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Abstract

Repetitions are fundamental properties of words, and different types of

repetitions have been explored in the area of word combinatorics. This thesis

investigates two types of repetitions: squares and antisquares. We investigate

the square conjecture that anticipates the number of distinct squares in a

word is less than its length. It is known that any location of a word can

be mapped to at most two rightmost squares, and a pair of these squares

was referred to as an FS-double square. For simplicity, we will refer to the

longer square in this pair as an FS-double square throughout this thesis. We

examine the properties of words containing FS-double squares and explore

the consecutive locations starting with FS-double squares. We observe that

FS-double squares introduce no-gain locations where no rightmost squares

occur. The count of these no-gain locations in words with a sequence of FS-

double squares demonstrates that the square density of such words is less than

11
6
. Furthermore, we investigate words that possess FS-double squares and

maintain an equivalent number of such squares when reversed. We prove that

the maximum number of FS-double squares in such a word is less than 1
11

th

of the length of the word. Another aspect of our research involves counting

squares in a repetition. A non-primitive word has a form uk for some non-

empty word u and some positive integer k such that k > 2. With no-gain

locations and FS-double squares in these words, we conclude that the square

density of such words approaches 1
2
as k increases. Also, we work on the

lower bound of the square conjecture. The previous lower bound is obtained

using a structure that generates words containing a high number of distinct

squares. We identify similar structures but produce words with more distinct

squares. We also study antisquare, a special repetition of the form uū where

u is a binary word, and ū is its complement. We show that a word w can

contain at most |w|(|w|+2)
8

antisquares, and the lower bound for the number

of distinct antisquares in w is |w| − 1.
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1
Introduction

Combinatorics on words is a discipline that studies the properties of words,

that are sequences of symbols. The topic of repetition or periodicity remains

of interest when exploring the characteristics of words. A fundamental con-

cept in the field is the notion of a square, which refers to the smallest rep-

etition in a word with the form “uu”. Axel Thue, a pioneer in the field,

discovered an infinite sequence of letters without any squares in his work

[66]. This was a breakthrough discovery, as it was previously believed that

every sequence of symbols contained squares. Thue’s work on the properties

of words has been influential in many fields of mathematics, including num-

ber theory, computer science, and cryptography [2, 13, 23]. For instance, a

number theoretic problem discovered by Prouhet has a connection with the

Thue-Morse sequence, because of which the sequence is also known as the

Prouhet-Thue-Morse sequence [58]. The definition of Prouhet has a connec-

tion with finite automata and automatic words identified by Cobham [18].

Figure 1.1 lists some of such problems and areas that have a connection with

the word combinatorics and the study of words.
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Introduction

Figure 1.1: Fields related to word combinatorics

The properties of words explored in combinatorics have a variety of ap-

plications. The study of DNA sequences, gene prediction, and the analysis

of genomes are some areas where combinatorics on words plays an impor-

tant role. For example, identifying repeats in the genome sequence is a key

challenge in bioinformatics, and this can be done using combinatorial algo-

rithms based on periodicity analysis of words [6, 67]. The words and their

properties are also used in data compression algorithms such as the Lempel-

Ziv-Welch (LZW) algorithm, which employs dictionary-based encoding of

repeated patterns in the input text [51]. Another fundamental problem in

computer science that benefited from the word combinatorics is the identi-

fication of patterns and similarities in strings. Word combinatorics provides

several algorithms and techniques for solving this problem [21]. The analysis

and design of cryptographic systems often involve combinatorial problems on

words, such as identifying repeated patterns or constructing sequences with

specific properties [41]. In natural language processing, some tasks like iden-

tifying word collocations or generating text with specific properties utilize

the results of word combinatorics [55].

Apart from square-free words, studying different types of repetitions is a
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key area of research in word combinatorics. Squares, cubes and runs are some

examples of repetitions. They help identify the structural properties of words.

A repetition of form uk concatenates k copies of a word u. Here, u is called

the root, and k is called an exponent of the repetition. In such a repetition,

the root is duplicated within the resulting word, and the exponent, whether

rational or integer, determines the frequency of this duplication. A cube

consists of three consecutive copies of the same word, showing an exponent

of three. In contrast, the exponent of a square is two. Squares and cubes are

specific types of repetitions having integer exponents. Some repetitions can

be expressed using multiple exponents. For example, the word w = abababab

can be written as (ab)4 or (abab)2. In the context of repetitions, the period

refers to the length of the root word. So far, our discussion has focused

on repetitions with integer exponents. Another type of repetition, a run,

involves a rational exponent. Kolpakov and Kucherov [46] defined a run as

a maximal repetition in a word that, extending by a letter at the beginning

or at the end, generates a new word with a higher period. An instance of a

run in the word u = abaababaabaab is the repetition ababa, characterized by

a period of 2, a root of ab, and an exponent of 2.5.

In another type of repetition, two instances of the same word are sepa-

rated by a different word. It is known as gapped repeat. An example is a

word w = abaaab where the word ‘aa’ separates the two occurrences of the

word ‘ab’. The characterisation of words containing gapped repetitions and

their sub-repetitions is discussed in [47]. In addition, the concept of anti-

powers has been introduced in [32], which defines them as the concatenation

of distinct words of equal length. An antisquare is a special type of anti-

power defined over a binary alphabet where the word is concatenated to its

complement [12]. In this thesis, we study antisquares that are defined for a

binary alphabet. We now discuss some notation and conjectures related to

repetitions in the next section.
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Introduction

1.1 Notation and Related Conjectures

Let Σ be an alphabet. A word w is a finite sequence of letters drawn from

Σ. Any non-empty subsequence of consecutive letters in w is a factor of w.

The length of a word w is the number of symbols in it, and it is denoted by

|w|. The symbol ϵ represents an empty sequence called an empty word.

A binary operation concatenation combines two non-empty words to cre-

ate a new word. The operation is denoted by the symbol “·” or simply by

juxtaposing the words together. The concatenation of words u and v is de-

noted as u · v = uv. We use N to denote the set of non-negative integers. Let

Σn be the set of words of length n ∈ N defined over an alphabet Σ. The set

Σ∗ is the free monoid generated by Σ under the concatenation operation.

Another symbol, Σ+ represents the set of all non-empty words over Σ. Let

u, v ∈ Σ∗ and w = uv. We say that u is a prefix (resp. v is a suffix). A

prefix or a suffix is proper if u, v ∈ Σ+. We use the term lcp(x, y) to denote

the longest common prefix shared by two non-empty words x, y. The word

vu is a conjugate of the word w.

In this thesis, the term “repetition” refers to a concatenation of multiple

equal-length non-empty words. A repetition uk concatenates k copies of a

word u. Here, u is a non-empty word referred to as the root of the repetition.

The number k is an exponent or a power of the repetition that satisfies the

relation k > 1. It can be either an integer or a rational number. The number

|u| is a period of the repetition. The repetition of the form uk is explored in

Chapter 3 to Chapter 6, where the exponent of the repetition is an integer. If

a word w is repetition uk where k is an integer such that k ≥ 2, then w is also

known as non-primitive. Any word that is not non-primitive is a primitive

word. For instance, ‘abab’ and ‘aba’ are non-primitive and primitive.

A square is a repetition of form u2. Squares can be classified into two

types, primitive squares and non-primitive squares, based on their roots. A

primitive square is a square whose root is a primitive word. A repetition uk

4



Notation and Related Conjectures

where k = 3 is labelled as a cube. An ith letter of w is denoted as w[i] and

i is the position on w. Denote by w[i, j] the factor w[i]w[i+ 1] . . . w[j] of w.

The factor w[i, j] is called a run if a period of the factor w[i, j] is shorter

than the period of w[i−1, j] for i > 1, and if j < n, then the period of w[i, j]

must be shorter than that of w[i, j + 1]. Chapter 2 describes in detail the

results obtained for these types of repetitions. Other types of repetition are

anti-powers and antisquares. An anti-power of order k is a concatenation of

k different words where the size of each word is equal. Chapter 7 elaborated

on these terms in detail.

The results discussed in this thesis are obtained by solving the word

equations and comparing the overlaps between words. The next two theorems

of Lyndon and Schützenberger [3] are the fundamental results on words that

are used to solve the word equations.

Theorem 1.1. ([3]) Let uv = vw where v ∈ Σ∗ and u,w ∈ Σ+. Then,

there exists x, y ∈ Σ∗ and an integer e ≥ 0 such that u = xy, w = yx and

v = (xy)ex.

Theorem 1.2. ([3]) Let the non-empty words u, v satisfy the relation uv =

vu. Then, there exists a non-empty word z and positive integers i, j such that

u = zi and v = zj.

The primary emphasis of this thesis lies on the square conjecture. The

square conjecture predicts a bound for the count of distinct squares in a word.

A word may contain multiple instances of the same square, such as ‘ss ’ in

the English word ‘possess ’. So, counting distinct squares needs to consider

the unique occurrence of each square. The notation si(w) is taken from the

work [34], and it indicates the number of distinct squares starting from a

location i in word w for the last time. So, we also refer to such squares as the

rightmost squares starting at location i. Another term, FS-double square,

refers to a longer square starting at location i when si(w) = 2. The ratio of

5
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the number of distinct squares in a word to the number of letters in a word

indicates the square density of the word.

Now, we see how the square conjecture is connected to other conjectures

related to repetitions. The repetitions with higher exponents like cubes and

runs always contain a square. Also, the presence of a square ensures the

presence of all conjugates of the root. For instance, the square ‘abcabc’ has

all conjugates of ‘abc’. This shows that the conjectures focusing on cubes,

runs, and conjugates can potentially benefit from the results on squares.

Conjecture Year Statement

Square Conjecture [34] 1998
The number of distinct squares in
w is less than |w|.

Runs conjecture [46] 1999
The maximum number of runs in
w is less than |w|

Primitive square conjecture
[28]

2011
For w ∈ Σ+, the number of dis-
tinct primitive squares is less than
|w| − |Σ|.

Cube conjecture [49] 2013
The number of distinct cubes in
w is less than |w|

Stronger square conjecture
[44]

2014

An improved bound, 2k−1
2k+2

, for the
square conjecture. Here k is the
count of least appearing letter in
a binary word w.

Squares in circular words [5] 2017
The number of distinct squares in
a word w and in all of its conju-
gates is less than 3.14|w|.

Table 1.1: Some conjectures on repetitions

The square conjecture and a list of related conjectures are mentioned

in Table 1.1. Some of these conjectures are named after their statement,

such as ‘cube conjecture’, that anticipates the number of distinct cubes in a

finite word. This table aims to help the reader understand the context and

motivation behind the research questions and how they fit into the larger

field of study. These conjectures will be discussed in detail in the related

work chapter, further exploring their significance.
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Thesis Outline

1.2 Thesis Outline

The thesis investigates the topic of “repetitions in words,” with an emphasis

on studying repetitions in finite words. It addresses the problem of deter-

mining the number of distinct squares in a finite word to enhance both lower

and upper bounds. This problem is studied for specific types of words to

gain further insight. Antisquare, a concept dual to the concept of squares, is

also discussed. This section provides an overview of the main chapters and

their contents.

Chapter 2 provides a critical review of existing literature related to repe-

titions in a finite word.

Chapter 3 discusses the square conjecture and results related to FS-double

squares. The structure of an FS-double square is studied to identify

all possible structures that generate words having FS-double squares

starting at consecutive locations. Finally, the length of the longest

sequence of such locations is determined.

Chapter 4 characterises words with a sequence of locations beginning with

FS-double squares. The locations that do not start with any squares

are detected in such words. This information is then used to compute

their square densities.

Chapter 5 explores two special words, namely bordered FS-double squares

and non-primitive words. The count of FS-double squares in a word

may differ from that in its reverse. In this regard bordered FS-double

square is identified. The bordered FS-double square can be reversed

to create another FS-double square of the same size. The chapter also

describes the types of squares appearing in non-primitive words and

their properties.

Chapter 6 describes various structures of words whose square densities

7
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are approaching the value one. These are referred to as patterns. The

chapter also provides various methods for generating patterns, along

with corresponding notions to compare them.

Chapter 7 presents a study on antisquares. Antisquare is a special type

of repetition where a word is concatenated with its complement. The

chapter provides basic results on antisquares and a lower bound for the

number of distinct antisquares in a word.

Chapter 8 provides a summary of the key discoveries and implications of

the research. It also lists some open problems and potential future

directions for further research.

8
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Related Work

In the field of word combinatorics, the terms repetition, periodicity, and reg-

ularity are used to refer to the same concept. Repetitions can be defined

in various ways, and this chapter focuses on the following types of repeti-

tions: squares, cubes and runs, and anti-powers. We already discussed that

a repetition consists of a root and an exponent. Squares are the smallest rep-

etitions and are always present in any repetition with an exponent greater

than two. Squares and cubes are examples of repetitions where the exponent

is an integer, while runs are repetitions with rational number exponents. An-

tisquares, on the other hand, are a type of anti-powers. An anti-power of

order k indicates the concatenation of k distinct words. The literature review

is organized according to the types of repetitions mentioned in Figure 2.1.

The next section presents the known results about squares.

9
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Figure 2.1: Types of repetitions

2.1 Squares in Words

The distribution of repetitions in a word reveals interesting properties of

words. A square is a basic repetition obtained by concatenating two identical

words. The study on squares initially involved detecting all instances of

squares within a word, leading to the development of various algorithms for

this purpose [19, 64]. Researchers have used the combinatorial aspects of

squares to improve these algorithms, leading to further investigation into

their properties. Every even-length sequence of letters from a word an is

a square, so it contains the maximum number of squares. The number of

squares in it is n2

4
or n2−1

4
. This count takes into account both primitive

and non-primitive squares, including their repeated occurrences. Recall a

primitive square is a square having a primitive root. Table 2.1 presents a

compilation of the various types of squares that have been the subject of

research, along with the corresponding research findings.

The study of distinct squares in words has begun by counting them in

infinite binary words. The initial results stated that every binary sequence of

length greater than or equal to 18 always contain squares[30]. Later, in 1994,

Fraenkel and Simpson investigated the maximum length of binary words with

at most k distinct squares [36]. Their findings revealed that it is possible to

construct a word of any length containing only three distinct squares. The

10



Squares in Words

Distinct Squares All Squares

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Primitive
squares

Deza’s Words [27]
(< n)

n− o(n) [34]
n− |Σ| [28]

Fibonacci
words [19]

O(n log n) [53]

All Squares
Q Words [34]

(< n)
⌊11n6 ⌋ [29] an

⌊n
2
⌋∑

i=1
(n− 2i+ 1)

Table 2.1: Known bounds for different square conjectures

same authors investigated another problem of identifying distinct squares in

a finite word. They examined the last occurrence of a square, which they

referred to as the “rightmost occurrence” and introduced the si notation

[34]. They demonstrated si(w) ≤ 2 for all 1 ≤ I ≤ |w|. In addition, they

discovered a structure that generates words with a large number of distinct

squares. This structure generates words of varying lengths, with the number

of distinct squares increasing as the word length increases. However, the

number of distinct squares is always less than the word length. The square

conjecture is based on these properties of structure-generated words, which

state that the length of the word is always greater than the number of distinct

squares it contains.

Ilie in [42] simplified the proof for the inequality si(w) ≤ 2. The proof

takes advantage of the fact that all the conjugates of a primitive word, as

described in Section 1.1, are distinct. In subsequent work, Ilie attempted to

find a better bound for the conjecture [43]. To achieve this, he studied a

sequence of locations satisfying si(w) = 2, and obtained an upper bound of

2n− log n for the square conjecture.

A well-known Periodicity Lemma given by Fine and Wilf [33] is often

used in the exploration of the square conjecture and the runs conjecture. The

lemma establishes the relation between multiple periods and their greatest

common divisors. The definition of a period, given in the previous chapter,

11
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is discussed here in detail. A word ur is a repetition for u ∈ Σ+ and r ≥ 2.

Furthermore, the repetition ur in w is a factor w[i, i + ur − 1] for 1 ≤ i ≤
|w|+1−ur and w[i, i+u− 1] is not a repetition. We call |u| is the period of

w. The term gcd(x, y) represents the greatest common divisor of two positive

integers x, y in the following lemma.

Lemma 2.1 (Periodicity Lemma [33]). If p, q be two periods of w such that

|w| > p + q − gcd(p, q) where gcd(p, q) is a greatest common divisor of p, q.

Then, gcd(p, q) is also a period of w.

The lemma has been extended to yield various results. For example,

the work in [17] examined words containing three periods. Another study

by Fraenkel and Simpson [35] focused on the structure of longer periods of

word w when it consists of two periods. Further, the lemma used in [62]

considered a square v2 starting with another square and obtained a result

on a specific factor of v2. The words starting with two distinct squares

were analysed further in [31] that defines a lemma named ‘New Periodicity

Lemma’ (NPL). The lemma investigates the structure of a word starting

with two squares and determines the specific locations that do not start with

any squares. The proofs discussed in this work considered a special class of

words by restricting the types of squares with which these words can begin.

The paper also described a general version of the problem of having three

overlapping squares to identify specific locations that do not start with any

squares. The proof required to validate 14 cases out of which a sub-case 4 is

solved in [37]. The work also presented proofs for sub-cases 11− 14.

A canonical factorization of two squares starting at the same location

is obtained in [9] to broaden the scope of the new periodicity lemma. The

structure is then used to generalise Crochemore and Rytter’s lemma in [8].

Under certain conditions, the NPL can also be used to map the locations

with zero si values to a location whose si value is two. This is valid for

some special words beginning with two squares in which the shorter square
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is ‘regular’. The term regular represents a square whose proper prefix cannot

be a square. The result of NPL is further extended in [10] for a square v2 that

starts with another shorter square u2. This work identified some properties

of squares that appear in v2.

The study of locations whose si values are two is conducted in [50]. It

showed that the density of any word is at most 95
48
. Later, the term FS-double

square was coined in [29] to represent the longer square starting at such a

location. The work categorized FS-double squares based on their lengths

and starting locations and identified five categories called α, β, . . . , ϵ-mates.

Further analysis revealed that at most 5|w|
6

locations of any word w can begin

with FS-double squares, leading to an upper bound of 11|w|
6

for the square

conjecture. Thierry extended the investigation of the five mates and obtained

an improved bound of 1.5n in an archived paper [65].

A related problem of identifying distinct primitive squares in a word is

investigated in [28]. The study proposes a novel approach that takes into

account both the word length n and the size of the alphabet d. A (d, n) table

is plotted, and several regularities in the values of the table are observed to

get new results on primitive squares. Also, a new conjecture is proposed that

anticipates the distinct primitive squares in a word are always less than n−d.

Further, in [26], an extension of the work introduces a computationally effi-

cient framework. This framework focuses on identifying words that contain

the maximum number of distinct primitive squares.

In another study [44], a more stringent bound for the square conjecture

was proposed. However, it should be noted that this bound was limited to

the case of a binary alphabet. According to it, the number of distinct squares

in a word depends on the number of the least frequent letters occurring in a

binary word. The work anticipated that |DS(w)| ≤ 2k−1
2k+2

|w|, where k is the

frequency of the least frequent letter in w and DS(w) is the set of distinct

squares in w. Meanwhile, the work in [14] conjectured that if a word has a

sequence of n indices starting with distinct FS-double squares, then it must

13
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have a chain of 2n empty indices, indicating that the upper bound on the

number of FS-double squares in a word may be further reduced. In [54], the

relationship between the density of distinct squares in words over varying

alphabets is analyzed. The next theorem presented in this study ensures

that solving the square conjecture for binary words alone is sufficient.

Theorem 2.2. Let ρ(w) be the ratio of distinct squares in a word w to |w|.
For any word w over a ternary or larger alphabet, there exists a binary word

u such that ρ(u) > ρ(w).

The best words known to have many distinct squares use properties of

primitive squares and their conjugates [34]. Another study on conjugates of

words [5] considered solving the problem of finding distinct squares in circular

words. The circular word of a word w represents a word containing all cyclic

rotations of w. For example, abaab is a circular word for a word w = aba

since the first three locations of the word start with a distinct conjugate of

w. A simple way to get a circular word is to extend any word w by its first

|w| − 1 letters. The number of distinct squares in a circular word of size n is

conjectured to be 3.14n, and it is proved that the lower bound is 1.25n [5].

A conjecture on repetitions with higher exponents predicts that the number

of distinct repetitions of exponent k in w is |w|−|Σ|
k−2

[52]. We study repeti-

tions with higher exponents and compute the square density in Chapter 5.

Recently, the proof to solve the square conjecture is published in a pre-print

in [15]. Unlike the previous works that consider the rightmost occurrences

of squares, this work converted a word into Rauzy graphs. The proof of the

conjecture established an injection between the number of distinct squares

in a word and circuits in the Rauzy graphs.

2.2 Cubes and Runs in Words

Beyond the study of squares, researchers have investigated other repetitions,

such as counting the maximum distinct cubes in a word. A relation between

14
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the occurrences of cubes and non-primitive words has been observed while

determining the combinatorial properties of cubes in words. In this regard,

authors in [48] studied the problem of counting distinct cubes or cubic factors

in a word. Their results revealed that the maximum number of distinct cubes

in a word w falls within the range
[
|w|
2
, 4|w|

5

]
. The study was extended in [49]

to demonstrate that the count of cubes in w is any value between the range of[
|w|
2
− 2

√
n, 4|w|

5

]
. The authors achieved this by computing the non-primitive

squares in the word, which were shown to be at most
⌊
|w|
2

⌋
.

The runs conjecture, which states that the maximum number of runs in a

string of length n is less than n, has been the focus of many investigations in

word combinatorics. Kolpakov and Kucherov first proved that the maximum

number of runs in a word of length n is a linear function of n [46]. However,

their proof did not give a specific constant factor. Rytter [61] was the first

to give an explicit constant, showing that the number of runs in a word w

is less than 5|w|. Later the constant term 5 was improved to 3.48 in [59].

The authors Crochemore and Ilie succeeded to getting closer to the predicted

value of the conjecture by further improving the constant factor to 1.6 [20].

These authors also suggested using computer verification for better bounds.

Giraud in [40] was able to reduce the value to 1.52n and to 1.29n for binary

words. All the proofs obtained to get the better constant factor for the

conjecture used the periodicity lemma (see Lemma 2.1).

Efforts were made to enhance the lower bound of the runs conjecture,

leading to several developments. Initially, it was proven that the number

of runs in a word could be greater than 0.927n, where n represents the

length of the word [38]. This number was believed to be optimal at first.

However, later a research conducted by Matsubara et al. [56] indicated that

the number could be higher than 0.944565n. Another modification in this

regard improved the constant value to 0.944575712n [63].

Finally, Bannai et al. solved the runs conjecture using Lyndon words [11].
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2.3 Anti-powers and Antisquares

Ramsey theory is a branch of mathematics that studies the emergence of

order within large, complex, and apparently disordered structures [60]. The

theory has found applications in combinatorics on words through some im-

portant results stating the existence of unavoidable regularities, for example,

Ramsey, van der Waerden and Shirshov theorems [24]. In [32], authors used

the notion of anti-powers to obtain an anti-Ramsey result in the context of

combinatorics on words. An anti-power of order k is a concatenation of k

equal-length words, each of which is distinct. The study in [32] shows that

such repetition is unavoidable in an infinite word. Further, it is shown that if

an infinite word contains no anti-power of order 3, then the word is ultimately

periodic.

In another research on the lengths of anti-powers appearing in a word w,

a function ap(w, k) and Thue-Morse words are explored [25]. Here, ap(w, k)

is the minimum m for which the prefix of a word w of length km is a k-

anti-power. It is proved that the function ap(w, k) grows linearly for a Thue-

Morse word. The conjectures proposed in this study are then explored in [57]

to identify the distribution of anti-power prefix lengths in the Thue-Morse

word. The work derived several properties of these lengths, including their

asymptotic behaviour and their distribution modulo small integers. The

paper also introduces a new function that counts the number of anti-power

prefix lengths of a given length in the Thue-Morse word. Gaetz [39] has

since extended Defant’s results to factors of words. Burcroff [16] studied the

avoidability of k antipowers in infinite words, generalizing Fici et al.’s results

in [32].

Several studies have been conducted to design algorithms for finding anti-

powers and antiperiods in words. The algorithmic study of antipowers in

words is initiated in [7] where an optimal algorithm is described for locating

all factors of a word that are anti-powers of a specified order. A combina-
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torial lemma is used to show the optimality of the proposed algorithm. It

is also shown that a word w contains θ(n
2

k
) distinct anti-powers of order k.

Recently Kociumaka et al. [45] have shown an output-sensitive algorithm for

the same problem with running time O(nk log k + c), where c is the number

of reported antipowers. They also show that they can be counted within time

O(nk log k). The paper [1] described algorithms for computing the smallest

antiperiod and all the antiperiods of a word w. The algorithm presented

takes O(n log n) time for computing all antiperiods of a given word. Fur-

ther, an algorithm is described that computes the smallest antiperiod of the

word in O(n) time. These algorithms are offline algorithms, and the same

problem is also studied in an online setting in [4]. Here, the algorithms use

arrays that compactly and incrementally store anti-powers and antiperiods

of words. The space and time requirements of these algorithms is O(n log n)

where the size of the input word is n.

In [12], a more restrictive version of anti-power is defined for squares

with the term ‘antisquare’. An antisquare is a binary word having a form uū

where ū is the complement of u. Here, the authors studied the infinite binary

words that do not contain arbitrarily large antisquares. They computed the

repetition threshold of the binary sequences containing exactly two distinct

antisquares. The concept of antisquares in finite words is relatively new, and

it is unexplored in previous works. To address this research gap, Chapter 7

of this thesis investigates antisquares further.

2.4 Summary and Key Findings

The previous sections’ studies are summarized through the figures and tables

to visually represent the connections between the different works related

to the research topic. The following table summarizes the improvements

made to the upper and lower bounds of the runs conjecture. The term R(n)

represents the number of runs in an n length word. The first entry in the
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Authors (Year) R(n)
Kolpakov et al. (1999) = O(n)
Rytter (2006) < 5n
Puglisi et al. < 3.48n
Crochemore et al. (2008) < 1.6n
Giraud (2008) < 1.52n
Franek et al. (2008) > 0.92n
Matsubara et al (2008) > 0.944565n
Simpson (2010) > 0.944575712n
Bannai et al. (2017) < n

Table 2.2: Improvements in bounds of runs conjecture

table pertains to the work that first proposed the conjecture. The subsequent

four entries detail research on improving the upper bound of the conjecture.

The remaining entries focus on efforts to improve the lower bound, with

the exception of the final entry, which describes the paper that ultimately

resolved the runs conjecture.

Figure 2.2: Overview of the research on distinct squares

Figure 2.2 summarizes the works related to squares. The figure represents
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each paper as a node with three associated fields: the publication year, au-

thor name(s), and a brief work description. The lines connecting the nodes

represent the relationships between the papers. The term square density

used in the figure refers to the ratio |DS(w)|
n

where n is the length of word w.

As illustrated in the figure, in a work published in 1998, the value of

ρ(w) = |DS(w)|
n

was predicted to be one along with a proof for si ≤ 2 [34].

Later results on a number of FS-double squares in w have shown further

improvement on ρ(w), where its upper bound is shown to be at most 11
6
[29].

Moreover, several studies on repetitions have consistently anticipated that

ρ(w) is one [10, 31] and proving the square conjecture for binary words is

sufficient [54]. It was also predicted that a ‘2’ in any si sequence leads to at

least two ‘0’ in the same sequence [14]. Further, our observation of the si

sequences has indicated that the presence of a 2 implies the presence of many

0′s and the number of 2′s are definitely less than 5
6

th
times of the word length.

Also, we noticed that the number of FS-double squares may be affected when

a word is reversed.

Based on the considerations outlined above, this research addressed the

problem of counting distinct squares in a word by focusing on the following

research objectives.

1. Investigate the count of 2′s and 0′s in the si sequence and establish the

relationship between them.

2. Identify words that, when reversed, do not reduce the number of FS-

double squares.

3. Explore the relationship between square density and repetitions with

higher exponents to justify why primitive squares maximize square den-

sity.

4. Improve the lower bound for the square conjecture.
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3
FS-double Squares

A square is the smallest form of repetition with a structure uu. A trivial

word an contains at most n2−(n mod 2)
4

squares. Note that this count includes

all the occurrences of each repeating square. The relationship between the

length of a word and the total number of squares in it is quadratic. In the

last chapter, we discussed the notation si and the result si(w) ≤ 2. This

shows that the number of distinct squares in a word is a linear function of

its length. A square w = u2 with si(w) = 2 is an FS-double square. The

result on si(w) was presented by A. Fraenkel and J. Simpson, from whose

initials the abbreviation ‘FS’ is derived. A binary word w = abaababaab is

the shortest FS-double square such that the first location of the word begins

with two squares (aba)2, (abaab)2.

This chapter addresses the first research gap identified in the last chapter.

We explore the structure of FS-double squares and identify the ways to pack

as many FS-double squares as possible into a word. We see some properties

of FS-double squares leading to certain structures of words and use these

structures in the subsequent chapters to generate words containing many
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distinct squares. The next section presents the required notation.

3.1 Notation

A primitive word cannot be expressed as a repetition of form uk for some

non-empty u and an integer k > 1. A square u2 with a primitive root u is

called a primitive square in [49] and a primitively rooted square in [28]. The

former notation is followed throughout this thesis. Similarly, a non-primitive

square refers to a square whose root is non-primitive. The next property of

primitive words is important to understand the relation between primitive

squares and their conjugates. The property is also called the ‘synchronization

principle’ in [10].

Lemma 3.1. All the conjugates of a primitive word are distinct.

For a binary word w = abaa, its conjugate is any word from the set

{baaa, aaab, aaba}. square u2 whose final appearance in the word starts at

location i is denoted as u2
i . For a location i in w, the number of rightmost

distinct squares that begins at i is given by si(w). If si(w) = 2, the loca-

tion begins with an FS-double square. The following lemma describes the

structure of an FS-double square.

Lemma 3.2 ([29]). The roots, sqi and SQi, of an FS-double square starting

at location i have the following structure:

sqi = (xy)p+q(x) SQi = (xy)p+q(x)(xy)p (3.1)

where p and q are integers such that p ≥ 1, q ≥ 0, and the words x, y ̸= ϵ and

xy is a primitive word.

For clarity in notation, we will use subscripts with the roots of the squares

in an FS-double square to indicate the location at which it begins. Further,

the notations sq2i and SQ2
i are used to distinguish the shorter and longer

squares, respectively.
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In [29], the concept of a “mate” for an FS-double square was introduced.

The classification of these mates based on the lengths and locations of FS-

double squares in the word is described below.

Given two FS-double squares SQ2
1 and SQ2

k in a word where k > 1,

Deza et al. [29] categorized SQ2
k into five types based on the value of k

and the sizes of roots sq1, SQ1, sqk, SQk. Let SQ2
1 = (xy)p+qx(xy)p and for

k < (p + q − 1)|xy| + |lcp(xy, yx)|, SQ2
k is considered one of the following

mates of SQ2
1 if it meets the required conditions. Here, the term lcp(x, y) is

the longest common prefix of two non-empty words x, y. It is ϵ if x, y starts

with different letters. In case of x = y, lcp(x, y) = x. A conjugate of a word

w is w̃, and we use this notation to define various mates in the following

definitions.

(a) α-mate: The root SQk is a conjugate of SQ1 which gives |SQ1| =
|SQk|. The condition |sq1| = |sqk| is further added in [65]. The FS-

double squares starting at the first two locations of the below word are

α-mates where SQ2
1 = ((aab)2a(aab))2 and SQ2

2 = ((aba)2(a)(aba))2.

w = a abaabaaabaabaabaaab · a︸ ︷︷ ︸
SQ2

2

(b) β-mate: These are the FS-double squares starting at any location k

where 1 < k ≤ |xy| which satisfy the relation |SQ1| = |SQk| with the

root sqk = (x̃y)ix̃ for some integer i ∈ [2, p+ q− 1]. The words x̃y and

x̃ are conjugates of xy and x, respectively. It implies that |sq1| > |sqk|.
The following word has γ-mates where the FS-double squares starts at

locations 1 and 4 in w.

w = aab aabaabaaabaabaabaabaaab · aab︸ ︷︷ ︸
SQ2

4

(c) γ-mate: Here, k < p + q|xy| and |sqk| = |SQ1|. In the below word,

the first FS-double square starts at location 1 and ends just before the
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symbol ‘·’. The FS-double SQ2
3 is its γ−mate.

w = ab aabaabaabaaabaabaabaabaabaabaaabaabaa · baaabaabaabaabaabaaba︸ ︷︷ ︸
SQ2

3

(d) δ-mate: The lengths of the roots satisfy |sqk| > |SQ1|. The words

with δ-mates are longer in size compare to the mates discussed above.

An example of such a word is described before Lemma 3.16.

Three other types of mates are named ϵ, ζ, and η-mates mentioned in [65].

The FS-double squares in these types do not start at consecutive locations.

The specifics of these mates are not necessary for the work discussed in this

chapter and, thus, are excluded.

3.2 Smallest 2FS Squares

This section analyses words with consecutive locations starting with FS-

double squares. We start by examining the structure of a word in which the

first two locations start with FS-double squares. Such a word is referred to

as a 2FS square.

Definition 3.1 (2FS square). A word w is called a 2FS square if s1(w) =

s2(w) = 2 and the FS-double square starting at location 2 is the suffix of w.

The properties of 2FS squares are better understood by studying FS-

double squares and primitive squares, as presented in the following results.

Lemma 3.3 (Two Squares Factorization Lemma [10]). Let an FS-double

square, SQ2
i , begins with a shorter square, sq2i , such that sqi = (xy)p+qx and

SQi = sqi(xy)
p where x, y ∈ Σ+ and the integers p, q satisfy p ≥ 1, q ≥ 0.

Then, the following two statements hold.

(a) SQi is primitive, and

(b) sqi is primitive if p+ q > 1.
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Next, a lemma describes a method for generating distinct squares of equal

lengths where these squares begin at consecutive locations. It is derived from

the well-known Periodicity Lemma [33] and applies to primitive squares.

Lemma 3.4 ([22]). Let u2 be a primitive square. Then, appending u2 by a

proper prefix v of the root u introduces |v| conjugates of u2.

The conjugates that are introduced in the above lemma are distinct. Also,

each of these conjugates is a square. Similarly, it is possible to extend a non-

primitive square to introduce new squares. However, the newly introduced

squares may not always be distinct in such a case. The squares in non-

primitive words are explored in detail in chapter 5.

Lemma 3.5. Let u2 and v2 be equal-length squares beginning at consecutive

locations in a word. Then, u = ṽ and uu = ṽṽ.

In section 3.1, we stated different mates that are given in [29]. Accord-

ingly, an α-mate of an FS-double square SQ2
1 refers to an FS-double square

SQ2
k where k > 1 and |sq1| = |sqk|, |SQ1| = |SQk|. The next subsection deals

with the case where k = 2 and the lengths of the longer roots SQ1, SQk are

the same.

Equal 2FS squares

Recall a 2FS square is a word that starts with two consecutive FS-double

squares and ends with the FS-double square that starts at the second loca-

tion. Consider a 2FS square in which s1(w) = s2(w) = 2 with (sq1, SQ1) and

(sq2, SQ2) being the two respective pairs of the roots of FS-double squares.

The 2FS square is an equal 2FS square if it satisfies the relation |sq1| = |sq2|
and |SQ1| = |SQ2|. Otherwise, we call it an unequal 2FS square. According

to the structure of an FS-double square provided in Lemma 3.2, any 2FS

square satisfies the relation |sq1| < |SQ1| and |sq2| < |SQ2|. In this section,

we further compare the lengths of the roots sq1, sq2, SQ1 and SQ2 in detail.
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Now, assume that the FS-double squares SQ2
1 and SQ2

2 have the following

structures for the given 2FS square,

SQ1 = (xy)p+q(x)(xy)p

SQ2 = (uv)p
′+q′(u)(uv)p

′

In the rest of the chapter, we assume that SQ1 begins with a letter ‘a’ such

that x = ax′.

Lemma 3.6. Let w be a 2FS square with |SQ1| = |SQ2|. Then, |sq1| = |sq2|.

Proof. Assume SQ2
1 begins with a letter ‘a’, so x = ax′ for some word x′.

Since xy is a primitive word, its conjugate x′ya is also primitive. See the

structure of SQ2
2 shown below.

SQ2
2 = (x′ya)p+q(x′a)(x′ya)p · (x′ya)p+q(x′a)(x′ya)q (3.2)

If |sq2| < |sq1|, then |sq1| ≠ (p + q)|x′ya|. Consider the next equation, with

LHS representing the first appearance of sq2 and RHS representing the last

appearance of the root sq2 in sq22.

sq2 : (x
′ya)p+q = x′a(x′ya)p(x′ya)q−1u (3.3)

In Equation (3.3), u is a word over Σ. If it is an empty word, the prefixes

in (3.3) violate Lemma 3.1 unless x′ya = x′a, but this means |y| = 0, which

is not allowed. For the case where u is a proper prefix of x′ya, equating the

suffixes of length |x′ya| shows that two conjugates of a primitive word are

equal. This again violates Lemma 3.1. The next relation can be derived

under the constraint |sq2| < (p + q)|x′ya| assuming 0 < k < (p + q) and

u1, u2, u3 ∈ Σ∗.

(x′ya)p+q−ku1 = u2(x
′ya)k−1(x′a)(x′ya)ru3 (3.4)

To comply with Lemma 3.1, the relation u1 = u3 must hold and u2 = x′ya

if k > 1. For the latter condition, we get a relation x′ya = x′a which is
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contradictory as y is a non-empty word. Thus, k = 1 must satisfy Equation

(3.4), which yields the following relation.

(x′ya)p1−1
��u1 = s2x

′a(x′ya)r��u3 (3.5)

Here, the words u1, u2 and u3 are non-empty words such that u1u2 = x′ya

(see the structure of SQ2
2 in Equation (3.2)). The words u1, u3 need to be

the same to avoid overlapping of conjugates of x′ya. While a non-empty u1

violates Lemma 3.1, the relation |u1| = 0 again implies |y| = 0 contradicting

the given assumption. Hence, |sq2| ≥ |sq1|.
Figure 3.1, depicts the structure of SQ2

2 when |sq2| > |sq1|. A dotted line

represents the last occurrence of sq2 in sq22. The root sq2, shown as a thick

line in the figure, must have a suffix x′ya to meet the requirements of Lemma

3.1.

Figure 3.1: FS-double square SQ2
2 when |sq2| > |sq1|

The first occurrence of the root sq2 in sq22 ends with (x′ya)p1 for some

integer t1 such that 1 ≤ t1 < p. The next equations give the possible struc-

tures of the root sq2 where the LHS and the RHS of each equation indicate

the first and the last occurrence, respectively, of sq2. Assume r < 2p+ q− t1

and t2 < p.

(x′ya)p+q(x′a)(x′ya)t1 = (x′ya)p+q+r (3.6)

(x′ya)p+q(x′a)(x′ya)t1 = (x′ya)2p+q−p1(x′a)(x′ya)t2 (3.7)

The second occurrence of sq2 marked with dotted lines in Figure 3.1 cannot

end somewhere in the factor x′a. This is because the two occurrences of sq2

end with different conjugates of x′ya. To avoid the overlap of x′ya with any of
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its conjugate, Equations (3.6) and (3.7) must satisfy the relation x′a = x′ya

implying |y| = 0. This in unacceptable; thus the FS-double square SQ2
2

never satisfies the relation |sq2| > |sq1|. Therefore, the only possibility is

that |sq1| = |sq2|.

Lemma 3.7. Let w be a 2FS square where |SQ1| = |SQ2|. Then, SQ2
1 and

SQ2
2 are α-mates.

Proof. Since |SQ1| = |SQ2|, so SQ2
1 and SQ2

2 can be α or β-mates. A β-mate

is possible in case |sq1| > |sq2|. From Lemma 3.6, the roots of the shorter

squares only satisfy the relation |sq1| = |sq2|. Further, Lemma 3.5 gives SQ2
1

and SQ2
2 are α-mates.

The following theorem is a consequence of the above lemma, which states

that if the lengths of the longer roots of two consecutive FS-double squares

are equal, then the lengths of their shorter roots must also be equal.

Theorem 3.8 (Equal 2FS Squares). In a 2FS square, |SQ1| = |SQ2| if and
only if |sq1| = |sq2|.

Proof. This follows from Lemma 3.6 and 3.7.

Corollary 3.9. Let w be a 2FS square. Then, SQ2
1 and SQ2

2 are conjugates

if and only if sq21 and sq22 are conjugates.

Proof. The statement follows from Lemma 3.5 and Theorem 3.8.

We now explore the condition which needed to have an equal 2FS square.

Suppose w is an FS-double square with sq21 and SQ2
1. It is possible to extend

w to obtain a 2FS square. According to Lemmas 3.5 and 3.7, the shorter

squares among the two consecutive FS-double squares in an equal 2FS square

are conjugates. Therefore, the word w must have a square at the second
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location, which is a conjugate of sq21.

SQ2
1 = (ax′y)p+q · (ax′) · (ax′y)p · (ax′y)p+q · (ax′) · (ax′y)p

= (ax′y)p+q · (ax′) · (ax′y)p+q · (ax′y)p · (ax′) · (ax′y)p

= a · (x′ya)p+q · (x′a) · (x′ya)p+q · x′(y︸ ︷︷ ︸
sq22 =⇒ y begins with a

ax′)p · (ax′y)p (3.8)

The result of Theorem 3.8 can also be deduced from Lemma 2 given in

[43] (see Lemma 3.10 below). An obvious question would be why go into

the details of the structures of consecutive FS-double squares while the said

lemma rules out the possibility of starting a β-mate adjacent to a location

starting with the FS-double square. The aim is to highlight the relationship

between consecutive FS-double squares and the words x, y shown in Equation

(3.8).

Lemma 3.10 ([43]). Assume a word w begins with two rightmost squares

SQ2
1 and sq21 such that |SQ1| > |sq1|. If u2 is the rightmost square beginning

from the second location of w, then |u| ∈ {|sq1|, |SQ2|} or |u| ≥ 2|SQ1|.

From Equation (3.8), it can be observed that lcp(x, y) must be non-empty

to have equal 2FS squares. The next lemma determines the highest number

of conjugate FS-double squares that start at successive locations.

Lemma 3.11. Let a word w that begins with i consecutive FS-double squares

such that |SQ1| = |SQ2| = · · · = |SQi| where SQ1 = (xy)p+qx(xy)p and

some integers i, p, q satisfy p ≥ 1, i ≥ 1, q ≥ 0. Here, x, y ∈ Σ+. Then, the

next relation holds.

i ≤

{
|lcp(xy, yx)|+ 1 if q > 0
min(|lcp(xy, yx)|+ 1, |x|) otherwise

Proof. Since consecutive FS-double squares are of equal lengths, they are

conjugates (see Lemma 3.5). Similarly, the shorter squares in these FS-

double squares are also conjugates. From Lemma 3.4, conjugates of sq21 at
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consecutive locations are possible if sq21 is extended with one of its proper

prefixes.

SQ2
1 =(xy)p+q(x)(xy)p · (xy)p+q(x)(xy)p

=(xy)p+q(x)(xy)p+qx︸ ︷︷ ︸
sq21

·(yx)p(xy)p

The value of i depends on the longest common prefix of the underlined words

in the above structure. Since xy ̸= yx, the number of conjugates, in this

case, is |lcp(xy, yx)|. Given any nonempty word u, we can get at most |u|−1

conjugates of a square uu by appending the square by its prefix such that

these conjugates start at consecutive locations. So, there can be |sq1| − 1

conjugates that are possible for sq21 and |lcp(xy, yx)| < |sq1| − 1. It shows

that the total number of FS-double squares is |lcp(xy, yx)| + 1. We know

that q ≥ 0 (see Lemma 3.2) and this value of i holds for q > 0.

It is also necessary to preserve earlier FS-double squares while extending

the larger square SQ2
1. For q = 0, the square sq21 repeats if SQ2

1 is extended

with one of its prefixes of size |x| or more. For example, sq21 is a suffix of the

word SQ2
1.(x) as shown below.

SQ2
1 =(xy)p(x)(xy)p · (xy)p(x)(xy)p

SQ2
1.(x) =(xy)p(x)(xy)p · (xy)p(x)(xy)p(x) =⇒ sq21

In a word SQ2
1.x, the first location starts with only one rightmost square,

contradicting the assumption that SQ2
1 is an FS-double square. So, i ≤

min(|lcp(xy, yx)|+ 1, |x|).

3.3 Unequal 2FS Squares

Given a word starting with an FS-double square, the FS-double square that

begins at the adjacent location can be one of the four mates described in

section 3.1. After verifying the possibility of α and β-mates in the earlier
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section, we now explore the possibility of the second FS-double square in a

2FS square being a γ or a δ-mate.

Lemma 3.12. Given a 2FS square where |SQ1| ≠ |SQ2|. Then, SQ2
1 and

SQ2
2 cannot be γ-mates. Moreover, these squares are δ-mates.

Proof. Let w be a word that begins with two consecutive FS-double squares

SQ2
1 and SQ2

2 such that SQ2
2 is a suffix of w. Assume sq21 is the shortest

rightmost square starting at location 1 and sq22 is the shortest rightmost

square starting at location 2. According to the definitions in section 3.1,

SQ2
2 is either a γ-mate or a δ-mate of SQ2

1. According to Lemma 3.10, the

size of a square starting at the second location is equal to either |sq21|, |SQ2
1| or

2|SQ2
1|. If SQ2

2 is a γ-mate of SQ2
1, then |sq2| = |SQ1|. Further, the relation

|SQ2| ≥ 2|SQ1| holds. According to the definition described in Lemma 3.2,

we have |SQ2| < 2 ∗ |sq1|. Here, |SQ2| = 2|SQ1| = 2|sq2| contradicts the

condition |SQ2| < 2 ∗ |sq1|. Thus, SQ2
1 and SQ2

2 cannot be γ-mates.

Consider the word w = a((abaaabaabaaabb)(ab)(abaaabaabaaabb))2 to see

that δ-mates can begin at adjacent positions.

Based on the results obtained in Theorem 3.8, Lemma 3.10 and 3.12, the

following theorem summarizes the types of 2FS squares.

Theorem 3.13 (2FS Square). A 2FS square belongs to one of the following

types:

(a) Equal 2FS square with |sq1| = |sq2| and |SQ1| = |SQ2|, or

(b) Unequal 2FS square with |sq1| < |SQ1| and 2|SQ1| ≤ |sq2| < |SQ2|.

Proof. The proof of part (a) is obtained from Lemma 3.10. The lemma deals

with the possibilities where either of the pairs (|sq1|, |sq2|) or (|SQ1|, |SQ2|)
are equal. The rest of the possible cases are verified in Lemma 3.12, which

proves part (b) of the theorem.
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Corollary 3.14. The two FS-double squares starting at adjacent locations

are α or δ-mates.

While there is a unique equal 2FS square for a given FS-double square,

it turns out that the words with δ-mates have different structures. In other

words, the FS-double SQ2
2 is not unique for SQ2

1 when SQ2
1 and SQ2

2 are

δ-mates. The results of Lemma 3.10 and 3.12 lead to the subsequent lemma.

Lemma 3.15. The following statements hold for an unequal 2FS square.

(a) |sq2| ≥ 2|SQ1|, and

(b) |SQ2| > 2|SQ1|.

A proof has been presented for a word that begins with consecutive FS-

double squares, demonstrating that any two consecutive squares have the

structure of either an equal or an unequal 2FS square. The si sequence of

such a word has a chain of 2′s in the beginning. A word w has a sequence

of 2′s if si(w) = si+1(w) = · · · = sj(w) = 2 where the integers i and j

satisfy 1 ≤ i < j < |w|. It is possible to extend an FS-double square to get

an arbitrarily long sequence of 2′s. One way to achieve this is described in

Lemma 3.11, where an FS-double square is appended by its prefix. In this

case, all the consecutive FS-double squares at the beginning of a word are

conjugates. The number of such FS-double squares is finite, and the length

of a sequence of 2′s is limited. However, it is always possible to introduce

an unequal 2FS square to increase the length of the sequence of 2′s. Thus,

we can extend an FS-double square to get a sequence of 2′s of any desired

length by introducing a new equal or an unequal 2FS square.

Under specific conditions, a single letter is added to the FS-double square

to introduce a new equal 2FS square. In contrast, the FS-double square is

appended by many letters to get a new unequal 2FS square. Let us see

some equal and unequal 2FS squares. Next is an example of an equal 2FS
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square and its si sequence. Here, SQ2
1 = ((aba)1(ab)(aba)1)2 and SQ2

2 =

((baa)1(ba)(baa)1)2.

w = a b a a b a b a a b a a b a b a a
si(w)= 2 2 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0

The word, w, if continued to be extended further with the prefix of SQ2
1,

then sq21 repeats after the first location. It reduces the value of s1 to one. In

such words, it is necessary to introduce an unequal 2FS square to extend the

sequence of 2′s further. Unlike equal 2FS squares, the length of an unequal

2FS square varies. There are different ways to extend an FS-double square to

get an unequal 2FS square. To elaborate on this further, an FS-double square

is extended in two different ways to get two different unequal 2FS squares.

Let SQ2
1 = aabaaabaabaaab be the FS-double square which is extended to

get two unequal 2FS squares w1 and w2, where

w1 = a((abaaabaabaaabb)(ab)(abaaabaabaaabb))2 (3.9)

w2 = a((abaaabaabaaabb)(abaaabaabaaabbab)(abaaabaabaaabb))2 (3.10)

and the respective si sequences are,

w1 =a a b a a a b a a b a a a b b a b a b a a a b a a b a a a b b
a b a a a b a a b a a a b b a b a b a a a b a a b a a a b b

si(w1)= 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0

w2 =a a b a a a b a a b a a a b b a b a a a b a a b a a a b b a b a b a a a b a a b a a a b b
a b a a a b a a b a a a b b a b a a a b a a b a a a b b a b a b a a a b a a b a a a b b

si(w2)= 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0

A word can be extended to get an unequal 2FS square at any location.

Moreover, it is possible to yield an unequal 2FS square at a particular location

l such that it does not affect the si value of another location m where 0 <

m < l. This new 2FS square almost doubles the overall word length, though.

So, the relationship between the length of the longest sequence of 2′s and

the word length is investigated. It is evident that the ratio of the longest
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sequence of 2′s in a word to its length is higher for equal 2FS squares. The

following lemma gives the ratio for the sequence of 2′s such that any two

consecutive FS-double squares in the sequence have the structure of an equal

2FS square.

Lemma 3.16 (Longest sequence of 2′s with Equal 2FS Squares). Let T be

the longest sequence of consecutive FS-double squares in w such that any two

consecutive FS-double squares in T are conjugates. Then, |T |
|w| ≤

1
7
.

Proof. Assume that the first FS-double square SQ2
1 in T is ((xy)p+q(x)(xy)p)2

where x, y ∈ Σ+ and integers p, q satisfy the relation p+ q ≥ 1, q ≥ 0. From

Lemma 3.11, we know that the length of T depends on the values of p and

q. The highest value of the ratio |T |/|w| when q = 0 is computed below.

|T |
|w|

=
min(|lcp(xy, yx)|+ 1, (|x| − 1))

2((p+ p+ 1)|x|+ (p+ p)|y|) + |lcp(xy, yx)|

=
|x| − 1

(4p+ 3)|x|+ 4p|y| − 1
≤ 1

7

The following equation shows that the ratio |T |/|w| approaches 1
7
when q > 0

and x reaches ∞.

|T |
|w|

=
|lcp(xy, yx)|+ 1

2((2 + 1 + 1)|x|+ (2 + 1)|y|) + |lcp(xy, y, x)|

=
|x|+ |y| − 2

8|x|+ 6|y|) + |x|+ |y| − 2
=

|x|+ |y| − 2

9|x|+ 7|y|)− 2
≤ 1

7

The bound for |T | is also computed in Lemma 4 of the paper [43] where

it is shown that |T | < |w|
2
. However, the value |lcp(xy, yx)| can be used to

show that |T |
|w| is at most 1

7
. The sequence of consecutive FS-double squares

obtained in Lemma 3.16 can be further extended by adding a new unequal

2FS square. So, another way to generate a long sequence of 2’s is to start

with an FS-double square and extend it to add all possible conjugates of

the square. At this point, we can append the word to generate an unequal
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2FS square so that the sequence of 2’s continues to grow. Thus, a sequence

increases either with an equal or an unequal 2FS square. The length of such

a sequence in a word with respect to the word length is computed in the

following lemma.

Lemma 3.17 (Longest Sequence of 2′s with Equal and Unequal 2FS squares).

Let T be the longest sequence of FS-double squares in a word w that contains

at least one equal and at least one unequal 2FS square. Then, |T |
|w| ≤

6
55
.

Proof. The length of T can be increased by adding a new 2FS square. Every

new equal 2FS square increments the value of both |T | and |w| by 1. This

improves the value of |T |
|w| . However, it is not always possible to introduce an

equal 2FS square (see Lemma 3.11) and, therefore, an unequal 2FS square is

required to get a longer T . Unlike an equal 2FS square, a new unequal 2FS

square decreases the value of |T |
|w| . To understand this, suppose an unequal

2FS square begins at location one where SQ2
1 and SQ2

2 are two consecutive

FS-double squares with shorter squares sq21 and sq22, respectively. Lemma

3.15 gives the relation |SQ2| > 2|SQ1|. Accordingly, SQ2
1 is appended by a

word containing at least 2|SQ1| letters to make s2 = 2. Thus, the value of |T |
|w|

decreases significantly after introducing an unequal 2FS square. So, we can

obtain the best ratio from the word that has a maximum number of equal

2FS squares and some unequal 2FS squares.

Given a word with s1 = s2 = · · · = si = 2 such that the location i starts

with an FS-double square SQ2
i . From Lemma 3.16, the sequence of 2′s can

be extended to get at most |SQi|
7

new equal 2FS squares. An unequal 2FS

square must be introduced to continue the sequence of 2′s further. The ratio
|T |
|w| for the smallest FS-double square w = (abaab)2 is 1

10
. We can use the

above method to extend w. The respective |T |
|w| obtained after introducing a
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new unequal 2FS square results into the following sequence.

1 + 10
7
+ 1

10 + 10
7
+ (10 + 10)

,
1 + 10

7
+ 1 + 20

7
+ 1

10 + 20 + 10
7
+ 20

7
+ (20 + 20)

,

1 + 10
7
+ 1 + 20

7
+ 1 + 40

7
+ 1

10 + 20 + 40 + 10
7
+ 20

7
+ 40

7
+ (40 + 40)

, · · ·

The nth term of the above sequence is

(n+ 1) +
10

7

n−1∑
i=0

2i

10

7

n−1∑
i=0

2i + 10
n−1∑
i=0

2i + 10 ∗ 2n

This is a decreasing sequence where the first term is 6
55

and it converges to

1
15
.

Now, we will see the highest value of the ratio |T |
|w| in the next theorem.

Theorem 3.18. Let T be the longest sequence of si = 2′s in a word w. Then,

|T | ≤ |w|
7
.

Proof. The computation in Lemmas 3.16 and 3.17 shows that the best value

of |T |
|w| where T contains either equal length FS-double squares or a combi-

nation of equal and unequal 2FS squares. The best value is obtained in the

former case, that is, 1
7
. We now compare this value with the sequence of

T where every two consecutive FS-double squares follow the structure of an

unequal 2FS square.

Suppose SQ2
1 and SQ2

2 result in an unequal 2FS square at the beginning

of a word. Then, |SQ2| > 2|SQ1| (see Lemma 3.15). Thus, to introduce a

new unequal 2FS square at location i, it is required to append at least 2|SQi|
letters to the FS-double square SQ2

i . Allowing only unequal 2FS squares in

T , we compute the ratio of the length of the longest sequence of 2′s in a word

to its word length as follows.

1

10
,

1 + 1

10 + 20
,

1 + 1 + 1

10 + 20 + 40
, · · · , n

10 ∗ (2n − 1)
, · · ·
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The value of the ratio decreases as n increases and the ratio has the

maximum value of 1
15

for n = 2. We ignore the value with n = 1 as the

sequence will have only one FS-double square. Therefore, |T | ≤ |w|
7
.

3.4 Conclusions

We investigated the ways to get a sequence of FS-double squares by extending

a given FS-double square. In this regard, the term 2FS square is introduced.

It is a word starting with two consecutive FS-double squares. A 2FS square

is characterized by two types, viz. equal and unequal 2FS square. The former

has a single letter added to an existing FS-double square to obtain a new

FS-double square. In contrast, the FS-double square is appended by a word

of its length (or longer) to yield an unequal 2FS square. Though getting a

new equal-length FS-double square is easy, but only a finite number of such

squares can be added. The results demonstrated that an FS-double square

could be extended to generate up to |w|
7

equal 2FS squares. In fact, the same

ratio is also obtained in [14] for the shortest possible words that start with

equal-length consecutive FS-double squares.

On the contrary, it is shown that a square w could be extended to have

any number of new FS-double squares at consecutive locations by introducing

unequal 2FS squares. The overall length of the resulting word increases

significantly with the inclusion of such squares. So, the maximum number of

successive FS-double squares in a word is compared with its length. During

the chapter, it is demonstrated that the ratio of the number of consecutive

FS-double squares in an n length word is less than 6n
55

in the presence of

unequal 2FS squares. The best ratio, n
7
, is possible only with equal 2FS

squares.
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In this chapter, we examine the characteristics of words with a long sequence

of positions starting with FS-double squares. The results in the subsequent

sections show that the words with these positions also contain some posi-

tions that do not start with any rightmost square. These findings are then

combined and applied to determine the square density of these words.

4.1 Motivation

The Q words described in [34] are the lower bound for the square conjecture.

These words do not have any FS-double squares. We observed that the si

sequences of words with a large number of distinct squares contain either

no 2′s or an equal number of 0′s and 2′s. Existing works also suggest that a

sequence of 2′s leads to a much longer sequence of 0′s [14]. These observations

motivate further exploration of FS-double squares. The number of distinct

squares in a word is a sum of si value of each of its locations. So, if a 2 in

an si sequence leads to 0′s, it does not help maximize the number of distinct
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squares in a word beyond its length. The 0′s in the si sequence are referred

to as no gain locations while a 2 is associated with an FS-double square. We

see the relationship between the number of FS-double squares and no-gain

locations in the following sections.

The structures of words given in chapter 6 are the extension of Q words.

These words reveal that words with a large number of distinct squares have

conjugates of squares starting at consecutive locations. So, the words having

consecutive FS-double squares are explored here, and the square density of

such words is computed by counting no-gain locations within them.

4.2 Notation

For a word w, recall the definition of si(w) given in section 1.1. The notation

gives the number of rightmost squares starting at i in w. Denote by 2FS

square is a word w where s1(w) = s2(w) = 2 and w ends with the FS-double

square that starts at its second location. For instance, see the following

example of 2FS square.

w = aaaabaaaaaabaaaabaaaaaaba

si(w) = 2210000111110000010101000

If si(w) = 0, then location i in w is refer to no-gain location. Let DS(w) be

the set containing distinct squares in w. We can obtain the size of the set

as |DS(w)| =
|w|∑
i=0

si(w). The square density of w is the ratio |DS(w)|
|w| . It is

denoted by ρ(w).

It can be observed that in the example shown above the word has many

no-gain locations. These are discussed in detail in the next section.

4.3 No-gain Locations in FS-double Squares

The square density of a word is determined by the number of locations with

non-zero si values in the word. As mentioned earlier, a location that starts
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with no rightmost square is considered a no-gain location. If the number

of distinct FS-double squares in a word is equal to the number of no-gain

locations, then the square density of the word is at most one. This section

explores words in which successive locations start with FS-double squares and

identifies the no-gain locations within them. To achieve this, the structures

of rightmost squares that start in the prefix of an FS-double square are

studied. Recall the structure of an FS-double square, ((xy)p+q(x)(xy)p)2,

where p ≥ 1, q ≥ 0 (see Lemma 3.2).

The last location of a word is always a no-gain location, and it is possible

to find many such locations in a word by analyzing the structure of the right-

most squares. A trail of no-gain locations is often observed in some FS-double

squares, particularly when q = 0, and the size of the trail typically increases

with the value of p. This chapter explores all possible structures of the

rightmost squares beginning in the highlighted part of an FS-double square

(xy)px(xy)2px(xy)p, which we refer to as u2 for convenience. Throughout

the chapter, we use the notation u(1) and u(2) to indicate the first and last

occurrence of the root u in the given u2.

An FS-double square begins with two squares where sq1 and SQ1 are

the roots of these squares. We are interested in a rightmost occurrence of

a square, u2, in an FS-double square. In this regard, the following claim is

taken from Lemma 17 in [29].

Lemma 4.1 ([29]). Let u2 be the rightmost square that starts in the marked

prefix S of an FS-double square shown in Fig. 4.1 and sq1 = (xy)p(x). Then,

|u| ≤ |sq1|.

(xy)p
S

x (xy)p (xy)p x (xy)p

u2

Figure 4.1: u2 in the prefix of an FS-double square
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Note that in the above lemma |u| ≱ |SQ1|, else the size of u2 would

exceed |SQ2
1|. Consider (xy)p = (xy)2(xy)p−2 where p− 2 > 0, we divide the

rightmost squares starting in the prefix (xy)p of w = (xy)p(x)(xy)2p(x)(xy)p

into two categories:

(a) square starting in 2|(xy)| length prefix of (xy)p, and

(b) squares starting in the suffix (xy)p−2 of (xy)p.

The aforesaid squares are discussed in Lemma 4.4. The squares of type (b)

are explored in Lemma 4.2. Later theorem 4.3 shows that the si value of

every location k in the given word w is zero where k ∈ [2|xy|, (p− 2)|xy|].

Lemma 4.2. Let w be a word as shown in Equation 4.1. Assume the right-

most occurrence of u2 starts somewhere in the marked location S and ends

in T (see Equation (4.1)). Then, xy is a non-primitive word.

w = (xy)2 (xy)p−2︸ ︷︷ ︸
S

(x)(xy)p (xy)p︸ ︷︷ ︸
T

(x)(xy)p (4.1)

Proof. (By contradiction) Let w has u2 satisfy the given conditions and xy be

a primitive word. With this assumption, w represents an FS-double square.

We write x = x1x2 and y = y1y2 for some non-empty words x1, x2, y1, y2. Ac-

cording to Lemma 4.1, u2 satisfies |u| ≤ (p|xy|+ |x|), and, therefore, every u2

that begins at some location in S as given in Equation (4.1) ends somewhere

in T . The roots u(1) and u(2) of u2 indicates the first, respectively, the last

occurrence of u in u2. The structures of these roots are given below.

u(1) = beg1(xy)
j(x)(xy)kend1 u(2) = beg2(xy)

lend2 (4.2)

In Equation (4.2), the exponents of (xy) satisfy j, k, l > 0, l = k + j and

|u| < (p|xy| + |x|). The words beg1, beg2 are (possibly empty) prefixes of xy

or are empty words. The words end1 and end2 are the suffixes of xy or can

be empty words. The roots of u2 show that xy is non-primitive if beg1 and
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beg2 are different. For example, if beg1 = x2y and beg2 = y2 then we get a

relation contradicting Lemma 3.1 as follows.

x2y(xy)
j(x)(xy)kend1 = y2(xy)

lend2 =⇒ x2yx1 = y2xy1

This results in the relation beg1 = beg2. By substituting this in Equation

(4.2), we get xy = yx as,

beg1(xy)
j(x)(xy)kend1 = beg1(xy)

lend2 (4.3)

=⇒ (xy)j(x)xy · · · = (xy)j(xy)l−j · · · (4.4)

Thus, u2 starting somewhere in location S of Equation (4.1) implies that xy

is a non-primitive word. For a word w to be an FS-double square, the factor

xy must be a primitive word. Under this condition, it is not possible for the

square u2 to have its last occurrence as specified.

The results obtained in Lemma 4.2 show that certain locations of an FS-

double square do not start with any rightmost square. The number of such

locations and the constraint on an FS-double square in such cases is described

in the next theorem.

Theorem 4.3. Let FS-double square w = (xy)p(x)(xy)2p(x)(xy)p such that

p > 2. Then, st(w) = 0 where t ∈ [2|xy|, (p− 2)|xy|]. That is,

xy xy (xy)p−2
x (xy)p (xy)p x (xy)p

00000︸ ︷︷ ︸
st(w)′s

Figure 4.2: Sequence of 0′s in FS-double square

Proof. Lemma 4.1 gives the precise lengths of the rightmost squares that

begin at any location in the prefix (xy)p of the given words. This information

is used in Lemma 4.2 to show that if any rightmost square starts at a location

t, then it implies xy is non-primitive. According to the definition of FS-double

square, xy is primitive. Thus, st(w) = 0.
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Let us now examine an example of a word that illustrates the theorem

presented above. Consider an FS-double square w = ((xy)px(xy)p)2 where

x = abaa, y = aba, and p = 3. As proved, the si(w) has (p− 2)|xy| locations
with zero si values. The trail of zeroes and the corresponding locations in w

are marked below.

w =abaaabaabaaabaabaaabaabaaabaaabaabaaabaabaaabaabaaaba . . .

si(w) =21111000000100000000000000011111110000000111111100001 . . .

We can observe that the rightmost squares in the prefix of FS-double square

have specific characteristics. The following lemma enumerates them in detail.

Lemma 4.4. Let w be an FS-double square where q = 0. If u2 is a square

that starts at location i such that si(w) = 1 and 2 ≤ i ≤ 2|xy|, then the

following statements hold.

(a) The number of such i′s where |u| = |sq1| is |lcp(xy, yx)|.

(b) If |u| < |sq1|, then the number such squares is less than |xy|.

Proof. (a) According to Lemma 4.1, if si(w) = 1 and u2 starts at location

i, then |u| ≤ |sq1|. For the given w, the following two squares start at the

beginning,

SQ2
1 = (xy)p(x)(xy)p(x).(yx)p(xy)p

sq21 = (xy)p(x)(xy)p(x)

Let x = x1x2 and y = y1y2 for some non-empty words x1, x2, y1, y2. If

|u| = |sq1| and i ≤ |lcp(xy, yx)|, then u2 has one of the next structure.

u2 =x2y1y2(xy)
p−1(x)(xy)p(x)(x1) or

u2 =y1y2(xy)
p−1(x)(xy)p(x)(x) or

u2 =y2(xy)
p−1(x)(xy)p(x)(xy1)
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From the above equation set, u2 is a conjugate of sq21, and the number

of such squares is at most |lcp(xy, yx)|. When u2 starts after |lcp(xy, yx)|
locations, it has either of the following structures.

(xy)p−k(x)(xy)k = (xy)p(x)

(x2y)(xy)
p−k(x)(xy)k−1(x1) = (x2y)(xy)

p−1(x1)end1

(y)(xy)p−k(x)(xy)k−1(x) = (y)(xy)p−1(x)end2

(y2)(xy)
p−k(x)(xy)k−1(xy1) = (y2)(xy)

p−1(xy1)end3

In these words, k is an integer such that 1 < k < p and end1 is |x| length
prefix of x2yx1. Similarly, words end2 and end3 are prefixes of yx and y2xy1,

respectively where |end2| = |end3| = |x|. The suffixes of roots of u2 in all of

the above words give the relation xy = yx, and it contradicts Lemma 3.1.

So, the valid u2 where |u| = |sq1| is conjugate of sq21.

(b) We now verify all possible u2 where |u| < |sq1|. Since u2 is the

rightmost square, it must end after the first occurrence of sq1. So, the first

occurrence of u starts in the prefix xy and ends somewhere in the highlighted

part of Equation (4.5).

SQ2
1 = (xy)p(x)(xy)p(xy)p(x)(xy)p

= (xy)(xy)p−1(x)(xy)(xy)p−1(xy)p(x)(xy)p (4.5)

Assuming x = x1x2 = x3x4 and y = y1y2 = y3y4 where xi, yi ∈ Σ+, i ∈ [1, 4]

and x1 ̸= x3, y1 ̸= y3. The two occurrences of u in u2 always start with two

different prefixes. A relation found in equating these prefixes implies that

two different conjugates of xy are equal. For instance, if the first occurrence

of u starts with x2yx1, then the second occurrence starts with x3yx4. It

shows that x2yx1 = x3yx4, which is a contradiction. Therefore, u2 cannot

start anywhere in the |xy| length prefix of the given FS-double square. The

roots of valid u2 starting after |xy| locations are shown below, where S is a
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prefix of yx.

x2y(xy)
p−2(x)x1 = x2y(xy)

p−2(x)y1 |y1| = |x1| or

y(xy)p−2(x)x = y(xy)p−2(x)S |S| = |x| or

y2(xy)
p−2(x)xy1 = y2(xy)

p−2(x)S |S| = |xy1|

The length of u is the same in all the above words and is (p−1)|xy|+ |x|.
The above squares start after |xy| locations. Since the first such square starts

with x2y(xy) · · · , the maximum number of such squares is less than |xy|.

It is not the case that every FS-double square w = ((xy)p(x)(xy)p)2 have

squares starting at locations [2, 2|xy|]. From Lemma 4.4, the square in w

whose last occurrence begins at any location in [2, |lcp(xy, yx)|] is a conjugate
of sq21. In case of si(w) = 1 where |xy| < i < 2|xy|, the square starting at i is

shorter than sq21. Further, the structures of the roots of these squares given in

the lemma show that the lcp(x, y) is a non-empty word. An example of an FS-

double square having these two types of squares has x = aaba, y = aab, p = 3

and the si sequence of w = ((xy)3x(xy)3)2 is given below.

w =((aaba · aab)(aaba · aab)(aaba · aab)(aaba)(aaba · aab)3)2

si(w) =((2111 · 110)(0000 · 110)(0000 · 000)(0000)0001111 · · · )

In the next section, the no-gain locations in words having a sequence of FS-

double squares are computed. The result is then used to compute the square

density of such words.

4.4 Square Density of Words with 2FS Squares

We have seen that two consecutive occurrences of 2′s in the si sequence of a

word are only possible in the following two scenarios.

(I) Equal 2FS square: The lengths of two consecutive FS-double squares

are equal.
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(II) Unequal 2FS square: The shorter FS-double square always starts before

the longer FS-double square.

Given an FS-double square w, an equal 2FS square is obtained by appending

a single letter to w where the new FS-double square is a conjugate w. How-

ever, w needs to be extended by a long word to introduce another FS-double

square and to construct an unequal 2FS square. Some properties of unequal

2FS squares are given in Lemma 3.15.

Suppose the si sequence of a word is “222222 · · · 1011 · · · ”, then the trail

of 2′s is a result of either all equal length FS-double squares or a combination

of equal and unequal 2FS squares. Here, the aim is to detect no-gain locations

or a sequence of 0′s in the given si sequence. The locations in all possible

words adhering to the given criteria are found and their square densities

are computed in Theorem 4.7. Before that, the square density of words

containing only equal 2FS square is computed in Lemma 4.6. The lemma is

supported by the following existing property of an equal 2FS square obtained

from Lemma 3.7.

Lemma 4.5. Let the last letter of an equal 2FS square w = SQ2
1.a adds two

new squares t, v. Then, t = SQ2
2 and |v| = |sq1|.

Lemma 4.6. Let w begins with a sequence of equal-length consecutive FS-

double squares where the last FS-double square of the sequence is a suffix of

w. If the exponents of the first FS-double square are equal and greater than

two, then |DS| < 1.64|w|.

Proof. Let SQ1 = (xy)p(x)(xy)p be the root of first FS-double square where

x, y ∈ Σ+ and integer p > 2. as noted in Lemma 3.11 that there are at most

|lcp(xy, yx)| consecutive equal-length FS-double squares. By Lemma 4.4,

there can be at most |xy| rightmost squares that start at locations in [|xy|+
1, 2|xy|]. However, these squares reappear after the first |SQ1| locations in

w when w is extended by a non-empty word k to obtain the sequence of 2′s
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in the beginning. Thus, |k| ≤ |lcp(xy, yx)|. For SQ2
1, the si values of each

locations in [2|xy|, p|xy|] is zero (see Theorem 4.3). As per Lemma 4.5, if

SQ2
1 is extended to construct w, then the si values of the locations marked

in the next structure can possibly change:

SQ2
1 = (xy)(xy)p−1(x)(xy)p(xy)p(x)(xy)p

So, no new square with si(w) = 1 is getting added where 2|xy| ≤ i ≤ p|xy|
when SQ2

1 is extended to get w. Thus, the only structure of words possible

is shown below assuming w = SQ2
1 · k where k ∈ Σ+.

w = ((xy)p(x)(xy)p)2).k

si(w) = 22222 · · ·︸ ︷︷ ︸
|lcp(xy,yx)|

00000 · · ·︸ ︷︷ ︸
(p−1)|xy|

10111010 · · ·

Assuming |lcp(xy, yx)| ≈ |xy|, we compute the square density of w as follows.

ρ(w) =
2|lcp(xy, yx)|+ 0(p− 1)|xy|+ 11

6
(3p|xy|+ |k|+ 2|x|)

4p|xy|+ |k|+ 2|x|

=
2|xy|+ 11

6
((3p+ 1)|xy|+ 2|x|)

(4p+ 1)|xy|+ 2|x|

Case |x| = |y| : ρ(w) =
4|x|+ 11

6
((6p+ 2)|x|+ 2|x|)

(8p+ 2)|x|+ 2|x|
=

(11p+ 34
3
)|x|

(8p+ 3)|x|
< 1.641

Case |x| ≫ |y| : ρ(w) =
2|x|+ 11

6
((3p+ 1)|x|+ 2|x|)

(4p+ 1)|x|+ 2|x|
=

5.5p+ 7.5

4p+ 3
< 1.6

Case |x| ≪ |y| : ρ(w) =
2|y|+ 11

6
((3p+ 1)|y|)

(4p+ 1)|y|
=

11
2
p+ 23

6

4p+ 1
< 1.563

It is possible to extend the example discussed after Lemma 4.4 to get

a sequence of 2′s as mentioned in the above theorem. The word w =

((xy)3x(xy)3)2, where x = aaba, y = aab can be appended by ‘aab’ to get

four consecutive FS-double squares in the beginning. We get |w| = 95, and

the total number of distinct squares in w is 51. The si(w) has a sequence of
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zeroes as specified in the above lemma.

w = aabaaabaabaaabaabaaabaabaaabaaabaabaaabaabaaabaabaaabaa . . .

si(w) = 222211000000000000000000000011111110000000111111100001 . . .

The next theorem computes the square density of words that starts with

a sequence of FS-double squares.

Theorem 4.7. Let w be the word containing k consecutive FS-double squares

such that s1(w) = s2(w) = · · · = sk(w) = 2, where w ends with SQ2
k. If the

exponents of individual FS-double square are equal and are more than 2, then

ρ(w) < 1.64.

Proof. The square density of an FS-double square w = ((xy)p(x)(xy)p)2

where p > 2 and x, y ∈ Σ+ is given in Equation (4.6). The first loca-

tion of w starts with two rightmost squares, and the number of rightmost

squares starting in the next 2|xy| locations is < 2|xy|. Thus, at most 2|xy|
squares start in the prefix (xy)2. According to Theorem 4.3, the locations

[2|xy|, p|xy|] start with no rightmost squares.

ρ(w) =
2|xy|+ (p− 1)0 + 11

6
(3p|xy|+ 2|x|)

4p|xy|+ 2|x|

(p = 3) : <
2|xy|+ 11

6
(9|xy|+ 2|x|)

12|xy|+ 2|x|
=

133|x|+ 111|y|
84|x|+ 72|y|

< max(
61

39
,
133

81
,
111

72
) = 1.641 (4.6)

The three fractions in Equation (4.6) are obtained by assuming |x| ≈ |y|,
|x| ≫ |y| and |x| ≪ |y|, respectively. The highest square density is obtained

for the case where |x| ≫ |y|. We divide the words containing a sequence of

consecutive FS-double squares into the following three types.

(I) Sequence of Equal 2FS squares: The lengths of FS-double squares in

the sequence of 2′s are equal,
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(II) Sequence of Unequal 2FS squares: For i < j, the length of FS-double

square starting at j is more than that of the FS-double square at i,

(III) Sequence of Equal and Unequal 2FS squares: The lengths of FS-double

square are the combination of case (I) and case (II).

The square density of words given in (I) is less than 133
81

as given in Lemma

4.6. Let w be a word as described in either (II) or (III). The word w can be

rewritten as w′SQ2
k where w′ is a prefix of length k − 1, and two rightmost

squares start from any location of w′. The length of w′ determines ρ(w) as

shown below.

ρ(w) =
2|w′|
|w|

+
|DS(SQ2

k)|
|w|

(4.7)

The value of the fraction
|DS(SQ2

k)|
|w| is the highest when |x|

|y| ≈ 1 (see

Equation (4.6)). So, we compute |w′|
|w| for the same case. Assume SQ1 =

(xy)p(x)(xy)p and SQ2 = (uv)q(u)(uv)q are the roots of two FS-double

squares in w where the exponents p and q are greater than 2. The following

relation is obtained using Lemma 4.4.

|(uv)q(u)| > |(xy)p(x)(xy)p|+ |(xy)p(x)|+ |(xy)p−1|

|(u)2q+1| > |(x)8p| =⇒ |u| > 8p

2q + 1
|x| (4.8)

The highest value of ρ(w) is obtained when the ratio 8p
2q+1

in Equation (4.8)

has the smallest value. So, p = q = 3 and it gives |u| > 24
7
|x|.

Length of w′ si(w) = 0′s |w|
1 |xy| = 2|x| 12|xy|+2|x| = 26|x|
1 + 1 |uv| = 2(24

7
)|x| > 26(24

7
)|x|

1 + 1 + 1 2(24
7
)2|x| > 26(24

7
)2|x|

1 + 1 + 1 + 1 2(24
7
)3|x| > 26(24

7
)3|x|

1+ 1+ 1+1+1 2(24
7
)4|x| > 26(24

7
)4|x|

Table 4.1: FS-double squares and no-gain locations in words of type (II)
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Length of w′ si(w) = 0′s |w|
|xy| |xy| 14|xy|+ 2|x|
|xy|+ 1 + 3|xy| 2 ∗ 3|xy| > 13 ∗ 32|xy|
|xy|+ 1 + 3|xy|+ 1 + 32|xy| 2 ∗ 32|xy| > 13 ∗ 34|xy|
|xy|+1+3|xy|+1+32|xy|+1+
33|xy|

2 ∗ 33|xy| > 13 ∗ 36|xy|

Table 4.2: FS-double squares and no-gain locations in words of type (III)

Let us consider a word with a sequence of FS-double squares that follows

the type (II) where SQ2
1 = ((xy)3(x)(xy)3)2 and |SQ1| = 12|xy|+ 2|x|. The

next FS-double square starting at location 2 must be SQ2
2 = ((uv)3u(uv)3)2

satisfying the relation |u| > 24
7
|x| which gives |w| = 26∗ 24

7
|x|+1. The length

of w and the number of no gain lengths increase with |w′| as described in Table

4.1. The highest value of the ratio |w′|
|w| obtained in this case is 2

26∗ 24
7

≈ 0.224.

We can construct a word with a combination of equal and unequal 2FS

squares as given in (III). However, the number of no-gain lengths in such cases

is always twice the number of consecutive FS-double squares introduced (see

the proof of Lemma 4.6 and Table 4.2). The ratio obtained in this case

is |w′|
|w| ≤ 2

26∗3 ≈ 0.025. If SQ2
k = ((mn)3m(mn)3)2 is the last FS-double

square in the sequence, then in the 3|mn| length prefix of SQ2
k at least 2|mn|

locations are no-gain locations. So, with this information we use Equation

(4.7) to get ρ(w) = (0.025 + 0.833) < 1.61.

The square density of the above words is less than the best upper bound

obtained for the square conjecture, which is 11
6
[29]. Consider the smallest FS-

double square, w = abaababaab where si(w) = 2001100100 and, its reverse

wr = baababaaba where si(w
r) = 1011101000. A word and its reversal always

contain the same number of distinct squares, but the number of distinct FS-

double square(s) in each may vary. It is not always the case that the distinct

square density of a word with many FS-double squares is more than the

words with no or fewer FS-double squares. For example, the structure given
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by Sadri and Osborn in [14] produces words with a distinct square density

less than 5
6
.

In contrast, some patterns with a distinct square density equal to one

do not have any FS-double square [34]. In the case of a structure introduc-

ing FS-double squares, it is observed that such a structure produces words

containing a sequence of FS-double squares. However, when the word is re-

versed, these FS-double squares are distributed to other locations. To put it

in simple terms, these words contain some locations with two si values and

many locations with zero si values. After reversing the words, 2′s get dis-

tributed with 0′s resulting in a word with many locations having one si value.

Therefore, the structure of words that begins with k consecutive FS-double

squares such that the first k locations in the reverse of such words also start

with two distinct squares. This structure can be used to build words with

high square densities, which is discussed in the next chapter.

4.5 Conclusions

The square conjecture predicted that the square density of a word is less

than one. An upper bound for the square density is obtained by counting the

maximum number of locations that start with FS-double squares, assuming

that every location that does not initiate an FS-double square begins with

exactly one rightmost square. We introduced no-gain locations, which are the

locations that do not begin with any rightmost squares. A proof is presented

that demonstrates the existence of no-gain locations in the prefix of an FS-

double square ((xy)p(x)(xy)p)2, with the first 2|xy| locations having non-zero

si values and the rest being no-gain locations.

Furthermore, it is shown that extending the given FS-double square

to add equal-length FS-double squares at neighbouring locations does not

change the number of no-gain locations. This result implies that the square

density of words containing only equal-length FS-double squares at the be-
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ginning of a word is less than one. In addition, the chapter discussed the

results on words with FS-double squares at consecutive locations, where the

exponents of each FS-double square are equal. By identifying the no-gain

locations in these words, it was shown that the number of distinct squares in

a word is at most 133
81

times its length.

51



5
Squares in Some Special Words

The chapter delves into the topic of square density for two types of words:

words that contain special FS-double squares and non-primitive words. The

previous chapters introduced the concept of FS-double squares and discussed

their structures and properties while also focusing on finding properties of

primitive words and squares.

For any word, the count of distinct squares in a word is maintained af-

ter reversing the complete word itself. However, the number of FS-double

squares may be affected. The first part of this chapter elaborates on the con-

nection between a word, its reversal, and the number of FS-double squares

in each of them.

The second part of the chapter focuses on exploring the limitations of us-

ing non-primitive squares to increase the square density. As discussed in the

first part and in the previous chapters, there exists a relationship between the

number of distinct squares and primitive squares in a word. The structure of

a primitive square allows to closely pack conjugates of squares, maximizing

the square density of words with a large number of distinct squares. Inter-
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estingly, FS-double squares also qualify as primitive squares. However, the

literature does not adequately explain why non-primitive words cannot be

used to increase square density. This background information sets the stage

for the investigation carried out in the second part of the chapter.

5.1 Motivation

The value of si represents the number of rightmost squares starting at lo-

cation i, but it does not necessarily mean that the location corresponds to

two different squares when the word is reversed. To illustrate this, further

consider the smallest FS-double square, w = abaababaab where si(w) =

2001100100 and its reverse wr = baababaaba where si(w
r) = 1011101000.

Although a word and its reversal always have the same number of distinct

squares, the number of distinct FS-double squares in each can vary. Also,

the square density of a word is not always higher when it contains many

FS-double squares. For example, the pattern given by Blanchet-Sadri et al.

[14] produces words with a square density less than 5
6
whereas some patterns

with a square density one do not generate words containing an FS-double

square [34]. One reason for the lower value of the distinct square density of

words of an earlier pattern is that the words of this pattern have a series of

FS-double squares, and these squares are then distributed to other locations

when the word is reversed. Consequently, these words have numerous loca-

tions with si = 0 values. The characteristics of such words are described,

and their square density is computed in this chapter.

The main focus of this thesis is to examine the properties and structures

of words that maximize the number of distinct squares in a word. The

early chapters discuss primitive squares and their properties, which are key

in this regard. It is important to note that an FS-double square is a type

of primitive square. The non-primitive squares are the repetitions with an

exponent greater than 2. The analysis in section 5.4 demonstrates that non-
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primitive squares do not have high square density. The maximum square

density of these words is computed, emphasising the importance of primitive

squares in maximizing the number of distinct squares in a word.

5.2 Bordered FS-double Squares

The square density of w is ρ(w) = |DS(w)|
|w| . The result si ≤ 2 implies that any

location can begin with at most two distinct squares. Using the same result,

a location can end with the last letter of two distinct squares in the word. We

use the notation ei to show the number of leftmost distinct squares ending at

location i. The result on si also applies on ei and ei(w) ≤ 2. Thus, extending

a word by a letter can add at most two new distinct squares. However, for

any FS-double square w, s1 = 2 need not always imply e|w| = 2. It is also

possible that extending letters to an FS-double square may not add any new

square. We will see a way to extend an FS-double square where each added

letter adds two new distinct squares. By finding this structure, a special

set of words is obtained where the maximum number of locations of these

words can be mapped to two distinct squares. The next section describes

such words and finds the limit on such types of extensions.

Recall the structure of FS-double square (xy)p+qx(xy)p where x, y ∈ Σ+

and integers p, q satisfies p ≥ 1, q ≥ 0. The square always has a non-empty

border (xy)p. The symbol B(w) represents the set of borders of the word w.

For w = aabaa, the set B(w) = {a, aa}. As given in Lemma 3.2, the roots

of an FS-double square are obtained from the non-empty words x, y. An

FS-double square, SQ2, begins with two distinct squares, and these squares

end after the first instance of SQ. This section identifies the structure of

FS-double squares, where each terminal letter contributes to two distinct

squares. The additional condition is that the length of each of these squares

is greater than |SQ|. For example, consider an FS-double square SQ2 = awb

where a, b ∈ Σ,w ∈ Σ+. The difference between the number of distinct
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squares in SQ2 and the number of distinct squares in aw (or wb) must be

two. Some of the existing results of FS-double squares and properties of

primitive words are used to obtain such words. lemma 5.1describes the types

of squares that start at the beginning of an FS-double square.

Lemma 5.1 ([10]). The following statements hold for an FS-double square

SQ2 = ((xy)p+qx(xy)p)2.

(a) SQ2 is a primitive square, and

(b) sq2 is a primitive square for some positive integer p that holds p > 1.

The following lemma describe some basic results on words.

Lemma 5.2 (Squares in squares). Let w2 = uv′uv′u′ for some u, v, u′, v′, x ∈
Σ+ such that |u′| = |u| and |v′| = |v|. Then, u = x2.

Proof. As |w| = |v| + 1.5|u|, we get w = uv′x1 = x2v
′u′ for u = x1x2 and

|x1| = |x2|. From the prefixes of the two expressions, x1 = x2 = x.

Fan et al. [31] described “The new periodicity lemma” that classifies the

squares in an FS-double square based on their structures and locations. This

lemma is revisited in [10] and presented as follows.

Lemma 5.3 ([10]). Let u2 be square in an FS-double square SQ2. Then, one

of the statements holds: (a) |u| = |SQ|, (b) |u| < |sq|, (c) If |SQ| > |u| ≥ |sq|,
then the primitive root of u is a conjugate of xy. Here, SQ = (xy)p+qx(xy)p,

sq = (xy)p+qx where x, y ∈ Σ+ and an integer p ≥ q ≥ 1.

Theorem 5.7 identifies the structure of FS-double squares that ends with

two distinct squares. The results obtained in Lemmas 5.4 to 5.6 are used to

prove the theorem.

Lemma 5.4. For some non-empty words x, y, let SQ2 = (xyxxy)2 be an

FS-double square that ends with a rightmost square, v2, such that |SQ| <
2|v| ≠ 0. Then, |v| = |sq| and x ∈ B(xy) where sq = xyx.
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(xy) x (xy) (xy) x (xy)

1 2
3
4 5

Figure 5.1: Starting location of v2 in SQ2

Proof. The square v2 can begin at one of the five locations. Given x = x1x2

and y = y1y2 where x1, x2, y1, y2 are some non-empty words. There are nine

possible structures for v2 where |xyx| < |v|. We use Lemma 5.2 along with

Lyndon and Schützenberger theorem (Theorem 1.5.2 from [3]) to discard

the cases where the root SQ non-primitive. Table 5.1 divides the valid and

invalid cases.

Sr. no. v2 Is valid?
1 yx.yx.xy ×
2 xyx.y.xxy ×
3 xxy.xy.xxy ×
4 yxxy.x.yxxy ×

Sr. no. v2 Is valid?
5 y2xyxxy ✓
6 x1yxyxxy ×
7 x2xyxyxxy ×
8 y2xxyxyxxy ×

Table 5.1: Possible structures of v2

The ninth structure of v2 = x2yxxy.x.yxxy is possible if xy = yx. Here,

the only possible square obtained from the structure mentioned in Table 5.1

has v = y2xy = xxy. Thus, v2 is conjugate of sq.

Lemma 5.5. Let v2 be a suffix of an FS-double square, SQ2 = ((xy)px(xy)p)2

for some x, y ∈ Σ+ and a positive integer p. If 2|v| > |SQ|, then x ∈ B(xy)
and |v| = |sq|. Here, sq = (xy)px.

Proof. The given statement holds for p = 1 (refer Lemma 5.4). There are five

(xy)p x (xy)p (xy)p x (xy)p

1 2 3 4 5

Figure 5.2: Starting location of v2 in SQ2 for q = 0
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possibilities for v2 to start in SQ2 as shown in Figure 5.2 for p > 1, q = 0. The

number in the figure indicates the beginning of v2 in SQ2 and the respective

case number. As v2 is a suffix of SQ2 and |v| > p|xy|, the second occurrence

of v in all of the five cases ends with (xy)p. The first occurrence of v ends

with either of the suffixes: (a) xy, (b) y2xy1 where y = y1y2 or, (c) x2yx1

where x = x1x2. According to Lemma 5.3, the primitive root of v is a

conjugate of xy. Thus, the relations obtained in cases (b) and (c) imply that

two conjugates of xy are equal. This contradicts Lemma 3.1, so we discard

the words with these two cases. The possible structures of v2 for case (a) are

verified in Table 5.2 where |v| = |sq| is the only valid case. The structure of

v2, in this case, implies x ∈ B(xy).

Sr.
no.

Possible structure of base v Condition Remark

1 v = (xy)q(x)(xy)p+s = (xy)s(xy)q(x)(xy)p p > q > s > 0 xy = yx
2 v = x(xy)p(xy)q = (xy)qx(xy)p p > q > 0 xy = yx
3 v = x2(xy)

p(xy)q = (xy)p−q(x1x2)(xy)
p p, q, p− q > 0 xy = yx

4 v = (xy)p(xy)s = (xy)p−sx(xy)p p, s, p− s > 0 xy = yx
5 v = y2(xy)

p = x(xy)p p > 0 x ∈ B(xy)

Table 5.2: First occurrences of v ending with xy in SQ2

Lemma 5.6. Given an FS-double square SQ2 with q > 1 that ends with v2

where |SQ| < 2|v|. Then, |v| = |SQ|.

Proof. We have SQ = (xy)p+qx(xy)p. In Figure 5.3, we marked all the

possible starting locations of v2 in SQ2. Here, we show that every case leads

to the relation xy = yx and the relation contradicts Lemma 3.1. Similar

to Lemma 5.5, the first occurrence of v ends with either x2yx1, y2xy1 or xy

assuming x = x1x2, y = y1y2. We discard the first two types of squares since

occurrences of v′s violate Lemma 3.1. The first occurrence of v that starts

at one of the marked locations 1, 3, 5, 7 or 8 never ends with xy. If v2 begins
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(xy)q (xy)p x (xy)q (xy)p (xy)p x (xy)p

1 2 3 4 5 6 7 8 9

Figure 5.3: Beginning of v2 in SQ2 where p1 > p2

at location 2, 4 or 6, then equating the structures of two v′s always gives

xy = yx.

Theorem 5.7 (Bordered FS Square). Let SQ2 = s.a be an FS-double square,

where s ∈ Σ+ and a ∈ Σ. Then, |DS(SQ2)| − |DS(s)| = 2 if and only if

SQ2 ends with a conjugate of sq2.

Proof. (If) The statement follows from Lemma 5.5 and 5.6.

(Only if) The last letter of every FS-double square is a part of the FS-

square itself. We assume SQ2 ends with a conjugate of sq2, say v2. So, xy

in Equation (5.1) ends with x. Thus, we can write xy = y′x for y′ ∈ Σ+ and

|y′| = |y|. Now, the reverse of SQ2 is a word that starts with two distinct

squares, and these two squares satisfy the premise of Lemma 3.2. Thus, v2

is a unique square and removing the last letter of SQ2 removes two distinct

squares.

SQ2 = (xy)p(x)(xy)p−1 xy.(xy)p(x)(xy)p︸ ︷︷ ︸
y′v2

(5.1)

The bordered FS square is a word in which removing either the first or

the last letter removes two distinct squares. In the following section, we show

the words in which many letters in the suffix and the prefix are mapped to

two distinct squares.
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5.3 Squares in Bordered FS Squares

The following lemma computes the maximum number of equal-length bor-

dered FS squares in a word. The result is based on the work described in the

section 4.4.

Lemma 5.8. Let w begin with k equal length consecutive bordered FS squares.

If the first bordered FS square is SQ2 = (xyxxy)2, then k = |LCP (x, y)|+ 1

and |y| > |x|.

Proof. Given SQ2 = (xyxxy)2 and Theorem 5.7 shows that x ∈ B(xy). So,

either x is a suffix of y or |y| < |x|. Let SQ2 and SQ
2
be two consecutive

bordered FS squares. Assume x begins with a letter ‘a’ such that x = ax′.

So, SQ = (x′ya)(x′a)(x′ya) and x′a ∈ B(x′ya). The latter condition holds

provided y begins with ‘a’ (refer to the prefix in bold in the structure of SQ)

and ya ends with x′a. Thus, the value of |LCP (x, y)| must be at least one

to get two consecutive bordered FS squares. Similarly, the conjugate of SQ
2

adjacent to it is bordered FS square if |LCP (x, y)| = 2. Thus, k consecutive

bordered FS squares are possible when |LCP (x, y)| = k − 1. In case of

|y| < |x|, the two bases SQ and SQ are non-primitive. This contradicts

Lemma 3.3. So, |y| > |x|.

We now see the computation of the maximum number of equal-length

consecutive bordered FS squares in a word with respect to the length of the

word. The proof of the theorem is based on the results obtained in Lemma

5.8.

Theorem 5.9. Let w contains k equal length consecutive bordered FS squares.

Then, 11k < |w|.

Proof. The value of k
|w| is maximum if k consecutive bordered FS squares

are at the beginning of w and kth bordered FS square is a suffix of w. So,

assume w begins with an FS-double square SQ2 followed by k−1 consecutive
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bordered FS squares of size 2|SQ|. From Equation (5.2), the value of k
|w| is

maximum for p = 1. Lemma 3.11 shows that SQ2 can be extended with at-

most |x| − 1 letters to obtain consecutive FS-double squares. Here, k = |x|
and SQ = (xy′x)(x)(xy′x) where y′ is some non-empty word (refer Lemma

5.8). The ratio is computed below.

k

|w|
=

|x|
2((p+ 1)|x|+ p|y|) + |x| − 1

<
|x|

2(5|x|+ 2|y′|) + |x| − 1
<

1

11
(5.2)

The exponents of bordered FS-double squares are identical, meaning that

the structure of an FS-double square ((xy)p1x(xy)p2)2 satisfies p1 = p2 = p.

Chapter 4 detected no-gain locations for p > 2. Thus, bordered FS-double

squares also contain no-gain locations as specified in the chapter. Moreover,

the ratio |w|
11

obtained for a word w in the theorem mentioned above indicates

that the sequence of 2s obtained with bordered FS-double squares is shorter

than the longest possible sequence of 2s, which is |w|
7
. This demonstrates

that the square density of the words mentioned in Theorem 5.9 is less than

133
81
. To compute the density precisely, this work can be extended further.

The works that are discussed to this point identified various properties

of primitive squares, which also include FS-doubles as a special case. In-

terestingly, both the upper bounds predicted for the square conjecture [34]

and the conjecture on primitive squares [28] are similar. Chapter 6 discusses

the words that contain the maximum number of distinct squares, and it is

observed that these words have a significantly higher number of primitive

squares compared to non-primitive squares. To understand the relation-

ship between maximizing primitive squares in a word to increase the distinct

squares, it is essential to examine the properties of non-primitive squares.

The subsequent section of this chapter identifies various types of squares in

non-primitive words and calculates the number of no-gain locations.
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5.4 Squares in Non-primitive Words

If we take a root u, then the smallest non-primitive word that we can form

is the square u2. If we increase the exponent while keeping the same root,

then the resulting non-primitive word would be u3. Before discussing the

square density of a non-primitive word uk, it is important to understand the

different types of squares that appear in u3, as we will see in the next lemma.

Lemma 5.10. Let u be a primitive word. Then, every location in [2, |u| − 1]

starts with a conjugate of u2 that appears once in u3. Further, si(u
3) ≤ 1 for

all i ∈
[
1, |u|

2

]
.

Proof. Let v2 be a rightmost square starting at a location in [2, |u|−1]. Then,

there are at most two possible values of |v| per location. The word u has

|u| − 1 distinct conjugates apart from itself (see Lemma 3.1 (a)). Since u2 is

a primitive square, each location in [2, |u| − 1] starts with a conjugate of u2

that appears once in u3. Thus, one of the values of |v| is |u|.

u1 u2 u4 u3

v2

Figure 5.4: Square v2 in the prefix of u3

Now, consider the other two possibilities for a rightmost square that be-

gins at a location i satisfying 2 ≤ i ≤ |u|
2
.

Case |v| > |u| : Comparing the two copies of v, the first and the last v in v2

as shown in the Figure 5.4, we get u2u1 = u4u3, where u = u1u2 = u3u4

and |u1| ≠ |u3|. This implies that the two conjugates of u are identical

and u is non-primitive, contradicting the assumption for u. Therefore,

|v| ≯ |u|.

Case |v| < |u| : In this case, the square v2 reappears in the suffix of u3.

Thus, the occurrence of v2 in any of the first half locations of u cannot
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be the rightmost occurrence. Therefore, |v| ≮ |u|.

So, the locations [2, |u| − 1] start with conjugates of u2 and si(u
3) = 1 for all

i ∈
[
2, |u|

2

]
.

If the first location of u3 starts with a square of size ≤ 2|u|, then the

square has another instance in u3. A square resulting s1(u
3) > 0 must be

of a size greater than 2|u|. However, it leads to the arguments in the above

case where |v| > |u| and u need to be a non-primitive word to have such a

square. Hence, s1(u
3) = 0.

In a square, u2, the si values of the first |u|
4

locations is at most one [5].

The number of such locations increases in u3 and according to Lemma 5.10,

there are a total of ( |u|
2
+ |u|

4
) such locations in u3. We observed that in some

cases, the number of new distinct squares introduced by appending u3 with

u′s is not always ≥ |u|. For example, consider a word w = uk where u = abaa

and k > 2. Here, the number of new distinct squares that are getting added

is either 3 or 1 as the value of k increases. Whereas the number of letters that

are newly getting added is always four. In general, if k is even, the kth u in

uk adds the square with root uk/2. Otherwise, the kth u adds all conjugates

of u
k−1
2 which is equal to |u| − 1. Thus, new |u| squares are introduced per

2|u| new letters. So, a group of locations having zero si values can be found.

The next lemma verifies and counts the number of such locations.

Lemma 5.11. Let u be a primitive word. Then, the word uk where k > 3

has at least ⌈k−3
2
⌉|u| locations that do not start with any rightmost square.

Proof. Assume m is an even integer such that 2 < m ≤ k and uk = uk−mum.

Let v2 be a rightmost square that starts in (k −m+ 1)th occurrence of u in

uk on counting from the left to right. Such a v2 must end in the last u of uk.

Let u = u1u2 = u3u4 and u5 be one of the prefixes of u, we get v2 as follows.

v2 =u2(u1u2)
m−2u5

=(u2u1)
m−2

2 u2(u1u2)
m−2

2 u5 (5.3)
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From Equation (5.3), the length of a root v is |(u2u1)
m−2

2 | + |u2|+|u5|
2

. Here,

the term m−2
2

is always a positive integer. If |u2| is zero, then u5 = u′
5u

′′
5

such that |u′
5| = |u′′

5| and we get v = u
m−2

5 u′
5 = u′′

5u
m−2

5 . This contradicts the

assumption that u is primitive since one of the prefixes of v′s shows that the

two conjugates of u are equal. We get a similar case when u5 is an empty

word or when u2, u5 are empty words. On the other hand, the condition

|u2| = |u5| leads to a relation u2u1 = u1u2, which is again unacceptable.

Similarly, we can discard the possibility of v2 when |u2| ≶ |u5|.

Hence, the first letter of um starts with the rightmost square z2 where

z = u
m
2 . The remaining |u| − 1 locations in the first u of um start with no

rightmost squares. The total number of even powers of u in uk is ⌊m
2
⌋ and

the powers that are greater than 3 are ⌈k−3
2
⌉. So, there are at least ⌈k−3

2
⌉|u|

locations whose si values are zero.

The above lemma marks the locations in uk where si values are zero.

The squares in uk that are not present in u3 are of a specific structure. The

following lemma explains it in detail.

Lemma 5.12. Let m be a positive odd integer such that uk = uk−mum and

m > 3. If u is a primitive word and v2 is a rightmost square that begins in

(k −m+ 1)th u of uk. Then, v2 is a conjugate of um−1.

Proof. Consider the suffix um of uk. Let v2 be a rightmost square that satisfies

the criteria mentioned in the statement, so it begins at any of the first |u|
locations of um and ends in the last u of um. Assuming u = u1u2 = u3u4,

we can write v2 = u2(u)
m−2u3. The word u3 is non-empty; else v2 would no

longer be the rightmost. Using this relation, we obtain the first and the last

occurrence of the root v in v2 as follows.

v = u2(u)
m−3

2 u5 = u6(u)
m−3

2 u3, where

u = u5u6
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Here, v2 must be a conjugate of um−1. Otherwise, two conjugates of u would

be the same.

Theorem 5.13. For k > 3, ρ(uk) ≤ 1
2
+ 3

2k

(
2ρ(u3)− 1

)
.

Proof. Let us divide the uk into two parts as uk = uk−3.u3. We consider the

rightmost occurrences of squares to count the number of distinct squares in

the word. Let m be an integer that satisfies 2m ≤ k and 2m+ 1 ≤ k. From

Lemma 5.11 and 5.12, we obtain the si values of the locations of the first u

in factors u2m+1 and u2m as shown in Figure 5.5.

u2m+1

011111 · · · 1111111111

u2m

1000000 · · · 000000000

Figure 5.5: si values of factors of uk

Thus, for every odd power of uk greater than 3, there are exactly |u| − 1

rightmost squares, whereas only one rightmost square is obtained per even

power of uk. There are total ⌊k−3
2
⌋ odd powers (excluding the value 3) in uk

to give ⌊k−3
2
⌋|u| distinct squares. This gives the following ratio,

ρ(uk) =
|DS(uk)|

|uk|
=

|DS(u3)|+ ⌊k−3
2
⌋|u|

k|u|
(5.4)

≤ |DS(u3)|
k|u|

+
1

2
− 3

2k
=

1

2
+

3

2k

(
2ρ(u3)− 1

)

Theorem 5.14. Let u be a primitive word and k > 1 be a positive integer.

Then, the value of ρ(uk) approaches 1
2
as k increases.

Proof. The relation obtained in Theorem 5.13 indicates that ρ(uk) depends

on ρ(u3) and k. Since the value of ρ(u3) cannot be more than two [34], it is

sufficient to show that ρ(uk) approaches 1
2
as k approaches infinity.
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We now obtain a relation between densities of uk for varying k′s.

Lemma 5.15. Let u be a non-empty word and k be an integer greater than

3. Then, ρ(uk) > ρ(uk+2) provided ρ(uk) > 1
2
. Further, ρ(uk) > ρ(uk+1)

whenever k is an odd integer and |u| ≠ 1 .

Proof. The relation (5.4) gives us:

ρ(uk+2) =
|DS(u3)|+ ⌊k−1

2
⌋|u|

(k + 2)|u|
(5.5)

We substitute the numerator and the denominator in Equation (5.4) by x

and y, respectively, and rewrite Equation (5.4) and (5.5) as follows.

ρ(uk) =
x

y
ρ(uk+2) =

x+ |u|
y + 2|u|

So, the relation ρ(uk) > ρ(uk+2) holds if x
y
> 1

2
.

From the proof of Theorem 5.13, we also have |DS(uk+1)|− |DS(uk)| = 1

whenever k is an odd number. With ρ(uk) = x
y
, we get ρ(uk+1) = x+1

y+|u| .

Thus, ρ(uk) > ρ(uk+1) for |u| ≥ 2.

Note that the square densities of u and u3 are generally not comparable.

For example, u = abaab gives ρ(u) < ρ(u3) while the square density of u for

u = aababbabba is more than ρ(u3).

5.5 Conclusions

The study of words containing FS-double squares is extended in this chapter.

It is shown in the previous chapter that the square density of words having

a series of locations starting with FS-double square is less than 133
81
. These

words are then categorized into two types by considering the number of FS-

double squares in the reversed words. In this chapter, it is found that the

words and reversal of the words may have a different number of FS-double

squares. So, a notation ei(w) is introduced to verify the count of FS-double

65



Squares in Some Special Words

in the word obtained by reversing w. If a word and its reversal have the same

number of consecutive FS-double squares, then the number of locations in

w whose si values are two are exactly the number of locations in w whose

ei values are two. The chapter elaborated upon the structure of such words

and labelled them as bordered FS-double squares. It is also shown that the

number of bordered FS-double squares is less than 1
11

th
of the length of the

word.

A study of no-gain locations is also conducted for non-primitive squares

and non-primitive words. For a non-primitive word uk where k > 3, it is

shown that the word contains at least ⌈k−3
2
⌉|u| no-gain locations. Addition-

ally, an absence of a location starting with an FS-double square is shown in

the prefix uk−3 of uk. These results imply that the square density of non-

primitive words converges to 1
2
as the exponent of the repetition increases.
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In this chapter, the focus is on the investigation of the structures that gener-

ate words with the maximum number of distinct squares, which are consid-

ered the best-known words for the square conjecture [34]. In addition, the

chapter also explores the structure of words containing the maximum number

of distinct primitive squares, as described in [28]. The structures are called

patterns and are analyzed to create even better ones. The chapter describes

different types of patterns and introduces a method to calculate the square

density of each pattern. Additionally, the chapter presents a criterion for

comparing various patterns, with the goal of gaining a better understand-

ing of how maximizing primitive squares in a word can result in an increase

in the number of distinct squares. By analyzing the patterns, researchers

hope to identify the most efficient methods to construct words containing

the maximum number of distinct or primitive squares.
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6.1 Motivation

The structure of a square is such that it can also give rise to partially formed

squares, which can then be extended to form new squares. For instance, in

the square u2 = abaaba, the suffix baaba can be seen as a partially formed

square. By appending a single letter ‘a’ to the square u2, a new square

baabaa is formed in the resulting word. Notably, primitive squares have

the potential to be extended to introduce more distinct squares than non-

primitive squares of the same length. The previous chapter has already

provided an explanation for why non-primitive words do not aid in increasing

square density. A specific structure given in [34] generates words in which the

Types of squares Lower bound
Repeated squares an

Repeated primitive squares Fibonacci words [34]
Distinct primitive squares Deza’s words [28]
Distinct squares Q words [34]
Distinct FS-double squares Sadri’s words [14]
Distinct squares in circular words Amit’s words [5]

Table 6.1: Lower bounds for different square conjectures

number of distinct squares increases as the length of the words increases. The

words generated by this structure pack a large number of primitive squares.

Similar structures are used to obtain the lower bounds for counting various

types of squares. Table 6.1 lists some of them.

By studying and extending the words generated by these structures,

it is possible to find structures that favour the distinct square density of

words. These properties can be combined with the various types of FS-

double squares discussed earlier to generate even better words.

68



Notation

6.2 Notation

As explained, a word w is a finite sequence of letters drawn from Σ. Any

non-empty subsequence of consecutive letters in w is a factor of w. The

word, w, with |w| = 0 is called an empty word and is denoted by ϵ. A

symbol N denotes the set of non-negative integers. As mentioned before,

the concatenation of two words x and y is the word x.y or simply xy. The

concatenation of a collection of words w1, . . . , wk is denoted by
k⊙

i=1

wi. A

factor u is a border of w if it is both prefix and suffix of w. Denote by

MaxNS(n) the maximum number of distinct square contained within an n

length word. A number n ∈ N is referred to as a no-gain length ifMaxNS(n)

is equal to MaxNS(n − 1), else it is a gain length. Let MaxDS(n) be the

set of words with length n having the maximum number of distinct squares.

Formally,

MaxDS(n) = {w | w ∈ Σn and ∀u ∈ Σn · |DS(w)| ≥ |DS(u)|}.

The set DS(w) contains the distinct squares in a word w. The number of

locations in w having zero si values is represented by NG(w). In other words,

NG(w) counts the number of no-gain locations in w. Suppose w = w1w2 for

some w1, w2 ∈ Σ+. We refer to the squares whose last occurrence starts and

ends in w1 and w2, respectively, by cross(w1, w2).

The following section presents an overview of the words with the highest

square densities described in the literature and their corresponding struc-

tures.

6.3 Existing Structures

This section discusses several existing structures, called patterns, that gen-

erate words with high square density. The first two patterns discussed below

share similarities in the types of squares contained by the pattern-generated
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words. The remaining patterns are intended to generate words with specific

properties.

Pattern Q

The pattern Q and the square conjecture are proposed in [34]. It is the first

word generator and has the highest square density. The words generated by

the structure below are referred to as Q words.

Q(x) = (a2ba1ba2b)(a3ba2ba3b)(a4ba3ba4b)...(axbax−1baxb)

The length of a word generated by the pattern can be calculated as follows.

|Q(x)| =
x∑

i=1

(3i+ 2) =
3x2 + 7x

2
(6.1)

A square in a word Q(x) contains either 0, 2 or 4 b’s [34]. The total number

of distinct squares in the given word can be computed using the following

equation.

|DS(Q(x))| = 1

2
(3x2 + 2x− 10− (x mod 2)) (6.2)

Every position i in a Q word satisfies the condition si(Q(x)) ≤ 1. This

implies that the square count in Q(x) is always less than |Q(x)|. Therefore,

|Q(x)| = DS(Q(x)) +NG(Q(x))

This leads to another expression, NG(Q(x)) = 3x + 5 − ⌊x
2
⌋. The number

of additional no-gain locations introduced upon generating Q(x + 1) is first

calculated. Depending on the x, this number can be 3 or 2. Specifically, if

x is even, then three no-gain locations are newly introduced, whereas if x is

odd, then the number is 2. For x mod 2 = 0, we get ⌊x
2
⌋ = ⌊x+1

2
⌋ = x

2
. It

leads to the following computation.

NG(Q(x+ 1))−NG(Q(x)) = 3

70



Existing Structures

For odd x, ⌊x+1
2
⌋ = ⌊x

2
⌋+ 1. The next value is computed using this relation.

NG(Q(x+ 1))−NG(Q(x)) = 2

The following section presents a pattern that is utilized to suggest a more

stringent upper limit for the square conjecture.

Pattern JMS

A stricter bound to the distinct square conjecture is proposed in [44] along

with the JMS pattern. It is the simplest pattern with the structure shown

below.

wjms(x) = a1ba2b..axb

The following relations calculate the length and the distinct squares count of

a JMS word, respectively.

|wjms(x)| =
x2 + 3x

2
(6.3)

DS(wjms(x)) =

{
x2

2
, if x mod 2 = 0

x2−1
2

, otherwise

Similar to pattern Q, words generated by the pattern JMS have no FS-

double squares. The words of the pattern, therefore, follow the next relation.

|wjms(x)| = DS(wjms(x)) +NG(wjms(x))

The number of no-gain locations in wjms(x) can be computed using the fol-

lowing relation.

NG(wjms(x)) = ⌊3x
2
⌋

Every word generated by a pattern have no-gain locations. The difference

between no-gain locations of consecutive words gives the number of newly

added no-gain locations, which can be computed using the following equation.

NG(wjms(x+ 1))−NG(wjms(x)) =

{
2, if (x+ 1) mod 2 = 0

1, otherwise
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Given a pattern T (x) accepting an integer value x to generate a correspond-

ing pattern-generated word. Define newZeroes(T (x + 1)) by the difference

between NG(T (x + 1)) and NG(T (x)). It is used to analyze the rate of

no-gain locations in the pattern-generated words as x increases. It is further

used to compare dense patterns defined later in this chapter.

Below are some existing patterns that possess specific characteristics of

words. Although they do not necessarily produce words with the maximum

number of distinct squares, they are included here for the sake of complete-

ness on the topic.

Pattern generating words with FS-double squares

The words that have a sequence of FS-double squares in their prefixes are

studied in [14]. The following pattern generated words as mentioned.

wFSD(x) = (ax−1baax−1bax−1ba)2ax−1

The next expressions can be used to count the number of distinct squares for

the above words. We can use the following equation if x is an even number.

DS(wFSD(x)) = 4.5x+ 1

In the case of an odd value of x, the number of distinct squares in wFSD(x)

can be computed as shown below.

DS(wFSD(x)) = 4.5x+ 0.5

It has been computed in the same work mentioned above that the square

density of words generated by the pattern is always less than 5
6
.

Pattern maximizing distinct squares in circular words

Another study on the number of distinct squares in a circular word conducted

in [5] predicts the number of distinct squares in a circular word of length n
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is at most 3.14n. It considers the number of distinct squares in all cyclic

rotations of an n length word. The lower bound for this problem if found by

proposing the following structure of the words.

wc(x) = a(ba)x+1a(ba)x+2a(ba)x+1a(ba)x+2

The number of distinct squares in the word obtained from the above

pattern and in all of its conjugates is counted. It is shown that the number

of distinct squares, in this case, is 10x+ 16− (x mod 2).

The following section explores the words containing the maximum number

of distinct squares for their respective lengths. This exploration aims to use

the characteristics of such words to incorporate a pattern to generate the

best possible words.

6.4 Square Maximal Words

It is conjectured that the maximum number of distinct squares is achieved

for a binary alphabet [54]. In the rest of the chapter, we assume that the

underlying alphabet is binary, containing letters ‘a’ and ‘b’. The exact char-

acterization of the set MaxDS(n) is unknown. In other words, to check if a

word belongs to the set MaxDS(n), it is required to exhaustively search in

the set of all 2n possible words. A word is called a square-maximal word if

it belongs to a set MaxDS(n).

The function MaxNS is non-decreasing, and the difference between two

successive values of MaxNS is at most two. Let n ∈ N be a no-gain length.

Then, for any word w ∈ MaxDS(n− 1), both lw and wl are in MaxDS(n),

where l ∈ {a, b}. Thus, for a no-gain length n, the cardinality of the set

MaxDS(n) is always more than that of the set MaxDS(n− 1). Thus, it is

important to characterize words for gain lengths because it enables generating

words with no-gain lengths. For this reason, some of the following results are

obtained for the gain lengths.
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Consider a word w in MaxDS(n), where n is a gain length. Every letter

in the word w must be part of some square in the set DS(w). Otherwise,

removing a letter that is not part of any square will give a smaller word with

MaxNS(n) squares, which is not possible as n is a gain length. Suppose

w = w1w2 for some w1, w2 ∈ Σ+. We refer to the squares whose last

occurrence starts and ends in w1 and w2, respectively, by cross(w1, w2).

Lemma 6.1. Let n ∈ N be a gain length and w be a word in MaxDS(n).

Further, let w = w1w2 where w1, w2 ∈ Σ∗ such that |DS(w)| = |DS(w1)| +
|DS(w2)|. Then, |DS(w1)∩DS(w2)| = k ≥ 0 if and only if |cross(w1, w2)| =
k.

Proof. We have, |DS(w)| = |DS(w1|+ |DS(w2)| − |DS(w1) ∩DS(w2)|

(if) Suppose the setsDS(w1) andDS(w2) have k squares in common. Then,

it must be the case that at least k rightmost squares starts in w1 and

ends in w2 to satisfy the premise |DS(w)| = |DS(w1)|+ |DS(w2)|.

(only if) Suppose there are k rightmost squares that begin and end in words

w1 and w2, respectively. Define

sqw1 = DS(w1)−DS(w2), sqw2 = DS(w2)−DS(w1),

sqcomm = DS(w1) ∩DS(w2), sqcross = DS(w)− (DS(w1) ∪DS(w2))

Note that sqcross is the set of distinct squares that begin in w1 and end in

w2 which are not present in w1 or w2. So, the number of distinct squares

in w is, |DS(w)| = sqw1 + sqw2 + sqcomm + sqcross. Since |DS(w1)| +
|DS(w2)| = sqw1 + sqw2 + 2 ∗ sqcomm, we get |sqcross| = |sqcomm|

Lemma 6.2. Let a word w = w1w2 ∈ MaxDS(n) for some gain length

n ∈ N such that |w1| ≤ |w2|. If |cross(w1, w2)| = 0, then the length of the

smallest border of the word w is greater than |w1|.
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Proof. The condition |cross(w1, w2)| = 0 implies |DS(w1w2)| = |DS(w2w1)|.
No proper suffix of the word w1 can be a prefix of the word w2. Otherwise,

w1 = w′
1u and w2 = uw′

2 will imply DS(w′
1u.uw

′
2) = DS(w′

1uw
′
2) for some

non-empty words w′
1, w

′
2, u. Similarly, no proper suffix of the word w2 can

be a prefix of the word w1. Therefore, the length of the smallest border of

the words w1w2 and w2w1 must be greater than |w1|.

Lemma 6.3. Let n ∈ N be a gain length and w be a word in MaxDS(n) with

w = w1w2 such that |DS(w)| = |DS(w1)|+|DS(w2)| and DS(w1)∩DS(w2) =

∅. Then, {a2, b2} ⊆ DS(w).

Proof. Assume DS(w) contains at most one square from {aa, bb}. If both

a2 and b2 are not in w then the word w must be of the form (ab)k for some

positive integer k > 0. However, such a word cannot be in MaxDS(n).

Consider the case in which only one among a2 or b2 is a factor of w.

Without loss of generality, assume aa /∈ DS(w1), aa /∈ DS(w2) and bb ∈ w

implying a square bb is either in set DS(w1) or DS(w2). If b2 is a factor of

w1, then the structure of w2 depends on the initial and final letters of w1. As

a result, w2 is either b(ab)j or (ab)j for some j ∈ N. If the factor w1 starts

and ends with the same letter, say ‘a’ then w1 = aua where u ∈ Σ+ and

w2 = b(ab)j. However, as the word w3 = (ab)j.a contains |DS(w2)| distinct
squares, the word w′ = w1w3 will also be in the set MaxDS(|w|). Here w3

does not satisfy the constraint on border given in Lemma 6.2. Therefore, the

length |w| must be a no-gain length, which is a contradiction.

Now, suppose w1 starts and ends with different letters, say w1 = aub. In

this case, the only possible structure for w2 is (ab)j. Similar to the previous

case, we have a contradiction as the word aub.b(ab)j−1 will also be in the set

MaxDS(|w|).

Lemma 6.4. Let n ∈ N be a gain length and w be a word in MaxDS(n) with

w = w1w2 such that |DS(w)| = |DS(w1)|+|DS(w2)| and DS(w1)∩DS(w2) =
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∅. Then, for some integer k > 2 and u1, u2 ∈ Σ+, we have w1 = aku1a
k and

w2 = bku2b
k. Further, the factorization of a word w as w1.w2 is unique.

Proof. We know from Lemma 6.3 that, for a given gain length, any word

containing the maximum number of distinct squares must have the trivial

squares, viz. a2 and b2. These squares can be in either w1 or in w2. Accord-

ingly, we consider two cases for w1 and w2 depending on whether they start

with the same or the different letters. We now see that among all possible

structures, only one structure mentioned in Case II satisfies all the given

conditions.

Case I Assume w1 and w2 start with the same letter. Suppose the words a2

and b2 are in the set DS(w1). Then, these trivial squares cannot be in

the set DS(w2). Thus, the word w2 must be of the form (ab)k for some

integer k > 2. Also, the square (ba)2 cannot be in the set DS(w1),

otherwise, the square (ab)2 will also be in the set DS(w1). So the

squares (ab)2 and (ba)2 cannot be in the word w1. But then we have

another word w′ = w1.(ba)
k, which has |DS(w)| number of distinct

squares implying that w is a no-gain length since the word w′ has a

border whose length is less than |w1| which contradicts the assumption.

Consider another alternative wherein the trivial squares aa and bb are

factors of the words w1 and w2, respectively. Then the factors w1 and

w2 must end and begin with ‘ab’, which again does not satisfy the

assumption that n is a gain length.

Case II Suppose w1 and w2 start with two different letters. To satisfy the

constraint on border mentioned in Lemma 6.2, suppose w1 begins and

ends with the letter ‘a’. Let a2 ∈ DS(w2), then the word w1 begins with

ab and the word w2 ends with ab, thereby the word w2w1 has a border

of length smaller than |w1|. Therefore, it must be the case that the

structures of the word w1 and w2 are aku1a
k and bku2b

k, respectively,
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such that k > 1 and DS(u1) ∩ DS(u2) = ∅. Note that if there is a

factorization of the factor w1 as w11w12 such that cross(w11, w12) = ∅,
then a2 will be a factor of w11 and not of w12. However, every factor w12

of length more than one will always end with an a2. So, the factor w1 =

w11w12 cannot have cross(w11, w12) = ∅. Now, another factorization

w = w3w4 that satisfies the condition |DS(w)| = |DS(w3)|+ |DS(w4)|
is possible if w3 = aku1ak−1 and w4 = a.bku2b

k. However, in such a case,

by Lemma 6.2, n will be a no-gain length. Therefore, the factorization

of w as w1.w2 is unique.

Let Σ be an alphabet and w = l1 · l2 · . . . · ln be a word, where li ∈ Σ for

1 ≤ i ≤ n. The letters l1 and ln as terminal letters of w. Any letter that is

not a terminal letter is a non-terminal letter of w. In Lemma 6.4, it is shown

that a square-maximal word, say w = w1w2 of length n can have at most one

w1 that satisfy cross(w1, w2) = ∅. We now explore a gain length n for which

MaxNS(n) > MaxNS(n1) +MaxNS(n− n1) and identify the structure of

a square-maximal word.

Lemma 6.5. Let n ∈ N such that MaxNS(n) > MaxNS(n1)+MaxNS(n−
n1) for some integer n1 ∈ {1, . . . , n−1} and w ∈ MaxDS(n). The following

statements hold:

(a) |DS(w)| > |DS(w1)|+ |DS(w2)| for all w1, w2 such that w = w1w2.

(b) cross(w1, w2) ̸= ∅ for all w1, w2 such that w = w1w2.

Proof. (a) Suppose |w1| = n1. Then, the maximum value of the expres-

sion |DS(w1)| + |DS(w2)| is |MaxDS(n1)| + |MaxDS(n − n1)|. As

MaxNS(n) > MaxNS(n1) +MaxNS(n−n1), the relation |DS(w)| >
|DS(w1)|+ |DS(w2)| follows.
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(b) We conclude from (a) that the rightmost square starts in w1 and ends

in w2 for all factors w1. So, the set cross(w1, w2) is non-empty for every

w1.

The following lemma inspects the characteristics of terminal letters in a

square-maximal word.

Lemma 6.6. Let n ∈ N be a gain length and w ∈ MaxDS(n).

(a) If MaxNS(n) = MaxNS(n − 1) + 1, then every terminal letter of w

is the terminal letter in exactly one rightmost square of w.

(b) If MaxNS(n) = MaxNS(n− 1) + 2, then w begins with an FS double

square and the last letter of w is a terminal letter of two squares in

DS(w).

Proof. As n is a gain length, MaxNS(n)−MaxNS(n−1) = i ∈ {1, 2}. The
first letter of a word w ∈ MaxDS(n) must be a part of exactly i distinct

squares. Otherwise, removing the first letter will result in a word of n − 1

length containing more than MaxNS(n − 1) distinct squares, which is not

feasible. A similar argument applies to the last letter of a word w.

We can observe, from Lemma 6.6, that the square-maximal words for

successive gain lengths always begin and end with a square. It has been

observed in the manual inspection of square-maximal words for lengths up to

40 that if such a word ends with the longest primitive square, then extending

it further with the prefix of its square base results in a longer square-maximal

word. The following lemma explains one such way to introduce new square(s)

using a prefix of a square base.

Lemma 6.7. Let w = uu be a primitive base square such that |u| > 1 and v

be a proper prefix of u. Then, |DS(w.v)| ≥ |DS(w)|+ |v|.
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Proof. Assume, u = u1u2...un. A square uu has all conjugates of u, and every

letter of the first u in w begins with a distinct conjugate. Similarly, for a

word uu.v, every letter of the word v adds a new square, that is, a conjugate

of uu.

The number of new squares added by a prefix v is more than |v| if the
word begins with an FS double square. An FS double square is a primitive

square that begins with two rightmost squares. As explained in the previous

chapters, the structure of the longer root of an FS double square is known

to be (xy)p1(x)(xy)p2 . Here, x and y ∈ Σ+ and the integers p1, p2 satisfy

p1 ≥ p2 ≥ 0. A word beginning with an FS double square introduces |v|+ |v′|
new distinct squares for some non-empty longest common prefix v′ of the

words x and y, where |v′| ≤ |v|.

We have seen the definition of a pattern and some existing patterns in

the previous section. A pattern is a way to represent a family of words

sharing similar characteristics. The following section employs the properties

of square-maximal words identified above to define a dense pattern.

Dense patterns

We use the notation T (x) to denote a function from N → Σ+. For example,

T (x) = axb generate words {b, ab, a2b, a3b, . . .}. We refer to a function T (x)

as a pattern. For a word, w, the square density, α(w) is defined as the ratio
|DS(w)|

|w| and it is known that no upper bound on α(w) is sharp [54]. We extend

the definition of the square density to a pattern, T (x), and define it as

αT = lim
x→∞

|DS(T (x))|
|T (x)|

The square density of a pattern depends on the number of no-gain lengths

between two successive words generated by the pattern. A high square

density indicates more gain lengths or equivalently fewer no-gain lengths.

The difference between lengths of successive words generated by a pattern
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need not be a constant. For every positive integer, x, a pattern T (x) in-

troduces |DS(T (x))| − |DS(T (x − 1))| new squares. The number of no-

gain lengths introduced in T (x − 1) to obtain T (x) is defined as NT (x) =

(|T (x)|−|T (x−1)|)−(|DS(T (x))|−|DS(T (x−1))|). A good pattern should

minimize the value of NT (x). In Section 6.5, we use |DS(T (x))| and NT (x)

to compare different patterns.

As mentioned before, the aim of this chapter is to characterise the words

in the set MaxDS(n), where n is a gain length. To do so, the properties of

square-maximal words are used. A word w = w1w2 ∈ MaxDS(n) satisfies

either |DS(w)| > |DS(w1)| + |DS(w2)| or |DS(w)| = |DS(w1)| + |DS(w2)|.
For the latter case, note that cross(w1, w2) = ϕ, else |DS(w)| > |DS(w1)|+
|DS(w2)|. For this case, Lemma 6.4 shows that such a word has a unique

factorization where the factor w1 = w11w12 always satisfies the relation

|DS(w1)| > |DS(w11)| + |DS(w12)|. The only possible structures for this

case have w1 = aku1b
k and w2 = bku2b

k. These factors cannot have any

squares in common, so given a factor w1, it is easy to find w2. Therefore the

relation |DS(w)| > |DS(w1)| + |DS(w2)| is used to obtain a dense pattern.

The interpretation of the relation given in Lemma 6.5 is included in the next

definition.

Definition 6.1 (Dense Pattern). A pattern, T , is considered dense if and

only if it satisfies the following conditions.

(a) αT ≥ 1 , and

(b) For all x ∈ N, if T (x) = w1w2 then cross(w1, w2) ̸= ∅, where w1,

w2 ∈ Σ+.

A word produced by a dense pattern is known as a dense word. The next

lemma provides an aid to verify the second condition in Definition 6.1.

Lemma 6.8. Let w = u1u2 . . . uk be a word such that for all i ∈ {2, . . . , k−1},
the factor sfi−1.ui.pri+1 is a rightmost square in DS(w) and u1pr2 (sfk−1uk)
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is the first (the last) rightmost square of w for some non-empty prefix and

suffix, pri and sfi, respectively, of ui. Then, cross(w1, w2) ̸= ∅ for all w1, w2

such that w = w1w2.

Proof. The word w begins and ends with a rightmost square. For 1 < i < k,

the structure of a rightmost square sfi−1.ui.pri+1 ensures that every non-

terminal letter in w is also a non-terminal letter in any rightmost square of

w. Thus, for all w1 and w2 such that w = w1w2 implies cross(w1, w2) ̸= ∅.

Now, a pattern P is defined as follows:

P (x) = a.(a1ba2b...ay).


x−2⊙

i=y−1

(baibai+1bai+2)

 .(bax−1baxbax−1bab)a (6.4)

where x and y are positive integers and y = ⌈x
2
⌉ ≥ 4. Similar to the squares

in a word obtained from the pattern Q described in [34], the words generated

by the pattern P have three types of distinct squares. These are (i) trivial

squares having only letter a, (ii) squares with exactly two b′s, and (iii) squares

with exactly four b′s. All the squares in the last two types are primitive

squares.

x mod 2 |P (x)| |DS(P (x))|

0 1
8
(10x2 + 36x+ 40) 1

8
(10x2 + 20x+ 24)

1 1
8
(10x2 + 32x+ 38) 1

8
(10x2 + 16x+ 22)

Table 6.2: Properties of the words generated by the pattern P

A set of primitive squares and all their conjugates in the word has the

structure described in Lemma 6.7. Refer to Table 6.2 for the length and the

number of distinct squares in a word that can be obtained by the pattern P .

We check the pattern against the definition of dense patterns. For this, we

first verify that the factors of the words generated by this pattern satisfy the

criterion (b) of the Definition 6.1.
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Lemma 6.9. The following factor, w, of a word generated by the pattern

P satisfies cross(w1, w2) ̸= ∅ for any w1, w2, where w = w1w2, y ≥ 4 and

x > 6.

(a) w = a1ba2b . . . ay

(b) w =

{
x−2⊙

i=y−1

(baibai+1bai+2)

}
(bax−1baxbax−1bab)a

Proof. (a) Consider a set of squares S = {(aba)2, (abaa)2, (abaaa)2 . . . ,
(abay−2)2}. We can recreate w using the squares from S as the word

described in Lemma 6.8. Note that, the squares here are the rightmost.

Thus, the relation holds true for given w.

(b) Consider the rightmost instances of the squares in a subset R ofDS(w),

whereR = {(aibai+1ba2)2, (ai+1bai+2ba2)2, ..., (ax−1baxba2)2, (bai)2, (ba)2}.
We can use the squares in R to rewrite the word in the structure men-

tioned in Lemma 6.8 in which w begins and ends with squares (bai)2

and (ba)2, respectively.

Lemma 6.10. The pattern P is a dense pattern.

Proof. Refer to Table 6.2 to count the square density of the pattern P as

follows.

αP = lim
x→∞

|DS(P (x))|
|P (x)|

= lim
x→∞

10x2 + 20x+ 24

10x2 + 16x+ 22
= 1

The pattern satisfies the first condition given in Definition 6.1. Equation

(6.4) shows that the word generated by the pattern P is the concatenation

of two factors given in Lemma 6.9. According to this lemma, these factors

individually qualify the last condition of the Definition 6.1. We use the same

subset of rightmost squares to write P (x) according to Lemma 6.8. Thus, P

is a dense pattern.
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It is possible to modify a pattern to convert it into a dense pattern.

Accordingly, the structure of some existing patterns is changed to make them

dense patterns. It is discussed later in Section 6.5. Before that, it is first

shown that infinitely many dense patterns exist using a pattern generator.

Theorem 6.11. There are infinitely many dense patterns.

Proof. The following pattern generator generates infinitely many dense pat-

terns.

Gen(x, y) = a.(a1b.a2...b.ay).


x−2⊙

k=(y−1)

(bakbak+1bak+2)


.(bax−1b.ax)(bax−1b.ab).a (6.5)

where x, y ∈ N such that 3 ≤ y ≤ (x− 3). Every value of y gives a different

pattern, and we use G3, G4, ..., Gy to denote these patterns.

|Gy(x)| =
1

2
(3x2 + 9x− 2y2 + 10) (6.6)

|DS(Gy(x))| =
1

2
(3x2 + 4x− 2y2 + 2y + 6− (x mod 2)) (6.7)

Equation (6.6) and (6.7) show that the square density of each Gy is one.

Further, the factors of any of these patterns are as given in Lemma 6.9.

Thus, Gy is a dense pattern.

Note that every Gy supports the ‘stronger’ square conjecture [44]. Also,

it is possible to get more dense patterns by replacing the letters (a, b) in

the generator explained in Theorem 6.11 with certain words. The discus-

sion on these patterns continued where the existing best-known patterns are

compared with the pattern P .

6.5 Pattern P vs. Existing Patterns

The patterns described in Section 6.3 have varying square densities. The

Definition 6.1 is used to verify existing patterns for a dense pattern. Accord-

ingly, the square density of a pattern must approach one. This condition

83



Dense Patterns

leads to omitting the patterns of lower densities. Patterns given in [5, 14]

have a square density of less than one, while the square density of patterns

in [34,44] approaches one. So, only patterns Q and JMS are verified against

the definition of a dense pattern. Pattern Q is defined in [34] as follows.

Q(x) =
x⊙

i=2

aibai−1baib

The square density of pattern Q is computed below using the Equations (6.8)

and (6.9).

|Q(x)| = 1

2
(3x2 + 7x− 10) (6.8)

|DS(Q(x))| = 1

2
(3x2 + 2x− 10− (x mod 2)) (6.9)

αQ = lim
x→∞

|DS(Q(x))|
|Q(x)|

= 1 (6.10)

For |w1| = 1, the word Q(x) = w1w2 satisfy cross(w1, w2) = ∅. So, Q is not

a dense pattern. However, the pattern, Q′, obtained by removing the first

letter from Q(x) makes it a dense pattern.

Q′(x) = (ababa2b).
x⊙

i=3

aibai−1baib

We have |DS(Q′(x))| = |DS(Q(x))| and |Q′(x)| = |Q(x)| − 1, therefore,

the square density of Q′ is one. A set of rightmost squares as mentioned in

Lemma 6.8 exists for Q′, that is, R ⊂ DS(Q′) where

R = {(ab)2, (aba2baa)2, (aba3baa)2, . . . , (abai−1baa)2, (ai−1baib)2}

Hence, the pattern Q′ is a dense pattern.

A stricter bound for the number of distinct squares is conjectured in [44]

and is supported by a pattern called JMS. It is a simple pattern with the

structure:

JMS(x) =
x⊙

i=1

aib
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The following equations give the length and the number of distinct squares

in JMS(x).

|JMS(x)| = 1

2
(x2 + 3x) (6.11)

|DS(JMS(x))| = 1

2
(x2 − 2− (x mod 2)) (6.12)

The square density of the pattern obtained with the above equations is

αJMS = 1. Similar to Q(x), a word JMS(x) = w1w2 satisfies cross(w1, w2) =

ϕ for |w2| = 1. We remove the last letter of JMS(x) to get a word that sat-

isfies the condition (b) of Definition 6.1:

JMS ′(x) =


x−1⊙
i=3

aib

 .ax

The square density of pattern JMS ′ is one, and we can use Lemma 6.9 to

show that it is a dense pattern. Both the patterns Q′ and JMS ′ construct

words using the same principle to increase the number of distinct squares.

They maximize the distinct primitive squares to achieve a higher square

density, as mentioned in Lemma 6.7. Let us see a criterion to compare the

dense patterns.

Comparing dense patterns

Two dense patterns Q′ and JMS ′ are obtained from the existing patterns.

Also, the newly proposed pattern P met all the conditions defined for a dense

pattern. A pattern that reaches its square density quickly is the best pattern.

It is evident that if a pattern introduces a lot of no-gain lengths between its

successive words, then it will move slowly towards its density. Therefore,

a notation βT is used to determine the rate of a pattern T to arrive at its

square density. The notation is valid for a pattern that has at least one

no-gain length between its successive words.

Definition 6.2 (Gain lengths per no-gain length). Let x ∈ N. The term

βT (x) is the ratio of number of distinct squares in T (x) that are not in T (x−1)
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to the number of no-gain lengths between T (x) and T (x− 1), that is,

βT (x) =
|DS(T (x))| − |DS(T (x− 1))|

NT (x)

We get βQ′(x) and βJMS′(x) from Equations (6.8), (6.9), (6.11) and (6.12)

as follows:

βQ′(x) =
3x

2
or

3x− 1

3
and βJMS′(x) =

x

1
or

x− 1

2
(6.13)

Lemma 6.12. For all positive integers x > 4, there exists y ∈ N with

|JMS ′(x)| > |Q′(y)| and |DS(JSM ′(x))| < |DS(Q′(y)|.

Proof. The statement holds since βJMS′(x) < βQ′(x) (see Equation (6.13)).

Theorem 6.13. Pattern P is the lower bound for MaxNS(n).

βT (x) x mod 2 = 0 x mod 2 = 1

βQ′(x) 1.5x x− 0.33

βP (x) 1.5x+ 0.5 x+ 0.5

Table 6.3: New distinct squares per new no-gain length

Proof. The Lemma 6.12 shows that the pattern Q′ is better than the pattern

JMS ′. The β values of patterns Q′ and P are listed in Table 6.3. It shows

that the rate of approaching the square density of pattern P is faster than

that of Q′.

Corollary 6.14. For every word, Q′(x), there exists a word, P (y), such that

|Q′(x)| > |P (y)| and |DS(Q′(x))| < |DS(P (y))| where x and y ∈ N and

x > 5.
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6.6 Patterns to Generate FS-double Squares

The square density of a word depends on the arrangements of the squares in

it. So, finding the favourable distribution of squares is necessary to maximize

the square density. In this regard, the words generated by patterns Q [34]

and P are the best words obtained so far. Note that the lower bound for the

square conjecture is a family of words obtained from a pattern Q that is then

generalized to get a better pattern, pattern P.

A pattern represents a group or a family of words having some similar

structure. It can be seen as a function that accepts an integer and produces

a unique word. For example, consider the following pattern N .

N(i) = aib
i⊙

t=1

(abt)

The symbol
⊙

is used to concatenate the factors that are grouped by the

parenthesis. The pattern N generates the words abab and aabababb for i = 1

and i = 2, respectively.

Highest square density of words with 2FS squares

We see a structure to obtain words containing a sequence of FS-double

squares. The pattern D generates a word D(i) containing ‘i’ consecutive

FS-double square. The structure of pattern D is given below.

D(i) = aa


⌈ i
2
⌉⊙

t=2

(bat)
i−2⊙

k=(⌈ i
2
⌉−1)

(bakbak+1bak+2)

 (baibai−1bai)2 (6.14)

In a word D(i), the highest exponent of a letter ‘a’ is i. The suffix

(ai−1b)aibai−1baibaibai−1bai starts with |i| consecutive FS-double squares.

The first FS-double square is (ai−1baibai−1ba)2 and is appended by the prefix

ai−1 to get |i|− 1 conjugates. Comparing the structure with the definition of

FS-double square given in Lemma 3.2, we get x = ai−1b, j = a, p1 = p2 = 1.
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The value of |lcp(xy, yx)| is (i− 1) which is required to introduce new (i− 1)

conjugates. Some examples of pattern D words with their si sequences are

listed below.

D(5) =aabaabaaabaabaaabaaaabaaabaaaabaaaaabaaaaabaaaabaaaaa

baaaaabaaaabaaaaa

si(D(5)) =11111101111111111011111111111111222220000000000111111

00111110000001010

D(6) =aabaabaaabaabaaabaaaabaaabaaaabaaaaabaaaabaaaaabaaaaaab

aaaaaabaaaaabaaaaaabaaaaaabaaaaabaaaaaa

si(D(6)) =1111110111111111101111111111111011111111111111111222222

000000000000111111100111111000000101010

The size of a word generated by a pattern D and the number of distinct

squares in it can be computed using Equation (6.15) and (6.16), respectively.

|D(i)| = 1

2
(3i2 + 15i− 2y2 + 8) (6.15)

|DS(D(i))| = 3i2 + 11i

2
− (y2 + 2y + 2 + i mod 2)

=
2i2 + 10i− 2

2
,
2i2 + 8i− 10

2
(6.16)

Lemma 6.15. The distinct square density of pattern D is one.

Proof. From Equations (6.15) and (6.16), the distinct square density of pat-

tern D is one.

αD = lim
i→∞

|D(i)|
|DS(D(i))|

= 1 (6.17)

According to Theorem 4.3, an FS-double square SQ2
1 = ((xy)p(x)(xy)p)2

where p > 2 contains more than (p− 2)|xy| no-gain locations and ρ(SQ2
1) <

⌊11
6
⌋. Similarly, a word w with a sequence of FS-double squares where these
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squares have structures similar to that of SQ2
1 has ρ(w) < 1.64 (refer Theorem

4.7). The structure of FS-double squares is embedded in which the values of

exponents are set to one to increase the square density of words by minimizing

no-gain locations. However, a sequence of no-gain locations is observed at

some locations that are not explored in Theorem 4.3. Further investigation

of an FS-double square will assist in concluding that every word with k FS-

double squares contains k no-gain locations.

6.7 Conclusions

In this chapter, the objective was to identify a pattern that could gener-

ate words with the maximum number of distinct squares. The focus was

on studying square maximal words to derive properties that could increase

square density. In such words, it was observed that extending a square with

its root generates a conjugate of the square for each newly added letter.

Based on various properties of square maximal words, a new term, “dense

pattern”, was defined, and a new dense pattern, pattern P , was proposed.

The chapter also presented a pattern generator to produce infinitely many

dense patterns. Different patterns in the literature are studied, and some

existing patterns were modified to meet the requirements of a dense pattern.

They were then compared with a pattern P . The chapter concluded that the

pattern P is the new lower bound for the square conjecture. Since primitive

squares have the maximum number of conjugates, it is conjectured that such

a structure would have the maximum number of distinct primitive squares.

The proposed structure for building dense patterns introduces at most one

distinct square per letter. The chapter also examined other patterns that

generate words containing FS-double squares occurring at consecutive posi-

tions. The square density of all these patterns is one.

89



7
Antisquares

This chapter explores a different form of repetition compared to the previous

works. It focuses on a specific type of repetition known as an “antisquare”,

which is defined as a binary word of the form uū, where ū is obtained by

complementing the letters of a non-empty word u. While antisquares have

been explored for infinite words in previous literature [12], this chapter in-

vestigates their properties in finite words. The term u2̄ is used to refer to

the antisquare where 2̄ indicates that the given word is concatenated with its

complement. As mentioned in the previous chapters, a notation si(w) deter-

mines the number of distinct rightmost squares of w beginning at location i.

So, the notation s̄i(w) is used to represent the number of distinct rightmost

antisquares starting at location i. The set DA(w) is the set of all distinct

antisquares in w. The next section investigates the properties of antisquares

similar to those of distinct squares.
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7.1 Properties of Antisquares

In the context of squares, we discussed various counting problems, such as

determining the number of repeated squares, repeated primitive squares, dis-

tinct squares and distinct primitive squares in words. Similarly, we now focus

on examining analogous problems concerning antisquares in words. In the

following lemma, we obtain an upper bound on the number of repeated an-

tisquares in words.

Lemma 7.1 counts the upper limit for the number of repeated antisquares

in a word.

Lemma 7.1. The number of antisquares in any binary word w is at most
|w|2+2|w|

4
.

Proof. The mid location of an antisquare uū is the location |u|. Let w =

a1a2 . . . an. A word location i can be the mid location of at most i different

length antisquares where i ∈
[
1,
⌊
n
2

⌋]
. To understand this, consider the word

aabb. The second location of the word is a mid location for two antisquares

{ab, aabb}. Likewise, every location j where j ∈
[⌊

n
2

⌋
+ 1, . . . , n

]
can be

the mid location of at most n− j different length antisquares. So, the total

number of antisquares in a word is less than or equal to 2(1+2+3+. . .+ n
2
) =

n2+2n
4

.

In Chapter 6, we discussed words with the highest square density and the

occurrences of distinct primitive squares in such words. It was demonstrated

in Chapter 5 that increasing the number of specific primitive squares could

help to pack distinct squares compactly. The following lemma identifies the

structure of primitive and non-primitive antisquares. Note that a primitive

antisquare is a word that is both primitive and an antisquare.

Lemma 7.2. Let x2̄ be an antisquare. The antisquare is non-primitive if

and only if x = (ww̄)iw, where w ∈ Σ+ and an integer i > 0.

91



Antisquares

Proof. Consider an antisquare xx̄ = uk where x, u ∈ Σ+ and integer k > 1.

If k is even, then both x and x̄ begins with u. This is a contradiction. If

k is odd, we get x = u
k−1
2 u1 where u = u1u2. This gives x̄ = u2u

k−1
2 and

following set of relations.

u
k−1
2 u1 = ū2ū

k−1
2

u
k−1
2 u1 = (ū2ū1)

k−1
2 ū2

=⇒ |u1| = |u2|, u1 = ū2

We get the structure of the antisquare as (ww̄)iw on replacing u1 by w where

i is any positive integer.

Let us begin the discussion with some properties of words. The next

lemma describes a basic result on words.

Lemma 7.3. The relation ua ̸= bu holds for any word over a binary alphabet

Σ where Σ = {a, b}.

Proof. The statement follows from Theorem 1.1.

As shown in the above lemma, ua ̸= bu for any word u. However, the

relation holds if we replace one of the u′s with its complement. It is shown

in the following lemma. Further, the result is extended in Lemma 7.15.

Lemma 7.4. Let u be a non-empty word over Σ = {a, b} such that w =

bu = ūa. Then, w = (ba)k for some integer k > 0.

Proof. Clearly, u starts and ends with the letter ‘a’. The lemma statement

holds for |w| = 2. For |w| > 2, we can write u = au1a which gives b(au1a) =

bū1ba. Now, u1 starts and ends with a letter ‘b’ giving u1 = bu2b. Similary,

u2 can be further divided like u1 where u2 starts and ends with the letter ‘a’

Thus, the words u, u2, u4, . . . start and end with ‘a’ while u1, u3, u5, . . . start

and end with ‘b’. So, w = (ba)k.
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Counting antisquares in a word is observed to be more challenging and

intricate than counting squares. While counting distinct squares in simple

words like ak and (ab)k is relatively easy, the next lemma presents a method

for counting the distinct antisquares in one such word. It demonstrates that

counting antisquares in a trivial word (ab)k can be complex.

Lemma 7.5. The number of antisquares in w = (ab)m is (p + 1)(2m −
2p − 1) where m > 2 and p =

⌊
m−1
2

⌋
. Further, w contains at most |w|2+2|w|

8

antisquares.

Proof. Define A(w) as the count of all antisquares within the word w. It is

important to note that A(w) accounts for repeated occurrences of an anti-

square in w. For example, if w = abaab, then A(w) equals three because

w contains two instances of the antisquare ab and one instance of ba. In a

word (ab)m, every length 2(2k + 1) factor of w beginning from any location

is an antisquare where k is an integer such that k ≥ 0. Here, a factor of a

word is a sequence of characters within that word that appears consecutively.

Since the length of a factor could be at most the size of the word, we get

2(2k + 1) ≤ 2m. Thus, 0 ≤ k ≤ m−1
2

. The total number of factors of length

2(2k + 1) in w are 2m − (2(2k + 1)) + 1. We use this information to count

the number of antisquares in w as follows.

A(w) =

⌊m−1
2

⌋∑
k=0

2m− (2(2k + 1)) + 1

=

⌊m−1
2

⌋∑
k=0

2m− 4k − 1

= (2m− 1) + (2m− 1)

⌊
m− 1

2

⌋
− 2

⌊m− 1

2

⌋(⌊
m− 1

2

⌋
+ 1

)
We get A(w) = (p+ 1)(2m− 2p− 1) by substituting p = ⌊m−1

2
⌋. The length

of w is 2m and ⌊m−1
2

⌋ ≤ m−1
2

. With this information, the highest value of

antisquares obtained using the above equation is |w|2+2|w|
8

.
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In the case of squares, it is possible for a location in a word w to begin

with squares of every possible even length. For example, a location i in a word

ak can start with squares of lengths 2, 4, . . . , 2j, where 2j ≤ n− i. The same

word is also an example if a location starts with a square of a particular

length, then its consecutive location can start with squares of any length.

However, the structure of antisquares imposes constraints on the lengths of

antisquares starting at consecutive locations. The next lemma explains these

constraints in detail.

Lemma 7.6. Let a word start with two antisquares u2̄ and v2̄ such that

|v| − |u| = 1. If the word starts with another antisquare w2̄ where |w| > |v|,
then |w| > |v|+ 1.

Proof. The statement needs to be verified only for the case where |w| = |v|+1.

Let w2̄ begins with two shorter antisquares u2̄, v2̄ such that |w| = |v|+1 and

|v| = |u| + 1 where |u| ≥ 1. We consider the case where |u| > 2. Without

loss of generality, the word u in antisquare u2̄ begins with either aa or ab

such that u = aau1 or u = abu1 for some word u1. When u = aau1, we get

the following set of equations.

uū = aau1.bbū1 (7.1)

vv̄ = aau1b.bbū1a (7.2)

ww̄ = aau1bb.bbū1aa (7.3)

Since vv̄ is one of the prefixes of ww̄, we get the relation ū1a = bū1, which is

not feasible (see Lemma 7.3).

Now, for uū = abu1.baū1, we get vv̄ = abu1b.baū1a and w = abu1ba.baū1ab.

Here, the underlined prefixes of vv̄ and ww̄ overlap as vv̄ is one of the prefixes

of ww̄. This shows abu1bb = abu1ba implying a = b and is not acceptable.

The lemma statement also holds when |u| = 2. The following set of equations
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explains the case.

uū = aabb uū = abb a

vv̄ = aabbaa vv̄ = abb b aa

ww̄ = aabbbbaa

The underlined and boxed letters in the above equations overlapped, violating

the condition a ̸= b.

The trivial word an is an example of a word containing the maximum

number of squares. The next lemma shows the word containing the maximum

number of antisquares.

Lemma 7.7. The number of antisquares in any binary word of length 2k

is at most the number of antisquares in a word (ab)k where the integer k

satisfies k > 0.

Proof. Every location of (ab)k begins with antisquares in which the lengths

of the roots are consecutive odd numbers. According to Lemma 7.6, a word

location cannot begin with three antisquares whose root lengths are n, n+1,

and n + 2. So, each location of the given word begins with the maximum

number of antisquares.

The remaining part of the chapter is devoted to discussing lemmas aimed

at finding the bounds for the problem of determining the number of distinct

antisquares in a binary word. The first two lemmas presented below describe

structures of words that maximize the number of distinct antisquares in the

resulting words. Based on our observation, we conjecture that the number of

distinct antisquares in a word w is at most 4|w|. The next lemma is a lower

bound for the conjecture as it shows the existence of a binary word w that

contains |w| − 1 distinct antisquares.

Lemma 7.8. For the word w = ak+3bk+3ak+2bk+1ak, |DA(w)| = |w| − 1.
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Proof. The length of the word is 2(k + 3) + 3k + 3 = 5k + 9. Let us find

|DA(w)|. The prefix ak+3bk+3 of w contains k + 3 antisquares and they are:

{ab, aabb, . . . , ak+3bk+3}. In a similar way, the factor bk+2ak+2 gives another

set of antisquares {ba, bbaa, . . . , bk+2ak+2} where the size of the set is k + 2.

Together these are 2k + 5 distinct antisquares.

Now, consider a prefix ak+3bk+3ak+2 of w. The underlined part ak+2

results into k + 2 new antisquares that are conjugtes of ak+3bk+3. These

includes {ak+2b.bk+2a, ak+1b2.bk+1a2, . . . , abk+2.bak+2}. Similarly, the factor

bk+2ak+2bk+1 gives a total k + 1 distinct conjugates of bk+2ak+2. Further, k

distinct conjugates of ak+1bk+1 are obtained from the factor ak+1bk+1ak. Note

that none of the conjugates obtained from these three factors are the same.

The total number of distinct antisquares in w is 2k+5+3k+3 = 5k+8.

Lemma 7.9. Let w = akbkakbj where the positive integers j, k satisfy j < k.

Then, |DA(w)| = |w| − 1.

Proof. The length of the given word is |w| = 3k + j. Antisquares appearing

in the different factors of w are explained below.

akbk contains {ab, aabb, . . . , akbk}, total antisquares = k

bkak contains {ba, bbaa, . . . , bkak}, total antisquares = k

akbkak−1 contains {(ak−1b)2̄, . . . , (abk−1)2̄}, total antisquares = k − 1

bkakbj contains {(bk−1a)2̄, . . . , (bk−jaj)2̄}, total antisquares = j

Thus, the total number of distinct antisquares in w is |w| − 1.

Lemma 7.10. There exists at least one binary word of length n containing

exactly n− 1 distinct antisquares.

Proof. The structure of words described in Lemma 7.9, akbkakbj, for k > 1

and j = 1, 2, 3 produces every n length word such that n > 6 containing n−1

distinct antisquares. The words {a, ab, aba, abba, aabba, aabbaa} complete the

proof.
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7.2 Rightmost Antisquares in Words

In this section, we see some results on structures of the rightmost antisquares.

An upper bound on the number of distinct squares in a word is obtained by

counting the rightmost squares [29]. Similarly, we discuss some results below

that can be further extended to get an upper bound on the number of distinct

antisquares in a word.

The square conjecture was recently proven by Brlek and Li in [15] by

proving the next lemma.

Lemma 7.11. [15] The number of distinct squares in a word w over an

alphabet Σ follows the below relation where |Σ| is the number of distinct

letters in w.

|DS(w)| ≤ |w| − |Σ|+ 1

According to Lemma 7.11, the maximum number of distinct squares in a

binary word w is at most |w|−1. However, the lower bound for the number of

distinct antisquares in a word w is |w|−1 (see Lemma 7.10 and the conjecture

proposed before the lemma). Further, the relation si(w) ≤ 2 is used to get

the upper bound for the square conjecture. In case of antisquares, it is

observed that a word could begin with three distinct rightmost antisquares

meaning a word w exists satisfying the relation s̄i(w) = 3. Some examples of

such words are {(ababbababaabaa)2̄, (aabbba)2̄}. The following lemma is an

attempt to explore a word w with s̄i(w) = 4. The lemma tries to identify

the relation between the lengths of four distinct antisquares starting at the

same location.

Lemma 7.12. Let an antisquare xx̄ begins with three shorter rightmost an-

tisquares u2̄, v2̄, w2̄ such that |u| ≤ |v| ≤ |w|. Then, either 2|w| > |x| or
2|u| > |v|.

Proof. Consider a case where neither of the given constraints holds. So, in
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the following arrangement of antisquares, we have 2|w| ≤ |x| and 2|u| ≤ |v|.

x2̄
x x̄

w2̄

w̄ w
v2̄

u2̄ u2̄

Figure 7.1: Arrangement of shorter antisquares in x2̄

As shown in Figure 7.1, the antisquare u2̄ repeats in the suffix x̄ of x2̄

which gives s̄1(xx̄) = 3. This leads to a contradiction. Thus, an antisquare

xx̄ do not satisfy 2|w| ≤ |x| and 2|u| ≤ |v| at the same time.

The above lemma asserts that when a word location begins with four

rightmost distinct antisquares, then there always exists an antisquare whose

root is longer than the root of at least one antisquare. If we consider only

these two antisquares, then the shorter antisquare ends in the second half

of the longer antisquare. The subsequent part of the chapter deals with the

study of such rightmost occurrences of distinct antisquares. We are interested

in expanding these structures to incorporate more antisquares starting at the

same location.

We see the structure of words in which a location starts with two such

occurrences of antisquares in the following lemma.

Lemma 7.13. If vv̄ is an antisquare that begins with another shorter right-

most antisquare such that s̄1(vv̄) = 2, and the shorter antisquare ends in v̄.

Then, v has one of the following structures:

(a) v = xxx̄, u = xx

(b) v = xyxx̄ȳ, u = xyx or

(c) v = xxyx̄, u = xxy where y <p xy
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Here, u is a non-empty prefix of v, and the expression y <p xy indicates that

y is a prefix of xy.

Proof. Let uū be the shorter rightmost square in v2̄, so 2|u| > |v|. Here, uūis
a prefix of vv̄, and v = uū1 such that u = u1u2 for u1, u2 ∈ Σ+ as shown in

Figure 7.2.

vv̄
ū1 ū2

uū

Figure 7.2: u2̄ in the prefix of v2̄

Case I: Let |u1| = |u2|. We have v = u1u2ū1 and ū2 <p v̄. As u1, u2 are of

same length, v = u1u1ū1 and u = u1u1.

Case II: Let |u1| > |u2|. From the above structure, v = uū1 and v̄ = ū2v2 for

vv̄
ū1 ū2

uū

Figure 7.3: u2̄ with |u1| > |u2|

some non-empty word v2. We get u1 = u2u3 by complementing one of these

equations and equating it with the other. Here, u3 is a non-empty word. So,

it gives v = uū1 = u1u2ū1 = u2u3u2ū2ū3 and u = u1u2 = u2u3u2.

Case III: Let |u1| < |u2|. From Figure 7.2, v begins with u1u2 and v̄ begins

with ū1. So, v also begins with u2, and u2 = u1u3 where u3 ∈ Σ+.

v =u1u2ū1 v̄ = ū2v̄2

=u1u1u3ū1 v̄ = ū1ū3v̄2

Thus, v = u1u1u3ū1 and u = u1u1u3. Since u
2̄ <p v

2̄, ū3 is one of the prefixes

of ū1ū3.
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As mentioned in the above lemma, there are three possible structures of

words with s̄i(w) = 2. We now verify the feasibility of the first structure to

add more rightmost antisquare at the beginning.

Lemma 7.14. Let w2̄ = (xxx̄)2̄ where x ∈ Σ+. Then, s̄1(w) < 3.

Proof. The value of s̄1(w) is at least two (see Lemma 7.13). Assume w2̄ starts

with another two shorter rightmost antisquares u2̄, v2̄ such that |v| < |u|.
The rightmost appearance of these antisquares implies 2|u| > |w| < 2|v| and
v = xx.The word u is a proper prefix of xxx̄ where u ̸= xx. There are two

conditions: |x| < |u| < 2|x| and 2|x| < |u| < 3|x|.

ww̄
x x x̄ x̄ x̄ x

x x1 x2 x̄ x̄3
uū

Figure 7.4: Antisquare u2̄ in (xxx̄)2̄ with |x| < |u| < 2|x|

Refer Figure 7.4 for the first case, u = xx1 where x = x1x2 for some non-

empty word x1, x2. So, ū = x2x̄x̄3 for some non-empty prefix x3 of x. We

then equate two structures of u which give the following equations.

xx1 = x̄2xx3 =⇒ |x1| = |x̄2|+ |x3| (7.4)

x1x2x1 = x̄2x1x2x3 =⇒ x1 = x2x3 (7.5)

Eq. 7.4 and Eq. 7.5 show that x1 begins with x̄2 and x2 respectively. This

is a contradiction since x2 ̸= x̄2.

Similarly for case 2|x| < |u| < 3|x|, we get the relation xxx̄1 = x2xx3 from

the structure of antisquare u2̄ as shown in Figure 7.5. Here, x1, x3 ∈ Σ+ such

ww̄
x x x̄ x̄ x̄ x

x x x̄1 x̄2 x̄ x̄3
uū

Figure 7.5: u2̄ in (xxx̄)2̄ with 2|x| < |u| < 3|x|
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that x = x1x2 = x3x4. We further analyse the relation below.

x1x2x1x2x̄1 = x2x1x2x3 =⇒ x1x2 = x2x1

zizjzizj z̄i = zjzizjx3 as x1 = zi, x2 = zj for i, j ∈ Z

We can conclude that x = x1x2 = zi+j and x3 = ziz̄i from the above equation

set. In this case, x3 is one of the prefixes of x, and this shows z = z̄. So, this

case is invalid, and it shows that s̄1(w) < 3 where the structure of w follows

certain constraints.

The next two lemmas discuss some basic results that hold under certain

constraints. We encounter these types of relationships while exploring the

structures described in Lemma 7.13.

Lemma 7.15. Let u, v be two non-empty unequal words such that uv = v̄ū.

Then, uv = (m̄m)2(k+1) and u is (m̄m)k+1m̄ for |u| > |v| or u = (m̄m)km̄

for |u| < |v|.

Proof. Without loss of generality, assume |u| > |v|. Consider the following

structure describing the given condition.

uv
u v

w
v̄

ū
v̄ū

Figure 7.6: Structure of words holding the relation uv = v̄ū

We get u = v̄w and ū = wv. Thus, vw̄ = wv. Using Lyndon and Schützenberger

theorem (Theorem 1.5.2 from [3]), we get w = mn, w̄ = nm, v = (mn)km.

We then substitute these words to get the following equations.

u = v̄w ū = wv

= (m̄n̄)km̄mn u = w̄v̄

u = nm(m̄n̄)km̄

=⇒ mn = n̄m̄ (7.6)
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Antisquares

We get the solution for Eq. 7.6 when |m| = |n|; otherwise, exploring the

relation further leads to a similar relation. If |m| = |n|, then n = m̄ and we

get u = (m̄m)k+1m̄, v = (mm̄)km.

If |u| < |v|, we get u = (m̄m)km̄ and v = (mm̄)k+1m.

Lemma 7.16. Let xy = ȳx for some non-empty binary words x, y. Then, the

longer and the shorter words between x and y are (mm̄)2(k+1) and (mm̄)km

respectively, where m ∈ Σ+, k is a positive integer.

Proof. The relation does not hold for |x| = |y| as it gives two relations x = ȳ

and x = y. Consider the case |x| < |y| as shown in Figure 7.7. Let c be a

word such that y = cx and ȳ = xc. This gives cx = x̄c̄.

ȳx

ȳ x

c
x y

xy

Figure 7.7: Word arrangement for xy = ȳx

We use Lemma 7.15 to get the following sets of relations.

x = (mm̄)km c = (m̄m)k+1m̄

y = xc = (mm̄)2(k+1) xy = [(mm̄)km]2m̄(mm̄)k+1

The arrangement of words in the case of |x| > |y| gives a similar relation

ty = ȳt assuming x = ty. Here, we get x = (mm̄)2(k+1) and y = (mm̄)km.

The s̄i value of a location can be three, and we discussed examples of

such words (see the paragraph before Lemma 7.12). However, the shortest

antisquare in such examples is observed to be shorter than half of the longest

antisquare. It will be interesting to explore and identify the properties of

a non-empty word xx̄ where two shorter antisquares starting at the first

location end in x̄.
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Conclusions

7.3 Conclusions

We proved that the word (ab)k contains the maximum number of antisquares,

and the highest value is k2+k
2

. We also identified the structure of antisquares

that are non-primitive. The problem of counting distinct antisquares in a

word is then explored with the notation s̄i(w). The lower bound obtained

in this regard shows that the number of distinct antisquares in a word is

|w| − 1 and is more than the number of distinct squares. It was also shown

that the value of s̄i(w) could be three, but no upper bound for s̄i(w) has

been identified yet. We explored the structural aspects of a word w when

s̄i(w) = 4. Some basic results are obtained in this direction, but further

investigation is needed to confirm the value. However, based on our analysis,

we suspect that the value of s̄i(w) is at most three.
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8
Conclusions and Future Work

The contributions presented in this dissertation focus on exploring the square

conjecture, particularly through precisely counting the number of distinct FS-

squares in a word. We explored the structure of FS-double squares and found

that the length of the longest sequence of consecutive FS-double squares is

at most 1
7

th
of the length of the word. However, we observed that such

FS-double squares do not maximize the square density. To prove this, we

obtained a result stating an FS-double square inevitably contains a certain

number of no-gain locations. This result is then extended to show that the

square density of words with consecutive FS-double squares is at most 133
81
.

Later, we worked on the characteristics of words whose square densities

exceed the value of one. In this regard, we found the structure of words

where reversing the word does not change the number of FS-double squares.

It is shown that the number of FS-double squares appearing at consecutive

locations in such words is always less than 1
11

th
of the overall word length.

We also studied the distribution and types of squares in non-primitive words,

where we proved that the square density of a non-primitive word is inversely
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Summary of Results

proportional to its exponent.

We additionally discussed several patterns that generate words of increas-

ing square densities. The square density of words generated by these patterns

approaches one. A new lower bound for the square conjecture is presented

using a pattern.

Finally, we obtained some properties of antisquares where we presented

the best-known words containing a maximum number of distinct antisquares.

It is also shown that for any word containing k distinct squares, a binary word

with at least k distinct antisquares always exists.

8.1 Summary of Results

Table 8.1 elaborates on all the results discussed in the preceding section.

It serves as a comprehensive reference for readers to understand better the

outcomes of the research conducted in this thesis.

Problem statement Result

The length of the longest sequence of consecutive locations
that begin with FS-double squares in w is at most

|w|
7

The number of feasible structures for a 2FS square 2
The number of no-gain lengths in an FS-double square
((xy)px(xy)p)2 where p > 2 is alt least

(p− 2)|xy|

Square density of words with consecutive FS-double squares
is at most

133
81

The highest square density of words with consecutive bor-
dered FS-double squares is at most

1
11

The square density of a non-primitive word uk where k → ∞
approaches

1
2

The highest square density of a pattern that generates words
with an increasing number of distinct squares

1

The lower bound for the known words with the maximum
possible number of distinct antisquares in w

|w| − 1

Table 8.1: Summary of research outcomes
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8.2 Future Work

The initial chapters aim to solve the square conjecture by investigating FS-

double squares and no-gain locations. The proof method exhaustively exam-

ines all possible word structures and relies on case analysis. Since the analysis

considers all cases, it also reveals the different distribution of squares that

increases and decreases the square density. So, the properties identified to

solve the square conjecture can be utilized to solve related conjectures, such

as the conjecture proposed for circular words [5]. However, it became appar-

ent that the chosen case analysis method may lead to lengthy and convoluted

proof for the square conjecture. Therefore, future investigations should aim

to develop more concise and elegant proof methods to solve word equations.

Exploring alternative proof techniques, such as the graph-based approach

employed by Brlek and Li [15], may offer a promising direction.

We also studied the problem of counting distinct antisquares in finite

words. While antisquares have been studied in the context of infinite words

in the existing literature [12], our focus on finite words presents an intriguing

opportunity for further exploration. Based on the preliminary findings from

our case analysis approach, we conjecture that the maximum number of

distinct antisquares in a word w is at most 3|w|. However, continuing to solve
the problem with an exhaustive case study would be challenging. Therefore,

future research should aim to refine the problem-solving approach or explore

alternative techniques.

Exploration of the concept of antisquare density in both primitive and

non-primitive words presents another avenue for investigation. Antisquare

density refers to the ratio of the number of distinct antisquares in a word to

its length. Our research has established the correlation between the square

density and the number of primitive squares by computing the square density

of non-primitive words. It is interesting to explore the antisquare density of

both primitive and non-primitive words.
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