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ABSTRACT

This thesis delves into enhancing navigational experiences within Extended Reality
(XR), which includes Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality
(MR). It tackles significant challenges in XR navigation, with a focus on travel and wayfinding.
Through several novel contributions, it aims to enhance realism, reduce cybersickness (CS),

and improve wayfinding, ultimately leading to improved navigation experiences.

The first major contribution is the development of a model predicting instantaneous
walking speed for users in system-automated VR tours. Recognizing the gap in providing a
realistic walking experience where user input is minimal, this model leverages user data to
simulate natural walking speeds, enhancing the realism of system-automated virtual tours.
A user study comparing our proposed model’s effectiveness against traditional approach of
showing constant speed confirmed its superiority in enhancing perceived realism, marking a

contribution in system-automated VR walking experiences.

Addressing the pervasive issue of CS in VR, the thesis undertakes a comprehensive
systematic review of CS, analyzing causes, measurement techniques, and mitigation strategies
across 223 research articles. This exhaustive review culminates in a novel taxonomy for CS
measurement and a holistic mitigation framework, providing a valuable resource for both
researchers and practitioners. Furthermore, it identifies substantial research gaps, laying a

solid foundation for future investigations in CS prevention and management.

Another notable contribution is the optimization of system-automated VR tour dura-
tions to minimize user discomfort and CS. By theoretically computing the optimal path
and time for covering all locations within a virtual environment, this approach significantly
reduces the physical and psychological strain on users, enhancing the overall VR tour
experience, without compromising the realistic walking speed. This optimization strategy is
particularly beneficial in applications ranging from tourism to education, where mundane
travel like walking is crucial. We also discuss how we can use vibrotactile feedback to avoid
CS, and establish a parameter called visual gain used in our proposed realistic walking speed

prediction model.

Additionally, this thesis addresses the gap in recognizing users’ affective states during
user-controlled VR tours. Recognizing the affective state can personalize the VR tour
experience, and it is noteworthy that the user’s emotional state also influences the likelihood
of experiencing CS. Utilizing the built-in sensors of consumer-grade HMDs, this thesis focuses
on developing a model to predict the emotional state of a user engaged in controller-based

VR locomotion.

The thesis also introduces an innovative Virtual Locomotion Technique (VLT) named



"BreathWalk," utilizing controlled breathing to navigate virtual environments. This method
not only mitigates CS by leveraging the calming effects of diaphragmatic breathing but
also offers a novel and immersive way to interact with virtual spaces. The comparative
analysis with joystick based locomotion, highlights BreathWalk’s effectiveness in reducing
CS and increasing user preference for navigation, underscoring the potential of breath-based

interaction in VR.

Furthermore, the thesis tackles the challenge of cluttered off-screen Point of Interest
(POI) visualization in smartphone-based (or handheld) AR, especially in high-density settings.
By distributing 3D arrows along the screen edges and introducing a clutter threshold model,
this contribution significantly improves spatial awareness and reduces visual clutter. The
proposed method outperforms existing techniques like 3DWedge+ and Halo3D in accuracy
and efficiency, offering a clutter-free and intuitive way of wayfinding in a smartphone-based

AR system with a large number of POls.

Collectively, these contributions address the multifaceted challenges of navigation in XR,
offering novel solutions to enhance realism, address CS, and improve navigational experience.
The findings have broad implications for the development of XR applications, promising

immersive, comfortable, and intuitive experiences for users across various domains.

Keywords: XR Navigation, Realistic walking experience, Virtual tour, Cybersick-
ness, Cybersickness survey, Affective state recognition, Cybersickness mitigation, POI

visualisation, Virtual Reality, Augmented Reality

X1l
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CHAPTER

Introduction

Extended Reality (XR) refers to a spectrum of technologies that merge the physical
and virtual worlds, creating immersive and interactive experiences. This umbrella term
encompasses Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR),
each offering distinct levels of immersion and interaction. VR generates computer-generated
environments that users can fully immerse themselves in. VR can be experienced in several
ways, offering a wide range of applications across various industries. VR experiences are
supported by a variety of platforms, from simple mobile VR setups to more advanced
headsets and devices [1|. By simulating a completely virtual environment, VR facilitates an
immersive experience that can be entirely different from the physical world. AR, on the
other hand, overlays digital information onto the real world, enhancing the user’s perception
of their physical surroundings. AR is commonly experienced through smartphones or
specialized glasses, enriching the user’s environment with additional digital content, such as
information pop-ups, directions, or virtual objects seamlessly integrated into the real world
[2]. MR combines the real and virtual worlds, anchoring virtual objects to the real world
and allowing interaction with them. It is a hybrid of VR and AR, offering the best of both
technologies. MR headsets, like the HoloLens, combine the ability to see the real world along
with superimposed holographic images, fostering innovative applications in various fields
like gaming, education, healthcare, and industry [3]. While distinctions between AR and
MR exist in their technical underpinnings, their user experience often blurs the lines. Both

technologies superimpose digital layers onto the physical world, allowing users to manipulate



Figure 1.1: Reality Virtuality Continum

virtual objects within the real space. Whether navigating virtual creatures through your
park or visualizing furniture placement in your home, the boundaries between AR and MR
become less about the technical definition and more about the specific application and user
perception. The progression of these technologies continues to redefine how we perceive and
interact with our environment, offering vast potential for entertainment, education, tourism,
and numerous other industries. Figure 1.1, taken from Kolivand et al. [4], illustrates the

XR landscape and how VR/AR/MR is connected to both real and virtual environments.

In the realm of XR, interactions between the user and the virtual environment can be
primarily categorized into three fundamental types: Selection, Manipulation, and Navigation
[5]. Each of these interaction types plays a crucial role in how users engage with and
experience the XR environment, offering unique functionalities and possibilities. Selection
is the initial interaction type, where users choose or pick objects or elements within the
virtual environment. This process is often facilitated through the use of handheld controllers,
gestures, or even eye tracking, depending on the technology in use. The act of selection
enables users to make choices, initiate actions, or interact with specific items in the XR space.
This is a critical step in the interactive process, as it allows users to single out which objects
or elements they wish to engage with from the multitude of possibilities presented within the
virtual environment [6]. Following the act of selection is Manipulation, which refers to the
ability of users to modify or change the virtual objects they have selected. This can include
moving, rotating, resizing, or altering the properties of these objects. Manipulation allows
users to engage deeply with digital elements, offering them the opportunity to manipulate
these elements and potentially even create new content within the XR environment. This

fosters a sense of agency and creativity, as users are not just passive observers but active
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participants who can shape their virtual surroundings [7|. Lastly, Navigation encompasses
how users move within the XR space. This interaction type is about the different methods
and techniques that allow for the planning, exploration, and traversal of virtual environments.
Navigation is fundamental to the XR experience, as it determines how users can move from
one point to another, explore virtual spaces, and discover new aspects of the virtual world.
It includes a variety of mechanisms, from teleportation and flying to walking in place, each

designed to enhance the sense of immersion and realism within the XR environment [8].

1.1 Navigation in XR

Navigation in XR encompasses two essential components: Travel and Wayfinding [9].

1.1.1 Travel in XR

Travel represents the motor component, involving the physical movement or locomotion
within the virtual environment. In the context of VR, travel encompasses different techniques
facilitating movement within the virtual environment. These techniques, known as Virtual
Locomotion Techniques (VLTSs), encompass diverse means such as real walking [10], VR
controllers [11], gestures [12], and specialized devices like omnidirectional treadmills [13].
VLTs enable users to traverse virtual spaces seamlessly, ensuring a heightened sense of
immersion. However, in AR and MR, the concept of travel shifts from navigating virtual
environments to interacting within the user’s physical environment augmented by digital
elements. In AR and MR, the user’s physical movement in the real world constitutes their
travel, while digital overlays or enhancements augment this real-world experience, influencing

their exploration and interaction within the merged digital-physical environment [14, 15].

VR Tours

Travel in VR spans diverse fields like gaming, architecture, design, training, tourism, real
estate, and education [16, 17, 18, 19]. In these applications, VR tours have emerged as
a standout, gaining substantial prominence. VR tours redefine exploration by offering
immersive and interactive experiences that enable individuals to delve into VR environments

representing a wide array of destinations, properties, museums, and educational simulations
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[17]. VR tours can be categorized into two primary modes: User-Controlled and System-
Automated [20]. A user-controlled VR tour refers to a tour in which the user has control
over their travel and navigation within the VR environment. This typically involves the
user using VR controllers or other input modalities to move and explore the virtual space
according to their preferences and actions. On the other hand, a system-automated VR tour
involves the system or application controlling the user’s travel within the VR environment.
In this type of tour, the user’s movement and navigation are guided or controlled by the
system itself, often following a predetermined path or sequence. Each mode presents its
own set of advantages and drawbacks, influencing the user experience significantly. A

user-controlled VR tour can provide:

e Enhanced user agency: Users have complete control over navigation, offering a sense
of freedom and personalization, which can have a significant positive effect on presence

21].

e Enhanced learning experience: Various locomotion methods, such as gaze/head-
directed steering and walk-in-place, enable users to interact more intimately with the

VR environment, thereby enhancing learning in the tour [22, 23].

e Engagement and immersion: Direct control fosters a deeper sense of immersion,

enhancing the overall experience [24].

e Incomplete exploration: Users might miss important aspects or areas if they overlook
or skip sections while navigating. This can result in an incomplete understanding or

experience of the VR environment [25].

e Chances of getting lost or confused: Users might find it overwhelming or confusing to

navigate through the virtual space, especially if it’s complex or lacks clear directions.

On the other hand, using a System-Automated VR Tour can provide:

e Guided exploration: Users don’t need to worry about navigation or decision-making.
The system guides them through the tour, reducing the potential for confusion or

disorientation, especially for those less familiar with VR environments [26].
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e Focused presentation of information: The system can direct users’ attention to specific
elements, ensuring they do not miss crucial details. This controlled approach can be

beneficial for delivering a focused narrative or educational content [27].

e Efficiency and convenience: Automated tours can be more time-efficient as users can
passively experience the tour without the need to actively control their movement.

This convenience can be particularly useful in scenarios where time is limited.

e Limited interactivity and personalization: Users have minimal to no control over their
exploration. This lack of interactivity might lead to a less engaging experience for

individuals who prefer more autonomy or desire personalized interactions [28].

e Lack of realism: Due to less physical involvement, the users find it less realistic than

the user-controlled tours [29].

1.1.2 Wayfinding in XR

Wayfinding stands as the cognitive component of navigation in XR. It involves the mental
processes, strategies, and tools used by users to orient themselves, understand their position,
and find directions within the XR environment [5]. Wayfinding techniques can include maps,
markers, waypoints, or visual indicators that aid users in navigating complex environments
or reaching specific destinations [30]. Effective wayfinding is crucial for enhancing user
orientation and ensuring a smooth and intuitive exploration experience within XR applica-
tions. Combining both travel and wayfinding elements creates a cohesive and user-friendly
navigation system that contributes to a more immersive and enjoyable XR experience [31].
Among many techniques to enhance wayfinding experience, visualizing off-screen Points of
Interest (POIs) is one of them. A POI is a location in a physical or digital environment
that is of particular interest or significance to users. Off-screen POI visualization refers
to the representation of POIs that are located outside the current field of view within an
XR environment [32]. This technique is designed to provide users with directional and
distance information about these off-screen POls, enabling them to navigate and locate
these points more effectively within the virtual or augmented environment. Enhancing
wayfinding experiences through off-screen POI visualization involves improving the user’s

ability to locate and engage with points of interest that are not immediately visible on the
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screen. This can be especially useful in scenarios where there are numerous POIs or when
the user is navigating through dense environments where many POIs may be occluded or
off-screen. The benefits of off-screen POI visualization in enhancing wayfinding experiences

include:

e Improved Navigation: By providing directional and distance information about off-
screen POls, users can more effectively navigate and locate these points within the
virtual or augmented environment, leading to a more efficient and seamless navigation

experience [33].

e Spatial Awareness: Off-screen POI visualization contributes to enhancing users’ spatial
awareness within the virtual or augmented environment, allowing them to better
understand the spatial relationships and locations of off-screen POlIs in relation to

their current position [34].

e Reduced Cognitive Load: The visualization of off-screen POIs can reduce the cognitive
load on users by providing them with clear and intuitive cues for locating and

interacting with these points of interest without requiring excessive mental effort [35].

e Enhanced User Experience: Knowing the positions of off-screen POIs can make virtual
experiences more enjoyable and less frustrating by minimizing the chances of getting

lost or missing critical elements of the environment [36].

e Support for Strategic Decision Making: Knowing the locations of off-screen POlIs
allows users to make strategic decisions based on a more comprehensive understanding

of the environment [37].

1.2 Challenges and Motivations

This dissertation explores the challenges linked with navigation in XR. In the VR segment,
the focus is on the aspect of travel, addressing the challenges encountered in both system-
automated and user-controlled tours. In the AR domain, the emphasis is on the complexities
of visualizing POI for wayfinding purposes. These challenges are each explored in the

following.
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1.2.1 Challenges in the VR travel systems

As discussed earlier, VR travel systems can be further sub-categorised as system-automated
and user-controlled tours. In the following sections, we explore the challenges associated

with each of these categories.

Challenges in the system-automated tours

While system-automated tours offer an effortless experience with reduced cognitive demands
[29], allowing users to concentrate more on the experience itself, their lack of user involvement
makes them less suitable for scenarios where a realistic walking experience is crucial. This
issue has not been extensively explored in system-automated VR tours. Therefore, improving
the walking experience in such tours is vital. A key factor influencing a user’s experience in
a VR environment is the travel speed. To create a realistic walking experience, it’s essential
to use the user’s actual walking speed as the travel speed [38, 39]. However, determining the
user’s actual walking speed in an automated tour is challenging, as these systems typically
do not allow for continuous user input, making it difficult to align the user’s input with
the walking speed. Previous research has employed a constant walking speed as an optic
flow to increase realism [40]. Nevertheless, since walking speed varies during travel [41], we
believe that displaying a visual speed that matches the user’s instantaneous walking speed
can enhance realism more effectively than showing a constant speed.

In system-automated tours, a significant challenge arises from the potential for sensory
mismatch, where the visual cues associated with movement do not match the expectations of
the vestibular system. This discrepancy can lead to cybersickness (CS), a prevalent issue in
VR locomotion. Although aligning the visual optic flow closely with real walking experiences
can enhance realism in VR, achieving such realistic visual stimuli in system-automated tours
without inducing discomfort remains a complex challenge. Various mitigation strategies have
been employed, including adjusting the field of view (FOV), modifying the depth of field
(DOF), and implementing vibrotactile feedback. Notably, the use of vibrotactile feedback
has emerged as an unobtrusive method for alleviating sickness. However, the application of
instantaneous walking speed in conjunction with vibrotactile feedback has yet to be explored.
Additionally, a positive correlation has been observed between the duration of the VR tour

and the severity of sickness, yet no studies have specifically addressed reducing the duration
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of system-automated tours in the literature.

Challenges in the user-controlled tours

While user-controlled VR tours enhance user agency, engagement, and physical interaction,
they also have the challenge of CS, particularly when the user remains stationary. To reduce
the impact of CS, it is crucial to predict its likelihood. Various methods for predicting
CS have been researched. Notably, studies have established a connection between a user’s
emotional state and the likelihood of experiencing CS. This link underscores the importance
of identifying and addressing emotional reactions within VR experiences to reduce the risk
of CS. Additionally, recognizing emotions can aid in personalizing the VR tour, thereby
enhancing the overall user experience. However, research focused on recognizing emotional
states using sensors readily available in commercial Head-Mounted Displays (HMDs) has
been limited.

In user-controlled tours, particularly those employing steering-based locomotion methods
that involve continuous movement to navigate within the VR environment, there’s a notable
induction of CS [42]. Due to this adverse effect, teleportation is often favored over steering-
based locomotion as a means to mitigate CS. However, while teleportation reduces the
likelihood of CS, it can also create a disorienting effect that disrupts the user’s sense of
presence within the VR environment. Among the various strategies to lessen the impact of
CS, controlled diaphragmatic breathing (CDB) has been identified as an effective technique
to reduce sickness [43]. Despite its effectiveness in mitigating CS, the potential of using
controlled breathing as an input mechanism for locomotion in VR has not yet been explored,

indicating a gap in research in this direction.

1.2.2 Challenges in the off-screen POI visualization in an AR system

As mentioned earlier, off-screen POI visualization refers to the depiction of POIs that are
situated beyond the current field of view in an XR environment. Various techniques have
been explored to address the visualization of off-screen POIs [33, 34, 35]. These methods
aim to represent these POIs by utilizing different visual cues. Metaphors like wedges 44|,
halos [45], and arrows [46] have been employed to indicate the presence of POIs in the

surrounding environment. The objective is to provide users with distance and direction
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awareness, guiding them to orient their devices and align the POIs within their field of view,
thus enhancing their overall awareness of the surrounding POls.

The visualization techniques are applied across different platforms, including both HMD
and handheld devices. Techniques like EyeSee360 [47], 3D Wedge+ [48], and CompassbAR
[49] have been evaluated for visualizing POIs in the HMD context. Conversely, techniques
such as the 3D Bezier Curve [36], 3D Arrows [32]|, and AroundPlot [50] have been assessed
for use on handheld devices.

However, due to the limited size of the smartphone screen, the use of excessive on-screen
cues or large-sized visualizations on handheld devices can lead to visual clutter, making it
difficult for users to distinguish between different POIs [44]. Additionally, within the existing
literature, there is a noted trend of adopting metaphors like 3D wedges and 3D arrows,
which are often positioned in the central region of the display screen. This approach, while
making the cues prominent, carries the risk of occluding the main content displayed on the
smartphone. Furthermore, when the POIs vary significantly in altitude relative to the user’s
position, the visualization technique needs to also indicate these vertical differences. This is
crucial for users to comprehend the spatial arrangement of the POIs without needing to
move their devices excessively. This situation is commonly encountered in AR applications
that need to showcase different off-screen POIs, such as restaurants located on various
floors of a building or when a user is at a dense market intersection point. Researchers
have introduced different techniques for visualizing off-screen POlIs, such as displaying a
halo on the screen based on the position of the off-screen POIs [45], showing the POIs
in a mini-map view [34], and using 2D arrows to point towards the POIs [32|. However,
these techniques have not adequately addressed the challenge of distinguishing the vertical
position of off-screen POIs, which remains a critical aspect for comprehensive and effective

visualization in AR environments.

1.2.3 Objective

The main objective of the thesis is to come up with different methods to enhance the
users’ navigational experience. The thesis focuses on enhancing realism, addressing CS and
contribute on wayfinding to improve navigation in XR. Based on the discussed challenges of

navigation, the specific goals of the thesis are outlined below.
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e Enhancing realism in a system automated VR tour: A system automated tour

lacks realism due to the limited involvement of user’s interactions. We aim to enhance
the realism by building a model to predict the instantaneous walking speed of the user

and implementing it during the system-automated VR tour.

Mitigating CS in system-automated VR tours without compromising realis-
tic walking experience: We intend to explore the proposed walking speed prediction
model while vibrotactile feedback based CS mitigation strategy is used. Moreover,
lengthy exposure to VR can result in severe CS issues and in a system automated
tour, the duration of the interaction time and the path of the VR environment can be
manipulated by the system itself. Therefore, we aim to come up with methods for
finding the optimal path in a VR environment in minimum duration and also allowing

users to visit maximum places in the tour in a given time.

Recognition of affective state in user-controlled VR tours without using
any additional sensors and equipment: Recognizing the affective state in user-
controlled VR tours can significantly enhance the personalization of the VR tours.
Furthermore, the user’s emotional state has a considerable impact on the likelihood
of inducing CS. Our objective is to detect the user’s emotional state by leveraging
the built-in sensors found in consumer-grade HMDs. This will allow the developers to
foresee potential occurrences of CS during user-controlled VR tours and also personalise

the content based on the users’ emotional state, thereby improving the VR experience.

Mitigating CS in user controlled VR tours: Studies have found relationship of
CDB in mitigating the onset of CS. We intend to incorporate breathing-based walking

locomotion to reduce CS in user controlled VR tours.

Designing clutter-free off-screen POI visualization system for handheld
AR system: Visualizing a large number of off-screen POIs in the small screen of a
smartphone is challenging. We aim to propose a handheld AR-based off-screen POI
visualizer designed explicitly for high-density environments characterized by a larger

number of POls.
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Figure 1.2: Visual Representation of the Thesis Contributions
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1.3 Contributions of the Thesis

The research objectives related to navigation in XR systems, as outlined in the previous
section, are addressed in the remainder of this thesis. We offer a comprehensive synopsis of

the research contributions that tackle these challenges, as follows.

1.3.1 Modelling realistic walking speed for system-automated VR tour

This contribution lies in proposing a model for the prediction of instantaneous walking
speed for users experiencing a system-automated VR tour, without the need for continuous
user input. This model addresses the challenge of providing a realistic walking experience
in system-automated VR tours, where the users’ travel is controlled by the system with no
continuous input required from the user. Whether exploring historical sites, museums, or
virtual real estate tours, realistic walking speeds can enhance the sense of presence, making
users feel like they are truly exploring these spaces in person. In order to build a model
that can predict the instantaneous walking speed of a person, we started with collecting
walking speed and frequency data from 40 participants. After plotting a graph depicting
distance traveled versus frequency, we observed a pattern which mirrors characteristics akin
to a pulse wave commonly utilized in digital signal processing, resembling a square pulse
wave and this type of pulse wave can be well approximated by taking the first few terms of
the corresponding Fourier expansion. With this idea, we modeled the instantaneous walking
frequency. In a user study involving 34 participants, we carried out a comparison to assess
the perceived realism between our proposed speed prediction model and the traditional
method of using a constant walking speed during a system-automated VR tour. The results
of this comparison demonstrated that participants showed a significant preference for the
instantaneous speed model, perceiving it as significantly more realistic than the constant
speed approach. This finding underscores our model’s potential to enhance the quality
of system-automated VR tours by more accurately simulating the natural experience of
walking. However, we recognize the potential risk of inducing CS when continuous visual
motion is presented during the tour. This awareness has motivated us to delve deeper into

the subject of CS, which we explore in our subsequent contributions.
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1.3.2 Systematic review of causes, measurements and mitigation of CS

in VR

This contribution involves a thorough analysis of 223 relevant studies, focusing on critical
aspects including the causes, measurement techniques, and strategies for mitigation. This
comprehensive review, often overlooked in similar studies, provided crucial insights into
various dimensions of CS. Specifically, our analysis of 81 relevant sources enabled the
development of a new taxonomy encompassing diverse measurement methodologies used in
CS research. This taxonomy serves as a comprehensive overview, assisting researchers in
making well-informed decisions regarding CS measurement approaches. Additionally, our
synthesis of insights from 78 studies on CS mitigation strategies highlighted the absence
of comprehensive guidelines. Hence, we formulated a robust framework applicable to both
developers and users, integrating strategies discussed in the literature from both perspectives.
By scrutinizing 87 research articles, we created a comprehensive taxonomy categorizing
factors that induce CS, facilitating a more organized understanding of these variables.
Our systematic review also revealed significant research gaps across various dimensions of
CS, thus contributing substantially to the evolving body of knowledge on CS and laying

groundwork for future investigations.

1.3.3 Minimising the duration of a system-automated VR tour

As discussed earlier, the duration of a VR tour significantly influences user experience,
with extended exposure potentially leading to CS and inducing fatigue due to the weight
of the HMD. Our work aims to address these concerns by proposing a novel approach to
minimize the duration of system-automated VR tours within a given VR environment. Our
strategy involves optimizing the path connecting various sites in the VR setting, theoretically
computing the optimal time and path to cover all locations. We also cover another variation
of the problem, which is to cover maximum locations within a stipulated time frame. To
achieve these, we conceptualize the problem akin to the renowned Vehicle Routing Problem
with Profit (VRPP). We discuss the use case by implementing our strategy to build an
application offering an immersive VR tour of Majuli, the largest river island in Assam,
India. To evaluate the efficacy of our approach, we conducted a between-subject study

involving 40 participants, comparing the induction of CS and discomfort while navigating the
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optimal path prescribed by our method against a tour following an arbitrary user-selected
path. Our findings underscore the substantial reduction in VR sickness and discomfort by
adhering to the optimized path, demonstrating the potential of our approach in enhancing
user experience by minimizing VR tour durations and associated health concerns. We also
discuss how the walking speed prediction model proposed in section 1.3.1 can be merged

while using this duration minimisation strategy.

1.3.4 Establishing a range of visual gain for perceived realistic walking

speed while using vibrotactile-based CS mitigation strategy

In our efforts to enhance the realism of system-automated VR tours by implementing a
realistic walking speed model, we encountered a challenge associated with potential CS due
to continuous motion. Existing research has explored the use of vibrotactile feedback behind
the ear to mitigate CS during these tours [40]. However, the application of vibrotactile
feedback impacts the visual gain factor in the proposed walking speed model described in
Section 1.3.1, making it inapplicable as the visual gain varies with different locomotion
techniques. To address this limitation, we conducted a study focusing on perceived natural
walking speeds in stationary settings while utilizing vibrotactile feedback to prevent CS.
Participants were exposed to visual gain ranging from 1.0 to 3.0, revealing a new range of
visual gain for perceived naturalness spanning from 1.40 to 1.78. This study emphasizes the
integration of the walking speed prediction model in conjunction with vibrotactile feedback
as a mitigation strategy within stationary VLTs. By exploring perceived natural walking
speeds and considering the impact of vibrotactile feedback, our work seeks to refine the
application of the walking speed prediction model, enhancing user experiences in stationary

VLTs amidst efforts to reduce CS during system-automated VR tours.

1.3.5 Recognising users’ emotional state from HMD and handheld con-

troller data during a VR tour

Overcoming the limitations posed by the absence of integrated biosensors and eye-tracking
capabilities in many commercial HMDs, we introduce a Sequential Recurrent Neural Network
(RNN) based model to recognise the emotional state of a user while navigating in a VR tour

assuming the VR controller as an input mechanism. The main intention behind this work
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was to check if we can recognise the emotional state of a person while s/he is navigating in a
neutral environment. Although there are several datasets available for emotion recognition,
we did not find any dataset where data from the VR controller is included. Therefore,
we created a dataset of 17 participants while navigating in the VR environment. We first
induced them in different emotional states by exposing them to different evident visual
stimuli. Once they were in the intended emotional state, we asked them to navigate in a
neutral VR environment using a joystick and the trigger of a VR controller. We collected
joystick pressure (multiple samples for an event), trigger pressure(multiple samples for an
event), controller velocity, controller quaternion rotation and HMD quaternion rotation
while pressing the controller buttons (joystick/trigger). We built and validated the model to
predict the emotional state in four classes based on the Circumplex model of affect, namely,

High-Positive, High-Negative, Low-Positive and Low-Negative.

1.3.6 Breathing-based VLT for reducing CS in VR

Inspired by the positive impact of CDB on CS [43] and acknowledging the merits of breath
as an interaction modality [51], in this contribution, we introduce a new VLT named
"BreathWalk." In this technique, users walk in a VR environment by utilizing their breath,
captured through a nose-attached microphone. Adjusting their breathing frequency, from
low to high, allows users to modulate their walking speed, while steering direction is achieved
by directing their torso accordingly. To track the torso, we attached one VR controller
(the non-dominant hand) which was mounted on the lower chest of the user. Leveraging
breath as an input mechanism not only aims to mitigate CS but also seeks to enhance
immersion within the virtual space. In our study, we conducted a comparative analysis
between BreathWalk, and joystick-based steering regarding CS, realism, task performance
and preference. We found BreathWalk to be significantly better in terms of CS, realism and

preference. Conversely, the joystick-controlled method yielded better in task performance.

1.3.7 Off-Screen POI visualization for handheld AR in vertically dense

regions to reduce clutter

This contribution is on the wayfinding part of the navigation in XR. Here, we’ve addressed

the challenge of visualizing off-screen POls in 3D environments viewed through a smartphone,
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particularly in high-density settings (more than 15 POIs). Traditional methods tend to
clutter the screen, impacting visualization efficiency. To tackle this, we propose a novel
method using 3D arrows strategically distributed over the edges of the screen rather than
at the center. We divide the edges into multiple cells and each cell contains a 3D arrow,
directing to a cluster of POIs. Additionally, we introduced a model called the cluttering
threshold to determine the number of POls, a cell should contain given the average locate
time. If the number of POIs exceeds the cluttering threshold, we filter it out on a priority
basis. To filter out POIs on the basis of radial distance, we use a distance filter. Through a
study involving 16 participants, our approach demonstrated higher efficiency and accuracy
compared to existing state-of-the-art methods like 3D Wedge+ and Halo3D, especially
in high-density POI environments. Our work aims to facilitate precise off-screen POI
location and distance interpretation in smartphone-based AR, ensuring effective user spatial

awareness even amidst larger POI volumes, thereby enhancing the navigational experience.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 forms the backbone of this dissertation. It lays the groundwork by
conducting a critical examination of the literature concerning several challenges including the
enhancement of realism in system-automated VR tours, the causes, measurement /detection,
and mitigation strategies for CS (second contribution), as well as an extensive survey of
current off-screen POIs visualization techniques.

Chapter 3 provides an detailed description of the first thesis contribution. It elaborates
on the process involving the development and validation of our proposed model designed to
predict the instantaneous speed within a system-automated VR tour.

Chapter 4 delves into the fourth contribution of the thesis, addressing the incorporation
of visual gain into the proposed speed prediction model while implementing a vibrotactile-
based CS mitigation strategy. After that we discuss the third thesis contribution, outlining
the methodology aimed at reducing the duration of a system-automated VR, tour.

Chapter 5 elucidates the fifth thesis contribution, detailing the process of recognizing

emotional states through HMD and handheld controller data.
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Chapter 6 presents the sixth thesis contribution, introducing an breathing-controlled
VLT designed specifically for user-controlled VR tours with a focus on mitigating CS.
Additionally, this chapter encompasses a comparative analysis between this new technique
and the joystick-based steering VLT, evaluating their effectiveness in terms of CS mitigation,
realism, task performance, and user preference.

Chapter 7 elaborates on the seventh thesis contribution, detailing an off-screen POlIs
visualization technique aimed at diminishing on-screen clutter. Additionally, this chapter
conducts a comparative analysis of the task performance between this new technique and
established methods, namely 3D Wedge+ and Halo 3D, evaluating their efficiency and
accuracy.

Finally, Chapter 8 gives a summary of the contributions of this thesis and discuss the

potential avenues for future research exploration.

Coteo$-3&enen
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CHAPTER

Related Works

In this chapter, we start with a brief discussion of various types of VLTS to navigate in
a VR environment. After that, we discuss various works related to providing realistic
walking experience in VR. We then highlight the importance of providing a realistic walking
experience in system-automated VR tours. After that, we present a systematic literature
review on the causes, measurement, and mitigation of CS. We also discuss various gaps in CS
research. Subsequently, we explore the concept of off-screen POlIs for enhancing wayfinding
strategies within XR, with a focus on methods to improve off-screen POI visibility on AR

handheld devices.

2.1 Traveling techniques in VR

Travelling in VR can be achieved through various VLTS, as categorized by Zayer et al. [29],
into walking-based, steering-based, selection-based, manipulation-based, and multiscale
VLTs. Walking-based VLTs simulate walking within VR, enhancing presence and naturalism
through methods like Real Walking [10] and redirection techniques [52] to mirror human
movement closely, improving spatial orientation and reducing VR sickness. Steering-
based VLTs [42] allow users to control direction and speed, using body movements or
vehicular props to navigate intuitively within VR environments, enhancing user engagement
and navigation. Selection-based VLTs automate movement towards a chosen destination,

simplifying navigation by using target selection and route planning [53, 5| techniques to
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minimize cognitive load, with teleportation and map dragging as examples. Manipulation-
based VLTs employ user gestures for navigating or manipulating the virtual world, like the
"Eyeball-in-hand" metaphor|54|, but may be less efficient in speed and comfort. Multiscale
VLTs [55, 56] cater to navigation across different scales and vertical movements, offering
both active and automatic scaling methods to adjust the virtual scale, improving usability
and comfort. Nilsson et al.’s [57] study further categorizes VLTS based on user mobility and
interaction metaphors, distinguishing between mobile and stationary techniques, mundane
and magical forms of movement, and vehicular versus body-centric techniques, aiming to
enhance immersion and address the challenges of navigating virtual spaces within physical
limitations.

As previously mentioned, interactions within a VR tour can be categorized as either
user-controlled or system-automated. Among the VLTs discussed in this section, VR tours
utilizing user input for movement within the VR environment — such as those employing
walking-based techniques, steering-based techniques, manipulation-based techniques, and
active scaling multiscale VLTS can be classified under user-controlled VR tours. On the other
hand, tours that rely on selection-based VLTs (particularly for navigating from a source to
a destination automatically), cinematic VR navigation scenarios [27], and automatic scaling

VLTs [55] can be categorized under system-automated VR tours.

2.2 Realistic walking experience in VR

Walking is a crucial mode of travel in real life. Providing a realistic walking experience is
helpful in many VR applications [20]. For instance, to implement an experience of walking
through a cultural heritage site or walking through the street side of a city, providing a
realistic walking experience can be beneficial. In order to improve the realistic walking
experience, researchers have come up with many VLTs. Obviously, the more closely a VLT
can mimic human walking, the more realistic it becomes. In real walking, the walker gets
the surrounding information from several sources. It involves external (visual, auditory
and cutaneous), internal(vestibular and proprioceptive) and efferent (efference copy and
attention allocation) information [58, 59, 40]. Researchers have used many techniques to
improve the experience of walking by manipulating the internal and efferent information.

Some works [60, 61, 62] presented the use of haptic and auditory feedback in enhancing
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the real walking experience. Vision, however, is known to be the most dominant sensory
organ providing spatial information. Some works [40, 62| applied visual head oscillation to
provide a more realistic walking experience. One of the major visual factors affecting the
experience of walking is the walking speed [38]. In the prior work, several efforts [63, 64]
were made to make WIP more natural, with the primary intention of generating speed
profiles that are closer to real walking. To measure the walking speed of a user, researchers
have mapped the user input with the walking speed [63, 39]. For instance, some works
used external devices such as wristband |65, 66], handheld devices [67], lower body-mounted
Inertial Measurement Unit (IMU) [68] and head-mounted IMU [69] to predict the walking
speed. Yan and allison [64] calibrated their WIP implementation to deliver more realistic
speeds by using data obtained from the back of individuals’ legs while physically walking.
These works are, however, suitable for user-controlled virtual tours.

Though walking is a multisensory experience, in the case of system-automated tours,
due to the low interaction of the user with the system (the user is not moving their body
parts), the primary area of improvement is convincing the visual sense. As mentioned
earlier, providing visual optic flow close to real walking can enhance the walking experience
in VR. However, unlike a user-controlled tour, a system-automated tour does not allow
continuous input while travelling from one point to another. In literature, we found very
less focus on implementing realistic walking experiences for system-automated tours. The
probable reason for this could be that adding continuous camera motion to non-interactive
or semi-interactive locomotion can cause a sensory mismatch, thereby causing VR sickness
[70]. The sensory mismatch is a widely accepted theory for the cause of VR sickness, which
states that if there is a mismatch between the visual information related to motion and
orientation with the vestibular information, it can create a sense of nausea [71] (We discuss
about CS in detail in the next section). However, prior works [40, 72| have confirmed in their
study that the use of vibrotactile feedback in the back of the two ears could significantly
reduce the chances of VR sickness while using stationary VLTs . These works open up an
opportunity to use natural walking speed as the visual speed for the system-automated
tours.

We found that researchers have been using constant speed in a system-automated

virtual tour. Few works have proposed biomechanically inspired models for predicting the
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average walking speed of a user. Inman et al. |73] expressed human walking speed (|V]) as

a product of step frequency (f) and step length (1):
V|=fxl (2.1)

Furthermore, Dean et al. [74] stated that the step length and height of a person are positively

correlated. Using these relationships, they expressed walking speed (|V|) as:

_(_f b\
vVi= <0.157 . 172) (2.2)

Where |V (in cm/sec), f and h represent a person’s walking speed, walking frequency,
and height, respectively. Researchers |75, 39| used this relation in order to estimate the
actual walking speed in their work. However, the walking speed of a person is not constant
throughout the walk [41]. The instantaneous walking speed of a user throughout the travel

can mimic the actual walking speed better than the constant average speed.

2.3 CSin VR

CS is an inevitable phenomenon in VR. The term “cybersickness” was first coined in the early
1990s, around the same time that VR technology was first becoming widely available. In the
realm of CS, significant literature reviews have been conducted, including the systematic
review by Davis et al. [76] focusing on CS measurement, which highlighted the need for
updated analysis due to advancements in measurement techniques and mitigation strategies.
Rebenitsch and Owen’s review [77| further delved into factors contributing to CS, such
as field of view and navigation, indicating the necessity for more comprehensive research.
Recent reviews by Chang et al. [78], Caserman et al. [79], and Saredakis et al. [80] have
predominantly explored the causes of CS, with lesser emphasis on its measurement and
mitigation. Additionally, Yildirim and Caglar reviewed deep learning (DL) approaches
for CS classification using EEG signals [81], Yang et al. examined machine learning (ML)
methods for CS detection/prediction [82], and Li et al. looked into electrostimulation
methods for CS mitigation [83], alongside reviews focusing on gender [84], latency [85], and

user susceptibility to CS [86], although these lacked a holistic perspective on CS’s causes,
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measurement, and mitigation strategies. To fill this gap and have a holistic understanding
of CS, we performed a systematic literature review providing a comprehensive analysis of
CS’s causes, measurement, and mitigation, offering a holistic understanding of the condition,
its potential consequences, and strategies for measurement and mitigation, alongside CS
mitigation guidelines for users and developers and identifying critical research gaps to inform

future studies, making it a valuable resource for VR system developers and users.

2.3.1 Systematic review methodology

Our review targets recent developments in CS, encompassing causes, measurement techniques,
and mitigation strategies. Leveraging databases like ACM DL, IEEE, PubMed, and Web of
Science known for VR research, we aimed to dissect current research and uncover unexplored
areas. This comprehensive review, drawing on search strings shown in table 2.1, covered
papers from 2014 to February 2023, reflecting the surge in VR research. From 1005 records
found plus an additional 80 from Google Scholar, we removed 180 duplicates, 22 short
poster /workshop papers, and 4 non-English or inaccessible papers, following the PRISMA
protocol [87, 88]. A panel of three raters, achieving a 97.3% agreement after a calibration
exercise on 150 papers for consistent evaluation, conducted the initial screening to identify
relevant studies for a deeper understanding of CS and the enhancement of prevention and
mitigation strategies. During this initial screening phase, publications were labeled according

to the following criteria:

e Relevant, wherein the search terms referred on the title, abstract, and/or conclusion

are relevant (providing cause, measurement, or mitigation for CS in VR).

e Not Relevant, wherein the search terms referred on the title, abstract, and /or conclusion
are not relevant (Does not provide any information towards causes, measurement, or

mitigation for CS in VR ).

Out of 879 remaining records, we found 223 relevant articles. We categorized the
relevant papers into causes, measurement, and mitigation of CS. We found 21 articles that
belonged to both cause and measurement or measurement and mitigation or all three of
them. Lastly, forward and backward citation searching was used to incorporate highly

relevant and/or cited publications that were not captured by our search [89].
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Database Search String Total results
ACM digital library | [[Abstract: "VR"| OR [Abstract: or "vr"|] AND | 110
[Abstract: "*sickness"| AND |E-Publication Date:
(01/01/2014 TO 02/28,/2023)]

IEEE Xplore Digital | ("Abstract":"VR" OR "Abstract":"VR") AND | 295

Library ("Abstract":"*sickness") Filters Applied: 2014 -
2023

PubMed  Central | (("VR [Title/Abstract] OR "VR" [Title/Abstract|) | 251

(PMC) AND  ("*sickness" [Title/Abstract])) AND

(("2014/01/01"[Date - Publication| : "3000"[Date
- Publication]))

Web Of Science (AB=("VR" OR "VR")) AND AB=("sickness") | 349
Timespan: 2014-01-01 to 2023-02-28 (Index Date)

Table 2.1: Databases and search strings used

2.3.2 Causes of CS

CS is a complex phenomenon that is yet to be fully understood. Several theories have
attempted to explain its causes, including the sensory conflict theory [90, 91, 92, 93, 94|,
postural instability theory [95], and the evolutionary theory, often referred to as the poison
theory [96]. Various studies have suggested that vection might be responsible for the
occurrence of CS [97, 98, 99], although there is contradictory evidence showing that CS can
occur without eliciting vection [100]. Prothero et al.’s rest frame hypothesis [101] suggests
that motion sickness is caused by conflicting stationary frames of reference rather than
conflicting orientation and motion cues. These theories propose that conflicting cues from
different senses, an unstable posture, and an evolutionary response to perceived poisoning
can all contribute to CS. However, none of these theories fully explain the subjectivity
involved in CS or predict its severity in different virtual environments. We identified several
key factors that can contribute to the onset of CS. To better organize and understand these
factors, we have developed a comprehensive taxonomy that breaks them down into specific

categories. By examining each of these categories in detail, we hope to shed some light
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Records identified from Additional records from google
databases (1005) scholar (80)

l J

Identification

Screening

Eligibility

Included

i

Total Records
(1085)

180 records excluded for
duplication

A\

Excluded records
1. Poster/workshop and
short papers (less than 3
pages)
2. Unavailable in public
(905)

A\

Full-text studies assessed
for eligibility based on
inclusion and exclusion
criteria (879)

656 records excluded for
not focusing on any cause,
measurement or mitigation

of cybersickness in VR

4

Studies included in the
review (223)

Figure 2.1: Prisma Flow Chart
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Figure 2.2: Taxonomy of various causes of CS

on the complex array of factors that can contribute to CS and provide a more nuanced

understanding of this phenomenon.

Internal Factors

When we refer to “internal factors” in the context of CS, we are specifically talking about a
set of individual characteristics and conditions that can contribute to an increased likelihood
of experiencing CS. These factors are inherent to the user and can include a variety of

different elements.

Age Research indicates that susceptibility to CS increases from ages 2 to 12, then decreases
from 12 to 21 [102]. Older individuals tend to experience higher levels of CS [103], possibly
due to age-related changes in the vestibular system. Contrarily, CS is rare in very young
children [104], potentially because their frequent carrying and movement might impact their
vestibular response. Yet, a study [105] suggests that while general VR content’s impact
on CS is age-independent, age influences CS levels with controllable VR content. This
highlights the importance of considering age in developing VR experiences to mitigate CS

risks.

26



2. RELATED WORKS

Gender The role of gender in CS is complex, with studies showing mixed results. Some
research indicates that women may experience more severe CS, while other studies find no
significant gender differences in CS severity. A notable study [106] found an association
between the proportion of female participants using HMDs and increased simulator sickness,
highlighting the need for diverse sampling in VR research. The interpupillary distance (IPD)
issue, where females often struggle to find a suitable fit, suggests a need for VR displays
with a broader IPD adjustment range [107]. The impact of gender on CS, influenced by

factors like IPD, underscores the necessity for further investigation to clarify these findings.

Motion sickness susceptibility Research links motion sickness susceptibility to increased
risk of CS. Motion sickness, caused by conflicting sensory signals, leads to symptoms like
nausea, similar to those induced by VR’s realistic movements. Studies [108, 105, 109, 110]
show a positive correlation between motion sickness susceptibility and CS risk. For instance,
Gavgani et al. [108]| found that individuals with higher motion sickness susceptibility
experienced more severe CS symptoms in VR. Similarly, Katsigiannis et al. [111] noted
that participants with greater motion sickness symptoms were more prone to CS using a
VR exercise bike, suggesting a higher CS risk for those more susceptible to motion sickness.
Additionally, prior VR experience influences CS likelihood. Individuals with previous VR
exposure tend to have lower CS risk [103, 112|; Garrido et al. [103] observed that more
VR exposure correlates with fewer CS symptoms. Repeated VR exposure also reduces CS

symptoms over time [113], indicating the role of familiarity and adaptation in mitigating

CS.

Physical conditions Body awareness, the perception of bodily sensations, has been linked
to increased susceptibility to CS as per Mittelstddt et al. [114]. Altena et al. [115] found
that poor sleep quality could induce CS, indicating that sleep improvement might mitigate
its effects. Kim and Kim [116] reported that individuals with greater retinal eccentricity are
more prone to CS. Furthermore, those with neurological conditions like multiple sclerosis
tend to experience more severe CS symptoms [117]. Xu et al. [118] demonstrated that the
user’s physical position affects CS susceptibility, with standing participants experiencing
more symptoms than seated ones. These studies highlight the significance of addressing

physical conditions and user posture in CS mitigation during VR usage.
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Emotional conditions Some studies have explored the relationship between CS and the
emotional state of the user. Studies [119, 102, 120]| have found that anxiety can contribute
to the experience of CS in immersive VR environments. One study [121] found that negative
emotions, especially anxiety and frustration, were associated with an increased likelihood of
experiencing VIMS. The study suggested that regulating emotions could be a useful strategy
for reducing CS. Additionally, it has been found that individual susceptibility to CS is also
associated with negative emotional responses to VR experiences, and personality traits
such as neuroticism increased the likelihood of experiencing CS [122]|. A study by Wang et
al. [102] used fuzzy logic to predict CS during VR navigation and found that individual
differences in emotional responses, particularly anxiety, and stress, were crucial factors in
predicting CS. These studies suggest that understanding individual differences in emotional
regulation may be important for reducing the likelihood of CS during VR experiences.
Various methods, including physiological and behavioral measures, are crucial for
emotion recognition in VR. The majority of research employs heart rate variability (HRV)
and electrodermal activity (EDA) for measuring emotional arousal, with advanced analyses
like HRV frequency and non-linear domain analyses and partitioning EDA signals into
tonic and phasic components, offering deeper insights. Additionally, central nervous system
measures like electroencephalography (EEG) have become significant, providing unique
insights into emotional responses. Behavioral measures, such as eye-tracking, head movement,
and gait patterns, reveal emotional states through observable behaviors, with some studies
exploring the correlation between gamepad pressure and player arousal and others predicting
affective states from smartphone interactions. Despite these advancements, there’s a lack
of techniques for detecting affective states using sensors in consumer-level VR devices like

Oculus Quest and HTC Vive.

External Factors

Hardware The quality of the VR experience of the user is significantly affected by the
hardware used. Previous studies initially associated CS symptoms with inferior equipment,
assuming that the advancement of technology would alleviate user discomfort [123]. Despite
numerous hardware enhancements, CS persists, as some aspects of the device are believed

to be contributing to the occurrence of VIMS.
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Display resolution “Display resolution” refers to the count of pixels on a screen, indicating
clarity and detail level through pixel rows and columns. In VR, higher display resolutions
are pivotal for crafting realistic, immersive experiences, potentially diminishing CS by
enhancing environmental seamlessness. Wang et al. [124] demonstrated that increasing
render resolution improves gameplay experience and mitigates CS to a certain threshold
without affecting performance. Their research showed significant CS reduction when moving
from 1k to 2k resolutions but found no notable differences in CS between 2k, 3k, and
4k resolutions, highlighting the diminishing returns on higher resolutions beyond 2k for
reducing CS.

Latency Latency, the delay between a user’s action and the virtual environment’s
response, is a key factor in CS. Studies, including Palmisano et al. [125], have shown
that lower latency reduces CS by aligning visual and vestibular cues more closely. This
research also indicated that discrepancies in head orientation between virtual and physical
realms heighten CS, underscoring the conflict between sensory systems. Further research
[126, 127, 128] corroborates that simulator sickness intensifies with increased latency, leading
to heightened nausea, disorientation, and eye strain. Kuwamura et al. [127] observed that
higher latency affects stability, causing more sway in users. These insights underline the
importance of minimizing latency in VR design to improve the user experience and mitigate
CS.

Latency Jitter Jitter, the variability in latency, leads to irregular data delivery timings,
causing user discomfort and disorientation. Stauffert et al. [129] demonstrated that latency
jitter significantly increases CS incidence, with higher jitter levels correlating with more
severe symptoms. Minimizing latency jitter is crucial for enhancing VR experiences and
reducing simulator sickness.

Type of display The display type also significantly affects CS severity. Mittelstaedt et al.
[130] found that users of HMDs reported more CS than those using conventional monitors
in a virtual bike simulator study. Similarly, Choy et al. [131] observed that VR headset
users experienced more CS compared to users of flat or panoramic screens when viewing
stereoscopic 3D videos. Additionally, higher-end HMDs were associated with reduced CS
compared to lower-end models [132]. These findings underscore the importance of selecting

appropriate display types for VR systems to mitigate CS and enhance user experience.
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Type of input Input methods in VR, like hand controllers, treadmills, and motion
sensors, influence CS levels. Mittelstaedt et al. [130] observed in a virtual bike simulator
study that motion controls, such as steering with handlebars, induced more CS than non-
motion controls like joysticks. Monteiro et al. [133] found in a study on first-person shooter
games that gamepad controllers caused less CS than hand controllers. These findings
highlight that the choice of input method significantly affects CS, necessitating further
research to elucidate the relationship between various input methods and CS across different

VR settings.

VR content The design of the virtual environment can have a significant impact on the
likelihood and severity of CS. The virtual content-related factors are as follows:

Visual motion Visual motion stimulus, the movement perceived in a virtual environment,
is a key cause of CS [134]. Studies have shown that higher speeds of visual motion elevate CS
risk [135, 136]. The content’s movement within virtual environments significantly impacts
CS levels, as found by Tran et al. [137] in their evaluation of 360-degree videos’ effects on
user experience. They discovered that content movement within these videos influenced
CS, unlike the device used for rendering. Keshavraj et al. [134] identified a strong link
between vection (sensation of self-motion) and visual motion, especially when peripheral
stimuli were involved. CS severity escalates with increased height and speed in the virtual
environment [136], although brief exposure to turbulent visual motion alone did not induce
CS [138]. Additionally, angular velocity increase leads to higher CS intensity, particularly
when rotation occurs around the X and Y axes rather than the Z axis [139].

Means of Locomotion Research on locomotion methods in virtual environments reveals
their impact on CS due to sensory mismatches between virtual and physical movements.
Control over motion significantly influences CS; Venkatakrishnan et al. [140] reported that
control directly affects presence and indirectly affects CS through presence, with a greater
sense of presence potentially reducing CS. Contrarily, another study [141] indicated that
participants with motion control experienced more CS than those without, particularly
noting that hand-based controls caused less CS than whole-body controls. This implies the
mechanism and extent of control in VR can alter CS susceptibility.

The transition method within VR also plays a critical role; teleportation is identified as

less inducing of CS compared to other techniques, with studies [42, 142, 143, 144| noting its
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effectiveness in reducing CS over naturalistic movements by eliminating visual transitions
and thus sensory conflict. Nevertheless, walking-based locomotion methods are preferred for
their realism when physical exertion is not a concern [145], indicating a balance between
user comfort and immersion needs to be managed in VR design.

Field of view FOV significantly impacts CS in VR, representing how much of the
visual field is encompassed by the VR headset’s display [146, 147]. A wider FOV enhances
immersion by making more of the virtual environment visible to the user. Adjustability in
HMDs allows for varying FOV to user preference. Research indicates that decreasing FOV
can mitigate CS by lessening the visual-physical FOV disparity [148, 149, 150, 151, 152, 153].
However, a too-narrow FOV can diminish immersion and provoke more head movements,
potentially worsening CS [154]. Therefore, optimizing FOV is essential to balance minimizing
CS while preserving immersion in VR experiences.

Type of the content Research has explored how different virtual environment types
affect CS [155, 156, 157|. Environments with action content, fast movements, and abrupt
changes tend to trigger more CS symptoms than static or neutral scenes [158]. Interestingly,
enthusiasts of adrenaline sports are generally less affected by CS. The genre significantly
influences CS, with horror environments causing more discomfort than pleasant ones [156].
The user’s perspective within VR also matters; third-person views are less likely to cause
CS than first-person perspectives [159]. Furthermore, the virtual terrain’s geometry impacts
CS levels, with irregular terrains and bumps increasing discomfort compared to flat surfaces
[157]. Weather conditions in VR may also modify CS severity [160]. These insights are
valuable for VR developers aiming to design environments that minimize CS, though more
research is needed to understand the precise relationships between different virtual settings
and CS.

Duration Recent research underscores the critical role of exposure duration in CS
severity. Studies by Risi and Palmisano [113|, Aldaba and Moussavi [161], and others
have consistently shown that longer VR sessions, particularly with HMDs and during tasks
requiring navigation or motion control, significantly elevate CS risk. Cao et al. [162]| found
higher CS levels from extended use of HMDs compared to desktop displays in VR driving
simulations. Similarly, Treleaven et al. [109] noted increased CS with longer exposure during

neck motion-controlled VR. Porcino et al. [163] utilized ML to confirm prolonged exposure
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as a CS factor in VR gaming, while Zhang et al. [112]| observed escalating CS with more
extended viewing of live-action 180-degree videos. These findings collectively highlight the
necessity of managing exposure times in VR settings to mitigate CS risk.

Visual complexity Visual complexity in VR content, or the quantity of visual infor-
mation presented to users, has been identified as a contributing factor to CS. Research
indicates that higher visual complexity elevates the risk of CS. A study by Kuosmanen et al.
[164] demonstrated that participants exposed to VR content with high visual complexity
experienced more severe CS symptoms than those exposed to content with low visual
complexity. Pouke et al. [165] also found a positive correlation between visual complexity
and CS symptoms. These results suggest that minimizing VR content’s visual complexity
could lessen both the occurrence and intensity of CS, achievable through the simplification
of visual elements or optimization of graphics settings to present less visual information to

the user.

2.3.3 Measurement of CS

The VR industry’s growth necessitates measuring CS to enhance user experiences and
identify at-risk individuals. Measuring CS is crucial for developing more comfortable VR
environments, understanding its prevalence, severity, and guiding research on its causes,
effects, and mitigation. With VR’s expanding role in therapeutic areas like pain management,
phobia treatment, and post-traumatic stress disorder intervention, assessing CS ensures
patient safety and therapy efficacy. Recent studies have emphasized the importance of
measuring CS, leading to the development of the CS Evaluation System (CES). CES utilizes
inputs ranging from questionnaires to physiological signals like heart rate (HR) and brain
activity, processing these to evaluate a user’s CS state. The discussion on CS measurement

encompasses various methodologies based on a comprehensive literature analysis.

Inputs of CS evaluation

In computer science, the principle of "garbage in, garbage out" (GIGO) highlights the de-
pendency of output quality on input quality; incorrect data input leads to undesired outputs.
Our survey classified inputs for quantifying CS levels into four categories: questionnaire,

physiological, behavioral, and content types.
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Figure 2.3: Taxonomy of various measurement techniques of CS

Questionnaire-based input Subjective measurement of CS utilizes self-report question-
naires like the Simulator Sickness Questionnaire (SSQ) to rate discomfort and disorientation.
Administered before, during, or after VR experiences, these questionnaires are crucial for
assessing CS, allowing for the analysis and generalization of results. The SSQ, divided into
oculomotor, disorientation, and nausea subscales, is particularly noted for its standardized
approach, comprehensive symptom assessment, ease of administration, and quantifiable
results, making it the primary tool for CS evaluation [166]. However, the SSQ’s reliance on
self-reporting and its origin in flight simulation pose challenges, including potential bias
and a lack of VR specificity. To overcome these limitations, modifications and alternative
questionnaires have been developed. Bouchard et al. [167]| proposed adjustments for better
VR suitability, while Kim et al. [168] introduced the VRSQ, focusing on efficiency and VR
relevance. Other adaptations, like the CSQ [169], the Misery Scale (MISC) [170, 171, 99|,
and the Fast Motion Sickness Scale (FMS) [172, 173, 174], address specific VR conditions
or offer improved psychometric properties. Additionally, tools like the Motion History
Questionnaire (MHQ) [175, 176], Motion Sickness Susceptibility Questionnaire (MSSQ)
[177, 178], Visually Induced Motion Sickness Susceptibility Questionnaire (VIMSSQ) [179],
Nausea Scale [180, 181, 182], and the Motion Sickness Assessment Questionnaire (MSAQ)
[183] further enrich CS assessment by measuring susceptibility and overall discomfort. These
diverse tools highlight the importance of using a combination of measures for a comprehensive

understanding of CS’s effects in VR.
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Physiological and biometric input Subjective measurement of CS heavily relies on
communication from users, which may not always be reliable.However, advancements
in technology and the availability of sensors have enabled the use of physiological and
biometric inputs to detect CS. Inputs like HR, galvanic skin response (GSR), and EEG,
show significant changes during CS episodes [184, 185, 186, 187|. These objective measures,
combined with ML and DL models, offer non-verbal ways to detect CS. Event-related
potentials (ERP) are also impacted by CS, suggesting ERP analysis could indicate CS levels
[188]. EEG, particularly, is extensively used to detect CS, with research indicating specific
brain pattern changes and network disconnections post-CS exposure [127]. DL applied to
EEG data enhances CS detection [189], analyzing power spectrum and waveform. Heart
rate variability (HRV) from electrocardiograms (ECG) [190], along with other signals like
electrogastrogram (EGG), electrooculography (EOG), and photoplethysmography (PPG),
contributes to CS quantification. Variables derived from these signals, such as EEG power
bands [191, 192, 193, 187, 194, 189, 195, 196, 197], EOG potentials [193, 198, 184]|, and
GSR [198, 184, 185, 199, 200], are used to quantify CS. Despite some inconsistencies, the
diversity of physiological and biometric data presents new directions for CS detection
and understanding, highlighting the need for further research to refine prevention and

intervention methods.

Behavioural input Behavioral inputs like postural sway are key in assessing CS, with
axial movements or center of pressure (COP) changes during VR exposure serving as
indicators [201, 99, 202, 203, 204|. Studies have linked these metrics with CS prediction
[205, 206, 207] and found positive correlations with subjective self-reports [208], affirming
the relationship between postural instability and CS severity [116, 209, 210, 211, 212].
Eye-related factors, including eyeblinks [193, 198, 184, 213|, distance heterophoria [214],
eye position changes [215], and vergence/accommodative responses [216], are also studied
as CS indicators. Jeong et al. [217] and Chang et al. [218| explored eye-tracking data’s
predictive value for CS, with Wang et al. [219] and Lopes et al. [220] investigating eye
movement and blink rate for real-time CS detection. Additionally, weight shifts [193, 221]
and head/waist movements [193, 222| from body sensors have been analyzed as potential CS
measures, underscoring the significance of blink rate, head /body movement, and postural

sway in CS evaluation.
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VR content-based input The complexity of visual environments in VR is known to
influence CS. Studies have utilized VR content features for CS assessment. Padmanaban et al.
[223] demonstrated a correlation between vection, CS, and relative motion depth, employing
FlowNet [224], a convolutional neural network-based optical flow algorithm, to analyze
motion depth and predict CS. Optical flow and depth cues, critical for self-motion perception
and presence in VR, can trigger CS when altered, serving as potential indicators for CS
episodes. Identifying conflicts in these cues can aid in pinpointing CS contributors, allowing
for design and technological mitigations. Kim et al. [225] highlighted exceptional motion
velocity in VR content as a significant CS factor, using a deep convolutional autoencoder

network in their research to measure CS.

Evaluation Process Upon receipt of the input, whether objective or subjective, it is
imperative to process or interpret the data to assess CS. This evaluation process can be
broadly categorized into two distinct methods - manual evaluation and ML-based evaluation.
The former entails human intervention and cognitive processing, while the latter relies on
automated algorithms and artificial intelligence. The choice of evaluation method is typically

dependent on the specific needs and context of the analysis.

Manual Evaluation This category encompasses the evaluation of CS through the inter-
vention of human cognition and processing. Typically, any assessment conducted by means
of questionnaires, such as the SSQ, VRSQ), falls under this category [226, 227, 167, 228, 229,
179, 168|.

Machine-learning Based Evaluation The categorization of ML models based on their
explainability has garnered significant attention in recent years. The classification framework
includes four categories - Transparent Models, Interpretable Models, Black Box Models, and
Hybrid Models. All types of models come with their own advantages and disadvantages.
It is important to consider various aspects of the models while selecting the appropriate
model for a particular application.

Transparent models and Interpretable models Transparent models offer insights into
their decision-making process, making their inner workings easily understandable, while

interpretable models, although similar, allow for greater customization and detail in under-
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standing input-output relationships. Objective inputs like EEG, motion-to-photon latency,
and postural stability have been explored for predicting CS onset, with many researchers
[230, 231, 232, 233, 234, 235, 236, 237, 238| employing transparent model approaches to
analyze these inputs’ relationship with CS. For example, changes in EEG power spectra in
theta (4-8 Hz) and alpha (8-13 Hz) bands are associated with CS [239]. Dennison et al. [184]
used stepwise regression analysis with physiological measures to predict CS. Interpretable
ML algorithms like CN2 rule induction [192], Bagged Decision tree [193], Naive Bayes [195],
KNN [222], LDA [193], and LSTM regression analysis [199] have been applied to measure CS.
Kundu et al. [240| combined ML techniques, including the Explainable Boosting Machine
(EBM), decision tree, and logistic regression, to elucidate CS from bio-physiological and
subjective data. Interpretable models enhance model trust by providing clear explanations
of their predictions, thus improving transparency and accountability in ML systems.

Black Boxr Models Black box models, characterized by their opaque decision-making
processes, utilize ML and DL algorithms for CS detection, analyzing both objective and
subjective data. Jin et al. [241] tested Long short-term memory (LSTM), Convolutional
Neural Network (CNN), and Support Vector Regression (SVM) classifiers for CS discomfort
levels, finding LSTM most effective. Lee et al. [242] enhanced CS detection accuracy by
integrating optical flow, disparity, and saliency features using a 3D-CNN and a multi-modal
deep fusion method, outperforming previous methods. Jin et al. [241] and Kundu et al.
[243] respectively utilized CNN and LSTM for cognitive state estimation from brain signals
and Kalman filtering techniques with LSTM for CS, highlighting the effectiveness of black
box models. Despite their accuracy, these models demand extensive data and computational
resources, and their complexity makes them difficult to interpret.

Hybrid Models Hybrid models merge multiple ML models to enhance accuracy and
decision-making transparency. Lee and Alamaniotis [244] introduced a Deep Embedded Self-
Organizing Map (DESOM) combined with an EEGNET-based Auto-encoder, outperforming
KNN and SOM with high purity (0.96875) and NMI (0.42561). Li et al. [222] utilized a
voting classifier incorporating Random Forest, KNN Classifier, Logistic Regression, and
Multilayer Perceptron Neural Network, achieving notable accuracy (0.911) and kappa
(0.80) for CS classification among 20 subjects, with binary classification accuracy at 0.763

and three-level classification sensitivity values of 0.791, 0.504, 0.867, and kappa of 0.51.
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Hybrid models blend black box and transparent model benefits, offering predictive accuracy
alongside interpretability—crucial in fields like medical diagnosis. They provide design and
optimization flexibility by combining different models’ strengths, such as using deep neural
networks for feature extraction and decision trees for classification. This approach enables
efficient resource use and quicker training. Hybrid models stand as a robust tool in ML,
facilitating the integration of diverse model advantages while addressing their limitations.

Classification based on the event of measurement CS detection involves identifying data
linked to an ongoing CS event, while prediction focuses on forecasting future CS based
on preceding data. Most studies [184, 192, 193, 195, 196, 197] have concentrated on CS
detection using physiological signals. However, a smaller number of studies [184, 185, 199]
have aimed at predicting CS with physiological signals. Additionally, research utilizing video
features for CS prediction includes works by (245, 246, 247, 248, 249, 225, 250, 237, 251, 252].
There’s a noted gap in studies predicting CS incidents through pre-VR immersion baseline
measurements and in ML research predicting CS susceptibility or imminent episodes using

an individual’s typical physiological state.

Output of CS evaluation The output from CS self-report questionnaires is scores or
ratings reflecting users’ subjective symptoms like dizziness, nausea, and disorientation
[167, 168, 179, 190, 229, 227, 228]|, used to gauge CS severity. ML-based CS detection and
prediction models provide outputs as binary or multiclass classification labels or a calculated
sickness score from physiological signals or other data. These outputs indicate CS likelihood
or severity based on model inputs. For example, Islam et al. [253] categorized sickness levels
as Low, Moderate, or Acute, while Khoirunnisaa et al. [196] distinguished between sickness
presence or absence. Dennison et al. [184] used a regression model to assign a quantifiable

sickness score, measuring CS severity experienced by users.

2.3.4 Work on CS mitigation

CS poses significant challenges within VR, necessitating efforts to reduce its effects to enhance
user experience, safeguard health and safety, and boost VR adoption for the industry’s
growth. Mitigation requires actions from both users and developers, although strategies

often trade off CS reduction with the sense of presence in VR. This review consolidates
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various CS mitigation strategies from existing literature, addressing both developer and
user perspectives, aiming to develop effective solutions without detracting from the VR

experience.

Mitigation strategies from developers’ perspective

Developers have devised multiple strategies to mitigate CS in VR, ranging from virtual
environment modifications to hardware adjustments. Altering the FOV is a proven method
to reduce CS by limiting peripheral optical flow [148, 149, 150, 151, 152, 153, 254, 255, 256],
though it may affect the sense of presence and task performance [257, 258|. Dynamic FOV
adjustments, utilized in commercial VR games [259, 150], and foveated FOV restrictors
[260] aim to balance immersion and nausea reduction. Adaptive FOV restrictors [261], side
restrictors [149|, and ground-visible restrictors [262] offer innovative approaches to minimize
CS while maintaining user immersion.

Blur effects like depth of field (DOF) and peripheral blur [263, 264, 265] have been
explored to reduce CS by simulating natural visual focus, with dynamic DOF blur [266, 267|
showing effectiveness in alleviating CS symptoms. “Rest frames” such as clouds [268], grids
[269, 270, 271], and a virtual nose [272, 273] have also been used to reduce CS with varying
implementations like wireframe models [274], reticles [275], and dynamic rest frames [276]
showing potential in CS mitigation.

Optical flow manipulation [277, 278, 279, 280, 281| and hardware alterations, including
sparse peripheral displays [282, 283] and novel camera setups [284, 285], address CS by
enhancing visual congruency or reducing motion blur. Galvanic vestibular stimulation (GVS)
[286, 287, 288, 289|, haptic cues |72, 290, 291, 40, 292|, and acceleration matching [293] are
physical interventions aimed at aligning sensory inputs to reduce CS.

Different locomotion techniques, like teleportation and dynamic speed adjustments
[294, 295, 296], have been proposed to lessen CS by minimizing visual-vestibular conflicts.
Novel VR navigation solutions, such as invisible ramps for virtual stairs [297], aim to improve
user comfort. Additionally, innovative VR camera controls [298] and rendering techniques
[299] like Dynamic Mono-Stereoscopic Rendering System (DMSRS) have been explored to
diminish CS while preserving user experience. These diverse approaches reflect ongoing

efforts to address CS from multiple angles, highlighting the complexity of developing effective
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CS mitigation strategies in VR.

Mitigation strategies from users’ perspective

To mitigate CS, user-initiated countermeasures are crucial due to CS’s subjective nature
and varying susceptibility. Limiting VR exposure to 55 — 70 minutes can prevent severe
symptoms [300], and repeated short to longer exposures can foster habituation, reducing
symptom intensity over time [301]. Slow diaphragmatic breathing has been shown to alleviate
CS by enhancing the parasympathetic nervous system’s tone [302, 43]. Acustimulation
presents a nonintrusive, cost-effective potential solution [303]. Over-the-counter anti-nausea
medications, used before VR exposure, can effectively combat CS, and alcohol at specific
concentrations has been shown to reduce CS symptoms, though further research is needed
for safety validation [304].

Home remedies like chewing gum and ginger root offer accessible CS relief [305, 306],
despite some conflicting studies [307]. Olfactory stimuli, such as peppermint aroma, have
been effective in reducing CS, albeit with limitations regarding nausea [308]. Pleasant
music also reduces CS, offering a low-cost, easy-to-use intervention [174|. External airflow,
suggesting a tactile “white noise” effect, has been shown to lessen CS symptoms without
specialized equipment [309]. Positive framing could mitigate nocebo effects associated with
CS, advocating for further research on its broader applications [310]. Training to enhance
visuospatial skills may also diminish CS effects [311], highlighting a multifaceted approach

to managing CS in VR users.

2.3.5 Research gaps in CS

Despite being a well-known issue in the VR community, there are still gaps in the research
on CS. After critically analyzing a carefully curated list of 223 highly relevant research
papers on various aspects of CS, we have identified several research gaps in the field (table
2.2). Addressing these research gaps will enable us to advance our understanding of CS and

develop effective countermeasures for it.
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Research topic

Title

Remarks

Causes of CS

Role of the physical
environment in In-

ducing CS

There is a lack of research on how physical environ-
ment elements like room size, temperature, ventila-
tion, and lighting plays a role in inducing CS. Know-
ing how these elements play a role in inducing CS
will enable us to come up with strategies to mitigate
CS by altering the physical environment elements

accordingly.

Role of ethnicity in

causing CS

Although some studies [102] have looked into how
ethnicity affects CS, there is still a requirement for
more study. Ethnicity may be able to explain some

degree of subjectivity associated with CS.

Role of gender in in-

ducing CS

Although some studies [107, 312, 313] found that
gender plays a role in inducing CS, there have been
some contradictory studies suggesting that gender
does not play a crucial role in causing CS. Further
research is required on this front. Also, to remove any
gender biases in the study, there is a need to conduct

gender-neutral studies.

Role of visual dis-
ability in inducing

CS

It is reasonable to assume that users of VR technol-
ogy with impaired binocular function caused by issues
with convergence would experience greater oculomo-
tor side effects than those with normal vision. Further
research is required to establish vision impairment as

a potential factor in causing CS.

Role of the genre of
VR content in in-

ducing CS

There is a lack of uniformity in genre classification
systems and the need for more qualitative research.
More research is needed to understand the relation-

ship between the genre of the content and CS.

Measurement

of CS

Lack of standard-

ized metric

There is a lack of standardized metrics present in the
literature that can objectively compare the effective-
ness of different measurement techniques. The lack
of a standardized metric makes it difficult to compare

different studies.

Continued on next page
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Table 2.2 — continued from previous page

Research topic Title Remarks
Unavailability Lack of data in large quantity is a bottleneck in
of large, quality | measuring CS accurately. Without acquiring data in
datasets larger quantities, we would not be able to leverage

cutting-edge DL methods to measure CS. Also, a lack
of data will be a roadblock in developing a model

that is able to generalize well.

Lack of explainabil-
ity of ML/DL mod-

els

Lack of predictive
models for CS

Although Kundu et al. [240] proposed predicting and
detecting CS using explainable ML (xML) models,
there is a lack of research regarding using xML to
measure CS. The trustworthiness of ML/DL models
can be greatly increased by having inherent inter-
pretability, which can give an understanding as to
why a certain conclusion was reached by the model.
This will also help researchers understand which fac-
tors contributed more towards CS, and accordingly,
mitigation strategies can be proposed.

Majority of the study we reviewed used models to
detect CS from physiological signals. We observed
that there is a scarcity of studies in the literature
concerning the prediction of CS using physiological
signals. Predicting CS symptoms before it actually
happens would allow both the developers as well as

the users to take adequate preventive measures.

Investigation of
various eye-tracking
data as features to

measure CS

As there is a number of eye-tracking features available,
e.g., pupil diameter, pupil position, gaze direction,
gaze origin, eye openness, etc., there is a need to
study how different combination of eye features can
be used to measure CS. Further studies are required
to understand the significance of each component of

the eye-tracking data.

Continued on next page
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Table 2.2 — continued from previous page

Research topic

Title

Remarks

Using only sensor
data of commer-
cially available
HMD to measure

CS

Research by Islam et al. [253] suggested that it is
possible to measure CS using only the data available
from sensors present in commercially available HMDs.
Further research is required on this front. One sug-
gestion for the future is to integrate controller data
along with HMD sensor data to measure CS. Further
research can also be done on the real-time prediction
of CS by integrating VR video content data along

with sensor data.

Use of incremental

(online) learning

ML models would greatly benefit if we incorporate
incremental (online) learning, making the models

more robust.

Prediction of emo-
tional state using
only sensor data of
commercially avail-
able HMD to antic-
ipate the induction

of CS

We found in literature that the emotional state
of a person is co-related to the induction of CS
[105, 119, 120]. However, we didnot found any work
that recognise emotion from the the sensors readily

available in a consumer-grade HMD.

Mitigation of
CS

Lack of CS-specific

medication

Over-the-counter medications often prescribed for
CS, are primarily for MS. Since there is a significant
difference between MS and CS, it is suggested to de-
velop CS-specific medications. To test the efficacy of
novel medications and their delivery methods, further

investigations are required.

Controlled breath-
ing as mitigation

technique of CS

Controlled breathing has been proven to be helpful
in reducing CS symptoms [302, 43]. More research
is required to understand how controlled breathing
helps in the reduction of CS and further optimize the

technique to increase its effectiveness.

Role of soothing en-

vironment elements

More research is required on the usage of music and

pleasant aroma as mitigation techniques of CS.

Continued on next page
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Table 2.2 — continued from previous page

Research topic Title Remarks

Adaptive mitigation | Mitigation techniques of CS cannot be generalised.
based on the sever- | Applying the proper CS mitigation strategy with
ity and the cause of | required level of intensity by identifying the exact
the sickness reason and the intensity of CS can provide more

specific solution to CS. More research needs to be

done in this direction.

Table 2.2: Research gaps

2.3.6 Guidelines for mitigating CS

Most Immersive VR experiences come with some sort of undesired symptoms of CS. In a
study by Regan and Price, [314], more than 60% of the 146 participants reported symptoms
of CS at some point throughout a twenty-minute immersion and ten-minute post-immersion
phase. This statistic suggests that it’s highly likely that a user will experience some sort of
undesired symptoms of CS during longer exposure in the virtual environment. Researchers
have still not found a way to stop CS completely. In fact, as of now, we are not even close
to completely uprooting the problem of CS. Hence, it’s extremely important to reduce the
impact of CS as much as possible. Otherwise, users will not adopt VR technology, owing
to the terrible user experience due to CS. Hence, there is a need for preventive measures
to tackle the problem of CS. It’s crucial for the developers to adhere to a few rules when
producing VR content, as well as for the users when consuming that VR content. After a
thorough review of the literature, we are proposing a set of mitigation guidelines for both
the developers as well as the users. These set of guidelines, when followed, will be able to

reduce the impact of CS, as backed by several studies found across the literature.

Developer guidelines

1. Developers should allow for adjustable IPD in HMDs as studies show smaller IPD in
females lead to poor HMD fit and increased susceptibility to CS. [107].

2. Reduce application to photon latency, also known as motion-to-photon delay (MPD).
3. Repetitive patterns (like gratings) and high spatial frequency content (like stripes,
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10.

11.

12.

13.

tiny textures, etc.) should be minimized or avoided as they might cause discomfort
and feelings of vection. Flatter textures should be preferred to patterned ones, such

as those that are solid colours.

. Limit or eliminate the usage of elements that create vertical acceleration (such as

stairs), as horizontal optical flow when climbing (vection) and vertical acceleration
can both cause symptoms. Ramps might be a better alternative, but they should only

be utilised occasionally.

. To lessen the symptoms of CS, rest-frame graphical cues can be displayed in the

foreground as well as panorama elements in the background.

. Implied acceleration and deceleration in the optic flow should be kept to a minimum.

As hyperrealistic graphic is known to induce CS, developers should provide the
functionality of dynamically downgrading the rendering quality of the VR content in

order to mitigate CS.

. Depth cues that try to mimic real-world cues can be used to mitigate CS. For user

tasks, blurring less significant areas of the image may also be helpful in reducing the

impact of CS.

. Maintain a stable frame rate for smooth movement in VR, which can reduce the risk

of CS.

Provide comfort settings in the VR application to give users the ability to adjust the
intensity of certain effects, such as motion blur, and subsequently minimize the risk of

CS.

Inform the user if the VR content will invoke CS symptoms or not. This way, users can

make a choice to participate and adequately prepare themselves for the VR experience.

Notify the VR user about their exposure time in the virtual environment and accord-

ingly give them suggestions about avoiding CS symptoms.

Design shorter duration VR content so that users can enjoy them in one sitting and

reduce the risk of developing severe CS symptoms.
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User guidelines

2.4

. User should take short breaks in between VR sessions. A single VR session should

not be very long (typically 15 — 20 minutes).

. New users of VR technology are advised to start slowly and gradually build up their

exposure. They should begin with shorter sessions and gradually increase the time

spent in VR.

While trying out VR technology for the first few times, it is advised to have someone

by their side so that in case of emergency, they can take the necessary steps.

Find a comfortable HMD that fits the user properly and maintains proper hygiene of
the HMD.

Avoid sudden, rapid head movements while using VR as that can cause discomfort

and contribute to CS.

Users should avoid indulging in VR technology if they are carrying some physical

illness.

Users should take preventive medicines, like anti-nausea and anti-vertigo medicines,
when they start to feel symptoms of CS. These medicines take time to work. Hence,
preventive measures should be taken as soon as the user feels uncomfortable in the

virtual environment.

Certain VR content may induce CS symptoms in only a specific group of VR users.
As CS is extremely subjective, it’s important to understand your own preferences and

accordingly decide whether to avoid or indulge in certain VR content.

Off-screen POI visualization for enhancing Wayfinding in

XR

XR navigation, encompassing VR, AR, and MR, employs a variety of innovative wayfinding

techniques and strategies to enhance user experience in navigating both virtual and aug-

mented spaces. One fundamental approach is the use of visual cues, such as arrows, paths, or
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highlighted objects, which guide users towards their destinations by drawing on the intuitive
understanding of physical world navigation [47, 315]. Auditory cues [316, 317], including
spatial audio and verbal instructions, complement visual aids by providing directional
guidance and contextual information through sounds that appear to emanate from specific
locations in the user’s environment. Haptic feedback, through wearable devices like gloves
or vests, offers another layer of navigational aid by simulating the sensation of touch or
resistance, thereby providing intuitive cues for direction or the presence of virtual obstacles
[318].

Another sophisticated strategy involves adaptive interfaces that dynamically adjust to
the user’s needs, preferences, or physical movements, thus offering personalized navigation
assistance. For instance, a system might display guidance based on the user’s current
focus of attention or the complexity of the environment [319]. Cognitive mapping is
encouraged through environmental landmarks and spatial layouts designed to be memorable
and easily interpreted, aiding users in forming mental maps of the virtual space for better
orientation and recall [320]. Additionally, collaborative navigation techniques in multiplayer
XR environments enable users to guide each other, sharing waypoints or paths, thereby
leveraging social interaction as a means of wayfinding [321, 322].

A persistent challenge in XR wayfinding is managing off-screen POlIs, which are crucial
destinations or objects that lie outside the user’s current field of view. Addressing this
challenge enhances wayfinding significantly by ensuring that users are aware of important
locations or items that are not immediately visible [323]. Techniques such as off-screen
indicators, which can take the form of arrows or icons on the display, gently guide the
user’s attention towards these POIs by suggesting the direction in which to turn or move.
Furthermore, augmented reality can overlay contextual information or virtual pathways
onto the real world, seamlessly integrating off-screen POIs into the user’s navigational
context. This integration not only solves the problem of off-screen navigation but also
enriches the user’s spatial understanding and engagement with the environment, making
wayfinding in XR a more intuitive and effective experience [324]. However, the use of
excessive on-screen cues or large-sized visualizations on handheld devices can lead to clutter
and make it challenging for users to distinguish between different POIs [325, 44].

In the literature, several approaches have been suggested for displaying huge information
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spaces on the constrained screens of mobile devices. When possible, the information space
is restructured using content analysis to create sections of relevant content that fit on the
display screen. Techniques to present information on devices that exist beyond the scope of
the device’s screen are classified into Focus+Context (F+C), Overview+Detail (O+D), and
contextual view techniques [326]. These are the representative techniques for navigating in a
place that does not fit entirely on the screen. In O+D techniques, an overview is present in
a separate view with a detailed view showing the user the currently focused object(s). The
overview may be a top-down view of the whole workspace attached to the detail view. The
detailed and overview views may be tightly coupled together. However, To absorb the two
views, users must continually stare at them. One of the examples of O+D visualization is
miniature map visualization [327]. F-+C approaches simultaneously display the information
space at various levels of detail without dividing it into various viewpoints but distorting
the view of the environment. For instance, fisheye views [328| presents both the detailed
map (Focus) and the wide-area map (Context), distorting the information landscape. The
contextual view makes use of proxies to simulate relevant data (the off-screen objects) in the
environment. One example of a contextual view technique is visualizing off-screen objects
with a wedge [44]. These types of visualization techniques do not distort the information
landscape and do not demand extra mental effort like O-+D techniques. There is no single
answer to which method is better for off-screen POI visualization as it depends on various
factors, such as the user’s task, the specific AR application, and the user’s preference.
However, the contextual view method is helpful for small screens because it saves space
while allowing us to see the bigger picture. It can also be combined with other methods
[34, 329].

The 2D counterpart of the problem inspires many works in AR off-screen POI vi-
sualization. However, using proxies in 2D screen space comes with limitations due to
their anchorage in a device’s 2D screen space, limiting the discrimination to front-rear
and above-below. Extra visual or auditory cues must be used to determine an object’s
3D distance or enable front-or-rear discrimination. For instance, textual annotations were
added to the arrows in SidebARs [37] handheld AR visualization to indicate the distance to
the items that were out of view. Baudisch et al. [45] proposed Halo2D, which visualizes

the off-screen POls via arcs of circles centred at POIs with radii slightly greater than the
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distance between the POI and the closet border of the screen. The point where the arc of
the circle comes together shows which way to go towards the POI. Gustafson et al. [44]
introduced an improvement over Halo2D by using isosceles triangles whose one end lies on
the POI and the other two ends inside the device’s screen space. The triangles, termed as
Wedges, can re-orient themselves to reduce cluttering. However, proposed 2D visualizations
do not effectively communicate the location of things in 3D contexts [330]. While these
techniques have shown improvements, they still have limitations in providing information
about front-or-rear and above-or-below discrimination.

2D visualizations are not always adequate to represent the target’s 3D position and
distance. To address this issue, many researchers have introduced out-of-view object
visualizations that rely on 3D proxies, and these visualizations have been shown to have
several advantages. Shapes such as 3D versions of arcs [331], arrows [315, 332], and wedges
[48] have been commonly studied as proxies for off-screen objects. In the early days of AR,
Feiner et al. [333] used rubber band-like visualization to guide the user to an off-screen
POI while highlighting the object itself. Attention funnel [334] uses a series of rectangles
beginning at the user and ending at the object to guide the user. These approaches suffer
because the visualization cues are relatively big to the screen size and can overlap, which
leads to screen clutter. Halo3D [10], an extension to Halo2D, first projects the POI existing
in 3D space to the device’s plane and uses the distance of the projected point to the closest
border to draw an arc protruding into the screen. The projection technique does not allow
front or rear disambiguation of POlIs at all, as POIs may project onto the same screen space
point even if they differ in their directions, resulting in the same visualizations. Halo3D [331]
only allows the user to get a vague sense of the POI’s direction in the screen plane. The
user may get some idea of the direction using the distance cue (arc length), but that seems
cognitively tricky. Moreover, in high-density POI regions, there is an overlap of arcs which
causes cluttering. Aggregation of arcs is used, but that fails for even greater high-density
environments [44]. Difeng et al. [48| developed an off-screen POI visualization technique for
HMD users called 3Dwedge+. They found this technique performs better in distance and
direction awareness compared to some O+D techniques, namely, Radar and 3D Minimap.
Another technique called EyeSee360 [47] was proposed specifically for head-mounted AR

devices. It uses two concentric ellipses, where an inner ellipse and the boundary by the
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Techniques Research gaps
2D metaphors Unable to provide front-or-rear and above-or-
[37, 44, 45| below discrimination
Hard to represent the 3D position and distance
of a target

Low direction awareness
No distance information is provided
Front or rear discrimination is not clear

AroundPlot [50]

Halo 3D [331] Creates visual clutter with a higher number of
POIs
3D Arrows Interface becomes hard to read in large number
[32, 315, 332] of POIs
Occludes the central part of the screen
EyeSee360 [47], Designed for HMD based AR system
Wedge 3D+ [48], Can reduce direction and distance awareness
CompassbAR [49] when the number of POI is more

Used for visualizing single POI. Will cause clutter

3D Bezier Curve [36] when the number of POI increases.

Table 2.3: Research gaps in the prior work

outer ellipse represent the FoV. A mixture of size and colour is used for the representation
of distance.

3D Arrows have also been used as a visualization tool. Single 3D arrows have been
tested for directing the user’s attention while driving vehicles [335, 336]. They have also been
employed for multiple objects. 3D arrows, such as those found at [332], enable the display
of the POI’s direction in reference to the device’s centre. The arrows are in the centre of the
screen in an egocentric view. Because of using a central point for affixing the arrows in the
centre, the interface becomes hard to read in high-density regions as the arrows begin to
overlap. Positively, front—back disambiguation, along with verticality indication, is improved.
In FlyingArrow [337], the arrow flies from the user’s point-of-view towards the off-screen
POI and returns a sound signal when it reaches the off-screen POI. The distance is mapped
to the flight duration of the arrow. A study by Sathaporn et al. [338] found FlyingARrow
with trails to be useful for devices with limited field-of-view. Another study conducted by
Jo et al. [50], compared three visualization techniques: 3D arrow clusters, F+C, and O+D.
Results showed that the use of 3D arrow clusters yielded a similar performance as the F+C
technique, which outperformed the O+D visualization. However, when the number of items

increased to 50, participants exhibited lower accuracy with the 3D arrow cluster compared
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to the F4C technique. The authors concluded that this decrease in accuracy was mainly
due to the occlusion of arrows, leading to confusion. They proposed a system called Around
Plot, which is based on the F+C approach. Here, a transparent frame is overlaid on the
device’s screen, where Off-screen POls are visualized as dots. An egocentric projection
technique is used where the rotational angles needed to get an off-screen POI into view are
used to project the POI into the screen’s plane. The projected points are simply visualized
as small quads. Though the projection method allows the user a vague sense of direction of
off-screen POls, it is not as apparent as using 3D arrows. Furthermore, in this technique,
there is no way to show the distance information apart from showing texts, which may cause
on-screen clutter. It is evident that techniques with lower visual clutter exhibit significantly
better performance than the variant with the highest visual clutter [44, 339]. The techniques
mentioned above are employed to present off-screen POIs in AR applications. Most of these
techniques demonstrate the direction of POIs either directly or indirectly. However, some
techniques, such as the O+D techniques, fail to differentiate between POIs with varying
altitudes. Additionally, several methods offer distance perception but can create visual
clutter on-screen in environments with high POI densities, which may compromise overall
performance. As a result, these visualizations are not ideal for scenarios involving POI
visualization while navigating through densely populated indoor/outdoor marketplaces with
numerous POIs (i.e., over 15). We have presented the research gaps of the prior works in

Table 2.3.

2.5 Summary

In this chapter, we explore VLTs and their significance in enhancing navigation within XR
environments. The discussion begins with an overview of the challenges and importance
of VLTs in creating realistic walking experiences. We delve into different strategies for
delivering a realistic walking experience and highlight the importance of refining this aspect
in system-automated VR tours. Furthermore, we identify a research gap in predicting a
user’s instantaneous walking speed during a system-automated VR tour, emphasizing the
need for advancements in this area.

The chapter further delves into the systematic review of CS, addressing its causes,

measurement, and mitigation strategies, highlighting the need for a holistic understanding of
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this phenomenon to develop effective solutions. Various measurement techniques, including
questionnaires and physiological and behavioral inputs, are evaluated for their effectiveness
in detecting and predicting CS. Mitigation strategies from both developers’ and users’
perspectives are presented, offering guidelines for reducing the impact of CS and enhancing
the VR experience. We also identified various research gaps in this field and based on our
analysis provided several insights for future research.

Additionally, the chapter discusses off-screen POIs visualization in XR to improve
wayfinding. Various techniques for displaying information beyond the device’s screen are
explored, including F+C, O+D, and contextual view techniques. The chapter discusses the
gaps in the prior works on off-screen POI visualization in smartphone-based AR, highlighting
the limitations of 2D metaphors and the advantages of 3D proxies for better direction and
distance awareness. We point out the challenge in presenting the POIs on a smartphone

screen when the number of POIs increases.
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CHAPTER

Enhancing Realistic Walking Experience in
System-automated VR Tours

3.1 Introduction

Walking in a VR environment is one of the significant interactions in VR. The speed at
which a user travels plays a significant role in their virtual experience. As mentioned earlier,
to simulate a realistic walking experience, it is crucial to match the virtual travelling speed
with the user’s actual walking pace [39]. However, determining the actual walking speed for
a system-automated tour can be challenging since such tours do not allow for ongoing user
input, making it impossible to adjust the virtual speed based on user movements. Previous
studies have utilized a fixed walking speed to simulate movement, but this approach does
not account for the natural variability in a person’s speed. We propose that simulating the
user’s actual, instantaneous speed could more effectively enhance realism compared to a
uniform speed.

This chapter seeks to answer two main questions:

e How can we predict the instantaneous walking speed of a user with no continuous user

input?

e Does the usage of the instantaneous walking speed in a system-automated tour enhance

the realistic walking experience than the usage of the constant speed?

In order to address these questions, we present a model for estimating users’ instan-
taneous walking speed while moving from one point to another. This model dynamically

computes users’ walking speed, knowing their (actual) height and position in the virtual
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world from the source and the known destination. We validated the model with the help of
an empirical study. We also conducted a user study to compare the perceived realism while

using the walking speed predicted by our model with the constant walking speed.

3.2 Proposed model

As discussed before, a person’s walking speed depends on the step frequency and step length
(that depends on the height) (eq. 2.2). The walking velocity, on the other hand, keeps on
changing throughout the travel. To estimate the instantaneous natural walking speed, we
first built a model that predicts the actual instantaneous walking speed by predicting the

instantaneous step frequency.

3.2.1 Model building

In order to build the model, we conducted an empirical study and gathered some real

walking data.

Participants  We recruited 40 participants (26 males, 14 females) aged from 19 to 42
years (Mean= 29.825, SD= 6.025), with heights of 150 to 184 cm (Mean= 166.14, SD= 8.18)
to take part in our study. The participants were undergraduate and postgraduate students.

All of the subjects had normal or corrected vision and were free of physical deformities.

Procedure This study was intended to gather real-life walking data when a user moves
from one point to another and propose a speed estimation model. Before starting the
experiment, we informed each participant about the procedure. However, we did not expose
the purpose of the study to the participants before doing the task. We informed them about
it after they finished the task. We did it to reduce the experimental bias. We took a corridor
of a building to conduct this experiment. We hung seven paintings (of seven wonders of
the world) at 20,20, 13,16,6.4,19, and 4 meter distances. The participant’s task was to
start walking from the starting place and stop at each painting to click a photograph of
the painting. The clicking photograph task was assigned to make sure the user stops after
walking a predefined distance. The floor plan of the corridor is shown in the Figure 3.1.

To calculate the step frequency, we recorded a video of the user’s footstep by fixing a
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smartphone(Model: Samsung M30) camera in the back of the user (shown in the Figure
3.2) focusing on their legs. We started recording the video just before the user was asked to
start walking from the starting point. The videos were recorded at a 30fps rate.

While performing the task, we made sure that there were no disturbances (other people,
noise) in the way. We chose weekends to collect data, as the place we chose was less
populated during weekends. If we had found any disturbances while doing the task, we
requested them to repeat the task.

We calculated the instantaneous frequency of steps for all the participants. It was
calculated by observing the number of steps per second recorded in the video. We considered
one-foot strike to another foot strike on the ground as one step [75]. The videos were
observed by noting the timestamp for each foot strike. The data for each distance was
separately noted. We could detect the end of each distance by observing where the user
stopped for some time. Thus, we created seven files (of seven distances) for all 40 users,
containing timestamps (in ms) at each step (assuming the time when s/he left the previous
painting is zero). As it was a manual observation, we did the process five times and finally
took the average timestamp for each foot strike. Once we got the timestamps, we calculated

the instantaneous step frequencies at each step.

Figure 3.1: Floor plan for the empirical study
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Figure 3.2: Smartphone attached in the back of the user to collect instantaneous frequency
for building the model

Model formulation based on user data During the experiment, we observed that
the user did not maintain constant speed during the walk. Initially, they started slow, but
the velocity increased gradually, plateauing out upon reaching the maximum velocity and
slowing down just before reaching the target. Later, we observed the recorded videos and
found that it was the frequency of steps that varied over distance, affecting the overall pace
of walking. We plotted the distance travelled from the source vs frequency(number of steps
per second) graph to visualise the data (plot for 20-meter distance. we have shown the plot
for three random participants in figure3.3) to clearly visualise the pattern(showing plot for
all 40 participants clutters the graph). We observed the plotted data from the recorded
video. The frequencies were calculated by measuring the time taken (in ms) to take each
step and then multiplied 1000 ms to the inverse of this time.

As observed in this study, the step frequency grows at first to reach maximum and
then it remains almost constant and then decreases near to zero. This pattern was also
introduced in the work by Bowman et al. [38]. They called it Slow In Slow Out (SISO).
However, they evaluated this pattern with rapid movement rather than natural walking

speed. Our work intends to express it mathematically to predict the instantaneous natural
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Figure 3.3: Frequency vs distance graph for 3 random participants

Figure 3.4: Fourier series approximation of square pulse wave
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walking speed. This change in frequency pattern is nearly similar to pulse wave widely used
in digital signal processing [340]. A pulse wave shows a temporary increase or decrease in
the amplitude of a signal from its baseline value. The nature of the data we found from
the observation closely resembles a square pulse wave, as shown in Figure 3.4. This type
of pulse wave can be well approximated by taking the first few terms of the corresponding
Fourier expansion [340]. We can model this with Fourier series analysis based on the idea
that Fourier series with proper weights can approximate any continuous periodic function
to arbitrary precision. The weights of harmonically related sinusoids can be calculated with
the help of the empirical data.

However, researchers [341] argue that there is a difference between the actual speed
and the perceived speed. Generally, an individual perceives the visual flow slower than real
[341]. Because of this reason, showing the visual with the user’s actual walking velocity is
insufficient. In order to compute the desired actual visual speed (V4;.), we need to multiply
a visual gain (G) with the actual speed. So user’s instantaneous virtual velocity can be

formulated as follows

S Dy (3.1)

Voirl =G x [V =G x (1= % 775

Here, |Vyir| is the perceived natural speed where |V| is the user’s natural instantaneous
speed in the real world and G is the visual gain. Nilsson et al. [39] defined a visual range
for four VLTs: stationary, tap in place (TIP), walk-in place (WIP), and real walking. When
utilising stationary, TIP, WIP, and real walking in treadmill locomotion, they obtained
visual gains ranging from 1.75 to 2.45, 1.74 to 2.45, 1.58 to 2.40 and 1.65 to 2.44 respectively.
Nevertheless, the gain may vary with the different locomotion techniques. In our case, we
are using system automated locomotion, which falls under stationary VLT. We can multiply
a gain factor of 2.10 (The average of the visual gain range for stationary VLTs found in
Nilsson’s study) to make the user perceive the speed as the natural walking speed. However,
as we noticed the frequency to be changing over time We want to compute instantaneous
Viir, which can be expressed as a function of  the distance of the starting node vy (Vyir(z)).

Since we have noticed the frequency to be changing over distance, we can modify f in
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equation 3.1 as F'(x). Finally, the equation 3.1 can be written as followed

2
Voir () = 2.10 x <5$; x 1%) (3.2)

As G and h are constants in order to compute V,;-(z) we only need to compute the
instantaneous step frequency F'(z). Let the distance between two nodes v; and v be d.
Then F(0) = F(d) = 0 as we assume the user started walking from a stationary position and
stopped after reaching the destination. Moreover, the function F'(x) should be continuous
w.r.t x as we assume the user to be walking naturally so there won’t be any abrupt changes
to step frequency. The continuity of F'(x) ensures that F'(x) can be approximated to
arbitrary precision in the interval [0, d] using fourier series with period 2d. Moreover, as
F(0) = F(d) = 0 we can ignore the cosine terms of the fourier series and keep only the sine
terms.

Looking at the collected data, we can simplify the Fourier series further by using the

Fourier expansion of the square wave as following [340]:

n—1

4 1
F(z) == X F,, x Z < sin (2k + 1)w$> (3.3)
T — 2k+1
1
Where, w=2nfy, and fo= %

In Equation 3.3, F(z) is a function that takes the distance from the first point as an input.
For instance, a user is in point A, and s/he opted to go to point B. In that case, the step
frequency at A and B would be nearly zero. The output of F(x) is the instantaneous step
frequency at a distance x meter from point A, which varies from 0 to d. We represent F'(x)
as a square wave with frequency fo = zid and amplitude F},, which is equal to the maximum
step frequency the user can reach. It is the Fourier expansion of square pulse wave up to n
terms. However, we need to establish the value of F,,, and n (the number of terms to be
taken) empirically. We call this the “Step Frequency Model”.

The walking speed is directly dependent on the step frequency and height of the user.
Once we get the step frequency F(zx), we can calculate the walking speed to be used in
the tour from the equation 3.4. Here, V;(z) is the function that predicts the natural

velocity of a user at x meter distance from point A. This function uses the instantaneous
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step frequency calculated in equation 3.3 and the height (h in meter) of the user to calculate
the instantaneous virtual velocity (Vir(z) in cm/sec). However, the original equation given
by Dean et al. [74] calculates the velocity with the average step frequency and height; we
modified the term step frequency to instantaneous step frequency.

We have two unknown parameters in the step frequency model (3.3): the maximum

frequency F;, and the number of terms n in the Fourier expansion.

3.2.2 Model parameter estimation and validation

We used cross-validation (CV) technique to estimate and test the model parameters. We
chose Leave-One-Subject-Out Cross-Validation (LOSOCYV) technique for this. In this
technique, we first train the model with the first n-1 row data and test it with the one
left out row; then, we again train the model with the n-1 row data starting from the
second row and test it with the one left out and iterate until each row is used for testing.
Because the model is fitted to almost all of the training data (n-1 observations), this
cross-validation technique overcomes the disadvantage of utilising small training sets, which
is observed in the general validation set approach. We took the data of all 40 participants
for parameter estimation. Following the principle of the least-square method, we fitted our
step frequency model with the observed frequency. We calculated the mean of the maximum
step frequency(F,,) of the forty participants. We found it to be 1.8 steps/sec. We also
observed that the equation yields best when the number of terms n is taken almost half
of the distance d. The RMSE value and the R-squared fitness mean for each subject are
presented in table 3.1. The mean of the RMSE and R? value we found for each iteration of
CV are 0.1481 and 0.9014, respectively.

After estimating the parameter, we could express the final model for predicting the

instantaneous step frequency as:

[41-1
4 .
F(z) = — % 1.8 x Z (Qk‘ 1 sin (2k + 1)wm> (3.4)
k=0

Where,

1
=2 = —
w 7Tf07 fO 2d

d = distance between source and destination
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Subject RMSE value | R squared fitness
number out mean
1 0.901 0.1362
2 0.9008 0.1296
3 0.9009 0.1364
4 0.9007 0.1316
5 0.9007 0.1264
6 0.9011 0.1377
7 0.9011 0.1358
8 0.9010 0.1328
9 0.9010 0.1374
10 0.9010 0.1381
11 0.9010 0.1386
12 0.9011 0.1403
13 0.9011 0.1428
14 0.9012 0.1441
15 0.9013 0.1459
16 0.9013 0.1463
17 0.9014 0.1470
18 0.9014 0.1486
19 0.9015 0.1485
20 0.9016 0.1506
21 0.9016 0.1502
22 0.9015 0.1483
23 0.9015 0.1470
24 0.9016 0.1492
25 0.9016 0.1497
26 0.9017 0.1527
27 0.9017 0.1541
28 0.9017 0.1542
29 0.9018 0.1564
30 0.9017 0.1571
31 0.9017 0.1568
32 0.9018 0.1600
33 0.9018 0.1589
34 0.9018 0.1588
35 0.9018 0.1611
36 0.9018 0.1619
37 0.9018 0.1621
38 0.9018 0.1632
39 0.9018 0.1642
40 0.9018 0.1639

Table 3.1: LOSO CV result
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The output of this model can be fed to the equation 3.2 to get the instantaneous

walking velocity to be used in the virtual camera motion in the VE.

3.3 Model evaluation

In this section, we address the second question of our chapter, which is about evaluating the
realism of instantaneous walking speed as the optic flow in VR. We had to confirm whether
the usage of the speed prediction model could enhance the perceived realism than simply
using a constant average speed to give a realistic walking experience. The rationale for
showing predicted instantaneous speed is that seeing the walking speed that matches the
actual walking can enhance the experience. We compared perceived realism for instantaneous
walking speed with constant walking speed. We calculated the constant walking speed from
the equation proposed by (equation 2.2) Dean et al. [74], and we compared it with the

speed predicted by our model. We compared the speeds with the help of an empirical study.

Participants We gathered a group of 34 participants (20 men and 14 women) ranging in
age from 15 to 47 years old (Mean: 29.324, SD: 6.70) and height between 159 and 170 cm
(Mean: 167.97, SD: 7.40). The participants were among the undergraduate and postgraduate
students from engineering backgrounds. Eighteen of them had a prior experience in VR
(Twelve of them took part in the previous experiments held in our lab). All the participants

had normal or corrected to normal vision with no walking disabilities.

Procedure We used Oculus Rift Head Mounted Display (HMD) to show the environ-
ment to the participants. We tracked the position and rotations of the head through the
Constellation tracking system of Oculus Rift. We developed the application in Unity 3D
(2020.3.2111 release). The software ran on a 64-bit Windows 10 Professional computer with
a 3.6 GHz Quad-Core processor and a GeForce GTX 1080 4 GB graphics processing unit.

The participants were exposed to a virtual environment, and they experienced navigation
with constant and instantaneous speed. In order to avoid practice effect, the sequence of
speed type was selected randomly. Participants sat in a rotating chair for the study, and they
were exposed to the virtual environment for 5 minutes for each speed type. We asked them

to take a break of 5 minutes after each session. The navigation in the virtual environment
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was system-automated. Participants could only view the surroundings by rotating their
heads. The virtual environment that the users were exposed to was a 400-meter-long art
exhibition hallway with some paintings hung on the wall (see Figure 3.5). The paintings
in the scene were hung at different distances and near each painting the participants were
stopped for 10 seconds and after that the travel was resumed towards the next painting.
As there was no input from the user, there was no need for any trial to teach them how
to navigate in the VE. We did not explain the nature of motion (what is instantaneous or
constant speed) they are going to experience. However, they were aware that they were
going to walk through a virtual art exhibition. We followed the similar approach (user
rating) used by many researchers [40, 342] to measure the realism in a virtual environment.
Once the participants experienced walking with both the speed types they were asked to
rate the level of realism and preference rating on a scale of 1 to 10 (where 10 is highly
real /preferred). We also asked for general feedback about the speed types in an informal

interview. The entire procedure took approximately 20-25 minutes 4.5.

Figure 3.5: Visual stimulus for the realism comparison experiment

In this study we had two dependent variables namely realism and preference score. We

formed the following null hypothesis:

e The mean difference of the realism score of instantaneous walking speed from the

constant walking speed is less than equal to zero (positive for alternative hypothesis)

e The mean difference of the preference score of instantaneous walking speed from the

constant walking speed is less than equal to zero (positive for alternative hypothesis)
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Figure 3.6: During the experiment of realism comparison

Realism and preference results In figure 3.7 (a) and figure 3.7 (b), we have shown the
box representation of the ratings provided by the participants for the speed types. We ran
a paired sample t-test (two tailed) on the collected score at o = 0.05. We got t value for
both the variables (t(33)=2.51 for realism and t(33)=2.74 for speed type preference) to be
greater than the critical value (2.034). Thus we can reject both our null hypothesis and we
can accept the alternative hypothesis (The use of instantaneous walking speed is more real
and preferred than the average constant speed).

Though personal preference of the speed types varied by individual, we found 22 out of
34 participants preferred the instantaneous speed over the constant speed as optic flow. Six

participants had neutral preference for both the speed types.

3.4 Discussion

We found the human step frequency to increase relatively up to a maximum and then decrease
before reaching the desired target. It is possible to give an explanation for this behaviour.
It is plausible that once an individual starts walking, they tend to set the maximum natural

velocity by adjusting the step frequency from 0. Once they are comfortable with that
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Fig. 3.7 (b): Participants’ rating for preference of the

Fig. 3.7 (a): Participants’ rating for realism speed type

velocity, they maintain that pace. However, just before reaching the target, they need to
adjust the velocity by adjusting step frequency to accurately stop at the desired target.
While using system automated travel, the target position is known from the beginning. So
incorporating both the behaviour for system automated travel is reasonable.

In a system-automated tour, the user experiences movement in the virtual world while
being stationary in the real world. As discussed in chapter 2, this may increase the chances
of experiencing VR sickness, according to the sensory mismatch theory. So, the practical
way of using our speed prediction model in VR would be to use vibrotactile feedback [40] or
any VR sickness reduction techniques useful for system-automated travel. Our technique
will be reasonable to use once the VR sickness, i.e. the fundamental problem of VR, is
taken care of. Usage of any sickness prevention technique like WalkingVibe, may necessitate
to modify the gain factor G in our model. For instance, as we did not use any sickness
prevention technique in our study, we used the visual gain factor G to be 2.10 (established
by Nilsson et al. [39]). However, the usage of vibrotactile feedback along with the visual
stimuli to prevent sickness may change the visual gain significantly. We discuss it in detail
in the next chapter.

In the model evaluation study, we observed that the lowest rating for both the speed
types was provided by the users who had no experience with VR. Five of them reported
discomfort after finishing the experiment. This observation also supports the conclusion
made by previous research about the dependency of VR discomfort with the prior VR

experience [301]. We observed that their preference ratings were low for the speed type
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that was shown at the end. For instance, participant number 23 (P23) experienced constant
walking first, followed by instantaneous walking speed. She rated the instantaneous walking
lower than the constant walking, reporting discomfort during the experiment. We collected
some qualitative feedback in order to clarify the results. "The gradual increase in speed
was more natural to me than the sudden start of the movement” (P7, P8, P24, P32), “The
imbalanced speed was more natural than the smooth movement"(P27), “The plain speed
was comfortable to me, but the second one (the instantaneous walking speed) feels more
realistic’(P25). Three participants (P9, P20 and P31) shared that they found the head
oscillation to be missing in both the speed types.

In this study, we put one step forward towards the enhancement of realism for system-
automated tours. We are keen to increase the realistic walking experience further, for
example, by adding visual motions that reflect optic flow in a manner similar to natural
body and head oscillations (as addressed by P9, P20 and P31) when walking. More
dimensions of senses (like haptic and auditory) can be added to make virtual walking more
realistic.

Moreover, this model predicts the walking speed for the straight path. We did not
consider the turns in our assumption. In a virtual environment, if there is a turn between
source and destination, we can break the journey into two parts, assuming the destination
to be the turning point and again starting the journey to the next point. However, in real

life, our walking behaviour varies with different types of twists and turns on the road.

3.5 Summary

This chapter addresses the challenge of providing a realistic walking experience in system-
automated VR tours, where users do not provide continuous input for navigation. Unlike
user-controlled tours, where participants actively navigate through the VR environment using
various input methods, system-automated tours automate travel, potentially diminishing
the realism of the walking experience due to low interaction fidelity. The primary aim of
this work is to enhance walking realism in system-automated tours by predicting a user’s
instantaneous walking speed, thus improving the visual optic flow and creating a more
immersive experience.

The chapter outlines the importance of realistic walking simulations in VR, noting
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that most existing research has focused on the techniques for user-controlled VR tours that
allow for dynamic user input to influence movement in the VR environment. However,
system-automated tours have received less attention despite their potential for applications
where user navigation input is impractical or undesirable. We argue that by improving the
visual representation of walking speed (i.e. making it vary instantaneously in a way that
mimics natural walking patterns rather than remaining constant), users can enjoy a more
realistic walking experience even in the absence of direct navigational control.

We propose a model for estimating users’ instantaneous walking speed by considering the
user’s actual height and the distance between their current position and a known destination
in the VR environment. This model was developed and validated through an empirical
study involving 40 participants, focusing on capturing real walking data to establish the
model’s parameters. The effectiveness of the model was then evaluated in a subsequent
study with 34 participants, comparing the perceived realism of walking experiences using
the predicted speed against a constant average walking speed.

The evaluation of the model demonstrated its effectiveness in enhancing the realism
of the walking experience in VR. Participants in the study rated the instantaneous speed
model as providing a more realistic experience compared to a constant speed model. This
suggests that dynamic adjustment of visual speed to match natural walking patterns can
significantly improve the sense of immersion in system-automated VR tours.

We do not claim our approach to be VR sickness-free. Due to the sensory conflict,
our approach may induce VR sickness. However, researchers have come up with many
approaches [40, 58] to reduce the VR sickness induced in system-automated VR tours by
manipulating internal and efferent information. Yet, the proliferation of more efficient
solutions for VR sickness will encourage developers to use our model while creating a
system-automated tour involving a realistic walking experience. We do not even argue that
our approach provides a more realistic experience than the fully interactive VR tours such
as walking-based [10] and WIP [63]. However, while designing a system-automated VR tour
that involves a visual sensation of walking, our approach will help to enhance the realistic
walking experience.

In future, we intend to modify this model to be used for non-linear paths (paths having

twists and turns). We also plan to compare the walking realism after applying the sickness
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prevention mechanism along with our speed prediction model. We chose seated posture
over standing while performing our study as the mentioned sickness prevention techniques
are tested on a seated posture. However, the user experience of using our technique can be

evaluated with different postures.

Coto -3 enen
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CHAPTER

Reducing CS in System-automated VR Tours

In the previous chapter, we explored enhancing the realism of walking experiences by
simulating a person’s instantaneous walking speed. Nevertheless, as discussed in Chapter
2, presenting continuous visual motion while remaining stationary can lead to a sensory
mismatch, and prolonged exposure to a VR environment may induce cybersickness. We also
reviewed various strategies to mitigate these effects from both the users’ and developers’
perspectives in Chapter 2. Among these strategies, vibrotactile feedback applied behind the
user’s ear has been designed specifically for system-automated VR tours. A study by Peng
et al. [40] demonstrated that the use of vibrotactile feedback behind the ears significantly
reduces cybersickness during system-automated VR walks. However, their study utilized
a constant speed as the visual stimulus for walking. Our previous chapter revealed that
employing our model, which predicts instantaneous walking speed, could further enhance
the realism of the walking experience. Yet, the visual gain used in our model varies with
different locomotion techniques, suggesting that the use of vibrotactile feedback while using
our model might necessitate adjusting the visual gain than 2.1 (which we adopted from the
study by Nilsson et al [39] ). Since the gain 2.1 was established in the absence of vibrotactile
feedback, there is a need to check whether the visual gain changes when the vibrotactile
feedback is used as a CS mitigation method.

Another identified research gap in Chapter 2 concerning mitigation techniques for
system-automated VR tours is the reduction of exposure duration. Exposure to a VR
environment for a long duration may cause CS [70]. The chances of having cybersickness

has been correlated to longer duration in VR, environments, and the degree of the symptoms



rises proportionally with VR session duration [70, 343, 344|. Therefore, a shorter duration
of VR exposure can always help in getting rid of these problems [70]. The duration of a VR
tour is subject to the VR content. A VR environment can be small, like a room, or large,
like a city, or sometimes even larger than that. In the case of a large VR environment, it
is natural to have a longer duration of VR exposure. The duration of a VR tour can be
dependent on the travelling time, the size of the virtual terrain and the interaction time
(inspection, selection and manipulation). The travelling time can be modified by adjusting
the travelling speed. It is obvious that the more travelling speed we apply, the shorter the
duration will be. However, to provide a realistic walking experience, we cannot modify the
speed. The size of the terrain can be manipulated by adjusting the distances between the
points of interest in the terrain. Adjusting the size of the terrain can also exclude a user from
getting the idea about the size of the real space [345]. The interaction time is dependent on
the type of tour. If the tour is purely system-automated (i.e. user do not get any chance to
interact during the tour), we can skip the interaction part. However, in this chapter let us
assume the tour is semi interactive, where the travelling is automated by the system, but
users get a chance to interact in between. In user-controlled travel, the interaction time
varies from user to user. Therefore, the VR exposure duration can vary with the subject.
Sometimes, a user may spend maximum time interacting with some non-important virtual
objects. Because of the longer duration of VR exposure, s/he may experience the symptoms
of VR sickness [71], leading to a lack of interest in the content, which may exclude him/her
from exploring some important areas of the VR tour. By contrast, system-controlled travel
can be used to limit the interaction time based on the required time. Therefore, for a
system-automated tour, the reduction of duration can be done by optimising the path of
the tour. However, we did not find any work that explored a way to reduce the duration of
a VR tour to reduce CS.

In this chapter, we address the gaps of the two CS mitigation strategies for system-
automated VR tours to maintain its realistic walking experience, namely the use of vibro-
tactile feedback and the reduction of duration. For the vibrotactile feedback technique, we
establish a range of visual gains that can be applied to the realistic walking speed prediction
model proposed in chapter 3 to make it more realistic. For the duration reduction technique,

we establish a theoretical approach for finding the optimal path in a virtual world that can
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be followed to visit maximum places of a large VR environment without compromising the

realistic walking speed.

4.1 Finding a range of visual gain for the realistic walking
model while using vibrotactile feedback as a CS mitigation

strategy

In order to establish the perceptually realistic visual speed while using vibrotactile feedback,

we conducted a within-subject empirical study. The details of the study are as follows.

4.1.1 Empirical study
Participants:

We recruited 21 volunteers (16 males, 5 females) aged from 25 to 40 years (Mean: 30.57, SD:
4.64), with the height of 152 to 182 cm (Mean:168.61, SD: 7.95) to take in the experiment.
All the participants were postgraduate students from engineering backgrounds. Fifteen of
them had a prior experience in VR. All the participants had normal or corrected to normal

vision with no walking disabilities.

Procedure:

We followed the similar method used by Nilsson et al.[39] to establish the visual gain.
Participants experienced 22 visuals with gain changes. There were 11 different gains, which
were repeated twice randomly. We first described the tasks to the participants, and then they
had to wear the HMD combined with the walking vibe set up (Figure 4.2). For vibrotactile
feedback, we used a similar vibration motor (150 Hz, 9000 RPM, 12 mm coin style motor)
used by [40], as it is claimed that using vibration with this frequency prevents the head
discomfort caused by the vibrations. We made sure they were comfortable wearing those
and asked them if they could quit anytime during the experiment if they felt any discomfort.
However, no participant reported any discomfort during the experiment. Once they were
comfortable wearing the headset, we provided vibrotactile feedback behind the participants’
ears at the frequency of 1.8 steps/sec. The original walking speed of the user was estimated

with the help of the equation proposed by Dean et. al.|[74]. They expressed the walking
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speed (Jv]) of a person as:

o h
vl = (5157 % 172

(4.1)
Where f and h represent the walking frequency and height of a person, respectively. As this
equation takes height and frequency as input, the user’s height was noted and calibrated
through the Oculus Rift sensor. We asked the participants to close their eyes and imagine
walking at that frequency so that they could judge the visual with their estimation. Once
they were ready, we showed them a visual, and they had to choose between too slow, natural
and too fast. Participants could utter their choice verbally once they were confident. After
finishing the travel at a particular speed, the participants had to close their eyes and again
imagine themselves walking with the frequency of the vibrotactile feedback. The visuals
shown to them had gained changes, ranging from 1.0 to 3.0 in the increments of 0.2. This

means the predicted normal speed is the slowest speed we showed, and the highest speed

was three times greater than the normal speed.

Figure 4.1: The virtual environment shown to the participants

The visual stimulus that was shown to users was a 119-meter-long corridor of an art
gallery (Figure 4.1). We used the Oculus Rift HMD with a resolution of 1080 x 1200 per
eye. Two IR LED sensors (Oculus sensors) were placed at a distance of 2 meters facing the
users. We could automatically calibrate the height of the user with the help of these sensors.
The VR application was implemented using the Unity engine. We used the basic 3D objects

from Unity and some textures downloaded from the web to build the VE. The vibrotactile
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Figure 4.2: During the experiment of establishing visual gain

feedback was implemented with the help of Arduino, which was connected to a power bank

and the vibration motors with the help of long connecting wires (shown in Figure 4.2).

Results & Discussions:

We took the weighted mean of all the gains that the users reported as ‘natural’. We also
identified the minimum and maximum of the gains that the participants stated as ‘natural’.
We found the mean of the reported natural gains to be 1.64 with an SD of 0.3. The average
of the minimum and maximum gains rated natural is 1.40 with an SD of 0.21 and 1.78 with
an SD of 0.26, respectively. We performed a one-sample t-test to confirm whether the range
found by us is significantly different from the range found by Nilsson [39] for stationary
VLT without the vibrotactile feedback. The test was performed for all minimum, maximum
and mean values of gain found from our study and Nilsson’s [39] study (taking a=0.01).
We found our results to be significantly different in all three cases (p< .00001). We also
found the mean and minimum gains to be significantly different from the normal speed.
As the range of visual gains for stationary VLT with vibrotactile feedback and without

vibrotactile feedback are significantly different; we can conclude that if we use the vibrotactile
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feedback to avoid motion sickness in stationary VLT, we might apply the visual gain from
1.40 to 1.78 with the speed we intend to show.

If we compare our results with the visual gains found for TIP, WIP and real walking in
Nilsson’s study [39], we can explain it following Barlow’s subtractive model. The gain found
in our study is significantly smaller than the gain found for real walking. This is because the
non-visual felt speed perceived by the user would be more for real walking, which would be
subtracted from the actual speed, thereby demanding more visual gain than the stationary
VLT. However, we found the gain to be lesser than the gain found by nilsson for stationary
VLT without using the vibrotactile feedback. This possible that use of vibrotactile feedback
reduces the felt motion by stimulating the vestibular system.

The visual range we found in this study can be applied in VR in two ways. One possible
way is to use the mean value of gain (i.e. 1.64), or it can be altered from 1.4 to 1.78 with
the help of the user’s feedback. Both ways may have different use cases. However, these
values can be used when the user is using vibrotactile feedback that we have used in the
study. The gain may vary if different vibration is applied.

We studied the natural walking speed, assuming the frequency to be constant. However,
the step frequency of a person is not constant throughout the travel [41]. How showing the
varying speed with the change in frequency (in a way it changes in real life) may affect the

user experience needs to be evaluated.

4.2 Minimising the duration of a VR tour without compro-

mising the realistic walking experience

4.2.1 Virtual environment to graph

The entire terrain where a system-automated VR tour is conducted can be represented
as a weighted graph G(V, ), with the set of vertices V representing the sites (or points
of interest) and the set of weighted edges £ where the weight of each edge denotes the
Euclidean distance between the pair of vertices it connects. We can represent the graph as
a top view of the real terrain. However, the graph G does not need to be complete. In a
real-life environment, there is not always a direct path from one place to another. Omitting

the completeness of G allows us to formally represent terrains where at least a pair of sites
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Figure 4.3: The virtual environment shown on the left hand side can be represented as the
graph

are not directly reachable from one another. In Figure 4.3, we have shown the top view
of a virtual environment, and based on some points of interest, we have represented it as
a graph. For every pair of vertices vy, vy € V edge weights are given by the equation 4.2

where d denotes the Euclidean distance between a pair of nodes.

d(vy,vg) if v1 and vy directly reachable
5(1)1, 'UQ) = (4.2)

00 otherwise

Formally, we want to find a path P in the given graph G, which covers all vertices in V' and
finishes in the least possible time while maintaining a realistic speed throughout. In order
to compute the amount of time required to visit the path P, we first calculate the time
taken to move from a node(v;) to its adjacent node (vy) located at d(vy,vy) distance away.
The time depends on the travelling speed of the user during the tour. Once we calculate
the time taken to move from one node to the adjacent node, we can use it to compute the

time needed to cover the path P, which will be the sum of time taken to visit the nodes
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present in it sequentially.

4.2.2 Estimating minimum time to complete the tour

Let us first formally estimate the time required to travel between any two directly connected
nodes while maintaining natural walking speed. As seen in equation 3.4 from the previous
chapter, we can break it down into two parts (As shown in equation 4.4 and 4.5 ). The
instantaneous frequency F'(x) is formulated as a square wave with amplitude F},, (found to
be 1.8 steps/sec in the previous chapter). Also the equation 3.2 from the previous chapter,
computes the the instantaneous virtual speed of the user at a distance x from the starting
node. We will compute the total time required to travel between node v; and vy which are
d distance apart. Equation 3.2 can be rewritten as a differential equation (equation 4.5),
and the solution to the differential equation will give us the time required to travel between

any two adjacent nodes that are d distance apart.

[41-1
Sq(z) = % X k szn(((gliﬂill))wx) (4.3)
=0
F(z) = Fy x Sq(x) (4.4)
dx
= = Vm % F(z)? (4.5)
1 dx

1 (3-254())
Fag ™~ g

(4.7)

In equation 4.7, we have used the Taylor series of the function f(z) = Z% at the point zg = 1
and only kept linear term while ignoring the higher order terms. At zy = 1 first two terms of
the Taylor series gives us Z% =1-2(z—1)=(3—2z). Considering z = Sq(z) the function
1/Sq(z)? can be approximated as (3 — 2Sq(z)). Sq(z) is Fourier expansion of the square
wave with amplitude one so for x € (0,d), the value of Sq(x) will be very close to point
zo = 1.

Let us denote the time taken to travel between the adjacent nodes with distance d as T (d).
Then, by solving the equation 4.6 we compute the closed expression of 7 (d). Note the

integration constant C is 0 as 7(0) = 0. If we keep the first ng terms of infinite series of
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the square wave given in equation 4.3, then the closed expression of 7 (d) is computed in

equation 4.10. If ng — oo the series > 1, w converges to m2/8 and T (d) converges to

d/(Vh). As expected, that will be the time required by the user if they maintain a realistic
walking speed of V throughout the travel.

d t
/ 1 X (3 —=28q(x))dx = / dt where Vo =V, x F2 (4.8)
o Vo 0
1 16d 1 1
T(d)_VO<3d—7T2(1+32+52+...)>+C (4.9)
d 16 1

Now as the time taken between two points are known, we can estimate the the minimum
time to visit all the sites of the virtual environment. The entire terrain is represented as
a connected weighted graph G(V, ) where edge weights are given in equation 4.2. Our
goal is to find path P which covers all the vertices in ¥V and completes in the least possible
time. The time taken to complete a path is the sum of time required to visit the nodes
adjacent in the path sequentially. Suppose a path P is represented as the sequence of nodes
{v1,v2,...,v,} then time taken to complete P is defined as followed where 7 (€(v;, vit1))
denotes the time taken to travel between two adjacent nodes £(v;, viy1) apart and T (d) is

computed in equation 4.10 .

n—1
T(P) = T(E(vi, vit1)) (4.11)
i=1
minp T(P) where Yv€V veP (4.12)

Formally we want to solve the mentioned equation 4.12. It is a variation of the celebrated
Travelling salesman problem(TSP), which solves the following problem: given a complete
graph, what is the shortest possible path that visits each node exactly once and returns to
the starting node. The shortest path is defined based on the total weight of all the edges
included in the path. Note we didn’t assume the graph G to be a complete graph, so there
may be cases where there is no Hamiltonian path in G i.e. a path where all the nodes are
covered and each nodes are visited exactly once. One popular way to solve this issue is to

introduce hypothetical edges between vertices where there was no edge between the original
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graph G. If there is no direct edge between two vertices vy, v, then we introduce a new
edge with length equal to the shortest path between v; and v in the graph G. The shortest
path between any pair of vertices is well defined as the graph G is assumed to be connected
then there exists a path between any pair of vertices. We modify the edge set of the given
graph G(V, &) to G'(V,E’) based on the previous idea mentioned in equation 4.13. Here
SP(v1,v2) denotes the length of the shortest path between vy, vy in graph G.

. E(v1,v2) if v1 and vy directly reachable
E'(v1,v2) = (4.13)

SP(vi,v2) otherwise

In order to solve for the optimal path mentioned in equation 4.12, we reduce this to
the problem on the modified graph G'(V,&’) to an instance of the TSP problem. As
the G'(V,E&’), we only need to compute the time required to travel between any pair of
nodes. We have already formulated the time required to travel between two adjacent
nodes 7 (d) in equation 4.10. Let Gy (Vin, Ein) be the input of the corresponding TSP.
Then V;,, = V and Yvy,v2 € V the weight of the edge connecting v; and vy is defined as
Ein(v1,v2) = T(E'(v1,v2)). One thing to consider is that the output of TSP will give us
a path on the graph G’, not on the original graph G, in other word it may have some
hypothetical edges that are present in £ but not in the original edge set £. Suppose the
optimal path P as outputted by the TSP solver has an edge connecting vy, vy that was
not present in the original edge-set £ then £(v1,v2) = oo. We know if E(vy,v2) = oo
then &'(v1,v2) = SP(v1,v2). In the optimal path P we can replace the edge between vq
and ve by the shortest path between them, and as the shortest path between vy, vs is
computed w.r.t G, it only consists of edges from £. Note replacing the edge with shortest
path does not alter the time taken to complete the path P as &'(v1,v2) = SP(v1,v2) and
T (&' (v1,v2)) = T(SP(v1,v2)).

Though a VR tour is optimal, the time to do the entire tour may take longer time.
So, one obvious variation of the aforementioned problem is to find the optimal path that
completes on/before the given threshold 7y. The threshold can be the duration we want
our tour to be, which can be decided based on the type of content. For instance, we can
perform an empirical study to establish the threshold for our content. In this case, it is not

mandatory and not always possible to visit every single node present in V. For this purpose,
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Algorithm 1 Compute optimal time & path that covers all sites

Input: the graph G(V, ) representing the terrain.
Output: the optimal time 7 and path P.
Compute the complete graph G'(V, &)
for Yvi,v9 € V do
if £(v1,v2) < 0o then
g/(’Ul, ’Ug) == 5(1)1, 7}2)
else
E'(v1,v2) = SP(v1,v2)
Compute the input graph Gy, (Vip, Ein) to TSP solver.
Vin =V
: for Yvi,v3 € V do > Compute time required to travel between any pair of nodes
Ein(v1,v2) = T (E'(v1,v2))
2 T, P = SolvTSP(Gin(Vin, Ein)) > Get optimal time and path with TSP solver
for Vv, v adjacent nodes in P do
if £(vi,v2) =00 then
Replace hypothetical edge joining vy, vo
with SP(Ul, Ug)

— =
[ sul

e e e

we define the importance of every node through a function F : ¥V — R™ which maps every
node v € V to a positive real value denoting its importance. The total importance of a
path P = {vy,...v,} is defined as F(P) = > " | F(v;). Formally, we want to maximize
F(P) for paths that complete within the given time threshold 7, i.e. T(P) < Tp. The
problem formulation is described in equation 4.14. As mentioned in the previous section,
another aspect that needs to be considered is the waiting time, i.e. the amount of time
required by the user to inspect/interact with a particular object on the node(or point of
interest). We consider waiting time (W) for each node while calculating the optimal time
for the candidate paths. For this problem variant, we want to solve the problem given by

the equation 4.15.

maxp F(P) where T(P)<Ty (4.14)

mazxp F(P) where T(P)+W(P)<T (4.15)

This problem is also well known in operation research and known to be a generalization of
the Vehicle Routing Problem (VRP). In literature, this variation of the VRP is known as
VRPP [346] or Team Orienteering Problem (TOP) [347] where we don’t need to visit all the

nodes but instead maximize the profit while respecting the time constraint. Here by profit,
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we mean the priority of the node (site) in the graph (terrain). So we can use the solvers of
the VRPP once we reduce the problem to VRPP. Given the graph G(V, ) computation of
complete graph G'(V,£’) and the input graph G, (Vin, Ein) similar to previous section. As
mentioned in the previous section, the optimal path P may have some hypothetical edges
that were not present in the original edge-set £. For all these edges connecting node pair
v1, V2 similar to the previous section, we must replace them with the shortest path between

them SP(vy,vs).

4.2.3 Implementation

We implemented our approach by making a VR tour of the cultural heritage of Majuli
Island. Majuli is one of the largest inhabited riverine islands in the world (with 553 square
kilometres of area). Located in the upper reaches of the river Brahmaputra this island has
a rich cultural heritage. It is a holy place of Vaishnavite religion and culture (consists of
around twenty-two Vaishnavite temples), where different races and tribes are assimilated. It
is located in the upper reaches of the river Brahmaputra and within the latitude of 26°45’N-
27°12’N and longitude of 93°39’E- 94°35’E. The geographical location, natural environment,
richness in archaeological wealth, and biodiversity denote Majuli a unique identity. However,
the existence of this cultural heritage (CH) is under serious threat due to the recurring
floods and incessant bankline erosion by the Brahmaputra and its tributaries. So it is
necessary to preserve the CH to pass the information to the next generations. Traditional
ways to preserve these are oral-lores, museums, maintaining live sites and documentation.
In the era of the internet, these modes of preservation are unable to attract the younger
generations. CH also act as a means of promoting tourism, thus adding to the nation’s
economy. Digitizing CH is the solution for the above-raised issues. Digitization of CH uses
archiving technology and immersive technology. Immersive technologies like VR and AR
make the cultural content appealing and enhance the experience of the user.

There is a total of twenty-two Vaishnavite monasteries, a.k.a. satras, in Majuli. Source and
place development of Vaishnavite culture of Assam, the satras are the heart of Assamese
society. A satra consists of Naamghar (prayer hall), Monikut (place of idol), Haatis (hostel
of the deciples), and the residence of the satradhikar (master of the satra). One of the

largest, most prominent and most visited satras is Auniati satra. The campus of the satra
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covers approximately 1200 sq. meters with a minimum of 25 interest points. In a real
environment, a tourist may take the whole day to explore the site. However, a user is not
recommended to be in a virtual environment for so long. To make the user feel present on
the CH site, we chose to use mundane travel rather than magical. We used the proposed

approach to minimize the duration to cover all the important places.

Figure 4.4: Majuli location

The virtual terrain

The virtual terrain was first mapped to a weighted graph with 25 nodes. The possible paths
were connected as the edges of the graph. The weights of the edges were assigned based on
the Euclidean distance between the nodes. The graph for the terrain is shown in the Figure
4.6. The 3D environment was created using Maya 3D, and the application was built using

the Unity 3D game engine (version 2021.3.2f1).

Assigning node weight

By the term node weight, we mean the priority of the node (site) with respect to other
nodes. We physically went to the place to observe the frequency of visits to the places. We
visited the place during the festival called “Kati Bihu”, which is one of the special festivals
celebrated in this satra (also included in our virtual tour). We followed two ways to assign

the priorities of the nodes. First, we observed people’s frequency of visits to the places for
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Node Number | Node Weight (F) | Waiting time(WV)
1 1 4 sec
2 1 4 sec
3 1 4 sec
4 5} 8 sec
9 8 10 sec
6 8 300 sec
7 6 4 sec
8 6 10 sec
9 1 4 sec
10 6 600 sec
11 1 4 sec
12 1 4 sec
13 1 4 sec
14 5) 180 sec
15 5} 60 sec
16 ) 10 sec
17 5 10 sec
18 5) 10 sec
19 5} 10 sec
20 ) 10 sec
21 5} 10 sec
22 5! 10 sec
23 1 4 sec
24 6 900 sec
25 2 900 sec

Table 4.1: Node weight and waiting time for auniati satra

the whole day. Secondly, we talked to the local people(mostly the people that reside on
that campus) and the people who are on the committee of that satra. We asked them two
questions “What are the places people visit when they come to this place?" and "What are
the places you suggest a tourist must visit when they come to this satra?”. Based on the
observation and the interview, we assigned the priorities of the places. We also observed
the objects where people want/need to interact in those places. We noted the average time
for each point of interest to determine the waiting time for the nodes (Listed in table 4.1).
The waiting time was determined to allow people to interact with the objects in the virtual

tour.
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Figure 4.5: Screenshots of the virtual tour

Minimum duration and optimal path calculation

Once we have the input graph with 25 nodes depicted in Figure 4.6, we ran the algorithm
described in algorithm 1. As mentioned in lines 4 — 12 in the algorithm, we first converted
the graph into a complete graph by introducing new edges between the nodes that are
not directly connected with a length equal to the shortest distance between them in the
original graph. Once we have reduced the problem to an instance of the TSP, we used TSP
solvers provided by Google’s operation research tools [348] to compute the optimal path and
optimal time that will be able to cover the entire path. We calculated the walking speed
using the equation 4.10.

For finding the optimal path with time threshold as described in section 4.2.2 we used the
time threshold of 10, 20, 30 and 40 minutes (shown in table 4.2). In this case, the weights
of different sites are based on their importance, as mentioned in the previous section. For
this problem, we have used the solver for VRPP with a specified time window(30 minutes

in our case). We have used Google’s operation research tools [348] for this purpose.

Empirical Study

In order to evaluate how our approach of minimizing the duration affects the user’s experience,
we conducted a between-subject study. The primary task of the participants is to explore
the virtual world using the optimized tour selected by our method or using an arbitrary
path selected by the user. We used the Oculus Rift CV1 VR system running on a computer
with a 3.6 GHz Quad-Core processor and a GeForce GTX 1080 4 GB graphics processing

unit.
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Figure 4.6: The map of auniati satra represented as graph

The two types of tour

As discussed in the previous section, we built the 3D model of the terrain. In the same
environment, we implemented two types of tours, namely optimal tours and arbitrary tours.
In the optimal tour, we considered the optimal path calculated from the discussed method.
In the arbitrary tour, the user needs to draw a path connecting all the nodes at the beginning

of the tour.

Participants

We recruited a sample size of 20 participants for each type of tour (optimal path tour and
arbitrary tour). The participants (3 participants) who could not complete the experiment
due to severe symptoms of VR sickness were replaced until the size of the sample was
fulfilled. A total of 40 participants ranged in age from 17 to 36 years (M=26.87, SD= 4.01).
All the participants had normal or corrected to normal vision. Eighteen participants had

prior VR experience, and the remaining had no experience in VR. We equally divided these
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. . - , . .
Fig. 5 (a): Participants’ average rating for discomfort Fig. 5 (b): Participants’ average relative sickness score

eighteen participants into both tours.

Procedure

We divided the 40 participants for the two types of tours equally. Before the experiment,
we asked the participants to fill up a questionnaire regarding their personal information
(including experience in VR). They experienced the tour in a comfortable seated position.
Before starting the tour, we provided the participants with some basic information about the
place Majuli and the satra for which the tour was created. We told them that they needed
to visit all the checkpoints and that there would be a quiz on this tour at the end. For both
tours, at each checkpoint, some time was given to the user for inspection or interaction (as
shown in table 4.1). However, they could move to the next checkpoint anytime by pressing
the “B” button of the Oculus controller. An alert was given to the user 5 seconds before
moving to the next checkpoint automatically. This was done so that the user does not feel
uncomfortable when suddenly s/he starts moving to the next checkpoint by the system.
The participants experienced walking at a speed of calculated using the equation 4.10. In
the case of the arbitrary tour, a map pops up before starting the tour, and the user needs
to draw the route connecting all the nodes (checkpoints).

Throughout the study, we used two different questionnaires. The first questionnaire was
about the measurement of discomfort [150]. This measure was taken after reaching each
checkpoint. Once the user reached a checkpoint, s/he was asked to rate the level of

discomfort from 0(no discomfort) to 10(very uncomfortable) verbally. Once a user rated
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Time threshold Optimal Path Optimal Time
10min(600sec) 1225324555728 7T—>5—-4—>3
—-9—-11—-12—-13—>12—-11 - 15— 16 581.25sec

— 15> 17— 18 -+ 19 — 20 — 21 — 22

20min(1200sec) 1525354555758 7—-5—-6—5 1126.25sec

—+4—-3—-9—->1—-12—-13 —>14 — 13

—-12—-11—-15—->16—>15— 17— 18 —» 19
— 20 — 23 - 20 — 21 — 22

30min(1800sec) 1233234357282 7—-5—-6—5

—-+4—-3—-9—-10—-9—-11—-12—-13—14— 13 1730.58sec

—-12—21—-215—-2106—>15—->17— 18— 19
— 20 — 23 —- 20 — 21 — 22

40min(2400sec) 1253545557585 7—-5—-6—5

—-+4—-53—-9—-10—-9—-11—-25—-11—-12— 13 1887.78sec

—-14—-13—-12—-11—>15—->16 — 15 — 17
— 18 > 19 —» 20 — 23 — 20 — 21 — 22

Table 4.2: Optimal path calculated from our approach from different time thresholds

10, we immediately discontinued the study and instructed her to take a rest. The next
questionnaire was about the measurement of simulator sickness. It was conducted using the
SSQ [349]. Here the users were asked several questions related to the sickness before and
after experiencing the virtual tour. We calculated the relative sickness score as performed

in [40].

Results

The data from the participants’ responses to perceived discomfort and VR sickness were
analyzed. The findings are as follows: The data from the participants’ responses to perceived

discomfort and VR sickness were recorded. The findings are as follows:

Discomfort Discomfort ratings were collected at each checkpoint, and we calculated
the average overall discomfort rating for each participant. Our goal was to determine if
there was a significant difference in discomfort levels when using the optimal path tour.
Initially, we conducted a Shapiro-Wilk test to assess the normality of the data, which
confirmed that the data were normally distributed. Subsequently, an F-test was performed

to examine the equality of variances between groups, revealing equal variances for the
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discomfort data in both groups. Therefore, we proceeded with a two-tailed t-test for both
conditions. This analysis revealed a significant difference in discomfort between the tours
(t=1.90082, p= .032465 at an alpha level of 0.05), indicating that the discomfort rate was

notably higher for the groups navigating the arbitrary path-based tour.

VR sickness After gathering the SSQ scores, we calculated the relative sickness score by
subtracting the pre-tour score from the post-tour score for each participant. The Shapiro-
Wilk test indicated that the data were normally distributed, and the F-test showed equal
variances between the two groups. To assess the significance of the difference in relative
sickness scores between the two groups, we conducted a two-tailed t-test. The results
showed a significant difference in VR sickness between the optimal and arbitrary path-based
tours (t-value = 3.33915, p-value = .000946 at an alpha level of 0.05). Participants who
experienced the optimal path tour reported lower VR sickness scores compared to those

who took the arbitrary path tour.

4.2.4 Discussion

According to the results of the empirical study, we found that usage of an optimal path
may benefit in reducing sickness and discomfort. However, we noticed that most of the
participants did not stay at a particular checkpoint for its estimated time. We believe that
this can be better estimated by performing an empirical study after implementing the tour.
The exact estimation would be more useful when the user does not have any choice but to
wait for the system to move her to the next checkpoint. In our case, estimating a higher
waiting time than the user wants to stay at a site is beneficial.

We have also shown how we can compute the path covering maximum sites at a given
duration based on their importance. Our method of optimizing the duration of a virtual
environment can be used while planning the path during a tour. It can be used to estimate
the overall time for the virtual environment. We may not be able to cover everything,
given the time threshold. However, if the user takes less amount of time in the sites than
expected, the time saved in interaction can be utilized in exploring the remaining sites.
If the threshold of the duration is more than the estimated time, the whole tour can be

designed as it is. Nevertheless, reducing the VR exposure duration always keeps the user
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on the profit side. If the threshold of the duration is less, we can make many variations
based on the type of terrain and the intention of the tour. We may reduce the distance
between sites of the terrain (some edges of the graph) to fit it in the given duration, or we
may change the travelling speed based on the time that needs to be reduced. If we modify
the virtual travel speed, we may need to compromise on the perceived realism [144]. We
can apply faster travel speed wherever the realistic walking experience is not needed much.
However, in real life we do not always walk around the whole terrain. Based on the terrain,
we may choose different modes of travel. Sarupuri et. al. [350] used different locomotion
techniques to travel in a virtual world. If the distance between two sites is too far, we may
also add vehicles to make the travel faster. However, further study is required to understand
the factors that need to be modified in an optimum way (depending on the virtual content)
when we need to finish a tour in a given time threshold.

Sometimes, it is not important to cover all the points for all the users. Based on the
user’s interest, the algorithm can be modified so that the interest points are visited based
on the user’s preference. The user’s preference can be captured before starting the tour. For
some tours, it may happen that some point is not allowed to visit before visiting a particular
place. For instance, if we want to create a tour of a museum, where the sections of the
museum must follow a sequence for visiting the places. In that case, we should disconnect
the edges joining the sections which are not in a sequence.

Our approach is limited to system-controlled travel. Because both the minimum time
and optimal path are calculated assuming a fixed time to be spent for each place given
to the user by the system. If the tour becomes fully user-controlled, the user may spend
more time navigating or staying in one place, exceeding the ideal duration’s time threshold.
However, this problem can be solved by guiding/alerting the user to move to the next place

whenever necessary. In that case, how it will affect user experience needs to be studied.

4.3 Summary

This chapter addresses two primary gaps in CS mitigation strategies for system-automated
VR tours: enhancing realism while using vibrotactile feedback strategy and reducing exposure

duration to minimize CS risks. The first part of the chapter establishes a range of visual gains
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that need to be used while using a vibrotactile feedback as a CS mitigation strategy. Here
the visual gain is for maintaining the realisitic walking experience, where the vibrotactile
feedback is to mitigate CS in system-automated tour. Through empirical study involving
21 participants, the study identified that the use of visual gain ranging between 1.40 and
1.78 can be used to simulate realistic walking speed, while using the vibrotactile feedback
behind the ears. This finding shows a significant difference from previous benchmark, which
did not account for the impact of tactile feedback during the stimulation.

The chapter also tackles the challenge of reducing VR exposure duration to lower the
risk of CS. It presents a novel approach that conceptualizes the virtual environment as a
weighted graph, where vertices represent points of interest and edges denote the walking
paths between them. The objective was to calculate the shortest path that allows a user to
visit all sites of interest within the minimum time or given a time to visit all the important
points of interest, thereby minimizing VR exposure without detracting from the tour’s
educational or entertainment value. This method was applied to develop a virtual tour of
Majuli Island’s cultural heritage, demonstrating its effectiveness in creating an immersive
yet comfortable experience for users.

A between-subject study evaluated the user experience of the optimized tour against a
non-optimized counterpart. A total of 40 participants were divided into two groups, with
one experiencing the system-automated tour designed using the proposed methods and the
other navigating an arbitrary path. Results indicated that the optimized path significantly
reduced discomfort and symptoms of CS, highlighting the benefits of the proposed strategies

in enhancing user comfort in a system-automated VR tour.

Cote -3 enen
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CHAPTER

Emotional State Detection while Navigating
in a VR Environment

The chapters 3 and 4 were based on enhancing the walking experience in system-automated
tours. This chapter is focused on enhancing the navigational experience in a user-controlled
VR tour. As discussed in chapter 2, studies have unveiled a correlation between a user’s
emotional state and the likelihood of experiencing CS [120, 114]. This finding underscores
the importance of recognizing and managing emotional responses in VR experiences to
mitigate CS risks, ensuring a more comfortable and enjoyable VR, tour for users. In recent
advancements, researchers are actively integrating the emotional state of users into the realm
of VR tours to create more immersive, personalized, and adaptive experiences [351, 352].
By considering emotions like excitement, stress, or calmness during virtual exploration,
developers aim to tailor the content dynamically. Integrating emotional understanding not
only enhances immersion and personalisation but also prioritizes user well-being in the
evolving landscape of VR.

Previous studies have made significant strides in understanding and predicting emotional
states by leveraging biosignals such as HR, EEG, and respiratory signals [351]. These
physiological indicators offer valuable insights into an individual’s emotional state. However,
harnessing these bio-physiological signals typically demands the use of external sensors,
presenting considerable challenges, especially in consumer-level HMDs like Oculus Quest,
HTC Vive, Sony PlayStation VR, and others. The necessity of external sensors complicates
the deployment of standalone emotional state predictors within these HMDs. Furthermore,

users are often required to restrict their movements during the data collection process to



minimize noise in the bio-physiological signals. This constraint imposed by external sensors
not only limits users’ freedom of movement but also interferes with the natural locomotion
and interaction expected in immersive VR experiences, often necessitating the cumbersome
attachment of sensors to users’ hands or bodies [353|. Although it might be appropriate for
a system-automated tour, it may not be suitable for a user-controlled VR tour.

Bio-physiological signals have exhibited substantial efficacy in forecasting emotional
states, yet alternative methodologies involving head and eye movement data also present
considerable potential [354, 355, 356]. Unfortunately, most consumer-grade HMDs like
Oculus Quest 2 and HTC Vive lack eye-tracking facilities, limiting access to crucial emotional
analysis data. This limitation has opened a new window to explore strategies for predicting
emotions by harnessing available sensor data, such as head and controller movement, inherent
in consumer-level HMDs.

Controller-based navigation plays a vital role as a method of travel in user-controlled
VR tours, requiring ongoing input from the user [357, 11]. Particularly in the realm of
consumer-level HMDs, VR controllers are the primary means by which users navigate the
virtual space. Research has established a connection between the user’s emotional state
and how they interact with the controller’s buttons (358, 359]. By utilizing data from
various sources, such as head and controller movements, a significant amount of behavioral
information can be gathered during navigation. This offers a chance to examine user
interactions and possibly infer the user’s emotional state, despite the challenges associated
with integrating sensors in consumer-level HMDs.

Overcoming the limitations posed by the absence of integrated biosensors and eye-
tracking capabilities, this chapter delves into devising a machine-learning model tailored to
detect users’ affective states while navigating through user-controlled VR tours using the
VR controller as an input mechanism. This approach seeks to predict emotional states in
VR by utilizing the existing sensor infrastructure, eliminating the need for extra external
devices. This provides developers with opportunities to modify VR content to improve user

immersion and engagement in VR environments.
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5.1 User Study

Taking users’ head movement and interaction data with controller during navigation, we

intend classify the affective state of a user into any of the following four categories:

Positive-High (PH)

Positive-Low (PL)

Negative-High (NH)

Negative-Low (NL)

In this work, the terms 'positive’ and 'negative’ are used to describe the valence of
emotional states, while ’high’ and 'low’ refer to the arousal levels associated with these
states. Our selection of affective states is informed by the Circumplex model of affect [360],
which organizes continuous emotional states into discrete categories based on arousal and
valence. The choice of the Circumplex model was motivated by its widespread use in various
applications [361, 362|. Furthermore, the application of the Circumplex model in identifying

affective states is a well-established method within the field of affective computing.

5.1.1 VR Stimuli for Emotion Induction

We selected 360 degree videos from database provided by Li et al [363], which contains
mean valence and arousal ratings (mean V-A ratings) from 95 subjects. Since the labels of
the emotion are given in continuous valence arousal ratings, we converted them into the
four affective states as mentioned. To convert valence arousal score to the four categories, a
cut-off value of 5 was used, where scores below 5 are categorized as low and scores above
5 are categorized as high. The dataset contains 73 videos and we selected 16 videos (four
videos per affective state). We present the list of the videos in table 5.2. We downloaded
the selected contents from YouTube with 4K in resolution (38401920) pixels in equiangular
cubemap projection format. We used the ffmpeg tool to convert it to equirectangular

projection.
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5.1.2 Emotionally Neutral Environment for Navigation

To create an emotionally neutral environment for navigation in a VR setting, the design
focused on crafting a straightforward outdoor path that users can traverse by pressing the
trigger button on their controller. We followed the guidelines suggested in the work by
Sophia et al [364] to create the environment neutral. The path was designed to be visually
unobtrusive, avoiding any elements that might evoke specific emotions. The color palette
chosen for the environment consisted of subdued, natural tones reflective of a typical outdoor
setting, steering clear of highly saturated colors or stark, monochrome schemes that might
induce particular emotional responses. The textures along the path and its surroundings
were rendered to mimic real-world materials without implying deterioration or excessive
beauty, maintaining a balance that neither excites nor unnerves the user. Lighting was
carefully controlled to mimic a clear, daylight setting, providing ample visibility without
dramatic shadows or highlights, thus supporting easy navigation without emotionally
charged visual cues. We didnot include any ambient sound in the environment. The
interactive element, moving forward by pressing the controller’s trigger/joystick button, was
implemented to be responsive and intuitive, ensuring the user’s experience is centered on
simple navigation rather than emotional engagement with the environment. This approach
to the VR environment’s design and interactivity ensures that it serves as an emotionally
neutral space, ideal for focusing on tasks at hand without the influence of underlying
emotional tones.

To validate the emotional neutrality of our designed virtual reality (VR) environment,
we conducted a pilot study with eight participants (3 females) to assess any changes in
emotional state resulting from exposure to the environment. Participants were asked to
navigate the straightforward outdoor path in the VR setting for two minutes. We employed
The Self-Assessment Manikin (SAM) [365], a non-verbal pictorial assessment technique
that measures emotional reaction, to gauge the participants’ emotional valence and arousal
levels both before and after their exposure to the VR environment. This method allowed us
to capture the immediate emotional responses of participants in a nuanced and sensitive
manner, without relying on potentially biasing verbal descriptors.

Upon completion of the VR navigation task, we applied the Wilcoxon Signed-Rank

Test to the pre and post exposure ratings to check any statistically significant difference in
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the emotional states. The results revealed no significant difference (W = 0.0 and p = 0.317
for both valence and arousal ratings) between the valence and arousal ratings before and
after exposure to the VR environment. This lack of significant change in emotional states
suggests that the VR environment successfully maintained an emotionally neutral stance,
not swaying participants towards heightened arousal or altering their emotional valence.
This outcome supports our objective of creating a VR environment that allows for focused
navigation without the influence of emotionally charged elements, thereby validating the

environment’s design as emotionally neutral.

5.1.3 Apparatus

For our virtual simulations, we utilized an Oculus Quest 2, which boasts a resolution of
1920x1832 per eye and operates at a refresh rate of 90H z. The headset’s field of view was set
at 89 degrees. Additionally, we enabled the link feature to project the participant’s viewpoint
onto a desktop monitor for observation. The simulations ran on a computer equipped with
an Intel i7 CPU at 3.6GHz (Quad-Core), 32GB of RAM, and a GeForce GTX 1080 with
4GB of video memory. The development of these virtual reality simulations was carried out
using Unity 3D software, specifically employing its terrain tool for environment creation.

The road texture utilized in the simulation was sourced online.

5.1.4 Participants

We asked 17 participants including 8 females (M age= 24, SD=4.8) to take part in the
experiment. All the participants were recruited through word of mouth. A brief training
was provided before the experiment to let the subjects understand their main task in the
VE.

5.1.5 Data Collection Procedure

The procedure was designed as follows:

1. The participants received a brief training session that covered the tasks they would be

undertaking and instructions on navigating using the controllers.

2. We utilized the SAM to determine participants’ current emotional states, requiring
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them to rate their valence and arousal on a 5-point scale.

. These ratings were then converted to a 10-point scale and correlated with four

predefined emotional states (PH, PL, NH, NL). Depending on the participant’s current
state, they were shown a corresponding 360-degree VR video to amplify their emotional
state. For instance, if we found a participant to be in positive high state we showed
them a 360 degree video that was labelled as positive high. If we found neutral state

we showed them any of the four states.

. To confirm the emotional state, participants were asked to re-rate their emotions using

SAM before introducing them to a neutral VR environment.

. Participants navigated the neutral VR setting using either a joystick or a trigger for 1

minute, with the control method assigned randomly to prevent any practice effects.
Each emotional state was explored in four sessions: two with a joystick and two
with a trigger. The participants were made aware that they had to walk on the VR

environment for 1 minute, regardless of their speed of travel or the distance covered.

. We again asked them to rate their emotional state using the SAM to ensure that the

emotional state is not effected. We planned that if we find change in emotional state,
we would not consider that data and redo the iteration. However, we didnot face such
case in our experiment. Participants were also asked they could quit the experiment if

they find any discomfort.

Steps 4 to 6 were repeated three times, yielding four sets of data per emotional state:

two from joystick navigation and two from trigger navigation.

. The participants were requested to contact us when they were in a different emotional

state than the current. So that we could collect data for the remaining emotional

states.

In the whole procedure for collecting data for one emotional state, the participants

were exposed to the VR environment for 16 to 20 minutes. So, for collecting data for all the

four emotional state took around 64 to 80 minutes for one participant. To avoid bias in the

interaction behaviour, we did not reveal the type of data we are collecting untill the end of

the experiment.
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Figure 5.1: Participant during the experiment

Figure 5.2: Screenshot of the neutral VR environment
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Sl No Type (Valance, Arousal) Name Youtube ID
1 Negative Low (3.33,3.4) Happyland 360 IW DqgeW F Jdp4
2 Negative Low (2.53,3.82) War Zone NzabrwzoJI
3 Negative Low (2.73,3.8) The Nepal Earthquake
Aftermath 5tasUGQ1898
4 Negative Low (3.33,3.33) Abandoned City Lbx Ac784608
5 Negative High (3.2,5.6) Zombie Apocalypse
Horror pHX3U4B6BCk
6 Negative High (4.83,5.25) Kidnapped ywoeQobY aLU
7 Negative High (4.4,6.7) Jailbreak 360 vNLDRSdAj1U
8 Negative High (4.93,6.07) War Knows No Nation CIbo0xLbNic
9 Positive Low (7.77,3.92) Great Ocean Road aszT'dBIlbfq0
10 Positive Low (6.13,1.8) Mountain Stillness aePXpV8Z10Y
11 Positive Low (6.57,1.57) Malaekahana Sunrise | —bIrUY M — GjU
12 Positive Low (6,2.63) Raising Ducklings gbwbxrkQeSHyg
13 Positive High (6.46,6.91) Walk the tight rope JtAzM FcUQ90
14 Positive High (6.17,7.17) Mega Coaster —xNN —bJQ4vl
15 Positive High (6.75,7.42) Speed Flying g6wbxrkQeSHg
16 Positive High (5.8,5.4) Tomorrowland 2014 j81DDY 4nvos

Table 5.1: Description of 360 degree videos used in our experiment to induce emotional

state

5.2 Data Processing

We recorded the data from the HMD and the controller at a frequency of 32Hz. This
data collection enabled us to accumulate 1920 samples for every minute of navigation
within the virtual environment. So for each emotional state we had 130560 samples of data
(1920 x 4 x 17). Given that all the recorded values ranged between —1 and +1, there was
no necessity to normalize these values to prepare them for analysis. The navigation data
was segmented based on button press events initiated by the participants. Specifically, we
categorized the samples from the start of a button press event at time zero up to the time t
seconds when the button was released, as a single window. These windows of data varied
significantly in size, ranging from 15 to 362 samples per event.

To standardize the data for our analysis, we adjusted the window sizes to ensure
uniformity. For windows containing fewer than 362 samples, we applied padding with
the value —999 to each window until it reached the standard size. The choice of —999 as
the padding value was deliberate, as it is a value that never occurs naturally within our

dataset, thus preventing any potential confusion with genuine data points. Following this,
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Data Type Data

Head-Tracking Data Head Rotation Quaternion (i.e. x, y, z, and w)
Controller-Tracking Data | Controller Rotation Quaternion while pressing trigger
or joystick (i.e. x, y, z, and w)

Controller Velocity while pressing trigger or joystick
s(i.e. V, Vy, V2)

Joystick press data (i.e. (X,Y) in each 1/32th second)
Trigger press data (i.e. T in each 1/32th second)

Table 5.2: List of Collected Data from the Oculus Quest 2 HMD & Controller

we appended the label corresponding to the emotional state induced during the event at
the end of each row. This process of organizing and standardizing the data was crucial in
preparing the sequence data for analysis with the LSTM model, ensuring that our approach
was both systematic and consistent with the requirements for sophisticated time-series

analysis.

5.3 Proposed LSTM RNN model configuration

The model architecture chosen for predicting the emotional state of a user navigating a VR
environment is specifically tailored to capture the temporal dynamics of behavioral data,
which includes controller and head movement data. Therefore, we chose to use sequential
model. Our model begins with a Masking layer, designed to ignore any input sequence
padded with a value of —999. This is crucial for handling variable-length sequences in a
batch, ensuring that the model’s performance is not adversely affected by padding used to
standardize sequence lengths.

Following the Masking layer, the model employs a LSTM layer with a dynamically
adjustable number of units. LSTM layers are adept at capturing long-term dependencies in
sequential data, making them ideal for analyzing the time-series data generated by users’
interactions with the VR environment. The return sequences parameter was set to be true
in the first LSTM layer for maintaining the temporal sequence information, allowing the
subsequent layers to further process these sequences for more nuanced insights. Dropout and
recurrent dropout are integrated within the LSTM layers to mitigate the risk of overfitting
by randomly omitting units from the layers during training. This randomness helps in

generalizing the model better to unseen data by preventing it from relying too heavily on
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Figure 5.3: Overview of the Model Architecture for Affective State Prediction
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any one feature.

A second LSTM layer, with half the units of the first, is included to further refine the
model’s ability to learn from the temporal data. This layer acts to compress and distil the
information from the first LSTM layer, focusing on the most salient features for emotion
prediction. The model transitions from LSTM layers to a Dense layer with a relu activation
function, designed to introduce non-linearity and facilitate the combination of learned
features in complex ways, enhancing the model’s predictive power. Another Dropout layer
follows, reinforcing the model’s robustness against overfitting.

Finally, the model concludes with a Dense output layer employing a softmax activation
function. This layer maps the aggregated features to the four predefined emotional states
(high valence low arousal, high valence high arousal, low valence low arousal, low valence
high arousal), providing a probability distribution over these classes that represents the
model’s predictions. We chose categorical cross-entropy as our loss function (As shown in

equation 5.1).
k

L=—> (AS; x log(AS;) (5.1)
=0

Here, AS; refers to the actual affective state and AS; refers to the predicted affective state,
where k is total number of classes. This loss function is particularly well-suited for multi-class
classification tasks, like predicting emotional states, because it effectively measures the
difference between the predicted probability distribution over the classes and the actual
distribution, where the true class label is represented as a one-hot encoded vector.

This model arrangement leverages the strengths of LSTM layers for sequence data
processing, dropout layers for generalization, and dense layers for classification, culminating
in a comprehensive approach to predict emotional states from VR behavioral data. We used

the same configuration for both the joystick and trigger model.

5.4 Model training and evaluation

We used Tensorflow for training and evaluating our model. We ran our models in an system
with 16GB RAM with Intel i7 2.6GHz CPU with GPU as NVidia Geforce RTX 2080,
Windows 11 OS. We used 10-fold cross validation method to train and test the performance.

K-fold cross-validation is a statistical technique used to assess the performance of predictive
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models by dividing the data into k equal parts. The method involves repeatedly holding
out one fold as the test set and using the remaining folds as the training set, thus cycling
through all K folds. This approach ensures that every data point is used for both training
and validation exactly once, providing a comprehensive measure of the model’s predictive
accuracy and helping to reduce any bias in the dataset.

In optimizing our models, we utilized the Keras Tuner library, applying its Random-
Search method for efficient hyperparameter tuning. This strategy enabled a strategic
exploration of the model’s hyperparameter space, focusing on key parameters such as LSTM
units, dropout rates, and learning rates. RandomSearch, by randomly sampling possible
configurations, offered a pragmatic balance between thorough exploration and computational
efficiency. The best parameters found in this approach is presented in table 5.3. We also
deployed an early-stopping strategy with a patience value of 10 while training the model, to
prevent overfitting. In order to fine tune the model parameters further we used 20% of the
training dataset as validation data during each fold. We used Adam as the optimiser for

our model with epochs of 10 with batch size of 32.

Table 5.3: Best hyperparameters found after hyperparameter tuning

Hyperparameters Trigger Model | Joystick Model

Units 320 224
Dropout 1 0.4 0.2
Recurrent dropout 1 0.2 0.2
Dropout 2 0.2 0.4
Dropout 3 0.3 0.2
Recurrent Dropout 3 0.4 0.2
Dropout Final 0.2 0.2

Learning rate 0.00838 0.00136

Table 5.4: Mean accuracy, precision and recall of the 5-fold cross validation on affective
state classification

% Precision % Recall
Model | % Accuracy 75 T Ny T Hp | LN | LP | HN | HP
Trigger 85.30 082 | 0.96| 092 077 ] 078 077 | 087 095
Joystick 86.00 073 | 086 | 0.83| 093] 087 | 0.72| 091 | 0.92
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5.5 Results

The mean accuracy, precision, and recall from the 5-fold cross-validation are presented in
Table 5.4. The proposed models for trigger press and joystick press achieved accuracies of
85.3% and 86%, respectively. The trigger press model demonstrated a higher precision for
the class LP (0.96), whereas the recall was higher for the class HP (0.95). Overall, this
model exhibited higher precision and recall, particularly for the class HN, with an F1 score
of 0.89. For the joystick press model, the class HP achieved the highest precision (0.93) and
recall (0.92). The F1 score for this class comes out to be 0.924

5.6 Discussion

The presented results from the 5-fold cross-validation of two the models designed for
affective state classification during VR navigation—distinguished by the type of controller
interaction (Trigger vs. Joystick)—shed light on several key findings and implications in
the realm of emotion recognition in VR settings. The analysis focuses on four emotional
states: HP, HN, LP, and LN, with metrics of accuracy, precision, and recall serving as
benchmarks for evaluation. The observed accuracies of the Trigger and Joystick models,
suggest a relatively similar level of proficiency in classifying emotional states during VR
interactions. This similarity in performance is noteworthy, indicating that both interaction
modes—despite their inherent differences in input dynamics, provide sufficient and almost
equivalent behavioral cues for the models to accurately predict emotional states. The Trigger
model demonstrates remarkable precision in predicting LP and HN states, with scores of
0.96 and 0.92, respectively. This high precision indicates that when the Trigger model
predicts these emotional states, it is highly likely to be correct, minimizing false positives.
This could be particularly beneficial in applications where incorrectly predicting these states
could have negative consequences, such as in therapeutic VR environments or in training
simulations where precise emotional feedback is crucial. Conversely, the Joystick model
shows a good precision for predicting HP emotional states with a precision score of 0.93.
This suggests that the Joystick model is particularly adept at identifying genuine instances
of HP emotion, which is essential for applications aimed at enhancing user enjoyment or

engagement. The lower precision in the Trigger model for HP states (0.77) indicates a
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greater tendency for false positives in this emotional category, which could be a focus area for
model refinement. The Trigger model shows strong recall in HN and HP states, indicating
that the Trigger model is particularly effective at identifying nearly all instances of HN and
HP emotions, making it valuable in applications where missing such emotional states could
have significant consequences. the Joystick model exhibits strong recall for LN and HN
states. This performance suggests that the Joystick model is particularly adept at detecting
a broad spectrum of negative emotional states. Given the established link between negative
emotional states and the exacerbation of cybersickness symptoms, the Joystick model’s
proficiency in recognizing these states positions it as a potentially powerful tool in predicting
and, consequently, mitigating the onset of cybersickness in VR environments. By identifying
users who are experiencing or are likely to experience negative emotions, VR systems can
proactively adjust the virtual experience to alleviate potential triggers of cybersickness,
thereby enhancing user comfort and overall experience. To the best of our knowledge, no
labeled dataset currently exists for emotional state classification that combines controller
interactions with HMD data. As a result, our findings cannot be directly compared with
previous studies. Nevertheless, we observed a comparable level of accuracy in the study
by Tikadar et al. [366], who achieved an accuracy of 86.60% in classifying four emotional
states based on users’ interactions with a smartphone. While the use of EEG technology
can yield accuracies exceeding 95% [367], it is important to note that this method requires

a cumbersome setup, which can be a significant drawback.

5.7 Summary

This contribution proposes a sequential model using LSTM RNN to predict the affective
state (in four classes of circumplex model) of a person while walking in a VR environment
using controller based walking, (where each press to trigger button or the joystick button
moves the person one step forward). We used head rotation data and controller rotation,
velocity and button (trigger/joystick) press data while pressing the controller. We had two
models: one for the trigger based navigation and one for the joystick based navigation.
The trigger model achieved an accuracy of 85.3% whereras the joystick model achieved
an accuracy of 86%. To the best of our knowledge, this is the state-of-the-art model for

predicting affective state using controller and HMD data. Since most of the commercial
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HMD comes with controller, we believe that this approach can be used to predict affective
state in non-lab setup to personalise the experience of user or predict the probability CS in
future. Since the ground truth of the data were based on the subjective questionnaire, a
more objective ground truth construction is required so that it can predict the range of the
affective state. Moreover, in this work we have only considered the data while pressing the
button, a more robust model can be built by considering the HMD and controller movement
while not pressing the button and fusing the two models (model for while controller button
is pressed and model while controller button is not pressed). Moreover, our dataset was
built with only 17 number of participants. A more diverse and number of participants can

created considering controller based interaction.
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CHAPTER

Mitigating CS in User-controlled VR Tours

As discussed in chapter 2, CS is a serious concern in both user-controlled and system-
automated VR tours. In chapter 4, we discussed about mitigating sickness while maintaining
the realistic walking experience for a system-automated VR tour. In this chapter, we explore
the same for user-controlled VR tours. Irrespective of the type of tour, the overarching
objective of a VLT remains consistent: to facilitate users’ navigation and movement within
the VR environment in a manner that feels comfortable, and natural, and engenders a
heightened sense of immersion [38]. Unlike system-automated VR tours, the prediction
of realistic walking speed is not a matter of concern for a user-controlled tour since the
control of speed is with the user, and the user can choose the speed with their comfort.
Although achieving complete perceptual equivalence between real and virtual worlds remains
a challenge, there exists a subjective threshold where interactions in VR feel inherently
natural, thus fostering an illusion of reality within the VR environment [368|. A method
to augment the sense of realism within VR entails the integration of natural interaction
techniques [369]. Researchers have examined a variety of natural interaction techniques in
the realm of VR. These techniques encompass gesture tracking [370], physiological inputs,
including monitoring heart rate and galvanic skin response [371, 372, 373|. Researchers
have explored indirect physiological signals such as eye gaze and muscle fixation as potential
means of interaction within VR environments [372]. Furthermore, breathing has been
examined as an active input method, notably by Sra et al., demonstrating its capacity
to enhance user presence and serve as a natural interaction mode in VR environments.

However, the use of breathing for navigation within VR has been less explored, with a few



notable exceptions that underscore the potential of this approach.

Among the categories of VLTs for user-controlled VR tours, steering-based VLTs
encompass a variety of continuous input methods facilitated through bodily movements
involving the head, hands, joysticks, torso, or leaning [145]. These techniques are typically
implemented using sensors integrated into the HMDs or other sensing platforms. The static
posture of users while employing these methods enables them to navigate substantial virtual
distances within limited physical confines and with minimal physical strain. However, like
system-automated tours, continuous motion in a stationary setup can induce CS due to
sensory mismatch [374]. As mentioned in chapter 2, recent investigations have indicated a
potential solution in CDB, demonstrating its efficacy in mitigating the onset of CS during
VR exposure [43, 302]. This technique, known for its regulatory impact on physiological
responses, has shown promise in alleviating the discomfort associated with exposure to VR.
The integration of breath-based interaction within VR environments not only showcases its
potential to diminish CS but also underscores its suitability as a harmonious and intuitive
means of engaging with virtual spaces [51, 375, 376].

The integration of mapping inhalation and exhalation to movement in virtual reality
was first accomplished by Davies and Harrison [377|. Here, they used breathing and balance
to allow users to fly through a VR environment. Another work, called DEEP [378], utilizes
VR to create an immersive underwater world where players navigate by controlling their
breathing, turning deep and slow breaths into a unique method of movement within the
VR environment. Similarly, [379] merged an underwater VR experience with breathing
strategies to aid in stress reduction. Several works also utilize breathing mapped to vertical
axis movement, which can be considered a form of navigation in virtual reality environments
[380].

Inspired by the positive impact of CDB on CS and the historical use of breath for
navigation and other interactions in VR, we introduce a new VLT called "BreathWalk".
Using this technique, users can navigate inside a VR environment by utilizing their breath,
captured through a nose-attached microphone, while remaining seated on a swivel chair.
Adjusting their breathing frequency, from low to high, allows users to modulate their walking
speed, while steering direction is achieved by directing their torso accordingly. To track the

torso, a VR controller (the non-dominant hand) is mounted on the lower chest of the user.
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BREATHING-BASED LocoMOTION

Our approach acknowledges and extends the foundational work in literature by utilizing
breathing not just for vertical movement or abstract navigation but as a direct method for
walking simulation in VR. This method maintains a relatively static body while continuously
altering the optical view, akin to continuous locomotion techniques in VR. Leveraging breath
as an input mechanism not only aims to mitigate CS but also seeks to enhance realism
within the virtual space.

We also conducted a comparative analysis between BreathWalk and Joystick-based
steering, assessing factors such as cybersickness, realism, task performance, and participant
preference. Participants navigated through a one-way route within a small virtual town using
both Joystick-based steering and BreathWalk. The assessment revealed that BreathWalk
significantly reduced CS compared to joystick-based steering while enhancing the sense of
realism, and it was predominantly preferred by the participants. Our research contributes to
the field of locomotion studies by introducing a breathing-controlled locomotion technique
for walking in a VR environment. Furthermore, our user study provides valuable insights into
the advantages and limitations of employing breathing as an input method for locomotion

within VR environments.

6.1 Design & Implementation

While navigating through a VR environment using a steering-based locomotion method,
we exert control over two fundamental aspects: speed and direction. In our approach, we
intricately linked the control of speed to the user’s breathing rate. Simultaneously, we
harnessed the natural positioning and movement of the torso to provide intuitive and respon-
sive control over the direction of movement. This method was taken out of collaborative
brainstorming sessions within our laboratory, where we evaluated various potential methods
for virtual movement among ourselves. After various considerations, we settled on the

following intuitive actions for facilitating walking within a virtual space:

e Start and Stop Walking: Traditional methods of initiating or halting movement in
VR environments often rely on manual controls or gestures. However, in our case we

recognized the inherent limitation in halting a continuous process like breathing to
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stop walking. To address this, we proposed the Nasal Rapid Gust technique. This
technique involves a quick, powerful burst of air expelled from the nose. This action

allows users to start or stop walking within the VR environment.

Speed Control: The crucial component of our approach is the development of a
breathing-based input system, designed to finely tune the user’s walking speed within
the VR environment. We implement a direct correlation between the frequency of
breathing and the user’s pace of walking. The system allows for a fluid and adjustable
range of speeds, varying from 1.4 m/s to 3 m/s. These speed variations correspond to
the range of breathing rates, from 5 breaths per minute up to 20 breaths per minute.
Although these speeds are the virtual speed, however, it is proved in the literature
that the perceived speed is slower than the shown virtual speed. Considering a gain
of 1.74, found in a study by Nilson et al. [39], the perceived speed for the virtual
speed would be 0.8 m/s to 1.72 m/s. This range is the approximate walking speed of a
person from slow to fast walking speed found in a study by Elaine et al[381]. To make
sure the speed matches with the realistic walking speed we verified it with five people.
Another reason for setting the maximum speed at 3 m/s was to mitigate the potential
confounding effect of increased speed on the rise in CS levels, as identified in the study
by Lo et al. They discovered that the severity of nausea and vection escalated when
speeds increased from 3 m/s to 10 m/s, indicating a positive correlation. To map any
breathing frequency in the range of 1.4 m/s to 3 m/s, we used the following linear
equation:

y = 0.10666667x + 0.86666667 (6.1)
Where, y is the virtual speed and x is the breathing frequency in breath per minute.

Direction Control: In order to implement a intuitive directional control mechanism
within a VR environment, we utilized the natural correlation between the orientation
of the torso and directional control (torso-directed steering[382]), finding it effective for
our movement method. Implementation involved the placement of the VR controller
(used for the non-dominant hand) in the lower chest area. The positioning of the
controller is illustrated in the Figure 6.3 for reference. The walking path is determined

by the torso’s orientation, tracked using this controller.
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Figure 6.1: BreathWalk System Overview

Figure 6.2: Visualisation of raw sound wave for slow, medium, and fast breathing patterns
performed by one of our lab members

As depicted in the Figure 6.1, breathing sound is captured through a microphone. We
captured the samples at a frequency of 48,000 Hz, aligning with the common practice in
audio applications employing a sampling rate of 48 kHz. However, to synchronize with the
Unity engine’s update function (Unity 2022.3.3f1), which operates at a rate of 120 times per
second, we performed amplitude averaging every 400 samples. To ascertain the breathing
frequency, we opted to utilize the energy value of the sound signal, which entails summing
the squared signal values, representing the overall energy within the signal.Various window
sizes were experimented with for computing the energy value, and a minimum window size

of 3 seconds was found to yield approximately 70% accuracy in detecting the breathing rate.
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Given the variability in breathing intensity across individuals and microphone positioning,
we implemented a calibration procedure at the start of each VR session. During calibration,
users are guided to inhale and exhale at different breathing rates using a metronome, and
the energy values are calculated over 3-second intervals. After collecting these energy
values, a linear regression equation is derived to represent the energy values for that session.
Additionally, during the calibration phase, data on the average amplitude of nasal rapid gust
action is also collected per session. Unlike the breathing rate detection, we found the window
of 1 second data to be good enough for detecting the nasal gust action. Detection accuracy
for this action was found to be 100%. Figure 6.2 illustrates the raw waveform data recorded
by the microphone, showcasing slow, medium, and fast breathing rates demonstrated by
one of our team members. For torso detection, we selected to employ a VR controller
attached vertically to the lower chest of the user, with the controller’s front side indicating
the forward direction. Users can alter their direction by rotating their torso while seated
in a swivel chair. This concept draws inspiration from Zielasko et al.’s study [382]. It is
essential to note that neither the technique for breathing rate detection nor the method
for detecting the torso is our original contribution. Our original contribution lies in the

utilization of breath-based walking locomotion as a technique.

6.2 Evaluation Study

6.2.1 Participants

Twenty individuals participated in this study, including five females, with ages ranging from
24 to 42 (mean age: 28.15, SD: 4.09). Twelve participants had prior VR experience in
our lab. All were familiar with joystick steering but had no experience with breath-based
mechanisms. Participants had normal or corrected vision and no nasal congestion during

the experiment.

6.2.2 Apparatus

The breath input was captured by a microphone (Logitech H111 Wired On-Ear Headphones
with Mic) positioned near the user’s nose, as depicted in Figure 6.3. We employed the

Oculus Meta Quest 2, which features a resolution of 1920 x 1832 per eye. The HMD was
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Figure 6.3: Mic and controller placement for BreathWalk

connected to a PC via an enabled Oculus Link. The stimuli were rendered on a 64-bit
computer (Windows 11 Professional OS), equipped with a 3.6 GHz Quad-Core processor
and a GeForce GTX 1080 4 GB graphics processing unit. The participants were seated on a

swivel chair during the experiment.

6.2.3 Measures

Relative Simulator Sickness Score: Before and after the study, participants were
assessed for symptoms of sickness using the SSQ [349]. To calculate the Relative Sickness
Score for each participant, we adhered to methodologies outlined in previous studies [40, 72].
This calculation involved deducting the total SSQ score recorded after the test from the
one recorded before the test, providing an assessment of the participant’s reported level of
sickness.

Task Performance: We followed a similar approach used in the study by Zhao et al.
[383]. This measure has three main components: Completion time, Speed and Accuracy.
We tracked the duration it took participants to complete the designated path. To monitor
their movement within the VR environment, we recorded their positions at each second.
We also assessed the accuracy of the two locomotion techniques. This assessment involved
comparing the actual travel paths of the participants with a predetermined standard path,
which was centrally aligned on the road. This road was divided into five straight paths
and four curved path sections. For each participant’s location, denoted as (yser, Yuser), We

identified the nearest point on the reference path, denoted as (z,cf, yref), to determine their
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Figure 6.4: Top view of the virtual environment

deviation from the standard path. This deviation at each point was quantified using the

Euclidean distance formula:

d= \/(xuser - xref)Q + (yuser - yref)2 (62)

Subsequently, we summed these individual deviations across each segment and calculated
the average deviation for each participant’s journey.

Realism Another measure used in the study was perceived realism. Participants were asked
to rate the similarity of the walking experience in the virtual environment to that in the real
world. They rated this on a scale from 0, indicating completely unrealistic, to 10, signifying
completely realistic. This method of assessment is a modification from the original Presence
Questionnaire (PQ) and has been similarly employed in various VR locomotion studies. The
modification of the measurement criteria was informed by observations from Pang et al.’s
[40] study.

Preference We employed a preference rating scale ranging from 1 to 10 to compare
participants’ preferences of walking techniques between BreathWalk and the Joystick-based

locomotion at the end of using both techniques. This scale allowed us to quantitatively
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assess which method was favored by participants, providing a clear comparative analysis of
the two locomotion techniques. We also asked them to provide a short explanation about

their preference.

6.2.4 Hypotheses

Drawing upon existing literature and theoretical foundations, our formulated hypotheses

are articulated as:

e H1: It is hypothesized that the implementation of BreathWalk will result in a reduction

of CS experienced by users in the VR environment [43].

e H2: Utilizing BreathWalk is conjectured to enhance the perception of realism during

navigation within the VR landscape [51].

e H3: BreathWalk is expected to yield a similar speed and completion time compared

to joystick-based steering (Since both techniques had the same range of speed).

e H4: BreathWalk is expected to have low accuracy compared to joystick-based steering

[384].

e H5: The incorporation of BreathWalk is anticipated to positively influence user

preference within VR settings [51].

6.2.5 Procedure and Tasks

The experiment was of three parts: Pre-task session, task session and post-task session.
Pre-task session Before starting the task, the participants had to go through a practice
session to adapt to the locomotion techniques. For the BreathWalk locomotion, we had the
additional calibration step. We asked them to practice with the locomotion techniques till
they did not have any doubt about it’s working principle. The practice session for each
technique (excluding the calibration phase) took around 3 to 4 minutes. After practising
the locomotion technique, they were asked to fill the SSQ.

Task session The experimental setting consisted of a one-way route that traversed through
a virtual town created in Unity (a top view presented in Figure 6.4). We imported the

scene from unity asset store (City pack by 255 pixel studio). This route included four turns.
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Each participant was required to use the two locomotion techniques to navigate the same
route. During the session the participants were asked navigate through the road. While
using BreathWalk, they were asked to use diaphragmatic breathing and they were asked to
navigate as precisely as possible in their desired speed that feels natural to them.
Post-task session After completing the path using a locomotion technique the participants
had to fill up SSQ and rate realism.

To mitigate any potential practice effects associated with these techniques, the order of the
locomotion technique was chosen randomly. Participants were given a 30-minutes break
before using the next locomotion technique to relieve possible after-effects from the previous
locomotion technique. They could also rest longer if requested. At the end of trying out

both locomotion techniques they were asked to rate their preference.

6.3 Results

We have analyzed the data gathered from the participants regarding VR sickness, realism,
task performance, and preference from the study (as depicted in Figure 6.6). Our findings

are reported as follows:

VR Sickness: We performed Shapiro-Wilk tests, which revealed that the distributions of
Relative CS Score were not normally distributed (p < 0.05). To further compare the two
techniques, we employed a one-tailed Wilcoxon Signed-Rank Test, the results of which are
elaborated in Figure 6.6a. The test yielded a Z-value of —3.662 with a highly significant
p-value of .00013, confirming the significance of our findings at p < .05. Additionally, the
W-value was found to be 4, substantially below the critical value of 53 for our sample size

at p < .05.

Realism: For the realism data, the Shapiro-Wilk test revealed non-normal distributions
(p < 0.05). We applied a one-tailed Wilcoxon Signed-Rank Test, with the detailed results
outlined in Figure 6.6b. The analysis yielded a Z-value of -3.4078 and a p-value of .00032,
indicating a statistically significant difference at p < .05. Furthermore, the W-value recorded

was 0, significantly lower than the critical value of 30 for our sample size of 15 at p < .05.
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Figure 6.5: Task performance scores
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(a) Relative CS score (b) Realism score (¢c) Preference score

Figure 6.6: Subjective scores

These results, demonstrate a notable difference in the perceived realism between the two

locomotion techniques, as gauged by the participants’ ratings.

Task Performance: In our study, task performance was evaluated using three metrics:
Speed, Completion Time, and Control Accuracy for both straight and curved paths.

For Speed, the Shapiro-Wilk test showed the distribution to be not normal (p < 0.05).
Therefore, we conducted a one-tailed Wilcoxon Signed-Rank Test. The results from the test
revealed a large significant difference at p < 0.05 (Z-value = —3.2479, p-value = .00058,
W-value = 18).

Regarding Completion Time, the Shapiro-Wilk test showed that the data were not normally
distributed. The one-tailed Wilcoxon Signed-Rank Test yielded a Z-value of —3.1188 and a
p-value of 0.0009, indicating a significant difference at p < .05. Additionally, the W-value
was 17.5, below the critical value of 53, indicating a significant difference.

For Control Accuracy, we applied the Shapiro-Wilk test to the deviation data from both
straight and curved paths. The straight path data were normally distributed (p < 0.05),
while the curved path data were not (p > 0.05). Consequently, we used the Wilcoxon
Signed-Rank Test for the straight path data, which showed no significant difference (Z-value
= —0.5413, p-value = .2946, W-value = 90.5). For the curved path data, a paired-t test
indicated a significant small difference between before (Mean = 2.5, SD = 0.7) and after
(Mean = 2.1, SD = 0.7), t(19) = 2.1, p = .046. These results suggest that the locomotion

techniques impacted task performance differently on straight versus curved paths.
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Preference: Since the preference data were also not normally distributed, we used the
Wilcoxon Signed-Rank Test to evaluate participants’ preferences between two locomotion
techniques. The test results were significant, with a Z-value of —1.742 (p-value of .04093)
and a W-value of 45.5, compared to the critical value of 47 (p < .05), clearly indicating

BreathWalk to be preferred over the joystick based locomotion.

6.4 Discussion

Our study confirms that BreathWalk significantly reduces CS compared to joystick lo-
comotion, supporting our hypothesis (H1). This aligns with existing research on slow
diaphragmatic breathing for motion sickness. While joysticks often worsened discomfort,
even rapid BreathWalk (up to 20 breaths per minute) proved more advantageous. We didnot
test beyond 20 breaths/minute, but future research can explore the optimal upper limit for
BreathWalk frequency. Notably, a few participants reported fatigue with BreathWalk during
faster movement (P2, P5, P20). Customizing the BreathWalk speed-frequency relationship
to individual comfort could address this and was not tested in our experiment.

BreathWalk demonstrated a significantly enhanced sense of realism compared to joystick-
based locomotion, in aspects of both user experience and immersion, aligning with our second
hypothesis (H2). The increased realism experienced by participants with BreathWalk can be
attributed to the seamless integration of diaphragmatic breathing with virtual movement,
coupled with the intuitive use of breath for locomotion control in a virtual environment.
One participant described the experience as, “The act of breathing to move felt instinctive
and closely mirrored real-world walking, which amplified my sense of presence in the VE.”
(P11) Furthermore, the employment of controlled breathing as a means of navigation offered
a more engaging and cognitively less taxing experience. This sentiment was echoed in
participant feedback, with one stating, “I felt more immersed and connected in the virtual
world as my movements were directly linked to my breathing, in contrast to using a joystick.”
(P2) This enhancement in user experience through naturalistic interaction methods has
been observed in similar studies, which reported an increase in user presence and a decrease
in cognitive load.

Notably, Joysticks proved significantly faster (against H3), likely due to their familiarity

and established efficiency in VR navigation. Users adapted and navigated quicker with
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joysticks. Conversely, BreathWalk users sometimes felt fatigued while maintaining high
breath frequency for speed (although 20 breaths per minute is considered to be a normal
breathing rate [385]), leading many to stick with an average pace. Regarding control
accuracy, our results indicated no significant difference on straight paths between the two
systems, suggesting that BreathWalk is capable of matching the precision of joystick controls
in simpler navigation tasks. However, the joystick exhibited superior accuracy in navigating
curved paths. Therefore our forth hypothesis remains partially correct (H4). This might
be due to the more intuitive and direct control that joysticks offer for complex maneuvers,
compared to the potentially less precise control dynamics of torso directed steering in such
scenarios. Few participants also mentioned that there was a problem, when they tried to
change the speed suddenly, due to which they had problem during taking turns (P3, P6,
P18). While calculating breathing frequency we had to take a window of 3 seconds to analyse
the energy value to accurately detect the breathing frequency, which caused this delay in
recognising breathing frequency. However, we noticed reducing the window can cause sudden
jumps in speed, which reduces the smoothness of the virtual motion. A more sophisticated
breathing frequency detection method can be used to solve this issue, as done in the work
by Shih et al. [386]. These findings prompt a reflection on the practical applications and
potential refinements of BreathWalk. While BreathWalk may not currently match the speed
and accuracy of joysticks in more complex navigational tasks, its equivalence in simpler
tasks suggests potential in specific contexts. For instance, in applications where immersion
and experience are prioritized over speed, BreathWalk could offer a unique and engaging
alternative. Furthermore, these results highlight areas for improvement in BreathWalk,
particularly in enhancing navigational precision in more complex environments.

In considering the outcomes of this study, it is also crucial to acknowledge potential
confounding factors that might have influenced the findings. Participant variability in terms
of prior VR experience and physical fitness could have impacted both the subjective and
objective measures reported. For instance, individuals with more VR experience might adapt
more quickly to a new locomotion method, potentially skewing results towards a more positive
reception of BreathWalk. Similarly, differences in physical fitness could affect participants’
ability to comfortably control their breathing for navigation, which might influence their

performance and reported experience of CS or realism. Additionally, the familiarity of
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the BreathWalk method compared to the more familiar joystick control could introduce
a bias towards favoring the new experience due to its novelty rather than its inherent
superiority. Future studies should aim to control for these variables by incorporating a wider
demographic of participants and possibly pre-screening for VR experience and physical
condition. Moreover, longitudinal studies could help discern whether the observed effects
are sustained over time or diminish as the novelty wears off. Acknowledging these factors is
essential for a nuanced interpretation of the results, and they highlight areas for further
investigation to isolate the specific contributions of breath-based walking simulation to the
VR experience.

Evaluating BreathWalk’s dual-component system— torso for direction and breathing
for speed—poses a challenge in determining each element’s contribution to user experience
in VR. While previous research supports the benefits of torso-directed interfaces in reducing
CS and enhancing realism, participant feedback in our study suggests that the breathing
aspect, particularly for speed control, significantly enhances immersion and reduces CS.
Despite the perceived benefits, without comparing to a torso-only condition, the exact
impact of each component remains speculative. Future research should isolate and combine
these elements to fully understand their effects on VR navigation, informing the design of

more intuitive VR locomotion methods.

6.5 Summary

In this chapter, we proposed BreathWalk, a breath-controlled VR navigation method for
simulating walking in VR. We also compared BreathWalk, to joystick steering in terms
of cybersickness, realism, task performance, and user preference. BreathWalk reduced CS
and was preferred for its intuitive nature but had lower speed and precision (especially on
curved paths). Notably, BreathWalk was evaluated in a controlled lab setting, maintaining a
noise-free environment. In future research, we aim to enhance breathing frequency detection
by utilizing a diaphragmatic breathing detection device like Zephyr BioHarness , instead of
relying on microphone-based detection. This advancement is expected to eliminate the need
for calibration steps, thereby simplifying the setup and use of BreathWalk. Additionally, we
are considering the integration of audio and vibrotactile feedback to enhance users’ awareness

of their walking frequency. We intend to further evaluate BreathWalk by employing Cannavo
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et al.’s framework [387] for a comprehensive evaluation.
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CHAPTER

Visualising Off-screen POls in
Smartphone-based AR Systems

Up until the previous chapter, we have explored various models and methods aimed at
enhancing the travel experience in a VR tour. In this chapter, we will address another
aspect of navigation, namely wayfinding. Wayfinding plays a crucial role in both AR and
VR to improve the navigation experience. However, as discussed in Chapter 2, we identified
a research gap in the visualization of a large number of off-screen objects on a smartphone
screen. Addressing this gap is essential for improving wayfinding in smartphone-based AR
applications.

While navigating using a smartphone-based AR application, due to the limited field of
view of the smartphone camera, only a portion of the surrounding POIs is visible on the
smartphone screen, while other parts of the environment remain outside of the screen. As
discussed in 2, existing systems developed for off-screen POI visualization have predominantly
undergone testing in environments characterized by a limited number of POls, typically
ranging from 5 to 15 POIs [44, 48, 331|. In real-world scenarios, it is important to consider
that there can be many more POIs than this. When this happens, we refer to it as a
high-density environment. For instance, users could find themselves in crowded areas with
numerous nearby shops and establishments. In such situations, the current visualization
techniques struggle with visual cluttering as the number of POIs increases [50|, thereby

impeding the users’ ability to perceive the desired information effectively. Consequently,
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there is a need for an approach to address the problem of off-screen POI visualization for
handheld AR in high-density settings, enabling users to precisely locate and interpret the
distance information of the off-screen POIs even when confronted with a large number of
POls.

In this chapter, we propose a handheld AR-based off-screen POI visualizer designed
explicitly for high-density environments characterized by a larger number of POIs. Our
approach aims to provide users with both distance and direction awareness of off-screen POls.
We introduce a novel technique where 3D arrows representing the POIs are strategically
positioned and distributed over the edges of the smartphone screen, thereby effectively
reducing clutter in the central area of the device. Additionally, to further mitigate visual
clutter, we proposed a method to aggregate the 3D arrows while preserving their individual
direction information. To determine the optimal number of POIs for aggregation, we
developed a model through a within-subject study. In order to enhance distance awareness,
our visualizer incorporates vertically dashed lines attached to the base of the aggregated
arrows, with the number of dashes varying based on the distance between the user and
the represented POI. We also introduced a distance filter to disambiguate the POIs and
improve distance perception. Furthermore, we conducted a comprehensive comparative
analysis, comparing our proposed approach with state-of-the-art off-screen POI visualization
methods, namely 3DWedge+ and Halo 3D. We found our technique to be more accurate

and efficient in high-density conditions.

7.1 Proposed work

Initially, we studied both 2D and 3D POI visualization techniques. We need to visualize a
set of POIs onto a 2D display of a handheld device so that the direction of the POIs (along
with different altitudes) can be located quickly and accurately without having any on-screen
clutter. Moreover, a reasonable estimate of the POIs’ distance should be provided to the
users. Formally, given a collection of POIs (P), we were required to show the elements in P,
located in various altitudes and to visualize the distance information for the elements in P

when it has a greater cardinality.
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7.1.1 3D arrow as metaphore

As discussed in the earlier section, researchers have come up with many designs that can
show the distance and the direction information of the POIs. We chose Arrow 3D in our
case. Because of the 3D arrow tip, users find it easier to learn the direction of the POlIs
[48, 50]. In real life, we use arrows to point at something. So we found it the most intuitive
metaphor to point towards a POI. However, a 3D arrow makes it challenging to know the
distance when the number of arrows increases with the number of POIs [48]. We have

proposed the remedy for this in the later sections.

Design of 3D arrow

We use three-dimensional arrows as a visual cue to indicate an off-screen POI. These arrows
are anchored to a designated cell’s centre and defined within a sphere with a radius of d.
The arrow’s head is represented by a cone with a height and radius of d, while the tail is
represented by a cylinder with a height of d and a radius of d/2 to maintain symmetry
within the cell. The tail and head of the arrow are distinctively coloured to enhance visibility
when the direction of the arrow is either pointing away from or towards the device screen.
The circular patch at the tip of the head is of the same colour as the tail, providing a clear
distinction (as shown in Figure 7.2). The arrow is depicted in screen space through the use
of perspective projection and is scaled to the size of the cell (d). The arrow’s direction is
determined using the POI’s direction vector, which extends from the device to the POL.

The arrow or sphere’s centre is relocated to the projected POI’s screen coordinate.

Positioning the 3D arrows

As handheld devices (especially smartphones) have limited screen sizes, the metaphors need
to be placed so that they do not result in visual obstruction. In the literature, we found that
the metaphors were placed in two ways in handheld AR: the central area of the screen and
the sides of the screen. As mentioned earlier, showing 3D arrows together in a single place
affects perceiving the cue. Furthermore, keeping it in the middle of the screen would occlude
the central area of vision. Considering these points, we decided to use the 3D arrows on
the borders of the screen (distributing them over the sides) rather than using them in the

centre of the screen. Now we will discuss how we distributed the arrows around the screen.
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Figure 7.1: 3D Arrow design

Projection In order to effectively visualize the POIs that are located outside of the
device’s screen, we utilize the AroundPlot technique. This method utilizes an egocentric
approach, inspired by the concept of a fish-eye lens, to project a set of POIs, denoted as P,
that is situated in a three-dimensional coordinate system surrounding the user. The chosen
visualization construct is then positioned at the projected point within the screen space.
The position of an off-screen POI is calculated based on its distance from the device and its
yaw and pitch values. These values are used to project the POI into one of three distinct
zones: Up/Down, Left/Right, and Diagonal.

An illustration of the AroundPlot projection is shown in Figure 7.3. An instance is
shown where the user is standing at the centre of the sphere, pointing his/her phone in the
forward direction. The blue area indicates the area covered by the smartphone screen. The
green and grey areas from the sphere (the off-screen area) are mapped to the smartphone’s
sides and corners. Note that the POIs with different distances will have spheres with

different radii, the user being in the centre of the sphere.

Celling After the projection stage, the POIs are situated in the two-dimensional plane of
the device. However, the arrows representing some POIs may overlap and lead to visual
clutter. To solve this problem, we introduce celling. In this stage, the projected regions
(left /right /up/down/diagonal) are divided into cells. The size of the cells depends on the

left /right region width or the up/down region height of the device, denoted as d. The
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Figure 7.2: Arrow 3D pointing POIs in different directions
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Figure 7.3: Illustration of the projection technique of AroundPlot

left /right direction of the region can be divided into cells by finding the floor value of the
height (h) divided by the cell size (d) (|%]). The number of cells in the up/down direction
can be calculated by finding the floor value of the width (w) divided by the cell size (d)
([%]). Diagonal directions are considered as a single cell.

We assign a projected POI to its closest cell based on the Euclidian distance from
the POIs to the centre of the cell. As a result, the same screen space is used to map
several projected POIs that fall within the same cell and are considered overlapped. If the
parameters w and h are not multiple of d, the last cell’s dimensions will differ from those of
the other cells in the area. The projection is then projected to the closest diagonal region in

that situation.

7.1.2 Proposed cluttering removal mechanism

A collection of 2D screen space points results from the celling stage. When multiple POIs
overlap in the same cell, we need to aggregate the POIs under the same cell to eliminate

the overlap. There can be two ways we can visualize the aggregated POIs

1. Using multiple arrows: Each POI is represented by a unique visual component, such

as an arrow attached to a central point in the cell’s centre.
2. Using combined arrow: A single 3D arrow used as a visual representation of the
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centroid of the collection of POIs that are included within the same cell.

As several arrows are attached to the same location in the approach (1), this may lead
to a cluttered visual appearance, especially on handheld devices with small screens where
each cell only occupies a limited area of the display. Although distributing the arrows into
the cells creates less clutter than displaying them together in one place, showing multiple
POIs falling into the same cell using approach (1) may nullify the improvement over visual
clutter. Ultimately, we chose approach (2). A single 3D arrow (aggregated arrow) is pointed
towards the centroid of the projected POls in a cell. However, the distance information for
individual POI mapped into a single cell is lost when only the aggregated arrow is displayed.
For instance, we can only show the average distance when two POIs with higher distances
map to a single cell. We display thin lines with verticle dashes starting from the arrow’s
base towards the POIs (as shown in Figure 7.4) to address this issue. We adopted this idea
from the 3DWedge+ technique[48]. We map the distance of the POIs with the length of the
lines. The line pointing to the closest POI would be the shortest, and the highest distant
POI line would be the longest. The number of dashed verticle lines is proportional to the
relative distance of the POIs. The colours of the lines are chosen randomly so that the
lines can be distinguished from one another. Furthermore, the opacity of the 3D arrow was
reduced to 70% so that the dashed lines do not get occluded to the aggregated 3D arrow.
The aggregated arrow can be used to follow the direction of the POIs, where the dashed
lines are to provide distance awareness to the users. With the increasing number of overlaps
in a cell, it may become harder to follow the direction of a specific POI with the aggregated
arrow. Furthermore, increasing POIs within a single cell can lead to confusion, even when
the dotted vertical lines are present. To mitigate this issue, we remove POIs that might not
hold as much value for the user from the display.

We came up with two techniques to disambiguate the POIs from the system:

e Include the POIs in a cell up to a certain limit. When the number of projected POls
goes beyond a specific threshold, it is advisable to employ a recommendation system

within that cell. We will discuss this threshold further in a later section.

e Giving control to the user for disambiguating the POIs using a distance filter
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Figure 7.4: Illustration of the 3D arrow with the dashed thin lines pointing towards two
POIs

Include the POls in a cell up to a certain limit: We assume a recommended system
is running in the back of the system, which takes the set of POIs as input and outputs a
list of POlIs in increasing priority order. The idea of using a recommended system is to
pick an ideal number of POIs (we call it Clutter Threshold, CT ) from the cell. Therefore,
the recommendation system is employed when the POIs displayed in a cell surpass the
threshold CT. If exceeded, top CT POls are picked from the output of the recommendation
system, and others are discarded. Note that we do not propose any recommendation system;
we recommend using it to include only the most relevant POIs. However, selecting the
most prior C'T" number of POIs would make it a unstable system. By the term unstable,
we mean the projected on-screen POIs will appear and disappear with the change in the
user’s position (when the user navigates). This is due to the system’s dynamic nature, as
the projection of a POI to different cells can vary based on the device’s current position.
When a group of POIs are projected to the same cell, the POIs that are part of a Direction
Cluster are chosen as the highest priority. A direction cluster means a collection of POIs
within a certain distance, represented as [, from a direction vector. Therefore, even when
the user alters the device’s position, all members of a given cluster would yield a cluster of
POIs on the screen that are mapped into the same cell. As long as the cluster still contains

a POI, the removal of POIs from the cluster will not cause instability in the system.
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Let us consider a collection of POIs P mapped to a unit sphere with the device
positioned at the centre of the unit sphere. Formally a direction cluster can be defined as
a collection of POIs where the largest distance between any two POIs within the group
does not exceed [. Multiple clustering algorithms, including K-means|388] and DBScan[389],
were evaluated but ultimately we selected a hierarchical clustering algorithm. The algorithm
is presented in Algorithm 2, and the distance between clusters ( C; and Cb) is defined in

equation 7.1, with cosine similarity being utilized to define the distance between two points.

distance(Cy,Cy) = opax distance(cy, c2) (7.1)
1 1,62 2

Algorithm 2 Algorithm for forming direction clusters

Require: Set of POIs P = p1,po,...,p, in 3D space and distance parameter [.

: Step 1: Perform unit sphere projection on P and store the result in Ppq;.

: Step 2: Initialize the cluster set Z with P,.;.

while distance between two clusters in Z is greater than equal to [ do
Step 3: Find the two closest clusters, (X,Y), in Z, where distance(X,Y) <.
Step 4: Merge the clusters X and Y and add the result to Z.
Step 5: Remove clusters X and Y from Z.

A S S

The above algorithm comes with a time complexity of O(n?®). However, it need not be
performed for each frame. Instead, it can be run offline when there is a substantial change
in the POIs’ distribution. The value of the parameter | may need to be adjusted depending
on the desired cluster rigidity. The value of [ is determined based on the cell size on the

device screen mapped to the unit sphere.

g | 2. G . @
o w, G2 R '
C'1 R . C4

Figure 7.5: Formation of clusters

When a cell holds more POIs than the Cluttering Threshold, the top CT POls with
the highest priority are selected through the recommendation system. However, selecting
only the best CT POIs can result in a system that is unstable. Take, for example, the
scenario in Fig. 7.5 with four clusters, C, Co, Cs, and Cy4. If all POIs are mapped to the

same cell in this configuration, the entire cluster C3 would be eliminated if the POIs in Cj
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have low priority. On the other hand, if low-priority POIs were removed from the same
clusters (', C, and Cy, the system would remain stable. As a result, POIs within the same

cluster should be removed first, followed by separate POI clusters if necessary.

Algorithm 3 Algorithm for reducing the number of POIs

Require: Set of clusters C' = C,Cs,C5,Cy ..., C,, where C; represents a POI cluster,
Cluttering Threshold (CT'), and the cell
if count of POIs in cell < CT then

return
Determine the POIs in the cell and assign them to poiCell
Obtain recommendations for poiCell and assign to P
while count of POIs in cell > C'T and P contains lower priority POIs do

Determine the next lowest priority POI from P and assign it to p

Find the cluster containing p and assign to ¢

if count of POIs in cluster ¢ is equal to 1 then

continue

Remove p from ¢
. if the total number of POlIs in the cell > CT then

Remove POIs from the cell starting with the lowest priority until the count is equal
to CT

—_
e

— =
N =

In Algo. 3, The stage of recommendation might be noted as optimization. The suitable

range for the threshold C'T" will be determined through a user study.

Use of distance filter Another approach we propose to disambiguate the number of
POIs from the off-screen POlIs is the use of a distance filter. It is useful when a user wants
to disambiguate the POIs based on the distance. We use an exclusive distance filter that
can be used to adjust the range of the distance radius the user is interested in getting the
information.
Earlier, we discussed along with the arrow showing the aggregation of POIs mapped into
the cell; we visualize thin dashed vertical lines towards the POIs in order to provide some
distance information. This visualization gives us the relative distance information with the
other off-screen POIs. However, the user does not get an idea of the distance in units. Using
a distance filter solves this problem, and the users get aware of the distance in units. To
increase and decrease the scale of the distance bar, '+’ and ’-’ signs are placed, as shown in
the Figure 7.8.

Our proposed system is designed to visualize both direction and distance without

causing any on-screen clutter.
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7.2 Modeling the range of cluttering threshold

The concept of an ideal range for C'I" implies that maintaining the quantity of POIs within
that range in a cell will greatly improve the user’s capability to reach a particular POL.
We can evaluate the ideal range by checking the time the users take to select a target for
different numbers of POIs in a cell. We build a model to predict the value for CT with the
estimated selection time.

The exact number of POIs may have different distributions in a cell. The distribution

of the POIs was designed using the best, worst, and average situations.

7.2.1 The Cases

We calculate the angle between a targeted POI situated within a group of POIs, which has
been assigned to a cell and the centre point of the cluster. When we point the arrow to the
centre of the cell, the direction of the arrow representing the cluster can deviate from the

target POI by some angular rotation. We classify this situation into three cases:

Best Case: A distribution that results in the minimum, maximum distance between a
POI and its centroid is considered the optimal scenario. In this case, all POIs are situated
close to one another, making it easier to navigate to a specific POI. Mathematically, the
ideal scenario would be if all POIs were pointing in exactly the same direction (but with

varying distances). However, this is extremely rare in reality.

Worst Case: The worst scenario is when there is the greatest possible distance between
the target POI and the centroid of the POIs (that maps under the same cell). This occurs
when, of the n POIs in a cell, n-1 POIs form a cluster, the remaining POI serves as the

target, and both the cluster and the target are located at opposite ends of the cell.

Average Case: The average scenario occurs when the target POI is at an intermediate
distance from the centroid of the cluster, between the best and worst cases. In this scenario,

the distance is neither the minimum nor the maximum but an average of both.
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Figure 7.6: Different cases of POI distribution within a cell
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7.2.2 Experimental Setup
Participants

The study was conducted with a sample size of 16 individuals, consisting of 8 male and 8
female participants. The average age of the participants was 25.56 years (SD = 1.54), and
they were selected from the university campus. Although all of the participants had previous
experience with handheld devices like smartphones, their familiarity with augmented reality

(AR) applications varied.

Implementation details

We built our system using Android Studio and leveraged the motion sensors (magnetometer,
accelerometer) of a Poco M2 smartphone device for tracking. To render the graphics, we

utilized OpenGLES3.0.

Task Scenario

We asked the participants to visualize themselves as being surrounded by some POls, like
restaurants and shops. They were then tasked with finding the designated target by following
the 3D arrow. Five distinct environments were used, each with a distinct C'T value. The
selected POI was shown in red on the screen. When the target POI was not on the screen,

its cell on the map would also be coloured red.

Task

In this study, we wanted to discover the effect of the number of POIs in a cell on the target
selection time, thereby developing a model that can predict the (range of) suitable number
of POIs with the completion time as input and vice versa. We selected the C'T" value range
as 1 to 8 with increments of 2. So, we used 1, 2, 4, 6, and 8 as the CT values. This range
was selected as it provided a good balance between providing enough variation to gather
meaningful data and not overburdening participants with too many tasks.

The users were asked to select the target three times for the same CT value. This was
done to maintain the accuracy of the reading for each case. However, the repetition was

limited to three times to make sure that it does not take much time for the user, which may
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eventually decrease the user’s level of participation in the tasks and could have potentially
led to confusion or frustration. To prevent the influence of the learning effect on the results
of the study, a random sequence of tasks was allocated for every C'T" value. Three cells
were randomly picked for each CT value and filled with CT points of interest, each cell
containing one target POI.

It was crucial to emphasize that the targets were not displayed all at once to the user.
This could have resulted in the user accidentally discovering a target POI while searching
for another. Instead, a target POI was revealed only after the user successfully located the
previous one.

To familiarize participants with the system, we conducted training sessions where they
were given a chance to interact with one POI using our system. The system’s fundamental
idea and practical application were explained, including instructions on how to choose the
POI and any other relevant details. This helped to ensure that participants were comfortable

with the system and understood how to use it before beginning the main study.

7.2.3 Results

The study was conducted for each participant individually, with a total of 5 tasks being
assigned for each participant, one for each C'T value in the set 1, 2,4, 6, 8. Each task featured
three clusters, best, worst and average, with a target POI placed in each cluster. This led
to 15 values obtained per participant (5 CT values x 3 targets). The data points obtained
from all participants were averaged to generate a representative plot of the results. The
graph can be seen in Figure 7.7. The visual graph presented herein offers a clear and
easy-to-interpret representation of the research findings, facilitating the identification of any
emerging patterns or trends.

We ran an ANOVA test for the best, average and worst cases to check the statistical
significance. We found a significant difference(F = 3.19,p < 0.05) in the completion time for
the best, average and worst cases. After Tukey HSD posthoc analysis, we found a significant
difference in completion time (p < 0.05) between the best and worst cases. We found no
significant difference between the best and average cases or the average cases and the worst
cases. Different CT' values (number of POIs per cell) for the best and worst cases would

result in different completion times. Our aim was to fit more POIs in one cell and reduce
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the completion time for target selection. Therefore, we decided to come up with a model
that can decide the CT for the best and the worst case, thereby establishing a range of
thresholds from worst to best case.

Regression analysis was carried out on the gathered data to obtain a more comprehensive
insight into the data and calculate estimates for a specific number of POIs (CT). Linear
regression was chosen as the method as it provided the best fit for the data. The model’s
goodness of fit was determined by calculating the R? value, which measures how well the
model fits the data. The R? values for the best and worst cases were found to be 0.94 and
0.95, respectively, indicating that the model fits the data well in both cases. The equations

of the regression line were also determined and are presented as follows:

Timepest = 328.8 x CThest + 3470.1 (7.2)

Timeworst = 810.48 X CTyopst + 3391.7 (7.3)

In the above equation, timepes; and timey, -5t are the completion times for the best and
worst cases, respectively. 328.8 and 810.48 are the slopes, and 3470.1 and 3391.7 are the
intersections for the best and the worst cases. Now, if we place the mean of the completion
times for the best and the worst case, we can calculate C'Tpes; and CTyyorst. However, we
introduce a tolerance T, a percentage of completion time we may want to compromise over

the mean completion times. It is shown in the following equations:

3867.625 x (T/100 + 1) — 3470.1
328.8

CThest = (7.4)

3897.375 x (T/100 + 1) — 3391.7

Twors =
Cluorst 810.48

(7.5)

We define the ideal range of CT to be [CTyworst, CTpest]. The range is determined by a
tolerance, T', which reflects the required level of performance set by the developer for the
user relative to a baseline. The tolerance is specific to the task being performed. If we
assume T' to be 50%, then we mean we are ready to tolerate the completion time to be
30% higher than the mean completion time of the best and the worst case. So for T= 50%,
the range of CT would become [3,7] (rounded off). Assuming this range of CT will take

approximately 5.8 seconds to locate a POI that falls inside the same cell. Note that the
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range needs to be rounded off.

Figure 7.7: graph shows how long it takes to complete a task at different levels of clutter
(X-axis is the cluttering threshold value and Y-axis is the time in milliseconds)

7.2.4 Discussion

As presented in Figure 7.7, it was found that the total selection time increased in proportion
to the number of POIs per cell. We can also see a noticeable increase in the slopes of the
curves representing the best, average, and worst cases. This outcome was to be expected
as the direction of the aggregated arrow diverges with an increased number of POIs per
cell and an increased distance between the centroid of the POI cluster and the target. This
divergence makes it challenging for users to locate the target, resulting in longer selection
times. The increase in selection time with the increase in the number of POIs can also
be seen in the previous works[325, 390, 48|. The model built for the range of CT is most
relevant when we have some recommendation system (like [391, 392]) that can be applied to
a cell when the threshold calculated from the model is exceeded. Neglecting the utilization
of a recommendation system capable of selecting the top CT number of elements from
the POls located within the same cell can result in the exclusion of POIs with significant

interest. However, there is a trade-off between the selection time and the number of POls
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that is important to incorporate. The option for adjusting the CT range can be placed in
the system settings so the user can set it to minimum or maximum. Nevertheless, if the
placement of the CT value is placed on the main screen (so that it can be adjusted online), it
needs to be experimentally understood. We do not recommend using it on the main screen
as it may create visual obstruction and will lose the purpose of creating the clutter-free
visualization. Note that the model to determine the cluttering threshold range proposed in
our work is relevant for 3D arrows. This range may differ for different metaphors and must

be empirically established.

7.3 Evaluating the system

The final system includes the 3D arrows distributed throughout the cells aggregated according
to the CT value, the vertical dashed lines from the base of the arrows and a distance filter.
However, we had to evaluate how the system performs compared to the state-of-art systems.
In this section, we talk about our study, where we compared how well our system can
estimate directions and distances with two other systems, namely, Halo 3D and 3DWedge-+.
While comparing, we did not use the recommendation system, as it does not contribute to
direction and distance awareness. We were interested in evaluating our system’s performance
in a high-density environment. However, we chose our C'T value to be 7 (Tolerance T' = 50%).
This means the POIs were distributed in such a way that not more than 7 POIs fall onto

the same cell.

7.3.1 Hypotheses

In Halo3D, the distance of a POI can be perceived by observing the curvature of the halo’s
arcs. The more pronounced the arc’s bend, the closer the POI is to the user. Furthermore,
these arcs offer a visual indication of the general direction in which off-screen POls are
positioned relative to the user’s current viewpoint. However, as mentioned in section 2.1,
Halo3D encounters difficulties in distinguishing between the front and rear positions and
was not specifically designed to handle POlIs at different altitudes. Consequently, accurately
locating a POI within the three-dimensional space becomes challenging. Conversely, in the
case of 3DWedge+, distance perception relies on vertical dashed lines, while the directions

of POIs can be visualized through ball arrows situated at the base of the wedges. Although
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a direct comparison between Halo3D and 3DWedge+ is unavailable, it is evident that
Halo3D employs a two-dimensional metaphor, unlike 3DWedge. Research studies have
demonstrated that three-dimensional metaphors, such as 3DWedge-+, enhance direction
awareness to a greater extent than their two-dimensional counterparts in handheld AR
systems. Nonetheless, in low-density conditions, including our system, all three systems
are perceived to provide distance information equally well due to their reduced visual
complexity. However, in medium and high-density conditions, both Wedge3D+ and Halo3D
have the possibility to create visual clutter. Nonetheless, our system incorporates the
decluttered distribution of arrows along with a distance filter, which helps mitigate this
issue by reducing visual complexity. Based on these information from the existing literature,
we have formulated two hypotheses that outline the expected performance of these systems

across three different densities.

e H1: Our system would take a similar selection time and accuracy in low-density
conditions in the distance tasks. However, in the direction task, halo 3d would require
more selection time since it was not designed for visualizing the POIs with different

altitudes.

e H2: Our system will show significant accuracy on both distance and direction tasks in
medium and high-density conditions. Due to the visual cluttering, 3DWedge+ and

Halo 3D will be less accurate.

7.3.2 Experimental Setup
Participants

We recruited 14 volunteers (10 males, 4 females), ages between 21 to 35 (M=26.11), from
our university. Eight of them took part in the previous experiments. All of them already
experienced AR applications on their smartphones. However, none were familiar with
the Halo 3D and 3DWedge+ off-screen visualization techniques. All the participants had

normal/corrected to normal vision.
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Implementation details

In this experiment, we employed the Poco M2 device, which was also utilized in our previous
study. Our system was implemented using android studio, along with the OpenGLES3.0
rendering framework. As previously discussed, our design included the implementation
of celling and aggregation aspects. The Halo3D feature was implemented according to
the method described in their paper. The POIs were displayed on the device screen by
projecting them onto the plane and presenting them as circular arcs that were shifted into
the screen. Additionally, we included the 3Dwedge+ feature, which involved projecting
wedges with square bases onto the bottom middle of the screen. As described in their work,
we added the dashed lines with ball headers in the middle of the square bases. The height
of the wedges was calculated according to the distance between the user and POls.

In order to know the performance with the increase in density, we chose three density
conditions. We took 5, 15 and 30 POIs with different distances to represent the small,
medium and high-density environments, respectively. The POIs were placed at random

distances (within 1 to 20 meters).

Task details

The main objective of this study was to confirm whether our technique performs better in a
dense environment. In the literature, we found the off-screen POI visualizer to be focused
on estimating the direction and distance of the off-screen POIs. We chose two types of tasks
for direction and distance evaluation.

We paid the most attention to designing the task scenario as realistically as possible.
We told the participants to imagine they were in the middle of a marketplace, and there were
different places like restaurants and shops on different floors. Now, based on the task, they
had to select the targets using a particular visualization technique. To choose a target, they
needed to bring the POI onto the box in the middle of the screen (as shown in Figure 7.8,
7.9a,7.9b). Then, they had to tap on the screen to confirm their selection. We asked them
to select the POIs as quickly and accurately as possible. The tasks with their descriptions

are discussed as follows:
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Figure 7.8: implementation of our technique
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(a) Halo3D (b) 3Dwedge+

Figure 7.9: Implementation of Halo 3D and 3DWedge+
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Direction Task: In this task, we randomly placed the target POIs at different angles
around the device. The metaphor pointing towards the target (the dashed line along with
the arrow for our technique, the aggregated halo for halo 3D and the wedge for 3DWedge+)
was blinked in an interval of 500ms for 6 secs to let the participant realize whom to follow
to locate the target. After 6 seconds, we start the timer and let the user locate the target.
The participants had to locate the target for each density condition. In order to ensure a
fair assessment of the system, the POIs were positioned off-screen at the start of each test.

During the evaluation process, we recorded the following:

e Time to Completion: The amount of time, measured in milliseconds, needed to finish

the task (select all the targets)
e Error: Incorrect choice of a POL.

From this task, we could determine the ability of the visualization techniques to present

off-screen objects in different directions.

Distance Tasks: Tasks for the distance evaluation consists of three tasks, namely closest,
estimate and order task. We adopted these tasks from [35] and [48]. These tasks were done

for all three density conditions. The detail of the tasks is as follows:

e Closest: In this task, the participants had to select the closest POI from the environ-
ment. This is useful when a person wants to visit the closest POI in the marketplace.

For this task, we recorded the

— Time to Completion: The amount of time, measured in milliseconds, needed to

finish the task (select all the targets)

— Error: Incorrect choice of a POI.

e Estimate: In this task, the participant had to select the pair of targets which are
closest to each other. With respect to the given scenario, the participants were asked
to assume that they wanted to visit two locations in a short duration. So, choosing
the closest location can minimize the time required to go from one location to another.

As done in the [48], we recorded the
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— Time to Completion: The amount of time, measured in milliseconds, needed to

finish the task (select all the targets)
— Error: Incorrect choice of a Point of Interest.

— Error rank: This measure helps assign more error weightage on bigger errors
(introduced in [48|’s work). It is the rank of the selected POI from the target
POI (the error rank of the target POI would be 0). For instance, if a participant

selects the fifth closest POI, its error rank would be 4.

e Order: In the order task, the participant had to select five POIs in increasing order of
the distance from him/her. In the considered scenario, the participants were asked to
assume that they had to plan for a market tour covering five POIs from closest to
farthest. With this scenario, we could evaluate if the POIs with different distances

could be distinguished precisely. We recorded the

— Time of completion: the selection time for each object by dividing the number of

POIs (density) in that task (in milliseconds )
— Error: The error was recorded when the participant selected the wrong order

— L1 Error: To give a higher penalty to a wronger error, we computed the Llerror
as used by [48]. It is calculated by summing up the differences between the
correct and captured orders. For instance, if the correct order of selecting five
objects is 2, 3, 4, 1, 5, and the user selected it as 2, 4, 1, 5, 3, the L1 error will
be |2—-2|+ 34|+ 4—-1|4+[1-5/+1]5—-3]=10

For each volunteer, the experiment lasted about 40 minutes. A significant amount of time
was given to practice the three visualization techniques. The sequence of density and the
techniques were randomly generated for each participant. We received 3(techniques) X
3(density) X 14 (No of participants) = 126 attempts of target selection data for each task.
We also had a post-questionnaire to know the user preference. The user had to rate the

three techniques in terms of preference on five Likert scales (5 being the best).

7.3.3 Results

The following is a summary of our analysis of the participant’s recorded data of the distance

and direction tasks (shown in Figure 7.10).
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Direction task observation

We performed ANOVA on selection time and the error with the direction task for each
density condition. For low density, we found significant effects of the visualization techniques
on the selection time(F(s 45) = 346.21,p < 0.01) and no significant difference in the error
rate(F(o 45 = 2.43,p > 0.05) for the direction task. The post hoc Turkey HSD test revealed
that our technique(p < 0.01) and 3DWedge+(p < 0.01) had a significantly higher selection
time than the halo 3D technique. We also found a significant difference in selection time and
error for the medium-density(F{9 45 = 1,324.82,p < 0.01 and F{3 45 = 5.68,p < 0.01 ) and
high-density(F{245) = 1,359.29,p < 0.01 and F{5 45) = 8.22,p < 0.01 ) conditions. From the
post hoc analysis, we found our technique and 3DWedge+ had significantly lower selection
time(p < 0.01,p < 0.01) and error(p < 0.05,p < 0.05) than halo 3D in medium-density
conditions. However, our technique had a significantly different selection time (p < 0.01)
in high-density conditions than the other two techniques. Our technique (p < 0.01) and
3DWedge+(p < 0.05) had significantly lower error rates than Halo 3D.

Closest task observation

For this task, we found no significant difference in the selection time and error rate for all the
visualization techniques in the case of the low-density (F(2745) =3.22,p > 0.05 and F{g 45) =
0.14,p > 0.05) and medium-density(Fy 45) = 2.23,p > 0.05 and Fiy 45y = 0.40,p > 0.05)
conditions. However, for the high-density condition, we found a significant effect of techniques
on the selection time (F3 45y = 41.53,p < 0.01) and error rate (Fip 45) = 8.43,p < 0.01). In
the post hoc analysis, we found our technique to have less selection time and error rate than

3DWedge+(p < 0.01 and p < 0.01) and halo 3D (p < 0.01 and p < 0.01).

Estimate task observation

We found no significant difference in the selection time (F{945 = 3.15,p > 0.05), error
rate (Fip 45 = 0.71,p > 0.05) and error rank (F{245) = 0.85,p > 0.05) in the case of the
low-density condition. For the medium-density and high-density conditions, we found a
significant difference in selection time ((F(245) = 23.32,p < 0.01 and F{ 45 = 14.95,p <
0.01)), error rate (F(245) = 6.35,p < 0.01 and Fiy 45 = 12.92,p < 0.01)and error rank
(Fl2,45) = 3.22,p > 0.01 and F{y45) = 21.95,p < 0.01). The post hoc analysis revealed that
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(a) Direction task results

(b) Closest task results

(c) Estimate task results

(d) Order task results

Figure 7.10: Results of the system evaluation
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the 3DWedge+ and our technique perform significantly better in terms of selection time
(p < 0.01 for both the density). Our technique and 3DWedge+ have significantly fewer error
rates (p < 0.01 for our technique and p < 0.05 3DWedge+) and error rank (p < 0.01 for
both the techniques) than the Halo 3D in medium density. However, in the case of the
high-density condition, our technique had a significantly lesser error rate ((p < 0.05 for
wedge and p < 0.01 for halo 3D)) and error rank (p < 0.01 for both the techniques) than
the other two techniques. There were no significantly different selection times and error

rates between the wedge3D+ and halo 3D for the high-density conditions.

Order task observation

In the order task, there was a significant effect on the selection time (Low density: Fis 45) =
46.39,p < 0.01, Medium Density: F(o 45 = 30.49,p < 0.01, High Density: Flo 45 =
28.30,p < 0.01), error rank (Low density: F(o45 = 4.97,p < 0.05, Medium Density:
Fiau5 = 38.72,p < 0.01, High Density: F(545 = 33.33,p < 0.01) and L1 error(Low
density: Fl45) = 5.83,p < 0.01, Medium Density: Fi, 45y = 36.16,p < 0.01, High Density:
Flo45) = 44.50,p < 0.01) for the visualization techniques in all the density conditions.
After the post hoc analysis, we found that for the low-density condition, our technique
and 3DWedge+ had a significantly better selection time (p < 0.01 and p < 0.01), error
rank(p < 0.05 and p < 0.05) and L1 error (p < 0.05 and p < 0.01) than halo 3D. Also, for
the medium-density condition, we found significantly better selection time(p < 0.01), error
rank (p < 0.01) and L1 error (p < 0.01) for our technique and 3DWedge+ than halo 3D. In
the high-density condition, our technique (p < 0.01) has a significantly lower selection time
than halo 3d. However, we found that our technique has a lower error rate (p < 0.01) and

L1 error (p < 0.01) than 3DWedge+ and halo 3D.

User Preference

After collecting the data, we used a post-questionnaire with a 5 Likert scale to know the
user preferences. Here, the users had to rate the techniques with respect to the density
conditions (5 being the best rating). We asked them the reason for every best and worst
rating. We found that for low-density conditions, users rated 3DWedge-+(Mean: 4.5) and
our technique (Mean: 4.2) to be higher than halo 3D (Mean: 3.4). In medium density,
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users gave a similar rating to both our technique (Mean: 4.2) and 3DWedge+ (Mean: 4.05)
compared to halo 3D (Mean: 2.33). However, in high density, most of the participants
preferred our technique (Mean: 4.8) over the 3DWedge+ (Mean: 3.26) and halo 3D (Mean:
1.66).

The users mentioned that comparing the distances with 3DWedge+ in the distance task in the
low-density condition was easier than in the other two techniques. However, with the increase
in density, the distance line (dashed line) was hard to be recognized in 3DWedge-+ (P5,
P7, P8). One participant (P1) suggested using the volume button to control the distance
filter. It was harder for him to control the distance filter with his fat finger. We noted this

suggestion for future use.

7.3.4 Discussion

The comparative study finds some important observations. Our technique and the 3DWedge+
have significantly lower selection time and error in the low-density environment than Halo
3D in the order task. This contradicted our early assumption (H1), where we predicted
that all the techniques would perform similarly in the distance tasks for the lower density
condition. The participants were confused about perceiving the distance as the arc in
the halo 3D gets bigger with the aggregation of POIs. The participants required a longer
duration to perceive the distance in order. This took a longer time for the users to perceive
the order. In a study, Perea et al.[33] found Halo 3d to be misleading the users when
overlapping is more. In the case of our scenario, though it was a low-density environment,
aggregated halos were more complex to perceive than the 3DWedge+ and our technique.
According to our hypothesis 2 (H2), we assumed our system would perform better than
halo 3d and 3DWedge+ in medium and high-density conditions. In the medium-density
condition, along with our technique, 3DWedge+ performed better than halo 3D, and our
technique did not perform significantly better than 3DWedge+ in all the tasks. One reason
for this (as mentioned by some participants and also the authors of 3DWedge+) is that the
visibility of the tip of the ball arrows in the 3DWedge+ could give comparative cues for the
POIs. However, in the closest task, there was no significant difference in the selection time
and accuracy in medium-density conditions. We found that users took almost the same

time to perceive the closest POI with all three techniques. The time they took to use the
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distance filter in our technique was almost similar to when they found the shortest wedge in
3DWedge+ and located the closest POI from the aggregated halo in Halo 3D. Nonetheless,
in the high-density conditions, the visual clutter made it difficult for the participants to
understand the direction and distance in 3DWedge+ and halo 3D. In the direction task,
the 3DWedge+ and our technique had similar error rates due to their ability to show
the direction in 3D. However, due to increased visual complexity, participants took more
time to locate the target in 3DWedge+. Therefore, our hypothesis (H2) remains partially
correct. The user preference test also supports our system to be preferred in a high-density
environment. We found that users used the distance filter to complete tasks in medium
and high-density environments. Therefore, although our system was evaluated for 30 POls,
considering it a high-density environment, it applies to more than 30 POIs. Our system
is as good as the state-of-the-art POI visualization techniques for direction and distance
awareness for low and medium-density conditions. However, for high-density conditions,
our system can be used for accurate and efficient POI visualization.

Our findings align with previous studies suggesting that 3D arrows are an effective and
popular means of visualizing off-screen objects. We contribute novel insights into the
organization of arrows when dealing with a greater number of POIs. Furthermore, our
results support previous research indicating that 3D Halos are less efficient, more error-prone,
and less preferred compared to 3D Arrows. However, it is important to note that 3D Halos
may have advantages when the goal is to highlight specific objects or areas rather than
focusing on direction or location. Additionally, the placement of metaphors is a critical
consideration when representing a large number of POIs. Although, prior studies have
demonstrated the effectiveness of central visualizations using 3D wedges in VR head-mounted
displays (HMDs), but their effectiveness is reduced when applied to the limited screen size

of a smartphone.

7.4 General Discussion

To ensure the validity of both experiments, several measures were taken to address potential
threats. Although the sample size of 16 participants recruited solely from the university
may limit the generalizability of the findings, efforts were made to include individuals with

diverse backgrounds and experiences with AR applications. Additionally, participants were

150



7. VISUALISING OFF-SCREEN POIs IN SMARTPHONE-BASED AR SYSTEMS

given ample practice time to familiarize themselves with the Halo 3D, 3DWedge+ and our
proposed technique, mitigating potential bias arising from their lack of prior knowledge.
Consistency in the implementation details, including the use of the same device and the same
lab environment, enhanced the reliability of the results. Furthermore, the inclusion of varying
density conditions for the POIs allowed for a comprehensive evaluation of the techniques’
effectiveness across different environments. The tasks designed for the experiment aimed
to simulate real-world scenarios and assess the accuracy of off-screen object presentation.
The tasks were designed carefully, considering previous literature and adopting established
evaluation measures. Moreover, to prevent the influence of a learning effect on the study
results, a random sequence of tasks was allocated for each cluttering threshold value when
establishing the threshold. This approach helped to minimize any potential bias introduced
by the order in which the tasks were presented to the participants.

Our proposed method for visualizing off-screen POIs with 3D arrows and distance
information has implications for the development of efficient and accurate off-screen POI
visualizers (specifically for smartphones) in high-density environments. The approach of
dividing arrows into cells and using aggregated arrows to represent clusters of objects can
be adopted by designers to avoid visual obstruction and improve user experience. The use
of a distance filter and dashed lines to display distance information can also be implemented
in the off-screen POI visualizers. The findings of this study have practical implications for
the design and development of AR applications in various domains like tourism, retail and
advertising. For instance, our system can be useful in the field of urban tourism. Existing
AR-based navigation applications often struggle with visual clutter and limited off-screen
POI visibility in crowded city environments. By introducing a novel visualization technique
with strategically positioned 3D arrows and aggregation, this study provides a solution
to enhance the user experience in locating and interpreting off-screen POIs. Tourists can
now benefit from clear and unobtrusive visual cues on their smartphones, making them
aware of the nearby attractions or points of interest while minimizing distraction and
information overload. This practical implication can drive the development of more effective
and user-friendly AR navigation apps, improving the overall tourism experience in urban
settings.

The model for estimating the range of CT was developed based on data collected from
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16 individuals and was tested with a maximum of 8 POIs per cell. However, it is possible
that the upward slope curve in our model may reach saturation at some point, resulting
in a flat curve at extremes. To ensure the effectiveness of our model, it is necessary to
conduct a further evaluation with a larger number of POIs and participants. Additionally,
we have assumed that users will accurately locate the POI in a single attempt without
considering the time it may take for users to correct any mistakes or missed attempts.
This consideration must be taken into account when refining the model. It is essential to
establish the probability of miss while locating the target POI as the number of POIs per
cell increases and incorporate it into the model accordingly.

Our research demonstrates that distributing the arrows over the edges of the smartphone
screen can alleviate visual clutter, which was observed in prior works utilizing arrows in
the centre of the screen. Our system is more useful when the POIs are distributed over
different altitudes, as the POIs will be distributed over the cells. The use of the distance
filter helped the users to declutter the screen and have more distance awareness. Few
participants suggested increasing the size of the dashed line. Further work should be done
to improve the visualization of distance information for higher-density environments. To
solve this issue, we can allow the user to tap on a particular cell and enlarge it to view
it more clearly. Doing so may take extra time for the user to inspect a POI. However, a
study is required to evaluate the user experience when the zooming feature is incorporated
into each cell. Though this system was developed specifically for smartphones, a part of
the system also can be tested for HMDs. For instance, the use of a distance filter can be
evaluated for HMD-based off-screen visualizations to reduce the visual clutter. Furthermore,
In our study, the evaluation of the proposed system was conducted in a controlled laboratory
environment, where external distractors were minimized. As a result, there is a need for
future studies to examine the effectiveness of the system in a real-world setting, where the

presence of diverse environmental factors may influence its performance.

7.5 Summary

In this chapter, we have proposed a method to visualize off-screen POIs with their distance
and direction in a high-density environment (more than 15 POIs). We discussed how we

could use 3D arrows to visualize the POIs. To avoid visual obstruction, we divided the
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3D arrows pointing towards the POIs over the edges of the screen (left, right, top, bottom
and corners) into cells. We discussed how to use an aggregated arrow inside a cell to
represent a cluster of objects and proposed a model to establish a range of POIs that can
be used as a cluster to be efficiently directed by an aggregated 3D arrow. Furthermore,
we adopted the idea of using a dashed line from 3DWedge+[48] to show the distance
information. We introduce a distance filter to allow the users to disambiguate the POls
based on distance. Finally, our system was comprehensively evaluated by comparing it to
the state-of-the-art off-screen POI visualizers, specifically 3DWedge+ and Halo 3D. We
found our system similarly capable of showing off-screen information in low-density (5 POISs)
and medium-density conditions (15 POIs) with 3DWedge+. However, our system is most
efficient and accurate for visualizing off-screen POIs in high-density (30 POIs) conditions.

Future directions for research should include conducting larger-scale evaluations with
a greater number of participants and POIs to validate the effectiveness of the proposed
model. Furthermore, there is a need to explore techniques aimed at enhancing distance
visualization in higher-density environments. We also intend to investigate the integration
of our technique into head-mounted displays. Moreover, assessing the performance of the
system in real-world settings with diverse environmental factors will provide valuable insights

for further improvement.
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CHAPTER

Conclusions and Future Works

In conclusion, this thesis presents a comprehensive investigation of navigation challenges
in XR, focusing on enhancing user experience in VR and AR through novel approaches to
realism, CS mitigation, affective state recognition, and off-screen POI visualization. The
key contributions are as follows:

Enhancing Realism in System-Automated VR Tours We developed a model to
predict instantaneous walking speed, significantly enhancing realism in system-automated
VR tours by aligning the virtual movement more closely with users’ natural walking pace,
as validated through user studies.

Comprehensive Analysis of CS Through a systematic review, we offered new insights
into the causes, measurement techniques, and mitigation strategies for CS, providing a
framework for developers and highlighting gaps for future research.

Optimizing VR Tour Duration We proposed a novel approach to minimize the duration
of system-automated VR tours, thereby reducing exposure-induced discomfort and enhancing
user experience without compromising the realistic walking speed.

Finding Visual Gain for Vibrotactile Feedback-based CS Mitigation Our work
included the application of vibrotactile feedback as a CS mitigation strategy within a
realistic walking speed model, identifying a new range of visual gain that balances realism
with comfort.

Recognition of Users’ Affective State We introduced a model to recognize users’

emotional states using data from HMDs and handheld controllers, enabling personalized
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VR experiences and proactive CS mitigation.

Breathing-Based Virtual Locomotion Technique Our novel "BreathWalk" technique
leverages controlled diaphragmatic breathing for navigation in VR, reducing CS and en-
hancing immersion and user preference compared to traditional joystick-based steering.
Off-Screen POI Visualization in Handheld AR We proposed a clutter-free method for
visualizing off-screen POIs in vertically dense regions, significantly improving efficiency and

accuracy in navigating high-density POI environments.

8.1 Domain of applications of our contributions

The contributions presented in this thesis spans a wide range of XR applications. For
instance, in the tourism sector, the development of a realistic walking speed model for
system-automated VR tours can provide tourists with lifelike explorations of distant locations,
enhancing their engagement and satisfaction without the need for physical travel. This
has implications for educational applications as well, where such realistic experiences can
enrich learning, making historical sites accessible and engaging for students. Moreover, using
our duration reduction strategy developers can make the system-automated VR tour more
comfortable. The comprehensive analysis of CS, including causes, measurement techniques,
and mitigation strategies, offers invaluable insights for developers and users across various
XR environments. By providing a holistic overview, this review serves as a foundational
resource that can guide the development of more comfortable, accessible, and engaging XR
applications. Developers can utilize this information to design experiences that significantly
reduce the likelihood of CS, improving user retention and satisfaction across different XR
platforms. For instance, in entertainment and gaming, understanding CS can lead to the
creation of more inclusive games that accommodate sensitive users, thereby expanding the
market reach. In education and training, insights from the CS review can inform the design
of immersive learning environments that minimize discomfort, ensuring that learners can
focus on the content without distraction or discomfort. The VLT named "BreathWalk"
further extends the potential of VR by leveraging controlled breathing for navigation, which
could enhance the therapeutic effects of VR meditation and relaxation exercises. It also
broadens the accessibility of VR for people with physical disabilities to walk around a

VR environment without any discomfort. For the gaming industry, the introduction of
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affective state recognition offer pathways to create more personalized and engaging gaming
experiences for commercial VR HMDs. Games designed with these principles in mind
can adapt in real-time to the player’s emotional state and physical comfort, leading to
longer, more enjoyable gaming sessions. Moreover, the advancements in clutter-free POI
visualisation in smartphone-based AR systems promise to transform urban exploration
and navigation, making it easier for users to find their way in densely populated cities
or unfamiliar environments. This technology could be integrated into navigation apps,

enhancing the user experience with intuitive, clutter-free visual cues.

8.2 Limitations

The thesis presents several contributions to XR navigation, yet it encounters few limitations
across its varied studies. A primary limitation is that the model for realistic walking speeds,
which is based on changes in step frequency, does not fully capture the complex factors
affecting walking behavior in the real world. This is especially true in situations involving
turns and varied terrains. Furthermore, our work mainly focused on the speed and neglected
other aspects of movement, such as head bobbing during walking. Despite attempts to
optimize navigation paths to minimize CS and discomfort and to maximize the visitation of
significant sites within a limited time, variations in the participants’ time spent at specific
checkpoints indicate that the model’s predictions may not accurately represent actual user
experiences. The model’s fixed assumptions struggle to accommodate the variability in user
behavior, such as individuals spending less time at sites than anticipated or favoring certain
locations over others due to personal interests. The strategy to reduce visit durations also
fails to account for the diversity in users’ travel behaviors in the real world, such as choosing
different modes of transportation based on terrain, and does not consider the significance
of the order in which certain places are visited, as would be necessary for tours requiring
a specific sequence of stops. In developing the emotional state classification model, we
were limited to identifying only four categories of emotions, likely missing the detail of
the emotional intensities that users may experience during VR interactions. The use of
subjective questionnaires to establish a baseline for emotions introduces possible biases
and inaccuracies in identifying emotions, highlighting the need for more objective and

dependable measurement methods. Additionally, data collection was exclusively focused
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on instances when controller buttons were pressed, omitting other behavioral insights that
could be gleaned from user interactions with the controller and HMD when no buttons
are pressed. In designing the breathing-based walking VLT, the study did not explicitly
examine the impact of participants’ VR experience and physical fitness levels, which could
affect the results. Lastly, the off-screen POI visualization technique lacks a strategy to
manage to show the direction of each POI as their density per cell grows and requires
further investigation for scalability. Participant feedback indicates a need for improved
visualization of distances in crowded settings, and the system’s performance in real-world

scenarios, outside of a controlled lab environment, has yet to be evaluated.

8.3 Future Works

To address the limitations and expand upon the current work, future efforts should con-
centrate on several key areas. Firstly, developing models for non-linear paths in system-
automated VR tours is crucial to enhance realism. This involves creating algorithms that
simulate realistic walking behaviors on varied terrains, including turns and elevation changes,
thereby improving the immersive quality of VR tours. Secondly, expanding the application
of the emotional state prediction model is essential. By building a more extensive dataset
with a larger and more diverse participant base, the accuracy and applicability of models
predicting users’ emotional states in real-time can be significantly improved. This advance-
ment could lead to VR environments that dynamically adjust to users’ emotional responses,
enhancing engagement and satisfaction.

Additionally, evaluating BreathWalk’s dual-component system necessitates a deeper
investigation into the individual and combined effects of torso movement and breathing on
VR navigation and user experience. Systematic studies comparing Breathwalk with different
locomotion setups can offer insights into optimizing user interaction in virtual environments.
Lastly, advancing XR navigation with adaptive multi-sensory interfaces is paramount.
Future research should aim to develop intelligent systems that adjust navigational aids’
complexity and modality based on the user’s context, preferences, and cognitive load.
Such adaptive interfaces could greatly enhance wayfinding in XR, ensuring a seamless and
intuitive experience that intelligently adapts to both virtual and augmented environments.

Collectively, these areas of focus promise significant advancements in VR and XR, offering
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more realistic, personalized, and efficient user experiences.
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