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Abstract

In this thesis, we look at various notions of patterns and pattern avoidance in words. The

three themes we have looked at are pattern avoidance on two dimensional words, pattern

based word representability of graph and quasiperiodicity patterns and their allied proper-

ties in Tribonacci words.

A mapping f : Z×Z→ Σ is called a two dimensional word. For each discrete line of a two

dimensional word, we can get a one dimensional word by concatenating letters present at

the lattice points of the line. If each of these one dimensional words are squarefree then we

say that two dimensional word is squarefree. We prove that there are no two dimensional

squarefree words on 8 letters.

For a given word w, Gw stands for alternating letter graph corresponding to w. Formally,

Gw = (Vw, Ew) where Vw is the set of letters in w and (a, b) ∈ Ew if the letters a and b

are alternating in w. We say that a word w represents a graph G if Gw = G. We give a

fast algorithm to check if a two uniform word w represents G. We study the problem of

counting the number of two uniform representants of the cycle graph and show that the

number of two uniform representants of the cycle graph on n vertices is 4n. We looked at

the notion of uniform permutation representability of graphs and found graphs which are

(k, p)-representable for some particular k and p.

A word is quasiperiodic if a finite length factor covers each of its indices. The Tribonacci

words are a family of words generated using the Tribonacci-Rauzy morphisms. We find

various parameters related to the quasiperiodicity of the Tribonacci words.
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Chapter1
Introduction

In this chapter, we give a brief introduction to the study of combinatorics of words. We

describe the basic mathematical preliminaries which will be used in each chapter, provide

the basic definitions which are specifically related with our problems, and describe the

organization of the thesis.

1.1 History of combinatorics on words

The earliest work on word combinatorics is traced to the result of Axel Thue[1, 2] in the

year 1906. Thue’s work was mainly on avoiding repetition in words. Thue created an

infinite length word which avoids xyxyx on two letters wherein x and y are any word

on a two letter alphabet. Such a word was created by iterating a carefully constructed

morphism. This morphism is now known as Thue-Morse morphism or Prouhet-Thue-Morse

sequence. With the help of Thue Morse morphism, it is possible to construct a long word on

three letter which avoids xx where x is a word on three letters. There are various problems

in word combinatorics related to patterns and pattern avoidance. A famous conjecture on

pattern avoidance named Dejean’s conjecture was resolved in a series of papers [3, 4, 5, 6,

7, 8, 9, 10]. There are many interesting open problems in this area. Interested readers are

encouraged to refer these articles [11, 12]. A recent topic of research in combinatorics

on words was pioneered by Blanchet-Sadri in [13]. She has used a particular kind of

word called partial words. In a partial word, some positions named as holes, on which

any letter can appear. Note that the letters appears in holes can be different. These kind

of words can be used to model words formed by partial information. Kitaev et.al., have

studied the interaction between words and graphs and have introduced the notion of word

representable graphs[14].

The results in combinatorics on word have application in cryptography, number theory,
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1.2. BASIC TERMINOLOGY

and bioinformatics. The interested reader may see [15, 16, 17] for a more comprehensive

treatment of the subject.

1.2 Basic terminology

A word is a finite sequence of elements from a finite set Σ. The set Σ is called the alphabet.

An element of the alphabet is called a letter. The symbol |Σ| denotes cardinality of the

alphabet Σ. The letters of the alphabet are denoted by small letters like a,b,c . . . . The length

of a word w, denoted by |w|, is defined as the number of letters, counting multiplicities, in

w. The letter at index i in the word w is denoted by wi. The empty word, i.e., the word of

length zero, is denoted by ε. The set Σ∗ denotes set of all finite words. Σ+ denotes the set

of all non-empty words. An infinite word is an infinite sequence of elements from a finite set

Σ. Infinite words are represented by small bold letters like x,y, z, . . . . The set Σω denotes

set of all infinite words. A finite non empty word can be viewed as a function from [n] to

Σ. An infinite word can be viewed as a function from N to Σ. Finite words and one way

infinite words can be viewed as members of the sets Σ∗ and Σω respectively. The set of

letters occurring in a word w is denoted by Σ(w) and the size of Σ(w) is denoted by σ(w).

Example 1.1. w = abccabbb is a word of length 8 on the alphabet Σ = {a, b, c}. For the word

s = abcdabc, Σ(s) = {a, b, c, d} and σ(s) = 4. The word x = abcabcabc . . . is an infinite word

on the alphabet {a, b, c}.

Given words x and y, let xy denote the word corresponding to the sequence obtained by

appending the sequence corresponding to the word y to the sequence corresponding to the

word x. The concatenation of the words x and y is defined to be the word xy. Notice that

concatenation is an associative operation. A word y is a factor or subword of a word w if

w can be written as xyz. We denote by Factor(w) the set of all factors of the word w. For

k ∈ N and w ∈ Σ∗, wk denotes the word obtained by concatenation of k copies of w.

Example 1.2. Let s = abb and t = ba. Then st = abbba, Factor(s) = {ε, a, b, ab, bb, abb} and

s3 = abbabbabb.

A word w is called primitive if it can not be written as w = uk for k ∈ N and k > 1.

Otherwise, it is called a non primitive word. A word u is a prefix of a word w if w can be

written as uv. A word u is a suffix of a word w if w can be written as vu. The set of all

prefixes of a word w is denoted by Pref(w). The set of all suffixes of a word w is denoted

by Suf(w). A word u is called border of a word w if u is both a prefix as well as a suffix

of w. Consider the word w = a1a2 . . . an where ai ∈ Σ and 1 ≤ i ≤ n. The reverse of w,

denoted by wr is the word anan−1 . . . a1.

2



CHAPTER 1. INTRODUCTION

Example 1.3. w = abccabbb is a word of length |w| = 8 on the alphabet Σ = {a, b, c}.
The word cca is the factor of the word w. The word w is a primitive word whereas word

w′ = abab = (ab)2 is not a primitive word. The prefix set Pref(w) is equal to the set

{a, ab, abc, abcc, abcca, abccab, abccabb, abccabbb} and the suffix set Suf(w) is equal to the set

{b, bb, bbb, bbba, bbbac, bbbacc, bbbaccb, bbbaccba}

1.3 Morphism

In this section, we describe the notion of a morphism. Morphisms can be used to transform

a string into another. Morphisms satisfying certain properties can be used repeatedly to

generate infinite words.

Definition 1.1. Let Σ and ∆ be two alphabets. A morphism h is a function from Σ∗ to ∆∗

such that h(xy) = h(x)h(y) where x,y ∈ Σ∗.

A morphism is uniquely specified upon specifying the images on all elements in Σ. A

morphism from Σ∗ to itself is called an endomorphism. A morphism is non-erasing if h(a)

is non empty for every letter in Σ. A morphism is called k-uniform if the word h(a) is of

length k for every a in Σ. A morphism is called growing if it is non empty and for at least

one letter a in Σ, |h(a)| is greater than one. For an endomorphism, let hi(a) be defined as

the application of h, i times to a. Suppose h is growing endomorphism such that hi(a) is the

prefix of hi+1(a) for all i ∈ N, then limi→∞ h
i(a) generates a unique infinite length word.

The infinite length word obtained by repeated application of growing endomorphism h on

the letter a is denoted by hω(a).

Example 1.4. Let h be the morphism given by h(0) = 011,h(1) = 10. The infinite word hω

obtained by repeated applications of h is the sequence given by

hω(0) = 01110101001110011 · · ·

1.4 Pattern avoidance

The two main notions of pattern avoidances studied in this thesis are repetition avoidance

or square avoidance and permutation avoidance. The words with avoid a pattern will be

referred to as a pattern free word. While studying squarefree words, we shall assume that

letters in the alphabet are unordered, generally denoted by a, b, · · · whereas in permutation

avoiding words the letter of the alphabet are ordered, generally denoted by 1, 2, · · ·n where

n ∈ N. The square pattern is said to be avoidable if it is possible to construct an arbitrary

3



1.5. MULTIDIMENSIONAL WORDS

long word on Σ which does not have factor αα for any α ∈ Σ∗. A word w on alphabet

[n] = {1, 2, · · ·n} avoids permutation p (permutation is a word on alphabet [k] where each

letter of [k] appear exactly once in p) if there exist no indices (these indices must be in

increasing order) in w such that, the order of the letter present in the indices mimics the

order of the letters in permutation p. A more formal description shall be given the relevant

chapters.

Example 1.5. The morphism given by t(0) = 01 and t(1) = 10 on the binary alphabet {0, 1}
is called the Thue Morse morphism. By iterating morphism t on 0 we get the infinite word

tω(0) = 0110100110010110 · · · . This word is called the Thue Morse word. Thue Morse word

does not contain pattern xyxyx where x and y are the words on an alphabet {0, 1}[18].

Example 1.6. The word 4321 does not contain permutation 132 whereas the word 2413 con-

tains permutation 132 because the word obtained from the letters at the indices 1st,2nd and 4th

in 2413 is 243 and order of letters in the obtained word is same as the order of letters in 132

[19].

1.4.1 Fibonacci words and its variants

The Fibonacci sequence is given by the following recurrence relation

f(0) = 1, f(1) = 1 and f(n) = f(n− 1) + f(n− 2) for n ≥ 2.

The n th Fibonacci word wn is obtained by following a similar process given below;

w0 = 0, w1 = 1 and wn = wn−1wn−2 for n ≥ 2

. Note that the Fibonacci words can be generated using morphisms as well. Let h be the

morphism given below;

h(0) = 1, h(1) = 10

Then, wn is equal to hn(0). The Tribonacci and k-bonacci words are defined using a very

similar process. These words are well studied and we explored the quasi periodicity prop-

erties of Tribonacci words. Interested reader may find more about these words here [19].

1.5 Multidimensional words

A word can be seen as function f : N → Σ where Σ is an alphabet. This notion can be

extended to the case of an n dimensional word which is defined as f : Nn → Σ where n ∈ N.

4



CHAPTER 1. INTRODUCTION

Finite two dimensional words can be viewed as matrices with entries from the underlying

alphabet.

Example 1.7. The following figure is an example of a finite two dimensional word on alphabet

{a, b, c}.

a c b a c
b a c b a

c b a c b

a c b a c
b a c b a

Figure 1.1: A 5× 5 word on {a, b, c}

While studying multi dimensional words, we often look at the patterns present in the one

dimensional words present in them. For example, in Figure 1.1, we may look at the columns

and rows of the word and obtain many one dimensional words. We can additionally look at

the discrete lines in the multidimensional words and extract words corresponding to them and

them study the patterns present in them. For example, the diagonal starting at (0, 0) in Figure

1.1 has the word aaaaa.

1.6 Word representable graphs

We say that a graph G = (V,E) is word representable if there exists a word w ∈ V ∗ such

that (a, b) ∈ E iff the word obtained by removing the letters from w other than a and b is of

the form either abab · · · or baba · · · [14].

Example 1.8. Graph given in Figure 1.2 is word representable.

1

2

4

3

Figure 1.2: Representant word w = 1241342

1.7 Problems addressed in this thesis

The problems studied in this thesis are;

1. Minimum alphabet size required to construct two dimensional square free words.

5



1.8. ORGANIZATION OF THE THESIS

Any word of length four or more on a two letter alphabet will contain a square. Thue

constructed an infinite length word on three letter alphabet which avoids a square.

It was known that two dimensional words on an alphabet of size six will invariably

contain a square and that there exist an infinite squarefree two dimensional word on

a sixteen letter alphabet. We improve the lower bound on this result.

2. Uniform word representability and permutation word representability of graphs.

Kitaev introduced the notion of word representability of graphs. We further explore

this notion and study the graphs which can be represented by special words like uni-

form words and permutation avoiding words. We also study some counting problems

involving the number of representant words for certain special classes of graphs.

3. Quasiperiodic properties of Tribonacci words.

Periodic properties of words are a well studied theme. In this problem we look at a

quasiperiodity properties, i.e, a relaxation to the periodicity, for a special word known

as the Tribonacci word. In particular, we characterize the covers and seeds of these

words.

1.8 Organization of the thesis

In Chapter 2, we address the problem of finding the minimum alphabet size which is re-

quired to avoid a square in a two dimensional word. This question was posed in [20]. We

improve the lower bound for the minimum alphabet size from 7 to 9. This result helps in

improving lower bound of minimum alphabet size in an n dimensional squarefree word.

In Chapter 3, we study problems associated with word representability of graphs. Given

a graph G = (V,E) and a two uniform word w ∈ V ∗, we would like to know if G = Gw.

We propose an O(V log V + E)-time algorithm to solve this problem. We also study the

problem of counting two uniform representant of the cycle graph and show that the number

of two uniform words which represents the n vertex cycle graph is 4n. We explore various

permutation avoidance patterns in this chapter. The patterns we have studied are

• 2 uniform 132 representability

• 1342 representability

• 2 uniform 1342 representability without being 132 representable

In Chapter 4, we study quasiperiodicity properties of Tribonacci words. This is an exten-

sion of the work by Christou et.al [21]. We characterize the borders, covers and seed on

6



CHAPTER 1. INTRODUCTION

the Tribonacci words. In the concluding chapter we describe some open problems related

to our work.

[[]X]\\
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Chapter2
Square Free Words

In this chapter, we study two dimensional squarefree words. We are interested in the

minimum alphabet size required to construct such a word. This question was consider by

Carpi [20] and he showed that sixteen letters are sufficient and six letters are necessary to

construct such a word. We tighten this gap and show that at least nine letters are necessary.

A squarefree two dimensional word avoids squares on all the one dimensional words

corresponding to the discrete lines. For every lattice point p, there are many discrete lines

passing through that point and therefore many other lattice points will be adjacent to p

on some discrete line. Each of these points must necessarily have a different letter from

the letter at p. We capture this idea in terms of “parity” of a letter. Section 2.1 introduces

the basic definitions and results. The problem definition is provided in Section 2.2. We

introduce the concept of “parity of a letter” in Section 2.4. Using these, in section 2.5,

we derive some conditions that axis parallel words of a two dimensional squarefree words

must satisfy. In Section 2.6, we obtain further conditions on two dimensional squarefree

words by looking at the modulo two parities. In Section 2.7, we show that it is impossible

to construct a two dimensional squarefree words which satisfies the necessary conditions

derived in the earlier sections.

2.1 Mathematical preliminaries

In this section we define the concept of pattern avoidance in words. The words studied in

this chapter are over an unordered alphabet.

9



2.1. MATHEMATICAL PRELIMINARIES

2.1.1 Pattern and pattern avoidance

Let Σ be the alphabet and consider a set X such that X ∩ Σ = ∅. We shall refer to the

elements of X as variables. A pattern is a word on the alphabet (Σ ∪X). For x, y ∈ X, the

pattern xx is called a square and the pattern xyxyx is called an overlap. (See Figure 2.1)

︷ ︸︸ ︷
xxxxxxx

xxxxxxx︸ ︷︷ ︸
xyx

xyx

x y x y x

Figure 2.1: The overlap pattern

Definition 2.1. The language defined by a pattern p, denoted by L(p) is the set obtained by

substituting the variables in the pattern p with elements of Σ+. Formally,

L(p) , {f(p) | f : (Σ ∪X)∗ → Σ∗, where f is a non-erasing morphism.}

A word w on alphabet Σ avoids a pattern p if Factor(w) ∩ L(p) = ∅.

Example 2.1. Consider the pattern p = 0α0α0 where X = {α, β} and Σ = {0, 1}. The

pattern language would be L(p) = {0u0u0 : u ∈ {0, 1}+}. The word 101101100 does not avoid

p, whereas the word 011010 avoids p.

Definition 2.2. We say that a pattern p is avoidable, if there exists an alphabet Σ such that

there are infinitely many words in Σ∗ which avoids pattern p. A pattern which is not avoidable

is called an unavoidable pattern.

For k ∈ N, a word w is called k-free if it avoids pattern uk. A word is called squarefree it it

avoids the square pattern. A word is called overlap free if it avoids the overlap pattern. Thue

showed that there exists an overlap free word on a two letter alphabet and a squarefree

word on a three letter alphabet. Clearly such words cannot be constructed on a smaller

sized alphabet. The Thue Morse word (ref. Example 1.5) can be used to construct a square

free word. Note that the Thue Morse word T = limn→∞ Tn is the limit word as the sequence

described by the equations below.

T0 = 0

Tn+1 = TnTn

where Tn is the bitwise complement of Tn. We can inductively prove that every Tn and

therefore limit word T will be cube free. In particular, the number of ones in between

any two occurrences of zeros will be less than three. Let ai denote the number of ones in

10



CHAPTER 2. SQUARE FREE WORDS

between ith and (i + 1)st zeros in T. The infinite word S obtained by concatenating the

ais will be a ternary word on the alphabet {0, 1, 2}. The word S will be squarefree as any

square in S will force T to contain cube. The details of proof can be found in [18].

2.1.2 Multidimensional words and pattern avoidance

A two dimensional word is a function from [n]× [m] to Σ. A two dimensional infinite word

is a function from Z× Z to Σ. We may restrict two dimensional words to be functions from

N × N to Σ. We shall not be overly concerned with whether we are looking at finite two

dimensional words or functions from Z × Z or N × N as our main focus is on avoidability.

The claims we make can be further carefully analyzed to provide an upper bound on the

size of the largest two dimensional squarefree word on eight letters. We note in passing

that this size is about 20× 20 and hence the problem attempted herein is not amenable to a

computer aided brute force search. The definitions provided here for the two dimensional

case can be naturally extended to multidimensional words. The dimension of a word is

usually clear from the context.

The notions of factor, size (in place of the one dimensional length), Σ(·), σ(·) etc can be

naturally defined in case of multidimensional words. The notion of pattern avoidance needs

to be clearly articulated as there are many competing definitions. In this chapter, although

words considered are multidimensional, the pattern that is to be avoided is a simple one

dimensional word.

Let w be an n-dimensional word. A line word in w is obtained by looking at a discrete line

in w and extracting the letters in w to form a one dimensional word.

Definition 2.3. Let i = (i1, i2, . . . , in) and j = (j1, j2, . . . , jn) be n-tuples of integers such that

gcd(j1, j2, . . . , jn) = 1. Let wx denote the letter at position x in w, i.e., w(x). The line word

corresponding to i (starting point) and j (slope) is given by sequence of letters wi+αj where α

takes integer values such that all the indices are within the range specified by the word w.

Example 2.2. In Figure 2.2, the words cbacb and ccccc are the line words corresponding to

the lines l1 and l2 respectively.

An n-dimensional word w is squarefree if all the line words in w are squarefree. In case

of a two dimensional word w, every position in w can be represented by a tuple (i, j) where

i, j ∈ Z. Certain types of line words occur frequently in our analysis and so we name

them. The words corresponding to the lines parallel to x-axis and y-axis will be referred

to as row word and column word respectively. The words arising out of lines having slopes

11
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Figure 2.2: Discrete lines in a two dimensional word

45◦ and −45◦ will be referred to as diagonal words. A word which is either a row word

or a column word will be called an axis parallel word. Given a two dimensional word w

and points s and t, the two dimensional word wst is defined as the two dimensional word

formed from all the letters in the axis parallel rectangle with s and t as opposite corners.

In a two dimensional word, the words corresponding to two consecutive rows (or columns)

are called as adjacent words. Let u and v be the subwords of a two dimensional word w

such that the discrete lines corresponding to u and v are parallel to an axis and the distance

between these lines is a natural number say k. We call such words as k-separated words. In

particular adjacent axis parallel words at are 1-separated words.

Example 2.3. In Figure 2.3, the words abcabcabcabcabc and abcabcabcabcabc are seperated

by distance three.
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Figure 2.3: 3-seperated words

2.2 Problem statement and known results

Let f(n) be the minimum size of alphabet on which an infinite n dimensional square free

word can be constructed. Carpi proved that 2×3n−1 ≤ f(n) ≤ 4n [20]. Improving the lower

bound of this inequality is the main result of this chapter. Thue [1] proved that f(1) = 3.

In case of n = 2, 6 ≤ f(2) ≤ 16.
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2.3 Preliminary Observations

Lemma 2.1. In a two dimensional word w, if there exist p, q, i, k ∈ N such that w(p,i) =

w(q,i+k) or w(i,p) = w(i+k,q) where gcd(p− q, k) = 1, then the word w contains square.

Proof. The lattice points (p, i) and (q, i+k) are consecutive points in the line passing through

these points when gcd(p− q, k) = 1. If the letters appearing at these points are same, they

together constitute a square in w. Similar reasoning applies for the lattice points (i, p) and

(i+ k, q).

A trivial but useful observation is that if two adjacent axis parallel words have a com-

mon letter, the discrete line passing through the positions of this common letter contains a

square. We state this observation as a corollary.

Corollary 2.1. If u and v are adjacent axis parallel words in w such that Σ(u) ∩ Σ(v) 6= ∅,
then w contains a square.

2.3.1 Parity of a letter

For n ∈ N, we use the notation Zn to denote the set {0, 1, 2 · · · , n − 1}. For a ∈ Σ, w ∈ Σ∗

and n ∈ N, the parity of a letter a in the word w with respect to n , denoted by πn(a,w) is

given by

πn(a,w) , {j ∈ Zn | wi = a and j ≡ i mod n}

Given the set of positions where a letter a appears in the word w, the function πn com-

putes the residues of these positions modulo n. If a letter a appears in both even and odd

positions in a word w, then π2(a,w) will be equal to {0, 1}. If a letter a appears only in even

positions in a word w, then π2(a,w) will be equal to {0}.

For n = (n1, n2, . . . , nd) ∈ Nd, we use the notion Zn to denote the cross product Zn1 ×
Zn2 × · · · × Znd

. We generalize the above definition to the multidimensional case. Let w be

an d-dimensional word. For a ∈ Σ and n ∈ Nd

πn(a,w) , {j ∈ Zn | wi = a and j ≡ i mod n}

where j ≡ i mod n means that the equation holds good coordinate wise.
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2.3. PRELIMINARY OBSERVATIONS

Example 2.4. Consider the two dimensional word w shown in Figure 2.4. The parity of various

letters w.r.t n = (2, 2 are as follows.

1. π(2,2)(a,w) = {(0, 0)}

2. π(2,2)(b, w) = {(1, 0)}

3. π(2,2)(c, w) = {(0, 1), (1, 1)}

4. π(2,2)(d,w) = {(1, 1)}

a

c

a

b

c
b

a

c

a

Figure 2.4: Two dimensional word on the letters a, b, c and d denoted by w

We define a pseudo inverse of the function π as follows. Given a d-dimensional word

w, n ∈ Nd, j ∈ Zn,

π−1n (j, w) , {a ∈ Σ | wi = a and j ≡ i mod n}

In other words π−1n (j, w) denotes the set of letters which can appear in a position whose

residue modulo n is j.

Example 2.5. In Figure 2.4 the pseudo inverse of the function π for each of the letters are as

follows.

1. π−1((0, 1), w′) = {c}

2. π−1((1, 1), w′) = {c}

3. π−1((0, 0), w′) = {a}

4. π−1((1, 0), w′) = {b}

A letter a is called a fixed n-parity letter in a word w if |πn(a,w)| = 1. A word w is a fixed

n-parity word if every letter a ∈ Σ(w) is a fixed n-parity letter in w. In Figure 2.4 the letters

a and b have fixed parity and the letter c does not have fixed parity. When n is clear from

the context, we shall simply call the word as a fixed parity word.
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2.4 Some results on parity of squarefree words

Consider a squarefree word on three letters. We examine how many of these letters can

occur at both even and odd positions. We show that at least two letters must occur in both

even and odd positions.

Lemma 2.2. Let w be a squarefree word on a three letter alphabet Σ such that |w| ≥ 20, and

let S be the set of fixed 2-parity letters. Then |S| ≤ 1.

Proof. Let Σ be {a, b, c}. Note that every factor of w of length four must contain every letter

of Σ as there are no squarefree word of length four on a two letter alphabet.

For the sake of contradiction, let us assume that |S| ≥ 2. W.l.o.g, let a, b ∈ S. We need to

consider two cases namely

1. π2(a,w) = π2(b, w)

2. π2(a,w) 6= π2(b, w)

In the first case let i be the smallest number such that wi = a. Note that i ≤ 4. If

wi+2j+1 = a where 0 < i + 2j + 1 < |w|, then a /∈ S. Similarly wi+2j+1 cannot equal to

b either. Thus , wi+2j+1 = c. One can easily verify that, under these conditions, the word

wiwi+1 . . . wi+7 contains a square.

For the remaining case, we can w.l.o.g. assume that π2(a,w) = {0}, π2(b, w) = {1} and

π2(c, w) = {0, 1}.

Assume that wi = a and wi+2 6= a. Based on the parity restrictions and squarefreeness,

we can infer the possible letters at other locations. This information is summarized in Table

1. The justification for the inferences are provided just below the word under consideration

The last line of the table above shows that a square starting at position i of length 12

is forced by the assumptions. Therefore we conclude that once an a appears in w, all the

subsequent even positions will contain a. By symmetry, once a b appears, all the subsequent

odd positions will contain b. Clearly such a word cannot be squarefree.

The next couple of lemmas tells us about the maximum number of letters that can be

shared by axis parallel words.

Lemma 2.3. If u and v are 2-separated words in w such that and |Σ(u) ∩ Σ(v)| > 1 and

σ(u) = σ(v) = 3, then w contains a square.
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Letters of the word w starting at the ith letter
i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10 i+11 i+12
a c
Initial assumptions and parity constraints.
a c a
Every 4 length factor should contain an a.
a b c b a
Squarefreeness at i+ 1 and i+ 3

a b c b a a
If wi+6 6= a, then the bcba starting at i+ 1 has to repeat.
a b c b a c a
Squarefreeness of the 4 length factor starting at i+ 3.
a b c b a c a b
Squarefreeness starting at i+ 4

a b c b a c a b b
If wi+9 6= b then the string starting at i+ 3 repeats.
a b c b a c a b c b
Squarefreeness of the 4 length factor starting at i+ 6

a b c b a c a b c b a
Squarefreeness of the 4 length factor starting at i+ 7

a b c b a c a b c b a a
If wi+12 6= a then bcba starting at i+ 7 has to repeat.
a b c b a c a b c b a c a
Parity constraints and squarefreeness at i+ 9

Table 2.1: Construction of squarefree word w when wi = wi+4 = a and
π2(a,w) = {0}, π2(b, w) = {1} and π2(c, w) = {0, 1}

Proof. Let a and b be the letters which are contained in both u and v. As u is squarefree,

by Lemma 2.2, at most one letter among a and b have a fixed parity( i.e., |π2((u), ·)| = 1).

Therefore, we may assume w.l.o.g that the letter a appears at points (r, i) and (s, i) where r

is an even number and s is an odd number. Note that for any integer x, either gcd(x− r, 2)

or gcd(x−s, 2) is equal to one. Let x to be the position in v where a appears. By Lemma 2.1

w contains a square.

Lemma 2.4. If u and v are 3-separated words in w such that and Σ(u) ∩ Σ(v) 6= ∅ and

σ(u) = σ(v) = 3, then w contains a square.

Proof. Let a and b be the letters which are contained in both u and v. We may assume that

both these words are row words squarefree. If a is a fixed 3-parity word in u(or v) with

parity p, then a must appear at all positions of the form p± 3k. Clearly we cannot construct

a squarefree word under these requirements. So we can assume that |π3(u, a)| and |π3(v, a)|
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are greater than 1. This means that we can find positions (r, i) and (s, i+ 3) in u and v such

that wr,i = ws,i+3 = a and gcd(r − s, 3) = 1. By Lemma 2.1 this implies that w contains a

square.

2.5 Axis parallel words

For a two dimensional squarefree word w, the number of letters used in the axis parallel

words helps us lower bound the number of letters in w. These bounds are summarized in

the two following lemmas.

Lemma 2.5. Let w be a two dimensional squarefree word. If w contains an axis parallel word

u such that σ(u) = 3, then σ(w) ≥ 9.

Proof. Let us assume thatw is a two dimensional squarefree word on Σ = {a, b, c, d, e, f, g, h}.
Further let u1, u2 and u3 be immediately adjacent to u (Refer Figure 2.5).

u

u1

u2

u3

Σ(u) = {a, b, c}
Σ(u1) = {d, e, f}Σ(u) ∩ Σ(u1) = ∅

|Σ(u) ∩ Σ(u2)| ≤ 1

Σ(u) ∩ Σ(u3) = ∅

Figure 2.5: Consequence of having a three letter axis parallel word in w

Let Σ(u) be {a, b, c}. Note that none of the letters from u1 and at least two letters from

u cannot appear in u2(Refer. Corollary 2.1 and Lemma 2.3). Thus if σ(u1) ≥ 4, six letters

out of the above mentioned letters cannot appear in u2 leaving behind only two letters for

constructing u2. Clearly, there are no such squarefree words. We may therefore assume that

u1 (u2 and u3 as well inductively) contains 3 letters each.

We may assume that d, e and f are the letters appearing in u1. Corollary 2.1 and

Lemma 2.3 forces u2 to contain letters g and h. By Lemma 2.4 u3 cannot contain the

letters a, b or c. By Corollary 2.1 u3 cannot contain g or h. Thus u3 must contain letters d, e

and f . Apply Lemma 2.3 on words u1 and u3 to get the required contradiction.

Lemma 2.6. Let w be a two dimensional squarefree word on Σ. If w contains an axis parallel

word u such that σ(u) ≥ 5, then σ(w) ≥ 9.

Proof. If an axis parallel word u in the word w uses 5 letters then the adjacent axis parallel
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words u1 and u2 must not use any of these five letters. If σ(w) < 9, then both u1 and u2

must use the letters left out by u. Therefore, By Lemma 2.3, w must contain a square.

2.6 Modulo two parity and Squarefreeness

Let w be a two dimensional word on an alphabet of size eight. We now show that if w is

not a fixed parity word, then w contains a square. Additionally, we will show that the set of

letters appearing at positions having a given parity is of cardinality two.

Lemma 2.7. Let w be a word on an eight letter alphabet and let n = (2, 2). If w fails to satisfy

any of the two conditions mentioned below, then w will contain a square.

1. For every letter a ∈ Σ, |πn(a,w)| = 1

2. For every j ∈ Zn, |π−1n (j, w)| = 2

Proof. By Lemma 2.5 and Lemma 2.6, without any loss of generality, we assume that

σ(u) = 4 for every axis parallel word u in w.

Assume |πn(a,w)| ≥ 2 for some letter a. Without loss of generality, we can assume that the

letter a appears at an even numbered row and an odd numbered row. Note that σ(w) = 8

and every axis parallel word in w contains exactly four letters. Thus by Corollary 2.1, the

set of letters forming adjacent axis parallel words must alternate. Therefore even num-

bered rows and odd numbered rows cannot contain any common letter contradicting the

assumption about a. Thus every letter a ∈ Σ, |πn(a,w)| = 1.

We define the following sets corresponding to the pseudo inverse parity functions:

S0 , π−1((0, 0), w)

S1 , π−1((0, 1), w)

S2 , π−1((1, 0), w)

S3 , π−1((1, 1), w)

Let si be defined as |Si| . Condition 2 asserts that each si is equal to two.

If any Si and Sj , where i 6= j, have an overlap, then there exists some letter a which

doesn’t satisfy condition 1. Hence the Sis must form a partition of Σ(w) satisfying the
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following conditions:

s0 + s1 = 4;

s0 + s2 = 4;

s1 + s3 = 4;

s2 + s3 = 4;

Every si is at least 1. Suppose any si, say s0 w.l.o.g, is equal to 1, then s3 will also be 1.

Thus the line word corresponding to x = y will contain a square. Thus every si is greater

than 1 and thus each si is equal to two.

2.7 Unavoidability of a square on an 8 letter alphabet in two

dimensional words

Lemma 2.7 implies that set of possible letters that could appear at at position i must be

equal to Sk for some k ∈ 0, . . . , 3. Furthermore k depends only on the “parity” of position

i. Consider a 3 × 3 subword u of w. The possibilities of letters that can appear at various

positions in u is shown pictorially in Figure 2.6. The value in each “cell” is the set of possible

letters that could appear at that position.

A

C

A

B

D

B

A

C

A

Figure 2.6: A,B,C and D must all be distinct and each should be equal one of S0, S1, S2 or
S3

Theorem 2.1. Every two dimensional word w such that σ(w) < 9 contains a square.

Proof. If possible let w be a squarefree word on an eight letter alphabet.Let A = {a, α},
B = {b, β}, C = {g, γ} and D = {d, δ}. Consider the four corners of 3× 3 subword u of w.

The letters appearing at these positions is either a or α. There are two possibilities, namely:

1. One of the letters appears at least three times.

2. Both letters appear twice.
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We will look at a 3 × 3 subword of w under the assumptions made and work out the

consequences. In particular, we will show that in each case, there will exist a position in the

word where none of the letters can occur without producing a square in w.

Consider a word ω = xρx where x is any word and ρ is a letter. Suppose ω has to

be extended to a squarefree word, then the letter used to extend must be different from

ρ. In the figures that follows, the subwords will be represented using a grid and in each

grid position, we will place letters that are already determined. The not yet determined

letters will be indicated by blank positions. The oval boxes indicates the word which helps

in determining the unique extensions possible. The red letters are the newly determined

letters.

In each successive grid, we will place additional letters that gets determined. You may

view this process as similar to completing a Sudoku[22].

Case 1: One of the letter appears at least three times

We need to show that when three corners of any 3 × 3 subword u of w are identical, w

invariably contains a square. We may assume suitable letters without any loss of generality

for six of the nine possible locations in u. The two (refer Figure 2.7) positions namely the

upper middle and the right middle positions could be any letter from the sets B and C

respectively. The right middle position in u can be either g or γ. We shall consider both

these possibilities (refer Figure 2.8) and show that they lead to w containing a square.

These two choices are analyzed in Figures 2.9 and 2.10

a b a

g d

a

Figure 2.7: The subword u
with vacant positions

a b a

g d g
a

a b a

g d γ
a

Figure 2.8: The two possible choices for the right
column middle position in u
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Figure 2.9: Three corners are a and
right middle cell is g
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Figure 2.10: Three corners are a and
right middle cell is γ

Case 2: Both letters appear twice.

As case 1 has been ruled out, we may now assume that every 3 × 3 subword u of w has

exactly two letters and each of them appears twice. Thus every 3 × 3 subword is of one

of the three types given in Figure 2.11. We will refer to the kind of subword shown in

Figure 2.11(c) as a “diagonal subword”. To complete the proof we will show the following:

(i) If w does not have a diagonal subword then w contains a square.

(ii) If w has a diagonal subword then w contains a square.

Note that if a 3 × 3 subword is not a diagonal subword, then letters in the alternate

positions in the line perpendicular to the repetition gets fixed. This happens because corners

of every 3 × 3 subword must contain each of the two possible letters exactly twice. This is

illustrated in Figure 2.12. The blue oval indicates the repeated letter and the arrow points

in the direction perpendicular to the repeated letter. The 3 × 3 subword indicated by the

blue square must have γ in the corners on the right side. The vertical subwords appearing

after the left vertical subword can all be inferred inductively.
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g γ

g γ

(a)

g

γ

g

γ

(b)

g

gγ

γ

(c)

Figure 2.11: Two letters appearing two times each

Consider any 3 × 3 subword u of w. If w does not contain a diagonal subword, we may

assume without loss of generality that u is of the type shown as Figure 2.11(a). We may

draw inferences about letters appearing in other positions using Figure 2.12. Consider the

blue oval in Figure 2.12. Every letter in the column word corresponding to it must contain

g at alternate positions. (If γ appears in the column word, then will be a diagonal word at

the first such appearance). The remaining positions in the column word uses two letters.

Clearly, there are no such long squarefree words.

g

g

g

g

g

g

γ

γ

γ

γ

Figure 2.12: The repeated blue g determines the letters in the red positions

Now consider the case in which w contains a diagonal subword (Refer Figure 2.13). The

diagonal subword is indicated by the blue square. Without loss of generality, the letter at

the center of the square is chosen to be b. This forces the corners of the 5 × 5 subword

to be β. The parity restrictions force the middle letter(indicated in red) in the top and

bottom rows to be either b or β. Any of these choices result in w containing an axis parallel

subword containing a letter (namely b or β) repeating in three alternate positions. We will

complete the proof by showing that if a letter repeats in three alternate positions, then the

word contains a square.

g

gγ

γ
b

β

β

β

β

Figure 2.13: The diagonal squares are identical

Consider an axis parallel subword s of w. Clearly a letter cannot repeat in four alter-

nate positions(ref. Figure 2.14 ) as that forces a square to appear(This is because parity

restrictions ensure that the remaining positions are filled using two letters).
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g g g g

Figure 2.14: Letter g repeats in four alternate positions.

We may without loss of generally assume that the letter repeating is g and it repeats

alternatively in a vertical word. This analysis is shown in Figure 2.15. As a letter cannot

repeat at four alternate positions, we must have the letter γ appearing above and below the

repetitions involving g. Moreover, these letters fixes the letters at all the positions indicated

in green as every 3× 3 subword must contain two letters appearing two times each.
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γ
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b β b β

b β b β

b β b β

β b β b

(a) (b)

Figure 2.15: The letter g repeated thrice in alternate positions

Consider the circled positions in Figure 2.15. If the letters appearing at these positions are

same, then we will surely have a case of identical letters appearing in the positions marked

in red (Refer Figure 2.13). If the circled position is an even(odd) numbered column, then

we can conclude that the letters b and β must alternate in even(odd) positions in row two.

Fixing the letters at these positions in row two fixes the corresponding letters in rows 0 and

4.

The determined positions after all these inferences in shown in 2.15b. The triple repe-

tition of b and β in the columns fixes the letter row 6 to be β and b (shown in red color)

respectively. Notice that the word corresponding to the blue squares, i.e bγbγ, is a square.

2.8 Conclusion and open problems

From Theorem 2.1, we know that f(2), the minimum size of the alphabet on which an infi-

nite two dimensional square free word can be constructed is at least 9. Following Carpi[20],

we know that f(n) ≥ 2f(n− 1). Since f(2) ≥ 9, we can obtain a small improvement in the
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multidimensional case, namely f(n) ≥ 9× 2n−2.

The exact value of f(2) is still an open problem. In case of overlap free word it is pos-

sible to construct a two dimensional overlap free word on 9 letters [23]. In case of one

dimensional word, in order to construct an overlap free word, we need at least 2 letters and

in order to, construct a square free word, we need at least 3 letters. The gap between the

alphabet size is 1. In case of multidimensional words, this gap between the alphabet size

can be explored further. The asymptotic growth of f(n) too is an interesting open prob-

lem. Many questions from the usual one dimensional word combinatorics has analogues in

multidimensional setting.

[[]X]\\
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Chapter3
Word Representable Graphs

This chapter contains some results on the theory of word representable graphs. It is an

area of research which relates words and graph. The first section introduces the definitions

and necessary results. In the next section, we give a brief overview of the various questions

addressed in this area. Given a two uniform word w and a graph G, we want to know if G =

Gw i.e, does the two uniform word w “represent” G. In Section 3.3, , we give an efficient

algorithm for this problem . We also give a formula to count the number of two uniform

words which represent a cycle graph. Section 3.4 contains our results on permutation word

representability of graphs (a word represents a graph and it also avoids a permutation). In

this section we upper bound the length of representant word for “permutation representable

graphs” with minimum degree greater than or equal to the permutation length . While

studying permutation representable graphs, we have investigated the problem of counting

the number of permutation avoiding “representants” of the complete graph for some specific

permutations.

In the final Section 3.5 we study graph representability with additional constraints on the

representant word. In particular, we place the restriction that the representant word must

be uniform and must be permutation avoiding.

3.1 Mathematical preliminaries

Let w be a word on an alphabet Σ. The word w{a,b} where a, b ∈ Σ, is the word obtained

by removing letters other than a and b from w. For example, if w = abccbacab then w{a,b} =

abbaab. If w{a,b} is the factor of (ba)ω(the word obtained by concatenating infinite copies of

the word ba), then we say that the letters a and b are alternating in the word w. Otherwise,

we say that these letters are non-alternating.
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3.1. MATHEMATICAL PRELIMINARIES

Definition 3.1. Let w be a word on an alphabet Σ. The alternating symbol graph of the word

w, denoted by Gw is the graph whose vertex set V and edge set E are defined as below.

V , Σ(w)

E , {(a, b) | a, b are alternating in the word w}

Example 3.1. The alternating symbol graph for the word abdaedcbfc is shown in Figure 3.1.

a b c

d e f

Figure 3.1: The alternating symbol graph for the word abdaedcbfc

Definition 3.2. A graph G is called word representable graph if there exist a word w such that

the alternating symbol graph of the word w is isomorphic to G, i.e., Gw = G. The word w is

called a representant word of the graph G.

Example 3.2. The graph given in Figure 3.1 is a word representable graph. The graph given

in Figure 3.2 is not a word representable graph. A proof of non representability of this graph

can be found in [14].

Sergey Kitaev introduced the notion of “semi-transitivity“ and proved the following the-

orem which characterizes word representability in terms of semi-transitivity. Based on this

theorem, it can be shown that word representability is decidable property. Theorem 3.1

characterizes word representability of a graph in terms of semi-transitivity.

Theorem 3.1 ([24]). A graph is word representable iff it is semi-transitive.

Figure 3.2: The wheel graphs W5 is a non word representable graph on 6 vertices

Definition 3.3. Let G be a directed acyclic graph. We say that G is semi-transitive, if for

each path v1 → v2 → · · · → vk such that (v1, vk) is an edge, (vi, vj) is an edge for every

1 ≤ i < j ≤ k.
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CHAPTER 3. WORD REPRESENTABLE GRAPHS

An undirected graph G = (V,E) is semi-transitive, if it admits an orientation of the edges

so that the resulting directed graph is semi-transitive.

1 2 3

4 5

6

G1

1 2 3

4 5

6

G2

Figure 3.3: A semi-transitive orientation of a graph

Example 3.3. The graph G1 shown in Figure 3.3 is semi-transitive as the graph G2 is a semi-

transitive orientation of G1.

The number of paths in a directed acyclic graph is finite. Thus one can verify if a given

graph is semi-transitive by examining all possible path in every possible directed acyclic

orientation of G. It is shown in [14] that this problem is NP-Complete.

3.1.1 Uniform word representability

A word w is called k-uniform if every letter in w appears precisely k times in w. A graph G

is called uniform word representable if there exist a uniform word representing G. A graph

G is called k-word-representable if there exist a k-uniform word w which represents G.

Example 3.4. The graph G given in Figure 3.4 is 2-word representable. The word w =

41321423 is a 2-uniform word which represents G.

1

2

3

4

Figure 3.4: A 2-word-representable graph

A word w which represents a graph G can be converted into a word w′ such that w′ is a

uniform word representing G. This can be done by appending a carefully created word to

w. For example, the graph represented by the word abdaedcbfc is also represented by the 2

uniform word efabdaedcbfc. The following theorem summarizes this fact.

Theorem 3.2 ([25]). Every word representable graph G is uniform word representable.
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3.1. MATHEMATICAL PRELIMINARIES

The minimum number k for which a given graph is k-word-representable is called the

representation number of the graph and it is denoted by R(G). Any permutation σ ∈ Sn

represents Kn. Thus R(Kn) = 1. The following theorem gives an upper bound on repre-

sentation number for an arbitrary word representable graph.

Theorem 3.3 ([24]). Let G 6= Kn be a word representable graph on n vertices. Then R(G) ≤
2(n− κ(G)) where κ(G) is the size of the maximum clique in G.

3.1.2 Ordered patterns

The alphabet we consider will be {1, 2, · · ·n} where n ∈ N. We shall denote this set by

[n]. Note that there is an underlying natural order on the alphabet [n]. A permutation is

a word on an alphabet [n] such that every letter occurs exactly once. The set Sn denotes

the set of all permutation on the alphabet [n]. Any strict subsequence of permutation is

called subpermutation. For example, the word 4132 is a permutation while the word 412

is a subpermutation. While studying permutation or subpermutation avoidance we shall

always assume that the alphabet of the word under consideration is of the form [n] for

some n ∈ N and the largest letter that appears in the permutation or subpermutation is less

than or equal to n. Permutation avoidance in words is a well-explored research topic in the

combinatorics of permutations [19, 26].

3.1.3 Ordered pattern avoidance

In the earlier chapters, we looked at the problem of avoiding patterns over an unordered

alphabet. We introduce three type of pattern avoidance over an ordered alphabet in this

section, namely permutation avoidance, avoiding a set of permutation and subpermutation

avoidance. We will consider a word representability of graphs wherein we will stipulate

that the representant word avoids permutation patterns of the kind introduced here.

We motivate the concept of permutation avoidance by providing a few examples. Con-

sider the following sequence of 10 numbers {10, 30, 42, 20, 18, 36, 5, 38, 15, 49}. The se-

quence contains an increasing subsequnence of length 5 namely {11, 20, 36, 38, 49}. This se-

quence shares the property of having the same “order” as the permutation pattern {1, 2, 3, 4, 5}.
In other word we will say that the sequence contains the permutation pattern {1, 2, 3, 4, 5}.
An another example, the subsequence {42, 36, 5, 49}mimics the permutation {3, 2, 1, 4} and

therefore we cansa that thesequence contains the permutation pattern {3, 2, 1, 4}. The for-

mal definition is provided below.

Definition 3.4 (Permutation avoidance). Let w ∈ [n]∗ and p = p1p2 . . . pk be a permutation.

We say that the word w contains the permutation p if there exist indices 1 ≤ t1 < t2 < . . . <
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CHAPTER 3. WORD REPRESENTABLE GRAPHS

tk ≤ n in the word w such that if pi > pj then wti > wtj for all i, j ∈ [k]. In other words,

we can find a subsequence t of length k in w such that the ordering of letters in t mimics the

ordering given by p. The word wt1wt2 . . . wtk is called an instance of p. A word w avoids a

permutation p, if w does not contain any instance of p.

Example 3.5. Consider the word w = 3721412. The subsequence 374 is an instance of the

permutation 132 because the ordering of the letters at any two indices i and j where 1 ≤ i, j ≤ 3

in side the permutation and inside the subsequence are same. The subsequence 142 is also

an instance of the permutation 132. The word 654321 does not contain an instance of the

permutation 132 because it is in strictly decreasing order.

Definition 3.5 (Set permutation avoidance). Let A be a set of permutations. We say that a

word w avoids A iff w avoids every permutation in A.

Example 3.6 ([27]). Let A be the set containing the permutations 1234 · · ·n and n(n −
1) · · · 321 where n ∈ N, i.e., the increasing and decreasing subsequences of length n. The

longest word which avoids the set A is of length n2.

Definition 3.6 (Subpermutation avoidance). Let s be a subpermutation on [n] containing n.

Let As be the set as defined below.

As , {p ∈ Sn | s is a subsequence of p}

We say that a word w avoids the subpermutation s iff w avoids As.

Example 3.7. The word w = 78563412 avoids the subpermutation 13. The word w is obtained

by interleaving two decreasing sequences. There are no increasing sequences starting at an even

number and the increasing sequences starting at the odd number is of length at most 2. None

of these can be an instance of the subpermutation 13.

Note that for a given subpermutation s, the word which avoids As need not avoid s if s

itself a permutation. For example, if s = 132 and the set A132 = {4132, 1432, 1342, 1324}
then there exist words which avoids A132, but does not avoid 132.

The different notions described above for pattern avoidance give rise to different notions

of word representability of graphs. We shall explore more about these notions in the coming

sections.

3.1.4 Representability and permutation patterns

For a property P of words, we can look at the problem of representing a given graph G

using word having property P . We call such graph P -representable. The properties we

have study in this thesis are
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3.2. PROBLEM STATEMENT AND KNOWN RESULTS

1. Uniformity

2. Ordered permutation avoidability

For a permutation p, we shall say that a graph G is p-representable, if there exist a word w

which represents G and avoids permutation p. Given a k ∈ N, a permutation p and a graph

G, we say that G is (k, p)-representable if there exists a p avoiding k uniform word w which

represents G.

Example 3.8. The graph G shown below is 132 representable. The word w = 43212341 avoids

the permutation 132 and represents G.

2

4

1 3

Figure 3.5: A 132-representable graph

All connected graphs on 5 vertices are 132-representable [28]. To find a word repre-

sentable graph on 6 vertices which is not 132 representable is an open question[28].

Example 3.9. The cycle graph C4 in Figure 3.4 is not 12-representable. The graph given in

Figure 3.5 is (2, 132)-representable because the word w = 43212341 represents the given graph

and is a 2-uniform word avoiding the permutation 132.

Example 3.10. The graph given in Example 3.1 is not (2, 132)-representable. We shall provide

a proof for this result in Section 3.5.

3.2 Problem statement and known results

The problems studied in this chapter are related with the various types of graph repre-

sentability. If a graph is word representable, then it has infinitely many representant words.

Given a graph G, let fn(G) denote the number of representant word of G of length n. We

study this function fn(G) and have computed fn(G) for some specific graphs. Note that

fn(G) = m! for the complete graph Km and fn(G) = 0 for the graphs G which are not word

representable.

We show that a cycle graph Cn is represented by a unique circular permutation of a

2-uniform word. This characterization helps us to count the number of 2-uniform words
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which represents Cn. We show that the number of 2-uniform words which represents Cn is

4n.

Problem 1 (Word generated graph). Given a word w, compute the graph Gw.

The brute force algorithm can solve the problem in O(|Σ(w)|2 + |Σ(w)| × |w|)-time and

O(|Σ(w)|2)-space. Designing an efficient algorithm for this question is an open problem.

Problem 2 (Decidability of graph representability). Given a graph G, is G word repre-

sentable?

This problem is known to be NP-Complete [14]. The associated counting problem is to

compute the number of words of length n which represents G. There are no known com-

plexity related literature corresponding to this counting problem. We look three variants of

these problems.

Problem 2.1 (k-word representability). Given a graph G, is G k-word representable?

Problem 2.2 (p-representability). Given a graph G and permutation p, is G p-representable?

Problem 2.3 ((k, p)-representability). Given a graph G, a number k and a permutation p, is

G (k, p)-representable?

For a given k where 3 ≤ k ≤ dn2 e, Problem 2.1 is NP-Complete [14]. Problems 2.2 and 2.3

are decidable because the length of the representant word is bounded. For a given k = 2

uniform word w and a given G = (V,E), we give an O(V + E)-time algorithm to decide

whether Gw = G.

It is known that cycle graphs, path graphs and trees are 132 representable[28]. Gao,

Kitave and Zhang obtained a count for the number of 132 avoiding representants of the

complete graph[28]. We show that the number of 1342 avoiding words which represent the

complete graph Kn is 6 when the letter n appear three times in the representant word.

We give an example of a six vertex graph which is 132-representable but it is not (2, 132)-

representable. Further, we show that grid graphs and ladder graphs are not (2, 132)-

representable. The (2, 132) representable graphs form subset of (2, 1342) representable

graphs because the word which avoids the permutation 132 avoids the permutation 1342.

We show that the inclusion is strict by constructing a graph which is (2, 1342)-representable

but not (2, 132)-representable.
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3.3 Uniform word representability

For 3 ≤ k ≤ dn2 e, deciding that whether the given graph is k-word representable, is NP-

Complete. This section studies graphs with representation number 2. The representation

number of cycle graphs is two. We obtain a count for the number of words which represents

cycle graphs. We give a linear time algorithm to check whether a given two uniform word

represents a given graph in Section 3.3.2.

3.3.1 Number of 2 uniform representant words for cycle graph

We look at the two uniform representants of the cycle graph. The following theorems tells

us that we can restrict our attention to a single canonical two uniform representant word.

Theorem 3.4. In any 2 uniform representable graph G = (V,E), the representant word w

and its circular shift, denoted by Cw both represent the same graph.[14]

Given a representant word w, the above proposition guarantees any circular shift of w

also represents the cycle graph. We show that there is precisely one circular permutation of

a two uniform word which represents a cycle graph.

Theorem 3.5. There is a unique circular permutation of n letters where each letter appears

precisely twice and represents cycle graph Cn.

Proof. Consider any two uniform word w representing Cn. Clearly all its cyclic shifts also

represent Cn. We can thus consider the word w as being placed along the perimeter of a

circle. Note that if the chord obtained by joining two copies of the letter i and the chord

obtained by joining two copies of the letter j intersect in the circle then there is an edge in

the graph which corresponds to the vertices i and j.

Since the vertex 1 and the vertex 2 are connected, the letter 1 and the letter 2 have to

alternate in the representant word of the graph. These two letters must be put on the circle

which is shown in Figure 3.6(a). The letter 3 is connected with the letter 2 and it is not

connected with 1 hence 2 has to come in between the two copies of letter 3. This is shown in

Figure 3.6(b). The letter 4 is connected with 3 hence precisely one copy of 4 must come in

between two places within the arc determined by the word 323. If the first copy of the letter

4 occurs as 3423 then the second copy of 4 cannot occur anywhere in the arc determined

by the word 31213. Otherwise, 4 is connected with either of letters 1 or 2. So 4 can not

appear any place around the circle. Hence, the first copy of letter 4 must occur as 3243. The

second copy of 4 cannot appear anywhere in the arc determined by 234121. Otherwise, 4 is

connected with the letters either 1 or 2. Hence, the second copy of letter 4 has to appear as

32



CHAPTER 3. WORD REPRESENTABLE GRAPHS

324341. It is shown in Figure 3.6(c). Since we are getting a unique extension for each letter,

this procedure can be extended up to the letter n − 1. We get Figure 3.6(e). The letter n

is connected with the letters n − 1 and 1. The letter n must appear in the arcs determined

by 121 and (n − 1)(n − 2)(n − 1). If the first copy of the letter n appear as 1n21 and the

second copy of the letter n appear as (n− 1)n(n− 2)(n− 1) or (n− 1)(n− 2)n(n− 1) then

the vertex n is connected with the vertex 2, a contradiction. If the first copy of the letter n

appear as 12n1 and the second copy of the letter n appear as (n − 1)(n − 2)n(n − 1) then

the vertex n is connected with the vertex n− 2, a contradiction. Hence, n has to appear as

12n1 and (n− 1)n(n− 2)(n− 1). The final figure is shown in Figure 3.6(f).
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Figure 3.6: Representant word for Cn

The above characterization of the cycle graph by two uniform word helps us to count the

number of two uniform words which represents a cycle graph.

Theorem 3.6. For n > 3, the number of 2 uniform word which represents the cycle graph Cn
is 4n. For n equal to 3, 2 and 1 these numbers are 6, 4 and 1 respectively.

Proof. The cases where n ≤ 3 can be checked by a simple enumeration. We shall therefore

assume that n is greater than 3. Let w (as shown in Figure 3.6(f)) be a word representing
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Cn. No factor of w of length 3 can have a repeated letter as a repeated letter in a factor with

length 3 will force the corresponding vertex to have degree less than 2. As there are more

than 3 letters in w, if any 3 length factor abc has repeated in w, we can infer that Gw is not

Cn, as Gw is either disconnected or there exist a vertex in Gw of degree 3. If the factors abc

and cba have appeared in w then either there exist a vertex which has degree 3 or the graph

is disconnected. Both possibilities give a contradiction. The number of words of size 3 on

alphabet [n] is equal to n(n− 1)(n− 2). The total number of circular shift of the word w is

2n. Each circular shift gives two words (the word and its reflection) which represents the

graph Cn. Since n(n−1)(n−2) ≥ 4n for n > 3, any circular shift of w and its reflection they

are all unique because each word has the distinct prefix of length 3. Hence, the number of

two uniform words which represents Cn is 4n.

3.3.2 Algorithm for 2-word representability

Given a graph G = (V,E) and a two uniform word w ∈ V ∗, we want to check if G =

Gw. The naive algorithm (Algorithm 1) to check if G = Gw takes O(V 3) time. The naive

algorithm checks for each pair (a, b) whether they are present in G and Gw. In this section

we provide an optimal algorithm (Algorithm 2) which works in O(V + E) time.

Algorithm 1 The naive algorithm to check if G = Gw

Input: A graph G and a two uniform word w.
Output: TRUE if G = Gw and FALSE if G 6= Gw.

1: procedure ALTERNATING GRAPH(G,w)
2: V ← the vertex set of G.
3: E ← the edge set of G.
4: for all a, b ∈ V × V, a 6= b do
5: if (a, b) ∈ E and a, b doesn’t alternate in w then
6: return FALSE

7: end if
8: if (a, b) /∈ E and a, b alternate in w then
9: return FALSE

10: end if
11: end for
12: return TRUE

13: end procedure

For the optimal algorithm, we store the two uniform word as a doubly linked list. Note

that every letter appears exactly twice.

In order to determine if G = Gw, we first check if every edge of G is an edge in Gw. Every
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a b c b c d a d

Figure 3.7: The word abcbcdad stored as a linked list

letter appears twice in w. Let fa and sa be the indices corresponding to the first and the

second occurrence respectively of a letter a. the By a linear scan of w, we can determine fa
and sa, for every letter a. Note that (a, b) is an edge in Gw if and only if fa < fb < sa < sb or

fb < fa < sb < sa. Once the preprocessing of w is done to determine fa and sa, determining

if an edge of G is an edge of Gw can be done in constant time per edge. Therefore, the total

time taken will be linear in |w| and |E|.

Note that G = Gw if and only if every edge of G is an edge of Gw and both graphs have

equal number of edges. The number of edges of G is readily known. In Algorithm 2, we

compute the number of edges in Gw in linear time by computing the degree ( The algorithm

actually computes the residual degree) of each vertex.

The degree of vertex v in Gw is equal to the number of singleton occurrences of letters

between fv and sv. The sum of the degrees is equal to twice the number of edges. Instead

of counting the singleton occurrences, if the count only those single occurrences that cor-

responds to the first occurrence of a letter, we will get a number, we call it residual degree,

that is less than or equal to the degree. Note that each singleton occurrence will now be

counted exactly once and thus the sum of the residual degree will be equal to the number

of edges in Gw.

Theorem 3.7. Given a two uniform word w and a graph G, Algorithm 2 correctly solves the

problem of checking if G = Gw and runs in O(V + E) time.

Proof. The algorithm verifies the following two conditions;

1. Every edge of G is an edge of Gw

2. Number of edges is G is equal to number of edges in Gw.

Clearly, these two conditions imply that G = Gw. The algorithm has three parts; the first

part consisting of lines up to 6 is the initialization stage. The lines 7−11 checks for condition

1 and the lines 12− 23 checks for condition 2.

If an edge (a, b) of G is not an edge of Gw, then line number 9 will return FALSE when the

edge (a, b) is processed by the for loop. Thus, when the algorithm completes the execution

of the for loop without returning, every edge of G has been verified to be an edge of Gw
and thus verifies condition 1.
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Algorithm 2 The linear time algorithm to check if G = Gw

Input: A graph G and a two uniform word w.
Output: TRUE if G = Gw and FALSE if G 6= Gw.

1: procedure ALTERNATING GRAPH(G,w)
2: V ← the vertex set of G.
3: E ← the edge set of G.
4: m← the number of edges in E.
5: m̂← 0
6: Dw ← the doubly linked list corresponding to the word w.
7: for all edge (a, b) ∈ E do
8: if a and b do not alternate in w then
9: return FALSE

10: end if
11: end for
12: while Dw is not empty do
13: x← The first repeating letter in Dw.
14: Cx ← The number of letters between the two occurrences of x.
15: m̂← m̂+ Cx
16: if m̂ > m then
17: return FALSE

18: end if
19: Delete the occurrences of x from Dw.
20: end while
21: if m̂ < m then
22: return FALSE

23: end if
24: return TRUE

25: end procedure
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We will show that while loop computes the number of edges of Gw if it is less than or

equal to the number of edges in G and returns FALSE otherwise. When the loop does not

return FALSE, the variable m̂ will contain the number of edges in Gw.

Since w is a two uniform word, every letter appears exactly twice in w. Let the letters be

ordered by the indices of their second appearances. Let us denote the rth repeated letter

by lr. For example, for the word shown in Figure 3.7, l1 = b, l2 = c, l3 = a and l4 = a. For

i ≥ 1, let Giw be the induced subgraph of Gw by restricting the vertex set to V \ {l1, . . . , li}
and let G0

w = Gw. Let D0
w be the doubly linked list corresponding to w and let Di

w be the

doubly linked list after i iterations of the while loop. Note that in the ith iteration, the two

copies of li are removed from Di−1
w to obtained Di

w and the number of letters between the

two occurrences, which we shall denote by δ̂i, is added to m̂. Let δi denote the degree of

the vertex li in the graph Gi−1w . We claim that δi is equal to δ̂i.

Claim: δi = δ̂i.

Proof of Claim:

Let w(i) be the word corresponding to the doubly linked list Di
w. Clearly, the alternating

word graph Gw(i) is equal to Giw. Thus the δi, the degree of li in Gi−1w , is equal to the degree

of li in the alternating word graph Gw(i−1) . Since li is the first repeated letter in Di−1 and

thus in w(i−1), every letter that appears in between the two appearances of li is a neighbor

of li in Gw(i−1) and thus δi = δ̂i.

End of Proof of Claim

For a vertex la, the edge (la, lb) ∈ Gw is in Gaw if and only if b > a. Only the edges in Gaw
contribute towards δa. Therefore each each in (la, lb) ∈ Gw contributes a one to either to

δa or to δb. Thus m̂ is always less than or equal to the number of edges in Gw. None of the

steps in the algorithm decrements the value of m̂. Therefore, when m̂ becomes larger than

the number of edges in G, we can rightly conclude that G 6= Gw. If the while loop exits

without a returning FALSE in between then clearly m̂ contains the number of edges in Gw

which is guaranteed to the less than or equal to the number of edges in G. Therefore the

check in line number 21 correctly verifies condition 2.

Time Complexity: The initialization phase consisting of steps 1-6 clearly takes time pro-

portional to O(V + E). The steps 7-11 takes O(E) as each check in line 8 can be done in

constant time if we preprocess w and store the first and second occurrences of each letter

a ∈ Σ(w). The time taken in the while loop (steps 12-21) is proportional to the value of m̂.

As the value of m̂ is bounded by m + |V |, we can bound the time taken by steps 12-21 by

O(V + E). Therefore the algorithm runs in O(V + E) time.
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3.4 Permutation representability of Graphs

The problem we address in this section is related to the word representability of Kn. It

is easy to see that any representant word of Kn is a prefix of the word σω where σ is a

permutation on [n] where the prefix is of length at least n. We are interested in counting the

number of such representants which avoid the permutation 1342. Given word w, let nx(w)

denotes the number of occurrences of x in w. The following result connects nx(w) and

the minimum degree of a permutation representable graph. Note that all 132-representable

graphs are 1342-representable graphs because the word which avoids 132 cannot contain

1342.

Theorem 3.8. Let p be a permutation of length at most δ + 1 and let G be a p-representable

graph such that the degree of each vertex is at least δ. For any p avoiding representant word w

of G and any letter x ∈ Σ we have nx(w) ≤ δ.

Proof. Let x be a vertex of G and w be any representant word of G. For the sake of contra-

diction, let assume that nx(w) > δ. Since the degree of x is greater than or equal to δ, the

vertex x has at least δ adjacent vertices. Assume that a1, a2,. . . and aδ are distinct neighbors

of x in G. The word w can be written as w1xw2xw3xw4 . . . wδ+1xwδ+2. Since the letters

a1,a2. . . aδ are adjacent vertices of x, the letters a1, a2 . . . aδ must appear in words w2,w3

. . .wδ+1. We shall show that p appears in w. Since, T = {x, a1, a2 . . . aδ} ⊂ {x} ∪ Σ(wi)

where 1 ≤ i ≤ k, each of these non overlapping substring of w contain every letter in T .

Thus any permutation of length δ+1 can be obtained by picking the appropriate letter from

T in xwi. In particular, an instance of p can be obtained in w.

Corollary 3.1. The maximum length of any word which avoids permutation p and it represents

a graph in which each vertices has the degree at least |p| − 1 is (|p| − 1)n where the letter n is

the number of vertices in the graph.

Proof. Let w be a word which avoids permutation p, and it represents a graph in which

degree of each vertices is at least |p| − 1. By Theorem 3.8, each letter can appear at most

|p| − 1 time in w. Hence, |w| ≤ (|p| − 1)n.

In the following section, we obtain a count for the number 1342 representant words of

Kn.
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3.4.1 Count of special 1342 representant words of Kn

To count the number of 1342 avoiding permutation which represents Kn, we first count the

number of permutations avoiding subpermutations 13 and 342.

Proposition 3.1. The number of permutations on [n] which avoids the subpermutation 342 is

nCn−1 where Cn−1 is Catalan number.

Proof. If a word on the alphabet [n] \ {1} where each of the letter appears precisely once,

avoids subpermutation 342 then by reducing each letter of permutation by 1, we get a

unique permutation on alphabet [n-1] which avoids 231. Now, if a permutation on alphabet

[n-1] avoids permutation 231 then by increasing each element of permutation by 1, we get

a unique 342 avoiding word on alphabet [n] \ {1} where each letter appears precisely ones.

Hence, the number of words on alphabet [n] \ {1} where each letter appears precisely once

and avoids set A342 is Cn−1. For each 342 avoiding word x ∈ [n] \ {1} where each letter

appears exactly once, we can insert 1 at n positions. The obtained permutations still avoid

set A342 because x avoids set A342. Hence, for each such x, we get the permutation on [n]

which avoids the set A342. So the number of permutation on [n] which avoids set A342 is

equal to nCn−1.

The following Proposition will be used to prove the main result of this section.

Proposition 3.2. Let Γn(A) = {x ∈ Sn : x avoids the subpermutations 13 and 342}. Then ,

for all n ∈ N where n ≥ 4, Γn(A) has exactly three elements namely n(n − 1) . . . 4231, n(n −
1) . . . 4312 and n(n− 1) . . . 4321}.

Proof. We have A13 = {123, 132, 213} and A342 = {1342, 3142, 3412, 3421}. To avoid the set

A13, any permutation w, of the set Γn(A) must be of the following forms.

1. All the letters which appear before n must be greater than the letters which appear

after n. Otherwise, the permutation contains 132.

2. The letter n can appear either at the first or the second position. Otherwise, the

permutation contains either 312 or 321.

Further, if the letter n appears in the second position in any permutation in Γn(A) then

there must be no increasing or decreasing sequence of length 2 after n. Otherwise, the

permutation contains a permutation in the set {3412, 3421}. Thus, if the letter n where

n ≥ 4 appear at the second position in a permutation in Γn(A) then the only one letter can

appear after n. So we conclude that for n ≥ 4, the letter n cannot appear at the second

39



3.5. UNIFORM PERMUTATION REPRESENTABILITY

position in any permutation in Γn(A). Since the letter n appears only at first position in

every permutation in Γn(A) for all n ≥ 4, any permutation of the set {1342, 3142} cannot

occur in any permutation in Γn(A). So for each element in Γn(A) we get an exactly one

element in Γn+1(A) by appending n+ 1 at the first position. Thus, |Γn(A)| = |Γn+1(A)|. For

n = 3, we have Γ3(A) = {231, 312, 321}. Hence, |Γn(A)| = 3 for all n ≥ 3. From the above

analysis, the set Γn(A) can be generated easily from the set Γ3(A) = {231, 312, 321}.

Theorem 3.9. Let Kn be the n vertex complete graph and S be the set of words which repre-

sents Kn and avoids 1342. Let T ⊂ S be the set of words in which n appear three times. Then

|T | = 6.

Proof. A word in which n appears precisely three times, and it represents complete graph

must be of the form w = w1nw2nw3nw4 where w2, w3 ∈ Sn−1, and letters can not repeat

inside w1 and w4. Not that to avoid 1342 in w1nw2nw3nw4, Σ(w1) must be a subset of

{n− 1, n− 2} and Σ(w4) must be the subset of {n− 1, 1}.

Now the factor nw2nw3n of w, if the factor w2 contains the subpermutation 13 or the

factor w3 contains the subpermutation 342 then the word w contains the permutation 1342.

To ensure that each pair of the letters alternate in the factor nw2nw3n, in between two letter

i where 1 ≤ i ≤ n − 1, all letters from the set [n] have to appear. Since every pair of the

letter must alternate in the factor, we must have w2 = w3. By Proposition 3.2, the word w2

must belong to the set Γ(n − 1). If w2 ∈ Γ(n − 1) then w1 = ε and w4 = n − 1 or w4 = ε.

Hence, the total count becomes 6.

3.5 Uniform permutation representability

In this section, we study the problem of representing graphs using uniform words which

avoid certain permutation. In particular, we show that certain class of graphs can not be

represented via uniform permutation avoiding words. The two permutation representability

which we study are

(i) 132 representability

(ii) 1342 representability

3.5.1 Non (2, 132)-representability

Consider the graph G shown in Figure 3.8. The word abdaedcbfcef represents this graph, is

a two uniform word. The total number of 2-uniform words on [6] is 12!
26

. We have generated
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CHAPTER 3. WORD REPRESENTABLE GRAPHS

all the 132 avoiding words among these. For each of these words w, we have generated the

graph Gw and verified that at least one of the following condition fails.

1 The degree sequence of the graph is (3, 3, 2, 2, 2, 2)

2 The vertices with degree 3 have distant neighbors.

3 The vertices with degree 3 are connected.

Since, the graph in Figure 3.8 satisfies all the above condition, we can conclude that none of

the word generated can represent the graph in Figure 3.8. We summarize this as theorem.

Theorem 3.10. The graph given in Figure 3.8 is not (2, 132) representable.

D E F

A B C

Figure 3.8: A non (2, 132)-representable graph

Corollary 3.2. Ladder graphs and grid graphs are not (2, 132)-representable.

Proof. These graphs contain Figure 3.8 as an induced sub graph, which is not (2, 132)-

representable. Thus, the Ladder and the Grid graph are not (2, 132)-representable.

Remark 3.1. Graph given in Figure 3.8 is represented by the 132 avoiding word 564534261.

If we remove any edge from the graph then we get a (2, 132)- representable graph. Their

representant words are 564534231261,564345236121 and 645342351261.

3.5.2 On (2, 1342)-representability

The graph which are (2, 132)-representable are surely (2, 1342)-representable. We show that

the converse is not true. In this section, we shall construct a family of connected graphs

that are (2, 1342)-representable graph. These graphs contain the graph in Figure 3.8 as a

sub graph, and thus none of these graphs will be (2, 132)-representable graph.

Let G1 = (V1, E1) be the graph given in Figure 3.8 with the vertices labeled by A =

4, B = 3, C = 1, D = 5, E = 6 and F = 2. Let Gn where n ∈ N be the defined inductively

as follows.
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Gn+1 = (Vn+1, En+1) and An = {6n+ 1, 6n+ 2, · · · , 6n+ 6} where

Vn+1 = Vn ∪An

En+1 = En ∪ {(a, b) | a, b ∈ An and (a− 6n, b− 6n) ∈ G1} ∪ S

and S = {(6n, 6n+1), (6n−1, 6n+3), (6n, 6n+3), (6n−1, 6n+1)}. We obtain the following

theorem about the graph Gi where i ∈ N. Th graph G3 has shown in Figure 3.9(b).

Theorem 3.11. For every n ∈ N, the graphs Gn defined above are (2, 1342)-representable but

not 132-representable.

Proof. As each Gn where n ∈ N contain G1 as a induced sub graph Gn is not 132 repre-

sentable for any n ∈ N. For any word w over N and for n ∈ N, let w ⊕ n denote the word

whose ith letter is wi + n where wi denotes the ith letter of w.

Let w1 = 564534261231 . We define the word wn , γnβ1β2α1α2τn where γn, τn are unique

words and α1, α2, β1 and β2 are the unique letters which satisfies the following conditions.

1. γnα1α2 = w1 ⊕ 6(n− 1)

2. β1β2τn = wn−1

It is easy to check that wn is a two uniform word which represents Gn. We shall verify that

wn avoids the permutation 1342. Clearly w1 avoids 1342. Assume that wn contain 1342 and

is the last such n.

As γnα1α2 is a word obtained by adding a number to w1, γnα1α2 clearly avoids 1342,

β1β2τn being equal to wn−1, we can inductively conclude that β1β2τn too avoids 1342. The

word β1β2α1α2 is (6n−1)(6n)(6n+3)(6n+1) and it clearly avoids 1342. Thus any occurrence

of 1342 in wn must span across the sub words γn, τn and β1β2α1α2.

Since, γnα1α2 contain letters which are greater than every letter in β1β2τn, the smallest

letter of an instance of the permutation 1342 in wn must be a letter among β1β2τn. Other-

wise the instance of the permutation 1342 appears completely inside γnα1α2. Assume that

the smallest letter of an instance of the permutation 1342 is β1 or β2, then it is not possible

to get the third, fourth and the second smallest letter of the instance of the permutation

1342 in β1β2α1α2τn because all the letters which appear in side qn are less than or equal to

β1 or β2 and α1 > α2.
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5 6 2

4 3 1

5+6 6+6 2+6

4+6 3+6 1+6

(a) The graph G2

5 6 2

4 3 1

11 12 8

10 9 7

17 18 14

16 15 13

(b) The graph G3

Figure 3.9: The graphs which is represented by a 2-uniform word which avoids permutation
1342, but it does not avoids permutation 132.

3.6 Conclusion and open problems

For a given two uniform word w and a graphG, we have given a fast algorithm to check that

whether Gw = G. We studied the number of two uniform representant words for the cycle

graph on n vertices and have shown that there are precisely 4n two uniform representant

words. We have extended the study of 132 and 1342 permutational representable graphs

and obtained the count of words which represents a complete graph of n vertices in a

special case. We have also constructed a graph which (2, 1342) representable but it is not

132 representable.

Finding a graph on 6 vertices other than complete graph which is not 132 representable

is not known. Characterization of permutation p representable graphs which are not (2, p)

representable is an open question. There are various open question in this area have men-

tioned in [14].

[[]X]\\
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Chapter4
Quasiperiodicity in Tribonacci Word

Quasiperiodicity is the generalization of the well studied concept periodicity[17, 15]. The

concept of quasiperiodicity is defined in [29]. A word w is “periodic” if it can be written as

w = uku′ where k is a strictly positive integer and u′ is prefix of u. The word u can “cover”

every position of w in a non overlapping manner. A word w is “quasiperiodic” if there exist a

word u such that w can be “covered” using u. Note that we do not insist that the “covering”

is non overlapping. We call the length of the the covering words as period and quasiperiod

as applicable. Note that every period is a quasiperiod and a word can have more than one

period.

Example 4.1. The word w = abaababaabaaba is quasiperiodic as the word aba covers it. Note

that w cannot be written as a prefix of (aba)k.

In this chapter we study the various “covering words” of the Tribonacci word. In particular

we look of the following covering words

• Cover

• Seed

• Right Seed

• Left Seed

The notions are diagrammatically shown in Figure 4.1.

Given a word w, an algorithm to compute all the seeds and covers was given by Iliopoulos

et al in [30, 31]. A linear time algorithm for seed computation was given by Kociumaka et.

al.[32]. Li et. al, in [33, 34], computed all the covers of a given word in linear time.

We look at certain special words and characterize their covering words. We extend the

work of Christou et al [21]. They studied the various covering words of the Fibonacci word.
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A periodic word

︷ ︸︸ ︷
xxxxxxx

aba

xxxxxxx︸ ︷︷ ︸
aba

︷ ︸︸ ︷
xxxxxxx

aba

xxxxxxx︸ ︷︷ ︸
aba

︷ ︸︸ ︷
xxxxxxx

aba

a b a a b a a b a a b a a b

The word aba is a cover

︷ ︸︸ ︷
xxxxxxx

aba

xxxxxxx︸ ︷︷ ︸
aba

︷ ︸︸ ︷
xxxxxxx

aba

xxxxxxx︸ ︷︷ ︸
aba

︷ ︸︸ ︷
xxxxxxx

aba

a b a a b a b a a b a a b a

The word abaab is a left seed

︷ ︸︸ ︷
xxxxxxxxxxx

abaab

xxxxxxxxxxx︸ ︷︷ ︸
abaab

︷ ︸︸ ︷
xxxxxxxxxxx

abaab

xxxxxxxxxxx︸ ︷︷ ︸
abaab

a b a a b a b a a b a a b a b a − −

The word abaab is a seed

︷ ︸︸ ︷
xxxxxxxxxxx

abaab

xxxxxxxxxxx︸ ︷︷ ︸
abaab

︷ ︸︸ ︷
xxxxxxxxxxx

abaab

xxxxxxxxxxx︸ ︷︷ ︸
abaab

− − a a b a b a a b a a b a b a − −

Figure 4.1: Word cover variants

Tribonacci words are generated using a process very similar to that of Fibonacci words. In

this chapter we investigate the various covering words of the Tribonacci words.

The first section introduces the definitions and primary results. In the next section, we

give a brief overview of the various problems involving Tribonacci words. In Section 4.4 we

describe all the borders of Tribonacci word. This helps to determine the covers of Tribonacci

word in Section 4.5. Then left/right seeds of Tribonacci word is described in Section 4.6.2.

Finally, we characterizes the seed of Tribonacci word in Section 4.6.3

4.1 Mathematical preliminaries

In this section we define the morphism generated words and quasiperiodicity of a word.

Consider a morphism given by σ(a) = ab and σ(b) = a. If we denote σn(0) by Fn then

Fn = Fn−1Fn−2. The word Fn is called the nth Fibonacci word. The limit word, which

is well defined as each Fn contains Fn−1 as a prefix, is called the Fibonacci word. If we

denote the length Fn by fn, then sequence given by fn satisfies the Fibonacci recurrence

fn = fn−1 + fn−2.

The kth Fibonacci word Fk has many interesting properties. For example, it contains

exactly k + 1 distinct k length factors for all k ≥ 1. Words with this property is called as

Sturmian words. Interested readers may see chapter on Sturmian words in [17] to know

more about the Fibonacci words.
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In this chapter we study a special word known as Tribonacci word. Tribonacci words are

similar to Fibonacci words in the sense the recurrence relations used to define these words

are very similar.

Consider the Tribonacci (also known as Rauzy) morphism [35] given by

σ(a) = ab

σ(b) = ac

σ(c) = a

The nth Tribonacci word Tn, n ∈ N is obtained by applying n times the morphism σ on the

letter a. For example, T3(a) = σ3(a) = σ2(ab) = σ(abac) = abacaba. Note that Tn, for n ≥ 4

is equal to Tn−1Tn−2Tn−3. As the word Tn contains Tn−1 as a prefix, the limit word σω(a)

is well defined and is called the Tribonacci word. We denote this word by T. If {tn, n ∈ N}
denotes the Tribonacci sequence given by the recurrence relation tn = tn−1 + tn−2 + tn−3

with t1 = 2, t2 = 4 and t3 = 7, then Tn is the prefix of T of length tn.

4.1.1 Quasiperiodicity

Periodicity properties of a word is a well studied topic. A periodic word can be covered

using a single word in a non overlapping way. The notion of quasiperiodicity is obtained by

allowing a covering which may overlap. The notion of a cover is described below.

Definition 4.1. We say that a word u “covers” an index i in a word w if we can find an index j

where j ≤ i < j+ |u| and a subword of w starting at position j is u. A word w is quasiperiodic

if there is a word u which covers all indices in w. The word u is said to be the cover of the word

w.

Example 4.2. The word w = abaababaabaaba is a quasiperiodic word and the word aba is a

cover of w. It is described in Figure 4.2.

︸ ︷︷ ︸
u

a b a

u︷ ︸︸ ︷
a b ︸ ︷︷ ︸

u

a b a

u︷ ︸︸ ︷
a b a ︸ ︷︷ ︸

u

a b a

Figure 4.2

The notion of cover requires that the cover is both a prefix and suffix of the word. This

would mean that a word which covers a word w may not cover a factor of w. The notion of

seed is obtained by relaxing this requirement.
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Definition 4.2. A word u is a seed of a word w, if there exists words s and t such that the word

u covers swt. A word u is a left seed of a word w, if there exists a word t such that the word u

cover of the word wt. A word u is a right seed of a word w, if there exists a word s such that

the word u cover of the word sw.

Example 4.3. The word abaab is a left seed of the word w = abaababaabaababa. Note that

abaab does not cover w. It is shown in Figure 4.3.

︸ ︷︷ ︸a b a a b ︸ ︷︷ ︸a b a
︷ ︸︸ ︷
a b a a b ︸ ︷︷ ︸a b a

Figure 4.3

4.2 Problem statement and known results

The covers and seeds of Fibonacci and circular Fibonacci strings has been found in [21].

We extend this study to Tribonacci words. We study the following problems in this chapter.

Problem 3. What are the borders of the Tribonacci word?

Problem 4. What are the covers of the Tribonacci word?

Problem 5. What are the seeds of the Tribonacci word?

Problem 6. What are the left seeds and right seeds of the Tribonacci word?

4.3 Known results on border and primitivity of words

We state some basic facts about borders and primitivity of words. A more detailed descrip-

tion can be found in [18].

Lemma 4.1. A border of a border of a word w is a border of the word w.

Lemma 4.1 can be extended for covers as well; i.e, given a word w, a cover of a cover of

w is another cover of w.

The following lemma can be used to check the primitivity of a word in linear time.

Lemma 4.2. A word u is primitive if and only if u is not a non trivial factor of uu, i.e uu = xuy

implies that x = ε or y = ε.

48



CHAPTER 4. QUASIPERIODICITY IN TRIBONACCI WORD

If the concatenation of two words is commutative then either both words are equal or at

least one of the word is not primitive.

Lemma 4.3. Let x, y ∈ Σ∗ such that xy = yx. Then there exists a word z and two integers k, l

such that x = zl and y = zk where l, k > 1.

4.4 Borders of the Tribonacci words

Recall that if a word u which is both a prefix and a suffix of a word w, then we say that u

is a border of w. We now show that the Tribonacci word is a primitive word. We shall then

use the primitivity properties to determine the borders.

Lemma 4.4. The word Tn is a primitive word for all n ∈ N.

Proof. It is easy to see that T1 is a primitive. For the sake of contradiction, assume that k is

the smallest number for which Tk is not a primitive word. Therefore Tk = uj where j > 1

and Tk−1 is primitive. Note that σ(Tk−1) = Tk. Let Tk−1 = w1w2 . . . wr where each wi is a

letter from {a, b, c}. We shall show that Tk−1 is non primitive contradicting the minimality

of k.

Clearly u must start with the letter a. Let u = axα where α is the last letter of u. As

Tk = σ(Tk−1), note that every letter in Tk−1 “expands” to either ab or ac or a in Tk. In other

words, every letter expands to a word of length either one or two. Therefore for every i,

the prefix of Tk length i or i + 1 must be an image of a prefix of Tk−1. Hence, if u is not

the image of a prefix of Tk−1, then ul where l is the letter immediately after u. But as Tk is

equal to uj , l is also the first letter of u, i.e l is a. Clearly this is impossible as the any word

whose image under σ is ua must end in c forcing u to be the image of a prefix of Tk−1.

If u is the image of a prefix of Tk−1 say u′, clearly uj equal to σ(u′)j . Thus Tk−1 is not

primitive.

The next lemma finds the maximum length border of Tn−2Tn−3. We shall use this lemma

for calculating the covers of Tn.

Lemma 4.5. For n ≥ 7, the longest border of Tn−2Tn−3 is Tn−3

Proof. The word Tn−2Tn−3 can be written as Tn−3Tn−5Tn−6Tn−7Tn−5Tn−3. Surely Tn−3 is

the border. Let assume that there is a prefix which is a border of Tn−2Tn−3 and it ends

within Tn−5. The word Tn−2Tn−3 can be written as Tn−3Tn−4Tn−5Tn−3. It is clear from
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the expansion of Tn−3 that Tn−5 is a prefix of Tn−3 and Tn−2Tn−3 = Tn−5xTn−3y such that

Tn−3 = Tn−5x. Hence, if a prefix Tn−3u of Tn−2Tn−3 equals a suffix Tn−3v of Tn−2Tn−3
where u is a prefix of Tn−5 then Tn−3 appears as a factor of Tn−3Tn−3 other than prefix and

suffix. By Lemma 4.2, this contradicts primitivity of Tn−3.

If the border is of the form Tn−3x where Tn−5 ≤ |x| ≤ Tn−4 then Tn−3 appears as a

factor of Tn−3Tn−3 because Tn−2Tn−3 can be written as Tn−3Tn−3y and Tn−4 is the prefix of

Tn−3.

Given a word w, let x be a border of w, then a border of x must be a border of w. By

using this idea, the following theorem characterizes the borders of Tn.

Theorem 4.1. Every border of the word Tn where n > 3 is an element of the set Bn given

below;

Bn , {Tn−2Tn−3, Tn−3, Tn−5Tn−6, Tn−6 . . . T(n mod 3)+1T(n mod 3), T(n mod 3)}

T1 and T2 do not have any borders and aba is the only border of T3.

Proof. The cases where n ≤ 3 can be easily checked. The word Tn can be expanded as

Tn = Tn−2Tn−3Tn−4Tn−2Tn−3. Let a word x be a border of Tn. Let assume that x =

Tn−2Tn−3Tn−4Tn−3y where |y| > 1. We express Tn as follows.

Tn = Tn−2Tn−3Tn−4Tn−2Tn−3 (4.1)

= Tn−2Tn−3Tn−4Tn−5Tn−6Tn−7Tn−5Tn−6Tn−4Tn−5Tn−3 (4.2)

= Tn−2Tn−2Tn−6Tn−7Tn−5Tn−6Tn−4Tn−5Tn−3 (4.3)

Since the border x is a suffix of Tn, it must start in between Tn−2 which has occurred first

from left in Tn. By Lemma 4.2 it contradicts primitivity of Tn−2.

Let assume that the border x = Tn−2Tn−3Tn−4y where the length of Tn−3 follows follow-

ing inequality.

|Tn−3| ≤ |y| ≤ |Tn−2Tn−3Tn−4Tn−3|

We express

Tn = Tn−2Tn−3Tn−4Tn−2Tn−3 (4.4)

= Tn−2Tn−3Tn−4Tn−5Tn−6Tn−7Tn−5Tn−6Tn−4Tn−5Tn−3 (4.5)

= Tn−2Tn−3Tn−3Tn−7Tn−5Tn−6Tn−4Tn−5Tn−3 (4.6)

The border x in Tn must start in between Tn−3 which has occurred first from left in Tn.
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Since Tn−3 is a prefix of the word x, by Lemma 4.2 Tn−3 cannot be primitive.

Let assume that x = Tn−2Tn−3y where 1 ≤ |y| ≤ |Tn−4|. Then the border x must start in

between Tn−4 in Tn−2Tn−3Tn−4Tn−2Tn−3. In Tn−2Tn−3Tn−4Tn−2Tn−3, the factor Tn−4Tn−2
can be expressed in such a way that Tn−4 occurs as a prefix in Tn−2. Hence, Tn−4 occur as a

factor in Tn−4Tn−4 other than prefix and suffix. By Lemma 4.2 it contradicts the primitivity

of Tn−4.

With the help of Lemma 4.1, it can be conclude that the borders of Tn are either Tn−2Tn−3
or border of Tn−2Tn−3. Hence, a border of Tn is an element from the set shown below.

{Tn−2Tn−3, Tn−3, Tn−5Tn−6, Tn−6 . . . T1+(n mod 3)T(n mod 3), T(n mod 3)}

4.5 Covers of Tribonacci word

Every cover is a border but all borders need not be covers. The following lemma describes

a border that is not a cover of Tn.

Lemma 4.6. Let n ∈ N and n ≥ 6. The word Tn−2Tn−3 can not cover Tn.

Proof. The word Tn = Tn−2Tn−3Tn−4Tn−2Tn−3. Clearly, Tn−2Tn−3 is the prefix and suffix

of Tn. Since |Tn−4| < |Tn−2Tn−3|, the word Tn−2Tn−3 must start in between the first oc-

currence of Tn−2Tn−3 or it must start from Tn−4. If it starts within Tn−2 then it contradicts

the primitiveness of Tn−2 and if it starts within Tn−3 then it contradicts the primitiveness of

Tn−3. To cover Tn−4, the word Tn−2Tn−3 must be of the form Tn−4Tn−2Tn−3 = Tn−2Tn−3x

where |x| = |Tn−4|. We expand Tn−3 as Tn−4Tn−5Tn−6 to get Tn−2Tn−4 = Tn−4Tn−2. Since

Tn−2 and Tn−4 differ in their lengths, by Lemma 4.3, the word Tn−2 must be non primitive.

It contradicts Lemma 4.4.

Theorem 4.2. For n ≥ 7, the covers of Tn are elements of the set {Tn−3, Tn−6, Tn−9, . . . , Tn−3k}
where n − 3k ≥ 7 and k ∈ N. The word abacaba is the only cover of T6. The remaining Tri-

bonacci words Tn have no covers.

Proof. A cover x of the word must appear as a border of Tn. By Lemma 4.6, the word

Tn−2Tn−3 does not cover Tn. So, the next possible border of Tn is Tn−3. We show that it

covers the word Tn. Because of the word

Tn−2Tn−3 = Tn−3Tn−4Tn−5Tn−3 = Tn−3Tn−4Tn−5Tn−6x
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where Tn−3 = Tn−6x = Tn−4Tn−5Tn−6, it is easy to see that Tn−3 covers Tn−2Tn−3. The

word Tn−4Tn−2 has a prefix Tn−3. Hence, the word Tn−3 covers

Tn = Tn−2Tn−3Tn−4Tn−2Tn−3

The rest of the covers of Tn can be determined recursively. By Theorem 4.1, we can deduce

that there does not exist any cover for Tn when n ∈ {1, 2, 3, · · · 5} and the word abacaba is

the only cover of T6.

We now move on to the study of the seeds of the Tribonacci words.

4.6 Seeds of Tribonacci words

To get every possible seed of a Tribonacci word we need a special expansion of the Tri-

bonacci word such that we can able to uniquely identify the occurrences of a smaller Tri-

bonacci word in the special expansion.

4.6.1 Results on the special expansion of Tribonacci word

The Tribonacci words can be described recursively. The following theorem gives us a handle

on the shape of bigger Tribonacci words in terms of the smaller ones.

Theorem 4.3. For m,n ∈ N, there is a unique expansion of Tn in terms of the letters Tm,

Tm−1 and Tm−2 where m < n.

Proof. Straight forward using induction.

This expansion has special value because with the help of expansion we will be able to

define positions where the word Tm occurs in the expansion. We call such an expansion of

the word Tn as (Tm, Tm−1, Tm−2) expansion.

Lemma 4.7. Let m,n ∈ N where 3 < m < n. None of the elements of the set S given below is

a factor of the (Tm, Tm−1, Tm−2) expansion of the word Tn.

S = {TmTm−2, Tm−2Tm−2, Tm−1Tm−1, Tm−2Tm−1, TmTmTm}

Proof. We prove by induction on i ∈ N where i = n−m. The only (TmTm−1Tm−2 expansion

of Tn express is Tn−1Tn−2Tn−3. It is clear that no element from the set S appears in this
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word. So, the base case of induction is verified. We may now assume that in the expansion

of Tn where all factor come as Tm+1, Tm and Tm−1, no factors from the set S is present.

Induction hypothesis says that the words Tm or Tm+1 follow Tm+1 and the words Tm,

Tm+1 or Tm−1 precede Tm+1. Now we expand Tm+1 as TmTm−1Tm−2. If we combined the

above possibilities for Tm+1 then we introduce the factors of the following form from the

set {Tm−2Tm, TmTm, Tm−1Tm, Tm−1Tm−2, TmTm−1}. It does not introduce any factor from

the set S.

Let the word obtained by concatenating the first n − 1 Tribonacci words be denoted by

Dn, i.e. Dn = Tn−1Tn−2 · · ·T1. The following properties of Tribonacci words are from [36].

Property 4.1. Let n ∈ N.

1. The longest common prefix of the words Tn−2Tn−3Tn−1 and Tn is the word Dn−2 =

Tn−3Tn−4 · · ·T0 = Tn−1Dn−5

2. The longest common prefix of the words Tn−1Tn and TnTn−1 is Dn = TnDn−3.

3. The longest common prefix of the words Tn−3Tn−1Tn−2 and Tn is the word Dn−3 =

Tn−4Tn−5 . . . T0

4. The word Tn has prefix Dn−1 and Dn−2.

5. The word Tn ends with the letter a for n ≡ 0 mod 3, the letter b for n ≡ 1 mod 3 and

the letter c for n ≡ 2 mod 3.

The following lemma characterizes all the occurrences of Tm in (Tm, Tm−1, Tm−2) expan-

sion of Tn.

Lemma 4.8. In the (Tm, Tm−1, Tm−2) expansion of the word Tn where 4 < m < n, the non

trivial occurrences of Tm starts at a position from where a word Tm−1 starts.

Proof. In (Tm, Tm−1, Tm−2) expansion of Tn, it is easy to see that the word Tm occur as either

Tm or starts at the position of Tm−1. Let us assume that Tm starts at the position from where

Tm−2 starts. By Lemma 4.7, Tm−2 must be followed by Tm. So the word Tm−2Tm expand

as Tm−1Tm−5Tm−3Tm−4Tm−2Tm−3. By the third part of Property 4.1, Tm−5Tm−3Tm−4 is not

equal to Tm−2. All the other possibilities are considered below.

Case:1 The word Tm starts in between the word Tm. By Lemma 4.7, we know that in the

(Tm, Tm−1, Tm−2) expansion of Tn, Tm is followed by either Tm or by Tm−1. In the first case,

Tm occur as a factor of TmTm other than prefix and suffix. Therefore, by Lemma 4.2, Tm is

53



4.6. SEEDS OF TRIBONACCI WORDS

not a primitive word. This contradicts Lemma 4.4. For the second case, we know that Tm
starts with the position of Tm−1. In this case, we get the same contradiction.

Case:2 The word Tm starts in between Tm−1. By Lemma 4.7 we know that in the

(Tm, Tm−1, Tm−2) expansion of Tn, Tm−1 is either followed by Tm−2 or by Tm. If Tm oc-

curs other than as prefix or suffix in Tm−1Tm then by Lemma 4.2, Tm−1 is not primitive.

This contradicts Lemma 4.4. The next possibility is that Tm−1Tm−2 is followed by Tm in

above expansion of Tn. In this case, Tm appears as a prefix of xTm−2Tm where the word x

is a non empty suffix of Tm−1. The word Tm can be expanded as

Tm = Tm−2Tm−3Tm−4Tm−2Tm−3 (4.7)

= Tm−3Tm−4Tm−5Tm−3Tm−4Tm−2Tm−3 (4.8)

The word xTm−2Tm can be written as xTm−1Tm−5Tm−3Tm−4Tm−2Tm−3. The word Tm−1 is

the prefix of xTm−1Tm−5Tm−3Tm−4Tm−2Tm−3 and the word x is the suffix of Tm−1, which

by Lemma 4.2 implies the non primitivity of Tm−1. This contradicts Lemma 4.4.

Case:3 The word Tm starts in between the word Tm−2. By Lemma 4.7 we know that in

(Tm, Tm−1, Tm−2) expansion of Tn, Tm follows Tm−2. The word Tm has Tm−2 as a prefix.

If Tm starts from in between Tm−2, by Lemma 4.2, Tm−2 is not primitive. This contradicts

Lemma 4.4.

By Lemma 4.7, Tm−2 or Tm follows Tm−1. The word Tm−1Tm contains Tm as a prefix.

By Lemma 4.7, Tm−1Tm−2 must be followed by Tm. Since Tm contains Tm−3 as a prefix,

Tm−1Tm−2Tm contains Tm as a prefix.

AS we have ruled out all the other cases, Tm starts with either from the starting position

of Tm or from the starting position of Tm−1.

By Lemma 4.7, if we consider we consider the words Tm, Tm−1 and Tm−2 as letters then

we know that in (Tm, Tm−1, Tm−2) expansion of Tn, the word TmTmTm does not occur as

a factor in the expansion. But in (Tm, Tm−1, Tm−2) expansion of Tn, TmTmTm occurs as

a prefix of the factor TmTmTm−1Tm−2Tm because Tm−3 is a prefix of Tm. Based on these

observations we define two types of factors or words. In the expansion of Tn, if the word

Tx1Tx2 · · ·Txr where xi ∈ {m,m − 1,m − 2} occurs as a factor, then we call it an existing

word. Any other occurrence will be referred to as a derived word. Lemma 4.8 states that

every derived word in Tm starts at an occurrence of Tm−1.
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4.6.2 Seeds of the one sided extensions of the Tribonacci word

In this section we characterize the left and right seeds of the Tribonacci words. It can be

easily checked that the left seeds of T3 are of the form abacx where x ∈ Pref(aba) and the

left seeds of T4 are of the form abacabax where x ∈ Pref(abacab). For the larger Tribonacci

words, the following theorem characterizes all the left seeds of Tn.

Theorem 4.4. Let s be a left seed the word Tn, n ≥ 5. Then one of the following statements is

true;

• s is a cover of Tn

• s is of the form Tmx where x is a prefix of the word Tm−1Tm−2, n > m > 4 and

|x| ≤ |Dm−4|.

Proof. Note that (Tm, Tm−1, Tm−2) expansion of Tn has Tm as prefix. It is enough to consider

the left seeds whose length is greater than or equal to |Tm| and less than |Tm+1| because

the left seeds of length less than |Tm| is considered in the (Tp, Tp−1, Tp−2) expansion of Tn
where p < m and the length of the left seeds greater than or equal to |Tm+1| is considered

in the (Tp, Tp−1, Tp−2) expansion of the word Tn where m < p for an appropriate choice of

p.

In (Tm, Tm−1, Tm−2) expansion of Tn where m < n, by Lemma 4.7 Tm always occurs in

the form of a word from the set

A = {TmTmTm−1, TmTm−1Tm−2Tm, TmTm−1Tm}

Further by Lemma 4.7 the set A is extended as

A = {TmTmTm−1Tm, TmTmTm−1Tm−2Tm, TmTm−1Tm−2Tm, TmTm−1Tm}

By the Property 4.1.1 of the Tribonacci word, the longest common prefix of the words

TmTm−1Tm−2 and Tm−1Tm−2Tm is TmDm−4. Note that Dm−4 is a prefix of Tm−1Tm−2.

By Lemma 4.8, we conclude that there is no left seed whose length length lies between

|TmDm−4| and |Tm+1|. For any word w = w1w2 . . . wn, let suffixchopi(w) = w1w2wn−i−1. It

can be seen that for all the words w ∈ A, the word suffixchopi(w) where i < |Tm| is covered

by the word Tmx where |x| ≤ |Dm−4|.

Using Property 4.1 of the Tribonacci words, we can conclude that Tmx always starts at

the initial Tm and ends at the final Tm in the words from the set

A = {TmTmTm−1, TmTm−1Tm−2Tm, TmTm−1Tm}
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Therefore, we conclude that the word Tmx is a left seed of Tn.

It can be easily checked that the right seeds of T3 are of the form ycaba, y ∈ Suf(aba)

and the right seeds of T4 are of the form yaabacba where y ∈ Suf(abacab). For the larger

Tribonacci words, the following theorem characterizes all the right seeds of Tn.

Theorem 4.5. Let s be a right seed the word Tn, n ≥ 5. Then one of the following statements

is true;

• s is a cover of Tn

• s is of the form xTn−4Tn−2Tn−3 where x is a suffix of the word Tn−2Tn−3

Proof. The word Tn is expressed as follows.

Tn = Tn−3Tn−4Tn−5Tn−3Tn−4Tn−3Tn−4Tn−5Tn−3

A right seed of Tn must be a suffix of Tn. The word Tn−3 is a suffix of Tn. First we will try

to characterize all right seeds whose length is greater than |Tn−3| and then we will search

right seeds whose length is less than |Tn−3|.

The word Tn−5 precedes the suffix word Tn−3 of Tn. By Lemma 4.8, Tn−3 occurs at the

starting position from Tn−3 or the starting position of Tn−4. By using the Property 4.1.5,

the only possibility where Tn−3 or Tn−4 is preceded by the length one suffix of Tn−5, is in

the second occurrence (from left) of Tn−3. It implies that a right seed of Tn must be of the

form xTn−4Tn−3Tn−4Tn−5Tn−3 where x is a suffix of Tn−3Tn−4Tn−5Tn−3.

We have to ensure that no proper suffix of Tn−3 is a right seed. A right seed which covers

Tn must be a right seed of Tn−3. Note that we consider the right seeds of Tn−3 which are

not covers. We need to consider only these seeds as Theorem 4.2 and Lemma 4.1 implies

that a word which covers the word Tn−3 covers the word Tn as well. We can inductively

conclude that Tn−3 has right seed x′Tn−7Tn−5Tn−6 where x′ is a suffix of Tn−5Tn−6. If a

word is a right seed of Tn then it must be a right seed of the word:

Tn−5Tn−3 = Tn−5Tn−5Tn−6Tn−7Tn−5Tn−6

By Property 4.1.5, the last letters of Tn−7 and Tn−5 differ. So the word x′Tn−7Tn−5Tn−6 can

not be a right seed of Tn−5Tn−3. Hence, it can not be the right seed of Tn. Next we have to

search for a right seed whose length less than |Tn−6| and it is a suffix of Tn−6.

56



CHAPTER 4. QUASIPERIODICITY IN TRIBONACCI WORD

By repeated induction, we conclude that if n ≡ i mod 3 where i ∈ {0, 1, 2} then we do

not have a right seed of T3+i whose length is less than |Ti| and it is a suffix of the word Ti.

Hence there are no right seeds of Tn which is a proper suffix of Tn−3.

4.6.3 Seeds of the two sided extensions Tribonacci word

Every cover, left seed as well as right seed is a seed. In this section, we study the seeds of

the Fibonacci words which are not left seeds or right seeds or covers. The next couple of

lemmas tries to get a handle on the form of factors inside the (Tm, Tm−1, Tm−2) expansion

of Tn. The form of factors plays an important role in the shape of the seeds.

The (Tm, Tm−1, Tm−2) expansion of Tn where m = n−3, we get the following form of Tn.

Tn−3Tn−4Tn−5Tn−3Tn−4Tn−3Tn−4Tn−5Tn−3

It has the word TmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm where m = n − 3 as a factor. If we

expand further (m = n− 4) then we get the following form of Tn.

Tn−4Tn−5Tn−6Tn−4Tn−5Tn−4Tn−5Tn−6Tn−4Tn−4Tn−5Tn−6Tn−4 · · ·Tn−5Tn−6

The (Tm, Tm−1, Tm−2) expansion of Tn where m = n− 4 has the following factors.

1. TmTm−1Tm−2TmTmTm−1Tm−2Tm

2. TmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm

If we expand further values of m then we get that the following words are factors of the

expansion where m ≤ n− 5.

1. TmTm−1Tm−2TmTm−1Tm−2Tm

2. TmTm−1Tm−2TmTmTm−1Tm−2Tm

3. TmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm

Let w1 = TmTm−1Tm−2TmTm−1Tm−2Tm, w2 = TmTm−1Tm−2TmTmTm−1Tm−2Tm and

w3 = TmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm where Ti is a Tribonacci word. The Lemmas

4.9 and 4.10 prove some results regarding the words w1, w2 and w3. In (Tm, Tm−1, Tm−2)

expansion of Tn, a prefix with respect to the word w3 has been identified in Lemma 4.9.

Note that we are proving about existing word not derived word.

Lemma 4.9. For m ≤ n − 5, the (Tm, Tm−1, Tm−2) expansion of the word Tn contains prefix

w3w3.
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Proof. The (Tn−5, Tn−6, Tn−7) expansion of Tn contains prefix w3w3 for m = n− 5. Assume

that it is true for a (Tm, Tm−1, Tm−2) expansion of the word Tn.

TmTm−1Tm−2TmTm−1TmTm−1Tm−2TmTmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm

For (Tm−1, Tm−2, Tm−3) expansion of Tn, we expand Tm further then it contains w3w3 prefix

for m− 1.

Remark 4.1. The word obtained by appending Tn−4 to the (Tn−4, Tn−5, Tn−6) expansion of

Tn contains prefix w3w3.

It is clear from Example 4.6.3 that in (Tm, Tm−1, Tm−2) expansion of Tn where m ≤ n−4,

we can find the factors w1, w2 or w3 for any value of m. If we see the words w1, w2 and w3

then we can find that the word TmTm−1Tm−2Tm has appeared in an overlapping manner in

w1, has appeared in a concatenated manner in w2 and is separated by Tm−1 in w3. In Lemma

4.10, we prove that these are the only possibilities for the two consecutive occurrence of

the word TmTm−1Tm−2Tm in the (Tm, Tm−1, Tm−2) expansion of Tn.

Lemma 4.10. The two consecutive occurrences of TmTm−1Tm−2Tm in the (Tm, Tm−1, Tm−2)

expansion of the word Tn where m ≤ n− 3 appear as a factor w1, w2 or w3.

Proof. In (Tm, Tm−1, Tm−2) expansion of Tn, by Lemma 4.7, TmTm−1 extend as the words

TmTm−1Tm−2Tm and TmTm−1Tm.

Assume that TmTm−1Tm−2TmTmTm−1Tm has appeared as a factor in (Tm, Tm−1, Tm−2)

expansion of Tn. Now we move from (Tm, Tm−1, Tm−2) expansion to (Tm+1, Tm, Tm−1) for

the factor TmTm−1Tm−2TmTmTm−1Tm. Then we get the following possible words.

Tm+1TmTmTm−1Tm or Tm+1TmTmTm−1Tm+1

By Lemma 4.7, the words Tm−1Tm or TmTm can not appear as a factor in (Tm+1, Tm, Tm−1)

expansion of Tn.

Assume that TmTm−1TmTmTm−1Tm−2 has appeared as a factor in (Tm, Tm−1, Tm−2) ex-

pansion of Tn. We move from (Tm, Tm−1, Tm−2) expansion to (Tm+1, Tm, Tm−1) for the

factor TmTm−1TmTmTm−1Tm−2. Then we get the word TmTm−1TmTm+1. By Lemma 4.7,

the word Tm−1Tm can not appear as a factor in the (Tm+1, Tm, Tm−1) expansion of Tn. By

the similar arguments, the factors TmTm−1TmTmTm−1Tm or TmTm−1TmTm−1Tm cannot ap-

pear as a factor in (Tm, Tm−1, Tm−2) expansion of Tn. The only remaining possibility is

TmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm. We claim that the two consecutive occurrences of

the word TmTm−1Tm−2Tm can not be separated by more than the word Tm−1. For the sake
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of contradiction assume that it is possible. Consider inserting the letters Tm, Tm−1 and Tm−2
inside the word TmTm−1Tm−2TmTm−1TmTm−1Tm−2Tm. There are many possible words that

can be constructed. It can be checked that every possible word formed will either having a

factor that is forbidden by Lemma 4.7, or have a factor which is already forbidden by this

proof, or must contain one of the words among w1, w2 and w3 as a factor. Therefore the

consecutive occurrences of the word TmTm−1Tm−2Tm can not be separated by more than

the word Tm−1. The word TmTm−1Tm−2Tm can also occur in a concatenated manner and

can also occur in an overlapping manner in the expansion.

We can infer from Theorem 4.10 that the words w1, w2 and w3 occur throughout the

expansion either in an overlapping (the maximum length of overlap is |Tm+1Tm|) fashion

or in the concatenated manner.

Remark 4.2. Note that in the (Tm, Tm−1, Tm−2) expansion of Tn, we can append (or prepend)

a word such that the obtained word contains the suffix (or prefix) w1, w2 or w3.

We mention some properties of the (Tm, Tm−1, Tm−2) expansion of Tn which will be useful

for characterizing the seeds.

Property 4.2. Let m,n ∈ N and m ≤ n. The following properties in the (Tm, Tm−1, Tm−2)

expansion of Tn is true.

1. The word Tm is preceded by different letters.

2. The longest common prefix of the words TnTn−1 and Tn−1Tn−2Tn is TnDn−4.

3. The word TnTnTn−1 is not a prefix of the word Tn−1TnTn−1Tn−2Tn.

4. The word TnTn is not a prefix of the word Tn−1Tn−2TnTn−1.

5. The word TmTm−1Tm is not preceded by Tm or Tm−1.

6. The word TmTm−1TmTm occurs as a factor but it cannot occur as an existing word.

7. The word TmTm−1TmTmTm−1 does not occur as a factor.

Proof. 1. By Lemma 4.10, in the (Tm, Tm−1, Tm−2) expansion of Tn where n ≥ m, Tm
is preceded by Tm, Tm−1 and Tm−2. By Property 4.1.5, Tm is preceded by different

letters in the expansion.

2. By Property 4.1.1,the longest common prefix of Tn−3Tn−4Tn−5 and Tn−4Tn−5Tn−3 is

Dn−4.
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3. By Property 4.1.2, the words TnTn−1 and Tn−1Tn has a longest common prefix.

4. By Property 4.1.1, Dn−4 is the longest common prefix of the words Tn−3Tn−4Tn−5 and

Tn−4Tn−5Tn−3.

5. If TmTm−1Tm is preceded by Tm or Tm−1 then by Lemma 4.7 it must be the following

words TmTm−1TmTm−1Tm, TmTm−1Tm−2TmTmTm−1Tm or TmTm−1TmTmTm−1Tm. By

Lemma 4.10, these words do not occur as a factor in the expansion.

6. The word TmTm−1Tm can be extended as an existing word TmTm−1TmTm−1. By

Lemma 4.4, in the (Tm, Tm−1, Tm−2) expansion of Tn, Tm starts with either Tm or

Tm−1. Hence, in the expansion the derived word TmTm−1TmTm appears as a factor.

7. By Property 4.1.2 and Property 4.2.3, the word TmTm−1TmTmTm−1 cannot occur as a

factor in (Tm, Tm−1, Tm−2) extension of Tn.

In the (Tm, Tm−1, Tm−2) expansion of Tn, we look at all the words of the form xFy where

F ∈ {Tm, Tm−1, Tm−2}+ and x, y are words such that xFy covers sw3w3t for some words s

and t. If xFy covers w3w3 then we search that whether xFy covers w1, w2 and w3. If a word

xFy covers the words w1, w2, w3 and w3w3 then it is a seed of Tn. We shall do the same

in the following Lemma 4.11 and Theorem 4.6. In Appendix A, we have given all possible

cases which are missed in the following Lemma 4.11 and Theorem 4.6.

Lemma 4.11. In the (Tm, Tm−1, Tm−2) of Tn where m ≤ n− 4, there are no seeds of the form

xFy where F ∈ {Tm, Tm−1, Tm−2}+, y is a prefix of a word from the alphabet {Tm−i | i ∈ N},
x ∈ Suf(Tp) and p ∈ {m,m− 1,m− 2} of the word Tn when |F | ∈ {2, 3, 5, 6, 7}.

Proof. We will search seeds of the form xFy where F ∈ {Tm, Tm−1, Tm−2}+ where we

define the words x and y as follows. If the word F has the prefix Tm−2 then by Lemma

4.7, x ∈ Suf(Tm−1). If the word F has the prefix Tm−1 then by Lemma 4.7, x ∈ Suf(Tm).

If the word F has the prefix Tm then by Lemma 4.7, x ∈ Suf(Tm) or x ∈ Suf(Tm−1) or

x ∈ Suf(Tm−2). In all these cases the word y will decide during the proof. The word F

must contain the factor Tm. If the word F does not contain the factor Tm then we have

to consider (Tm−1, Tm−2, Tm−3) or (Tm−2, Tm−3, Tm−4) expansion of Tn. If for any words x

and y the word xFy contain the factor Tm+1 then instead of (Tm, Tm−1, Tm−2) expansion of

Tn, we search our seed in (Tm+1, Tm, Tm−1) expansion of Tn. Hence we are not considering

the cases when the word sFy contains the factor Tm+1 and the word F does not contain

factor Tm. We extend F from the length |F | to |F | + 1 by using Lemma 4.7, 4.10 and the

5th, 6th and 7th properties of Property 4.2. These extensions in the word F occur either
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forward or backward. Then for each possibility of F and x we have searched that whether

xFy is a seed of the word w3w3 or not. If we explain each and every case then the proof

becomes longer in the length. Instead of explaining each and every case we have put only

few cases such that an interested reader can infer the central idea of the proof.

Case:1.1.1 The word F = TmTm−1 and x ∈ Suf(Tm−1). There are precisely two places

in the word w3w3 where TmTm−1 is preceded by a suffix of Tm−1. To cover w3w3, the word

xFy must contain factor Tm+1. Hence, we have to consider (Tm+1, Tm, Tm−1) expansion of

word Tn.

Case:1.1.2 The word F = TmTm−1 and x ∈ Suf(Tm−2). A suffix of Tm−2 precedes

TmTm−1 at the three positions (we are not considering a prefix word TmTm−1) in the word

w3w3. So the word y must be a prefix of the words TmTm−1Tm−2 and Tm−2Tm−3Tm−1Tm−2.

By Property 4.1.1, |y| < |Tm|. So the word xFy does not cover the word w3w3.

Case:1.1.3 The word F = TmTm−1 and x ∈ Suf(Tm). By Property 4.1.2 and Property

4.2.2, 4.2.3 and 4.2.4, a suffix of Tm precedes TmTm−1 at precisely one place in the word

w3w3. Hence, the word xFy contains the factor Tm+1.

Case:1.2.1 The word F = TmTm and x ∈ Suf(Tm−2). A suffix of Tm−2 precedes

TmTm(existing or derived) at three positions in the word w3w3. To cover the word w3w3, the

word y must be a prefix of the words Tm−4Tm−2Tm−3Tm−1Tm−2 and Tm−2Tm−3Tm−4Tm−2
such that |x|+ |y| ≥ |Tm−4Tm−2Tm−3Tm−1Tm−2|. By Property 4.1.3, |y| < |Tm−1|. The word

xFy does not cover the word w3w3.

The following strategy has followed through out this proof. We search the seed of form

xFy which covers the word sw3w3t for the minimal length words s and t. If xFy does not

cover sw3w3t then we reject xFy. For the full proof of this Lemma, an interested reader

may see Appendix A.

The left seeds, the right seeds and the covers of a word are trivially form a seed. Theorem

4.6 characterizes all the non trivial seeds of the word Tn for n ≥ 4. The seeds of T3 and T4
are of the form xcy where x is a suffix of aba. In case of T3, y is a prefix of aba such that

|xy| ≥ 3. In case of T4, y is a prefix of abaabacab and |xy| ≥ 6.

Theorem 4.6. Let x be any suffix of Tm, y be any prefix of Dm−4 and z be any prefix of Tm−2.

The following words are non trivial seeds of Tn, where n ≥ 4;

• xTmy where m ≤ n− 4 and |xy| ≥ |Tm|

• xTm−1Tm−2TmTm−1z where m ≤ n− 4 and |xz| ≥ |Tm|
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• xTm−1Tm−2TmTmy where m ≤ n− 4 and |xy| ≥ |Tm|

Proof. We will search seeds of the form xFy where F ∈ {Tm, Tm−1, Tm−2}+.

Case:1.1 The word F = Tm and x ∈ Suf(Tm−2). The word Tm is preceded by a suffix

of Tm−2 at exactly four places inside the word w3w3. To cover the word w3w3, the word

y must be a prefix of the words Tm−1TmTm−1Tm−2, TmTm−1Tm−2 such that |x| + |y| ≥
|Tm−1TmTm−1Tm−2|. By Property 4.1.2, |y| must be less than |TmTm−1|. Hence, it does not

cover w3w3. So it does not cover word Tn.

Case:1.2 The word F = Tm and x ∈ Suf(Tm−1). The word Tm−1Tm occurs only in the

word w3. To cover the word w3w3, the word xFy must contain the factor Tm+1.

Case:1.3 The word F = Tm and x ∈ Suf(Tm). If the word y ∈ Pref(Dm−4) where the

word TmDm−4 is equal to the longest common prefix of the words TmTm−1,Tm−1Tm and

Tm−1Tm−2Tm and |x|+ |y| ≥ |Tm| then xFy covers the words w1, w2 and w3 in such a way

that the word xFy starts with the first word Tm and ends with the last word Tm. Hence, it

covers sTnt where s and t might be an empty word.

Case:2.1 The word F = Tm−2TmTm−1Tm and x ∈ Suf(Tm−1). In the word w3w3 it

has precisely two occurrences. To cover the word w3w3, the word y must contain prefix

Tm−1Tm−2. Hence, the word xFy contains the factor Tm+1.

Case:2.2.1 The word F = TmTm−1TmTm−1 and x ∈ Suf(Tm−2). There are precisely two

places where Tm−1 precedes Tm in the word w3w3. To cover the word w3w3, the word y

must contain the prefix Tm−2. Hence, the word xFy contains the factor Tm+1.

Case:2.2.2 The word F = TmTm−1TmTm−1 and x ∈ Suf(Tm−1). By Property 4.2.5, there

are no place in (Tm, Tm−1, Tm−2) expansion of Tn where Tm−1 precedes TmTm−1Tm.

Case:2.2.3 The word F = TmTm−1TmTm−1 and x ∈ Suf(Tm). By Property 4.2.5, there

are no places in the expansion where Tm precedes TmTm−1Tm.

Case:2.3 The word F = Tm−1TmTmTm−1 and x ∈ Suf(Tm). There are two places where

Tm−1 precedes Tm in the word w3w3. By Property 4.1.2 the word F does not occur at those

places.

Case:2.4 The word F = Tm−2TmTmTm−1 and x ∈ Suf(Tm−1). There are exactly three

places in the word w3w3 where the word Tm−2Tm occurs. Note that we are excluding suffix

word Tm−2Tm. By Property 4.1.2, the word F does not occur at first and third place. So the

word F has exactly one occurrence in the word w3w3. Hence, the word xFy contains factor

Tm+1 for all words x and y.

Case:2.5.1 The word F = TmTm−1TmTm and x ∈ Suf(Tm−2). By Lemma 4.10, in the

expansion, Tm−1Tm−2Tm follows TmTm−1Tm. It gives our derived word F . The word F is
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occurring as a derived word. Hence, to cover w3w3, xFy contains factor Tm+1.

Case:2.5.2 The word F = TmTm−1TmTm and x ∈ Suf(Tm−1). By Property 4.2.5, in

(Tm, Tm−1, Tm) expansion of the word Tn, Tm−2 always precedes TmTm−1Tm.

Case:2.5.3 The word F = TmTm−1TmTm and x ∈ Suf(Tm). By Property 4.2.5, in

(Tm, Tm−1, Tm) expansion of Tn, Tm−2 always precedes TmTm−1Tm.

Case:2.6 The word F = Tm−1Tm−2TmTm and x ∈ Suf(Tm). To cover the word w3w3, the

word y must be a prefix of the words Tm−4Tm−2Tm−3Tm−1 and Tm−2Tm−3Tm−4Tm−1 such

that |x| + |y| ≥ |Tm|. By Property 4.1.1 the word y ∈ Pref(Dm−4). The word xFy covers

words w1,w2 and w3. Hence, xFy covers Tn.

Case:2.7 The word F = Tm−1Tm−2TmTm−1 and x ∈ Suf(Tm). Then x ∈ Suf(Tm) and

y ∈ Pref(Tm−2) such that |x|+ |y| ≥ |Tm|. It covers the word w3w3 such that it starts within

from the first word Tm and end in between at the last word Tm. Same happens to the words

w1 and w2. Hence, it covers the word Tn.

The remaining seeds can be obtained by considering the (Tm, Tm−1, Tm−2) expansion of

Tn when m ∈ {n− 1, n− 2, n− 3}. We have not analyzed these cases.

4.7 Conclusion and open problems

We have characterized the cover, border and various kind of seeds of the Tribonacci word.

We know that Fibonacci word is a Sturmian word [17]. The characterization of the cover,

border and seeds can be studied for other Sturmian words.

[[]X]\\
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Chapter5
Conclusion and Future Work

5.1 Conclusion

In this thesis we studied three themes related to patterns. These are

• Repetitions

• Permutations

• Quasiperiodicity

The repetition pattern and quasiperiodicity patterns were studied on an unordered al-

phabet while the study of permutation patterns requires an ordering on the alphabet. We

looked at the problem of avoiding repetitions in two dimensional words and showed that

it is not possible to construct arbitrarily large two dimensional word on 8 letters such that

every line words avoid squares. It raises the lower bound of f(n) to 4.5 × 2n−1. Based on

the difficulties we faced, our guess is that using similar techniques to improve the bounds

we have obtained may be very tedious. It will be interesting to compute the alphabet size

required to avoid patterns like cubes and higher powers in two dimension as well as higher

dimensions.

Permutation patterns have been studied for it own sake by many researchers. In this

thesis, we have attempted to understand graphs in terms of representability by pattern

avoiding words. Even for very specific graphs, this is combinatorially challenging. We

looked at cycle graphs and have proved that there is a unique (up to circular permutation)

two uniform representant word. We have similar results for complete graphs as well. We

have gained some understanding on the topic of graphs being representable by uniform and

permutation avoiding words.
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There are many algorithmic issues related to word representability of graphs. In partic-

ular, we looked at the complexity of computing the alternating graphs and have obtained

some initial results in this direction.

The last part of this thesis focuses on the quasiperiodicity property morphism generated

words. We were interested in finding these properties for the Tribonacci word. We have

managed to characterize the border, cover, left/right seed and seed of a Tribonacci words.

5.2 Future work

The exact value of f(2) is still not known. There is a significant gap in the bounds for

f(n) where n > 2 as well. There are many open problems in the area of word generated

graphs and permutation avoiding word generated graphs. The total number of 1342 avoid-

ing words which represents a complete graph is unknown. Characterization of permutation

p avoiding word generated graphs which cannot be generated by 2 uniform p avoiding word

is open. Most of the questions we have looked at were characterization problems. There

are very natural algorithmic problems associated with most of these works. Determin-

ing quasiperiodicity properties of arbitrary words is an interesting computational problem.

Quasiperiodicity properties of Sturmian words, Quasiperiodicity properties of morphism

generated words etc are very interesting research problems.

[[]X]\\
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AppendixA
Proofs

We provide the complete proof of the cases that we have left unproven in Lemma 4.11.

Lemma A.1. In the (Tm, Tm−1, Tm−2) of Tn where m ≤ n− 4, there are no seeds xFy where

F ∈ {Tm, Tm−1, Tm−2}+, y is a prefix of a word from the alphabet {Tm−i | i ∈ N}, x ∈
Suf(Tp) and p ∈ {m,m− 1,m− 2} of the word Tn when |F | ∈ {2, 3, 5, 6, 7}.

Proof. We will search seeds of the form xFy where F ∈ {Tm, Tm−1, Tm−2}+ where we

define the words x and y as follows. If the word F has the prefix Tm−2 then by Lemma

4.7, x ∈ Suf(Tm−1). If the word F has the prefix Tm−1 then by Lemma 4.7, x ∈ Suf(Tm).

If the word F has the prefix Tm then by Lemma 4.7, x ∈ Suf(Tm) or x ∈ Suf(Tm−1) or

x ∈ Suf(Tm−2). In all these cases the word y will decide during the proof. The word F

must contain the factor Tm. If the word F does not contain the factor Tm then we have

to consider (Tm−1, Tm−2, Tm−3) or (Tm−2, Tm−3, Tm−4) expansion of Tn. If for any words x

and y the word xFy contain the factor Tm+1 then instead of (Tm, Tm−1, Tm−2) expansion of

Tn, we search our seed in (Tm+1, Tm, Tm−1) expansion of Tn. Hence we are not considering

cases when the word F contains the factor Tm+1 or does not contain factor Tm. We are

extending F from the length |F | to |F | + 1 by using Lemma 4.7, 4.10 and the Property

4.2.5, 4.2.6 and 4.2.7. These extensions in the word F occur either forward or backward.

Then for each possibility of F and x we have searched that whether xFy is a seed of the

word w3w3 or not. Note that if we increase the length of F beyond 7 then it contains the

factor Tm+1. It can be seen from the Table A.1 and A.2.

Case:1.1.1 The word F = TmTm−1 and x ∈ Suf(Tm−1). There are precisely two places

in the word w3w3 where TmTm−1 is preceded by a suffix of Tm−1. To cover w3w3, the word

xFy must contain factor Tm+1. Hence, we have to consider (Tm+1, Tm, Tm−1) expansion of

word Tn.

Case:1.1.2 The word F = TmTm−1 and x ∈ Suf(Tm−2). A suffix of Tm−2 precedes
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TmTm−1 at the three positions (we are not considering a prefix word TmTm−1) in the word

w3w3. So the word y must be a prefix of the words TmTm−1Tm−2 and Tm−2Tm−3Tm−1Tm−2.

By Property 4.1.1, |y| < |Tm|. So the word xFy does not cover the word w3w3.

Case:1.1.3 The word F = TmTm−1 and x ∈ Suf(Tm). By Property 4.1.2 and Property

4.2.2, 4.2.3 and 4.2.4 a suffix of Tm precedes TmTm−1 at precisely one place in the word

w3w3. Hence, the word xFy contains the factor Tm+1.

Case:1.2.1 The word F = TmTm and x ∈ Suf(Tm−2). A suffix of Tm−2 precedes

TmTm(existing or derived) at three positions in the word w3w3. To cover the word w3w3, the

word y must be a prefix of the words Tm−4Tm−2Tm−3Tm−1Tm−2 and Tm−2Tm−3Tm−4Tm−2
such that |x|+ |y| ≥ |Tm−4Tm−2Tm−3Tm−1Tm−2|. By Property 4.1.3, |y| < |Tm−1|. The word

xFy does not cover the word w3w3.

Case:1.2.2 The word F = TmTm and x ∈ Suf(Tm−1). The word Tm−1 precedes TmTm
at two positions in the word w3w3. To cover the word w3w3, the word y must contain the

factor Tm+1.

Case:1.2.3 The word F = TmTm and x ∈ Suf(Tm). The word Tm precedes TmTm at

precisely one place in the word w3w3. To cover the word w3w3, the word xFy must contain

the factor Tm+1.

Case:1.3 Let F = Tm−2Tm and x ∈ Suf(Tm−1). The word F appears in three places in

the word w3w3 excluding suffix. To cover the word w3w3, the word y must be a prefix of the

words Tm−1TmTm−1 and TmTm−1 such that |x| + |y| ≥ |Tm−1TmTm−1|. By Property 4.1.2,

|y| < |TmTm−1|. The word xFy does not cover the word w3w3.

Case:1.4 The word F = Tm−1Tm and x ∈ Suf(Tm). The word Tm preceded by the word

Tm−1 at the two positions in the word w3w3. To cover the word w3w3, the word xFy must

contain factor Tm+1.

Case:2.1 The word F = Tm−2TmTm−1 and x ∈ Suf(Tm−1). The word F precede by a

suffix of Tm−1 at precisely three positions in the word w3w3. To cover the word w3w3, the

word y must be a prefix of the words TmTm−1 and Tm−2Tm−3Tm−1 such that |x| + |y| ≥
|TmTm−1|. By Property 4.1.1, |y| < |Tm|. Hence, the word xFy does not cover the word

w3w3.

Case:2.2 The word F = Tm−1TmTm−1 and x ∈ Suf(Tm). There are two places in the

word w3w3 where Tm−1 precedes Tm. To cover the word w3w3, the word y must contain

the word Tm−2. Hence, the word xFy contains the factor Tm+1.

Case:2.3.1 The word F = TmTmTm−1 and x ∈ Suf(Tm−2). By Property 4.1.2, the word

TmTmTm−1 occurs at exactly one position in the word w3w3. Hence, to cover w3w3 the word

xFy contains factor Tm+1.

2



APPENDIX A. PROOFS

Case:2.3.2 The word F = TmTmTm−1 and x ∈ Suf(Tm−1). The word Tm−1 precedes Tm
at precisely two positions in the word w3w3. By Property 4.2.2 the word xF where |x| > 0

does not occur at those places.

Case:2.3.3 The word F = TmTmTm−1 and x ∈ Suf(Tm). By Lemma 4.7, we know that

the existing word TmTmTm does not occur in the expansion of Tn. However, the derived

word TmTmTm occurs as a prefix of TmTmTm−1Tm−2Tm which occurs at precisely one place

in word w3w3. By Property 4.2.2, the word xF where |x| > 0 does not occur at that place

in w3w3.

Case:2.4 The word F = Tm−1TmTm and x ∈ Suf(Tm). There are precisely two places

where Tm−1 precedes Tm in the word w3w3. To cover the word w3w3, the word xFy must

contain the factor Tm+1.

Case:2.5 The word F = Tm−2TmTm and x ∈ Suf(Tm−1). Since, the word Tm−2TmTm has

precisely three occurrences in the word w3w3, to cover the word w3w3 the word y must be a

prefix of the words Tm−4Tm−2Tm−3Tm−1 and Tm−1 such that |x|+|y| ≥ |Tm−4Tm−2Tm−3Tm−1|.
By Property 4.1.3, |y| < |Tm−1|. The word xFy does not cover the word w3w3.

Case:2.6 The word F = Tm−1Tm−2Tm and x ∈ Suf(Tm). The word F appears precisely

four places in the word w3w3. To cover w3w3, the word y must be a prefix of the words

Tm−1Tm and TmTm−1 such that |x|+ |y| ≥ |Tm−1Tm|. So xFy covers the word w3w3. Since

the word w2 is a factor of the word w3w3, xFy covers the word w2 too. The word w1 must

be followed by Tm−1Tm or TmTm−1, but it cannot be followed by Tm−1Tm−2Tm because

it creates Tm+1Tm+1Tm+1(existing) factor in (Tm+1, Tm, Tm−1) expansion of the word Tn

which is a contradiction of Lemma 4.7. To cover the word w1, the word y must be a prefix

of the words Tm−1Tm and TmTm−1 such that |x| + |y| ≥ |Tm−1Tm|. By Property 4.1.2, we

conclude that y ∈ Pref(Dm). Since it covers the words w1, w2 and w3, it covers the word

Tn. We know that x ∈ Suf(Tm) from the inequality |x|+ |y| ≥ |Tm−1Tm|, we conclude that

|y| > |Tm−1|. Since the word y is a prefix of the words Tm−1Tm and TmTm−1, we conclude

that the word y must contain Tm−1 as a prefix. So this case has converted into the case

when F = Tm−1Tm−2TmTm−1 (or |F | = 4) and x ∈ Suf(Tm). This case we will see in our

final Theorem.

Case:2.7.1 The word F = TmTm−1Tm and x ∈ Suf(Tm−2). There are no places where

Tm−1 precedes Tm in words w1 and w2. There are precisely two places in the word w3w3

which contain the factor TmTm−1Tm. To cover the word w3w3, whatever the possible words

x and y we take, the word xFy has the factor Tm+1.

Case:2.7.2 The word F = TmTm−1Tm and x ∈ Suf(Tm−1). By Property 4.2.5, the word

Tm−2 always precedes F in the (Tm, Tm−1, Tm−2) expansion of the word Tn. So this case is

not possible.
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Case:2.7.3 The word F = TmTm−1Tm and x ∈ Suf(Tm). Same reasoning as in Case:2.7.2.

Case:3.1 The word F = Tm−2TmTm−1TmTm−1 and x ∈ Suf(Tm−1). The word xF occurs

precisely two places in w3w3. To cover w3w3 the word y ∈ Pref(Tm−2TmTm) such that

|x|+ |y| ≥ |Tm−2TmTm)|. For all possible y the word xFy contains the factor Tm+1.

Case:3.2 The word F = Tm−2TmTm−1TmTm. By Lemma 4.10, in the expansion, the word

Tm−1Tm−2Tm always follows TmTm−1Tm which gives the word F ; it is the derived word.

Hence, the word F contains the factor Tm+1.

Case:3.3 The word F = TmTm−1TmTmTm−1. By Property 4.2.7, in the expansion, the

word F does not occur.

Case:3.4 The word F = Tm−1Tm−2TmTmTm−1 and x ∈ Suf(Tm). The word Tm−2Tm

occur at three positions (excluding suffix word Tm−2Tm) in the word w3w3. By Property

4.1.2, it can not occur at first and third position in the word w3w3. To cover the word w3w3,

the word y must contain the word Tm−2 as a prefix. Hence, the word xFy contains factor

Tm+1.

Case:3.5 The word F = Tm−1Tm−2TmTm−1Tm and x ∈ Suf(Tm). The word F has exactly

two occurrences in the word w3w3. To cover the word w3w3, the word y must have a prefix

Tm−1Tm−2. So every possible word xFy contains the factor Tm+1.

Case:4.1 The word F = Tm−1Tm−2TmTm−1TmTm−1 and x ∈ Suf(Tm). The word F

occurs precisely two places in w3w3. To cover w3w3 the word xFy must contain the factor

Tm+1 for all words x and y.

Case:4.2 The word F = Tm−2TmTm−1TmTmTm−1. The word Tm−2TmTm−1TmTmTm−1

does not occur in w3w3 because of Property 4.2.7.

Case:4.3 The word F = Tm−1Tm−2TmTm−1TmTm and x ∈ Suf(Tm). In this case the

word F occurs at precisely two positions in the word w3w3. To cover the word w3w3, the

word y must contain a prefix Tm−2. Hence, the word xFy contains the factor Tm+1 for all

words x and y.

Case:5 The word F = Tm−1Tm−2TmTm−1TmTmTm−1. By Property 4.2.7, it does not occur

in w3w3.
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APPENDIX A. PROOFS

We have missed some cases in Lemma A.1 and Theorem 4.6 which requires one line

argument. These cases are described in Table A.1 and A.2. We extend F forward with help

of Lemma 4.7 and Property 4.2.5.

|F | F Remark

1
Tm Theorem 4.6 Case 1
Tm−1 See (Tm−1, Tm−2, Tm−3) expansion of Tn
Tm−2 See (Tm−1, Tm−2, Tm−3) expansion of Tn

2

TmTm Lemma A.1 Case 1.2
TmTm−1 Lemma A.1 Case 1.1
Tm−1Tm Lemma A.1 Case 1.4
Tm−1Tm−2 See (Tm−1, Tm−2, Tm−3) expansion of Tn
Tm−2Tm Lemma A.1 Case 1.3

3

TmTmTm−1 Lemma A.1 Case 2.3
TmTm−1Tm Lemma A.1 Case 2.7
TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−1TmTm Lemma A.1 Case 2.4
Tm−1TmTm−1 Lemma A.1 Case 2.2
Tm−1Tm−2Tm Lemma A.1 Case 2.6
Tm−2TmTm Lemma A.1 Case 2.5
Tm−2TmTm−1 Lemma A.1 Case 2.1

4

TmTmTm−1Tm Contradicts Property 4.2.5
TmTmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
TmTm−1TmTm Theorem 4.6 Case 2.5
TmTm−1TmTm−1 Theorem 4.6 Case 2.2
Tm−1TmTmTm−1 Theorem 4.6 Case 2.3
Tm−1TmTm−1Tm Contradicts Property 4.2.5
Tm−1TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−1Tm−2TmTm Theorem 4.6 Case 2.6
Tm−1Tm−2TmTm−1 Theorem 4.6 Case 2.7
Tm−2TmTmTm−1 Theorem 4.6 Case 2.4
Tm−2TmTm−1Tm Theorem 4.6 Case 2.1
Tm−2TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn

5

TmTmTm−1TmTm Contradicts Property 4.2.5
TmTmTm−1TmTm−1 Contradicts Property 4.2.5
TmTmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn

TmTm−1TmTmTm−1 Lemma A.1 Case 3.3

Table A.1: Table for each possible cases present in Lemma A.1 and Theorem 4.6
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|F | F Remark

5

TmTm−1TmTm−1Tm Contradicts Property 4.2.5
TmTm−1TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−1TmTmTm−1Tm Contradicts Property 4.2.5
Tm−1TmTmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−1TmTm−1TmTm Contradicts Property 4.2.5
Tm−1TmTm−1TmTm−1 Contradicts Property 4.2.5
Tm−1TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn

Tm−1Tm−2TmTmTm−1 Lemma A.1 Case 3.4
Tm−1Tm−2TmTm−1Tm Lemma A.1 Case 3.5
Tm−1Tm−2TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−2TmTmTm−1Tm Contradicts Property 4.2.5
Tm−2TmTmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−2TmTm−1TmTm Lemma A.1 Case 3.2
Tm−2TmTm−1TmTm−1 Lemma A.1 Case 3.1
Tm−2TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn

6

TmTm−1TmTmTm−1Tm Contradicts Property 4.2.5
TmTm−1TmTmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−1Tm−2TmTmTm−1Tm Contradicts Property 4.2.5
Tm−1Tm−2TmTmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn
Tm−1Tm−2TmTm−1TmTm Lemma A.1 Case 4.3
Tm−1Tm−2TmTm−1TmTm−1 Lemma A.1 Case 4.1
Tm−2TmTm−1TmTmTm−1 Lemma A.1 Case 4.2
Tm−2TmTm−1TmTm−1Tm Contradicts Property 4.2.5
Tm−2TmTm−1TmTm−1Tm−2 See (Tm+1, Tm, Tm−1) expansion of Tn

7 Tm−1Tm−2TmTm−1TmTmTm−1 Lemma A.1 Case 5

Table A.2: Table for each possible cases present in Lemma A.1 and Theorem 4.6
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