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Abstract

Detection and typing of entity mentions present in natural language text are one of the

fundamental problems in information extraction paradigm. The dissertation directly focuses

on advancing the state-of-the-art of the entity detection and entity classification problems in

a setting where entity mentions can belong to a large set of types spanning diverse domains

such as biomedical, finance, and sports. Moreover, the entity mentions could be mentioned

in several text genres, such as newswire, scientific abstracts, and forums. When the scope

of entity mentions is diverse, and several text genres are involved, data scarcity becomes

one of the primary issues for these tasks.

The thesis addresses several issues related to the data scarcity, either directly or in-

directly. First, we propose a noise-aware learning model for the task of fine-grained entity

typing. The proposed model outperforms previous state-of-the-art models, which assumes

that the training dataset is noise-free. The noise-aware model addresses the data-scarcity

issue indirectly as the majority of datasets for the Fine-ET task are generated automati-

cally using the distant supervision paradigm. The automatically generated datasets have

noise, and thus noise-aware models permit efficient and effective learning. We also propose

transfer learning approaches in cases where the training dataset size is small.

Second, we propose a collective learning framework for the task of fine-grained en-

tity typing. The proposed framework aggregates different datasets which can have partial

overlapping labels and can predict a unique fine-grained label for a given entity mention.

The work also addresses the data scarcity issue as often we do not have datasets available

with all of the label set annotated, and utilizing different datasets that have partial labels

annotated eliminates the need to create new datasets.

Third, we propose a framework to improve the quality of the datasets generated in the

distant supervision paradigm for the fine-grained entity detection and fine-grained entity

typing task. Using the framework, we created two datasets, each containing more than thirty

million sentences annotated with around hundred and thousand entity types, respectively.

The work directly addresses the data scarcity issue by sharing new datasets for these tasks

with the research community.
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1
Introduction

1.1 Overview

One of the primary ways of sharing knowledge among humans is through documents written

in natural language. These documents capture several aspects of human knowledge ranging

from life-saving discoveries in biomedical sciences to technological advancements in space

sciences. Much of this knowledge is currently difficult to access for computer algorithms

as the knowledge is not expressed in any structured format (graphs or databases) that

computers can easily understand. In the past two decades, there has been a considerable

amount of work in the natural language processing (NLP) community to automatically ex-

tract important knowledge components from text documents and make them available in an

easily accessible structured format such as graphs or databases. Some prominent projects

include OpenCyc1, Freebase [1], Google Knowledge Vault [2], DBpedia [3], YAGO [4], Wiki-

Data [5], and NELL [6]. The extracted structured information can then facilitate several

applications such as helping virtual assistants/chatbots in answering factual questions and

finding components of potential drugs that affect specific diseases.

There are several tasks involved in the process of extracting structured information

from unstructured text. These tasks include detection of entity mentions present in the

natural language sentences [7], linking or disambiguation of entity mentions to known enti-

ties [8], classification or typing of entity mentions into a set of predefined categories [9], and

finding relations between entities [10]. The entities act as an essential constituent of the

structured knowledge, where they act as nodes/keys in a graph/database. These entities

1http://www.opencyc.org

1
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1.1. OVERVIEW

and their mentions are associated with various properties. One such important property is

a type or a label or a category of an entity or an entity mention. The focus of this thesis is

on the Entity Detection (ED) and Entity Typing (ET) problems.

Entity Detection is the task of detecting entity mentions belonging to predefined

categories or types, in natural language sentences2. We illustrate the problem description

with examples in Table 1.1. In the table, there are two sentences. The first sentence is from

a news article, whereas the second sentence is from a medical forum. For the ED task, the

input is a sentence, and output is word boundaries that constitute an entity mention from

the predefined categories. For example, in the first sentence, four entity mentions belong

to the predefined categories, and they are detected (underlined for illustration purpose).

Similarly, in the second sentence, there are three entity mentions.

Domain Sentences (Input) Predefined
categories

Sentences with detected entities
(Output)

News Former Wallaby captain Nick Farr-
Jones believes Campese may yet be
tempted to England.

person, location,
organization

Former Wallaby captain Nick Farr-
Jones believes Campese may yet be
tempted to England.

Medical
Forum

In contrast, haloperidol demonstrated
an ability to reduce cocaine - induced
seizures.

drug, medical
condition

In contrast, haloperidol demonstrated
an ability to reduce cocaine - induced
seizures.

Table 1.1: Entity Detection problem: The objective is to identify entity mentions present
in natural language sentences that belong to predefined categories. The input for an ED
system is natural language sentences, and the output is boundaries of entity mentions.

Entity Typing is the task of assigning types or categories to already identified entity

mentions present in sentences. We illustrate the problem description with examples in

Table 1.2. In the table, the entity mentions are from the same two sentences as that present

in Table 1.1. For the ET task, the input is an entity mention along with the context (which

can be a full sentence), and output is a type or a category (from predefined categories),

which best describes that entity mention.

The ED and ET tasks usually go hand in hand. We have a set of predefined categories

and are interested in entity detection and typing based on the predefined categories. When

ED and ET are solved together, it is referred to as the Entity Recognition (ER) task.

The ER task is one of the fundamental tasks in NLP with over two decades of active

research [12–14]. However, a majority of research work has been limited to a handful of

predefined categories such as person, location, and organization. With the recent success

2In contrast, the Open Information Extraction (OpenIE) paradigm does not have predefined cate-
gories [11].
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Domain Entity Mention (underlined) with context Predefined
Categories

Entity type

News
Former Wallaby captain Nick Farr-Jones be-
lieves . . .

person,
location,
organization

organization

. . . believes Campese may yet be tempted to
England.

location

Medical
Forum

In contrast, haloperidol demonstrated an ability
to reduce . . .

drug, medical
condition

drug

. . . cocaine - induced seizures. medical condition

Table 1.2: Entity Typing problem: The objective is to classify the identified entity
mentions present in natural language sentences to predefined categories. The input for an
ET system is entity mention along with its context (which can be a full sentence), and the
output is a category which best describes that entity mention.

of machine learning techniques in several NLP areas, modern NLP applications require

fine-grained information about entities from diverse domains. For example, in addition to

person, location, and organization, a chatbot should be able to recognize entities from diverse

domains such as entertainment, biomedical, and sports. The diversity can then enable

fine-grained predictions, for example, instead of predicting a label to be an organization,

predicting labels to be a musical band or sports team, which are subtypes of the label

organization.

How can we detect and type entity mentions in fine-grained diverse domains setting?

What are the limitations of existing work? These are the questions we explored in this

dissertation. We describe the problem description in the subsequent section.

1.2 Problem Description

ED and ET in the setting where there is a diverse and large number of predefined categories

(from hundreds to thousands of types spanning several domains) are denoted as Fine-
grained Entity Detection (Fine-ED) and Fine-grained Entity Typing (Fine-ET)
task respectively. We illustrate the problem description with examples in Figure 1.1. In the

figure, the predefined categories contain educational degree, engineering discipline, organism

categories. These categories are from different domains, education and biomedical. Exist-

ing works related to ED and ET fail to detect and type entity mentions belonging to these

types [12, 13]. Moreover, even for common categories such as person and organization (men-

tioned in magenta color), the Fine-ET task assigns context-dependent fine-grained labels

such as biologist or university instead of a coarse label person or organization respectively.

3
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The contributions of this dissertation are in advancing the state-of-the-art for Fine-ED and

Fine-ET tasks.

Figure 1.1: Fine-ED and Fine-ET problem description: Detection and typing of entity
mentions is a setting where there is a diverse and large number of predefined categories. In
the above example, the predefined categories contain types from two domains, biomedical
and education.

1.3 Overview of Existing Work

Fine-ED and Fine-ET tasks are usually modeled as a supervised learning problem as for

a given input; the objective is to detect and type entity mentions from a set of predefined

categories. For any supervised classification task, there are two essential components: the

data and the learning model. We provide an overview of existing work by analyzing some

of the crucial properties of existing datasets and learning models.

1.3.1 Datasets

Datasets play a crucial role in advancing the state-of-art of any machine learning task. Fine-

ED and Fine-ET tasks require a dataset where all entity mentions belonging to hundreds

to thousands of categories are annotated with the context-dependent fine-grained types.

Manually creating a dataset for these tasks is an expensive and time-consuming process

as an entity mention could be assigned multiple types from a set of thousands of types.

The existing work predominantly uses the distant supervision paradigm [15, 16] to create

training datasets for these tasks [9, 17, 18]. We describe the paradigm with an illustration

in Figure 1.2. In this paradigm, the entity mentions present in the text are linked to

a Knowledge Base (KB), which provides types to the linked mentions. For example, in

4
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Figure 1.2: Distant supervision paradigm: In this paradigm, the entity mentions present
in the sentences are linked to a KB, which provides the types to the linked mention. For
this illustration, the highlighted tokens are actual entity mentions, whereas the underlined
tokens are the mentions linked to the KB by the distant supervision paradigm. The black
arrows denote correct linking, whereas the red arrows denote incorrect linking between
tokens and KB entity.

Figure 1.2 first sentence, the entity mention Mac Miller is linked to a node in the KB with

the same name. The types obtained for this entity mention from KB includes person, artist,

and composer. The linking between entity mentions in text corpus to a KB can be via a

named entity linker tool [19] or links can be manually created as in the case of Wikipedia

corpus. The advantage of the distant supervision method is that it does not require human

involvement3, which could otherwise be very costly. On the other hand, there are some

limitations to this method as listed below:

1. Noise in datasets: Since distant supervision is a fully automated method, it is not

possible to avoid noise in the annotations. The noise can be categorized into two

categories; entity type noise and entity boundary noise:

(a) Entity type noise: The distant supervision process assigns context agnostic

types to entity mentions. For example, for every mention of entity Barack Obama

will receive the same set of labels irrespective of the context surrounding an

entity mention as illustrated in Figure 1.2. For example, in the third sentence

of the figure, the entity mention Barack Obama receives an out-of-context type
3Although humans create the links in Wikipedia text, they are created for better readability, thus, not

specific for the Fine-ED or Fine-ET tasks.
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politician. In datasets such as figer [17], this noise is around 28%, whereas, in

the datasets such as d-bbn and d-ontonotes [20], this noise is around 26% and

22%, respectively [9]4. Further, the labels assigned by distant supervision can be

false positives (an extra label is assigned as illustrated) or false negatives (failed

to assign a context specific label).

(b) Entity boundary noise: The distant supervision process can fail to mark

the entity boundary correctly. For example, in Figure 1.2, the entity mentions

Fornell and Dreams from My Father: A Story of Race and Inheritance has not

been marked. The entity mention University of Minnesota has been incorrectly

marked. A non-entity mention scoot has been marked. In the figer dataset,

this noise is over 50% [23].

2. Entity type coverage: The entity types present in distantly supervised datasets are

restricted to the types present in KBs. Although KBs have entity types from several

domains, still some types might not be present in any KB. In such scenarios, where

some required types are not present in any KB, creating a training dataset becomes

a challenging task in the distant supervision paradigm.

3. Text source: The text source in the distant supervised methods is predominantly

Wikipedia text. The primary reason is that several thousands of users have manually

linked different mentions of concepts in Wikipedia text to Wikipedia articles. These

articles act as a key in a KB and thus provide good quality annotations. For other

text sources such as from news or medical forum, it is difficult to obtain a linked

text corpus where links are manually created. For these text sources, named entity

linker tools [19] can be used. However, the resultant annotation quality is sub-par

when compared with Wikipedia text. The named entity linker tool can make frequent

linking errors, as illustrated with red arrows in Figure 1.2. The linking errors introduce

entity type and entity boundary noises in the resultant datasets.

1.3.2 Learning Models

The training datasets for the Fine-ED and Fine-ET tasks are not manually annotated and

have some limitations, as discussed in the previous Section 1.3.1. Thus, the state-of-the-
4In the corresponding paper and related works, these datasets are referred to as ontonotes and bbn

datasets. However, they are not the original ontonotes [21] and bbn [22] datasets, but a variant modified
using the distant supervision paradigm. In the thesis, we use both the original and the modified variants
in different chapters. Thus, two avoid confusion, the modified variants are referred to as d-ontonotes and
d-bbn datasets.
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art models also try to address dataset limitations along with the task characteristics via

modelling. We categorize these approaches based on the way they address the dataset

limitations.

1. Noise-aware learning: In this paradigm, it is assumed that in the training dataset,

there is some annotation noise. Several methods have been proposed in this paradigm

for different tasks such a binary classification [24], multi-label classification [25], and

sequence labeling [26]. In the context of the Fine-ED and Fine-ET tasks, the Fine-ET

task has received much attention from the noise-aware learning research community.

The primary reasons are:

(a) The label noise present in the existing distantly supervised datasets such as

figer, d-bbn, and d-ontonotes is approx 22–28% [9]. For several noise-aware

learning models [24–26], this level of noise is moderate. If the noise percentage

is high (greater than 50%), it is difficult to learn useful information by learning

models.

(b) The entity boundary noise present in existing datasets such as figer is high, es-

pecially approx 50–60% of the entity mentions are not marked in these datasets.

This setting makes it extremely difficult for learning models to learn useful in-

formation. Moreover, prior works [17] assumed that all the fine-grained types

are just a sub-type of well studied coarse-grained types such as person, location,

organization and miscellaneous, which is not the case, as found in our work [23].

Thus due to the above reasons, there are several works (including ours) related to

noise-aware learning models for the Fine-ET task.

2. Efficient learning in data scarcity: The entity type coverage and text source

limitations of existing datasets can be considered as, in general, the data scarcity

issue. Here, no or minimal (a few hundred to thousand sentences) training dataset

is available for a particular text source or entities of some particular types. In this

scenario, transfer learning [27], few-shot [28], and zero-shot [29] learning approaches

can be used, and our work explores some of these directions for the Fine-ET task.

1.4 Our Contributions

We make three contributions to the Fine-ED and Fine-ET tasks. Our first two contribu-

tions are focused on proposing better leaning models for the Fine-ET task, and the third
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Figure 1.3: An overview of the thesis contributions.

contribution is focused on creating better datasets for the Fine-ED and Fine-ET tasks. The

ordering of these contributions conveys the trend followed in the community for the past

three years. An overview of the contributions is illustrated in Figure 1.3.

Noise-aware learning model and transfer learning for the Fine-ET task: While some

of the earliest work for the Fine-ET task used hand-crafted features or assumed that

the training datasets are noise-free. In Abhishek et al. [30], we propose a deep neural

network model that learns representations for a given entity mention and its context,

while incorporating noisy label information. The proposed model uses two different

loss functions, one for the mentions with label noise and other for mentions, which

are noise-free. Experimental results on the figer and the d-bbn datasets demon-

strate the effectiveness of the proposed model, with an average relative improvement

of 2.69% in the loose-micro-F1 score.

There is a significant variation in the number of annotations available per label on

average for the d-bbn (1.8k) and the figer (21k) dataset. Thus, in order to learn

a better representation of entity mentions for datasets with fewer annotations, in

8
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addition to the noise-aware model, we also use model level and feature level transfer

learning. We show that feature level transfer learning can be used to improve the

performance of models such as proposed in Ren et al. [9] by up to 4.5% in loose-

micro-F1 score on datasets with fewer annotations. Similarly, model level transfer

learning can be used to improve the performance of the proposed model using different

datasets by up to 3.8% in loose-micro-F1 score on datasets with fewer annotations.

These transfer learning settings will be useful in cases where a new small dataset is

created to either address the entity type coverage or text source limitation of the

existing datasets.

Collective Learning Framework for the Fine-ET task: Prior work, as well as our

earlier contribution related to transfer learning, were only limited to a setting where

the target text source has a fine-grained annotated dataset available. However, there

exist scenarios where the need is to build Fine-ET systems for a particular text source

other thanWikipedia or with some types that might not be present in any KB, or both.

Thus the creation of datasets in the distant supervision paradigm will be challenging.

To address these issues, in Abhishek et al. [31], we propose a collective learning frame-

work. The framework can aggregate type information, either fine-grained or coarse-

grained, from different datasets. These datasets can be either distantly supervised or

manually annotated. The aggregation is done to satisfy the desired requirement, i.e.,

the types and text source. Thus, for types that are not present in distantly super-

vised datasets, the framework can use other datasets where those types are present.

For text sources where no fine-grained types are available, the framework can utilize

coarse-grained types available for that text source and can predict fine-grained types

learned from datasets with different text sources. The type sets between different

datasets can have a partial overlap, and they need not be disjoint.

The core idea behind the framework is to organize the labels available in different

datasets into a unified hierarchy. The unified hierarchy will then be used to train mul-

tiple datasets collectively in a single model with a single partial-loss function. Thus,

enabling fine-grained predictions on all datasets. We demonstrate the efficacy of the

proposed framework in an experimental setting consisting of seven diverse datasets,

each with a different text source and different type set. The proposed approach out-

performs competitive baselines with a significant margin.

New datasets for the Fine-ED and Fine-ET task: Prior work assumed that all fine-

9
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grained types are subtypes of well studied coarse-grained types such as person, loca-

tion, organization, and miscellaneous. Thus earlier works used a model trained on

the CoNLL dataset [32] (which has these types manually annotated) for the Fine-ED

task. In Abhishek et al. [23], we observe that this is not a valid assumption, and

a model trained on these coarse-grained datasets misses lots of diverse entity men-

tions. Moreover, existing distantly supervised datasets such as figer, have very large

entity boundary noise, which makes them not suitable for the Fine-ED task. To ad-

dress these issues, we propose a Heuristics Allied with Distant Supervision (HAnDS)

framework. The HAnDS framework uses a three-stage pipelined approach to con-

struct the training dataset automatically. At each stage, different heuristics are used

to reduce the errors introduced by naively using the distant supervision paradigm.

For any given fine-grained types derived from a KB, the framework can be used to

automatically construct quality datasets suitable for both the Fine-ED and Fine-ET

tasks. The entity boundary noise is reduced by approx 50% compared with the figer

dataset. Additionally, we provide a thousand sentence corpus of manually annotated

entity mentions for the Fine-ED and Fine-ET tasks. This corpus is four times larger

corpus than the figer evaluation corpus.

1.5 Thesis Outline

Following the just discussed two central themes of datasets and learning models for the

Fine-ED and Fine-ET tasks, the thesis is organized as follows:

In Chapter 2, we first describe essential terminologies and concepts associated with

the Fine-ED and Fine-ET tasks. Then we provide an overview of conventional modeling

approaches and evaluation metrics for these tasks.

In the next three chapters, we present the three contributions of the thesis. In Chap-

ter 3, we present a noise-aware deep learning model and transfer learning techniques for

the Fine-ET task. In Chapter 4, we present a collective learning framework to address the

text source and type limitations of exiting work. In Chapter 5, we present an approach to

automatically construct quality datasets for both the Fine-ED and Fine-ET tasks.

Finally in Chapter 6, we conclude and discuss future research work.

;;=8=<<
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Background

This chapter provides a background necessary to understand the thesis better. We

begin by describing essential terminologies and concepts, followed by describing conventional

modeling approaches and evaluation metrics related to the ED and ET tasks.

2.1 Preliminaries

Entity: An entity is an object that exists in an identified universe. An entity can have

physical existence or can be abstract. For example, persons, locations, products,

scientific concepts are considered as an entity. The scope of entities is usually defined

by the guidelines of the particular NLP task in hand. For example, for the task

of entity recognition using the CoNLL dataset [32], diseases are not considered as

entities. Whereas, for the same task using the NCBI disease corpus [33], diseases are

considered as entities, whereas persons are not considered as entities.

Entity Mention: The span of words or tokens in text, which refers to an entity, is denoted

as an entity mention. Let us consider the following sentences: “Paris is a 2008 French

film by Cédric Klapisch concerning a diverse group of people living in Paris. The

film is set principally in Paris, with one thread of the story set in Africa.” In these

sentences, the entity mentions are underlined. There are three occurrences of entity

mention Paris. Two of them refer to the entity Paris (a city), and one of them refers

to the entity Paris (a movie). However, all of them are different entity mentions and

will be assigned different entity mention ids.

11
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The word “Named” in the phrase “Named Entity” restricts the scope of enti-

ties to those which have one or more referent rigid designator as defined by S.

Kripke [34]. For example, the computer company founded by Steve Jobs in 1976

is referred to as Apple Inc. On the other hand, the word June could refer to a

month of an undefined year, which could be June 2019 or June 2020. Thus it

is not considered as a rigid designator. The scope of entities considered in this

dissertation sometimes does not have a rigid designator; thus, the named word is

omitted.

Remarks: Use of word “Named” before Entity

Entity Types: Entity type or label is a semantic category such as person, location or city,

assigned to an entity mention or an entity. Entity mentions or entities which have same

types tend to have similar characteristics. Two entity types can be mutually exclusive

or can have an intersection, which usually is in the form of a hypernym/hyponym

hierarchical structure. For example, type city is a hyponym of type location. In

Figure 2.1, we illustrate a subset of type hierarchy used in DBpedia, which has around

750 entity types arranged in a hierarchical structure. Other KBs such as WikiData

and Freebase have a different number of entity types and have different hierarchical

structures.

Text source: A text source is a text corpus from which sentences are sampled to generate

a training dataset for an NLP task. For example, the text source for the CoNLL

dataset [32] is Reuters Corpora (RCV1) [35], which contains articles from English

language news stories published by Reuters Ltd. The selection of text source depends

on the end application for an NLP task. For example, if the application is to recognize

entities mentioned in news articles by a particular publisher, then the task is ER, and

an ideal text source will be sentences sampled from similar news articles. The same

source can be used for multiple tasks, and the same task can have several datasets

with different sources. For example, the Reuters Corpora (RCV1) is used as a text

source for preparing the CoNLL dataset for the ER task, and the same source is used

in preparing the AIDA-CoNLL [36] dataset for entity linking task. Also, there exists

the W-NUT [37] dataset for the ER task, with text source as tweets. For these tasks,

since the text source defines the input characteristics such as what features will be

used and what will be the data distribution of the input, in the machine learning

12
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Figure 2.1: The figure illustrates a subset of entity type hierarchy maintained by the DB-
pedia project. The full hierarchy is available at http://mappings.dbpedia.org/server/
ontology/classes/.

nomenclature, text source is denoted as a domain.

A text genre can refer to a widely recognized class of text which have some

common purpose or characteristics [38]. For example, news stories, fiction, and

scientific abstracts are considered as different text genres. Within a genre, there

could be several differences. For example, both the bbn dataset [22] and the

CoNLL dataset have the same news genre, however, they have different sources.

The text source for the bbn dataset is the Wall Street Journal text, and the

text source for the CoNLL dataset is the Reuters Corpora. Due to the text

source differences, their data characteristics, such as vocabulary and content, are

different.

Remarks: Text genre

Knowledge Base: A Knowledge Base (KB) is a store of information that represents facts

about the world. Unlike traditional databases, which are represented as tables, a
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popular way to store KBs on a computer is in a graph structure format, called Knowl-

edge Graph (KG). The nodes of the graph represent entities, and the labeled edges

represent relations between entities [39]. A KG can be represented by a collection

of (subject, predicate, object) (SPO) triples, where subject and object denote entities

and predicate denotes a binary relation type. Multiple binary relations can represent

Higher-arity relations in a KG. Some KGs, such as YAGO31, also store time and

location information along with SPO triples. There are several KBs available today,

and the prominent among them are:

1. Freebase: Freebase is a large collaborative KB, initially developed by MetaWeb

in 2007, which was acquired by Google in 2010. Its data is harvested from many

sources, including individuals and user-contributed Wikipedia edits. Freebase

contains around 637 million non-redundant facts, in which there are around 40

million entity instances [2]. It is not updated since 2015 and is available for

download at http://freebase.com.

2. DBpedia: The DBpedia project was started in 2007 jointly by the Free Univer-

sity of Berlin and the University of Leipzig to automatically extract structured

information contained in Wikipedia, such as infoboxes, category information,

geo-coordinates, and external links. It contains around 600 million triples in the

English language and around 2.5 billion triples in other languages combined.

3. WikiData: WikiData2 is a collaborative edited KB maintained by Wikimedia

Foundation. Along with triples, the project also aims to capture sources of facts

and represent them with tuples. It contains around 19 millions tuples.

4. YAGO: YAGO (Yet Another Great Ontology) is a KB developed at the Max

Planck Institute for Computer Science, Germany. The current version of the

YAGO project is YAGO3. It contains around 120 million facts related to 10 mil-

lion entities. Based on various heuristics and algorithms, YAGO3 has been auto-

matically created using Wikipedia, WordNet3, and GeoNames4 as data sources.

Its accuracy is manually estimated to be around 95% and the triples are anno-

tated with its confidence value.

1http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/
yago-naga/yago/

2http://wikidata.org/
3https://wordnet.princeton.edu/
4http://www.geonames.org/
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A detailed comparison of these KBs is available in a survey paper by Fäber et al. [40].

All of these KBs have some different characteristics and are actively used in research.

Entity Linking Entity Linking (EL) is the task of identifying and linking text phrases to a

concept representing those phrases in a KB. We illustrate the EL task with examples

in Figure 2.2. In the Figure, a text excerpt is mentioned in the center surrounded by

twelve nodes of a KB. The text phrases which represent some of the concepts in the

KB are linked, as shown by arrows. For example, the phrase Miller is linked to a node

Mac Miller. Note that Miller is also a representing phrase for two other nodes in this

KB, namely a Miller (a name of a crater) and Miller (a name of a moth). However,

the context surrounding the text phrase conveys that Mac Miller will be the most

appropriate node.

Figure 2.2: A toy illustration of the entity linking task, where text phrases are identified
and linked to their representative nodes in a KB.

In contrast with the toy illustration of the EL task in Figure 2.2, EL using real KBs is

a challenging task. There are millions of nodes in KBs such as DBpedia and Freebase.

A text phrase could be a representative mention of thousands of candidate nodes, and

a node could have several representative phrases. Recent state-of-the-art EL models

use deep-neural network architectures [41] and achieve a performance of around 86%

in the Micro-F1 score on standard datasets such as AIDA-CoNLL [36]. There also

exist several off-the-self entity linker tools such as DBpedia spotlight [19], which can

link text phrases to concepts in the DBpedia KB.
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When compared with the Fine-ED and Fine-ET tasks, the Fine-ED task can be con-

sidered as a prerequisite to EL models that only does Entity Disambiguation (ED) [42],

i.e., linking already marked representative phrases to a KB. On the other hand, the

context-dependent fine-grained types of entity mention provided by Fine-ET models

improve the performance of entity linker systems, as reported in Gupta et al. [43].

2.2 Learning Models

The nature and size of predefined categories majorly govern the choice of learning models.

When there are a handful number of non-overlapping predefined categories, the ED and ET

tasks are usually modeled jointly as a Entity Recognition (ER) task, and sequence labeling

approaches are dominant. On the other hand, if there are a large number of overlapping

predefined categories, as in the case of Fine-ED and Fine-ET tasks, then these tasks are

modeled independently.

2.2.1 Sequence Labelling

In sequence labeling, the input to a learning model is a sequence of observations, and the

output is a categorical label assigned to each observed value of the sequence. In Figure 2.3,

we illustrate how a sequence labeling approach can be used for the task for ER. The input

to the sequence labeler is a sentence, i.e., a sequence of words, and the output is a sequence

of entity tags. As the entities can span several words, the entity tags are encoded using

an encoding scheme such as IOB encoding [44], to capture multi-word entities. In simple

words, in IOB encoding, the label of any token that begins a span of entity is prefixed with

tag B, tokens that occur inside a span of entity are prefixed with tag I and any tokens that

are outside the span of entities are labeled as O.

Figure 2.3: The Entity Recognition task modeled by a sequence labeling approach.
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Given such encodings, we have reduced the span recognition task as a per-word labeling

task. However, predicting labels for words independent of the labels assigned to neighboring

words may not result in a good sequence of tags. For example, the predicted output sequence

might contain the I tag followed by theO tag. Thus typically, a structured prediction model

such as Conditional Random Field (CRF) [45] is used to find the optimal tag sequence

instead of the optimum local tag for each word. The state-of-the-art sequence labeling

models use a combination of deep recurrent neural networks with CRF [46].

2.2.2 Independent modeling approach for ED and ET tasks

When there are overlapping predefined categories, typically in the case of Fine-ED and

Fine-ET tasks, the ED and ET tasks are modeled independently. The primary reason

being that the state-space of hidden variables in the structured prediction models such as

CRF grows exponentially due to the possibility of multiple labels per entity mention. In

this case, the ED task is modeled as a sequence labeling task with one label, i.e., entity

or not an entity, and the ET task is modeled as a classification task. An illustration of an

independent modeling approach for the ED and ET tasks is provided in Figure 2.4.

2.3 Evaluation Metrics

In this section, we will first define evaluation metrics in a general setting where an entity

mentions can have multiple labels. Then we reduce this general definition to individual

cases such as evaluation metric for the ED task, for the ET task with multiple labels, etc.

The evaluation metrics defined in this section are from Ling and Weld [17].

For the evaluation, we have to compare sentences annotated with true/gold annotations

with the same sentences annotated by an output of a model. Let set T denotes all true

entity mentions, and set P denotes all predicted entity mentions. For an entity mention m,

we denote the true set of tags as tm and predicted set of tags as t̂m. Since we are defining

the evaluation metric for a multi-label setting, both tm and t̂m set can have more than one

value. Also, if m /∈ T then, tm = ∅, i.e., tm is an empty set. Similarly, if m /∈ P, then,

t̂m = ∅, i.e., t̂m is an empty set. Using these definitions, we can compute precision and

recall in the following three ways:

Strict: In this metric, the prediction is considered correct if and only if tm = t̂m.

precision =
∑
m∈P∩T I(tm = t̂m)

|P|
(2.1)
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Figure 2.4: In the case of overlapping labels, the ED and ET tasks are modeled inde-
pendently, as illustrated. For the ED task, a sequence labeling approach is used where the
annotated sentence’s multi-label annotations are converted into a binary (entity, non-entity)
annotations. For the ET task, a classifier is used to assign labels to the entity mentions
present in the sentence independently.

recall =
∑
m∈P∩T I(tm = t̂m)

|T |
(2.2)

In the above equations, I is an indicator random variable, whose value is 1 if tm = t̂m

else 0.

Loose Macro: In this metric, precision and recall scores are computed over each entity

mention, based on the intersection of the true and predicted tag set. For each mention,

m, a score between 0 to 1 is assigned, instead of exact 0 or 1, as assigned by the strict

metric.

precision = 1
|P|

∑
m∈P

|t̂m ∩ tm|
|t̂m|

(2.3)

recall = 1
|T |

∑
m∈T

|t̂m ∩ tm|
|tm|

(2.4)
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Loose Micro: This metric also allows a non-zero score for a partial tag set match. How-

ever, the scores are aggregated globally instead of local aggregation in the case of the

loose macro metric.

precision =
∑
m∈P |tm ∩ t̂m|∑

m∈P |t̂m|
(2.5)

recall =
∑
m∈T |tm ∩ t̂m|∑

m∈T |tm|
(2.6)

From these definitions of precision and recall, the F1 score, which is a harmonic mean of

precision and recall, is computed to compare learning models using a single number.

Figure 2.5: Different examples used to explain various evaluation metrics, as mentioned in
Section 2.3.1, 2.3.2, and 2.3.1.

2.3.1 Evaluation Metric for ED

For the ED task, since a sequence of words can be either an entity mention or not an

entity mention, i.e., a binary label, all of the above metrics reduce to the same values. For

example, in Figure 2.5 (the first part, on the top), there are four true entity mentions,

and four predicted entity mentions. The precision value from any of the above metrics
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will be 0.5, and the recall value from any of the above metrics will be 0.5. Here, the

precision and recall values are equivalent to the most common definition of precision and

recall based on the true positive, false positive, and false negative. A standard way to

compute precision and recall for ED task is to use the CoNLL evaluation script available at

https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt.

2.3.2 Evaluation Metric for ET

For the ET task, the set P and T are identical, as we are only interested in assigning

types/labels to entity mentions. Now there are two possibilities; first, an entity mention

can have a single label only; second, an entity mention can have multiple labels. The first

setting is the multi-class classification problem, and the second setting is the multi-label

classification problem (the Fine-ET task). For the multi-class problems, all of the above

metrics reduces to accuracy measure. Whereas in the multi-label setting, the strict metric

(also called subset accuracy) is one of the most strict metric, as if and only if all the true

and predicted labels are equal, then this metric has a positive increment. The other two

metrics, loose macro, and loose micro, allows partial match, and they differ in how they

aggregate the scores of entity mentions. The loose macro computes partial precision and

recall values per entity mention and then take an average. In contrast, the loose micro

computes partial scores globally and then compute precision and recall.

We explain these metrics using the examples given in Figure 2.5 (the second part, in

the middle). In the example, there are four entity mentions marked as A, B, C, and D. The

true and predicted types of these entity mentions are also mentioned. The strict precision

and recall values for this example will be as follows:

precision = 0 + 1 + 0 + 0
4 = 0.25

recall = 0 + 1 + 0 + 0
4 = 0.25

The precision and recall values will always be the same for the strict (subset accuracy)

metric in the case of the ET task. Thus, in the next chapters, while evaluation ET models,

we will refer to this metric as strict or subset accuracy and will not compute the F1 value.

The loose macro precision and recall values for the example will be as follows:

precision = 1
4(1

2 + 1
1 + 0

1 + 1
1) = 0.625
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recall = 1
4(1

1 + 1
1 + 0

1 + 1
2) = 0.625

The loose micro precision and recall values for the example will be as follows:

precision = 1 + 1 + 0 + 1
5 = 0.6

recall = 1 + 1 + 0 + 1
5 = 0.6

2.3.3 Evaluation Metric for end-to-end Entity Recognition

The strict, loose macro and loose micro metrics can also be used in an end-to-end evaluation

of entity recognition, i.e., both ED and ET tasks. Here, the ET task can be either a multi-

class classification problem or a multi-label classification problem. In this case, where the

ET task is a multi-class classification problem, then all of the above metrics will reduce to

the same precision and recall metrics, as used in CoNLL NER evaluations [32]. In the other

case, were ET task is a multi-label classification task, we explain these metrics using the

example given in Figure 2.5 (the third part, on the bottom).

In the example, there are four true entity mentions marked as A, B, C, and D, and

four predicted entity mentions marked as E, F, G, and H. Among these entity mentions,

we can observe that the mentions B and F are identical, i.e., the prediction model detected

the same boundaries as well as assigned the same type as that in true annotations. On the

other hand, mentions D and H have the same boundaries but different labels. The other

predicted mentions do not match with true annotations.

The strict precision and recall values for the example will be as follows:

precision = 1 + 0
4 = 0.25

recall = 1 + 0
4 = 0.25

The loose macro precision and recall values for the example will be as follows:

precision = 1
4(0

1 + 1
1 + 0

1 + 1
1) = 0.5

recall = 1
4(0

1 + 1
1 + 0

1 + 1
2) = 0.375
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The loose micro precision and recall values for the example will be as follows:

precision = 0 + 1 + 0 + 1
4 = 0.5

recall = 0 + 1 + 0 + 1
5 = 0.4

Chapter Summary

In this chapter, we first described some of the key terminologies and concepts related to

the ED and ET tasks such as entity, entity mentions, knowledge bases, and text sources.

Then we briefly described conventional modeling approaches and evaluation metrics for

these tasks.

;;=8=<<
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3
Noise-aware Model and Transfer Learning

for Fine-ET

Chapter Highlights

• The datasets available for the Fine-ET task have label noise.

• We propose a noise-aware deep neural network model for the Fine-ET task.

• The proposed model achieves state-of-the-art performance on two datasets, namely

d-bbn and figer.

• We investigate transfer learning strategies to further improve the performance on the

d-bbn dataset.

• We also analyzed under what conditions the proposed model works better and why

learning models on the d-ontonotes datasets have inferior performance.

• This chapter is based on the publication “Fine-Grained Entity Type Classification by

Jointly Learning Representations and Label Embedding” presented at EACL 2017.

3.1 Abstract

The distant supervision paradigm is extensively used to generate training data for the

Fine-ET task. In this paradigm, the same set of labels is assigned to every mention of
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3.2. INTRODUCTION

an entity without considering its local context. These context agnostics labels act as a

noise in the training datasets. In this chapter, we first propose a noise-aware deep learning

model for the Fine-ET task. The model treats training data as noisy and uses a non-

parametric variant of the hinge loss function to learn effectively in the presence of noise.

Experiments show that the proposed model outperforms previous state-of-the-art methods

on two publicly available datasets, namely figer and d-bbn, with an average relative

improvement of 2.69% in the loose-micro-F1 score. We also investigate different transfer

learning techniques such as model parameters transfer and learned feature transfer. These

approaches of transferring knowledge further improve the performance of learning models

trained on datasets with fewer training examples. The code to replicate the results reported

in this chapter is available at https://github.com/abhipec/fnet.

3.2 Introduction

In the past decade, there has been a considerable amount of work on the ER task [32,

47–49], which classifies entity mentions into a small set of mutually exclusive types, such

as person, location, organization, and miscellaneous. However, these types are not enough

for some NLP applications such as Relation Extraction (RE) [16], KBC [2], and Question

Answering (QA) [7]. In RE and KBC tasks, knowing fine-grained types for entities can

significantly increase the performance of the relation classification systems [6, 17, 50] since

this helps in filtering out candidate relation types that do not follow the type constraint.

In QA systems, the fine-grained entity types provide additional information while matching

questions to its potential answers and significantly improve performance [51]. For example,

Li and Roth [52] rank questions based on their expected answer types (will the answer be

food, vehicle, or disease).

In the Fine-ET task, there are over a hundred labels or types, typically arranged in

a hierarchical structure. These types are context-dependent, i.e., two different mentions of

same entity can have different labels. We illustrate the context-dependent type character-

istics through an example in Figure 3.1. In the figure, all the three sentences S1, S2, and

S3, mention the same entity, Barack Obama. However, looking at the context, we can infer

that S1 mention Barack Obama as a person, author, S2 mention Barack Obama only as a

person, and S3 mention Barack Obama as a person, politician.

Available training data for the Fine-ET task has noisy labels as they were automatically

created via the distant supervision [15, 16] process. The distant supervision process links
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Figure 3.1: Context independent types assigned via the distant supervision process intro-
duces noise in datasets. For example, the types assigned to an entity mention (bold typeface)
in sentences (S1-S3) via the distant supervision process are mentioned in the T1-T3 field.
Given the context, only a subset of these types is relevant, as denoted by bold typeface in
T1-T3.

entity mentions in a corpus to a KB such as Freebase [1], DBpedia [3], or YAGO [4].

Then, the labels assigned to an entity in a KB are assigned to the linked entity mention.

For example, let a KB have the labels person, politician, lawyer, and author for an entity

Barack Obama. The distant supervision process will assign these four labels to every entity

mention referring to the entity Barack Obama. Thus, the training data generated via the

distant supervision paradigm will fail to assign context-dependent labels. This issue of noisy

labels is also illustrated in Figure 3.1.

Existing Fine-ET systems have one or both of the following drawbacks: (1) they assume

that the training dataset is noise-free [17, 18, 53, 54]; (2) they use hand-crafted features [9,

17, 18, 53]. In several real-world datasets such as figer and d-ontonotes, approximately

twenty-five percent of training data has noisy labels [20]. The first drawback of assuming

noise-free labels in the training data propagates noise to the Fine-ET models. Several

existing state-of-the-art models use hand-crafted features for model training, which are

extracted using various NLP tools. Since errors inevitably exist in such tools, the second

drawback propagates errors of these tools to the Fine-ET models.

In this chapter, first, we propose a deep neural network based model to overcome

the two drawbacks of existing Fine-ET systems. The model separates training data into

clean and noisy partitions using the same method as proposed by Ren et al. [9]. For

these partitions, we propose to use a simple yet effective non-parametric variant of the

hinge loss function. To avoid the use of hand-crafted features, the proposed model learns

representations for given entity mention and its context.

Feature learning based deep-learning models require large training datasets. However,
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obtaining a large training dataset can be a challenging task for some specific text sources.

In this chapter, we also investigate effectiveness of using transfer learning [55] techniques

for the Fine-ET task both at feature and model level, for datasets with fewer annotations.

We show that feature level transfer learning can be used to improve the performance of

other Fine-ET systems such as proposed in [9] by up to 4.5% in the loose-micro-F1 score.

Similarly, model level transfer learning can be used to improve the performance of the

proposed model using different datasets by up to 3.8% in the loose-micro-F1 score.

Our contributions can be summarized as follows:

1. We propose a simple deep neural network model that learns representations for entity

mention and its context and incorporates noisy label information using a variant of

a non-parametric hinge loss function. Experimental results on two publicly available

datasets demonstrate the effectiveness of the proposed model, with an average relative

improvement of 2.69% in the loose-micro-F1 score.

2. We investigate the use of feature level and model level transfer-learning strategies in

the domain of the Fine-ET task. The proposed transfer learning strategies further

improve the state-of-the-art on the d-bbn dataset by 3.8% in the loose-micro-F1 score.

3.3 Related Work

The earliest works on the ER and ET tasks were focused primarily on few entity types such

as person, location, and organization [56]. In the last two decades, there have been several

attempts made to expand the type set to include more categories, both at coarse and fine-

level. Some of the earliest such attempts were limited to type expansion in few domains as

it requires human involvement by either providing heuristics or by manual annotations. For

example, in Fleischman and Hovy [57] and Guiliano and Gliozzo [58], the authors propose

a bootstrapping and heuristics approaches to classify entity mentions of type person into

eight to twenty-one fine-categories. Similarly, in Fleischman [59] and Lee and Lee [60], the

authors proposed heuristics and bootstrapping approaches to categorize entity mentions of

type location into eight to ten fine-categories.

Later, heuristics and bootstrapping based approaches were expanded to cover multiple

domains simultaneously. For example, in Sekine and Nobata [61], the authors proposed

a heuristics approach to recognize entity mentions in approx 200 categories. Similarly, in

Nadeau [62], the author proposed a bootstrapping approach to recognize entity mentions
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belonging to hundred types. A survey of several earlier ER work is available in Nadeau and

Sekine [12].

Heuristics and bootstrapping approaches are useful to make a Fine-ET system with

little manual supervision quickly. However, accuracies of such systems are limited by the

amount of effort made by humans in covering more domains and more data. Recently,

with the widespread use of Wikipedia and KBs such as Freebase and YAGO, the distant

supervision based methods gained popularity. In the distant supervision paradigm, one can

exploit the linkage between Wikipedia and KBs to construct a dataset for the Fine-ET task

quickly. The generated dataset will have some label noise as the annotations obtained are

context-independent.

In the distant supervision paradigm, Ling and Weld [17] proposed the first system

for Fine-ET task with 112 overlapping labels. They used a linear classifier perceptron for

multi-label classification. Yosef et al. [18] used multiple binary SVM classifiers in a hierarchy

to classify an entity mention to a set of 505 types. While the initial work assumed that

all labels present in a training dataset for an entity mention are correct, Gillick et al. [63]

introduced context dependent Fine-ET. They proposed a set of heuristics for pruning labels

that might not be relevant given the entity mention’s local context. Yogatama et al. [53]

proposed an embedding based model where user-defined features and labels were embedded

into a low dimensional feature space to facilitate information sharing among labels.

Shimaoka et al. [54] proposed an attentive neural network model that used LSTMs to

encode entity mention’s context and used an attention mechanism to allow the model to

focus on relevant expressions in the entity mention’s context. However, the model assumed

that all labels obtained via distant supervision are correct. In contrast, our model does not

assume that all labels are correct. To learn entity representation, we propose a scheme that

is simpler yet more effective.

Most recently, Ren et al. [9] have proposed AFET, a Fine-ET system. It uses separate

loss functions for clean and noisy entity mentions. The proposed loss function in AFET is

parametric with a model parameter α used to model the label-label correlation information

of the training dataset. During inference, AFET uses a threshold to separate positive labels

from negative labels (similarity threshold parameter d). We observe that the AFET system

is sensitive to change in α and d, as illustrated in Figure 3.2. In contrast, our model uses a

simple yet effective variant of the hinge loss function. The function is non-parametric, and

there is no data-dependent threshold used during the model inference.

Transfer learning is well applied to many NLP applications, such as cross-domain doc-
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(a) The parameter α is used within the loss function
to model label-label correlation. Higher the α, the
lower is the margin between non-correlation labels.

(b) The threshold parameter d is used during infer-
ence, and the labels above this threshold are pre-
dicted as positive.

Figure 3.2: The effect of change of parameters α and d on AFET’s performance evaluated
on the d-bbn, d-ontonotes and figer datasets.

ument classification [64], multi-lingual word clustering [65], and sentiment classification [66].

Initialization of word vectors with pre-trained word vectors in neural network models can

be considered as one of the best examples of transfer learning in NLP. A brief overview of

the use of transfer learning in several NLP applications is available in a survey paper by

Wang et al. [67].

3.4 The Proposed Model

In this section, we describe the proposed model, along with the proposed loss function.

The proposed model assigns context-dependent types to entity mentions present in natural

language sentences. A general overview of our proposed approach is illustrated in Figure 3.3.

3.4.1 Problem description

Input: The input to the model is a training and a testing corpus consisting of a set of

sentences in which entity mentions have been identified. In the training corpus, every

entity mention will have corresponding labels according to a given hierarchy. Formally, a

training corpus Dtrain consists of a set of sentences, S = {si}Ni=1. Each sentence si will

have one or more entity mentions denoted by mi
j,k, where j and k denote indices of start

and end tokens, respectively. Set M consists of all the entity mentions mi
j,k. For every

entity mention mi
j,k, there will be a corresponding label vector lij,k ∈ {0, 1}K , which is a
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Figure 3.3: The overview of the proposed Fine-ET system.

binary vector, where lij,kt
= 1 if tth type is true otherwise it will be zero. K denotes the

total number of labels in a given hierarchy Ψ. The testing corpus Dtest will only contain

sentences and entity mentions.

Output: For entity mentions in the testing corpus Dtest, predict their corresponding labels.

3.4.2 Training set partition

In the training dataset, the entity mentions have context-independent labels, which is con-

sidered as noise in the Fine-ET task. We use a heuristic as proposed in Ren et al. [9] to

partition the mention set M of training corpus Dtrain into two partitions. The first par-

tition set Mc, consisting only of clean entity mentions and the second partition set Mn,

consisting only of noisy entity mentions.

An entity mention mi
j,k is said to be clean if its labels lij,k belong to only a single path

(not necessary to be leaf) in the hierarchy Ψ, that is its labels are not ambiguous; otherwise,

it is noisy. For example, as per hierarchy given in figure 3.1, an entity mention with labels

person, artist and politician will be considered as noisy, whereas entity mention with labels

person, artist and actor will be considered as clean.
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Figure 3.4: The feature learning architecture of the proposed Fine-ET model.

3.4.3 Feature representations

The model automatically learns input feature representations using a proposed deep-neural

network architecture. The model learns two types of feature representations. The first is

the representation of an entity mention learned via modeling the character sequences of an

entity mention. The second is the representation of the context surrounding a mention via

modeling the word sequences of a sentence.

Mention representation: This representation captures information about entity men-

tion’s morphology and orthography. We decompose an entity mention into a character

sequence and use a vanilla LSTM encoder [68] to encode character sequences to a fixed

dimensional vector. Formally, for entity mention mi
j,k, we decompose it into a sequence of

character tokens cij,k1
, cij,k2

, . . . ,cij,k|mi
j,k
|
, where |mi

j,k| denotes the total number of charac-

ters present in the entity mention. For entity mention containing multiple tokens, we join

these tokens with a space in between tokens. Every character will have a corresponding

vector representation in a lookup table for characters. The character sequence is then fed

one by one to an LSTM encoder, and the final output is used as a feature representation

for entity mention mi
j,k. We denote this process by a function Fm :M→ RDm , where Dm

is the number of dimensions for mention representation. The whole process is illustrated in

Figure 3.4 (mention representation).

Context representation: This representation captures information about the context

surrounding the entity mention. The context representation is further divided into two

parts, the left, and the right context representation. The left context consists of a sequence
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of tokens within a sentence from the start of a sentence till the last token of the entity

mention. The right context consists of a sequence of tokens from the start of the entity

mention till the end of a sentence. We use bi-directional LSTM encoders [69] to encode

token level sequences of both contexts to a fixed dimensional vector. Formally, for an

entity mention mi
j,k present in a sentence si, decompose si into a sequence of tokens si1,

si2, . . . , sik for the left context, and sij , sij+1, . . . , si|si| for the right context, where |si|

denotes the number of tokens in the sentence. Every token will have a corresponding vector

representation in a lookup tables for token. The token sequence is then fed one by one to

a bi-directional LSTM encoder, and the final output will be used as feature representation.

We denote this whole process by function Flc : (M,S) → RDlc for computing left context

and Frc : (M,S) → RDrc for computing right context. Dlc and Drc are the number of

dimensions for the left context and the right context representation, respectively. The

whole process is illustrated in the Figure 3.4 (left and right context representation).

The context representation described above is slightly different from what is proposed

by Shimaoka et al. [54], where they exclude the entity mention from the context. In our

proposed model, we include entity mention tokens within both the left and the right context,

to explicitly encode context relative to an entity mention.

After obtaining the feature representations for the mention and the context, we con-

catenate these representations into a single Df dimensional vector, where Df = Dm+Dlc+

Drc. This complete process is denoted by a function F : (M,S)→ RDf given by:

F (mi
j,k, s

i) = Fm(mi
j,k)⊕ Flc(mi

j,k, s
i)⊕ Frc(mi

j,k, s
i) (3.1)

where ⊕ denotes vector concatenation. For brevity, we will now omit the use of subscript

j, k from mi
j,k and lij,k, and will use f i to denote feature representation for entity mention

and its context obtained via equation 3.1.

3.4.4 Feature and label embeddings

Similar to Yogatama et al. [53] and Ren et al. [9], we embed feature representations and

labels in a same dimensional space such that an object is embedded closer to the objects

that share similar types than the objects that do not. Formally, we are trying to learn

linear mapping functions φM : RDf → RDe and φL : RDK → RDe , where De is the size of

embedding space. These mappings are given by:

φM(f i) = f i
T
U ; φL(lit) = li

T

t V (3.2)
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where, U ∈ RDf×De and V ∈ RDK×De are projection matrices for features representations

and labels respectively and lit is one-hot vector representation for label t. We assign a score

to each label type t and feature vector as a dot product of their embeddings. Formally, we

denote a score as:

s(f i, lit) = φM(f i) · φL(lit) (3.3)

3.4.5 Optimization

We use two different loss functions to model clean and noisy entity mentions. For the

clean entity mentions, we use a hinge loss function. The intuition is simple: maintain

a margin, centered at zero, between positive and negative type scores. The scores are

computed by the similarity between an entity mention and label types (eq. 3.3). The hinge

loss function has two advantages. First, it intuitively separates positive and negative labels

during inference. Second, it is independent of data dependent parameters. Formally, for a

given entity mention mi and its label li we compute the associated loss as given by:

Lc(mi, li) =
∑
t∈γ

max(0, 1− s(mi, lit))

+
∑
t∈γ̄

max(0, 1 + s(mi, lit)) (3.4)

where γ and γ̄ are set of indices that have positive and negative labels respectively.

For noisy entity mentions, we propose a variant of a hinge loss where, like Lc, the

score for all negative labels should go below −1. However, for positive labels, as the model

does not know which labels are relevant to an entity mention’s local context, we propose

that the maximum score from the set of given positive labels should be greater than one.

This maintains a margin between all negative types and the most relevant positive type.

Formally, noisy label loss, Ln is defined as:

Ln(mi, li) =
∑
t∈γ̄

max(0, 1 + s(mi, lit))

+ max(0, 1− s(mi, lit∗));

t∗ = arg max
t∈γ

s(mi, lit) (3.5)

Again, using this loss function makes it intuitive to set a threshold of zero during inference.

These loss functions are different from the loss functions used in Ren et al. [9] and
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Datasets figer d-ontonotes d-bbn
# types 128 89 47
# training mentions 2690286 220398 86078
# testing mentions 563 9603 13187
% clean training mentions 64.58 72.61 75.92
% clean testing mentions 88.28 94.00 100
% pronominal testing mentions1 0.00 6.78 0.00
Max hierarchy depth 2 3 2

Table 3.1: Statistics of the datasets used in the Fine-ET work.

Yogatama et al. [53] in a way that the proposed loss function makes strict absolute criteria

to distinguish between positive and negative labels. Whereas in [9, 53], positive labels should

have a higher score than negative labels. As their scoring is relative, the final result varies

on the threshold used to separate positive and negative labels, which is dataset dependent.

To train the partitioned dataset together, we formulate the joint objective problem as:

min
θ
O =

∑
m∈Mc

Lc(m, l) +
∑

m∈Mn

Ln(m, l) (3.6)

where θ is the collection of all model parameters that need to be learned. To jointly optimize

the objective O, we use Adam [70], a stochastic gradient-based optimization algorithm.

3.4.6 Inference

For every entity mention in the set M from Dtest, we perform a top-down search in the

given type hierarchy Ψ and estimate the correct type path Ψ∗. Starting from the tree

root, we recursively compute the best type among node’s children by computing its score

with obtained feature representations. We select the node that has a maximum score among

other nodes. We continue this process till a leaf node is encountered, or the score associated

with a node falls below an absolute threshold zero. The threshold is fixed across all datasets

used.

3.4.7 Transfer learning

There is a significant variation of size in the available training datasets for the Fine-ET

task, as indicated in Table 3.1. The figer dataset contains around 2.7 million entity
1We considered an entity mention as pronominal if all of its tokens have a POS tag as a pronoun.
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mentions, whereas the d-bbn dataset contains around 0.08 million entity mentions. The

deep-learning models are usually known to be data hungry in order to automatically learn

good feature representations of the input [71]. Since it is not always possible to create a

large-scale training dataset for a particular text source or domain, we investigate, whether

the knowledge learned by the proposed model while trained on a large dataset can be

transferred to other models and datasets.

We study two variants of transfer learning techniques, the feature level, and the model

level transfer learning. In the feature level transfer learning, we study what contribution

these feature representations make to existing feature engineering method such as AFET.

To do so, we train the proposed model on one training dataset, namely the figer dataset,

which has the highest number of entity mentions, among other datasets. Then we use

this model to generate feature representations, that is, F (mi
j,k, s

i) for training and testing

splits of other datasets. These representations, which are Df dimensional vectors, are used

as a feature for an existing state-of-the-art model, AFET, in place of the hand-crafted

features that were initially used. The AFET model is then trained using these feature

representations. On the other hand, in the model level transfer learning, while training the

proposed model on small datasets, we initialize weights of LSTM encoders with the weights

learned from the model trained on the figer dataset.

3.5 Experiments

3.5.1 Datasets used

We evaluate the proposed model on three publicly available datasets, provided in a pre-

processed tokenized format by Ren et al. [9]. Some basic statistics of these datasets are

listed in Table 3.1. The details of the datasets are as follows:

figer : The training data consisted of Wikipedia sentences and was automatically created

via the distant supervision paradigm, by mapping hyperlinks in Wikipedia sentences

to Freebase. The test data, mainly consisting of sentences from news reports, were

manually annotated as described in Ling and Weld [17].

d-ontonotes : The d-ontonotes dataset consists of sentences from newswire documents

present in the OntoNotes text corpus [21]. DBpedia spotlight [19] was used to link

entity mentions in sentences to Freebase automatically. For this corpus, manually

annotated test data was shared by Gillick et al. [63].
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d-bbn : The d-bbn dataset consists of sentences from Wall Street Journal articles [22].

These sentences are manually annotated. To make this dataset adaptable to a KB

hierarchy, Ren et al [20], linked the annotated entities to Freebase using DBpedia

spotlight. The types obtained from Freebase were then applied to entity mentions

and were mapped to the Freebase hierarchy. The original types which cannot be

mapped to Freebase were discarded.

3.5.2 Evaluation setting

Baselines

We compared the proposed model with state-of-the-art entity typing methods:

FIGER: FIGER is a Fine-ET system proposed by Ling and Weld [17], which uses a multi-

label perceptron model. The model used hand-crafted features as inputs to the per-

ceptron and assumes that the training dataset is noise-free.

HYENA: HYENA is a Fine-ET system proposed by Yosef et al. [18], which uses several

binary classifiers in a hierarchy. Similar to FIGER, the model uses hand-crafted

features as inputs to the classifiers and assumes that the training dataset is noise-free.

AFET: AFET is a Fine-ET system proposed by Ren et al. [9], which uses a ranking based

loss function. The model uses hand-crafted features and does not assume labels to be

noise-free. To model label noise, the model uses a partial-label loss function and also

models label-label correlation.

AFET-NoCo: A variant of the AFET model which does not use label-label correlation as

described in Ren et al. [9]

AFET-CoH: A variant of the AFET model, which uses label-label correlation based on

the label hierarchy, as described in Ren et al. [9].

Attentive: An attention mechanism based deep neural network model proposed by Shi-

maoka et al [54]. The model assumes that the training dataset is noise-free and

automatically learns feature representations of the input.

We compare these baselines with variants of our proposed model: (1) our: the complete

proposed model; (2) our-AllC: a model which assumes that all mentions are clean; (3) our-
NoM: a model without mention representation component.
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Experimental setup

For the evaluation of learning models, we use the strict (subset accuracy), and the harmonic

mean (F1 values) of the precision and recall computed using the loose macro and loose micro

evaluation metrics as described in Section 2.3. The existing methods for the Fine-ET task

use the same measures [9, 17, 53, 54]. We removed the entity mentions that do not have

any label in the training as well as the test set. We also remove entity mentions that have

spurious indices, that is, entity mention length of 0. For all the three datasets, we randomly

sampled 10% of the test set, and use it as a development set, on which we tune model

parameters. The remaining 90% is used for final evaluation. For all our experiments, we

train each model using the same hyperparameters five times and report their performance

in terms of the loose-micro-F1 score on the development set, as shown in Figure 3.5. On

the figer dataset, we observed a large variance in performance as compared to the other

two datasets. This might be because the figer dataset has a very small development set.

From each of these five runs, we pick the best performing model based on the development

set and report its result on the test set.

Hyperparameter setting: All the deep neural network models mentioned in this chapter

used 300-dimensional pre-trained word embeddings distributed by Pennington et al. [72].

The hidden layer size of word-level bi-directional LSTM was 100, and that of character-level

LSTM was 200. We randomly initialized character embeddings of size 200 and updated the

embeddings during model training. We use dropout with the probability of 0.5 on the

output of LSTM encoders. The embedding dimension used was 500. We use Adam [70]

as optimization method with a learning rate of 0.0005 to 0.001 and mini-batch size in the

range of 800 to 1500. The proposed model and some of the baselines were implemented

using the TensorFlow2 framework.

3.5.3 Transfer learning

In the feature level transfer learning, we use the best performing proposed model trained

on the figer dataset to generate representations, that is, Df dimensional vector for every

entity mention present in the train, development, and test set of the d-bbn and the d-

ontonotes dataset. Figure 3.4 illustrates an example of the encoding process. Then we

use these representations as a feature vector in place of the user-defined features and train

the AFET model. Its hyperparameters were tuned on the development set. These results

are shown in Table 3.2 as feature level transfer-learning.
2http://tensorflow.org/
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Figure 3.5: The performance of different models on the validation set illustrated using a
box-whiskers plot. The red line, boxes, and whiskers indicate the median, quartiles, and
range.

In the model level transfer learning, we use the learned weights of LSTM encoders

from the best performing proposed model trained on the figer dataset and initialize the

LSTM encoders of the same model with these weights while training on the d-bbn and the

d-ontonotes datasets. These results are shown in Table 3.2 as model level transfer
learning.

3.5.4 Performance comparison and analysis

The results obtained by the proposed model, its variants, and the baselines are listed in

Table 3.2.

Comparison with other feature learning methods: The proposed model and its vari-
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Typing methods figer d-onotnotes d-bbn
S-Acc L-Ma-F1 L-Mi-F1 S-Acc L-Ma-F1 L-Mi-F1 S-Acc L-Ma-F1 L-Mi-F1

FIGER* [17] 0.474 0.692 0.655 0.369 0.578 0.516 0.467 0.672 0.612
HYENA* [18] 0.288 0.528 0.506 0.249 0.497 0.446 0.523 0.576 0.587
AFET-NoCo* [9] 0.526 0.693 0.654 0.486 0.652 0.594 0.655 0.711 0.716
AFET-CoH* [9] 0.433 0.583 0.551 0.521 0.680 0.609 0.657 0.703 0.712
AFET* [9] 0.533 0.693 0.664 0.551 0.711 0.647 0.670 0.727 0.735
AFET†‡ [9] 0.509 0.689 0.653 0.553 0.712 0.646 0.683 0.744 0.747
Attentive† [54] 0.581 0.780 0.744 0.473 0.655 0.586 0.484 0.732 0.724
our-AllC† 0.662 0.805 0.770 0.514 0.672 0.626 0.655 0.736 0.752
our-NoM† 0.646 0.808 0.768 0.521 0.683 0.626 0.615 0.742 0.755
our† 0.658 0.812 0.774 0.522 0.685 0.633 0.604 0.741 0.757
model level transfer-learning† — — — 0.531 0.684 0.637 0.645 0.784 0.795
feature level transfer-learning† — — — 0.471 0.689 0.635 0.733 0.791 0.792

Table 3.2: The performance analysis of the proposed Fine-ET method and its baselines
evaluated on the d-bbn, d-ontonotes, and figer datasets.

ants (our-AllC, our-NoM) perform better than the existing feature learning method by

Shimaoka et al. [54] (Attentive), consistently on all datasets. The performance gain indi-

cates the benefits of the proposed representation scheme and joint learning of representation

and label embedding.

Comparison with feature engineering methods: The proposed model performs better

than the existing feature engineered methods (FIGER,HYENA,AFET-NoCo, AFET-
CoH) consistently across all datasets on loose-micro-F1 and loose-macro-F1 evaluation

metrics. These methods do not model label-label correlation based on data. In comparison

with AFET, the proposed model outperforms AFET on the figer and d-bbn datasets in

terms of the loose-micro-F1 evaluation metric. This indicates the benefits of feature learning

as well as data-driven label-label correlation. We make a type-wise performance comparison

on the d-ontonotes dataset in Subsection 3.5.5 and found that the data-driven label-label

correlation only helps in classifying entity mentions of miscellaneous types.

Comparison with variants of our model: The proposed model performs better on all

dataset as compared to our-AllC in terms of loose-micro-F1 score. However, we find the

performance difference on the figer and the d-ontonotes datasets is not statistically

significant. We investigated it further and found that across all three datasets, there exist

only a few entity types for which more than 85% of entity mentions are noisy. These types

consist of approximately 3−4% of the test set, and our model fails on these types (zero loose-

micro-F1 scores). However, our-AllC performs relatively well on these types. Examples

*These results are from Ren et al. [9] that also use 10% of the test set as a development set and the
remaining for evaluation.

‡We used the publicly available code distributed by Ren et al. [9].
†All of these results are on the same train, development, and test set.
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figer d-ontonotes d-bbn
Support L-Mi-F1 Support L-Mi-F1 Support L-Mi-F1

Train Test PM AFET Train Test PM AFET Train Test PM AFET
Level 1 56.1% 74.7% 0.823 0.728 40.7% 71% 0.719 0.752 66.2% 58.9% 0.795 0.788
Level 2 43.9% 25.3% 0.605 0.5 42.8% 26.3% 0.333 0.23 33.8% 41.1% 0.692 0.683
Level 3 - - - 16.5% 2.7% 0.146 0.078 - - - -

Table 3.3: The loose-micro-F1 scores of the proposed model (PM) and AFET at different
hierarchy levels for the figer, d-ontonotes, and d-bbn datasets. Also, the percentage
support of corresponding training and testing instances is mentioned.

of such types are: /building, /person/political_figure, /GPE/STATE_PROVINCE. The

analysis indicates two limitations of the proposed model. First, the separating of clean and

noisy mentions based on the hierarchy has its inherent limitation of assuming labels within

a path are correct. Second, our model learns better if more clean examples are available at

the cost of not learning very noisy types. Compared with our-NoM, the proposed model

performs slightly better across all datasets in terms of loose-micro-F1 score.

Feature level transfer learning analysis: In the feature level transfer learning, re-

placing the hand-crafted features in the AFET model (d-bbn dataset), with the features

learned by the proposed model, increases the performance by 5%, 4.7%, and 4.5%, in terms

of strict (subset accuracy), loose-macro-F1 and loose-micro-F1 scores, respectively. The

improvement indicates the usefulness of the learned feature representations. However, if we

repeat the same process with the d-ontonotes dataset, there is only a subtle change in

performance. This is majorly because the data distribution of the d-ontonotes dataset is

different from that of the figer dataset. This issue is discussed in the next subsection.

Model level transfer learning analysis: In the model level transfer learning, sharing

knowledge from a similar dataset (figer to d-bbn) increases the performance by 4.1%,

4.3%, and 3.8% in terms of strict (subset accuracy), loose-macro-F1 and loose-micro-F1

scores, respectively. However, sharing knowledge from the figer to the d-ontonotes

dataset slightly increases the performance by 0.4% in terms of the loose-micro-F1 score.

Level wise analysis: Table 3.3 reports the loose-micro-F1 score of the proposed model at

a different level of the type hierarchy. For example, in the d-ontonotes hierarchy, person

type is at level 1, artist type is at level 2 and actor type is at level 3. From the results, we

can observe that consistently on all three datasets, the performance of the model is better

on the levels up in the hierarchy. Also, the proposed model consistently outperforms AFET,

on all hierarchy levels.

From the results in Table 3.3, we can also observe that as the hierarchy level increases,
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his thousands of angry people
A reporter export competitiveness
Freddie Mac Messrs. Malson and Seelenfreund
the numbers Hollywood and New York
his explanation April
volatility This institution
their hands the 1987 crash
it January 4th
Macau investment enterprises
France any means

Table 3.4: 20 randomly sampled entity mentions present in the test set of d-ontonotes
dataset.

the number of training instances decreases. Thus the models have to learn from fewer

training instances for labels at depth two and three. Moreover, training and test data

distributions are not similar, especially for the figer and the d-ontonotes datasets. In

these datasets, the testing data is even more skewed towards the top level than the training

data. For example, the support of test data at level one is 18.6% and 30.3% more than the

training data of the figer and d-ontonotes datasets, respectively. Due to less support in

training data and even less support in test data for fine-labels, the models perform poorly

on levels two and three on the figer and d-ontonotes datasets. Whereas in the BBN

dataset, the difference in support among the test and train data is less, so as the difference

in fine-grained label performance.

3.5.5 Case analysis: D-ONTONOTES dataset

We observed three things: (i) all models perform relatively poor on the d-ontonotes

dataset compared to their performance on the other two datasets; (ii) the proposed model

outperforms other models including AFET on the other two datasets but gave a worse

performance on the d-ontonotes dataset; (iii) the two variants of transfer learning signif-

icantly improve the performance of the proposed model on the d-bbn dataset but resulted

in only a subtle performance change on the d-ontonotes dataset.

Statistics of the datasets (Table 3.1) indicate that the presence of pronominal or other

kinds of mentions is relatively higher in the d-ontonotes dataset (6.78% in the test set)

than the other two datasets (0% in the test set). Examples of such mentions are 100 people,

It, the director, etc. Table 3.4 shows 20 randomly sampled entity mentions from the test

set of the d-ontonotes datasets. Some of these mentions are very generic and likely to be
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Label type Support The Proposed Model AFET
P R F1 P R F1

/other 42.6% 0.838 0.809 0.823 0.774 0.962 0.858
/organization 11.0% 0.588 0.490 0.534 0.903 0.273 0.419
/person 9.9% 0.559 0.467 0.508 0.669 0.352 0.461
/organization/company 7.8% 0.932 0.166 0.282 1.0 0.127 0.225
/location 7.5% 0.687 0.796 0.737 0.787 0.609 0.687
/organization/government 2.1% 0 0 0 0 0 0
/location/country 2.0% 0.783 0.614 0.688 0.838 0.498 0.625
/other/legal 1.8% 0 0 0 0 0 0
/location/city 1.8% 0.919 0.610 0.733 0.816 0.637 0.715
/person/political_figure 1.6% 0 0 0 0 0 0

Table 3.5: The performance analysis of the proposed model and AFET on top 10 (in terms
of type frequency) types present in the d-ontonotes dataset.

dependent on previous sentences. As all the methods use features solely based on the current

sentence, they fail to transfer cross-sentence boundary knowledge. Removing pronominal

mentions from the test set increases the performance of all feature learning methods by

around 3%.

Next, we analyze where the proposed model is failing as compared to the AFET model.

For this, we look at type-wise performance for the top-10 most frequent types in the d-

ontonotes test dataset. The results are shown in Table 3.5. Compared to AFET, the

proposed model performs better in all types except other in the top-10 frequent types. The

other type, which is dominant in the test set (42.6% of entity mentions are of type other)

and is a collection of multiple broad subtypes such as product, event, art, living_thing,

food. The performance of AFET significantly drops (AFET-NoCo) when data-driven label-

label correlation is ignored, which indicates that modeling data-driven correlation helps.

However, as shown in Figure 3.2a, the use of label-label correlation depends on appropriate

values of parameters that vary from one dataset to another.

3.6 Conclusion

In this chapter, we propose a deep neural network model for the Fine-ET task. The proposed

model learns representations of entity mention, its context and incorporates label noise

information in a variant of a non-parametric hinge loss function. Experiments show that

the proposed model outperforms existing state-of-the-art models on two publicly available

datasets without explicitly tuning data-dependent parameters.
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Our analysis indicates the following observations. First, the d-ontonotes dataset has

a different distribution of entity mentions compared with the other two datasets. Second, if

the data distribution is similar, then transfer learning is very helpful. Third, incorporating

data-driven label-label correlation helps in the case of labels of mixed types. Fourth, there

is an inherent limitation in assuming all labels to be clean if they belong to the same path

of the hierarchy. Fifth, the proposed model fails to learn very noisy label types.

The analysis in this chapter also highlights a need to have a new dataset for the Fine-

ET task, which can overcome some of the issues associated with existing datasets. We work

in this direction in Chapter 5. Moreover, all existing datasets use a KB to assign labels

to entity mentions in the distant supervision paradigm. We explore a different direction in

Chapter 4 to build a Fine-ET system using multiples label sources.

;;=8=<<
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4
Collective Learning Framework for

Fine-ET

Chapter Highlights

• There are multiple diverse datasets available for the Fine-ET task.

• These datasets differ in the label set or the text-domain/source or both.

• The objective of this chapter is to build learning models that can predict the best

possible label for entity mentions present in all available text-domain/source.

• The best possible label need not be present in the same domain dataset.

• We formulate this problem setting as ET-in-the-wild and propose a collective learning

framework for this task.

• We also propose a set of evaluation schemes and metrics for the ET-in-the-wild task.

• The proposed framework outperforms competitive baselines with a significant margin

in an evaluation setting containing seven diverse datasets.

• This chapter is based on the publication “Collective Learning From Diverse Datasets

for Entity Typing in the Wild” presented at the EYRE workshop at CIKM 2019.

4.1 Abstract

The distant supervision method for creating training dataset for Fine-ET task mostly de-

pends on Wikipedia as a text source and a KB as entity type source. However, many times
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we need to build Fine-ET systems for text sources other than Wikipedia, with some types

not present in any KB. In this chapter, we focus on this research direction, in particular,

a more generalized scenario, which we refer to as Entity Typing in the wild task. In this

task, there are n text sources, each annotated with some type or label set Yi. The Yi’s are

neither disjoint nor identical, or in other words, they have a partial overlap. The objective

is to build a Fine-ET system, which can predict entity type from the union on all Yi’s across

all n text sources, without knowing about test instance text source or candidate entity type

beforehand.

In this chapter, we describe the ET-in-the-wild problem setting and propose a collec-

tive learning framework for this problem. The framework first creates a unified hierarchical

label set (UHLS) and a label mapping by aggregating label information from all available

datasets. Then it builds a single neural network classifier using UHLS, label mapping, and a

partial loss function. The single classifier predicts the finest possible label across all available

domains, even though these labels may not be present in any domain-specific dataset. We

also propose a set of evaluation schemes and metrics to evaluate the performance of mod-

els in this novel problem. Extensive experimentation on seven diverse real-world datasets

demonstrates the efficacy of the proposed framework. The source code and the implementa-

tion details of this chapter are available at http://github.com/abhipec/ET_in_the_wild.

4.2 Introduction

The evolution of ET has led to the generation of multiple datasets. These datasets differ

from each other in terms of their domain or label set or both. Here, a domain of a dataset

represents the data distribution of its sentences. The label set represents the entity types

annotated. Existing work for ET requires knowledge of the domain and the target label of a

test instance [9, 17]. Figure 4.1 illustrates this issue where four learning models are typing

four entity mentions. We can observe that, in order to make a reasonable prediction (output

with a solid border), it is required to assign labels from a model that has been trained on

a dataset with similar domain and labels as that of test instances. However, domain and

target label information of a test instance is unknown in several NLP applications such as

entity ranking for web question answering systems [51] and knowledge base completion [2],

where ET models are used.

We address ET in the absence of domain and target label set knowledge as ET in the

wild problem. As a result, we have to predict the best possible labels for all test instances as
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Figure 4.1: The table illustrates the output of four learning models on typing four entity
mentions. For example, the model M1 trained on the conll dataset assigns ORG type to
the entity mention Wallaby, which is from the same dataset.

illustrated in Figure 4.1 (output with dashed line border). These labels may not be present

in the same domain dataset. For example, the model should predict the label sports team

for the entity mention Wallaby, even if the finest possible label (sports team) is not present

in the same domain conll dataset [32]. We hypothesize that the solution to this problem

is to build supervised models that generalize better on the ET task as a whole, rather than

a specific dataset. This solution requires collective learning from several diverse datasets.

However, collective learning from diverse datasets is a challenging problem. Figure 4.2

illustrates the diversity of seven ET datasets. We can observe that every dataset provides

some distinct information for the ET task such as domain and labels. For example, cadec

dataset [73] contains informally written sentences from a medical forum, whereas the jnlpba

dataset [74] contains formally written sentences from scientific abstracts in life sciences.

Moreover, there is an overlap in the label sets as well as a relation between labels of these

datasets. For example, both conll and figer [17] datasets have a label person. However,

only the figer dataset has a label athlete, a subtype of person. This means that the

conll dataset can also contain athlete mentions but were only annotated with a coarse

label person. Thus, learning collectively from these diverse datasets require models to learn

a useful feature or representation of the sentences from diverse domains as well as to learn

the relation among labels.

This study proposes a collective learning framework (CLF) for the ET in the wild

problem. CLF first builds a unified hierarchical label set (UHLS) and associated label
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Figure 4.2: An illustration of the diversity of the seven ET datasets in their label set and
domain using the chord diagram. The arc length is proportional to the number of labels
in these datasets. The chords that connect arcs of different datasets illustrate the label
overlap proportion.

mapping by pooling labels from diverse datasets. Then, a single classifier collectively learns

from the pooled dataset using UHLS, label mapping, and a partial hierarchy aware loss

function.

In the UHLS, the nodes are contributed by different datasets, and a parent-child re-

lation among nodes translate to a coarse-fine label relation. During the construction of

UHLS, a mapping from every dataset-specific label to the UHLS nodes is also constructed.

We expect to have one-to-many mappings, as in the case of real-world datasets. For exam-

ple, a coarse-grained label for a dataset could be mapped to multiple nodes in the UHLS

introduced by some other dataset. During the UHLS construction, human judgment is

used when comparing two labels. This effort is four orders of magnitude lesser compared

to annotating every dataset with the finest label.

Utilizing the UHLS and the mapping, we can view several domain-specific datasets as

a collection of a multi-domain dataset having the same label set. On this combined dataset,

we use an LSTM [68] based encoder to learn a useful representation of the text followed by

a partial hierarchical loss function [75] for label classification. This setup enables a single

neural network classifier to predict fine-grained labels across all domains, even though the
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finest label was not present in any in-domain dataset.

We also propose a set of evaluation schemes and metrics for the ET in the wild problem.

In our evaluation schemes, we evaluate the learning model’s performance on a test set, which

is formed by merging test instances of seven diverse datasets. To excel on this merged

test set, learning models must generalize beyond a single dataset. Our evaluation metrics

are designed to measure the learning model’s performance to predict the finest possible

label. We compared a single classifier model trained with our proposed framework with an

ensemble of various models. Our model outperforms competitive baselines with a significant

margin.

Our contributions can be highlighted as below:

1. We propose a novel problem of ET in the wild with the objective of building better

generalizable ET models (Section 4.3).

2. We propose a novel collective learning framework that makes it possible to train a

single classifier on an amalgam of diverse ET datasets, enabling finest prediction across

all the datasets, i.e., a generalized model for ET task as a whole (Section 4.4).

3. We propose evaluation schemes and evaluation metrics to compare learning models

for the ET in the wild problem setting (Sections 4.5.5, 4.5.6).

4.3 Terminologies and Problem Definition

In this section, we formally define the ET in the wild problem and related terminologies.

Dataset: A dataset, D, is a collection of (X,D,Y). Here, X corresponds to a corpus

of sentences with entity boundaries annotated, D corresponds to the domain, and Y =

{y1, . . . yn} is the set of labels used to annotate each entity mention in the X. It is possible

that two datasets share domain but differ in their label sets or vice versa. Here the domain

means the data characteristics such as writing style and vocabulary. For example, sentences

in the conll dataset are sampled from Reuters news stories around 1999, whereas, sentences

in the cadec dataset are from medical forum posts around 2015. Thus, these datasets have

different domains.

Label space: A label space L for a particular label y is defined as a set of entities that

can be assigned a label y. For example, the label space for a label car includes mentions

of all cars, including that of label space of different car types such as hatchback, SUV, etc.

For different datasets, even if two labels with the same name exist, their label space can be
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different. The label space information is defined in the annotation guidelines used to create

datasets.

Type Hierarchy: A type or label hierarchy, T , is a natural way to organize label set in a

hierarchy. It is formally defined as (Y,R), where Y is the type set andR = {(yi, yj) | yi, yj ∈

Y & i 6= j & L(yi) ≺ L(yj)} is the relation set, in which (yi, yj) means that yi is a subtype

of yj or in other words the label space of yi is subsumed within the label space of yj .

ET in the Wild problem definition Given n datasets, D1, . . . ,Dn, each having its own

domain and label set, Di and Yi respectively, the objective is to predict the finest label

possible from the set of all labels, Y =
n⋃
i=1
{Yi}, for a test entity mention. The finest

possible label might not be present in any in-domain dataset.

4.4 Collective Learning Framework (CLF)

Figure 5.2a provides a complete overview of the CLF, which is based on the following key

observations and ideas:

1. From the set of all available labels Y, it is possible to construct a type hierarchy

Tu = (Yu,Ru) where Yu ⊆ Y. In Tu, the fine-grained labels are present at the leaf

level of the hierarchy, and non-leaf nodes represent coarse labels (Section 4.4.1).

2. We can map each y ∈ Y, to one or more than one node in Tu, such that the L(y) is

the same as the label space of the union of the mapped nodes (Section 4.4.1).

3. Using the above hierarchy and mapping, now even if for some datasets, we only

have the coarse labels, i.e., the labels which are mapped to non-leaf nodes, a learn-

ing model with a partial hierarchy aware loss function can predict fine labels (Sec-

tions 4.4.2, 4.4.2).

4.4.1 Unified Hierarchy Label Set and Label Mapping

The labels of entity mentions can be arranged in a hierarchy. For example, the label space

of airports is subsumed in the label space of facilities. In the literature, there are several

existing hierarchies, such as WordNet [76] and ConceptNet [77]. Even two ET datasets,

bbn [22] and figer, organize labels in a hierarchy. However, none of these hierarchies can

be directly used as discussed next.

Our analysis of the labels of several ET datasets suggests that the presence of the

same label name in the two or more datasets may not necessarily imply that their label
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Figure 4.3: An overview of the proposed collective learning framework.

spaces are the same. For example, in the conll dataset, the label space for the label

location includes facilities, whereas, in the ontonotes dataset [21], the location label space

excludes facilities. These differences are because these datasets were created by different

organizations, at different times and for a different objective. Figure 4.4 illustrates this

label space interaction. Additionally, some of these labels are very specific to the domains,

and not all of them are present in any publicly available hierarchies such as WordNet,

ConceptNet, or even knowledge bases (Freebase [1] or WikiData [5]).

Thus, to construct UHLS, we analyzed the annotation guidelines of several datasets

and came up with an algorithm formally described in Algorithm 1 and explained below.

Given the set of all labels, Y, the goal is to construct a type hierarchy, Tu = (Yu,Ru),

and a label mapping φ : Y 7→ P(Yu). Here, Yu is the set of labels present in the hierarchy,

Ru is the relation set and P(Yu) is the power set of the label set. To construct Tu, we start

with an initial type hierarchy, which can be Yu = {root},Ru = {}, or initialized by any

existing hierarchy. We keep on processing each label y ∈ Y and decide if there is a need to

update Tu and update the mapping φ. For each label y there are only two possible cases,

either Tu is updated or not.

Case 1, Tu is updated: In this case y is added to a child of an existing node in the

Tu, say v. While updating Tu it is ensured that v = arg min
size(L(v))

{v | v ∈ Yu & L(y) ≺ L(v) },

i.e., L(v) is the smallest possible label space that completely subsumes the label space of

y (lines 6-8). After the update, if there are existing subtrees rooted at v, and if the label
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Figure 4.4: A simplified illustration of the UHLS and the label mapping from individual
datasets.

space of y subsumes any of the subtree space, then y becomes the root of those subtrees

(lines 10-13). In this case, the label mapping is updated as φ(y) 7→ {y}, i.e., the label in

an individual dataset is mapped to the same label name in UHLS. Additionally, if there

exist any other nodes, v̂ ∈ Yu s.t. L(v̂) ≺ L(y) & v̂ /∈ subtree(y), we add φ(y) 7→ {v̂} for

all such nodes (lines 14-16). This additional condition ensures that even in the cases where

the actual hierarchy will be a directed acyclic graph, we restrict it to a tree hierarchy by

adding additional mappings.

Case 2, Tu is not updated: In this case, ∃S ⊆ Y s.t. L(y) == L(S), i.e., there exists

a subset of nodes whose union of label space is equal to the label space of y. If |S| > 1,

intuitively, this means that the label space of y is a mixed space, and from some other

datasets labels with finer label spaces were added to Yu. If |S| = 1, this means that some

other dataset added a label that has the same label space. In this case, we will only update

the label mapping as φ(y) 7→ S (lines 3-4).

In Algorithm 1, all of the decisions related to comparison of two label spaces, are

made by a domain expert. For example, is the label space of the label person from the

conll dataset the same as the label space of the label person from the figer dataset? The
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Data: Y =
n⋃
i=1
Yi

Result: Unified Hierarchical Label Set (UHLS), Tu = (Yu,Ru) and label
mapping, φ.

1 Initialize: Yu = {root},Ru = {}
2 for y ∈ Y do
3 if ∃S ⊆ Yu s.t. L(y) == L(S) then // Case 2
4 φ(y) 7→ S
5 else // Case 1
6 v = arg min

size(L(v))
{v | v ∈ Yu &L(y) ≺ L(v)}

7 Yu = Yu ∪ {y}
8 Ru = Ru ∪ {(y, v)}
9 φ(y) 7→ {y}

10 for (x, v) ∈ Ru do // Update existing nodes
11 if x 6= y&L(x) ≺ L(y) then
12 Ru = Ru − {(x, v)}
13 Ru = Ru ∪ {(x, y)}

14 for v̂ ∈ Yu do // Restrict to tree hierarchy
15 if L(v̂) ≺ L(y) & v̂ /∈ subtree(y) then
16 φ(y) 7→ {v̂}

Algorithm 1: UHLS and label mapping creation algorithm.

answer to this question is that their label space is not the same. In the conll dataset, entity

mentions such as the name of various gods are assigned type person, whereas, in the figer

dataset, they have a separate type and are not assigned the type person. Thus the label

person in these datasets do not have the same label space. The expert makes the decision

based on the annotation guidelines for the queried labels and using an existing organization

of the queried label space in WordNet or Freebase if the queried labels are present in these

resources. We argue that since the overall size of Y is several order of magnitude less than

the size of annotated instances (≈ 250 << ≈ 3×106), having a human in the loop preserves

the overall semantic property of the tree, which will be exploited by a partial loss function

to enable finer prediction across domains. An illustration of UHLS and label mapping is

provided in Figure 4.4.

In the next section, we will describe how the UHLS and the label mapping will be used

by a learning model to make the finest possible predictions across datasets.
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4.4.2 Learning Model

Our learning model can be decomposed into two parts: (1) Neural Mention and Context

Encoders to encode the entity mention and its surrounding context into a feature vector;

(2) Unified Type Predictor to infer entity types in the UHLS.

Neural Mention and Context Encoder

The input to our model is a sentence with the start and end index of the entity mentions.

Following our previous work (Chapter 3), we use Bi-directional LSTMs [69] to encode left

and right context surrounding the entity mention and use a character level LSTM to encode

the entity mention. After this, we concatenate the output of the three encoders to generate

a single representation (R) for the input.

Unified Type Predictor

Given the input representation, R, the objective of the predictor is to assign a type from

the unified label set Yu. Thus, during model training, using the mapping function φ : Y 7→

P(Yu), we convert individual dataset-specific labels to the unified label set, Yu. Due to one

to many mapping, now there are multiple positive labels available for each individual input

label y. Lets call the mapped label set for an input label y as Ym. Now, if any of the mapped

label ŷ ∈ Ym has descendants, then the descendants are also added to Ym1. For example,

if the label GPE from the ontonotes dataset is mapped to the label GPE in the UHLS,

then GPE, as well as all descendants of GPE, are possible candidates. This is because,

even though the original example in the ontonotes is a name of a city, the annotation

guidelines restrict the fine-labeling. Thus the mapped set would be updated to {GPE, City,

Country, County, . . . }. Additional, some labels have a one-to-many mapping, for example,

for the label MISC in the conll dataset, the candidate labels could be {product, event,

. . . }.

From the set of mapped candidate labels, a partial label loss function will select the

best candidate label. Due to the inherent design of the UHLS and label mapping, there will

always be examples available that will be mapped only at a single leaf node. Thus allowing

fine labels in the candidate set for actual coarse labels will encourage the model to predict

finer labels across datasets.
1This is exempted when the annotated label is a coarse label and a fine label from the same dataset exist

in the subtree.
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Partial Hierarchical Label Loss

A partial label loss deals with a situation where a training example has a set of candidate

labels and among which only a subset is correct for a given example [78–80].

In our case, this situation arises because of the mapping of the individual dataset

labels to the UHLS. We use a hierarchy aware partial loss function as proposed in [75].

We first compute the probability distribution for the labels available in Yu as described in

equation 4.1. Here W is a weight matrix of size |R|× |Yu|, b is the bias variable of size |Yu|,

and x is the input entity mention along with its context.

p(y|x) = softmax(RW + b) (4.1)

Then we compute p̂(y|x), a distribution adjusted to include a weighted sum of the ancestor’s

probability for each label as defined in equation 4.2. Here At is the set of ancestors of the

label y in Ru, and β is a hyperparameter.

p̂(y|x) = p(y|x) + β ∗
∑
t∈At

p(t|x) (4.2)

Then we normalize p̂(y|x). From this normalized distribution, we select a label which has

the highest probability and is also a member of the mapped labels Ym. We assumed the

selected label to be correct and propagate the log-likelihood loss. The intuition behind this

is that given the design of the ULHS and label mapping; there will always be examples

where Ym will contain only one element, in that case, the model gets trained for that label.

In the case where there are multiple labels, the model has already built a belief about the

fine label suitable for that example because of simultaneously training with inputs having

a single mapped label. Restricting that belief to the mapped labels encourages correct

fine-predictions for these coarsely labeled examples.

4.5 Experiments and Analysis

4.5.1 Datasets

Table 4.1 describes the seven datasets used in this chapter. These datasets are diverse,

as they span several domains, none of them have an identical label set, and some datasets

capture fine-grained labels while others only have coarse labels. Also, the figer [17] dataset

is automatically generated using distant supervision process [15] and has multiple labels per
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Dataset Domain No. of
Labels

Mention
count

Fine
labels

bc5cdr [81] Clinical abstracts 2 9,385 No
conll [32] Reuters news stories 4 23,499 No
jnlpba [74] Life sciences abstracts 5 46,750 Yes
cadec [73] Medical forum 5 5,807 Yes
ontonotes [21]Newswire, conversa-

tions, newsgroups,
weblogs

18 1,16,465 No

bbn [22] Wall Street Journal
text

73 86,921 Yes

figer [17] Wikipedia 116 20,00,000 Yes

Table 4.1: Description of the seven ET datasets used.

entity mention in its label set. The other remaining datasets have a single label per entity

mention.

4.5.2 UHLS and Label Mapping

We followed the Algorithm 1 to create the UHLS and the label mapping. To reduce the

load on domain experts for verification of the label spaces, we initialized the UHLS with the

bbn dataset hierarchy. We keep on updating the initial hierarchy until all the labels from

the seven datasets were processed. There were a total of 223 labels in Y, and in the end, Yu
had 168 labels. This difference in label count is due to the mapping of several labels to one

or multiple existing nodes, without the creation of a new node. This corresponds to case 2

of the UHLS creation process (lines 3-4, Algorithm 1). Also, this indicates the overlapping

nature of the seven datasets. The label set overlap is illustrated in Figure 4.2. The MISC

label from the conll dataset has the highest ten number of mappings to the UHLS nodes.

figer and bbn datasets were the largest contributor towards fine labels with 96 and 57

labels at the leaf of UHLS. However, only 25 fine-grained labels were shared by these two

datasets. This indicates that even though these are the fine-grained datasets with one of

the largest label sets, each of them has complementary labels.

4.5.3 Baselines

We compared our learning model with two baseline models. The first baseline is an ensemble

of seven learning models, where each model is trained on one of the seven datasets. We name
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Figure 4.5: A pictorial illustration of the complete experimental setup.

this model a silo ensemble model2. In this ensemble model, each silo model has the same

mention and context encoder structure described in Section 4.4.2. However, the loss function

is different. For single-label datasets, we use a standard softmax based cross-entropy loss.

For multi-label datasets, we use a sigmoid based cross-entropy loss.

The second baseline is a learning model trained using a classic hard parameter sharing

multi-task learning framework [82]. In this baseline, all seven datasets are fed through a

common mention and context encoder. For each dataset, there is a separate classifier head

with the output labels the same as that was available in the respective original dataset.

We name this baseline as a multi-head ensemble baseline3. Similar to the silo models,

the appropriate loss function is selected for each head. The only difference between the

silo, and multi-head model is the way mention and context representations are learned. In

the multi-head model, the representations are shared across datasets. In silo models, the

representations are learned separately for each dataset.

4.5.4 Model Training

For each of the seven datasets, we use the standard train, validation, and testing split. If

the standard splits are not available, we randomly split the available data into 70%, 15%,

and 15% and use them as train, validation, and testing set, respectively. In the case of the

silo model, for each dataset, we train a model on its training split and select the best model

using its validation split. In the case of the multi-head and our proposed model, we train

2Here unlike traditional ensemble models, in silo ensemble, the learning models are trained on different
datasets.

3Here since the “task” is the same, i.e., entity typing, we use the term multi-head instead of multi-task
for the baseline.
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Figure 4.6: A flow-chart illustrating the workflow of the idealistic and realistic schemes.

the model on the training splits of all seven datasets together and select the best model

using the combined validation split.

4.5.5 Experimental Setup

Figure 4.5 illustrates the complete experimental setup, along with the learning models

compared. In this setup, the objective is to measure the learning model’s generalizability

for the ET task as a whole, rather than on any specific dataset. To achieve this, we

merged the test instances from the seven datasets listed in Table 4.1 to form a combined

test corpus. On this test set, we compared the performance of the baseline models with the

learning model trained via our proposed framework. We compare these models performance

using the following evaluation schemes.

Idealistic scheme: Given a test instance, this scheme picks a silo model from the silo

ensemble model (or head of the multi-head ensemble model), which has been trained on

a training dataset with the same domain and target labels set as the test instance. For

example, if the test instance is from the conll dataset, then the silo ensemble model (or

head of the multi-head ensemble model) trained on the conll dataset will be chosen for

prediction. An illustration of this scheme is available in Figure 4.5 and a flow-chart in

Figure 4.6. This scheme gives an advantage to the ensemble baselines and compares the
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models in traditional ways.

Realistic scheme: In this scheme, all of the test instances are indistinguishable in their

domain and candidate label set. In other words, given a test instance, learning models do

not have information about its domain and target labels. This is a challenging evaluation

scheme and close to a real-world setting, where once learning models are deployed, it cannot

be guaranteed that the user submitted test instances will be from the same domain. An

illustration of this scheme is available in Figure 4.5 and a flow-chart in Figure 4.6. In this

scheme, the silo ensemble and multi-head ensemble models assign a label to a test instance

based on the following criteria:

Highest confidence label (HCL): The label which has the highest confidence score

among the different models/heads of an ensemble model. For example, let there be two

models/heads, MA and MB, in a silo/multi-head ensemble model. For a test instance, MA

assigns the score of 0.1, 0.2, and 0.7 for the labels l1, l2, and l3, respectively. For the same

test instance, MB assigns the score of 0.05 and 0.95 for the labels l4 and l5 respectively.

Then the final label will be the label l5, which has a confidence score of 0.95.

Relative highest confidence label (RHCL): The label which has the highest normalized

confidence score among the different models/heads from an ensemble model. Continuing

with the example mentioned above for MA and MB, in RHCL criteria, we normalize the

confidence score for each model based on the number of labels the model is predicting. In

this example, MA is predicting three labels, and MB is predicting two labels. Here the

normalized scores for MA will be 0.3, 0.6, and 2.1 for the label l1, l2, and l3, respectively.

Similarly, the normalized scores for MB will be 0.1 and 1.9 for the label l4 and l5. Then the

final label will be the label l3 with the confidence score of 2.1.

Recall that the experimental setup includes multiple models, each having a different

label set. The existing classifier integration strategies [83], such as sum rule or majority

voting, are not suitable in this setup. For these evaluation schemes, we use the evaluation

metrics described in the following section.

4.5.6 Evaluation metrics

In the evaluation schemes, there are cases where the predicted label is not part of the gold

dataset label set. For example, our proposed model or the ensemble model might predict a

label city for a test instance which has a gold label annotated as a geopolitical entity. Here,

the models are predicting a fine-grained label, however, the dataset from where the test

instance came only had annotations at the coarse level. Thus, without manually verifying,
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1 Input: y, ŷ, Tu, and φ // A true label, a predicted label, the UHLS and
label mapping.

2 Output: t, t̂ // The true and predicted label after modification.
3 ym = φ(y), ŷm = φ(ŷ) // The true and predicted labels mapped to the

UHLS nodes.
4 D = descendants(ym) ∪ ym // The descendants of true label in the UHLS.
5 if D ∩ ŷm then // If the predicted label is among the descendants of

true label.
6 t̂ = ym // The predicted label is modified to be the same as true

label.
7 t = ym
8 else
9 t̂ = ŷm

10 t = ym

11 Return t, t̂ // Return the modified true and predicted labels,
respectively.

12
Algorithm 2: The procedure to convert the dataset-specific true and predicted labels
to labels in UHLS on the best effort basis.

it is not possible to know whether the model’s prediction was correct or not. To overcome

this issue, we propose two evaluation metrics, which allow us to compare learning models

making predictions in different label sets with minimum re-annotation effort.

In the first metric, we compute a loose micro F1 score on the best effort basis. It is

based on the intuition that if the labels are only annotated at a coarse level (e.g. person) in

the gold test annotations, then even if a model predicts a fine-label within that coarse label

(e.g. artist), this metric should not penalize such cases4. To find the fine-coarse subtype

information, we use the UHLS and the label mapping. We map both prediction and gold

label to the UHLS and evaluate in that space. The mapping or modification process is

described in Algorithm 2. After the best-effort mapping process, we can use the existing

loose micro F1 score typically used to evaluate the ET task, as defined in Section 2.3.2. We

compute the loose micro F1 scores both in an idealistic and realistic scheme. By design,

this metric will not capture errors made at a finer level, which the next metric will capture.

In the second metric, we measure how good are the fine-grained predictions on examples

where the gold dataset has only coarse labels. We re-annotate a representative sample of a

coarse-grained dataset and evaluate the model’s performance on this sample.

4Exception is where the source dataset also has fine-grained labels.

58



4. COLLECTIVE LEARNING FRAMEWORK FOR FINE-ET

4.5.7 Result and Analysis

Analysis of the idealistic scheme results

In Figure 4.7, we can observe that the multi-head ensemble model outperforms the silo

ensemble model (95.19% vs. 94.12%). The primary reason could be that the multi-head

model has learned better representations using the multi-task framework as well as has an

independent head for each dataset to learn dataset-specific idiosyncrasy. The performance

of our single model (UHLS) is between the silo ensemble model and the multi-head ensemble

model. Note that this performance comparison is in a setting that is the best possible case

for ensemble models where the ensemble models know complete information about the test

instance domain and label set. Despite this, the UHLS model, which does not require

any information about test instance domain and candidate labels, performs competitive

(94.29%), even better than the silo ensemble model. Moreover, the ensemble models do not

always predict the finest possible label, whereas UHLS can (Section 4.5.7).

Analysis of the realistic scheme results

In Figure 4.7, we can observe that both the silo ensemble and the multi-head ensemble

model perform poorly in this scheme. The best result for ensemble models (73.08%) is

obtained by the silo ensemble model when the labels were assigned using the HCL criteria.

We analyzed some of the outputs of ensemble models and found that there were several

cases where a narrowly focused model predicts with very high confidence (0.99 probability

or above) out-of-scope labels. For example, prediction of label ADR with confidence 0.999

by a silo model trained on the cadec dataset for a sports event test instance of Wikipedia

domain. The performance of our UHLS model is 94.29%, which is an absolute improvement

of 21.21% compared to the next best model Silo (HCL) model in the realistic scheme of

evaluation.

Analysis of the fine-grained predictions

For this analysis, we re-annotate the examples of type MISC from the conll test set into

nationality (support of 351), sports event (support of 117), and others (support 234). We

analyzed the prediction of different models for the nationality and sports event labels. Note

that this is an interesting evaluation where the test instances domain is Reuters News, and

the in-domain dataset does not have labels nationality and sports event. The nationality

label is contributed by the bbn dataset, whose domain is Wall Street Journal. The sports
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Figure 4.7: Comparison of learning models in the idealistic and realistic schemes.

event label is contributed by the figer dataset, whose domain is Wikipedia. The results

(Figure 4.8) are categorized into three parts, as described below:

In-domain results: The bottom two rows, Silo (conll) and MH (conll) represent these

results. We can observe that in this case, since the train and test dataset are from the same

domain, these models can predict accurately the label MISC for both the nationality and

sports event instances. However, MISC is not the finest possible label. These results are

from the idealistic scheme, where it is known about the test instance characteristics.

Out of domain but with known candidate label: The middle four rows, Silo (bbn),

MH (bbn), Silo (figer), and MH (figer) represent these results. In this case, we assume

that the candidate labels are known, and pick the models which can predict that label.

However, there is not a single silo/head model in the ensemble models which can predict both

nationality and sports event labels. For example, the model/head with the bbn label set

can predict the label nationality but not the sports event label. For sports event instances,

it assigns a coarse label events other, which also includes other events such as elections.

Similarly, the model/head with the figer label set can predict the label sports event but

not the label nationality. For nationality instances, it assigns completely out of scope labels

such as location and organizations. The out of scope predictions are due to the domain

mismatch.

No information about domain or candidate label: The top two rows, Silo (HCL)

and UHLS, represent these results. The Silo (HCL) is a silo ensemble model with the
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Figure 4.8: Analysis of Fine-grained label predictions. The two columns specify results for
nationality and sports event label. Each row represents a model used for prediction. The
results can be interpreted as, out of 351 entity mentions with type nationality, model Silo
(conll) predicted 338 as MISC type and the remaining as other types illustrated.

realistic evaluation scheme. We can observe that this model makes out of scope predictions,

such as predicting ADR for sports event instances. The UHLS model is trained using our

proposed framework. It can predict the finest label in both nationality and sports event

test instances, even though two different datasets contributed these labels. Also, it does

not use any information about the test instance domain or candidate labels.

Example output on different datasets

In Figure 4.9, we show the labels assigned by the model trained using the proposed frame-

work on the sentences from the conll, bbn and, bc5cdr datasets. We can observe that,

even though the bbn dataset is fine-grained, it has complementary labels compared with the

figer dataset. For example, for the entity mention Magellan, a label spacecraft is assigned.

The spacecraft label is only present in the figer dataset. Additionally, even in sentences

from clinical abstracts, the proposed approach is assigning fine-types, which came from a

dataset with the medical forum domain. For example, the ADR label is only present in
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Figure 4.9: Example output of our proposed approach. Sentence 1, 2, 3 are from the conll,
bbn and bc5cdr dataset respectively.

the cadec dataset with the medical forum domain. The proposed approach can aggregate

fine-labels across datasets and makes unified fine-grained predictions.

Result and analysis summary

The collective learning framework allows a limitation of one dataset being covered by some

other dataset. Our results convey that a model trained using CLF on an amalgam of diverse

datasets generalizes better for the ET task as a whole. Thus, the framework is suitable for

the ET in the wild problem.

4.6 Related Work

In this section, we will first describe the works which are closely related to our work, followed

by work in other related areas.

To the best of our knowledge, the work of [84] in the visual object recognition task

is closet to our work. They consider two datasets. First, a coarse-grained and second, a

fine-grained. The label set of the first dataset is assumed to be subsumed by the label set

of the second dataset. Thus coarse-grained labels can be mapped to fine-grained dataset

labels in a one-to-one mapping. Additionally, they did not propagate the coarse labels to

the finer labels. As demonstrated by our experiments, when several real-world datasets are

merged, one to one mapping is not possible. In our work, we provide a principled approach

where multiple datasets can contribute to fine-grained labels. In our framework, a partial

loss function enables fine-label propagation on datasets with coarse labels.
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In the area of cross-lingual syntactic parsing, there is a notation of a universal POS

tagset [85]. This tagset is a collection of coarse tags that exist in similar form across

languages. Utilizing this tagset and a mapping from language-specific fine-tags, it becomes

possible to train a single model in a cross-lingual setting. In this case, the mapping is many-

to-one, i.e., a fine-category to a coarse category, thus the models are limited to predict a

coarse-grained label.

Related to the use of partial label loss function in the context of the ET problem, there

exist other notable works including Ren et al. [9] and Abhishek et al. [30]. In our work, we

use the current state-of-the-art hierarchical partial loss function proposed by Xu et al. [75].

A comparison among these loss functions is available in [75].

4.7 Conclusion

In this chapter, we propose building learning models that generalize better on the ET as a

whole, rather than on a specific dataset. We comprehensively studied ET in the wild task,

which includes problem definition, collective learning framework, and evaluation setup. We

demonstrated that by using in conjunction a UHLS, one-to-many label mappings, and a

partial hierarchical loss function; we can train a single classifier on several diverse datasets

together. The single classifier collectively learns from diverse datasets and predicts the finest

possible label across all datasets, outperforming an ensemble of narrowly focused models

in their best possible case. Also, during collective learning, there is a multi-directional

knowledge flow; i.e., there is no one source or target dataset. This knowledge flow is

different from the well studied multi-task and transfer learning approaches [27] where the

prime objective is to transfer knowledge from a source dataset to a target dataset.

In NLP, there are several tasks such as entity linking [8], relation classification [86],

and named entity recognition [12], where the current focus in on excelling at a particular

dataset, not on a particular task. We expect that collective learning approaches will open

up a new research direction for each of these tasks. Some of these tasks, such as relation

classification, have similar characteristics to that of the ET task, where the objective is to

assign a label to a given input. For these tasks, our proposed CLF can be directly used,

whereas other tasks may require suitable modifications.

;;=8=<<

63





5
New Datasets for the Fine-ED and

Fine-ET tasks

Chapter Highlights

• We observe that when the scope of entity mentions are diverse, the existing entity

detection models have a poor recall.

• The primary reason for the poor recall is the lack of annotated entity mentions from

diverse categories in the existing datasets.

• We propose a heuristics allied with a distant supervision approach to automatically

construct training datasets for the Fine-ED and Fine-ET tasks.

• We do an extensive evaluation of the created datasets, both intrinsically and extrin-

sically.

• We also release a manually annotated corpus for the evaluation of Fine-ED and Fine-

ET models.

• The new manually annotated corpus has 2.7 times more entity types than the figer

evaluation corpus.

• This chapter is based on the publication “Fine-grained Entity Recognition with Re-

duced False Negatives and Large Type Coverage” presented at AKBC 2019.
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5.1. ABSTRACT

5.1 Abstract

In this chapter, we first provide an analysis that in the Fine-ET setting using the existing

datasets, detection of entity mention becomes a limitation for supervised learning models.

The analysis conveys that in the existing datasets, the boundaries of entities covering a large

spectrum of entity types are not properly annotated. To address this limitation, we propose

a Heuristics Allied with Distant Supervision (HAnDS) framework, which automatically

constructs quality datasets suitable for both the Fine-ED and Fine-ET tasks (thus end-to-

end Fine-grained Entity Recognition (Fine-ER) task). The HAnDS framework exploits the

high interlink among Wikipedia and Freebase in a pipelined manner, reducing annotation

errors introduced by naively using the distant supervision approach. Using the HAnDS

framework, we create two datasets, one suitable for building Fine-ER systems recognizing

up to 118 entity types based on the FIGER type hierarchy and another for up to 1115

entity types based on the TypeNet hierarchy. Our extensive empirical experimentation

warrants the quality of the generated datasets. Along with this, we also provide a manually

annotated dataset for benchmarking Fine-ER systems. The code and datasets to replicate

the experiments are available at https://github.com/abhipec/HAnDS.

5.2 Introduction

In the literature, the problem of recognizing a handful of coarse-grained types such as

person, location, and organization has been extensively studied [12, 13]. We term this as

a Coarse-grained Entity Recognition (Coarse-ER) task. For Coarse-ER, there exist several

datasets, including manually annotated datasets such as CoNLL [32] and automatically

generated datasets such as WP2 [87]. Manually constructing a dataset for the Fine-ER

task is an expensive and time-consuming process as an entity mention could be assigned

multiple types from a set of thousands of types.

In recent years, one of the subproblems of Fine-ER, the Fine-ET problem has received

lots of attention particularly in expanding its type coverage from a handful of coarse-grained

types to thousands of fine-grained types [88, 89]. The primary driver for this rapid expansion

is exploitation of cheap but fairly accurate annotations from Wikipedia and Freebase [1]

via the distant supervision process [15, 16]. The Fine-ET problem assumes that the entity

boundaries are provided by an oracle.

We observe that the detection of entity mentions at the granularity of Fine-ET is a

bottleneck. The existing Fine-ER systems, such as FIGER [17], follow a two-step approach
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in which the first step is to detect entity mentions, and the second step is to categorize the

detected entity mentions. For entity detection, it is assumed that all the fine-categories are

subtypes of the following four categories: person, location, organization, and miscellaneous.

Thus, a model trained on the CoNLL dataset [32], which is annotated with these types, can

be used for entity detection. Our analysis indicates that in the context of Fine-ER, this

assumption is not valid. As a face value, the miscellaneous type should ideally cover all

entity types other than person, location, and organization. However, it only covers 68% of

the remaining types of the FIGER hierarchy and 42% of the TypeNet [88] hierarchy. Thus,

the models trained using CoNLL data are highly likely to miss a significant portion of entity

mentions relevant to automatic knowledge bases construction applications.

Our work bridges this gap between entity detection and Fine-ET. We propose to au-

tomatically construct a quality dataset suitable for the Fine-ER, i.e., both Fine-ED and

Fine-ET using the proposed HAnDS framework. HAnDS is a three-stage pipelined frame-

work wherein each stage uses different heuristics. These heuristics reduce the errors intro-

duced via naively using the distant supervision paradigm, including but not limited to the

presence of large false negatives. The heuristics are data-driven and use the information

provided by hyperlinks, alternate names of entities, and orthographic and morphological

features of words.

Using the HAnDS framework and the two popular type hierarchies available for Fine-

ET, the FIGER type hierarchy [17], and TypeNet [88], we automatically generated two

corpora suitable for the Fine-ER task. The first corpus contains around 38 million anno-

tated entity mentions with 118 entity types. The second corpus contains around 46 million

annotated entity mentions with 1115 entity types. Our extensive intrinsic and extrinsic

evaluation of the generated datasets warrants its quality. As compared with existing auto-

matically generated datasets, supervised learning models trained on our induced training

datasets perform significantly better (approx 20 point improvement on the micro-F1 score).

Along with the automatically generated dataset, we provide a manually annotated cor-

pora of around a thousand sentences annotated with 117 entity types for benchmarking of

Fine-ER models.

Our contributions are highlighted as follows:

• We analyzed that the existing practice of using models trained on the CoNLL dataset

have poor recall for entity detection in the Fine-ET setting, where the type set spans

several diverse domains (Section 5.4).

• We propose the HAnDS framework, a heuristics allied with the distant supervision
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approach to automatically construct datasets suitable for Fine-ER problem, i.e., both

fine entity detection and fine entity typing (Section 5.5).

• We establish the state-of-the-art baselines on our new manually annotated corpus,

which covers 2.7 times more finer-entity types than the figer gold corpus, the current

de facto Fine-ER evaluation corpus (Section 5.6).

5.3 Related Work

We divide the related work into two parts. First, we describe work related to the automatic

dataset construction in the context of the entity recognition task followed by related work

on noise reduction techniques in the context of automatic dataset construction task.

In the context of Fine-ER task, Ling and Weld [17] proposed to use distant supervision

paradigm [16, 90] to automatically generate a dataset for the Fine-ET problem, which is a

sub-problem of Fine-ER. We term this as a Naive Distant Supervision (NDS) approach. In

NDS, the linkage between Wikipedia and Freebase is exploited. If there is a hyperlink in a

Wikipedia sentence, and that hyperlink is assigned to an entity present in Freebase, then the

hyperlinked text is an entity mention whose types are obtained from Freebase. However, this

process can only generate positive annotations, i.e., if an entity mention is not hyperlinked,

no types will be assigned to that entity mention. The positive-only annotations are suitable

for the Fine-ET task, but it is not suitable for learning entity detection models as there are

large number of false negatives (Section 5.4). This dataset is publicly available as the figer

dataset, along with a manually annotated evaluation corpus. The NDS approach is also

used to generate datasets for some variants of the Fine-ET problem such as the Corpus level

Fine-Entity typing [91] and Fine-Entity typing utilizing knowledge base embeddings [92].

Much recently, Choi et al. [89] generated an entity typing dataset with a very large type set

of size 10k using head words as a source of distant supervision as well as using crowdsourcing.

In the context of the Coarse-ER task, [87, 93, 94] proposed an approach for creating

training datasets using a combination of bootstrapping process and heuristics. The boot-

strapping was used to classify a Wikipedia article into five categories, namely PER, LOC,

ORG, MISC, and NON-ENTITY. The bootstrapping requires initial manually annotated

seed examples for each type, which limits its scalability to thousands of types. The heuris-

tics were used to infer additional links in un-linked text, however, the proposed heuristics

limit the scope of the entity and non-entity mentions. For example, one of the heuristics

used mostly restricts entity mentions to have at least one character capitalized. This as-
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Figure 5.1: The figure illustrates the entity type coverage analysis of the FIGER and the
TypeNet type set. A significant portion of entity types (out of scope portion) are not a
descendant of any of the four types present in the CoNLL dataset.

sumption is not true in the context for Fine-ER, where entity mentions are from several

diverse domains, including the biomedical domain.

There are other notable works which combine NDS with heuristics for generating entity

recognition training dataset, such as [95] and [96]. However, their scope is limited to the

application of Coarse-ER. Our work revisits the idea of automatic corpus construction in

the context of Fine-ER. In the HAnDS framework, our main contribution is to design data-

driven heuristics, which are generic enough to work for thousands of diverse entity types

while maintaining a good annotation quality.

An automatic dataset construction process involving heuristics and distant supervision

will inevitably introduce noise and its characteristics depend on the dataset construction

task. In the context of the Fine-ED and Fine-ET tasks, the dominant noise is false nega-

tives and false positives, respectively. Whereas, for the relation extraction task both false

negatives and false positives noise is present [97, 98].

5.4 Case study: Entity Detection in the Fine Entity Typing

Setting

In this section, we systematically analyzed existing entity detection systems in the setting of

Fine-ET. We aim to answer the following question: How good are entity detection systems

when it comes to detecting entity mentions belonging to a large set of diverse types? We

performed two analyses. The first analysis is about the type coverage of entity detection
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SETTING

Models figer 1k-WFB-g
Precision Recall F1 Precision Recall F1

LSTM-CNN-CRF (FIGER) 87.17 28.95 43.47 91.41 37.13 52.81
CoreNLP 83.82 80.99 82.38 75.46 64.12 69.33
NER Tagger 80.44 84.01 82.19 77.25 68.52 72.62

Table 5.1: The performance analysis of various entity detection models trained on existing
datasets and the evaluation datasets are the figer and 1k-WFB-g datasets.

systems, and the second analysis is about the actual performance of entity detection systems

on two manually annotated Fine-ER datasets.

5.4.1 Is the Fine-ET type set an expansion of the extensively researched
coarse-grained types?

For this analysis, we manually inspected the most commonly used Coarse-ER dataset,

CoNLL 2003. We analyzed how many entity types in the two popular Fine-ET hierarchies,

figer, and TypeNet are descendent of the four coarse-types present in the CoNLL dataset,

namely person, location, organization, and miscellaneous. The results are available in Fig-

ure 5.1. We can observe that in the figer typeset, 14% of types are not descendants of the

CoNLL types. This share increases in TypeNet, where 25% of types are not descendants

of CoNLL types. These types are from various diverse domains, including biomedical, legal

processes, and entertainment. Recognition of entity mentions from these domains is im-

portant in the aspect of several applications including knowledge base construction. The

lack of coverage of these diverse domains in the CoNLL dataset can be attributed to the

fact that since 2003, the entity recognition problem has evolved a lot both in going towards

finer-categorization as well as capturing entities from diverse domains.

5.4.2 How do entity detection systems perform in the Fine-ET setting?

For this analysis, we evaluate two publicly available state-of-the-art entity detection systems,

the Stanford CoreNLP [49] and the NER Tagger system proposed by Lample et al. [46].

Along with these, we also train an LSTM-CNN-CRF based sequence labeling model pro-

posed by Ma and Hovy [99] on the figer dataset. We evaluated the learning models on

manually annotated figer corpus and 1k-WFB-g corpus, a new in-house developed corpus

specifically for Fine-ER model evaluations. For these evaluations, we used precision, recall,

and F1 metrics, the standard evaluation metrics for the ED task. A detailed description of

these metrics is available in Section 2.3.1. The results are presented in Table 5.1.
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From the results, we can observe that a state-of-the-art sequence labeling model,

LSTM-CNN-CRF, trained on a dataset generated using the NDS approach, such as the

figer dataset, has lower recall compared with precision. On average, the recall is 58%

lower than precision. The lower recall is primarily because the NDS approach generates

positive only annotations, and the remaining un-annotated tokens contain a large number

of entity mentions. Thus the resulting dataset has large false negatives.

On the other hand, learning models trained on the CoNLL dataset (CoreNLP and NER

Tagger), have a much more balanced performance in precision and recall. The balanced

performance is because of being a manually annotated dataset, it is less likely that any entity

mention (according to the annotation guidelines) will remain un-annotated. However, the

recall is much lower (16% lower) on the 1k-WFB-g corpus as on the figer corpus. The

lower recall on the 1k-WFB-g corpus is because, when designing 1k-WFB-g, we ensured

that it has sufficient examples covering 117 entity types. Whereas, the figer evaluation

corpus has only has 42 types of entity mentions, and 80% of mentions are subtypes of person,

location, and organization types. These results also highlight the coverage issue, mentioned

in Section 5.4.1. When the evaluation set is balanced, covering a large spectrum of entity

types, the performance of models trained on the CoNLL dataset goes down because of the

presence of out-of-scope entity types. An ideal entity detection system should be able to

work on the traditional as well as other entities relevant to the Fine-ER problem, i.e., good

performance across all types. A statistical comparison of figer and 1k-WFB-g corpus is

provided in Table 5.2.

The use of CoreNLP or learning models trained on the CoNLL dataset is a standard

practice to detect entity mentions in existing Fine-ER research [17]. Our analysis conveys

that this practice has its limitations in terms of detecting entities belonging to diverse

domains. In the next section, we will describe our approach of automatically creating

training datasets for the Fine-ER task. The same learning models, when trained on our

created training datasets, will have a better and a balanced precision and recall.

5.5 HAnDS Framework

The objective of the HAnDS framework is to automatically create a corpus of sentences

where every entity mention is correctly detected and is being characterized into one or

more entity types. The scope of entities, i.e., what types of entities should be annotated, is

decided by a type hierarchy, which is one of the inputs of the framework. Figure 5.2 gives
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(a) The flow-chart provides a high-level overview of
the three stages of the HAnDS framework, along
with each stage’s objective.

(b) The top four boxes illustrate how annotations
change during different stages. The bottom box il-
lustrates the outgoing links and the candidate names
for the example document.

Figure 5.2: An overview of HAnDS framework (left) along with an illustration of the frame-
work in action on an example document (right).

an overview of the HAnDS framework.

5.5.1 Inputs

The framework requires three inputs, a linked text corpus, a knowledge base, and a type

hierarchy.

Linked text corpus: A linked text corpus is a collection of documents where sporadically

important concepts are hyperlinked to another document. For example, Wikipedia is a

large-scale multi-lingual linked text corpus. The framework considers the span of hyper-

linked text (or anchor text) as potential candidates for entity mentions.

Knowledge base: A knowledge base (KB) captures concepts, their properties, and inter-

concept properties. Freebase, WikiData [5], and UMLS [100] are examples of popular

knowledge bases. A KB usually has a type of property where multiple fine-grained seman-

tic types/labels are assigned to each concept.

Type hierarchy: A type hierarchy (T ) is a hierarchical organization of various entity

types. For example, an entity type city is a descendant of a type geopolitical entity. There

have been various hierarchical organization schemes of fine-grained entity types proposed

in the literature, which includes, a 200 type scheme proposed by Sekine [101], a 113 type

scheme proposed by Ling and Weld [17], an 87 type scheme proposed by Gillick et al. [63],

and a 1081 type scheme proposed by Murty et al. [88]. However, in our work, we use two

such hierarchies, FIGER1 and TypeNet. FIGER being the most extensively used hierarchy
1Based on our observations, we made a few changes to the original FIGER hierarchy (seven additions,

72



5. NEW DATASETS FOR THE FINE-ED AND FINE-ET TASKS

and TypeNet being the latest and largest entity type hierarchy.

5.5.2 The three stages of the HAnDS framework

Automatic corpora creation using distant supervised methods inevitably will contain errors.

For example, in the context of Fine-ER, the errors could be at annotating entity boundaries,

i.e., entity detection errors, or assigning an incorrect type, i.e., entity linking errors or both.

The three-step process in our proposed HAnDS framework tries to reduce these errors.

Stage-I: Link categorization and Preprocessing

The objective of this stage is to reduce false positives entity mentions, where an incorrect

anchor text is detected as an entity mention. To do so, we first categorize all hyperlinks

of the document being processed as entity links and non-entity links. Further, every link is

assigned a tag of being a referential link or not.

Entity links: These are a subset of links whose anchor text represents the candidate entity

mentions. If the labels obtained by a KB for a link, belongs to T , we categorize that link

as an entity link. Here, the T decides the scope of entities in the generated dataset. For

example, if T is the FIGER type hierarchy, then the hyperlink photovoltaic cell is not an

entity link as its labels obtained by Freebase is not present in T . However, if T is the

TypeNet hierarchy, then the hyperlink photovoltaic cell is an entity link of type invention.

Non-entity links: These are a subset of links whose anchor text does not represent an

entity mention. Since knowledge bases are incomplete, if a link is not categorized as an

entity link, it does not mean that the link will not represent an entity. We exploit corpus

level context to categorize a link as a non-entity link using the following criteria: across the

complete corpus, the link should be mentioned at least 50 times (support threshold) and

at least 50% of times (confidence threshold) with a lowercase anchor text. The intuition of

this criteria is that we want to be sure that a link represents a non-entity. For example,

this heuristic categorizes RBI as a non-entity link as there is no label present for this link

in Freebase. Here RBI refers to the term “run batted in”, which is frequently used in

the context of baseball and softball. In contrast, Nothman et al. [93] discard non-entity

mentions having capitalized words, whereas, our data-driven heuristics does not put any

such hard constraints.

Referential links: A link is said to be referential if its anchor text has a direct case-

insensitive match with the list of allowed candidate names for the linked concept. A KB

one correction, one merger, one deletion, and one substitute).
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can provide such a list. For example, for an entity Bill Gates, the candidate names

provided by Freebase include Gates and William Henry Gates. However, in Wikipedia,

there exists hyperlinks such as Bill and Melinda Gates linking to Bill Gates page, which is

erroneous as the hyperlinked text is not the correct referent of the entity Bill Gates.

After the categorization of links, except for referential entity links, we unlink all other

links. Unlinking non-referential links such as Bill and Melinda Gates reduce entity detection

errors by eliminating false positive entity mentions. The unlinked text span or a part of

it can be referential mention for some other entities, as in the above example, Bill and

Melinda Gates. Figure 5.2b also illustrates this process where Lahti, Finland, gets unlinked

after this stage. The next stage tries to re-link the unlinked tokens correctly.

Stage-II: Infer additional links

The objective of this stage is to reduce false-negative entity mentions, where an entity men-

tion is not annotated. The false negatives can be reduced by linking the correct referential

name of the entity mention to the correct node in KB.

To reduce entity linking errors, we use the document level context by restricting the

candidate links (entities or non-entities) to the outgoing links of the current document

being processed. For example, in Figure 5.2b, while processing an article about a Finnish-

American luger Tristan Jeskanen, it is unlikely to observe mention of a 1903 German novel

having the same name, i.e., Tristan.

To reduce false-negative entity mentions, we construct two trie trees capturing the

outgoing links and their candidate referential names for each document. The first trie

contains all links, and the second trie only contains links of entities which are predominantly

expressed in lowercase phrases2 (e.g., names of diseases). For each non-linked uppercase

character, we match the longest matching prefix string within the first trie and assign the

matching link. In the remaining non-linked phrases, we match the longest matching prefix

string within the second trie and assign the matching link. Linking the candidate entities in

unlinked phrases reduce entity detection error by eliminating false negative entity mentions.

Unlike Nothman et al. [93], the two-step string matching process ensures the possibility

of a lowercase phrase being an entity mention (e.g., lactic acid, apple juice, bronchoconstric-

tion, etc.) and a word with a first uppercase character being a non-entity (e.g., Jazz, RBI,3

etc.).

2More than 50% of anchor text across corpus should be a lowercase phrase.
3A run batted in (RBI) is a statistic in baseball and softball.
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Figure 5.2b shows an example of the input and output of this stage. In this stage, the

phrases Tristan, Lahti, Finland, and Jeskanen get linked.

Stage-III: Sentence selection

The objective of this stage is to reduce entity detection errors further. This stage is mo-

tivated by the incomplete nature of practical knowledge bases. KBs do not capture all

entities present in a linked text corpus and do not provide all the referential names for an

entity mention. Thus, after stage-II there will be still a possibility of having both types of

entity detection errors, false positives, and false negatives.

To reduce such errors in the induced corpus, we select sentences where it is most

likely that all entity mentions are annotated correctly. The resultant corpora of selected

sentences will be our final dataset. To select these sentences, we exploit sentence-level

context by using POS tags and a list of the frequent sentence starting words. We only

select sentences where all unlinked tokens are most likely to be a non-entity mention. If an

unlinked token has capitalized characters, then it likely to be an entity mention. We do not

select such sentences, except in the following cases. In the first case, the token is a sentence

starter, and is either in a list of frequent sentence starter word4 or its POS tag is among

the list of permissible tags5. In the second case, the token is an adjective, or belongs to

occupational titles or is a name of day or month.

Figure 5.2b shows an example of the input and output of this stage. Here only the first

sentence of the document is selected because, in the other sentence, the name Sami is not
linked. The sentence selection stage ensures that the selected sentences have high-quality

annotations. We observe that only around 40% of sentences are selected by stage III in

our experimental setup. We provide an analysis of several characteristics of the discarded

and retained sentences, in the intrinsic evaluation Section 5.6.1. Our extrinsic analysis in

Section 5.6.2 shows that this stage helps models to have significantly better recall.

In the next section, we describe the dataset generated using the HAnDS framework

along with its evaluations.

5.6 Dataset Evaluation

Using the HAnDS framework, we generated two datasets as described below:

WikiFbF: A dataset generated using Wikipedia, Freebase, and the FIGER hierarchy as
4150 most frequent words were used in the list.
5POS tags such as DT, IN, PRP, CC, WDT etc. that are least likely to be candidate for entity mention.
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Data sets Wiki-FbT Wiki-FbF 1k-WFB-g FIGER
# of sentences 32, 583, 731 31, 896, 989 982 434
# of entity mentions 45, 696, 943 37, 734, 658 2, 420 563
# of unique entities 2, 557, 122 2, 506, 518 — —
# of unique mentions 3, 427, 161 3, 264, 876 2, 151 331
# of tokens 707, 347, 974 690, 086, 692 25, 658 10, 008
# of unique tokens 2, 280, 446 2, 250, 565 7, 245 2, 578
µ sentence length 21.71 21.63 26.13 23.06
µ label per entity 9.60 2.12 1.64 1.38
# of types 1115 118 117 43

Table 5.2: Statistics of the different datasets generated or used in this work.

an input for the HAnDS framework. This dataset contains around 38 million annotated

entity mentions with 118 different types.

WikiFbT: A dataset generated using Wikipedia, Freebase, and the TypeNet hierarchy as

an input for the HAnDS framework. This dataset contains around 46 million annotated

entity mentions with 1115 different types.

In our experiments, we use the September 2016 Wikipedia dump. Table 5.2 lists

various statistics of these datasets. In the next subsections, we estimate the quality of the

generated datasets, both intrinsically and extrinsically. Our intrinsic evaluation is focused

on quantitative analysis, and the extrinsic evaluation is used as a proxy to estimate precision

and recall of annotations.

5.6.1 Intrinsic evaluation

In this section, we aim to analyze the quality of the HAnDS generated dataset intrinsically.

We perform two kinds of analysis. First, we compare the annotations of the HAnDS gener-

ated datasets with the NDS generated datasets. Second, we compare the data characteristics

of the discarded and retained sentence of the HAnDS framework.

Comparision of the annotations generated by the HAnDS framework with the
NDS approach:

We analyzed these datasets quantitatively, and the result of this analysis is presented in

Table 5.3. We can observe that on the same sentences, the HAnDS framework is able to

generate about 1.9 times more entity mention annotations and about 1.6 times more entities

for the WikiFbT corpus compared with the NDS approach. Similarly, there are around 1.8

times more entity mentions and about 1.6 times more entities in the WikiFbF corpus. In
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TypeNet hierarchy FIGER hierarchy
|Hm| 45, 696, 943 37, 734, 658
|Nm| 24, 594, 804 20, 590, 776
|Hm−Nm| 22, 585, 152 18, 261, 738
|Hm ∩Nm| 23, 111, 791 19, 472, 920
|Nm−Hm| 1, 483, 013 1, 117, 856

(a) Analysis of entity mentions.

TypeNet hierarchy FIGER hierarchy
|He| 2, 557, 122 2, 506, 518
|Ne| 1, 630, 078 1, 585, 518
|He−Ne| 959, 694 952, 638
|He∩Ne| 1, 597, 428 1, 553, 880
|Ne−He| 32, 650 31, 638

(b) Analysis of entities.

Table 5.3: Quantitative analysis of dataset generated using the HAnDS framework with the
NDS approach of dataset generation. Here Hm and He denotes a set of entity mentions and
set of entities, respectively, generated by the HAnDS framework, and Nm and Ne denotes
a set of entity mentions and set of entities, respectively, generated by the NDS approach.

Section 5.6.2, we will observe that despite around 1.6 to 1.9 times more new annotations,

these annotations have a very high linking precision. Also, there is a large overlap among

annotations generated using the HAnDS framework and the NDS approach. Around above

95% of entity mention (and entity) annotations generated using the NDS approach are

present in the HAnDS framework induced corpora. This high overlap indicates that the

existing links present in Wikipedia are of high quality. The HAnDS framework removed

the remaining 5% links as false positive entity mentions.

Comparison of the data characteristics of the sentences retained and discarded
by the HAnDS framework:

We analyzed the discarded and retained sentences from the HAnDS framework on the

following parameters:

1. Lengths of the discarded sentences: Are the discarded sentences longer on aver-

age?

2. Lengths of entity mention: Are the entity mentions in the discarded sentences

longer on average?

3. Distribution of token and entity mention: Is there is a fundamental change in

the token and entity mention distribution of discarded and retained sentences?

This analysis is done while generating WikiFbF dataset. The number of sentences

in the retained corpus is 31.92 million, whereas the number of sentences in the discarded

corpus is 50.33 million.

Sentence length distribution analysis: Figure 5.3 illustrates the sentence length dis-

tribution among the discarded and retained sentences. We observe that errors in sentence
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Figure 5.3: Distribution of retained and discarded sentences of length between 6 and 100
on a log-log plot.

segmentation mostly caused sentences shorter than six tokens and greater than 100 tokens.

Thus we have plotted the distribution for the sentences in between 6 and 100 tokens.

In Figure 5.3, we can observe that the discarded sentences are longer. The mean length

for discarded sentences is 27.29, whereas the mean length for retained sentences is 21.63.

Entity length distribution analysis: Figure 5.4 illustrates the entity length distribution

among the discarded and retained sentences. We can observe that there is no notable

difference between these two plots. In both these corpus, there are about 10k entity mentions

with length ten tokens.

Figure 5.4: The analysis of entity length in the retained and discarded sentences on log-log
scale.

Token distribution analysis: Figure 5.5 illustrates the token distribution among the
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(a) Token distribution in the retained sentences. (b) Token distribution in the discarded sentences.

Figure 5.5: Token distribution analysis on log-log scale.

(a) Entity mention distribution in the retained sen-
tences.

(b) Entity mention distribution in the discarded sen-
tences.

Figure 5.6: Entity mention distribution analysis on log-log scale.

discarded and retained sentences. We can observe that other than a slight change in slope

and absolute magnitude, there is no notable difference between these two plots. This can

be attributed to the fact that the retained corpus has 31.92 million sentences, and the

discarded corpus has 50.33 million sentences.

Entity mention distribution analysis: Figure 5.6 illustrates the entity mention distri-

bution among the discarded and retained sentences. We can observe that there is no notable

difference between these two plots.

Sentence length distribution comparison across multiple datasets: In Figure 5.7

and Figure 5.8, we compare the sentence length distribution of the retained and dis-

carded sentences with five NER datasets, namely CoNLL [32], OntoNotes [21], BBN [22],

CADEC [73], and BC5CDR [81]. These datasets have different writing styles, as mentioned

79



5.6. DATASET EVALUATION

Figure 5.7: Distribution of sentence length compared across five NER datasets with the
retained and discarded sentences.

Figure 5.8: Distribution of sentence length between 6 to 100 compared across five NER
datasets with the retained and discarded sentences.

below:

1. CoNLL: The dataset contains sentences sampled from news articles of Reuters news

corpus.

2. OntoNotes: The dataset contains sentences sampled from news, conversation text,

broadcast conversation, and weblogs.

3. BBN: The dataset contains sentences sampled from news article of the Wall Street
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Journal.

4. CADEC: The dataset contains sentences sampled from a medical forum discussion

related to adverse drug reactions.

5. BC5CDR: The dataset contains sentences sampled from clinical abstracts.

In Figure 5.7 there is no restriction on sentence length. We can observe that the most

notable distribution change occurs at either shorter sentences or longer sentences.

In Figure 5.8 we only consider sentence whose length are in between 6 and 100. Here

we can observe that the distribution of sentence length in five NER datasets are close to

the retained sentence length distribution.

Analysis summary: Our analysis indicates that there is no significant difference in the

data distribution of the retained and discarded sentence, other than the sentence length

distributions. Note that this result has a subtle interpretation. We observe that in the

discarded sentences, there are more than 100k sentences with a length greater than 100

tokens. A corpus constituting of only these longer sentences is larger than several news-

domain NER datasets. We observe that the majority of these sentences are caused due to

incorrect sentence segmentation or they follow a list like patterns such as:

1. PER, PER, PER, PER, PER, . . .

2. PER - PER - PER - PER - PER - . . .

3. Director (Movie), Director (Movie), Director (Movie), . . .

4. Project (year), project (year), project (year), . . .

5. NUMBER NUMBER NUMBER NUMBER . . .

6. Movie (year), movie (year), movie (year), . . .

7. PER | PER | PER | PER | PER | . . .

The longest sentence length in discarded sentences is 6564 tokens. Our dataset also

captures these long sentences, but the number is far less: 7664 sentences with a length

greater than 100. The longest sentence length in the retained sentences is 624 tokens.

Although being a basic evaluation, the analysis conveys that these longer sentences

might not be suitable for applications where NER systems are used. To support this claim,

we plotted the sentence length distribution of five NER datasets from different domains in

Figures 5.7 and 5.8. The result conveys that sentences longer than 100 words rarely occur
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Figure 5.9: The figure illustrates the LSTM-CNN-CRF model used for the Fine-ED task.

in these domains, and the sentence length distribution in the retained sentences is closer

to the sentence length distribution in these domains when compared with the discarded

sentences.

5.6.2 Extrinsic evaluation

In extrinsic evaluation, we evaluate the performance of learning models when trained on

datasets generated using the HAnDS framework. Due to resource constraints, we perform

this evaluation only for the WikiFbF dataset and its variants.

Learning Models

Following Ling and Weld [17], we divided the Fine-ER task into two subtasks: Fine-ED, a

sequence labeling problem, and Fine-ET, a multi-label classification problem. We use the

existing state-of-the-art models for the respective sub-tasks. The Fine-ER model is a simple

pipeline combination of a Fine-ED model followed by a Fine-ET model.

Fine-ED model: For the Fine-ED task, we use a state-of-the-art sequence labeling based

LSTM-CNN-CRF model proposed by Ma and Hovy [99]. In Figure 5.9, we illustrate the

LSTM-CNN-CRF model architecture. In this model, a Convolutional Neural Network

(CNN) [102] is used to compute each word’s representation using the word’s characters.

The word representation obtained using CNN is concatenated with the word representation

obtained through a pre-trained word embedding models such as GloVe [72]. The concate-
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nated feature representation is the input to a bi-directional LSTM network. The LSTM

layer’s output is the input to a Conditional Random Field (CRF) layer, which makes the

final prediction.

Fine-ET model: For the Fine-ET task, we use our noise-aware LSTM based model, as

described earlier in Chapter 3 [30].

Hyperparameter setting: All the deep neural network models mentioned in this chapter

used 300-dimensional pre-trained word embeddings distributed by Pennington et al. [72].

The hidden layer size of word-level bi-directional LSTM was 100 for the Fine-ED model and

200 for the Fine-ET model. The hidden layer size of character-level used in the Fine-ET

model was 200. A total of 30 filters of size three, were used in character CNN for the

Fine-ED model. We randomly initialized character embeddings of size 50 and 200 for the

Fine-ED and Fine-ET model, respectively. The character embeddings were updated during

the model training. We use dropout with the probability of 0.5 on the output of LSTM

encoders. We use Adam [70] as an optimization method with a learning rate of 0.001 to

0.002 and a mini-batch size of 500. The models were implemented using the TensorFlow6

framework.

Datasets

The two learning models are trained on the following datasets:

(1) Wiki-FbF: Dataset created by the HAnDS framework.

(2) Wiki-FbF-w/o-III: Dataset created by the HAnDS framework without using stage

III of the pipeline.

(3) Wiki-NDS: Dataset created using the NDS approach with the same Wikipedia version

used in our work.

(4) FIGER: Dataset created using the NDS approach by Ling and Weld [17].

Except for the figer dataset, for other datasets, we randomly sampled two million

sentences for model training due to computational constraints. However, during model

training, we ensured that every model irrespective of the dataset is trained for approximately

the same number of examples. Thus, each model is trained on the same number of examples

and reduces the data size bias. All extrinsic evaluation experiments, subsequently reported

in this section, are performed on these randomly sampled datasets. Also, the same dataset

is used to train Fine-ED and Fine-ET learning model. This setting is different from Ling

and Weld [17], where an entity detection model is trained on the CoNLL dataset. Hence,
6https://www.tensorflow.org/
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Models FIGER 1k-WFB-g
Precision Recall F1 Precision Recall F1

LSTM-CNN-CRF (FIGER) 87.17 28.95 43.47 91.41 37.13 52.81
CoreNLP 83.82 80.99 82.38 75.46 64.12 69.33
NER Tagger 80.44 84.01 82.19 77.25 68.52 72.62
LSTM-CNN-CRF (Wiki-NDS) 86.14 30.91 45.49 92.80 47.09 62.48
LSTM-CNN-CRF (Wiki-FbF-w/o-III) 88.07 44.58 59.2 92.55 65.03 76.39
LSTM-CNN-CRF (Wiki-FbF) 79.80 86.32 82.94 89.89 81.98 85.75

Table 5.4: The performance comparison of various entity detection models on the figer
and 1k-WFB-g datasets.

the result reported in their work is not directly comparable.

We evaluated the learning models on the following two datasets:

(1) FIGER: This is a manually annotated evaluation corpus which has been created by

Ling and Weld [17]. The corpus contains 563 entity mentions and overall 43 different entity

types. The type distribution in this corpus is skewed as only 11 entity types are mentioned

more than ten times.

(2) 1k-WFB-g: This is a new manually annotated evaluation corpus developed specifically

to cover a large type set. The corpus contains 2420 entity mentions and 117 different entity

types. In this corpus, 84 entity types are mentioned more than ten times. The sentences

for this dataset construction were sampled from Wikipedia text.

The statistics of these datasets are available in Table 5.2.

Evaluation Metric

For the Fine-ED task, we evaluated model performance using the precision, recall, and F1

metrics as described in Section 2.3.1. For the Fine-ET and the Fine-ER task, we use the

strict (or subset accuracy), loose macro and loose micro evaluation metrics described in

Sections 2.3.2 and 2.3.3.

Result analysis for the Fine-ED task

The results of the entity detection models on the two evaluation datasets are presented

in Table 5.4. We perform the following two analyses of these results. First, the effect of

training datasets on models performance and second, the performance comparison among

the two manually annotated datasets.

In the first analysis, we observe that the LSTM-CNN-CRF model, when trained on the

Wiki-FbF dataset, has the highest F1 score on both the evaluation corpus. Moreover, the
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average difference in precision and recall for this model is the lowest, which indicates a bal-

anced performance across both evaluation corpus. When compared with the models trained

on the NDS generated datasets (Wiki-NDS and figer), we observe that these models have

the best precision across both corpus, however, lowest recall. The result indicates that a

large number of false negatives entity mentions are present in the NDS induced datasets. In

the case of the model trained on the Wiki-FbF-w/o-III dataset, the performance is in be-

tween the performance of a model trained on Wiki-NDS and Wiki-FbF datasets. However,

they have significantly lower recall, on average, around 28% lower than the model trained

on Wiki-FbF. This highlights the role of stage-III, by selecting only quality annotated sen-

tence, erroneous annotations are removed, resulting in learning models trained on WikiFbF

to have a better and balanced performance.

In the second analysis, we observe that models trained on datasets generated using

Wikipedia as sentence source performs better on the 1k-WFB-g evaluation corpus as com-

pared to the figer evaluation corpus. These datasets are figer training corpus, WikiFbF,

Wiki-NDS, and Wiki-FbF-w/o-III. The primary reason for better performance is that

the sentences constituting the 1k-WFB-g dataset were sampled from Wikipedia.7 Thus,

this evaluation is the same domain evaluation. On the other hand, the figer evaluation

corpus is based on sentences sampled from news and specialized magazines (photography

and veterinary domains). It has been observed in the literature that in a cross domain

evaluation setting, learning model performance is reduced compared to the same domain

evaluation [94]. Moreover, this result also conveys that, to some extent, learning models

trained on the large Wikipedia text corpus is also able to generalize on evaluation dataset

consisting of sentences from news and specialized magazines.

Our analysis in this section, as well as in Section 5.4.1, indicates that although the

type coverage of figer evaluation corpus is low (43 types), it helps to measure the model’s

generalizability in a cross-domain evaluation better. Whereas, 1k-WFB-g helps to measure

performance across a large spectrum of entity types (117 types). Learning models trained

on Wiki-FbF perform best on both of the evaluation corpora. This warrants the usability

of the generated corpus as well as the framework used to generate the corpus.

Result analysis for the Fine-ET and the Fine-ER task

We observe that for the Fine-ET task, there is not a significant difference between the

performance of learning models trained on the Wiki-NDS dataset and models trained on
7We ensured that the test sentences are not present in any of the training datasets.
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Training Datasets FIGER 1k-WFB-g
S-Acc L-Ma-F1 L-Mi-F1 S-Acc L-Ma-F1 L-Mi-F1

FIGER 25.07 34.56 36.47 27.76 35.14 37.31
Wiki-NDS 30.07 37.89 38.55 39.12 49.28 51.60
Wiki-FbF 56.31 70.70 68.23 53.34 68.42 69.23

Table 5.5: Performance comparison for the Fine-ER task.

the Wiki-FbF dataset. The later model performs approx 1% better in the micro-F1 metric

computed on the 1k-WFB-g corpus. This indicates that in the HAnDS framework stage-II,

where false negative entity mentions were reduced by relinking them to Freebase, has a very

high linking precision similar to NDS, which is estimated to be about 97− 98% [103].

The results for the complete Fine-ER system, i.e., Fine-ED followed by Fine-ET, are

available in Table 5.5. These results support our claim in Section 5.4.1 that the current

bottleneck for the Fine-ER task is Fine-ED, specifically lack of resource with quality entity

boundary annotations while covering a large spectrum of entity types. Our work directly

addressed this issue. In the Fine-ER task performance measure, learning model trained on

WikiFbF has an average absolute performance improvement of at least 18% on all of the

evaluation metrics.

Level-wise result analysis for the Fine-ET task

Support (Train) Support (Test) L-Mi-F1
Level 1 55.4% 62.9% 0.838
Level 2 44.6% 37.1% 0.699

Table 5.6: The loose-micro-F1 scores of the Fine-ET model at different hierarchy levels for
the Wiki-FbF (1k-WFB-g) datasets. Also, the percentage support of corresponding training
and testing instances is mentioned.

From the results in Table 5.6, we can observe that the difference in support and the

difference in the fine-grained label performance is less as compared to the level-wise results

presented in Chapter 3. The results also indicate the quality of the HAnDS generated

dataset and the use of 1k-WFB-g for the evaluation of the Fine-ET task.

5.7 Conclusion and Discussion

In this work, we initiate a push towards moving from Coarse-ER systems to Fine-ER sys-

tems, i.e., from recognizing entities from a handful of types to thousands of types. We
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propose the HAnDS framework to automatically construct a quality training dataset for

different variants of Fine-ER tasks. The two datasets constructed in our work, along with

the evaluation resource, are currently the largest available training and testing datasets for

the entity recognition problem. They are backed with empirical experimentation to warrant

the quality of the constructed corpora.

The datasets generated in our work open up two new research directions related to

the entity recognition problem. The first direction is towards an exploration of sequence

labeling approaches in the setting of Fine-ER, where each entity mention can have more

than one type. The existing state-of-the-art sequence labeling models for the Coarse-ER

task, can not be directly applied in the Fine-ER setting due to state space explosion in the

multi-label setting. The second direction is towards noise-robust sequence labeling models,

where some of the entity boundaries are incorrect. For example, in our induced datasets,

there are still entity detection errors, which are inevitable in any heuristic approach. There

has been some work explored in [26] assuming that it is a priori known which tokens have

noise. This information is not available in our generated datasets.

Additionally, the generated datasets are much richer in entity types compared to any

existing entity recognition datasets. For example, the generated dataset contains entities

from several domains such as biomedical, finance, sports, products, and entertainment.

In several downstream applications where NER is used on a text writing style different

from Wikipedia, the generated dataset is a good candidate as a source dataset for transfer

learning to improve domain-specific performance.

;;=8=<<
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6
Conclusion and Future Directions

In this thesis, we proposed learning models and dataset creation methods for the Fine-

ED and Fine-ET tasks. One of the major challenges for these tasks is data-scarcity, and

our contributions address this challenge either directly or indirectly.

In Chapter 3, we proposed a noise-aware deep neural network model that can learn

well in the presence of positive label noise for the Fine-ET task. The proposed model

significantly outperformed existing models that assumed that the training dataset is noise-

free. Our analysis concludes that the noise-aware models are essential for the Fine-ET task

as the training datasets are generated automatically using the distant supervision paradigm.

We also proposed transfer learning approaches to improve performance on datasets with

limited annotations.

In Chapter 4, we proposed a collective learning framework to use diverse, partially

overlapping datasets together for the task of Fine-ET. The proposed framework efficiently

utilizes datasets with partial label overlap and predicts fine-grained labels even if some

of the in-domain datasets do not have those labels annotated. Our analysis conveys that

the framework does not rely on any one of the datasets as a source or target. Instead, it

permits a multi-directional knowledge flow where every dataset is a source and target. The

framework eliminates or reduces the need for creating or reannotating datasets as it can use

existing datasets that can have a subset of labels annotated.

In Chapter 5, we proposed the HAnDS framework to construct better datasets for

the fine-ET and fine-ED tasks automatically. Our analysis conveys that the constructed

datasets are of good quality and provide a significant improvement to the learning models

for the Fine-ED and Fine-ET task.
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6.1. LIMITATIONS OF THE PROPOSED WORK

6.1 Limitations of the Proposed Work

While the proposed work achieves state-of-the-art results on the respective tasks, there are

several fundamental limitations of the proposed work as discussed:

Positive only label noise: The proposed work in Chapter 3, only address label noise

where only a subset of labels among annotated positive labels is correct. However,

since the datasets are generated using the distant supervision paradigm, there are also

instances where the actual correct label might not be annotated.

Domain expert involvement in the hierarchy creation process: The proposed work

in Chapter 4 is dependent on a domain expert to compare two labels during the hier-

archy creation process (Section 4.4.1). We observe that some of the comparisons are

straightforward, while others require a thorough analysis of the annotation guidelines

and referring to external sources.

Entity boundary noise: The proposed work in Chapter 5 assumed that in the training

dataset, the boundaries of entities are entirely accurate. However, since the dataset

is generated using the distant supervision paradigm, this assumption is not valid.

6.2 Future Work Directions

While the dissertation has made significant progress in the advancement of the Fine-ED

and Fine-ET tasks, there are still several open problems that remain unaddressed. Many

of which are worth pursuing as future work, as discussed:

Better modeling of the label noise for the Fine-ET task: In the training datasets

for the Fine-ET task, a significant portion of entity mentions are annotated with

incorrect labels either as false positives or false negatives. While the proposed work,

as well as works published afterward [104, 105], focuses only on the false-positive label

noise, the false-negative noise problem remains open.

Modeling of entity boundary noise for the Fine-ED task: The existing work related

to sequence labeling in the presence of noise assumes that the tokens where the noise

is present are already known [26]. However, in the setting of Fine-ED, the tokens

that have noise is not known beforehand. Building sequence labeling models in the

presence of boundary noise is research direction worth pursuing.
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Domain generalization and adaptation in collective learning: In our proposed work

in Chapter 4, there are multiple datasets, each with a different text source/domain.

In our evaluations, we assumed that the testing domain is known in the way that

it can be any one of the training domain. However, there exist scenarios where the

testing domain is entirely unknown, or no labeled training dataset is available in the

testing domain. In such cases, domain generalization [106] and unsupervised domain

adaptation [107] techniques are used. However, the existing work focuses on either one

source, and the target domain or the source domains have the same labels. Domain

generalization and adaption in the setting of partially overlapping labels is an open

research problem.
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