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Abstract

Proteins perform almost all cellular functions in living systems. Majority of the proteins do

not perform their functions in isolation, rather a group of proteins, commonly known as a

protein complex, physically interact together to accomplish a biological function. Therefore

identifying protein complexes is essential to realize the principles of cellular organization.

However, experimental detection of protein complexes is not adequate due to the limi-

tation of current high-throughput experimental techniques. From the past few decades,

a large volume of protein-protein interaction (PPI) data has become available due to high-

throughput technologies. Thus computational detection of protein complexes from PPI data

is considered as useful complements to the experimental techniques. Generally, PPI data is

modeled as an undirected graph, where proteins are represented as nodes and interactions

between proteins as edges of the graph. Such graphs are commonly referred to as PPI net-

works. This work explores some of the challenges in detecting protein complexes from PPI

networks.

The first challenge this work deals with is the detection of overlapping communities in

PPI networks. The problem of detecting protein complexes from PPI networks are usually

mapped to the problem of detecting communities from complex networks, particularly over-

lapping communities as the majority of the proteins perform multiple functions. The task of

detecting communities in complex networks is computationally challenging as the majority

of the problems related to determining the structural properties of graphs are often NP-hard.

In our first work, we propose Extended Greedy Clique Expansion (EGCE) as an overlapping

community detection algorithm (CDA). EGCE improves upon an existing overlapping CDA,

namely the Greedy Clique Expansion (GCE). GCE and other methods generally fail to assign

a node into multiple communities if the node belongs to more than three communities. The

empirical results on state-of-the-art synthetic benchmark datasets show that the EGCE out-

performs other methods when overlapping nodes belong to more than three communities.

We also experiment on real datasets and observe good performance. The proposed exten-

sion is generic and may be used to extend any existing algorithms for detecting overlapping

communities.

The second challenge this work deals with is the presence of false interactions in PPI data

due to experimental limitations. These false positives have a negative effect on any down-

stream analysis of PPI data, including the identification of protein complexes. Therefore in

our second work, we explore the removal of false positives in PPI networks. Gene ontology

(GO), a taxonomy of biological terms to represent the properties of gene products and their



relations, can be utilized as a complementary resource for scoring confidence of PPIs in

a manner that false positive interactions get a low-confidence score. The ontology-based

semantic similarity measure is a quantitative function that measures the closeness between

two terms based upon their meaning over a set of terms organized as ontology. Hence GO-

based similarity measures can be used to score confidence of PPIs, and low-confidence PPIs

are highly likely to be false positives. We introduce a new family of similarity measures: Rel-

ative Depth Specificity (RDS), Relative Node-based Specificity (RNS), and Relative Edge-based

Specificity (RES), by redefining GO term specificity. We show that all the three measures,

particularly RNS and RES, are quite effective to distinguish true PPIs from false positives

than the existing alternatives.

Although GO has been effectively utilized in many genomics applications, it is being

evolved regularly with the addition, deletion, and merging of terms. Hence this should

affect any method of utilizing GO. However, to the best of our knowledge, there is no such

study that evaluates the impact of the continuous evolution of GO on the similarity mea-

sures. In our third contribution, we systematically study the effect of GO evolution on

similarity measures for the task of scoring confidence of PPIs. For that, we consider nine

state-of-the-art similarity measures and nine different Bioconductor versions of GO. Our

analysis indicates that the overall impact is minor. However, considering only the most af-

fected proteins during the updates, different measures get affected differently. We observe

that RES, one of the proposed similarity measures, exhibits the promising robustness over

the GO evolution.

Finally, in our fourth contribution, we study the impact of the filtration of low-confidence

PPIs on computational identification of protein complexes. The confidence of PPIs is ob-

tained using different GO-based similarity measures, including the proposed similarity mea-

sures, namely, RDS, RNS, and RES. We consider five state-of-the-art representative CDAs.

The empirical results indicate that low-confidence interactions have a high negative impact

on the performance of CDAs. Each CDA significantly improves its performance after elim-

ination of low-confidence PPIs. We also observe that the rate of improvement and rate of

elimination of low-confidence PPIs are highly proportional.
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Chapter1
Introduction

Nature organizes the components of living systems into a modular and hierarchical man-

ner. The functionality and organizational principles of higher levels are intelligible. How-

ever, the complexity rises exponentially towards lower levels of the hierarchy. There have

been continuous efforts to realize living systems at the molecular level of detail. The el-

ementary structural and functional units of a living system are biological cells, which are

the smallest units of life. The four essential families of small organic molecules - sugars,

fatty acids, amino acids, and nucleotides and corresponding macromolecules (polysaccha-

rides/carbohydrates, lipids, proteins, and nucleic acids, respectively, formed by linking into

long chains) constitute the majority of the cell mass. A collection of cells (of similar type

and function) makes a tissue, many tissues constitute an organ, and finally, several organs

make an organism. At each level, the components interact among themselves to sustain the

dynamics of the system. Therefore to realize the essence of life, system-level study (systems

biology) has become essential. Network (graph) is a frequently used mathematical model to

represent a complex system, where the nodes (vertices) are the components of the system,

and the edges are the interactions between the components. By analyzing the properties of

the network, we can generate hypotheses that may describe the possible behaviors of the

system. This study focuses on proteins and interactions among them.

Proteins perform the majority of the cellular functions. Multiple proteins group together

through physical interactions (bind) to accomplish a biological function. Such a functional

group of proteins is commonly known as a protein complex. Further, a protein may partici-

pate in multiple biological functions and hence may belong to multiple complexes. A small

change of a single protein may cause a substantial impact on the overall cellular function-

ality due to cascading effects. In fact, several diseases (e.g., Huntington’s disease [1]) are

the consequence of a little modification of a single protein that affects the functionality of

its interacting partners. Thus the protein complex identification is one of the important
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milestones in our endeavor in understanding the principles of cellular organizations.

Direct detection of protein complexes from any experimental technique is highly limited.

Tandem Affinity Purification with Mass Spectrometry (TAP-MS) [2] is the widely used ex-

perimental technique for detecting complexes. However, it has the following limitations -

the majority of transient low-affinity complexes are not detected due to its multiple washing

and purification steps; complexes that are not present under the given in vitro conditions

(artificial conditions outside the cell) have less chance to get detected [3]. Therefore com-

putational approaches for detecting complexes are considered as useful complements to the

experimental techniques.

From the last few decades, a large volume of protein-protein interaction (PPI) data has

become available due to high-throughput technologies (e.g., yeast two-hybrid (Y2H) sys-

tem [4]). A PPI may be temporal and spatial since the physical interaction between two

proteins depends on certain conditions of the particular cell. Most computational methods

model PPI data as an undirected graph, where proteins are represented as nodes and in-

teractions between proteins as edges. Such graphs are commonly known as PPI networks.

However, depending on the approach used to generate the network, an edge may not al-

ways indicate a direct physical interaction, but also represent correlated expression in the

cell, similar genomics context, similar function and so on. PPI networks play an impor-

tant role in the system-level understanding of cellular processes and are frequently used to

detect complexes.

Besides protein complexes, two other closely related constructs - functional modules and

signaling pathways are found in the literature. Although it is difficult to differentiate among

them, the following distinction given by Spirin and Mirny [5] is widely accepted. The PPIs in

a complex occur simultaneously at the same cellular location, while the PPIs in a functional

module may not necessarily take place at the same time and location. However, most of

the computational approaches do not distinguish between them, since (generally) PPI data

do not have temporal and spatial information. Additional domain information such as

gene expression data, and gene ontology (GO), need to be incorporated for distinguishing

complexes and functional modules [6]. Finally, in a signaling pathway, the PPIs occur in

an ordered succession to accomplish a signal transduction process. Certainly, the PPIs in a

signaling pathway do not need to take place at the same location and time. Hence many

authors consider signaling pathways as a specific kind of functional modules.

The rest of the chapter is organized in the following manner. In section 1.1, we briefly

discuss the contributions made in the thesis. Section 1.2 presents a brief survey of literature

on the existing computational techniques to detect protein complexes. Finally, the outline

of the thesis is given in section 1.3.

2



CHAPTER 1. INTRODUCTION

1.1 Contributions made in the thesis

Contribution 1: This work focuses on some of the challenges faced by computational meth-

ods in detecting protein complexes from PPI networks. The first challenge this work deals

with is the detection of overlapping communities in PPI networks. The problem of detecting

protein complexes from PPI networks can be mapped to the problem of detecting com-

munities from complex networks. We focus on overlapping communities, as many pro-

teins are part of multiple complexes. The majority of the problems related to determining

the structural properties of graphs are often NP-hard in nature [7]. Therefore from the

computational viewpoint, detecting communities in complex networks is a computationally

challenging task. Although there are algorithms for detecting overlapping communities, the

majority of these are unable to detect highly overlapping communities properly. The perfor-

mance of these algorithms falls sharply when overlapping nodes belong to more than three

communities. In our first work, we propose Extended Greedy Clique Expansion (EGCE) as

a highly overlapping community detection algorithm, which is an extension of the existing

overlapping community detection algorithm, namely Greedy Clique Expansion (GCE) [8].

We evaluate EGCE with other state-of-the-art overlapping community detection algorithms

using both synthetic benchmark (LFR benchmark [9]) and real datasets (PPI networks and

protein complexes).

Contribution 2: The second challenge this work deals with is the presence of false inter-

actions in PPI networks due to experimental limitations. PPI data involve a significant

fraction of false positive interactions [10]. These false positives have a negative impact on

any downstream analysis of PPI networks, including complex detection. Therefore, in our

second work, we try to remove false positives in PPI networks. There have been continuous

efforts to utilize complementary resources for scoring confidence of PPIs in a manner that

false positive interactions get a low-confidence score. Gene ontology (GO) [11], a taxonomy

of biological terms to represent the properties of gene products and their relations, has been

widely used for this purpose. Ontology-based semantic similarity is a measure of closeness

between two terms based upon their meaning over a set of terms organized as ontology.

GO-based similarity measures can be used to score confidence of PPIs and PPIs with low

similarity scores may be treated as false positives. We introduce a new set of similarity

measures: Relative Depth Specificity (RDS), Relative Node-based Specificity (RNS), and Rela-

tive Edge-based Specificity (RES), by redefining GO term specificity to distinguish true PPIs

from false positives effectively.

Contribution 3: Although GO has been effectively utilized in many genomics applications

including predicting protein functions [12, 13, 14], predicting and validating PPIs [15,

16, 17], analyzing pathways [18], etc., it is being updated regularly with the addition,
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deletion, and merging of terms. Consequently, this should affect any method of utilizing GO.

However, we could not find a study that evaluates the impact of the continuous evolution of

GO on the performance of similarity measures. In our third contribution, we systematically

study the effect of GO evolution on various similarity measures used for scoring confidence

of PPIs. In the evaluation, we use nine state-of-the-art similarity measures, including our

proposed ones and nine different Bioconductor versions of GO.

Contribution 4: The performance of any complex detection method gets adversely affected

by the false positive interactions present in PPI networks. Although some studies indicate

that filtering PPI networks improve the performance of complex detection techniques, we

could not find a systematic study on the effect of PPI filtering using GO. Therefore in our

fourth contribution, we systematically study the impact of low-confidence PPIs on computa-

tional identification of protein complexes using GO-based semantic similarity measures. We

evaluate the performance of complex detection algorithms based on two reference PPI net-

works and two ground truth complex datasets of the yeast model organism before and after

the filtration of low-confidence interactions (likely to be false positives). Confidence scores

of PPIs are obtained using nine GO-based similarity measures, including our proposed ones.

We consider five state-of-the-art representative complex detection algorithms, including our

proposed one in the evaluation.

1.2 Related work

In this section, we briefly discuss different computational approaches for detecting protein

complexes and functional modules. In literature, the existing methods are classified in

different ways. Pizzuti et al. [19] classified the existing (graph clustering) methods into the

following types of algorithmic approaches: 1) Local neighborhood Density search (LD), 2)

Cost-based Local search (CL), 3) Flow Simulation (FS), 4) Statistical-based Measures (SM),

and 5) Population-based Stochastic search (PS).

1.2.1 Local neighborhood Density search (LD)

The hypothesis behind the LD approach is that protein complexes form dense structures in

PPI networks. Hence it tries to identify dense subgraphs in PPI networks. It uses a local den-

sity measure to maximize the densities of the subgraphs. MCODE [20], CFinder [21], and

ClusterONE [22] are three widely used LD-based algorithms. Other LD-based algorithms

include DPClus [23], SWEMODE [24], DECAFF [25], PINCoC [26], PCP [27], GENA [28],

and SEGC [29]. Majority of these algorithms requires to set values of several parameters.
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These parameters highly influence the number and resolution of detected complexes. Al-

though many complexes have dense structures in PPI networks, there are complexes which

are not. Hence these complexes will not be detected by the LD approach [30].

1.2.2 Cost-based Local search (CL)

In the CL-based approach, the PPI network is partitioned into connected subgraphs to ex-

tract modules from the network. It uses a local cost function that guides the search towards

the best partition. This approach may be utilized to detect functional modules if the cost

function is formulated appropriately. RNSC [31], Qcut [32], and ModuLand [33] are three

noted algorithms under this approach.

1.2.3 Flow Simulation (FS)

The spread of information on an interaction network is simulated in FS-based approach.

This might be an effective approach to detect functional modules. The notion of a random

walk is commonly used to simulate the flow. MCL [34] and RRW [35] are two popular

algorithms that use the random walk. IFB [36] and STM [37] are two other FS-based

algorithms that utilize biological knowledge to spread information among proteins in PPI

networks. Recently, Zhang et al. [38] proposed an FS-based method to detect complexes

from weighted PPI networks by utilizing gene expression analysis. It utilizes MCL followed

by a novel co-expression analysis method to measure complexes for further filtration. How-

ever, the FS-based methods are prone to detect dense structures as the flow tends to be

accumulated in dense regions.

1.2.4 Statistical-based Measures (SM)

SM-based methods utilize some statistical measures to cluster the proteins. Samantha and

Liang [39] proposed an SM-based method that keeps two proteins in the same cluster if the

number of common interaction partners is greater than the expected. It uses the notion of

p-value to measure the statistical significance of forming a shared partnership between a

protein-pair. Farutin et al. [40] proposed another SL-based method based on the idea of

preferential attachment among the members of a module.
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1.2.5 Population-based Stochastic search (PS)

Liu and Liu [41] proposed a genetic algorithm that enumerates maximal cliques. They use

it to detect protein complexes in PPI networks. Ravaee et al. [42] proposed an immune

genetic algorithm to cluster PPI networks for detecting complexes.

1.2.6 Other methods and some issues for detecting complexes

The methods we have already discussed are so-called graph clustering methods and also

known as community detection methods. However, there are some techniques that are

different from traditional graph clustering methods. In this section, we briefly discuss those

methods and some issues [43] that are considered to detect complexes.

Network Alignment (NA)

Conserved topological structures in PPI networks across species may have biological sig-

nificance, hence are likely to be protein complexes or functional modules [44]. NA algo-

rithms are used to align two or more networks for detecting the conserved modules across

the networks. A wide range of NA algorithms has been developed for aligning networks.

PathBLAST [44], NetworkBLAST [45], MaWISH [46], the match and split algorithm [47],

and UEDAMAlign [48] are some noted local NA techniques. Markov random field-based

method [49], IsoRank [50], GRAAL [51], and PINALOG [52] are some NA techniques that

align networks globally.

However, NA methods are highly sensitive to the topological structure of networks. As a

consequence, graph clustering techniques outperform the NA methods in detecting protein

complexes and functional modules, since PPI networks have a significant amount of false

positives.

Supervised Graph Clustering (SGC)

The majority of the graph clustering techniques are unsupervised. Qi et al. [30] first pro-

posed a supervised graph clustering (SGC) method by considering several topological and

biological properties as a feature vector. To train the model, a set of known protein com-

plexes and a set of random subgraphs are used as positive and negative instances, respec-

tively. Recently, Yu et al. [53] proposed another SGC method by introducing some new

features from the weighted networks. However, SNC methods are highly sensitive to the

selected set of features.
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Complex detection using protein core attachments

Gavin et al. [54] observed that the majority of the complexes have two components - a

core and an attachment. The center of a complex is formed by a unique set of core proteins

and has relatively more interactions (among the core proteins). Each of the attachment

proteins binds with a subgroup of core proteins to form the complex. CORE [55] and

COACH [56] are two noted algorithms that have been developed according to the notion

of core attachment. Recently, Shen et al. proposed an algorithm, DCA (Dynamic Core-

Attachment) [57], to incorporate dynamic characteristic of the cell system by utilizing time

series information of gene expression profiles.

Complex detection by considering exclusive or cooperative interactions

The majority of the complex detection methods treats all the interactions in a PPI network

to be simultaneously occurred, i.e., they occur at the same time. However, two adjacent

interactions (interactions with a shared partner) may be mutually exclusive due to their

overlapping binding interfaces on the shared partner. Jung et al. [58] developed a method,

SPIC (Simultaneous Protein Interaction Clusters), that extracts clusters of interactions oc-

curred simultaneously in the PPI networks by addressing the issue. They used traditional

graph clustering techniques (MCODE [20] and LCMA [59]) to find initial clusters. Then

they filtered out mutually exclusive interactions to get SPICs.

Jin et al. [6] introduced another method by considering time series information of gene

expression profiles. They determine two adjacent interactions as cooperative (occur simul-

taneously) if their shared partner has overlapping time-range for both the interactions.

Complex detection by incorporating gene expression data

Interacting proteins (those interact among themselves) are expected to show similar gene

expression profiles. Hence proteins involve in a complex are expected to be co-expressed,

since they are likely to interact among themselves. Few methods such as GFA [60], DMSP

[61], and DyCluster [62] have been developed by considering the above hypothesis.

Complex detection by incorporating functional information

Generally, a protein complex is formed to accomplish a biological function. Consequently,

proteins involved in a complex are likely to perform a similar function. The previously

mentioned RNSC [31] and SWEMODE [24] integrate protein functional information with
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topological properties (PPI networks) by utilizing gene ontology (GO). Cho et al. [63]

introduced another method that extends STM [37] (a flow simulation method) for detecting

functional modules by incorporating functional information using GO.

Complex detection from TAP data with or without constructing the PPI network

The majority of the complex detection methods uses pairwise binary PPI data detected by

high-throughput experimental techniques such as yeast two-hybrid (Y2H) system. However,

non-binary interaction data taken from TAP (Tandem Affinity Purification) experimental

technique is also utilized to detect complexes. Korgan et al. [64], Pu et al. [65], and

Caroline et al. [66] have developed different techniques to construct PPI networks from

TAP data. All the three techniques finally utilize MCL [34] for detecting complexes. Geva et

al. [67] proposed a complex detection method, CODEC, without constructing a PPI network

by modeling TAP data as a bipartite graph.

1.3 Organization of the thesis

The thesis comprises six chapters. The chapter-wise organization of the thesis is given

below:

Chapter 1: Introduction

In this chapter, first, we briefly introduce the thesis work, then we discuss the related

work, and finally, an outline of the thesis is provided.

Chapter 2: Identification of protein complexes using overlapping community detec-

tion algorithms

This chapter works on the first challenge. In this chapter, we propose an extension

(EGCE) of the existing overlapping community detection algorithm, Greedy Clique

Expansion (GCE), to detect highly overlapping nodes. We show that the extension

outperforms other methods when overlapping nodes (proteins) belong to more than

three communities (complexes).

Chapter 3: A new family of similarity measures for scoring confidence of protein in-

teractions using gene ontology

This chapter works on the second challenge. In this chapter, we propose a new family

of gene ontology (GO) -based semantic similarity measures (SSMs), namely Relative

Depth Specificity (RDS), Relative Node-based Specificity (RNS), and Relative Edge-

based Specificity (RES) by redefining the specificity of GO terms. We show that all
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the three measures are quite effective, particularly, RNS and RES more effectively

distinguish true PPIs from false positives than the existing alternatives.

Chapter 4: Impact of the continuous evolution of gene ontology on the performance

of similarity measures

This chapter presents the third contribution made in the thesis. In this chapter, we

systematically study the impact of the continuous evolution of GO on the performance

of SSMs for the task of scoring confidence of PPIs. We observe that the performance

of SSMs gets affected due to the regular updates of GO and they are not robust in all

conditions, rather they keep their performance quite similar in certain conditions.

Chapter 5: Impact of low-confidence interactions on computational identification of

protein complexes

This chapter presents the fourth contribution made in the thesis. In this chapter,

we systematically study the impact of low-confidence PPIs on computational identi-

fication of protein complexes using GO-based SSMs. We observe that each complex

detection algorithm significantly improves its performance after elimination of low-

similarity scored PPIs.

Chapter 6: Conclusion and future work

Finally, this chapter briefly discusses the conclusion of the thesis and some future

research directions.

[[]X]\\
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Chapter2
Identification of protein complexes using

overlapping community detection algorithms

Proteins play a central role in performing cellular functions. However, the majority of

them perform their functions by interacting with other proteins instead of working alone.

Such an assembly formed by physical interactions of more than one proteins to accomplish

a biological function is generally referred to as a protein complex. Identifying protein com-

plexes are important to unfold the principles of cellular processes. A protein may perform

several functions and involve multiple processes. Hence a protein may be the part of several

distinct complexes.

Over the years, a large amount of protein-protein interaction (PPI) data is becoming in-

creasingly available due to high-throughput technologies and is utilized to detect protein

complexes computationally. The problem of detecting protein complexes from PPI data

(equivalently, from PPI networks) are usually converted to the problem of detecting com-

munities from complex networks, particularly overlapping communities. Although there are

algorithms for detecting overlapping communities, the majority of these are unable to de-

tect highly overlapping communities accurately. The performance of these algorithms falls

sharply when overlapping nodes (proteins) belong to more than three communities (com-

plexes).

In this chapter, we propose an extension of the existing overlapping community detection

algorithm (CDA), namely the Greedy Clique Expansion (GCE). We refer to the proposed

algorithm as EGCE. Due to lack of unavailability of real networks with complete information

of ground-truth communities, first, we experiment on state-of-the-art synthetic benchmark

datasets. We observe that EGCE exhibits excellent performance when overlapping nodes

belong to more than three communities. We also experiment on real datasets and observe

good performance. EGCE can be applied to the networks with a substantial amount of
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overlapping community structure such as PPI networks. The extension is generic in nature

and can be applied to extend any existing overlapping CDAs.

2.1 Introduction

Proteins are the main workers to accomplish cellular functions. However, the majority of

the proteins do not perform their functions alone, rather a group of proteins, commonly

known as a protein complex, physically interact together to accomplish a specific biological

function in the cell [68]. Identifying protein complexes are essential to understand the

principles of cellular organization.

It is further known that many proteins involve in several cellular functions. Thus they are

expected to be the part of multiple complexes, i.e., protein complexes are overlapping in

nature. To understand the overlapping nature of protein complexes (percentage of proteins

belonging to more than one complex), we calculate the following statistics based on 144

complexes from CYC2008 protein complex dataset [69] that are present in the Combined-

AP/MS PPI network of Saccharomyces cerevisiae [70]: approximately 12% of proteins be-

long to two complexes, 2.16% belong to three complexes, 0.45% belong to four complexes,

and 0.8% belong to five complexes, respectively. Even the conservative statistics estimated

from the simple model organism indicate 1 − 2% proteins belong to more than three com-

plexes. Hence we can safely assume that in the case of multicellular eukaryotes, like human,

this percentage can easily lead to in the order of thousands of proteins belonging to more

than three complexes. Failing to assign these proteins into their all native complexes hinders

the progress towards the complete understanding of the cellular organization.

From the last two decades, a large volume of protein-protein interaction (PPI) data has

become available due to high-throughput technologies. These PPI data are frequently used

to detect protein complexes computationally. The problem of detecting protein complexes

from PPI data (equivalently from PPI networks) are usually mapped to the problem of de-

tecting communities in complex networks, particularly overlapping communities. In fact,

many community detection algorithms (CDAs) are directly used for the identification of pro-

tein complexes. Hereafter, we refer to community and complex interchangeably.

In the theory of complex networks, detecting communities is one of the fundamental

problems. Although there is no precise definition of community [7], the majority of the

authors accept relatively dense structures as communities in networks. Community struc-

ture is an inherent property found in most of the real networks such as social networks,

biological networks. These communities have significant importance in these networks. For

example, persons studied from the same school are likely to form a community in social
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networks, proteins having similar biological functions are likely to form a complex (i.e., a

community) in PPI networks.

From the last two decades, a wide range of community detection algorithms (CDAs) has

been developed. The majority of these algorithms considers the network as undirected

and unweighted. The algorithms utilized a variety of techniques to identify the community

structures such as removal of high-betweenness edges [71], optimization of modularity

[72], k-clique percolation [73], statistical inference [74, 75], label propagation technique

[76, 77], link partitioning [78], clique expansion by local optimization [8, 79], and many

more. For detail review, we refer the readers to the surveys by Fortunato [7] and Xie et al.

[80].

Problems related to determining the structural properties of graphs are often NP-hard

[7]. Hence from the computational viewpoint, detecting communities in complex networks

is a computationally challenging task. Initially, CDAs were designed for disjoint communi-

ties. However, many real-world communities are overlapping in nature, i.e., a single node

may belong to multiple communities. For instance, a typical Facebook user belongs to sev-

eral distinct communities; similarly, as discussed earlier, many proteins belong to multiple

complexes in PPI networks [73, 81].

For the obvious reasons, disjoint CDAs assign a protein into a single complex only even

the protein may belong to multiple complexes, and thus are unable to reveal the true picture

of complexes. Overlapping CDAs mitigate this issue by assigning one protein into multiple

complexes. Algorithms such as [8, 73, 75, 77, 78, 82] have been developed for overlapping

communities. Some algorithms, such as [79, 83], even consider the hierarchical structure

of communities.

The complexity of detecting communities rises rapidly as the degree of overlapping in-

creases. The existing overlapping CDAs perform satisfactorily when overlapping nodes be-

long to very few communities [8]. Hence such algorithms fail to assign proteins to all their

native complexes if they belong to several (more than 3 to 4) complexes.

In 2010, Lee et al. proposed an algorithm Greedy Clique Expansion (GCE) [8] for de-

tecting overlapping communities and claimed that their algorithm performs well compared

to several state-of-the-art algorithms. However, we observe that some of the immediate

neighboring nodes of the communities detected by GCE are highly overlapping in nature,

but not detected by GCE. We identify these nodes from other neighbors and assign them

to their respective communities by utilizing the notion of Interaction Probability [84] of

these neighboring nodes with respect to their communities. Here we propose this exten-

sion, EGCE (Extended Greedy Clique Expansion), for detecting highly overlapping nodes

(proteins). We evaluate EGCE with five state-of-the-art overlapping CDAs by utilizing both
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synthetic and empirical benchmarks.

We briefly describe GCE in section 2.2, and the new extension EGCE is explained in

section 2.3. In section 2.4, the experimental setup and evaluation metrics are presented.

The results are reported, analyzed, and discussed in section 2.5. Finally, we conclude the

chapter in section 2.6.

2.2 Greedy Clique Expansion (GCE)

Let G(V,E) be a graph with vertex and edge sets are denoted by V and E respectively.

A community C may be thought of as an induced subgraph S of G such that the num-

ber of intra-community edges is more than the number of inter-community edges. By

intra-community edge, we mean both end vertices of the edge belong to C whereas inter-

community edges are those whose only one end vertex belongs to C.

GCE finds all maximal cliques in G with a minimum clique size k as seeds. The largest

seed is selected as a candidate community C ′. The candidate community C ′ is expanded

by optimizing a community fitness function FC locally as long as the addition of any neigh-

boring node u improves the fitness of the subgraph C ′ ∪ {u}. The fitness function FC of a

community C is defined as

FC =
dCin

(dCin + dCout)
α

,

where dCin and dCout are twice the number of intra-community edges and the number of

inter-community edges of C, respectively, and the α is a parameter. The expanded C ′ is

then accepted if it is not within a minimum community distance ε of an already accepted

community C, i.e., the expanded C ′ is discarded if it is near-duplicate of another accepted

community C. The algorithm continues the procedure by selecting the next largest seed

from the remaining seeds and stops when all seeds are expanded. All the parameters k, ε,

and α are set to default values throughout our experiment except for the experiment done

on PPI networks, where k is set to 3.

2.3 Extended Greedy Clique Expansion (EGCE)

The problem of GCE is that it cannot identify nodes belonging to many communities. The

problem is associated with the community fitness function used in GCE. Let us try to un-

derstand the problem through an illustrative example. Let v be a node in a community

C1 detected by GCE, i.e., FC1\v < FC1 . If v belongs to one more community C2 without

altering the structure of C1 except for the addition of enough number of edges between
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v and C2 so that v can belong to both C1 and C2, then the fitness of C1 is decreased as

only dC1
out is increased. Similarly, if v belongs to another community C3 without altering the

structure of C1 and C2 except for the addition of enough number of edges between v and

C3 so that v can belong to C1, C2, and C3, then the fitness of C1 is reduced more as dC1
out is

increased more. The fitness of C1 decreases as community membership of v increases. So,

FC1\v < FC1 will not be satisfied when v belongs to many communities, and v will not be

assigned into C1. In our extension, we identify this kind of highly overlapping nodes not

detected by GCE and assign them to their respective communities. We exploit the notion of

Interaction Probability [84] to detect these nodes. Let IPu,C be the Interaction Probability

of a node u /∈ C with respect to C and defined as

IPu,C =
|(u, v) : (u, v) ∈ E and v ∈ C}|

|C|

Intuitively, IPu,S measures the strength of connectivity of a node u ∈ G to a subgraph S

of G. Let N(C) be immediate neighboring nodes of a community C detected by GCE. The

IP values of all nodes in N(C) with respect to C show a flat distribution except for few

outliers. We observe that the majority of these outliers are those highly overlapping nodes

not detected by GCE. To separate these outliers from the general population of IP values of

nodes in N(C), we apply the k-means clustering algorithm with k = 2. We add one extra

individualmin(IPu′,C′) in the population before applying the k-means clustering algorithm,

where min(IPu′,C′) = min{IPu′,C′ : u
′ ∈ C and C ′ = C \ {u′}}. Nodes in N(C) having

IP values close to min(IPu′,C′) are more likely to be true overlapping nodes. The nodes

associated with these IP values (outliers) and the node with min(IPu′,C′) form a cluster

and we merge this cluster with C. Figure 2.1 demonstrates the flowchart of EGCE.

Time complexity of EGCE: The authors of GCE mentioned in their paper [8] that the

average time complexity of GCE cannot be determined purely in terms of |V| or |E| of the

graph; rather, the complexity depends on subtler local characteristics of the graph that are

difficult to specify rigorously. Since, EGCE is the extension of GCE, the time complexity of

GCE cannot be determined satisfyingly in terms of |V| or |E|.

2.4 Experimental design and evaluation metrics

We have selected five state-of-the-art CDAs to evaluate EGCE. The five algorithms are - GCE

[8] (discussed above), CFinder [73] (uses k-clique percolation), COPRA [77] (exploits label

propagation technique), Link [78] (uses link partitioning instead of nodes), and OSLOM

[75] (exploits statistical significances of clusters). We use the implementations provided by

the authors of the above CDAs with the default set of parameters for the experiment with
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Input a graph G(V,E)

Calculate min(IPu′,C′) = min{IPu′,C′ : u′ ∈ C and C ′ = C \ {u′}}

Cluster over the population of IPu,C and min(IPu′,C′)
using k-means clustering algorithm with k = 2

Calculate IPu,C for each node u ∈ N(C)

Select a community C ∈ C and remove it from C

Detect the set of communities C using GCE

Find the cluster containing min(IPu′,C′) and merge it with C

Is C nonempty

Output the new merged cluster

Start

End

Yes

No

Figure 2.1: Flowchart of EGCE.
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synthetic benchmarks. For empirical benchmarks, the parameter k (minimum clique size)

of GCE/EGCE, and CFinder is set to 3. To implement EGCE, we modify the implementation

provided by the authors of GCE.

We use a variant of Normalized Mutual Information (NMI) introduced by Lancichinetti

et al. [79] to measure the similarity between detected and true communities, where a

node may belong to more than one community, i.e., overlapping communities. NMI is an

information-theoretic notion and first used by Danon et al. [85] for non-overlapping com-

munities. The NMI between two random variables X and Y is defined as NMI (X,Y ) =

2[H(X)−H(X|Y )]/[H(X)+H(Y )], where H(X) is the entropy of the random variable X. The

measure is normalized into [0,1], i.e., an NMI value of 1 indicates that the two sets of

communities are exactly the same, whereas 0 indicates both the sets are completely inde-

pendent. We also consider precision, recall, and F1 score/fmeasure [43] in the evaluation.

However, our main discussion is based on NMI, as it is frequently used for community de-

tection [9]. Further, NMI has been extended for overlapping communities by Lancichinetti

et al. [79], whereas similar extension is not available for most of the other metrics.

2.4.1 Synthetic benchmarks

We use LFR benchmark [9] to create synthetic networks. The LFR benchmark facilitates

to create networks with some properties that are claimed to present in real networks, e.g.,

power-law degree and community size distributions. The parameters of the LFR benchmark

are as follows: the number of nodes (N), the average (k) and maximum degree (kmax) of

a node, the minimum (Cmin) and maximum (Cmax) size of a community, number of over-

lapping nodes (On), the number of memberships of the overlapping nodes (Om), i.e., the

number of communities each overlapping node belongs to, exponents of power-law distri-

butions of degrees (τ1) and community sizes (τ2), and a mixing parameter (µ), fraction of

edges of a node that are ended in some randomly selected communities, e.g., µ = 0.3 indi-

cates approximately 70% of the total edges are planted within communities and remaining

30% are ended in some randomly selected communities. So, the higher value of the mixing

parameter indicates a weaker community structure, whereas the lower value represents a

stronger community structure.

Lancichinetti et al. experimented over a variety of CDAs on a specific set of LFR graphs

[86]. This set of LFR graphs is becoming a standard and used in several studies including

[77, 8]. We also use the same set of graph specifications. The set contains four LFR graphs:

small/large graphs (N = 1000/5000) and small/large communities (Cmin = 10/20 and

Cmax = 50/100 i.e., Cmax = 5 × Cmin). So, there are four possible combinations. We

keep the following parameters fixed throughout our experiments also as in [86]: k = 20,
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kmax = 50 i.e., kmax = 2.5× k, τ1 = −2, and τ2 = −1.

2.4.2 Empirical benchmarks

We evaluate the performance of EGCE and other algorithms with PPI network as well. It

is very difficult to find PPI network data, where the full extent of complexes is known.

Hence the performance evaluation and comparison of algorithms on such data have to be

analyzed, keeping the above issue in mind. We use Combined-AP/MS PPI network of Sac-

charomyces cerevisiae [70] to construct the true network and CYC2008 protein complexes

[69] as true communities. The same datasets are used by the authors of GCE to evaluate

the performance of their algorithm as well. The Combined-AP/MS PPI network dataset

contains 1622 proteins and 9070 interactions. We consider those complexes only whose

constituent proteins present in the PPI network and then filter out complexes having one or

two proteins. There are 880 proteins remain in the final set of true complexes. We keep the

minimum clique size 3 to evaluate the performance of both GCE and EGCE.

2.5 Results and discussion

In this section, we report, discuss, and analyze the results of both synthetic and empirical

benchmarks.

Synthetic benchmarks

We do our experiment in two folds to capture the extent to which all the six algorithms

mentioned above, including EGCE, are able to detect overlapping communities. For each

test, we generate 10 realizations of networks with the same parameters and calculate the

mean and standard deviation of NMI. The error bars in the plots represent the standard

deviation of NMI over 10 runs. Throughout the experiment, we keep fixed the default

values of all parameters mentioned by the authors. In the first class of benchmarks, we vary

Om, i.e., the number of memberships of the overlapping nodes, from 3 to 10 by keeping

fixed On = 25% of the total nodes and mixing parameter. Figure 2.2 and Figure 2.3 show

the performance of all the six algorithms with mixing parameter µ = 0.1 and µ = 0.3.

In the second class of benchmarks, the fraction of the overlapping nodes, i.e., On/N ,

varies from 0.1 to 0.8 by keeping fixed Om = 5 and mixing parameter. In Figure 2.4 and

Figure 2.5, we show the performance of all the six algorithms with mixing parameter µ =

0.1 and µ = 0.3.
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Figure 2.2: The mean NMI of different CDAs by varying the membership of the overlapping
nodes (Om) from 3 to 10 with mixing parameter µ = 0.1. The number of overlapping nodes
is kept fixed as 25% of the total nodes. The error bars represent the standard deviation of
NMI over 10 runs.

We perform t-test (Aspin-Welch Unequal-variance) to check if the difference between the

mean NMI values of 10 realizations (of networks) for two different methods is statistically

significant. We observe that the differences are statistically significant for most of the cases.

For example, with Large G and Large C at Om = 7 in Figure 2.2, the p-value of the t-test

for the mean NMI difference between the best performing CDA (EGCE) and the second-best

performing CDA (CFinder) is 4.191212e− 09.

We perform our experiment on synthetic benchmarks for different values of mixing pa-

rameter (µ). Here we report the results of µ = 0.1 and µ = 0.3 only since the relative

performance is quite similar for other values of mixing parameter (µ = 0.2 and µ = 0.4).

We observe that EGCE performs well consistently as long as µ < 0.5. In practice, it

is assumed that community structure present in the network as long as µ < 0.5 and for

µ > 0.5, communities are not well defined [86]. We also observe that EGCE shows better

performance than other algorithms whenOm ≥ 3, i.e., overlapping nodes belongs to at least

3 communities and particularly for large networks. So, from the experiment on synthetic

networks, it is clear that EGCE outperforms other algorithms in detecting highly overlapping

communities (Om ≥ 3) as long as community structure present in networks. From Figure

2.4 and Figure 2.5, it is also clear that EGCE performs significantly well for 0.1 < On/N <
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Figure 2.3: The mean NMI of different CDAs by varying the membership of the overlapping
nodes (Om) from 3 to 10 with mixing parameter µ = 0.3. The number of overlapping nodes
is kept fixed as 25% of the total nodes. The error bars represent the standard deviation of
NMI over 10 runs.

0.6.

Empirical benchmarks

In Table 2.1, we report the performance in terms of NMI, precision, recall, and F1 score for

all the algorithms except for CFinder as it fails to terminate on this dataset. We execute

OSLOM and COPRA 10 times as they are non-deterministic.

Table 2.1: NMI, F1 score, precision, and recall of different CDAs on the Combined-AP/MS
PPI network of S. cerevisiae with the CYC2008 protein complex dataset.

Algorithm NMI F1 score Precision Recall
GCE 0.556 0.771 0.752 0.792
EGCE 0.550 0.767 0.750 0.785
Link 0.433 0.356 0.217 0.986
OSLOM 0.363 0.366 0.228 0.922
COPRA 0.295 0.329 0.220 0.651

Both GCE and EGCE show almost similar performances (GCE performs slightly better than

EGCE) and better than other algorithms. There are several reasons for this similar perfor-
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Figure 2.4: The mean NMI of different CDAs by varying the fraction of the overlapping
nodes (On/N) from 0.1 to 0.8 with mixing parameter µ = 0.1. The membership of the
overlapping nodes (Om) is kept fixed as 5. The error bars represent the standard deviation
of NMI over 10 runs.

mance of GCE and EGCE. It is known that PPI networks are incomplete, along with a signifi-

cant amount of both false positive and false negative interactions [10]. The protein complex

dataset we consider as true communities have 880 proteins, and only 136 of these belong

to more than one complexes (after necessary elimination). So, the fraction of overlapping

nodes in the PPI network is approximately 136/1622 ≈ 0.084 i.e., On/N ≈ 0.084 < 0.1

and it is a small network too. We also find that the average memberships of overlapping

nodes (Om) in the PPI network is approximately 2.35, which is also less than 3. From the

aforementioned synthetic benchmarks, we see that EGCE performs well significantly when

(Om ≥ 3) and On/N > 0.1 and particularly for large networks.

However, if we see how overlapping proteins are detected by both the algorithms, we

observe that EGCE detects more number of true overlapping proteins than GCE. Out of

136 true overlapping nodes, GCE detects 16 only, whereas EGCE detects 23 as overlapping.

While EGCE is able to detect seven true overlapping proteins (with ORF IDs YDR190C,

YER025W, YGR090W, YHR099W, YJR007W, YPL235W, and YPR023C) as overlapping too,

GCE determines their memberships as one. Further, the protein with ORF ID YFL039C

belongs to three complexes in the ground truth, and EGCE correctly determines its mem-

bership value as three too, whereas GCE shows its membership value as two. So, EGCE
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Figure 2.5: The mean NMI of different CDAs by varying the fraction of the overlapping
nodes (On/N) from 0.1 to 0.8 with mixing parameter µ = 0.3. The membership of the
overlapping nodes (Om) is kept fixed as 5. The error bars represent the standard deviation
of NMI over 10 runs.

assigns overlapping proteins into complexes better way than GCE. However, with the in-

crease in high-confidence complexes and protein-protein interactions, we feel EGCE will

prove more its worth as shown in the results obtained from synthetic benchmarks. It may

be noted that Link and OSLOM produce high recall. However, due to their poor precision,

they produce a relatively lower F1 scores.

2.6 Conclusion

In this work, we introduce an extension, EGCE (Extended Greedy Clique Expansion), of

existing overlapping CDA, GCE (Greedy Clique Expansion), to identify highly overlapping

nodes. Our extensive analysis of synthetic and empirical benchmarks suggests that EGCE

outperforms other overlapping CDAs, particularly when overlapping nodes belong to more

than three communities. Although GCE performs slightly better than EGCE for the empirical

benchmark selected in the evaluation, EGCE assigns overlapping proteins into their native

complexes better way than GCE. The new extension is generic in nature and not restricted

to GCE only, hence can be applied to extend any existing overlapping CDAs. We notice that

some CDAs show better performance (in terms of NMI for detecting overlapping communi-
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ties) with LFR benchmark when this extension is applied. Hence the work can be extended

by evaluating the new extension with other existing CDAs.

[[]X]\\
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Chapter3
A new family of similarity measures for

scoring confidence of protein interactions

using gene ontology

As we have discussed in Chapter 1, protein-protein interaction (PPI) data have a signif-

icant amount of false positives. Their presence leads to a negative impact on any down-

stream analysis of PPI networks. False interactions in PPI data is also likely to affect protein

complex detection from PPI networks adversely. In this chapter, we try to identify these

false positive PPIs.

The large-scale PPI data have the potential to play a significant role in the endeavor of

understanding cellular processes. However, the presence of a considerable fraction of false

positives is a bottleneck in realizing this potential. There have been continuous efforts to

utilize complementary resources for scoring confidence of PPIs in a manner that false posi-

tive interactions get a low confidence score. Gene ontology (GO), a taxonomy of biological

terms to represent the properties of gene products and their relations, has been widely used

for this purpose. We utilize GO to introduce a new set of specificity measures: Relative

Depth Specificity (RDS), Relative Node-based Specificity (RNS), and Relative Edge-based

Specificity (RES), leading to a new family of similarity measures. We use these similarity

measures to obtain a confidence score for each PPI. We evaluate the new measures using

four different benchmarks. We show that all the three measures are quite effective. Notably,

RNS and RES more effectively distinguish true PPIs from false positives than the existing al-

ternatives. RES also shows a robust set-discriminating power and can be useful for protein

functional clustering as well.
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3.1 Introduction

A significant amount of protein-protein interaction (PPI) data has become available due

to high-throughput technologies. PPI data play a central role in the systems-level under-

standing of cellular processes with important applications in disease diagnosis and therapy.

A considerable fraction of interactions is false positives due to limitations of experiments

used in detecting protein interactions[10]. Hence, a ranking or a scoring mechanism dis-

tinguishing between true and false interactions is important for any downstream analysis.

There have been continuous efforts to utilize additional knowledge resources, such as Gene

ontology (GO) [11], in scoring confidence of PPIs in a manner that false positive interac-

tions get a low confidence score[87]. The primary objective of this work is to introduce a

new family of semantic similarity measures (SSMs) between gene products using GO for

scoring confidence of PPIs.

GO has been effectively utilized in predicting and validating PPIs [15, 16, 17], and con-

fidence scoring of PPIs [88, 89, 90, 91, 92, 93] among other genomic applications such as

predicting protein functions [12, 13, 14], analyzing pathways [18], etc. It is a taxonomy of

biological terms to represent the properties of genes and gene products (e.g., proteins) and

is organized as a directed acyclic graph (DAG) to describe the relationship among the terms.

GO is made up of three independent ontologies: biological process (BP), cellular compo-

nent (CC), and molecular function (MF). A section of GO DAG (Release March 2015) is

shown in Figure 3.1.

Terms closer to the root are more generic in nature, and specificity of terms gradually

increases as we move towards the leaves. The more specific a term is, the more informative

it is. Ontology-based SSM is a quantitative function that measures the similarity between

two terms based upon their relations over a set of terms organized as an ontology. Formally,

it is a function of two ontology terms (or two sets of ontology terms) that returns a real

number indicating the closeness between the terms in the context of semantic meaning

[87]. Gene or gene products in different model organisms are annotated to GO terms based

on various evidences and is available through annotation corpora. An annotation corpus of

a species (e.g., yeast) is an association between gene products of the species and GO terms.

3.1.1 Motivation and hypothesis

The notion of Information Content (IC) is widely used in defining SSMs. It quantifies the

specificity of a term in an ontology, i.e., how specific a term in an ontology is. The IC is

explained formally in section 3.2. The IC-based SSMs assume that the given ontology is

complete and define the specificity of a term by considering the whole ontology. However,
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Figure 3.1: A section of GO DAG. Roots of the three ontologies BP, CC, and MF are Biolog-
ical Process (GO:0008150), Cellular Component (GO:0005575), and Molecular Function
(GO:0003674), respectively. The three roots are connected to a dummy node ‘All’ to make
a single GO DAG.

GO is being updated regularly with the addition of new terms and removal of old terms.

Furthermore, when new information of gene or gene product is discovered, annotation data

corresponding to the appropriate terms are updated as well. Some proteins are annotated

with a large number of terms, while many proteins are annotated to one term only, i.e.,

annotations are not uniformly distributed among the terms (annotation bias). Thus the

continuous evolution of the GO DAG, regular updates in annotation and non-uniform dis-

tribution of terms (as well as annotations) over the ontology are likely to impact confidence
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scores of several PPIs with each update.

A GO term is more closely related to its ancestors and descendants as the ontology is

hierarchically organized. The major part of the contribution towards the specificity of a

term is accumulated through the properties of its ancestors and descendants. Therefore for

quantifying the specificity of a term in an ontology like GO (which is very large, complex,

continuously evolving and not uniformly distributed), it is safe to consider the properties

of the subgraph consisting of the term itself along with its ancestors and descendants only

instead of considering the whole ontology, to minimize the impact of continuous evolution.

Our main hypothesis is that the explicit encoding of the aforementioned unexplored

subgraph-based specificity notions into a new family of SSMs could be useful for scoring

confidence of PPIs.

3.1.2 Definition of the problem and contribution

The main problem of the current study is to define the specificity of a GO term, based on

the properties of the subgraph consisting of the term itself along with its ancestors and

descendants only, that could be useful for scoring confidence of PPIs.

With the aforementioned unexplored notion of specificity, we introduce three simple yet

effective specificity measures: Relative Depth Specificity (RDS), Relative Node-based Speci-

ficity (RNS), and Relative Edge-based Specificity (RES). This new set of specificity measures

led to a new family of SSMs.

We compare the performance of the new SSMs with six state-of-the-art SSMs proposed

by Resnik [94], Lin [95], Schlicker et al. [96], Jiang & Conrath [97], Wang et al. [98], and

Jain & Bader [99], referred to as Resnik, Lin, Rel, Jiang, Wang, and TCSS, respectively, in the

rest of the chapter. Resnik and TCSS have been considered to be the best SSMs for scoring

confidence of PPIs by several studies such as Guo et al. [100], Xu et al. [101], Jain & Bader

[99], and Pesquita [102]. We use four different benchmarks to evaluate the new SSMs.

The four benchmarks are - 1) correlation with reference dataset from HIPPIE database

[103], 2) ROC curve analysis with DIP database [104], 3) set-discriminating power of KEGG

pathways [105], and 4) correlation with protein family (Pfam) using CESSM dataset[106].

The first benchmark is for human PPIs only as HIPPIE is an integrated database of human

PPIs and the rest of the three benchmarks are applied to both yeast (S. cerevisiae) and

human (H. sapiens) PPIs.

The rest of the chapter is organized in the following manner. A brief survey of the litera-

ture is presented in section 3.2. The new family of SSMs is explained in section 3.3. Section

3.4 describes the experimental design, evaluation metrics, datasets used, and implementa-
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tion. In section 3.5, the results are reported, analyzed, and discussed. Finally, we conclude

the chapter in section 3.6.

3.2 Related work

This section introduces a brief review of the literature on PPI confidence scoring methods

and GO-based SSMs. For an in-depth review of the family of GO-based SSMs, we refer the

reader to the surveys by Pesquita et al. [87], Harispe et al. [107], Mazandu et al. [108],

and Pesquita et al. [102].

3.2.1 PPI confidence scoring methods

Computational approaches for scoring confidence of PPIs mainly differ in the selection of

information used in the prediction model. The common sources of this information are

three-dimensional protein structures [109], protein sequences [110], gene expression pro-

files [111], phylogenetic trees [112, 113], phylogenetic profiles [114], GO [88, 89, 90, 91,

92, 93] etc. Some approaches utilize topology of interaction network from already exist-

ing true PPIs [115, 116, 117]. Text mining on peer-reviewed literature is also used for

scoring confidence of PPIs [118]. A few approaches utilize multiple sources of information

[119, 120]. However, GO is a very comprehensive resource for the properties of gene prod-

ucts and their functional relationships across species. It provides a promising way to infer

functional information of gene products. The idea of semantic similarity is a common way

to utilize GO for scoring confidence of PPIs. Semantic similarity between two proteins (See

section 3.2.3 ) involved in a PPI may be treated as a confidence score of the interaction.

The current study is primarily focused on the SSMs by exploiting GO for scoring confidence

of PPIs.

3.2.2 GO-based SSMs

Ontology-based SSMs were originally introduced in the fields of cognitive sciences by Tver-

sky [121] and Natural Language Processing (NLP) and Information Retrieval (IR) by Rada

et al. [122]. Since then, a plethora of semantic similarity measures based on WordNet (a

large lexical database of English) was developed, such as the pioneering works introduced

by Resnik [94], Jiang & Conrath [97] and Lin [95]. However, the first pioneering work was

introduced by Lord et al. [123, 124] in the field of biology and this work has started the

research on the development of GO-based SSMs and their applications in genomics such as

[96, 98, 99, 125, 126, 127]. Here, we provide a brief overview of different SSMs.
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Existing SSMs are classified broadly into two categories: edge- and node-based [87]. Edge-

based measures are the natural and direct way of defining SSMs. Rada et al. [122] intro-

duced an SSM of this kind in a lexical taxonomy, which was then applied in GO by Nagar and

Al-Mubaid [125]. Subsequently, several edge-based SSMs have been developed and used

in GO [128, 129, 130, 131]. In the edge-based approach, shared paths between two terms

are primarily considered for computing the similarity between them. It assumes that terms

at the same level have similar specificity and edges at the same level represent the same

semantic distances between two terms [87], which are seldom true in GO. Furthermore, an

edge-based approach does not account annotation information of terms and entirely relies

on the topological structure of the GO DAG. Hence edge-based methods are more sensitive

to the intrinsic structure of the GO DAG.

The most commonly used SSMs are node-based that computes the similarity between

two terms by comparing their properties, common ancestors, or their descendants. As

mentioned earlier, the majority of the node-based approaches use the notion of information

content (IC) to define the specificity of a term. The IC of a term t is defined as

IC (t) = −ln p(t) (3.1)

where p(t) is the probability or frequency of occurrence of t. Usually, the descendants of t

are also considered for computing IC (t). The probability of occurrence, p(t) of term t in

GO is defined as:

p(t) =
|{t} ∪Des(t)|

N
(3.2)

where Des(t) is the set of descendants of t and N is the number of terms in the ontology.

Since gene products are annotated to terms in GO, p(t) is estimated as the frequency of

annotations of t, i.e.,

p(t) =
|Ant({t} ∪Des(t))|

M
(3.3)

where Ant(T ) is the set of annotations to the set of terms T and M is the total number of

annotations in the GO. In words, it is the ratio of the number of annotations to t and its

descendants to the total number of annotations. The aforementioned two definitions are

commonly known as an intrinsic and extrinsic way of defining the probability function p(t),

respectively.

The most commonly used node-based SSMs are Resnik [94], Lin [95], and Jiang & Con-

rath [97], which were initially developed for WordNet and subsequently applied to GO

by Lord et al. [123, 124]. Thereafter, a number of node-based SSMs have been pro-

posed in order to improve the existing SSMs in different perspectives and applications

[96, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143]. The major drawbacks of
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IC-based SSMs are already pointed out in section 3.1.1. SSMs such as [98, 127, 144, 145]

combine both node- and edge-based approaches and are commonly referred to as hybrid ap-

proaches. Recently, some complex structural-based SSMs are also developed [99, 146, 147].

3.2.3 SSM between two sets of terms

A gene product may be annotated with more than one term in the same GO. Suppose, p1
and p2 are two gene products annotated to the set of terms S and T , respectively. The

similarity between p1 and p2 are calculated as the similarity between two sets S and T , i.e.,

SSM (p1, p2) = SSM (S, T ). Therefore we need to combine GO terms of S and T . Generally,

the following three types of strategies used in the literature:

Maximum (MAX) - In MAX strategy [148], similarity between S and T is calculated as the

maximum of the set S × T .

SSMMAX (S, T ) = max
s∈S,t∈T

SSM (s, t) (3.4)

Average (Avg) - In ‘average’ strategy [123, 124], similarity between S and T is calculated

as the average of the set S × T .

SSM avg(S, T ) =

∑
s∈S,t∈T SSM (s, t)

m× n (3.5)

where m = |S| and n = |T |.

Best-match average (BMA) - SSMs between two sets of terms form a matrix. BMA [149,

96, 150] is defined as the average of all maximum SSMs on each row and column of the

matrix.
SSMBMA(S, T ) =

∑m
i=1 max1≤j≤n SSM (si,tj)+

∑n
j=1 max1≤i≤m SSM (si,tj)

m+n

(3.6)

where si ∈ S and tj ∈ T .

3.2.4 SSMs used in evaluation

Resnik - Resnik considers IC of the most informative common ancestor (MICA) only [94].

The similarity between two terms s and t in Resnik is defined as

SSMResnik (s, t) = max
c∈C

IC (c) = IC (MICA(s, t)) (3.7)
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where C is the set of common ancestors of s and t, and IC is the information content defined

earlier. It is the IC of the closest common ancestor or lowest common ancestor (LCA) of s

and t.

Lin and Jiang - Although Resnik is very effective for computing information shared by two

terms, it cannot distinguish between pairs of terms having the same MICA. To overcome the

problem, Lin and Jiang are developed by considering ICs of both the terms along with their

MICAs in different ways [95, 97]. The similarity between two terms is calculated by these

two methods as

SSM Lin(s, t) =
2× IC (MICA(s, t))

IC (s) + IC (t)
, (3.8)

SSM Jiang(s, t) = 1− [IC (s) + IC (t)− 2× IC (MICA(s, t))]. (3.9)

Rel - Lin and Jiang overestimate when one term is an ancestor of another. For example,

when both the terms are same, the similarity score will be 1, irrespective of its specificity.

Rel combines Resnik and Lin in order to capture relevance information by multiplying one

minus the extrinsic probability of MICA to SSM Lin [96]. As per Rel, the similarity between

two terms is calculated as

SSMRel (s, t) =
2× IC (MICA(s, t))(1− p(MICA(s, t)))

IC (s) + IC (t)
. (3.10)

Wang - Wang is a hybrid measure that combines both edge- and node-based approaches

[98]. Let Gt = (Vt, Et) be a DAG for a term t in GO such that Vt is the set of ancestors of t,

including t itself, and Et is the set of edges connecting terms in Gt. Terms closer to term t

in Gt contribute more of its semantics to the semantics of term t. The semantic contribution

of a term c to the semantics of term t in Gt is denoted as S-value of c or SGt(c) and defined

as: SGt(t) = 1

SGt(c) = max{we × SGt(c
′) : c′ ∈ children of c} if c 6= t

(3.11)

where we (0 < we < 1) is semantic contribution factor for edge e ∈ Et from term c′ to term

c. For example, semantic contribution factors (we) of is_a and part_of relationships may be

treated as 0.8 and 0.6, respectively. To compare semantics of two terms, a semantic value

SV (t) is computed as the aggregate contribution of the semantics of all the terms in Gt to

term t and defined as:

SV (t) =
∑
c∈Vt

SGt(c). (3.12)

Now, SSM between two terms s and t with respect to their DAGs Gs = (Vs, Es) and Gt =
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(Vt, Et) is defined as:

SSMWang(s, t) =

∑
c∈Vs∩Vt(SGs(c) + SGt(c))

SV (s) + SV (t)
. (3.13)

The numerator is the summation of S-values of common terms between the two DAGs. S-

values of common terms between the two DAGs may not be the same as the locations of s

and t may differ in GO.

TCSS - TCSS exploits the unequal depth of biological knowledge representation in dif-

ferent branches of GO DAG [99]. The objective of TCSS is to identify subsets of similar

GO terms (e.g., terms related to nucleus and terms related to mitochondrion belong two

different subsets) and score PPIs higher if participating proteins belong to the same subset

compared to PPIs whose participating proteins belong to different subsets. The authors

have introduced a structural-based IC, referred to as topological information content (ICT),

to identify subgraph root terms during the preprocessing stage.

ICT (t) = −ln
( |Child(t)|

N

)
(3.14)

where Child(t) is the set of children of t and N is the number of terms in the ontology.

3.3 New GO-based SSMs

In this section, we introduce the new family of SSMs based on the proposed set of specificity

measures. To define the specificity of a GO term, we consider the properties of the subgraph

consisting of the term itself along with its ancestors and descendants only and ignore the

rest of the ontology. The new specificity models quantify how specific a term in ontology is.

The specificity of a parent (term) always will be less than any of its children. RDS considers

a specific path of the aforementioned subgraph, while RNS and RES consider the whole

subgraph. However, RNS relies on the properties of the nodes only, whereas RES considers

the edges of the subgraph as well.

3.3.1 Relative Depth Specificity (RDS)

Let dt ,r and dl ,t ,r are the length of the longest path from term t to the root r and length of

the longest path from any leaf l to the root r via the term t, respectively. Then, RDS of a

term t in GO is defined as

RDS (t) =
dt ,r
dl ,t ,r

=
dt ,r

dl ,t + dt ,r
. (3.15)
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In words, RDS (t) is the ratio between the length of the longest path from the term t to the

root and the length of the longest path from any leaf to the root via the term t. This is the

simplest SSM that does not consider annotation information. The specificity of the leaves

and the root would be highest (1) and lowest (0), respectively. When multiple paths are

present between two terms, we consider the longest one as it is likely to be more informative

than others.

3.3.2 Relative Node-based Specificity (RNS)

Let G1(V1, E1) be the subgraph consisting of the term t itself along with its ancestors; and

G2(V2, E2) be the subgraph consisting of the term t itself along with its ancestors and de-

scendants. The RNS of a term t in GO is defined as

RNS (t) =
|Ant(V1)|+ |V1|
|Ant(V2)|+ |V2|

(3.16)

where Ant(T ) be the set of annotations to the set of terms T as mentioned earlier. In words,

it is the ratio of the sum of nodes along with its annotations of the subgraph consisting of

the term t and its ancestors to the sum of nodes along with its annotations of the subgraph

consisting of t, its ancestors and descendants. Thus, RNS of the leaves and the root would

be highest (1), and lowest (close to 0), respectively.

3.3.3 Relative Edge-based Specificity (RES)

We define the weight of an edge e(t1, t2) between terms t1 and t2 in GO as:

w(e) = |Ant({t1})|+ |Ant({t2})|. (3.17)

It is the summation of the number of annotations of terms t1 and t2. The weight of a set of

edges E is defined as:

W (E) =
∑

w(ei) : ei ∈ E. (3.18)

It is the summation of weights of all edges in the set of edges E. Let G1(V1, E1) be the

subgraph consisting of the term t itself along with its ancestors and G2(V2, E2) be the sub-

graph consisting of the term t itself along with its ancestors and descendants as in RNS. The

Relative Edge-based Specificity of a term t in GO is defined as

RES (t) =
W (E1) + |E1|
W (E2) + |E2|

. (3.19)
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In words, it is the ratio of the summation of weighted and unweighted edges of the sub-

graph consisting of the term t itself along with its ancestors to the summation of weighted

and unweighted edges of the subgraph consisting of t itself along with its ancestors and de-

scendants. Thus, the specificity of the leaves and the root would be highest (1), and lowest

(0), respectively.

The similarities between the two terms s and t are calculated as:

SSMRDS (s, t) = max
c∈C

RDS (c) = RDS (MICA(s, t)), (3.20)

SSMRNS (s, t) = max
c∈C

RNS (c) = RNS (MICA(s, t)), (3.21)

SSMRES (s, t) = max
c∈C

RES (c) = RES (MICA(s, t)) (3.22)

where C is the set of common ancestors of s and t as mentioned earlier. Figure 3.2 demon-

strates the flowchart of computing similarity scores between two proteins using the pro-

posed SSMs.

We have chosen the MICA to define the shared specificity between the two terms similar

to Resnik. It is noteworthy to mention that the proposed specificity models are different

from IC models as they do not rely on probability functions. Therefore we cannot directly

apply the new specificity models to other IC-based similarity measures such as Lin, Rel, and

Jiang.

3.4 Experimental setup

Our experimental design for evaluation is based on the following two assumptions. First,

two proteins involved in the same biological process(es) are more likely to interact than

proteins involved in different processes [17, p.953] and [99]. Second, two proteins need

to come in close proximity (at least transiently) for interaction. Hence co-localization also

provides evidence of interaction [151, p. 689] and [99]. However, if two proteins interact

physically, there is no guarantee that they share the same molecular function [152, p. 27].

The ‘average’ strategy underestimates when two gene products share many similar terms

as it considers all possible term pairs of the two gene products [153]. By contrast, the

MAX strategy overestimates when two gene products share a few similar terms as it is

indifferent to the number of dissimilar terms between the gene products [153]. The BMA

strategy, which considers both similar and dissimilar terms [153], does not suffer from the

aforementioned limitations. Further, in PPIs, proteins need to be in close proximity (share
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Find all pairs (s, t) of terms such that s ∈ S and t ∈ T i.e., (s, t) ∈ S × T

For each pair (s, t) ∈ S × T ,

find the closest/lowest common ancestor (LCA) x of s and t, i.e.,

For each LCA x of (s, t) ∈ S × T ,

compute the similarity score using RDS/RNS/RES i.e.,

Find the MAX or BMA of the similarity scores

the most informative common ancestor (MICA) of s and t

compute RDS (x) or RNS (x) or RES (x)

Find the two sets S and T of terms that annotate protein p1 and p2, respectively

Figure 3.2: Flowchart of computing similarity scores between two proteins using the pro-
posed SSMs.

similar CC terms) and participate in the same biological process (share similar BP terms)

once, among all possible combinations, to become biologically relevant [99]. Hence MAX

and BMA are considered better strategies than the ‘average’ for scoring confidence of PPIs.

In light of the above discussion, we use BP and CC ontologies of GO along with MAX and

BMA strategies for performance evaluation. We exclude electronically inferred annotations

(IEA) of GO terms which lack manual curation. We consider only those protein pairs which

are having both the proteins annotated with at least one GO term other than the root in

their respective ontologies.

As mentioned earlier, the new SSMs are evaluated on the four benchmarks: 1) correlation

with reference dataset from HIPPIE database, 2) ROC curve analysis in predicting true PPIs

from DIP database, 3) set-discriminating power of KEGG pathways, and 4) correlation with

Pfam on CESSM dataset. Evaluation is done using both yeast (S. cerevisiae) and human

PPIs except for the first benchmark, as it contains only human PPIs. We use Entrez and

ORF gene ids for human and yeast, respectively, except for comparing with TCSS where

UniProtKB and SGD gene ids were used for human and yeast, respectively. We have not

performed the comparison with TCSS on the second and third benchmarks (for human) as

some UniProtKB ids (after mapping from Entrez ids) were not found in the annotation.
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3.4.1 Evaluation metrics and baselines

This section introduces how and why each benchmark is used for evaluation. A brief outline

and formulation of each metrics used are presented here.

Correlation with reference dataset from HIPPIE database

The HIPPIE database [103] integrates most of the publicly available PPI databases like

BioGRID [154], DIP [155], HPRDS [156], IntAct [157], MINT [158], BIND [159], MIPS

[160]. It also includes interactions from several manually selected studies. The HIPPIE

score of a PPI is defined by considering the following parameters: the number of studies

where the PPI was detected, the number and quality of the experimental techniques used

to detect the PPI, and the number of non-human organisms where the PPI was reproduced.

The authors of HIPPIE showed that their scoring scheme of interactions correlates with

the quality of the experimental characterization. We use a reference dataset from HIPPIE

database to evaluate different SSMs. Pearson correlation is calculated between the HIPPIE

score and PPI confidence score obtained using an SSM.

ROC curve analysis

Similarity measures can be treated as binary classifiers to classify a given PPI as positive or

negative with a reasonable cutoff similarity score. PPIs having similarity score greater than

the cutoff are treated as positive. Receiver operating characteristic (ROC) curve analysis is

used to evaluate the performance of a binary classifier. ROC curve is a graph plotting of true

positive rate (TPR or sensitivity) against false positive rate (FPR or 1-specificity) by varying

discrimination threshold or cutoff. The area under the ROC curve (AUC) is the measure of

discrimination, i.e., the ability of the classifier to classify correctly. An AUC of 1 represents

perfect classifier. We utilize the core subsets of yeast and human PPIs from the DIP database

[104] to evaluate different SSMs for AUCs.

Set-discriminating power of KEGG pathways

A biological pathway is a sequence of biochemical steps to accomplish a specific biological

process within a cell. Therefore proteins involved in a pathway are more likely to interact

among themselves than the proteins belonging to different pathways. Proteins within a

pathway are likely to be annotated with the same or similar terms in GO too and should

show high similarity scores. We consider three sets of selected KEGG pathways [105] to
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evaluate different SSMs for their discriminating power as discussed in the following para-

graph.

For each KEGG pathway, an intra-set average similarity is calculated as the average of all

pairwise similarities of proteins within the pathway. An inter-set average similarity for every

two pathways is also calculated as the average of all pairwise SSMs of proteins between

the two pathways. During the calculation of inter-set average similarity, we do not consider

those pairs whose both the proteins are same. A discriminating power (DP) of a pathway

is defined in [161] as the ratio between intra-set average similarity and the average of all

inter-set average similarities between the chosen pathway and rest other pathways. Let

P = {P1, P2, ..., Pn} be the set of KEGG pathways, each pathway Pk contains mk number of

proteins and pki denotes ith protein in Pk.

Intra_set_avg_sim(Pk) =

∑mk
i=1

∑mk
j=1 SSM (pki , pkj )

m2
k

. (3.23)

Inter_set_avg_sim(Pk, Pl) =

∑mk
i=1

∑ml
j=1 SSM (pki , plj )

mk ×ml
. (3.24)

DP(Pk) = Intra-set average similarity of Pk/

Avg. of all inter-set average similarities between Pk

and other pathways

=
(n− 1)× Intra_set_avg_sim(Pk)∑n
i=1,i 6=k Inter_set_avg_sim(Pk, Pi)

. (3.25)

Correlation with protein family (Pfam)

A protein family (Pfam) is a group of proteins that are evolutionarily related, i.e., they share

a common evolutionary ancestor. Proteins belonging to a family often show functional

similarity. The Jaccard index is used to calculate Pfam similarity. The Jaccard index of two

proteins is calculated as the ratio of the number of protein families they share to the total

number of protein families they belong. We utilize dataset of protein pairs used in CESSM

[106]. For each pair, Pfam similarity (Jaccard index) and similarity scores of different SSMs

are calculated, and finally, the Pearson correlation between the two scores is obtained.
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3.4.2 Datasets

In this section, we describe the sources of different datasets used in the evaluation and the

corresponding preprocessing steps. A summary of the datasets used is presented in Table

3.1.

Reference dataset from HIPPIE database

We download Human Integrated Protein-Protein Interaction rEference (HIPPIE) dataset on

09.01.2015 [103]. We extract one reference dataset from HIPPIE consisting of PPIs de-

tected by four top-scored experimental techniques: far-Western blotting, isothermal titra-

tion calorimetry, nuclear magnetic resonance, and surface plasmon resonance experiments

as in [162]. The interaction detected by any of the chosen four experimental techniques

has a high probability of being an actual interaction [162]. The number of PPIs present in

the reference datasets is shown in Table 3.1.

Table 3.1: A summary of the datasets used in the evaluation. The fourth column indicates
the number of PPIs remains in HIPPIE or DIP datasets, the number of protein pairs remains
in the Pfam dataset, and the length of KEGG pathways considered in the evaluation after
necessary preprocessing.

Benchmark Species Ontology Number of PPIs or
datasets protein pairs or

length of pathways
HIPPIE Human BP 1748

CC 1757
DIP Yeast BP 4962

CC 4992
Human BP 4279

CC 4283
Pfam Yeast BP 366

CC 351
Human BP 1212

CC 1211
KEGG Yeast Set-1 - 11 - 14

Yeast Set-2 Specified in Table 3.2
Human - 11 - 16

Datasets for ROC curve analysis

We download the core subsets of PPIs from the Database of Interacting Proteins (DIP) [104]

for S.cerevisiae and H.sapiens on 29.10.2015. DIP is a database of experimentally detected
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PPIs from various sources. We assume that these interactions are real and treat them as

positive instances of interactions. DIP uses UniProt Ids for proteins. We map UniProt Ids into

Entrez and ORF gene Ids for human and yeast, respectively. Table 3.1 shows the number

of PPIs of DIP dataset used in this study. As done in [99], an equal number of negative PPI

datasets are independently generated by randomly choosing protein pairs annotated in BP

and CC, and are not present in the iRefWeb database [163] (version date: 27.11.2015), a

combined database of all known PPIs.

KEGG pathways

We extract two sets of KEGG pathways [105] of each of the two organisms, S.cerevisiae

and H.sapiens, using org.Sc.sgd.db and org.Hs.eg.db packages with R 3.1.2 version. The

first set contains a number of genes between 11 to 14 and the second set 11 to 16. We

choose the above ranges so that each set contains the same (11) number of pathways and

takes a reasonable time to compute. The two sets have three common pathways: Terpenoid

backbone biosynthesis (sec00900 and hsa00900), Riboflavin metabolism (sec00740 and

hsa00740), and Pantothenate and CoA biosynthesis (sec00770 and hsa00770). However,

each of them is from different organisms and may not show similar results. Another set of

11 yeast KEGG pathways (Table 3.2) with more diverse functionality is also considered to

get a broader insight into the inter-set discriminating power.

Table 3.2: The list of 11 yeast KEGG pathways with more diverse functionality used in the
study. The number of genes is based on the org.Sc.sgd.db R package with version 3.1.2
(March 2015 release).

Category Subcategory Pathway Id Pathway Name No. of Genes
Metabolism Carbohydrate metabolism sce00040 Pentose and glucuronate 10

interconversions
Energy metabolism sec00920 Sulfur metabolism 15
Lipid metabolism sec00565 Ether lipid metabolism 5
Amino acid metabolism sec00360 Phenylalanine metabolism 9
Glycan biosynthesis sec00514 Other types of 13
and metabolism O-glycan biosynthesis
Metabolism of cofactors sec00750 Vitamin B6 metabolism 11
and vitamins
Metabolism of terpenoids sec00900 Terpenoid backbone 13
and polyketides biosynthesis
Metabolism of sec00410 beta-Alanine metabolism 8
other amino acids

Genetic Information Folding, sorting sec04122 Sulfur relay system 8
Processing and degradation

Replication and repair sec03450 Non-homologous 10
end-joining

Environmental Signal transduction sec04070 Phosphatidylinositol 15
Information Processing signaling system
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CESSM dataset for correlation with Pfam

The Collaborative Evaluation of GO-based Semantic Similarity Measures (CESSM) is an

online tool for evaluation of GO-based SSMs against sequence, Pfam and EC similarities

[106]. Since CESSM has been published around ten years ago, it uses ten years old dataset

(August 2008 GO and GOA-UniProt). In the meanwhile, GO DAG, its annotation, as well as

Pfam have substantially changed. Moreover, we use GO.db (version:3.1.2) and org.Hs.eg.db

(version:3.1.2) R packages that utilize March 2015 GO and annotations, respectively, in the

evaluation. Hence we could not use the CESSM automated tool. However, we utilize the

dataset of protein pairs used in CESSM to find correlation against Pfam similarity only, since

GO captures the functional aspect of gene or gene products primarily. All pairs of proteins

are mapped into Entrez and ORF gene Ids for human and yeast, respectively. The dataset

involves 13,430 protein pairs of 1,039 proteins from various species. The authors of CESSM

reported that both proteins of each pair are manually annotated to at least one term within

all the three GOs with a uniform IC of at least 0.5 and have at least one EC class and one

Pfam class. The number of protein pairs used for this evaluation is shown in Table 3.1.

3.4.3 Implementation

The new SSMs are implemented in the R programming language [164]. We use GOSemSim

R package (version: 1.26.0) [165] for implementations of Resnik, Lin, Rel, Jiang, and Wang

SSMs. For GO and corresponding annotations, we use GO.db, org.Sc.sgd.db (for yeast), and

org.Hs.eg.db (for human) R packages (version:3.1.2, March, 2015 release) [166, 167, 168].

We maintain versions of all R packages so that they use the same GO and corresponding

annotations. For TCSS, we use the implementation provided by the authors with the default

set of parameters. The original implementation of TCSS uses MAX strategy only. Therefore

we modify it to include BMA strategy as well. The implementation of TCSS needs the

ontology and annotation as text files provided by gene ontology consortium. Therefore

we use the released version of GO (gene_ontology.obo) dated Mar 13, 2015. The same

released version of GO is used in above R packages (version: 3.1.2) and annotation for

yeast (gene_association.sgd) and human (gene_association.goa_human) released on Mar

17, 2015. We use ROC and ROCR R packages [169, 170] to plot the ROC curve and to

calculate the area under ROC curves (AUC).
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3.5 Results and discussion

In this section, we report, analyze, and discuss the results. For each key observation, first,

we summarize the conclusion (in bold) with the starting phrase and the rest of the para-

graph introduce the discussion endorsing the conclusion.

3.5.1 Correlation with reference dataset from HIPPIE database

Performance, in terms of Pearson correlation, of different SSMs with respect to the reference

dataset from HIPPIE, is shown in Table 3.3. The best correlations are shown in bold.

Table 3.3: The Pearson correlation with the reference dataset extracted from the HIPPIE
database by considering the four top-scored experimental techniques: far-Western blotting,
isothermal titration calorimetry, nuclear magnetic resonance, and surface plasmon reso-
nance experiments. The best correlation for each ontology and strategy is shown in bold.

Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
BP MAX 0.358 0.313 0.346 0.342 0.329 0.277 0.277 0.272 0.286

BMA 0.342 0.332 0.310 0.270 0.238 0.220 0.218 0.211 0.193
CC MAX 0.204 0.130 0.129 0.232 0.231 0.064 0.100 0.064 0.082

BMA 0.254 0.227 0.198 0.232 0.230 0.148 0.164 0.118 0.158

RDS achieves the highest correlation in BP, while TCSS shows the maximum correlation

in CC. It may be noted that RDS is the simplest SSM among the proposed measures and

does not even consider annotation information. Nevertheless, it shows good correlation.

RNS and RES also perform quite well in BP, while Resnik shows good performance in both

BP and CC.

All SSMs show greater correlations in BP. The average correlation over all SSMs in BP

is 0.311/0.259 (MAX/BMA), whereas, in CC, it is 0.137/0.192 (MAX/BMA). However, all

measures show less overall correlation since correlation is computed for positive PPIs only.

3.5.2 ROC curve analysis

AUCs obtained by different SSMs are tabulated in Table 3.4. The best ROC score for each

ontology and strategy is shown in bold.

RNS and RES, with both MAX and BMA strategies, effectively classify true PPIs from

false in both BP and CC. Resnik-MAX and Rel-MAX too perform well compared to others,

while RDS shows competitive performance. Although we could not compare TCSS for

human, it performs well with MAX strategy in yeast. All SSMs with MAX strategy have

quite similar AUCs in BP for both yeast and human. However, with BMA strategy, AUCs
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Table 3.4: The area under the ROC curves of different SSMs for the core subsets of yeast
and human PPIs extracted from the DIP database. The result of TCSS with the human is
not shown as some UniProtKB ids (after mapping from Entrez ids) are not found in the
corresponding annotation corpus. The best ROC score for each ontology and strategy is
shown in bold.

Species Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
Yeast BP MAX 0.896 0.908 0.903 0.907 0.908 0.912 0.914 0.910 0.895

BMA 0.868 0.890 0.893 0.861 0.879 0.881 0.883 0.874 0.860
CC MAX 0.856 0.868 0.850 0.866 0.870 0.804 0.868 0.771 0.799

BMA 0.826 0.848 0.843 0.831 0.850 0.805 0.838 0.709 0.783
Human BP MAX 0.907 0.914 0.904 - 0.908 0.900 0.913 0.887 0.895

BMA 0.892 0.903 0.898 - 0.872 0.865 0.869 0.817 0.867
CC MAX 0.848 0.847 0.857 - 0.852 0.794 0.858 0.795 0.800

BMA 0.824 0.849 0.850 - 0.814 0.773 0.791 0.708 0.791

achieved by RES (yeast:0.893, human:0.898) and RNS (yeast:0.890, human:0.903) are

significantly higher than others. Further, RES and RNS exhibit greater consistency, since

they show less difference between MAX and BMA strategies in both BP and CC (for both

yeast and human).

All SSMs show higher AUCs in BP. The average AUCs in BP are 0.906/0.877 (yeast:MAX/BMA)

and 0.904/0.873 (human:MAX/BMA), whereas in CC these are 0.839/0.815 (yeast:MAX/BMA)

and 0.831/0.800 (human:MAX/BMA).

We also perform statistical analysis of ROC curves using the StAR online tool [171] to

see if the difference in AUCs for two different SSMs is statistically significant. We observe

that the differences are statistically significant for most of the cases. For example, in BP

ontology with BMA strategy for the yeast model organism (second row in Table 3.4), the

p-value of the test between the best performing SSM (RES) and the second-best performing

SSM (RNS) is 0.00458231.

3.5.3 Set-discriminating power of KEGG pathways

As discussed earlier, the discriminating power quantifies the ability of an SSM to distinguish

among various functionally different sets of proteins (e.g., KEGG pathways). Figure 3.3

and 3.4 demonstrate the discriminating power of different SSMs with BMA strategy against

KEGG pathways in BP and CC ontology, respectively. Instead of pathway names, KEGG

pathway identifiers are shown along the x-axis. The discriminating power for the selected

yeast KEGG pathways (listed in Table 3.2) with more diverse functionality is shown in

Figure 3.5. The results with MAX strategy are quite similar; hence, they are not reported.

The discriminating power of RES is significantly higher than other SSMs for all the

11 human KEGG pathways. RES produces DP value greater than or equal to 1.81/1.99
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Figure 3.3: The inter-set discriminating power of different SSMs with BMA strategy in BP
ontology. The y-axis is splitted to accommodate high DP value.
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Figure 3.4: The inter-set discriminating power of different SSMs with BMA strategy in CC
ontology.

(MAX/BMA) in BP, while the next minimum DP value is 1.17 (produced by RDS - MAX).

RES shows maximum functional discrimination among the pathways. RES produces

very high DP value with 11.10/14.92 (MAX/BMA) for Non-homologous end-joining (hsa03450)

pathway. This is the only pathway that belongs to the Genetic Information Processing cat-

egory, while rest fall in the same Metabolism category. So, the functional characteristic

of Non-homologous end-joining pathway is completely different from the rest. RES nicely

captures this functional discrimination by producing very high DP value.
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Figure 3.5: The inter-set discriminating power of different SSMs with BMA strategy for the
selected 11 yeast KEGG pathways with more diverse functionality.

All SSMs produce greater DP values in BP. Although RES almost consistently produces

higher DP values in both BP and CC (with both MAX and BMA), it shows comparatively

lower DP values in CC.

The overall discriminating power of all the SSMs is quite similar and not so good for

the first set of yeast KEGG pathways. If we examine the functional categories of all the

11 pathways, we find that all belong to the same Metabolism category with six pathways

from two subcategories only. Further, the selected first set of yeast pathways contain merely

134 genes with 16 are shared. In contrast, the selected human pathways include 150 genes

with 11 are common only. Hence the selected first set of yeast pathways are functionally

closer to each other, and this fact is reflected by low DP values.

To study further, we consider another set of 11 yeast pathways with more diverse func-

tionality, where three pathways (sec00514, sec00750, and sec00900) were taken from the

previous set. The pathways are listed in Table 3.2, and corresponding discriminating power

for BMA strategy is shown in Figure 3.5.

The discriminating power of all the SSMs is improved significantly for the pathways

with more diverse functionality. In particular, the DP values of RES and Jiang are higher

than other measures for almost all the pathways. RES and Jiang produce DP value greater

than or equal to 2/1.93 (MAX/BMA) and 1.84/2.07 (MAX/BMA), respectively, in BP, while

the next minimum DP value is 1.73 (produced by TCSS - BMA). The maximum DP value

(MAX/BMA:13.75/14.27 in BP) is again produced by RES for the pathway sec03450 (Non-

homologous end-joining).
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RES can be used for functional clustering. It may be noted that although Jiang produces

competitive DP values with RES for yeast pathways, it is unable to show good DP values

for the human pathways. Therefore RES might be used for functional clustering (e.g., to

characterize protein functional modules) as it shows consistently high discriminating power.

No SSM produces consistently good DP values in CC, particularly for the yeast pathways.

Guo et al. [100] observed that all pairs of proteins involved in the same KEGG pathway

have significantly higher similarity scores than randomly selected in BP, whereas similarity

decreases exponentially as the distance between two proteins increases within the same

pathway in CC and MF. These findings conform with current results as well.

3.5.4 Correlation with Pfam

Finally, Table 3.5 demonstrates the performance of different SSMs on Pfam. The best scores

are shown in bold.

Table 3.5: The Pearson correlation of different SSMs with protein family (Pfam) on CESSM
dataset. The Jaccard index is used to calculate Pfam similarity as in CESSM. The best score
for each ontology and strategy is shown in bold.

Species Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
Yeast BP MAX 0.280 0.324 0.283 0.290 0.304 0.308 0.314 0.268 0.302

BMA 0.306 0.347 0.310 0.279 0.307 0.296 0.299 0.272 0.264
CC MAX 0.240 0.202 0.252 0.259 0.243 0.156 0.183 0.123 0.139

BMA 0.218 0.204 0.233 0.204 0.225 0.226 0.225 0.205 0.201
Human BP MAX 0.158 0.157 0.160 0.258 0.300 0.152 0.156 0.143 0.156

BMA 0.231 0.290 0.308 0.347 0.302 0.263 0.262 0.258 0.293
CC MAX 0.308 0.233 0.390 0.314 0.307 0.193 0.223 0.159 0.198

BMA 0.356 0.383 0.471 0.437 0.347 0.349 0.365 0.269 0.349

Overall performances of TCSS, RES, and Resnik are well. Particularly, TCSS - MAX, RES

- BMA, and Resnik - MAX perform well. Although RES does not show good correlation with

MAX strategy in human, it produces a good correlation with BMA strategy. MAX strategy

could overestimate while computing the general measure of functional similarity [99] and

protein family captures a general aspect of protein function. Thus, BMA might be a better

choice than MAX for Pfam similarity.

Further, it may be noted that the correlation in CC is higher than BP in human for all mea-

sures, which are quite unexpected. Therefore it might be challenging to draw comparative

inference for the benchmark like Pfam that adopt a very general aspect of protein function

with Jaccard index.
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3.6 Conclusion

The chapter presents a new family of SSMs for scoring confidence of PPIs utilizing GO. This

new family of SSMs is based on a new set of specificity measures namely, RDS, RNS and

RES. The specificity of a term is redefined by considering the properties of its ancestors and

descendants only along with its own properties so that maximum unwanted noises could be

avoided. The evaluation shows that instead of simplicity, they are quite effective. Particu-

larly, RNS and RES more effectively distinguish true interactions from false. RES can be use-

ful for protein functional clustering as well since it shows a robust set-discriminating power

over KEGG pathways. It also exhibits greater consistency and shows the best performance

in BP with BMA strategy. Similar to the earlier studies, our evaluation also shows Resnik

is one of the best SSMs for scoring confidence of PPIs. TCSS with MAX strategy and Rel

also show competitive performance. Although RDS is the simplest SSM that does not even

consider annotation information, it shows competitive performance as well. For almost all

the four benchmarks, each SSM shows comparatively greater and consistent performances

in BP. Therefore we believe that BP is more suitable than CC for scoring confidence of PPIs.

Availabilty of data and script

An R script for the new SSMs along with the complete datasets used in the evaluation is

freely available at https://github.com/msp-cse/NaiveSSMs.

[[]X]\\
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Chapter4
Impact of the continuous evolution of gene

ontology on the performance of similarity

measures

In the previous chapter, we have discussed how GO can be used to define a semantic

similarity measure (SSM) between two gene products and assign a confidence score to

protein-protein interactions (PPIs). However, GO is being updated regularly with the ad-

dition, deletion, and merging of terms along with their annotations. Consequently, the

similarity score of interaction may differ from one instance of GO to another. To the best of

our knowledge, there is no such study that evaluates the impact of the continuous evolution

of GO on the performance of SSMs.

In this chapter, we systematically study the robustness of SSMs over the evolution of GO

for the task of scoring confidence of PPIs. By robustness of an SSM, we mean it should either

improve or keep its performance similar over the evolution of GO. We consider nine state-

of-the-art SSMs, including our proposed ones in the previous chapter and nine different

Bioconductor versions of GO. We observe that the performance of similarity measures gets

affected due to the regular updates of GO. We further observe that the degree of robustness

of a similarity measure is highly influenced by the particular setting we consider.

Some fundamental concepts of this chapter have a natural overlapping with the previous

chapter. However, for the sake of completeness, a brief discussion of those concepts are

given at appropriate places.

49



4.1. INTRODUCTION

4.1 Introduction

Gene Ontology (GO) [11] is a comprehensive resource for the properties of gene products

and their relationships. It is a taxonomy of biological terms to represent the properties of

genes and/or gene products (e.g., proteins). It is organized as a directed acyclic graph to

describe the relationship among the terms. Gene products are annotated to pertinent GO

terms through annotation corpora. There are three GOs: biological process (BP), cellular

component (CC), and molecular function (MF). Since gene products are not directly repre-

sented in GO, annotation corpora are used to link between a gene product and a GO term.

An annotation corpus of a species (e.g., yeast) is an association between gene products of

the species and GO terms. Ontology-based semantic similarity measure (SSM) is a quantita-

tive function, SSM (t1, t2), that measures the closeness between two terms t1 and t2 based

on their semantic representations in a given ontology. Mathematically, it is a function of

two ontology terms (or two sets of ontology terms) that returns a numeric value reflecting

the closeness between them in the context of semantic meaning [87]. SSMs were origi-

nally defined in the study of linguistics. Lord et al. [123] did the first pioneering work by

utilizing the ontology-based SSM in the field of genomics. Subsequently, a wide range of

GO-based SSMs has been developed and successfully applied to different genomics applica-

tions [99, 102].

The high similarity score between two proteins indicates that either they are annotated

with similar CC and/or BP terms. This shows an indirect evidence that the two proteins

are likely to be interacting compare to other pairs, which has a low similarity. Hence sev-

eral studies have utilized GO-based SSMs to score the confidence of protein-protein interac-

tions (PPIs). However, GO is being updated regularly with the addition of new terms and

deletion/merging of obsolete terms along with their annotations. As a consequence, the

similarity score of a protein-pair may get changed over different instances of the ontology.

In this work, we systematically study whether changes in GO affect the performance of

GO-based SSMs. We further compare the state-of-the-art GO-based SSMs under different

settings for scoring confidence of PPIs. We consider nine Bioconductor versions of GO and

its annotations and nine state-of-the-art GO-based SSMs in the evaluation. We utilize two

evaluation metrics: ROC curve analysis with two commonly used experimental PPI datasets

and set-discriminating power of KEGG pathways, for S. cerevisiae (yeast) model organism.

Section 4.2 briefly discusses the related work. In section 4.3, we discuss experimental

design, datasets, and evaluation metrics. Results are reported, discussed, and analyzed in

section 4.4. Finally, we conclude the chapter in section 4.5.
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4.2 Related work

Originally, SSMs have been studied in the fields of Natural Language Processing, Artificial

Intelligence, Cognitive Science, and Psychology. After the first pioneering work by Lord et

al. [124, 123], a wide range of GO-based SSMs has been developed for different genomics

applications. In this section, we present a brief outline of GO-based SSMs.

As discussed in the previous chapter (Section 3.2.2), SSMs can be classified mainly into

two categories: edge- and node-based [87]. The first edge-based SSM was introduced in a

lexical taxonomy by Rada et al. [122]. Subsequently, it was applied to GO by Nagar and

Al-Mubaid [125]. Thereafter a variety of edge-based SSMs have been developed and used

in GO [129, 131, 130, 128]. This approach mainly considers the shared paths between two

ontology terms. It does not account for annotation information of terms and entirely relies

on the intrinsic structure of the GO DAG.

The most widely used SSMs are node-based that computes the similarity between two

terms by comparing their properties, common ancestors, and their descendants. As dis-

cussed in The notion of Information Content (IC) (See section 3.2.2) is commonly used to

define node-based SSMs. The IC quantifies specificity of a term in an ontology. The speci-

ficity decreases as we move towards the root. Therefore the highest and lowest IC would

be at leaves and the root, respectively. A node-based approach assumes that if two proteins

are annotated with common specific terms, they are likely to be similar in their functions.

The most widely used node-based SSMs are Resnik [94], Lin [95], and Jiang & Conrath

[97], which were originally developed for WordNet (a large lexical database of English) and

subsequently applied to GO [124, 123]. Resnik considers IC of the lowest common ancestor

(LCA) between the two terms s and t. It is quite effective to compute information shared

by two terms. However, it cannot distinguish among pairs of terms having the same LCA.

To overcome the problem, Lin and Jiang are developed by considering the information

contents of both terms, along with their LCA in different ways. Both Lin and Jiang over-

estimate when one term is an ancestor of another. For instance, the similarity score will

be 1 when both the terms are the same, irrespective of its specificity. In order to capture

relevance information, Resnik and Lin are combined into Rel by multiplying one minus

probability of annotation of LCA to Lin.

Over the years, a number of node-based methods have been developed in order to im-

prove the existing SSMs in different perspectives and applications such as [142, 133, 143,

136, 138, 135, 139, 137, 132, 140, 134, 141]. The IC-based SSMs are less sensitive

to the aforementioned issues related to edge-based SSMs. Similarity measures such as

[127, 145, 98, 144] try to combine both node- and edge-based approaches and are referred
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to as hybrid approaches. Some methods have been developed by considering the complex

structure of GO DAG such as TCSS [99], and [147, 146]. Refer to section 3.2.4 for detailed

formulations of all the SSMs used in the evaluation.

A gene product may be annotated with more than one term in the same GO. Suppose,

p1, and p2 are two gene products annotated to the set of terms S and T , respectively. The

similarity between p1 and p2 is calculated as the similarity between two sets S and T , i.e.,

SSM (p1, p2) = SSM (S, T ). Therefore we need to combine GO terms of S and T . Three

types of strategies are commonly used in the literature: maximum (MAX) [148], average

(Avg) [124, 123] and best-match average (BMA) [150, 149, 96]. In the MAX strategy , the

similarity between S and T is calculated as the maximum of the set S × T . In the ‘average’

strategy, the similarity between S and T is calculated as the average of the set S × T . SSMs

between two sets of terms form a matrix, and BMA is defined as the average of all maximum

similarity scores on each row and column of the matrix. Refer to section 3.2.3 for detailed

formulations of all the three combining strategies.

4.3 Experimental setup

We consider BP and CC ontologies along with MAX and BMA in the evaluation. As discussed

in the previous chapter (See section 3.4), these ontologies and strategies are the most rel-

evant for scoring confidence of PPIs. We exclude electronically inferred annotations (IEA)

as they are not verified by human experts. Further, we consider only those PPIs where both

the interacting proteins are annotated to at least one GO term other than the root.

We select the following nine Bioconductor versions of GO and corresponding annotation

corpora: 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 3.7, and 3.8 released in Sep 2014, Mar 2015, Oct

2015, Apr 2016, Oct 2016, Apr 2017, Sep 2017, Apr 2018, and Oct 2018, respectively, We

consider six state-of-the-art SSMs proposed by Resnik [94], Lin [95], Schlicker et al. [96],

Jiang & Conrath [97], Wang et al. [98], and Jain & Bader [99], referred to as Resnik, Lin,

Rel, Jiang, Wang, and TCSS, respectively, in the rest of the chapter. The detail formulation

of these SSMs is given in the previous chapter (Section 3.2.4). Resnik and TCSS with MAX

strategy have been considered to be the best SSMs for scoring confidence of PPIs by several

studies [99, 102]. We also consider the new SSMs - RDS, RNS, and RES, proposed in the

previous chapter. The selected nine SSMs encompass all types of SSMs, as discussed in

section 4.2.
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4.3.1 Datasets

Experimental PPIs are usually considered to validate an SSM and Database of Interacting

Proteins (DIP) [104] is one of the frequently used experimental PPI databases for the pur-

pose. We utilize the core subset of the yeast PPIs from the DIP database downloaded on

29.10.2015 as positive instances. To make the evaluation scheme more robust, we select

another experimental, combined-AP/MS PPI dataset (of S. cerevisiae) [70], which is an-

other experimental dataset commonly used for the same purpose. As done in [99], an

equal number of negative PPI instances are generated independently by randomly choosing

protein pairs annotated in BP and CC and are not present in the iRefWeb database [163], a

combined database of all known PPIs.

Proteins involved in a pathway are more likely to interact among themselves and likely to

be annotated to the same or similar GO terms and thus should show high similarity scores.

We consider the same set of 11 yeast (S. cerevisiae) KEGG pathways utilized in the previous

work (See section 3.4.2). During the selection of pathways, we try to maintain a trade-off

between functional diversity and computational time required for the experiment.

4.3.2 Evaluation metrics

A similarity measure can classify a set of PPIs into two groups: positives and negatives,

for a given cutoff similarity score. Hence an SSM can be treated as a binary classifier. We

utilize the area under the ROC curve (AUC) as an evaluation metric for binary classifiers,

as discussed in the previous chapter (3.4.1).

For each KEGG pathway, an intra-set average similarity is calculated as the average of

all pairwise similarities of proteins within the pathway. An inter-set average similarity for

every two pathways is calculated as the average of all pairwise cross-similarities of proteins

between the two pathways. As discussed in the previous chapter (3.4.1), a discriminating

power (DP) of a pathway is defined as the ratio between intra-set average similarity and

the average of all inter-set average similarities between that pathway and other pathways

as in [161]. Thus the DP quantifies the ability of an SSM to distinguish among various

functionally different sets of proteins (e.g., KEGG pathways).

4.4 Results and discussion

In this section, the results are reported, discussed, and analyzed. The section is divided into

two subsections for the two evaluation metrics mentioned earlier. The key observations are
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highlighted.

4.4.1 ROC curve analysis

Table 4.1 summarizes the AUC of SSMs for the different versions of BP ontology with the DIP

dataset. At first glance, it seems that the evolution of GO has no impact on the classification

performance of SSMs as the AUC values achieved by them are quite similar among the

different GO versions. The only significant change is observed between GO-BP Ver3.4 and

Ver3.5 by RES and TCSS with BMA strategy. It seems that there may be a substantial

change between these two GO-BP versions. An AUC of 1 represents a perfect classifier,

whereas an area of 0.5 represents a random classifier. So, the practical range of AUC for

a reasonably good classifier is very limited (Generally, [0.7,1]). Unless the majority of the

PPIs get affected (due to the changes in GO), it is unexpected to observe high variability

in AUCs over the different versions of GO. By affected we mean for a given PPI, an SSM

produces different similarity scores for different GO versions. In fact, only a few PPIs (in

the PPI dataset) gets affected significantly due to the changes in GO.

Table 4.1: The area under the curves (AUCs) of SSMs for the different GO-BP versions
(Ver3.0 to Ver3.8) using the DIP-core dataset. The best AUC for each strategy is shown in
bold.

SSM Str V3.0 V3.1 V3.2 V3.3 V3.4 V3.5 V3.6 V3.7 V3.8 Mean
RDS MAX 0.901 0.899 0.896 0.900 0.901 0.906 0.904 0.902 0.903 0.901

BMA 0.875 0.875 0.870 0.873 0.876 0.880 0.875 0.875 0.875 0.875
RNS MAX 0.907 0.909 0.908 0.913 0.912 0.915 0.915 0.913 0.912 0.912

BMA 0.892 0.896 0.893 0.899 0.898 0.903 0.901 0.900 0.900 0.898
RES MAX 0.902 0.904 0.902 0.907 0.905 0.909 0.909 0.908 0.908 0.906

BMA 0.893 0.897 0.896 0.900 0.899 0.935 0.932 0.932 0.932 0.913
TCSS MAX 0.908 0.909 0.909 0.913 0.911 0.914 0.913 0.917 0.914 0.912

BMA 0.864 0.867 0.863 0.869 0.874 0.966 0.962 0.966 0.964 0.911
Resnik MAX 0.909 0.909 0.908 0.913 0.911 0.915 0.914 0.914 0.912 0.912

BMA 0.884 0.884 0.883 0.888 0.887 0.894 0.890 0.891 0.888 0.888
Lin MAX 0.914 0.914 0.913 0.919 0.916 0.919 0.918 0.916 0.914 0.916

BMA 0.886 0.886 0.885 0.889 0.888 0.894 0.891 0.890 0.888 0.889
Rel MAX 0.916 0.915 0.915 0.920 0.918 0.922 0.920 0.919 0.917 0.918

BMA 0.888 0.888 0.887 0.891 0.890 0.897 0.894 0.892 0.890 0.891
Jiang MAX 0.912 0.912 0.912 0.916 0.914 0.911 0.911 0.907 0.907 0.911

BMA 0.88 0.881 0.880 0.881 0.881 0.875 0.876 0.872 0.873 0.878
Wang MAX 0.898 0.898 0.898 0.902 0.902 0.906 0.905 0.904 0.903 0.902

BMA 0.867 0.868 0.867 0.871 0.873 0.876 0.873 0.873 0.873 0.871

To see the closer picture of the impact, we find those PPIs whose similarity scores change

over the versions of GO. For each SSM, we select the common PPIs (more than 99% of PPIs

are common) among the GO versions. For each of the selected PPIs, the standard deviation

of the nine similarity scores corresponding to the nine GO versions is calculated. Then we
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sort the PPIs according to their standard deviation (in descending order) and select the

top 10% PPIs. Naturally, the selected PPIs will be the most affected 10% PPIs due to the

changes in GO. An equal number of negative PPIs are selected from the already generated

negative PPIs for the corresponding SSM. Finally, AUC is calculated for the selected positive

and negative PPIs for each GO version. The aforementioned process is repeated for each

SSM and strategy considered in the evaluation. Figure 4.1 demonstrates the flowchart of

the process. The resultant AUCs of SSMs for the different GO versions are demonstrated in

Table 4.2.

For each of the selected PPIs, compute the standard deviation of

Find the shared PPIs among the nine GO versions

the nine similarity scores corresponding to the nine GO versions

Sort the PPIs according to the standard deviation (in descending order)

Select the 10% PPIs from the top.
The selected PPIs are the most affected 10% PPIs due to the changes in GO

Create an equal number of negative PPIs

Compute AUC for the selected positive and negative PPIs for each GO version

Figure 4.1: Flowchart of the process for computing AUC of an SSM.

Now, noticeable changes are observed among GO versions by most of the SSMs. The

relative changes of approximately 7% and 10% are observed between GO-BP versions 3.0

and 3.9 for RES-MAX and RES-BMA, respectively. Similarly, the changes are 5% and 12%

for TCSS-MAX and TCSS-BMA, respectively. Similar observations could be made for the

other SSMs and/or other ontology. It is also observed that the overall variability is higher

in CC than BP across all SSMs.

To find a general pattern of variability among SSMs, we repeat the aforementioned pro-

cess for different cutoffs (100% to the top 10%) of affected PPIs. Here a cutoff of 100%

implies that all PPIs are considered and hence the majority of them have no change in their

similarity score. The mean AUCs (of nine GO versions) achieved by SSMs in increasing

order of variability of PPIs are shown in Figure 4.2.
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Table 4.2: The area under the curves (AUCs) of SSMs for the different GO versions (Ver3.0
to Ver3.8) with the top 10% most affected PPIs using the DIP-core dataset. The best AUC
for each strategy (MAX and BMA) and ontology is shown in bold.

SSM Ont Str V3.0 V3.1 V3.2 V3.3 V3.4 V3.5 V3.6 V3.7 V3.8 Mean
RDS BP MAX 0.864 0.859 0.848 0.885 0.895 0.903 0.907 0.904 0.911 0.886

BMA 0.901 0.894 0.887 0.916 0.919 0.918 0.920 0.915 0.921 0.910
CC MAX 0.680 0.682 0.682 0.795 0.845 0.879 0.868 0.862 0.844 0.793

BMA 0.828 0.821 0.832 0.880 0.904 0.930 0.922 0.926 0.911 0.884
RNS BP MAX 0.763 0.799 0.798 0.840 0.830 0.822 0.838 0.827 0.827 0.816

BMA 0.870 0.887 0.887 0.926 0.914 0.915 0.919 0.910 0.906 0.904
CC MAX 0.655 0.651 0.643 0.760 0.797 0.826 0.817 0.814 0.798 0.751

BMA 0.836 0.826 0.818 0.889 0.905 0.937 0.921 0.929 0.916 0.886
RES BP MAX 0.846 0.877 0.869 0.907 0.907 0.901 0.908 0.900 0.905 0.891

BMA 0.910 0.943 0.938 0.945 0.954 0.994 0.995 0.995 0.998 0.964
CC MAX 0.790 0.789 0.770 0.866 0.901 0.926 0.938 0.936 0.930 0.872

BMA 0.911 0.906 0.888 0.944 0.950 0.969 0.971 0.974 0.969 0.942
TCSS BP MAX 0.891 0.900 0.902 0.940 0.930 0.919 0.912 0.956 0.932 0.920

BMA 0.891 0.910 0.889 0.903 0.919 0.995 0.996 1.00 0.998 0.945
CC MAX 0.882 0.895 0.886 0.931 0.944 0.959 0.960 0.968 0.962 0.932

BMA 0.876 0.874 0.873 0.903 0.911 0.997 0.997 0.998 0.994 0.936
Resnik BP MAX 0.807 0.825 0.825 0.881 0.868 0.870 0.872 0.865 0.857 0.852

BMA 0.858 0.864 0.866 0.889 0.879 0.875 0.873 0.872 0.869 0.872
CC MAX 0.749 0.754 0.750 0.843 0.883 0.919 0.909 0.911 0.894 0.846

BMA 0.891 0.896 0.891 0.926 0.935 0.954 0.948 0.954 0.943 0.926
Lin BP MAX 0.712 0.727 0.731 0.780 0.771 0.757 0.758 0.752 0.748 0.748

BMA 0.848 0.849 0.849 0.874 0.863 0.856 0.856 0.855 0.847 0.855
CC MAX 0.553 0.540 0.532 0.634 0.656 0.669 0.652 0.679 0.625 0.616

BMA 0.768 0.751 0.735 0.783 0.778 0.782 0.775 0.794 0.762 0.770
Rel BP MAX 0.741 0.756 0.759 0.813 0.803 0.798 0.799 0.793 0.789 0.783

BMA 0.850 0.853 0.853 0.881 0.871 0.866 0.866 0.866 0.857 0.863
CC MAX 0.657 0.649 0.641 0.748 0.785 0.805 0.795 0.809 0.777 0.741

BMA 0.823 0.810 0.798 0.836 0.844 0.849 0.843 0.857 0.836 0.833
Jiang BP MAX 0.742 0.751 0.738 0.804 0.811 0.777 0.783 0.772 0.773 0.772

BMA 0.859 0.865 0.852 0.885 0.885 0.858 0.864 0.854 0.854 0.864
CC MAX 0.411 0.419 0.402 0.534 0.563 0.552 0.545 0.579 0.534 0.504

BMA 0.632 0.627 0.594 0.639 0.612 0.562 0.571 0.601 0.554 0.599
Wang BP MAX 0.744 0.758 0.750 0.804 0.822 0.801 0.817 0.814 0.822 0.792

BMA 0.890 0.889 0.875 0.900 0.900 0.887 0.897 0.898 0.896 0.892
CC MAX 0.518 0.515 0.507 0.629 0.637 0.645 0.624 0.664 0.617 0.595

BMA 0.733 0.720 0.704 0.751 0.718 0.713 0.720 0.735 0.699 0.721

SSMs with BMA strategy shows robustness compared to MAX strategy. Almost all SSMs

with BMA strategy either improve or keep their performance similar from their initial perfor-

mance as variability increases in both the ontologies. Particularly in BP, the improvement is

more smooth and consistent. However, with MAX strategy, the performance is quite fluctu-

ating, and the irregularity is more in CC. Therefore it seems that MAX strategy overestimates

in many cases, especially in CC.

All SSMs exhibit higher robustness in BP than CC. If we examine the same for each

SSM separately, we get further insights (See figure 4.3 and 4.4). Here, for an SSM, the

four scenarios: BP-MAX, BP-BMA, CC-MAX, and CC-BMA, are plotted together. With the
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full dataset considered (100%), some of the SSMs with MAX strategy produce higher AUCs

than BMA. However, as variability increases (by filtering out least affected PPIs over GO

evolution), SSMs with BMA strategy exhibit higher AUCs.

From the aforementioned observations, it is clear that the majority of the similarity mea-

sures exhibit good robustness with BMA strategy and show poor robustness with MAX strat-

egy. Further, the robustness is more in BP than CC.

RES and TCSS with BMA strategy consistently produce high AUCs as variability in-

creases. Overall, RES, TCSS, RNS, and Resnik show comparatively high robustness. With

the top 10% variable PPIs, the highest mean AUC is 0.964/0.942 (BP/CC) produced by RES-

BMA while the second-highest mean AUC is 0.945/ 0.936 (BP/CC) produced by TCSS-BMA.

The highest mean AUC values in different cutoffs (100% to the top 10%) of affected PPIs

are shown in Table 4.3. From the table, we can see that RES-BMA consistently produces the

highest mean AUC values, particularly in BP.

Further, we consider another commonly used experimental, combined-AP/MS PPI dataset

(of S. cerevisiae) in the evaluation. Here, we consider Ver3.4 to Ver3.8 only. In Figure 4.5,

the mean AUCs (of five GO versions) achieved by SSMs in increasing order of variability of

PPIs are demonstrated. It seems that the results are quite similar to the experiment with

the DIP-core PPI dataset.
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Figure 4.2: The mean AUCs of nine GO versions (Ver3.0 to Ver3.8) achieved by SSMs at
different cutoffs of affected PPIs for the DIP-core dataset.
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Figure 4.3: The mean AUCs of nine GO versions (Ver3.0 to Ver3.8) achieved by Lin, Rel,
RDS, and Wang at different cutoffs of affected PPIs with the plotting of individual SSM for
the DIP-core dataset.
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Figure 4.4: The mean AUCs of nine GO versions (Ver3.0 to Ver3.8) achieved by RNS, RES,
TCSS, and Resnik at different cutoffs of affected PPIs with the plotting of individual SSM
for the DIP-core dataset.

4.4.2 Set-discriminating power of KEGG pathways

For each GO version and SSM, we calculate DP values of each pathway with respect to other

10 pathways. Then we take version-wise (GO) mean DP values. Table 4.4 shows the mean

DP values of all the 11 pathways for each GO-BP version and SSM.

The majority of SSMs produces quite similar DP values over the evolution of GO. To

compute DP values, we need to consider all the intra-set and inter-set protein-pairs among
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PPIs BP CC
in order of AUC SSM Str. AUC SSM Str.
variability

All PPIs(100%) 0.918 Rel MAX 0.885 TCSS BMA
Top 90% 0.946 RES BMA 0.909 TCSS BMA
Top 80% 0.965 RES BMA 0.919 TCSS BMA
Top 70% 0.973 RES BMA 0.934 TCSS BMA
Top 60% 0.977 RES BMA 0.946 TCSS BMA
Top 50% 0.978 RES BMA 0.954 TCSS BMA
Top 40% 0.978 RES BMA 0.952 TCSS BMA
Top 30% 0.977 RES BMA 0.945 TCSS BMA
Top 20% 0.971 RES BMA 0.941 TCSS BMA
Top 10% 0.964 RES BMA 0.942 RES BMA

Table 4.3: The highest performance in different levels of variable PPIs for the DIP-core
dataset. The first column indicates the top x% variable PPIs. Columns 2, 3, and 4 show the
highest mean AUC, corresponding SSM, and strategy, respectively, in BP ontology. Similarly,
columns 5, 6, and 7 demonstrate the same in CC ontology.
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Figure 4.5: The mean AUCs of five GO versions (Ver3.4 to Ver3.8) achieved by SSMs at
different cutoffs of affected PPIs for the AP/MS dataset.

the pathways. However, as discussed earlier, the majority of the PPIs does not get affected

significantly due to the changes in GO. As a consequence, the mean DP values for most of

the SSMs are similar over the GO versions.

DP values achieved in BP are significantly higher than CC, irrespective of SSM and strat-

egy. RES almost continuously produces higher DP values in both the ontologies, partic-

ularly, with BMA strategy. TCSS shows competitive performances in both the ontologies

while Jiang achieves good DP values in BP only. All the three SSMs produce significantly

higher DP values with BMA strategy than MAX in their respective best-case scenarios.
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Table 4.4: The mean DP values of all the 11 pathways for each GO-BP version and SSM.
The best DP values are shown in bold.

Ver. Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
3.0 MAX 2.45 2.64 5.22 2.46 2.24 2.16 2.38 4.17 2.08

BMA 2.23 2.70 5.59 3.16 2.18 2.16 2.41 5.06 2.03
3.1 MAX 2.44 2.65 5.39 2.46 2.20 2.13 2.34 4.09 2.06

BMA 2.23 2.70 5.76 3.16 2.14 2.12 2.36 4.98 2.00
3.2 MAX 2.47 2.78 5.95 2.48 2.32 2.23 2.48 4.33 2.10

BMA 2.26 2.84 6.38 3.16 2.25 2.22 2.51 5.43 2.05
3.3 MAX 2.52 2.77 5.65 2.66 2.28 2.15 2.36 3.70 2.06

BMA 2.24 2.94 6.56 2.76 2.22 2.19 2.48 4.94 2.01
3.4 MAX 2.49 2.74 5.56 2.67 2.28 2.14 2.35 3.73 2.06

BMA 2.18 2.87 6.50 2.78 2.23 2.19 2.50 5.04 2.02
3.5 MAX 2.46 2.72 5.62 2.51 2.25 2.11 2.31 3.39 2.07

BMA 2.24 2.91 6.40 2.82 2.24 2.19 2.46 4.58 2.02
3.6 MAX 2.38 2.71 5.76 2.72 2.40 2.28 2.52 3.76 2.07

BMA 2.19 2.93 6.70 2.82 2.50 2.45 2.81 5.21 2.03
3.7 MAX 2.34 2.73 5.90 2.76 2.4 2.28 2.52 3.75 2.07

BMA 2.15 2.93 6.77 3.31 2.49 2.45 2.82 5.16 2.03
3.8 MAX 2.32 2.70 5.77 2.71 2.39 2.30 2.53 3.79 2.09

BMA 2.12 2.89 6.60 3.22 2.49 2.46 2.83 5.12 2.02

RES-BMA shows continuous and significant improvement over the evolution of GO.

The newer GO version is expected to be more accurate and complete than the older, and

the robust SSMs should reflect that in their performance accordingly. RES almost consis-

tently and significantly improves the DP value over the evolution of GO, particularly in BP

ontology, while other SSMs keep their performance almost similar. Therefore it seems that

the changes in GO are reflected better way with RES than the others.

Table 4.5 summarizes the mean DP values of all the nine GO versions and eleven path-

ways. The overall mean DP value of RES-BMA is higher than RES-MAX.

Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
BP MAX 2.43 2.71 5.65 2.60 2.31 2.20 2.42 3.86 2.08

BMA 2.21 2.86 6.36 3.02 2.30 2.27 2.58 5.06 2.02
CC MAX 1.17 1.40 2.13 1.67 1.46 1.23 1.36 1.07 1.11

BMA 1.15 1.50 2.25 1.95 1.40 1.27 1.40 1.08 1.13

Table 4.5: The mean DP values of all the nine GO versions and eleven pathways. The best
DP values are shown in bold.
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4.5 Conclusion

In this work, we systematically study how similarity measures get affected due to the evo-

lution of GO for the task of scoring confidence of PPIs. In the evaluation, we consider nine

state-of-the-art SSMs and nine Bioconductor versions of GO along with their corresponding

annotation corpora. We observe that the performance of each measure gets affected due to

the regular updates of GO. SSMs show better robustness while considering the BMA strat-

egy and BP ontology. While RES, TCSS, RNS, and Resnik exhibit higher robustness, RES

reflects the changes in GO better way than the others. In this work, we consider the yeast

model organism only. Therefore the work may be extended in the future by considering

PPIs of other species such as human PPIs.

[[]X]\\
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Chapter5
Impact of low-confidence interactions on

computational identification of protein

complexes

As we have mentioned in Chapter 1 and 3, protein-protein interaction (PPI) data have a

significant amount of false positives that might have a negative impact on any downstream

analysis of PPI networks, including detecting protein complexes. Although some studies

indicate that filtering PPI networks improve the performance of complex detection tech-

niques, we could not find a systematic study on the effect of PPI filtering using GO. In this

chapter, we systematically study the impact of low-confidence PPIs on the performance of

complex detection algorithms (CDAs) using GO-based semantic similarity measures.

We consider five representative state-of-the-art CDAs (discussed in Chapter 1 and 2),

including our proposed one and nine GO-based similarity measures (discussed in Chapter 3

and 4), including our proposed ones in the evaluation. We find that each CDA significantly

improves its performance after filtration of low-similarity scored PPIs. It is also observed

that the percentage improvement and the filtration percentage (of low-confidence PPIs) are

highly correlated.

Some fundamental concepts of this chapter have already been discussed in previous chap-

ters. However, a brief discussion of those concepts is included in suitable places for the sake

of completeness.
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5.1 Introduction

Identifying protein complexes is crucial to understanding the principles of cellular organiza-

tion. As discussed in Chapter 1, experimental detection of protein complexes is inadequate

due to the limitation of present high-throughput experimental techniques. From the last

few decades, a large volume of protein-protein interaction (PPI) data has become available

due to high-throughput technologies. Hence computational detection of protein complexes

from PPI data is considered a useful complement to the experimental techniques.

PPI data can be visualized as an undirected network, commonly referred to as the PPI

network, where nodes and edges are the proteins and interactions, respectively. The prob-

lem of detecting complexes can be mapped to the problem of detecting dense subgraphs

(viz., containing many interactions) from PPI networks. These dense structures are often

referred to as communities. In fact, many community detection algorithms are directly used

for the identification of protein complexes. Hereafter, we refer to the community detection

algorithm as a complex detection algorithm (CDA).

Generally, the CDAs utilize the structural properties of the graph to detect communities.

However, PPI data have a significant amount of false positives [10]. These false positive

interactions (edges) lead to infer structural properties that are not present in the original PPI

network. Therefore the performance of CDAs gets adversely affected by the false positive

interactions present in the network. Although the identification of false positive interactions

in PPI data is a challenging task, there are computational techniques that assign confidence

scores to a given PPI. The confidence score is the likelihood of a pair of proteins to interact.

Hence low-confidence interactions are likely to be false positives.

Ontology-based semantic similarity measures (SSMs) are a class of numerical indicators

that attempt to estimate the semantic closeness of two terms based on their representation

in a given ontology. Gene Ontology (GO) is a very comprehensive resource for the properties

of gene or gene products and their functional relationships. GO-based SSMs can be used to

measure the functional similarity between two gene products (e.g., proteins). The similarity

score can be treated as the likelihood of the two proteins to interact. Hence, the interactions

with low-similarity scores may be considered as low-confidence PPIs. The low-confidence

PPIs are highly likely to be false positives and can be filtered out. Some studies indicate

that filtering PPI networks increase the performance of complex detection techniques [115,

117, 172, 173]. However, we could not find a systematic study on the effect of PPI filtering

using GO as it is often used as a benchmark for validating PPIs.

In this chapter, we systematically evaluate the performance of CDAs using GO-based

SSMs. In the evaluation, we consider two reference PPI network datasets and two ground
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truth complex datasets of the yeast model organism. However, the impact of low-confidence

PPIs on CDAs strongly depends on the reference species considered, as the reliability of PPIs

changes over the species.

The rest of the chapter is organized in the following manner. A brief outline of PPI

confidence scoring methods and complex detection algorithms are presented in section 5.2.

We detail the experimental design, datasets, evaluation metrics, and implementation in

section 5.3. We report, analyze, and discuss the results in section 5.4. Finally, we conclude

the chapter in section 5.5.

5.2 Related work

In this section, we provide a brief outline of existing PPI confidence scoring schemes and

complex detection algorithms.

5.2.1 PPI confidence scoring methods

The methods for scoring confidence of PPIs are broadly categorized into two classes: meth-

ods depending solely on interaction data [174, 162] and methods taking into account do-

main information such as functional similarity [99, 175], sequence similarity [176], gene

expression profile [177], and combination of sequence, structure, and functional annota-

tion information [119]. The first class of methods relies on the structural properties of

the interaction network. For instance, FS-weight [115], CD-distance [178], and Iterative

score [117] assume that if two proteins share a number of common interaction partners,

they are more likely to have a similar function, hence more likely to interact physically with

each other.

In this study, we consider GO-based SSMs, belonging to the second class of methods, to

score confidence of PPIs. We consider six state-of-the-art SSMs proposed by Resnik [94],

Lin [95], Schlicker et al. [96], Jiang & Conrath [97], Wang et al. [98], and Jain & Bader [99],

referred to as Resnik, Lin, Rel, Jiang, Wang, and TCSS, respectively, in the rest of the chap-

ter. We describe these SSMs in Chapter 3 (Section 3.2.4). Resnik, Lin, Rel, and Jiang are

node-based approaches and utilize the notion of information content (IC) that quantifies the

specificity of a term in an ontology. Wang is a hybrid approach that considers the proper-

ties of both nodes and edges. TCSS is a structure-based approach that exploits the unequal

depth of biological knowledge representation in different branches of GO DAG. Resnik-MAX

and TCSS-MAX have been considered to be the best SSMs for scoring confidence of PPIs by

several studies [100, 99, 102, 101]. We also consider the new family of SSMs, namely
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RDS, RNS, and RES, proposed in Chapter 3. We use an alternative definition of specificity

that is not based on the whole ontology, but rather exploits the properties of considering

subgraphs that contain only ancestors and descendants of a given term. We show that the

proposed measures, particularly RES and RNS, outperform the others in many cases.

A protein may be annotated with more than one GO term. Therefore, the similarity

between two proteins (say, p1 and p2) is calculated as the similarity between the two sets

S and T of terms that annotate each protein. SSMs are defined on a pair of terms. Hence,

to calculate the similarity between two sets of terms, combining or aggregate strategies are

used. The three commonly used strategies are - maximum (MAX) [148], average [123], and

best-match average (BMA) [150, 149, 96]. The formulations of the combining strategies

are given in Chapter 3 (Section 3.2.3).

5.2.2 Complex detection algorithms

Over the years, a wide range of computational techniques has been developed to detect

protein complexes from PPI networks [179, 180, 181]. The existing CDAs in the literature

can be broadly divided into two categories - disjoint and overlapping CDAs. Obviously, a

disjoint CDA does not assign a protein into multiple complexes and thus unable to give the

true picture of complexes. Overlapping CDAs mitigate this issue by assigning one protein

into multiple complexes. Algorithms such as [78, 77, 75, 8, 73, 82] have been developed for

overlapping communities, hence can be applied for overlapping complexes. We select five

state-of-the-art representative CDAs, namely GCE [8], EGCE (proposed in Chapter 2), Clus-

terONE [22], Link [78], and CFinder [73]. GCE (Greedy Clique Expansion) finds candidate

complexes as maximal cliques and expands by optimizing a community fitness function.

EGCE (Extended Greedy Clique Expansion) is an extension of GCE which detects the highly

overlapping nodes (not detected by GCE) and assigns their respective communities (com-

plexes) by utilizing the notion of Interaction Probability. Link uses link partitioning instead

of nodes, and CFinder exploits k-clique percolation. ClusterONE finds groups of nodes as

candidate complexes with high cohesiveness and merges highly overlapping groups.

5.3 Experimental setup

In this section, we discuss the experimental design, datasets, evaluation metrics, and imple-

mentation. The following list of CDAs and SSMs are used in the evaluation:

CDAs - GCE [8], EGCE (proposed in Chapter 2), ClusterONE [22], Link [78], and CFinder [73]

SSMs - RDS/RNS/RES (proposed in Chapter 3), TCSS [99], Resnik [94], Lin [95], Rel [96],
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Jiang [97], and Wang [98].

5.3.1 Preprocessing

We consider the biological process (BP) and cellular component (CC) ontologies of GO

along with the MAX and BMA strategies to aggregate SSMs for protein pairs. Our choices of

ontologies and strategies are based on our previous study (discussed in Chapter 3, section

3.4), indicating they are the most relevant for scoring confidence of PPIs. We consider those

PPIs whose both the interacting proteins are annotated to at least one GO term other than

the root terms in BP or CC ontologies. Further, we do not consider electronically inferred

annotations (IEA) as they are not verified by human experts.

5.3.2 Datasets

In this section, we detail different datasets used in the evaluation, including their sources/constructions,

preprocessing, and specifications.

Determining thresholds for positive and negative interactions

For each similarity measure, we need to choose a reasonable threshold (a cut-point or dis-

crimination value) of confidence that differentiates between positive and negative interac-

tions. Determining a reasonable threshold is challenging. A number of criteria are found in

literature, for example, F1 score, Youden’s Index [182], Kappa Index [183], etc. Here, we

use Youden’s Index as it is the widely used criterion to find optimal cut-point. It maximizes

the sum of sensitivity and specificity in a ROC curve.

We consider a high-quality binary gold standard yeast dataset (“Binary-GS”) created by Yu

et al. [184] as the positive PPI dataset. The number of PPIs remains in the dataset are 1139

and 1196 for BP and CC ontology, respectively, after the necessary preprocessing mentioned

in section 5.3.1. The negative PPI datasets with an equal number of PPIs are generated

independently by randomly choosing protein pairs annotated in BP and CC ontologies and

which are also not present in the iRefWeb database [163] dated 22.01.2018, a combined

database of all known PPIs. The thresholds for different similarity measures in both BP and

CC ontologies are shown in Table 5.1.
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Table 5.1: Discrimination values of different SSMs using Youden’s Index to differentiate
between positive and negative interactions.

Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
BP MAX 0.41 0.64 0.34 0.39 0.44 0.75 0.74 0.66 0.56

BMA 0.31 0.32 0.15 0.16 0.26 0.46 0.41 0.39 0.41
CC MAX 0.56 0.93 0.69 0.39 0.32 0.73 0.97 0.94 0.82

BMA 0.40 0.31 0.23 0.18 0.23 0.56 0.47 0.80 0.64

Reference PPI networks

Experimental PPIs are commonly used for the validation of computational protein complex

detection methods. Database of Interacting Proteins (DIP) [104] is one of the frequently

used databases for the purpose. Hence we consider the DIP-full dataset of S. cerevisiae

dated 05.02.2017. To make the evaluation scheme more robust, we select another com-

monly used experimental combined-AP/MS PPI dataset (of S. cerevisiae) [70]. The sizes of

PPIs in AP/MS and DIP-full datasets are 8748 and 21091, respectively, after the necessary

preprocessing mentioned in section 5.3.1.

For each PPI dataset, we construct the following four types of unfiltered PPI networks:

i) network type-1: PPIs with the interacting proteins annotated to BP terms; ii) network

type-2: PPIs with the interacting proteins annotated to CC terms; iii) network type-3: PPIs

with the interacting proteins annotated to BP or CC terms and iv) network type-4: PPIs

with the interacting proteins annotated to BP as well as CC terms. In other words, network

type-3 and 4 are the union and the intersection of network type-1 and type-2, respectively.

From each unfiltered network, 18 filtered networks are generated using the nine SSMs

along with the two combining strategies (MAX and BMA). To construct the filtered net-

work, we consider only those PPIs whose confidence scores are greater than or equal to

the optimal thresholds of the corresponding SSM and strategy mentioned in Table 5.1. The

number of interactions remaining for each unfiltered and corresponding filtered networks

are presented in Table 5.2 and 5.3.

Ground truth complexes

We utilize two yeast protein complex datasets: CYC2008 [69] and the complex portal of

EMBL-EBI [185] (dated 16.07.2018) as ground truths. We remove those proteins (from the

ground truth complexes) which are not present in the corresponding unfiltered networks

and consider the complexes having at least three proteins. Finally, the number of protein

complexes with three or more proteins remains in the CYC2008, and EMBL-EBI datasets are

144 and 346, respectively.
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Table 5.2: No. of interactions before and after filtration of the AP/MS network. Raw
indicates before filtration and headers with the name like RDS, RNS, etc. indicate after
filtration with the corresponding method.

Ont. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
BP 8486 MAX 7790 7211 7224 7070 6970 7276 7252 7487 7524

BMA 7610 7740 7424 7159 7514 7622 7673 7690 7518
CC 8690 MAX 7454 7228 7317 7147 7542 7792 6170 6662 7708

BMA 7583 7880 7663 7156 7752 7544 7759 5676 7721
BP/CC 8748 MAX 8203 7898 7962 7872 8039 8167 7775 8112 8272

BMA 8182 8289 8106 7904 8294 8190 8298 7983 8226
BP&CC 8428 MAX 7041 6541 6579 6345 6473 6901 5647 6037 6960

BMA 7011 7331 6981 6411 6972 6976 7134 5383 7013

Table 5.3: No. of interactions before and after filtration of the DIP-full network. Raw
indicates before filtration and headers with the name like RDS, RNS, etc. indicate after
filtration with the corresponding method.

Ont. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
BP 18750 MAX 6902 6341 6558 6267 5877 5887 5858 6523 6646

BMA 6025 6816 6496 6424 6990 6360 6667 6424 6239
CC 20721 MAX 5974 4682 5958 5065 6504 11023 4482 10404 11073

BMA 6121 8946 6739 5262 6446 8464 8164 5725 10425
BP/CC 21091 MAX 8606 7299 8409 7443 8192 11979 6892 11992 12572

BMA 7962 10645 8774 7879 8962 10180 10035 9133 11778
BP&CC 18380 MAX 4270 3724 4107 3889 4189 4930 3447 4934 5147

BMA 4183 5117 4461 3807 4474 4644 4796 3016 4886

5.3.3 Evaluation metrics

Many criteria exist in the literature [186] to measure the similarity between the detected

and true complexes. We consider Normalized Mutual Information (NMI), precision, re-

call, F1 score/fmeasure [43], and the prediction of possible novel complexes (described in

Sec 5.4) in the evaluation. However, our main discussion is based on NMI, as it is com-

monly used for community detection [9]. Further, NMI has been extended for overlapping

communities by Lancichinetti et al. [79], whereas similar extension is not available for most

of the other criteria. NMI is an information-theoretic notion and was first used by Danon et

al. [85] for non-overlapping communities. The NMI between two random variables X and

Y is defined as

NMI (X,Y ) = 2[H(X)−H(X|Y )]/[H(X)+H(Y )],

where H(X) is the entropy of the random variable X. We use the overlapping extension

of NMI since a protein may belong to more than one complex. The measure is normalized

into [0,1], i.e., an NMI value of 1 indicates that the two sets of communities (complexes)

are precisely the same, whereas 0 indicates both the sets are entirely different.
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5.3.4 Methods and their implementations

We consider five representative state-of-the-art CDAs - GCE, EGCE, ClusterONE, Link, and

CFinder, in the evaluation. We use the implementation provided by the authors of GCE,

EGCE, ClusterONE, Link, and CFinder with the default values of the parameters except for

the k (minimum clique size) of GCE, EGCE, and CFinder. We set the value of k to 3.

We select nine state-of-the-art SSMs - RDS, RNS, RES, TCSS, Resnik, Lin, Rel, Jiang, and

Wang, in the evaluation. The GOSemSim R package (version: 2.10.0) [165] is used for

the implementation of Resnik, Lin, Rel, Jiang, and Wang. We use the code provided by the

authors of TCSS with the default set of parameters. The implementation provided by the

authors of TCSS utilizes the MAX strategy only, and we modify the code slightly to include

the BMA strategy as well.

For GO and corresponding annotation corpus, GO.db [166], and org.Sc.sgd.db [168], R

packages (version:3.8.2, April 2019 release) are used. The versions of all R packages are

maintained in such a way that they use the same GO and its annotations. Since the imple-

mentation of TCSS expects the ontology and annotation corpus as the text files provided

by the Gene Ontology Consortium, we use the corresponding released versions of GO and

annotation corpus dated Apr 26, 2019. For the implementation of NMI, we use the code

provided by Lancichinetti et al. [79].

5.4 Results and discussion

In this section, we report, analyze, and discuss the results. The key observations are high-

lighted.

Filtering of low confidence PPI enhanced the performance of all CDAs. Each CDA

is executed on each type of aforementioned unfiltered and filtered networks for each of

the two PPI datasets (AP/MS and DIP-full). The outcome is compared with two ground

truth complex datasets (CYC2008 and EMBL) using NMI, as mentioned earlier. The main

experimental design is demonstrated in Figure 5.1. The performances of different CDAs

on four types of unfiltered and filtered networks for AP/MS PPI dataset with CYC2008

yeast complex dataset are reported in Table 5.4, 5.5, 5.6, and 5.7. As CFinder fails to

terminate on AP/MS PPI dataset, we cannot report the corresponding NMI values. The

result of network type-4 (BP & CC) from another combination of PPI and complex datasets

(DIP - EMBL) is shown in Table 5.8. The NMI values are significantly higher in filtered

networks in comparison with unfiltered ones for almost all cases. For example, the range

of improvements (in terms of NMI) for network type-1 (BP) after filtration is from 4.68%
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(Rel-BMA) to 11.79% (RNS-BMA) while using GCE (Table 5.4). Similar observations can

be made in all other cases. However, the improvement is much higher in the AP/MS dataset

than DIP.

For each PPI of an unfiltered network,

Construct the four types (BP, CC, BP/CC, and BP&CC) of

compute the similarity scores for different SSM and strategy

PPIs whose similarity scores are greater than the determined threshold

For each unfiltered network,
create a filtered network corresponding to each SSM and strategy by considering

Find the set of predicted complexes

Compare each set of predicted complexes

unfiltered networks from the given PPI dataset

by executing each CDA on each type of unfiltered and filtered network

with the given real complex dataset using NMI

Figure 5.1: Flowchart of the main experimental design for a pair of PPI and complex dataset.

Table 5.4: NMI values of different CDAs on filtered and unfiltered networks with BP ontol-
ogy for the AP/MS network and CYC2008 complex datasets. The highest improvement for
each row is shown in bold.

Met. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
GCE 0.577 MAX 0.632 0.636 0.623 0.620 0.621 0.631 0.626 0.636 0.635

BMA 0.630 0.645 0.631 0.638 0.614 0.616 0.604 0.629 0.616
EGCE 0.569 MAX 0.623 0.629 0.616 0.613 0.613 0.619 0.612 0.626 0.612

BMA 0.608 0.628 0.608 0.625 0.596 0.604 0.590 0.607 0.601
Cluster 0.559 MAX 0.598 0.605 0.590 0.585 0.578 0.612 0.612 0.599 0.608
ONE BMA 0.596 0.598 0.599 0.610 0.586 0.592 0.597 0.600 0.579
Link 0.448 MAX 0.462 0.458 0.449 0.450 0.449 0.471 0.471 0.470 0.462

BMA 0.445 0.456 0.459 0.460 0.449 0.459 0.455 0.456 0.463

PPI datasets have a significant amount of false positives. The amount of filtration of low-

confidence PPIs is significantly high in both the PPI datasets, with the average percentage

of filtration as 40%. It is noteworthy to mention that only approximately 4% of PPIs and

13% of complexes are shared between the two PPI and two complex datasets, respectively.

Hence, significant high-filtration in highly dissimilar datasets indicates that both the PPI
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Table 5.5: NMI values of different CDAs on filtered and unfiltered networks with CC ontol-
ogy for the AP/MS network and CYC2008 complex datasets. The highest improvement for
each row is shown in bold.

Met. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
GCE 0.569 MAX 0.672 0.687 0.674 0.671 0.671 0.630 0.704 0.639 0.627

BMA 0.653 0.648 0.669 0.675 0.666 0.644 0.659 0.624 0.610
EGCE 0.551 MAX 0.660 0.677 0.663 0.656 0.657 0.618 0.690 0.625 0.619

BMA 0.644 0.639 0.655 0.663 0.644 0.645 0.644 0.621 0.589
Cluster 0.553 MAX 0.639 0.670 0.636 0.649 0.632 0.577 0.674 0.595 0.567
ONE BMA 0.626 0.596 0.623 0.658 0.621 0.606 0.609 0.589 0.586
Link 0.437 MAX 0.468 0.480 0.472 0.465 0.467 0.455 0.501 0.475 0.458

BMA 0.469 0.457 0.465 0.468 0.461 0.460 0.459 0.428 0.451

Table 5.6: NMI values of different CDAs on filtered and unfiltered networks by considering
all the interactions with either BP or CC for the AP/MS network and CYC2008 complex
datasets. The highest improvement for each row is shown in bold.

Met. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
GCE 0.566 MAX 0.621 0.627 0.612 0.610 0.614 0.595 0.628 0.592 0.587

BMA 0.624 0.621 0.616 0.631 0.628 0.600 0.607 0.590 0.589
EGCE 0.548 MAX 0.600 0.597 0.588 0.594 0.593 0.572 0.611 0.570 0.570

BMA 0.613 0.609 0.600 0.612 0.609 0.589 0.581 0.582 0.568
Cluster- 0.551 MAX 0.579 0.595 0.590 0.578 0.568 0.558 0.588 0.553 0.561
ONE BMA 0.586 0.568 0.581 0.594 0.578 0.561 0.566 0.570 0.559
Link 0.436 MAX 0.451 0.458 0.453 0.458 0.449 0.445 0.465 0.447 0.445

BMA 0.449 0.445 0.451 0.456 0.446 0.452 0.447 0.443 0.446

Table 5.7: NMI values of different CDAs on filtered and unfiltered PPIs by considering
the common interactions with BP and CC for the AP/MS network and CYC2008 complex
dataset. The highest improvement for each row is shown in bold.

Met. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
GCE 0.589 MAX 0.685 0.703 0.685 0.686 0.675 0.668 0.702 0.669 0.674

BMA 0.668 0.662 0.670 0.687 0.668 0.681 0.659 0.673 0.647
EGCE 0.579 MAX 0.675 0.700 0.673 0.687 0.679 0.672 0.693 0.660 0.668

BMA 0.656 0.647 0.662 0.687 0.651 0.673 0.651 0.674 0.640
Cluster- 0.540 MAX 0.662 0.673 0.655 0.659 0.647 0.636 0.701 0.654 0.631
ONE BMA 0.640 0.621 0.641 0.676 0.648 0.656 0.627 0.624 0.618
Link 0.450 MAX 0.485 0.487 0.479 0.471 0.482 0.493 0.515 0.495 0.480

BMA 0.477 0.472 0.474 0.479 0.478 0.476 0.481 0.438 0.472

datasets are having a significant amount of false positives. The low-confidence PPIs are

likely to be false positives. Therefore, one should be careful in any analysis with a full PPI

dataset.

The percentage improvement of CDAs and the filtration percentage (of low-confidence

PPIs) are highly correlated. For each of 288 cases (4 combinations of PPI and complex

datasets × 4 network types × 9 SSMs × 2 combining strategies), we compute the average

percentage of improvement (NMI) of CDAs and the corresponding percentage of filtration

72



CHAPTER 5. IMPACT OF LOW-CONFIDENCE INTERACTIONS ON COMPUTATIONAL
IDENTIFICATION OF PROTEIN COMPLEXES

Table 5.8: NMI values of different CDAs on filtered and unfiltered PPIs by considering
the common interactions with BP and CC for the DIP-full network and EMBL-EBI complex
dataset. The highest improvement for each row is shown in bold.

Met. Raw Str. RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
GCE 0.079 MAX 0.411 0.446 0.405 0.417 0.387 0.361 0.485 0.393 0.365

BMA 0.388 0.359 0.386 0.453 0.376 0.367 0.377 0.446 0.347
EGCE 0.081 MAX 0.420 0.450 0.405 0.414 0.388 0.376 0.478 0.396 0.369

BMA 0.375 0.346 0.378 0.455 0.376 0.370 0.370 0.454 0.341
Cluster- 0.141 MAX 0.375 0.413 0.358 0.391 0.368 0.359 0.436 0.368 0.334
ONE BMA 0.370 0.335 0.354 0.407 0.354 0.350 0.339 0.377 0.339
Link 0.262 MAX 0.303 0.328 0.302 0.312 0.307 0.303 0.348 0.308 0.315

BMA 0.313 0.303 0.303 0.321 0.309 0.297 0.293 0.288 0.304
CFinder 0.168 MAX 0.407 0.441 0.407 0.412 0.403 0.381 0.480 0.399 0.371

BMA 0.404 0.364 0.382 0.451 0.371 0.381 0.378 0.421 0.366

of low-confidence PPIs. The Pearson correlation between the average percentage of im-

provement and the percentage of filtration of the 288 cases is very high (0.95). Hence,

the percentage of improvement of CDAs and the percentage of filtration (of low-confidence

PPIs) are highly proportional. This percentage improvement of CDAs is only on the discov-

ery of known complexes, while the prediction of novel complexes may suffer as discussed

later.

Further, we investigate the impact of changing the discrimination threshold on the perfor-

mance for a particular setting. We observe that each SSM improves its performance until a

certain threshold value, and after that, performance deteriorates sharply, particularly with

BMA strategy. The sharp declination at a high threshold is quite natural. As we increase

the threshold, we tend to remove even true PPIs but likely with relatively poor annotation,

which in turn also impacts the network structure. Both of these intertwined aspects lead

to poor performance. Figure 5.2a demonstrates this for the AP/MS network and CYC2008

complex datasets in BP ontology with BMA strategy while using GCE. However, with MAX

strategy, some of the SSMs, in some cases, keep improving their performance even at the

highest threshold. The reason may be due to the overestimation nature of the MAX strategy

as discussed in Chapter 3 (Section 3.4). The marked points on the plots indicate the NMI

values at the cut-off thresholds achieved in Table 5.1. It is clear that the determined cut-off

thresholds are quite reasonable as they are not far from the thresholds at the highest NMI.

We further compute the performance in terms of precision, recall, F1 score, and the pre-

diction of possible novel complexes by varying the threshold (Figure 5.2b). We consider two

criteria to determine a predicted complex as a possible novel complex: i) it must not match

any of the real complexes, i.e., the match or affinity score between the predicted complex

and any of the real complexes must be less than 0.2 (the usual affinity score [43]), ii)

the intra-set-avg similarity of the predicted complexes must be greater than the determined
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threshold for the SSM considered (Table 5.1). The intra-set-avg similarity is calculated as

the average similarity score of the PPIs involved in the predicted complex. Both F1 score

and precision improve until a certain threshold and then decline sharply, similar to NMI,

as discussed earlier. However, recall and the prediction of possible novel complexes get

degraded relatively sooner as threshold increases in many cases, particularly with BMA

strategy. Therefore, care should be taken while filtering PPIs at a high threshold. It is note-

worthy to mention that the determined thresholds (Table 5.1) are not far from the optimal

precision and recall (i.e., the highest F1 score).
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Figure 5.2: (a) Threshold vs. NMI for AP/MS network and CYC2008 complex datasets in
BP ontology with BMA strategy while considering GCE. The marked points on the plots
indicate the NMI values at the thresholds determined for the evaluation. (b) Threshold vs.
different metrics for RES-BMA by considering the same setting. The predicted number of
novel complexes is normalized by dividing with the maximum number of predicted novel
complexes (14) of the setting being considered.

Although each CDA improves its performance with each SSM and combining strategy, the

overall improvement is better with TCSS comparatively for the discrimination thresholds

determined in Table 5.1. We do not observe any significant difference (in performance)

between the MAX and BMA strategy. However, the objective of this study is not to show the

performance comparison among CDAs and SSMs, rather show how low-similarity scored

interactions impact on the performance of CDAs. In fact, it would be difficult to draw any

such indirect inference, because the structure of the filtered network primarily depends on

the chosen threshold of the SSM. If we change the threshold, some PPIs will be added or

deleted. Consequently, the performance of a CDA on the filtered network gets affected, as

demonstrated in Figure 5.2.

CDAs show the best performance on the network type-4. Since all the PPIs in a pro-
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tein complex need to occur simultaneously at one location, the interacting proteins of the

complex are likely to share similar CC terms. Further, a biological process is carried out

by one or more protein complexes. Hence all the proteins of a complex are likely to share

similar BP terms as well. Therefore, proteins sharing both similar BP and CC terms are most

likely to be true positives (in the context of protein complexes). Hence CDAs show the best

performance on the network type-4 (BP&CC), even though it is the smallest one.

CDAs show the lowest performance on the network type-3. If two proteins share similar

BP terms only without sharing CC terms, and vice versa are less likely to interact, equiva-

lently, more likely to be noisy (likely to be false positive). Hence other than the network

type-4 (BP & CC), the rest of the three network types may have some amount of these

(probable) noisy PPIs. Naturally, the maximum amount of (probable) noisy PPIs present in

the network type-3 (BP/CC), which is the union of network type-1 (BP) and type-2 (CC).

As a consequence, CDAs exhibit the least performance in the network type-3, even though

it is the largest one.

PPIs sharing similar BP terms are more reliable than PPIs sharing similar CC terms.

From the last two observations, it is clear that the performance of CDAs is highly affected

by the amount of (probable) noisy PPIs present in the PPI network rather than the size

of the network. Further, it is observed that NMI values and the percentage of noisy PPIs

remain in the filtered networks (#noisy PPIs /#edges of the filtered network considered)

are negatively correlated. We also observe that the (probable) percentage of noisy PPIs is

significantly higher in the network type-2 (CC) than type-1 (BP). The average percentage

of noisy PPIs in filtered network type-2 (CC) is 5.37%, whereas it is 0.69% in type-1 (BP).

Therefore although both BP and CC are relevant for protein complexes, PPIs sharing similar

BP terms are more likely to be true positives than PPIs sharing similar CC terms.

CDAs show better performance on the AP/MS network. The DIP-full network is more

than two times larger than the AP/MS. The average percentage of PPI filtration in the

AP/MS network is 14.18%, while it is 65.64% in DIP-full. Further, the percentage of prob-

able noisy PPIs present is significantly higher in the DIP-full network. The average per-

centage of noisy PPIs (present after filtration) in the DIP-full network is 5.46%, whereas,

in the AP/MS network, it is 1.84%. From Figure 5.3a, it is also clear that the overall sim-

ilarity score is higher in the AP/MS network than DIP-full. Therefore, DIP-full is noisier

than the AP/MS network. Consequently, CDAs exhibit better performance on the AP/MS

network, even though it is more than two times smaller than DIP-full. However, the shared

PPIs between the AP/MS and DIP-full networks produce higher similarity scores as expected

(Figure 5.3a).

DIP database provides information about experimental methods used to detect PPIs.
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5.5. CONCLUSION

There are hundreds of experimental methods, and the majority of them are associated with

a very little number of PPIs. We estimate distributions of similarity scores for Yeast Two-

Hybrid (Y2H) and Tandem Affinity Purification (TAP) methods as they are used to detect

a large number of PPIs in the dataset. It is observed that TAP-detected PPIs show higher

scores than Y2H (Figure 5.3b). We also estimate distributions of similarity scores for the

positive and generated negative datasets used in the evaluation. The positive and negative

PPI datasets exhibit very high and very low similarity scores, respectively, as expected (Fig-

ure 5.3c). Therefore, the discrimination values achieved (Table 5.1) in the evaluation are

quite reasonable.
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Figure 5.3: Histograms of similarity scores of RES-MAX with BP ontology of different PPI
datasets: (a) AP/MS, DIP-full, and Shared PPIs between the two datasets (b) TAP-detected
and Y2H-detected PPIs in DIP-full dataset (c) Binary GS and Negative PPIs.

5.5 Conclusion

The objective of the study is to observe the impact of low-confidence protein interactions

on the performances of CDAs using GO-based SSMs. Five representative CDAs and nine

SSMs, along with two combining strategies (MAX and BMA), are used in the evaluation. We

consider two different PPI and protein complex datasets. Both PPI and complex datasets are

highly dissimilar. However, each CDA significantly improves its performance after filtration

of low-similarity scored PPIs (i.e., low-confidence PPIs) for almost all the cases. It seems

that there is a significant amount of false positives present in PPI datasets, and the number

of false positives (present in PPI networks) greatly impacts the performance of CDAs. We

find that the percentage improvement and the filtration percentage (of low-confidence PPIs)

are proportionally related. Further, we observe that PPIs sharing similar BP terms are less

likely to be false positives than PPIs sharing similar CC terms in the context of protein

complexes. In the current study, we discuss the impact of low-confidence PPIs on CDAs by

considering the yeast PPIs only. However, the impact strongly depends on the reference
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CHAPTER 5. IMPACT OF LOW-CONFIDENCE INTERACTIONS ON COMPUTATIONAL
IDENTIFICATION OF PROTEIN COMPLEXES

species considered. Therefore, the work may be extended in the future by considering

human PPIs, which are less reliable than yeast.
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Chapter6
Conclusion and future work

In the thesis, first in Chapter 2, we explore community detection algorithms (CDAs) in

order to identify protein complexes in PPI networks more accurately. Particularly, we in-

vestigate overlapping CDAs primarily since protein complexes are overlapping in nature.

We observe that existing overlapping CDAs are unable to work appropriately when over-

lapping nodes (proteins) belong to more than three communities (complexes). Hence we

introduce an extension, EGCE (Extended Greedy Clique Expansion), of existing overlapping

CDA, namely GCE (Greedy Clique Expansion), to identify highly overlapping nodes.

Our extensive analysis of synthetic and empirical benchmarks suggests that EGCE outper-

forms other state-of-the-art overlapping CDAs, particularly when overlapping nodes belong

to more than three communities. Although the overall performance of GCE is slightly better

than EGCE for the particular empirical benchmark considered, we show that EGCE assigns

overlapping proteins into their native complexes better way than GCE.

The new extension is generic and not restricted to GCE only. Hence it can be applied to

extend any existing overlapping CDAs. In fact, we observe that some CDAs improve their

performance (in terms of NMI for detecting overlapping communities) with LFR bench-

mark when this extension is applied. Therefore it might be worthy of evaluating the new

extension with other existing CDAs as future work.

PPI data involve a considerable fraction of false positive interactions. These false positives

have a negative impact on any downstream analysis of PPI networks, including complex

detection. In Chapter 3, we investigate how gene ontology (GO) can be utilized to isolate

false positive PPIs. We introduce a new family of GO-based semantic similarity measures

(SSMs) - RDS (Relative Depth Specificity), RNS (Relative Node-based Specificity), and RES

(Relative Edge-based Specificity) for scoring confidence of PPIs. We use an alternative

definition of specificity that is not based on the whole ontology, but rather exploits the
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properties of considering subgraphs that contain only ancestors and descendants of a given

term.

We show that the new SSMs effectively distinguish true PPIs from false positives than the

existing alternatives. Further, RES can be utilized for protein functional clustering since

it shows a robust set-discriminating power over KEGG pathways. It also shows excellent

consistency. Further, we observe that BP is more appropriate than CC for scoring confidence

of PPIs.

The proposed SSMs are evaluated only on GO for scoring confidence of PPIs. However,

they are not restricted to any particular ontology. Therefore it would be worthy of evaluat-

ing the new SSMs on other ontologies and applications as future work.

GO is updated regularly by the addition, deletion, and merging of terms. Hence the

similarity score of a protein-pair may get changed over different instances of the ontology.

However, we could not find any study that evaluates the impact of the continuous evolution

of GO on the performance of SSMs. Therefore in Chapter 4, we systematically study how

similarity measures get affected due to the evolution of GO, i.e., the robustness of SSMs,

under different settings for the task of scoring confidence of PPIs.

We find that SSMs exhibit better robustness while considering the BMA strategy and BP

ontology. We notice that the MAX strategy tends to overestimate, particularly in CC. Further,

we observe that while RES, TCSS, RNS, and Resnik exhibit higher robustness, RES reflects

the changes in GO better way than the others.

However, in this work, the study of robustness is done on SSMs for the task of PPI confi-

dence scoring. It might be worthy of doing similar studies on other genomics applications

as future work since GO has been effectively utilized in various genomics applications. Fur-

ther, in the study, we consider the yeast model organism only. Therefore the work may be

extended in the future by considering PPIs of other species such as human PPIs.

As we have already mentioned, the presence of a significant amount of false positive PPIs

is a bottleneck in detecting protein complexes from PPI data. Although some studies show

that filtering PPI networks increase the performance of complex detection techniques, we

could not find a systematic study on the effect of PPI filtering using GO. Hence in Chapter

5, we systematically do the same study using GO-based SSMs.

We find that CDAs significantly improve their performance after the filtration of low-

confidence PPIs (likely to be false positives). We find that the percentage improvement

and the filtration percentage (of low-confidence PPIs) are highly correlated. We notice

that PPI data have a significant amount of false positives. Further, we observe that PPIs

sharing similar BP terms are more reliable than sharing CC terms in the context of protein
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CHAPTER 6. CONCLUSION AND FUTURE WORK

complexes.

In this work, we study the impact of low-confidence PPIs on CDAs by considering the

yeast PPIs only. However, the impact highly depends on the reference species considered.

Therefore, the work may be extended in the future by considering human PPIs, which are

less reliable than other species. Further, in the study, we use SSMs to score confidence of

PPIs. There are various complex detection approaches (discussed in Chapter 1) and PPI

scoring schemes (discussed in Chapter 5). Hence similar studies may be done using other

complex detection approaches and/or PPI scoring schemes as future work.

The primary focus of the thesis is on detecting protein complexes. There is another closely

related construct, protein functional modules (discussed in Chapter 1). However, most ex-

isting methods are unable to differentiate between the two. Therefore another interesting

challenge might be distinguishing between protein complexes and functional modules. One

approach may be the exploration of interaction dynamics using time series information of

gene expression profiles. Another approach may be the exploration of functional informa-

tion using GO. In fact, we may develop new methods based on GO solely for detecting

protein complexes and functional modules.
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