
Security Verification of Compiler
Optimizations: An Information Flow

Perspective

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by

Priyanka Panigrahi

Under the guidance of

Dr. Chandan Karfa

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

November, 2023

https://www.iitg.ac.in/cse/student-pages/priya176101006
http://www.iitg.ac.in/ckarfa/
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in

2

Copyright © Priyanka Panigrahi 2023. All Rights Reserved.

https://www.iitg.ac.in/cse/student-pages/priya176101006

Dedicated to

My Loving Parents

for their unwavering support and encouragement throughout my
academic journey. Their sacrifices and belief in my abilities have

been the driving force behind my academic success.

Declaration

I certify that:

• The work contained in this thesis is original and has been done by myself

and under the general supervision of my supervisor.

• The work reported herein has not been submitted to any other Institute

for any degree or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data,

graphs, diagrams, theoretical analysis, results, etc.) from other sources, I

have given due credit by citing them in the text of the thesis and giving

their details in the references. Elaborate sentences used verbatim from

published work have been clearly identified and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the

best of my knowledge and understanding and take complete responsibility

if any complaint arises.

• I am fully aware that my thesis supervisor is not in a position to check for

any possible instance of plagiarism within this submitted work.

Date: November 24, 2023
Place: Guwahati

(Priyanka Panigrahi)

https://www.iitg.ac.in/cse/student-pages/priya176101006

Acknowledgements

I would like to express my deepest gratitude to my advisor, Dr. Chandan

Karfa, for his unwavering guidance, invaluable insights, and continuous support

throughout the entirety of my Ph.D. journey. His expertise and guidance have

been instrumental in shaping both the direction and quality of this research. I

extend my sincere acknowledgment to the members of my dissertation commit-

tee, Prof. Jatin Kumar Deka, Prof. Arijit Sur, and Dr. John Jose, for their

constructive feedback, scholarly contributions, and dedicated involvement in the

development of this work. Each member has played a crucial role in refining the

conceptual framework and methodology of the study. I am indebted to my past

dissertation committee member, Dr. Arnab Sarkar for providing valuable feed-

back during the initial days of my research. I express my heartfelt gratitude to

my collaborator Prof. Prabhat Mishra - I am incredibly grateful and privileged

to have had this opportunity to work with him. I am grateful to Qualcomm

India for providing financial support for my research. The assistance from both

my mentors Bernard Nongpoh and Nilo Redini from Qualcomm have allowed

me to focus on my academic pursuits and has contributed significantly to the

successful completion of this Ph.D.

My heartfelt thanks go to my fellow researchers at AVS lab, my lab seniors

Ramanuj Bhaiya, Surajit Sir, and Mohammed, and my juniors Praveen, Akash,

and especially Nilotpola whose intellectual and collaborative spirit have created

a stimulating academic environment. The exchange of ideas and experiences has

enriched my research and made this academic endeavor both challenging and

fulfilling. I got the opportunity to work with Sahitya, Abhik, Vignesh, Birjit,

and Karthik. Thank you for sharing insights and technical discussions countless

times which helped me carry out my research work.

To my friends, Debabrata Sir, Swagat Sir, Shakeel, Siva, Gyanendro, Prasen,

Sumita, Aswathy, Roushni, Kashmiri, and Pallabi, thank you for your encour-

agement and motivational support. I want to thank my seniors and juniors,

especially, Aparajita Mam, Anasua Mam, Khushboo Mam, Shrestha, Sheel,

Ujjwal Da, Bhale Sir, Arijit Sir, Deepika Mam, Divya Mam, Manjari Mam,

Alakesh, Nilotpal, Maithilee, Nidhi, Vanshali, Karnish, Komal, Saurav, Manoj,

Swati, and many others. To my dearest friends Pratibha, Tasrin, Emte, Tinka,

Khyati, Lolly (Nilotpola), and Udangshree, I am grateful for the fun-filled, en-

joyable moments we spent together, and the late-night unlimited conversations

at the hostel during the ups and downs of this Ph.D. journey. Your consistent

emotional support has been a constant source of strength for me.

I want to thank my late paternal grandparents (Maa n Bapa), my late maternal

grandparent (Aja), my maternal grandparent (Aai), my uncles and aunts (Bada

Mausi n Mausa, Sana Mausi n Mausa, Bada Mamu n Mai, Sana Mamu (late) n

Mai), my cousin brothers and sisters (Papun bhai, Chiku, Sagar, Pati, Pritam,

Prem, Sikha, and Deepa), and the new family members (Rosy Bhauja n Rimi)

for the WhatsApp group video calls and best wishes throughout this journey.

Finally, I want to express my gratitude to my pillars of strength - my parents

(Bou n Baba), my elder sister (Apa), and my brother-in-law (Jiju) for your

unconditional love, encouragement, patience, and support during this crucial

journey. Your belief in my potential has been a source of motivation. I am

extending a special gratitude to my mother (Bou) for your constant care and

daily updates about the family. From the early stages of my research to the

final stages of completing this journey, her encouragement has been my guiding

light. To my nephew (Vishnu) and my niece (Urvi), thank you for your laughter

and boundless energy, which provided a welcome respite from the challenges of

research. Your presence has added a special and meaningful dimension to this

journey, and I am grateful for the shared moments of joy. I am expressing my

heartfelt thanks to the special person in my life - my husband-to-be (Saroj) for

being a constant source of support and love in this journey. In the moments

of self-doubt, his presence and belief in my abilities have provided comfort and

strength. Our shared anticipation of the future has made every accomplishment

more meaningful, and I am fortunate to have his supportive companionship.

November 24, 2023 Priyanka Panigrahi

https://www.iitg.ac.in/cse/student-pages/priya176101006

Certificate

This is to certify that this thesis entitled, “Security Verification of Compiler

Optimizations: An Information Flow Perspective”, being submitted by

Priyanka Panigrahi, to the Department of Computer Science and Engineering,

Indian Institute of Technology Guwahati, for partial fulfillment of the award

of the degree of Doctor of Philosophy, is a bonafide work carried out by her

under my supervision and guidance. The thesis, in my opinion, is worthy of

consideration for the award of the degree of Doctor of Philosophy in accordance

with the regulation of the institute. To the best of my knowledge, it has not

been submitted elsewhere for the award of the degree.

Date: November 24, 2023

Place: IIT Guwahati

..............................

Dr.Chandan Karfa

Associate Professor

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

https://www.iitg.ac.in/cse/student-pages/priya176101006
http://www.iitg.ac.in
https://www.iitg.ac.in/ckarfa/
http://www.iitg.ac.in/cse/
https://www.iitg.ac.in/

Abstract

Modern compilers like GCC, LLVM apply various optimizations on the source program

to improve the performance of the target code for execution time, code size, resource usage,

memory usage, etc. One of its critical requirements is to generate a functional equivalent

target code. A target code generated after application of compiler optimization may be

functionally equivalent to the source program but it may not be as secure as the source

program (i.e., relatively secure). Therefore, it is essential to ensure that the optimized code

does not introduce any security vulnerability during the optimization phase. This thesis

aims to verify the relative security between the source and optimized programs, irrespective

of the optimizations applied by a compiler. Specifically, the information flow is considered as

the security property in a program in this thesis. To achieve relative security, we first aim to

quantify the information leakage in a program using static taint analysis. Then, we propose

a bisimulation method for translation validation of information leakage for relative security

verification between a source and an optimized program. The next work explores how a

model checker can be utilized to quantify the information leakage in a program. The model-

checking-based security analysis method can further be applied to translation validation

of information leakage for relative security verification between the source and optimized

programs. With our notion of relative security, we have shown that the register allocation

step in a compiler is not secure in the presence of spilling. We then propose a secure register

allocation approach for the LLVM compiler framework. Finally, this thesis aims to protect

these registers from information leakage, specifically from scan-based attacks.

Keywords- Compiler, Security, Information Flow, Information Leakage, Register Allo-

cation, LLVM, Taint Analysis, Model Checking, Formal Verification, CBMC, Scan Chain,

Side Channel, Register Transfer Level.

;;=8=<<

viii

Contents

1 Introduction 1

1.1 Compilation Steps . 1

1.1.1 Compiler Optimization . 3

1.2 Correctness of Compiler . 4

1.3 Security of Compiler . 5

1.3.1 Information Flow Security Property 6

1.3.2 Information Flow Tracking in a Program 6

1.4 Motivation and Objectives . 7

1.4.1 Security Analysis of Compiler Optimization Techniques 8

1.4.2 Relative Security Verification . 9

1.4.3 Information Leakage Detection with Model Checker 10

1.4.4 Securing Registers from Information Leakage with High-level Synthesis 11

1.5 Contributions . 12

1.5.1 SRA: Secure Register Allocation for Trusted Code Generation 13

1.5.2 QIL: Quantifying Information Leakage for Security Verification of

Compiler Optimizations . 14

1.5.3 TVIL: Translation Validation of Information Leakage of Compiler Op-

timizations . 14

1.5.4 MQIL: Model Checking based Quantification of Information Leakage

in a Program . 15

1.5.5 SRIL: Securing Registers from Information Leakage at Register Trans-

fer Level . 16

1.6 Organization of the Thesis . 16

ix

2 Background and Literature Survey 18

2.1 Target Level Attacks . 18

2.1.1 Confidentiality . 18

2.1.2 Integrity . 19

2.1.3 Finite Memory Size . 19

2.1.4 Deterministic Memory Allocation . 20

2.1.5 Discussion . 20

2.2 Secure Compilation . 21

2.2.1 Discussion . 23

2.3 Security Analysis of Compiler Optimizations 23

2.3.1 Dead Store Elimination . 23

2.3.2 Single Static Assignment . 24

2.3.3 Register Allocation . 24

2.3.4 Other Optimizations . 24

2.3.5 Discussion . 25

2.4 Security Measurement Approaches . 26

2.4.1 Leaky Triple Notion (Non-interference) 26

2.4.1.1 Problem with Leaky Triple 27

2.4.2 Taint Analysis . 28

2.4.2.1 Dynamic Taint Analysis . 29

2.4.2.2 Static Taint Analysis . 30

2.4.3 Discussion . 31

2.5 Side-channel Attacks through Scan Access 31

2.5.1 Discussion . 33

2.6 Conclusion . 33

3 SRA: Secure Register Allocation for Trusted Code Generation 34

3.1 Introduction . 34

3.2 Register Allocation . 35

3.2.1 Live Range Splitting . 36

3.2.2 Spilling . 38

3.2.3 Impact of Register Allocation in Control and Data Flow 38

3.3 Relative Security . 40

3.4 Security Analysis of Register Allocation . 41

3.5 Securing Register Allocation in LLVM . 44

3.6 Experimental Results . 47

3.6.1 Setup . 47

3.6.2 Results in LLVM . 48

3.6.3 Performance Overhead . 50

3.7 Discussion . 51

3.8 Conclusion . 53

4 QIL: Quantifying Information Leakage for Security Verification of Com-

piler Optimizations 54

4.1 Introduction . 54

4.2 Motivation . 56

4.2.1 Overview of the Proposed Approach 57

4.3 FSMD based Modeling of Programs . 58

4.3.1 Paths and Traces in FSMD . 60

4.3.2 Cutpoints and Path cover . 60

4.4 Quantification of Information Leakage . 61

4.4.1 Leak Propagation Vector . 62

4.4.2 Explicit Leak in a Path . 62

4.4.3 Leak Propagation over Paths . 63

4.4.4 Implicit Leak in a Path . 64

4.4.5 Leak Propagation over Loops . 68

4.5 Leak Measurement of a Program . 70

4.5.1 Algorithm Description . 71

4.5.2 Minimizing Complexity by Look Ahead Properties 73

4.6 Quantifying Parameters for Information Leakage 76

4.6.1 Quantification Approaches for a Program 76

4.6.2 Quantification Approaches for Relative Security 78

4.7 Correctness and Complexity . 79

4.7.1 Soundness and Termination . 79

4.7.2 Complexity Analysis . 80

4.8 Experimental Results . 81

4.8.1 Setup . 81

4.8.2 Performance Measures . 81

4.8.3 Results on Quantification Parameters 83

4.8.4 Results on Relative Security . 84

4.8.5 Scalability of Proposed Approach . 85

4.8.6 Comparison with Existing Approaches 85

4.9 Security Analysis of Various Compiler Optimizations 86

4.9.1 Insecure Compiler Optimizations . 87

4.9.1.1 Dead Store Elimination . 87

4.9.1.2 Single Static Assignment . 87

4.9.1.3 Common Sub-expression Elimination 88

4.9.1.4 Loop-based Strength Reduction 89

4.9.1.5 Loop Invariant Code Motion 89

4.9.2 Secure Compiler Optimizations . 90

4.9.2.1 Copy Propagation . 90

4.9.2.2 Loop Fusing . 90

4.9.2.3 Loop Unswitching . 91

4.9.2.4 Loop Unrolling . 92

4.9.2.5 Loop Peeling . 93

4.9.2.6 Loop Distribution . 93

4.10 Conclusion . 94

5 TVIL: Translation Validation of Information Leakage of Compiler Opti-

mizations 95

5.1 Introduction . 95

5.2 Motivation . 96

5.3 Translation Validation Approaches . 98

5.3.1 Corresponding Paths . 100

5.4 Security Problem Formulation . 102

5.4.1 Security of Paths . 102

5.4.2 Relative Security of Programs . 104

5.5 Translation Validation Method for Relative Security of Programs 107

5.5.1 Algorithm Description . 107

5.5.2 Attack Models . 111

5.5.3 Minimizing Complexity by Look Ahead Properties 112

5.5.4 An Illustrative Example . 114

5.6 Correctness and Complexity . 115

5.6.1 Soundness and Termination . 115

5.6.2 Complexity Analysis . 117

5.7 Experimental Results . 117

5.7.1 Setup . 117

5.7.2 Performance Measures . 118

5.7.3 Impact of Look-ahead Properties . 121

5.7.4 Scalability of Proposed Approach . 122

5.8 Conclusion . 122

6 MQIL: Model Checking based Quantification of Information Leakage in a

Program 123

6.1 Introduction . 123

6.2 Motivation . 124

6.3 Our Quantification Approach . 126

6.4 Quantification Model for C Constructs . 126

6.4.1 Data types . 127

6.4.1.1 Variables . 127

6.4.1.2 Structures and Unions . 127

6.4.1.3 Arrays . 127

6.4.1.4 Pointers . 128

6.4.2 Assignment Operations . 128

6.4.3 Control Structures . 130

6.4.4 Loops . 130

6.4.5 Functions . 131

6.5 Quantification Parameters and Relative Security 133

6.5.1 Verifying Relative Security . 134

6.6 Experimental Results . 134

6.6.1 Setup . 134

6.6.2 Benchmark Characteristics . 135

6.6.3 Performance Measures . 136

6.6.4 Scalability of Proposed Approach . 138

6.7 Conclusion . 138

7 SRIL: Securing Registers from Information Leakage at Register Transfer

Level 139

7.1 Introduction . 139

7.2 High-level Synthesis Flow . 141

7.2.1 Preprocessing . 141

7.2.2 Scheduling . 142

7.2.3 Allocation and Binding . 142

7.2.4 Datapath and Controller Generation 143

7.3 Proposed Bubble Pushing on RTL Circuit Components 143

7.3.1 Logic gates . 144

7.3.2 Adder and Subtractor . 144

7.3.3 Multiplier . 145

7.3.4 Multiplexer . 146

7.3.5 Register . 147

7.4 Proposed Defence to Protect Registers . 147

7.4.1 Register Protection through Scan Access: An Example 149

7.5 Experimental Results . 151

7.5.1 Setup . 151

7.5.2 Performance Measures . 152

7.5.3 Overhead Analysis . 153

7.6 A Case Study on AES . 154

7.6.1 Discussion on TVLA . 155

7.7 Discussion . 156

7.8 Conclusion . 158

8 Conclusions and Future Perspectives 159

8.1 Summary of Contributions . 159

8.2 Future Directions . 161

8.2.1 Enhancement of Proposed Secure Register Allocation 161

8.2.2 Counter-example Generation . 162

8.2.3 Post-fixing of Leaks . 162

8.2.4 Security Verification of Optimization Phases 162

8.2.5 Verification of Other Security Properties 163

8.2.6 Bubble Pushing with Higher Corruption Rate 163

8.3 Conclusion . 163

Publications 164

References 166

List of Figures

1.1 Phases of a Compiler . 2

1.2 Examples of Information Flow: a) Explicit Information Flow, b) Implicit

Information Flow . 7

1.3 An Example of Dead Store Elimination (DSE): a) Source code, b) After DSE 8

1.4 Model Checker . 11

1.5 C to RTL generation through HLS . 12

1.6 Contributions of the Thesis . 13

2.1 Confidentiality property violation . 19

2.2 Integrity property violation . 19

2.3 Security violation by finite memory size . 20

2.4 Security violation by deterministic memory allocation 21

2.5 An Example of Dead Store Elimination (DSE): a) Source code, b) After DSE 27

2.6 An Example of a Scan Chain . 32

3.1 An example of register allocation with and without splitting 37

3.2 Conflict graph showing improvement on register usage with splitting 38

3.3 An example of register allocation with spilling and splitting 39

3.4 Conflict graph showing no improvement on register usage with splitting . . . 39

3.5 Control and data flow of (a) source program S, (b) after register allocation T 40

3.6 An Example of Dead Store Elimination . 41

3.7 Secure Greedy Register Allocation in LLVM 44

3.8 (a) Target Assembly Generated in Greedy RA, (b) Target Assembly Gener-

ated in Proposed Secure Greedy RA . 47

4.1 Under-tainting and Over-tainting problem in Conditional Speculation 56

xvi

4.2 An Example of (a) a Source snippet, (b) Corresponding FSMD M 59

4.3 Function call graph for Quantification of Information Leak 74

4.4 Kripke representation: (a) Corresponding FSMD M for Source snippet in

Fig. 4.2(a), (b) Kripke structure obtained from FSMD M 75

4.5 Measuring the quantification parameter 1 using the leak vector 76

4.6 Measuring the quantification parameter 2 using the leak vector 77

4.7 Measuring the quantification parameter 3 using the leak vector 77

4.8 Overall flow for relative security of information leakage 81

4.9 Unique Leaky Variables (#leakyuv) in M0 Vs M1 83

4.10 Leaky Variables (#leakyv) in M0 Vs M1 . 84

4.11 LoC Vs Execution Time (sec) . 85

4.12 Comparisons with other Taint Approaches 86

4.13 An Example of Dead Store Elimination . 87

4.14 An Example of Single Static Assignment . 88

4.15 An Example of Common Sub-expression Elimination 88

4.16 An Example of Loop-based Strength Reduction 89

4.17 An Example of Loop Invariant Code Motion 90

4.18 An Example of Copy Propagation . 91

4.19 An Example of Loop Fusing . 91

4.20 An Example of Loop Unswitching . 92

4.21 An Example of Loop Unrolling . 93

4.22 An Example of Loop Peeling . 93

4.23 An Example of Loop Distribution . 94

5.1 An Example of Conditional Speculation: (a) Source code, (b) Optimized code

after code motion . 97

5.2 (a) Source FSMD M0, (b) Corresponding optimized FSMD M1 98

5.3 (a) Conditional block merging, (b) Parallel paths merging 101

5.4 Function call graph for the translation validation method 112

5.5 Kripke representation: (a) Optimized FSMD M1 in Fig. 5.2(b), (b) Corre-

sponding Kripke structure obtained from FSMD M1 113

5.6 Overall flow for translation validation of information leakage 118

5.7 Number of Recursions with and without property checking 120

5.8 Number of Recursions with and without property checking for large benchmarks121

5.9 LOC Vs Execution Time (in Sec) with and without property checking 121

6.1 A Motivational Example: (a) Source code, (b) Generated source code 125

6.2 Overall flow of quantification model using CBMC 127

6.3 An Example of Conditional Speculation . 128

6.4 CBMC input for (a) the generated source program (GS) from P0 (b) the

generated optimized program (GOp) from P1 129

6.5 Handling Structure Construct . 130

6.6 Handling Function . 132

6.7 Implementation tool flow for quantification of information leak and relative

security verification . 135

6.8 LoC Vs Execution Time (in Sec) . 138

7.1 An Example of a C Code and its 3-address code 141

7.2 Scheduled DFG . 142

7.3 Functional unit binding with four multiplexers 143

7.4 Controller FSM . 144

7.5 Bubble pushing on AND gate . 144

7.6 Bubble pushing on XOR gate . 144

7.7 Bubble pushing on Adder and Subtractor . 145

7.8 Bubble pushing on Multiplier . 146

7.9 Bubble pushing on Multiplexer . 147

7.10 Bubble pushing on Register . 147

7.11 Overall Flow of Secure RTL Design . 148

7.12 (a) A sample RTL Design; (b) Generated RTL Design after bubble pushing;

(c) Generated RTL Design after scan chain insertion 150

7.13 Normalized Area for Bubble pushing . 153

7.14 Execution Time for Bubble pushing . 154

7.15 Experimental Setup for AES Case Study . 155

7.16 TVLA results comparison, (a) For unprotected AES (b) For protected AES . 156

List of Tables

3.1 Total Spills (#S) and Total Leaks (#L) in Register Allocations 48

3.2 Performance Overhead in Greedy Vs Secure Greedy Register Allocation . . . 50

4.1 Performance Measures for Benchmarks . 82

5.1 Performance Measures for Benchmarks . 119

6.1 Characteristics of Source code (S) and Generated Source (GS) code 136

6.2 Characteristics of Optimized (Op) and Generated Optimized (GOp) Code . 137

6.3 Performance Measures for Benchmarks in CBMC 137

7.1 Benchmark Characteristics . 151

7.2 Register content corruption value . 152

xix

List of Symbols

M0 Source FSMD

M1 Optimized FSMD

q00 Reset state of M0

q10 Reset state of M1

τ0,τ1 Traces in FSMDs M0 and M1

α, β Paths in FSMD

αs Start state of path α

αf Final state of path α

Rα Condition of execution of the path α

Sα Data transformations of the path α

γα Leak vector of the path α with no initial leak

γαs
Initial leak at αs

γαs

α Leak vector of the path α with initial leak at αs

γα|(c,hj) Corresponding bit bj for j
th high input in c of leak vector γα

γα|(vi,hj) Corresponding bit bij for j
th high input in ith program variable v (i.e., ni) of

leak vector γα

xx

γloop Overall leak of the loop

leakyh Number of leaky high inputs

leakyuv Number of unique leaky variables

leakyv Number of leaky variables

β ≃S α β is securely equivalent to α

β ≃R α β is relatively secure to α

β ≃C α β is conditionally secure to α

M1 ≃S M0 M1 is securely equivalent to M0

M1 ≃R M0 M1 is relatively secure to M0

1
Introduction

Compilers play a pivotal role in software development in modern computing systems. A

compiler converts a source program into a semantically equivalent target program. The

source programs are the human-readable high-level programs, and the target programs are

the assembly or machine-executable programs. A compiler performs a series of crucial tasks

as shown in Fig. 1.1 to achieve this [17]. It involves two parts: analysis and synthesis. In

Fig. 1.1, the first three steps are the analysis phase, and the last four steps are the synthesis

phase of the compiler.

1.1 Compilation Steps

A compiler generates the machine code from a source code using the following steps [98]:

1. Lexical Analysis: It is the initial phase of the compiler, and it scans the source code

and breaks it down into smaller units called tokens. It identifies keywords, operators,

and identifiers. This helps in simplifying the subsequent processing.

2. Syntax Analysis: It checks for the program structure and grammar rules of the source

language. This step produces an abstract syntax tree (AST) representing the program

1

Introduction

structure. In an AST, each interior node represents an operation, and the children of

the interior nodes represent the arguments of the operation.

Source Code Syntax Analysis Semantic Analysis

Intermediate Code
Generation

Lexical Analysis

Machine-
independent Code

Optimization

Machine-
dependent Code

Optimization
Code GenerationTarget Code

Fig. 1.1: Phases of a Compiler

3. Semantic Analysis: This phase uses the syntax tree and the information in the symbol

table to check the source program for semantic consistency with the language defini-

tion. It checks for type errors, variable declarations, and function calls, ensuring the

program adheres to the semantics of the language.

4. Intermediate Code Generation: The compiler generates one or more intermediate rep-

resentations in the process of translating a source code into machine executable code.

Syntax trees used in the syntax and semantic analysis phases of the compiler is one

form of intermediate representation. Three-address code is another form of interme-

diate code generated by compilers.

5. Machine-independent Code Optimization: This phase of the compiler attempts to

improve the intermediate code by enhancing the efficiency of the generated code con-

cerning faster execution, shorter code, less power, etc. It also aims to reduce the

memory usage while preserving the functional correctness.

6. Code Generation: It takes an optimized intermediate representation of the source

code and maps it into the target language. This phase produces the machine code or

assembly language that the machine can execute.

7. Machine-dependent Code Optimization: This phase is often referred to as low-level

code optimization. It generates code for a specific target machine or hardware archi-

tecture to maximize performance and efficiency. Different hardware platforms have

unique features, instruction sets, and memory hierarchies that can be leveraged for

2

Compilation Steps

optimization. In this phase, register allocation is performed, where registers and/or

memory locations are selected for each of the variables in the program.

The code optimization is a primary and crucial step in the compilation process. Machine-

independent optimizations focus on improving the code performance without any assump-

tions about the target hardware. These optimizations generate more portable code which

can run on various architectures. However, machine-dependent optimizations are specific

to a particular target hardware. Generic optimizations like common subexpression elimi-

nation, dead code elimination, constant folding, etc., are examples of machine-independent

optimizations. Machine-dependent optimizations include selecting the most appropriate in-

structions from the target architecture instruction set, assigning the registers to program

variables judiciously, minimizing cache misses and exploiting data locality by effective mem-

ory access patterns, choosing the addressing modes that align with the target architecture

capabilities, and many more. We discuss the code optimization phase of the compiler below.

1.1.1 Compiler Optimization

Modern compilers, like GCC, CLANG, and LLVM, have various optimization levels, like,

-O0, -O1, -O2, and -O3, that control the aggressiveness of optimizations. The -O0 level

disables almost all optimizations. This level focuses on the compilation time of the gener-

ated code. The -O1, -O2, and -O3, levels apply basic, moderate, and high optimizations,

respectively. In -O1, basic optimizations like common subexpression elimination, constant

folding, and dead code elimination are applied without a significant increase in compilation

time. The level -O2 applies function inlining, loop unrolling, loop fusion, etc., in addition

to the optimizations applied in -O1. This level focuses on improving the performance of the

generated code. The optimization level -O3 applies more aggressive optimizations like loop

interchange, loop distribution, instruction scheduling, etc., in addition to the optimizations

applied in -O2. Some of the optimizations are applied in almost all the levels, like copy

propagation and code motion, to improve the code quality and performance. The aggres-

siveness of these optimizations depends on the chosen optimization level and the capabilities

of the compiler. There are other levels of optimizations, such as -Os for size optimization,

-Ofast for faster execution, and -Og optimization for debugging. Compilers allow to specify

custom optimization flags or enable specific optimizations individually. The compilers -O1

and -Os optimization levels often include machine-independent optimizations. The other

3

Introduction

levels mostly include machine-dependent optimizations.

This optimizations must be implemented in a precise manner to ensure the correctness

of the compiler [83, 104]. Any deviation from the source code’s intended behavior by the

compiler can introduce bugs, vulnerabilities, and any undefined consequences in the com-

piled program. Now, we discuss the various techniques adopted for ensuring the correctness

and security of a compiler. We focus on verifying whether a functionally correct compiler

can lead to security vulnerabilities in the generated target code.

1.2 Correctness of Compiler

From a given source code, compilers aim to generate functionally equivalent target code

that would lead to faster execution in the target architecture. Functionally equivalence

means that for all possible inputs, both source and target codes terminate and produce the

same output values. A compiler is correct if it produces functionally equivalent target code

from all possible input programs. Since compilation is a complex process involving various

steps, as mentioned above, a compiler may have implementation bugs. In fact, many bugs

are reported on popular compilers like LLVM or GCC [5,6]. Consequently, a compiler may

produce functionally incorrect code. Hence, checking the correctness of a compiler is an

important step. Here, we present a limited list of approaches for verifying the functional

correctness of a compiler.

1. Testing verifies the outputs of the target code with the golden outputs for each test

input of the program. A failure in testing implies the presence of errors in the program.

It includes unit testing, integration testing, and regression testing [40].

2. Theorem Proving is the process of verifying the behavior of a system mathematically.

It requires formal methods and mathematical proofs [84–86].

3. Model Checking intends to verify whether the implementation meets the given speci-

fication which is provided as temporal properties [46].

4. Translation Validation proves that each translation of the compiler is functionally

correct. In other words, it checks equivalence between the source code and the target

code generated by the compiler [69, 81,102,111].

4

Security of Compiler

5. Static Analysis includes identifying the errors at the compile time of the programs. It

helps to identify the issues related to data flow and control flow.

6. Dynamic Analysis includes identifying the errors during the run time of the programs.

7. Fuzz Testing involves subjecting the compiler to a large number of randomly generated

inputs to uncover unexpected behaviors in the optimized code [41,50].

8. Symbolic Execution allows the exploration of different execution paths of a program

symbolically and further helps to analyze the effects of optimizations on program

behavior systematically [22, 77].

Informally, it may seem that a functionally correct compiler should also preserve security

properties, but this is not so. Correctness and security turn out to be two distinct issues.

In this thesis, we assume the optimized code is functionally correct to the source code, and

we are focusing on analyzing the security of the generated optimized code. We now discuss

the security of the compiler in the next Section.

1.3 Security of Compiler

An optimized code must be checked for various security properties to preserve source-level

security [107], like confidentiality, integrity, deterministic memory allocation, finite mem-

ory size, undefined behavior, information flow, well-typedness, well-bracketed control flow,

continuation manipulation for declassification leak, network-based threats, etc. Security

is an important concern in many embedded and cyber-physical systems. Therefore, it is

important to ensure that the generated code preserves the security properties of the source

program. There exist numerous works [76,111] on verifying the functional correctness of the

generated code. However, there is not much study on the security vulnerability of the gen-

erated code. Embedded compilers should be aware of security implications when applying

optimizations. As identified in the literature [56], the compiler optimizations are one of the

sources of security flaws introduced in the generated code. Some optimizations might inad-

vertently weaken the source-level security to improve the performance of the target code.

Security-aware compilation ensures that the compiler does not compromise security-critical

parts of the code during optimization.

5

Introduction

We have discussed various security properties in Section 2.1 of the next chapter. Infor-

mation flow security property has many application domains, like Android, WebAssembly,

JavaScript, etc. The compiler may introduce new information flow or modify the existing

information flow in a program due to some optimizations it applies. In our observation,

the impact of compiler optimizations on the security of a program can be measured best

by analyzing the information flow property. Therefore, in this thesis, we verify a program’s

information flow security property. Note that an optimized program may have more leaks

due to violating other security properties.

1.3.1 Information Flow Security Property

Information flow in a program concerned about the secure information flow, i.e., from high-

security or private data to low-security or public variables. The private data, like passwords

and cryptographic keys, are inputs of the program or read from tamper-proof memory,

whereas the public data are available through the variables and outputs of the program. The

user must mention the sensitivity of each input. Information flow is of two types: explicit

and implicit. The code of Fig. 1.2(a) presents an example of explicit/direct information

flow where the value of a high-security input h is stored in a low-security variable x. A more

subtle form of information flow emerges in the context of indirect information propagation,

as illustrated in Figure 1.2(b). In this scenario, we consider a situation where the attacker

lacks direct access to the memory but can still identify whether a value is 0 or not by

monitoring the output of the low-security variable x. This phenomenon is referred to as

implicit/indirect information flow because the mere presence of a high-security value in the

control condition of a branching construct influences the outcome of that branch. A target

programming language lacking safeguards against information flow is susceptible to such

leaks. Information flow, thus, violates the confidential property as well.

1.3.2 Information Flow Tracking in a Program

Taint analysis [31,42,43] is a widely applied technique to track information flow in a program

through taint flows. Tainted variables generally depend on user input directly or indirectly.

Generally, if a variable is untainted, it contains non-sensitive values. In other words, there

is no information flow from the sensitive inputs to the untainted variables. So, there is

no leak through the untainted variable. It has a wide range of practical applications such

6

Motivation and Objectives

1 void func (i n t h)
2 {
3 i n t x = h ;
4 . . .
5 }

(a)

1 void func (i n t h)
2 { i n t x ;
3 i f (h = = 0)
4 x = 0 ;
5 e l s e
6 x = 1 ;
7 . . .
8 }

(b)

Fig. 1.2: Examples of Information Flow: a) Explicit Information Flow, b) Implicit Information
Flow

as software vulnerability detection [74, 92], privacy leak detection [33, 71, 101], malware

detection [60] for android platform [128]. It generally has two categories: (i) Static taint

analysis [27, 37, 54, 64, 91] detects taint flows across all possible program paths at compile

time, and (ii) Dynamic taint analysis [47,75,120] detects taint flows at run time in a single

execution trace.

The major problem with the traditional taint analysis method is under-tainting and

over-tainting. It under-approximates the leak by ignoring the implicit information flow

[19,66] and over-approximates the leak by considering all variables defined inside a tainted

conditional block (i.e., the condition of the block is tainted) as tainted [37, 91]. Under-

tainting leads to false negative scenarios and over-tainting causes false positives. Moreover,

these works either ignore loops in the program or consider a single path inside a loop during

implicit leak identification. In this thesis, we plan to use the static taint analysis technique

to overcome the issue of both under-tainting and over-tainting.

1.4 Motivation and Objectives

This thesis primarily targets security verification of compiler optimizations with respect

to information flow in a program. In this Section, we discuss the motivations along with

objectives behind the research works carried out in this thesis.

7

Introduction

1.4.1 Security Analysis of Compiler Optimization Techniques

A functionally correct compiler optimization may not be always secure [56]. Consider dead

store elimination (DSE), which removes the dead code from the program. Let us analyze

the relative security between the programs before and after DSE in Fig. 1.3. The compiler

applies DSE to remove the store zero operation in Fig. 1.3(a), considering it as a dead

code, and generates the target code in Fig. 1.3(b). DSE is functionally correct, but it does

not preserve the security of the source program since the sensitive information remains in

variable x till the end of execution of the program. This gives an attacker more opportunity

to get sensitive information. Therefore, it is essential to identify and ensure that compiler

optimizations preserve the source level security [27,54,56,108].

1 void foo ()
2 {
3 x = password () ;
4 . . . / / use x ;
5 x = 0; //dead s t o r e
6 . . . / / r e s t o f the code
7 }

(a)

1 void foo ′ ()
2 {
3 x = password () ;
4 . . . / / use x ;
5
6 . . . / / r e s t o f the code
7 }

(b)

Fig. 1.3: An Example of Dead Store Elimination (DSE): a) Source code, b) After DSE

The security of common compiler optimizations and/or transformations like DSE, static

single assignment (SSA), etc., have been analyzed, and a secure version of the same has been

reported in [52, 53]. Let us now consider an important and essential optimization step in a

compiler, i.e., register allocation (RA), in which the variables of a program are mapped to

possibly fewer physical registers. Two or more variables can be mapped to a single register

if their lifetimes do not overlap [39, 112]. If the number of registers is not sufficient to map

the variables of a program, the compiler finds a set of suitable variables to split. During

the RA process, a compiler may choose to split a single variable into multiple registers if

the live ranges of those registers do not overlap. Live range splitting [48] helps to assign

the variables into a specific number of registers without using memory (spilling). Typically,

splitting is applied before spilling. However, for moderately sized programs, it is often not

feasible to allocate all variables to registers, which requires the use of spilling. Spilling [38]

involves storing the value of a variable in memory when there are no available registers. To

8

Motivation and Objectives

use a spilled variable, a load from memory is required before its use, and a store to memory

is necessary after the variable is defined. Although register allocation is a mandatory step

in any compilation flow, its security analysis has not been explored yet. With the above

motivation on security of compiler optimization and background of RA, we formulate the

following objective:

Objective 1: A compiler like GCC and LLVM converts a source program into a target

assembly after register allocation. Our first objective in this thesis is to analyze the security

issues in register allocation. We try to answer an important question: is register allocation

secure with respect to preserving information leakage? If not, propose a secure register

allocation approach for a real-time compiler.

1.4.2 Relative Security Verification

In secure compilation, the compilation steps are shown not to introduce any security vulner-

abilities. Secure compilation involves implementing security measures within the compiler

itself. Certifying the security of a compiler, however, is a hard problem [27,54]. One way of

securing compiler optimization is to develop a secure version of each compiler optimization,

such as secure dead store elimination [52], secure static single assignment [53], etc. These

secure versions of the optimizations are restrictive in nature. In certain situations, em-

ploying these secure optimizations on source code might be unnecessary, as many of these

optimizations are optional and depend upon the specific characteristics and behavior of

the source code. In contrast, register allocation is a mandatory optimization performed by

the compiler. Thus, we attempt to secure the register allocation in Objective 1. However,

ensuring the security of each compiler optimization is a challenging problem as modern com-

piler applies hundreds of optimizations. A realistic approach is the translation validation

of the security of compiler optimization in which the overall security of the source and the

optimized program will be compared to check if the optimization phase has introduced any

information leakage. Translation validation is a novel approach that could offer an alterna-

tive to the security verification of compiler optimization. This approach will formally check

if the target code is securely equivalent to the source program after each execution of the

compiler. Although there exist works for checking the functional correctness of compilers

using translation validation [14,69,77,81,87,122], none of them is applicable to the security

verification of compiler optimizations. Moreover, in the context of translation validation of

9

Introduction

information leakage of compiler optimizations for security correctness, the important ques-

tion arises: “How to define the relative security of the optimized program with respect to

the source program?” In the same context, another significant question arises: “How do

we measure the security of both source and transformed programs to check the relative

security between them?” Here, the relative security implies that the transformed program

is as secure as the source program. Note that, relative security does not ensure the security

of the source program, that there is no information leakage in the source program. The

optimized program can be relatively secure to the source one, and the source program can

still be leaky. To check the relative security between the source and optimized programs,

we have the following objectives in the thesis.

Objective 2: Our second objective is to quantify the information leakage in a program

concerning information flow. Our objective is to develop a precise taint analysis method

that primarily overcomes the problem of over-approximation in the prior works. Our goal is

to use this quantification method to verify the relative security between a source program

and its optimized program.

Objective 3: The third objective of this thesis is to develop a translation validation

approach to verify the relative security between a source program and its optimized program

based on the quantification method proposed to achieve our second objective. The idea here

is to perform a bi-simulation on both the source and optimized program in a path-based

manner 1.

1.4.3 Information Leakage Detection with Model Checker

The C Bounded Model Checker (CBMC) [2] is an open-source tool to check for the specified

functional correctness and security properties in the form of assertions. To handle loops,

it explores all execution paths within user-specified bounds. The CBMC can handle C

programs that involve arrays, functions, pointers, and all other constructs in C. It is com-

monly used in safety-critical and security-critical software development, where correctness

and reliability are paramount. It generates a counter-example if it detects a violation of a

specific property. The counter-example is a concrete execution trace that can demonstrate

the information flow property violation for our purpose. The basic flow of a model checker

is shown in Fig. 1.4.

1A path is an execution flow between two program points. We define the path formally in Section 4.3.1

10

Motivation and Objectives

Model Checker

Properties
Satisfied?

No
+

Counter Example

Security
PropertiesProgram Model

Yes

Fig. 1.4: Model Checker

Objective 4: Our next objective is to formally model the information flow property

of a program as user-specified assertions and utilize the potential of the CBMC to verify

them. Specifically, we aim to develop a practical tool to measure the information leak for a

compiler like LLVM. We then extend the CBMC based method to verify the relative security

between the source and the generated optimized code of a compiler.

1.4.4 Securing Registers from Information Leakage with High-
level Synthesis

We discussed so far the motivation towards a securing compilation intended for execution

on general-purpose processors. However, the generated machine code (typically assembly

language) by these compilers is generally not highly portable across different hardware

architectures, as it is optimized for a specific target architecture. Also, the execution time

of a program in general-purpose processors is generally high. The High-level synthesis

(HLS) [95] is used to convert high-level software descriptions, typically written in C or

C++ into a register transfer level design (RTL) in hardware description languages (HDLs)

such as VHDL or Verilog. Such RTL is executed in a specialized platform like a Field-

Programmable Gate Array (FPGA) or an integrated circuit (IC) can be obtained from it

for Application-Specific Integrated Circuit (ASIC) targets. The output of HLS is effectively

a hardware accelerator (HA) for the input program, which is much faster as compared to

11

Introduction

its execution in general-purpose processors.

Input Design
(C/ C++)

High-Level Synthesis
Tool

Output RTL
(Verilog)

Variables

Registers

Fig. 1.5: C to RTL generation through HLS

In objectives 2 and 4, we find the total information leakage in a program due to the

information flow. The variables in a source program are mapped to registers in the hardware

during HLS. Thus, sensitive information stored in the variables is now held by the registers

in the corresponding RTL generated by HLS. The basic flow of RTL generation is shown

in Fig. 1.5. We now formulate the following objective to analyze the information leakage

through the registers in the HLS generated RTLs.

Objective 5: The final objective of this thesis is to protect the sensitive registers

from leaking information at the RTL design generated by HLS. To achieve this, we aim

to propagate the information flow identified in the source program to the RTLs through

HLS. Our next objective is to corrupt the content of sensitive registers in the RTL without

changing the input-output functionality of the design. This will protect the registers from

leakage if the attacker has access to the registers in hardware.

1.5 Contributions

This thesis developed different approaches to quantify, verify, and mitigate the information

leakage of compiler optimizations. The entire research carried out in this thesis is comprised

of five contributory chapters. Each of these chapters is targeted to analyze the security of

a program from the perspective of information flow. An overview of the contribution of the

thesis is presented in Fig. 1.6. The contributions of the thesis are summarized below.

12

Contributions

Contribution 1:

SRA: Secure Register Allocation
for Trusted Code Generation

at Target Assembly

Contribution 3:

TVIL: Translation Validation of
Information Leakage

(Taint based)

Contribution 2:

QIL: Quantifying Information
Leakage in a Program

(Taint based)

Contribution 4:

MQIL: Quantifying Information
Leakage in a Program

(Property based)

Contribution 5:

SRIL: Securing Registers from
Information Leakage at RTL

through HLS

Relative Security
Verification of Compiler

Optimizations

Fig. 1.6: Contributions of the Thesis

1.5.1 SRA: Secure Register Allocation for Trusted Code Gener-
ation

Register allocation (RA) is an essential optimization performed by a compiler. This thesis

analyzes the security threat of RA concerning information flow. We show that RA is secure

when there is no splitting and spilling into memory. We also show that register allocation

with splitting is secure based on our attack model. Then, we show that RA can lead to

information leaks during spilling as it introduces new leaks through memory. Further, our

experimental results on various benchmarks show that RA in LLVM is leaky. To address

this vulnerability, we propose a secure RA approach in LLVM that mitigates the risk of new

leaks during spilling and generates a secure target assembly. Our experimental evaluation

on 21 randomly chosen benchmarks shows the effectiveness of our proposed approach in

terms of performance overhead. In the proposed secure register allocation approach, the

average increase in total instructions, cycles, block RThroughput, and resource pressure are

2.09%, 1.44%, 1.41%, and 0.43%, respectively.

13

Introduction

1.5.2 QIL: Quantifying Information Leakage for Security Verifi-
cation of Compiler Optimizations

In this thesis, we attempt to quantify the information leakage in a program for the security

verification of compiler optimizations. We demonstrate that static taint analysis is applica-

ble for security verification of compile optimizations. We develop a completely automated

approach for quantifying the information leak in a program in the context of compiler op-

timizations with respect to information flow. We proposed a leak propagation vector to

capture the information leak at various program points. We introduced cutpoints in a pro-

gram to efficiently analyze the implicit flow and propagate the leaks to subsequent paths to

measure the overall information leak in a program. Our method avoids many false-positive

scenarios due to implicit flow. It can handle leaks in a loop and finds a fixed point of leaks in

loops. We propose three quantification parameters and verify the relative security of source

and optimized programs, considering the optimization phases of a compiler as a black box.

The soundness, termination, and complexity of the proposed approach are also presented.

We use some Computation Tree Logic (CTL) properties to reduce the recursive calls and,

thus, the overall complexity of the proposed quantification method. To check properties, we

create a define-use version of the program on which properties are checked. This avoids state

exploration problems during model checking. Our experimental evaluations in SPARK [68]

show that the SPARK compiler is actually leaky, as it introduces new leaks during opti-

mizations for 15 out of the total 20 cases. We present the results for the average execution

time with respect to the lines of code and it shows that our implementation is linear for our

taken benchmarks in the experiment.

1.5.3 TVIL: Translation Validation of Information Leakage of
Compiler Optimizations

The third contribution of this thesis is to develop a translation validation of information

leakage for the optimization phase of the compiler without considering any intermediate

information from the compiler. The proposed method measures the information leakage in a

path, uses a concept of leak propagation over paths and loops (proposed in our Contribution

2), and defines the relative security between the source and optimized programs. The

proposed method bi-simulates both source and optimized programs at the path level and

propagates the information leaks to the subsequent paths recursively for checking the relative

14

Contributions

security between the programs. Three different path-level relative security are formulated,

namely secure paths, relatively secure paths, and conditionally secure paths. This thesis

considers two attack models based on different observation points to access the local memory

and proposes different translation validation approaches. We propose various look-ahead

properties in CTL to reduce the overall complexity of our proposed method. The correctness,

termination, and complexity of the translation validation method are also provided. The

experimental results in the SPARK compiler on various benchmarks show that the optimized

program is not relatively secure as it does not preserve source-level security in 13 out of the

total 21 cases. The average speed-up of the translation validation method with property

checking is 3.67X times compared to the same without property checking. We also show

the linearity of our implementation concerning the code size and the execution time.

1.5.4 MQIL: Model Checking based Quantification of Information
Leakage in a Program

The information leakage in a program due to compiler optimizations opens up side-channel

attacks through which secret inputs like keys may leak via intermediate variables in cryp-

tographic applications. In this thesis, we track the information flow in a program using

a bounded model checker CBMC. To achieve this, we take our proposed information flow

tracking concepts in Objective 2 and model the same as a set of assertions, which will be

checked by CBMC. Conceptually, we create two copies of the original program and add

assertions that check if a variable can have two different values in two copies of the program

for different values of a sensitive input. The number of assertions failed by the CBMC tool is

the overall information leakage of the program. We developed a practical tool for compilers

like LLVM to quantify the information leakage that handles any C program. The proposed

approach also verifies the relative security of LLVM IRs. To achieve this, we generate C

code from the optimized IR using llvm2c [11] and then use the above method of quantifying

information leakage in both source and optimized programs for checking relative security.

In our experiment, we run the proposed approach for various cryptographic applications

and show that it can successfully track information leakage. Our experiments reveal that

LLVM introduces information leakage during optimizations as the optimized program is not

relatively secure to the source program for three out of the four cryptographic benchmarks

in our experiment. Our proposed method takes a negligible amount of time to quantify

15

Introduction

information leaks in cryptographic programs like Advanced Encryption Standard (AES).

Thus, it is a practical and scalable method for the quantification of information leakage in

a program.

1.5.5 SRIL: Securing Registers from Information Leakage at Reg-
ister Transfer Level

The scan chain is used for the design for test (DFT) technique for testability improvement

in sequential circuits [15,103]. Through the scan chain, the values of the internal registers of

a design can be updated or retrieved at any point of execution. This scan chain of a design

can be used as a side channel to retrieve the secret keys of a cryptographic implementation

on hardware. This thesis proposes a method for protecting the registers from information

leakage with the help of HLS and bubble pushing against such scan-based side-channel

attacks. First, we perform a taint analysis on the behavioral specification to identify the

variables that may potentially leak sensitive information explicitly or implicitly using our

method proposed described above. We then mark the corresponding registers that store

those leaky variables during HLS. In this thesis, we also introduce bubble-pushing across

various RTL components like adder, multiplier, etc. Finally, we propose an RTL bubble-

pushing algorithm starting from sensitive registers. This bubble pushing actually corrupts

the register content and thus breaks the direct correlation between the cryptographic keys

and the register content. Thus, even register access through a scan chain won’t be useful to

retrieve sensitive inputs. The average increase in area overhead is 3.86% and timing overhead

is 4.58%. Thus, our proposed scheme has a negligible performance overhead. Moreover, our

experiment on the AES based on the Test Vector Leakage Assessment (TVLA) shows that

our proposed bubble-pushing approach protects against power side-channel attacks.

1.6 Organization of the Thesis

The thesis is organized into eight chapters. The contents of each of the eight chapters are

summarized as follows:

• Chapter 2: This chapter provides the literature survey on the state-of-the-art related

to this dissertation.

16

Organization of the Thesis

• Chapter 3: This chapter presents SRA, the method for securing register allocation

with spilling and splitting.

• Chapter 4: This chapter presents QIL, the method to quantify the information

leakage in a program for security verification of compiler optimizations.

• Chapter 5: This chapter presents TVIL, the translation validation method for infor-

mation leakage of compiler optimizations.

• Chapter 6: This chapter presents MQIL, the approach to measure the information

leakage and verify the relative security using the model checker CBMC.

• Chapter 7: This chapter presents SRIL, the protection of the registers from scan-

based side-channel attacks.

• Chapter 8: Finally, this chapter concludes the thesis. The future perspectives in this

domain are discussed in this chapter.

In each contribution chapter, the proposed algorithms are presented with adequate examples.

The correctness and complexity of the algorithms are also presented wherever applicable.

We have also presented detailed experimental results for each contribution.

;;=8=<<

17

2
Background and Literature Survey

In this chapter, we discuss the background on the security of compilers, followed by the liter-

ature related to the security of compiler optimizations. This survey aims to identify the gaps

in the existing approaches for security verification in the context of compiler optimizations,

which have been addressed in this thesis.

2.1 Target Level Attacks

In this Section, we discuss various target-level attacks apart from the information flow

property discussed in Section 1.3.1 that are possible on an optimized or target code by

a target-level attacker. To illustrate what attackers can do with compiled code, here we

present examples of the most relevant threats a secure compiler needs to mitigate.

2.1.1 Confidentiality

To preserve the confidential property of the compiled code, it should be protected from

unauthorized access to sensitive data. Consider the Java source code given in Fig. 2.1. The

‘secret’ variable is employed to store sensitive data and is isolated from other source-level

code, ensuring its inaccessibility to potential attackers at the target level. In the target

language, memory locations are typically identified by natural numbers, which means that

18

Target Level Attacks

an attacker could potentially ascertain the address where the ‘secret’ is stored. Through the

process of dereferencing the numeric representation of the ‘secret’ location, attackers can

compromise the code’s intended confidentiality property [12].

1 p r i va t e i n t s e c r e t = 0 ;
2 pub l i c i n t s e t S e c r e t () {
3 s e c r e t = 1 ;
4 re turn 0 ;
5 }

Fig. 2.1: Confidentiality property violation

2.1.2 Integrity

To preserve the integrity property of the compiled code, it should be protected from inten-

tional unauthorized updates to sensitive data. The ‘proxy’ function in Fig. 2.2 assigns the

value 1 to the ‘secret’ variable and subsequently invokes the ‘callback’ function. The ‘secret’

variable remains inaccessible to the code within the ‘callback’ function at the source level.

However, if this code is compiled into a target language that permits manipulation of the

call stack, it can potentially access and modify the ‘secret’ variable. Similarly, malicious

target-level code can tamper with the return address stored on the stack, disrupting the

expected flow of computation. This breach of security violates the integrity property [12]

for the source code.

1 pub l i c i n t proxy () {
2 i n t s e c r e t = 1 ;
3 ca l l ba ck () ;
4 re turn 0 ;
5 }

Fig. 2.2: Integrity property violation

2.1.3 Finite Memory Size

When dealing with memory management, the size of available memory can significantly

impact the behavior of a component [73]. However, source languages often do not explicitly

19

Background and Literature Survey

address memory size constraints. Consider a source language example shown in Fig. 2.3,

which includes a dynamic memory allocation operation ‘new.’ The ‘kernel’ function allocates

’n’ new objects, invokes a ‘callback’ function, and executes security-critical code before

returning 0. At the source level, the security-critical code will consistently execute. However,

when this code is compiled into a language that confines memory to accommodate only ‘n’

objects, code execution can be disrupted during the ‘callback’ function. If the ‘callback’

function attempts to allocate an additional object, the execution of the security-critical

code may be compromised and not executed as intended.

1 pub l i c i n t ke rne l (n) {
2 f o r (i = 0 to n){
3 new Object () ;
4 }
5 ca l l ba ck () ;
6 // s e cu r i t y−r e l e van t code
7 re turn 0 ;
8 }

Fig. 2.3: Security violation by finite memory size

2.1.4 Deterministic Memory Allocation

Dynamic memory allocation is a feature that introduces complexities [106], as demonstrated

in the code depicted in Fig. 2.4. In this example, the code allocates two objects and subse-

quently returns the first one. While at the source level, ‘Object y’ remains inaccessible, this

is not necessarily true in certain target languages. A target-level attacker with knowledge of

the memory allocation order can predict the allocation location of an object and manipulate

its memory contents. The attacker could tamper with ‘y’ by either making careful guesses

or calculating its address.

2.1.5 Discussion

These source-level security properties discussed above are important to verify during com-

piler optimizations. However, this thesis targets the security of compiler optimizations in

the information flow perspective (presented in Section 1.3.1) of a program. Specifically, we

20

Secure Compilation

1 pub l i c Object newObjects () {
2 Object x = new Object () ;
3 Object y = new Object () ;
4 re turn x ;
5 }

Fig. 2.4: Security violation by deterministic memory allocation

focus on checking the relative security of the optimized codes with respect to the source

program. It may be noted that a target program may not be relatively secure to the source

program due to the violation of other security properties.

2.2 Secure Compilation

Secure compilation refers to the process of transforming human-readable or high-level source

code into machine-executable instructions while preserving the security properties of the

software. These security properties primarily involve confidentiality, integrity, authenticity,

and availability. The compilation process introduces potential vulnerabilities, including in-

formation leaks, control flow alteration, memory corruption, code injection points, and issues

related to code optimization, etc. Secure compilation seeks to address these vulnerabilities

and maintain the security goals by incorporating security-aware techniques and method-

ologies into the compilation process. This may involve type-based analyses, information

flow tracking, proof-carrying code, language-based security, control flow integrity, formal

verification methods, code transformation and obfuscation, and other security-enhancing

measures.

The correctness-security gap of compiler optimizations has attracted some attention

in recent times. The security impact of compiler optimizations identified in CWE-14 [3]

and CWE-733 [4] discusses the dead store problem. Chen et al. [41] and Cuoq et al. [50]

use compiler fuzzers, providing a practical approach to discovering compiler bugs. Test

case reduction tools are applied to minimize the input size after discovering a bug [113].

Wang et al. [131] developed a STACK system that finds bugs arising from undefinedness

optimizations. Their model detects the patterns of undefined behavior. Molnar et al. [97]

developed a security model that detects and removes the control-flow side-channel attacks.

Their security model relies on source-to-source transformations, usually exhibiting high

21

Background and Literature Survey

performance and memory overhead.

Besson et al. [29] proposed a formal definition of information flow preserving (IFP) pro-

gram transformations that consider the attacker’s knowledge to determine the information

leak of a program. They relate the knowledge of the attacker before and after the pro-

gram transformation for the security validation of the transformation. The authors [30]

then proposed a compositional proof principle for proving the information flow preservation

of a transformation. The authors also show the automatic verification and mitigation of

information-flow leaks that are introduced by dead-store elimination and register allocation

optimizations using a translation validation technique. They model the information leak of

a program in which attackers can observe the memory at some fixed observation points.

The authors in [100] developed a translation validation method for secure compilation.

Their work expressed the security properties using automata, which operate over a bundle

of program traces. They formulate the refinement relations in the context of secure compi-

lation, which can be used to show that the security properties of a program are preserved

after its transformation. However, there is no implementation proof of their methodology,

which is also difficult for a real compiler.

A fully abstract compiler translates equivalent source-level components into equivalent

target-level ones. Fully abstract compilation (FAC) preserves and reflects the equivalence of

behaviors between the original and compiled programs in all untrusted execution contexts.

The authors in [106] provided a FAC scheme that considers strongly typed object-oriented

language as the source and untyped assembly language as its target.

In [109], authors explored a robustly safe compilation (RSC) criterion for proving the

secure compilation. Their criterion ensures that the compiled code maintains the essential

safety properties of the source program when exposed to any adversarial interactions with

the compiled program. They claim that RSC has security guarantees and generates more

efficient compiled code than FAC. The authors in [13] provided a comprehensive characteri-

zation of trace properties for correctly compiled programs, aligning with both the source and

target properties. Their framework naturally accounts for various complexities, including

undefined behavior, resource limitations, different value domains, side channels, and ab-

straction mismatches. Their approach extends to definitions of secure compilation, ensuring

protection when linking compiled code with adversarial components. Recent approaches on

secure compilation can be found in [55,57,58].

22

Security Analysis of Compiler Optimizations

2.2.1 Discussion

Authors in [29, 30, 100] validated their secure compilation approach using the CompCert

C compiler which is a compact formally developed compiler. The authors in [100] clearly

mentioned that the mathematical proof for secure compilation is infeasible for compilers like

GCC or LLVM with millions of lines of code. Moreover, the FAC and RSC proposed in [106]

and [109] are targeting only assembly languages. Thus, secure compilation techniques are not

feasible in practice for realistic compilers. In addition, the secure compilation schemes are

computationally intensive and may not be scalable to large and complex software systems.

The next section discusses the security analysis of various compiler optimization techniques

in the literature.

2.3 Security Analysis of Compiler Optimizations

Researchers attempt to analyze the security of individual optimizations applied by a compiler

and propose a secure version of the insecure optimizations found.

2.3.1 Dead Store Elimination

Deng and Namjoshi [52] proposed a leaky triple (discussed in Section 2.4.1) formulation

of security and check the relative security of a program before and after transformation.

The authors present a polynomial-time algorithm for secure dead code elimination and

introduce a refinement relation for the security of other compiler transformations. Their

approach allows the removal of a dead store to variable v under three scenarios as follows.

• Scenario 1: If v is post-dominated by other assignments to v, it is secure to remove

it.

• Scenario 2: If v is untainted at the final location and v is untainted at the location

immediately before a dead store, it is secure to remove it.

• Scenario 3: If v is untainted immediately before the dead store, no other assignment

to v is reachable from the dead store, and the store post-dominates the entry or start

node, then it is secure to remove.

23

Background and Literature Survey

The generated code does not ensure there is no dead store, as it may hamper the source-

level security. Thus, it allows the elimination of only the dead stores, which does not affect

the leakage of sensitive information.

2.3.2 Single Static Assignment

In [53], the authors propose a mechanism unSSA to restore the security of single static

assignment (SSA) transformation. The unSSA ensures that the generated program after SSA

is at least as secure as the source program. Their approach reverses the SSA transformation

and assigns multiple versions of a variable with the same name to remove the exposure of

new leaks through the intermediate values of the variable. They partition the variants of

the variable into groups based on some properties and rewrite the name of every variable in

the group with a new name, i.e., the name of the representative variable in the group.

2.3.3 Register Allocation

In [30], the authors investigate the information flow preservation of register allocation in

the CompCert C compiler, which relies on register and variable mapping information. They

perform a matching analysis at each program point during the execution of both the source

program and the transformed program after register allocation. When there is a spilling to

a memory location exists in the transformed program, their matching analysis returns there

is no corresponding mapping with a source variable. To fix this information leak, they store

zero in all those variables at the end of the program.

The authors in [59] protected the register spilling with respect to integrity and confiden-

tiality. Their work focused on implementing a register spilling protector for the AArch64

backend of the LLVM compiler framework. Their implementation uses generalized ARM

pointer authentication. Their register spill protector can identify the modifications done on

the register spills and encrypt the memory content to ensure confidentiality, which renders

the attackers without the knowledge of the original data stored in the memory.

2.3.4 Other Optimizations

D’Silva et al. [56] studied various compiler optimizations to identify the correctness-security

gap. They highlight and formally analyze the role of compiler optimizations in introducing

security vulnerabilities. The authors identified that the security gap could be analyzed in

24

Security Analysis of Compiler Optimizations

terms of observables, i.e., it requires more information about the internal state to be observ-

able than that needed to analyze the correctness. The paper mentions several approaches

to detect security violations. They conclude that the gap arises due to the techniques that

do not model the state of the underlying machine. The difficulty of checking security has a

further impact on translation validation.

The SWIPE algorithm [64] performs a source-to-source transformation that adds ad-

ditional instructions to erase potentially sensitive data immediately after its use, thereby

improving security at the source level. Their approach aims to reduce the lifetime of sen-

sitive variables by performing static analysis to identify the locations for adding the erase

instructions in the original program. However, the effectiveness of SWIPE may be limited

after compiler optimizations have been applied.

2.3.5 Discussion

Register allocation is a mandatory transformation for any source program to generate the

machine code. Thus, it should be properly investigated from the security point of view.

Authors in [30] consider the register variable mapping information for security analysis of

the register allocation. However, in modern compilers like LLVM, obtaining such mapping

information is challenging due to variable renaming and temporary variable introduction in

the IR. Therefore, our analysis of the security of register allocation does not rely on any

mapping information from the compiler in Chapter 3. Although register allocation is shown

as not an IFP in [30], the security of register allocation in all aspects, considering spilling

and splitting, has not been investigated yet. Moreover, none of the existing works provide

a secure register allocation algorithm. The authors in [59] targeted the AArch64 backend

to secure the register spilling. In Chapter 3, we have analyzed the security issues of register

allocation with spilling and splitting. We have also provided a secure register allocation

scheme for a widely used compiler targeting the x86 64 CPU architecture.

Security analysis of individual compiler optimization techniques is not feasible in practice

since a compiler applies hundreds of optimizations to improve code performance. Moreover,

the exact optimizations required for a program to enhance the target code are unknown.

Thus, the user cannot apply the required optimizations manually to preserve the source-level

security. It is also possible that some of the secure optimizations may or may not be applied

by a compiler. Therefore, we need a precise analysis for relative security verification in a

25

Background and Literature Survey

program considering the applied optimizations as a black box. This thesis aims to verify the

relative security between the source and optimized programs using a translation validation

approach which has been addressed in Chapters 4 to 6.

2.4 Security Measurement Approaches

The existing works on securing individual compiler optimizations use primarily two security

measurement approaches: leaky triple notion (non-interference) and taint analysis to verify

the security with respect to information flow in a program. We now discuss these approaches

in detail with their pros and cons in the following.

2.4.1 Leaky Triple Notion (Non-interference)

In a program, variables can be partitioned into high-security (sensitive) or low-security (non-

sensitive) types. Program variables or state variables are always of low-security type. Input

variables can be of high or low-security type. The inputs and outputs are the same for both

the source and transformed programs. Therefore, the security types of the inputs are the

same for both source and transformed programs. The information leakage of a program

using leaky triple notion in [52] is defined as follows:

Definition 2.4.1 (Information Leakage). Let us have three values, namely a, b, and c,

where a and b are the values of a high variable such that a ̸= b and c is a low variable value.

There are two input pairs (a, c) and (b, c). If, for a program S, the computation of S on

both the input pairs either differs in the sequence of output values or the value of one of

the low variables differs at their final states when both terminate, then program S is said to

leak information and (a, b, c) is called as a leaky triple for program S. We have taken this

definition from [25].

The correct transformation is defined as follows: Program transformations do not alter

the set of input variables. A transformation from program S to program T may alter the

operations and control structure of S or the set of state variables. The transformation is

correct if, for every input value a, the sequence of output values for executions of S and T

from the input value a is identical.

Secure Transformation with respect to Leaky Triple: An optimized program T is said

to be secure if all the leaky triples that belong to T also belong to the source program

26

Security Measurement Approaches

S. It ensures relative security, i.e., T is as secure as S. It essentially ensures that compiler

transformation has not introduced any new leak in the optimized program, i.e., the optimized

program is not more leaky than the source program. Note that it does not guarantee the

security of the source program. The source program may be more leaky than the optimized

program. Secure information flow has been discussed in detail in [27,54].

2.4.1.1 Problem with Leaky Triple

Suppose that the transformation from S to T is correct. Consider a leaky triple (a, b, c) for

T . If the computations of T from inputs (H = a, L = c) and (H = b, L = c) differ in their

output from correctness, this difference must also appear in the corresponding computations

in S. Hence, the only way in which T can be less secure than S is if both computations

terminate in T with different values for low variables while the corresponding computations

in S terminate with identical values for low variables.

1 void foo ()
2 {
3 x = password () ;
4 . . . // use x ;
5 y = x ;
6 . . . // use y ;
7 x = 0; //dead s t o r e
8 }

(a)

1 void foo ′ ()
2 {
3 x = password () ;
4 . . . // use x ;
5 y = x ;
6 . . . // use y ;
7
8 }

(b)

Fig. 2.5: An Example of Dead Store Elimination (DSE): a) Source code, b) After DSE

The function foo(), in Fig. 2.5 reads a password, and later it is cleared from memory

after its use. After DSE, the statement ‘x = 0’ is removed as it is a dead store. The leaky

triple notion considers both the programs in Fig. 2.5 as the same secure because both leak

the same password. But in reality, this is not true because before DSE, the password leaks

through only low variable y, whereas after DSE, it is leaked through both x and y. Thus, the

leaky triple notion cannot always quantify the leakage. It considers a more leaky program

as same secure as the source.

The relative security of two programs, S and T , cannot be guaranteed by assuring that if

a leaky triple belongs to T , it also belongs to S. This issue can be resolved by the following

27

Background and Literature Survey

approach to ensure the relative security of T and S. If a high input gets leaked in T , it must

leak in S irrespective of the low variables. Moreover, generating a leaky triple through the

leaked high input in T is always possible. Nevertheless, we cannot guarantee the same leaky

triple would also be there in S due to the fact that both programs may not have common low

variables as new temporary variables are introduced during the optimizations. In contrast,

it is not required to ensure the same leaky triples belong to both T and S because if an

attacker can generate a leaky triple for T , there would always be a possible leaky triple for

S as well through the leaky high input irrespective of the low variable. Thus, leaky triple

is not a feasible approach to verify the relative security between the source and optimized

programs.

2.4.2 Taint Analysis

In a program, taint analysis [37] is the process of finding the taintness of each and every

variable at any program location. Taint is a boolean set: {T : tainted, U : untainted}. Using
taint analysis, we can track the information flow attacks as discussed in Section 1.3.1 and

Section 1.3.2. A taint environment is a function te: V ariable → Taint. It assigns a taint

value to each program variable name. The taint environment te can be extended in the

following way:

1. Constant: Each constant is considered as untainted.

te(c) = U , if c is a constant.

2. Variable: The taint value of variables is obtained from its current taint value.

te(v) = te(v), if v is a variable.

3. input(): The return value of the input() is input sensitive. So, it is tainted.

te(input()) = T

4. Operator with T : If one operand x is tainted for an assignment operation of the form

v′ = x < op > v, the taint of left hand side variable v′ is tainted,

te(T < op > v) = T

if v is a variable in an expression and op is a binary arithmetic operator.

5. Operator with U : If one operand x is untainted for an assignment operation of the

form v′ = x < op > v, the taint of left hand side variable v′ depends on the taintness

28

Security Measurement Approaches

of the other operand v,

te(U < op > v) = te(v)

if v is a variable in an expression and op is a binary arithmetic operator.

6. Expression: The taint type of an expression can be obtained from the taint types of

each subexpression,

te(v1 < op > v2 ... < op > vn) = opni=1te(vi)

if v1, v2, ... vn are variables in an expression and ops are binary arithmetic operators.

7. Assignment: The taintness of the assigned variable changes according to the taintness

of the right-hand side expression.

8. Conditional: If the condition is tainted, all the assignments made in both branches

will also be tainted because of control dependency; otherwise, the taintness is ob-

tained from data dependency only. This is basically over-approximating the tainting

of variables.

9. While loop: If the condition is tainted, all the assignments in the branch will also be

tainted; otherwise, the assignments may get tainted in further iterations.

Here, we discussed the taint analysis in brief. The detailed analysis is given in [37]. Now,

we discuss the dynamic and static taint analysis in detail below.

2.4.2.1 Dynamic Taint Analysis

Dynamic taint analysis [24, 47, 51, 75, 120, 130, 134] computes the taintness of variables at

run time. Since it considers a single execution trace, it has all available information during

the computation of variable taintness. However, the coverage analysis is very weak in

dynamic taint analysis, and some information leaks may be completely ignored. Moreover,

generating test cases with high coverage is a non-trivial task. Also, it fails to provide

any leak information or taint flows for the code which is not executed. Thus, researchers

supplement the static analysis for dynamic taint analysis approaches as well for various

applications [20,135]. Since our objective in this thesis is to identify the leakage at compile

time, dynamic taint analysis is not applicable to our purpose.

29

Background and Literature Survey

2.4.2.2 Static Taint Analysis

Static taint analysis computes the taintness of variables at compile time. Thus, it takes all

the execution traces of a program. Many static taint analysis approaches in the literature

consider only explicit flows in a program, i.e., it under-approximates the leak [19, 66, 88].

This leads to false negatives by ignoring the implicit flows in the program.

Authors in [37] detected a taint dependency sequence for security vulnerabilities using

static taint analysis. However, their approach over-approximates the leak due to implicit

flows. They consider a single path inside a loop while finding the fixpoint. A static in-

formation flow analysis is performed in [91] to handle implicit flows. The authors studied

the effects of implicit flows over explicit flows and introduced the implicit edges in the flow

graph. They have illustrated the usage of their approach on three different applications:

security violation detection, type inference, and the effects of shared-thread variables on

thread-local variables. They conclude that implicit flow detects additional violations in

these applications. However, both approaches in [37, 91] over-approximating the implicit

leak. Also, they have ignored the security violations due to loops in the program.

Authors in [34] studied various static analysis tools [19, 66, 88] that detect information

flow for Android applications and concluded that these tools are suffering from under-

tainting by ignoring the implicit flows. A static taint and initialization analysis approach

called STILL developed in [129] which detects exploit code such as self-modifying code and

indirect jump in web services. Another static analysis approach called EdgeMiner [36] is

proposed for the Android framework, which automatically detects the implicit control flow

transitions by generating API summaries. Their approach performs an inter-procedural

backward data flow analysis to detect the implicit flows. Authors in [119] proposed a generic

framework to track explicit flows by taint checking. They studied a few existing tools to

show the soundness by their approach of explicit secrecy.

The state-of-the-art works proposed different taint analysis techniques for different ap-

plications, either statically or dynamically. Recent works also propose hybrid techniques

considering both static and dynamic approaches to detect taint flows. Hybrid techniques

use a dynamic supplement to static analysis [136] for their approach or a static supplement

to dynamic analysis [20] to avail the combined benefit of both approaches. Since our objec-

tive is to identify the leakage at compile time, dynamic and hybrid taint analysis techniques

are not applicable to our purpose.

30

Side-channel Attacks through Scan Access

2.4.3 Discussion

Although the static taint analysis has wide applications, none of the existing work has

targeted compiler security verification. In some cases [52,53], existing static taint approaches

[27, 54] are used to analyze a specific compiler optimization. However, such static taint

analysis solutions have over-tainting problems, as discussed above. Also, no existing works

give a detailed method to detect information leaks due to both explicit and implicit flows

considering multiple paths inside a loop. Therefore, our second objective in the thesis is

to develop a static taint analysis to quantify the leak in a program. The method should

consider the possible impact of code optimizations.

There are some efforts in making individual transformation secure in the literature.

However, there is limited study on identifying the relative security of the overall compiler

optimizations considering the applied optimizations as a black box. Moreover, none of the

literature considers the combination of explicit flows, implicit flows, and the fixpoint of

a loop in an individual program for translation validation. In Chapter 4 and Chapter 5,

we attempt to validate the information leakage after compiler optimizations, considering all

possible leaks in a program. Finally, the approach is implemented on a modern-day compiler

to validate the relative security between the source and optimized programs.

None of the existing works in the literature attempt to quantify and verify the informa-

tion leak using property-based testing on a model checker. Thus, in Chapter 6 we aim to

achieve the same by modeling the security properties as assertions in the input program.

Finally, execute the program on a model checker to quantify and verify the relative security

of compile optimizations.

2.5 Side-channel Attacks through Scan Access

The side channel attacks include timing analysis [32], differential power analysis [80], and

scan-based attacks [49,89,118]. Here, we first discuss the purpose of a scan chain and then

the related approaches to scan-based attacks and their countermeasures.

A scan chain is inserted into the design after the generation of the RTL for testing

purposes. An example of a scan chain is shown in Fig. 2.6. Three registers, R1, R2, and

R3, are connected in the scan chain as flip-flops FF. When the scan enable signal SE is

1, it takes input from the scan in port SI and generates output through the scan out port

SO. Otherwise, the circuit takes input from the primary input PI and generates the output

31

Background and Literature Survey

PO

SI SO

SE

FF
R1

FF
R2

FF
R3

CLK

Combinational Circuit
PI

Reg

Fig. 2.6: An Example of a Scan Chain

through the primary output port PO. Using SI, the test engineer can set a fixed value to

the registers in n-cycles (where n is the scan chain length). Next, he runs the design with

SE=1 for one cycle. The registers will be updated with the values from the design. He then

takes out those values through SO in n-cycles (by keeping SE=1). He then compares the

design outputs with the expected outputs to identify any bug in the internal circuit due to

the manufacturing process.

The attacker can utilize this scan chain of IC to get sensitive internal information of

the design. To protect the ICs from scan-based side-channel attacks, researchers primarily

proposed countermeasures to protect the scan chain with additional keys. Authors in [82]

propose a Lock-and-Key technique to secure the design from scan-based side-channel attacks.

Their lock and key technique divides the scan chain into subchains of equal length and

randomizes the access to these subchains for the untrusted user. Authors in [49] show

that obfuscating the scan chain order does not preserve security. Attackers can break this

protection if they know the total states in the scan chain. Authors in [78] propose a dynamic

scan-locking technique called Encrypt Flip-Flop. They encrypt the output of some flip-flops

by adding MUXes at their outputs. The added Mux acts as a key gate, connecting the key

to the select line of the Mux. Their technique prevents unauthorized access to scan data.

Recently, authors in [126] have proposed a method to detect and prevent scan attacks to

secure cryptographic chips with a test key. It can prevent both differential and signature

scan-based attacks. In [89], the authors propose an attack to break the scan data protection

in [78]. The authors in [89] analyze the pseudo-random number generator (PRNG) circuit

to get the original seed used by [78] to generate obfuscated scan data. Recently, authors

have proposed an SAT attack called ScanSAT in [18] to extract the key by extracting the

32

Conclusion

logic-locked version of the scan obfuscated circuit.

2.5.1 Discussion

All the existing works protect the scan chain by obfuscating the scan access with additional

key bits. Moreover, those techniques are vulnerable to various attacks as shown above. The

real issue is the leakage of sensitive information through the registers, which enables side-

channel attacks. However, none of the existing work targets obfuscating or corrupting the

secret data passes from the circuit to the scan chain. In Chapter 7, we propose a new way

to protect against information leakage through registers by making the data statistically

independent of the secret inputs without obfuscating the design with additional keys.

2.6 Conclusion

In this chapter, we discussed several state-of-art literature on securing individual compiler

optimization techniques. We presented the existing security measurement methods in the

literature. We identified the limitations with the existing security measurement methods.

We also discussed various scan-based attacks and their defenses at the register transfer level

during HLS. In the subsequent chapters, we present the security analysis of register alloca-

tion, which is a mandatory step in a compiler, quantifying the information leak, verification

of relative security by translation validation approach, a practical tool for quantification of

information leak, and bubble-pushing approach for securing the registers at RTL.

;;=8=<<

33

3
SRA: Secure Register Allocation for Trusted

Code Generation

3.1 Introduction

Register allocation (RA) is the mapping of program variables to a fewer number of machine

registers [38,39]. Its objective is to minimize register usage by mapping one or more variables

to a single register if their lifetimes are non-conflicting. In addition, RA also applies splitting

and spilling. A variable is chosen to be split such that the non-conflicting live ranges of

the variable can mapped to different registers for better register usage. However, due to a

limited number of registers, it is not possible to map all the variables to registers. Thus,

few variables are mapped into memory, which is called spilling. In this thesis, we investigate

the security implications of RA with and without splitting and spilling. We explore the

potential vulnerabilities to establish a secure compilation process that does not introduce

any security weaknesses through RA. Specifically, this thesis attempts to answer - Does RA

retain the security of the source program with respect to information flow in our following

attack model?

Threat Model: In our attack model, we assume the attacker has no access to the secret

data but has access to the executable binary of the source code and, thus, cannot modify but

34

Register Allocation

execute the source code. The ultimate objective of an attacker is to retrieve secret data. The

attacker is aware of the implementation. Thus, he can control the other non-sensitive inputs

to obtain the sensitive inputs from the intermediate values. The attacker has no access to

registers directly but gains access to the memory at the end of the execution to achieve

their goal. It is quite impossible to access the memory contents during the execution of a

program. Similar attack models have also been considered in [29]. The detailed discussion

of the threat model is presented in Section 3.7.

This thesis analyzes the security vulnerability of RA in the presence of splitting and

spilling. Specifically, the contributions of this chapter are as follows:

• We show that RA is secure without spilling and splitting.

• We show that RA with splitting is secure in our attack model.

• We also show that RA with spilling introduces new information leaks through memory.

• Our experimental results using various benchmarks found that RA in LLVM is leaky.

• A secure RA in LLVM is proposed to avoid introducing new information leakage due

to spilling.

• A detailed evaluation of the performance overhead of the proposed secure RA is pre-

sented.

The rest of the chapter is organized as follows. Section 3.2 provides the background of

RA in detail. Section 3.3 discusses the concept of relative security between two programs.

Section 3.4 describes our security analysis of RA. Section 3.5 proposes our secure RA scheme.

Section 3.6 presents experimental results. Section 3.7 discusses the relevance of the attack

model. Finally, Section 3.8 concludes the chapter.

3.2 Register Allocation

Let us assume that Vi is the set of variables with i number of variables in a program and

Rj is the set of registers with j number of registers in the target architecture. Register

allocation is a function that maps the set of variables to the set of registers and/or memory

locations, f : Vi → Rj ∪Mk where usually j ≤ i and Mk is the reserved memory locations

35

SRA: Secure Register Allocation for Trusted Code Generation

for spilled variables Vk where 0 ≤ k ≤ i. The following scenarios may arise due to register

allocation.

• A variable va is mapped to a register rx, i.e. f(va) = rx.

• More than one variable is mapped to a register. For example, f(va) = f(vb) = f(vc) =

rx means the variables va, vb and vc are mapped to the register rx.

• A variable is mapped to more than one register, which is called the live range splitting.

In this case, some re-definitions of va are renamed first based on the non-conflicting

live ranges, and then different instances of va are mapped to different registers, i.e., va

is renamed to va1, va2, va3 and mapped to registers rx, ry, and rz, such that f(va1) = rx,

f(va2) = ry, and f(va3) = rz.

• If there are not enough registers, one or more non-overlapping variables needs to be

spilled into memory, i.e., f(va) = f(vb) = f(vc) = ma wherema is the reserved memory

location for the non-overlapping variables va, vb, and vc.

We now discuss the usage of live range splitting and spilling below.

3.2.1 Live Range Splitting

A variable maps to more than one register for better register usage. The live range of the

variable has been split into multiple ranges. The RA process considers each live range as a

different variable and assigns registers in the best possible way. Consider an example of RA

in Fig. 3.1. The original source snippet S with three variables a, b, and c are presented in

Fig. 3.1(a). As per the live variable analysis on S, the three variables are live at the same

time. The conflict graph for the same is represented in Fig. 3.2(a). Its clear that at least

three registers are required to map the three variables. Let’s assume there are three free

registers, and the variables a, b, and c are mapped to registers r1, r2, and r3, respectively.

The S after RA is presented in Fig. 3.1(b). Now, let us assume we have only two free

registers available. Then, the question is, can we map these three live variables to two

registers with splitting? Let us now split the line range of variable a to a1 and a2. After

splitting a, the source code has been presented in Fig. 3.1(c). Only two variables are live at

the same time if we perform a live range analysis on S after splitting. The conflict graph

for the same is represented in Fig. 3.2(b), which shows that two registers are enough for

36

Register Allocation

mapping the variables. Let a1 and c are mapped to register r1, and a2 and b are mapped

to register r2. The RA after splitting on s has been presented in Fig. 3.1(d). This example

of RA shows how splitting helps to improve the register usage, i.e., the same source snippet

S can be mapped to two registers with splitting instead of three registers without splitting.

Now, another question arises: does live range splitting always improve register usage?

1 s ecure (b , c)
2 {
3 a = read pw () ;
4 b = a + b ;
5 a = c + b ;
6 a = a + c ;
7 re turn a ;
8
9 }

(a) Source snippet S

1 secure (b , c)
2 {
3 r1 = read pw () ;
4 r2 = b , r3 = c ;
5 r2 = r1 + r2 ;
6 r1 = r3 + r2 ;
7 r1 = r1 + r3 ;
8 re turn r1 ;
9 }

(b) S after RA

1 secure (b , c)
2 {
3 a1 = read pw () ;
4 b = a1 + b ;
5 a2 = c + b ;
6 a2 = a2 + c ;
7 re turn a2 ;
8 }

(c) S after splitting

1 secure (b , c)
2 { r1 = read pw () ;
3 r2 = b ;
4 r2 = r1 + r2 ;
5 r1 = c ;
6 r2 = r1 + r2 ;
7 r2 = r2 + r1 ;
8 re turn r1 ; }

(d) S after RA with splitting

Fig. 3.1: An example of register allocation with and without splitting

The live variable analysis on another source snippet S presented in Fig. 3.3(a) says that

the three variables are live at the same time. For this source snippet S, the conflict graph

is the same as represented in Fig. 3.4(a). Thus, the live range of variable a has been split

into a1 and a2 to improve the register usage, and the S after splitting has been presented in

Fig. 3.3(b). The conflict graph for the same is represented in Fig. 3.4(b). Its clear that at

least three registers are required to map the four variables a1, a2, b, and c, as three variables

are live at the same time. Let’s assume there are three free registers, and the variables a1,

b, and c are mapped to registers r1, r2, and r3, respectively, and a2 can be mapped to any

37

SRA: Secure Register Allocation for Trusted Code Generation

a

b c

(a) for S in Fig. 3.1(a)

a1

b c

a2

(b) for S after splitting in Fig. 3.1(c)

Fig. 3.2: Conflict graph showing improvement on register usage with splitting

of the three registers. Here, a2 is mapped into register r3, and S after RA with splitting is

presented in Fig. 3.3(c). From this motivational example its clear that splitting is always

not beneficial.

3.2.2 Spilling

When splitting is not beneficial or the number of registers available is not sufficient to store

all the variables, spilling is applicable. Spilling adds store instruction after the definition

of the spilled variable to store the content into memory and load instruction before the

use of the spilled variable to bring it back from memory for further use in the program.

In Fig. 3.3(c), with two available registers, we need to spill one or more variables into

the memory. Let’s assume a is mapped into memory location m. The S after RA with

spilling is presented in Fig. 3.3(d). The variables b and c are mapped into registers r1 and

r2, respectively. The store instruction is added after the spilled variable a, and the load

instruction is added before the use of a in Lines 3 and 6, respectively. This shows that

with spilling, the RA is successfully performed with two registers. The security analysis of

register allocation with splitting and spilling is presented in Section 3.4.

3.2.3 Impact of Register Allocation in Control and Data Flow

In the process of register allocation (RA), a source program is transformed into a pro-

gram that utilizes registers and memory to improve performance. For the source code S

in Fig. 3.3(a) the RA with spilling is presented in Fig. 3.3(d). The transformed program,

which is produced by RA, is functionally equivalent to the source program. The control and

data dependencies of the source program are not altered by the RA step. The RA step only

38

Register Allocation

1 secure (b , c)
2 { a=read pw () ;
3 b=c+b ;
4 a=a+b ;
5 re turn a ;
6 }

(a) Source snippet S

1 secure (b , c)
2 { a1=read pw () ;
3 b=c+b ;
4 a2=a1+b ;
5 re turn a2 ;
6 }

(b) S after splitting

1 secure (b , c)
2 {
3 r1=read pw () ;
4 r2=b , r3=c ;
5 r2=r3+r2 ;
6 r3=r1+r2 ;
7 re turn r1 ;
8 }

(c) S after RA with splitting

1 secure (b , c)
2 { r1=read pw () ;
3 s t o r e r1 ,m;
4 r1=b , r2=c ;
5 r1=r2+r1 ;
6 load m, r2 ;
7 r2=r2+r1 ;
8 re turn r2 ; }

(d) S after RA with spilling

Fig. 3.3: An example of register allocation with spilling and splitting

a

b c

(a) for S in Fig. 3.3(a)

a1

b c

a2

(b) for S after splitting in Fig. 3.3(b)

Fig. 3.4: Conflict graph showing no improvement on register usage with splitting

renames the variables with corresponding registers. The inputs, outputs, and their security

types remain unchanged in both source and transformed programs.

Consider the example in Fig. 3.5, which represents the control/data flow of a source

program S and its transformed program T after register allocation. The variable v at node

nk in Fig. 3.5(a) is mapped to register r at the corresponding node nk in Fig. 3.5(b) where

1 ≤ k ≤ 9. Let one of the inputs to variable v3 and register r3 is high input h (sensitive).

It is possible to identify the propagation of the taint value of input h to r in T by applying

taint analysis, which implies the existence of a control and/or data flow path from h to r

39

SRA: Secure Register Allocation for Trusted Code Generation

1
v1

2
v2

3
v3

4
v4

5
v5

6
v6

7
v7

8
v89

v

(a)

1
r1

2
r2

3
r3

4
r5

5
r4

6
r6

7
r1

8
r29

r

(b)

Fig. 3.5: Control and data flow of (a) source program S, (b) after register allocation T

that facilitates the propagation of the taint value. An illustration of the scenario is given in

Fig. 3.5(a) and 3.5(b), where the edges in red represent the data flow of a path in the source

program and its corresponding path after register allocation, respectively. Consider variable

v in S is mapped to register r in the final states, and as S and T are functionally equivalent,

there must exist a control or data flow path from input h to v in S. Consequently, the

taint value of h must be propagated to v in S via this path. It illustrates the importance

of taint analysis in detecting tainted data flow without explicit mapping information. The

control/data flow of the original program remains unchanged in the transformed program

after register allocation.

3.3 Relative Security

In a program, inputs can be partitioned into high-security (sensitive) or low-security (non-

sensitive) types. Program variables are always of low-security type. The inputs and the

outputs are the same for both source and transformed programs. Therefore, the security

types of the inputs are the same for both source and transformed programs.

To define the relative security between two programs, we need to identify the information

leakages in a program. The taint analysis is the primary method to identify the information

leakages in a program using information flows. Taint analysis checks the explicit and implicit

influence of sensitive inputs on program variables, violating the security properties of the

program based on information flow.

40

Security Analysis of Register Allocation

Definition 3.3.1 (Relative Security). A transformed program T is said to be relatively

secure to its source program S at the end of execution if it satisfies the following necessary

condition followed by the sufficient condition. The necessary condition is if a high input h

is leaking in T , it must be leaking in S. The sufficient condition would be for each of the

leaky high inputs in T , the number of variables leaking a high input h in T must be not more

than that of in S.

1 void foo ()
2 { x=password () ;
3 . . . // use x ;
4 y=x ;
5 . . . // use y ;
6 x=0;//dead s t o r e
7 }

(a)

1 void foo ()
2 { x=password () ;
3 . . . // use x ;
4 y=x ;
5 . . . // use y ;
6
7 }

(b)

Fig. 3.6: An Example of Dead Store Elimination

Here, we defined the relative security at the abstract level and it is discussed in Chapters 4

and 5 in more detail. Let’s analyze the relative security between the programs before and

after DSE in Fig. 3.6. The necessary condition holds as the password is leaking in both

programs. However, it violates the sufficient condition as the password leaks through two

variables (x and y) in the transformed program but through one variable (y) in the source

program. Thus, according to our definition of relative security, DSE is not relatively secure.

To verify the relative security of register allocation, we use the taint analysis (presented

in Chapter 4) to identify the leaky variables in the source program S. Similarly, we perform

a taint analysis on the transformed program T to identify the leaky registers in T . However,

few tainted variables are mapped to memories when there is no free register available. Thus,

these memory locations are also marked as leaky or tainted in T . We then compare the

leaks between these two programs to decide the relative security.

3.4 Security Analysis of Register Allocation

We assume that the register allocation has already proved functionally correct [102,115,116],

and we analyze the security of the transformation after register allocation with respect

41

SRA: Secure Register Allocation for Trusted Code Generation

to information flow. We analyze the security issues in RA with and without splitting

and spilling. In the following, we consider three scenarios of RA to analyze their security

separately;

1. Scenario 1 (RA without splitting and spilling): Each variable is mapped to a register,

and no memory location is used.

2. Scenario 2 (RA with splitting and without spilling): Some variables mapped to more

than one register.

3. Scenario 3 (RA with spilling and without splitting): Some variables mapped to mem-

ories instead of register.

Let the source program before register allocation be denoted as S, and let the transformed

programs in three different scenarios be denoted as T1, T2, and T3. Our primary goal is to

determine the relative security of each transformed program with respect to S. Specifically,

we seek to answer the following questions: (i) Is T1 relatively secure to S? (ii) Is T2 relatively

secure to S? (iii) Is T3 relatively secure to S?

Scenario 1: T1 is leaky if i) a high input h leaking in T1 but not leaking in S or ii)

the number of registers leaking a high input h in T1 is more than that of in S. We will

verify the necessary conditions followed by the sufficient condition of relative security. Each

variable of S is mapped to a register in T1. Thus, if a high input h is leaking through r in

T1, it must be leaking through its corresponding variable v in S. So, it holds the necessary

condition of relative security. Now, we need to verify the sufficient condition. It is possible

that more than one variable of S is mapped to a single register r in T1. Thus, if h is leaking

through x number of registers in T1, then the corresponding variables of those x registers

in S should not be less than x. Let variables v1, v2, v3 mapped to register r1 and variables

v4, v5, v6 mapped to register r2. This means that at the end of the program, r1 and r2 have

the content of v3 and v6 (last assigned variables), respectively. Assume high input h leaks

through both registers r1 and r2. Then h must leak through at least two variables (v3, v6),

i.e., the corresponding variables mapped last to registers r1 and r2. Thus, the sufficient

condition of relative security always holds as two registers leaking h in T1 and two variables

leaking h in S. Thus, T1 is relatively secure to S.

Scenario 2: A variable may be mapped to more than one register in T2. Thus, when

there is a leak of high input h through a register, there may not be a corresponding variable

42

Security Analysis of Register Allocation

v leaking h in S since v has been split. The source S in Fig. 3.3(a) after splitting variable a

is represented in Fig. 3.3(b). The password (h) in Fig. 3.3(c) is leaking through the register

r1 after splitting, but the corresponding variable a is not leaking the password as it has

been overwritten in Fig. 3.3(a). Thus, in scenario 2, h is leaking in T2 but not leaking in

S. This violates the necessary condition of relative security. So, T2 is not relatively secure

to S.

The generic security analysis of splitting is as follows. The two definitions of variable a

are renamed to a1 and a2. Here, the focus is to check the leak through variable a1 for the

relative security of splitting. It may be noted that the leak through a2 does not impact the

relative security due to splitting. The variables a1 and a2 can be either tainted or untainted.

Thus, there are four possibilities for the two definitions of a based on the taintness. Here

there are three cases arise for relative security. i) If a1 is untainted, the leak of a1 does not

impact the relative security irrespective of the taintness of a2. ii) If a1 is tainted, and a1 and

a2 are mapped to the same register r1, then the original definition of a1 gets overwritten

by a2 and r1 in both the source program and after register allocation, respectively. In this

case, splitting does not introduce new security vulnerabilities. iii) If a1 is tainted, and a1

and a2 are mapped to different registers r1 and r2, respectively, then there is a leak through

r1 if r1 is not overwritten by any other mapped variable till the end of the execution of

the program. Thus, splitting is leaky if the attacker has access to registers. However, in

our attack model, we assume the attacker has no access to registers. So, h cannot leak in

T2. Thus, the condition of relative security holds as there is no leak in T2. Thus, T2 is

relatively secure to S based on our attack model. However, splitting is leaky if we assume

that register content is also accessible in a different attack model. In such a case, a secure

splitting algorithm needs to be developed.

Scenario 3: A variable v in S may be mapped to a memory m in T3 due to spilling.

When sensitive data is spilled to memory location m in T3, there would be no corresponding

variable in S for m. The password is leaking through memory location m in Fig. 3.3(d),

but there is no leak of the password in source S in Fig. 3.3(a). So, when there is a leak

through a spilled memory location in T3, there is no leak in S. This violates the necessary

condition for relative security in Definition 3.3.1. Thus, T3 is not relatively secure to S.

We, therefore, consider only scenario S3, i.e., register allocation with spilling is not

secure based on our attack model. In this thesis, we focus on developing a secure spilling

algorithm. Specifically, we consider the spilling in the LLVM compiler and enhance it to a

43

SRA: Secure Register Allocation for Trusted Code Generation

Live Interval
Analysis

Spill Weight
Calculation

Priority Queue
Construction

Register
Assignment

EvictionSplit

Create New
Intervals For

Spills and
Reloads

Last
Reload?

Insert Reload
Before Use Yes

No
Spill

Insert Spill
After

Definition

Insert Store
Zero After

Last Reload

Fig. 3.7: Secure Greedy Register Allocation in LLVM

secure version. The intuition is to erase the sensitive content of the spilled memory location

after its last use. The secure register allocation is discussed in the next Section.

3.5 Securing Register Allocation in LLVM

This Section discusses our proposed secure register allocation approach in LLVM. There are

four different register allocators (RA) in LLVM, namely, basic, fast, greedy, and PBQP. We

found all the register allocations are leaky. This thesis proposes a secure greedy register

allocation method in LLVM. We chose the greedy method since it is the default one in

LLVM. However, the same approach can be applied to other methods as well. In this thesis,

we show how to secure the Greedy Register Allocation (GRA) of LLVM. The steps for the

secure greedy register allocation in LLVM are presented in Algorithm 1.

The compiler performs live interval analysis of all the program variables to allocate them

to registers. The GRA finds the spill weights of all live intervals based on heuristics such

as the number of uses, conflicts, etc. A priority queue Q is constructed based on allocation

priorities of live intervals of the program variables. The queue allocation priority of a

variable depends on various factors based on its use in the basic blocks. If a variable is

local to a basic block, it has lower priority whereas if it is global and used across many

instructions, it is assigned with a higher priority value. GRA marks all the variables as not

to be split initially. The following steps are performed for each live interval in the priority

queue until all the live intervals are allocated to registers or memory. In each iteration, the

44

Securing Register Allocation in LLVM

Algorithm 1: Secure Greedy Register Allocation in LLVM

1 Perform a live interval analysis on all variables of S;
2 Mark all the variables of S as no-split;
3 Calculate the spill weights of all the variables of S;
4 Calculate queue allocation priorities of all variables of S;
5 Enqueue all the variables into queue Q based on priorities;
6 while Q is not empty do
7 Dequeue the variable (let x) with highest allocation priority from Q ;
8 if x is marked as no-split then
9 if machine has free register then

10 Assign x to a free register;
11 else
12 Compare the spill weight of x with spill weights of all interfering variables;
13 if Eviction possible then
14 Evict the cheaper variable (let y) from register (let r);
15 Assign x to register r;
16 Enqueue y into Q with same allocation priority;

17 else
18 Mark x as split;
19 Enqueue x into Q with lower allocation priority;

20 end

21 end

22 else
23 if Splitting is beneficial then
24 Split x; Insert split codes for new variables; Calculate the spill weights and

allocation priorities of all new variables;
25 Enqueue all the new variables into Q based on priorities;

26 else
27 Spill x into memory location m;
28 Insert spill codes (for memory operations);
29 Create new intervals for spills and reloads of x;
30 if last reload from m then
31 Insert code to store zero into m;
32 end
33 Calculate the spill weights and allocation priorities for new intervals of x;
34 Enqueue the new intervals into Q based on priorities;

35 end

36 end

37 end

45

SRA: Secure Register Allocation for Trusted Code Generation

live interval with the highest allocation priority (say x) is de-queued and assigned a register

if the machine has a free register (step 9). In case of unavailability of a free register and x

is not marked to be split, GRA checks if eviction of an already allocated register (say r) is

beneficial (step 13). If yes, it evicts a cheaper interfering interval (say y) from r based on

low spill weight and assigns the current interval (x) to the register r. The evicted interval

y again en-queued with the same allocation priority. Otherwise, x is marked to be split

and en-queued again with lower allocation priority. When there is no free register and x is

marked to be split, splitting is performed on x if it is beneficial (step 23). Otherwise, x will

be spilled to memory. Splitting divides the live interval x into smaller ones and creates new

live ranges. The spill weight is calculated for all new intervals, which are to be enqueued

into the priority queue based on allocation priorities. Control goes back to consider the next

interval in the queue. When splitting is also not beneficial (step 26), it goes for spilling.

Spilling stores the value in memory. It also creates new live ranges after inserting the spill

code. The spill weight is calculated for new intervals, and new live intervals are enqueued

into the priority queue based on the allocation priorities.

We have analyzed in Scenario 3 of Section 3.4 that spilling is not relatively secure to

the source program. The basic intuition to generate a secure spilling is to remove the secure

information stored in the spilled memory locations. Moreover, the secure content must be

erased immediately after the last use of it to reduce its lifetime. The specific updates in the

greedy register allocation to make spilling secure are as follows:

When a live interval x is chosen for spilling into memory location m, GRA inserts

spill instructions and reload instructions after the definition of x and before the use of x,

respectively. This requires creating new smaller live intervals for x and deleting the old live

interval of x. To use the spilled content, GRA reloads the content from m to some register

to perform the desired operations. At this point, we check whether it is the last reload from

m (step 30 in Algorithm 1). If it is the last reload and there is no further use of memory

content in m, we insert code to store zero into memory location m. This way, we find the

last reload of each spilled memory location and insert store zero operations. The last reload

of m can be found by live interval analysis.

When a spilled memory location is reused with different sensitive contents, we insert

store zero only once after the last reload for the last use of the memory. Therefore, the

required number of store zero operations is equal to the unique memory locations used by

GRA for spilling purposes. This way, our approach inserts the minimum possible store zero

46

Experimental Results

1 movq %rax , −56(%rbp) // S p i l l
2 movq %rbx , −64(%rbp) // S p i l l
3 . . .
4 movq −56(%rbp) , %r14 //Reload
5 . . .
6 movq −64(%rbp) , %r15 //Reload
7 . . .
8 movq −64(%rbp) , %r16 //Reload
9 . . .

(a)

1 movq %rax , −56(%rbp) // S p i l l
2 movq %rbx , −64(%rbp) // S p i l l
3 . . .
4 movq −56(%rbp) , %r14 //Reload
5 movq $0 , −56(%rbp) // S p i l l Zero
6 . . .
7 movq −64(%rbp) , %r15 //Reload
8 . . .
9 movq −64(%rbp) , %r16 //Reload
10 movq $0 , −64(%rbp) // S p i l l Zero
11 . . .

(b)

Fig. 3.8: (a) Target Assembly Generated in Greedy RA, (b) Target Assembly Generated in Pro-
posed Secure Greedy RA

instructions into memory. Thus, this is the best possible approach to make spilling secure

in register allocation. The overall flow of our proposed secure greedy register allocation

(SGRA) approach is shown in Fig. 3.7 where the dotted box demonstrates our proposed

spilling approach in GRA.

In Fig. 3.8, we have shown a snippet of target assembly generated by GRA and by our

proposed secure greedy register allocation (SecGreedy). Fig.3.8(a) shows that the first spill

has a single reload, whereas the second spill has multiple reloads. Our approach inserts

spill zero after the last reload of each spilled stack slot, shown in Fig.3.8(b). We have

implemented our idea on GRA in LLVM as a proof of concept. It may be noted that the

same approach is applicable for all RAs of LLVM to make them secure.

3.6 Experimental Results

3.6.1 Setup

In our experiments, we used an Intel Xeon(R) CPU E5-2620 v4 2.10GHz, 64GB of RAM,

running Ubuntu 18.04.3 LTS. We run different benchmarks from the LLVM test suites

[8] for all the register allocations in LLVM 10.0.1 [7]. We use the Clang front end of

LLVM to generate the LLVM IR. For each benchmark, we generate the four assembly codes

corresponding to four register allocations of LLVM, i.e., basic, fast, greedy, and PBQP using

47

SRA: Secure Register Allocation for Trusted Code Generation

the llc tool. Then, we analyze the spill instructions from the generated assemblies. We

generate the performance report by llvm-mca and analyze various performance parameters.

We automate this entire process to generate all the desired results. We have presented

results for 21 benchmarks in Table 3.1 and Table 3.2.

Table 3.1: Total Spills (#S) and Total Leaks (#L) in Basic, Fast, PBQP, Greedy and Secure
Greedy Register Allocations, and Total Registers (#R) in Greedy and Secure greedy Register Allo-
cations.

Benchmark
Basic Fast PBQP Greedy SecGreedy

#S #L #S #L #S #L #S #L #R #S #L #R
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

almabench 115 15 96 59 115 15 47 15 124 62 0 124
chomp 4 3 116 20 4 3 4 3 118 7 0 118
drop3 1 1 79 28 1 1 1 1 134 2 0 134
exptree 2 2 60 14 2 2 2 2 154 4 0 154
fannkuch 7 4 32 18 7 4 4 4 133 8 0 133
fftbench 24 8 226 44 23 9 16 7 109 23 0 109
five11 5 3 67 10 5 3 3 3 165 6 0 165
fldry 1 1 45 19 1 1 1 1 132 2 0 132
huffbench 3 2 112 50 3 2 3 3 167 6 0 167
linpack-pc 91 22 313 74 93 21 63 17 163 80 0 163
lpbench 8 6 108 22 9 6 9 7 150 16 0 150
matrix 1 1 44 14 1 1 1 1 122 2 0 122
misr 23 10 80 30 19 10 12 10 168 22 0 168
n-body 28 8 58 17 28 8 10 7 139 17 0 139
Oscar 3 2 79 23 3 2 3 3 136 6 0 136
partialsums 30 12 35 25 30 12 22 12 103 34 0 103
puzzle 4 2 33 10 4 2 2 2 148 4 0 148
Queens 8 8 22 14 8 8 8 8 114 16 0 114
queens 1 1 21 9 1 1 1 1 126 2 0 126
recursive 10 5 34 11 10 5 7 5 102 12 0 102
spectral-norm 2 1 36 13 2 1 2 1 138 3 0 138

3.6.2 Results in LLVM

We present the results for total spills and total leaks generated by different register alloca-

tions for each benchmark in Table 3.1. We assume all the spilled memory locations contain

48

Experimental Results

secure information, which implies each spill is a potential leak. The leaks in Table 3.1 are

measured as the number of unique memory locations used for spilling. For the three register

allocations Basic, Fast and PBQP, of LLVM, we have presented the results for spills (#S)

and leaks (#L) in second to seventh columns, respectively. For the Greedy and proposed

SecGreedy (secure greedy) register allocation, we have presented the results for spills (#S),

leaks (#L), and total registers (#R) required in eighth to thirteenth columns, respectively.

We measure the total spills from the generated target assembly. It may be noted that actual

leaks (#L) are quite low compared to the total spills (#S) since the memory space is heavily

reused during spilling. Our method inserts ‘L’ store zero operations in secure greedy. The

fast RA generates the maximum leaks compared to other RAs. Fast RA scans the program

linearly at a basic block level. It assigns a register to a variable whenever it appears. It leads

to frequent memory operations whenever there is no free register. Therefore, it generates

maximum spilling in a program.

Register allocation without spilling is infeasible for real-world applications as the machine

has a small number of physical registers (e.g., 32 or 64) compared to the number of variables

even in moderate-size programs (typically in the order of hundreds or thousands). This is

also confirmed by the results in Table 3.1. Thus, all the register allocations are leaky in

LLVM. The leak in the case of proposed secure greedy in column twelve is zero for all the

benchmarks since we erase the sensitive content from the spilled memory. The total spills in

secure greedy are more than greedy due to the additional insertion of spill zero instructions.

We analyzed that there would be no change in the number of registers required at any time

for both greedy and secure greedy, as our added instructions do not need any register to

perform the memory operations. The total number of registers used by greedy and secure

greedy as shown in the tenth and thirteenth columns, respectively in Table 3.1 confirms our

observation. Note that the total number of register uses are presented only for these two

approaches to show the impact of the greedy approach on our enhancement in secure greedy

approach. As we are storing zero in the memory slots immediately after the last use, the

proposed solution is the best possible solution for securing information leaks due to spilling

in RAs of LLVM.

49

SRA: Secure Register Allocation for Trusted Code Generation

Table 3.2: Performance Overhead in Greedy Vs Secure Greedy Register Allocation

Benchmark
Instr.(K) Cycles(K) Block RT Res. Pre.(%)

G
R
A

S
G
R
A

G
R
A

S
G
R
A

G
R
A

S
G
R
A

G
R
A

S
G
R
A

(1) (2) (3) (4) (5) (6) (7) (8) (9)

almabench 51.8 53.4 44 44.4 202.8 206.8 5.26 7.42
chomp 77.2 79.3 79.6 80.4 332.5 338.3 1.63 1.37
drop3 29.7 29.8 16.8 16.8 99.3 99.5 7.17 4.8
exptree 46 46.5 46 46.5 184.8 185.8 2.38 1.94
fannkuch 15.4 15.8 10.8 11.7 51.0 52.0 3.72 2.57
fftbench 129.8 132.6 137.9 140.4 593.5 607.0 1.67 2.49
five11 29.6 29.9 30.5 30.6 125.8 126.5 0.98 1.3
fldry 32.6 32.8 30.4 30.4 130.3 130.5 4.95 4.95
huffbench 47.6 48.5 36.4 36.7 161.5 164.0 1.38 3.28
linpack-pc 162.4 164.6 101.7 103.7 568.3 573.8 7.27 7.52
lpbench 47.2 47.9 35.6 35.8 168.0 169.8 3.10 2.52
matrix 19 19.1 17.5 17.6 76.3 76.5 0.58 0.59
misr 41.7 42.7 32.7 33.4 149.0 151.5 2.29 4.15
n-body 27.2 27.9 21.6 21.8 96.8 98.5 8.33 7.37
Oscar 35.1 35.4 31.4 31.5 131.5 132.3 0.64 0.64
partialsums 20.4 21.7 17.3 17.9 80.8 84.0 8.14 10.5
puzzle 18.5 18.7 18.1 18.2 75.8 76.3 0.55 1.68
Queens 16.2 17.5 14.7 15.1 60.8 64.0 0.77 4.02
queens 23 23.1 20.3 20.4 92.3 92.5 0.85 0.85
recursive 18.0 18.5 18.7 19.1 81.0 82.3 1.87 2.61
spectral-norm 20.6 20.7 21.1 21.1 82.0 82.3 0.95 0.95
Avg. 2.09% 1.44% 1.41% 0.43%

3.6.3 Performance Overhead

We present the performance overhead of our proposed secure greedy approach (SGRA) over

the greedy register allocation (GRA) in Table 3.2. We present four parameters, the number

of instructions, the required execution cycles, the block RThroughput (Block RT), and the

resource pressure (Res. Pre.), to analyze the overhead. We run each benchmark for 100

iterations in llvm-mca for X86-64 architecture. We show the average overhead for each

performance parameter in the last row of Table 3.2. Block RThroughput is the reciprocal

of the block throughput. Block throughput is the maximum number of blocks that can be

50

Discussion

executed per each simulated clock cycle. The maximum number of instructions executed

in parallel in each cycle defines the resource pressure. On average, total instructions are

increased by 2.09%, cycles by 1.44%, block RThroughput by 1.41%, and resource pressure

by 0.43% in SGRA. Also, there is no significant impact on compile time and run time for all

the benchmarks. The experimental results confirm that our proposed secure greedy register

allocation has a negligible performance overhead.

3.7 Discussion

In this section, we address the following queries which may arise from the proposed solution.

1) Can the attacker read the memory locations anywhere during the execution of the pro-

gram?

Although it is theoretically possible to access memory location at a precise time to gather

secrets from the memory content, it is practically infeasible for the following reasons. (1)

It is extremely hard to identify the exact timing between the register spill and zeroing it

(in the order of a few cycles). Even with state-of-the-art side-channel analysis (e.g., using

electromagnetic emanation based attack), it is impossible to figure out at the granularity

of few instructions. (2) Even if you can time it right, dumping of memory content is

not trivial and involves many cycles. (3) Due to these practical considerations, existing

approaches [29,64] also assume a similar threat model where an attack is unlikely during the

execution of a small function. (4) Note that a program (e.g., online transaction processing)

may take millions of cycles, but the attacker needs to figure out exactly when an encryption

routine (e.g., AES) is called, which may take 32-64 cycles. In fact, the attacker may not

even have 64 cycles since it has to find the opportunity between the spill and the last use

when the zeroing effect takes place (instead of the end of the program).

If the attack model assumes that the attacker can dump the memory randomly at the

intermediate point, they need to do a large number of iterations of dumping memory content

(implying they can dump in almost every cycle) to access the right memory content. This

assumption has two fundamental problems:

• One cannot dump during execution through the JTAG port since the I/O speed is

significantly slower than the execution speed. One can trace in an internal trace

buffer (which can store only a few K bytes, but not the whole cache content) [96].

51

SRA: Secure Register Allocation for Trusted Code Generation

• If the target is to execute up to a certain point, stop and dump that memory content,

that means millions of executions of the programs, which may be practically infeasible.

Also, the traditional cache timing attack will not work in this context [93].

Thus, the proposed register allocation approach is secure based on our attack model.

The attack model says the attacker has access to the final memory, i.e., at the end of the

program. So, the attacker cannot read the memory locations anywhere after the spill and

before the last use, as it has no access to memory during the execution of the program.

2) Is the attack model sound and realistic?

The attack model in this thesis is consistent with the threat model in the cybersecurity

domain, where the goal of an attacker is to control the system by exploiting the vulnerabili-

ties in software, firmware, or hardware. Secure compilation has received significant attention

in recent years to minimize software-level vulnerabilities. Secure compilation targets vari-

ous avenues, including identification of security goals and attacker models, designing secure

languages, devising efficient checking and mitigation techniques, and formal verification of

compilation phases. For example, C and C++ do not provide any safety guarantees. Un-

less the programmer or the compiler takes security into consideration, the lack of memory

safety can lead to security vulnerabilities with disastrous consequences. Over the past 12

years, around 70% of all patched security vulnerabilities at Microsoft were memory safety

issues [10]. While there are safer languages (e.g., Java, Haskel, and Rust), they are also not

immune to low-level attacks.

This thesis focuses on the vulnerabilities introduced during the compilation process.

Specifically, this thesis investigates if register allocation introduces memory vulnerabilities

that can be exploited by attackers. While our proposed solution is generic across application

domains, we would like to illustrate the importance by highlighting cryptographic libraries.

Security guarantees provided by cryptographic primitives (e.g., AES for encryption or SHA

for hashing) are vital in designing trustworthy software and systems. While formal ver-

ification can ensure that the original specification preserves the security guarantees, it is

equally important to ensure that the compiler does not introduce any vulnerabilities while

generating the target assembly (binary) code. Unless the compilation steps (e.g., register

allocation) are trustworthy, we cannot use a potentially vulnerable assembly to design secure

and trustworthy systems [16].

52

Conclusion

3.8 Conclusion

In this chapter, we analyzed the security of register allocation in the presence of splitting

and spilling. We found from the experimental results that all the register allocations in

LLVM are leaky. We proposed a secure greedy register allocation approach in LLVM and

observed that it has negligible performance overhead.

;;=8=<<

53

4
QIL: Quantifying Information Leakage for

Security Verification of Compiler
Optimizations

4.1 Introduction

To verify the relative security between the source and optimized programs, it is first required

to quantify the overall information leak in the individual program. In this thesis, we target

to measure the information leaks using static taint analysis due to compiler optimizations.

Surprisingly, there is no study on the security measures of a program using taint analysis in

the context of checking the relative security of compiler optimizations. The exact informa-

tion leak identification in a program is an undecidable problem, and taint analysis suffers

from over-tainting and under-tainting problems due to implicit flows. There are plenty of

existing works that target accurate analysis of implicit flow to reduce the over-tainting and

under-tainting problems in various analysis contexts. Our work takes motivation from such

works for efficient analysis of implicit flows in the context of compiler optimizations.

Threat model: The inputs of a program are either a high or sensitive type and a low

or non-sensitive type. We assume the attacker has access to the executable binary of the

program. However, he/she has no access to sensitive inputs and their goal is to get these

54

Introduction

secret inputs. The attacker can execute the program for various inputs and tries to obtain

the secret input through the program variables. The same attack model has also been used

in Chapters 5 and 6.

To the best of our knowledge, this is the first work that performs a taint analysis to

measure the overall information leak in a program considering both explicit and implicit

flows due to conditional blocks and loops. The unique contributions of this chapter are as

follows:

• Our method introduces a notion of a leak propagation vector for capturing the infor-

mation leak at various program points.

• It makes some unique analysis of implicit information flow in the context of compiler

optimizations.

• It introduces the concept of fixed point of leaks in a loop.

• To identify overall information leakage in a program, we introduce cutpoints for effi-

cient analysis of local taint flow inside conditional blocks and loops.

• Finally, a completely automated method is developed to identify the overall leak in a

program. Our method propagates the information leak recursively to the subsequent

cutpoints in the program.

• This thesis introduces three quantification parameters of information leakage and uses

them for checking the relative security of compiler optimizations.

• Our method shows that well-known compilers like SPARK leak information in their

optimization phase.

The rest of the chapter is organized as follows. Section 4.2 presents a motivational

example of our work. Section 4.3 presents our program modeling. The quantification of

information leakage, the security measurement of a program and quantification parameters

for information leakage are presented in Section 4.4, Section 4.5 and Section 4.6, respectively.

The formal analysis of our method is given in Section 4.7. The experimental results are

shown in Section 4.8. The security analysis of various compiler optimizations using our leak

vector is presented in Section 4.9. Finally, Section 4.10 concludes the chapter.

55

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

4.2 Motivation

As discussed in Section 2.4.2, taint analysis [37] marks certain inputs as tainted and prop-

agates the taint to variables that are computed from these tainted inputs in an explicit or

implicit manner. In explicit information flow, a variable directly depends on a sensitive

input1, whereas in implicit information flow, the value of a variable indirectly depends on

a sensitive input. Explicit flows are related to data dependence whereas implicit flows are

generally due to control dependence. A transformed program M1 is said to be relatively

secure if the amount of leaks in M1 is always the subset of the amount of leaks in the source

program M0.

1 void p(h , x , y)
2 {
3 //h i s high input ;
4 b = x - y;
5 z = x + y;
6 i f (h > 0)
7 a = b − z ;
8 e l s e
9 a = b + c ;
10 }

(a) Source code snippet

1 void p′ (h , x , y)
2 {
3 //h i s high input ;
4 i f (h > 0){
5 b = x - y;
6 z = x + y;
7 a = b − z ;}
8 e l s e {
9 b = x - y;
10 a = b + c ;} }

(b) After code motion

Fig. 4.1: Under-tainting and Over-tainting problem in Conditional Speculation

The taint analysis has two significant limitations: under-tainting and over-tainting. Most

of the taint analysis tools do not propagate the taints along control dependencies (also called

implicit flows) which leads to an under-tainting problem. This causes false negatives, i.e.,

there is a leak in the program but the analysis fails to identify it. The following example

illustrates this fact.

In Fig. 4.1, the inputs x and y are low type and the input h is the high type. Thus,

variables b and z have no leak in Fig. 4.1(a). By code motion, the statement b = x − y is

moved to both branches, and the statement z = x + y is moved only to the True branch.

1The terms high, tainted, and sensitive are used interchangeably to designate a variable/input/output
as sensitive. Similarly, the terms low, untainted, and non-sensitive are used interchangeably to designate a
variable/input/output as non-sensitive.

56

Motivation

This code motion is correct because b is used in both branches but z is used only in the True

branch, and z is never used after the conditional block. As mentioned above, the variable

z is not tainted in Fig. 4.1(a). Moreover, z is also not tainted if we ignore the implicit flow

of h to z in Fig. 4.1(b). This scenario causes the under-tainting problem since z is leaking

information about the high input h due to control flow.

A common approach to overcome the under-taint problem is to identify all the implicit

flows in the program and propagate the taints to each such control flow. It means a, b, z will

also be marked tained in Fig. 4.1(b). However, this leads to an over-tainting problem, giving

false positives, i.e., the tool taints too many variables indiscriminately in the program. In

Fig. 4.1(b), for example, b does not leak h in the program because the value of b is the same

in both branches. Thus, b is independent of h in the program in Fig. 4.1(b). In reality,

there is implicit flow from h only to a and z in Fig. 4.1(b). Thus, we need precise analysis

of implicit information flow in a program.

4.2.1 Overview of the Proposed Approach

Finding the exact information leak in a program is an undecidable problem [52, 56]. This

thesis tries to quantify the information leakage in the best possible way for the security

verification of compiler transformations. To reduce the over-tainting problem, we perform a

precise analysis of implicit leaks in a block-wise manner. Specifically, we identify variables

inside a “culprit” conditional or loop block that may have different symbolic values in parallel

paths inside the block. The primary intuition is that a particular transformation is usually

applied to a part of a program by the compiler. Consequently, the taint analysis should be

performed “locally or block-by-block” for precise analysis of the implicit leak due to a specific

transformation. We, therefore, insert cutpoints in the program to enable “local” analysis

of taint flow. We choose cutpoint “intelligently” so that each loop or conditional block can

be analyzed locally. We then come up with a taint analysis of a program by propagating

leaks across paths. First, we consider a path to find both the explicit leak and implicit

leak, then propagate the leak to the subsequent paths. We propagate the leak recursively

to cover all the traces in the program. Also, we apply some look-ahead properties to reduce

the number of recursions, which in turn reduces the overall complexity of the approach.

Finally, our approach measures the overall leak in the program. In a compiler, there would

be no correlation between the variables of the source and transformed programs as it adds,

57

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

removes, and renames the variables while applying various optimizations. Therefore, we do

not consider any correlation between the variables of the two programs while checking the

relative security of compiler transformations.

To identify the traces, paths, and cutpoints of a program, we need a formal model to

represent the program. In this thesis, we represent the program as a finite state machine

with datapath (FSMD) [76]. We discuss the modelling of programs as FSMD in the next

section.

4.3 FSMD based Modeling of Programs

Let source program M0 have been optimized into transformed program M1 after applying

a set of compiler optimizations. An FSMD (Finite State Machine with Datapath) is a

universal specification model that can represent the data flow and control flow of a program

efficiently. The same formulation can also be adapted on other program models like CDFG

(Control/Data Flow Graph). The following definitions are adapted from [76].

Definition 4.3.1 (Finite State Machine with Datapath). An FSMD is formally defined as

an ordered tuple ⟨Q, q0, I, V, O, f, h⟩ where

1. Q = {q0, q1, q2, · · · , qn} is the finite set of n control states,

2. q0 ∈ Q is the reset (initial) state,

3. I is the set of primary inputs where I = Ih ∪ Il, where Ih is the set of high inputs and

Il is the set of low inputs,

4. V is the set of storage variables,

5. O is the set of primary outputs,

6. f : Q ×2S → Q is the state transition function,

7. h : Q ×2S → U is the update function of the output and the storage variables, where

S and U are defined as follows.

(a) S = L ∪ E is the set of conditional expressions, where L is the set of Boolean

literals of the form b or ¬ b, b ∈ L ⊆ I ∪V is a Boolean variable and E is the set

58

FSMD based Modeling of Programs

of arithmetic predicates over I ∪ (V - L) ∪ Const (constants). Any arithmetic

predicate is of the form e1Re2, where e1 and e2 are arithmetic expressions and

R ∈ {==, ̸=, >,≥, <,≤}.

(b) U is a set of storage or output assignments of the form {x = e|x ∈ O ∪ V , and

e is an arithmetic predicate or expression over I ∪ (V - B) ∪ Const}.

An example code snippet is shown in Fig. 4.2(a), and its corresponding FSMD M is

shown in Fig. 4.2(b) for reference. Specifically in M , Q = {q0, q1, q2, q3, q4}, q0 is reset

state, I = {l1, l2, h1, h2}, Il = {l1, l2}, Ih = {h1, h2}, V = {x, y, z, a, i} and O = {out}.
U = {x = h1, i = 0, a = 0, y = l1 + l2, · · · }, S = {i < x, i < 10, i > x}. Some values of

f and h are as follows. f(q0, {true}) = q1, f(q3, {i > x}) = q4, h(q1, {i < x}) = {y =

l1 + l2, z = l2}, h(q3, {¬(i > x)}) = {y = a}. An FSMD can be automatically extracted

from C code [76].

1 void foo (l1 , l2 , h1 , h2)
2 { // h1 , h2 are high

inputs
3 x = h1 ;
4 i = 0 ; a = 0 ;
5 i f (i < x)
6 { y = l1 + l2 ;
7 z = l2 ; }
8 e l s e
9 { y = l1 − l 2 ;
10 z = l2 ; }
11 whi l e (i < 10)
12 { i f (i > x)
13 { z = y ; }
14 e l s e
15 { y = a ; }
16 a = h2 ;
17 i = i + 1 ; }
18 out = y + z ;}

(a)

q0

q1

q2

q3

q4

α1

-/x = h1
i = 0, a = 0

α2
(i < x)/

y = l1 + l2,
z = l2

α3
¬(i < x)/
y = l1− l2,

z = l2

(i < 10)/-

α4

(i > x)/
z = y

α5

¬(i > x)/
y = a

−/a = h2
i = i+ 1

α6

¬(i < 10)/
out = y + z

(b)

Fig. 4.2: An Example of (a) a Source snippet, (b) Corresponding FSMD M

59

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

4.3.1 Paths and Traces in FSMD

A path α, from a state qi to a state qj, is a finite sequence of state transitions of the form

⟨qi −→
ci

qi+1 −−→
ci+1

· · · −−−−→
ci+n−1

qi+n = qj⟩ where qk ∈ Q ∀k, i ≤ k ≤ i+ n, and ∃ck ∈ 2S such

that fk(qk, ck) = qk+1 ∀k, i ≤ k ≤ i+ n− 1. The start state qi and the final state qj of a

path α are denoted as αs and αf , respectively. In the FSMD M in Fig. 4.2(b), for example,

α1 = ⟨q0 −→
−

q1⟩, and α4 = ⟨q2 −−→
i<10

q3 −−→
i>x

q4 −→
−

q2⟩ are two paths. In each path of the

FSMD, we represent the conditional expression and storage assignments using the notation

s/u1, u2, · · · , where s ∈ S and u1, u2 ∈ U . Note that when s is True, or there is no storage

assignments, it is represented as − in the FSMD.

The condition of execution Rα of a path α is a logical expression over I ∪ V ∪ Const,

which must be satisfied by the initial data state in order to traverse the path α. Thus, Rα

is the weakest precondition of the path α [77]. In the FSMD M in Fig. 4.2(b), the Rα2 of

the path α2 is i < x, similarly, the Rα3 of the path α3 is ¬(i < x).

The data transformation Sα of a path α is an ordered tuple ⟨ej⟩ of algebraic expressions
over I∪V ∪Const such that the expression ⟨ej⟩ represents the value of the variable vj ∈ V ∪O
after execution of the path in terms of the initial data state (i.e., the symbolic values of the

variables at the initial state) of the path. In the FSMD M in Fig. 4.2(b), assume the order

of variables and output is ⟨x, y, z, a, i, out⟩, The Sα1 of the path α1 is ⟨h1, y, z, 0, 0, out⟩,the
Sα2 of the path α2 is ⟨h1, l1 + l2, l2, 0, 0, out⟩. For a path, α, Rα, and Sα can be computed

by forward or backward substitution based on symbolic execution [77].

A computation or trace of an FSMD is a finite sequence of states from the reset state

q0 to itself without having any intermediate occurrence of the reset state. In the FSMD in

Fig. 4.2(b), τ0 = ⟨q0 −→
−

q1 −−→
i<x

q2 −−→
i<10

q3⟩, and τ1 = ⟨q0 −→
−

q1 −−→
i<x

q2 −−→
i<10

q3 −−→
i>x

q4 −→
−

q2 −−→
i<10

q3 −−−−→
¬(i>x)

q4 −→− q2 −−−−→
¬(i<10)

q0⟩ are two traces.

4.3.2 Cutpoints and Path cover

One way of identifying the overall information leak in a program is to measure the leak of

each trace in the program and sum up the leaks to measure the overall leak in the program.

However, there may be a large or infinite number of traces in a program due to unbounded

loops. Therefore, finding all possible traces may not be feasible in practice. For an FSMD

M , any trace τ is the concatenation [α1α2 · · ·αn] of paths of M where ∀k, 1 ≤ k < n, αk

terminates in the start state of the path αk+1, q0 is both the start state of α1 and the end

60

Quantification of Information Leakage

state of αn. For example, the trace τ1 mentioned above can be represented as α1α2α4α5α6.

A loop may iterate more than one times in a trace. Hence, we have the following definition.

Definition 4.3.2 (Path Cover of an FSMD). A finite set of paths P = {α1, α2, · · · , αn} is

said to be a path cover of an FSMD M if any computation τ of M can be looked upon as a

concatenation of paths from P .

To obtain a path cover, an FSMD is broken down into smaller segments by introducing

cutpoints so that each loop in an FSMD is cut in at least one cutpoint. Moreover, there

should be no intermediate cutpoint in any conditional block so that each block can be

analyzed locally. The set of all paths from one cutpoint to another cutpoint without any

intermediary occurrences of cutpoint is a path cover of the FSMD. This follows the Floyd-

Hoare method of program verification [62,70]. We denote the path cover of M as P . In this

thesis, the cutpoints are defined as follows:

Definition 4.3.3 (Cutpoints in an FSMD). A state in an FSMD is said to be a cutpoint if

it follows one of the following conditions: 1) it is a reset state, 2) it is a loop entry point,

or 3) it is a branching state that post-dominates a cutpoint.

The above-chosen cutpoints indeed will cut each loop in a behaviour. We extract all

the post dominators of the FSMD, ignoring the back edges in the FSMD due to loops. If

all the paths from a state qi to the reset state traverse through a state qj, then we say

qi is post-dominated by qj or qj post-dominates qi. This can be efficiently computed using

compiler algorithms [98]. Post dominator ensures that we do not choose any cutpoints inside

a conditional block. Our cutpoint selection also ensures that we can analyze a complete

nested branching block together and also analyze each loop separately. This will help us to

analyze the local impact of code transformations. In the FSMD in Fig. 4.2(b), the states

q0, q1 and q2 (in gray) are the cutpoints. The state q1 is a cutpoint as it is a branching state

and post-dominated by cutpoint q0. The branching state q3 is not chosen as a cutpoint as

it is inside a loop. The path cover for FSMD M is, P = {α1, α2, α3, α4, α5, α6}.

4.4 Quantification of Information Leakage

This section describes the leak in a path and how to propagate the leak over paths and loops

in a program. Then, it presents the proposed algorithms for identifying leaks in a program.

61

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

4.4.1 Leak Propagation Vector

When there is an information flow from a high input h to a low variable l either in an

explicit or implicit manner, we call this a leak of h through l. We define the leak in a path

as follows.

Definition 4.4.1 (Leak Propagation Vector). The leak propagation vector γα of a path α

in an FSMD is an ordered tuple,

γα = ⟨⟨c⟩, ⟨nk, nk−1, · · · , n1⟩⟩ (4.1)

where k = |V ∪ O|. The first element c is a x-bit integer (where x = |Ih|), represented
as c = ⟨bx, bx−1, · · · , b2, b1⟩. In c, bj = 1, ∀j, 1 ≤ j ≤ x, if there is influence of high input

hj in the condition of execution of path α. The second element is a series of integers ni,

∀i, 1 ≤ i ≤ k, which represents the leak of high inputs through variable vi either explicitly or

implicitly in the path α. Each ni is a x-bit integer represented as ni = ⟨bix , bix−1 , · · · , bi2 , bi1⟩
where bij = 1 if the variable vi leaks high input hj; bij = 0, otherwise.

The leak vector of α, i.e., γα, be also referred as the leak γαf
associated with the fi-

nal state αf of the path α. The source snippet in Fig. 4.2(a) has two sensitive/high

inputs h1 and h2, two low inputs l1 and l2, and six variables ⟨x, y, z, a, i, out⟩ in or-

der (including output out). Now, the leak vector for any path α, in FSMD M is γα =

⟨⟨ch1ch2⟩, ⟨xh1xh2 , yh1yh2 , zh1zh2 , ah1ah2 , ih1ih2 , outh1outh2⟩⟩. The bit value of xh1 is 1 if x

leaks h1, is 0, otherwise. All the bits are set in the leak vector accordingly.

4.4.2 Explicit Leak in a Path

The explicit leak is due to the data dependencies in a path. In a path α, the explicit leak

can be tracked from its data transformations Sα as it represents the symbolic values for each

variable and output. Thus, by examining the occurrence of any high input in Sα, all the

bits of ni, for 1 ≤ i ≤ k) in the leak vector γα for path α is set to either 0 or 1. Similarly,

all the bits of c in γα of path α is set to either 0 or 1 by examining the occurrence of any

high input in the condition of execution Rα. Here, γα is independent of any initial leak at

the start state αs, i.e. it considers zero initial leak. For the path α1 of Fig. 4.2(b), there

is an explicit leak of h1 through the variable x. There is no leak at the start of the FSMD.

So, the explicit leak of path α1 is γα1 = ⟨⟨00⟩, 10, 00, 00, 00, 00, 00⟩.

62

Quantification of Information Leakage

4.4.3 Leak Propagation over Paths

To compute the leak in a trace, the leak of one path needs to be propagated to the successor

paths. So, we introduce a concept of leak propagation with initial leak γαs
associated with

the start state αs of α. Note that γα represents the leak of path α with no propagated leak

at start state αs whereas γαs

α is the leak of path α with propagated leak γαs
at αs. The

propagated leak γαs

α of path α with respect to the leak γαs
at αs is computed as follows:

γαs

α |v = γα|v, if a variable v is defined in path α,

= γαs|v, otherwise.
(4.2)

where γα|v is the integer nv in γα representing the leak through v in α and γαs|v is the

corresponding integer for v in γαs
, i.e., the leak propagated vector at start state of path α.

If the variable is defined in the current path, it will overwrite the leak at αs. Hence, the

leak from the current path is considered. If the variable is not defined in the current path,

the leak at αs is propagated to the current path.

The function FindExplicitLeak() in Algorithm 2 calculates the explicit leak γαs

α of a path

α with the propagated leak γαs
at αs. The function checks for each variable definition in

Sα. If it finds a definition, it further checks for the influence of each high input in Sα at

line 6 and line 9. The line 6 checks for the explicit presence of a high input in Sα and line

9 checks for the dependency on a variable which is leaky in γαs
for a high input. Then, it

updates the leak vector γαs

α accordingly for each variable and each high input. However, if

it finds there is no influence of high input for a variable v in Sα, it simply propagates the

corresponding leak vector value from γαs
for the variable v in line 14. The first element c

in γαs

α corresponding to Rα is also obtained in a similar manner (lines 16-21) for each high

input.

To find the explicit leak of path α2 in Fig. 4.2(b), the initial leak would be the final leak

of path α1, i.e. γ
αf
1 = γαs

2 = γ
αs
1

α1 = ⟨⟨00⟩, 10, 00, 00, 00, 00, 00⟩. The explicit leak of path α2

with no initial leak is γα2 = ϕ. However, γ
αs
2

α2 = ⟨⟨10⟩, ⟨10, 00, 00, 00, 00, 00⟩⟩. The variable

x leaks h1 in α1, thus, with leak propagation, h1 is also leaking explicitly in α2 followed by

α1. Also, the condition in α2 is dependent on h1, thus c is also updated for h1.

63

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

Algorithm 2: FindExplicitLeak(α, γαs
)

Input: The path α and the propagated leak γαs
at initial state αs of path α.

Output: Returns γαs

α the explicit leak of the path α.
1 Compute Rα, Sα;
2 Set each integer in γαs

α to zero;
3 foreach high input hj ∈ Ih do
4 foreach variable vi ∈ V ∪O do
5 if variable vi is defined in path α, i.e., Sα|vi ̸= vi then
6 if hj ∈ Sα|vi] then
7 γαs

α |(vi,hj) = 1;
8 else
9 if vi is dependent on any variable x in path α, (i.e., x is present in

Sα|vi) and γαs|(x,hj) = 1 then
10 γαs

α |(vi,hj) = 1;
11 end

12 end

13 else
14 γαs

α |(vi,hj) = γαs |(vi,hj);
15 end
16 if vi occurs in Rα and γαs|(vi,hj) = 1 then
17 γαs

α |(c,hj) = 1;
18 end

19 end
20 if hj occurs in Rα then
21 γαs

α |(c,hj) = 1
22 end

23 end
24 return γαs

α ;

4.4.4 Implicit Leak in a Path

The implicit leak of high inputs is due to differences in values for a variable in different con-

trol paths. To find out the implicit leaks in a path, we perform a pre-analysis of the FSMD

to identify the candidate variables which might be responsible for the indirect leakages due

to control flow. The function PreAnalysis() is presented in Algorithm 3 for this purpose.

Specifically, it finds the distinct parallel paths α1, α2, · · · , αn between two consecutive cut-

points CPk and CPk+1 and stores into List. Then it checks for variables leading to two

different expressions by comparing the data transformation Sα1 of each variable in V ∪ O

64

Quantification of Information Leakage

with the other parallel paths in the List. It updates the candidate variable set CV with v

at CPk+1 upon finding any mismatch of data transformation for the variable v. The data

transformation comparison of each variable ensures that, if a variable is not defined in one

path but defined in another path, it is also a candidate variable and may lead to an implicit

leak. Note that we are not checking the candidate variables in each pair of parallel paths.

Instead, we check only with path α1. If a variable v is not defined in α1, its symbolic value

v is compared with the other parallel paths. This way it reduces the complexity from O(n2)

to O(n) for each variable v where n is the number of distinct parallel paths.

Algorithm 3: PreAnalysis(M,CP)

Input: The input FSMD M and its set of cutpoints CP .
Output: Returns CV and LCV , a set of candidate variables and loop candidate

variables, respectively.
1 CVcp = NULL, ∀cp ∈ CP ;
2 foreach pair of successive cutpoints (cpk, cpk+1) in CP , 1 ≤ k ≤ |CP |, where cpk is a
branching cutpoint and cpk+1 post-dominates cpk do

3 Store all the distinct parallel paths α1, α2, · · · , αn between cpk and cpk+1 in List;
4 foreach variable vi ∈ V ∪O do
5 foreach path αk ∈ List− α1, where 2 ≤ k ≤ n do
6 if Sα1|vi ̸= Sαk

|vi then
7 CVcpk+1

= CVcpk+1
∪ vi;

8 break;

9 end

10 end

11 end

12 end
13 return CV ;

During the pre-analysis, if a path inside a branch contains a loop, we ignore the loop

entry state as a cutpoint. For identifying the candidate variables of a branch, we basically

ignore the back edge of the loop inside the branch and consider the parallel paths inside the

loop only once. The interleaving of paths inside the loop body will be treated separately

(in Section 4.4.5). Further, if a loop condition is influenced by any high input, it also finds

the implicit leak of the paths inside the loop.

To find implicit leak, we only consider those branching blocks in which the variables in

their conditions are influenced by high inputs. We called those branching blocks as culprit

65

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

Algorithm 4: CheckCulprit(α, γαs
)

Input: The path α and the leak γαs
at αs.

Output: Returns TC the set of influenced high inputs in path α with leak
propagation.

1 TC = ϕ;
2 foreach high input hj ∈ Ih do
3 if γαs|(c,hj) = 1 then
4 TC = TC ∪ hj;
5 end

6 end
7 return TC;

branches (CB). The function CheckCulprit() in Algorithm 4 takes a path α and the leak

γαs
at αs and returns the set TC of all the high inputs influenced the condition of the path

α. Since the sensitivity of a variable in a path depends on the initial leak at the start of the

path, we explore the culprit branch by looking into the first element c in γαs

α . We update c

of the leak vector in Algorithm 2. The Algorithm 4 uses this information to find the culprit

branch.

To address the problem of over-tainting due to implicit flows, we propose “leak prop-

agation rules” which propagate the leaks in culprit branches. Moreover, our selection of

the cutpoint in the FSMD also handles the propagation of implicit leaks. The function

FindImplicitLeak() in Algorithm 5 takes a path α, the set TC (which stores the high inputs

that influenced the condition of execution Rα), and the set CV (which stores the candidate

variables impacting implicit leak) as inputs and updates the leak γαs

α in a path α due to

implicit flows. It updates the leak vector for each candidate variable in CVαf at the final

state αf of path α, for each influenced high input in TC. We reduce the complexity of

our approach by checking the redefinition of a candidate variable in CVαf . The function

CheckDef() (discussed in SubSection 4.5.2) in Algorithm 5 checks for the re-definition of

each candidate variable v in all successor paths of α. The function returns True if there

exists a re-definition of the variable v in all successor paths. Thus, the leak vector γαs

α is

updated when CheckDef() returns False. The idea is if the candidate variable is defined

in all subsequent future paths, the implicit leak through that variable in the current path

can be ignored since the current leak won’t have any impact at the end of the execution.

Moreover, the variables inside Rα are also leaking the influenced high inputs in TC as Rα

66

Quantification of Information Leakage

Algorithm 5: FindImplicitLeak(α, TC,CV)

Input: The path α, TC - the set of influenced high inputs at state αs and CV - the
set of candidate variables.

Output: Returns updated γαs

α , with the implicit leak of the path α.
1 foreach high input hj ∈ TC do
2 foreach variable vi ∈ CVαf do

// check for redefinition

3 if !CheckDef(vi, α
f) then

4 γαs

α |(vi,hj) = 1;
5 end

6 end
7 foreach variable vi in Rα do
8 γαs

α |(vi,hj) = 1;
9 end

10 end
11 return γαs

α ;

is a single conditional expression. Suppose, loop condition is i < x where i and x both are

program variables and x depends on some high input h upon reaching the condition, then

i also leads to leakage of h. Thus, function FindImplicitLeak() updates the γαs

α for each

variable in Rα corresponding to the high inputs in TC, when there is a high input influence

for at least one variable in Rα.

The FSMDM in Fig. 4.2(b) has a control block starting at cutpoint q1. As shown above,

the explicit leak of α2 as γ
αs
2

α2 = ⟨⟨10⟩, 10, 00, 00, 00, 00, 00⟩. The function PreAnalysis()

returns the candidate variable set at the final state of the branch as CVq2 = {y} due to

the different symbolic values of y. Then, CheckCulprit() returns the set TC = {h1} due to

the presence of x in the condition i < x for this path. Now, FindImplicitLeak() updates

the implicit leak in α2 as γ
αs
2

α2 = ⟨⟨10⟩, 10, 10, 00, 00, 10, 00⟩. It updates the leaks for y since

y is in CVq2 and for i since i is in the condition of the path i < x and x is leaking h1.

Note that variable z has no implicit leak due to the same symbolic value in both branches.

Therefore, the updated leak at the final state q2 (followed by q1 starting from the reset

state q0) due to both explicit and implicit information flows (with leak propagation) is

γ
αs
2

α2 = ⟨⟨10⟩, 10, 10, 00, 00, 10, 00⟩.

67

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

Algorithm 6: FindLoopLeak(List, pv, γpv , γloopv)

Input: List: List of parallel paths inside loop, pv: the path sequence explored so far
while iterating the loop, γpv : the updated leak for pv, γloopv : the updated leak
vector of loop.

Output: Returns γloopc , the leak vector of the loop.
1 foreach path p ∈ List do
2 pc = ⟨pv.p⟩; i.e., concatenate p with pv;
3 γpc = FindExplicitLeak(pc, γpv);
4 TC = TC ∪ CheckCulprit(pc, γpc);
5 γloopc = γloopv ∨ γpc ;
6 if γloopc = 1 then
7 break;
8 else
9 if (γpc ̸= γpv) then

10 if (γloopc ̸= γloopv) then
11 FindLoopLeak(List, pc, γpc , γloopc);
12 end

13 end

14 end

15 end
16 if TC ̸= ϕ and LCV ̸= ϕ then
17 γloopc = γloopc ∨ FindImplicitLeak(pc, TC, LCV);
18 end
19 return γloopc ;

4.4.5 Leak Propagation over Loops

A loop is visualized as a single path in our algorithm by finding the greatest fixed point

of the leak in the loop. In reality, a loop may consist of more than one mutually exclusive

path due to conditional branches inside the loop body. In each iteration, however, one of

the paths will be executed. The information leakage inside a loop may not be guaranteed

by traversing the parallel paths exactly once individually. It is because of the fact that the

information flow inside a loop may depend on the interleaving of paths. Therefore, a loop

needs to be traversed sufficiently across all its parallel paths to identify the information

leakage over the loop. For the loop in Fig. 4.2(b), let the loop first iterates over path

α4, then the high input h2 is leaking through low variable a, in the second iteration let it

iterates over path α5, then h2 is leaking through low variable y. When the loop iterates

68

Quantification of Information Leakage

again over path α4, then low variable z is also leaking h2. There is no further explicit leak

in the loop. This way the greatest fixed point of leakage can be reached for a loop.

When the condition of a loop is tainted, there is a possibility of implicit leak due to

the influenced high inputs in the tainted loop condition. This requires a pre-analysis of the

loop to find the candidate variables responsible for the implicit leak of the loop. The loop

pre-analysis is performed the same way as the branch pre-analysis. It follows the steps in

line 4 to 11 of function PreAnalysis() in Algorithm 3 to update the set LCV , i.e., the loop

candidate variables instead of CV at line 7.

The function FindLoopLeak() formalizes the leak propagation over the loop in Algorithm

6. The function FindLoopLeak() takes the List of parallel paths inside a loop, the path

sequence pv (initialized to ϕ), the leak γpv for pv, and the leak vector of loop γloopv explored

so far while iterating the loop as inputs and returns the overall leak of the loop γloopc , i.e.,

the greatest fixed point of leak due to the loop. The γloopc is initialized to ⟨0, ϕ⟩). A loop

may have more than one parallel path. However, in each iteration, it follows a single path.

We need to traverse all possible sequences of paths the loop can iterate which leads to

information leakage. To identify all these sequences of paths, the algorithm starts with a

path p from List and concatenates it to the previous path sequence pv (initialized to ϕ).

The new path sequence is now considered as the current path sequence pc. Then it calls the

function FindExplicitLeak() to find the propagated leak γpc of the current path sequence pc

with initial leak γpv . It also calls the function CheckCulprit() to check for the influence of any

high input on the loop condition and returns the set TC of influenced high inputs. The γloopc

is now updated with the γloopv and the γpc , i.e. the leak of the loop explored so far. When

it reaches a state such that the loop leads to leak of each high input through each variable,

i.e. γloopc = 1, it is no longer required to iterate the loop anymore. Thus, it returns the fixed

point of the leak of loop γloopc . Otherwise, it checks for a mismatch between γpc and γpv ,

also γloopc and γloopv . If there is mismatch, it calls the function FindLoopLeak() recursively

and repeats the same process until no new leak is identified. The leak propagated vector

γpc and γpv measures the leak of two consecutive iterations of the loop. However, γloopc and

γloopv measure the overall leak of the loop. Thus, both the parameters must be compared

before calling the function FindLoopLeak() recursively. Finally, it finds the implicit leak in

the loop if the set TC and LCV is not Null, i.e., there exist some candidate variables for

the tainted loop.

The state-of-the-art papers find the fixed point of a loop considering a single path inside

69

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

the loop. However, our approach can find the fixed point of loops with multiple paths inside.

The leak propagated vector γloopc measures the maximum possible leak in the loop. The

maximum leak may not be observable by a single run of the program as the loop condition

may be input-dependent. An attacker needs to run the program with different inputs to

observe all the leaks in the loop. Finally, we consider the loop as a single path with a single

γloop vector, which indicates the maximum possible information leakages in the loop.

For the loop in Fig. 4.2(b), it has two parallel paths inside it. The α4 through the

True branch from state q3 and another path α5 through the False branch from state q3.

For this example the List = {α4, α5}, pv = NULL initially, the propagated leak at

entry state q2 i.e. γpv = γq2 = γαf
2 = γ

αs
2

α2 = ⟨⟨10⟩, 10, 10, 00, 00, 10, 00⟩ and the initial

loop leak γloopv is ⟨0, ϕ⟩. Let in the first iteration, α4 is considered, then the pc becomes

α4 and γloopc = ⟨⟨10⟩, 10, 10, 00, 01, 10, 00⟩ as variable a is leaking h2. Let α5 is consid-

ered in the next recursive call, then pc becomes α4α5, γpv = ⟨⟨10⟩, 10, 10, 00, 01, 10, 00⟩
and γloopc = ⟨⟨10⟩, 10, 11, 00, 01, 10, 00⟩ as y is leaking h2. Let α4 is considered in the

next recursive call, then pc becomes α4α5α4, γpv = ⟨⟨10⟩, 10, 11, 00, 01, 10, 00⟩ and γloopc =

⟨⟨10⟩, 10, 11, 01, 01, 10, 00⟩ as z is leaking h2. There is no more explicit leak due to the

loop. The function now checks for the implicit leak (with the propagated leak) and up-

dates the γloopc = ⟨⟨10⟩, 10, 11, 11, 01, 10, 00⟩ for variable y, z and i as h1 is leaked through

the variable x in the condition of paths α4 and α5. Thus, the final leak of the loop is

γloopc = ⟨⟨10⟩, 10, 11, 11, 01, 10, 00⟩. Here, we have considered the best path sequence to

obtain the fixed point of leak of the loop. In reality, there are other path sequences that

will also be traversed by the Algorithm. However, the fixed point of leak for the loop won’t

change.

4.5 Leak Measurement of a Program

To measure information leakage in a program, we start traversing each path starting from

the reset state of the FSMD. We first find all the paths of the FSMD by inserting cutpoints.

The function PreAnalysis() is called to get the set CV of candidate variables at each cutpoint

in CP . Then, the function FindLeak() is called to find the overall leak of the FSMD.

70

Leak Measurement of a Program

Algorithm 7: FindLeak(M,P, αs, γαs
)

Input: Source FSMD M , Path cover P of M , Initial state αs, (Initially, αs = q0),
and Propagated leak γαs

(Initially, γαs
= ⟨0, ϕ⟩).

Output: Returns γM , i.e., the final leak of FSMD M
1 foreach path α emanating from αs do

// handle loop leak

2 if αs = αf ▷ loop entry/exit state then
3 if (αs, γαs

) exists in LoopLeakList then
4 γαs

α = γαs

α for pair (αs, γαs
) in LoopLeakList;

5 else
6 Store all the distinct parallel paths inside the loop emanating from αs in

List;
7 γαs

α = FindLoopLeak(List, ϕ, γαs
, ⟨0, ϕ⟩);

8 Store γαs

α for the pair (αs, γαs
) in LoopLeakList;

9 end

10 else
// handle explicit leak

11 γαs

α = FindExplicitLeak(α, γαs
);

// handle implicit leak

12 if αs is a branching state then
13 TC = CheckCulprit(α, γαs

α);
14 end
15 if TC ̸= ϕ and CVαf ̸= ϕ and αf post-dominates αs in M then
16 γαs

α = γαs

α ∨ FindImplicitLeak(α, TC,CV);
17 end

18 end
19 if CheckUsage(γαs

α , αf , Ih) then
20 γαs

α = FindLeak(M,P, αf , γαs

α);
21 else
22 γ

M
= γ

M
∨ γαs

α ;
// no future use of leaky variables and high inputs

23 return γ
M
;

24 end

25 end

4.5.1 Algorithm Description

The function FindLeak() takes an FSMD M , the path cover P of M , the reset state αs of

M and the initial leak γαs
(initialized to ⟨0, ϕ⟩) of the FSMD M as inputs and computes

71

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

the overall leak of M in a recursive manner. Specifically, the function identifies the leak in a

path α emanating from the current cutpoint (αs) and traverses the subsequent paths from

αf in a depth first search (DFS) manner to identify the trace level leak in M . The function

stops the recursive call when there is no further leak possible. It takes a path α from the

αs and checks whether αs is loop entry/exit state as we handle loops differently. Moreover,

to minimize the re-computation for the fixed point of leakage of loops, we keep track of the

already computed leak of loops for each unique the initial leak γαs
in LoopLeakList at each

loop entry state αs. Thus, at each loop entry state αs, the function FindLeak() checks

for the existence of a (αs, γαs
) pair in LoopLeakList and updates the greatest fixed point of

the loop γαs

α from LoopLeakList if exists. Otherwise, it calls the function FindLoopLeak()

to find the greatest fixed point of the loop with respect to the new propagated leak at αs

and updates the γαs

α . We assume that each loop is executed at least once and it always

has a single entry/exit point, i.e., there is no exit, break, return or go to statements inside

the loop. Thus, whenever a loop entry state of the FSMD is reached in FindLeak(), we find

the fixed point of leak in the loop before considering the loop exit path. Specifically, the

function considers the fixed point of leak of the loop as the initial leak for the exit path of

the loop.

If the path is not a loop, then it calls the function FindExplicitLeak() to find the explicit

leak of the path α. Then it checks whether the start state αs is a branching state. If the

start state αs of a path α is a branching state, the function CheckCulprit() checks whether

the condition of the branch is influenced by any high input. The function CheckCulprit()

returns the set TC which stores all the high inputs that influenced the condition of the

branch. If it finds the path α is a culprit branch leading to implicit leak (i.e., TC ̸= ϕ), and

also it has candidate variables (i.e., CVαf ̸= ϕ), then it calls the function FindImplicitLeak()

to propagate the implicit leak to the path α. There is a possible scenario that CVαf = ϕ

even though TC ̸= ϕ when αf is a loop state as we are not storing the candidate variables

at loop states inside the branch during pre-analysis. However, the implicit leak for these

culprit branches is measured when a direct path (with no loop) inside the branch is traversed

during the overall leak measurement. Thus, it does not generate any false negatives.

After successful measurement of leak in a path α, our approach finds the use of the leaky

variables before a definition and use of any high inputs in the successor paths in order to

reduce the number of recursive calls. This is achieved by the function CheckUsage() in line

19 of the Algorithm 7. If it finds any future use of any leaky variable in γαs

α or any use of

72

Leak Measurement of a Program

high input in Ih, it returns True and calls the function FindLeak() recursively with αf as

the initial state and γαs

α as the initial leak for the successive path of α. The final leak of

the program γM is updated with γαs

α . In this case, all the traces following the final state αf

at line 22 have the same leak. Finally, the function returns γM as the overall program leak.

It is possible to obtain the information leak in trace from the γαs
stored at the cutpoints.

Therefore, the trace level leak information can be also calculated by our method in addition

to the overall leak of a program. A function call graph for the overall security measurement

approach is shown in Fig. 4.3. Note that currently, our approach targets C language.

The hierarchical function calls will work with inlining. Our current implementation cannot

handle standard libraries, pointers, and dynamic memory allocations. However, our method

can be enhanced for other languages and can handle all these scenarios. We leave these as

future work.

Consider the FSMD M in Fig. 4.2(b) again to find the overall leak γM . To find the

overall leak in the program, the function FindLeak() starts with path α1 and finds the

explicit leak. Then from αf
1 it traverse either α2 or α3. Let α2 be traversed, followed by

α1. It finds both the explicit and implicit leak of the path α2 as it is a culprit branch.

Then, it traverses the path α4 or α5 and finds that it is a loop and thus finds the fixed

point of loop leak. After the loop, it follows the exit path α6 from the loop. It finds the

explicit leak of α6 with the propagated leak at αs
6 as γ

αs
6 = ⟨⟨10⟩, 10, 11, 11, 01, 10, 00⟩. Now,

γ
αs
6

α6 = ⟨⟨10⟩, 10, 11, 11, 01, 10, 11⟩, as the leak from y and z is propagated to out. Thus,

the final leak of FSMD M is updated as γM = ⟨⟨10⟩, 10, 11, 11, 01, 10, 11⟩. There are other

recursive calls of the FindLeak(), which won’t change the final leak of the program. We are

not discussing them here for brevity.

4.5.2 Minimizing Complexity by Look Ahead Properties

The function FindLeak() calls recursively to measure the overall leak in a program by prop-

agating the leaks. Thus, it starts from the reset state and finds the leak in subsequent

paths until it reaches the reset state again (final state). However, these recursive calls may

end up with an exponential complexity due to the large number of paths in the program.

Therefore, our objective is to use look-ahead properties to minimize the recursive calls. The

function CheckUsage() at line 19 in Algorithm 7 is used to minimize the recursive calls of

the overall security measurement method. Before each recursive call to function FindLeak(),

73

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

PreAnalysis FindLeak

FindLoopLeak FindExplicitLeak

CheckCulprit

FindImplicitLeak

Fig. 4.3: Function call graph for Quantification of Information Leak

the CheckUsage() function checks the impact of the current leak in the future paths of the

FSMDM . Then, it takes a decision on the propagation of the current leak to the subsequent

paths, i.e., the recursive call to the function FindLeak(). The impact of the current leak on

future paths depends on the use of the current leaky variables without a redefinition and the

existence of the use of any high inputs in any subsequent paths of M . If these possibilities

hold at a cutpoint, it signifies we need to propagate the current leaks to subsequent paths

for identifying further leaks in the program. Otherwise, the recursive call is stopped and

the current leak measured so far is the overall leak of the program. Thus, the function

CheckUsage() is vital for reducing the overall complexity of our proposed method.

This function uses specific Computation Tree Logic (CTL) properties on an equivalent

Kripke structure [46] of an FSMD. The model checking of a property involves three propo-

sitions, dv and uv, for each variable v in V , and uh, for each h in Ih, where dv, uv, and uh

represent defined(v), used(v) and used(h), respectively. The Kripke structure has a state

for each state of the FSMD. Also, there is a dummy state added for each transition of the

FSMD. The Kripke structure is shown in Fig. 4.4(b) for the FSMD in Fig. 4.4(a). The

dummy states are represented as black circles. In a state, the proposition dv is true when a

variable v is defined by some operation in the corresponding transition in the FSMD. Sim-

ilarly, uv is true when a variable v is used by some operation in the corresponding FSMD.

In a state, if any proposition is not present, then the negation of the proposition is true

in that state. Any CTL model checker like NuSMv [45] can verify a temporal property on

this Kripke structure at any state. Note that the Kripke structure design avoids the state

74

Leak Measurement of a Program

q0

q1

q2

q3

q4

α1

-/x = h1
i = 0, a = 0

α2
(i < x)/

y = l1 + l2,
z = l2

α3
¬(i < x)/
y = l1− l2,

z = l2

(i < 10)/-

α4

(i > x)/
z = y

α5

¬(i > x)/
y = a

−/a = h2
i = i+ 1

α6

¬(i < 10)/
out = y + z

(a)

q0

q1

q2

q3

q4

dx, di, da, uh1

dy , dzul1, ul2, ui, ux dy , dz , ul1, ul2, ui, ux

ui

dz , uy , ui, ux dy , ua, ui, ux

da, di, uh2
, ui

dout, uy , uz , ui

(b)

Fig. 4.4: Kripke representation: (a) Corresponding FSMD M for Source snippet in Fig. 4.2(a),
(b) Kripke structure obtained from FSMD M

explosion problem by using the Boolean versions for programs variable over Integers and

real numbers. It is only required to store two Boolean values for each variable at each state

of the Kripke model.

The function CheckUsage() at line 19 in Algorithm 7 checks “v is used before definition”

and “h is used”. This is achieved by applying the CTL formulae E[(¬dv) U uv] and EF (uh)

at the final state αf for each leaky variable v and each high input h in the leak vector γαs

α .

Here, E and U represent the existence and until in CTL. The model checker returns True

for CTL formulae if it finds the use of variable v before a definition of v in any successor

path or the use of any high input h in any successor path.

We have also applied look-ahead properties to avoid the implicit flows to the subsequent

paths in the FSMD M . The functions CheckDef() at line 3 in Algorithms 5 is used for that

purpose, which further reduces the over-approximation of information leaks. This function

checks “v is defined always”. Our approach updates the γα for those candidate variables

75

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

which do not have a redefinition in all successor paths, i.e. when CheckDef() returns false.

This is achieved by applying the CTL formula AF (dv) at the final state αf , where AF

represents like prefuture states in all paths. The CTL formula is true only if there is no

re-definition of variable v in all successor paths.

4.6 Quantifying Parameters for Information Leakage

In this thesis, we present three parameters for quantifying the information leakage in an

FSMD M . These quantification parameters are directly derived from the overall leak mea-

sured in the leak propagation vector γM for the program M . Let us consider the leak vector

γM in Figs. 4.5 to 4.7 with k variables (var) and h high inputs (hip) where bij represents

the leak of high input hipj through variable vari such that 1 ≤ i ≤ k and 1 ≤ j ≤ h.

4.6.1 Quantification Approaches for a Program

For γ = ⟨⟨c⟩, ⟨nk, · · · , n1, n0⟩⟩ where ni = (bih · · · bi1bi0), 1 ≤ i ≤ (V ∪ O), i.e., k = V ∪ O,

we propose the three quantifying parameters as follows.

Parameter 1: We find the total number of high inputs leaked in a program irrespective

of through how many low/local variables. A high input leaking through more than one

low/local variable is considered as one leak. The following equation measures leakyh, the

number of leaky high inputs.

leakyh =
h∑

j=1

 k∨
i=1

bij

 (4.3)

b1 b2 b3 bh

γM hip1 hip2 hip3 ... hiph

var1 b11 b12 b13 ... b1h

var2 b21 b22 b23 ... b2h

var3 b31 b32 b33 ... b3h

...

vark bk1 bk2 bk3 ... bkh

Fig. 4.5: Measuring the quantification parameter 1 using the leak vector

If we make a union of each column of γM we get a boolean bit bj for 1 ≤ j ≤ h, then if

we sum up all these bits, we get the parameter 1. This illustration is shown in Fig. 4.5.

76

Quantifying Parameters for Information Leakage

Parameter 2: We find the total number of unique leaky variables in a program with

respect to high inputs leaked. A variable leaking more than one high input is considered as

one leak. The following equation measures leakyuv, the number of unique leaky variables.

leakyuv =
k∑

i=1

 h∨
j=1

bij

 (4.4)

γM hip1 hip2 hip3 ... hiph

var1 b11 b12 b13 ... b1h

var2 b21 b22 b23 ... b2h

var3 b31 b32 b33 ... b3h

...

vark bk1 bk2 bk3 ... bkh

b1

b2

b3

bk

Fig. 4.6: Measuring the quantification parameter 2 using the leak vector

If we make a union of each row of γM we get a boolean bit bi for 1 ≤ i ≤ k, then if we

sum up all these bits, we get the parameter 2. This illustration is shown in Fig. 4.6.

Parameter 3: We find the total number of leaky variables in a program with respect to

unique high input. A variable leaking two high inputs is considered as two leaks, one for

each high input. Similarly, a high input leaked by two variables is considered as two leaks

for that high input. The following equation measures leakyv, the number of leaky variables.

leakyv =
h∑

j=1

 k∑
i=1

bij

 (4.5)

γM hip1 hip2 hip3 ... hiph

var1 b11 b12 b13 ... b1h

var2 b21 b22 b23 ... b2h

var3 b31 b32 b33 ... b3h

...

vark bk1 bk2 bk3 ... bkh

Fig. 4.7: Measuring the quantification parameter 3 using the leak vector

If we sum up each boolean bit bij of γM for 1 ≤ i ≤ k and 1 ≤ j ≤ h, we get the

parameter 3. This illustration is shown in Fig. 4.7.

77

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

The proposed parameters are used to verify the relative security between the source and

transformed programs, i.e., discussed in the next subsection.

4.6.2 Quantification Approaches for Relative Security

The FSMD representation of source FSMD M0 and the transformed FSMD M1 are ⟨Q0, q00,

I, V0, O, f0, h0⟩ and ⟨Q1, q10, I, V1, O, f1, h1⟩ respectively. The leak vector for both FSMD M0

and M1 is represented as γ0 = ⟨⟨c0⟩, ⟨n0v0 , · · · , n01, n00⟩⟩ and γ1 = ⟨⟨c1⟩, ⟨n1v1 , · · · , n11, n10⟩⟩,
respectively where n0i = (b0ih · · · b0i1b0i0), 1 ≤ i ≤ V0 ∪ O and n1i = (b1jh · · · b1j1b1j0),
1 ≤ i ≤ V1∪O, where, h is the number of high inputs, i.e., h = |Ih|, V0 and V1 are the set of

program variables in FSMD M0 and FSMD M1, respectively, I and O are the set of inputs

and outputs for both M0 and M1, respectively. It may be noted that the input and output

sets are the same for both M0 and M1 because M1 is the transformed version obtained from

M0. Here, in γ0 and γ1, v0 = |V0 ∪O| and v1 = |V1 ∪O|, bsij and btij are the corresponding

leak values in nsi and nti for i
th variable and jth high input, respectively.

Definition 4.6.1 (Secure Program Transformation). A program transformation is said to

be secure if there is no leak in the transformed FSMD. Formally, M0 and M1 are secure,

denoted by M1 ≃S M0 (read as M1 is securely equivalent to M0), if γ0 = ⟨0, ϕ⟩ and also,

γ1 = ⟨0, ϕ⟩, i.e., there is no information leakages in the respective FSMDs.

Definition 4.6.2 (Relatively Secure Program Transformation). Two FSMDs are said to be

relatively secure, denoted by M1 ≃R M0 (read as M1 is relatively secure to M0), if there is a

leak in M1, there must be a corresponding leak exists in M0. Formally, M0 and M1 are said

to be relatively secure if they follow both the necessary condition followed by the sufficient

condition. The necessary condition is as follows: V1∨
i=1

b1ij −
V0∨
i=1

b0ij

 ≤ 0, ∀j ∈ h (4.6)

The above equation restricts any new leak of high input in M1, which is not there in

M0. Also, it can verify whether M1 is more secure than M0. The sufficient condition is as

follows:  V1∑
i=1

b1ij −
V0∑
i=1

b0ij

 ≤ 0,∀j ∈ h, (4.7)

78

Correctness and Complexity

The Eq. (4.6) satisfies when a high input leaking in M1 is also leaking in M0 irrespective

of through how many low variables. The Eq. (4.7) satisfies when, for all high inputs, the

number of variables leaking a specific high input in M1 is not more than that of in M0. Thus,

the sufficient condition needs to be checked only when the necessary condition holds.

For both FSMDs M0 and M1, the necessary condition for relative security in Eq. (4.6)

checks for the Parameter 1 in Eq. (4.3) and the sufficient condition in Eq. (4.7) checks for

the Parameter 3 in Eq. (4.5) for each high input.

4.7 Correctness and Complexity

Detecting the information leakage in a program is undecidable in general [52, 56]. Thus,

achieving completeness for ensuring security properties in a program is impossible. There-

fore, we aim to develop a sound approach. We ensure it does not result in any false positives.

4.7.1 Soundness and Termination

Our security measurement approach ensures that there is leakage in a program when the

final leak vector γM obtained by our method for an FSMD is non-zero. We update the leak

vector in three possible scenarios: i) when there is an explicit leak due to direct dependencies

on high inputs, ii) when there is an implicit leak due to the control flow, and iii) while

computing the fixed point of leaks (both explicit and implicit leak) inside a loop. The non

zero of γM ensures either there is an explicit flow of leak to a program variable or an implicit

flow of leak (i.e., there exist at least two traces in the program for which the attacker can

get some information about the sensitive information). Therefore, our method does not give

any false positive results. Thus, our security measurement approach is sound.

Theorem 4.7.1. The Algorithm 7 always terminates.

Proof. The function FindLeak() in Algorithm 7 finds all the traces in an FSMD to find

the overall FSMD leak in the worst-case scenario. However, an FSMD has a finite number

of traces as we consider each loop as a single path. Now, we need to prove the function

FindLoopLeak() always terminates. The function FindLoopLeak() calls itself recursively

upon satisfying two conditions, i.e., when the leak vector of two consecutive iterations of

the loop (γpv and γpc) is mismatched and the overall leak vector of the loop (γloopc) for two

79

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

consecutive iterations of the loop is also mismatched. Thus, in the worst case, the loop

iterates until each bit of γloopc is 1. However, γloopc has a finite length. Thus, it calls itself

recursively for a finite time. Therefore, Algorithm 7 always terminates.

4.7.2 Complexity Analysis

The complexity of the overall security measurement approach depends on the following

factors: i) the complexity of finding the leak for a given path. ii) the number of times

FindLeak() is called. The first factor depends on the complexity of finding the loop leak if

the given path is a loop. Otherwise, it is the complexity of finding an explicit leak followed

by the implicit leak after checking for the branch culprit. For finding the implicit leak,

preanalysis of the FSMD is done before calling the function FindLeak().

Assume there are C cutpoints, maximum k1 parallel paths between two consecutive

cutpoints, H high inputs, and V variables (including the outputs) in an FSMD. The function

PreAnalysis() takes O(C · V · k1) time in worst case. The function FindExplicitLeak() in

worst case scenario takesO(H ·V) time. The function CheckCulprit() and FindImplicitLeak()

takes O(H) and O(H · V) time in worst case. We consider the function CheckDef() takes

a negligible amount of time. Assume there are k2 parallel paths inside a loop. The worst

case time complexity for one iteration of the loop would be the addition of complexity of

pre-analysis, explicit leak, checking culprit, and implicit leak, i.e., (O(V · k2) + O(H · V +

H +H · V) ≃ O(H · V)). So, for kV
2 iterations of the loop, the worst case complexity would

be O(kV
2 ·H · V). However, generally, a loop has a few paths (i.e. the value of k2 is a small

integer constant). Therefore, for the first factor, i.e., to find the leak of a given path, the

complexity would be O(C · V · k1 + kV
2 ·H · V).

Now for the second factor, the function FindLeak() calls itself recursively at each cutpoint

for each path emanating from a cutpoint. Thus, it calls for (k1 + k2
1 + · · · + kC−1

1) times

which is of the order ofO(kC
1). Therefore, the complexity of the overall security measurement

approach is O(kC
1 (C ·V ·k1+kV

2 ·H ·V)) ≃ O(k(C+V) ·H ·V) in the worst case if we consider

the Max(k1, k2) as k.

In the best-case scenario, there is no recursive call for the function FindLeak(), and there

is a single path inside a loop. Thus, the best-case complexity would be the product of time

complexity for a given path and the maximum-paths between the two consecutive cutpoints

starting from the reset state. Therefore, the best case complexity is O(k ·H · V).

80

Experimental Results

4.8 Experimental Results

4.8.1 Setup

The proposed security measurement approach has been implemented in C 1. We ran a variety

of benchmarks for various compiler optimizations in the SPARK [68] high-level synthesis

(HLS) tool. This tool applies a wide range of optimizations on the input C code for efficient

synthesis and provides the optimized C code as a by-product. The applied optimizations

include code motion, common sub-expression elimination, dead code elimination, copy and

constant propagation, and many more. We generate the original or source FSMD, i.e., M0,

from the input C and the transformed or optimized FSMD, i.e., M1, from the optimized

C code for each benchmark. The process of generating the FSMDs from C code has been

automated in our tool. The overall tool flow is shown in Fig. 4.8. Note that our approach

can be adapted for any general-purpose compilers. We have used an Intel Xeon(R) CPU

E5-2620 v4 2.10GHz, 64GB of RAM, running Ubuntu 18.04.3 LTS in our experiments.

C Program C to FSMD Quantify Leak

SPARK
Compiler

Optimized
C Program C to FSMD Quantify Leak

Relative
Security?

(Compare leak)
Yes/No

FSMD

FSMD

Fig. 4.8: Overall flow for relative security of information leakage

4.8.2 Performance Measures

We have presented the results for 11 benchmarks (taken from [22]) in Table 4.1. The number

of cutpoints (#CP) and paths (#P) are presented in Columns 2 and 3, respectively, for

each benchmark. It may be noted that SPARK does not alter the control structure during

1Available at https://github.com/PriyankaPanigrahi/QuantifyLeak

81

https://github.com/PriyankaPanigrahi/QuantifyLeak

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

Table 4.1: Performance Measures for Benchmarks

Bench #CP #P #IN #H
#Explicit #Implicit

RS?
ET (Sec)

M0 M1 M0 M1 M0 M1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

dct 1 1 8

2 54 64 0 0 No

0.002 0.003
2 46 56 0 0 No
2 56 64 0 0 No
2 48 52 0 0 No

modn 2 10 1 1 5 6 3 3 No 0.003 0.004
diffeq 2 3 2 1 13 17 1 2 No 0.001 0.001
perfect 3 6 1 1 1 1 2 3 No 0.002 0.002
barcode 2 65 4 2 0 0 20 22 No 0.023 0.02

parker 3 9 6
2 9 13 4 11 No

0.003 0.0082 7 8 7 15 No
3 9 13 11 22 No

find
8 15 8

2 6 8 0 0 No
0.028 0.024

min8 1 3 1 0 0 Yes

waka 2 4 20

2 7 7 8 10 No

0.002 0.002
2 15 15 0 0 Yes
4 15 15 16 18 No
4 17 17 8 9 No

lru 3 101 2 2 0 0 32 32 Yes 0.036 0.037
qrs 13 56 1 1 44 35 12 12 Yes 51.55 22.18
ieee754 6 519 2 2 32 32 12 10 Yes 131.29 108.5

optimization. Hence, the number of paths is the same in both FSMDs M0 and M1. A trace

is a concatenation of paths. Thus, the number of traces is quite large for the benchmarks.

The number of inputs for each benchmark is presented in Column 4 (#IN). We select a

random subset of inputs as high inputs for each benchmark. In column 5 (#H), we present

the number of high inputs chosen. For some benchmarks like parker, findmin8, dct, and

waka, we consider different combinations of high inputs. Note that the same number of high

inputs for a benchmark actually represents a different set of high inputs with the same count.

For example, parker has three rows (2, 2, 3) in Column 5. Although the first two rows have

two high inputs, they are actually different inputs. We found that all the benchmarks lead

to information leakage of high inputs. Our quantification parameter leakyh (i.e. number of

high input leaked) confirms the same.

The total number of leaky variables #leakyv is the combination of both explicit flows

82

Experimental Results

and implicit flows. We have presented the total number of explicit flows and implicit flows

detected by our approach in Columns 6-9 of Table 4.1 for both M0 and M1. Its clear that

there are explicit leaks in both M0 and M1 in almost all cases. The explicit leaks are not the

same in M0 and M1 in 12 out of 20 cases. We found that there is no implicit flow for both

findmin8 and dct. As identified, in 9 out of 11 benchmarks, there is implicit information

flow, and the implicit flow in M0 and M1 is not the same for six benchmarks.

Finally, we have shown the average execution time (ET) required for each benchmark

in the last two columns of Table 4.1. The execution time depends on three parameters:

the number of cutpoints, the number of parallel paths, and how many times the function

FindLeak() is called recursively. We found that the execution times for all cases in parker,

findmin8, dct and waka are almost the same. We, therefore, present the average execution

time of one of all runs for each benchmark. The benchmarks qrs and ieee754 take more

time due to their large number of paths and cutpoints.

4.8.3 Results on Quantification Parameters

The first quantification parameter, leakyh is the same for both M0 and M1 in most of our

experiments. This shows that identifying only the number of leaky high inputs is necessary

but not sufficient to ensure the relative security of compiler transformations. This justifies

the sufficient condition of our definition of relative security (Definition 4.6.2).

U

ni
qu

e
le

ak
y

va
ria

bl
es

0

20

40

60

m
od

n
di

ffe
q

pe
rfe

ct
ba

rc
od

e
pa

rk
er

1
pa

rk
er

2
pa

rk
er

3
fin

dm
in

81
fin

dm
in

82 dc
t1

dc
t2

dc
t3

dc
t4

w
ak

a1
w

ak
a2

w
ak

a3
w

ak
a4 qr

s
ie

ee
75

4 lru

M0 M1

Fig. 4.9: Unique Leaky Variables (#leakyuv) in M0 Vs M1

83

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

Le

ak
y

va
ria

bl
es

0

20

40

60

80
m

od
n

di
ffe

q
pe

rfe
ct

ba
rc

od
e

pa
rk

er
1

pa
rk

er
2

pa
rk

er
3

fin
dm

in
81

fin
dm

in
82 dc
t1

dc
t2

dc
t3

dc
t4

w
ak

a1
w

ak
a2

w
ak

a3
w

ak
a4 qr

s
ie

ee
75

4 lru

M0 M1

Fig. 4.10: Leaky Variables (#leakyv) in M0 Vs M1

Our second and third quantification parameters for total number of unique leaky vari-

ables (#leakyuv) and total number of leaky variables (#leakyv) concerning high inputs are

presented in Fig. 4.9 and Fig. 4.10, respectively. Benchmarks with different high input sets

are named as parker1, parker2, parker3 and so on. It’s obvious that when the #high is 1,

the #leakyuv is the same as the #leakyv. The #leakyuv and #leakyv results for the first

three benchmarks and qrs reflect the same as they have one high input. It is the same for

lru and, in some cases for waka and is less in M0 for qrs, ieee754 and one case in findmin8.

Similar results have been obtained for #leakyv as well. This shows that the applied opti-

mizations by SPARK either do not impact the information leakage of the source programs

or reduce the information leakage in the optimized code for these cases. Importantly, we

found that for M1, the #leakyuv is more than that of M0 for 13 out of the 20 cases. The

#leakyv value for M1 is more than that of M0 in 15 out of the total 20 scenarios. This

proves that SPARK introduces new information leaks during optimizations in most of the

scenarios.

4.8.4 Results on Relative Security

We also check the relative security (RS?) betweenM0 andM1 using our proposed quantifying

parameters in Eq. (4.6) and (4.7), and presented the result in Column 10. Out of a total

of 20 cases, only five are relatively secure, and for 15 cases, M1 is not relatively secure to

84

Experimental Results

M0. We have presented the overall flow for verifying the relative security between the source

and transformed programs in Fig. 4.8. Our quantification tool takes both the source and

optimized FSMDs individually and measures the overall leak in both programs. Then, the

overall leaks are compared to verify the relative security. However, this approach cannot

identify the exact point of information leak in the program. This issue has been resolved in

our translation validation method (TVIL) in the next chapter.

4.8.5 Scalability of Proposed Approach

We have shown the results for the lines of code (LoC) and the average execution time (in

sec) in Fig. 4.11 for our benchmarks. The graph shows the runtime of our tool is growing

almost linearly with the code size. This implies our method is scalable enough to handle

small to moderate size programs.

LOC

E
xe

c
Ti

m
e

(s
ec

)

0

50

100

150

100 200 300 400

Fig. 4.11: LoC Vs Execution Time (sec)

4.8.6 Comparison with Existing Approaches

We compare total leakage (#leakyv) with the under-tainting and over-tainting results and

found that our approach successfully detected the false negatives due to under-tainting

and also ignored the false positives caused by over-tainting. We have shown these results

in Fig. 4.12 for the benchmarks for which we found the difference in leaks. The overall

result confirms that compiler optimization in SPARK introduces security vulnerability in

85

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

the optimized code for moderate-sized programs. Our quantification parameters can identify

such information leakage in the source and optimized programs, which helps us to check the

relative security between them.

Le

ak
y

va
ria

bl
es

0

10

20

30

40

50

parker1 parker2 parker3 waka1 waka2 waka3 ieee754

Under-taint Over-taint Proposed approach

Fig. 4.12: Comparisons with other Taint Approaches

4.9 Security Analysis of Various Compiler Optimiza-

tions

The compiler applies various optimizations. In this section, we analyze the security of such

optimizations using our proposed quantification method. Based on our analysis, we have

categorized the optimizations into two classes: (i) secure and (ii) insecure optimizations.

We discuss the insecure optimizations followed by the secure optimizations with examples

in the next two subsections.

Let γS and γT be the leak vector of the program before transformation (Source Program

S) and after transformation (Optimized Program T), respectively. The V0 and V1 are the set

of variables in S and T , respectively. The Ih is the set of high inputs. For ease of analysis,

here we consider an array as tainted if one of the array elements becomes tainted. Thus,

we handle the array just like a variable in our leak vector. However, our approach can be

easily extended to handle element-level security analysis of arrays by representing the data

transformation and condition of execution of a path as done in [23].

86

Security Analysis of Various Compiler Optimizations

4.9.1 Insecure Compiler Optimizations

We found that some of the common compiler optimizations are actually leaky. We discussed

them with examples here.

4.9.1.1 Dead Store Elimination

The compiler applies dead store elimination (DSE) to improve the performance of the code

by removing the operations that do not impact the output. An instance of DSE is shown in

Fig. 4.13, where the dead store ‘x=0’ is eliminated after the compiler applies optimization.

The transformation is functionally correct since the output won’t be impacted due to this

transformation. However, it leads to the leak of secret high input h1 through variable ‘x’

after transformation in Fig. 4.13(b). Our leak vectors are γS = ⟨⟨c⟩, ⟨xh⟩⟩ = ⟨⟨ϕ⟩, ⟨0⟩⟩ and
γT = ⟨⟨c⟩, ⟨xh⟩⟩ = ⟨⟨ϕ⟩, ⟨1⟩⟩. The necessary condition for relative security in Definition4.6.2

says if high input h1 is leaking in M1, it must be leaking in M0. Here, k1 = k2 = 1 and

h1 = 1, then Eq. (4.6) expands into (1− 0) ̸≤ 0. Therefore, DSE is not relatively secure.

1 void foo ()
2 {
3 x = h1 ; // use x ;
4 x=0; //dead s t o r e
5 }

(a)

1 void foo ()
2 {
3 x = h1 ;
4 // use x ;
5 }

(b)

Fig. 4.13: An Example of Dead Store Elimination

4.9.1.2 Single Static Assignment

The single static assignment (SSA) helps in improving the register usage by splitting the

lifetime of a variable such that it can be mapped to multiple registers. In Fig. 4.14,

variable ‘x’ is converted to SSA. The high input h1 stored in x is overwritten in Fig.

4.14(a). However, after SSA in Fig. 4.14(b), the high input h1 is leaking through x1.

This can be tracked by our leak vector γ. Specifically, γS = ⟨⟨c⟩, ⟨xh⟩⟩ = ⟨⟨ϕ⟩, ⟨0⟩⟩ and

γT = ⟨⟨c⟩, ⟨x1h, x2h⟩⟩ = ⟨⟨ϕ⟩, ⟨1, 0⟩⟩. Here, k1 = k2 = 1 and h1 = 1, then Eq. (4.6) expands

into (1− 0) ̸≤ 0. Therefore, SSA is not relatively secure.

87

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

1 void foo (l 1)
2 {
3 x = h1 ;
4 // use x ;
5 x = l1;
6 }

(a)

1 void foo (l 1)
2 {
3 x1 = h1 ;
4 // use x1 ;
5 x2 = l1;
6 }

(b)

Fig. 4.14: An Example of Single Static Assignment

4.9.1.3 Common Sub-expression Elimination

The compiler eliminates the common sub-expressions (CSE) to improve the performance

by reducing the re-computation of the same expressions. In Fig. 4.15, the common sub-

expression a+ b stored in t is used in the computation of both x and y. This transformation

leads to a new leaky variable t when either x or y holds sensitive information.

Let the order of variables of S is ⟨a, b, c, d, x, y⟩ and of T is ⟨a, b, c, d, x, y, t⟩.] Specifi-

cally, γS = ⟨⟨c⟩, ⟨ah1ah2, · · · , yh1yh2⟩⟩ = ⟨⟨ϕ⟩, ⟨10, 01, 00, 00, 11, 11⟩⟩ and γT = ⟨⟨c⟩, ⟨ah1ah2,
· · · , yh1yh2, th1th2⟩⟩ = ⟨⟨ϕ⟩, ⟨10, 01, 00, 00, 11, 11, 11⟩⟩. Here, |V0| = 6, |V1| = 7 and |Ih| = 2,

then Eq. (4.6) expands into (1− 1) ≤ 0 for both h1 and h2. So it satisfies Eq. (4.6). Now,

we will check the sufficient condition for relative security. For j = h1, |V0| = 6, |V1| = 7, Eq.

(4.7) expands into 4− 3 ̸≤ 0 and same holds for j = h2. Thus, it does not satisfy Eq. (4.7).

Therefore, common sub-expression elimination is not relatively secure.

1 void foo ()
2 {
3 a = h1 ; b = h2 ;
4 x = a+b+c ;
5 y = a+b+d ;
6
7 }

(a)

1 void foo ()
2 {
3 a = h1 ; b = h2 ;
4 t = a+b;
5 x = t+c ;
6 y = t+d ;
7 }

(b)

Fig. 4.15: An Example of Common Sub-expression Elimination

88

Security Analysis of Various Compiler Optimizations

4.9.1.4 Loop-based Strength Reduction

Strength reduction in the loop replaces statements in the loop with less expensive operators.

In Fig. 4.16, a multiplication operator is replaced by an addition operator. However, it

introduces a new variable t in Fig. 4.16(b). When variable b is tainted or holds sensitive

information in Fig. 4.16(a), strength reduction introduces a new leaky variable t in Fig.

4.16(b). Our leak vector γ can track these new leaky variables and show that strength

reduction may be leaky. Specifically, γS = ⟨⟨c⟩, ⟨i, n, a, b⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1⟩⟩ and γT =

⟨⟨c⟩, ⟨i, n, a, b, t⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1, 1⟩⟩. Here, |V0| = 4, |V1| = 5 and |Ih| = 1, then Eq. (4.6)

expands into (1− 1) ≤ 0 for h1. So it satisfies Eq. (4.6). Now, we will check the sufficient

condition for relative security. For j = h1, Eq. (4.7) expands into 3− 2 ̸≤ 0. Thus, it does

not satisfy Eq. (4.7). Therefore, strength reduction is not relatively secure.

1 b=h1 ;
2 f o r (i =1; i<n ; i++)
3 {
4 a [i]=a [i]+(b×i);
5 }

(a)

1 b=h1 ;
2 t=b;
3 f o r (i =1; i<n ; i++)
4 { a [i]=a [i]+t ;
5 t=t+b ; }

(b)

Fig. 4.16: An Example of Loop-based Strength Reduction

4.9.1.5 Loop Invariant Code Motion

When a computation inside a loop does not vary during loop iterations, the compiler may

move these computations outside the loop. This is called loop invariant code motion. Fig.

4.17 shows an example in which a multiplication operation is moved outside the loop. How-

ever, this also introduces a new variable, t. When either x or y is tainted in Fig. 4.17(a),

the new variable t is also tainted in Fig. 4.17(b) after code motion. Our leak vector γ can

track these new leaky variables after the compiler applies loop invariant code motions.

Specifically, γS = ⟨⟨c⟩, ⟨i, n, a, x, y⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1, 0⟩⟩ and γT = ⟨⟨c⟩, ⟨i, n, a, x, y, t⟩⟩ =
⟨⟨ϕ⟩, ⟨0, 0, 1, 1, 0, 1⟩⟩. Here, |V0| = 5, |V1| = 6 and |Ih| = 1, then Eq. (4.6) expands into

(1− 1) ≤ 0 for h1. So it satisfies Eq. (4.6). Now, we will check the sufficient condition for

relative security. For j = h1, Eq. (4.7) expands into 3 − 2 ̸≤ 0. Thus, it does not satisfy

Eq. (4.7). Therefore, code motion is not relatively secure.

89

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

1 x=h1 ;
2 f o r (i =1; i<n ; i++)
3 {
4 a [i]=a [i]+(x-y) ;
5 }

(a)

1 x=h1 ;
2 i f (n>0)
3 t=(x-y);
4 f o r (i =1; i<n ; i++)
5 { a [i]=a [i]+t ; }

(b)

Fig. 4.17: An Example of Loop Invariant Code Motion

4.9.2 Secure Compiler Optimizations

We have analyzed a few other compiler transformations [21] like copy propagation, loop

fusion, loop unswitching, loop unrolling, loop peeling, loop distribution, etc., and found

that these transformations are relatively secure to the source program by our leak vector.

A similar study can be performed for many other compiler optimizations as well.

4.9.2.1 Copy Propagation

The compiler removes redundant copies of variables by copy propagation. It reduces the

register-to-register move instructions. In Fig. 4.18(a), variable y holds a copy of variable x.

After the compiler applies copy propagation, y is removed in Fig. 4.18(b) and replaced by

x at the use of y. As copy propagation removes the redundant copies of a variable, it does

not lead to any extra information leak. Thus, it is relatively secure to the source program.

Our leak vector γ can track this relative security for high input h1. Specifically, γS =

⟨⟨c⟩, ⟨x, y, z, a, b⟩⟩ = ⟨⟨ϕ⟩, ⟨1, 1, 1, 0, 0⟩⟩ and γT = ⟨⟨c⟩, ⟨x, z, a, b⟩⟩ = ⟨⟨ϕ⟩, ⟨1, 1, 0, 0⟩⟩. Here,

|V0| = 5, |V1| = 4 and |Ih| = 1, then Eq. (4.6) expands into (1− 1) ≤ 0 for h1. So it satisfies

Eq. (4.6). Now, we will check the sufficient condition for relative security. For j = h1, Eq.

(4.7) expands into 2 − 3 ≤ 0. Thus, it satisfies Eq. (4.7). Therefore, copy propagation is

relatively secure.

4.9.2.2 Loop Fusing

Two loops having the same number of iterations with the same condition can be merged

into one loop with all the loop statements. This is called loop fusion. However, if there is

a statement S2 in the second loop dependent on a statement S1 in the first loop, it cannot

be fused as this would lead to incorrect results in the fused loop. In Fig. 4.20(a), both the

90

Security Analysis of Various Compiler Optimizations

1 void foo ()
2 {
3 x = h1 ;
4 y = x;
5 z = a+b+y ;
6 }

(a)

1 void foo ()
2 {
3 x = h1 ;
4
5 z = a+b+x ;
6 }

(b)

Fig. 4.18: An Example of Copy Propagation

loops are fused into a single loop in Fig. 4.20(b). The loop statement in line 5 is dependent

on line 2 in Fig. 4.20(a). Thus, these loops can be fused. The vice-versa situation is not

possible for fusing, i.e., when the loop statement in line 2 is dependent on the statement

in line 5. This loop transformation has the same fixed point by our leak vector before and

after the transformation, as the loop statements are dependent in a continuous manner.

Specifically, loop fusing can have only possible explicit leaks.

Here, γS = ⟨⟨c⟩, ⟨i, n, a, x⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1⟩⟩ and γT = ⟨⟨c⟩, ⟨i, n, a, x⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1⟩⟩.
Here, |V0| = 4, |V1| = 4 and |Ih| = 1, then Eq. (4.6) expands into (1 − 1) ≤ 0 for h1. So

it satisfies Eq. (4.6). Now, we will check the sufficient condition for relative security. For

j = h1, Eq. (4.7) expands into 2−2 ≤ 0. Thus, it satisfies Eq. (4.7). Therefore, loop fusing

is relatively secure.

1 for(i=1; i<n; i++)
2 { a [i]=a [i]+h1 ; }
3
4 for(i=1; i<n; i++)
5 { x [i]=x [i]+a [i] ; }

(a)

1 for(i=1; i<n; i++)
2 {
3 a [i]=a [i]+h1 ;
4 x [i]=x [i]+a [i] ;
5 }

(b)

Fig. 4.19: An Example of Loop Fusing

4.9.2.3 Loop Unswitching

When there is an invariant branch condition inside a loop, the compiler moves the branch

outside the loop such that it replicates the loop body inside each branch of the condition.

91

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

It reduces the overhead of branching inside the loop. In Fig. 4.21(a), variable x is loop

invariant. Thus, the loop is replicated to both the branches in Fig. 4.21(b). To ensure the

execution of the loop inside the branch after the loop unswitching, the branch condition

is guarded with another condition. This loop transformation has the same fixed point by

our leak vector before and after the transformation as the data dependency, and the total

iteration count does not change during the transformation.

Our leak vector γ can track these new leaky variables and show that strength reduc-

tion may be leaky. Specifically, γS = ⟨⟨c⟩, ⟨i, n, a, b, x⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1, 0⟩⟩ and γT =

⟨⟨c⟩, ⟨i, n, a, b, x⟩⟩ = ⟨⟨ϕ⟩, ⟨0, 0, 1, 1, 0⟩⟩. Here, |V0| = 5, |V1| = 5 and |Ih| = 1, then Eq. (4.6)

expands into (1− 1) ≤ 0 for h1. So it satisfies Eq. (4.6). Now, we will check the sufficient

condition for relative security. For j = h1, Eq. (4.7) expands into 2 − 2 ≤ 0. Thus, it

satisfies Eq. (4.7). Therefore, loop unswitching is relatively secure.

1 f o r (i =1; i<n ; i++)
2 {
3 a [i]=a [i]+h1 ;
4
5 if(x<10)
6 b [i]=b [i]+a [i] ;
7 else
8 b [i]=b [i]−a [i] ;
9 }

(a)

1 i f (n>0){
2 if(x<10)
3 { f o r (i =1; i<n ; i++)
4 {a [i]=a [i]+h1 ;
5 b [i]=b [i]+a [i] ; }}
6 else
7 { f o r (i =1; i<n ; i++)
8 {a [i]=a [i]+h1 ;
9 b [i]=b [i]−a [i] ; }}}

(b)

Fig. 4.20: An Example of Loop Unswitching

4.9.2.4 Loop Unrolling

Loop unrolling repeats the loop statements some number of times and iterates the loop for

a reduced number of iterations. In Fig. 4.21, the loop is unrolled by two. After unrolling,

the loop iteration is reduced to half as two iterations are executed at a time. It is relatively

secure according to our leak vector, as data dependency of the loop statements is unaffected

by loop unrolling.

92

Security Analysis of Various Compiler Optimizations

1 f o r (i =2; i<n+1; i++)
2 {
3 a [i]=a [i]+ t ;
4 }

(a)

1 f o r (i =2; i<n ; i +2)
2 {
3 a [i]=a [i]+ t ;
4 a [i +1]=a [i +1]+t ;
5 }
6 a[n]=a[n]+t;

(b)

Fig. 4.21: An Example of Loop Unrolling

4.9.2.5 Loop Peeling

A few number of iterations of the loop are peeled from the beginning or end of the loop. Loop

peeling further improves loop fusion. In Fig. 4.22, the loop is peeled for one time from the

beginning of the loop. Loop peeling is relatively secure according to our leak vector, as the

data/control dependency does not change after the transformation. Though the iteration

count is reduced due to peeling, it does not affect the total leak of the program. The fixed

point of leak before the transformation would match with the total leaks due to the peeled

statements from the loop and the fixed point of loop leak after the transformation.

1 f o r (i =2; i<n ; i++)
2 {
3 a [i]=a [i]+ t ;
4 }

(a)

1 a[2]=a[2]+t;
2 f o r (i =3; i<n ; i++)
3 {
4 a [i]=a [i]+ t ;
5 }

(b)

Fig. 4.22: An Example of Loop Peeling

4.9.2.6 Loop Distribution

The compiler applies loop distribution, which splits a single loop into multiple loops to

improve the parallel execution of the loop statements. All the new loops have the same

number of iterations. In Fig. 4.23, the two loop statements are distributed into two loops.

Loop distribution is relatively secure according to our leak vector, as the total iteration

count does not change during the transformation. The total leak due to the single loop

93

QIL: Quantifying Information Leakage for Security Verification of Compiler

Optimizations

before transformation would match with the total leaks due to each distributed loop after

transformation. Thus, the fixed point of the original loop leak does not change.

1 for(i=2; i<n; i++)
2 {
3 a [i]=a [i]+ t ;
4 b [i]=b [i]+a [i] ;
5 }

(a)

1 for(i=2; i<n; i++)
2 { a [i]=a [i]+ t ; }
3
4 for(i=2; i<n; i++)
5 { b [i]=b [i]+a [i] ; }

(b)

Fig. 4.23: An Example of Loop Distribution

4.10 Conclusion

Modern-day compilers apply various optimizations to improve the performance of the code

in the target architecture. Compiler optimization can be functionally correct but does not

always retain the security properties of the source program. In this thesis, we proposed a

security measurement approach in a program with respect to information flow. Our approach

finds both the explicit and implicit leaks in a program. Moreover, it finds the fixed point of

the loop, which detects the maximum possible leakage inside the loop due to both explicit

and implicit flows. We proposed three quantification parameters of information leakage in

a program. We have defined the relative security between the two programs in terms of

our quantification parameters. We have shown that the SPARK compiler is not relatively

secure since it applies optimizations like DSE, SSA, CSE, code motion, etc.

;;=8=<<

94

5
TVIL: Translation Validation of Information

Leakage of Compiler Optimizations

5.1 Introduction

Translation validation (TV) is the process of verifying that a source program is correctly

translated into an optimized program by a compiler. A TV method can check the functional

correctness and/or relative security of a translation process. In this thesis, we propose a

translation validation method for the information leakage verification of compiler optimiza-

tions. A set of transformations is said to be secure if the amount of information leak in the

optimized program is a subset of the amount of leak in the source program. Our transla-

tion validation method bi-simulates both source and optimized programs at the path level

and propagates the information leaks to the subsequent paths recursively for checking the

relative security between the programs. During translation validation, we measure the infor-

mation leaks in paths using the technique proposed in our previous chapter. Our proposed

method does not take any intermediate information from the compiler like the optimizations

applied and the correlation of the variables in source and optimized programs. The threat

model for this work is similar to our previous work in Chapter 4.

95

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

Threat model: We assume that the attacker can access the memory i) at the end of

execution or ii) at some specific point of execution. The attacker can observe the values of

all the program variables stored in the memory at the observation points mentioned above.

Therefore, if a sensitive input gets leaked through a program variable, an attacker can

always inspect the values of that variable to obtain the sensitive input. To the best of our

knowledge, this is the first work that proposes a translation validation method for checking

the relative security of compiler optimizations with respect to information flow. The unique

contributions of this chapter are as follows:

• We formally define the relative security between source and optimized programs at

path level based on the leak propagation vector.

• We then introduce a translation validation method based on a notion of leak propaga-

tion vector for checking the relative security between source and optimized programs.

• Correctness and complexity analysis of our method are also presented.

• The experimental results for various benchmarks in the SPARK compiler have been

presented. The results show that the SPARK compiler does not retain the security

properties of the source program.

The rest of the chapter is organized as follows. Section 5.2 presents the motivation

behind our proposed work with an example. The translation validation approaches are pre-

sented in Section 5.3. Section 5.4 formulates the problem for the security of programs. The

translation validation method for relative security is presented in Section 5.5. The sound-

ness, termination, and complexity of our method are given in Section 5.6. The experimental

results are shown in Section 5.7. Finally, Section 5.8 concludes the chapter.

5.2 Motivation

Functionally correct compiler optimizations may not always be secure. Let us consider

the example of a source code and its optimized version after code motion in Fig. 5.1. In

this example, the operation updating the variable b in blue has been moved to one of the

branches, and the operations that update the variable z in red have been moved out of

the branch. The code motion of ‘z’ reduces the code size, whereas the code motion of ‘b’

96

Motivation

1 void f (l1 , l2 , h1 , h2)
2 {
3 x = h1 ;
4 i = j = a = 0 ;
5 whi l e (i < l 1)
6 {
7 b = a ;
8 a = a + h2 ;
9 i++;
10 }
11 b = b - l2;
12 i f (i < x)
13 {
14 y = l1 + b ;
15 z = l1 + 5;
16 }
17 e l s e
18 {
19 y = a + l2 ;
20 z = l1 + 5;
21 }
22 i f (j > z)
23 c = l1 − 5 ;
24 e l s e
25 c = l2 + 1 ;
26 out = c + y + z ;
27 }

(a)

1 void f ′ (l1 , l2 , h1 , h2)
2 {
3 x = h1 ;
4 i = j = a = 0 ;
5 whi l e (i < l 1)
6 {
7 b = a ;
8 a = a + h2 ;
9 i++;
10 }
11 z = l1 + 5;
12 i f (i < x)
13 {
14 b = b - l2;
15 y = l1 + b ;
16 }
17 e l s e
18 {
19 y = a + l2 ;
20
21 }
22 i f (j > z)
23 c = l1 − 5 ;
24 e l s e
25 c = l2 + 1 ;
26 out = c + y + z ;
27 }

(b)

Fig. 5.1: An Example of Conditional Speculation: (a) Source code, (b) Optimized code after code
motion

reduces the total number of instructions to be executed in run time on average. These

code motions are correct since b is used only in one of the branches, and z is updating the

same symbolic expression in both branches. Note that there may be further optimizations

possible after this code motion. In these programs, l1 and l2 are low inputs, h1 and h2

are the high inputs, out is the output, and the rest are program variables. There is no leak

through the variable z in the source code due to its same symbolic values in the parallel

97

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

paths, and z does not leak in the optimized code as well. In the source code, the variable

b leaks only h2 since a is leaking h2 and b is explicitly dependent on a. In the optimized

code, the variable b is leaking h2 in the same manner. In addition, b is also leaking h1 in the

optimized code implicitly (since x of conditional expression is dependent on high input h1

and b has different symbolic values in the paths inside the conditional block), which is not

there in the source code. Thus, b is leaking h1 in the optimized code, but there is no leak

of h1 through b in the source code. Therefore, the optimized code is not relatively secure

to the source code. The objective of this thesis is to validate the relative security between

the source and optimized programs.

q00

q01

q02

q03

q04

α1

-/x = h1
i = 0, j = 0, a = 0

α2(i < l1) /
b = a, a = a+ h2,

i++

α3

¬(i < l1)/
b = b− l2

α4

(i < x)/
y = l1 + b,
z = l1 + 5

α5

¬(i < x)/
y = a+ l2,
z = l1 + 5

α6

(j > z)/
c = l1− 5

α7

¬(j > z)/
c = l2 + 1

out = c+ y + z

(a)

q10

q11

q12

q13

q14

q15

β1

-/x = h1
i = 0, j = 0, a = 0

β2(i < l1) /
b = a, a = a+ h2

i++

β3
¬(i < l1)/
z = l1 + 5

β4(i < x)/
b = b− l2,

y = l1 + b

β5

¬(i < x)/
y = a+ l2,

β6

(j > z)/
c = l1− 5

β7

¬(j > z)/
c = l2 + 1

out = c+ y + z

(b)

Fig. 5.2: (a) Source FSMD M0, (b) Corresponding optimized FSMD M1

5.3 Translation Validation Approaches

The relative security of two programs can be verified in three possible ways: (i) program

level, (ii) trace level, and (iii) path level.

98

Translation Validation Approaches

• In the program level TV method, we find the overall leak of both the source program

and the optimized program independently and finally compare both the program leaks

to verify the relative security between them. If the amount of leak in the optimized

program is the subset of the leak in the source program, then the optimized program

is relatively secure to the source program. The overall leak of both the source program

and the optimized program can be measured using the method in Chapter 4. They can

be compared to check the program level relative security. The issue with program level

relative security is that there is no way to find the exact location of the leak, which

might be responsible for the insecure compiler optimizations. Also, measuring the

overall leak of a program is computationally intensive. The program level checking is

particularly not effective in the context of compiler optimizations since the correlation

of leaks between the source and optimized programs cannot be established in this

method.

• In the trace level TV method, we will find all the traces in both source and optimized

programs. We then find the leak of a trace in the optimized program and the leak of

its corresponding trace in the source program. Then, we compare the leak to verify the

relative security. This process is followed for all the traces in the optimized program.

If for each trace in the optimized program, there exists a corresponding relatively

secure trace in the source program, then the optimized program is relatively secure

to the source program. However, the issue with the trace level relative security is

the unbounded loops in the program, which may lead to a large or infinite number of

traces in the program. For example, the while loop in Fig. 5.1 iterates for l1 times

where l1 is an input. So, we need to find the trace for all possible values of l1. Thus,

trace-level relative security is not useful in practice.

• In the path level TV method, cutpoints are inserted in a program, and the program is

represented as a finite set of paths 1 between immediate cutpoints. In this process, the

leak of a path in the optimized program and the leak of its corresponding path in the

source program are obtained. The advantage of the path based approach is that the

relative security between programs can be checked in a bi-simulation manner, and the

1As per the Definition 4.3.3, the cutpoints are the reset state, a loop entry point and branching states
that post-dominates. Thus, the number of cutpoints is finite in a program. We consider paths from one
cutpoint to another cutpoint without any intermediary occurrences of cutpoint. Hence, the number of paths
is also finite.

99

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

exact location of the mismatch can be identified. For example, to verify the relative

security between the FSMDs in Fig. 5.2, we start from the reset states and find the

leak of corresponding paths β1 and α1. We compare the leaks of the corresponding

paths and make a decision on either restarting the security validation process from

their final states q11 and q01 or propagation of leaks to subsequent paths recursively to

verify the relative security between the FSMDs. In many cases, the overall leak can

be identified without traversing the entire programs as shown in this thesis.

In this thesis, our goal is to formalize the path level relative security and then develop

a bi-simulation based translation validation method of relative security between the source

and optimized programs.

5.3.1 Corresponding Paths

In this thesis, we represent a program as a finite state machine with datapaths (FSMD).

The FSMD-based modelling is presented in Section 4.3 of Chapter 4. We are using the

same definitions of path, trace, path cover, and cutpoints here. In addition, we find the

corresponding paths and states in two FSMDs. Let the source and optimized FSMDs are

represented as M0 and M1, respectively, and their path covers are represented as P0 and P1,

respectively. We use a data-driven approach [122, 123] to find the correspondence of paths

in P0 and P1. We find the potential corresponding paths (pc) α of M0 and β of M1 which

is represented as α ≃pc β using data-driven approach in the following way:

1. Take a random input I and run on both source program M0 and optimized program

M1.

2. Capture the traces τ0 and τ1, in M0 and M1, respectively for the input I.

3. Insert cutpoints based on Definition 4.3.3 in both τ0 and τ1.

4. Correlate the paths between cutpoints in τ0 and τ1, i.e., the corresponding paths.

5. Select the next input such a way that it traverses a new trace every time [121]. Repeat

the above steps until the process covers all the paths in both M0 and M1.

The above-discussed data-driven approach works seamlessly if the control flow of the

source program does not change due to the optimizations applied by the compiler, i.e.,

100

Translation Validation Approaches

q00

q01

q02

p00

p02

p01

p03

q10

q11

p10 p11

(a)

q00

q01

p00

p01

p02

q10

q11

p10 p11

(b)

Fig. 5.3: (a) Conditional block merging, (b) Parallel paths merging

the total number of cutpoints remains the same during the optimizations. However, the

following three scenarios may arise when the control flow changes due to loop merging,

conditional block merging, or other optimizations.

• Case1: Two conditional blocks of the source program are merged into one. This

scenario is presented in Fig. 5.3(a). In this case when p10 is traversed, initially p00 is

chosen as a corresponding path. However, the execution data may not match for all

the live variables at states q11 and q01. Thus, it ignores the cutpoint q01 and considers

the concatenated path p00p02 as the corresponding path. This is how it finds the other

corresponding paths for conditional block merging.

• Case2: Two or more parallel paths of a conditional block are merged into one or vice-

versa. This scenario is presented in Fig. 5.3(b). In this case, for one path there exists

more than one corresponding path based on the maximum matching of execution data

of live variables at that instance. For path p11 in Fig. 5.3(b), it may end up with two

corresponding paths p01 and p02.

• Case3: Two loops of the source program are merged into one in the case of loop

fusions. This cannot be handled by our data-driven approach. Thus, our TV method

is not applicable to such optimizations.

For the FSMDs in Fig. 5.2(a) and Fig. 5.2(b), the corresponding paths are (α1, β1),

(α2, β2), (α3, β3), (α4, β4), (α5, β5), (α6, β6), and (α7, β7).

101

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

5.4 Security Problem Formulation

We have presented the program level relative security in Section 4.6.2 of the previous chapter

with respect to the overall leak in the program. However, the limitations of the program

level relative security, as discussed above, can be resolved as the path level relative security.

Thus, we define path-level security first in this thesis. We then combine the concept of path

cover and path level security to prove the relative security between the two programs. The

theory behind our translation validation of the relative security of programs based on path

level security is formulated below.

5.4.1 Security of Paths

The source FSMD M0 and the optimized FSMD M1 are ⟨Q0, q00, I, V0, O, f0, h0⟩ and

⟨Q1, q10, I, V1, O, f1, h1⟩, respectively. Here, V0 and V1 are the set of program variables in

FSMD M0 and FSMD M1, respectively, I and O are the set of inputs and outputs for both

M0 and M1, respectively. It may be noted that the input and output sets are the same for

both M0 and M1 because M1 is the optimized version obtained from M0. However, we do

not know the correlation between the variables in V0 and V1 since the optimization process

is a black-box for us.

We consider two corresponding paths α and β in FSMDs M0 and M1, respectively. For

two corresponding paths ⟨α, β⟩; their respective start states, i.e., ⟨αs, βs⟩ and final states, i.e.,

⟨αf , βf⟩ are corresponding state pairs. The leak vectors for paths α and β with initial leaks

are represented as γαs

α = ⟨⟨c0⟩, ⟨n0v0 , · · · , n01, n00⟩⟩ and γβs

β = ⟨⟨c1⟩, ⟨n1v1 , · · · , n11, n10⟩⟩,
respectively, where (i) v0 = |V0 ∪ O| and v1 = |V1 ∪ O|, (ii) c0 = (b0h · · · b01b00), and

c1 = (b1h · · · b11b10), (iii) n0i = (b0ih · · · b0i1b0i0), 1 ≤ i ≤ v0 and n1i = (b1ih · · · b1i1b1i0),
1 ≤ i ≤ v1. Here, (a) h is the number of high inputs, i.e., h = |Ih|, (b) b0ij and b1ij
represents the leak value for ith variable and jth high input in γαs

α and γβs

β of paths α and β

in FSMDs M0 and M1, respectively. The security of paths is defined as follows.

Definition 5.4.1 (Secure paths). The corresponding paths α of M0 and β of M1 are said

to be secure if there is no leak in β and α. Formally, α and β are secure, denoted by β ≃S α

(read as β is securely equivalent to α), if γβs

β = γαs

α = ⟨0, ϕ⟩.

Definition 5.4.2 (Relatively secure paths). The corresponding paths α of M0 and β of M1

with leak vectors γαs

α and γβs

β , respectively, are said to be relatively secure, denoted by β ≃R α

102

Security Problem Formulation

(read as β is relatively secure to α), if there is a leak in β, there must be a corresponding leak

exists in α with the same number of leaky variables. Formally, α and β are relatively secure

if they follow the necessary condition followed by the sufficient condition. The necessary

condition is as follows:  V1∨
i=1

b1ij −
V0∨
i=1

b0ij

 ≤ 0, ∀j ∈ h (5.1)

The above equation restricts any new leak of high input in β, which is not there in α.

Also, it can verify whether β is more secure than α. The sufficient condition is as follows: V1∑
i=1

b1ij −
V0∑
i=1

b0ij

 ≤ 0,∀j ∈ h, s.t.

V1∑
i=1

b1ij > 0 (5.2)

The Eq. (5.1) satisfies when a high input leaking in β of M1 is also leaking in α of M0

irrespective of through how many low variables. The Eq. (5.2) satisfies when, for each high

input, the number of variables leaking a high input in β is not more than that of in α. Thus,

the sufficient condition needs to be checked only when the necessary condition holds.

Definition 5.4.3 (Conditionally secure paths). The corresponding paths α of M0 and β of

M1, with leak vectors γαs

α and γβs

β , respectively, are said to be conditionally secure, denoted

by β ≃C α (read as β is conditionally secure to α), iff (i) β ̸≃R α, (ii) αf ̸= q00 and βf ̸=
q10 and (iii) ∀β′ emanating from βf , ∃α′ emanating from αf , such that β′ ≃S α′, β′ ≃R α′

or β′ ≃C α′,

The Condition αf ̸= q00 and βf ̸= q10 in definition 5.4.3 prevent leak propagation beyond

reset state. It also ensures that if β′ ends at reset state and there exists α′, then β′ ≃S α′ or

β′ ≃R α′ must hold. Specifically, paths terminating at reset states cannot be conditionally

secure paths.

Now, based on the Definitions 5.4.1, 5.4.2 and 5.4.3, we formally define the corresponding

state pair in FSMDs M0 and M1.

Definition 5.4.4 (Corresponding States). The corresponding state pair (CSP) between M0

and M1 is defined as follows:

1. The reset states q00 and q10 is a CSP , i.e., ⟨q00, q10⟩.

103

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

2. The final states ⟨αf , βf⟩ of paths α with a leak vector γαs
at αs and β with a leak

vector γβs
at βs is a CSP , if ⟨αs, βs⟩ is a CSP and α ≃S β or α ≃R β or α ≃C β.

In an FSMD, a corresponding path pair ⟨α, β⟩, can satisfy more than one security prop-

erty upon different initial leak vectors. This is possible because the start states βs and

αs may be reached with different predecessor paths and different propagated leak vectors.

Thus, it may satisfy the following: i) β ≃S α and β ≃R α and β ≃C α, if βf ̸= q10 and

αf ̸= q00, and ii) β ≃S α and β ≃R α, if βf = q10 and αf = q00. However, in a corresponding

trace pair, the path pair ⟨α, β⟩ always satisfies only one security property. This is due to the

fact that a path in a trace is reached with a single predecessor path with a single propagated

leak vector.

5.4.2 Relative Security of Programs

A program can be represented by a set of traces. The relative security of traces in two

FSMDs is defined as follows:

Definition 5.4.5 (Relatively secure traces). Two traces τ1 ∈ M1 and τ0 ∈ M0 are said to

be relatively secure, denoted as τ1 ≃R τ0 if it satisfies Eq. (5.1) followed by Eq. (5.2) for γτ1

and γτ0 (leak vectors for traces τ1 and τ0) considering the initial leaks at reset states q00 and

q10 as Null.

Based on the above definition, the following theorem captures the relative security be-

tween two behaviours.

Theorem 5.4.1. An FSMD M1 is said to be relatively secure to FSMD M0, i.e., M1 ≃R M0,

iff for each trace τ1 in M1, there exist a corresponding trace τ0 in M0 such that τ1 ≃S τ0 or

τ1 ≃R τ0.

However, due to unbounded loops, there may be a large or infinite number of traces in

a program. Thus, finding all possible traces and checking their correspondence may not be

feasible in practice. Therefore, by combining the Definition 4.3.2 and Theorem 5.4.1, the

following theorem can be derived.

Theorem 5.4.2. (Correctness of the approach): An FSMD M1 with no unreachable states

is said to be relatively secure to FSMD M0, i.e., M1 ≃R M0 if for path cover P1 =

[p1,1, p1,2, · · · , p1,m] of M1, there exists a path cover P0 = [p0,1, p0,2, · · · , p0,m] of M0, such

that

104

Security Problem Formulation

1. for each path p1,i ∈ P1 with a propagated leak vector γps1,i, 1 ≤ i ≤ m, ∃p0,j ∈ P0 with

a propagated leak vector γps0,j , 1 ≤ j ≤ m s.t. p1,i ≃S p0,j or p1,i ≃R p0,j or p1,i ≃C p0,j

w. r. t. γps1,i and γps0,j , (γq00 = γq10 = ϕ). Also, the start states ⟨ps0,j, ps1,i⟩ and the final

states ⟨pf0,j, p
f
1,i⟩ are in CSP ,

2. if for a path p1,i with a propagated leak vector γps1,i, pf1,i = q10, then ∃p0,j with a

propagated leak vector γps0,j s.t. pf0,j = q00 and p1,i ≃S p0,j or p1,i ≃R p0,j w. r. t. γps1,i

and γps0,j ,

3. if the paths p1,k and p1,k+1 are consecutive in a trace, then γps1,k+1 = γpf1,k , 1 ≤ k < n.

Proof. Let us consider a trace τ1 in M1. Since P1 is the path cover of M1, τ1 can be

looked over as a concatenation of consecutive paths starting and ending at the reset state

of M1. Formally, τ1 = [p1,i1 , p1,i2 , · · · p1,in], where p1,ik ∈ P1, 1 ≤ k ≤ n, ps1,i1 = pf1,in = q10

and γ
ps1,ik+1 = γpf1,ik , 1 ≤ k < n. From the hypothesis 1, there exists a sequence Sp of

paths [p0,j1 , p0,j2 , · · · p0,jn], where p0,jk ∈ P0, 1 ≤ k ≤ n in M0 such that p1,ik ≃S p0,jk or

p1,ik ≃R p0,jk or p1,ik ≃C p0,jk , 1 ≤ k < n and p1,in ≃S p0,jn or p1,in ≃R p0,jn w. r. t.

propagated leak vectors γps1,ik and γps0,jk . We need to show that, (i) Sp is also a trace τ0 in

M0 and (ii) τ0 ≃S τ1 or τ0 ≃R τ1 w. r. t. propagated leak vectors as Null at respective reset

states.

(i) We will show it by induction.

(Base case:) Assume the trace τ1 is a single path p1 inM1 and there exists a corresponding

path p0 in M0, s.t. p1 ≃S p0 or p1 ≃R p0 by hypothesis 2 because pf1 = q10 and pf0 = q00 w.

r. t. γps1 = γps0 = ϕ. This ensures τ0 ≃S τ1 or τ0 ≃R τ1.

(Inductive step:) Let us now assume that the initial l paths (say Sl and l < n) in sequence

Sp are consecutive, i.e. the paths in Sp are consecutive. Thus, the final states ⟨pf0,jl , p
f
1,il

⟩ is
a CSP (hypothesis 1). Let the updated leak vector at the final state of l paths is γ0 in Sl.

Now, we will consider the (l+1)th path (i.e. Sl+1) of Sp with initial leak vector γ0. The paths

p1,il+1
of τ1 with initial leak γ1 (let) and p0,jl+1

(i.e., the final path in the sequence Sl+1) of Sp

with initial leak γ0 are the corresponding secure or relatively secure or conditionally secure

paths and ⟨ps0,jl+1
, ps1,il+1

⟩ is a CSP (hypothesis 1). Therefore ps0,jl+1
= pf0,jl since p

s
1,il+1

= pf1,il
(τ1 is a trace) and ⟨pf0,jl , p

f
1,il

⟩ is a CSP . Hence, the sequence Sl+1 is also consecutive. By

induction, the final state of last path in Sp i.e. p
f
0,jn = q00 because the state pair ⟨pf1,in , p

f
0,jn

⟩
is a CSP and pf1,in = q10. Therefore, by induction, Sp indeed is a trace τ0 of M0.

105

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

(ii) If the corresponding paths in τ1 of M1 and τ0 of M0 are either secure or relatively

secure always, then M1 is relatively secure to M0 by hypothesis 1. Now, assume there is a

corresponding conditionally secure paths in τ0 and τ1, i.e., p1,ik ≃C p0,jk , 1 ≤ k < n. Since

τ0 is a trace, the final paths ending at states pf1,in and pf0,jn must be secure or relatively

secure as it satisfies hypothesis 2 of the theorem, i.e., p1,in ≃S p0,jn or p1,in ≃R p0,jn which

eventually ensures p1,jk ≃C p0,ik . Therefore, it ensures τ1 ≃S τ0 or τ1 ≃R τ0.

It may be noted that the relative security of M1 and M0 discussed above are with respect

to the path level leaks. However, the relative security discussion presented in Definition 4.6.2

is with respect to the program level leaks. The program level and path level translation

validation approaches are discussed in Section 5.3.

Algorithm 8: TranslationV alidation(M0, M1)

Input: Source FSMD M0 and optimized FSMD M1

Output: Whether M1 is as secure as M0 or not
1 Insert cutpoints from set CP0 in M0 and CP1 in M1 and compute the set of path
covers, P0 and P1 in M0 and M1, respectively.

2 CSP is the set of corresponding state pairs, Γ is the set of calling state pairs, Se,
RS, and CS are the sets of secure path pairs, relatively secure path pairs, and
conditionally secure path pairs.

3 CSP = Γ = ⟨q00, q10⟩; γq00 = γq10 = ⟨0, ϕ⟩
4 Initialize the sets Se, RS, and CS as null.
5 PreAnalysis(M0, CP0);
6 PreAnalysis(M1, CP1);
7 foreach ⟨q0i, q1j⟩ in Γ where q0i ∈ Q0 and q1j ∈ Q1 do
8 if CheckUsage(ϕ, q1j, Ih) then
9 if ChkCorres(q0i, q1j, γ

q0i , γq1j ,Γ, P0, P1, Se, RS,CS) fails then
10 M1 is not as secure as M0;
11 return failure;

12 end

13 end

14 end
15 return success;

106

Translation Validation Method for Relative Security of Programs

5.5 Translation Validation Method for Relative Secu-

rity of Programs

In this section, we develop the translation validation method for checking the relative se-

curity of two programs based on our Theorem 5.4.2. Specifically, we take the path covers

of two FSMDs M0 and M1 and find the security relation between the corresponding paths

of M0 and M1. The process starts from the resets state pairs and recursively bi-simulates

both FSMDs to find the security between paths. The method relies on some look ahead

properties to reduce the overall complexity of the proposed method. Finally, the method

reports the relative security of M1 with respect to M0. The algorithm is discussed in detail

below.

5.5.1 Algorithm Description

Our translation validation method is given as function TranslationValidation() in Algorithm

8. The function takes two inputs M0 and M1 which are the source FSMD and optimized

FSMD, respectively. It first finds the path covers in an FSMD by inserting cutpoints.

It stores the corresponding state pairs and calls state pairs in CSP and Γ, respectively.

Also, it stores the corresponding secure, relatively secure, and conditionally secure path

pairs in the sets Se, RS, and CS, respectively. It initializes both the CSP and Γ to reset

state pairs ⟨q00, q10⟩ of M0 and M1, and updates the Γ dynamically to make the security

verification efficient. Also, the initial leak vectors at reset states and the sets Se, RS, and

CS are initialized to Null. The leak vectors are stored at each Γ. The translation validation

method then calls the function PreAnalysis() for both FSMDs M0 and M1 to store the sets

CV0 and CV1, the candidate variables for the implicit leak at each cutpoint of M0 and M1

respectively. For each state pair in Γ starting with the reset state pairs ofM0 andM1, it calls

the function ChkCorres() with the initial leaks at Γ to check if there exists a corresponding

secure, relatively secure, or conditionally secure path, for each path emanating from these

calling state pairs. The Algorithm 8 returns success when M1 is relatively secure to M0.

The function ChkCorres() takes the calling state pairs ⟨αs, βs⟩, the initial leaks γαs
and

γβs
at states αs and βs, respectively, the path covers P0 and P1 of both the FSMDs M0

and M1, respectively, the sets Se, RS, and CS as inputs and returns success when there

exists a corresponding secure, relatively secure or conditionally secure path emanating from

αs in M0 for each path emanating from the state βs in M1, otherwise returns failure. For

107

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

Algorithm 9: ChkCorres(αs, βs, γαs
, γβs

,Γ, P0, P1, Se, RS,CS)

Input: Two states αs ∈ M0 and βs ∈ M1, the initial leaks γαs
and γβs

at states αs and βs, two path covers P0 of
M0 and P1 of M1, the sets Se, RS, and CS for storing the secure, relatively secure, and conditionally secure
paths.

Output: Returns success if for every path emanating from state βs there exists a secure, relatively secure, or
conditionally secure corresponding path emanating from state αs, otherwise returns failure.

1 foreach path β in P1 emanating from βs do
2 find α = corresponding path in P0 emanating from αs;

3 γβs

β = FindPathLeak(β, γβs
);

4 γαs

α = FindPathLeak(α, γαs
);

5 if β ≃S α // secure paths

6 then

7 γαf
= γβf

= ⟨0, ϕ⟩;
8 Se = Se ∪ (α, β); CSP = CSP ∪ (αf , βf);

9 Γ = Γ ∪ (αf , βf);

10 end
11 else if β ≃R α // relatively secure paths

12 then
13 RS = RS ∪ (α, β); CSP = CSP ∪ (αf , βf);

14 if αf ̸= q00 and βf ̸= q10 then

15 if CheckUsage(γβs

β , βf , Ih) then

16 ChkCorres(αf , βf , γαs

α , γβs

β ,Γ, P0, P1, Se, RS,CS);

17 else

18 γαf
= γβf

= ⟨0, ϕ⟩;
19 Γ = Γ ∪ (αf , βf);

20 end

21 end

22 end

23 else
// checking for conditional secure

24 CCS = CCS ∪ (α, β); CSP = CSP ∪ (αf , βf);

25 if αf ̸= q00 and βf ̸= q10 then

26 if CheckUsage(γβs

β , βf , Ih) then

27 ChkCorres(αf , βf , γαs

α , γβs

β ,Γ, P0, P1, Se, RS,CS);

28 else

29 γαf
= γβf

= ⟨0, ϕ⟩;
30 Γ = Γ ∪ (αf , βf);

31 end

32 end
33 else
34 Report reset states reached and return failure;
35 end

36 end

37 end
38 CS = CS ∪ CCS;
39 return success;

each such path β emanating from βs, it finds the potential equivalent corresponding path

α emanating from αs. It calls the function FindPathLeak() to find the leak vectors of both

β and α with initial leaks γαs
and γβs

, respectively.

The ChkCorres() checks for the three scenarios of security equivalence. If none of them

108

Translation Validation Method for Relative Security of Programs

Algorithm 10: FindPathLeak(α, γαs
)

Input: The path α and initial leak γαs

Output: Returns γαs

α , the leak of path α with some initial leak at αs

// handle loop leak

1 if αs = αf ▷ loop entry/exit state then
2 if (αs, γαs

) exists in LoopLeakList then
3 γαs

α = γαs

α for pair (αs, γαs
) in LoopLeakList;

4 else
5 Store all the distinct parallel paths inside the loop emanating from α0 in List;
6 γαs

α = FindLoopLeak(List, γαs
, ⟨0, ϕ⟩);

7 Store γαs

α for the pair (αs, γαs
) in LoopLeakList;

8 end

9 else
// handle explicit leak

10 γαs

α = FindExplicitLeak(α, γαs
);

// handle implicit leak

11 if αs is a branching state then
12 TC = CheckCulprit(α, γαs

α);
13 end
14 if TC ̸= ϕ and CVαf ̸= ϕ and αf post-dominates αs in M then
15 γαs

α = γαs

α ∨ FindImplicitLeak(α, TC,CVαf);
16 end

17 end
18 return γαs

α ;

satisfies, it returns failure, which implies M1 is not as secure as M0.

(i) When the corresponding paths β and α are secure (line 5), i.e., β ≃S α, it updates

the secure set Se with the paths β and α, and also updates the CSP and Γ with the final

states βf and αf .

(ii) Otherwise, it checks for the relative security of β and α. If β ≃R α (line 11) and

the final states are not the reset states of M1 and M0, it updates the relatively secure set

RS with the paths β and α, and CSP with the final states βf and αf . When the paths are

relatively secure, it calls the function CheckUsage() at the final state βf to check for the use

of any leaky variables (in γβs

β) or use of any high input in any of the successor paths of β.

The function CheckUsage() verifies the influence of the current leak in the successor paths

of the FSMD. If CheckUsage() returns true, ChkCorres() calls itself recursively with the

109

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

final states βf and αf , and the updated leak propagation vector γβs

β and γαs

α as its inputs.

We describe the function CheckUsage() in detail later in Section 5.5.3. It may be noted that

CheckUsage() is called only for M1 because we are concerned about the relative security of

M1 with M0. When M1 ≃R M0, vice versa may not hold, i.e., when M1 is relatively secure

to M0, M0 may not be relatively secure to M1. Note that when β ≃R α, we should not reset

the leak as it may lead to false positive scenarios. Thus, we call ChkCorres() recursively

for relatively secure paths to verify the influence of the current leak in the successor paths.

However, we reset the leak vectors to Null when CheckUsage() returns false, i.e., there is

no possible leak further in the successor paths. This prevents the successive recursive calls

for the paths originating from the final states βf and αf with leak vectors γβf

β and γαf

α in

the FSMD M1 and M0, respectively. Moreover, this way, it reduces the time complexity of

the overall validation method. It updates the Γ with the final states αf and βf so that the

validation starts again from αf and βf .

(iii) If β ̸≃R α (line 23), it considers β and α as candidate for conditionally secure paths.

and it updates the set CCS with the path pair ⟨β, α⟩. The current paths are extended to

check for the existence of any successor path that leads to a secure or relatively secure path.

Then the function CheckUsage() is called if the final states βf and αf are not the reset

states. Otherwise, it concludes the reset states reached with failure to find a corresponding

secure path. If CheckUsage() returns true, then ChkCorres() calls itself recursively. If there

is no further leak it resets the leak vectors to Null and updates the Γ. When the function

TranslationValidation() returns successfully, it will ensure β ≃C α. Thus, it updates the set

CS with the candidate conditionally secure paths in CCS and returns success.

The function ChkCorres() calls the function FindPathLeak() for each corresponding path

to find the leak of the path with some initial leak at the start state of the path. It takes

a path α and the initial leak γαs
as inputs and returns the computed leak γαs

α as output.

To minimize the re-computation for the fixed point of information leakage of loops, we

keep track of the leak of loops in a LoopLeakList which stores ⟨αs, γαs⟩ pair at each loop

entry point αs given the initial leak γαs
which is already computed. Thus, at each loop

entry state αs, the function FindPathLeak() checks for the existence of a ⟨αs, γαs⟩ pair in

LoopLeakList and updates the greatest fixed point of the loop, i.e., γαs

α from LoopLeakList

if exists. Otherwise, the function FindPathLeak() finds the greatest fixed point of the loop

for calculating the leak vector with respect to the new propagated leak at αs. It returns

the leak of the loop, which is stored in the leak vector γαs

α . We assume that each loop is

110

Translation Validation Method for Relative Security of Programs

executed at least once and it always has a single exit path, i.e., there is no exit, break,

return, or go to statements inside the loop. Thus, whenever a loop entry state of the FSMD

is reached, the loop is traversed at least once before traversing the exit path of the loop.

In the next recursive call of the function FindPathLeak() at the loop entry state αs (with

the propagated leak γαs

α) it considers the exit path of the loop. Moreover, it considers the

propagated leak of the loop as the initial leak for the exit path of the loop. When the path

is not a loop, FindExplicitLeak() is called. After it calculates the explicit leak it calls the

CheckCulprit() if the start state is a branching state and stores the set TC with all the

influence high inputs in the condition of the branching state. When there exist candidate

variables for the culprit branch, FindImplicitLeak() is called to measure the implicit leak

of α. Finally, it returns the γαs

α i.e. the leak of the path α. The detail of the functions

FindExplicitLeak(), PreAnalysis(), CheckCulprit(), FindImplicitLeak() and FindLoopLeak()

can be found in our previous chapter. These functions are used in our translation validation

approach to measure the leak in a path.

5.5.2 Attack Models

In this thesis, we consider two attack models, such that the attacker has access to the

program variables: 1) at the end of the execution and 2) at each cutpoint. We propose two

different translation validation methods for these two attack models. The overall translation

validation method varies in finding the corresponding security of paths in the function

ChkCorres(). The function ChkCorres() presented in Algorithm 9 and discussed in the

previous subsection is basically for the first attack model. For the second attack model

the function ChkCorres() executes as follows: we consider the attacker can observe the

variables at the cutpoints in this case, thus, there is no point in checking conditionally

secure paths when the paths are not relatively secure. At this point, the attacker can access

the local memory to observe the newly introduced information leaks. Thus, for the second

attack model, ChkCorres() does not execute the condition highlighted in yellow (line 23

of Algorithm 9) and returns failure if β ̸≃R α (line 11). Therefore, ChkCorres() returns

success if for every path emanating from start state βs there exists a corresponding secure

or relatively secure path emanating from αs.

It may be noted that the sets Se, RS, and CS are not mutually exclusive. A single path

pair ⟨β, α⟩ may be present in more than one set (i.e., Se, RS, and CS). This is due to the

111

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

fact that the security of a path pair depends on their initial propagated leak, i.e., the start

state of a path with some initial leak may be revisited with a different propagated leak (due

to the excessive recursive calls of ChkCorres() function) which leads to different security of

paths than before. For example, a path pair may be relatively secure with propagated leak

⟨γβs

1 , γαs

1 ⟩, but they become conditionally secure with propagated leak ⟨γβs

2 , γαs

2 ⟩. Thus, the
path pair ⟨β, α⟩ may be present in more than one set of Se, RS, and CS. A function call

graph for the overall translation validation method is shown in Fig. 5.4. The correctness

and complexity analysis for our translation validation method is presented in Section 5.6.

FindPathLeak

FindLoopLeak FindExplicitLeak

CheckCulpritFindImplicitLeak

ChkCorresTranslationValidation

PreAnalysis

Fig. 5.4: Function call graph for the translation validation method

5.5.3 Minimizing Complexity by Look Ahead Properties

The function ChkCorres() calls itself recursively to verify the relative security of corre-

sponding paths in both FSMDs. However, these recursive calls may lead to exponential

complexity when the program contains a huge number of paths. Similar to Algorithm 7, we

also use look-ahead properties here to minimize these recursive calls of the TV method. The

function CheckUsage() at line 15 and line 26 in Algorithm 9 is used to minimize the total

recursive calls of the overall translation validation method. The CheckUsage() function is

called before each recursive call to the function ChkCorres(). It checks the impact of the

current leak on the future paths of the optimized FSMD i.e., M1. Specifically, it checks

properties ”v is used before definition” and “h is used”. This is achieved by applying the

112

Translation Validation Method for Relative Security of Programs

q10

q11

q12

q13

q14

q15

β1

-/x = h1
i = 0, j = 0, a = 0

β2(i < l1) /
b = a, a = a+ h2

i++

β3
¬(i < l1)/
z = l1 + 5

β4(i < x)/
b = b− l2,

y = l1 + b

β5

¬(i < x)/
y = a+ l2,

β6

(j > z)/
c = l1− 5

β7

¬(j > z)/
c = l2 + 1

out = c+ y + z

(a)

q10

q11

q12

q13

q14

q15

dx, di, dj , da, uh1

da, db, ua, uh2, ui

dz, ui

db, ub, ui, ux

dy , ua, ui, ux

dy, ub

dc, uj , uz dc, uj , uz

dout, uc, uy, uz

(b)

Fig. 5.5: Kripke representation: (a) Optimized FSMD M1 in Fig. 5.2(b), (b) Corresponding
Kripke structure obtained from FSMD M1

CTL formulae E[(¬dv) U uv] and EF (uh) at the final state βf for each leaky variable v in

the leak vector γβs

β and for each high input h ∈ Ih, respectively. The function returns true if

it finds the use of variable v before a definition of v in any successor path or the use of any

high input h in any successor path. Note that we apply the CTL formulae only for FSMD

M1 as we are checking the relative security of M1 with M0 not vice-versa (M1 ≃R M0 ⇏
M0 ≃R M1). The CheckUsage() is explained in Section 4.5.2. The modeling an FSMD as

the Kripke structure is also elaborated in Section 4.5.2 of that section. The Kripke structure

for the FSMD in Fig. 5.2(b) is shown in Fig. 5.2(c). We have used the CTL model checker

NuSMV [45] to verify the temporal property on the Kripke structure.

The leak vector γ at the CSP is Null when we call CheckUsage() at line 8 in Algorithm

8, i.e., there is no leak till this point during the bisimulation. Thus, here the function

CheckUsage() only checks “h is used”. This is achieved by applying the CTL formulae

EF (uh) at the state q1j ∈ Q1 for each high input h ∈ Ih.

113

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

5.5.4 An Illustrative Example

Let us consider the example given in Fig. 5.2. Here, the work of our translation validation

method is elaborated with this example.

The states q00 and q10 are the reset states in M0 and M1, respectively, and the states

in gray are the cutpoints. The paths are shown with αi and βi, 1 ≤ i ≤ 7 in M0 and

M1, respectively. The TranslationValidation() starts with the ⟨q00, q10⟩ in Γ and calls the

CheckUsage() at q10 to verify whether there is the use of any high inputs in future paths of

the FSMD M1. Here, CheckUsage() returns True as there is the use of h1 in β1. Thus, it

calls the ChkCorres().

The ChkCorres() first takes the path β1 and checks for the existence of a secure, relatively

secure, or conditionally secure path in M0. The leak vector of a path p in both M0 and

M1 is represented as γp = ⟨⟨ch1ch2⟩, ⟨xh1xh2, yh1yh2 , zh1zh2 , ah1ah2 , bh1bh2 , ch1ch2 , ih1 ih2 , jh1jh2 ,

outh1outh2⟩⟩. The explicit leak of β1 is γ
βs
1

β1
= ⟨⟨00⟩, ⟨10, 00, 00, 00, 00, 00, 00, 00, 00⟩⟩. The

corresponding path α1 has also the same leak i.e. γ
αs
1

α1 = γ
βs
1

β1
. Thus, it must satisfy the

conditions in Eq. 5.1 and Eq. 5.2. Hence, β1 ≃RS α1.

Now, the ChkCorres() is called recursively for the path β2 and its corresponding path

α2 which are loops. For both α2 and β2, there is a leak of h2 through variable a in the first

iteration and through variable b in the second iteration. Thus, the loop leak for the paths β2

and α2 is γ
βs
2

β2
= γ

αs
2

α2 = ⟨⟨00⟩, ⟨10, 00, 00, 01, 01, 00, 00, 00, 00⟩⟩. Thus, β2 ≃RS α2. Similarly,

the leak for the corresponding paths β3 and α3 is also the same as β2 and α2, respectively.

Thus, β3 ≃RS α3.

In the next recursive call, the implicit leak for β4 is calculated since the branch is

the culprit due to the presence of x in the condition of execution. The leak of β4 is

γ
βs
4

β4
= ⟨⟨10⟩, ⟨10, 11, 00, 01, 11, 00, 10, 00, 00⟩⟩. Note that y is explicitly dependent on b and is

implicitly dependent on x (due to different symbolic values). Thus, there is an explicit leak

of h2 through y and an implicit leak of h1 through y in β4. Also, b has different symbolic

values, so b is leaking h1 implicitly in β4. The implicit leak for the corresponding path α4 is

γ
αs
4

α4 = ⟨⟨10⟩, ⟨10, 11, 00, 01, 01, 00, 10, 00, 00⟩⟩. This implies β4 ̸≃RS α4, because Eq. 5.2 does

not hold due to more leak in β4 than α4, i.e. b is leaking h1 in β4 but not in α4.

Thus, ChkCorres() will now check for the conditional security of β4 and α4 as the final

states βf
4 and αf

4 are not the reset states. The ChkCorres() calls recursively for β6 and its

corresponding path α6. The leak of path β6 is γ
β6

s

β6
= ⟨⟨10⟩, ⟨10, 11, 00, 01, 11, 00, 10, 00, 11⟩⟩.

114

Correctness and Complexity

The leak of the corresponding path α6 is γα6
s

α6
= ⟨⟨10⟩, ⟨10, 11, 00, 01, 01, 00, 10, 00, 11⟩⟩.

Hence, β6 ̸≃RS α6 as Eq. 5.2 does not hold (due to more leaky variables for high input h1

in M1 i.e. b). Finally, ChkCorres() returns failure (line 35) as the final states β
f
6 and αf

6 are

the reset states. Thus, TranslationValidation() also returns failure as M1 is not as secure as

M0.

5.6 Correctness and Complexity

In this section, we describe the soundness and termination of our method. The completeness

of the translation validation method cannot be achieved since the problem is inherently un-

decidable [52,54,100]. We also analyze the complexity of our translation validation method.

5.6.1 Soundness and Termination

Theorem 5.6.1. If Algorithm 8 returns successfully in line 15, then M1 ≃R M0.

Proof. The sets Se, RS, and CS of secure, relatively secure, and conditionally secure pair

of paths (from M0 and M1) are computed in lines 8, 13, and 24, respectively, of the function

ChkCorres(). To ensure the correctness of the Algorithm 8, we need to show that (i) for

each path β ∈ P1 (of M1), there exists a pair ⟨α, β⟩ ∈ E = Se∪RS∪CS, and (ii) if βf = q10,

then ⟨α, β⟩ ∈ Se ∪ RS. In other words, first, two hypotheses of Theorem 5.4.2 hold by E.

We will prove this by contradiction.

Suppose a path β exists in P1 that does not have a corresponding member in E. This

indicates that the path β has not been considered during the execution of the Algorithm

8. This implies that the start state βs is not considered during execution. However, there

must be some other path β′ that leads to the start state βs as all the states are reachable.

Let’s consider the following cases:

β′ ∈ E: There must be a pair ⟨α′, β′⟩ in E, where β′ ∈ P1 and either i) β′ ≃S α′

which implies the end state of β′, i.e., βs must belongs to the set Γ and β must have been

considered eventually, as given in line 7 of TranslationValidation(), or ii) β′ ≃R α′ or β′ ≃C

α′, which implies β would be definitely considered in some subsequent paths in the recursive

call to ChkCorres() in line 16 or line 27 of ChkCorres(), respectively when the function

CheckUsage() returns true. Otherwise, the end state of β′, i.e., βs must belong to the set

115

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

Γ and β must have been considered eventually, as given in line 7 of TranslationValidation()

(contradiction).

β′ ̸∈ E: In this case, the function ChkCorres() is never called with the start state of path

β′. If we continue this, we reach the paths emanating from reset state q10. However, ⟨q00, q10⟩
∈ Γ by line 3 of Algorithm 8. The lines 3 and 7 of Algorithm 8 and line 1 of ChkCorres()

ensure that the reset state and the paths emanating from it must be considered which again

leads to a contradiction.

Therefore, if Algorithm 8 terminates in line 9, hypothesis 2 of Theorem 5.4.2 must hold.

To prove the second part, assume there exists a path β ∈ P1 and α ∈ P0 such that βf = q10,

αf = q00 and β ≃C α. In this case, the function ChkCorres() returns failure at line 35

(contradiction).

Theorem 5.6.2. The translation validation method for checking relative security always

terminates.

Proof. The functions ChkCorres() and FindLoopLeak() call themselves recursively with re-

spect to the call graph in Fig. 5.4. Thus, to prove the termination of the translation

validation method, we need to show these two recursive functions terminate. Let us as-

sume that when the function ChkCorres() is called from line 9 in Algorithm 8, there are C

cutpoints ahead of ⟨q01, q1j⟩. This implies it has T = k + k2 + k3 + · · · + kC paths ahead,

where k is the maximum number of paths between two consecutive cutpoints. When the

ChkCorres() calls recursively (at line 16 or line 27), the cardinality of T decreases by 1.

Note that the recursive calls do not go beyond reset states. In other scenarios, when the

algorithm won’t make further recursive calls (line 30 in Algorithm 9) having l cutpoints

ahead, it effectively reduces k + k2 + k3 + · · · + kl number of recursive calls. In this case,

it reduces k + k2 + k3 + · · · + kl paths from T . Since T is in the well-founded set of non-

negative numbers having no infinite decreasing sequence, the Algorithm 9 cannot execute

(any combination of) the recursive calls infinitely long.

The function FindLoopLeak() calls itself recursively when the leak vector of two consec-

utive iterations of the loop is mismatched (γpc and γloop). Since the γloop is the union of all

leaks identified so far, the number of 1’s in it never decreases. Thus, in the worst case, the

function calls recursively until each bit of γloopc is 1. The γloopc has (∥V ∥+1)×∥Ih∥ number

of bits, where V is the set of variables and Ih is the set of high inputs. This implies the num-

ber of recursive calls is also finite. Thus, the function FindLoopLeak() always terminates.

116

Experimental Results

Therefore, the translation validation method in Algorithm 8 always terminates.

5.6.2 Complexity Analysis

The complexity of the overall translation validation depends on the following: 1) the com-

plexity of checking the security of two corresponding paths ofM1 andM0, and 2) the number

of times the function ChkCorres() calls itself recursively. The first factor depends on the

complexity of the function FindPathLeak() i.e., the time required to measure the explicit

and implicit leak of path or a fixed point of leak of the loop in M0 or M1.

Assume there are C cutpoints, maximum k1 parallel paths between two consecutive

cutpoints, H high inputs, and V variables (including the outputs) in an FSMD. Assume

there are k2 parallel paths inside a loop. Then, for the first factor, i.e., to find the leak

for the two given paths FindPathLeak() takes O(C.V.k1 + kV
2 .H.V) in the worst case (Refer

Chapter 4 for details of the complexity analysis).

The function ChkCorres() calls itself recursively at each cutpoint for each path emanating

from a cutpoint. So, it calls for (k1 + k2
1 + · · ·+ kC−1

1) times which is of the order of O(kC
1).

Therefore, in the worst case, the complexity of the overall translation validation approach

is O(kC
1 (C.V.k1 + kV

2 .H.V)) ≃ O(k(C+V).H.V) if we consider the Max(k1, k2) as k.

When there is no recursive call for the function ChkCorres(), and there is a single path

inside a loop, our translation validation method results in the best case. Thus, the best

case scenario would be as follows: the translation validation method starts at the reset state

pair, and all the corresponding paths β in M1 and α in M0 emanating from the reset state

pair are secure, i.e., β ≃S α. Also, the function CheckUsage() returns false at state βf for

all the parallel paths, i.e., there is no use of any high input in the successor paths. Thus,

the product of time complexity for finding the leak of a path and the maximum number of

parallel paths between the two consecutive corresponding state pairs starting from the reset

state q10 results in the best case. Therefore, the best case complexity is O(k.H.V).

5.7 Experimental Results

5.7.1 Setup

The proposed translation validation (TV) of checking the security of compiler optimization

steps has been implemented in C. We have used the same test cases used in Section 4.8

117

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

obtained from the front end of SPARK [68]. We generate the FSMDs for both the source and

optimized C code for each benchmark. In our tool, we automate the process of generating

FSMD from a C code. The implementation flow of our proposed TV method is presented in

Fig. 5.6. We have used an Intel Xeon(R) CPU E5-2620 v4 2.10GHz, 64GB of RAM, running

Ubuntu 18.04.3 LTS in our experiments. Note that for the second attack model, i.e., when

the attacker has access to the memory at cutpoints, the probability of information leak

would be more than the first attack model due to more observation points for the attacker.

Moreover, the run time would be faster in the case of the second attack model as it may

identify the vulnerability at the earliest in most cases. hence, we present our results only

for the first attack model, i.e., the attacker has access to the memory at the end of the

execution.

C Program C to FSMD

SPARK
Compiler

Optimized
C Program C to FSMD

Relative
Security?

(Compare leak)

Translation
Validation Yes/No

FSMD

FSMD

Fig. 5.6: Overall flow for translation validation of information leakage

5.7.2 Performance Measures

We present our experimental results for 12 benchmarks [22] in Table 5.1. We insert cutpoints

into the FSMD to identify the paths. For each benchmark, the total number of cutpoints

(#CP) and paths (#P) are presented in Columns 2 and 3, respectively. The SPARK tool

does not change the control structure of the input code during its optimizations. Thus,

for both source and optimized FSMD, the number of paths is the same. We represent the

number of inputs for each benchmark in Column 4. We take a random subset of inputs as

high inputs in our experiment, as presented in Column 5 (#H). We have considered different

118

Experimental Results

Table 5.1: Performance Measures for Benchmarks

Bench #CP #P #IN #H
#RSP

RS?
ET (Sec)

NMC MC NMC MC
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
dct 1 1 8 1 0 0 N 0.006 0.006
modn 2 10 1 1 0 0 N 0.01 0.01
diffeq 2 3 2 1 1 1 N 0.004 0.004
perfect 3 6 1 1 5 0 N 0.004 0.004
barcode 2 65 4 2 64 64 Y 0.076 0.073

parker 3 9 6

1 3 2 N 0.012 0.018
1 5 3 N 0.012 0.016
2 3 1 N 0.018 0.015
2 1 1 N 0.013 0.009

find
8 15 8

1 12 4 Y 0.058 0.005
2 12 2 N 0.114 0.021

min8 3 12 0 N 0.058 0.005
5 8 0 N 0.018 0.001

waka 2 4 20

2 4 4 Y 0.007 0.005
3 0 0 N 0.008 0.005
4 4 4 Y 0.005 0.005
5 1 1 N 0.005 0.005

lru 3 101 1 1 98 98 Y 0.066 0.078
qrs 13 56 1 1 56 50 Y 160.913 14.987

ieee754 6 519 2
1 518 518 Y 252.462 195.632
1 516 516 Y 124.76 115.056

subsets of inputs as high inputs for some benchmarks like PARKER, FINDMIN8, WAKA,

and IEEE754. The same number of high inputs actually represents a different subset of

inputs. For example, PARKER has four rows in Column 5 as (1, 1, 2, 2), even though the

first two rows have the same number as 1, but they actually represent different high inputs.

We have experimented the method of TV with and without applying the look ahead

properties (discussed in Section 5.5.3). We report the total number of secure paths, relatively

secure paths, and conditionally secure paths identified by the TV method. We found that

the number of secure and conditionally secure paths is very small due to the leak of almost all

chosen high inputs. Thus, we present only the relatively secure paths (#RSP) in Columns

6 and 7 with no model checking (NMC) and with model checking (MC) during the TV,

respectively. Here, each path is counted exactly once to show the portion of an FMSD that

119

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

is traversed to verify the relative security. It may be noticed that the total paths traversed

by TV are reduced in 9 cases (out of 21 test scenarios) when we apply look ahead properties

at the cutpoints just before the recursive calls. Note that when the TV returns failure due

to a mismatch of leaks, the number in Columns 6 and 7 represents the paths traversed and

found relatively secure till the point where the mismatch of the leak is found. These results

show the effectiveness of our look ahead property checking during TV. The results for the

relative security of the source and optimized benchmarks are presented in Column 8 (#RS).

We found that in 13 out of the total 21 cases, the optimized program is not relatively

secure to the source program. This highlights that modern compilers introduce security

vulnerabilities in most cases. We have presented the average execution time (ET) in seconds

R

ec
ur

si
on

0

50

100

150

BARCODE1

BARCODE2

PARKER1

PARKER2

PARKER3

PARKER4

FIN
DMIN

1

FIN
DMIN

2

FIN
DMIN

3

FIN
DMIN

4

FIN
DMIN

5

FIN
DMIN

6

without model check with model check

Fig. 5.7: Number of Recursions with and without property checking

for our TV with no model checking (NMC) and with model checking (MC) in Columns 9

and 10, respectively. We found that, except for QRS and IEEE754, other benchmarks take a

negligible amount of time. The benchmarks QRS and IEEE754 take more time due to their

large number of cutpoints and paths. However, for both benchmarks, the execution time

is reduced significantly with MC. The average speed-up of the TV method with property

checking is 3.67X times compared to the TV method without property checking.

120

Experimental Results

R

ec
ur

si
on

0

50000

100000

150000

200000

QRS IEEE7541 IEEE7542

without model check with model check

Fig. 5.8: Number of Recursions with and without property checking for large benchmarks

LOC

E
xe

c
Ti

m
e

(S
ec

)

0

100

200

300

100 200 300 400

Model Check No Model Check

Fig. 5.9: LOC Vs Execution Time (in Sec) with and without property checking

5.7.3 Impact of Look-ahead Properties

In our implementation, we run each benchmark two times for a combination of high inputs

(Column 5 in Table 5.1) with and without applying look-ahead properties, i.e., in Algo-

rithm 8 for the first run, we call the function CheckUsage() in Line 8 of Algorithm 8, in

Line 15, and Line 26 of Algorithm 9. Then, in the second run, we stop these function calls in

our TV method. The objective is to check the impact of look-ahead properties on the total

number of recursive calls in both runs. The total number of recursive calls of the function

CheckCorres() without property check and with property check is shown in Fig. 5.7 and

5.8 for some significant benchmarks for which we found a difference. For better represen-

121

TVIL: Translation Validation of Information Leakage of Compiler
Optimizations

tation, we present the total recursions in two different figures due to the large variations in

the number of recursions. For all the benchmarks in Fig. 5.7 and Fig. 5.8, it is observed

that the number of recursive calls gets reduced significantly when look-ahead properties are

applied. This shows the usefulness of the look-ahead property checking in our TV approach.

5.7.4 Scalability of Proposed Approach

We have presented the results for average execution time with respect to the lines of code

(LOC) from our experiments in Fig. 5.9. It is apparent that the execution time is not

growing exponentially with respect to the LOC in our experiments.

5.8 Conclusion

The compiler applies various optimizations to improve the performance in terms of area,

power, etc. It is necessary to ensure the optimized program ensures the security properties

of the source program in addition to the functional correctness. However, this is an unde-

cidable problem. Thus, in this thesis, we used a concept of leak propagation with respect to

information flow in a program to achieve the translation validation of information leakage

of compiler optimizations. Moreover, we defined the relative security between the source

and optimized program based on our leak propagation vector. We considered two different

attack models and presented the translation validation method for them. Our experimental

results concluded that the SPARK compiler is actually leaky and does not preserve the

security of the source program in most cases. The proposed approach can be used by any

compiler in its optimization phase to make it security aware such that it applies only the

secure optimizations and restricts the optimizations leading to security vulnerability of the

source.

;;=8=<<

122

6
MQIL: Model Checking based Quantification

of Information Leakage in a Program

6.1 Introduction

The primary approach to identify information leaks in a program is taint analysis, which

tracks how sensitive information flows through the program and if it is leaked to public

observers. Taint analysis is not complete specifically for implicit information flow [37, 91].

Therefore, there may be false negative results. Also, it doesn’t give a counter-example

of the detected leaks in the program. On the other hand, bounded model checking is

widely used for program verification and can provide counter-examples in case some property

fails. Moreover, bounded model checking should be able to identify all information leaks

for programs with static loop bounds. The motivational question is, can we model the

quantification of information leakage in a program as a property verification problem in

model checking? In this thesis, we measure the overall information leakage in a program

with respect to information flow using the Bounded Model Checker for C programs (CBMC).

The threat model in this work is similar to that presented in Chapter 4. To the best of our

knowledge, this is the first work that successfully quantifies the information leakage in any

C program using CBMC and is scalable enough to handle large cryptographic benchmarks.

123

MQIL: Model Checking based Quantification of Information Leakage in a

Program

The major contributions of this chapter are as follows.

• We model the quantification method for information leakage in a program using

CBMC.

• We show how to handle various constructs of a C program in our proposed method.

• We also show how to verify the relative security between a source and its optimized

program using CBMC.

• We experiment with the proposed approach for various security benchmarks and show

that it can successfully measure the overall information leakage in a program.

• We identify that LLVM actually introduces security vulnerabilities during optimization

for most of the cryptographic benchmarks.

The rest of this chapter is organized as follows: Section 6.2 presents the motivation for

the proposed approach. Our overall quantification approach is presented in Section 6.3.

The proposed quantification model for various C constructs is presented in Section 6.4. The

proposed quantification parameters and relative security are presented in Section 6.5. The

experimental results are presented in Section 6.6. Finally, Section 6.7 concludes the chapter.

6.2 Motivation

Let us consider the function presented in Fig. 6.1. The function f() takes a low/non-sensitive

inputs l, and a high/sensitive input h. Our focus is to measure the information flow from h

to any of the program variables. The value of variable a depends on the value of high input

h because, for two different values of h, the value of a also differs. Thus, there is an explicit

information flow of h to a at Line 5 in Fig. 6.1(a). The variable d is dependent on both

a and b. Since there is information flow to a from h, this implies there is an information

flow to d as well from h. Similarly, the variable out has also an information flow from h

through d. Thus, a, d, and out are the total leaky variables with respect to h for this given

example. It may be noted that the value of b and c is not dependent on h. Thus, there is

no information flow to b and c from h.

Our goal is to track these leaky variables using a model-checking method. Let us make

two copies of the variable a as a1 and a2 and two copies of high input h as h1 and h2. The

124

Motivation

generated function with two copies of variables, high inputs, and assignment operations is

presented in function f′() in Fig. 6.1(b). Note that the low input l has not been copied.

Now, to consider different values of h let us assume h1! = h2 (Line 5), then the values of a

are also not equal, i.e., a1! = a2. Since the values of a differ for two different values of h, the

assertion at Line 16 will fail. Similarly, the assertions corresponding to d and out will also

fail. For b and c, the assertions at Lines 17 and 18 will not fail. Thus, if we provide the f′()

in Fig. 6.1(b) to CBMC, it will show that these three assertions failed. Thus, we can identify

the information leakage using CBMC using the function f′() in Fig. 6.1(b). In this thesis, we

develop a method to check explicit information flows, precise analysis of implicit information

flows, and fixed points of leaks of the loops in a program as user-specified assertions to be

verified by CBMC.

1 void f (l , h)
2 {
3 a = 10 ;
4 b = 20 ;
5 a = a + h ;
6
7 b = b − l ;
8
9 c = l − 5 ;
10
11 d = a + b ;
12
13 out = c + d ;
14
15
16
17
18
19
20
21 }

(a)

1 void f ′ (l , h1 , h2)
2 {
3 a1 = 10 ; a2 = 10 ;
4 b1 = 20 ; b2 = 20 ;
5 assume (h1!=h2) ;
6 a1 = a1 + h1 ;
7 a2 = a2 + h2 ;
8 b1 = b1 − l ;
9 b2 = b2 − l ;
10 c1 = l − 5 ;
11 c2 = l − 5 ;
12 d1 = a1 + b1 ;
13 d2 = a2 + b2 ;
14 out1 = c1 + d1 ;
15 out2 = c2 + d2 ;
16 a s s e r t (a1==a2) ;
17 a s s e r t (b1==b2) ;
18 a s s e r t (c1==c2) ;
19 a s s e r t (d1==d2) ;
20 a s s e r t (out1==out2) ;
21 }

(b)

Fig. 6.1: A Motivational Example: (a) Source code, (b) Generated source code

125

MQIL: Model Checking based Quantification of Information Leakage in a

Program

6.3 Our Quantification Approach

Let P (H,L, V,O) be a program, where H and L are the sets of high/sensitive and low/insen-

sitive inputs, respectively, V and O are the sets of program variables and output variables,

respectively. The program P consists of assignment statements, control blocks, loops, func-

tions, and many more constructs. The overall quantification model to generate the program

for CBMC is as follows.

• We create two copies of P at the abstract level as P1(H1, L, V 1, O1) and P2(H2, L, V 2,

O2). Each element i in H ∪ V ∪O are copied as i1 and i2 in P1 and P2, respectively.

It may be noted that we do not create copies of the low input set L.

• To quantify the information leakage, we add assertions of the form v1 == v2,∀v1 ∈ V 1

and ∀v2 ∈ V 2, where v1 and v2 are corresponding to the variable v ∈ V in the program

P . Similarly, we add the assertions for the output variables as well.

• We assume that h1! = h2 ∀h1 ∈ H1 and ∀h2 ∈ H2, where h1 and h2 are corresponding

to the high input h ∈ H in the program P , i.e., each high input in P is assumed to

take different values in P1 and P2.

• For different values of the high input h, if the assertion fails for a variable v, it implies

that there is an information flow from h to v in the original program P .

• The combined code P1, P2, and all assumptions and assertions are given as input to

CBMC. The total leak is defined by the number of asserts failed by CBMC.

The abstract idea of the proposed method for quantification of information leak is pre-

sented in Fig. 6.2. For the programs P0 and P1 in Fig. 6.3, the CBMC model is shown in

Fig. 6.4.

6.4 Quantification Model for C Constructs

Although the core idea is to create two copies of the original program, there are various

challenges to be addressed. For example, function calls cannot be copied and have to be

handled in a different way to measure the leak propagation through function parameters

and their return values. We now discuss how we handle the different C constructs in the

program to create the input of CBMC.

126

Quantification Model for C Constructs

if h1!= h2,
v1==v2?
o1==o2?

Total leak =
Number of

Assertions failed

Program
P1(H1,L,V1,O1)

Program
P2(H2,L,V2,O2)

Program
P(H,L,V,O)

for each h1, v1, o1
in H1, V1, O1, resp.

for each h2, v2, o2
in H2, V2, O2, resp.

Fig. 6.2: Overall flow of quantification model using CBMC

6.4.1 Data types

6.4.1.1 Variables

Our aim is to verify the information flow from a sensitive or high input to any of the variables

in the program. For each internal variable x, we create two copies, such as x1 and x2. The

value of these two copies would be checked at the end of the program to verify the existence

of information flow. If these values differ for a variable, this is identified as an information

flow to the variable and marked as a leaky variable. For example, in Fig. 6.4, the copies i1

and i2 are created for variable i.

6.4.1.2 Structures and Unions

The members declared inside a structure or a union can be responsible for an information

leak. Thus, we generate two copies of the structure variable or union variable instead of

making copies of the members declared in a structure or union. For example, the object obj

of structure in Fig. 6.5(a) is converted into objects obj1 and obj2 in Fig. 6.5(b).

6.4.1.3 Arrays

When one or more elements of the array have an information flow from any high input, it

is considered a single leak of the array, as the rest of the elements of the array can also be

accessible through the leaky element address. We generate two copies of the arrays, just

like variables. For example, array v[]; in Fig. 6.4 is copied as v1[], v2[].

127

MQIL: Model Checking based Quantification of Information Leakage in a

Program

1 void main (x , y , z , n , h)
2 {
3 // h i s high input
4 i = 1 ; u [0] = 0 ;
5 b = x - y;
6 c = x + y;
7 whi l e (i < n)
8 {
9 v [i] = u[i-1] + I ;
10 u[i] = h;
11 i++;
12 }
13 i f (u[i-1] > 0){
14 a = b − c ;}
15 e l s e {
16 a = b + z ;}
17 out = v [i −1] + a ;
18 }

(a) Source program P0

1 void main (x , y , z , n , h)
2 {
3 // h i s high input
4 i = 1 ; v [1] = 1 ;
5 whi l e (i+1 < n)
6 {
7 v [i] = h + i ;
8 i++;
9 }
10 i f (h > 0){
11 b = x - y;
12 c = x + y;
13 a = b − c ;}
14 e l s e {
15 b = x - y;
16 a = b + z ;}
17 out = v [i −1] + a ;
18 }

(b) Optimized program P1

Fig. 6.3: An Example of Conditional Speculation

6.4.1.4 Pointers

A pointer variable may store the address of a leaky variable. We handle pointers the same

way as variables to track the information flow through the address of any pointer, i.e., we

generate two copies of the pointer variable of the same type.

6.4.2 Assignment Operations

An assignment operation is copied twice to track the information flow. The first assignment

operation is with the first copy of variables and the second assignment operation is with the

second copy of variables. For example, the assignment operation a = b − c at Line 13 in

Fig. 6.3(b) is copied twice at Line 15 and Line 22 in Fig. 6.4(b).

128

Quantification Model for C Constructs

1 #inc lude<a s s e r t . h>
2 void main (x , y , z , n , h1 , h2)
3 {
4 //h1 and h2 are high inputs
5 CPROVER assume(h1!=h2);
6 i 1 = 1 ; i 2 = 1 ;
7 u1 [0] = 0 ; u2 [0] = 0 ;
8 b1 = x − y ;
9 b2 = x − y ;
10 c1 = x + y ;
11 c2 = x + y ;
12 whi l e (i1<n && i2<n)
13 { v1 [i 1] = u1 [i −1] + 1 ;
14 v2 [i 2] = u2 [i −1] + 1 ;
15 u1 [i 1] = h1 ;
16 u2 [i 2] = h2 ;
17 i 1++; i 2++; }
18 i f (h1)
19 { a1 = b1 − c1 ; }
20 e l s e
21 { a1 = b1 + z ; }
22 i f (h2)
23 { a2 = b2 − c2 ; }
24 e l s e
25 { a2 = b2 + z ; }
26 out1 = v1 [i1 −1] + a1 ;
27 out2 = v2 [i2 −1] + a2 ;
28 // quant i fy the l eak
29 assert(a1==a2); assert(b1==b2);
30 assert(c1==c2); assert(i1==i2);
31 assert(v1[i1-1]==v2[i2-1]);
32 assert(out1==out2);
33 }

(a)

1 #inc lude<a s s e r t . h>
2 void main (x , y , z , n , h1 , h2)
3 {
4 //h1 and h2 are high inputs
5 CPROVER assume(h1!=h2);
6 i 1 = 1 ; i 2 = 1 ;
7 v1 [1] = 1 ; v2 [1] = 1 ;
8 whi l e (i 1+1<n && i2+1<n)
9 { v1 [i 1] = h1 + i1 ;
10 v2 [i 2] = h2 + i2 ;
11 i 1++; i 2++; }
12 i f (h1)
13 { b1 = x − y ;
14 c1 = x + y ;
15 a1 = b1 − c1 ; }
16 e l s e
17 { b1 = x − y ;
18 a1 = b1 + z ; }
19 i f (h2)
20 { b2 = x − y ;
21 c2 = x + y ;
22 a2 = b2 − c2 ; }
23 e l s e
24 { b2 = x − y ;
25 a2 = b2 + z ; }
26 out1 = v1 [i1 −1] + a1 ;
27 out2 = v2 [i2 −1] + a2 ;
28 // quant i fy the l eak
29 assert(a1==a2); assert(b1==b2);
30 assert(c1==c2); assert(i1==i2);
31 assert(v1[i1-1]==v2[i2-1]);
32 assert(out1==out2);
33 }

(b)

Fig. 6.4: CBMC input for (a) the generated source program (GS) from P0 (b) the generated
optimized program (GOp) from P1

129

MQIL: Model Checking based Quantification of Information Leakage in a

Program

1 s t r u c t temp
2 { i n t x ;
3 i n t a [1 0] ;
4 } obj ;

(a) Original Structure

1 s t r u c t temp
2 { i n t x ;
3 i n t a [1 0] ;
4 } obj1, obj2 ;

(b) Generated Structure

Fig. 6.5: Handling Structure Construct

6.4.3 Control Structures

The control structure in a program is responsible for implicit information flows. We generate

two copies of the control block in a program. For example, for the control block presented

in Fig. 6.3(b), the generated control block is presented in Line 12 to Line 25 in Fig. 6.4.

When we assume the two copies of the high input h, i.e., h1 and h2 have different values,

i.e., h1! = h2 (Line 5), it is possible that CBMC takes the true branch of the first copy

of the control block and the false branch of the other control block or vice-versa during

the execution of the program. Thus, in Fig. 6.4, the program execution generates different

values for the copies of variables a and c, i.e., the assertions for a1 == a2 and c1 == c2

fails due to their different symbolic values. However, the assertion for variable b passes due

to their same symbolic values in the parallel paths. Thus, only a and c are considered leaky

variables due to the implicit flows. This is how our proposed approach analyzes the implicit

flows in a program precisely and overcomes the problem of over-tainting as discussed in

Section 6.2.

6.4.4 Loops

To find the fixed point of the leak of a loop, we generate two copies of the loop and merge

them. Loop merging is done for the parallel execution of copies of the loop. However, the

control blocks cannot be merged because the program execution needs to follow different

parallel paths in the copies of the control block to track the implicit information flow in the

program. This would not be possible if we merge the copies of the control blocks, as it will

always take a single path. For the loop in Fig. 6.3(a), the generated loop is presented in

Fig. 6.4 where the two copies of the original loop are merged.

Note that CBMC is a bounded model checker, thus, it cannot handle unbounded loops.

Therefore, each loop in a program is bounded with a specific number of iterations to identify

130

Quantification Model for C Constructs

the fixed point of each loop. The option −−unwind k is used to fix the bound k for the loops

in the program while running the CBMC. We perform a pre-analysis to find the minimum

number of iterations a loop needs to iterate to find the fixed point of leak in the loop using

the approach proposed in Chapter 4. A loop may have a number of parallel paths inside it

due to control blocks. Let us consider a loop with two parallel paths, P1 and P2. In each

iteration of the loop, it follows either P1 or P2. Then, our goal is to check all possible path

sequences to get the fixed point of the leak in the loop, like P1, P2, P1P1, P1P2, P2P1,

P2P2, P1P1P1, etc. It is possible that in each iteration, a new variable is introduced as

a leaky variable. Thus, the depth or the maximum number of iterations for a loop would

be the order of V in the worst case. We use this fixed point value as the unwind value k

in CBMC for this loop. This will ensure that CBMC unrolls the loop enough number of

times to identify all possible leaks inside the loop. The value of k is two for the loop in

Fig. 6.3(b). The assertion for the copies of the array v in Fig. 6.4 fails due to the information

flow from the high input h to the array v in the loop. It may be noted that most of the

cryptographic benchmarks use bounded loops, thus, we do not need to find the fixed point of

each loop individually to set the value of k, and CBMC verifies the assertions automatically

by unrolling the loops.

6.4.5 Functions

For a function, information flow may occur through the local variables declared inside a

function, function parameters, and/or function return value. To capture this, the function

is handled in a different fashion. We generate two copies of each function definition f() in a

program except the main function in the following way.

• First copy (f()): We use the original definition of the function as it is (with the original

return statement, if any). This copy is used to track the information flow from the

function parameters in the function to the value returned from the function. In the

generated code, the first copy f() is called twice at the place of the original function

call with the new copies of the argument variables. Consider the example of a program

with a function call in Fig. 6.6(a) and Fig. 6.6(b). In the generated code, there are

two function calls with the copies h1 and h2 as parameters in Fig. 6.6(c), at the place

of the original function call f(h) in Fig. 6.6(a). Note that this copy does not quantify

the information leakage within the function definition of f(). In the example, the leak

131

MQIL: Model Checking based Quantification of Information Leakage in a

Program

1 void main (h)
2 {
3 i n t v ;
4 v=f (h) ;
5 }

(a)

1 i n t f (x)
2 { i n t y ;
3 y=x+5;
4 re turn y ;
5 }

(b)

1 void main (h1 , h2)
2 {assume (h1!=h2) ;
3 i n t v1 , v2 ;
4 v1=f (h1) ;
5 v2=f (h2) ;
6 f ′ (h1 , h2) ;
7 a s s e r t (v1==v2) ;
8 }

(c)

1 void f ′ (x1 , x2)
2 {
3 i n t y1 , y2 ;
4 y1=x1+5;
5 y2=x2+5;
6 a s s e r t (y1==y2) ;
7 a s s e r t (x1==x2) ;
8 }

(d)

Fig. 6.6: Handling Function (a) Original main() function; (b) Original function definition f();
(c) Generated main() function; (d) Generated function definition f′()

due to the variable v of the original main() can now be tracked through the assert

statement inserted in the generated main() for the copies of the variable v as v1 and

v2.

• The second copy (f′()): We copy the arguments and the local variables declared in

the original definition of f(). This copy is used to identify the information leakage

through the internal variables of the function and the function parameters, thus, it

has no return value. The second copy f′() is called after the two function calls of f()

in the generated code. For example in Fig. 6.6(c), function f′() is called after the two

function calls of f(). It checks for the propagation of the leak to the local variables of

the original function through the function parameters in the called function. Here, we

add the assertions for each local variable and each function parameter at the end of

the function definition f′(). For example, y is leaking in Fig. 6.6(a), so the assertion

y1 == y2 will fail in this case.

132

Quantification Parameters and Relative Security

6.5 Quantification Parameters and Relative Security

In Chapter 4, we proposed three quantification parameters for the overall information leak

in a program:

• Total leaky high inputs: when there is more than one high input in a program, the

leak of each high input is checked separately. Let us consider a program with two

high inputs, h1 and h2. For the first parameter, to check the leak of h1, the two

assumptions added are h11! = h21 and h21 == h22. Similarly, the leak of h2 is

checked with assumptions h11 == h21 and h21! = h22. We assume the copies of one

high input have different values and all other copies of high inputs have the same value.

For each assumption, the assertions would be added for each variable. In Fig. 6.4(b)

there is only high input h, the assertions fails for variables a, c, and v. Thus, h is

considered as leaky and total leaky high input is one.

• Unique leaky variables: the total number of unique leaky variables measured is with

respect to any high input. Here, a variable leaking more than one high input is

considered a single leak. For the second parameter, to count the total leaky variables,

the assumptions should be h11! = h21 and h21! = h22. We assume for each high

input, the two copies of the high input are not equal. Then we add the assertions for

each variable in the program. The total number of assertions added to the program

is |V | where V is the set of variables in the program. In Fig. 6.4(b), the unique leaky

variables for P1 is three.

• Total leaky variables with respect to unique high input: a variable leaking two high

inputs is considered as two leaks. For the third parameter, to count the unique leaky

variables with respect to h1, the assumptions are the same as for the first parameter.

Then, we add the assertions for each variable of the program for each such assumption.

Finally, we sum up the total failed assertions due to each individual high input in the

program. Here, the total number of assertions added to the program is |V |∗|H|, where
V is the set of variables and H is the set of high inputs. In Fig. 6.4(b), the total leaky

variables with respect to h is three.

All three parameters can be obtained in our CBMC based approach by just controlling

the assumptions on the high inputs. With this setup, we verify whether any of the assertions

133

MQIL: Model Checking based Quantification of Information Leakage in a

Program

failed. The high input h1 is said to be leaky if any of the added assertions fail for any variable

in the program. The total number of failed assertions is the total number of leaky variables

in the program.

6.5.1 Verifying Relative Security

Our proposed approach for quantification of leaks can be used to verify the relative security

between a source program and its optimized version. We have taken the definition of relative

security from Chapter 4 as follows.

Definition 6.5.1 (Relative Security). An optimized program is said to be relatively secure

to the source program if it follows the following condition for each high input in the program.

The number of variables leaking a specific high input in the optimized program is not more

than the number of variables leaking the same high input in the source program.

To verify the relative security, we find the third quantification parameter, i.e., the total

leaky variables with respect to the unique high input for both the source and optimized

programs. If for each high input, the total number of leaky variables is less than or equal

to that of the source program, we say that the optimized program is relatively secure to the

source program. For example, in Fig. 6.3, there is only one high input h, and it is leaked

through a, u, and v in the source program P0 and through a, c, and v in the optimized

program P1. Thus, the leak in P1 is not more than the leak in P0. Hence, this optimization

is relatively secure.

6.6 Experimental Results

6.6.1 Setup

Our proposed approach is implemented in Python. The LLVM tool first generates an opti-

mized LLVM IR from source C (S). Then, the tool llvm2c [11] is used to get an equivalent

C (Op) from the IR. We have verified the functional correctness of both the source C and

the optimized C using a simulation-based method. We use the C parser provided by the

pycparser [9] to obtain the abstract syntax tree (AST) from S and Op. The proposed modifi-

cation of C for quantification (ref. Fig. 6.4) is implemented at the AST level. The annotated

C code, i.e., GS and GOp from S and Op, respectively, is generated by the C generator in

134

Experimental Results

the pycparser library from the modified AST. We used CBMC 5.10 [2] to quantify the in-

formation leak and verify the relative security between the source and optimized C code.

The tool flow of our implementation is presented in Fig. 6.7. In our experiments, we used

an Intel Xeon(R) CPU E5-2620 v4 2.10GHz, 64GB of RAM, running Ubuntu 18.04.3 LTS.

Source C
Code (S)

Optimized
IR

Relative
Security? Yes/No

Generated
Source (GS)

C Parser

CBMC
Failed Assertions

with Counter
Example

Optimized C
Code (Op)

Generated
Optimized

(GOp)

C Parser

CBMC
Failed Assertions

with Counter
Example

LLVM

llvm2c
(IR to C)

Fig. 6.7: Implementation tool flow for quantification of information leak and relative security
verification

6.6.2 Benchmark Characteristics

We have presented the experimental results in Tables 6.1 to 6.3 for four cryptographic bench-

marks, AES, DES, SHA, and RSA (taken from [1]). We considered the encryption mode

for AES and DES, and the secret key is considered as high input for both benchmarks. The

digest info is taken as high input for SHA to generate the hash value. RSA is an asymmetric

cryptographic algorithm that uses both a public and private key for encryption and decryp-

tion, respectively. The private key is considered as the high input in our experiment. The

characteristic of the source code (S) and the generated source code (GS) (i.e., the version of

S that will input to CBMC) for each benchmark in terms of lines of code (#LoC), variables

135

MQIL: Model Checking based Quantification of Information Leakage in a

Program

Table 6.1: Characteristics of Source code (S) and Generated Source (GS) code

Bench
#LoC #variable #loop #funccall

ET(Sec)
S GS S GS S GS S GS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AES 358 1182 23 91 10 35 12 44 0.42
DES 247 782 44 150 20 58 7 26 0.17
SHA 171 565 30 97 12 31 13 42 0.25
RSA 66 136 13 45 3 6 4 15 0.04
Avg. 2.95× 3.51× 2.74× 3.59×

(#variable), loops (#loop), and function calls (#funccall) is presented in Table 6.1. The

#LOC, #variable, #loop, and #funccall are increased by 2.95, 3.51, 2.74, and 3.59 times,

respectively, due to the two copies of the program. Although the loops are merged in the

generated code, they are effectively copied if they are inside a control block. When a loop

is inside a function, the number of loops is actually increased by three times as discussed

in Section 6.4.5, and it may increase up to four times for nested function calls. Thus, the

average number of loops in GS is more than two times that of S. The #funccall shown

here excludes the assume and assertion functions in the GS. The values for the #funccall

vary in the range of three to four times in GS than S. Our tool takes less than a second to

generate GS from S, as shown in the last column of Table 6.1. Similar results are presented

for the optimized code (Op) and the generated optimized code (GOp) in Table 6.2. The

#LOC, #variable, #loop, and #funccall are increased by 3.83, 3.78, 1.49, and 3.44 times,

respectively. The loops are unrolled in the optimization of RSA, thus, #loop in Op and

GOp for RSA is 0. We observed that LLVM optimizes some of the function calls during the

optimization, thus, #funccall is reduced in the Op than the S for AES, DES, and RSA, i.e.,

from 12 to 5, 7 to 4, and 4 to 1, respectively. Interestingly, we also observed that LLVM

introduces new functions in its optimization phase, thus, the number of function calls is

increased to 27 in the Op from 13 in S for SHA.

6.6.3 Performance Measures

We have presented the performance measures for the benchmarks in Table 6.3. For each

benchmark, we have shown the number of inputs (#in) and high inputs (#high) in columns

2 and 3, respectively. The number of assumptions (#assume) inserted into the code is

136

Experimental Results

Table 6.2: Characteristics of Optimized (Op) and Generated Optimized (GOp) Code

Bench
#LoC #variable #loop #funccall

ET(Sec)
Op GOp Op GOp Op GOp Op GOp

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AES 998 3496 287 1620 10 22 5 19 1.12
DES 404 1425 149 467 14 41 4 14 0.46
SHA 479 1751 111 339 12 10 27 94 1.49
RSA 105 490 30 99 0 0 1 3 0.07
Avg. 3.83× 3.78× 1.49× 3.44×

Table 6.3: Performance Measures for Benchmarks in CBMC

Bench #in #high #assume
#assert #leak

RS?
ET(Sec)

GS GOp GS GOp GS GOp
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

AES 2 1 2 28 279 8 157 No 54.29 24.72
DES 3 2 5 57 150 14 66 No 21.55 14.55
SHA 2 1 2 32 142 3 11 No 0.31 3.09
RSA 5 1 5 5 21 2 1 Yes 0.01 5.58

presented in column 4. The inputs, high inputs, and assumptions are the same for both

the generated source (GS) and the generated optimized code (GOp). The total number

of assertions (#assert) inserted for each variable for each function in both the GS and

the GOp is presented in columns 5 and 6, respectively. As LLVM IR is in SSA form, it

introduces a large number of new variables during the optimization. Thus, the #assert is

increased drastically for GOp than GS. The number of leaks in the respective program is

the total number of assertions failed by the CBMC. The total number of leaks is presented

in columns 7 and 8, respectively, for both GS and GOp. The relative security between the

GOp and GS is presented in column 9. The results show that the optimized program is

not relatively secure to the source program for all the cryptographic benchmarks in our

experiment except RSA. This shows that LLVM introduces new security vulnerabilities in

its optimization phase. The average execution time for running CBMC is presented in the

last two columns for both the GS and the GOp, respectively. The results show that large

benchmarks like AES and DES take less than a minute to quantify the leak. This signifies

our proposed method is scalable enough to handle even large benchmarks. It may be noted

137

MQIL: Model Checking based Quantification of Information Leakage in a

Program

that our proposed methods in Contributions 2 and 3 cannot handle any of the test cases

presented here.

GS LOC

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

0

20

40

60

200 400 600 800 1000

(a)

GOp LOC

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

0

5

10

15

20

25

500 1000 1500 2000 2500 3000

(b)

Fig. 6.8: LoC Vs Execution Time (in Sec)

6.6.4 Scalability of Proposed Approach

We have presented the results for average execution time with respect to the lines of code

(LoC) from our experiments in Fig. 6.8(a) for the generated source (GS) and in Fig. 6.8(b)

for the generated optimized code (GOp), respectively. It shows that the execution time is

not growing exponentially with respect to the LoC in our experiments. Thus, the proposed

approach is scalable enough to handle large benchmarks.

6.7 Conclusion

We proposed a quantification method for information leakage in a C program using the

model checker CBMC. The proposed approach measures both the explicit leaks and the

implicit leaks. Moreover, it handles the fixed point of the leak in a loop. The approach is

further applicable to verify the relative security between a source program and its optimized

version in a compiler. The experimental results show that the proposed approach is scalable.

We observed that the LLVM compiler introduces new leaks in its optimization phase.

;;=8=<<

138

7
SRIL: Securing Registers from Information

Leakage at Register Transfer Level

7.1 Introduction

Integrated Circuits (ICs) manufacturing is prone to defects or faults. Additional logic is

usually added to the circuit to detect such faults through testing. Scan insertion is one

of the techniques for design for testability (DFT) used to detect faults in the IC. During

chip packaging, the scan chains are connected to external JTAG interface pins to provide

on-chip debug capability and maintenance in the field. Access to the JTAG interface can be

prevented by setting a protection bit. The scan chain can be left unbound to prevent further

access. However, the protection bit can be compromised, and unbound scan chains can still

be accessed by breaking the package open [133]. This scan access opens the gateway for the

attackers to access the internal information to retrieve the secret information (keys) of the

cryptographic designs.

Threat Model: We assume that the attacker has access to the scan chain of the functional

IC (i.e., oracle) as mentioned above. Alternatively, he/she can also access the scan chain

in the testing facility after the fabrication of the chip. But, he does not have access to

the secret keys of the design. An attacker can observe the primary nonsensitive inputs,

139

SRIL: Securing Registers from Information Leakage at Register Transfer Level

outputs, and the content of the intermediate registers through the scan chain inputs. His

objective is to retrieve the secret keys from this intermediate register information available

through the scan chain. In addition, this access to the functional IC and physical proximity

to the design makes the attacker capable of performing power analysis attacks. An attacker

can, through the statistical analysis of multiple power traces produced by multiple carefully

planted plaintext (inputs to the algorithm), extract information that can reveal up to d

intermediate values being processed by the circuit, where d is the attack order and is a

measure of the capabilities of the attacker [72].

Due to the increasing complexity of the ICs, High-level Synthesis (HLS) is widely used

for various applications (including cryptographic algorithms) to synthesize an RTL design

from its behavioral specification. A shorter design cycle, the availability of behavioral spec-

ifications, fewer errors at higher abstraction levels, and the advancement of HLS technology

enable users to move towards HLS for cryptographic designs [26, 94, 117]. Although there

are efforts to track information leakage in the RTL generated by HLS [110], HLS does not

protect against information leakage. However, protection against information leakage is

desirable for cryptographic applications.

It has been shown that registers can leak information in a design [30,59]. The objective

of this thesis is to protect against information leakage through registers. In this thesis, we

apply taint analysis at the source program to get the sensitive variables and obtain the

mapped registers (sensitive) for these sensitive variables during the register allocation and

binding phase of HLS. Finally, we introduce an RTL bubble-pushing algorithm to ‘corrupt’

the register content without impacting the final output of the design. To the best of our

knowledge, this is the first work that proposes an HLS-driven register protection scheme

against scan-based power side-channel attacks. Specifically, the contributions of this chapter

are as follows:

• We propose bubble bubble-pushing approach for various components of the RTL de-

sign.

• We utilize the HLS flow to carry behavioral level precise taint analysis information

into RTL.

• We then propose a method to thwart the information leakage of sensitive registers in

RTL using the bubble-pushing algorithm.

140

High-level Synthesis Flow

• We experiment with our proposed approach on various benchmarks and show that it

has a negligible performance overhead.

• An experiment on AES shows that bubble pushing actually protects against the power

side channel.

The rest of the chapter is organized as follows. The HLS flow is presented briefly in

Section 7.2. The proposed bubble-pushing approach for various RTL components is pre-

sented in Section 7.3. The overall flow of the proposed defense technique is presented in

Section 7.4. Section 7.5 presents our experimental results, followed by the AES case study

in Section 7.6. The discussion on some related queries is presented in Section 7.7. Finally,

Section 7.8 concludes the chapter.

7.2 High-level Synthesis Flow

An HLS tool generates an RTL design from a source code using the following steps.

7.2.1 Preprocessing

The first step of HLS is preprocessing which takes advantage of the frontend of C/C++

compiler like GCC/LLVM. Using this compiler, it generates an internal representation (IR)

from the input specification written in C/++. The front-end compiler also applies various

optimizations on the IR. The HLS tool ignores the backend of such compilers, i.e., the

machine instructions and register allocation steps. Instead, HLS performs the following

steps on the IR obtained from GCC/LLVM. Consider the C code presented in Fig. 7.1(a).

The corresponding IR in three address code is presented in Fig. 7.1(b).

1 g = a + a + b ;
2 h = c + d + d ;

(a)

1 e = a + b ;
2 g = a + e ;
3 f = c + d ;
4 h = f + d ;

(b)

Fig. 7.1: An Example of a C Code and its 3-address code

141

SRIL: Securing Registers from Information Leakage at Register Transfer Level

7.2.2 Scheduling

This step assigns the operations to the control steps, ensuring the data dependencies among

operations. A control step corresponds to a clock cycle. As the source code is untimed,

this step adds time to the design and identifies the execution clock cycle of each operation.

This step aims to minimize the execution time of the design with limited resources. The

corresponding scheduled data flow graph (DFG) for the IR in Fig. 7.1(b) is presented in

Fig. 7.2. The first two addition operations o1 and o2 do not have any predecessors, thus,

they are scheduled at time step s1 and the other two addition operations o3 and o4 are

scheduled at time step s2 due to their predecessors o1 and o2 which are scheduled at time

step s1. This schedule requires 2 time steps and 2 adders for successful design.

+

+

+

+

a b c d

e f

hg

s1

s2

o1

o3

o2

o4

Fig. 7.2: Scheduled DFG

7.2.3 Allocation and Binding

The allocation process determines the types of required hardware components. Its objective

is to determine the minimum resources required to satisfy the design constraint. After allo-

cation, binding assigns the operations and variables to the allotted hardware components,

i.e., functional units and storage elements (registers or memory). The functional unit bind-

ing for the scheduled behaviour in Fig. 7.2 is represented in Fig. 7.3. It requires two adders,

four registers, and four multiplexers. The variables a and g are bound to register r1, the

variables b and e are bound to register r2, the variables c and f are bound to register r3,

and the variables d and h are bound to register r4. The addition operations o1 and o4 are

bound to the adder circuit Add1 and o2 and o3 are bound to the adder circuit Add2.

142

Proposed Bubble Pushing on RTL Circuit Components

CS_M4

0 1

M4
CS_M3

0 1

M3

Add1+ Add2+

r1 r2 r3 r4

CS_M1
M1

0 1

a, g b, e c, f d, h

CS_M2

0 1

M2

o1, o4 o2, o3

Fig. 7.3: Functional unit binding with four multiplexers

7.2.4 Datapath and Controller Generation

This step determines the interconnections among the functional units and registers. The

datapath consists of a set of storage elements (like registers, memories, etc.), a set of func-

tional units (like ALUs, multipliers, etc.), and interconnect elements (like multiplexers and

buses). Each component may take one or more clock cycles to execute. A finite state ma-

chine (FSM) is generated for the control circuit which controls the execution of operations in

the RTL design. To control the flow of data through the datapath the control unit generates

control signals. The datapath and controller FSM for the scheduled design in Fig. 7.2 is

shown in Fig. 7.3 and Fig. 7.4, respectively. The order of the control signal of multiplexers

in Fig. 7.4 is < CS M1 CS M2 CS M3 CS M4 >.

7.3 Proposed Bubble Pushing on RTL Circuit Com-

ponents

The core idea of RTL bubble pushing is to corrupt the register content. For this purpose, we

insert double inverters at the output of sensitive registers and push them randomly across

the datapath components. This process is called “bubble pushing”. These RTL datapath

components will be modified with bubble pushing on the circuit. Consequently, the register

will now store ‘corrupt’ data. Note that the functionality of the circuit does not change in

the bubble-pushing process since we always insert an even number of inverters or bubbles.

143

SRIL: Securing Registers from Information Leakage at Register Transfer Level

S1

S2

S3

- / o1, o2

- / o3, o4

S1

S2

S3

- / <0 1 0 1>

- / <1 0 1 0 >

Fig. 7.4: Controller FSM

In this thesis, we study the impact of bubble pushing across RTL design components like

logic gates, adders, subtractors, multipliers, multiplexers, and registers in the backward

direction. The forward bubble-pushing approach can also be developed in a similar manner.

7.3.1 Logic gates

For the logic gates AND and OR, if there is a bubble at the output of these gates, the AND

gate is changed to the OR gate, and the OR gate is changed to the AND gate after bubble

pushing. The bubble pushing for the AND gate in Fig. 7.5(a) is shown in Fig. 7.5(b). For

the XOR gate after bubble pushing, one of the inputs of the XOR gate gets a bubble. The

bubble pushing for the XOR gate in Fig. 7.6(a) is shown in Fig. 7.6(b).

(a) (b)

Fig. 7.5: Bubble pushing on AND gate

(a) (b)

Fig. 7.6: Bubble pushing on XOR gate

7.3.2 Adder and Subtractor

Let us have two n-bit numbers a and b as inputs to an adder. The output of the adder stores

into c, i.e. c = a+ b. The negation of a number a can be represented in its 1’s complement

form, i.e. ∼ a = 2n − 1− a. We find the updated design for the adder after bubble pushing

as derived in Eq. 7.1.

144

Proposed Bubble Pushing on RTL Circuit Components

∼ a+ ∼ b = 2n − 1− a+ (2n − 1− b);

= 2n+1 − 1− a− b− 1;

= 2n − 1− a− b− 1;

=∼ (a+ b)− 1;

∼ (a+ b) =∼ a+ ∼ b+ 1;

(7.1)

Note that the overflow of a n-bit number is represented as a n-bit number, i.e. 2n+1

is represented as 2n. Let the output of a subtractor be c = a − b. We find the updated

design for the subtractor after bubble pushing as derived in Eq. 7.2. The bubble-pushing

approach for an adder and subtractor is illustrated in Fig. 7.7. The designs in Fig. 7.7(b)

and Fig. 7.7(d) are the updated designs after bubble pushing for the adder and subtractor

in Fig. 7.7(a) and Fig. 7.7(c), respectively.

∼ a− ∼ b = 2n − 1− a− (2n − 1− b);

∼ a− ∼ b = (2n − 1− (a− b))− 2n + 1;

∼ a− ∼ b =∼ (a− b)− 2n + 1;

∼ (a− b) = 2n − 1− (∼ b− ∼ a);

∼ (a− b) =∼ (∼ b− ∼ a);

(7.2)

a
c

b

+

(a)

a
c

b

+ +
1

(b)

a
c

b

-

(c)

b
c

a

-

(d)

Fig. 7.7: Bubble pushing on Adder and Subtractor

7.3.3 Multiplier

Let us have two n-bit numbers a and b as inputs to a multiplier. The output of the multiplier

stores into c, i.e. c = a ∗ b. We find the updated multiplier circuit after bubble pushing as

derived in Eq. 7.3. In the RTL code, the multiplication with 2n is performed by left shifting

145

SRIL: Securing Registers from Information Leakage at Register Transfer Level

the operand to n bits. The updated design for the multiplier in Fig. 7.8(a) is shown in Fig.

7.8(b).

∼ a∗ ∼ b =(2n − 1− a) ∗ (2n − 1− b);

∼ a∗ ∼ b =2n ∗ (2n − 1− b)− (2n − 1− b)

− (2n ∗ a) + a+ (a ∗ b);

∼ a∗ ∼ b =2n(2n − 1− (a+ b))− (2n − 1− (a ∗ b))

+ (a+ b);

∼ a∗ ∼ b =2n(∼ (a+ b))− (∼ (a ∗ b)) + (a+ b);

∼ (a ∗ b) =2n(∼ (a+ b))− (∼ a∗ ∼ b) + (a+ b);

(7.3)

a
c

b
*

(a)

a
b <<

n

+

-
*

+

+
c

a
b

a
b

(b)

Fig. 7.8: Bubble pushing on Multiplier

7.3.4 Multiplexer

A multiplexer (Mux) with n select lines and 2n inputs is shown in Fig. 7.9. When there

is a bubble at the output of Mux as in Fig. 7.9(a), the bubble is pushed to all the in-

puts of the Mux from the output as shown in Fig. 7.9(b). In RTL code a 2:1 Mux with

reg2 and reg3 as inputs and reg1 as output is represented using the ternary operator as

reg1 = (condition)?reg2:reg3. If there exists a bubble at the output of Mux i.e. reg1 =

∼((condition)?reg2:reg3). After the bubble is pushed to the multiplexer in the backward

direction, the updated code is represented as reg1 = (condition)? ∼ reg2: ∼ reg3.

146

Proposed Defence to Protect Registers

. . . .

.

.

.

.

2n:1
Mux

Sn-1

I2n-1

I0
O

S0

(a)

. . . .

.

.

.

.

2n:1
Mux

Sn-1S0

I2n-1

I0
O

(b)

Fig. 7.9: Bubble pushing on Multiplexer

7.3.5 Register

A register may have multiple input sources and multiple output connections. The backward

bubble-pushing approach for a register is as follows. When there is a bubble at each of

the outputs of the register, it is pushed to all the inputs from the outputs. Otherwise,

when there is at least one bubble at one of the outputs, we put the bubbles to all those

outputs and inputs that do not have a bubble. An example of bubble pushing for an n-bit

register with two inputs and three outputs is shown in Fig. 7.10. The original design in Fig.

7.10(a) is converted to the design in Fig. 7.10(b). Note that multiple inputs to a register

are actually connected with Mux. However, for ease of representation, we have directly

connected multiple inputs to the register in Fig. 7.10(a). Thus, the bubbles are actually

pushed into the input of Muxes through the input of the register, i.e., from the output of

the Muxes.

n-bit Register

(a)

n-bit Register

(b)

Fig. 7.10: Bubble pushing on Register

7.4 Proposed Defence to Protect Registers

We assume some of the inputs of the source code are sensitive/secret. The internal variables

that depend explicitly or implicitly on the sensitive inputs are stored in the memory and/or

147

SRIL: Securing Registers from Information Leakage at Register Transfer Level

registers in the hardware generated by HLS. However, the sensitive inputs are coming from

a source (like tamper-proof memory) to which an attacker has no access. The overall flow

of our proposed framework is given in Fig. 7.11.

Taint Analysis

Taint
info

Preprocessing Scheduling

Allocation and
Binding

Data path and
Controller
Generation

Variable to Register
Mapping Info Bubble Pushing

RTL

C/ C++
Code

HLS

Secure RTL

Fig. 7.11: Overall Flow of Secure RTL Design

The HLS flow takes the source C code as an input. A taint analysis based on our work

proposed in Chapter 4 and Chapter 6 have been performed on the same C code to identify

all the tainted or leaky variables for a given set of sensitive inputs of the C code. This

taint info has been fed into the allocation and binding phase of the HLS flow to identify the

sensitive registers by variable to register mapping information in the HLS. Our objective is to

corrupt the sensitive information before storing it in the memory/register. To achieve that,

we apply the bubble pushing on the generated RTL from HLS for the sensitive registers.

The scan chain is inserted into the design later in the synthesis process. The tainted data is

corrupted before being stored in the registers of the generated RTL. It ensures that even if

the attacker obtains the tainted data through scan access, he or she gets the modified value

of it. Since the direct correlation between the sensitive inputs and the register content is

broken, meaningful side-channel analysis is difficult. The main contribution of this work is

presented in the modules in green in Fig. 7.11.

The bubble pushing is presented as Algorithm 11. We obtain the list of sensitive registers

from the mapping of tainted variables to registers during HLS. These sensitive registers are

stored in a set R. The algorithm takes the HLS-generated RTL design and the set of

sensitive registers R as inputs and generates the secure RTL design. We insert a random

even number of bubbles at the output of each sensitive register in R. We ensure the bubbles

148

Proposed Defence to Protect Registers

Algorithm 11: SecureReg(D, R)

Input: D: Original RTL design, R: set of sensitive registers
Output: Generated RTL design with protected sensitive registers

1 foreach sensitive register r ∈ R do
2 Insert random even number of bubbles at the output of r;
3 end
4 while the terminating condition is not true do
5 Pick a set of inserted bubbles randomly in the design;
6 Push the set of selected bubbles either in a forward or in a backward direction

randomly up to one level;
7 Update the modified components in the RTL design during the bubble pushing;

8 end

must be pushed in both forward and backward directions for a random number of iterations

into the circuit to make sufficient corruption of the sensitive register values. The bubble

pushing depends on the depth of the design from where the bubble is being inserted. We

find the total fan-ins of the sensitive registers and set that as our terminating condition for

the number of iterations of our bubble-pushing approach. The intuition is that a sensitive

register with high fan-in has a more complex cone of influence (COI). Therefore, we need

to push bubbles more number of times for such a register to make the corruption high. The

time complexity of the proposed approach is in the order of R ∗ x, where x is the highest

depth of the bubble pushing performed for the set of sensitive registers R. To the best of

our knowledge, bubble pushing has not been explored at RTL design. Moreover, it has never

been considered solely to corrupt the register content to protect them.

7.4.1 Register Protection through Scan Access: An Example

An example of an RTL design with three registers R1, R2, and R3 is given in Fig. 7.12(a).

Let us assume all these three registers are sensitive. Here, we have added two bubbles

in red at the output of each register R1, R2, and R3. The generated RTL design after

bubble pushing is presented in Fig. 7.12(b). We use a parameter BP (bubbles pushed) to

keep track of the number of bubbles pushed through a register. We insert one bubble, two

bubbles, and one bubble from the output of the sensitive registers R3 (BP=1), R2 (BP=2),

and R1 (BP=1), respectively, in the backward direction. For simplicity, we have shown the

example after inserting one/two bubbles. In general, this process of bubble pushing occurs

149

SRIL: Securing Registers from Information Leakage at Register Transfer Level

Out

I4

*
I1

I2
+

I3

+R1 R2 R3

(a)

OutI1

I2

+

1

+ R1
BP=1

I3

+

1

+ R2
BP=2

+

1

+ <<

-

*

+

+

I4

I4

n

I4

R3
BP=1

BPAdd1 BPAdd2

BPMul

(b)

R3
BPAdd1 BPAdd2

R1 R2 Out/ SO

CLK

0

1

BPMul 0

1

0

1SI

SE

(c)

Fig. 7.12: (a) A sample RTL Design; (b) Generated RTL Design after bubble pushing; (c) Gen-
erated RTL Design after scan chain insertion

randomly and any even number of bubbles may be inserted. We have marked the modified

components of the generated RTL design in Fig. 7.12(b) as BPAdd1, BPAdd2, and BPMul

for the two adders and the multiplier after the bubble pushing, respectively. It may be

noted that for the two adders in the original design in Fig. 7.12(a), the updated design in

Fig. 7.12(b) is different due to the different number of bubbles pushed through the original

adders.

The generated RTL design with the scan chain is given in Fig. 7.12(c). It is clear that

in our approach, the secret information is modified in the circuit itself before passing to

the scan chain due to the bubble pushing. Thus, the modified register value passed to the

scan chain in red from the BPAdd1, BPAdd2, and BPMul. Here we are not corrupting the

output values at the scan-out port SO. We are interested in protecting the intermediate

secret values getting stored in the registers. Thus, we ensure the corruption of the function-

ality of the circuit for the intermediate sensitive registers without compromising the correct

150

Experimental Results

functionality at the output.

7.5 Experimental Results

7.5.1 Setup

The overall implementation of the proposed approach is a multi-step process. In the first

step, we perform a taint analysis on the source specifications and obtain the tainted variables

for all the sensitive inputs. We have used our implementation of taint-based quantification

method in Chapter 6 for this purpose. Then, we obtain the sensitive registers based on the

register-variable mappings and the RTL design using the Bambu HLS tool [61]. The set of

these sensitive registers is fed as input to our implementation of the proposed bubble-pushing

algorithm on the RTL design obtained from HLS. We have implemented the backward

bubble-pushing approach on Verilog RTL. However, the forward bubble pushing can also

be implemented in a similar fashion. In our implementation, we use PyVerilog [127] to

obtain the abstract syntax tree (AST) from Verilog code. The bubble-pushing algorithm

is implemented at the AST level. The RTL generation module generates the Verilog after

bubble pushing from the modified AST.

Table 7.1: Benchmark Characteristics

Bench #LOC #LUT #FF #DSP #BRAM Freq. (MHz)
(1) (2) (3) (4) (5) (6) (7)

SHA 2,156 2,403 1,017 0 73 151.68
AES ENC 4,763 761 791 0 5 240.21
AES DEC 4,401 1,223 831 0 7 166.17
DES 1,773 159 133 0 0 505.56
MOTION 414 812 364 33 0 149.05
ARF 274 798 99 21 0 694.93
WAKA 282 1,375 66 0 0 723.07

We have considered four cryptographic algorithms (SHA, AES encoder, AES decoder,

and DES) and three non-cryptographic computation-intensive benchmarks (MOTION, ARF,

and WAKA) from Bambu distribution [61] in our experiments. The purpose of keeping

non-cryptographic in our experiment is to analyze the performance overhead of our bubble-

pushing algorithm on such behaviors. For the first set of benchmarks, the sensitive registers

151

SRIL: Securing Registers from Information Leakage at Register Transfer Level

Table 7.2: Register content corruption value

Bench #in #out #reg #high reg #bubble in cor reg (%)
(1) (2) (3) (4) (5) (6) (7)

SHA 7 11 121 4 8 100
AES ENC 4 6 250 10 20 100
AES DEC 4 8 206 10 20 100
DES 6 3 91 8 16 100
MOTION 13 10 87 5 10 100
ARF 16 9 28 4 8 100
WAKA 24 10 24 2 4 100

are identified using taint analysis. For the second set of benchmarks, an arbitrarily chosen

subset of registers are considered sensitive for experiment purpose. We find the total fan-ins

and fan-outs of these sensitive registers and set that as our terminating condition for the

number of iterations of our bubble-pushing approach. The intuition is that the amount of

bubble pushing is proportional to the register usage. In our experiments, the number of

iterations is between 10 and 40 in Algorithm 11 for our benchmarks.

7.5.2 Performance Measures

We synthesize the HLS-generated RTL and the protected RTL in Xilinx ISE 14.7 to generate

the performance report. We present the benchmark characteristics in Table 7.1. The char-

acteristics of the HLS-generated RTLs are shown in terms of #LOC, #LUT, #FF, #DSP,

#BRAM, and clock Frequency of the HLS-generated RTLs in the columns second to sev-

enth, respectively. We present the total corruption of registers in Table 7.2. We present the

number of inputs (#in), outputs (#out), and registers (#reg) for each benchmark in the

second to the fourth column, respectively. From the set of total registers, we choose the set

of high or sensitive registers based on the register-variable mappings using the Bambu HLS

tool and present it in the fifth column (#high reg). In our experiment, we have inserted

two bubbles at the output of each sensitive register. The total number of bubbles inserted

for each benchmark is presented in the sixth column (#bubble in). Finally, we present the

total percentage of register contents corrupted among the high or sensitive registers in the

last column (cor reg). Since we pushed bubbles across all sensitive registers, our proposed

approach successfully protects all the sensitive registers.

152

Experimental Results

7.5.3 Overhead Analysis

We report the area overhead of our bubble-pushed designs in Fig. 7.13. In our experiments,

we compare the area overhead of the original RTL design and our generated RTL design.

We find the area of a design based on the number of FFs, LUTs, DSPs, and BRAMs used by

the design. We consider an abstract methodology to find the area by normalizing the weight

of various components of FPGA from [79, 132]. The normalized values for FF, LUT, DSP,

and BRAM are 1, 1, 238.5, and 115.4, respectively. It can be seen that the area overhead

of the proposed design remains the same for most of the benchmarks. For the benchmark

MOTION, the overhead is increased by 7.2%. We manually observed that MOTION has 14

multiplication operations, and there is a bubble pushing for 6 multiplications. As bubble

pushing on multiplication has a higher overhead compared to other components, the area

overhead is higher. However, we found that the average increase in area overhead is 3.86%.

N
or

m
al

iz
ed

 A
re

a

0

2500

5000

7500

10000

12500

SHA

AES_E
NC

AES_D
EC

DES

MOTIO
N

ARF
W

AKA

Original Design This Work

Fig. 7.13: Normalized Area for Bubble pushing

The timing overhead is reported in Fig. 7.14. It can be seen that the timing overhead

is negligible for our designs except for MOTION. The number of LUTs in MOTION has

increased to 1420 from 812 due to the bubble pushing on multipliers. Thus, the timing over-

head in the case of MOTION is increased by 40%. However, the average increase in timing

overhead is 4.58%. It can be observed that for the largest benchmarks like AES ENC and

AES DEC, both the area and timing overhead are not very significant. The experimental

results show that the proposed approach has negligible implementation overhead on the area

153

SRIL: Securing Registers from Information Leakage at Register Transfer Level

E
xe

cu
tio

n
Ti

m
e

(n
s)

0

2

4

6

8

10

SHA

AES_E
NC

AES_D
EC

DES

MOTIO
N

ARF
W

AKA

Original Design This Work

Fig. 7.14: Execution Time for Bubble pushing

and timing of the design.

7.6 A Case Study on AES

In order to check for the side-channel leakage of the protected design employing bubble-

pushing countermeasure, power traces were recorded on Side-channel Attack Security Eval-

uation BOard (SASEBO) by passing numerous plaintexts to an AES design. SubBytes are

the most significant step in the AES algorithm as they provide nonlinearity of a very high

degree to the incoming data, which is performed using 16 substitution boxes (S-boxes). The

choice of S-box is an important design step as SubBytes occupy the most area among the

other round operations. Composite Field Arithmetic (CFA)-based S-boxes are gate-based

designs that provide a very low area design offering the same functionality as a LUT-based

S-box. Our work employs a similar type of S-box known as Canright’s S-box [35].

Fig. 7.15 depicts the experimental setup where the board is connected to a power

supply and an oscilloscope, whereas an application on a computer provides the plaintexts.

The sampling rate of the oscilloscope is set to 1 GS/s, and the number of clocks required for

AES processing is 12, with its design frequency chosen as 16 MHz (the highest permissible

for the board), thus allowing 750 meaningful samples to be recorded per plaintext. Trigger

events are captured by the board upon detecting which the AES operations are invoked.

154

A Case Study on AES

Fig. 7.15: Experimental Setup for AES Case Study

The cryptographic Field Programmable Gate Array (FPGA) on the board draws a current

from the power supply, which is reflected on the oscilloscope as the AES power trace pattern.

The trace is then sampled into various points, which are processed in MATLAB to provide

the TVLA plots.

7.6.1 Discussion on TVLA

Test Vector Leakage Assessment (TVLA) is a general statistical tool used as a hardware

security metric [63] to indicate the side-channel leakage of a cryptographic design under

test [28,124]. It is used to analyze if two given sample sets originate from the same population

source by analyzing their means. A large t-score obtained in the TVLA indicates the sets to

have been extracted from the same population. The data set is partitioned into two sets, Q0

and Q1, with µ0 (resp. µ1), ρ0 (resp. ρ1), and n0 (resp. n1) representing the mean, standard

deviation, and cardinality of set Q0 (resp. Q1). The t-test statistic, t, is then calculated as:

t =
µ0 − µ1√
ρ20
n0

+
ρ21
n1

T-values of —±4.5— indicate a non-leaky design rendering it to be leakage-free with

99.99% confidence and secure from adversaries. The test involves the passage of plaintexts

and calculation of the t-score as a part of TVLA. An unprotected AES design depicts t-scores

outside the aforementioned threshold range, whereas the proposed protected design (with

countermeasure) illustrates the scores within the threshold as shown in Fig. 7.16. Thus,

155

SRIL: Securing Registers from Information Leakage at Register Transfer Level

(a)

(b)

Fig. 7.16: TVLA results comparison, (a) For unprotected AES (b) For protected AES

our bubble-pushing algorithm protects the AES design from power side-channel attacks.

7.7 Discussion

In this section, we tried to address the following questions and their answers which may

arise from the presented work and the proposed solution.

Q1: Why the taint analysis is performed at the C-level instead of at the RTL directly to

identify the sensitive registers?

The sensitive registers can be found by performing a taint analysis at RTL itself. The

existing RTL taint analysis approaches [67,114] can be used for identifying all the sensitive

registers for a chosen set of sensitive inputs. Instead, we prefer to perform the taint analysis

156

Discussion

at the source level and pass that information to RTL through the HLS. We notice that

taint flow tracking at RTL does not capture all the dependencies of the sensitive inputs.

The proposed methods in [67, 114] mainly focuses on finding the explicit dependencies of

the sensitive inputs and ignore the implicit leaks due to the conditional blocks. This may

lead to false negative scenarios, i.e., some registers may not be marked as sensitive during

the taint analysis at RTL although these registers hold sensitive values in some instances.

For example, in the following control block if(i < h){a = b + 5; c = a − b}else{a =

b + 5; c = a + b}, the leak of sensitive input h implicitly through the variable c and i due

to the branch in the corresponding RTL design cannot be captured. The variable c has

different symbolic values in the parallel paths of the control block, thus, it is leaking the

sensitive input h in the condition. Moreover, no method exists in the literature that finds

the fixed point of the leak in loops (Chapter 4) at RTL. For example, in the following loop

while(i < n){b = a; a = h; i + +}, we cannot capture the leak of h through variable b due

to the loop leak. Thus, the proposed approach in this thesis performs taint analysis at the

source code to overcome these false negative scenarios due to implicit leaks and fixed points

of loop leaks.

Q2. Isn’t the C-level taint tracking lossy when it is translated into RTL?

The front-end of the HLS tool uses a C compiler like LLVM to optimize the input C

code. The RTL is generated from this optimized C code by the back end of the HLS tool.

The front end may introduce new leaks as shown in Chapters 5 and 6. Therefore, we should

take the taint of the optimized IR obtained from the front-end compiler. It is shown that

register allocation is secure without spilling and splitting in Chapter 3. Now if we show that

there is no spilling and splitting in the generated RTL we can say that the taint tracking is

not lossy. The variables in the optimized C code are in the SSA (Static Single Assignment)

form. Thus, register splitting is invalid while generating the RTL from the optimized code.

Moreover, no spilling is performed during HLS because all the operations are performed

with registers, and memory is not used. It shows there is no spilling and splitting in the

generated RTL. Therefore, the C-level taint tracking is not lossy.

Q3. Wouldn’t bubble pushing impact the normal operation of the scan chain?

During the testing of the design, the designer would actually need to access the correct

values. However, our proposed solution modifies the original values of the intermediate

registers. The modified or updated values of the intermediate registers due to bubble pushing

are shared with the test facility. This way, our proposed solution does not impact the normal

157

SRIL: Securing Registers from Information Leakage at Register Transfer Level

operation of the scan chain.

Q4. Instead of changing the hardware, wouldn’t it be more effective to actually protect scan

chains to be read?

The existing techniques [78,126] target protecting scan access by additional keys. How-

ever, such techniques are vulnerable to various attacks [89]. Moreover, the correct key is

always embedded using a tamper-proof memory in a functional IC. Thus, few of the in-

termediate registers always have sensitive values. Therefore, various side-channel analysis

can be performed on functional IC. However, in our proposed solution, the intermediate

sensitive registers are always corrupted due to bubble pushing. Thus, altering the hardware

component is effective, and performing the power side channel analysis is difficult. The

real issue here is the leakage of sensitive information through the registers, which enables

side-channel attacks. Hence, our goal is to corrupt the secret data that passes from the

registers to the scan chain (without additional keys). In fact, the existing key-based scan

protection techniques are complementary to our approach and may be added on top of our

protection technique as double-layer protection.

7.8 Conclusion

This thesis proposes a novel approach to protect information leakage through the registers

at the Register Transfer Level in which the register’s content is corrupted using a bubble-

pushing algorithm. Such a strategy breaks the statistical correlation between the register

content and the sensitive inputs. In this thesis, we first introduce bubble-pushing for the

various components at RTL. We then utilize it to protect the sensitive registers in the scan

chain. The experimental results show that the overhead of the bubble-pushed designs is not

significant. A case study of AES shows that our proposed technique does not leak power

side-channel information, as validated by a TVLA experiment. It may be noted that the

proposed solution targets the application-specific hardware generated through HLS.

;;=8=<<

158

8
Conclusions and Future Perspectives

This chapter summarizes the overall work in the thesis, highlights the contributions, and

presents the possible future directions in the related domain.

8.1 Summary of Contributions

The contribution of the thesis is summarized as follows:

SRA: Secure Register Allocation for Trusted Code Generation: In Chapter 3, we analyzed

the security issues of an essential optimization step of the compiler, i.e., register allocation.

Initially, we analyzed the security of register allocation using the leaky triple concept of

information leakage. However, due to its limitations, we again analyzed the information

leakage using the notion of relative security definition. We have shown the register allocation

is secure when there is no splitting and spilling. Then, we have shown that register allocation

with splitting is as secure as the source program in our attack model. However, register

allocation with spilling is not secure, and it introduces new leaky paths. In our experiment,

we found that all the register allocations in the LLVM framework are leaky. We proposed

a secure register allocation approach for the greedy register allocation in LLVM that aims

to corrupt the memory content used for spilling after its last intended use. Moreover, the

proposed approach has a negligible performance overhead, as shown in our experiment for

159

Conclusions and Future Perspectives

a set of benchmarks.

QIL: Quantifying Information Leakage in a Program for Security Verification of Com-

piler Optimizations: Although taint analysis is a widely applied technique for security mea-

surement in a program, it has the problem of either under-tainting or over-tainting. There-

fore, a precise analysis of implicit flows is required for security verification. In Chapter 4,

we proposed a quantification method for information leakage in a program using static taint

analysis. We represent a program as an FSMD. We insert cutpoints into the program and

obtain the path cover. The inserted cutpoints help us to analyze the implicit flows precisely

and find the fixed point leak in loops. We have proposed a leak propagation vector to mea-

sure the leak in a program. We have also proposed methods to measure the implicit leaks

precisely and to find the fixed point of information leakage due to loops. Finally, we have

proposed three quantification parameters for information leakage in a program that aims to

verify the relative security between the source and optimized programs. Our experimental

study revealed that the SPARK compiler is actually leaky. The implementation in this work

cannot handle arrays, functions, pointers, and dynamic memory allocations.

TVIL: Translation Validation of Information Leakage of Compiler Optimizations: Se-

curing individual optimizations in a compiler is a challenging task as the compiler applies

hundreds of optimizations. In Chapter 5, we proposed a TV method for security verification

of compiler optimizations. Here, the applied optimizations and the order of optimizations

are considered as a black box to generate the optimized program. We represented both the

source and optimized programs as FSMDs. We have formally defined the relative security

of two programs in terms of the path level relative security. Based on the formulation, we

develop a translation validation method that works in a bi-simulation manner between two

programs. It verifies the relative security between the source and optimized programs by

propagating the leaks to the subsequent paths. To reduce the complexity of the method, we

check certain look-ahead properties before making recursive calls. The experimental study

found that the SPARK compiler is not relatively secure as it introduces new leaky paths.

MQIL: Model Checking based Quantification of Information Leakage in a Program: The

state-of-the-art methods for quantification of information leakage are based on taint analysis.

None of the existing works verified the relative security between the source and optimized

programs as a concept of property-based testing using a model checker. In Chapter 6,

we proposed a model checking based quantification method for information leakage in a

program. The input program is modeled to verify the security property as assertions. The

160

Future Directions

idea is to make two copies of the original program to verify the existence of any information

flow from the sensitive inputs to any of the program variables and/or outputs. Our proposed

approach is further applied to verify the relative security between the source and optimized

programs. We have used the CBMC tool for quantifying the information leakage in the

program. The CBMC can handle any constructs in a program, like, functions, arrays,

pointers, etc. The total number of assertions failed by the CBMC is the total leakage

of the program. Moreover, it generates a counter-example for each failed assertion. The

experimental results revealed that the optimization phase of the LLVM compiler framework

is not relatively secure for a set of cryptographic benchmarks.

SRIL: Securing Registers from Information Leakage at RTL: Scan chain is inserted into

the design for testing purposes. However, it opens a gateway for attackers to access the

sensitive contents stored in the registers through scan access. In Chapter 7, we proposed a

method to secure the registers at RTL generated through HLS. The bubble-pushing approach

is used in gate-level designs to modify the functional output of the design. In this work,

we developed the bubble-pushing approach for various components of the RTL design and

proposed a random bubble-pushing approach to corrupt the sensitive register contents. This

gives the attacker no knowledge about the original secret data stored in the registers. The

experimental results have shown that the proposed approach has a negligible performance

overhead in terms of area and execution time. Moreover, it successfully corrupts all the

sensitive registers without modifying the original functionality of the design. A case study

on the AES benchmark has also been presented. It shows that the protected design is secure

from the power side-channel attacks as validated by the TVLA experiment.

8.2 Future Directions

In this section, various possible future directions of the proposed methods are discussed.

8.2.1 Enhancement of Proposed Secure Register Allocation

Our proposed work in Chapter 3 can further be enhanced to secure the register allocation

approach, as discussed below, in the context of the security of compiler optimizations.

• When an attacker has access to registers, splitting becomes leaky in a compiler, and

sensitive register content needs to be flushed to ensure security.

161

Conclusions and Future Perspectives

• Spilling into cache instead of memory [65] for better performance in a compiler can

potentially leak sensitive information through side-channel attacks. Thus, it is required

to mitigate the leaks in the cache. One future direction of research is to explore how

cache attacks [90,105] can exploit the leaks introduced by the compiler optimizations.

• To reduce the number of store zero operations for spilled memory locations in a secure

register allocation approach, a taint analysis of the program after register allocation

can be performed to identify only the tainted spills that require a store zero operation.

8.2.2 Counter-example Generation

Our quantification approach in Chapter 4 can be extended to report security flaws with a

counter-example to the user. Our translation validation approach in Chapter 5 can also be

extended to report a counter-example when our method finds that two programs are not

relatively secure. Since the path level correspondence is available with the method and our

methods locate the exact location of mismatch, counter-example generation may be a trivial

enhancement as shown for program equivalence in [44].

8.2.3 Post-fixing of Leaks

In our proposed framework in Chapter 4, it is also possible to report the locations of the

information leaks with additional bookkeeping. It would be interesting to explore if such

information can be used to post-fix the leakage after the optimization phase of a compiler.

It would be interesting to explore the identified security vulnerabilities in Chapter 5 post-

fixed in order to achieve a secure compilation. The new leaks identified in our CBMC-

based approach with counter-examples in Chapter 6 can be reported to the developer for

practical benchmarks and further explore the possibility of post-fixing the information leaks

introduced by the LLVM compiler framework in its optimization phase.

8.2.4 Security Verification of Optimization Phases

The relative security of individual compiler optimization phases such as -O1, -O2, -O3,

and -O4 of compilers like LLVM and GCC can be evaluated with our tool in Chapter 6.

Such analysis will help to identify which optimization level is most leaky. Moreover, the

adaptability of our method in Chapter 5 for checking the security vulnerability of Just In

162

Conclusion

Time compilers [99,125] which apply various optimizations like reduction of memory accesses

by register allocation, translation from stack operations to register operations, elimination

of common sub-expressions, etc., can further be explored. The optimizations in the LLVM

compiler can be explored to develop a secure LLVM compiler. To achieve this, the first

step is to identify the list of secure and insecure optimizations and stop the application

of the insecure optimizations to generate the target code. This may need to sacrifice the

performance to some extent at the cost of security.

8.2.5 Verification of Other Security Properties

This thesis verified the information flow security property of the program. However, other

security properties (discussed in Section 2.1) like confidentiality, integrity, finite memory

size, etc. should also be verified for a program to develop a secure compiler.

8.2.6 Bubble Pushing with Higher Corruption Rate

The bubble-pushing approach can further be extended to generate a secure RTL design with

multiple data paths with different numbers of bubbles keeping the original functionality

intact. The actual path will be selected random manner in runtime. This will lead to more

uncertainty about the sensitive information in the design. The proposed work in Chapter 7

can also further be checked for the resilience of our countermeasure design against power

analysis attacks using another security metric Measurements To Disclose.

8.3 Conclusion

This thesis presents methods to quantify the information leakage in a program using both

taint analysis and property checking. Then it develops translation validation methods to

verify the relative security between a source and its optimized program for well-known

compilers like SPARK and LLVM. It also verifies the security of registers for general-purpose

processors at the assembly level and for the application-specific hardware at the RTL. The

impact of compiler optimizations on security is a little-explored area. This thesis addresses

a few aspects in this direction. We show that SPARK and LLVM are actually leaky. We are

confident that this thesis will stimulate further research in the compiler security domain.

;;=8=<<

163

Research Outcomes

From Thesis: Journals

1. Priyanka Panigrahi, Vemuri Sahithya, Chandan Karfa, and Prabhat Mishra, “Se-

cure Register Allocation for Trusted Code Generation,” in IEEE Embedded Systems

Letters (ESL), vol. 14, no. 3, pp. 127-130, Sept. 2022, doi: 10.1109/LES.2022.3151096.

2. Priyanka Panigrahi, Abhik Paul and Chandan Karfa, “Quantifying Information

Leakage for Security Verification of Compiler Optimizations,” in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 41, no.

11, pp. 4385-4396, Nov. 2022, doi: 10.1109/TCAD.2022.3200914.

3. Priyanka Panigrahi, and Chandan Karfa, “Translation Validation of Information

Leakage of Compiler Optimizations”, in IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems (TCAD), vol. 42, no. 11, pp. 3585-3598, Nov.

2023, doi: 10.1109/TCAD.2023.3269954.

4. Priyanka Panigrahi, Karthik Maddala, Vignesh Ravichandra Rao, and Chandan

Karfa, “Quantification of Information Leakage in a Program using Model Checker”

(To be submitted).

From Thesis: Conferences

1. Priyanka Panigrahi and Chandan Karfa, “An Investigation into the Security of

Register Allocation with Spilling and Splitting”, in IEEE Computer Society An-

nual Symposium on VLSI (ISVLSI), Foz do Iguacu, Brazil, 2023, pp. 1-6, doi:

10.1109/ISVLSI59464.2023.10238662.

2. Priyanka Panigrahi, Vignesh Ravichandra Rao, Thockchom Birjit Singha, and

Chandan Karfa, “SRIL: Securing Registers from Information Leakage at Register

Transfer Level”, in 37th International Conference on VLSI Design & 23rd Interna-

tional Conference on Embedded Systems (VLSID), Kolkata, India, 2024, pp. 492-498,

doi:10.1109/VLSID60093.2024.00088.

164

https://ieeexplore.ieee.org/document/9712629
https://ieeexplore.ieee.org/document/9865192
https://ieeexplore.ieee.org/document/10107703
https://ieeexplore.ieee.org/document/10238662
https://ieeexplore.ieee.org/document/10483488

Conclusion

Outside Thesis

1. Priyanka Panigrahi, Rajesh Kumar Jha, and Chandan Karfa, (2019). “User Guided

Register Manipulation in Digital Circuits”, in VLSI Design and Test (VDAT), 2019,

Communications in Computer and Information Science, vol 1066. Springer, Singapore.

https://doi.org/10.1007/978-981-32-9767-8 39

Miscellaneous

1. Priyanka Panigrahi, “Security Verification of Compiler Optimizations: An Informa-

tion Flow Perspective”, accepted in Ph.D. Forum of 37th International Conference on

VLSI Design & 23rd International Conference on Embedded Systems (VLSID), 2024.

2. Priyanka Panigrahi, “Quantification of information leakage and security verification

of compiler optimizations”, Winner of Qualcomm Innovation Fellowship (QIF) India,

2022.

3. Priyanka Panigrahi, “Security verification and quantification of information leakage

for compiler transformations”, accepted in Ph.D. Forum of IEEE Women In Technol-

ogy Conference (WINTECHCON), 2022.

4. Priyanka Panigrahi, “Quantification of information leakage and security verification

of compiler optimizations”, Finalist of Qualcomm Innovation Fellowship (QIF) India,

2021.

;;=8=<<

165

https://doi.org/10.1007/978-981-32-9767-8_39

References

[1] Benchmark source, https://github.com/ferrandi/panda-bambu, accessed May 05

2023. [Pg.135]

[2] Bounded model checking for software, https://www.cprover.org/cbmc/, accessed May

05 2023. [Pg.10], [Pg.135]

[3] CWE-14: Compiler Removal of Code to Clear Buffers,

https://cwe.mitre.org/data/definitions/14.html, accessed March 05 2022. [Pg.21]

[4] CWE-733: Compiler Optimization Removal or Modification of Security-critical Code,

https://cwe.mitre.org/data/definitions/733.html, accessed March 05 2022. [Pg.21]

[5] GCC Bug Report, https://gcc.gnu.org/bugs/. [Pg.4]

[6] LLVM Bug Report, https://bugs.llvm.org/. [Pg.4]

[7] LLVM Source, https://releases.llvm.org/download.html, accessed January 14 2022.

[Pg.47]

[8] LLVM Test Suite, https://github.com/llvm/llvm-test-suite, accessed January 23 2023.

[Pg.47]

[9] Parser for C language, https://github.com/eliben/pycparser, accessed May 05 2023.

[Pg.134]

[10] A proactive approach to more secure code. https://msrc-blog.microsoft.com/

2019/07/16/a-proactive-approach-to-more-secure-code/. [Pg.52]

[11] Translation of LLVM bitcode to C, https://github.com/staticafi/llvm2c, accessed May

05 2023. [Pg.15], [Pg.134]

166

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

REFERENCES

[12] M. Abadi and G. Plotkin. On protection by layout randomization. In 2010 23rd IEEE

Computer Security Foundations Symposium, pages 337–351, July 2010. [Pg.19]

[13] C. Abate, R. Blanco, c. Ciobâcă, A. Durier, D. Garg, C. Hriţcu, M. Patrignani,

E. Tanter, and J. Thibault. An extended account of trace-relating compiler correctness

and secure compilation. ACM Trans. Program. Lang. Syst., 43(4), nov 2021. [Pg.22]

[14] M. Abderehman, T. Rakesh Reddy, and C. Karfa. Deeq: Data-driven end-to-end

equivalence checking of high-level synthesis. In ISQED, pages 64–70, 2022. [Pg.9]

[15] J. Aerts and E. Marinissen. Scan chain design for test time reduction in core-based

ics. In Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270),

pages 448–457, 1998. [Pg.16]

[16] G. Agosta, A. Barenghi, and G. Pelosi. Compiler-based techniques to secure cryp-

tographic embedded software against side-channel attacks. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 39(8):1550–1554, 2019.

[Pg.52]

[17] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2006.

[Pg.1]

[18] L. Alrahis, M. Yasin, N. Limaye, H. Saleh, B. Mohammad, M. Al-Qutayri, and

O. Sinanoglu. ScanSAT: Unlocking static and dynamic scan obfuscation. IEEE Trans-

actions on Emerging Topics in Computing, 9(4):1867–1882, 2021. [Pg.32]

[19] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, page 259–269,

New York, NY, USA, 2014. Association for Computing Machinery. [Pg.7], [Pg.30]

[20] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed dynamic

automated test generation. In ISSTA, page 12–22, New York, NY, USA, 2011. Asso-

ciation for Computing Machinery. [Pg.29], [Pg.30]

167

REFERENCES

[21] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-

performance computing. ACM Comput. Surv., 26(4):345–420, dec 1994. [Pg.90]

[22] K. Banerjee, C. Karfa, D. Sarkar, and C. A. Mandal. Verification of code motion

techniques using value propagation. IEEE TCAD, 33(8):1180–1193, 2014. [Pg.5],

[Pg.81], [Pg.118]

[23] K. Banerjee, D. Sarkar, and C. Mandal. Extending the fsmd framework for validating

code motions of array-handling programs. IEEE TCAD, 33(12):2015–2019, 2014.

[Pg.86]

[24] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict control dependence and its

effect on dynamic information flow analyses. In ISSTA, page 13–24, New York, NY,

USA, 2010. Association for Computing Machinery. [Pg.29]

[25] G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. In B. Steffen

and G. Levi, editors, Verification, Model Checking, and Abstract Interpretation, pages

2–15, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. [Pg.26]

[26] K. Basu, D. Soni, M. Nabeel, and R. Karri. Nist post-quantum cryptography- a

hardware evaluation study. Cryptology ePrint Archive, Paper 2019/047, 2019. https:

//eprint.iacr.org/2019/047. [Pg.140]

[27] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foundations.

MITRE Technical Report 2547, Volume I, 1973. [Pg.7], [Pg.8], [Pg.9], [Pg.27], [Pg.31]

[28] D. Bellizia, S. Bongiovanni, P. Monsurrò, G. Scotti, A. Trifiletti, and F. B. Trotta.

Secure double rate registers as an rtl countermeasure against power analysis attacks.

IEEE transactions on very large scale integration (vlsi) systems, 26(7):1368–1376,

2018. [Pg.155]

[29] F. Besson, A. Dang, and T. Jensen. Securing compilation against memory probing.

In PLAS, pages 29–40, 2018. [Pg.22], [Pg.23], [Pg.35], [Pg.51]

[30] F. Besson, A. Dang, and T. Jensen. Information-Flow Preservation in Compiler Op-

timisations. In CSF, pages 1–13, Hoboken, United States, June 2019. IEEE. [Pg.22],

[Pg.23], [Pg.24], [Pg.25], [Pg.140]

168

https://eprint.iacr.org/2019/047
https://eprint.iacr.org/2019/047

REFERENCES

[31] D. Binkley, N. Gold, and M. Harman. An empirical study of static program slice size.

ACM Trans. Softw. Eng. Methodol., 16(2):8–39, Apr. 2007. [Pg.6]

[32] J. Bonneau and I. Mironov. Cache-collision timing attacks against aes. In L. Goubin

and M. Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006,

pages 201–215, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. [Pg.31]

[33] A. Bosu, F. Liu, D. D. Yao, and G. Wang. Collusive data leak and more: Large-scale

threat analysis of inter-app communications. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security, ASIA CCS ’17, page 71–85,

New York, NY, USA, 2017. Association for Computing Machinery. [Pg.7]

[34] D. Boxler. Static taint analysis tools to detect information flows. 2018. [Pg.30]

[35] D. Canright et al. A very compact s-box for aes. In Ches, volume 3659, pages 441–455.

Springer, 2005. [Pg.154]

[36] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Krügel, G. Vigna, and Y. Chen.

Edgeminer: Automatically detecting implicit control flow transitions through the an-

droid framework. In NDSS, 2015. [Pg.30]

[37] D. Ceara, L. Mounier, and M.-L. Potet. Taint dependency sequences: A charac-

terization of insecure execution paths based on input-sensitive cause sequences. In

2010 Third International Conference on Software Testing, Verification, and Validation

Workshops, pages 371–380, 2010. [Pg.7], [Pg.28], [Pg.29], [Pg.30], [Pg.56], [Pg.123]

[38] G. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN Not.,

17(6):98–101, June 1982. [Pg.8], [Pg.34]

[39] G. Chaitin et al. Register allocation via coloring. Comput. Lang., 6(1):47–57, Jan.

1981. [Pg.8], [Pg.34]

[40] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang. A survey

of compiler testing. ACM Comput. Surv., 53(1), feb 2020. [Pg.4]

[41] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and J. Regehr. Taming

compiler fuzzers. SIGPLAN Not., 48(6):197–208, June 2013. [Pg.5], [Pg.21]

169

REFERENCES

[42] B. Chess and G. McGraw. Static analysis for security. IEEE Security and Privacy,

2:76–79, 2004. [Pg.6]

[43] B. Chess and J. West. Secure Programming with Static Analysis. Addison-Wesley

Professional, first edition, 2007. [Pg.6]

[44] R. Chouksey, C. Karfa, K. Banerjee, P. K. Kalita, and P. Bhaduri. Counter-example

generation procedure for path-based equivalence checkers. IET Softw., 13(4):280–285,

2019. [Pg.162]

[45] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic

model checker. STTT, 2:410–425, 2000. [Pg.74], [Pg.113]

[46] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking, 1st Edition. MIT

Press, 2001. [Pg.4], [Pg.74]

[47] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis framework. In

Proceedings of the 2007 International Symposium on Software Testing and Analysis,

page 196–206, New York, NY, USA, 2007. Association for Computing Machinery.

[Pg.7], [Pg.29]

[48] K. D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register

allocator. In K. Koskimies, editor, Compiler Construction, pages 174–187, Berlin,

Heidelberg, 1998. Springer Berlin Heidelberg. [Pg.8]

[49] A. Cui, Y. Luo, H. Li, and G. Qu. Why current secure scan designs fail and how to

fix them? Integration, 56:105–114, 2017. [Pg.31], [Pg.32]

[50] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr, B. Yakobowski, and X. Yang.

Testing static analyzers with randomly generated programs. In A. E. Goodloe and

S. Person, editors, NASA Formal Methods, pages 120–125, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg. [Pg.5], [Pg.21]

[51] L. S. de Araújo, L. A. Marzulo, T. A. Alves, F. França, I. Koren, and S. Kundu.

Building a portable deeply-nested implicit information flow tracking. Proceedings of

the 17th ACM International Conference on Computing Frontiers, 2020. [Pg.29]

170

REFERENCES

[52] C. Deng and K. S. Namjoshi. Securing a compiler transformation. In X. Rival, editor,

Static Analysis, pages 170–188, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Pg.8], [Pg.9], [Pg.23], [Pg.26], [Pg.31], [Pg.57], [Pg.79], [Pg.115]

[53] C. Deng and K. S. Namjoshi. Securing the ssa transform. In F. Ranzato, editor, Static

Analysis, pages 88–105, Cham, 2017. Springer International Publishing. [Pg.8], [Pg.9],

[Pg.24], [Pg.31]

[54] D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Commun. ACM, 20(7):504–513, 1977. [Pg.7], [Pg.8], [Pg.9], [Pg.27], [Pg.31],

[Pg.115]

[55] F. Derakhshan, Z. Zhang, A. Vasudevan, and L. Jia. Towards end-to-end verified

tees via verified interface conformance and certified compilers. In 2023 IEEE 36th

Computer Security Foundations Symposium (CSF), pages 324–339, 2023. [Pg.22]

[56] V. D’Silva et al. The correctness-security gap in compiler optimization. In IEEE

Security and Privacy Workshops, pages 73–87, 2015. [Pg.5], [Pg.8], [Pg.24], [Pg.57],

[Pg.79]

[57] A. El-Korashy, R. Blanco, J. Thibault, A. Durier, D. Garg, and C. Hriţcu. Secureptrs:

Proving secure compilation with data-flow back-translation and turn-taking simula-

tion. In 2022 IEEE 35th Computer Security Foundations Symposium (CSF), pages

64–79, 2022. [Pg.22]

[58] A. El-Korashy, S. Tsampas, M. Patrignani, D. Devriese, D. Garg, and F. Piessens.

Capableptrs: Securely compiling partial programs using the pointers-as-capabilities

principle. In 2021 IEEE 34th Computer Security Foundations Symposium (CSF),

pages 1–16, 2021. [Pg.22]

[59] A. Fanti, C. C. Perez, R. Denis-Courmont, G. Roascio, and J.-E. Ekberg. Towards

register spilling security using llvm and arm pointer authentication. IEEE TCAD,

pages 1–1, 2022. [Pg.24], [Pg.25], [Pg.140]

[60] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based detection of

android malware through static analysis. In Proceedings of the 22nd ACM SIGSOFT

171

REFERENCES

International Symposium on Foundations of Software Engineering, page 576–587, New

York, NY, USA, 2014. Association for Computing Machinery. [Pg.7]

[61] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, M. Min-

utoli, C. Pilato, and A. Tumeo. Invited: Bambu: an open-source research framework

for the high-level synthesis of complex applications. In 2021 58th ACM/IEEE Design

Automation Conference (DAC), pages 1327–1330. IEEE, Dec 2021. [Pg.151]

[62] R. W. Floyd. Assigning meanings to programs. 1993. [Pg.61]

[63] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi, et al. A testing methodology for side-

channel resistance validation. In NIST non-invasive attack testing workshop, volume 7,

pages 115–136, 2011. [Pg.155]

[64] K. Gondi, P. Bisht, P. Venkatachari, A. P. Sistla, and V. N. Venkatakrishnan. Swipe:

Eager erasure of sensitive data in large scale systems software. In Proceedings of

the Second ACM Conference on Data and Application Security and Privacy, page

295–306, New York, NY, USA, 2012. Association for Computing Machinery. [Pg.7],

[Pg.25], [Pg.51]

[65] J. R. Goodman and W. C. Hsu. On the use of registers vs. cache to minimize memory

traffic. SIGARCH Comput. Archit. News, 14(2):375–383, may 1986. [Pg.162]

[66] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard.

Information flow analysis of android applications in droidsafe. In NDSS, 2015. [Pg.7],

[Pg.30]

[67] X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin. Qif-verilog: Quanti-

tative information-flow based hardware description languages for pre-silicon security

assessment. In 2019 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), pages 91–100, 2019. [Pg.156], [Pg.157]

[68] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-level synthesis framework

for applying parallelizing compiler transformations. In VLSI Design, pages 461–466,

2003. [Pg.14], [Pg.81], [Pg.118]

172

REFERENCES

[69] S. Gupta, A. Rose, and S. Bansal. Counterexample-guided correlation algorithm for

translation validation. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020. [Pg.4],

[Pg.9]

[70] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, oct 1969. [Pg.61]

[71] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang. SUPOR: Precise and

scalable sensitive user input detection for android apps. In USENIX Security, pages

977–992, Washington, D.C., Aug. 2015. USENIX Association. [Pg.7]

[72] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing

attacks. In CRYPTO, pages 463–481. Springer, 2003. [Pg.140]

[73] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via layout ran-

domization. In 2011 IEEE 24th Computer Security Foundations Symposium, pages

161–174, June 2011. [Pg.19]

[74] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting web

application vulnerabilities. In IEEE S&P, pages 6 pp.–263, 2006. [Pg.7]

[75] M. Kang, S. McCamant, P. Poosankam, and D. Song. Dta++: Dynamic taint analysis

with targeted control-flow propagation. In NDSS, 2011. [Pg.7], [Pg.29]

[76] C. Karfa, C. A. Mandal, and D. Sarkar. Formal verification of code motion techniques

using data-flow-driven equivalence checking. ACM TODAES, 17(3):30:1–30:37, 2012.

[Pg.5], [Pg.58], [Pg.59]

[77] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. An equivalence-checking method

for scheduling verification in high-level synthesis. IEEE TCAD, 27(3):556–569, 2008.

[Pg.5], [Pg.9], [Pg.60]

[78] R. Karmakar, S. Chattopadhyay, and R. Kapur. A scan obfuscation guided design-for-

security approach for sequential circuits. IEEE Transactions on Circuits and Systems

II: Express Briefs, 67(3):546–550, 2020. [Pg.32], [Pg.158]

173

REFERENCES

[79] T. A. Khader, N. Sarma, and C. Karfa. Imagespec: Efficient high-level synthesis of

image processing applications. In Euromicro Conference on Digital Systems Design

2022 (DSD22). IEEE, 2022. [Pg.153]

[80] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,

Advances in Cryptology — CRYPTO’ 99, pages 388–397, Berlin, Heidelberg, 1999.

Springer Berlin Heidelberg. [Pg.31]

[81] V. K. Kurhe, P. Karia, S. Gupta, A. Rose, and S. Bansal. Automatic generation

of debug headers through blackbox equivalence checking. In CGO, CGO ’22, page

144–154. IEEE Press, 2022. [Pg.4], [Pg.9]

[82] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic. Securing designs against scan-

based side-channel attacks. IEEE Transactions on Dependable and Secure Computing,

4(4):325–336, 2007. [Pg.32]

[83] S. Lerner, T. D. Millstein, and C. Chambers. Automatically proving the correctness

of compiler optimizations. In ACM-SIGPLAN Symposium on Programming Language

Design and Implementation, 2003. [Pg.4]

[84] X. Leroy. Formal verification of an optimizing compiler. In 2007 5th IEEE/ACM

International Conference on Formal Methods and Models for Codesign (MEMOCODE

2007), pages 25–25, 2007. [Pg.4]

[85] X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,

jul 2009. [Pg.4]

[86] X. Leroy and S. Blazy. Formal verification of a c-like memory model and its uses for

verifying program transformations. J. Autom. Reason., 41(1):1–31, July 2008. [Pg.4]

[87] A. Leung, D. Bounov, and S. Lerner. C-to-verilog translation validation. In MEM-

OCODE, pages 42–47, 2015. [Pg.9]

[88] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer,

E. Bodden, D. Octeau, and P. McDaniel. Iccta: Detecting inter-component privacy

leaks in android apps. In ICSE, volume 1, pages 280–291, 2015. [Pg.30]

174

REFERENCES

[89] N. Limaye and O. Sinanoglu. Dynunlock: Unlocking scan chains obfuscated using

dynamic keys. In 2020 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 270–273, 2020. [Pg.31], [Pg.32], [Pg.158]

[90] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel

attacks are practical. In 2015 IEEE Symposium on Security and Privacy, pages 605–

622, 2015. [Pg.162]

[91] Y. Liu and A. Milanova. Static information flow analysis with handling of implicit flows

and a study on effects of implicit flows vs explicit flows. In R. Capilla, R. Ferenc, and

J. C. Dueñas, editors, CSMR, pages 146–155. IEEE Computer Society, 2010. [Pg.7],

[Pg.30], [Pg.123]

[92] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting android apps

for component hijacking vulnerabilities. Proceedings of the 2012 ACM conference on

Computer and communications security, 2012. [Pg.7]

[93] Y. Lyu and P. Mishra. A survey of side-channel attacks on caches and countermea-

sures. Journal of Hardware and Systems Security, 2(1):33–50, 2018. [Pg.52]

[94] R. S. Meurer, T. R. Mück, and A. A. Fröhlich. An implementation of the aes cipher

using hls. In 2013 III Brazilian Symposium on Computing Systems Engineering, pages

113–118, 2013. [Pg.140]

[95] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher

Education, 1st edition, 1994. [Pg.11]

[96] P. Mishra, R. Morad, A. Ziv, and S. Ray. Post-silicon validation in the soc era: A

tutorial introduction. IEEE Design Test, 34(3):68–92, 2017. [Pg.51]

[97] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The program counter security

model: Automatic detection and removal of control-flow side channel attacks. In D. H.

Won and S. Kim, editors, ICISC, pages 156–168, Berlin, Heidelberg, 2006. Springer

Berlin Heidelberg. [Pg.21]

[98] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann

publishers Inc., San Francisco, CA, USA, 1998. [Pg.1], [Pg.61]

175

REFERENCES

[99] M. O. Myreen. Verified just-in-time compiler on x86. SIGPLAN Not., 45(1):107–118,

jan 2010. [Pg.163]

[100] K. S. Namjoshi and L. M. Tabajara. Witnessing secure compilation. In VMCAI, page

1–22, Berlin, Heidelberg, 2020. Springer-Verlag. [Pg.22], [Pg.23], [Pg.115]

[101] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang. UIPicker: User-Input

privacy identification in mobile applications. In USENIX Security, pages 993–1008,

Washington, D.C., Aug. 2015. USENIX Association. [Pg.7]

[102] V. K. Nandivada, F. M. Q. Pereira, and J. Palsberg. A framework for end-to-end

verification and evaluation of register allocators. In H. R. Nielson and G. Filé, editors,

Static Analysis, pages 153–169, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[Pg.4], [Pg.41]

[103] S. Narayanan and M. Breuer. Reconfiguration techniques for a single scan chain.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

14(6):750–765, 1995. [Pg.16]

[104] G. C. Necula and P. Lee. The design and implementation of a certifying compiler.

SIGPLAN Not., 33(5):333–344, may 1998. [Pg.4]

[105] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The

case of aes. In D. Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, pages

1–20, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. [Pg.162]

[106] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens. Secure

compilation to protected module architectures. ACM Trans. Program. Lang. Syst.,

37(2):6:1–6:50, Apr. 2015. [Pg.20], [Pg.22], [Pg.23]

[107] M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches to secure compila-

tion: A survey of fully abstract compilation and related work. ACM Comput. Surv.,

51(6):125:1–125:36, Feb. 2019. [Pg.5]

[108] M. Patrignani and D. Garg. Secure compilation and hyperproperty preservation. In

IEEE 30th CSF’17, pages 392–404, Aug 2017. [Pg.8]

176

REFERENCES

[109] M. Patrignani and D. Garg. Robustly safe compilation, an efficient form of secure

compilation. ACM Trans. Program. Lang. Syst., 43(1), feb 2021. [Pg.22], [Pg.23]

[110] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. Tainthls: High-level synthesis

for dynamic information flow tracking. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 38(5):798–808, 2019. [Pg.140]

[111] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proceedings of the

4th International Conference on Tools and Algorithms for Construction and Analysis

of Systems, TACAS ’98, page 151–166, Berlin, Heidelberg, 1998. Springer-Verlag.

[Pg.4], [Pg.5]

[112] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Program.

Lang. Syst., 21(5):895–913, Sept. 1999. [Pg.8]

[113] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case reduction

for c compiler bugs. In PLDI, PLDI ’12, page 335–346, New York, NY, USA, 2012.

Association for Computing Machinery. [Pg.21]

[114] L. M. Reimann, L. Hanel, D. Sisejkovic, F. Merchant, and R. Leupers. Qflow: Quan-

titative information flow for security-aware hardware design in verilog. In IEEE In-

ternational Conference on Computer Design, 2021. [Pg.156], [Pg.157]

[115] S. Rideau and X. Leroy. Validating register allocation and spilling. In Compiler

Construction, pages 224–243, 2010. [Pg.41]

[116] J. Rosemann, S. Schneider, and S. Hack. Verified spilling and translation validation

with repair. In ICITP’10, pages 427–443, 2017. [Pg.41]

[117] R. Sadhukhan, S. Saha, and D. Mukhopadhyay. Shortest path to secured hardware:

Domain oriented masking with high-level-synthesis. In 2021 58th ACM/IEEE Design

Automation Conference (DAC), pages 223–228, 2021. [Pg.140]

[118] Y. Sao and S. S. Ali. Security analysis of state-of-the-art scan obfuscation technique.

In 2021 IEEE 39th International Conference on Computer Design (ICCD), pages

599–602, 2021. [Pg.31]

177

REFERENCES

[119] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A policy for

taint tracking. In Euro S&P, pages 15–30, 2016. [Pg.30]

[120] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid

to ask). In IEEE S&P, pages 317–331, 2010. [Pg.7], [Pg.29]

[121] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for c. SIGSOFT

Softw. Eng. Notes, 30(5):263–272, sep 2005. [Pg.100]

[122] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken. Data-driven equivalence checking.

SIGPLAN Not., 48(10):391–406, oct 2013. [Pg.9], [Pg.100]

[123] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken. Data-driven equivalence check-

ing. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages & Applications, OOPSLA ’13, page

391–406, New York, NY, USA, 2013. Association for Computing Machinery. [Pg.100]

[124] A. Singh, M. Kar, V. C. K. Chekuri, S. K. Mathew, A. Rajan, V. De, and

S. Mukhopadhyay. Enhanced power and electromagnetic sca resistance of encryption

engines via a security-aware integrated all-digital ldo. IEEE Journal of Solid-State

Circuits, 55(2):478–493, 2019. [Pg.155]

[125] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Ko-

matsu, and T. Nakatani. Overview of the ibm java just-in-time compiler. IBM Systems

Journal, 39(1):175–193, 2000. [Pg.163]

[126] M. Taherifard, H. Beitollahi, F. Jamali, A. Norollah, and A. Patooghy. Mist-scan: A

secure scan chain architecture to resist scan-based attacks in cryptographic chips. In

2020 IEEE 33rd International System-on-Chip Conference (SOCC), pages 135–140,

2020. [Pg.32], [Pg.158]

[127] S. Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing

toolkit for verilog hdl. In Applied Reconfigurable Computing, volume 9040 of Lec-

ture Notes in Computer Science, pages 451–460. Springer International Publishing,

Apr 2015. [Pg.151]

178

REFERENCES

[128] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copperdroid: Automatic recon-

struction of android malware behaviors. In NDSS, 2015. [Pg.7]

[129] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Still: Exploit code detection via static taint

and initialization analyses. In ACSAC, pages 289–298, 2008. [Pg.30]

[130] X. Wang, H. Ma, and L. Jing. A dynamic marking method for implicit information

flow in dynamic taint analysis. In SIN, page 275–282, New York, NY, USA, 2015.

Association for Computing Machinery. [Pg.29]

[131] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. Towards optimization-

safe systems: Analyzing the impact of undefined behavior. In SOSP, SOSP ’13, page

260–275, New York, NY, USA, 2013. Association for Computing Machinery. [Pg.21]

[132] H. Wong, V. Betz, and J. Rose. Comparing fpga vs. custom cmos and the impact on

processor microarchitecture. In Proceedings of the 19th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, FPGA ’11, page 5–14, New York,

NY, USA, 2011. Association for Computing Machinery. [Pg.153]

[133] B. Yang, K. Wu, and R. Karri. Scan based side channel attack on dedicated hardware

implementations of data encryption standard. In 2004 International Conferce on Test,

pages 339–344, 2004. [Pg.139]

[134] M.-K. Yoon, N. Salajegheh, Y. Chen, and M. Christodorescu. Pift: Predictive

information-flow tracking. In Proceedings of the Twenty-First International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

page 713–725, New York, NY, USA, 2016. Association for Computing Machinery.

[Pg.29]

[135] R. Zhang, S. Huang, Z. Qi, and H. Guan. Static program analysis assisted dynamic

taint tracking for software vulnerability discovery. Computers Mathematics with Ap-

plications, 63(2):469–480, 2012. Advances in context, cognitive, and secure computing.

[Pg.29]

[136] X. Zhang, X. Wang, R. Slavin, and J. Niu. Condysta: Context-aware dynamic sup-

plement to static taint analysis. In IEEE S&P, pages 796–812, 2021. [Pg.30]

179

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India

	1 Introduction
	1.1 Compilation Steps
	1.1.1 Compiler Optimization

	1.2 Correctness of Compiler
	1.3 Security of Compiler
	1.3.1 Information Flow Security Property
	1.3.2 Information Flow Tracking in a Program

	1.4 Motivation and Objectives
	1.4.1 Security Analysis of Compiler Optimization Techniques
	1.4.2 Relative Security Verification
	1.4.3 Information Leakage Detection with Model Checker
	1.4.4 Securing Registers from Information Leakage with High-level Synthesis

	1.5 Contributions
	1.5.1 SRA: Secure Register Allocation for Trusted Code Generation
	1.5.2 QIL: Quantifying Information Leakage for Security Verification of Compiler Optimizations
	1.5.3 TVIL: Translation Validation of Information Leakage of Compiler Optimizations
	1.5.4 MQIL: Model Checking based Quantification of Information Leakage in a Program
	1.5.5 SRIL: Securing Registers from Information Leakage at Register Transfer Level

	1.6 Organization of the Thesis

	2 Background and Literature Survey
	2.1 Target Level Attacks
	2.1.1 Confidentiality
	2.1.2 Integrity
	2.1.3 Finite Memory Size
	2.1.4 Deterministic Memory Allocation
	2.1.5 Discussion

	2.2 Secure Compilation
	2.2.1 Discussion

	2.3 Security Analysis of Compiler Optimizations
	2.3.1 Dead Store Elimination
	2.3.2 Single Static Assignment
	2.3.3 Register Allocation
	2.3.4 Other Optimizations
	2.3.5 Discussion

	2.4 Security Measurement Approaches
	2.4.1 Leaky Triple Notion (Non-interference)
	2.4.1.1 Problem with Leaky Triple

	2.4.2 Taint Analysis
	2.4.2.1 Dynamic Taint Analysis
	2.4.2.2 Static Taint Analysis

	2.4.3 Discussion

	2.5 Side-channel Attacks through Scan Access
	2.5.1 Discussion

	2.6 Conclusion

	3 SRA: Secure Register Allocation for Trusted Code Generation
	3.1 Introduction
	3.2 Register Allocation
	3.2.1 Live Range Splitting
	3.2.2 Spilling
	3.2.3 Impact of Register Allocation in Control and Data Flow

	3.3 Relative Security
	3.4 Security Analysis of Register Allocation
	3.5 Securing Register Allocation in LLVM
	3.6 Experimental Results
	3.6.1 Setup
	3.6.2 Results in LLVM
	3.6.3 Performance Overhead

	3.7 Discussion
	3.8 Conclusion

	4 QIL: Quantifying Information Leakage for Security Verification of Compiler Optimizations
	4.1 Introduction
	4.2 Motivation
	4.2.1 Overview of the Proposed Approach

	4.3 FSMD based Modeling of Programs
	4.3.1 Paths and Traces in FSMD
	4.3.2 Cutpoints and Path cover

	4.4 Quantification of Information Leakage
	4.4.1 Leak Propagation Vector
	4.4.2 Explicit Leak in a Path
	4.4.3 Leak Propagation over Paths
	4.4.4 Implicit Leak in a Path
	4.4.5 Leak Propagation over Loops

	4.5 Leak Measurement of a Program
	4.5.1 Algorithm Description
	4.5.2 Minimizing Complexity by Look Ahead Properties

	4.6 Quantifying Parameters for Information Leakage
	4.6.1 Quantification Approaches for a Program
	4.6.2 Quantification Approaches for Relative Security

	4.7 Correctness and Complexity
	4.7.1 Soundness and Termination
	4.7.2 Complexity Analysis

	4.8 Experimental Results
	4.8.1 Setup
	4.8.2 Performance Measures
	4.8.3 Results on Quantification Parameters
	4.8.4 Results on Relative Security
	4.8.5 Scalability of Proposed Approach
	4.8.6 Comparison with Existing Approaches

	4.9 Security Analysis of Various Compiler Optimizations
	4.9.1 Insecure Compiler Optimizations
	4.9.1.1 Dead Store Elimination
	4.9.1.2 Single Static Assignment
	4.9.1.3 Common Sub-expression Elimination
	4.9.1.4 Loop-based Strength Reduction
	4.9.1.5 Loop Invariant Code Motion

	4.9.2 Secure Compiler Optimizations
	4.9.2.1 Copy Propagation
	4.9.2.2 Loop Fusing
	4.9.2.3 Loop Unswitching
	4.9.2.4 Loop Unrolling
	4.9.2.5 Loop Peeling
	4.9.2.6 Loop Distribution

	4.10 Conclusion

	5 TVIL: Translation Validation of Information Leakage of Compiler Optimizations
	5.1 Introduction
	5.2 Motivation
	5.3 Translation Validation Approaches
	5.3.1 Corresponding Paths

	5.4 Security Problem Formulation
	5.4.1 Security of Paths
	5.4.2 Relative Security of Programs

	5.5 Translation Validation Method for Relative Security of Programs
	5.5.1 Algorithm Description
	5.5.2 Attack Models
	5.5.3 Minimizing Complexity by Look Ahead Properties
	5.5.4 An Illustrative Example

	5.6 Correctness and Complexity
	5.6.1 Soundness and Termination
	5.6.2 Complexity Analysis

	5.7 Experimental Results
	5.7.1 Setup
	5.7.2 Performance Measures
	5.7.3 Impact of Look-ahead Properties
	5.7.4 Scalability of Proposed Approach

	5.8 Conclusion

	6 MQIL: Model Checking based Quantification of Information Leakage in a Program
	6.1 Introduction
	6.2 Motivation
	6.3 Our Quantification Approach
	6.4 Quantification Model for C Constructs
	6.4.1 Data types
	6.4.1.1 Variables
	6.4.1.2 Structures and Unions
	6.4.1.3 Arrays
	6.4.1.4 Pointers

	6.4.2 Assignment Operations
	6.4.3 Control Structures
	6.4.4 Loops
	6.4.5 Functions

	6.5 Quantification Parameters and Relative Security
	6.5.1 Verifying Relative Security

	6.6 Experimental Results
	6.6.1 Setup
	6.6.2 Benchmark Characteristics
	6.6.3 Performance Measures
	6.6.4 Scalability of Proposed Approach

	6.7 Conclusion

	7 SRIL: Securing Registers from Information Leakage at Register Transfer Level
	7.1 Introduction
	7.2 High-level Synthesis Flow
	7.2.1 Preprocessing
	7.2.2 Scheduling
	7.2.3 Allocation and Binding
	7.2.4 Datapath and Controller Generation

	7.3 Proposed Bubble Pushing on RTL Circuit Components
	7.3.1 Logic gates
	7.3.2 Adder and Subtractor
	7.3.3 Multiplier
	7.3.4 Multiplexer
	7.3.5 Register

	7.4 Proposed Defence to Protect Registers
	7.4.1 Register Protection through Scan Access: An Example

	7.5 Experimental Results
	7.5.1 Setup
	7.5.2 Performance Measures
	7.5.3 Overhead Analysis

	7.6 A Case Study on AES
	7.6.1 Discussion on TVLA

	7.7 Discussion
	7.8 Conclusion

	8 Conclusions and Future Perspectives
	8.1 Summary of Contributions
	8.2 Future Directions
	8.2.1 Enhancement of Proposed Secure Register Allocation
	8.2.2 Counter-example Generation
	8.2.3 Post-fixing of Leaks
	8.2.4 Security Verification of Optimization Phases
	8.2.5 Verification of Other Security Properties
	8.2.6 Bubble Pushing with Higher Corruption Rate

	8.3 Conclusion

	Publications
	References

