O(m5/6)-scheme, but it is as of yet unknown whether these bounds are

tight.

For subsets of size five (n = 5), the best known lower bound was due to Alon and

Feige [9] which is Ω(m1/2). The Ω(m2/3) lower bound for n = 3 also puts an improved

bound for the n = 5 case. Our first result improves the bound to Ω(m3/4).

Result 7.1 (Theorem 7.3). sA(5,m, 2) = Ω(m3/4).

We also propose an improved scheme for the problem. The best known upper bound

was due to Garg [16] which was O(m18/19), which was improved by Baig et al. [7] to

O(m10/11). In this paper, we improve the bound to O(m5/6).

Result 7.2 (Theorem 7.4). sA(5,m, 2) = O(m5/6).

One thing to note is that the space for the scheme storing five elements now matches

the space for the scheme storing four elements. Moreover, the two results stated above

combined together significantly reduces the gap between the upper and lower bounds for

the problem under consideration.
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7.2 Lower Bound

In this section, we present our proof for the lower bound of sA(5,m, 2). So, the size of

our subset S that we want to store in our data structure is at most five.

In table A of our data structure, multiple elements must necessarily map to the

same bit to keep the table size to o(m). The set of elements that map to the same bit in

this table is referred to in the literature as a block (Radhakrishnan et al. [2]). We refer

by A(e) to the block to which the element e belongs. Elements mapping to the same

bit in tables B and C will be referred to as just sets. That set of table B to which the

element e belongs will be denoted by B(e). C(e) is similarly defined.

Storing a member e of our subset S in table B is an informal way to state the

following – the bit corresponding to A(e) is set to 0, and B(e) is set to 1. So, upon query

for the element e, we will get a 0 in our first bitprobe, query table B at location B(e) to

get 1, and finally answer Yes. Similarly, storing an elememt f which is not in S in table

C would entail assigning 1 to A(f) and 0 to C(f).

To start with, we make the following simplifying assumptions about any scheme for

the aforementioned problem.

1. All the tables of our datastructure have the same size, namely s, and hence the

size our data structure is 3× s.

2. If two elements belong to the same block in table A, they do not belong to the

same sets in either of tables B or C.

In the conclusion of this section, we will show that these assumptions do not affect the

space asymptotically, but rather by constant factors.

7.2.1 Universe of an Element

We now define the notion of the universe of an element. This is similar to the definition

of the universe of a set in Kesh [17].

Definition 7.1. The universe of an element e w.r.t. to table B, denoted by UB(e), is

defined as follows.

UB(e) =
⋃

f∈B(e)\{e}

A(f) \ {f}.
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Similarly, the universe of an element e w.r.t. to table C, denoted by UC(e), is defined as

follows.

UC(e) =
⋃

f∈C(e)\{e}

A(f) \ {f}.

A simple property of the universe of an element, which will be useful later, is the

following.

Observation 7.1. 1. A(e) ∩ UB(e) = φ and B(e) ∩ UB(e) = φ.

2. A(e) ∩ UC(e) = φ and C(e) ∩ UC(e) = φ.

Proof. Due to Assumption 2, e is the only element of the block A(e) in set B(e). So,

it follows from the definition that no element of A(e) is part of UB(e). No element of

B(e) is part of UB(e) as we specifically preclude those elements from UB(e). The other

scenarios can be similarly argued.

We make the following simple observations about the universe of an element to help

illustrate the constraints any storage scheme must satisfy to correctly store a subset S.

Observation 7.2. If B(e) ∩ S = {e}, and we want to store e in table B, then all the

elements of UB(e) must be stored in table C.

Proof. As e has been stored in table B, the bit corresponding to the set B(e) must be

set to 1. Consider an element f , different from e, in B(e). According to Assumption 2,

e and f cannot belong to the same block. As f /∈ S, so f cannot be stored in table B;

if we do so, the query for f will look at the bit B(e) and incorrectly return 1. So, the

element f and its block A(f) must be stored in table C.

The above argument applies to any arbitrary element of B(e) \ {e}. So, according

to Definition 7.1, all of the elements of UB(e) must be stored in table C.

We make the same observation, without proof, in the context of table C.

Observation 7.3. If C(e) ∩ S = {e}, and we want to store e in table C, then all the

elements of UC(e) must be stored in table B.

Next, we define, what could be referred to as, a higher-order universe of an element,

built on top of the universe of the element.

94



7. IMPROVED BOUNDS FOR TWO BITPROBE SCHEME STORING FIVE
ELEMENTS

Definition 7.2. The 2-universe of an element e w.r.t. table B, denoted by U2
B(e), is

defined as follows.

U2
B(e) =

⋃
f∈UB(e)

C(f) \ {f}.

Similarly, the 2-universe of an element e w.r.t. table C, denoted by U2
C (e), is defined as

follows.

U2
C (e) =

⋃
f∈UC(e)

B(f) \ {f}.

The following observations provide more constraints for our storage schemes.

Observation 7.4. Consider an element e such that B(e) ∩ S = {e}, and suppose we

want to store e in table B. If f is a member of UB(e) such that C(f)∩ S = {f}, then all

the other members of C(f) must be stored in table B.

Proof. If e, a member of S, is stored in table B, then Observation 7.2 tells us that all

members of UB(e) must be stored in table C. As f ∈ UB(e) ∩ S, so f must be stored in

table C, and consequently, the bit corresponding to C(f) must be set to 1. As the other

members of C(f) do not belong to S, they cannot be stored in table C, and hence must

be stored in table B.

Observation 7.5. Consider an element e such that B(e) ∩ S = {e}, and suppose we

want to store e in table B. If f is a member UB(e) such that C(f) ∩ S = {x}, where

x 6= f , then x must be stored in table B.

Proof. As e, a member of S, is stored in B, Observation 7.2 tells us that all the members of

UB(e), and f in particular, must be stored in table C. As f /∈ S, so the bit corresponding

to C(f) has to be 0. As x ∈ C(f) belongs to S, then storing x in table C would imply

that C(f) must be set to 1, which is absurd. So, x must be stored in table B.

We next state the same observations in the context of table C.

Observation 7.6. Consider an element e such that C(e) ∩ S = {e}, and suppose we

want to store e in table C. If f is a member of UC(e) such that B(f)∩ S = {f}, then all

the other members of B(f) must be stored in table C.

Observation 7.7. Consider an element e such that C(e) ∩ S = {e}, and suppose we

want to store e in table C. If f is a member UC(e) such that B(f) ∩ S = {x}, where

x 6= f , then x must be stored in table C.
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7.2.2 Bad Elements

We now define the notion of good and bad elements. These notions are motivated by the

notions of large and bounded sets from Kesh [17].

Definition 7.3. e is a bad element w.r.t. table B if one of the following holds.

1. Two elements of UB(e) share a set in table C.

2. The size of U2
B(e) is greater than 2s, i.e. |U2

B(e)| > 2 · s.

Otherwise, it is said to be good. Bad and good elements w.r.t. to table C are similarly

defined.

The next claims state the consequences of an element being bad due to any of the

above properties getting satisfied.

Claim: If two elements of UB(e) share a set in table C, then ∃ a subset S that contains e

and has size two such that to store S, e cannot be stored in B.

Proof. Suppose the elements x, y ∈ UB(e) share the set Y in table C. We would prove

that to store the subset S = {e, x}, e cannot be stored in table B.

Let us say that e indeed can be stored in table B. According to Observation 7.2,

all elements of UB(e), including x and y, must be stored in table C. As x ∈ S, the bit

corresponding to the set Y must be set to 1. As y /∈ S, the bit corresponding to Y must

be set to 0. We thus arrive at a contradiction. So, e cannot be stored in table B.

Claim:

If the size of U2
B(e) is greater than 2s, then ∃ a subset S that contains e and has

size at most three such that to store S, e cannot be stored in table B.

Proof. Consider the set of those elements f of U2
B(e) such that it is the only member of

its block to belong to U2
B(e). As there are a total of s blocks, there could be at most

s such elements. Removing those elements from U2
B(e) still leaves us with more than s

elements in U2
B(e). These remaining elements have the property that there is at least

one other element from its block that is present in U2
B(e). Let this set be denoted by Z.

As the size of Z is larger than the size of table B, there must exist at least two

elements x, y ∈ Z that share a set X in table B. According to Definition 7.2, this implies
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that there exists elements z, z′ ∈ UB(e) such that x ∈ C(z) \ {z} and y ∈ C(z′) \ {z′}. It

might very well be that z = z′.

If x ∈ A(e), as e has been stored in table B, so all the elements of A(e), including

x, must have been stored in table B. Consider the subset S = {e, x, z′}. As x ∈ S, the

bit corresponding to set X must be set to 1. As e is stored in table B, Observation 7.2

tells us that z′ ∈ UB(e) must be stored in table C. As C(z′) ∩ S = {z′}, Observation 7.4

tells us that y must be stored in table B. So, the bit corresponding to set X must be

set to 0, which is absurd. So, to store S, e cannot be stored in table B. This argument

holds even if x = e. Similar is the case if y ∈ A(e).

If x ∈ B(e) \ {e}, and as e has been stored in table B, Observation 7.2 tells us that

x must be stored in table C. Consider the subset S = {e, z}. Observation 7.4 tells us

that as z ∈ UB(e) is in S, x ∈ C(z) cannot be stored in table C, which is absurd. So, to

store S, e cannot be stored in table B. We can similarly argue the case y ∈ B(e).

We now consider the case when x, y /∈ A(e) and /∈ B(e). If S contains e and x, and

we store e in table B, Observation 7.2 tells us that z ∈ UB(e) must be stored in table C,

and as x ∈ C(z), Observation 7.5 tells us that x must be stored in table B. As x ∈ S,

hence the bit corresponding to set of x in table B, which is X, must be set to 1.

If z 6= z′, we include z′ in S, and according to Observation 7.4, y ∈ C(z′) must

be stored in table B. As y ∈ X is not in S, X must be set to 0, and we arrive at a

contradiction for the subset S = {e, x, z′}.

It could also be the case that z = z′. As y ∈ Z, there exists an element y′ ∈

A(y)∩U2
B(e). Let y′ ∈ C(z′′), where z′′ ∈ UB(e). In this scenario, we consider storing the

subset S = {e, x, z′′}. As, z′′ ∈ S ∩ UB(e), and y′ /∈ S, Observation 7.4 implies that y′,

and hence the whole of block A(y′), including y, must be stored in table B. As y /∈ S, the

set of y in table B, which is X, must be set to 0, and we again arrive at a contradiction.

So, we conclude that e in either of the cases cannot be stored in table B.

The two claims above imply the following – if an element e is bad w.r.t. table B

(Definition 7.3) due to Property 1, or if this property does not hold but Property 2 does,

then there exists a subset, say S1, of size at most three containing e such that to store

S1, e cannot be stored in table B. The claims above also hold w.r.t. table C. So, we can

claim that if e is bad w.r.t. to table C, then there exists a subset S2 containing e of size
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at most three such that to store S2, e cannot be stored in table C.

Consider the set S = S1 ∪ S2. As e is common in both the subsets, size of S is at

most five. If e is bad w.r.t. to table B and table C, then to store subset S, we cannot

store e in either of the tables, which is absurd. We summarise the discussion in the

following lemma.

Lemma 7.1. If an element e is bad w.r.t. B, then it must be good w.r.t C.

7.2.3 Good Schemes

Based on the above lemma, we can partition our universe U into two sets U1 and U2

– one that contains all the good elements w.r.t. to table B, and one that contains the

bad elements. We now partition each block and each set of the three tables of our

datastructure into two parts, one containing elements from U1, and one containing the

elements from U2. For elements of U1, only those blocks and sets that contain elements

of U1 will be affected; similarly for the elements of U2.

In effect, we have two independent schemes, one for U1 and one for U2. In the scheme

for U1, all the elements in table B are good. In the scheme for U2, all the elements in

table B are bad, and consequently, Lemma 7.1 tells us that all the elements of table C

are good. In the scheme for U2, we now relabel the table B to C and relabel the table

C to B. To make the new scheme for U2 work, we now have to store 0 in the blocks of

table A for U2 when earlier we were storing 1, and have to store 1 when earlier we were

storing 0.

This change gives us a new scheme with two important properties – the size of the

datastructure has doubled from the earlier scheme, and all the elements in table B are

now good.

Lemma 7.2. Given a (5,m, s, 2)-scheme, we can come up with a (5,m, 2× s, 2)-scheme

such that all the elements of U are good w.r.t. to table B in the new scheme.

7.2.4 Space Complexity

Consider a (5,m, 3 × s, 2)-scheme all of whose elements are good w.r.t. table B. The

table sizes then are each equal to s. According to Lemma 7.2, the 2-universe of each
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element w.r.t. to B will be at most 2s. So, the sum total of all the 2-universe sizes of all

the elements is upper bounded by m× 2s.

We now consider how much each set of table C contribute to the total. From

Definition 7.2, we have the following –

∑
e∈U
| U2
B(e) |=

∑
e∈U
|
⋃

f∈UB(e)

C(f) \ {f} |=
∑
e∈U

 ∑
f∈UB(e)

| C(f) \ {f} |

 .

As all the elements are good, and hence for every element e, no two elements of UB(e)

share a set in table C, we can thus convert the union in Definition 7.2 to summation.

We have shown in Appendix 8.1 that

∑
e∈U
| U2
B(e) | ≥ c · m

4

s3
,

for some constant c. The proof show that the minimum value is achieved when all the

blocks and the sets in the three tables are of the same size, i.e. m/s. This combined

with the upperbound for total sum of the sizes of all 2-universes gives us

c · m
4

s3
≤ m× 2s.

Resolving the equation gives us

s = Ω(m3/4).

This bound applies to good schemes that respect the two assumptions declared at the

beginning of this section.

Suppose we have an arbitrary adaptive (5,m, s, 2)-scheme. If we want to make all

the tables in this scheme of the same size, we can add extra bits which will make the

size of the data structure at most 3 · s. So, we get a (5,m, 3× s, 2)-scheme that respect

Assumption 1.

In Kesh [17], sets which have multiple elements from the same block were referred

to as dirty sets. Clean sets were those which contain elements from distinct blocks. It

was shown in Section 3 that any scheme with dirty sets can be converted into a scheme

with only clean sets by using twice amount of space. Though the final claim was made in

context of n = 3, but the proof applies to any n. So, we can now have a (5,m, 6× s, 2)-
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scheme that respects both of our assumptions.

Such a scheme can be converted into a scheme with only good elements in table B

by using twice the amount of space as before. We now have a (5,m, 12 × s, 2)-scheme,

where the table sizes are all 4s, and we have shown that 4s = Ω(m3/4).

We summarise our discussion in the following theorem on the lower bound for two-

adaptive bitprobes schemes storing five elements.

Theorem 7.3. sA(5,m, 2) = Ω(m3/4).

7.3 Our Data Structure

In this section, we will present a scheme which stores an arbitrary subset of size at most

five from a universe of size m, and answers the membership queries in two adaptive

bitprobes. This scheme improves upon the O(m10/11)-scheme by the authors [7], and is

fundamentally different from that scheme in the way that here block sizes are nonuni-

form, and any two blocks in table C share at most one bit. As per the convention of that

scheme, we will use the label T to refer to the table A, T0 to refer to the table B, and

T1 to refer to the table C.

Superblock: In this scheme, we have used the idea of Kesh [18] to map the elements on

a square grid. Furthermore, we have used the idea of Radhakrishnan et al. [2] to divide

the universe into blocks and superblocks. Our scheme divides the universe of size m into

superblock of size x2zt. Each superblock is made up of rectangular grids of size t × z,

and there are x2 of them as shown in Figure 7.2. Further, each integral point on a grid

represents a unique element.

Block: For the 1st superblock we draw lines with slope 1 as shown in Figure 7.3.

Each line drawn represents a block. From Figure 7.3, we can see that some blocks are of

equal size and some are of different size. We do this for all the superblocks, and hence

partitioning the universe into blocks. For the ith superblock we draw lines with slope 1/i.

Table T1: This table has space equal to that of a single superblock, i.e., x2zt. All

the superblocks can be thought of as superimposed over each other in this table. Struc-

ture of this table is shown in Figure 7.2.
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1
... x

1

x

...

z

t

Figure 7.2: Figure showing
structure of a superblock

Figure 7.3: Lines drawn in the
first superblock

Table T : In this table, we store a single bit for each block. Let there be n superblocks in

total. Now let us concentrate on a single grid of Figure 7.3. The number of lines drawn

for the ith superblock is equal to z+c · it, where c is a constant. If we sum this for all the

superblocks total number of lines drawn for the single grid will be equal to nz + c · n2t.

Now, since there are x× x grids, the total number of lines drawn for all the superblocks

will be (nz + c · n2t)x2. As mentioned earlier, each line represents a block, and for each

block, we have one bit of space in table T . So the size of this table T is (nz+c·n2t)x2 bits.

Table T0: In addition to lines drawn in superblocks to divide them into blocks, we

also draw dotted lines in all the superblocks, as shown in Figure 7.4. For the ith su-

perblock we draw dotted lines with slope 1/i. Further, we store a block of size t in table

T0 for each dotted lines drawn. Now, we can see that for a specific superblock there

could be many blocks belonging to that superblock which lies on the same dotted line.

All the blocks which lie completely on the same dotted line query the same block in table

T0 kept for the dotted line. Now let us talk about the space taken by table T0. Using the

idea shown in Figure 7.4 to draw the dotted lines, if we sum the total number of dotted

lines drawn for all the superblocks which pass through x-axis, we will get nzx. Further,

if we sum the total number of dotted lines drawn for all the superblocks from the y-axis,

we get it to be less than or equal to c1 · n2t × x, where c1 is a positive constant. If we

sum the total number of dotted lines drawn for all the superblocks from x and y-axis,

we get nzx + c1 · n2t × x. Since we store a block of size t for each dotted line drawn,

total space for table T0 is (nzx+ c1 · n2t× x)× t.
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Figure 7.4: Dotted lines drawn for the first superblock

Size of data structure: Summing up the space taken by all the tables we get the

following equation:

s(x, z, t) = x2zt+ (nz + c · n2t)x2 + (nzx+ c1 · n2t× x)× t (7.1)

As mentioned earlier size of each superblock is x2zt, so the total number of superblocks

are n = m/(x2zt). Substituting this in the above equation, we get the following:

s(x, z, t) = c1 ·
m2

x3z2
+ c · m2

x2z2t
+
m

x
+
m

t
+ x2zt (7.2)

Choosing x = t = m1/6 and z = m2/6, we get the space taken by our data structure to

be O(m5/6).

7.3.1 Query Scheme

Our query scheme has three tables T, T0 and T1. Given a query element, we first find

out the blocks to which it belongs. Further, we query the bit stored for this block in

table T . If the bit returned is zero, we make the next query to table T0 otherwise to

table T1. We say that query element is part of the set given to be stored if and only if

last bit returned is one.
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7.3.2 Storage Scheme

Our storage scheme sets the bits of tables T, T0 and T1 to store an arbitrary subset of size

at most five in such a way that membership queries can be answered correctly. Storage

scheme sets the bit of data structure depending upon the distribution of elements in

various superblocks. Distribution of elements into various superblocks leads to various

cases of the storage scheme. While generating various cases we consider an arbitrary

subset S = {n1, n2, n3, n4, n5} of size five given to be stored. Each block is either sent to

Table T0 or T1, and we store its bit-vector there. While sending blocks to either T0 or

T1, we make sure that no two blocks sharing a bit have conflicting bit common in either

of the tables, the correctness of the scheme relies on this fact. Keeping in mind the space

constraints, we have discussed a few cases in this section, and for the sake of complete-

ness the rest of the cases which can be handled in a similar fashion are mentioned in the

Appendix 8.2. Most of the cases generated and assignment made are similar to those

generated in the previous paper on the problem by Baig et al. [7] to store an arbitrary

subset of size at most five.

Case 1 All the elements belonging to S belongs to the same superblock. In this case,

we send all the blocks having elements from the set given to be stored to table T1. All

the empty blocks, i.e., blocks which do not have any elements from S are sent to table T0.

Case 2 Four elements S1 = {n1, n2, n3, n4} lies in one superblock and one S2 = {n5}

in other. In this case, we send the block having element n5 to table T1 and rest all the

blocks belonging to superblock which contains this element to table T0. All the blocks

which are having conflicting bit common with the block having element n5 are sent to

table T0. Remaining all the blocks of superblocks which contains elements from S1 are

sent to table T1. Furthermore, rest all the empty blocks of all the superblocks are sent

to table T0.

Case 3 All the elements n1, n2, n3, n4 and n5 lies in the different superblocks. In

this case, we send all the blocks having elements to table T0 and all the empty blocks to

table T1.
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Case 4 Three elements S1 = {n1, n2, n3} belong to one superblock and two elements

S2 = {n4, n5} to the other.

Case 4.1 All the blocks to which elements from S1 belong lies on the same dotted

line of their superblock.

Case 4.1.1 Two blocks to which elements from S2 belong have a conflicting bit common

with the blocks corresponding to the elements from S1 in table T1. In this case, we send

the blocks having elements from S2 to table T0. Further, we send empty blocks lying on

the dotted lines to which blocks having elements from S2 belongs to table T1. We send

all the blocks which contain elements from S1 in table T1. We send the rest of the empty

blocks to table T0.

Case 4.1.2 Only one block which contains an element from S2 has a conflicting bit

common with the block corresponding to the elements from S1 in table T1. In this case,

we send all the blocks which contain elements from S1 to table T1. We send the block

having an element from S2, and having conflicting bit common with block having an

element from S1, to table T0, and the rest of the blocks which lies on the dotted line

containing this block to table T1. If after this other nonempty block having an element

from S2 is still unassigned then we send it to table T1, and all the empty blocks lying on

the dotted line containing this block to table T0 . Rest all the empty blocks are sent to

table T0.

Case 4.1.3 None of the blocks which contain an element from S2 have a conflict-

ing bit common with the block which includes an element from S1 in table T1 . In this

case, we send all the nonempty blocks to table T1 and all the empty blocks to table T0.

Case 4.2 Two blocks which contain elements say n1 and n2 from S1 lies on the same

dotted line and other say n3 lies on a different dotted line.

Case 4.2.1 All the blocks which contain elements from S2 have a conflicting bit com-

104



7. IMPROVED BOUNDS FOR TWO BITPROBE SCHEME STORING FIVE
ELEMENTS

mon with blocks which include elements from S1 in table T1.

4.2.1.1 Let us first consider the case where blocks having elements from S2 have a

conflicting bit common with the blocks having elements n1 and n2. In this case, we send

the blocks having element n4 and n5 to table T0, and all the blocks lying on the dotted

lines containing these block to table T1. Further, we send the blocks having elements n1

and n2 to table T1. Block having element n3 is sent to table T0, and all the empty blocks

lying on the dotted line containing this block is sent to table T1. Rest all the empty

blocks are sent to table T0.

4.2.1.2 Without loss of generality let us now consider the case where blocks having

an element from S2 have a conflicting bit common with blocks having element n1 and

n3. In this case, we send the blocks having elements n4 and n5 to table T1, rest all the

blocks lying on the dotted line(lines) containing these blocks to table T0. Further, we

send the blocks having element n1 and n3 to table T0, and all the blocks lying on the

dotted lines containing these blocks to table T1. Rest all the blocks are sent to table T0.

4.2.1.3 Now we are left with a case where block having an element from S2 have a

conflicting bit common with blocks having elements n1, n2 and n3. In this case, we send

the blocks having element n4 and n5 to table T0, and all the empty blocks lying on the

dotted lines containing this block to table T1. Further, we send all the blocks having

elements from S1 to table T1, and rest all the empty blocks to table T0.

Case 4.2.2 Only one block having an element from S2 have a conflicting bit com-

mon with the block(blocks) having an element(elements) from S1.

Case 4.2.2.1 All the blocks having elements from S2 lies on the same dotted line.

Without loss of generality, let us say block having element n4 from S2 have a conflicting

bit common with a block having an element from S1. In this case, we send the blocks

having element n4 and n5 to table T1, and all the empty blocks lying on the dotted

line containing these blocks to table T0. Further, we send the block(blocks) having an

element(elements) from S1, and having a conflicting bit common with a block having
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element n4 to table T0, and all the blocks lying on the dotted line containing this block

to table T1. We now send the rest of the block(blocks) having an element from S1 to

table T1. Rest all the empty blocks are sent to table T0.

Case 4.2.2.2 Now let us consider a case where blocks having an element from S2

lies on the different dotted line. Without loss of generality lets say block having element

n4 have a conflicting bit common with a block(blocks) having an element(elements) from

S1.

Let us first consider the case where block having element n4 have a conflicting bit

common with either block having element n1 or n2. Without loss of generality, let us

say block having element n4 have a conflicting bit common with a block having element

n1. In this case, we send the block having element n3, n4 and n5 to table T0, and all

the empty blocks lying on the dotted line containing these blocks to table T1. Now, we

see the positions of the blocks having elements n1 and n2. Let us first consider the case

where blocks having element n1 or n2 have conflicting bit common with one of the empty

blocks lying on the dotted line which contains block having element n5. Without loss

of generality let us say that block having element n1 have conflicting bit common with

one of the empty blocks lying on the dotted line which contains block having element

5. In this case, we send the block having element n1 to table T0, and rest all the blocks

lying on the dotted line containing this block to table T1. Rest all the empty blocks are

sent to table T0. On the other hand, if the block having element n1 or n2 do not have

conflicting bit common with empty blocks lying on the dotted line which contains block

having element n5, then we send the blocks having elements n1 and n2 to table T1, and

rest all the empty blocks lying on the dotted line containing these blocks to the table

T0. Rest all the empty blocks are sent to the table T0.

Now let us consider the case where block having element n4 have a conflicting bit

common with a block having element n3. Now, we see if the block having element n4

have conflicting bit common with block having element n1 or n2. Without loss of gen-

erality, let us say that block having element n4 have conflicting bit common with block

having element n1. In this case, we can use the assignment made in previous paragraph.

On the other hand, if the block having element n4 do not have conflicting bit common

with block having element n1 or n2, then we send the blocks having elements n3 and n5

106



7. IMPROVED BOUNDS FOR TWO BITPROBE SCHEME STORING FIVE
ELEMENTS

to table T0, and all the empty blocks lying on the dotted lines containing these blocks to

table T1. Further, we send the block having element n4 to table T1, and all the empty

blocks lying on the dotted line containing this block to table T0. Now we see the posi-

tion of the blocks having elements n1 and n2. Let us first consider the case where on of

the blocks having elements n1 or n2 has conflicting bit common with one of the empty

blocks lying on the dotted line which contains block having element n5. Without loss

of generality, let us say that block having element n1 has conflicting bit common with

one of the empty blocks lying on the dotted line which contains block having element

n5. In this case, we send the block having element n1 to table T0, and all the blocks

lying on the dotted line containing this block to table T1. Rest all the empty blocks are

sent to table T0. On the other hand, if none of the block having element n1 or n2 has

conflicting bit common with empty blocks lying on the dotted line which contains block

having element n5, then we send the block having element n1 and n2 to table T1, and

rest all the empty blocks to table T0.

Case 4.2.3 None of the blocks which contain an element from S2 have a conflict-

ing bit common with the block which includes an element from S1 in table T1 . In this

case, we send all the nonempty blocks to table T1 and all the empty blocks to table T0.

Case 4.3 All the blocks having an element from S1 lies on the different dotted lines.

Case 4.3.1 Both the blocks having elements n4 and n5 have a conflicting bit com-

mon with the blocks having elements from S1 in table T1. Now we see the positions of

the blocks having elements n4 and n5. Blocks having elements n4 and n5 can either lie

on the same dotted line or on the different dotted lines. If the blocks having elements n4

and n5 lie on the different dotted lines, then we send all the blocks having elements to

table T0, and all the empty blocks to table T1. Now we consider the case where blocks

having elements n4 and n5 lies on the same dotted line. Furthermore, without loss of

generality let us consider that blocks having elements n4 and n5 conflicts with blocks

having elements n1 and n2 respectively. In this case, we send the blocks having elements

n1 and n2 to table T0, and all the empty blocks lying on the dotted lines containing

these blocks to the table T1. Further, we send the blocks having elements n4 and n5 to
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table T1, and all the empty blocks lying on the dotted line containing these blocks to

table T1. Now, we see the position of the block having element n3. If the block having

element n3 has conflicting bit common with blocks having elements n4 or n5, then we

send the block having element n3 to table T0, and all the empty blocks lying on the

dotted line which contains this block to table T1. Rest all the empty blocks to table T0.

On the other hand, if the block having element n3 do not have conflicting bit common

with block having element n4 or n5, then we send the block having element n3 to table

T1, and rest all the empty blocks to table T0.

Case 4.3.2 Only one of the block having element say n4 from S2 have a conflict-

ing bit common with blocks having an element from S1 in table T1. Similar to the last

case, in this case also we see whether blocks having elements n4 and n5 lie on the same

dotted line or on the different dotted lines. If the blocks having elements n4 and n5

lies on the different dotted lines, then we send the blocks having elements to table T0,

and all the empty blocks to table T1. Now, we consider the case where blocks having

elements n4 and n5 lies on the same dotted lines. Furthermore, without loss of generality

let us say that block having the element n1 have a conflicting bit common with the block

having the element n4. In this case, we send the blocks having elements n1 and n4 to

table T0, and all the empty blocks lying on the dotted lines containing these blocks to

table T1. Further, we send the blocks having elements n2, n3 and n5 to table T1. Rest

all the empty blocks are sent to table T0.

Case 4.3.3 None of the blocks which contain an element from S2 have a conflict-

ing bit common with the block which includes an element from S1. This case is the same

as Case 4.1.3.

We conclude this section with the following theorem:

Theorem 7.4. There is a fully explicit two adaptive bitprobe scheme, which stores an

arbitrary subset of size at most five, and uses O(m5/6) space.
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7.4 Conclusion

In this paper, we have studied those schemes that store subsets of size at most five and

answer membership queries using two adaptive bitprobes. Our first result improves upon

the known lower bounds for the problem by generalising the notion of universe of sets in

Kesh [17] to what may be referred to as second order universe. We hope that suitably

defining still higher order universes will help address the lower bounds for subsets whose

sizes are larger than five. Though the lower bound of Ω(m3/4) is an improvement, we

believe that it is not tight.

We have also presented an improved scheme for the problem. It refines the approach

taken by Baig et al. [7] and alleviates the need for blocks that overlap completely to save

space. This approach helps us achieve an upper bound of O(m5/6) which is a marked

improvement over existing schemes.

We note that there is still a gap between the upper and lower bounds for the

problem, and we believe the following to be true.

1. There should exist a O(m4/5)-scheme for subsets of size four (n = 4).

2. sA(5,m, 2) = Θ(m4/5).

[[]X]\\
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8.1 Appendix A

In this section, we prove our expression for the space lower bound. We start by proving

a simple fact about sum of products.

Claim: Given that
∑n

i=1 ai ≥ C1 and
∑n

i=1 bi ≥ C2, then

n∑
i=1

aibi ≥
C1C2

n
.

Proof. Consider the following sum –

n∑
i=1

(ai + bi)
2.

This is minimised when the all of the summands are equal. Thus,

n∑
i=1

(ai + bi)
2 ≥

n∑
i=1

(
C1 + C2

n

)2

=
(C1 + C2)

2

n
.
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We can now expand the sum to prove the desired inequality.

n∑
i=1

(ai + bi)
2 =

n∑
i=1

a2i +

n∑
i=1

b2i +

n∑
i=1

2aibi

≥ n
(
C1

n

)2

+ n

(
C2

n

)2

+

n∑
i=1

2aibi

≥ (C1 + C2)
2

n

=⇒
n∑

i=1

2aibi ≥
(C1 + C2)

2

n
− n

(
C1

n

)2

− n
(
C2

n

)2

= 2
C1C2

n
.

We apply the claim above repeatedly to prove the following lemma. It is important

to note that the sum is computed w.r.t. table B, and in table B all the elements are

good.

Lemma 8.1.
∑

e∈U | U2
B(e) | ≥ c · m4

s3
.

Proof. We have the following expression for the sum of the sizes of all 2-universes of all

elements.

∑
e∈U
| U2
B(e) | =

∑
e∈U
|
⋃

f∈UB(e)

C(f) \ {f} |

=
∑
e∈U

 ∑
f∈UB(e)

| C(f) \ {f} |


We could convert the union in the expression above into the summation as no two

elements of UB(e) share a set. We can similarly expand UB(e) from Definition 7.1.

∑
e∈U
| U2
B(e) | =

∑
e∈U

 ∑
f∈UB(e)

| C(f) \ {f} |


=
∑
e∈U

 ∑
g∈B(e)\{e}

 ∑
f∈A(g)\{g}

(| C(f) \ {f} |)


112



8. APPENDIX

We will first compute the value of the following expression.

∑
e∈U
|B(e) \ {e}| =

∑
e∈U

(|B(e)| − 1) =
∑
e∈U
|B(e)| −m

=
∑
X∈B

cX |X| −m. (collecting over the sets of B)

Here, the sum of the coefficients cX is m, and the number of terms, which is same as the

number of sets of B, is s. Further,
∑

X∈B |X| = m. So, applying the above claim,

∑
e∈U
|B(e) \ {e}| =

∑
X∈B

cX |X| −m

≥ m ·m
s
−m (sum of the sizes of the sets of B is m)

≥ cm
2

s
(for some suitable coefficient c)

Next, we compute an expression the sum of whose coefficients is the above sum.

∑
e∈U

 ∑
g∈B(e)\{e}

|A(g) \ {g}|

 ≥ c∑
Z∈A

cZ |Z|, (collecting over the blocks of A)

≥ c′ ·
m2

s m

s
= c′

m3

s2
. (for some suitable coefficient c’)

We finally compute the desired expression of which the sum of coefficients is the above

expression.

∑
e∈U
| U2
B(e) | =

∑
e∈U

 ∑
g∈B(e)\{e}

 ∑
f∈A(g)\{g}

(| C(f) \ {f} |)


≥ c ·

∑
Y ∈C

cY |Y |, (collecting over the sets of C)

= c′ ·
m3

s2
m

s
= c′

m4

s3
. (for some suitable coefficient c’)

[[]X]\\
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8.2 Appendix B

Rest of the case of subsection 7.3.2 is discussed here.

Case 5 The elements in S1 = {n1, n2, n3} lies in a superblock and the elements n4

and n5 in the different superblocks.

Case 5.1 Blocks having element n1, n2 and n3 lies on a same dotted line.

Case 5.1.1 Blocks having element n4 and n5 have a conflicting bit common with the

blocks having elements from S1 in table T1. In this case, we send the blocks having

elements n4 and n5 to table T0 and the rest of the empty blocks which lie on the dotted

lines containing these blocks to table T1. We send the blocks having elements from S1

to table T1. Rest all the empty blocks are sent to table T0.

Case 5.1.2 Only one of the block having element say n4 have a conflicting bit com-

mon with the block having an element from S1 in table T1. Without loss of generality let

us say block having the element n1 have a conflicting bit common with the block having

the element n4. In this case, we send the blocks having elements n4 and n5 to table T0

and all the empty blocks lying on the dotted line containing these blocks to table T1.

Now we see whether the dotted line which contains block having the element n5 passes

through the block having element elements from S1 or not. Let us first consider a case

where the dotted line which contains block having the element n5 passes through one

of the blocks having elements from S1, without loss of generality let us say it passes

through block having the element n2. In this case, we send the block having the element

n2 to table T0 and rest all the blocks lying on the dotted line containing this block to

table T1. Rest all the empty blocks are sent to table T0. On another hand, if the dotted

line which contains block having the element n5 does not pass through any of the block

having element from S1 then we send the blocks having elements from S1 to table T1.

Rest all the empty blocks are sent to table T0.

Case 5.1.3 None of the blocks which contains element n4 or n5 have a conflicting bit
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common with the blocks which include an element from S1 in table T1. Now, the blocks

having elements n4 and n5 can conflict among themselves or it does not. If the block

having elements n4 and n5 do not conflict among themselves, then we send all the blocks

having elements to table T1, and rest all the empty blocks to table T0. On the other

hand, if the blocks having elements n4 and n5 conflict among themselves, then we see

whether they conflict on the dotted line which contains block having elements from S1.

If they conflict on the dotted line which contains block having elements from S1, then

we send the blocks having elements n4 and n5 to table T0, and all the empty blocks lying

on the dotted line containing this block to table T1. Further, we send the blocks having

elements from S1 to table T1, and rest all the empty blocks to table T0. If the blocks

having elements n4 and n5 do not conflict on the dotted line which contains blocks hav-

ing elements from S1, then we send the block having element n4 to table T0, and all the

empty blocks lying on the dotted line containing this block to table T1. Further, we send

the block having element n5 to table T1, and all the empty blocks lying on the dotted line

containing this block to table T0. Now, we see whether the dotted line which contains

block having element n4 passes through block having element n1 or n2. Without loss of

generality, let us say that the dotted line which contains block having element n4 passes

through block having element n1. In this case, we send the block having element n1 to

table T0, and rest all the blocks lying on the dotted line containing this block to table

T1. Rest all the empty blocks are sent to table T0. If the dotted lines which contains

block having elements n4 or n5 do not pass through block having elements from S1, then

we send the blocks having elements from S1 to table T1, and rest all the empty blocks

to table T0.

Case 5.2 Two elements say n1 and n2 lies on the same dotted line and the element

n3 lies on a different dotted line.

Case 5.2.1 Blocks having the elements n4 and n5 have a conflicting bit common with

the blocks having elements from S1 in table T1.

Case 5.2.1.1 Blocks having the elements n4 and n5 have a conflicting bit common

with the block having elements n1 and n2 in table T1. In this case, we send the blocks
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having elements n4 and n5 to table T0 and all the empty blocks lying on the dotted lines

containing these blocks to table T1. Also, we send the blocks having elements n1 and n2

to table T1. We send the block which contains the element n3 to table T0 and the rest

of the empty block lying on the dotted line containing this block to table T1. Rest all

the empty blocks are sent to table T0.

Case 5.2.1.2 Blocks having elements n4 and n5 have a conflicting bit common with

the blocks lying on the different dotted lines, say block having elements n1 and n3 in

table T1. In this case, we send the blocks having elements n4 and n5 to table T1 and

the rest of the empty blocks lying on the dotted line containing these blocks to table T0

. We send the blocks having elements n1 and n3 to table T0 and the rest of the blocks

lying on these dotted lines to table T1. Rest all the empty blocks are sent to table T0.

Case 5.2.1.3 Blocks having element n4 and n5 have a conflicting bit common in ta-

ble T1. If these blocks have a conflicting bit common with the block having the element

n1 or n2 then we send both the blocks having the element n4 and n5 to table T0 and

the rest of the empty block lying on the dotted line containing these blocks to table T1.

Also, we send the blocks having the element n1, n2 and the blocks lying on the dotted

line containing these blocks to table T1. We send the block which contains element n3

to table T0 and the rest of the empty block which lies on the dotted line containing this

block to table T1. Rest all the empty blocks are sent to table T0.

If the blocks containing elements n4 and n5 have a conflicting bit common with the

block which contains element n3 in table T1 then we send the block containing element

n3 to table T0 and the rest of the empty block which lie on the dotted line containing

this block to table T1. Also, we send the block containing n4 to table T1 and the rest

of the empty block lying on the dotted line containing this block to table T0. We send

the block having the element n5 to table T0 and the rest of the empty block lying on the

dotted line containing this block to table T1. Now we see whether the dotted line which

contains block having the element n5 passes through the block having the element n1 or

n2. Without loss of generality let us first consider the case where the dotted line which

contains block having the element n5 passes through the block having the element n1.

In this case, we send the block having the element n1 to table T0 and all the blocks lying
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on the dotted line containing this block to table T1. Rest all the empty blocks are sent

to table T0. If the dotted line which contains block having element n5 does not pass

through the blocks having elements n1 or n2 then we send the blocks having elements

n1 and n2 to table T1 and rest all the empty blocks to table T0.

Case 5.2.2 Only one block having an element n4 or n5, have a conflicting bit com-

mon with a block having the element from S1 in table T1. Let us first consider the case

where block having element n4 have a conflicting bit common with the block having

element n1 or n2. Without loss of generality let us say block having the element n4 have

a conflicting bit common with the block having the element n1. Now we can have two

cases, either the block having element n4 conflicts with block having the element n3 or it

does not. Let us first consider the case where block having the element n4 do not conflict

with block having the element n3. In this case, we send the blocks having the elements

n3, n4 and n5 to table T0, and all the empty blocks lying on the dotted line containing

these blocks to table T1. Now we see whether the empty blocks lying on the dotted line

which contains block having element n5 passes through blocks having elements n1 or n2.

Without loss of generality let us say that empty block lying on the dotted line which

contains block having element n5 passes through block having element n1. In this case,

we send the block having the element n1 to table T0 and rest all the blocks lying on the

dotted line containing this block to table T1. Rest all the empty blocks are sent to table

T0. On the other hand, if the dotted line which contains block having element n5 do not

pass through blocks having element n1 or n2, then we send the block having element n1

and n2 to T1, and rest all the empty blocks to table T0. Now we consider the case where

block having element n4 have conflicting bit common with block having element n3. In

this case, we send the block having element n4 to table T0, and all the empty blocks lying

on the dotted line containing this block to table T1. Now we see the position of the block

having element n5. If the block having element n5 have conflicting bit common with

empty block lying on the dotted line containing blocks having elements n1 and n2, then

we send the block having element n1, n2, n3 and n5 to table T1, and rest all the empty

blocks to table T0. If the block having element n5 do not have conflicting bit common

with empty block lying on the dotted line containing blocks n1 and n2, then we send the

block having element n5 to table T0, and all the empty blocks lying on the dotted line
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containing this block to table T1. Now we see whether the blocks having element n1 or n2

have conflicting bit common with empty block lying on the dotted line containing block

having element n5. Without loss of generality let us say that block having element n1

have conflicting bit common with empty block lying on the dotted line containing block

having element n5. In this case, we send the block having element n1 to table T0, and

rest all the blocks lying on the dotted line containing this block to table T1. Further, we

send the block having n3 to table T0, and all the empty blocks lying on the dotted line

containing this block to table T1. Rest all the empty blocks are sent to table T0. If none

of the blocks having element n1 or n2 have conflicting bit common with empty block

lying on the dotted line containing element n5, then we send the blocks having elements

n3 and n5 to table T0, and all the empty blocks lying on the dotted line containing this

block to table T1. Furthermore, we send the blocks having element n1 and n2 to table

T1, and rest all the empty blocks to table T0.

Now let us consider the case where block having the element n4 have a conflicting

bit common only with the block having the element n3. Now we see whether the blocks

having elements n4 and n5 conflicts or not. Let us first consider the case where blocks

having elements n4 and n5 do not conflicts. Now we see the position of the block having

element n5. Let us first consider the case where block having element n5 conflicts with

empty block lying on the dotted line which contains block having element n1. In this

case, we send the block having the element n1, n2, n4 and n5 to table T1, and rest all the

empty blocks lying on the dotted lines containing these blocks to table T0. We send the

block having the element n3 to table T0, and all the empty blocks lying on the dotted

line containing this block to table T1. Rest all the empty blocks are sent to table T0.

If the block having the element n5 have a conflicting bit common with a empty block

lying on the dotted line which contains block having the element n3, then we send the

blocks having the elements n3 and n5 to table T1, and all the empty blocks lying on the

dotted lines containing these blocks to table T0. We send the block having element n4 to

table T0, and rest all the empty blocks lying on the dotted line containing this block to

table T1. If the block having the element n1 have a conflicting bit common with block

lying on the dotted line which contains block having the element n4, then we send the

block having the element n1 to table T0, and rest all the blocks lying on the dotted line

containing this block to table T1. Rest all the empty blocks are sent to table T0. Similar
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is the case if the block having the element n2 have a conflicting bit common with block

lying on the dotted line which contains block having the element n4. On the other hand,

if the dotted line which contains block having element n4 do not pass through blocks

having elements n1 or n2, then we send the blocks having elements n1 and n2 to table

T1, and rest all the empty blocks to table T0. If none of the above case occurs, and the

block having the element n5 does not have a conflicting bit common with a block lying

on the dotted line which contains block having the element n3, then we send the block

having the element n1, n2, n4 and n5 to table T1, and rest all the empty blocks lying on

the dotted lines containing these blocks to table T0. Further, we send the block having

element n3 to table T0, and all the empty blocks lying on the dotted line containing

this block to table T1. Rest all the empty blocks are sent to table T0. Now, we see the

case where block having element n4 and n5 conflicts. Now we can have several cases

depending upon whether blocks having element n4 and n5 conflicts with empty block

lying on the dotted line which contains block having element n1. Let us first consider

the case where block having element n5 conflicts with empty block lying on the dotted

line which contains block having element n1. In this case, we send the blocks having

elements n3, n4 and n5 to table T0, and rest all the empty blocks lying on the dotted

lines containing these blocks to table T1. Now we see whether the dotted line which con-

tains block having element n4 passes through block having element n1 or n2. Without

loss generality let us say that dotted line which contains block having element n4 passes

through block having element n1. In this case, we send the block having the element n1

to table T0, and rest all the blocks lying on the dotted line containing this block to table

T1. Rest all the empty blocks are sent to table T0. On the other hand, if the dotted line

which contains block having element n4 do not pass through blocks having elements n1

or n2, then we send the blocks having elements n1 and n2 to table T1, and rest all the

empty blocks to table T0. Similar is the case when block having element n4 conflicts with

empty block lying on the dotted line which contains block having element n1. If none of

the above occurs, then we send the blocks having elements n3 and n5 to table T0, and

rest all the empty blocks lying on the dotted lines containing these blocks to table T1.

Further, we send the block having element n4 to table T1, rest all the empty blocks lying

on the dotted line containing this block to table T0. Now we see whether the dotted line

which contains block having element n5 passes through block having element n1 or n2.
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Without loss generality let us say that dotted line which contains block having element

n5 passes through block having element n1. In this case, we send the block having the

element n1 to table T0, and rest all the blocks lying on the dotted line containing this

block to table T1. Rest all the empty blocks are sent to table T0. On the other hand,

if the dotted line which contains block having element n4 do not pass through blocks

having elements n1 or n2, then we send the blocks having elements n1 and n2 to table

T1, and rest all the empty blocks to table T0.

Case 5.2.3 None of the blocks having the elements n4 or n5 have a conflicting bit

common with blocks having elements from S1 in table T1. We can have several cases

depending upon whether the blocks having element n4 and n5 conflicts or not. Let us

first consider the case where blocks having elements n4 and n5 do not conflict. In this

case we send all the blocks having elements to table T1, and all the empty blocks to

table T0. Now let us consider the case where blocks having elements n4 and n5 conflicts.

Now, we see the position of the block having elements n4 and n5. Let us first consider

the case where blocks having elements n4 and n5 conflicts on the dotted line which con-

tains block having element n1. In this case, we send the blocks having elements n1 and

n2 to table T1, and rest all the empty blocks lying on the dotted line containing these

blocks to table T0. Further, we send the blocks having elements n3, n4 and n5 to table

T0, rest all the empty blocks lying on the dotted lines containing these blocks to the

table T1. Rest all the empty blocks are sent to table T0. Now let us consider the case

where block having elements n4 and n5 conflicts outside the dotted line which contains

block having element n1. Now we can have a case where either block having elements

n4 or n5 conflicts with empty block lying on the dotted line which contains block having

element n1. Without loss of generality let us say that block having element n4 conflicts

with empty block lying on the dotted line which contains block having element n1. In

this case, we send the blocks having elements n3, n4 and n5 to table T0, and rest all the

empty blocks lying on the dotted line containing these blocks to table T1. Now we see

whether the dotted line which contains block having element n5 passes through block

having element n1 or n2. Without loss of generality, let us say that the dotted line which

contains block having element n5 passes through block having element n1. In this case,

we send the block having element n1 to table T0, and rest all the blocks lying on the

121



8.2. APPENDIX B

dotted line containing this block to table T1. Rest all the empty blocks are sent to table

T0. On the other hand, if the dotted line which contains block having element n5 do

not pass through block having element n1 or n2, then we send the block having element

n1 and n2 to table T1, and rest all the empty blocks to table T0. Now we consider the

case where block having element n4 or n5 do not conflict with empty block lying on the

dotted line which contains block having element n1. In this case, we send the blocks

having elements n3 and n5 to table T1, and rest all the empty blocks lying on the dotted

lines containing these blocks to table T0. Further, we send the block having element n4

to table T0, and rest all the empty blocks lying on the dotted line containing this block

to table T1. Now we see if the dotted line which contains block having element n4 passes

through block having element n1 or n2. Without loss of generality let us say that dotted

line which contains block having element n4 passes through block having element n1. In

this case, we send the block having element n1 to T0, and rest all the blocks lying on the

dotted line containing this block to table T1. Rest all the empty blocks are sent to table

T0. If the dotted line which contains block having element n4 do not pass through block

having element n1 or n2, then we send the blocks having elements n1 and n2 to table

T1, and rest all the empty blocks to table T0.

Case 5.3 All the elements belonging to S1 lies on the different dotted lines. In this

case, we send all the blocks having elements to table T0 and all the empty blocks to table

T1.

Case 6 Two elements S1 = {n1, n2} lies in a superblock other two elements S2 = {n3, n4}

lies in other superblock and an element S3 = {n5} in a different superblock.

Case 6.1 Blocks having elements belonging to S1 lies on the same dotted line, blocks

having elements belonging to S2 lies on the same dotted line.

Case 6.1.1 Two blocks having elements from S2 and S3 have a conflicting bit com-

mon with the blocks having elements from S1 in table T1. Without loss of generality, let

us say that block having element n3 have a conflicting bit common with the block having

the element n1 and the block having the element n5 have a conflicting bit common with
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the block having the element n2. In this case, we send the block having the element n4

to table T0 and the rest of the block lying on the dotted line containing this block to

table T1. We send the block having the element n1 to table T0, and the rest of the block

lying on this dotted line to table T1. Also, we send the block having the element n5 to

table T0, and the rest of the empty block lying on the dotted line containing this block

to table T1. Rest all the empty blocks are sent to table T0.

If the blocks having element from S2 and S3 have a conflicting bit common with

the same block having the element from S1, then we send the blocks having a conflicting

bit common from S2 and S3 to table T0, and the rest of the blocks lying on these dotted

lines to table T1. Also, we send the blocks having elements from S1 to table T1. Rest all

the empty blocks are sent to table T0.

Case 6.1.2 Only one block having the element from S2 or S3 have a conflicting bit

common with the block having the element from S1.

Case 6.1.2.1 Block having an element from S2 have a conflicting bit common with

the block having an element from S1. Without loss of generality let us say that the

block having the element n3 have a conflicting bit common with the block having the

element n1. Now, we can have two cases, either the block containing element n5 have a

conflicting bit common with the block containing element n4 or it does not.

If the block containing n5 have a conflicting bit common with the block containing

n4, then we send the block containing n3 to table T0, and the rest of the block lying on

the dotted line containing this block to table T1. We send the block containing n5 to

table T0, and the rest of the block lying on the dotted line containing this block to table

T1. Now we see whether the dotted line which contains block having element n5 passes

through block having element n2 or not. Let us first consider the case where dotted line

which contains block having element n5 passes through block having element n2. In this

case, we send the block having the element n2 to table T0, and the rest of the block

lying on this dotted line to table T1. Rest all the empty block are sent to table T0. On

the other hand, if the dotted line which contains block having element n5 do not pass

through block having element n2, then we send the blocks having elements n1 and n2 to

table T1, and rest all the empty blocks to table T0.
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If the block containing n5 do not have a conflicting bit common with the block

having the element n4, then we send the block having the element n3 to table T0 and

the rest of the block lying on this dotted line to table T1. Now we see the position of the

block which contains the element n5 to make the assignment. If the block which contains

element n5 have conflicting bit common with empty block lying on the dotted line which

contains block having elements from S1, then we send the block having the element n5

to table T1, and rest all the empty blocks lying on the dotted line which contains this

block to table T0. Also, we send blocks having elements from S1 to table T1, and the

rest of the empty blocks lying on the dotted line which contains this block to table T0.

Rest of the empty blocks we send to table T0.

Rest for all other positions of n5, we send blocks having elements n3 to table T0,

and all the blocks lying on the dotted line containing this block to table T1. Further, we

send the block having the element n5 to table T0, and all other blocks lying on the dotted

line containing this block to table T1. Now we see whether the dotted line which contains

block having element n5 passes through block having element n1 or n2. Without loss

of generality, let us say that dotted line which contains block having element n5 passes

through block having element n2, in this case we send the block having element n2 to

table T0, and rest all the blocks lying on the dotted line containing this block to table

T1. Rest all the empty blocks are sent to table T0. On the other hand if the dotted line

which contains block having element n5 do not pass through block having element n1

or n2, then we send the blocks having elements n1 and n2 to table T1, and rest all the

empty blocks to table T0.

Case 6.1.2.2 Block having an element from S3 have a conflicting bit common with

the block having an element from S1. Without loss of generality let us say that block

having element n5 have a conflicting bit common with the block having the element n1.

In this case, we send the block having the element n5 to table T0 and the rest of the

block lying on the dotted line which contains this block to table T1. Now we see the

position of the block having the element from S2.

One of the block having an element from S2 have a conflicting bit common with the

empty block on the dotted line which contains block having the element n5. Without loss

of generality let us say that block having element n3 have a conflicting bit common with
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an empty block on the dotted line which contains block having the element n5. In this

case, we send the block having an element n3 to table T0, and the rest of the block lying

on the dotted line containing this block to table T1. Now we see the position of the block

having element n4, if it has a conflicting bit common with a empty block lying on the

dotted line which contains block having element from S1, then we send the block having

element n1 and n2 to table T1, and the rest of the empty block lying on the dotted line

containing these blocks to table T0. Rest all the empty blocks are sent to table T0. On

another hand, if the block having the element n4 does not have a conflicting bit common

with a block lying on the dotted line which contains block having the element from S1

then we send the block having the element n2 to table T0, and the rest of the block lying

on the dotted line containing this block to table T1. We send the rest of the empty block

to table T0.

If the block having the element from S2 do not have a conflicting bit common with

a block lying on the dotted line which contains block having the element n5 then we

send the blocks having an element from S2 to table T1, and the rest of the empty block

lying on the dotted line which contains these blocks to table T0. Also, we send the blocks

having the element n1 and n2 to table T1. We send rest of the empty block to table T0.

Case 6.1.3 None of the block having elements from S2 or S3 has a conflicting bit

common with the blocks having an element from S1 in table T1. Now, here, we can have

two cases. Either the block having the element from S3 have a conflicting bit common

with the block having the element from S2 or it does not.

Let us first consider the case where one of the blocks having the element from S3 have

a conflicting bit common with one of the blocks having an element from S2. Without

loss of generality, we can say that block having the element n5 have a conflicting bit

common with the block having the element n4. Now, we see whether the dotted lines

containing blocks having elements from S2 or S3 passes through block having elements

from S1 or not. Without loss of generality, let us say that dotted line which contains

block having element n5 passes through block having element n1. In this case, we send

the block having the element n5 to table T1, and the rest of the empty blocks lying on the

dotted line which contains this block to table T0. We send the block having the element

n4 to table T0, and rest of the block lying on the dotted line which contains this block to
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table T1. Now we see the positions of the blocks having an element from S1. Let us first

consider the case where a block having an element from S1 have a conflicting bit common

with a block lying on the dotted line which contains blocks having elements from S2.

Without loss of generality let us say block having the element n2 have a conflicting bit

common with block lying on the dotted line which contains blocks having elements from

S2. In this case, we send the block having the element n2 to table T0, and all other block

lying on the dotted line containing this block to table T1. Rest all the empty blocks are

sent to table T0. On the other hand, if the blocks having elements from S1 do not have a

conflicting bit common with block lying on the dotted line which contains blocks having

elements from S2, then we send the block having elements from S1 to table T1, and rest

all the empty blocks to table T0. If none of the dotted lines which contains blocks having

elements from S2 or S3 passes through block having elements from S1, then we send the

blocks having elements n4 and n5 to table T0, and all the blocks lying on the dotted lines

containing these blocks to table T1. Further, we send the blocks having elements from

S1 to table T1, and rest all the empty blocks to table T0.

If the block having an element from S3 do not have a conflicting bit common with

block having an element from S2, then we send all the block having elements to table

T1, and all the empty block to table T0.

Case 6.2 Now we consider the case where one of the sets having elements lie on a

dotted line and other set having element lie on the different dotted lines. Without

loss of generality consider the case where blocks having elements belonging to S1 lies on

a dotted line and blocks having elements belonging to S2 lies on the different dotted lines.

Case 6.2.1 All the blocks having elements from S2 and S3 have a conflicting bit com-

mon with the blocks having elements from S1. In this case, we send the block having an

element from S2 and S3 to table T0, and rest of the empty blocks lying on the dotted

lines containing these blocks to table T1. Also, we send the blocks having elements from

S1 to table T1 and the rest of the empty blocks lying on the dotted line which contains

these blocks to table T0. We send the rest of the empty blocks to table T0.

Case 6.2.2 Two blocks having elements from S2 and S3 have a conflicting bit com-
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mon with the block having an element from S1. Now, here we can have two cases, either

those two blocks have elements belonging to S2, or we can have one element belonging

to S2, and other to S3.

Let us first consider the case where two blocks having elements from S2 have a

conflicting bit common with blocks having an element from S1. Without loss of gener-

ality, let us say that block having element n3 have a conflicting bit common with the

block having the element n1 and the block having the element n4 have a conflicting bit

common with the block having n2. In this case, we send the block having elements n3

and n4 to table T0 and rest of the empty block lying on the dotted lines containing these

blocks to table T1. Now we see the position of the block having the element n5. Here we

can have two cases either the dotted line which contains the block having the element

n5 passes through one of the block having an element from S1 or it does not. Let us first

consider the case where it passes through one of the blocks having elements from S1.

Without loss of generality let us say that the dotted line which contains block having

the element n5 passes through the block having the element n1. In this case, we send

the block having the element n5 to table T0, and rest of the block lying on the dotted

line which contains this block to table T1. Also, we send the block having the element

n1 to table T0, and rest of the block lying on the dotted line containing this block to

table T1. Rest all the empty blocks are sent to table T0. On another hand, if the dotted

line which contains the block having the element n5 do not pass through blocks having

elements from S1, then we send the block having the element n5 to table T0, and rest of

the empty blocks on the dotted line containing this block to table T1. Also, we send the

blocks having elements from S1 to table T1, and rest of the empty blocks to table T0. If

the block having elements n3 and n4 conflicts with the same block having elements from

S1, say n1, then assignment made above will work in this case.

Now we consider the case where one of the blocks having an element from S2 and the

block having an element from S3 have a conflicting bit common with the block(blocks)

having an element from S1. Without loss of generality say blocks having the element

n3 and n5 have a conflicting bit common with the block having elements from S1. Now

here we can have two cases either blocks having elements n3 and n5 have a conflicting

bit common with the same block having an element from S1 or it have a conflicting bit

common with different blocks having elements from S1. Let us first consider the case
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where blocks having element n3 and n5 have a conflicting bit common with the same

block having an element from S1 say n1. In this case, we send the blocks having elements

n3, n4 and n5 to table T0, and rest of the blocks lying on the dotted lines containing these

blocks to table T1. Now we see whether the dotted line which contains block having ele-

ment n4 passes through block having element from S1 or not. Without loss of generality

let us say that dotted line which contains block having element n4 passes through block

having element n2. In this case, we send the block having the element n2 to table T0,

and rest of the block which lies on the dotted line containing this block to table T1.

Rest all the empty blocks are sent to table T0. If the dotted line which contain block

having element n4 do not pass through block having element from S1, then we send

the blocks having elements from S1 to table T1, rest all the empty blocks to table T0.

Now we consider the case where blocks having elements n3 and n5 have a conflicting bit

common with different blocks having elements from S1. Without loss of generality let

us say that block having element n3 have a conflicting bit common with the block hav-

ing the element n1 and the block having the element n5 have a conflicting bit common

with the block having the element n2. In this case also assignment made above will work.

Case 6.2.3 Only one block having an element from S2 or S3 have a conflicting bit

common with the block having an element from S1 in table T1. Now here we can have

two cases either the block having an element from S2 have a conflicting bit common

or the block having an element from S3 have a conflicting bit common with the block

having an element from S1.

Case 6.2.3.1 The block having an element from S2 have a conflicting bit common

with a block having an element from S1 in table T1. Without loss of generality let us

say that the block having the element n3 conflicts with the block having the element n1.

Now we see the position of the blocks having the element n4 and n5. Let us first consider

the case where blocks having elements n4 and n5 have a conflicting bit common.

If the blocks having elements n4 and n5 have a conflicting bit common on the

dotted line which contains blocks having elements from S1, then we send the blocks

having elements n3, n4 and n5 to table T0, and all the blocks lying on the dotted lines

containing these blocks to table T1. We send the block having element n1 and n2 to
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table T1. Rest all the empty blocks are sent to table T0.

If blocks having elements n4 and n5 have a conflicting bit common outside the dotted

line which contains blocks having elements from S1, then we see the positions of the

dotted lines which contains block having elements n4 and n5. Without loss of generality

let us say that the dotted line which contains block having element n5 passes through

block having element n2, and the dotted line which contains block having element n4

passes through block having element n1. In this case, we send the blocks having elements

n2, n3 and n5 to table T0, and all the blocks lying on the dotted lines containing these

blocks to table T1. Further, we send the block having element n4 to table T1. Rest all the

empty blocks are sent to table T0. Now we consider the case where only one dotted line

which contains block having element n4 or n5 passes through block having element from

S1. Without loss of generality let us say that block having element n5 passes through

block having element n2. In this case, we send the blocks having elements n2, n3, n4

and n5 to table T0, and rest all the blocks lying on the dotted lines containing these

block to table T1. Further, we send rest all the empty blocks to table T0. If none of the

dotted lines, which contains blocks having element n4 or n5 passes through block having

elements from S1, then we send the blocks having elements n3, n4 and n5 to table T0,

and all the empty blocks lying on the dotted lines containing these blocks to table T1.

Further, we send the blocks having elements from S1 to table T1, and rest all the empty

blocks are sent to table T0.

Now we are left with the case where blocks having elements n4 and n5 do not have

a conflicting bit common. This can have several sub-cases. Let us first consider the

case where both the blocks having elements n4 and n5 passes through the dotted line

which contains blocks having elements from S1. In this case, we send the blocks having

elements n3, n4 and n5 to table T0, and all the blocks lying on the dotted lines containing

these blocks to table T1. We send the blocks having elements n1 and n2 to table T1.

Rest all the empty blocks are sent to table T1.

Now let us consider the case where n4 and n5 do not have a conflicting bit common

with block lying on the dotted line which contains block having elements from S1. In

this case, we send the blocks having elements n3, n4 and n5 to table T1, and all the blocks

lying on the dotted lines containing these blocks to table T0. Block having the element

n1 is sent to table T0, and rest all the blocks lying on the dotted line containing these
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blocks to table T1. Rest all the empty blocks are sent to table T0.

Now, we can also have a case where only one block having the element n4 or n5

have a conflicting bit common with block lying on the dotted line which contains blocks

having elements from S1. Let us first consider the case where block having the element

n4 have a conflicting bit common with the block lying on the dotted line which contains

block having elements from S1. In this case, we send the blocks having elements n3, n4

and n5 to table T0, and all other blocks lying on the dotted line containing these blocks

to table T1. Now, we see whether the block having elements from S1 have a conflicting

bit common with block lying on the dotted line which contains block having the element

n5. Without loss of generality let us say block having the element n1 have a conflicting

bit common with block lying on the dotted line which contains block having the element

n5. In this case, we send the block having the element n1 to table T0, and all other

blocks lying on the dotted line which contains this block to table T1. Rest all the empty

blocks are sent to table T1. On another hand, if the dotted line which contains block

having the element n5 do not pass through block having element from S1, then we send

the block having element from S1 to table T1, and all the blocks lying on the dotted

line containing this block to table T0. Rest all the empty blocks are sent to table T0.

Now let us consider the case where block having the element n5 have a conflicting bit

common with block lying on the dotted line which contains block having elements from

S1. In this case, we send the blocks having elements n3, n4 and n5 to table T0 and all

other blocks lying on the dotted line containing these blocks to table T1. Now we see

whether the dotted line which contains block having element n4 passes through block

having element n1 or n2. Without loss of generality let us say that dotted line which

contains block having element n4 passes through block having element n2. In this case,

we send the block having element n2 to table T0, rest all the blocks lying on the dotted

line which contains this block to table T1. Rest all the empty blocks are sent to table

T0. If the dotted line which contains block having element n4 do not pass through block

having element from S1, then we send the blocks having elements from S1 to table T1,

and rest all the empty blocks to table T0.

Now let us consider the case where none of the blocks having elements n4 or n5

conflict with the dotted line which contains block having elements from S1. In this case,

we send the blocks having elements n3, n4 and n5 to table T0, and all the blocks lying
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on the dotted lines containing these blocks to table T1. Further, blocks having elements

from S1 are sent to table T1, and rest all the empty blocks are sent to table T0.

Case 6.2.3.2 The block having an element from S3 have a conflicting bit common

with a block having an element from S1 in table T1. Without loss of generality let us

say that block having element n5 have a conflicting bit common with the block having

the element n1. Now we see the position of the blocks having elements from S2.

Both the blocks having an element from S2 have a conflicting bit common with

block lying on the dotted line which contains block having an element from S1 in table

T1. In this case, we send the blocks having the elements n3, n4 and n5 to table T0 and all

the blocks lying on the dotted lines containing these blocks to table T1. Blocks having

elements from S1 are sent to table T1 and rest all the empty blocks are sent to table T0.

Both the blocks having an element from S2 do not have a conflicting bit common

with block lying on the dotted line which contains blocks having an element from S1.

Now we see whether the blocks having elements from S2 conflicts with block having

element n5. Let us first consider the case where none of the blocks having elements

from S2 conflicts with block having element n5. In this case, we send the blocks having

elements n3, n4 and n5 to table T1, and all the empty blocks lying on the dotted lines

containing these blocks to table T0. Further, we send the block having the element n1

to table T0, and all the blocks lying on the dotted line containing this block to table

T1. Rest all the empty blocks are sent to table T0. Now let us consider the case where

only one block having element from S2 conflicts with block having element n5. Without

loss of generality let us say that block having element n4 conflicts with block having

element n5. In this case, we send the blocks having elements n3, n4 and n5 to table

T0, and all the blocks lying on the dotted lines containing these blocks to table T1.Now

we see whether the dotted line which contains block having element n3 passes through

block having element n1 or n2. Without loss of generality let us say that the dotted

line which contains block having element n3 passes through block having element n2. In

this case, we send the block having element n2 to table T0, all the blocks lying on the

dotted line containing this block to table T1. Rest all the empty blocks are sent to table

T0. If the dotted line which contains block having element n3 do not pass through block

having element from S1, then we send the block having element from S1 to table T1,
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rest all the empty blocks to table T0. Now we consider the case where both the blocks

having elements from S2 conflicts with block having element n5. In this case, we send

the blocks having elements n3, n4 and n5 to table T0, all the blocks lying on the dotted

lines containing these blocks to table T1. Further, we send the block having element

n2 to table T0, all the blocks lying on the dotted line containing this block to table T1.

Rest all the empty blocks are sent to table T0. Only one block having the element from

S2 have a conflicting bit common with block lying on the dotted line which contains

blocks having elements from S1 in table T1. Without loss of generality let us say that

block having element n3 have a conflicting bit common with block lying on the dotted

line which contains block having an element from S1. Now we see whether the block

having element n4 conflicts with block having element n5. Let us first consider the case

where blocks having element n4 and n5 conflicts. In this case, we send the blocks having

elements n1, n2, n3 and n4 to table T1, and all the empty blocks lying on the dotted lines

which contain these blocks to table T0. We send the blocks having the element n5 to

table T0, and rest all the blocks lying on the dotted lines which contain these blocks to

table T1. Rest all the empty blocks are sent to table T0. If the blocks having elements n4

and n5 do not conflict, then we send the blocks having elements n3, n4 and n5 to table

T0, and all the empty blocks lying on the dotted line containing this block to table T1.

Now we see whether a block having element from S1 conflicts with empty block lying on

the dotted line which contains block having element n4. Without loss of generality, let

us say that block having element n2 conflicts with empty block lying on the dotted line

which contains block having element n4. In this case, we send the block having element

n2 to table T0, and rest all the blocks lying on the dotted line containing this block to

table T1. Rest all the empty blocks are sent to table T0. If none of the block having

element from S1 conflicts with empty block lying on the dotted line which contains block

having element n4, then we send the blocks having elements from S1 to table T1, and

rest all the empty blocks to table T0.

Case 6.2.4 None of the blocks having an element from S2 or S3 have a conflicting

bit common with the block having elements from S1 in table T1. In this case, we can

have either the block having the element n5 have a conflicting bit common with the block

having elements from S2 or it does not.
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Let us first consider the case where the block having the element n5 have a con-

flicting bit common with one of the blocks having the element from S2. Without loss of

generality let us say that the block having the element n5 have a conflicting bit common

with the block having the element n3. Now we see whether the block having the element

n4 have conflicting bit common with a block lying on the dotted line which contains

block having elements from S1 or not. Let us first consider the case where block having

the element n4 have conflicting bit common with block lying on the dotted line which

contains block having an element from S1. In this case, we send the block having the

element n3 to table T1, and all the blocks lying on the dotted line containing this block

to table T0. We send the block having the element n5 to table T0, and all the blocks

lying on the dotted line which contains this block to table T1. Now we see whether any

of the block having elements from S1 have a conflicting bit common with block lying

on the dotted line which contains element n5 or not. Without loss of generality let us

say that the block having the element n1 have conflicting bit common with block lying

on the dotted line which contains block having the element n5. In this case, we send

the blocks having the elements n1 and n4 to table T0, and all other blocks lying on the

dotted lines which contain these blocks to table T1. Rest all the empty blocks are sent

to table T0. If none of the blocks having elements from S1 have conflicting bit common

with block lying on the dotted line which contains block having the element n5, then we

send the blocks having elements n1, n2 and n4 to table T1, and rest all the empty blocks

to table T0. Now let us consider the case where block having the element n4 do not have

conflicting bit common with block lying on the dotted line which contains block having

elements from S1. In this case, we see whether a block having element n5 have conflict-

ing bit common with a block having element n4. Let us first consider the case where a

block having element n5 do not have conflicting bit common with a block having element

n4. In this case, we send the blocks having elements n4 and n5 to table T1, and all the

blocks lying on the dotted lines containing these blocks to table T0. Further, we send

the block having element n3 to table T0, and all the empty blocks lying on the dotted

line containing this block to table T1. Now, we see if either of the blocks having element

n1 or n2 have conflicting bit common with block lying on the dotted line which contains

block having element n3. Without loss of generality, let us say block having element n1

have conflicting bit common with block lying on the dotted line which contains block
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having element n3. In this case, we send the block having element n1 to table T0, and all

the blocks lying on the dotted line containing this block to table T1. Rest all the empty

blocks are sent to table T0. On the contrary, if neither of the block having element n1

or n2 has conflicting bit common with block lying on the dotted line which contains

block having element n3, then we send the block having an element from S1 to table T1,

and rest all the empty to table T0. We are now left with the case where block having

element n4 have conflicting bit common with a block having element n5. In this case,

we send the block having n3 and n4 to table T1, and all the blocks lying on the dotted

line containing this block to table T0. Further, we send the block having element n5 to

table T0, and all the empty blocks lying on the dotted line containing this block to table

T1. Now we see whether any of the block having elements from S1 have a conflicting bit

common with block lying on the dotted line which contains element n5 or not. Without

loss of generality let us say that the block having the element n1 have conflicting bit

common with block lying on the dotted line which contains block having the element n5.

In this case, we send the block having element n1 to table T0, and all the blocks lying

on the dotted line containing this block to table T1. Rest all the empty blocks are sent

to table T0. If none of the blocks having elements from S1 have conflicting bit common

with block lying on the dotted line which contains block having the element n5, then we

send the blocks having elements from S1 to table T1 and rest all the empty blocks to

table T0.

Now we are left with the case where block having the element n5 do not have a

conflicting bit common with the block having an element from S2. In this case, we send

the blocks having elements to table T1 and all the empty blocks to table T0.

Case 6.3 All the elements belonging S1, S2 and S3 lies on the different dotted line.

In this case, we send the blocks having elements to table T0, and all the empty blocks to

table T1.

Case 7 Two blocks having elements belonging to S1 = {n1, n2} lies in a same su-

perblock and the element n3, n4 and n5 to the different superblocks. If the blocks having

elements from S1 lies on the different dotted line, then assignment made in Case 5.3 can

be used. So let us consider the case where blocks having the element from S1 lies on the
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same dotted line.

Case 7.1 Only one block having element from n3, n4 and n5 have conflicting bit com-

mon with the block having element from S1. Without loss of generality let us say block

having the element n3 have conflicting bit common with the block having the element n1.

Case 7.1.1 Blocks having elements n4 and n5 have conflicting bit common.

Case 7.1.1.1 Blocks having elements n4 and n5 have conflicting bit common with block

lying on the dotted line which contains block having an element from S1. In this case,

we send the block having elements n3, n4 and n5 to table T0, and rest of the empty

blocks lying on the dotted lines containing these blocks to table T1. Blocks having the

elements n1 and n2 are sent to table T1 and rest all the empty blocks are sent to table T0.

Case 7.1.1.2 Blocks having elements n4 and n5 does not have conflicting bit com-

mon with block lying on the dotted line, which contains block having an element from

S1. Now here we can have several cases depending upon whether the dotted lines which

contain blocks having elements n4 and n5 passes through blocks having elements from

S1 or not.

Without loss of generality let us say that dotted line which contains block having

the element n4 passes through the block having the element n1, and the dotted line

which contain block having the element n5 passes through the block having the element

n2. Now in this case we send the blocks having elements n4 and n1 to table T1. Also, we

send the blocks having elements n3, n5 and n2 to table T0, and rest of the blocks lying

on the dotted lines containing these blocks to table T1. We send rest of the empty blocks

to table T0.

Now consider a case where only one dotted line which contains a block having el-

ement n4 or n5 passes through the block having an element from S1. Without loss of

generality let us say that block having the element n4 passes through the block having

an element from S1. Let us first consider the case where the dotted line which contains

block having the element n4 passes through the block having the element n2. In this

case, we send the blocks having elements n2, n3, n4 and n5 to table T0, and rest of the

135



8.2. APPENDIX B

blocks lying on the dotted lines containing these blocks to table T1. Rest all the empty

blocks are sent to table T0. Now we can also have a case where block having the element

n4 passes through the block having the element n1. In this case, we send the block

having the elements n1, n3, n4 and n5 to table T0, and rest of the blocks lying on the

dotted lines containing these blocks to table T1. Rest all the empty blocks are sent to

table T0. If none of the dotted lines which contains blocks having elements n4 and n5

passes through blocks having elements from S1 then we send the blocks having elements

n3, n4 and n5 to table T0, and all the blocks lying on the dotted lines containing these

blocks to table T1. Also, we send the blocks having elements from S1 to table T1. Rest

all the empty blocks are sent to table T0.

Case 7.1.2 Blocks having the elements n4 and n5 do not have conflicting bit com-

mon in table T1 .

Case 7.1.2.1 Both the blocks having element n4 and n5 have conflicting bit common

with block lying on the dotted line which contains block having an element from S1. In

this case, we send the blocks having elements n3, n4 and n5 to table T0, and rest of the

empty blocks lying on the dotted line containing these blocks to table T1. Also, we send

the blocks having elements n1 and n2 to table T1, and rest of the empty blocks to table T0.

Case 7.1.2.2 One of the blocks having an element n4 or n5 have conflicting bit common

with block lying on the dotted line which contains blocks having elements from S1 and

other do not have conflicting bit common. Without loss of generality let us say block

having the element n4 have conflicting bit common with block lying on the dotted line

which contains blocks having elements from S1, and block having the element n5 lies

outside it. In this case, we send the blocks having elements n3, n4 and n5 to table T0,

and all the blocks lying on the dotted lines containing these blocks to table T1. If any

block having an element from S1 have conflicting bit common with block lying on the

dotted line which contains block having elements n5, then we send that block to table

T0 all other blocks lying on the dotted line containing this block to table T1. Rest all

the empty blocks are sent to table T0. On another hand, if none of the blocks having

elements from S1 have conflicting bit common with block lying on the dotted line which
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contains block having elements n5 then we send the block having elements from S1 to

table T1, and rest all the empty blocks to table T0.

Case 7.1.2.3 None of the blocks having elements n4 or n5 have conflicting bit com-

mon with block lying on the dotted line which contains blocks having elements from S1.

Now we see position of the block having element n4 and n5. Let us first consider the case

where blocks having elements n4 and n5 do not conflicts with block having element n3.

In this case, we send the blocks having elements n2, n3, n4 and n5 to table T1. Further,

we send the block having the element n1 to table T0 and the rest of the empty blocks

lying on the dotted line which contains this block to table T1. Rest all the empty blocks

are sent to table T0. If both the blocks having elements n4 and n5 conflicts with block

having element n3. In this case, we send the blocks having elements n3, n4 and n5 to

table T0, and all the blocks lying on the dotted lines which contain these blocks to table

T1. Further, we send the block having element n2 to table T0, and all the blocks lying

on the dotted line which contain this block to table T1. Rest all the empty blocks are

sent to table T0. Now we are left with the case, where only one block having element n4

or n5 conflicts with block having element n3. Without loss of generality let us say that

block having element n4 conflicts with block having element n3. In this case, we send the

block having element n3 and n5 to table T0, and rest all the empty blocks lying on the

dotted lines containing theses blocks to table T1. We send the block having element n4

to table T1, and rest all the empty blocks lying on the dotted line containing this block

to table T0. Now we see whether the dotted line which contains block having element

n5 passes through block having element n1 or n2. Without loss of generality let us say

that dotted line which contains block having element n5 passes through block having

element n1. In this case, we send the block having element n1 to table T0, and rest

all the blocks lying on the dotted line containing this block to table T1. Rest all the

empty blocks are sent to table T0. On the other hand, if the dotted line which contains

block having element n5 do not pass through block having element n1 or n2, then we send

the blocks having elements from S1 to table T1, and rest all the empty blocks to table T0.

Case 7.2 Two blocks having elements from n3, n4 or n5 have conflicting bit common

with the block having elements from S1. Without loss of generality let us say that blocks
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having elements n3 and n4 have conflicting bit common with the block having elements

from S1. Now, here we can have two cases, either the blocks having elements n3 and n4

have conflicting bit common with the same block having an element from S1 or it has

conflicting bit common with the different blocks having elements from S1.

Let us first consider the case where blocks having the element n3 and n4 have

conflicting bit common with the different blocks having elements from S1. Without loss

of generality, let us say that block having element n3 have conflicting bit common with

the block having the element n1 and the block having the element n4 have conflicting

bit common with the block having the element n2. Now let us consider the intersection

of the dotted line which contains block having the element n5 from the blocks having

elements from S1 . Without loss of generality, let us say that the dotted line which

contains block having element n5 passes through the block having element n1, in this

case, we send the blocks having elements n1, n3, n4 and n5 to table T0 and all other

blocks lying on the dotted lines which contains these blocks to table T1. Rest all the

empty blocks are sent to table T1. On the another hand, if the block having element n5

do not pass through the blocks having elements from S1, then we send the blocks having

n3, n4 and n5 to table T0, and all other blocks lying on the dotted lines which contains

these blocks to table T1. Further, we send the blocks having elements from S1 to table

T1 and rest all the empty blocks to table T0.

Now we are left with the case where blocks having the element n3 and n4 have

conflicting bit common with only one block having an element from S1. Without loss of

generality let us say that blocks having elements n3 and n4 have conflicting bit common

with the block having the element n1. In this case, we see the position of the block

having the element n5. If the block having the element n5 have conflicting bit common

with empty block lying on the dotted line having elements from S1, then we send the

block having the element n3, n4 and n5 to table T0, and all the empty blocks lying on

the dotted lines containing these blocks to table T1. We send the blocks having elements

from S1 to table T1. Rest all the empty blocks are sent to table T0. Further, if the block

having the element n5 do not have conflicting bit common with empty block lying on

the dotted line which contains blocks having element from S1 then we send the block

having element n3, n4 and n5 to table T0, and all the empty blocks lying on the dotted

lines containing these blocks to table T1. Now we see whether the dotted line which
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contains block having the element n5 passes through a block having an element from

S1 or not. Let us first consider the case where the dotted line which contains block

having the element n5 passes through a block having an element from S1. Without loss

of generality, let us say that the dotted line which contains block having the element n5

passes through the block having the element n1. In this case, we send the block having

the element n1 to table T0, and all other blocks lying on the dotted line containing this

block to table T1. Rest all the empty blocks are sent to table T0. On another hand,

if the dotted line which contains block having the element n5 do not pass through the

block having an element from S1, then we send the blocks having the elements from S1

to table T1. Rest all the empty blocks are sent to table T0.

Case 7.3 All the three blocks having elements n3, n4 and n5 have conflicting bit com-

mon with the blocks having elements from S1. In this case, we send the blocks having

elements n3, n4 and n5 to table T0, and all the blocks lying on the dotted lines containing

these blocks to table T1. Blocks having elements from S1 are sent to table T1. Rest all

the empty blocks are sent to table T0.

Case 7.4 None of the blocks having elements from n3, n4 and n5 have conflicting bit

common with the blocks having elements from S1.

Let us first consider the case where all the blocks having elements n3, n4 and n5

have conflicting bit common. If all of them have conflicting bit common on the dotted

line which contains blocks having elements from S1 then we send the blocks having

elements n3, n4 and n5 to table T0, and rest of the empty blocks lying on the dotted lines

containing these blocks to table T1. Also we send the blocks having elements n1 and n2

to table T1. Rest all the empty blocks are sent to table T0.

If the blocks having elements n3, n4 and n5 have conflicting bit common outside the

dotted line which contains blocks having elements from S1, then we see the intersection

of the dotted lines containing these blocks with the blocks having elements from S1. Now

since all the blocks having elements from n3, n4 and n5 have conflicting bit common at

most two dotted lines having blocks containing these elements can have conflicting bit

common with the blocks having elements from S1. Without loss of generality let us say

that the dotted line which contains block having the element n3 passes through the block
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having the element n1 and the dotted line which contains block having the element n4

passes through the block having the element n2. In this case, we send the blocks having

element n1 and n3 to table T1. Also, we send the blocks having elements n2, n4 and n5

to table T0, and rest of the empty blocks lying on the dotted line containing these blocks

to table T1. Rest all the empty blocks are sent to table T0.

Without loss of generality let us now consider a case where only one dotted line

having element say n3 passes through the block having element say n1, then we send

the blocks having elements n1, n2 and n3 to table T1. Also, we send the blocks having

elements n4 and n5 to table T0, and rest of the empty blocks lying on the dotted lines

containing these blocks to table T1.Rest all the empty blocks are sent to table T0.

If none of the dotted lines containing blocks having elements n3, n4 and n5 passes

through the blocks having element from S1 then we send the blocks having elements n3, n4

and n5 to table T0, and rest of the empty blocks lying on the dotted line containing these

blocks to table T1. Further, we send the blocks having element n1 and n2 to table T1,

and rest of the empty blocks to table T0.

Now let us consider the case where only two blocks having elements from n3, n4 and

n5 have conflicting bit common. Without loss of generality let us say the blocks having

elements n3 and n4 have conflicting bit common. Now we see the intersection of dotted

lines containing the blocks n3 and n4. Let us first consider the case where both the

dotted lines containing blocks n3 and n4 passes through the blocks having elements from

S1. Without loss of generality let us say the dotted line which contains block having the

element n3 passes through the block having the element n1 and the dotted line which

contains block having the element n4 passes through the block having the element n2.

Now, we see the position of the block having element n5. Let us first consider the case

where block having n5 have conflicting bit common with the block lying on the dotted

line which contains block having an element from S1. Further, let us consider that the

dotted line which contains block having element n5 intersects the block having element

n3 and n4. Now, it is interesting to note that if two nonempty and an empty blocks

intersect, then we can either send both nonempty blocks to table T1, or we can send a

nonempty block and an empty to table T1. Let us first consider the case where we can

send both the blocks having element n3 and n4 to table T1. In this case, we send all the

blocks having elements to table T1, and all the empty blocks to table T0. Now, without
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loss of generality let us consider that we can send the blocks having element n3 and the

empty block lying on the dotted line which contains block having element n5 to table

T1. In this case, we send the block having element n2, n4 and n5 to table T0, and all

the blocks lying on the dotted line containing this block to table T1. Further, we send

the block having element n3 to table T1. Rest all the empty blocks are sent to table T0.

Let us now consider the case where dotted line which contains block having element n5

do not pass through both the block having element n3 and n4. Now since dotted line

which contains block having element n5 do not intersect with both the blocks having

elements n4 and n5 it can conflict with at most one block having element. Without loss

of generality, let us say that empty block lying on the dotted line which contains block

having element n5 either conflict with a block having element n3 or it does not. In this

case, we send the blocks having elements n1, n3 and n5 to table T0, and all the blocks

lying on the dotted lines containing these blocks to table T1. Further, we send the blocks

having element n2 and n4 to table T1. Rest all the empty blocks are sent to table T0.

Let us now consider the case where block having element n5 do not intersect with the

dotted line which contains block having elements from S1. Now let us consider the case

where block having element n5 do not conflict with block lying on the dotted line having

elements from S1. In this case, we send the block having element n5 to table T1 and all

the empty blocks lying on the dotted line containing this block to table T0. Now we see if

the block having element n5 have conflicting bit common either with block lying on the

dotted line which contains block having element n3 or n4. Without loss of generality, let

us say block having element n5 have conflicting bit common with empty block lying on

the dotted line which contains block having element n3. In this case, we send the block

having element n1 and n3 to table T1. Further, we send the block having element n2 and

n4 to table T0, and all the blocks lying on the dotted lines containing these blocks to

table T1. Rest all the empty blocks are sent to table T0. If the block having element n5,

do not have conflicting bit common with block lying on the dotted line which contains

block having element n3 or n4 then previous assignment works.

Let us consider the case where only one dotted line which has block having the

element n3 or n4 passes through the block having elements from S1. Without loss of

generality let us say that dotted line which contains block having the element n3 passes

through the block having the element n1. In this case, we see the position of the block
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having the element n5. Let us first consider the case where block having the element n5

have conflicting bit common with block lying on the dotted line which contains blocks

having elements from S1. In this case, we send the block having element n1, n3, n4 and

n5 to table T0, and all the blocks lying on the dotted lines containing these blocks to

table T1. Further, we send rest all the empty blocks to table T0.

Now let us consider the case where the block having the element n5 do not have

conflicting bit common with block lying on the dotted line which contains blocks having

elements from S1. Now we see whether the block having element n5 conflicts with the

dotted line which contain block having element n3 or n4. If the block having element n5

conflicts with block lying on the dotted line which contains block having element n3, then

we send the blocks having elements n2, n4 and n5 to table T0, rest all the blocks lying on

the dotted lines containing these blocks to table T1. Further, we send the block having

element n3 to table T1, and rest all the empty blocks to table T0. If the block having

element n5 conflicts with block lying on the dotted line which contains block having

element n4, then we send the blocks having elements n4 and n5 to table T1, and rest all

the blocks lying on the dotted lines containing these blocks to table T1. Further, we send

the blocks having elements n1 and n3 to table T0, and all the blocks lying on the dotted

line containing these blocks to table T1. Rest all the empty blocks are sent to table

T0. If the block having element n5 do not conflict with block lying on the dotted line

which contains block having element n3 or n4, then we send the blocks having elements

n1, n2, n3 and n5 to table T1, and all the blocks lying on the dotted lines containing these

blocks to table T0. Further, we send the block having element n4 to table T0, and all

the empty blocks lying on the dotted line containing this block to table T1. Rest all the

empty blocks are sent to table T0.

If none of the dotted lines which contains block having elements n3 or n4 passes

through block having element from S1, then we send the blocks having elements n3, n4

and n5 to table T0, and all the empty blocks lying on the dotted lines containing these

blocks to table T1. Now either the block having an element from S1 have conflicting bit

common with block lying on the dotted line which contains block having the element n5

or it does not. Let us first consider the case where block having elements from S1 have

conflicting bit common with block lying on the dotted line which contains block having

the element n5. Without loss of generality let us say that block having element n1 have
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conflicting bit common with block lying on the dotted line which contains block having

the element n5. In this case, we send the block having the element n1 to table T0, and

all the blocks lying on the dotted line containing this block to table T1. Rest all the

empty blocks are sent to table T0. If none of the block having an element from S1 has

conflicting bit common with block lying on the dotted line which contains block having

the element n5, then we send the blocks having an element from S1 to table T1. Rest all

the empty blocks are sent to table T0.

Now we are left with the case where none of the blocks having elements n3, n4 and

n5 have conflicting bit common. In this case, we send the blocks having elements to

table T1, and all the empty blocks to table T0.

[[]X]\\
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8.3 Appendix C

In this section, we discuss rest of the cases of Section 6.2.3.

Case 4 The elements in S1 = {n1, n2, n3} lies in a superblock and the elements n4

and n5 in the different superblocks.

Case 4.1 Elements n1, n2 and n3 lies on a same line.

Case 4.1.1 Both the elements n4 and n5 coincides with the blocks having elements

from S1 in table T1. In this case, we send the blocks having elements n4 and n5 to table

T0, and the rest of the empty blocks which lie on the lines containing these blocks to

table T1. We send the blocks having elements from S1 to table T1. Rest all the empty

blocks are sent to the table T0.

Case 4.1.2 Only one of the blocks having an element say n4 coincides with the block

having an element from S1 in table T1. Without loss of generality, let us say that block

having the element n1 coincides with the block having the element n4. In this case, we

send the blocks having elements n4 and n5 to table T0 and all the empty blocks lying

on the line containing these blocks to table T1. Now we see whether the line, which

contains block having the element n5 passes through the block having element elements

from S1 or not. Let us first consider a case where the line which contains block having

the element n5 passes through one of the blocks having elements from S1, without loss

of generality, let us say it passes through block having the element n2. In this case,

we send the block having the element n2 to table T0, and rest all the blocks lying on

the line containing this block to table T1. Rest all the empty blocks are sent to table

T0. On another hand, if the line which contains block having the element n5 does not

pass through any of the block having element from S1, then we send the blocks having

elements from S1 to table T1. Rest all the empty blocks are sent to table T0.

Case 4.1.3 None of the blocks which contains element n4 or n5 coincides with the

blocks which contains an element from S1 in table T1. This case is the same as Case
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3.1.3.

Case 4.2 Two elements say n1 and n2 lies on a same line, and the element n3 lies

on a different line.

Case 4.2.1 Blocks having the elements n4 and n5 coincides with the blocks having

elements from S1 in table T1.

Case 4.2.1.1 Blocks having the elements n4 and n5 coincides with the block having

elements n1 and n2 in table T1. In this case, we send the blocks having elements n4 and

n5 to table T0, and all the empty blocks lying on the lines containing these blocks to

table T1. Further, we send the blocks having elements n1 and n2 to table T1. We send

the block that contains the element n3 to table T0, and the rest of the empty block lying

on the line containing this block to table T1. Rest all the empty blocks are sent to the

table T0.

Case 4.2.1.2 Blocks having elements n4 and n5 coincides with the block lying on the

different line, say n1 and n3 in table T1. In this case, we send the blocks having elements

n4 and n5 to table T1 and the rest of the empty blocks lying on the line containing these

blocks to table T0 . We send the blocks having elements n1 and n3 to the table T0 and

the rest of the blocks lying on these lines to the table T1. Rest all the empty blocks are

sent to table T0.

Case 4.2.1.3 Blocks having element n4 and n5 coincides in table T1. If it coincides

with the block having the element n1 or n2, then we send both the block having the ele-

ment n4 and n5 to table T0, and the rest of the empty block lying on the line containing

these blocks to table T1. Further, we send the blocks having the element n1 and n2 to

table T1. We send the block that contains element n3 to the table T0, and the rest of

the empty block, which lies on the line containing this block to the table T1. Rest all

the empty blocks are sent to the table T0.

If the blocks containing elements n4 and n5 coincides with the block which contains

element n3 in table T1, then we send the block containing element n3 to the table T0,
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and the rest of the empty block, which lie on the line containing this block to the table

T1. Further, we send the block containing n4 to table T1, and the rest of the empty

block lying on the line containing this block to the table T0. We send the block having

the element n5 to the table T0, and the rest of the empty block lying on the line con-

taining this block to table T1. Now we see whether the line which contains block having

the element n5 passes through the block having the element n1 or n2. Without loss of

generality, let us first consider the case where the line which contains block having the

element n5 passes through the block having the element n1. In this case, we send the

block having the element n1 to table T0, and all the blocks lying on the line containing

this block to table T1. Rest all the empty blocks are sent to table T0. If the line which

contains block having element n5 does not pass through the blocks having elements n1

or n2, then we send the blocks having elements n1 and n2 to table T1, and rest all the

empty blocks to table T0.

Case 4.2.2 Only one block having an element say n4 coincides with the block hav-

ing the element from S1 in table T1. Let us first consider the case where block having

element n4 coincide with the block having element n1 or n2. Without loss of generality,

let us say block having the element n4 coincide with the block having the element n1.

In this case, we send the block having the element n4 to table T1, and all the empty

blocks lying on the line containing this block to table T0. We send the block having the

element n1 to table T0, and rest all the blocks lying on the line containing this block to

the table T1. Now we see the position of the block having the element n5. If it lies on

the line which contains block having the element n1, then we send the block having the

element n5 to table T0, and all the empty blocks lying on the line containing this block

to the table T1. We send the block having the element n3 to table T0, and all the empty

blocks lying on the line containing this block to table T1. Rest all the empty blocks are

sent to table T0. On another hand, if the block having the element n5 does not lie on

the line, which contains block having the element n1, then we send the block having the

element n3 and n5 to table T1. Rest all the empty blocks are then sent to table T1.

Now let us consider the case where block having the element n4 coincide with the

block having the element n3. In this case, we send the block having the element n4 to

table T1, and rest all the empty blocks lying on the line containing this block to table T0.
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We send the block having the element n3 to table T0, and all the empty blocks lying on

the line containing this block to table T1. Now we see the position of the block having

the element n5. If the block having the element n5 lies on the line which contains block

having the element n3 , then we send the block having the element n5 to the table T0,

and all the empty blocks lying on the line containing this block to the table T1. If the

block having the element n1 lies on the line which contains block having the element n5,

then we send the block having the element n1 to table T0, and rest all the blocks lying

on the line containing this block to table T1. Rest all the empty blocks are sent to the

table T1. Similar is the case if the block having the element n2 lies on the line, which

contains block having the element n5. If the block having the element n5 does not lie

on the line which contains block having the element n3, then we send the blocks having

the elements n1, n2 and n5 to table T1, and rest all the empty blocks to table T0.

Case 4.2.3 None of the blocks having the elements n4 or n5 coincides with blocks

having elements from S1 in table T1. This case is the same as Case 3.1.3.

Case 4.3 All the elements belonging to S1 lies on the different lines. In this case,

we send all the blocks having elements to table T0, and all the empty blocks to table T1.

Case 5 Two elements S1 = {n1, n2} lies in a superblock other two elements S2 = {n3, n4}

lies in other superblock, and an element S3 = {n5} in a different superblock.

Case 5.1 Elements belonging to S1 lie on the same line, elements belonging to S2

lies on a line.

Case 5.1.1 Two blocks having elements from S2 and S3 coincides with the blocks having

elements from S1 in table T1. Without loss of generality, let us say that block having

element n3 coincides with the block having the element n1, and the block having the

element n5 coincides with the block having the element n2. In this case, we send the

block having the element n4 to table T0, and the rest of the block lying on the line

containing this block to table T1. We send the block having the element n1 to table T0,

and the rest of the block lying on this line to table T1. Further, we send the block having
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the element n5 to table T0, and the rest of the empty block lying on the line containing

this block to table T1. Rest all the empty blocks are sent to table T0.

If the blocks from S2 and S3 coincides with the same block having the element

from S1, then we send the coinciding block having elements from S2 and S3 to table T0,

and the rest of the blocks lying on these lines to table T1. Furthermore, we send the

blocks having elements from S1 to table T1. Rest all the empty blocks are sent to table T0.

Case 5.1.2 Only one block having the element from S2 or S3 coincides with the block

having the element from S1.

Case 5.1.2.1 Block having an element from S2 coincides with the block having an

element from S1. Without loss of generality, let us say that the block having the element

n3 coincides with the block having the element n1. Now, we can have two cases, either

the block containing element n5 coincides with the block containing element n4 or it does

not.

If the block containing n5 coincides with the block containing n4, then we send the

block containing n4 to table T0, and the rest of the block lying on the line containing

this block to the table T1. We send the block containing n5 to table T1, and the rest of

the block lying on the line containing this block to table T0. Further, we send the block

having the element n1 to table T0, and the rest of the block lying on this line to table

T1. Rest all the empty block are sent to table T0.

If the block containing n5 does not coincide with the block having the element n4,

then we send the block having the element n3 to table T0, and the rest of the block lying

on this line to table T1. Now we see the position of the block that contains the element

n5 to make the assignment. If the block which contains element n5 lies on the line which

contains block having elements from S1, then we send the block having the element n5

to table T1, and rest all the empty blocks lying on the line which contains this block to

table T0. Further, we send blocks having elements from S1 to table T1, and the rest of

the empty blocks lying on the line which contains this block to table T0. For the rest of

the empty blocks, we send it to table T0.

Rest for all other positions of block having element n5, we send block having ele-

ments n3, n4 and n5 to table T1, and all the empty blocks lying on the lines containing
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these blocks to table T0. Further, we send the block having the element n1 to table T0,

and all other blocks lying on the line containing this block to table T1. Rest all the

empty blocks are sent to table T0.

Case 5.1.2.2 Block having an element from S3 coincides with the block having an

element from S1. Without loss of generality, let us say that block having element n5

coincides with the block having the element n1. In this case, we send the block having

the element n5 to table T0, and the rest of the block lying on the line, which contains

this block to table T1. Now we see the position of the block having the element from S2.

One of the blocks having an element from S2 coincides with the empty block on

the line, which contains block having the element n5. Without loss of generality, let

us say that block having element n3 coincides with an empty block on the line, which

contains block having the element n5. In this case, we send the block having an element

n3 to table T0, and the rest of the block lying on the line containing this block to table

T1. Now we see the position of the block having element n4, if it lies on the line which

contains block having element from S1, then we send the block having element n1 and

n2 to table T1, and the rest of the empty block lying on the line containing these blocks

to table T0. Rest all the empty blocks are sent to table T0. On another hand, if the block

having the element n4 does not lie on the line which contains block having the element

from S1, then we send the block having the element n2 to table T0, and the rest of the

block lying on the line containing this block to table T1. We send the rest of the empty

block to table T0.

If the block having the element from S2 do not lie on the line which contains block

having the element n5, then we send the blocks having an element from S2 to table T1,

and the rest of the empty blocks on the line which contains these blocks to table T0.

Also, we send the blocks having the element n1 and n2 to table T1. We send rest of the

empty blocks to table T0.

Case 5.1.3 None of the block having elements from S2 or S3 coincides with the blocks

having element from S1 in the table T1. In this case, we can have two cases. Either the

block having the element from S3 coincides with the block having the element from S2,

or it does not.
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Let us first consider the case where a block having the element from S3 coincides

with one of the blocks having an element from S2. Without loss of generality, we can

say that block having the element n5 coincides with the block having the element n4. In

this case, we send the block having the element n5 to table T1, and the rest of the empty

block lying on the line, which contains this block to table T0. We send the block having

the element n4 to table T0, and the rest of the block lying on the line, which contains

this block to table T1. Now we see the positions of the blocks having an element from

S1. Let us first consider the case where a block having the element from S1 lies on the

line, which contains blocks having elements from S2. Without loss of generality, let us

say block having the element n1 lies on the line, which contains blocks having elements

from S2. In this case, we send the block having the element n1 to the table T0, and all

other block lying on the line containing this block to table T1. Rest all the empty blocks

are sent to table T0. On the other hand, if the blocks having elements from S1 do not

lie on the line which contains blocks having elements from S2, then we send the block

having elements from S1 to table T1, and rest all the empty blocks to table T0.

If the block having an element from S3 do not coincide with a block having an

element from S2 then we send all the block having elements to table T1, and all the

empty blocks to table T0.

Case 5.2 Now we consider the case where one of the sets having elements lie on a

line and other set having elements lie on the different lines. Without loss of generality,

let us consider the case where elements belonging to S1 lies on a line and the elements

belonging to S2 lies on the different lines.

Case 5.2.1 All the blocks having elements from S2 and S3 coincides with the block

having an element from S1. In this case, we send the block having an element from S2

and S3 to table T0, and rest of the empty block lying on the lines containing these blocks

to table T1. Further, we send the blocks having elements from S1 to table T1, and the

rest of the empty blocks lying on the line, which contains these blocks to table T0. We

send the rest of the empty blocks to table T0.

Case 5.2.2 Two blocks having elements from S2 and S3 coincides with the block hav-
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ing an element from S1. Now here we can have two cases either those two blocks have

elements belonging to S2 or we can have one element belonging to S2 and other to S3.

Let us first consider the case where two blocks having elements from S2 coincides

with a block having an element from S1. without loss of generality, let us say that block

having element n3 coincides with the block having the element n1, and the block having

the element n4 coincides with the block having n2. In this case, we send the block

having elements n3 and n4 to table T0, and the rest of the empty block lying on the lines

containing these blocks to table T1. Now we see the position of the block having the

element n5. At this point, we can have two cases either the line which contains the block

having the element n5 passes through one of the block having an element from S1 or it

does not. Let us first consider the case where it passes through one of the blocks having

elements from S1. Without loss of generality, let us say that the line which contains

block having the element n5 passes through the block having the element n1. In this

case, we send the block having the element n5 to table T0, and the rest of the block lying

on the line, which contains this block to table T1. Further, we send the block having the

element n1 to table T0, and the rest of the block lying on the line containing this block

to table T1. Rest all the empty blocks are sent to table T0. On another hand, if the

line which contains the block having the element n5 do not pass through blocks having

elements from S1, then we send the block having the element n5 to table T0, and rest of

the empty blocks on the line containing this block to table T1. Furthermore, we send the

blocks having elements from S1 to table T1, and the rest of the empty blocks to table T0.

Now we consider the case where one of the blocks having an element from S2, and

another block having an element from S3 coincides with the block having an element from

S1. Without loss of generality, say blocks having the element n3 and n5 coincides with

a block(blocks) having an element(elements) from S1. Now here we can have two cases,

either n3 and n5 coincides with the same block having an element from S1, or it coincides

with different blocks having elements from S1. Let us first consider the case where blocks

having element n3 and n5 coincides with same block having an element from S1, say n1.

In this case, we send the blocks having elements from S2 and S3 to table T0, and the rest

of the empty blocks lying on the lines containing these blocks to table T1. Further, we

send the block having the element n2 to table T0, and the rest of the block, which lies

on the line containing this block to table T1. Rest all the empty blocks are sent to table
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T0. Now we consider the case where blocks having elements n3 and n5 coincides with

different blocks having elements from S1. Without loss of generality, let us say that block

having element n3 coincide with the block having the element n1, and the block having

the element n5 coincide with the block having the element n2. In this case, we send the

blocks having elements from S2 and S3 to table T0, and all the empty blocks lying on the

line containing these blocks to table T1. Further, we send the block having the element

n2 to table T0, and rest of the block lying on the line which contains this block to table T1.

Case 5.2.3 Only one block having element from S2 or S3 coincides with the block

having an element from S1 in table T1. Now here we can have two cases, either the block

having an element from S2 coincides, or the block having an element from S3 coincides

with the block having an element from S1.

Case 5.2.3.1 A block having an element from S2 coincides with a block having an

element from S1 in table T1. Without loss of generality, let us say that the block having

the element n3 coincides with the block having the element n1. Now we see the position

of the blocks having the element n4 and n5. Let us first consider the case where blocks

having elements n4 and n5 coincide.

If the blocks having elements n4 and n5 coincides on the line which contains blocks

having elements from S1, then we send the blocks having elements n3, n4 and n5 to table

T0, and all the blocks lying on the lines containing these blocks to table T1. We send the

block having element n1 and n2 to table T1. Rest all the empty blocks are sent to table

T0.

If the blocks having elements n4 and n5 coincides outside the line which contains

blocks having elements from S1, then we send the blocks having elements n2, n3 and n4

to table T0, and all the blocks lying on the lines containing these blocks to table T1. We

send the blocks having elements n1 and n5 to table T1. Rest all the empty blocks are

sent to table T0.

Now we are left with the case where blocks having elements n4 and n5 do not

coincide. This can have several cases. Let us first consider the case where both the

blocks having elements n4 and n5 lies on the line, which contains blocks having elements

from S1. In this case, we send the blocks having elements n3, n4, and n5 to table T0, and
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all the blocks lying on the lines containing these blocks to table T1. We send the blocks

having elements n1 and n2 to table T1. Rest all the empty blocks are sent to table T1.

Now let us consider the case where n4 and n5 do not lie on the line, which contains

block having elements from S1. In this case, we send the blocks having elements n3, n4,

and n5 to table T1, and all the blocks lying on the lines containing these blocks to table

T0. Block having the element n1 is sent to table T0, and rest all the blocks lying on the

line containing this block is sent to table T1. Rest all the empty blocks are sent to table

T0.

Now, we can also have a case where only one block having the element n4 or n5 lies

on the line, which contains blocks having elements from S1. Let us first consider the case

where block having the element n4 lies on the line, which contains block having elements

from S1. In this case, we send the blocks having elements n3, n4, and n5 to table T0,

and all other blocks lying on the line containing these blocks to table T1. Now, we see

whether the block having elements from S1 lies on the line, which contains block having

the element n5. Without loss of generality, let us say block having the element n1 lies

on the line, which contains block having the element n5. In this case, we send the block

having the element n1 to table T0, and all other blocks lying on the line, which contains

this block to table T0. Rest all the empty blocks are sent to table T1. On another hand,

if the line which contains block having the element n5 do not pass through block having

element from S1, then we send the blocks having elements from S1 to table T1. Rest all

the empty blocks are sent to table T0. Now let us consider the case where block having

the element n5 lies on the line, which contains block having elements from S1. In this

case, we send the blocks having elements n2, n3, n4, and n5 to table T0, and all other

blocks lying on the line containing these blocks to table T1. Rest all the empty blocks

are sent to table T0.

Case 5.2.3.2 The block having element from S3 coincides with block having element

from S1 in table T1. Without loss of generality, let us say that block having element n5

coincides with the block having the element n1. Now we see the position of the blocks

having elements from S2.

Both the blocks having an element from S2 lies on the line, which contains block

having an element from S1 in table T1. In this case, we send the blocks having the
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elements n3, n4, and n5 to table T0, and all the blocks lying on the lines containing these

blocks to table T1. Blocks having elements from S1 are sent to table T1 and rest all the

empty blocks are sent to table T0.

Both the blocks having an element from S2 do not lie on the line, which contains

blocks having an element from S1. In this case, we send the blocks having elements

n3, n4, and n5 to table T1, and all the empty blocks lying on the lines containing these

blocks to table T0. Further, we send the block having the element n1 to table T0, and all

the blocks lying on the line containing this block to table T1. Rest all the empty blocks

are sent to table T0.

Now let us consider the case where only one block having the element from S2 lies

on the line, which contains blocks having elements from S1 in table T1. Without loss of

generality, let us say that block having element n3 lies on the line, which contains block

having an element from S1. In this case, we send the blocks having elements n4 and

n5 to table T1, and all the empty blocks lying on the lines which contain these blocks

to table T0. We send the blocks having the element n1 and n3 to table T0, and rest all

the blocks lying on the lines, which contain these blocks to table T1. Rest all the empty

blocks are sent to table T0.

Case 5.2.4 None of the blocks having element from S2 or S3 coincides with the block

having elements from S1 in table T1. In this case, we can have either the block having

the element n5 coincides with the block having elements from S2 or it does not.

Let us first consider the case where the block having the element n5 coincides with

one of the blocks having the element from S2. Without loss of generality, let us say that

the block having the element n5 coincides with the block having the element n3. Now

we see whether the block having the element n4 lies on the line, which contains block

having elements from S1 or not. Let us first consider the case where block having the

element n4 lies on the line, which contains block having an element from S1. In this

case, we send the block having the element n3 to table T0, and all the blocks lying on

the line containing this block to table T1. We send the block having the element n5 to

table T1, and all the blocks lying on the line, which contains this block to table T0. Now

we see whether any of the block having elements from S1 lies on the line having the

element n3 or not. Without loss of generality, let us say the block having the element
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n1 lies on the line, which contains block having the element n3. In this case, we send

the blocks having the elements n1 and n4 to table T0, and all other blocks lying on

the lines which contain these blocks to table T1. Rest all the empty blocks are sent to

table T0. If none of the blocks having elements from S1 lies on the line, which contains

block having the element n3, then we send the blocks having elements n1, n2, and n4

to table T1, and rest all the empty blocks to table T0. Now let us consider the case

where block having the element n4 do not lie on the line, which contains block having

elements from S1. In this case, the assignment made in the previous paragraph will

work if we send the block having the element n4 to table T1, and all the blocks lying on

the line containing this block to table T0. Now, we are left with the case where block

having the element n5 do not coincide with the block having an element from S2. In this

case, we send the blocks having elements to table T1, and all the empty blocks to table T0.

Case 5.3 All the elements belonging S1, S2 and S3 lies on the different line. In this

case, we send the blocks having elements to table T0 and all the empty blocks to table

T1.

Case 6 Two elements belonging to S1 = {n1, n2} lies in a same superblock, and the

element n3, n4 and n5 to the different superblocks. If the blocks having elements from

S1 lies on the different lines, then the assignment made in Case 5.3 can be used. So let

us consider the case where blocks having the element from S1 lies on the same line.

Case 6.1 Only one block having element from n3, n4 and n5 coincide with the block

having element from S1. Without loss of generality let us say block having the element

n3 coincide with the block having the element n1.

Case 6.1.1 Blocks having elements n4 and n5 coincide.

Case 6.1.1.1 Blocks having elements n4 and n5 coincides on the line which contains

blocks having elements from S1. In this case, we send the blocks having elements n3, n4,

and n5 to table T0, and the rest of the empty blocks lying on the lines containing these

blocks to table T1. Blocks having the elements n1 and n2 are sent to table T1, and rest
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all the empty blocks are sent to table T0.

Case 6.1.1.2 Blocks having elements n4 and n5 coincides outside the line which contains

element from S1. Now here we can have several cases depending upon whether the lines

which contain blocks having elements n4 and n5 passes through blocks having elements

from S1 or not.

Without loss of generality, let us say that line which contains block having the

element n4 passes through the block having the element n1, and the line which contain

block having the element n5 passes through the block having the element n2. Now in

this case we send the blocks having elements n4 and n1 to table T1. Further, we send

the blocks having elements n3, n5 and n2 to table T0, and rest of the blocks lying on the

lines containing these blocks to table T1. We send rest of the empty blocks to table T0.

Now consider a case where only one line which contains a block from n4 or n5

passes through the block having an element from S1. Without loss of generality, let us

say block having the element n4 passes through the block having an element from S1.

Lets first consider the case where the line which contains block having the element n4

passes through the block having the element n2. In this case, we send the blocks having

elements n2, n3, n4, and n5 to table T0, and rest of the blocks lying on the lines contain-

ing these blocks to table T1. Further, we send the block having the element n1 to table

T1, and the rest of the empty blocks to table T0. Now without loss of generality, we can

also have a case where block having the element n4 passes through the block having the

element n1. In this case, we send the block having the elements n1, n3, n4, and n5 to

table T0, and the rest of the blocks lying on the lines containing these blocks to table T1.

We send the block having the element n2 to table T1, and the rest of the empty blocks

to table T0. If none of the lines which contains blocks having elements n4 and n5 passes

through blocks having elements from S1, then we send the blocks having elements n3, n4

and n5 to table T0, and all the blocks lying on the lines containing these blocks to table

T1. Further, we send the blocks having elements from S1 to table T1. Rest all the empty

blocks are sent to table T0.

Case 6.1.2 Blocks having the elements n4 and n5 do not coincide.

157



8.3. APPENDIX C

Case 6.1.2.1 Both the blocks having element n4 and n5 lies on the line which con-

tains element from S1. In this case, we send the blocks having elements n3, n4, and n5 to

table T0, and rest of the empty blocks lying on the line containing these blocks to table

T1. Further, we send the blocks having elements n1 and n2 to table T1, and rest of the

empty blocks to table T0.

Case 6.1.2.2 One of the blocks having an element n4 or n5 lies on the line, which

contains blocks having elements from S1 and other lies outside of it. Without loss of

generality, let us say block having the element n4 lies on the line, which contains blocks

having elements from S1, and block having the element n5 lies outside it. In this case,

we send the blocks having elements n3, n4, and n5 to table T0, and all the blocks lying

on the lines containing these blocks to table T1. If any block having elements from S1

lies on the line, which contains block having elements n5, then we send that block to

table T0, and all other blocks lying on the line containing that block to table T1. Rest

all the empty blocks are sent to table T1. On another hand, if none of the blocks having

elements from S1 lies on the line which contains block having elements n5, then we send

the block having elements from S1 to table T1, and rest all the empty blocks to table T0.

Case 6.1.2.3 None of the blocks having elements n4 or n5 lies on the line, which con-

tains blocks having elements from S1. In this case we send the blocks having elements

n2, n3, n4 and n5 to table T1. Further, we send the block having the element n1 to table

T0, and the rest of the empty blocks lying on the line, which contains this block to table

T1. Rest all the empty blocks are sent to table T0.

Case 6.2 Two blocks having elements from n3, n4 or n5 coincides with the block having

elements from S1. Without loss of generality, let us say that blocks having elements n3

and n4 coincides with the block having elements from S1. Now, here we can have two

cases, either the blocks having elements n3 and n4 coincides with the same block having

an element from S1 or it coincides with the different blocks having elements from S1.

Let us first consider the case where blocks having the element n3 and n4 coincides

with different blocks having elements from S1. Without loss of generality, let us say

that block having element n3 coincides with the block having the element n1 and the
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block having the element n4 coincides with the block having the element n2. Now we see

position of the block having element n5. The block containing element n5 can either lie

on the line, which contains blocks having element from S1 or not. Let us first consider the

case where block having element n5 do not lie on the line , which contains block having

element from S1. Further, let us consider the intersection of the line, which contains

block having the element n5 from the blocks having elements from S1. Without loss of

generality let us say that the line which contains block having element n5 passes through

the block having element n1, in this case, we send the blocks having elements n1, n3, n4

and n5 to table T0, and all other blocks lying on the lines which contains these blocks

to table T1. Rest all the empty blocks are sent to table T0. On the another hand, if

the block having element n5 do not pass through the blocks having elements from S1,

then we send the blocks having n3, n4 and n5 to table T0, and all other blocks lying on

the lines which contains these blocks to table T1. Further, we send the blocks having

elements from S1 to table T1, and rest all the empty blocks to table T0. If the block

having element n5 lies on the line which contains blocks having elements from S1, then

we send the blocks having elements n3, n4 and n5 to the table T0, and all the empty

blocks lying on these lines to table T1. Further, we send the blocks having elements from

S1 to table T1, and rest all the empty blocks to table T0.

Now we are left with the case where blocks having the element n3 and n4 coincides

with only one block having an element from S1. Without loss of generality, let us say

that blocks having elements n3 and n4 coincides with the block having the element n1.

In this case, we see the position of the block having the element n5. If the block having

the element n5 lies on the line which contains blocks having elements from S1, then we

send the block having the element n3, n4 and n5 to table T0, and all the empty blocks

lying on the lines containing these blocks to table T1. We send the blocks having ele-

ments from S1 to table T1. Rest all the empty blocks are sent to table T0. Further, if the

block having the element n5 do not lie on the line which contains blocks having element

from S1 then we send the block having element n3, n4 and n5 to table T0, and all the

empty blocks lying on the lines containing these blocks to table T1. Now we see whether

the line which contains block having the element n5 passes through a block having an

element from S1 or not. Let us first consider the case where the line which contains block

having the element n5 passes through a block having an element from S1. Without loss
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of generality, let us say that the line which contains block having the element n5 passes

through the block having the element n1. In this case, we send the block having the

element n1 to table T0, and all other blocks lying on the line containing this block to

table T1. Rest all the empty blocks are sent to table T0. On another hand, if the line

which contains block having the element n5 do not pass through the block having an

element from S1, then we send the blocks having the elements from S1 to table T1. Rest

all the empty blocks are sent to table T0.

Case 6.3 All the three blocks having elements n3, n4 and n5 coincides with the blocks

having elements from S1. In this case, we send the blocks having elements n3, n4, and

n5 to table T0, and all the blocks lying on the lines containing these blocks to table T1.

Blocks having elements from S1 are sent to table T1. Rest all the empty blocks are sent

to table T1.

Case 6.4 None of the blocks having elements from n3, n4 and n5 coincides with the

blocks having elements from S1.

Let us first consider the case where all the elements n3, n4 and n5 coincides. If all

of them coincides on the line which contains blocks having elements from S1, then we

send the blocks having elements n3, n4 and n5 to table T0, and rest of the empty blocks

lying on the lines containing these blocks to table T1. Further, we send the blocks having

elements n1 and n2 to table T1. Rest all the empty blocks are sent to table T0.

If the blocks having elements n3, n4, and n5 coincide outside the line, which contains

blocks having elements from S1, then we see the intersection of the lines containing these

blocks with the blocks having elements from S1. Now since all the blocks having elements

from n3, n4, and n5 coincides at most two lines having blocks containing these elements

can intersect with the blocks having elements from S1. Without loss of generality, let us

say that the line which contains block having the element n3 passes through the block

having the element n1, and the line which contains block having the element n4 passes

through the block having the element n2. In this case we send the blocks having element

n1 and n3 to table T1. Further, we send the blocks having elements n2, n4, and n5 to

table T0, and the rest of the empty blocks lying on the line containing these blocks to

table T1. Rest all the empty blocks are sent to table T0.
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Without loss of generality, let us now consider a case where only one line having

element say n3 passes through the block having element, say n1, then we send the blocks

having elements n1, n2 and n3 to table T1. Further, we send the blocks having elements

n4 and n5 to table T0, and the rest of the empty blocks lying on the lines containing

these blocks to table T1. Rest all the empty blocks are sent to table T0.

If none of the lines containing blocks having elements n3, n4 and n5 passes through

the blocks having element from S1, then we send the blocks having elements n3, n4 and

n5 to table T0, and rest of the empty blocks lying on the line containing these blocks to

table T1. Further, we send the blocks having element n1 and n2 to table T1, and rest of

the empty blocks to table T0.

Now let us consider the case where only two blocks having elements from n3, n4,

and n5 coincides. Without loss of generality, let us say the blocks having elements n3

and n4 coincide. Now we see the intersection of lines containing the blocks n3 and n4.

Let us first consider the case where both the lines containing blocks n3 and n4 passes

through the blocks having elements from S1. Without loss of generality, let us say the

line which contains block having the element n3 passes through the block having the

element n1, and the line which contains block having the element n4 passes through the

block having the element n2. In this case, we send the blocks having elements n1 and

n3 to table T0, and the rest of the blocks lying on the line containing these blocks to

table T1. We send the block having the element n2 and n4 to table T1, and all other

blocks lying on the lines containing these blocks to table T0. Now, we see the position

of the block having the element n5. Kindly note that it is important to remember that

no three lines passing through a point lie in the same plane in this case. If the block

having the element n5 lies on the line, which contains block having the element, then we

send the block having the element n5 to table T0, and all other blocks lying on the line

containing this block to table T1. Rest all the empty blocks are sent to table T0.

Now let us consider the case where only one line which has block having the element

n3 or n4 passes through the block having elements from S1. Without loss of generality,

let us say that block having the element n3 passes through the block having the element

n1. In this case, we send the block having the element n3 to table T1, and all the blocks

lying on the line containing these blocks to table T0. The block having the element n4

is sent to table T0, and all the blocks lying on the line containing this block to table T1.
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Now we see the position of the block having the element n5. Let us first consider the

case where block having the element n5 lies on the line, which contains blocks having

elements from S1. In this case, if the line which contains block having the element

n5 passes through the block having the element n3 then we send the block having the

element n5 to table T1, and all the block lying on the line containing this block to table

T0. The blocks having elements from S1 are sent to table T1, and all the blocks lying

on the line containing these blocks to table T0. Rest all the empty blocks are sent to

table T0. On another hand, if the line which contains block having the element n5 do

not pass through the block having the element n3 then we send the block having n5 to

table T0, and all the blocks lying on the line containing this block to table T1. Further,

the blocks having elements from S1 are sent to table T1, and all the blocks lying on the

line containing these blocks to table T0. Rest all the empty blocks are sent to table T0.

If the block having the element n5 do not lie on the line which contains blocks having

elements from S1, then we send the block having the element n5 to table T0, and all the

blocks lying on the line containing this block to table T1. Now we see whether the block

having elements from S1 lies on the line, which contains block having the element n5 or

not. Without loss of generality, let us say that block having element n1 lies on the line,

which contains block having the element n5. In this case, we send the block having the

element n1 to table T0, and all the blocks lying on the line containing this block to table

T1. Rest all the empty blocks are sent to table T0. On the other hand, if none of the

blocks having element from S1 lies on the line which contains block having element n5,

then we send the block having elements from S1 to table T1, and all the empty blocks

lying on the line containing these blocks to table T0. Rest all the empty blocks are sent

to table T0.

If none of the lines which contains block having elements n3 or n4 passes through

block having element from S1, then we send the blocks having elements n3, n4 and n5 to

table T0, and all the empty blocks lying on the lines containing these blocks to table T1.

Now, either the block having an element from S1 lies on the line which contains block

having the element n5 or it does not. Let us first consider the case where block having

elements from S1 lies on the line, which contains block having the element n5. Without

loss of generality, let us say that block having element n1 lies on the line, which contains

block having the element n5. In this case, we send the block having the element n1 to
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table T0, and all the blocks lying on the line containing this block to table T1. Rest all

the empty blocks are sent to table T0. If none of the block having an element from S1

lies on the line, which contains block having the element n5, then we send the blocks

having an element from S1 to table T1. Rest all the empty blocks are sent to table T0.

We are left with the case where none of the blocks having elements from n3, n4, and

n5 coincides. In this case, we send the blocks having elements to table T1, and the rest

of the empty blocks to table T0.

Case 7 All the blocks having elements n1, n2, n3, n4 and n5 lies in the different su-

perblocks. In this case, we can use the assignment made in Case 5.3.

[[]X]\\

163





Publications

Manuscripts Published

[1] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Improved bounds for two

query adaptive bitprobe schemes storing five elements”. In: Theoretical Computer

Science 838 (2020), pp. 208–230. issn: 0304-3975.

[2] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Two improved schemes

in the bitprobe model”. In: Theoretical Computer Science 806 (2020), pp. 543–552.

issn: 0304-3975.

[3] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Improved Bounds for

Two Query Adaptive Bitprobe Schemes Storing Five Elements”. In: The 13th An-

nual International Conference on Combinatorial Optimization and Applications,

COCOA 2019. (2019).

[4] Mirza Galib Anwarul Husain Baig, Deepanjan Kesh, and Chirag Sodani. “An Im-

proved Scheme in the Two Query Adaptive Bitprobe Model”. In: Combinatorial

Algorithms - 30th International Workshop, IWOCA 2019, Pisa, Italy, July 23-25,

2019, Proceedings. 2019, pp. 22–34.

[5] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Two New Schemes in the

Bitprobe Model”. In: WALCOM: Algorithms and Computation - 12th International

Conference, WALCOM 2018, Dhaka, Bangladesh, March 3-5, 2018, Proceedings.

2018, pp. 68–79.

[6] Mirza Galib Anwarul Husain Baig, Deepanjan Kesh, and Chirag Sodani. “A Two

Query Adaptive Bitprobe Scheme Storing Five Elements”. In: WALCOM: Algo-

rithms and Computation - 13th International Conference, WALCOM 2019, Guwa-

hati, India, February 27 - March 2, 2019, Proceedings. 2019, pp. 317–328.

165



Publication Under Submission

[1] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Storing Four Elements in

the Two Query Bitprobe Model.” In: “Discrete Applied Mathematics”, (2019,Under

Minor Revision).

[[]X]\\

166



Bibliography

[1] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and Srinivasan

Venkatesh. “Are bitvectors optimal?” In: Proceedings of the Thirty-Second Annual

ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA.

2000, pp. 449–458.

[2] Jaikumar Radhakrishnan, Venkatesh Raman, and S. Srinivasa Rao. “Explicit De-

terministic Constructions for Membership in the Bitprobe Model”. In: Algorithms

- ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31,

2001, Proceedings. 2001, pp. 290–299.

[3] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Two New Schemes in the

Bitprobe Model”. In: WALCOM: Algorithms and Computation - 12th International

Conference, WALCOM 2018, Dhaka, Bangladesh, March 3-5, 2018, Proceedings.

2018, pp. 68–79.

[4] “Two improved schemes in the bitprobe model”. In: Theoretical Computer Science

(2019).

[5] Patrick K. Nicholson. “Revisiting explicit adaptive two-probe schemes”. In: Inf.

Process. Lett. 143 (2019), pp. 1–3.

[6] Mirza Galib Anwarul Husain Baig, Deepanjan Kesh, and Chirag Sodani. “An Im-

proved Scheme in the Two Query Adaptive Bitprobe Model”. In: Combinatorial

Algorithms - 30th International Workshop, IWOCA 2019, Pisa, Italy, July 23-25,

2019, Proceedings. 2019, pp. 22–34.

[7] Mirza Galib Anwarul Husain Baig, Deepanjan Kesh, and Chirag Sodani. “A Two

Query Adaptive Bitprobe Scheme Storing Five Elements”. In: WALCOM: Algo-

rithms and Computation - 13th International Conference, WALCOM 2019, Guwa-

hati, India, February 27 - March 2, 2019, Proceedings. 2019, pp. 317–328.

167



[8] Mirza Galib Anwarul Husain Baig and Deepanjan Kesh. “Improved Bounds for

Two Query Adaptive Bitprobe Schemes Storing Five Elements”. In: Combinatorial

Optimization and Applications - 13th International Conference, COCOA 2019,

Xiamen, China, December 13-15, 2019, Proceedings. 2019, pp. 13–25.

[9] Noga Alon and Uriel Feige. “On the power of two, three and four probes”. In: Pro-

ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2009, New York, NY, USA, January 4-6, 2009. 2009, pp. 346–354.

[10] Marvin Minsky and Seymour Papert. Perceptrons - an introduction to computa-

tional geometry. MIT Press, 1987. isbn: 978-0-262-63111-2.

[11] Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao. “A Survey of Data

Structures in the Bitprobe Model”. In: Space-Efficient Data Structures, Streams,

and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th

Birthday. 2013, pp. 303–318.

[12] Peter Elias and Richard A. Flower. “The Complexity of Some Simple Retrieval

Problems”. In: J. ACM 22.3 (1975), pp. 367–379.

[13] Andrew Chi-Chih Yao. “Should Tables Be Sorted?” In: J. ACM 28.3 (1981),

pp. 615–628.

[14] Jaikumar Radhakrishnan, Smit Shah, and Saswata Shannigrahi. “Data Structures

for Storing Small Sets in the Bitprobe Model”. In: Algorithms - ESA 2010, 18th

Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings,

Part II. 2010, pp. 159–170.

[15] Mohit Garg and Jaikumar Radhakrishnan. “Set membership with a few bit probes”.

In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015. 2015, pp. 776–

784.

[16] Mohit Garg. “The Bit-probe Complexity of Set Membership”. PhD thesis. Tata

Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba,

Mumbai 400005, India: School of Technology and Computer Science, 2016.

168



[17] Deepanjan Kesh. “Space Complexity of Two Adaptive Bitprobe Schemes Storing

Three Elements”. In: 38th IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13,

2018, Ahmedabad, India. 2018, 12:1–12:12.

[18] Deepanjan Kesh. “On Adaptive Bitprobe Schemes for Storing Two Elements”.

In: Combinatorial Optimization and Applications - 11th International Conference,

COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings, Part I. 2017,

pp. 471–479.

[19] Ryan Blue. “The Bit Probe Model for Membership Queries: Non-Adaptive Bit

Queries”. MA thesis. College Park: Graduate School of the University of Maryland,

2009.

[20] Moshe Lewenstein, J. Ian Munro, Patrick K. Nicholson, and Venkatesh Raman.

“Improved Explicit Data Structures in the Bitprobe Model”. In: Algorithms - ESA

2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014.

Proceedings. 2014, pp. 630–641.

169


	Abstract
	List of Figures
	List of Tables
	Introduction
	Model of Computation
	The Problem Statement
	Definitions
	Historical Notes
	Thesis Outline and Contributions

	Explicit Adaptive Bitprobe Scheme
	Introduction
	Revisiting Two Adaptive Bitprobe Scheme
	On the Three Adaptive Bitprobe Scheme
	Conclusion

	Explicit Non-Adaptive Bitprobe Scheme
	Introduction
	Non-adaptive Upper Bounds
	Conclusion

	Two Improved Bitprobe Scheme for Storing Small Sets
	Introduction
	Adaptive Scheme for n=3 and t=2
	A Non-adaptive Scheme for n=4 and t=4
	A (n = 5, t = 4)-Non-Adaptive Scheme
	Conclusion

	Explicit Adaptive Two Bitprobe Scheme Storing Four Elements 
	Introduction
	Our Data structure
	Conclusion

	Explicit Adaptive Two Bitprobe Scheme Storing Five Elements 
	Introduction
	Our Data Structure
	Conclusion

	Improved Bounds for Two Bitprobe Scheme Storing Five Elements
	Introduction
	Lower Bound
	Our Data Structure
	Conclusion

	Appendix
	Appendix A
	Appendix B
	Appendix C

	Publications

