
Scheduling Policies for Improving
Performance, Utilisation, and
Longevity of DRAM and PCM

Memories

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by

Aswathy N S

Under the guidance of

Prof. Hemangee K. Kapoor and Prof. Arnab Sarkar

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
October, 2024

mailto:aswat176101002@iitg.ac.in
http://www.iitg.ac.in/hemangee/
http://www.iitg.ac.in/cse/
http://www.iitg.ernet.in

Copyright © Aswathy N S 2024. All Rights Reserved.

mailto:aswat176101002@iitg.ac.in

Dedicated to

My beloved parents and partner

Acknowledgements

I would like to take this opportunity to express my gratitude to everyone

who has made this thesis possible. I express my deepest gratitude to my

supervisor, Prof. Hemangee K. Kapoor, for her valuable guidance, inspi-

ration, and advice. I feel very privileged to have had the opportunity to

learn from and work with her. Her constant guidance and support paved

the way for my development as a research scholar and changed my per-

sonality, ability, and nature in many ways. I have been fortunate to have

such a supervisor who gave me the freedom to explore on my own and,

simultaneously, the guidance to recover when my steps faltered. Besides

this, I would like to thank my external supervisor, Prof. Arnab Sarkar,

for his insightful comments and encouragement. His comments and sug-

gestions helped me to widen my research from various perspectives.

I thank all my Doctoral Committee Members, Prof. Jatindra Kumar

Deka, Dr. Aryabartta Sahu, and Dr. Chandan Karfa, for their produc-

tive and constructive suggestions for my thesis work. Their opinions and

comments helped me to shape my final thesis. I would like to express my

heartful gratitude to the administration of IIT Guwahati and all faculty

and staff of the Department of Computer Science and Engineering for

extending their cooperation in terms of technical and official support for

the successful completion of my research work.

During my Ph.D., I got the opportunity to work with Dr. Palash Das,

Dr. Sheel Sindhu Manohar, Dr. Arijit Nath, Imlijungla Longchar, Swati

Upadhyay, Neeraj Sharma, Rishabh Mahanta, Nishant Bharti, Deep

Bhuniya, Chetan, Aishwarya Gupta, Zeeshan Anwar, Gautam Gandhi

and Jash Vipul Ratanghayra. I had numerous productive technical con-

versations and knowledge exchanges with them that helped me to carry

out my research.

I am thankful to my friends Gaadha Madhav, Christy K. Benny, Ra-

jeswari Suance, Jith J R, Hrishikeshan, Vivek Lukose, Jiss J Nallikuzhy,

Induchoodan T G, Syamili Sharma, Pradeep, Vishnu G, Akhila Das,

Anjali, Akhila, Arun Sathyan, Sujisha, Vijith, Piyoosh, Dileep, Naveen,

Achyut Tripathi, Rakesh, Rajesh Devaraj, Sanjit Ray, Rishi Shreedhar,

Gokul, Merlin, Caraline, Sivakumar, Priyanka, Nilotpola, Debabrata,

Swagat, Sumita, Nilotpal, and Akanksha, for sharing beautiful moments

during my life in IIT Guwahati. You made my life at IIT Guwahati a

memorable experience. A special thanks to Riya Roy; she has encour-

aged, supported, and made me happy during this journey of many ups

and downs. I am extremely grateful to Aditya K. Moorthy, my younger

brother, who has been my strength on this journey.

I want to thank Dr. A. Rajesh for the motivation, strength, and smiles

given during the entire IITG journey. I would like to especially thank

Uma Narayanan for always being there as an elder sister and Malu for

the beautiful moments at IITG. I am thankful to Gayathri ma’am for

creating a safe space for me to work through the challenges. I am also

grateful to the professors of the Malayali community, Dr. John Jose, Dr.

Benny George K, Dr. Ravi K, Dr. Suresh Kartha, Dr. Sreedeep S, Dr.

Sreeja P, Dr. Archana, Dr. Tony Jacob, Dr. Vibin Ramakrishnan, Dr.

John Thomas, Dr. Sreenath, and their families.

Most importantly, I thank for the love and patience of my family. I

want to thank my parents for being a constant source of love, concern,

support, and strength all these years. To my valiachan and ettamma,

thank you for all the encouragement and motivation. I thank my brother

Aswin for inspiring me throughout the Ph.D. journey. I would also like to

thank my sister-in-law Anagha, brother-in-law Padmanabhan, co-sister

Parvathi, and my in-laws for being so supportive during the journey.

Last but not least, I thank Vasudevan, who encouraged and supported

me in each step of my journey with due respect to every thought and

decisions I made. Thanks for all the sacrifices and love you have made

to brighten my days. I apologize if I am missing some important names

that need to be acknowledged.

Declaration

I, Aswathy N S, certify that:

• The work contained in this thesis is original and has been done by

myself and under the general supervision of my supervisors.

• The work reported herein has not been submitted to any other

Institute for any degree or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions,

data, graphs, diagrams, theoretical analysis, results, etc.) from

other sources, I have given due credit by citing them in the text of

the thesis and giving their details in the references.

• I also affirm that no part of this thesis can be considered plagiarism

to the best of my knowledge and understanding and take complete

responsibility if any complaint arises.

Date:
Place: Guwahati

Aswathy N S

(176101002)

mailto:aswat176101002@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “Scheduling Policies for Im-

proving Performance, Utilisation, and Longevity of DRAM and

PCM Memories”, being submitted by Aswathy N S(176101002),

to the Department of Computer Science and Engineering, Indian Insti-

tute of Technology Guwahati, for partial fulfillment of the award of the

degree of Doctor of Philosophy, is a bonafide work carried out by her un-

der my supervision and guidance. The thesis, in my opinion, is worthy of

consideration for award of the degree of Doctor of Philosophy in accor-

dance with the regulation of the institute. To the best of my knowledge,

it has not been submitted elsewhere for the award of the degree.

Date:

Place: Guwahati

..............................

Prof. Hemangee K. Kapoor

Professor

Department of Computer Science and Engineering

IIT Guwahati

..............................

Prof. Arnab Sarkar

Associate Professor

Advanced Technology Development Centre (ATDC)

IIT Kharagpur

mailto:aswat176101002@iitg.ac.in
http://www.iitg.ernet.in
http://www.iitg.ernet.in
http://www.iitg.ac.in/hemangee/
http://www.iitg.ac.in/cse/
http://www.facweb.iitkgp.ac.in/~arnab/

Abstract

The increased transistor density in recent years helps modern chip multi-processors

include many processing cores in a single chip, which enables the concurrent execu-

tion of data-intensive workloads. The need for large-sized memories also increased

due to the high pressure. Memory performance in terms of latency, reliability,

longevity, and scalability have now become a critical constraint for modern com-

puter systems. Even though traditional DRAM memories have low access latency,

they cannot meet the high-density demands of modern workloads. Emerging non-

volatile memories provide high density and low-leakage power. However, they suffer

from shortcomings, especially on writes and reliability issues. Hybrid memory with

a combination of DRAM and NVM exploits the benefits of both memories and can

be used as a main memory alternative.

Memory controllers act as a bridge between these main memories and the re-

questors and manage the flow of data between them. It is necessary to evolve the

memory controller designs to achieve better performance and utilisation of the grow-

ing memory technologies. Memory request scheduling, which reorders memory op-

erations from the same and different applications is used by the memory controller

to manage the flow of data and optimize memory performance. The memory con-

troller manages regular read/write requests and other memory service requests. The

adopted memory scheduling policy determines the memory service time and, thus,

the total execution time of applications executing on the cores. Therefore, memory

scheduling policy plays a vital role in the performance of these memory technologies.

In this thesis, we aim to build scheduling policies to improve the effectiveness of

these main memory designs by providing solutions to the challenges faced by each

of these memory techniques. In particular, the contributions of the thesis revolve

around scheduling policies for memory requests and other service operations, such

as de-stress and migration, to improve the performance of hybrid DRAM and Phase

Change Memories (PCM). We aim to design memory access scheduling policies,

which, along with throughput, improve the service predictability. This research also

focused on improving the longevity and utilisation of PCM memories. Towards this

end, we provide de-stress and migration scheduling policies that control aging and

reduce the number of write operations in PCM memories.

;;=8=<<

xi

Contents

Abstract xi

List of Figures xviii

List of Tables xxi

List of Abbreviations xxiii

1 Introduction 1

1.1 Design of Memory Controllers . 2

1.2 Memory Access Scheduling Policies 3

1.3 Memory Service Operations . 4

1.3.1 Refresh in DRAM . 5

1.3.2 De-stress in Phase Change Memory (PCM) 5

1.3.3 Page Migration in Hybrid Memory 5

1.4 Motivation . 6

1.5 Objectives . 9

1.6 Thesis Contributions . 10

1.6.1 Request Scheduling Policies for Pure DRAM and Pure PCM

Memories . 10

1.6.2 Migration Scheduling Policies for Hybrid DRAM-PCM Mem-

ories . 11

1.6.3 De-stress Scheduling Policies for Pure PCM Memories 13

1.6.4 Avenues for Improving Migration and Aging 14

1.7 Summary . 16

1.8 Organization of Thesis . 17

xiii

2 Background 18

2.1 Main Memory Technologies . 19

2.1.1 Dynamic Random Access Memories (DRAM) 19

2.1.2 Non-Volatile Memories (NVM) 21

2.1.2.1 Phase Change Memory (PCM) 21

2.1.3 Hybrid Memories . 23

2.2 Challenges with Different Types of Memories 24

2.3 Request Scheduling Techniques . 25

2.3.1 Predictable Memory Request Scheduling for DRAM 27

2.3.2 Predictable Memory Request Scheduling for PCM 29

2.3.2.1 Write Reduction and Wear-Leveling Techniques for

PCM . 29

2.3.2.2 Scheduling Techniques for PCM 30

2.3.2.3 Predictable Scheduling Techniques for PCM 30

2.4 Page Migration for Hybrid memories 32

2.4.1 Topology of Hybrid Memory 32

2.4.2 Migration Candidate Selection 34

2.4.3 Granularity of Migration . 36

2.4.4 Time of Migration . 37

2.4.5 Victim Page Migration . 38

2.5 Aging Control Mechanisms for Non-Volatile Memories 38

2.5.1 BTI Aging in Non-Volatile Memories 38

2.5.2 BTI Aging Measuring Techniques 40

2.5.2.1 Reaction/Diffusion (RD) Model 40

2.5.2.2 Trapping/De-trapping (TD) Model 41

2.5.2.3 As-grown-generation (AG) model 42

2.5.3 BTI Aging Countermeasures 42

2.6 Summary . 45

3 Request Scheduling Policies 47

3.1 Introduction . 47

3.2 System Model . 49

3.3 Working of a Frame-based Scheduling 54

3.4 Predictable Memory Request Schedulers for DRAM memories 54

3.4.1 RMRS: Real-time Memory Request Scheduler 55

3.4.1.1 Working Example 58

3.4.2 R-RMRS: Reward-aware RMRS 58

3.4.3 Handling Phased Execution 61

3.5 Predictable Memory Request Schedulers for PCM memories 64

3.5.1 LARS: Latency-Aware Request Scheduler 65

3.5.2 Re-LARS: Reward-aware LARS 66

3.6 Evaluation . 66

3.6.1 Experimental Setup . 66

3.6.2 Complexity Analysis . 68

3.6.3 Area Overhead . 68

3.6.4 Performance Analysis . 69

3.6.5 Performance Metrics . 70

3.7 Results of DRAM Scheduling Policies 71

3.7.1 Deriving optimal α . 71

3.7.2 System load Vs. Dnorm . 73

3.7.3 System load Vs. Dext
norm . 73

3.7.4 Effect of memory intensity on Reward 75

3.7.5 Effect of reward reduction rates (RRRi) of tasks on Rnorm . . 78

3.7.6 Private Vs. Shared Banks . 78

3.8 Results for PCM Scheduling Policies 79

3.9 Summary . 80

4 Migration Scheduling Policies 82

4.1 Introduction . 82

4.2 Slot-based Migration Scheduling . 84

4.3 Motivation . 85

4.4 System Model . 86

4.5 SRS-Mig: Selection and Run-time Scheduling of page Migration . . . 88

4.6 Mig-Slot: Migration-aware Slot-based Memory Request Scheduler . . 90

4.7 QoS-Aware Migration . 93

4.7.1 Impact of Migration on QoS 93

4.7.2 Mig-QoS: QoS-aware Mig-Slot 94

4.8 Victim Page Migration . 96

4.9 Evaluation . 97

4.9.1 Experimental Setup . 97

4.9.2 Workloads . 99

4.9.3 Performance Analysis . 99

4.10 Results . 100

4.10.1 Execution Time . 100

4.10.2 Memory Service Time . 101

4.10.3 Memory Response Time . 102

4.10.4 Memory Service Rate . 103

4.10.5 Energy Consumption . 105

4.10.6 Distribution of Accesses to Migrated Pages 106

4.10.7 Sensitivity Analysis . 107

4.10.7.1 Sensitivity Analysis for MigHT 107

4.10.7.2 Sensitivity Analysis for Margin Value mg 109

4.10.8 Overhead Analysis . 110

4.11 Summary . 111

5 De-stress Scheduling Policies 113

5.1 Introduction . 113

5.2 Basic De-stress Scheduler . 115

5.3 Motivation . 116

5.4 Aging Model . 117

5.5 Thresholds used during Scheduling 118

5.5.1 Request Threshold (RQT) . 118

5.5.2 Partial Request Threshold PRT 119

5.5.3 Age Threshold (AGT) . 120

5.6 System Model . 120

5.7 AGRAS: Age and Request rate Aware Scheduler 121

5.8 RODESA: Request and Opportunistic De-stress Scheduler 122

5.8.1 RODESA-p . 123

5.8.2 RODESA-b . 125

5.9 Evaluation . 128

5.9.1 Experimental Setup . 128

5.9.2 Performance Analysis . 130

5.10 Results . 131

5.10.1 Effect on Performance: . 131

5.10.2 Effect on Memory Service Time 132

5.10.3 Impact on Age Degradation 134

5.10.4 Analysis of Threshold and Impact of the Decision Criteria . . 135

5.11 Summary . 140

6 Avenues for Improving Migration and Aging 142

6.1 Introduction . 142

6.2 Motivation . 144

6.2.1 Comparing impact of write count versus write intensity 144

6.2.2 Comparing impact of de-stress interval sizes 145

6.3 System Architecture . 146

6.4 WiMig: Write intensity based Migration 148

6.5 WiForeMig: Write intensity based Foresightful Migration 150

6.6 DOPMig: De-stress aware Opportunistic Migration 152

6.6.1 Working of DOPMig . 153

6.6.2 Two variants of DOPMig . 154

6.6.3 Victim Page Migration . 155

6.7 Evaluation . 155

6.7.1 Experimental Setup and Workloads 155

6.7.2 Hardware Overhead . 155

6.7.3 Performance Analysis . 157

6.8 Results . 158

6.8.1 Results for WiMig and WiForeMig Policies 158

6.8.1.1 IPC . 158

6.8.1.2 Memory Service Time 159

6.8.1.3 Energy . 160

6.8.1.4 Distribution of Accesses to Migrated Pages 161

6.8.1.5 Sensitivity Analysis of the Threshold values 162

6.8.1.6 Discussion . 163

6.8.2 Results for DOPMig policy . 163

6.8.2.1 IPC . 164

6.8.2.2 Memory Service Rate 165

6.8.2.3 DRAM Hits for Migrated Pages 165

6.8.2.4 Sensitivity Analysis on Buffer Size 167

6.8.3 Comparison with Existing Methods 168

6.9 Summary . 169

7 Conclusions and Future Perspectives 171

7.1 Summary of Contributions . 172

7.2 Scope for Future Work . 176

A Appendix 177

A.1 Simulation Framework . 177

A.1.1 Gem5 . 177

A.1.1.1 M5 . 178

A.1.1.2 GEMS . 178

A.1.2 NVMain . 178

A.1.3 GEM5-NVMain Co-simulation Framework 179

A.2 Benchmarks . 179

A.2.1 Parsec . 180

A.2.2 SPEC 2006 . 181

A.2.3 MiBench . 182

Publications 183

References 185

List of Figures

1.1 Memory controller unit . 3

1.2 Memory service time for PCM and Hybrid memory normalized with

DRAM . 7

1.3 Number of delayed requests due to migration 8

2.1 DRAM memory organization . 20

2.2 Represenatational view of a PCM cell 22

2.3 Operations in PCM cell . 22

2.4 Hybrid memory a) Parallel Organization, b)Hierarchical Organization 24

2.5 Stress and Recovery phases of BTI 39

2.6 Threshold voltage shift (∆vth) during continuous and interrupted stress 43

3.1 Working Example . 59

3.2 Phased memory profile obtained during standalone execution of the

patricia application from MiBench . 62

3.3 LARS-System model . 64

3.4 Deriving optimal α . 72

3.5 (a) Dnorm, (b) D
ext
norm . 73

3.6 (a) Effect of phased execution onDnorm, (b)Effect of phased execution

on Dext
norm . 75

3.7 (a) Effect of low memory intensity workload mix on Rnorm, (b) Effect

of high memory intensity workload mix on Rnorm 76

3.8 Effect of phased execution on Rnorm 77

3.9 (a) Effect of reward reduction rates (RRRi) (b) Shared Vs. Private

Banks . 78

xix

4.1 Example of slot-based scheduling of memory requests. Here blue

colour represent batched requests and red colour represent servicing

requests . 84

4.2 Example of batched requests getting postponed due to presence of

migration requests . 85

4.3 Number of batched requests that get delayed 86

4.4 Proposed memory controller model with migration unit 86

4.5 Illustration of reserving space for migration in the slot 92

4.6 (a) Memory request rate at different points in execution, (b) Number

of requests delayed to get batched . 93

4.7 Illustration of Mig-QoS showing postponement of migration due to

high input request rate . 96

4.8 Normalized execution time (lower is better) 100

4.9 Normalized memory service time (lower is better) 102

4.10 Normalized PCM response time (lower is better) 103

4.11 Normalized memory service rate (higher is better) 104

4.12 Normalized energy consumption (lower is better) 105

4.13 Distribution of total PCM accesses in techniques a) SRS-Mig, b) Mig-

Slot, and c) Mig-QoS . 107

4.14 Effect of varying MigHT on the memory service rate, (b) Sensitivity

analysis on margin values . 108

5.1 Execution timeline with Stress/De-stress periods 116

5.2 (a) Normalized age degradation over RegDes, (b) Normalized CPI

over Baseline . 116

5.3 Memory request rate at continuous Stress periods 118

5.4 Memory controller with De-stress Management Unit 120

5.5 Flowchart of our proposed AGRAS 121

5.6 Per bank memory access count normalized over maximum access

count among the banks for (a) lbm, (b) leslie3d, (c) canneal 125

5.7 Memory request rate at continuous Stress periods 130

5.8 Normalized IPC over Baseline (higher is better) 131

5.9 Normalized service time over Baseline (lower is better) 133

5.10 Normalized age degradation over RegDes 134

5.11 Distribution of full vs partial de-stress performed by observing the

memory request rate . 136

5.12 Age degradation for two banks that got de-stress in background dur-

ing random points of execution (for canneal benchmark) 138

6.1 (a) Difference in Write count (WC) and write intensity (WI) for lbm,

(b) Difference for sjeng, (WC is represented as circles and WI is rep-

resented as triangles) . 144

6.2 (a) Normalized age degradation of RegDes with Large Interval (LI)

over RegDes with Small Interval (SI), (b) Normalized IPC over No

De-stress method; SI= Small Interval and LI=Large Interval 145

6.3 Hybrid memory controller with migration and de-stress unit 147

6.4 Execution timeline with de-stress and migration intervals 153

6.5 Working of proposed DOPMig . 153

6.6 Normalized speedup (higher is better) 159

6.7 Normalized memory service time (lower is better) 159

6.8 Normalized total energy consumption (lower is better) 160

6.9 Distribution of PCM accesses for migrated pages 161

6.10 (a) Sensitivity analysis for Wait T, (b) Sensitivity analysis for Max Dem T162

6.11 Normalized speedup (higher is better) 164

6.12 Normalized memory service rate (higher is better) 165

6.13 Number of DRAM hits for migrated PCM pages normalized to DesMig166

6.14 Number of return back migrations normalized to DesMig 167

6.15 Sensitivity analysis on buffer size (BSize) 168

7.1 Overview of the thesis . 175

List of Tables

3.1 Notations used . 51

3.2 Important system parameters . 66

3.3 Chosen tasks along with their execution times and memory intensity

class (From MiBench) . 67

3.4 Workload mix details with task set used for each mix, allocated

#cores and associated memory intensity class 68

3.5 Comparison of deadline misses . 74

3.6 Comparison of reward . 76

3.7 Comparison of performance with EDF-PCM 79

3.8 Comparison of performance with EDF-DRAM 80

4.1 Important system parameters . 98

4.2 Benchmark classification based on write-backs 98

4.3 Overhead analysis (lesser is better) 110

4.4 Comparison of proposed migration policies 111

5.1 Important system parameters . 129

5.2 Effect of different values of AGT on performance and aging, normal-

ized wrt RegDes . 135

5.3 Number of intervals and banks that got the opportunity to perform

background de-stress . 137

5.4 Impact of static versus dynamic selection of banks for background

de-stress on Performance and Aging 139

6.1 Important system parameters . 156

6.2 Advantage of demotion . 163

6.3 DOPMig modest Vs DOPMig greedy normalized over DesMig 166

xxii

6.4 Comparison with existing policies . 168

A.1 he Inherent Key Characteristics of PARSEC Benchmarks 180

A.2 The Data Usage Behavior of PARSEC Benchmarks 180

A.3 Application Domains of Various CINT 2006 Benchmark Suite 181

A.4 Application Domains of Various CFP 2006 Benchmark Suite 182

A.5 MiBench Benchmarks . 183

List of Abbreviations

CPU Central Processing Unit.

GPU Graphic Processing Unit.

DRAM Dynamic Random Access Memory.

NVM Non-Volatile Memory.

PCM Phase Change Memory.

MRAM Magnetic Random Access Memory.

FeRAM Ferroelectric Random Access Memory.

STT-RAM Spin Transfer Torque Random Access Memory.

Re-RAM Resistive Random Access Memory.

NOP No Operation

PRE Precharge

REF Refresh

CAS Column Address Strobe

ACT Activate

BTI Biased Temperature Instability

NBTI Negative Biased Temperature Instability

PBTI Positive Biased Temperature Instability

xxiv

HCI Hot Carrier Injection

QoS Quality of Service

WBPKI Write Backs Per Kilo Instructions

MPKI Misses Per Kilo Instructions

IPC Instructions Per Cycles

CPI Cycles Per Instructions

WCET Worst Case Execution Time

HRT Hard Real-Time Task

SRT Soft Real-Time Task

FCFS First Come First Serve Policy

FR-FCFS First Row hit - First Come First Serve

TDM Time Division Multiplexing

EDF Earliest Deadline First

RM Rate Monotonic

RR Round Robin

LRU Least Recently Used

EDF-WQF Earliest Deadline First-Write Queue Full

RegDes Regular De-stress

AlterDes Alternate De-stress

RegMig Regular Migration

DesMig De-stress Migration

RMRS Real time Memory Request Scheduling

R-RMRS Reward-aware Real time Memory Request Scheduling

LARS Latency-aware Request Scheduling

Re-LARS Reward-aware Latency-aware Request Scheduling

AGRAS Aging and Request rate Aware Scheduling

RODESA Request and Opportunistic De-stress Scheduler

WiMig Write Intensity based Migration

WiForeMig Write Intensity based Foresightful Migration

DOPMig De-stress aware Opportunistic Migration

1
Introduction

The Von Neumann architecture is the basis for most modern computing systems,

where memory and computing devices, such as CPUs, are kept apart. These com-

puting devices have depended on using the principles of Dennard scaling and Moore’s

laws to scale up their performance. On the contrary, memory devices cannot meet

the performance of these computing devices due to their limited scalability, which

leads to a huge performance gap between computing and memory devices. Modern

data-intensive workloads exhibit large memory footprints and place much pressure

on the memory subsystem. A scalable memory system is needed to meet the require-

ments of these workloads. Traditional DRAM memory systems have been widely

used for decades and provide low memory access latency. These memory lose their

ability to provide high density and low leakage power. Constructing large-capacity

memory systems within the restricted area and power budget is challenging because

of the need for high refresh energy and poor scalability.

Non-volatile memories (NVMs) like Phase Change Memory (PCM), Spin Trans-

fer Torque RAM (STT-RAM), and Resistive RAM (Re-RAM) have emerged as

viable alternatives for DRAM, which are denser and have low leakage power. These

NVMs offer exciting features necessary for developing large-capacity, energy-efficient

main memory systems, including non-volatility, low-leakage energy, and high den-

sity. However, these non-volatile memories have costlier writes in terms of high write

1

Introduction

latency, high write energy, and low write endurance. These drawbacks restrict them

from becoming the widely accepted primary memory standard.

One alternative is to combine the two memory types and use the best of both.

Thus, scalability and performance can be improved by developing a hybrid memory

environment with DRAM and NVM memory types. Based on the application re-

quirements, the size of each partition in the hybrid memories varies. Data placement

in such memories must be carefully handled to benefit from the different memory

partitions. Hybrid memory systems exploit the benefits of both types of memory

partitions and make them suitable for data-intensive applications. More informa-

tion regarding the working methodology and the characteristics of different memory

technologies is discussed in Chapter 2.

Modern computer systems use memory controllers to access data from these main

memory systems. Memory controllers carry out such types of data access control by

selectively multiplexing memory devices and/or the data bus in response to varying

memory requests. As memory technology grows, it is necessary to evolve the memory

controller designs to achieve better performance. This research intends to develop

memory controller designs that support advanced main memory technologies to

enhance the memory service time and, thus, the total execution time of applications

executing on the processing cores.

The rest of the chapter is organized as follows: section 1.1 discusses the functions

of a memory controller. The need for memory access scheduling is discussed in sec-

tion 1.2. Other memory controller services are presented in sections 1.3. Motivation

and Objectives of this dissertation are presented in sections 1.4 and 1.5. Section 1.7

finally concludes the chapter.

1.1 Design of Memory Controllers

The most advanced memory controller designs and the most recently released mem-

ory fabrication technology, such as emerging non-volatile memories and Double Data

Rate Dynamic RAM (DDR DRAM), are used by modern systems to take advantage

of the high transfer rates and low power consumption. The design of memory con-

trollers, which should correctly regulate the data flow to ensure improved memory

performance, is prompted by the significant data rate from numerous applications

running simultaneously on multi-core processors.

2

Memory Access Scheduling Policies

Request
Queue 0

Request
Queue 1

Request
Queue n-1

A
d

d
re

ss
 M

ap
p

in
g

R
eq

u
es

t
S

ch
ed

u
le

r

C
o

m
m

an
d

 G
en

er
at

o
r Command

Queue 0

Command
Queue 1

Command
Queue n-1 C

o
m

m
an

d
 S

ch
ed

u
le

r

 Main
Memory

CPU

Memory Controller

Request

Commands

Figure 1.1: Memory controller unit

Figure 1.1 depicts the different components of a memory controller. The virtual

address of a memory request is mapped to a memory address location with the

help of an address mapping unit. Two important memory mapping strategies are

sequential memory mapping and interleaved memory mapping [1]. In sequential

address mapping, successive words in the address space are mapped onto a single row

of a single bank. On the other hand, in the case of interleaved mapping, successive

words are placed in distinct banks. After address translation, these memory requests

are placed in distinct bank queues. A request arbiter will select one among a set

of memory requests and convert it to a sequence of memory commands using a

command generator. The sequence of commands are then placed in command queues

in the memory controller. A command queue can be configured as a generic pool

queue, a per-bank queue, or a per-rank queue [1]. Commands to the memory devices

are ordered according to the command scheduling policy. The timing relationships

between different memory commands determines the final execution time [1].

1.2 Memory Access Scheduling Policies

Memory performance is becoming a more significant constraint for modern computer

systems. Recent memory components offer pipelining of memory accesses to maxi-

mize memory bandwidth. They also heavily rely on the access pattern to determine

how well the memory performs. Modern memories are three-dimensional memory

devices with bank, row, and column dimensions [1]. Memory access scheduling

is a technique for optimizing memory system performance that schedules memory

operations, completing memory references out of order.

3

Introduction

Applications/tasks are executing on the processing cores. These tasks/applications

include instructions and spawns memory requests/accesses. The actual completion

time of the task may change based on run-time memory behavior. The adopted

memory scheduling policy plays a significant role in influencing task completion

times. Commonly used memory request scheduling policies in traditional memory

controllers include First Come First Serve (FCFS) and Time Division Multiplexing

(TDM) variations. Apart from these techniques, Rixner et al. in [2] discussed First

Ready-First Come First Serve (FR-FCFS), which attempts to exploit row-buffer

affinities of memory banks by prioritizing requests targeted to the row currently

in the row-buffer. Otherwise, the oldest requests are prioritized first, following the

FCFS policy. An important drawback of FR-FCFS is that by being aggressively

aware of row-buffer affinities, the policy becomes skewed towards maximizing mem-

ory request service throughput and completely oblivious to the latency sensitivities

of tasks spawning the request.

The task-aware designs attempt to incorporate fairness in scheduling memory

requests of different competing tasks. Although these memory controllers provide

some Quality of Service (QoS) sensitivity towards memory resource access, they are

still inadequate for real-time systems. Real-time applications have latency require-

ments, meaning certain computations must be finished within a specified deadline,

which can be hard or soft. Missing a hard deadline causes functional failure, whereas

missing a soft deadline results in quality degradation. Real-time systems require

predictable memory request service latencies in addition to fairness. This allows

tasks that generate these memory access requests with a reasonable and bounded

worst-case execution time estimates.

In this thesis, scheduler or arbiter and access or request are used
interchangeably.

1.3 Memory Service Operations

Based on the underlying memory type, the memory controller handles additional

service operations in addition to regular read/write requests. In this section, a few

of these service operations are covered. To improve memory performance, these

operations must be scheduled in conjunction with regular requests.

4

Memory Service Operations

1.3.1 Refresh in DRAM

An access transistor and a capacitor make up a DRAM cell, which can store a

single bit of data. However, the capacitor eventually drains the charge. A DRAM

chip needs to be refreshed regularly to prevent data loss from charge leakage in

DRAM cells. Refresh cycle time is the duration of a refresh, which is 64ms on

average. A memory bank is unavailable to service any access requests during this

period. Therefore, the regular memory requests are stalled and may lead to increased

memory service time. At the same time, the refresh operation is mandatory to

elongate the storage of data in the cell, and if we postpone refresh operations, the

data may not be available. Thus, refresh is considered a compulsory operation that

delays the memory service. Scheduling the refresh operation is not the scope of our

dissertation.

1.3.2 De-stress in Phase Change Memory (PCM)

De-stress operation control Biased Temperature Instability (BTI) aging in PCM

memories. BTI causes an increase in the threshold voltage of a transistor, which is

the minimum voltage required to create a conducting path between the transistor

terminals. The increase in threshold voltage is due to the high operating voltage and

temperature needed for PCM cells. By removing the stress voltage for a certain pe-

riod, the de-stress operation partially recovers the increase in the threshold voltage.

All the operations towards PCM memories are halted during the de-stress operation

as the method removes the application of operating voltage for a de-stress period.

These delayed memory requests result in increased memory service time and, thus,

higher execution time. Therefore, it is necessary to schedule de-stress operations

along with regular memory requests to maintain memory performance.

1.3.3 Page Migration in Hybrid Memory

Hybrid memory exploits the benefits of associated different types of memory. Page

management in hybrid memory is challenging due to the various characteristics of

memory partitions. Random placement of pages in hybrid DRAM-PCM memory

may cause performance degradation due to the access latency difference in DRAM

and PCM partitions. Page migration moves pages across different partitions of

hybrid memory to optimize memory performance and cost efficiency. The goal of

5

Introduction

page migration is to place frequently accessed (hot) pages in the faster memory

(DRAM) and less frequently accessed (cold) pages in the slower but larger memory

(PCM).

To ensure that the advantages outweigh the migration costs, it is necessary to

monitor the access pattern accurately, prudently select the migration candidate,

and migrate these pages at the right time. The overhead or cost of migration is in

terms of execution of migration as well as the interference on the service of regular

read/write requests. In other words, migration extends memory service times by

delaying the processing of regular requests. Therefore, scheduling migration with

regular requests is beneficial in improving memory performance.

1.4 Motivation

Memory system performance can be optimized using memory request scheduling

which reorders memory operations and may even complete memory references out

of order. The scheduling policies can be static or dynamic based on the scheduling

decision at design or run time. The static scheduling policy is more predictable as it

can bind the maximum number of interfering requests. Dynamic scheduling policies

make the scheduling decisions by using the run-time information. A memory arbiter

operates at a significantly finer level of granularity than processor scheduling.

The objective of memory access scheduling policies depends on the applications

that spawn these memory requests. A memory request scheduling policy could pro-

vide service predictability, throughput, and fairness for memory requests to achieve

bounded worst-case execution time estimates for applications executing on the cores.

Furthermore, based on the type of memory used, the scheduling policy also varies

due to the different characteristics of each memory type.

Main memory is usually composed of pure DRAM technology. Alternatively,

non-volatile memories like Phase Change Memory (PCM), Resistive RAM (Re-

RAM), Spin Transfer Torque RAM (STT-RAM), or hybrid memory systems have

been used in recent years. Due to different characteristics, the memory service time

varies even with the same scheduling policy.

Figure1.2 presents the memory service time obtained for the DRAM-only, PCM-

only, and hybrid DRAM-PCM systems where the memory requests are scheduled

using the FR-FCFS policy. The first bar depicts the memory service time obtained

6

Motivation

Figure 1.2: Memory service time for PCM and Hybrid memory normalized with DRAM

when all memory requests are mapped to DRAM-only, the second bar represents

when memory requests are targeted to PCM-only, and the third bar represents when

all memory requests are targeted to a DRAM-PCM hybrid memory system. In the

case of hybrid memory, the pages are randomly allocated to each memory type.

The memory service time is high, 45%, when the requests are serviced from PCM-

only because of the high write latency of PCM memories compared to DRAM-only

systems. From the figure, it is observed that the average memory service time is

7.4% lower for hybrid memory over PCM-only memory systems. The hybrid memory

system uses the latency advantage of DRAM memory over PCM memory.

The increase in memory service time for both PCM-only systems and hybrid

memory is more evident for write-intensive benchmarks like lbm, sjeng and libquan-

tum (greater than 35%) because of the high write latency for PCM memories.

Among the multi-threaded benchmarks, the increase in memory service time is more

significant for canneal (≈ 24%) due to high WBPKI (Write-backs Per Kilo Instruc-

tions) compared to streamcluster (≈ 17%). The hybrid memory system utilizes the

latency advantage that DRAM memory has over PCM memory. However, the av-

erage memory service time is high when requests are serviced from hybrid memory

over DRAM-only systems because of the high write latency of PCM memory.

It is to be noted from the figure that the memory service time also depends on

the type of memory. Therefore, it is necessary that the scheduling policy should be

aware of the underlying memory type to improve the memory service time.

Along with regular read/write requests, the memory controller also receives other

7

Introduction

Figure 1.3: Number of delayed requests due to migration

service requests based on the type of memory: like page migration requests, re-

fresh requests, and de-stress requests, etc. These service requests halt the regular

read/write requests and increase the memory service time, which finally affects the

worst-case execution time of applications. This is because memory scheduling poli-

cies are unaware of such service requests, which causes performance degradation.

Figure 1.3 presents the number of delayed read/write requests due to migration.

The number is large for every benchmark. It is observed from the figure that the

number of delayed requests due to migration is more prominent for write-intensive

benchmarks. For example, for a benchmark with low WBPKI, such as namd, the

number is 73 on average, whereas for write-intensive (high WBPKI) benchmark

like lbm, it is 428 on average, which is very high. However, the number of re-

quests that got delayed due to migration is significant for low WBPKI benchmarks.

This increased number of delayed requests can result in longer memory service time

and higher application execution time. Therefore, it is beneficial that, along with

memory accesses, these services should be scheduled to achieve better memory per-

formance.

8

Objectives

1.5 Objectives

The following are the objectives of our thesis:

1. Supporting different main memory standards: This research aims to

provide support for different memory types. This research provides solutions

for challenges faced by different memory types such as DRAM, Phase Change

Memory (PCM), and Hybrid DRAM-PCM memory.

2. Achieving improved memory service time: One of the main objectives

of this research is to manage memory operations to achieve improved memory

service time, which leads to improved execution time for applications running

on the processing cores. Multiple scheduling policies are proposed to achieve

better memory service time, which arbitrates the data flow in and out to the

memory controller.

3. Attaining memory service predictability: We aim to design memory

access scheduling policies, which, along with throughput, improve the service

predictability. The scheduling policies incorporate run-time information about

applications to achieve predictability and Quality of Service (QoS). This re-

search aims to use DRAM and PCM as the main memory standard for systems

with real-time applications executing on the cores.

4. Minimizing Write operations: Our research focuses on discovering a way

to reduce the number of writes to the PCM and use it as the primary memory

standard. Towards this end, we aim to explore page migration techniques

in hybrid memory. In this research, we propose scheduling policies for page

migration that maximize the hits in the DRAM partition and reduce write in

the PCM partition of hybrid memory.

5. Improving longevity: This research also aims to improve the longevity of

PCM memories. PCM memories are vulnerable to Biased Temperature Insta-

bility (BTI) aging, which causes an increase in the threshold voltage of the

device and affects the lifetime of PCM cells. To improve longevity, we propose

de-stress scheduling mechanisms that control BTI aging and thus improve the

reliability and longevity of PCM cells.

9

Introduction

1.6 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

1.6.1 Request Scheduling Policies for Pure DRAM and Pure
PCM Memories

In this contribution, we have proposed four predictable memory request scheduling

policies for soft real-time systems with DRAM or PCM as the main memory stan-

dard. Real-time systems demand predictable memory service latencies to provide

reasonable worst-case execution time bounds for tasks. A significant factor deter-

mining task completion times can be memory request scheduling. The allowable

response latency for a memory request indicates the service urgency associated with

it and is in tune with the real-time demand of the task that spawned the request.

We propose QoS-aware memory request scheduling policies that consider the

relative priorities of a group of memory requests based on task urgencies. The

proposed methods can balance throughput and timeliness appropriately, resulting

in fewer deadline misses and better Quality of Service (QoS) with a unique frame-

based deadline-aware group reordering approach. The proposed scheduling policy

is based on the observation that the memory request service priority of a real-time

task is primarily influenced by the amount of remaining service that needs to be

provided for the spawning task and the time remaining before the deadline of the

task. Based on these factors, the scheduling policy dynamically assigns distinct

task-aware priorities to different memory requests, and fair scheduling of memory

requests is carried out to provide the required predictability for the memory request

service. Furthermore, the scheduling policy employs a novel row-buffer affinity-aware

memory request grouping scheme to maintain a high average throughput. We have

proposed four variations for this QoS-aware memory scheduling technique based on

the underlying memory type for the real-time systems.

• Two DRAM-based memory scheduling polices

1. RMRS: The proposed Real-time Memory Request Scheduler (RMRS)

prioritizes memory requests spawned from real-time tasks based on row-

buffer affinities, expected remaining memory requests, and task deadline

urgencies. This policy is discussed in Section 3.4.1.

10

Thesis Contributions

2. R-RMRS: This method, Reward-aware RMRS, is an extension of RMRS

and aims to maximize the total QoS acquired by the system when a set

of soft real-time tasks are executed over the length of the hyper-period.

Here, awareness of task rewards is also used to determine memory request

priorities. This policy is discussed in Section 3.4.2.

• Two PCM-based memory scheduling policies

1. LARS: The proposed method intends to replace DRAM with PCM as the

primary memory for real-time systems. LARS uses a row-buffer affinity-

aware memory request grouping system and urgency-based scheduling

approach to achieve predictability and maintain high average throughput.

LARS prioritizes reads over writes to compensate for the differing read

and write latencies of PCM memory. This policy is discussed in Section

3.5.1.

2. Re-LARS: An extension of LARS attempts to enhance the Quality of

Service (QoS) by including reward awareness in memory request prioriti-

zation. This policy is discussed in Section 3.5.2.

The proposed methods reduce deadline misses by 25.4% compared to FR-FCFS,

23.4% compared to RR, and 19.6% compared to EDF. Also, the acquired reward

improves by 33.9% compared to FR-FCFS, 32.4% compared to RR, and 14.8%

compared to EDF.The policies are fully discussed in Chapter 3.

In this dissertation, tasks or applications is used interchangeably.

1.6.2 Migration Scheduling Policies for Hybrid DRAM-PCM
Memories

In this contribution, we have proposed three migration scheduling policies for hybrid

DRAM-PCM memories. Hybrid memory comprises two memory types, DRAM and

PCM, which exploit the benefits of DRAM and PCM. Page management in hybrid

memory is challenging due to the different characteristics of the memory types. The

random placement of pages may cause write-intensive pages to be placed in the PCM

partition, and the costlier writes for PCM memory may result in performance degra-

dation of such memories. Page migration is a method to improve the performance

11

Introduction

of hybrid memory systems, which helps to migrate pages between the partitions of

the hybrid memory. The two most crucial issues to address during page migration

are which pages to migrate and when to migrate a page.

We propose three-page migration scheduling policies. The proposed policies

migrate write-intensive pages from PCM to DRAM, which helps to improve memory

service time due to the high write latency of PCM memories. The proposed policies

perform migrations at regular intervals. The interval length is either dynamically

adjusted as in our first policy, SRS-Mig, or is statically decided as in our other two

proposed policies, Mig-Slot and Mig-QoS. The proposed policies schedule migration

while handling the regular read/write requests. Consequently, the policies enhance

the overall execution time of the system by improving memory service time.

• SRS-Mig: Selection and Run-time Scheduling of page Migration schedules the

migration along with regular memory accesses through dynamic slot-based

scheduling. The scheduling method considers the regular flow of read/write

requests and ensures that migration does not hamper the response time of

regular memory accesses. SRS-Mig reduces migration overhead and guarantees

future access to migrated pages, yielding improved execution time and memory

response time.

• Mig-Slot: The method uses a slot-based scheduling approach where the exe-

cution timeline is divided into equal-length slots. This method schedules the

migration in the reserved slot space without hampering regular requests. Thus,

the method helped to improve execution time and memory response time.

• Mig-QoS: Mig-QoS is an extension of Mig-Slot. Mig-QoS improves memory

service rate along with memory response time. For this to happen, instead of

always scheduling migration in the reserved space in the slot, Mig-QoS post-

pones migration based on the memory request rate. If we schedule migration

when the incoming request rate is high, it will affect the service response time

of regular requests. To avoid this, Mig-QoS postpones migrations if the in-

coming memory request rate is high and thus improves the memory service

rate.

On average, our proposed policies could improve application execution time by

27%, improve memory service time by 24%, improve the response time of PCM by

12

Thesis Contributions

21%, improve memory service rate by 25%, and reduce energy consumption by 22%

over baseline. The full description of these migration policies are given in Chapter

4.

1.6.3 De-stress Scheduling Policies for Pure PCM Memories

This work proposes two de-stress scheduling policies to control BTI aging. The

increasing scaling of transistors has made non-volatile memories more challenging in

terms of device reliability. Transistor aging reduces the lifetime and reliability of the

circuit as well as system performance. Transistor aging in PCMs is accelerated by

high voltage requirements, raised temperatures, increased power consumption, etc.

Biased Temperature Instability (BTI) is a major failure that causes transistor aging.

BTI increases the threshold voltage. To avoid permanent failure, aging control

techniques regularly de-stress the circuit by lowering the voltage or eliminating the

stress voltage. De-stressing thereby facilitates recovery from an increase in threshold

voltage. The de-stress operations cease regular read/write requests. This, in turn,

hurts the average memory service time of the system. Therefore, de-stressing should

be dynamically controlled to balance BTI aging and system performance carefully.

We propose two de-stress scheduling policies, AGRAS and RODESA, which

schedule de-stress based on incoming memory request rate. The proposed methods

achieve better performance and reduce age degradation by dynamically scheduling

de-stress operations based on memory access rate. For this to happen, the meth-

ods monitor the rate of incoming requests and the current age. With the help of

threshold-based decisions, the proposed de-stress scheduling policies schedule de-

stress operations to control BTI aging while less hampering the service of regular

requests. The following variations of de-stress scheduling policies are proposed.

• AGRAS: We suggest an age and memory request rate-aware scheduling ap-

proach called AGRAS to manage device aging while preserving system perfor-

mance. AGRAS monitors the age and rate of incoming requests to schedule

the de-stress operation. AGRAS schedules the de-stress operation only when

the request rate falls below a threshold. This threshold value is dynamically

adjusted at regular intervals.

• RODESA: A request and opportunistic de-stress scheduler called RODESA

with two variations, RODESA-p and RODESA-b, are proposed. Based on the

13

Introduction

memory access pattern, both variations strategically schedule de-stress oper-

ations to control BTI aging. In order to lessen the impact on regular request

service and achieve lower age degradation, the suggested RODESA-p takes

into account the dynamic incoming memory request rate of executing applica-

tions and permits it to perform partial de-stress opportunistically. RODESA-b

proposes a bank-specific de-stress scheduling policy. It schedules de-stress in

the background based on the memory access pattern of the bank. Because the

background de-stress occurs concurrently with the normal request service, it

improves memory performance and reduces age degradation.

The proposed RODESA-p improves performance by 18%, and RODESA-b im-

proves performance by 25% compared to RegDes. The age degradation for RODESA-

p is 17%, whereas it is 21% for RODESA-b over RegDes. The detailed description

of each de-stress scheduling policy is given in Chapter 5.

1.6.4 Avenues for Improving Migration and Aging

Data placement in hybrid memory is complicated because of the different charac-

teristics of memory types. According to the needs of the system, page migration

facilitates the movement of pages between memory types to increase performance.

To reduce the increased write latency caused by PCM, state-of-the-art methods

move hot pages—which receive more write requests—to DRAM. In cases when the

hotness of the page is wrongly judged or the page almost exhausts its write requests

while in PCM, migrating such pages to DRAM turns out to be futile. To prevent

unsatisfactory page migrations and enhance hybrid memory performance, it is es-

sential to accurately identify candidates for page migrations and migrate at the right

time.

Besides the expensive writing, PCM memory can have reliability problems such

as Biased Temperature Instability (BTI), Hot Carrier Injection (HCI), Dielectric

breakdown, etc. The most important is BTI aging, which increases transistor thresh-

old voltage (vth). An irreversible functional breakdown may result from BTI aging.

Current methods regularly de-stress/recover the circuit by removing the stress volt-

age to prevent permanent functional failure. De-stressing thus causes a delay in the

regular request service, which may hurt the program execution time. Therefore, it

is essential to plan de-stress procedures in addition to migration to assure hybrid

memory performance.

14

Thesis Contributions

We propose a write intensity-based migration scheme and an opportunistic de-

stress scheduling policy to enhance hybrid memory performance. The migration

policy selects page migration candidates based on write intensity, which reflects

the current memory behavior rather than the cumulative write access count. The

write-intensity-based page migration maximizes the hits in DRAM and improves

the execution time due to the low access latency of DRAM. Furthermore, to control

BTI aging, the memory controller buffers write-intensive pages from PCM in regular

slots using a migration buffer by the proposed policy. During the de-stress process,

these buffered pages are moved in the background to DRAM. Since the migration is

carried out in the background, the de-stress procedure partially offsets the overhead

of the migration. Therefore, the proposed policies maintain age degradation while

achieving improved execution time. The following variations of migration and de-

stress operations are proposed.

• WiMig: The technique carefully selects candidates for page migration based

on write intensity, the number of write requests received in a given time.

The method initiates page migration at regular intervals. The highest write-

intensive page is selected from a set of pages with a write access count greater

than a predefined threshold.

• WiForeMig: The second policy incorporates the concept of demotion to op-

timize the selection of migration candidates. The method demotes certain

pages from migration if it is not worth enough. Demoting a page means it is

no longer eligible for migration. The page with low write intensity and has

been in the queue for a long time is demoted from migration. It is anticipated

that in the future, there will be fewer writes to these kinds of pages. This aids

in stopping the migration of certain pages, which reduces the benefits of the

migration.

• DOPMig: The proposed method enhances the performance of hybrid memory

by migrating write-intensive pages to DRAM with the awareness of de-stress

operation to mitigate BTI aging. The method classifies pages as migration

candidates based on their write intensity and opportunistically migrates them

to DRAM in parallel with PCM de-stress operations. The policy improves

memory service time by performing de-stress operations at regular intervals

15

Introduction

and scheduling the migration of pages in the background. The memory con-

troller buffers write-intensive pages from PCM in regular slots using a migra-

tion buffer. During the de-stress operation, these buffered pages are moved

to DRAM in the background. Since the migration is carried out in the back-

ground, the de-stress procedure partially offsets the overhead of the migration.

By demoting less beneficial page from migration, the proposed WiForeMig policy

improve performance by 35%. The proposed DOPMig opportunistically migrates

pages during de-stress, and keeping the de-stress interval the same as RegDes im-

proves performance by 22%. These works are explained in Chapter 6.

1.7 Summary

Recent emergence of non-volatile memories has shifted the paradigm, and computer

architects are looking at them as an alternate choice for DRAM in the memory

hierarchy due their high density. These NVMs have high write latency, high write

energy and are prone to reliability issues. To exploit the benefits of both types of

memory, researchers have come up with the idea of hybrid DRAM-NVM memories.

In this dissertation, we aim to enhance the performance, utilisation, and longevity

of DRAM and PCM memories by dealing with their challenges and making them

capable candidates to fit into the memory hierarchy through effective scheduling

policies.

We have presented predictable memory request scheduling policies for DRAM

and PCM memories to improve performance. The presented QoS-aware memory

request schedulers consider the urgencies associated with the memory requests and

characteristics of memory types. To improve the utilisation of both DRAM and PCM

memories, we propose migration mechanisms to overcome the limitations caused by

the random placement of pages in the hybrid DRAM-PCM memories. Our re-

search intends to look into the memory access pattern and migrate write-intensive

pages while less hampering the service of regular requests. To improve reliability

and longevity of PCM memories, we propose aging control mechanisms through de-

stress scheduling. The proposed de-stress scheduling mechanisms opportunistically

schedule de-stress by monitoring the memory access rate to control early aging of

the PCM memories. Overall, the research aims to use DRAM and PCM memories

as main memory alternatives by improving memory service time and thus the execu-

16

Organization of Thesis

tion time of applications running on the cores. This dissertation proposes different

scheduling strategies for memory requests and service operations like de-stress and

migration.

1.8 Organization of Thesis

The rest of the thesis is organized as follows:

• Chapter 2 summarizes the background and state-of-the-art techniques related

to the contributions of the thesis.

• Chapter 3 presents the first contribution: the predictable memory request

scheduling policies for real-time systems with main memory as DRAM or

PCM. The QoS-aware memory request scheduler for DRAM and PCM in-

cludes the task-level information to schedule the memory requests and looks

into the disparity in read and write access latencies of these memories.

• Chapter 4 illustrates the migration scheduling policies to improve the perfor-

mance of hybrid DRAM-PCM memories. The scheduling policies use slot-

based migration scheduling for write-intensive pages.

• Chapter 5 presents the de-stress scheduling policies to control BTI aging in

PCM memories. The proposed methods consider the incoming memory re-

quest rate before scheduling de-stress to reduce the delay in service of regular

requests.

• Chapter 6 discusses the methods to improve the migration strategy and better

control BTI aging in hybrid memories. The chapter proposes a migration-

aware de-stress mechanism to enhance the performance of hybrid DRAM-PCM

memory.

• Chapter 7 finally conclude the thesis.

17

2
Background

Modern computer systems use memory controllers to access data from memory sys-

tems. Memory controllers manage such data access by judiciously multiplexing the

data bus and devices among multiple contending memory requests. The function of

a DRAM memory controller is to manage the flow of data into and out of DRAM

devices connected to that of the DRAM controller in the memory system. Based

on the underlying memory technology and its characteristics, the memory controller

manages the data flow differently. This chapter presents the different memory tech-

nologies, their properties, and existing techniques for performing various functions

of memory controllers.

The rest of the chapter is organized as follows: section 2.1 discusses different

main memory technologies like DRAM, NVMs, and Hybrid DRAM-NVM memories.

Their characteristics and organization are presented in detail in this section. The

challenges associated with different memory technologies are discussed in section 2.2.

This section gives an overview of how the memory controller handles the needs of

different memories to enhance performance. Existing solutions and drawbacks of the

state-of-the-art techniques are presented in sections 2.3, 2.4 and 2.5. These sections

present the existing techniques for the challenges associated with each memory type

and their advantages and disadvantages in detail. Section 2.6 finally concludes the

chapter.

18

Main Memory Technologies

2.1 Main Memory Technologies

Memory subsystems are essential in determining power consumption, dependability,

and application performance for all systems, from embedded devices to supercom-

puters. Traditional DRAM memories have long been the standard components of

primary memory systems. It is debatable that this technology can advance further

and meet the demands of modern multi-processor computers running data-intensive

applications. Emerging non-volatile memories (NVM) can offer many advantages

over current DRAM devices, such as low leakage power and higher density. Com-

pletely replacing DRAMs with these NVMs is not a suitable option due to the costlier

writes of such memories in terms of write endurance, write latency, and write en-

ergy. Also, NVMs are prone to reliability issues due to high voltage requirements.

Therefore, directly replacing DRAMs with these emerging NVMs is unsuitable. Hy-

brid memories, which combine the advantages of DRAM and NVMs, have evolved

as a solution to the drawbacks of both memory types and offer a balance between

performance, capacity, and persistence.

The following subsections provide a detailed analysis of different types of memory

technologies and their advantages and disadvantages.

2.1.1 Dynamic Random Access Memories (DRAM)

Figure 2.1 presents an overview of the DRAM memory architecture. A DRAM

chip has several banks that provide parallel data access from various banks. Every

DRAM bank comprises numerous rows and columns of storage cells arranged in a

two-dimensional array. A DRAM cell is composed of transistors and capacitors that

store the data. Every bank furthermore has a row-buffer. A row of data must be

brought to the row buffer before a data element corresponding to that row may be

accessed from the bank. A row hit happens when the requested data is already

present in the row buffer. This incurs lower latency than a row miss where the

requested data is absent in the row buffer.

To build a rank, multiple DRAM chips are assembled and operate in lockstep.

One or more ranks form a channel. All banks share a common set of command and

data buses on a channel. A memory controller uses the channel to access the DRAM

device. The memory controller is responsible for scheduling requests, creating the

commands corresponding to each request, scheduling the commands so that only one

19

Background

Figure 2.1: DRAM memory organization

bank uses each bus at a time, and translating physical addresses as a combination

of channel, rank, bank, row, and column addresses.

The memory controller generates five different sorts of commands: no operation

(NOP), precharge (PRE), refresh (REF), column address strobe (CAS), and activate

(ACT). Using its row address, the activate (ACT) instruction retrieves a specific row

and places it into the bank’s row buffer. The required data in the row buffer can

be read or written using a column address strobe (CAS) command. To write the

contents of the row buffer back into the memory cells of a specific row, use the

precharge (PRE) command. A DRAM must be regularly refreshed using the refresh

(REF) command to maintain its stored data. There are tight timing requirements

for each of these commands, which all memory controller designs must meet. An

NOP command inserts empty cycles to meet these timing constraints. Double Data

Rate DRAM (DDRx DRAM) uses data bursts to improve data throughput. In

Double Data Rate DRAMs, the memory controller prefetches data corresponding to

a requested column address and data from several adjacent addresses.

The arrays of sense amplifiers, used to read data from a memory cell, act as

row-buffers that provide temporary data storage. A memory controller can employ

two types of row-buffer management policies: the open-row policy and the closed-

page policy. The open-row policy keeps the row buffer open for as long as possible

20

Main Memory Technologies

and various columns of the same row can be accessed with minimum latency. The

row buffer is precharged only when a distinct memory row must be accessed or the

start of the refresh period is encountered. In contrast, the closed-page policy auto-

precharges the row buffer after each access. This strategy is intended to ideally

handle memory request patterns with low degrees of access locality and promote

accesses to random locations in memory.

2.1.2 Non-Volatile Memories (NVM)

Emerging non-volatile memory technologies are promising main memory candidates

that can store more data for a lower price than the costly silicon chips used in

common consumer electronics like cell phones, digital cameras, etc. The density of

dynamic random-access memory (DRAM) and the non-volatility of flash memory

are combined in emerging non-volatile memory technologies like magnetic random-

access memory (MRAM), spin-transfer torque random-access memory (STT-RAM),

ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and

resistive random-access memory (RRAM). As a result, these technologies have be-

come highly attractive and are a further choice for future memory hierarchies.

Unlike DRAM, magnetic storage devices are used to store the data instead of

an electric charge flow in MRAM. STT-RAM is a non-volatile MRAM that scales

more efficiently than conventional MRAM. The STT effect allows a spin-polarized

current to be used to change the orientation of a magnetic layer in a magnetic tunnel

junction or spin valve. FeRAM uses a ferroelectric material to achieve non-volatility,

exhibiting spontaneous polarization and reversible by an external electric field. The

principle of PCM involves the reversible phase transition of a chalcogenide glass from

its amorphous to crystalline state. This is accomplished by heating and cooling the

glass. RRAM is based on the memristor technology where the resistance change

based on polarity, magnitude, and duration of applied voltage.

In this dissertation, we focus our research to PCM because it has been well

studied and is considered to be a competitive alternative to DRAM-based memory.

2.1.2.1 Phase Change Memory (PCM)

Phase Change Random Access Memory (PCRAM) or Phase Change Memory (PCM)

[3] is a type of non-volatile memory that is the currently most matured emerging

memory technology. Figure 2.2 shows the basic structure of a PCM memory cell

21

Background

Figure 2.2: Represenatational view of a PCM cell

RESET Pulse

SET Pulse

Read
Pulse

T
melting

T
crystallization

Amplitude

Time

I
SET

I
RESET

I
READ

t
READ

t
RESET

t
SET

Figure 2.3: Operations in PCM cell

consisting of a transistor and a phase change device. The cell consists of an access

transistor and a phase change material like GST (Ge2Sb2Te5, or Germanium, Anti-

mony, and Tellurium). The difference in the resistivity of this phase change material

is used to store a bit in the PCM cell. The phase change material can exist in either

an amorphous or crystalline state. PCM exploits the electrical resistivity of GST

between the two states to store information. A phase transition occurs when heat

and current are applied to the junction in the chalcogenide alloy. Because of the

consistent crystalline structure, the crystalline phase gets its name, and it has low

resistance. On the other hand, the disordered lattice of the amorphous phase offers

large resistance. The amorphous state of GST is obtained by heating GST to a high

temperature and cooling it down quickly. The crystalline state of GST is obtained

when GST is heated to a temperature between the crystallization and melting point

and cooled down quickly.

Each operation, such as reading, writing ”0,” and writing ”1”, requires a different

current, as shown in Figure 2.3. Writing bit ’1’ is known as a SET operation, whereas

22

Main Memory Technologies

writing bit ’0’ is known as a RESET operation. The RESET operation requires a

high amplitude electrical pulse for short duration to heat the phase-change material

above its melting temperature, while the SET operation heats the material to its

crystallization temperature by applying a moderate-amplitude electrical current for

long-duration. A READ operation typically involves reading the electrical resistance

of the PCM device, which indicates the amorphous (high-resistance, logical ‘0’) or

crystalline(low-resistance, logical ‘1’) state of the PCM device. To read a bit from the

cell, a small voltage is applied across the GST. The applied voltage may result in the

creation of current because of the large resistance difference between the crystalline

and amorphous states of the changing material. The reading bit is identified by

sensing this generated current with the help of the access transistor. The latency of

the read operation in PCM cells is typically tens of nanoseconds.

The write latency of PCM is high compared to its read latency (3 times). The

current needed to write to a PCM cell increases the current variance, which sub-

sequently increases the resistance variability. Furthermore, among the SET and

RESET operations, SET requires low power and long latency, while RESET re-

quires relatively high power and small latency. Also, PCM write operation is a

highly energy-consuming process. Therefore, PCM cells can withstand only a lim-

ited number of writes (108 writes).

Along with these costlier writes, the increasing scaling of transistors has made

non-volatile memories more challenging in terms of device reliability, such as Bi-

ased Temperature Instability (BTI), Hot carrier injection (HCI) [4], and dielectric

breakdown [5] etc. The most important failure mechanism is BTI [6], which causes

an increase in threshold voltage (vth) of transistors and leads to transistor aging.

The aging of the transistor steadily reduces the lifetime and system performance. In

PCMs, elevated temperature, high voltage requirement, increased power consump-

tion, etc., accelerate transistor aging.

2.1.3 Hybrid Memories

DRAM technology has significant drawbacks, including high idle power, poor scal-

ability, and low density. Even if emerging non-volatile memories overcome these

drawbacks, they still have shortcomings, such as low write endurance, high write

energy, and high write latency. Combining DRAM with non-volatile memory—like

PCM, ReRAM, and STT-RAM- is a useful way to expand capacity and improve

23

Background

Storage

PCM DRAM

Memory Controller

LLCHybrid
Memory

(a)

Storage

PCM

DRAM

Memory Controller

LLCHybrid
Memory

(b)

Figure 2.4: Hybrid memory a) Parallel Organization, b)Hierarchical Organization

performance.

Hybrid DRAM-NVM memory has emerged in recent years and exploits the ben-

efit of both types of memories. Two primary designs for hybrid memory exist:

vertical or hierarchical organization and horizontal or parallel organization. The

first one arranges DRAM and NVM at different levels. DRAM acts as a cache or

write buffer for the lower-level NVM in this arrangement. The size of the DRAM

is small and NVM is accessed only when DRAM misses. The second one, as the

name indicates, places DRAM and NVM horizontally, and the linear address space

is shared. In parallel architecture, NVM and DRAM are coupled to the memory

bus, and a memory page is exclusively stored in any of the partitions. Figure 2.4a

and Figure 2.4b present the parallel and hierarchical organization of hybrid memory.

2.2 Challenges with Different Types of Memories

The memory controller receives memory requests from heterogeneous requestors,

such as processors, DMAs, and hardware accelerators. These requestors generate

diverse memory traffic in terms of arbitrary read/write transactions with variable

sizes on behalf of the applications they run. The memory controller acts as a con-

necting point between these requestors and the main memory. Based on the under-

lying memory type, the memory controller manages the spawned memory requests

24

Request Scheduling Techniques

to achieve better memory performance and, thus, improved system performance.

Along with regular read/write requests, the memory controller must also handle

other service operations that are required for the functioning of the memory types.

For example, DRAM must be refreshed regularly to restore the data in the DRAM

cell.

Similarly, regular de-stress operations need to be performed for NVM cells to

control the aging of the device. For hybrid memory, the pages can be randomly

placed in either partition. Due to the varying properties of different memory types,

memory pages may need to be correctly placed initially or migrated to another

partition at run time to achieve better performance. All these service operations

cause high penalties on memory performance as they delay the service of regular

read/write requests.

Therefore, the memory controller has to manage such service operations along

with regular requests to achieve a better memory performance and, thus, an im-

proved overall system performance. Researchers have devised different solutions

for these operations and proposed various memory controller models. The rest of

the sections in this chapter discusses the memory controller models to manage the

following operations :

1. Request scheduling techniques for pure DRAM and NVM memories

2. Page migration policies for hybrid DRAM-NVM memories

3. Aging control mechanisms for pure NVM techniques.

2.3 Request Scheduling Techniques

Even though a memory controller only needs to schedule individual instructions to

meet JEDEC timing requirements [7], a specifications for semiconductor memory

circuits. A front-end request scheduler is also part of the memory controller design,

which manages the order in which requests are processed. This scheduler helps to

achieve better memory service time. First Come First Serve (FCFS) is the basic

scheduling policy where the memory requests are scheduled in the order they arrive

at the memory controller.

First Row hit First Come First Serve (FR-FCFS) is a conventional memory

request scheduling strategy used earlier in most general purpose systems. The

25

Background

scheduling method prioritizes memory requests targeted to an open-row over the

closed-row requests. Among the open-row requests, the method schedule is in FCFS

order. FR-FCFS aims to maximize the throughput of the memory by prioritizing

ready accesses to an already-open row, that is, row hits. The goal of ATLAS [8] is to

increase system performance by giving priority to applications with lower achieved

memory service over other requests. Both these methods can cause unfair service

for some applications as the applications have a large number of row hits, or ap-

plications with a large number of requests will always get prioritized, and other

applications are starved.

There exist scheduling techniques [9–11] that attempt to solve this problem by

adding application awareness while scheduling requests. These methods maximize

memory throughput and provide fairness in service for applications executing on

the core. PAR-BS [9] processes requests as batches to avoid starvation and pro-

vide fairness. To optimize throughput, PAR-BS employs a parallelism-aware batch

scheduling policy that processes requests from a thread parallel to the bank. This

parallelism reduces the stall time experienced by a thread.

In order to increase system throughput further, Thread Cluster Memory Schedul-

ing (TCM) [10] dynamically groups threads with comparable memory access behav-

ior into two clusters: the latency-sensitive (memory-non-intensive) and the bandwidth-

sensitive (memory-intensive). The latency-sensitive cluster is given priority over

the bandwidth-sensitive cluster. The technique uses a niceness metric to alter-

nately shuffle the priority of threads in the bandwidth-sensitive cluster, allowing

each thread fair access while minimizing inter-thread interference. Lavanya et al.

propose a Blacklisting memory scheduler (BLISS) [11], which groups applications

into interference-vulnerable applications and interference-causing applications. The

vulnerable-to-interference group is prioritized over the interference-causing group.

Core-Aware Dynamic Scheduler (CADS), a multicore memory controller, pro-

posed by authors in [12] dynamically modifies its scheduling technique at run-

time through reinforcement learning (RL). This scheduler uses parallelism to ac-

cess several DRAM banks and locality between data requests from many cores. An

application-aware memory request scheduling strategy is introduced in [13]. The

method classifies memory requests into CPU and GPU requests. A dynamic bank

partitioning rule is applied to the CPU requests, and GPU requests are assigned

with criticality to determine the priority of requests.

26

Request Scheduling Techniques

Real-time memory controllers, on the other hand, demand predictability more

than fairness. Critical applications executing on real-time systems have a latency

bound, and the above-discussed techniques may not guarantee the latency bound

due to prioritization. The inability to provide such predictability forces real-time

systems to use very conservative estimates corresponding to service time latencies

of memory requests. This often leads to significantly increased worst-case execution

time estimation of the tasks, resulting in low resource usage efficiency.

2.3.1 Predictable Memory Request Scheduling for DRAM

Researchers have devised a few memory access scheduling methods where memory

requests or commands are scheduled to provide guaranteed latency bounds, as the

memory access scheduling policy plays a vital role in controlling the task completion

time and deadline misses.

A mixed-row policy memory controller is proposed by Gossen et al. in [14]

that keeps the row open for a predetermined period before closing it. The method

incorporates a command re-ordering method that sets lower limitations on the band-

widths allotted to memory requests by using fixed, precomputed patterns of SDRAM

commands. Reinke et al. propose a PRET memory controller [15], which employs

bank privatization for each requesting core. The DRAM accesses from different

cores are multiplexed using Time Division Multiplexing (TDM) and predetermine

the order of accesses.

A considerable reduction in memory utilisation might occur during bank priva-

tization, mainly if the workload is unevenly distributed among cores. Palloc [16]

proposed by Yun et al. avoids bank privatization by distributing memory pages

across different cores, whereas the method controls the bank sharing among concur-

rently executing applications.

Recent predictable memory controller designs look into the criticality levels of

applications executing on the cores. The criticality or temporal requirement of

applications divides these applications into HRT (Hard Real-Time) and SRT (Soft

Real-Time). HRT applications need strong latency guarantees, but SRT applications

need a good throughput and are not very concerned with worst-case time-bound.

Existing techniques like [17–20] are some of the criticality-aware predictable memory

controller designs.

A memory control technique for dual criticality task systems, abbreviated DCmc,

27

Background

is presented by Jalle et al. in [17]. In this method, the collection of banks is di-

vided into critical and non-critical ones. Round Robin (RR) scheduling is used in

critical banks assigned to critical requestors to ensure latency limits. The remaining

requestors are scheduled using FR-FCFS and assigned to non-critical banks to im-

prove average-case performance. An application criticality-aware bank-level address

mapping is proposed in [19]. The application set is partitioned into disjoint memory

access groups (MAGs). A particular MAG may comprise non-critical tasks (non-

critical MAG) or crucial tasks (critical MAG). Each bank is assigned a single critical

MAG and a set number of non-critical MAGs by the method, and applications in

the critical MAG are prioritized during request and command-level scheduling.

In [21], authors proposed a request bundling mechanism for mixed-criticality

applications. The method divides banks into HRT and SRT banks and follows

different arbitration schemes. HRT banks follow FCFS scheduling and enforce that

commands belonging to at most one HRT bank can be in the command queue. Mean-

while, SRT banks are scheduled in the FR-FCFS order. Furthermore, the method

also employs a command-level scheduler both in round and out round. Command

execution is divided into a sequence of rounds, arbitrated by the inRound sched-

uler, and interleaved with out-of-round time intervals, scheduled by the outRound

scheduler.

The distributed architecture of the Globally Arbitrated Memory Tree (GMT)

technique is presented in [20] and may expand in response to the number of memory

clients or applications. GMT assigns different arbitration policies for each applica-

tion based on their criticality. The one-gang-at-a-time scheduling policy is globally

enforced by the scheduler in RT-Gang [22] to ensure precise and tight Worst-Case

Execution Time (WCET). DRAMbulism [23] proposed by Reza et al. employs

read/write bundling based on request direction. The method achieves improved

WCET by pipelining commands in each bundle.

Using static priority scheduling, the techniques mentioned above [17, 19, 20, 23]

improve the service predictability of critical applications. These techniques can only

ensure latency bound for this fixed set of critical applications. As a result, these

techniques cannot be used for the general scheduling of memory requests spawned

from real-time applications with similar criticalities.

Furthermore, most of these techniques employ command-level scheduling, whereas

requests in these schemes are scheduled in FR-FCFS or TDM order. The main

28

Request Scheduling Techniques

memory is distributed in a relatively predictable manner via TDM-based arbitra-

tion. Under utilisation of the resource is one drawback of this strategy; if a processor

has a time slot reserved but does not use it, the slot cannot be supplied to another

processor. FR-FCFS may cause starvation for such applications, which spawns a

smaller number of row-hit requests. Furthermore, these FR-FCFS or TDM policies

do not consider the real-time requirements, which will impact the predictability of

real-time systems.

Therefore, a predictable memory request scheduling scheme for tasks with similar

criticalities is necessary for the performance enhancement of real-time systems.

2.3.2 Predictable Memory Request Scheduling for PCM

The scheduling policy varies based on the memory type. All the above-discussed

techniques consider the DRAM memory type. A recent trend towards the design of

real-time embedded systems is the use of Phase Change Memory (PCM) as the main

memory. PCM is desirable as it is non-volatile, scales better than DRAM, and is

more power efficient. The read and write access latency for DRAM are comparable,

while this is not true for PCM. The write latency for PCM is high and is 3-5 times

larger than the read latency. This may cause many tasks in the real-time embedded

systems to incur longer completion times and cause tasks to miss their deadlines.

Furthermore, due to the disparity in read and write latencies, these predictable

DRAM controller designs cannot be directly adapted to predictable PCM controller

designs.

2.3.2.1 Write Reduction and Wear-Leveling Techniques for PCM

Most of the state-of-the-art techniques [24–36] in PCMs deal with the write manage-

ment such as write reduction techniques or wear-leveling techniques. Write reduction

techniques are mainly divided into encoding or compression techniques. Data Com-

parison Write (DCW) [37] and Flip-N-Write (FNW) are compression [24] techniques

that aim to reduce unnecessary write to NVM by writing only the modified bits or

by data inversion. READ [31] reduces the number of writes by encoding only the

updated words of the blocks using fine granularity encoding. DATACON [34] routes

the memory requests to the most optimal overwritten memory regions, reducing the

latency and energy usage of PCM writes.

29

Background

In order to extend life, wear leveling approaches uniformly distribute the uneven

bitflip pressure among the PCM cells. The wear leveling techniques can be intra-line

or inter-line. Intra-line techniques balance the bitflip pressure inside memory cells,

whereas inter-line systems balance the write pressure across the physical memory

lines. Horizontal wear-leveling proposed in [28] rotates the data bits within the

memory lines. In [29], authors proposed WAlloc, an efficient wear-aware manual

memory allocator, which employs the Less Allocated First Out allocation policy.

A wear-leveling-aware counter mode for data encryption is presented in [30]. In

contrast to current encryption schemes, this method uses wear-leveling remappings

to reset the line counter and prevent counter overflow.

2.3.2.2 Scheduling Techniques for PCM

All these above-discussed methods aim to reduce the number of writes to the PCM

due to the costlier writes for such memory. There exist a few scheduling techniques

[38] for non-volatile memories, which aim to improve total memory performance

through write reduction. Hu et al. design an ILP-based write-aware scheduling

technique [38] to minimize the number of writes. The authors also propose a re-

computation algorithm that calculates the cost of recomputing related nodes that

produce each dirty page. The algorithm decides to discard dirty eviction or recom-

pute based on the cost.

PALP [39], a memory access scheduling mechanism proposed by Song et al.,

works with the observation that PCM banks are operated in independent partition.

The method introduces new memory commands to enable parallelism, which avoids

read/write conflict. The memory access scheduling mechanism prioritizes requests

that exploit partition-level parallelism.

2.3.2.3 Predictable Scheduling Techniques for PCM

While none of the above methods aim to improve task-level predictability, a few pre-

dictable memory controller designs exist for PCM that try to imbibe task/application-

level predictability to make PCM a more suitable main memory candidate for real-

time systems. With PCM serving as the underlying memory technology, Zhang

et al. [40] developed energy-efficient real-time task scheduling systems based on

the Earliest Deadline First (EDF) and Rate Monotonic (RM) techniques. By dy-

namically recovering the slack periods created when real task completion times are

30

Request Scheduling Techniques

shorter than worst-case execution times (WCETs), both techniques try to maximize

system-level QoS through energy minimization.

Wang et al. address task scheduling using ILP and heuristic techniques in [41],

taking into account various temporal and memory constraints. In [42], authors pro-

pose a real-time schedulability analysis for transiently powered applications by com-

puting the energy and computing capability in the real-time domain. The schedu-

lability of such applications is analyzed using existing EDF and RM scheduling

policies.

The heuristic proposed in [43] uses per-cluster dynamic voltage and frequency

scaling (DVFS) and dynamic slack to minimize the system’s peak power usage during

runtime. The tasks are scheduled using EDF at design time, and at run time, the

most appropriate task is assigned to the currently available slack based on the impact

of the task on power and temperature. All these techniques deal with task-level

scheduling to improve the predictability of real-time systems while not considering

memory access predictability and performance.

Memory request scheduling is a technique to improve system predictability by

achieving predictable memory request service. In [44], Ferreira et al. suggested a

Phase Change Main Memory Architecture (PMMA) that uses DRAM as a page

cache for PCM-based main memory. They describe a read-write-read (RWR) strat-

egy to enhance endurance by writing only the dirty writes back to PCM. Zhou et

al. presented real-time scheduling solutions for PMMA architecture in [45], where

the memory requests are assigned with task priorities and schedule requests based

on these priorities.

A technique to determine the upper bound on the worst-case execution time

(WCET) of tasks taking contention on the shared PCM is proposed by Dasari et al.

in [46]. The method considers the interference produced by co-executing tasks and

task criticalities to compute the upper bound. Bazzaz et al. propose an NVM-based

data memory [47], which includes a special write buffer and multi-bank memory

module. The write buffer helps improve performance by reducing average memory

access latency.

Observations

State-of-the-art predictable PCM memory controller systems are focused on persis-

tently co-executing task sets, for which fixed statically assigned priorities can be

31

Background

employed based on the criticality of the tasks. Consequently, these memory con-

trollers cannot improve predictability by scheduling memory requests of a group

of real-time threads with similar criticalities. Furthermore, the disparity in read

and write latencies for PCM memories is not considered in most of the existing

predictable memory controller designs.

To meet real-time needs by enhancing memory service time, it is desirable to de-

velop predictable memory request scheduling strategies for DRAM and PCM mem-

ories, which incorporate task-level information into account. With this task-level

information, the predictable memory request scheduling policy for PCM memories

should take note of the variation in read and write latencies for such memories.

Chapter 3 presents predictable memory request scheduling policies for DRAM and

PCM memories, which adapt the run-time information of tasks to prioritize memory

requests distinctly.

2.4 Page Migration for Hybrid memories

Hybrid memory addresses the drawbacks of NVM and DRAM technologies by lever-

aging their respective advantages. Page migration is designed to rearrange data

pages in these memory divisions according to access patterns. Creating effective

page migration algorithms is challenging as the migration is a costlier process. When

we do page migration, the main questions are what data to migrate, when to mi-

grate, and how much to migrate. The page migration algorithms must answer these

questions. Furthermore, the organization of hybrid memory also impacts the ef-

fectiveness of the page migration algorithm. This subsection discusses the existing

solutions for these questions, which we divided into the following four categories:

(i) the topology of hybrid memory, (ii) decision criteria for candidate selection for

migration, (iii) granularity of migration, and (iv) the time of migration to minimize

the cost of migration.

2.4.1 Topology of Hybrid Memory

Hybrid memory is organized either in parallel/horizontally or hierarchically/vertically.

DRAM is used as a write buffer or cache in hierarchical organizations [3, 48–51].

Meanwhile, DRAM and NVM share the linear address space in a parallel architec-

ture. All these solutions aim to circumvent the costlier writes of NVMs by limiting

32

Page Migration for Hybrid memories

the number of writes to NVM memories.

The hierarchical solutions reduce the writes through some cache management

techniques. In [3], Qureshi et al. propose PCM-based hybrid memory where a page

is kept in the DRAM cache if it results in a page fault. In [48], Park et al. propose

an in-DRAM write buffer for hybrid memory. The proposed hybrid memory setup

has two DRAM parts; one acts as a DRAM cache for NVM, and the other is the in-

DRAM write buffer. The DRAM cache is managed at the DRAM row granularity,

and the dynamic-sized in-DRAM write buffer stores the dirty lines evicted from

the DRAM cache. By coalescing the writes, the in-DRAM write buffer reduces the

number of writes to the NVM partition in the hybrid memory.

Khouzani et al. discuss a segment and conflict-aware page allocation policy in

[49]. The proposed method identifies the segment information on page fault and LLC

writeback, and only the data segment is allocated to DRAM. Upon page fault for

a data segment, the physical page is mapped to a less-conflicting DRAM set. The

authors have presented a unique NVM-MLC-based memory storage architecture

in [50], which includes a DRAM buffer and a self-adaptive data filtering module

(SADFM). A large block set can be retrieved from the NVM at a time using a large

block fetch buffer, which improves spatial locality. The self-adaptive filtering buffer

helps to handle possibly reusable data between blocks, which collectively make a

large block set that has been removed from the large block fetch buffer.

The performance of these methods is hampered by their inability to utilize the

total memory bandwidth due to the finite quantity of DRAM capacity. The hori-

zontal or parallel architecture shares the address space, and memory pages can be

allocated exclusively to any partition.

There exist some state-of-the-art techniques [52] that propose a hybrid architec-

ture that can switch the hybrid memory organization between parallel and hierarchi-

cal. In [52], the authors suggest an energy-saving hybrid memory architecture that

alternates DRAM between a cache for NVM and a different DIMM for applications

running on the core.

Chen et al. propose Hardware/Software Cooperative Caching (HSCC) [53],

which logically supports cache/memory hierarchy while organizing NVM and DRAM

in flat address space. The NVM hot pages are cached in the DRAM partition. The

NVM pages with a hotness value, which is based on access count and recency, greater

than the dynamic fetching threshold are cached in DRAM. Wen et al. propose hard-

33

Background

ware accelerated memory manager HMMU [54]. Instead of moving the complete

page on an access, HMMU moves the requested block to the faster DRAM. The

pages with more cached blocks than a predefined threshold are swapped completely

to the faster DRAM.

The memory pages are exclusively placed in NVM and DRAM partitions in a

parallel architecture. The memory performance of such architecture can be enhanced

by migrating write-intensive pages into the DRAM partition because NVM memory

has a high write delay. However, given the significant migration overhead, it is

critical to properly identify hot pages in NVM and shift them to DRAM.

2.4.2 Migration Candidate Selection

Given the high write-latency of NVMs, the most advanced techniques [52, 55–62]

suggest effective page placement or migration strategies in which the pages with the

highest write count are either placed or migrated to DRAM.

CLOCK-DWF [55] is one of the earlier CLOCK-based policies in which new

pages for write requests are always loaded in DRAM. If a write request reaches the

pages in NVM memory, the pages in NVM will shift to DRAM. Double LRU [56],

an LRU-based policy, manages pages in DRAM and NVM using two LRU lists.

The read/write request count of the page is checked against the migration threshold

during page access, and if the count exceeds the threshold, the page is migrated

at fixed, regular intervals. The method always stores new pages in DRAM in this

manner.

Chen et al. propose Refinery swap [57] to reduce the number of swap opera-

tions. The page is swapped into DRAM if the number of writes crosses a predefined

threshold. Otherwise, the pages are loaded to NVM. The refinery swap technique

performs a write-aware swap-out operation, which checks the write count and re-

cency of a page before swapping out from DRAM using three LRU queues. M-Clock

mechanism described in [63] is an adaptive clock-based page migration that uses two

clock hands: a D-hand to point hot-dirty pages that are frequently referenced by

write operations in short periods, and a C-hand to point pages that are less fre-

quently referenced by write operations. M-clock uses a reference bit and a dirty bit

to identify if the page is write-intensive and thus monitored by D-hand.

In [64], Yang et al. propose a utility-based migration scheme where the utility of

a page depends on the stall time reduction of an application due to the migration of

34

Page Migration for Hybrid memories

the page and the sensitivity of the entire application towards system performance.

Based on a dynamic migration threshold, the proposed UH-Mem method migrates

pages with the highest utility to DRAM. In [65], authors proposed PageSeer, a

hardware-managed page swapping mechanism. The method introduces three types

of page-swapping mechanisms: regular swapping, MMU-triggered swapping, and

prefetch-triggered swapping. The regular swapping mechanism uses a hot page table

to determine the status of the page and trigger swapping from NVM to DRAM if the

access count crosses a predefined threshold. MMU-triggered swapping initiates when

the MMU signal reaches the memory controller. The prefetch-triggered swapping

is initiated when an LLC misses a request that the page table entry reaches the

memory controller.

Tan et al. propose APMigration [58, 59], an adaptive page migration policy

that focuses on reducing the number of invalid migrations. APMigration combines

two techniques: UIMigrate [58], which identifies page migration candidates and

reduces invalid migration, and Lazy write-back, which reduces unnecessary writes

in NVM. UIMigrate uses a unified hot page identification method for both cold and

hot page identification and places or migrates pages based on dynamic thresholds.

The thresholds get self-updated based on migration revenue, which is defined as the

advantage obtained on latency due to the migration. The Lazy write-back technique

remove unnecessary writes when the old NVM page is not used by other pages. The

method uses a bitmap to record the page access status and last used tables for NVM

and DRAM pages to record the page frame used when migrating a page.

Islam et al. propose on the fly page migration [60] technique, which transparently

migrates pages immediately when the page becomes hot. The method migrates

more recent hot pages with the help of a hardware unit called Migration Controller.

The on-chip remap table keeps track of the locations of the migrated pages and

periodically evicts the entries to make space available for new entries. A hardware-

assisted address reconciliation process reconciles pages evicted from the remapped

table. This additional migration controller allows the migration of new pages and

simultaneously addresses the reconciliation of older migrated pages.

In [66], authors proposed a dynamic hardware-based page migration algorithm,

which predicts the hotness of a page for migration based on periodical read and write

access frequencies. The authors also propose a self-migration mechanism within

DRAM to reduce energy consumption by distributing the written hot pages to fixed

35

Background

banks. Choi et al. propose TA-clock [67], where the access tendency of migration

candidate pages is checked to classify them based on the read and write threshold.

The method uses two clocks: a DRAM clock and a PCM clock. DRAM clock main-

tains the read/write count of each page to analyze the access tendency and points to

the write-intensive pages in DRAM. PCM clock maintains the read-intensive pages

migrated from the DRAM clock. The DRAM clock maintains the pages with access

tendency as Strong Write. If the selected page access tendency is Weak Read, the

page is evicted to disk. If it is Strong Read, the page is moved to PCM, whereas

the page with access tendency as Weak Write is maintained by the DRAM clock.

Fu et al. propose CAHRAM [61], which keeps the highly referred pages in DRAM

through a reference-based page migration scheme that uses a threshold to identify

such pages. Adnan et al. propose Mulit-clock [68], where the pages are classified as

hot, warm, and cold based on access frequency and recency. The method uses three

lists: active, inactive, and promotion lists for both higher-performing and lower-

performing partitions, which are used to identify migration candidates. Hot pages

in the active list of lower-performing partitions eventually move to the promotion

list and are promoted to higher-performing partitions. If required, the cold pages

remain inactive and will be demoted to the lower-performing partition.

These techniques mentioned above migrate pages at a larger granularity level;

a huge page is migrated during a single migration. Most of the memory references

are distributed across the small regions of a page of a larger size. Page migration

at the super page granularity, a large virtual page that maps to several continuous

physical small (base) pages, may result in an intolerable performance penalty due

to an enormous loss of DRAM capacity and bandwidth. The cost may exceed the

advantages of super page migration. Therefore, adjusting the granularity of page

migration is desirable to maximize its benefits.

2.4.3 Granularity of Migration

A set of state-of-the-art techniques exists that manage the granularity of page mi-

gration candidates to outweigh the benefit of migration over the cost of migration.

Wang et al. propose Rainbow [51], which manages hybrid memory by supporting

pages at both super page lightweight page granularity. Rainbow uses Translation

Look aside Buffer (TLB) and tries to reduce TLB misses through the grouping

of multiple smaller pages into larger super pages and lightweight migration. The

36

Page Migration for Hybrid memories

utility-based page migration policy depends on the total cycles saved due to migra-

tion.

Yan et al. in [69] proposes transparent huge page migration with an OS-integrated

multi-level memory management system. In fast and slow memory, the inactive list

keeps track of the cold pages, whereas the active list keeps track of the hot pages.

Pages in the inactive list of fast memory are candidates for migration to slow mem-

ory, while a page in an active list of slow memory needs to move to fast memory.

Heo et al. discuss an adaptive page migration policy with huge pages in [70]. The

method records the access history of each page using a bit vector. The method uses

a feature metric that correlates the fast memory hit ratio, page migration stabil-

ity, and accessed page ratio. Based on the value of the feature metric, the method

chooses the migration policy that maximizes the benefit of migration from the list

of migrations as LRU, Least Frequently Used (LFU), or random.

2.4.4 Time of Migration

Along with the selection of a migration candidate, it is also important to decide the

time of migration, that is, when the page should get migrated. The existing method

discussed in the previous subsections migrates pages at regular fixed intervals or

immediately when the page becomes hot. There exists very little literature that

discusses the time of migration.

Doudali et al. in [71] proposes a page scheduling policy Cori that tunes data

migration frequency at runtime adapted based on the data reuse distance. Cori

collects information regarding data reuse by profiling the executing application.

By analyzing the data reuse profile, the method provides a range of possible data

migration frequencies, and a tuner in the design selects the best possible frequency to

perform page migration. The decision to select frequency is based on the application

run time and resource use after performing the migration.

Most of the existing page migration techniques focus on identifying page migra-

tion candidates or reducing unwanted migrations. If these pages are not migrated

at the right time, the migration may not be beneficial as most accesses will be ser-

viced from NVM itself. Migrating the correctly identified page at the right time

is very important to maximize the hits in DRAM, which maximizes the memory

performance due to the lower access latency of DRAM compared to NVM.

37

Background

2.4.5 Victim Page Migration

Furthermore, there may be no free space in the DRAM while migrating a page

from NVM because of the limited capacity of the DRAM. Therefore, victim pages

must be transferred from DRAM to NVM to make room for pages migrating from

NVM. State-of-the-art techniques use LRU pages as victim pages. Migrating a write-

intensive victim page to NVM will hurt performance. Additionally, the overhead

of the migration is doubled by this victim page transfer. Thus, generating page

migration algorithms that carefully identify the victim page is preferable.

Chapter 4 discusses the proposed page migration scheduling policies for hybrid

DRAM-PCM memories. The techniques identify the time for migration to maximize

the hits in DRAM, leading to improved memory performance. Furthermore, Chapter

6 presents effective migration candidate selection policies to enhance performance.

2.5 Aging Control Mechanisms for Non-Volatile

Memories

NVMs such as phase-change memory (PCM) require high voltage to function. The

higher voltages accelerate the aging process of the CMOS components within the

hardware, resulting in either soft or hard defects. This further impacts the lifetime

of NVMs. It is necessary to propose reliability solutions to mitigate this aging and

improve the longevity of NVM memories.

Dielectric breakdown, hot carrier injection, and biased temperature instability

(BTI) are some of the reliability threats NVMs face, which affect the performance

and lifetime of such memories. The primary mechanism of failure, leading to an ele-

vation in threshold voltage, is BTI. The following subsections discuss the BTI aging

mechanism, existing measuring methods for BTI aging, and the countermeasures for

BTI aging.

2.5.1 BTI Aging in Non-Volatile Memories

A transistor is a basic building block of any modern electronic device with a gate,

source, and drain terminals. A voltage/current applied between any two terminals

controls the current through another pair of terminals. A Field Effect Transistor

(FET) uses an electric field to regulate the current flowing through a semiconductor.

38

Aging Control Mechanisms for Non-Volatile Memories

Figure 2.5: Stress and Recovery phases of BTI

MOSFET is a type of FET fabricated by the controlled oxidation of silicon. The

conductivity of a MOSFET is determined by the voltage applied to its insulated

gate. The minimum gate-to-source voltage required to create a conducting path

between the source and drain terminal is called threshold voltage and is denoted by

vth.

The constant demand for high performance and low power consumption pushes

aggressive technology scaling for transistors. At the same time, further down-scaling

leads to a major challenge, such as wear-out or aging, which becomes a reliability

threat. Bias Temperature Instability (BTI) [6, 72–79]. is a dominant aging factor

that causes basic parameter drifts for the transistor. BTI generates traps, and these

traps capture the charge carriers. Thus, it reduces the current flow and degrade

the system. In order to maintain the drain current to the pre-degraded state, a

higher voltage bias must be applied to the gate. Thus, BTI causes an increase

in threshold voltage (vth) of transistors over time under voltage stress. There are

two types of BTI: negative bias temperature instability (NBTI) for pMOS under

negative voltage stress and positive bias temperature instability (PBTI) for nMOS

under positive stress voltage. The effect of PBTI is considered negligible in the

previous technologies but has become a significant issue with the introduction of

high-k and metal gates.

Based on the biased condition of the gate, BTI aging occurs in two phases:

39

Background

stress and recovery. During the stress phase, voltage is applied to the gate over a

period of time (transistor is ON, Vgs < 0 for pMOS and Vgs > 0 for nMOS). In the

recovery phase or de-stress phase, the stress voltage is removed. Figure 2.5 presents

the voltage shift difference when a single stress and recovery phase happened. It

is observed from the figure that after the recovery phase, there is a shift in the

threshold voltage as the circuit could only partially recover.

NBTI has two degradation components: (i) a fixed and (ii) a recoverable. The

fixed or permanent component is not decreased after stress removal, while the re-

versible or recoverable component is based on the stress bias applied. The stress is

periodically interrupted by removing the stress voltage and making them passively

recover from the degradation due to stress.

2.5.2 BTI Aging Measuring Techniques

The critical challenge to solving BTI is correctly measuring degradation. The fol-

lowing are the most commonly used BTI degradation models:

1. Reaction-Diffusion Theory (RD theory) [72, 80, 81]

2. Switching oxide trap model (TD model) [81–83]

2.5.2.1 Reaction/Diffusion (RD) Model

According to the RD model [72, 80, 81], the Si-H bonds at the interface of the

transistor terminal are broken, and hydrogen diffuses away. The accumulation of

positive charges causes BTI degradation. As the name suggests, RD is a two-step

process: reaction (R) and diffusion (D). The RD model explains that the stress

voltage breaks the Si-H covalent bonds at the interface and is called reaction. At

the same time, the broken hydrogen atoms combine to form H2 and diffuse towards

the gate during the diffusion step. During recovery, the stress voltage is removed,

and the dissociated Si–H bonds are healed. The dissociated bond may be almost

recovered if adequate recovery time is given. Most fragmented Si-H bonds typically

repair as H partners are available with silicon atoms Si+. However, complete recov-

ery might not be achievable if the H2 departs the gate dielectric after reaching the

metal gate. As a result of the missing bonding atomic H, the corresponding disso-

ciated Si-H bond may no longer be able to be repaired. Therefore, the threshold

voltage partially recovers to the level of prior stress and thus has a threshold voltage

40

Aging Control Mechanisms for Non-Volatile Memories

shift (∆vth). The interface state left at Si − SiO2 due to diffusion of H2 increases

the threshold voltage.

The classic RD model describes the power law dependence of charge generation

during BTI. The fundamental power law defines the functional relationship between

any two quantities where one quantity varies as a power of another and is indepen-

dent of the initial values. RD model defines the power law relationship between time

and threshold voltage shift, i.e., ∆vth ∝ tn and is given by:

∆vth = k tn + M (2.1)

where t is the stress or recovery time, the time exponent n is a function of hydrogen

species usually equal to 0.166 and is independent of process parameters, k exponen-

tially depends on voltage and temperature, and M is a material-dependent constant.

The above equation presents the RD model for constant voltage stress.

2.5.2.2 Trapping/De-trapping (TD) Model

The electric field applied between the gate and source terminals of a transistor

can cause the generation of holes/traps. These traps collect the charged carriers,

reducing the current flow between the drain and source terminals. The threshold

voltage of the device increases each time a trap captures a charge carrier. As a result

of charge loss, the device generates more charged traps and narrows the transistor

channel. In other words, the performance of the device will deteriorate as only a

reduced amount of current may pass through it.

This TD model describes how the generated traps affect the threshold voltage

shift. The created traps at the dielectric receive enough energy when a bias voltage

is supplied to capture the charged carriers responsible for the current flow between

the drain and source terminals. As a result, the number of carriers and the drain

current are reduced. In turn, this raises the threshold voltage, vth. Removing the

bias releases trapped charges, which results in the threshold voltage shift being

recovered.

The threshold voltage shift increase relies upon the average number of available

traps. The TD model compute the ∆vth as follows:

∆vth = ϕ[A+ log(1 + Ct)] (2.2)

41

Background

where the value of ϕ is proportional to the number of available charged traps,

stress voltage, and temperature, A and C are the model parameters and are based

on the trap’s time constants. These two parameters, A and C, are constant under a

given stress condition; hence, ϕ causes the shift in threshold voltage. The value of

A and C are 1.28∗10−4 and 0.0099 respectively. The mean value of ϕ is 0.0013 with

a standard deviation of 26% of the mean. The TD model describes the logarithmic

dependence of ∆vth with stress time.

2.5.2.3 As-grown-generation (AG) model

Researchers have observed that NBTI kinetics no longer follows a simple power law

against stress time. So many models have been introduced, including variations of

RD and TD models, to solve this issue. These models are all able to match test data

satisfactorily. However, NBTI modeling aims to forecast NBTI over the long run,

beyond the duration of a practical test. As-grown-generation (AG) model [76, 84–

87] is introduced to provide the necessary prediction capacity. The As-Grown Hole

Traps (AHTs) and Generated Defects (GDs) classes of traps are separated by the AG

model. AHTs are the traps that follow filling-detrapping; that is, their subsequent

filling efficiency will not increase, and their energy levels remain the same. GDs

refer to traps that have changed to their various qualities, other than charge state,

either before or during the capture of a carrier. GD follows an empirical power law

against both stress time and gate.

The threshold voltage shift given by AG model is as follows:

∆vth = A+ G tn (2.3)

where A and Gtn represent ∆vth(AHT) and ∆vth(GD) [87]. If the BTI stress

voltage is eliminated (de-stress), annealing at high temperatures can recover AHTs

and a tiny percentage of GDs.

2.5.3 BTI Aging Countermeasures

The transistor parameter may significantly deviate from its nominal value when

operated at high temperatures and voltages, which is called transistor aging. BTI is

a critical aging factor that results in threshold voltage shifts at high temperatures

and voltage. The threshold voltage shift is proportional to aging (∆vth ∝ Age). The

42

Aging Control Mechanisms for Non-Volatile Memories

Figure 2.6: Threshold voltage shift (∆vth) during continuous and interrupted stress

circuit ages faster when there is a larger shift in threshold voltage. Furthermore, a

circuit with a quick aging period will have a shorter lifespan.

The transistor ages quickly because of the voltage shift brought on by continuous

stress. Due to the consistent effects of BTI on devices, the recovery or de-stressing

of transistors is given significant consideration. Compared to continuous stress, the

intermediate stress and recovery cycles reduce the absolute value of threshold shift

∆Vth. The threshold voltage shift with respect to time for both continuous and

interrupted stress is shown in Figure 2.6.

It must be noted from the figure that interrupted stress with recovery cycles may,

over time, produce a less severe absolute shift to the threshold voltage. The threshold

voltage vth quickly recovers following each stress interval. However, the subsequent

stress cycle sees a more gradual decline. The duty cycle of stress and recovery affects

the ratio of voltage shift degradation under interrupted and continuous stress.

Existing techniques aim to control the stress and de-stress cycle to control BTI

aging. Most of the works propose architectural solutions for cache memory as SRAM

is vulnerable to BTI aging due to long stress times. This section discusses hardware

and software-level BTI aging control mechanisms for SRAM and emerging NVMS.

Sadeghi et al. propose an aging mitigation mechanism for L1 cache [88]. The

method exchanges the content of data and instruction cache because of the observed

difference in duty cycles for these memories. The method assumes that both caches

43

Background

are equal in size and tries to make the duty cycle of both instruction and data cache

more uniform. The Flush Signal Generator, a special circuitry in the aging mitiga-

tion unit of the system, interrupts the CPU to switch instruction and data cache

in regular intervals. The aging rate of caches is controlled through this proposed

switching mechanism.

Authors in [89] propose a data-cache memory called NVDL-Cache, where the

operating voltage VDD of memory blocks is dynamically adjusted. There is a trade-

off when choosing the VDD of the cache. Higher VDD increases power usage and

quickens the aging process. Lower VDD, on the other hand, reduces memory sta-

bility and increases access speed to the SRAM cells. With a minimum impact on

cache memory latency, the proposed NVDL-Cache dynamically modifies the oper-

ating voltage of various memory blocks in cache memory to lower both static and

dynamic power consumption. The memory blocks that store the most significant

bits of cache words operate on lower VDD, whereas other blocks operate in normal

VDD.

In [90, 91], authors proposed MAGIC, a low-cost aging mitigation circuitry, and

an application-aware aging analysis for SRAM memories. The method proposes

an aging-aware memory netlist generator, which generates a netlist of SRAM for

selected points, and the aging parameters are set for this generated netlist. The

SRAM is simulated based on these configured parameters, and the impact of aging

on the timing of the SRAM is measured using sensing delay(SD) and bit line swing

(BS). Based on these SD and BS values, the method distributes read stress evenly

across the complete SRAM array.

Lin et al. in [92] proposes a majority-based technique to reduce circuit degra-

dation in STT-MRAM sense amplifiers. The authors observed that reading zeros

has more impact on BTI-induced degradation than reading ones. Considering these

observations, the technique adaptively inverted data in the cache way with the help

of a counter, an inversion bit, and a reference bit on each cache line. The method

also includes a sensing technique that can balance the quantity of reading-zero and

reading-one operations between two nearby sense amplifier groups and pairs two

groups of adjacent sense amplifiers into a cluster.

Zhang et al. propose a reliable architecture [93] for STT-MRAM sense amplifiers.

The architecture includes a switching transistor, which decreases the effect of NBTI

on pMOS devices. The authors observed that removing logic “0” applied at the

44

Summary

gate terminal can eliminate some of the interface traps that cause the NBTI effect.

Therefore, in the proposed sense amplifier architecture, the authors include switching

transistors, and these two transistors decrease the stress on the terminal when logic

“0” is applied at the terminal.

Song et al. propose HEBE [94], an architectural and software-level solution for

mitigating aging and lifetime issues in non-volatile memories. The method intro-

duces a dynamic way of solving the aging issue through the scheduling de-stress,

which controls the shift in threshold voltage. The method proposes an analytical

model for dynamically computing the aging of the circuit. The aging model com-

putes the aging of each memory bank based on the bank’s utilisation. Using this

aging model, the method proposes an intelligent scheduler that de-stress the periph-

eral circuitry of a memory bank only when its aging exceeds a critical threshold. The

intelligent memory request scheduler prioritizes requests to a bank whose peripheral

circuitry has the highest number of idle cycles. HEBE also introduces an isolation

transistor to decouple the different units of the peripheral circuits, which operate at

different voltages to perform de-stress operations independently.

Most of the existing aging control mechanisms propose hardware solutions, which

are more costly than software solutions. As the de-stress operation delays the regular

read/write requests, it is necessary to control the de-stress in order to maintain the

system performance. Chapter 5 discusses scheduling policies for de-stress to mitigate

BTI aging while balancing the memory performance in terms of service time.

2.6 Summary

The memory controller, which acts as a bridge between the processor and the mem-

ory device, manages access to the memory. The access latency of memory systems

depends on the design and implementation of memory controllers. Memory con-

troller designs manage the memory accesses to improve memory performance. Re-

quest ordering is important as it directly impacts the execution time of applications

running on the cores. The request ordering scheme varies based on the underlying

memory type and the executing applications. As the characteristics of each memory

type are different, the memory controller needs to look into the properties of each

memory type before performing the request ordering.

Over the years, many attempts have been made to schedule memory requests to

45

Background

improve throughput and fairness. Real-time memory designs focus on predictabil-

ity, and the scheduling policies aim to achieve bounded memory latency bounds.

There have been predictable memory scheduling policies for DRAM and PCM mem-

ory types, which take care of the criticality of tasks to order the memory requests

spawned from these tasks.

Furthermore, the memory controller handles different service operations like re-

fresh, de-stress, and migration, which vary according to the memory type and are

essential for the performance enhancement of different memory types. Researchers

have come up with different strategies to perform these service operations to im-

prove memory performance. In particular, researchers propose threshold-based page

migration techniques for hybrid DRAM-PCM memories, where the write count and

recency of a page are used to determine the migration candidates. This helps to

overcome PCM memory limitations in terms of costlier writes and leads to better

memory service time.

Even though all these memory service operations help to improve the perfor-

mance, they stall the regular execution and may negatively impact the memory

service time. It is beneficial if the ordering of regular read/write requests is made

aware of such operations and both regular requests and service operations are man-

aged to improve memory performance. Thus, scheduling of memory requests and

service operations can manage the memory service time effectively and make each

memory type a suitable candidate in the memory hierarchy for an efficient system.

46

3
Request Scheduling Policies for Pure

DRAM and Pure PCM memories

This chapter covers the first contribution to improving the performance of DRAM

and PCM memories. We proposed urgency-based memory access scheduling poli-

cies that achieve predictable memory service time and bounded worst-case execu-

tion time estimates. A row-buffer affinity-aware grouping of memory requests allows

higher throughput and predictable memory service time. The proposed PCM mem-

ory scheduling mechanism also considers the difference in read and write latency of

PCM memory. The proposed policies are evaluated on a quad-core system against

the current scheduling policies.

3.1 Introduction

Memory controller manages data access by multiplexing the memory bus and/or

memory device among contending memory requests from tasks. The order in which

the memory controller services memory requests significantly influences the delay

experienced by each task and the aggregate system performance. Existing memory

schedulers provide a certain degree of Quality of Service (QoS) sensitivity towards

memory resource access, but they still need to be improved for real-time systems.

This is because real-time systems demand fairness and predictable memory request

47

Request Scheduling Policies

service latencies to provide reasonable and bounded worst-case execution time esti-

mates for the tasks that spawn these memory access requests.

State-of-the-art predictable memory scheduler designs are oriented towards per-

sistently co-executing task sets, and fixed statically assigned priorities can be used

based on task criticalities. Therefore, these memory schedulers do not provide any

mechanisms for scheduling memory requests of a set of real-time tasks with similar

criticalities in a way that enhances predictability in the latencies of tasks. Exist-

ing approaches resort to static task priorities to obtain an ordering among memory

requests from a given task mix.

This work proposes predictable memory request scheduling policies for DRAM

and PCM memories. The essence of the scheduling mechanisms is founded on the

observation that the memory request service priority of a real-time task Ti (at time

instant t) may be considered to be affected by three connected factors: (i) the

amount of remaining service (ei − e′i) to be provided for Ti (where ei and e
′
i denote

the total execution demand and amount of service already received by Ti at time t),

(ii) amount of time (Di−t) remaining before deadline Di, and (iii) expected number

of memory requests still to be serviced (ni) before the completion of execution of

Ti. This expected number may be obtained by exhaustively profiling the task’s

execution over varied input data sets to derive a signature memory access pattern

for the task.

The ability to dynamically assign distinct task-aware priorities to different mem-

ory requests of a task could yield improved resource management in real-time sys-

tems with multiple contending requests of similar timeliness criticalities. In the

proposed scheduler, the memory controller is equipped with run-time information

about allowable response latencies corresponding to the memory requests from a

set of tasks. The service urgency of memory requests can be obtained from these

allowable response latencies, which are in tune with the real-time demand of the

spawning tasks. The priority for scheduling memory requests is obtained from these

known urgency demands to achieve the desired predictability in memory request

service time. While delivering acceptable predictability in memory request service

latencies, the scheduling policies also attempt to maintain high average through-

puts through a novel row-buffer affinity-aware memory request grouping scheme.

The proposed memory request scheduling schemes can be integrated with existing

command-level scheduling schemes.

48

System Model

The main contribution of this work are as follows:

• RMRS: Real-time Memory Request Scheduler (RMRS) is an online memory

control policy. In RMRS, run-time data about allowable response latencies

corresponding to the memory requests from a group of threads is available to

the memory controller.

• R-RMRS: Reward-aware RMRS (R-RMRS), which is an extension of the

RMRS algorithm. The aim of R-RMRS is to generate memory request sched-

ules so that the total QoS acquired by the system, when a set of soft real-time

tasks are executed is maximized over the length of the hyper-period.

• LARS: Latency Aware Request Scheduler (LARS) is proposed with the ob-

jective of choosing PCM as the main memory for real-time systems instead of

DRAM. LARS implements this predictability and maintains a high average

throughput using a novel row-buffer affinity-aware memory request grouping

scheme. To handle disparate read/write latencies, it gives priority to reads

over writes.

• Re-LARS: Reward-aware LARS maximizes the QoS acquired by the system

by imbibing reward-aware deadlines for memory requests.

• The proposed techniques are evaluated in Gem5 [95] full system simulator

integrated with NVMain [96]. The techniques are compared against FR-FCFS

[2], Round Robin (RR), Earliest Deadline First (EDF), and EDF-Write Queue

Full (EDF-WQF) [46]. The designed memory controller is seen to perform

satisfactorily over a comprehensive set of realistic test case scenarios.

This chapter is organized as follows: Proposed system model is discussed in 3.2.

Section 3.3 explains the technique of frame-based scheduling. Sections 3.4, and 3.5

illustrate the proposed request scheduling policies for DRAM and PCM memories.

Experimental setup and results are discussed in sections 3.6.1, 3.7, and 3.8. Finally,

we summarize this chapter in section 3.9.

3.2 System Model

In real-time embedded systems, the exhaustive set of applications that may ever

execute during system operation, is usually known apriori. Each application in the

49

Request Scheduling Policies

set is profiled offline to obtain information about its characteristic properties such

as worst-case execution time estimates, appropriate execution frequencies (period-

icities/deadlines). Such information becomes indispensable in order to determine

relative task priorities during online schedule generation. This section describes the

set of properties used in our scheduling algorithm.

Notations: The system considered in this work consists of n real-time peri-

odic/sporadic tasks T = {T1, T2, · · · , Tn}, to be executed on a multi-core system.

Each task is characterized by a 8-tuple ⟨si, ei, ni, ki, pi, di,mrewi, δi⟩, where si refers
to the start time of current instance of Ti, ei is its worst-case execution time demand,

ni denotes the average number of memory requests spawned by Ti in each execution

instance (the value of ni is obtained from the execution profile of Ti over various

input scenarios), at any given time ki represents the number of memory requests

already spawned by the current instance of Ti, pi represents the period (inter arrival

time for sporadic tasks) and di denotes its relative deadline (di < pi). Table 3.1

contains a list of important notations and definitions.

Definitions:

• Fairness: Fairness is the practice of ensuring that all tasks receive a fair share

of resources.

• Criticality: Criticality defines the priority of the task.

• Quality of Service (QoS): We achieve QoS by prioritizing requests from tasks

within a real-time system to ensure that all these tasks meet their deadline by

providing deadline for each request.

• Predictability: Predictability is the ability to accurately forecast and guarantee

that a system will consistently meet the timing requirements of soft real-time

tasks executing on the cores.

• Hyperperiod: Hyperperiod is the least common multiple (LCM) of the periods

of all the tasks in a set of periodic tasks.

Reward and its Calculation: Any task within the given task set, has an inherent

relative importance or criticality value (sometimes alternatively referred to as static

priority). In this work, we have considered the criticality of a task in three different

dimensions: (i) The relative reward: Based on the time at which a task instance Tij

50

System Model

Table 3.1: Notations used

Notations Definitions
Ti Task i
si Start time of Ti
ei Execution time of Ti
ni Average number of memory requests spawned by Ti
ki Number of memory requests already spawned by Ti
pi Period of Ti
di Deadline of Ti
mrewi Maximum reward of Ti
δi Reward becomes zero at extended deadline di + δi
Rhit Row hit latency
Rmiss Row miss latency
ri Request i
∆(ri) Task which spawns memory request ri
ρ∆(ri) Remaining time before the deadline of T∆(ri)

µ∆(ri) Remaining number of memory requests to be spawned by T∆(ri)

γ∆(ri) Relative maximum reward
η(ri) Relative duration where reward of T∆(ri) reduces from mrew∆(ri) to 0
frk Frame k
β Lower bound on frame length
χri Targeted bank for ri
Q χri Queue of bank χri

dri Deadline of ri
rdri Reward-aware deadline of ri
α A design constant
Pz Current execution phase
I(Pz) Number of instructions in Pz

M(Pz) Number of memory requests in Pz

l(Pz) Duration of Pz

ω∆(ri) Rate of instruction execution
ν∆(ri) Remaining number of instructions
F∆(ri) Number of instructions in future phases
ψ∆(ri),z Remaining number of instructions in Pz

τ∆(ri) Additional time remaining for completion of Pz

Ω∆(ri) Average number of memory requests per instruction
κ∆(ri) Expected number of memory requests in Pz

51

Request Scheduling Policies

completes its execution, the system acquires a reward rewij. The acquired reward

rewij is equal to a maximum reward mrewi, when it completes execution on or

before its deadline di (i.e., the completion time cij < di). (ii) The penalty to this

reward: If the execution delays beyond di, acquired reward reduces at a constant

rate RRRi (= mrewi/δi). Here, RRRi is the reward reduction rate and is defined

as the rate at which Ti’s reward reduces from its maximum value mrewi to zero.

Thus, if cij of task instance Tij is di + x (≤ di + δi), the reward acquired becomes:

mrewi(1−x/δi). The time instant di+ δi (relative to the arrival time) is referred to

as the extended deadline of task Ti. (iii) Zero reward beyond extended deadline: If

the completion of execution occurs at an instant even beyond the extended deadline,

the output received from the task no longer has any relevance to the system. Hence,

when execution completes at any instant beyond di+δi, the obtained reward is zero.

As shown in equation 3.9 below, the overall priority (urgency) of a task’s memory

request is dependent on the relative criticalities along these three dimensions.

Memory Controller Model: The memory controller sees a memory request as

a 5-tuple representation ⟨∆(ri), ρ∆(ri), µ∆(ri), γ∆(ri), η∆(ri)⟩ where, ∆(ri) denotes the

task id. of a spawned memory request ri, ρ∆(ri) is the currently remaining time

before the deadline of the task T∆(ri) which has spawned ri, µ∆(ri) is the expected

number of remaining memory requests to be spawned by the current instance of

T∆(ri), γ∆(ri) represents the relative maximum reward that may be obtained from

the corresponding task (cf. equation (3.3)) and η∆(ri) denotes the relative duration

over which the reward associated with the task reduces from its maximum value to

zero (cf. equation (3.4)). The values of ρ∆(ri) and µ∆(ri) are calculated as follows:

ρ∆(ri) = d∆(ri) − [ari − s∆(ri)] (3.1)

µ∆(ri) =

{
n∆(ri) − k∆(ri), if n∆(ri) > k∆(ri)

1, Otherwise
(3.2)

where, ari denotes the instant at which request ri is spawned. The relative reward

γ∆(ri) takes the form:

γ∆(ri) = mrewi

/
1

n
(

n∑
j=1

mrewj) (3.3)

where mrewi denotes the maximum reward fetched by T∆(ri) on completion be-

fore the stipulated task deadline d∆(ri). The denominator in the RHS represents the

52

System Model

average reward over all tasks. Similarly, η∆(ri) is symbolically represented as:

η∆(ri) = δ∆(ri)

/
1

n

n∑
j=1

δ∆(rj) (3.4)

Generally, in real-time embedded systems, the operating system knows about

task parameters such as task deadline, relative reward, and relative duration over

which the reward associated with a task reduces from its maximum value to zero.

Here, we propose an extended offline profiling mechanism to extract additional in-

formation about the applications’ memory behavior.

To know the number of memory requests spawned by a given set of applications,

each one of them is separately profiled while executing standalone. This profile

provides (i) an estimate of the total number of data access requests over the appli-

cation’s lifetime and (ii) a measure of the fraction of these requests that actually

goes to the main memory for service (given by the number of last level cache misses).

As we have used a private cache architecture, these measures are expected to remain

similar when the application co-executes with other applications in the system. By

appropriately adjusting the size of the cache used during standalone profiling, the

above estimates can be made to hold approximately during actual co-execution,

even in scenarios when the last level cache is shared. When a request goes to the

memory controller, the designed framework provides information on the estimated

number of remaining main memory requests from the following: (i) the expected

total number of data access requests for this application, (ii) the number of data ac-

cess requests spawned thus far (this information can be maintained by the OS) and

(iii) the approximate fraction of requests that actually goes to the main memory.

Memory Model: In this work, we assume a DRAM/PCM device to be com-

posed of a constant number b of banks. The banks follow an open-page row-buffer

management policy in which once a memory row is opened by bringing it to the

row-buffer, consecutive accesses to the same row can be conducted without closing

the row-buffer after each intermediate access. This allows row-hit response times to

be significantly reduced (to the value Rhit = tRL for row-hit on a read request) com-

pared to a closed page policy where a row must be closed after each access. However,

in case of a row-miss the response time increases to Rmiss = tRL + tRCD + tRP

where, tRP , tRCD and tRL represent latencies related to different memory com-

mands. The delay between ACT to RD/WR commands is called tRCD, tRP is the

53

Request Scheduling Policies

PRE to ACT delay, and tRL is the delay between RD to Data Start. The different

types of commands are discussed in Chapter 2 (cf. section 2.1).

3.3 Working of a Frame-based Scheduling

Memory requests of threads executing on a multi-processor system at a given time

usually arrive as a continuous stream to the memory controller. On arrival, these

requests are buffered where they wait for their turn to be serviced. The scheduling

timeline is divided into non-overlapping frames, where the kth frame is denoted

as frk. Buffering, scheduling, and servicing of requests occur in a frame-by-frame

manner, such that the requests which arrive over the duration of frame frk are

collected in a buffer and then serviced at the (k + 1)th frame, after being scheduled

at the boundary of frk and frk+1. Thus, memory requests may get delayed at most

till the end of the current frame, but not across frames. Typically, the length of

a frame equals the service response time of the last request in the frame, subject

to a lower bound β when this response time is lower than β. Although this lower

bound β on frame length may make the system slightly non-work conserving, it

allows a minimum number of memory requests to accumulate in the buffer before

being serviced and helps control overheads associated with the scheduler.

3.4 Predictable Memory Request Schedulers for

DRAM memories

This section describes the proposed predictable memory schedulers RMRS and R-

RMRS for DRAM memories. This scheduler assigns distinct memory request prior-

ities derived from allowable task response times at the instants when the requests

are spawned. Based on this dynamic prioritization mechanism, an efficient real-time

memory request scheduling scheme has been designed with the objective of max-

imizing aggregate system-level QoS for a set of soft real-time tasks. Along with

predictability, the developed scheduling mechanism is able to achieve high average

throughput with the help of a novel row-buffer affinity-aware grouping method.

54

Predictable Memory Request Schedulers for DRAM memories

Algorithm 3.1: RMRS for frame frk
Input: Set of n pending requests R = {r1, r2, . . . rn} with the information

⟨∆(ri), ρ∆(ri), µ∆(ri)⟩ for each request ri;
Output: Schedule S;

1 Let the requests in R be targeted to b distinct banks {χ1, χ2, . . . χb} and Let
Q χj be the queue corresponding to bank χj;

2 Determine the bank χj of each request ri;
3 for all Q χj do
4 tempj = Request Handling(Q χj)

5 {Let rjfront
be the request at the front of tempj};

6 S = EDF Multiplexer(temp);

3.4.1 RMRS: Real-time Memory Request Scheduler

Algorithm 3.1 presents the pseudo-code of RMRS. Let the set of requests R =

{r1, r2, . . . rn} (to be serviced in frame frk) be targeted to b distinct banks {χ1, χ2, χ3 . . . χb}.
The algorithm RMRS first identifies the bank χri corresponding to each request ri

and places it in χri ’s bank queue Q χri . RMRS then estimates an urgency bound

or deadline for each request ri in Q χri (cf. Algorithm 3.2). Assuming that all the

µ∆(ri) future requests associated with T∆(ri) will be equally spaced over the remaining

time ρ∆(ri), the deadline dri of ri is expressed as:

dri = ρ∆(ri)/µ∆(ri) (3.5)

As discussed earlier, the response time associated with a miss request (Rmiss) is

significantly higher than that of a hit request (Rhit). With this observation, it may

be inferred that the response time of the last request of a given batch of memory

requests can be reduced considerably by ordering the requests such that requests

targeted to the same row are scheduled consecutively. With this insight, RMRS

classifies the requests (to be scheduled in the ensuing frame) into groups based on

targeted rows, such that all requests in a group may be scheduled consecutively.

Each group Gk (ϵ{G1, G2........Gm}) contains the requests targeted towards row k,

sorted in non-decreasing order of deadlines. The groups are further sorted in non-

decreasing order of group deadlines. Here, the group deadline dGi
of group Gi is

given by:

55

Request Scheduling Policies

Algorithm 3.2: Request Handling(Queue χb)

1 Find deadline of each request ri in Queue χb using equation 3.5;
2 {Let the requests in Queue χb be targeted to m distinct rows, m < n}

Partition Queue χb into m disjoint groups G1, G2,Gm, such that, Gi

contains requests targeted to the ith row;
3 Sort each group in non-decreasing order of request deadlines;
4 Assign λprev = n+ 1 and Sbprev = NULL;
5 while up to max attempts do
6 Determine group deadlines (dGi

), for all groups (Gi);
7 Construct tentative schedule Sb of requests in Queue χb by arranging

the groups in earliest group-deadline first order;
8 Compute turn around time ETTri and laxity lxri for each request

ri ∈ Sb, using equations 3.7 and 3.8;
9 Determine the total number λi of requests in Gi for which lxri < 0

{lxri < 0 =⇒ deadline miss};
10 Compute λ =

∑
λi;

11 if λ = 0 then
12 return Sb;

13 else if λ ≥ λprev then
14 return Sbprev ;

15 else
16 Assign Sbprev = Sb and λprev = λ;
17 for each group Gk do
18 if λk ≥ 1 then
19 Find the last deadline miss request rki ;
20 if i ̸= |Gk| then
21 Split Gk into Gk′ = {rk1 ,rki }, Gk” = {rki+1,r

k
|Gk|};

Algorithm 3.3: EDF Multiplexer (Queue)

1 while Queue !EMPTY do
2 Compare the deadlines of requests r1front

, r2front
, . . . rbfront

;

3 Select the earliest deadline request rkfront
;

4 Add rkfront
to schedule S;

5 return S;

56

Predictable Memory Request Schedulers for DRAM memories

dGi
= max

rjϵGi

drj (3.6)

Now, a tentative schedule is generated based on the order as provided by the

sorted list of groups (line number 7 in Algorithm 3.2). The average response time

ART ri of a request ri is estimated.

ARTri =

{
ARTrj +Rhit, if ri is a row hit

ARTrj +Rmiss, Otherwise
(3.7)

where, ri immediately follows rj in the tentative schedule. Since DRAM operates

in burst mode, the average response time may vary for each request. Given ARTri ,

the laxity lxri of each request ri is calculated as:

lxri = dri − ARTri (3.8)

In case there are no deadline misses, the generated tentative schedule is accepted

as the final schedule. Otherwise, a further set of steps are taken in an attempt to

reduce the number of deadline miss requests.

First, we observe that each group may contain zero or more requests which miss

the deadline. All groups which contain one or more deadline miss requests are

partitioned into two subgroups. For example, if {rk1 , rk2 ,rk|Gk|} be the ordered list

of requests in group Gk and rki be the last request in Gk which miss its deadline,

Gk is partitioned into two subsets Gk′ and Gk” such that, Gk′ contains {rk1 ,rki }
and Gk” contains {rki+1,r

k
|Gk|}. Referring equation (3.6), it may be noted that

the group deadlines dGk′
of all sub-groups Gk′ which contain deadline miss requests,

will be less than the group deadlines dGk
of their parent groups Gk, provided Gk”

is non-empty. Subsequent to this operation, the two sub-groups are considered

individual groups, and their parent group is removed. Given the modified set of

groups, they are resorted based on group deadlines, and a tentative schedule of

requests is determined as before. The number of deadline miss requests in the new

schedule may possibly be less than in the preceding schedule because sub-groups

that contained deadline miss requests could have received higher priorities in the

new schedule due to lower group deadlines. However, the system must now incur

an overall increase in overhead caused by group partitioning. The newly generated

schedule is accepted as the final schedule if it does not contain any deadline miss

requests, whereas the previous tentative schedule becomes the final schedule if the

57

Request Scheduling Policies

number of deadline miss requests in it is not more than the number of misses in the

new schedule. Otherwise, the new schedule becomes the current tentative schedule

(when the number of deadline misses in it is less than that in the previous schedule)

based on the steps adopted to further reduce the number of deadline miss requests,

are re-applied. This process of splitting groups and scheduling is repeated for a

maximum number of attempts.

All banks are scheduled according to the procedure as discussed above. A sepa-

rate earliest deadline first multiplexer (cf. Algorithm 3.3) then compares the highest

priority request of all banks and chooses the request rkfront
with the most urgent

deadline across all banks and sends it to the command generator and then to DRAM

for service (line number 4 in Algorithm 3.3). This process continues until all requests

of all banks in the frame have been serviced.

3.4.1.1 Working Example

Figure 3.1 presents a working example for the proposed RMRS algorithm. Let

{R1, R2, R3, · · ·R10} be the set of requests spawned by tasks {T1, T2, T3}. The

spawned tasks of each request and their deadlines are shown in Table 1 and Table 2

of Figure 3.1. Figure 3.1(A) shows the initial grouping of requests based on row-hit

where G1, G2, and G3 group requests target three different rows. The requests are

sorted based on the deadline within each group and are shown in Figure 3.1(B). The

group deadline, which is the maximum among the request deadlines, is computed

next. The groups are sorted based on the group deadline as shown in Figure 3.1(C).

Now, the estimated turnaround time for each request is computed. In this example,

we have taken the average service time of each request as 2 cycles. Based on the

turnaround time, we identify requests which miss their deadline. In this example,

R1, R2, and R5 miss the deadline. Therefore, we divide group G1 into G1′ and

G1” as shown in Figure 3.1(D). The group deadline for this new set of groups is

computed and scheduled again based on the group deadline. The sorted order is

shown in Figure 3.1 (E). This process of splitting groups and scheduling is repeated

until we get a schedule with a minimum number of deadline misses.

3.4.2 R-RMRS: Reward-aware RMRS

R-RMRS is an extension of the RMRS algorithm whose objective is to generate

memory request schedules such that the total reward TR (cf. equation (3.17))

58

Predictable Memory Request Schedulers for DRAM memories

R1,R2,R4,R5 R3, R6, R9 R7, R8, R10

R1,R2,R5,R4 R3, R9, R6 R8, R7, R10

R1,R2,R5,R4R3, R9, R6 R8, R7, R10

G1 G2 G3

R1,R2,R5R3, R9, R6 R8, R7, R10 R4

R1,R2,R5 R3, R9, R6 R8, R7, R10 R4

G1 G2 G3

G2 G3 G1

G2 G3 G1’ G1”

G1’ G3G2 G1”

(A)

(B)

(C)

(D)

(E)

Task Deadline

T1={R1,R2,R6,R8,R10} 30

T2 = {R3, R4, R7} 25

T3 = {R5, R9} 20

Request Deadline

R1 7.25

R2 9.33

R3 11

R4 21

R5 15

R6 17

R7 18

R8 11

R9 11

R10 20

Table: 1

Table: 2

Figure 3.1: Working Example

59

Request Scheduling Policies

acquired by the system through the execution of a set of soft real-time tasks over

the length of the hyper-period, is maximized.

The essential difference between RMRS and R-RMRS is in the calculation of

memory request deadlines dri . In RMRS, the deadlines are assigned in a fair manner

solely in terms of the deadline urgencies of the corresponding task instances by

making the memory request deadlines proportional to the amount of remaining

time for the task instance and the expected number of future memory requests

pending service, as shown in equation (3.5). Thus, dri is completely oblivious of

the reward that may be fetched by a soft real-time task by completing within a

certain time limit (less than the extended deadline di + δi). In comparison, R-

RMRS attempts to imbibe reward-awareness into memory request deadlines (r dri),

by making them proportionately fair to, (i) the relative maximum reward (γ∆(ri))

that may be obtained from the corresponding task, and (ii) the relative duration

(η∆(ri)) over which the reward associated with the task reduces from its maximum

value to zero.

The reward-aware urgency bound/deadline (r dri) associated with each request

ri is calculated as:

r dri =
ρ∆(ri)

µ∆(ri)

+
α× (η∆(ri) − 1)

γ∆(ri)

(3.9)

The RHS of equation (3.9) has two terms. The first term, which is same as the

RHS of equation (3.5), attempts to assign a memory request deadline in accordance

to task T∆(ri)’s instantaneous deadline urgency. This term is dynamic in the sense

that it may vary for different memory requests of T∆(ri). The second term moder-

ates the deadline obtained through the first term by adding (when η∆(ri) > 1) or

subtracting (η∆(ri) < 1) a task specific constant quantity (
α×(η∆(ri)

−1)

γ∆(ri)
) in order to

imbibe reward-awareness in the determination of deadlines. Here, η∆(ri) (cf. equa-

tion (3.4)) and γ∆(ri) (cf. equation (3.3)) relative deadline extension duration and

relative reward respectively.

Let us now focus on the static term. Firstly, the value of γ∆(ri) becomes greater

than 1 when mrew∆(ri) is higher than the average maximum reward over all tasks

(cf. equation (3.3)). Similarly η∆(ri) > 1, when δ∆(ri) is higher than the average

duration over which the rewards of the tasks reduce from their maximum values to

zero (cf. equation (3.4)). Hence, η∆(ri) > 1 means that the reward associated with

T∆(ri) reduces comparatively at a slower pace in comparison to others. It may be

60

Predictable Memory Request Schedulers for DRAM memories

noted that the static term is positive when η∆(ri) > 1, thus postponing the request

deadline with respect to that suggested by RMRS in equation (3.5). On the other

hand, when η∆(ri) < 1, the static term becomes negative, preponing the R-RMRS

request deadline with respect to the corresponding RMRS deadline.

Further, it can be seen that when mrew∆(ri) > average reward (γ∆(ri) > 1),

the absolute value of the static term as gets lower, which restricts both positive as

well as negative shifts to the RMRS deadline effected through the static term. In

equation (3.9), α is a design constant which appropriately controls the amount of

RMRS deadline shift such that the obtained reward may be maximized for a given

system scenario. R-RMRS follows the steps of RMRS as discussed in Algorithm 3.1,

except that the deadline is calculated using equation (3.9) instead of equation (3.5).

It is important to incorporate the influence of a task’s criticality when determin-

ing the service urgency of a memory request via appropriate deadline assignment.

The reward-aware memory request deadline assignment mechanism actually aims to

incorporate awareness of a task’s priority.

3.4.3 Handling Phased Execution

The memory request deadline calculation mechanisms presented in sections 3.4.1 and

3.4.2 assume that the probability of memory access requests remains the same over

the execution lifespan of an application. This assumption may be a bit simplistic in

many real-world execution scenarios. Based on further analysis of the characteristics

of typical embedded applications, the definitions of the memory request deadline

have been extended to make it more accurately applicable in practical execution

scenarios. It is generally observed that processors typically tend to exhibit phased

execution behavior where each phase is characterized by the application performing

a similar set of activities/functions. Phenomena such as specific working set sizes,

locality of reference, etc. are founded on the existence of such characteristic behavior

associated with running programs. Similarly, we observed through our experimental

analysis that each phase also has a typical memory request pattern, with the average

memory access request rates of distinct phases being markedly different.

With this insight, memory profile traces (for each application when running stan-

dalone) have been generated, and the distinct phases in the execution lifespan of

each application considered are noted. Information captured for each phase include

number of instructions I(Pz), number of memory access requests M(Pz) and phase

61

Request Scheduling Policies

Figure 3.2: Phased memory profile obtained during standalone execution of the patricia
application from MiBench

duration l(Pz). A phase is thus represented as a 3-tuple ⟨I(Pz),M(Pz), l(Pz)⟩. Mem-

ory request rate is assumed to remain the same for a given phase, while they may be

different for distinct phases. For example, let us consider the memory request profile

(bold red-colored line curves) for the Patricia application from the MiBench bench-

mark, shown in Fig 3.2. Observing the curve of the memory request rates over time,

we have divided the execution into seven phases such that memory request rates are

similar within a given phase and are significantly distinct from its preceding and suc-

ceeding phases. Intervals marked by the vertical lines represent distinct phases, while

the bold flat horizontal lines represent the average memory request rates (R) for each

phase. The 3-tuples ⟨I(Pz),M(Pz), l(Pz)⟩ characterising the different phases (Pz) are

as follows: ⟨43480944, 8527, 1 ∗ 106⟩, ⟨21814226, 6505, 1.5 ∗ 106⟩, ⟨21790347, 7064, 2 ∗
106⟩, ⟨21790347, 7064, 2 ∗ 106⟩, ⟨21790347, 7064, 2 ∗ 106⟩, ⟨21790347, 7064, 2 ∗ 106⟩,
⟨21790347, 7064, 2 ∗ 106⟩, ⟨21790347, 7064, 2 ∗ 106⟩, ⟨307112857, 97939, 9 ∗ 106⟩,
⟨199984069, 2387, 3 ∗ 106⟩, ⟨17614837, 2033, 9.6 ∗ 106⟩, ⟨160171737, 1007, 1 ∗ 107⟩

The relative deadline dri of a memory request ri spawned by a task T∆(ri) is

calculated as follows: Let ν∆(ri) and ρ∆(ri) be the number of instructions pending

execution and the remaining time before deadline for task T∆(ri), at the instant (say

t) when ri is spawned. In order to complete before the stipulated duration ρ∆(ri),

the minimum rate ω∆(ri) at which instructions must be executed for T∆(ri) is given

by:

62

Predictable Memory Request Schedulers for DRAM memories

ω∆(ri) = ρ∆(ri)/ν∆(ri) (3.10)

Given ν∆(ri) and information regarding different phases in T∆(ri) (obtained from

profile), the current execution phase Pz (⟨I(Pz),M(Pz), l(Pz)⟩) of T∆(ri) can be

determined. The total number of instructions in the future phases (F∆(ri)) of T∆(ri)

can now be obtained as:

F∆(ri) = ΣP
j=z+1I(Pj)∆(ri) (3.11)

where P denotes the number of phases in T∆(ri). The remaining number of

instructions ψ∆(ri),z in Pz becomes:

ψ∆(ri),z = ν∆(ri) − F∆(ri) (3.12)

The remaining time τ∆(ri),z by which the current phase Pz must be completed so

that task T∆(ri) meets its deadline d∆(ri) (executing instructions at the rate ω∆(ri)),

is obtained as:

τ∆(ri),z = ψ∆(ri),z ∗ ω∆(ri) (3.13)

where ψ∆(ri),z is the remaining number of instructions in Pz and ω∆(ri) is the rate

at which these instructions are executing.

The average number of memory requests per instruction in current execution

phase Pz is:

Ω∆(ri) =MPz/IPz (3.14)

where MPz is the number of memory requests in Pz and IPz is the number of

instructions in Pz.

So, expected number of remaining memory requests κ∆(ri) to be spawned in phase

Pz is

κ∆(ri) = ψ∆(ri) ∗ Ω∆(ri) (3.15)

where ψ∆(ri) is the remaining number of instructions in Pz and Ω∆(ri) is the

average number of requests per instruction in Pz.

63

Request Scheduling Policies

Low

High

Priority

L
A

R
S

S

ch
ed

u
le

r

Bank Mapping

EDF Comparator

RQ
ᵡ1 RQ

ᵡ2
RQ

ᵡb

PCM
Controller

L
A

R
S

S

ch
ed

u
le

r

L
A

R
S

S

ch
ed

u
le

r

PCM

WQ
ᵡ1 WQ

ᵡ1
WQ

ᵡb

Req_type=R Req_type=W

PCM

W
Q

ᵡ1
=

=
 F

U
L

L

W
Q

ᵡ2
=

=
 F

U
L

L

W
Q

ᵡb
=

=
 F

U
L

L

Figure 3.3: LARS-System model

Thus, deadline dri for memory request ri become:

dri =
τ∆(ri)

κ∆(ri)

= ω∆(ri)/Ω∆(ri) (3.16)

3.5 Predictable Memory Request Schedulers for

PCM memories

Embedded systems need energy-efficient and denser memory systems. Non-volatile

memory (NVM), such as Phase Change Memory (PCM) and Spin Transfer Torque

Magnetic RAM (STT-MRAM), is suitable for embedded systems as it is non-volatile,

denser, and has less leakage power. A recent trend towards the design of real-time

embedded systems is the use of Phase Change Memory (PCM) as main memory.

PCM is desirable as it is non-volatile, scales better than DRAM, and is more power

efficient. However, PCM has its own challenges: low endurance, slower and consume

more energy on writes.

The primary advantage of PCM memory against DRAM comes from its drasti-

cally lower leakage power dissipation due to the advantage of not requiring periodic

memory refresh, as with DRAM. However, execution times of tasks may become

significantly longer with PCM memories in the absence of additional carefully de-

signed memory access control mechanisms that attempt to minimize the negative

effects imposed by significantly larger write request service latencies.

64

Predictable Memory Request Schedulers for PCM memories

In addition to knowing the service urgency (which benefits even a DRAM sched-

uler like RMRS and R-RMRS), for PCM, we must cater to the disparity between

the service latencies for read and write requests. As the writes are slower, naively

scheduling them might affect the predictability of read requests. We propose two

scheduling policies: Latency-Aware Request Scheduling (LARS) and an extension

Reward-aware LARS (Re-LARS), which handle the disparity by prioritizing reads

over writes.

The considered platform model for LARS and Re-LARS is shown in Figure

3.3. The tasks executing on the cores spawn memory requests and arrive at the

memory controller. The PCM memory controller consists of separate read and write

request buffers, one per bank. Each read/write request is received and stored in

an appropriate buffer based on the targeted memory bank corresponding to the

request. In addition, the controller employs a per bank LARS/Re-LARS scheduler,

which prioritizes the requests waiting to be serviced by a given bank. Finally, the

scheduled requests from all bank buffers pass through an EDF comparator, which

multiplexes and chooses the most urgent request among them.

The design principles of both LARS and Re-LARS are based on the following in-

sight: while read requests must be serviced as soon as possible on arrival for seamless

progress of task execution on processors, write requests may be deferred by accumu-

lating them in a separate buffer provided previously written data may be directly read

from the buffer if needed. To enhance system performance with PCM memories, the

LARS algorithm selectively prioritizes reads over writes as follows. The read and

write requests are first received and batched within separate per bank read and

write buffers (RQ χj and WQ χj for bank χj, respectively). Within any frame, all

requests in RQ χj are serviced before the requests in WQ χj.

3.5.1 LARS: Latency-Aware Request Scheduler

The scheduling policy is similar to the RMRS discussed for DRAM memory. Due to

the difference in memory service latencies for DRAM and PCMmemories, this policy

employs separate read and write request buffers, one per bank. Each read/write

request is received and stored in an appropriate buffer based on the targeted memory

bank corresponding to the request.

For each bank χj, separate schedules RQ χj and WQ χj are generated for its

read and write queues. This separate schedule is based on the urgency of the request

65

Request Scheduling Policies

Table 3.2: Important system parameters

Components Parameters
Processor ARM, Dual,Quad and Octa core
L1 Cache Private, 32KB SRAM split I/D caches,2-way associative, 64B block
L2 Cache Private, 512KB SRAM, 64B block, 8-way associative

Main Memory
DRAM: 4GB, Single Channel
PCM: 4 GB, Single channel

Memory Latency
DRAM:: Row hit (miss) = 40 (80) ns
PCM :: Row hit (read miss,write miss) = 40 (120,150) ns

(cf. 3.5 and is similar to the deadline and row-buffer affinity-aware scheme discussed

in Section 3.4.1. The highest priority requests (r1front
, r2front

, . . . rbfront
) being at the

front of each queue. In each frame, all read requests are first serviced before servicing

the write requests. For this purpose, the schedules RQ χj of all banks χj are fed to

the Earliest Deadline First (EDF) multiplexer, which sequentially selects the read

requests in the earliest deadline first order until all read requests are serviced. After

this, all theWQ χj schedules are similarly fed to the EDF multiplexer and serviced.

The frame is complete after all write requests have been serviced.

3.5.2 Re-LARS: Reward-aware LARS

Re-LARS tries to imbibe reward awareness in the calculation of deadlines as in R-

RMRS (cf. Section 3.4.2. Here, the reads are also given priority over the writes to

cater to the disparity in the read and write latencies of PCM memories. Re-LARS

incorporates reward awareness by making the request deadline proportionately fair

to (i) the relative maximum reward (γ∆(ri)) (cf. 3.3) that may be obtained from the

corresponding task, and (ii) the relative duration (η∆(ri)) (cf. 3.4) over which the

reward associated with the task reduces from its maximum value to zero.

3.6 Evaluation

This section illustrates the experimental methodology used to examine the proposed

architecture.

3.6.1 Experimental Setup

We implemented our technique on a full system simulator Gem5 [95] integrated with

NVMain [96], a cycle-accurate main memory simulator designed for non-volatile

66

Evaluation

Table 3.3: Chosen tasks along with their execution times and memory intensity class
(From MiBench)

Benchmark Application
Execution Time
(sec)

Memory Intensity

gsm 0.77 Low
jpeg 0.71 Low
susan 1.58 Low
blowfish 0.49 Low
qsort 2791.06 Medium
dijkstra 1686.99 Medium
bitcount 588.69 Medium
CRC32 2009.99 High
patricia 4814.59 High
basicmath 476.4 High

PCMs. Table 3.2 shows the system parameters used for the evaluation. All of our

experiments are conducted using 10 real-time applications (tasks Ti) chosen from

the MiBench [97] benchmark. These applications are individually executed on a

single core to calculate their execution times (ei) when running standalone. Table

3.3 depicts the execution times along with the memory intensity classes of these

10 applications. Subsequently, 9 different task mixes (cf. Table 3.4) are created

by choosing various subsets of tasks from these 10 applications to be executed on

distinct number of cores such that each such task mix reflects a system with a given

average characteristic memory intensity. The memory controller has the knowledge

of parameters such as ⟨si, ei, ni, ki, pi, di,mrewi, δi⟩ (cf. section 3.2) of each task Ti.

The deadline di, period pi and maximum reward mrewi values for the tasks have

been generated from normal distributions having different means (µ) and standard

deviations(σ) while δi (time interval beyond deadline after which the reward reduces

to zero) has been generated from uniform distributions.

Each memory request is associated with the following information: (i) task ID:

ID of the task which spawns the request (ii) request ID: ID of the memory re-

quest (iii) address: target address corresponding to request (iv) arrival time: time

at which the request is spawned. Simulation environment gives the memory re-

quest completion times as outputs, which are analyzed and consolidated to obtain

task completion time estimates. Finally, using these estimates, performance results

related to deadline misses and obtained reward are generated.

67

Request Scheduling Policies

Table 3.4: Workload mix details with task set used for each mix, allocated #cores and
associated memory intensity class

Workload
Mix

No. of
Cores

Benchmark Application
Memory
Intensity

Mix 1 2 jpeg,susan Low
Mix 2 2 qsort,bitcount Medium
Mix 3 2 basicmath,patricia High
Mix 4 4 blowfish,gsm Low
Mix 5 4 qsort,dijkstra,bitcount,blowfish Medium
Mix 6 4 dijkstra,CRC32,patricia,basicmath High
Mix 7 8 gsm,jpeg,blowfish,susan Low
Mix 8 8 dijkstra,qsort,bitcount,jpeg,susan Medium
Mix 9 8 patricia,basicmath,CRC32,qsort,dijkstra High

3.6.2 Complexity Analysis

The computational complexity of the proposed algorithm (cf. 3.1) can be analysed as

follows: Letm be the number of groups, B be the number of banks and n, the number

of requests. The complexity associated with the placement of requests in respective

bank queues, deadline computation for the n input requests, and partitioning of

these requests into m groups all incur O(n) overhead. The requests in each group

are sorted based on their deadlines. On average, the number of requests within a

group is n/m. The complexity related to the sorting of these n/m requests within

the m groups, become O(nlogn). The group deadline computation takes constant

amount of time for a single group, and hence for m groups, the complexity involved

is O(m). The overhead associated with the sorting of the m generated groups

is O(mlogm). Group splitting takes O(n) time. Finally, merging the B bank

schedules also incurs an overhead of O(n). As O(nlogn) is the dominant overhead

among all the above mentioned operations, the overall complexity of the algorithm

is O(nlogn).

3.6.3 Area Overhead

Let us assume a hypothetical frame in which n memory requests are spawned by

T tasks, and these requests are targeted to at most m distinct rows in any of the

available B banks. For each task spawns memory requests in a certain frame, the

memory controller stores the information of size approximately equal to 6bytes +

68

Evaluation

log nbits. For each memory request, the total storage required is 12bytes+ (log T +

log B)bits. The storage required for additional information is equal to 2 log n +

2n log n + 32 ∗ m ∗ B∗ bits. Hence, total storage required for all the B banks is

(2 × n ⌈log n⌉ + 2 × ⌈log n⌉)B.

To get a numeric estimate of this storage overhead, we consider a typical frame

of size, say 100µ s and assume that at most 6 tasks spawn memory requests within

this frame. From our simulation based experimentation set up, we have found that

a typical frame of size 100µs may contain about 30 requests from all these 6 tasks

and these requests are targeted on an average to about 5 distinct groups. With

these values, the additional overhead becomes 13258 bits (≈ 1.65KB). This can be

considered as a tolerable overhead for the performance advantage that the scheme

is able to provide for real-time systems.

3.6.4 Performance Analysis

We have considered the following scheduling approaches for comparative perfor-

mance evaluation:

• FR-FCFS: A baseline memory request scheduler which prioritizes row-hit re-

quests first and then the oldest request.

• Round Robin (RR): A baseline memory request scheduler which cyclically

services requests from all cores, with each core being assigned a fixed time slot

within a cycle.

• Earliest Deadline First (EDF): A baseline memory request scheduler where

the memory requests are prioritized in earliest task deadline first order.

• EDF with Write Queue Full (EDF-WQF): An existing scheduler [46] that

uses PCM as main memory. It schedules memory requests with earliest task

deadline first. In addition, it uses separate queues for read and write requests

and prioritizes reads over writes. When the write queue is full, pending reads

and write requests are sorted based on deadlines and scheduled using earliest

deadline. This process is repeated when the write queue is full again.

• RMRS: Our proposed Real-time Memory Request Scheduler which assigns

distinct priorities to requests based on awareness of task deadline urgencies,

expected number of remaining memory requests and row-buffer affinities.

69

Request Scheduling Policies

• R-RMRS: This technique is an extension of RMRS, where awareness of rewards

associated with tasks are also used to determine memory request priorities.

• Phased RMRS: Another extension of RMRS which exploits phased behaviour

of tasks related to memory access intensities in determining memory request

priorities.

• Phased R-RMRS: Another extension of R-RMRS which exploits phased be-

haviour of tasks related to memory access intensities in determining memory

request priorities.

• LARS: Our proposal Latency-Aware Request Scheduler for PCM memories

assigns distinct priorities to memory requests derived from a combination of

allowable task response time, arrival time and remaining number of memory

requests to get serviced. A separate write and read queue is maintained and

prioritizes reads over writes. Schedules requests with smaller deadline first.

• Re-LARS: This technique is an extension of LARS, where memory request

deadlines are imbibed with reward-awareness to maximize acquired system

reward. The main memory is considered as PCM.

3.6.5 Performance Metrics

Two performance metrics have been derived for experimental evaluation. To obtain

a closed-form expression for the reward fetched by a given system, we assume a

persistent task set for which a static non-preemptive periodic CPU schedule is known

before putting the system in operation. Hence, the schedule repeats every hyper-

period H = LCM(p1, p2, ...pn) of the given task set, where LCM is the least common

multiple of all periods. Let TR denote the total system reward gained by executing

the scheduled task instances over the length of a hyper-period. Thus, TR is derived

as:

TR =
n∑

i=1

H/pi∑
j=1

rewij, (3.17)

where, rewij is the reward obtained by the jth instance of task Ti within hyper-

period H. With this discussion on the system model assumed in our experimental

framework, we now present the two performance metrics used by us.

70

Results of DRAM Scheduling Policies

1. Normalized Reward (Rnorm): Ratio of the actual reward for a CPU schedule

S, and the maximum possible reward that could possibly have been fetched by

the task instances in S. That is,

Rnorm =
Actual reward obtained by S

Maximumpossible reward for S
(3.18)

2. Normalized Deadline Misses (Dnorm): Ratio of the number of task in-

stances in a schedule S that miss their deadlines, and the total number of task

instances in S. That is,

Let eij denote the execution time associated with jth instance of task Ti in

schedule S. Let xij (yij) be a binary variable which assumes the value of 1

when eij > di (eij > di + δi)

Dnorm =
∑
i|TiϵT

H/pi∑
j=1

xij

/
n∑

i=1

H/pi (3.19)

Dext
norm =

∑
i|TiϵT

H/pi∑
j=1

yij

/
n∑

i=1

H/pi (3.20)

3.7 Results of DRAM Scheduling Policies

In subsection 3.7.1, 3.7.2, 3.7.3 and 3.7.5, experiments have been carried out on

the 9 workload mixes discussed in Table 3.4. Each data point for these experiments

depicts the average value of the results obtained from ten executions of all 9 workload

mixes. In subsection 3.7.4, workload mixes 1 and 3 are used to analyze impact of

memory intensity on normalized reward.

3.7.1 Deriving optimal α

This experiment is conducted to empirically determine the optimal value of α (cf.

equation (3.9)) which can maximize obtained rewards. Figure 3.4 depicts the average

normalized reward values, as α is varied in the range [0, 1]. Each plot in Figure

3.4 presents a specific scenario in which the workloads associated with all tasks

are generated within a specific range. Here, the workload imparted by any task

Ti has been defined by the combination of the following 2 parameters: execution-

time/period (ei/pi) and execution-time/deadline (ei/di). The values of δi (di + δi

71

Request Scheduling Policies

Figure 3.4: Deriving optimal α

denotes the extended deadline) for any task Ti is generated randomly from a uniform

distribution [0.6(pi − di), pi − di]. From the figure, it may be observed that higher

the system load imparted by a workload mix, lower becomes the reward acquired.

For a fixed ei/pi range (say, [0.1, 0.2]), the plot with smaller ei/di achieves better

rewards. This may be attributed to the fact that for fixed values of pi, lower values

of di lead to higher average δi values. Hence for any workload mix, rewards reduce

at a slower pace when ei/di values are smaller. Similarly, for a fixed ei/di range (say,

[0.3, 0.5]), the plot with smaller ei/pi delivers better rewards, as Figure 3.4 shows.

In the calculation of R-RMRS deadlines r dri (cf. equation (3.9)), we observe that

higher values of α boosts both positive and negative shifts to the RMRS deadline

dri (cf. equation (3.5)). In this regard, it may be appreciated that both very small

and very large shifts to the RMRS deadline is detrimental to the achievement of

high aggregate rewards as such shifts tend to adversely affect the response latencies

of other requests.

From the figure, we see that the system delivers highest rewards when α = 0.3,

for all plots. Reward values for α = 0 depicts the scenario when the R-RMRS

request deadlines are same as the RMRS deadlines (cf. equations (3.5) and (3.9)).

Hence, we selected α = 0.3 for R-RMRS and Phased R-RMRS.

72

Results of DRAM Scheduling Policies

(a) (b)

Figure 3.5: (a) Dnorm, (b) Dext
norm

3.7.2 System load Vs. Dnorm

In Figure 3.5a, we plot normalized deadline misses Dnorm (cf. equation (3.19))

for R-RMRS, RMRS, FR-FCFS, and RR, as the system load U (=
∑

(ei/di)) is

varied between 50% and 100%. The experiment is conducted by assuming α to be

0.3 for R-RMRS. Reward Reduction Rate (RRRi) of a task Ti is defined as the

rate at which the reward reduces from its maximum value to zero. Symbolically,

RRRi = mrewi/(δi − x + di), where x is the completion time of task Ti relative to

the start of the task. To conduct this experiment, RRRi is in the range 0.4 and 0.7.

It is observed that normalized deadline misses Dnorm incurred by FR-FCFS, RR

and EDF are significantly higher than both RMRS and R-RMRS for all cases. This

shows that the use of task-level characteristics along with the run-time information

associated with them have proved to be effective in the proposed strategies towards

controlling deadline misses.

For example, reduction in Dnorm for R-RMRS is 16.9% and RMRS is 25.4%

compared to FR-FCFS, for system load U = 80%. Similarly, for R-RMRS, it is

15.5%, and RMRS is 23.4% compared to RR, for system load U = 80%.

3.7.3 System load Vs. Dext
norm

Figure 3.5b shows the normalized extended deadline misses Dext
norm (cf. equation

(3.20))obtained when the memory request scheduling follows FR-FCFS, RR, and the

proposed RMRS and R-RMRS. The value of α is taken as 0.4, RRRi is in the range

73

Request Scheduling Policies

Table 3.5: Comparison of deadline misses

D norm D ext norm
FR-FCFS RR EDF FR-FCFS RR EDF

RMRS -25.4 -23.4 -12.5 -26.4 -23.5 -9.8
R-RMRS -16.9 -15.5 -6.25 -35.8 -33.3 -19.6

0.4 − 0.7 and the system load U varied between 50% and 100%. From the figure,

we can see that with distinct task-aware priorities assigned to memory requests,

both the proposed methods, RMRS and R-RMRS, improve the task completion

times. For example, reduction in Dext
norm for RMRS is 26.4% and R-RMRS is 35.8%

compared to FR-FCFS, for system load U = 80%. Similarly, for RMRS, it is 23.5%,

and R-RMRS is 33.3% compared to RR, for system load U = 80%.The reduction in

Dext
norm for RMRS is 9.8% and for R-RMRS is 19.6% compared to EDF, for system

load U = 70%.

The poor performance of FR-FCFS and RR may be attributed to the fact that

both these algorithms are not deadline urgency-aware. While FR-FCFS targets

throughput maximization through row-buffer affinity awareness, RR attempts to be

fair by providing equal opportunities to memory requests from different applica-

tions. Hence, although FR-FCFS and RR with their distinct design objectives have

found suitable applications in many systems, they are both ignorant about task

deadlines and are therefore, seen to perform equally poorly for real-time systems.

We also observe that due to its deadline awareness, EDF is able to perform bet-

ter than FR-FCFS. However, results for EDF may be observed to be significantly

poorer compared to RMRS/R-RMRS because, although task deadline-aware, EDF

is ignorant about the expected number of remaining memory requests, row-buffer

affinities, and task rewards.

Comparing the proposed RMRS and R-RMRS strategies, it may be observed

that the reward unaware strategy RMRS which attempts to solely minimize misses of

deadline di, is able to perform better than the reward aware strategy R-RMRS with

respect to the plots for Dnorm. In comparison, the reward aware strategy R-RMRS

performs slightly better than RMRS with respect to the plots for Dext
norm. Table 3.5

presents the normalized deadline misses obtained for RMRS and R-RMRS compared

to FR-FCFS, and RR for a system load U = 80%. Negative values represent the

reduction in deadline misses. In particular, R-RMRS reduces deadline miss by 16.9%

74

Results of DRAM Scheduling Policies

(a) (b)

Figure 3.6: (a) Effect of phased execution on Dnorm, (b)Effect of phased execution on
Dext

norm

over FR-FCFS.

Effect of phased execution on Dnorm and Dext
norm

Figure 3.6a and Figure 3.6b plot the normalized deadline misses and extended

deadline misses for RMRS, Phased RMRS, R-RMRS, and Phased R-RMRS. From

the figures it may be noted that, Phased RMRS and Phased R-RMRS suffer lower

deadline misses compared to their phase-unaware counterparts. This happens be-

cause phased versions of the algorithms are able to exploit their better awareness

of instantaneous memory access intensities for a more precise estimation of re-

quest deadlines. Such accurate deadline urgency estimation in turn, helps towards

smoother task execution progress, ultimately resulting in lower task deadline misses.

For example, with system load U = 70%, reduction in Dext
norm for Phased RMRS is

6.5% and for Phased R-RMRS is 12.1%, compared to their phase-unaware counter-

parts.

3.7.4 Effect of memory intensity on Reward

Figure 3.7a and 3.7b shows the normalized rewards obtained using RMRS, R-RMRS,

RR and FR-FCFS for two specific workload mixes Mix 1 and Mix 10, which are

marked by low and high memory intensities, respectively. In this experiment, RRRi

values of all tasks vary in the range [0.4, 0.7]. The value of α is assumed to be 0.4

for R-RMRS. Figure 3.7a and 3.7b depicts plots for Rnorm as the system load U

(=
∑

(ei/di)) is varied between 50% and 100%. From the figures, it may be ob-

75

Request Scheduling Policies

(a) (b)

Figure 3.7: (a) Effect of low memory intensity workload mix on Rnorm, (b) Effect of high
memory intensity workload mix on Rnorm

Table 3.6: Comparison of reward

Low Intensity High Intensity
FR-FCFS RR EDF FR-FCFS RR EDF

RMRS 15.3 14 6.75 29.8 26.8 5.35
R-RMRS 33.9 32.4 14.86 47.4 44 8.92

served that all the presented strategies deliver better results for the lower intensity

memory workload Mix 1 compared to higher intensity memory workload Mix 10.

This is because the number of memory requests per unit time that arrive at the

controller is relatively lower for Mix 1, giving the controller a better opportunity

to appropriately reorder the memory requests leading to higher throughput as well

as rewards. FR-FCFS, RR and EDF are seen to deliver significantly poorer re-

wards compared to the proposed strategies due to better deadline awareness for

both Mix 1 and Mix 10. It may be noted that, with a frame-based deadline-aware

group reordering approach, the proposed schemes are able to judiciously balance

both throughput and timeliness, leading to better performance as seen in the figure.

In addition, being equipped with reward awareness (cf. equation (3.9)), R-RMRS is

able to deliver better rewards than RMRS in all scenarios.

Figure 3.7a shows that R-RMRS delivers 33.9% better normalized rewards com-

pared to FR-FCFS and 32.4% compared to RR, for system load U = 80%. In

comparison, RMRS is able to provide 15.4% better normalized rewards compared

to FR-FCFS and 14% compared to RR for the same system load (U = 80%). For

76

Results of DRAM Scheduling Policies

Figure 3.8: Effect of phased execution on Rnorm

a system load U = 80%, the normalized reward obtained for Mix 10, when mem-

ory scheduling follows RMRS is 29.8% and 26.8% compared to FR-FCFS and RR,

respectively and when memory scheduling follows R-RMRS, it is 47.4% and 44%

compared to FR-FCFS and RR respectively. Table 3.6 presents the normalized re-

ward obtained for RMRS and R-RMRS compared to FR-FCFS and RR when the

system load U = 80%. For example, RMRS acquires 15.3% better reward compared

to FR-FCFS for a low memory intensity mix.

As FR-FCFS,RR EDF are reward unaware in addition to being deadline unaware,

for this case as well, they may be observed to perform poorly with respect to the

proposed schemes.

Effect of phased execution on Rnorm

Figure 3.8 shows the normalized reward Rnorm obtained using RMRS, phased

RMRS, R-RMRS, and Phased R-RMRS. It may be observed that due to similar

reasons as discussed for Figure 3.6a and Figure 3.6b, Phased RMRS (Phased R-

RMRS) outperforms RMRS (R-RMRS) in terms of delivered normalized rewards.

For example, Phased RMRS (Phased R-RMRS) is able to achieve 6.4% (8.2%) higher

normalized rewards compared to RMRS (R-RMRS), for system load U = 70%.

77

Request Scheduling Policies

(a) (b)

Figure 3.9: (a) Effect of reward reduction rates (RRRi) (b) Shared Vs. Private Banks

3.7.5 Effect of reward reduction rates (RRRi) of tasks on
Rnorm

In this experiment, we present plots for the normalized rewards acquired by R-

RMRS and RMRS as the system load U (=
∑

(ei/di)) is varied between 50% and

100%. This experiment assumes the value of α to be 0.4 for R-RMRS. Each plot

in Figure 3.9a represents scenarios where the RRRi (= mrewi/(δi − x+ di)) values

of the tasks in all data sets are within a specific range. It may be observed that

lower the RRRi range, higher becomes the rewards acquired for both R-RMRS and

RMRS. This is because, higher RRRi values imply quicker reward reduction rates of

tasks allowing less slack times for reward enhancement through appropriate memory

request scheduling. In Figure 3.9a, we additionally see that R-RMRS outperforms

RMRS in all cases. For example, when RRRi range is [2, 3], R-RMRS delivers 44.1%

better normalized rewards compared to RMRS for system load U = 80%.

3.7.6 Private Vs. Shared Banks

In Figure3.9b, we plot the normalized rewards acquired by R-RMRS and RMRS

as the system load U (=
∑

(ei/di)) is varied between 50% and 100%. This ex-

periment assumes the value of α to be 0.4 for R-RMRS and the rate of reward

reduction (RRRi) for a task to be between 0.4 and 0.7. Each plot represents a sce-

nario when bank mapping follows either a private or shared policy. In private bank

mapping, each core gets exclusive access to designated banks, whereas, in shared

78

Results for PCM Scheduling Policies

Table 3.7: Comparison of performance with EDF-PCM

Method
% Improvement

Dnorm Dextnorm Rnorm
EDF-WQF -14.51 -15 16.27
LARS -24.19 -25 30.23
Re-LARS -16.6 -28.3 -41.86

mapping, each core can access all banks. In this experiment, the number of banks

has been considered to be equal to the number of cores. Hence each core has pri-

vate access to a single bank. From the figure, it may be observed that obtained

reward is higher when private bank mapping is used. This is because, private bank

mapping avoids row-buffer interference from applications executing on other cores.

With reduced row-buffer access conflicts, average memory request service times are

reduced fetching higher reward compared to the scenarios when shared mapping is

employed. However, it may be noted that both R-RMRS and RMRS do not depend

on whether the applied mapping scheme is shared or private. The figure shows R-

RMRS (RMRS) delivers 21.8% (18.1%) better normalized reward with private bank

mapping compared to shared bank mapping, for system load U = 70%.

3.8 Results for PCM Scheduling Policies

We also have to account for the difference in service latencies between read and write

requests, in addition to knowing the service urgency, which benefits even a DRAM

scheduler. Because the writes require a longer time, if they are scheduled blindly, it

could impact the predictability of read requests. We propose LARS and Re-LARS

to address this disparity by prioritizing reads over writes. This section provides an

analysis of the proposed LARS and Re-LARS policies.

The value of α is taken as 0.3, RRRi is in the range 0.3−0.5, and the system load

U varied between 50% and 100%. Table 3.7 presents the improvement obtained for

existing EDF-WQF and proposed LARS and Re-LARS over the baseline technique

EDF-PCM with a system load U = 70%. Negative values represent a reduction in

deadline misses, and positive values represent an improvement in acquired reward.

We can see that the proposed methods, LARS and Re-LARS, improve task com-

pletion times with distinct deadline-aware priorities assigned to memory requests.

Additionally, separate queues for read and write requests also improve task comple-

79

Request Scheduling Policies

Table 3.8: Comparison of performance with EDF-DRAM

Method
% Improvement

Dnorm Dextnorm Rnorm
EDF-WQF 26.19 34.21 -23.07
LARS 11.90 18.42 -13.84
Re-LARS 16.66 13.15 -6.15

tion times. Hence, they could achieve fewer deadline misses compared to EDF-PCM

and EDF-WQF.

Table 3.8 presents the reduction in performance for proposed LARS and Re-

LARS and existing EDF-WQF over existing EDF-DRAM. Negative values indicate a

reduction in acquired reward, and positive values indicate increased deadline misses.

The proposed LARS and Re-LARS achieve comparable normalized rewards to that

of EDF-DRAM, which achieves the highest reward among the policies. Furthermore,

the proposed policies reduce deadline misses comparable with EDF-DRAM, while

the existing EDF-WQF could not achieve such reduction. EDF-DRAM achieves

better performance due to the reduced read/write latency for DRAM memories

compared to PCM memories.

Both LARS and Re-LARS could reduce normalized deadline misses (both Dnorm

and Dext
norm) and improve Rnorm close to the range of EDF-DRAM. This indicates

that the PCM can be chosen as an alternative memory for real-time systems instead

of DRAM in the presence of an improved memory request scheduler.

3.9 Summary

The key insights of this chapter are as follows:

• We have proposed low overhead heuristic memory request scheduling tech-

niques targeted towards soft real-time systems executing persistent periodic

tasks.

• With a novel frame-based deadline aware group reordering mechanism, the

proposed algorithms are able to provide a judicious balance between through-

put and timeliness leading to lower deadline misses as well as higher Quality

of Service (QoS) in soft real-time systems.

80

Summary

• We have presented different predictable scheduling policies for DRAM and

PCM memories.

• In particular, the limitation of PCM of having different latency for reads over

writes, in that the writes being slower, is considered while designing the mem-

ory request schedulers for PCM memories.

• An urgency-based, read-over-write prioritization scheduler is proposed to deal

with slower PCM.

• We have designed, implemented, and evaluated both the proposed techniques

by conducting simulation-based experiments, and the results are compared

with existing memory request scheduling techniques FR-FCFS, RR, and EDF.

This chapter discusses various memory request scheduling strategies for DRAM

and PCM memories. The experimental results demonstrate a considerable re-

duction in deadline misses and an improvement in acquired reward compared

to the state-of-the-art approaches, FR-FCFS, RR, and variants of EDF. Our

proposal could reduce deadline misses by 25.4% compared to FR-FCFS, 23.4%

compared to RR, and 19.6% compared to EDF. Also, the acquired reward im-

proves by 33.9% compared to FR-FCFS, 32.4% compared to RR, and 14.8%

compared to EDF.

81

4
Migration Scheduling Policies for Hybrid

DRAM-PCM Memories

This chapter proposes three page-migration scheduling policies, SRS-Mig, Mig-Slot,

and Mig-QoS, to improve the performance of hybrid-memory systems. All the pro-

posed policies schedule migration at the boundary of a slot, ensuring page migration

does not adversely affect regular read/write access. Our first technique is based on a

dynamic slot-based technique where the length of the slot is updated depending on

the service response time of batched memory requests. The remaining two policies

use a fixed-slot technique where the migration is performed in the reserved space

within the slot. All the proposed policies aim to maximize the DRAM hits and thus

improve the Quality of Service (QoS) in terms of memory service rate and memory

service time. The proposed policies are evaluated against the existing two migration

techniques on a quad-core system.

4.1 Introduction

Emerging hybrid memory technologies composed of non-volatile memories (NVM)

like PCMs and DRAMs exhibit significant access speeds and capacity improvement.

During application execution, the memory pages get randomly allocated to the PCM

and DRAM partition of the hybrid memory. High application performance is feasible

82

Introduction

by dynamic migration (or relocation) of pages (data) between these memory types.

The selection of page migration candidates and the time of migration favorably

impact the memory execution time and memory service rate of the application.

Existing techniques propose solutions to dynamically identify the pages that need

to be moved immediately or at regular intervals. These techniques select migration

candidates based on the write access counts and migrate when they cross the write

count threshold. Such an immediate or interval-based rigid migration regime may

hamper the service of the regular memory requests, affecting the memory service

rate. During application execution, as the time instant of migration significantly im-

pacts both memory service time and execution time, appropriately finding the time

of migration is essential, along with finding the best candidate for page migration.

To alleviate the impact on service time and improve the Quality of Service (QoS)

of the device, this chapter proposes migration scheduling methods to identify the

instant at which to migrate the eligible page. The main contribution of this work

are as follows:

• SRS-Mig: This method selectively identifies page migration candidates and

schedules migration at run-time. SRS-Mig is a dynamic slot-based approach

where the length of the slot is determined by the service response time of

batched requests. The migration is scheduled at the boundary of slots of

varying lengths.

• Mig-Slot: Migration-aware Slot-based Memory Request Scheduler, which re-

serves space for migration in every slot along with the regular batched requests.

Such reservation helps to improve the response time by performing migration

without hampering regular requests.

• Mig-QoS: QoS-aware Mig-Slot is an extension of Mig-Slot. The objective of

Mig-QoS is to schedule migration and regular requests so that the QoS acquired

by the system is maximized. The proposed Mig-QoS schedule migration based

on the incoming memory request rate to improve the memory service rate as

the QoS.

• Our victim page selection policy considers the write count and recency of pages

to minimize return-back migration of PCM pages from DRAM.

83

Migration Scheduling Policies

 A B C D E F G H I J K L

 A B C D E F G H I J K L

Slot sl
k-1

Slot sl
k

Slot sl
k+1

Slot sl
k+2

Slot sl
k+3

Figure 4.1: Example of slot-based scheduling of memory requests. Here blue colour
represent batched requests and red colour represent servicing requests

• The proposed techniques are implemented and evaluated using the full system

simulator Gem5 [95] integrated with NVMain [96] on applications from SPEC

2006 and Parsec benchmark suites.

• The presented techniques are evaluated extensively against two existing tech-

niques, UIMigrate [58] and OntheFly [60], and a Baseline technique without

any migration support. Experimental evaluation shows significant improve-

ment in execution time and memory service rate for the applications and thus

improves the QoS acquired by the system.

The rest of the chapter is organized as follows: Slot-based Migration scheduling

is presented in 4.2. Motivation is discussed in section 4.3. Section 4.4 presents the

system model for the proposed migration unit. The proposed migration schedul-

ing techniques are illustrated in sections 4.5, 4.6 and 4.7. Section 4.8 presents the

proposed victim page migration technique. Section 4.9 discusses the experimen-

tal methodology. Results and analysis are presented in section 4.10. Finally, we

summarize this chapter in section 4.11.

4.2 Slot-based Migration Scheduling

In a slot-based scheduling method, the memory requests are batched in a slot and

are scheduled at the boundary of the subsequent slot. The memory response time

is computed from the time when the request gets batched. Figure 4.1 shows the

working of slot-based scheduling of memory requests A,B, · · ·L. The figure shows

the scheduling of slots from slk−1 to slk+3. The memory requests batched (shown

in blue color in 4.1) during slot slk are scheduled at the boundary of slk and slk+1

and serviced during slot slk+1 (shown in red color in 4.1). In slk+1, while serving

requests, we also batch requests for the next slot. As our work aims to migrate pages

between DRAM and PCM, such migration requests also need to be scheduled. In

84

Motivation

 A B C D E M
1
M

1
M

1
M

1
F G H M

2
M

2
M

2
M

2
 I J K L

A B C D E F G H I J K L

Slot sl

k-1
Slot sl

k

Slot sl
k+1

Delay for F

Slot sl

k+2 Slot sl
k+3

Delay for I

{MP
1
} {MP

2
}

Figure 4.2: Example of batched requests getting postponed due to presence of migration
requests

a slot-based scheduling method, the most prominent place to schedule migration

requests is at the boundary of slots, i.e., before the next set of requests starts. To

migrate a page of size 4KB, we need to perform 128 read and 128 write for a memory

device with access granularity of 64bytes. These migration requests are interleaved

with regular read/write requests.

Figure 4.2 demonstrates the scheduling of regular and migration requests at the

boundary of slots along with regular read/write requests. Here, MP1 and MP2

are two candidate pages to be migrated, and each migration requires four memory

requests in this example (the real number of migration requests is given in Section

4.9). Note in the figure, MP1 is scheduled as four M1 requests and serviced during

slot slk+1. Similarly, MP2 is serviced as four M2 requests and serviced in slot slk+2.

4.3 Motivation

Migration helps to improve the performance of hybrid memory systems. To maxi-

mize the benefit of migration, it is necessary to migrate the right pages at the right

time, and it is challenging. Also, these pages need to be migrated along with the

regular requests.

It is evident from Figure 4.2 that certain regular requests batched earlier get

scheduled much later compared to their original timestamp because of intermediate

migration requests. For example, requests F,G,H are able to get serviced after

some delay in the slot slk+1. The number of such delayed requests at random

points in execution is plotted in Figure 4.3. It is observed from the figure that the

number of delayed requests due to migration is more prominent for write-intensive

benchmarks, i.e., benchmarks with high write-backs per Kilo Instructions (WBPKI).

For example, for a benchmark with low WBPKI, such as namd, the number is 73

85

Migration Scheduling Policies

Figure 4.3: Number of batched requests that get delayed

 Decision & Control Unit

Migration Buffer

Migration Unit

D
R

A
M P

C
M

Victim Page
from DRAM

Hot Page
from PCM

Regular DRAM
Request

Regular PCM
Request

F
R

-F
C

F
S

S

ch
ed

u
le

r

F
R

-F
C

F
S

S

ch
ed

u
le

r

CPU

DRAM Queue PCM Queue

Hybrid Memory Controller

Regular DRAM
Response

Regular PCM
Response

Pending Migration Queue

Global Queue

Meta Data

Hot Page
from PCM

Victim Page
from DRAM

Figure 4.4: Proposed memory controller model with migration unit

on average, whereas for write-intensive (high WBPKI) benchmark like lbm, it is 428

on average, which is very high. However, the number of batched requests that got

delayed due to migration is also significant for low WBPKI benchmarks. Therefore,

it is much required that while creating slots, we should also consider the scheduling

of migration requests instead of mindlessly doing so at the boundary between the

two slots.

4.4 System Model

We consider a hybrid memory composed of a single DRAM and three PCM channels.

However, the proposed migration scheduling policies apply to all memory channel

distributions i.e, the policies can apply on any number of DRAM and PCM channels.

86

System Model

We assume the memory sizes of DRAM and PCM are scalable enough to hold the

complete application executing on the core. The adapted hybrid memory controller

model with migration unit is shown in Figure 4.4. The memory controller consists

of a global queue and separate DRAM and PCM queues for memory requests, a

scheduler to schedule memory requests, and a migration unit for page migration.

Memory requests spawned from applications executing on the CPU cores are

received in the global queue. Based on the targeted memory type, these requests

are batched separately to the PCM or DRAM queue. The underlying memory

technologies consist of banks with row buffers and adhere to an open-page row-

buffer management policy. In the open-page policy, a memory row is opened by

bringing it to the row buffer, and the same row can be accessed repeatedly without

the row buffer being closed. In contrast, a row must be closed after each access in the

close-page policy, increasing the row-hit response times significantly. The memory

requests in PCM and DRAM queues are scheduled separately using the First-Ready

First Come First Serve (FR-FCFS) policy and memory requests targeted to open

rows are prioritized.

A page migration unit incorporated within the memory controller handles the

page migration. The unit comprises a decision and control unit, a metadata unit, a

migration buffer, and a queue for pending migrations. The migration and decision

control unit keeps track of the write count of each page targeted by the memory

request in the queue and efficiently selects migration candidates based on the write

count of pages. These selected candidate pages are placed in the migration pending

queue and migrated based on the write count at the slot boundary. The metadata

unit holds a write counter for each DRAM and PCM page. An eDRAM-based

migration buffer is used to hold the migrating page. The page is first read from

PCM into a migration buffer and subsequently written into DRAM and vice versa.

The proposed methods migrate a single page at a time. The incoming requests for

pages under migration are serviced from the migration buffer if that page is available

or from the older memory. A remapping table handles the changes in the physical

address after migrations. The table keeps track of all the migrated pages with their

old and remapped addresses.

The system model considers the following metrics to evaluate Quality of Service

(QoS):

1. Execution Time: Time required to complete the execution of an application.

87

Migration Scheduling Policies

2. Memory Service Time: Total turn-around time required to completely serve

a memory request after reaching the memory controller.

3. Response Time: Time elapsed from when the request is batched to the time

when the request gets serviced.

4. Memory Service Rate: Number of memory requests serviced per unit time.

A predefined threshold called Migration Hot Threshold (MigHT) determines the

possibility of a page for migration. The page access patterns vary across work-

loads. To effectively adapt to the change of access patterns, the proposed migration

scheduling policies select MigHT depending on the workload characteristics. The

empirical evaluation of MigHT for different workloads is given in the evaluation

section 4.9.

4.5 SRS-Mig: Selection and Run-time Scheduling

of page Migration

As discussed earlier, the memory controller receives memory requests as a continuous

stream. The system divides the discrete timeline into non-overlapping slots where

kth slot is denoted as slk. We propose SRS-Mig, a dynamic slot-based migration

scheduling technique. Here, the length of slk+1 is determined by the service response

time (x) of the last request in the batch and is lower bounded by a design constant

β and upper bounded by a design constant ζ. As the schedule is generated slot-by-

slot, β provides an upper bound on the number of scheduling events and controls

overheads associated with the scheduler. This lower bound leads to a rare possibility

for the schedule to be slightly non-work conserving when system loads are very low.

ζ provides an upper bound on the number of requests that can be scheduled within

a slot so that a request will not be starved for a long period of time.

Algorithm 4.1 explains the proposed SRS-Mig method. The set of memory re-

quests R in the current slot slk are targeted to m distinct rows. Initially, these

requests are scheduled in FR-FCFS order. The write count of each page is cal-

culated and compared with a predefined migration hot threshold (MigHT) for the

migration candidate selection. The pages with a write count exceeding the hotness

threshold are selected as migration candidates. We assume a single migration can

happen in a particular slot.

88

SRS-Mig: Selection and Run-time Scheduling of page Migration

Algorithm 4.1: SRS-Mig(slk)

Input: R = {r1, r2, . . . rn}
Output: Schedule Sfinal

1 Pi : Page i
2 mem type(Pi) : Memory type of page Pi

3 lruDRAM : LRU list of DRAM pages
4 W (Pi) : Write count of page Pi

5 MigHT : Migration Hot Threshold
6 Pv : Victim page
7 SD: Slot Duration
8 Let the requests in R be batched for slk and are targeted to m distinct

rows, m < n
9 if mem type(Pi) is DRAM then

10 Add Pi to the LRU list if Pi is not present in lruDRAM

11 Update lruDRAM

12 Requests are buffered in DRAM queue and PCM queue and scheduled in
First Row Hit-First Come First Serve (FR-FCFS) order

13 Compute the write count W (Pi) of each page Pi targeted by the requests in
R

14 Let Pk be a page whose write count W (Pk) is greater than the migration
hot threshold (W (Pk) > MigHT)

15 Select page Pk as migration candidate MP and set as ready for migration
for next slot slk+1

16 if MP is ready for migration then
17 if Space in DRAM then
18 Insert migration requests for migration ready page MP in S
19 Sfinal = Schedule migration of MP in next slot slk+1

20 Update SD

21 else
22 Pv = victimpage sel(MP)
23 Complete migration of Pv to PCM
24 Sfinal= Schedule migration of MP
25 Update SD

89

Migration Scheduling Policies

Before migrating a page from PCM to DRAM, the current DRAM size is checked

to find a free DRAM page. If a free DRAM page is available, we schedule a mi-

gration from PCM to DRAM for the first pending page in the migration candidate

queue. During migration, migration requests are prepared and inserted when the

next slot is batched. These requests are scheduled along with the regular read/write

requests. The page is first read from PCM into a migration buffer available in the

memory controller and subsequently written into DRAM in the consecutive slot.

The incoming requests during migration are serviced from the migration buffer or

the older memory. The slot duration SD is updated with the service response time

of the last request in the slot. The regular requests and migration scheduled at the

boundary of slk and slk+1 are serviced in slot slk+1.

4.6 Mig-Slot: Migration-aware Slot-based Mem-

ory Request Scheduler

SRS-Mig looks into the regular flow of read/write requests and ensures that migra-

tion does not hamper the response time of regular memory accesses by dynamically

adjusting the slot length at run-time. At the same time, Mig-Slot updates the slot

length to reserve space for migration if there are pending migrations; otherwise,

the slot length is fixed. This is based on the observation that reserving space for

migration within a slot also helps to improve the delay for requests, as it performs

the migration without hampering regular read/write requests.

Our proposed Mig-Slot scheduling algorithm makes the following decisions:

• Identify migration candidate: The page is selected as a migration can-

didate when its write count exceeds a predefined Migration Hot Threshold

(MigHT).

• When to migrate a page?: We migrate a page at the immediate slot after

a page becomes eligible. A portion of the slot is reserved for scheduling mi-

gration. If there is pending migration, a limited number of regular requests

are batched to keep space for migration.

The memory timeline is divided into continuous and equal length slots sl1, sl2, · · · sln.

90

Mig-Slot: Migration-aware Slot-based Memory Request Scheduler

Algorithm 4.2: Mig-Slot: Slot-based Scheduling

Input: R = {r1, r2, . . . rn}
Output: Schedule Sfinal

1 SD and SD’: Slot Duration; MigHT : Migration Hot Threshold; MigD:
Migration Duration; MQ: Pending Migration Queue; MP : Migration
candidate Page

2 Let the requests in R be batched for slk and are targeted to m distinct
rows, m < n

3 if mem type(Pi) is DRAM then
4 Add Pi to the LRU list if Pi is not present in lruDRAM

5 Update lruDRAM

6 Requests are queued separately in DRAM queue and PCM queue and
scheduled in First Row hit-First Come First Serve (FR-FCFS) order

7 Increment the write count of page targeted by the requests
8 Compare the write count of each targeted page with MigHT
9 Pages with write count greater than MigHT are queued in MQ and are

ready for migration in next slot slk+1

10 if page MP ϵ MQ then
11 Sfinal=Mig-Slot(MP)

12 Function Mig-Slot(MP)
13 if Pending migration MP then
14 SD’ = SD - MigD

15 else
16 SD’ = SD

17 Batch requests for slot slk+1 for slot duration SD’
18 if free pages in DRAM partition then
19 Insert migration requests for ‘MP ’ in the slot
20 Sfinal=Schedule batched requests followed by migration requests in

FR-FCFS order

21 else
22 Pv=victimpage sel(MP)
23 if Pv is not NULL then
24 Migrate first ‘Pv’, then ‘MP ’

25 else
26 Discard migration of ‘MP ’

91

Migration Scheduling Policies

 A B C D E F G H I J K L

Slot sl
k-1 Slot sl

k

Slot sl
k+1 Slot sl

k+2

Slot sl

k+3

{MP
1
} {MP

2
}

 A B M
1
M

1
M

1
M

1
 C DM

2
M

2
M

2
M

2
 E F G H I J K L

Figure 4.5: Illustration of reserving space for migration in the slot

Algorithm 4.2 explains the proposed Mig-Slot for two consecutive slots slk and

slk+1. Assume there is no pending migration at the beginning of slk. Memory re-

quests are batched for slot slk, which has slot duration SD. These requests are

queued and scheduled separately based on the targeted memory type. The write

count of each targeted page is computed and compared against the predefined mi-

gration hot threshold MigHT . Pages with a write count greater than MigHT are

queued in the pending migration queue. We assume that a single migration can

happen within a slot. Function Mig-Slot explains the proposed Mig-Slot technique.

Requests are batched only for the duration SD′. At the beginning of slk+1, if there

are ready migrations in the pending queue, SD’ is updated to reserve space for

migration as shown in line number 14 in Algorithm 4.2. The updated slot duration

thus batches a lesser number of requests and, thus, makes sure that the regular

batched requests are not delayed. Before migrating a page from PCM to DRAM,

the current size of DRAM is checked, and it identifies a free page in DRAM.

Illustration: Continuing the example, Figure 4.5 shows the resultant slot struc-

ture after applying Mig-Slot. Here MP1 and MP2 are pending migrations at the

beginning of slk, and we assume that the write intensity of MP1 is higher than the

write intensity of MP2. Hence, Mig-Slot schedules migration of MP1 before MP2.

To allow pending migration, Mig-Slot modifies the slot duration to schedule migra-

tion requests. It is observed from the figure that the number of requests batched

gets reduced, which controls the memory response time as they are not getting de-

layed after batching. For example, in slot slk−1, before reserving space, five requests

are batched (cf. Figure 4.2), while after applying Mig-Slot, only two requests are

batched to allocate space for migration. The response time is computed once the

request gets batched (cf. Section 4.4).

92

QoS-Aware Migration

(a) (b)

Figure 4.6: (a) Memory request rate at different points in execution, (b) Number of
requests delayed to get batched

4.7 QoS-Aware Migration

4.7.1 Impact of Migration on QoS

During the execution of an application, regular memory requests arrive at the mem-

ory at varying rates. Figure 4.6a shows the memory request rate of four benchmarks

from SPEC 2006 and Parsec benchmark suites. From the figure, we can observe that

the incoming request rate varies at different intervals and is not monotonic. For ex-

ample, the rate is 0.01 for namd at the initial slots and increases to 0.02 in the middle

and end slots. In contrast, for lbm, the rate is 0.02 at the initial slot, increases to

0.06 in the middle slots, and reduces to 0.01 in the end slots. For streamcluster, a

multi-thread benchmark, the rate is 0.003 at the initial slots and continues in the

range till the end slots. In contrast, for canneal, another multi-threaded benchmark

has a rate of 0.01 at the initial slot and reduces to 0.003 at the middle slots, then

increases again. The rate varies across the benchmark execution and among the

benchmarks, too.

The memory response time and memory service time are improved as we reserve

space for migration without batching the regular requests. However, this results in

several requests that get delayed to batch due to Mig-Slot. The number of requests

that get delayed to batch for varying incoming request rates (r) is shown in Figure

4.6b. On average, for a small request rate (r = 0.001), the number of requests

delayed to get batched is 3, and it becomes as high as 56 for a high request rate (r =

0.05). For multi-thread benchmarks like canneal and streamcluster, the memory

93

Migration Scheduling Policies

request rate is less than 0.05 during the entire execution, and therefore, requests

delayed for r = 0.05 is zero for these benchmarks. However, it is evident from the

figure that the number of delayed requests increases with an increase in request

rate. The increased number of requests that could not batch will affect the memory

service rate as the Quality of Service (QoS). As the memory service rate depends on

the incoming request rate, to maintain QoS, we must consider the incoming request

rate (r). Therefore, we propose a QoS-aware extension of Mig-Slot to consider the

input request rate before scheduling migration.

4.7.2 Mig-QoS: QoS-aware Mig-Slot

The objective of QoS-aware Mig-Slot, an extension of Mig-Slot, is to improve QoS.

From the examples and figures discussed in the previous section, it is observed that

the number of requests that are delayed to get batched is large, which reduces the

memory service rate. We aim to reduce the number of requests delayed for batch-

ing to improve the memory service rate. For this to happen, Mig-QoS tracks the

incoming memory request rate before scheduling a migration in a slot. In Mig-QoS,

the migration is scheduled only when the incoming memory request rate is below a

threshold. This helps to control the number of requests that get delayed for batch-

ing. If the incoming rate is high, the slot space is not reserved for migration, so the

batching is not delayed, and it improves the memory service rate. To account for the

memory service rate, we use the incoming memory request rate and average memory

request rate as parameters. Following are the definitions of these parameters:

1. Memory service rate: Number of requests serviced per unit time. We define

this metric as our QoS parameter. A higher memory service rate indicates

better QoS.

2. r: Incoming request rate: Number of requests arriving at the memory con-

troller per unit time.

3. ravg: Average memory request rate: Average rate of requests that arrived at

the memory controller over a given duration.

The proposed Mig-QoS algorithm is explained in Algorithm 4.3. Mig-Slot always

reserves a portion of the slot for migration if there are pending migrations. Instead,

Mig-QoS checks the incoming memory request rate before reserving the slot for

94

QoS-Aware Migration

Algorithm 4.3: Mig-QoS

Input: R = {r1, r2, . . . rn}
Output: Schedule Sfinal

1 MP : Migration candidate page; r: Incoming request rate; ravg: Average
incoming request rate; mg: 10% of ravg; W : ravg −mg

2 Function Mig-QoS(MP)
3 if Pending migration MP then
4 if r < W then
5 SD’ = SD - MigD

6 else
7 SD’ = SD

8 Batch requests for slot slk+1 for slot duration SD’
9 if Space in DRAM then

10 Insert migration requests for ’MP ’ in the slot
11 Sfinal=Schedule batched requests and then migration requests in

FR-FCFS order

12 else
13 Pv = victimpage sel(MP)
14 Migrate first ‘Pv’, then ‘MP ’{If Pv is not NULL}

migration. The proposed method keeps track of the incoming request rate r of each

slot. If the current request rate is greater than the average request rate ravg, Mig-QoS

postpones the migration. To account for the dynamic change in the incoming request

rate, we keep a margin of 10% around ravg to make the decision. The margin value

is denoted by mg, and the sensitivity analysis for different margin values is done in

the result section (cf. Section 4.10). The same steps as Algorithm 4.2 are followed

by Mig-QoS, with the exception that in Mig-Slot, if there is a pending migration,

space is reserved in every slot for migration. In contrast, Mig-QoS examines the

rate of incoming requests to determine whether to serve any pending migrations in

the queue (line number 4).

Illustration: Continuing the example, Figure 4.7 shows the impact of Mig-QoS

in the batching and scheduling of regular and migration requests. For this example,

we assume that the slot length is five units, the initial average request rate is 0.5, and

the margin is 10% of the incoming request rate. MP1 is in the pending queue before

the beginning of the slot slk−1. From the figure, the current incoming request rate

is 1 (rslk = #requests/slot length) and is greater than the current average incoming

95

Migration Scheduling Policies

 A B C D E F G H I J K L

Slot sl
k-1

Slot sl
k

Slot sl
k+1

Slot sl
k+2

Slot sl
k+3

 A B C D E F G M
1
M

1
M

1
M

1
 H I M

2
M

2
M

2
M

2
 J K L

{MP
1
} {MP

1,
MP

2
} {MP

2
}

Figure 4.7: Illustration of Mig-QoS showing postponement of migration due to high input
request rate

request rate. Hence, MP1 is not scheduled in the boundary of slot slk−1 and slk

using Mig-QoS; that is, since the incoming request rate of slot slk−1 is high, the

batching is performed for regular requests, and migration is postponed for MP1.

For slot slk, the incoming request rate is 0.4, and the current average request rate

with margin is 0.825. As the incoming request rate is less than the average value,

in slot slk, we reserve space for migration by batching fewer regular requests and

schedule the migration of MP1 during slot slk+1. Similarly, for slot slk+1, Mig-QoS

batches fewer requests and performs the remaining (pending) migration for page

MP2 in slot slk+2.

4.8 Victim Page Migration

As the DRAM size is limited while moving a page to DRAM, the allocated capacity

of DRAM for the particular application may be full. In this scenario, we must choose

a victim DRAM page to be moved to PCM to make space for the migrating PCM

page. An LRU list of pages with their write counts is maintained for all DRAM

pages. The write count of m% least recently used pages are compared. We took the

value of m as 25% of LRU list size. This list selects the LRU page with a minimum

write count as a possible victim page. If its write count is less than the write count

of the migrating page, the page is selected as the victim page. The LRU list has

been updated for each memory access and migration from PCM to DRAM. If no

victim page is found that has a write count less than the incoming PCM page, then

migration is canceled for this PCM page.

Algorithm 4.4 presents the victim page selection method. An LRU list is main-

tained for the accessed DRAM pages. The function returns the least recently used

page with minimum write count as the victim page. If the write count of the victim

page is less than the migrating page, it is migrated similarly to regular migration.

96

Evaluation

Algorithm 4.4: Victim Page Selection

1 Function victimpage sel(MP)
2 Get the minimum write count page Pv from the last m% pages in

DRAM LRU list
3 if write count of Pv less than the write count of MP then
4 return victim page Pv

5 else
6 return NULL {‘Pv’ is not selected as victim page, hence discard

migration}

The victim page migration is performed before the regular migration. The LRU list

is updated on each memory access and after each migration from PCM to DRAM.

4.9 Evaluation

The experimental approach used to evaluate the proposed architecture is shown in

this section.

4.9.1 Experimental Setup

We use Gem5 [95] full system simulator integrated with NVMain [96], a cycle-

accurate main memory simulator designed for NVMs to implement our proposed

algorithm. The memory simulator models a hybrid memory with three PCM and

single DRAM channels. DRAM-PCM hybrid memories are typically constructed

with small DRAM and big PCM portions to gain the high density of PCM without

sacrificing the advantages of DRAM in terms of latency. For our studies, we have

employed a big PCM chunk (3GB) and a tiny DRAM portion (1GB) to approximate

such memory. We assume DRAM size to be between 20% and 30% of the application

size, with PCM able to store the remaining application size. A page size of 4KB

is used for migration in our experiments with an access granularity of 32bytes per

read/write. So, to migrate a page of size 4KB, we use 128 read and 128 write

requests. The details of the system parameter used in our experiments are shown

in Table 4.1.

97

Migration Scheduling Policies

Table 4.1: Important system parameters

Components Parameters
Processor Quad-core, X86/ALPHA

L1 Cache
Private, 32KB SRAM split I/D caches,
2-way associative, 64B block

L2 Cache
Shared, 512KB SRAM, 64B block,
8-way associative

Main Memory

PCM: 3GB, 3 channels, 32 entry request queue
Memory Controller: FR-FCFS
DRAM: 1GB, Single channel
Memory Controller: FR-FCFS

Memory Latency
[55, 98]

PCM :: Read = 100ns, Write = 350ns
DRAM:: Read = 50ns, Write = 50ns

Energy
PCM :: Read = 0.2nJ/bit, Write=1 nJ/bit
DRAM:: Read=0.1 nJ/bit, Write=0.1 nJ/bit

No. of migration requests to
transfer single page of size 4KB

128 Read & 128 Write

Benchmarks:
SPEC2006: lbm, sjeng, gobmk, calculix, namd
Parsec: canneal,x264,streamcluster,dedup
SPEC-Mixes: Mix-High: gobmk,lbm,sjeng,libquantum;
Mix-Low: namd,calculix,milc,gromacs;
Mix-Medium: lbm, sjeng, calculix, gromacs

Table 4.2: Benchmark classification based on write-backs

Benchmark MPKI WBPKI Classification
gobmk 27.82 20.59 High
lbm 25.31 18.28 High
sjeng 8.52 8.46 High
libquantum 6.95 6.93 High
milc 5.68 1.62 Low
gromacs 0.64 0.35 Low
calculix 0.28 0.14 Low
namd 0.09 0.02 Low
canneal 3.4 1.9 Low
x264 2.6 0.9 Low
streamcluster 0.8 0.7 Low
dedup 0.34 0.23 Low

98

Evaluation

4.9.2 Workloads

We analyzed our results using the multi-programmed SPEC 2006 [99] and the multi-

threaded Parsec [100] benchmark suite. We selected benchmarks based on their write

intensity and classified them as high and low, as shown in Table 4.2. The Misses

Per Kilo Instruction (MPKI) and Write-Back Per Kilo Instruction (WBPKI) metrics

are used to measure the read and write intensities, respectively. Depending on the

WBPKI, we categorize the benchmarks as High and Low. Each SPEC workload

is executed for 1 billion instructions while being given 250 million instructions to

warm it up.

4.9.3 Performance Analysis

We have considered the following techniques for performance analysis of our pro-

posed technique:

• Baseline: Baseline method, which schedules memory requests in FR-FCFS

order and does not perform migration.

• UIMigrate [58]: An existing migration method migrates pages in regular

intervals, and pages are selected based on a dynamic threshold. The threshold

gets updated based on migration benefits.

• OntheFly [60]: An existing page migration policy is where the pages are

migrated when the access count crosses the predefined static threshold. The

threshold gets updated with the highest access count at the beginning of each

migration.

• SRS-Mig: Our proposed dynamic slot-based page migration technique mi-

grates pages depending on the write count and scheduled at run-time. The

slot-length is updated based on the service response time of requests.

• Mig-Slot: Our proposed method is a slot-based page migration technique

that migrates pages based on write count. The method reserves space for

migration in every slot if there is pending migration.

• Mig-QoS: Our proposed technique is a slot-based method, which checks the

incoming request rate before reserving space for migration within a slot.

99

Migration Scheduling Policies

Figure 4.8: Normalized execution time (lower is better)

4.10 Results

This section analyzes the results of the proposed techniques and compares them to

the existing migration methods.

4.10.1 Execution Time

Figure 4.8 shows the execution time obtained for existing and proposed policies

normalized with the baseline. From the figure, it is observed that the proposed

SRS-Mig, Mig-Slot, and Mig-QoS could reduce execution time by 22%, 21%, and

27%, respectively, than the corresponding baseline method, while UIMigrate and

OntheFly could improve execution time only by 14% and 16%, respectively. The

proposed SRS-Mig, Mig-Slot, and Mig-QoS use slot-based scheduling, which helps

achieve better execution time improvement than the existing method. OntheFly

migrates pages when the page surpasses the hotness threshold, increasing computa-

tional complexity. UIMigrate migrates in fixed-size intervals, whereas our proposed

Mig-Slot and Mig-QoS methods reserve space for migration within a slot. This space

reservation does not hamper the service of regular read/write requests within a slot;

hence, they get serviced timely to improve execution time. Furthermore, due to the

dynamic slot-based approach, the service of read/write requests batched in a slot

will not be detrimental due to migration in the SRS-Mig technique. So, memory re-

quests will be serviced on time, which helps improve execution time for applications.

Also, the timely migration of pages by the proposed methods maximizes access to

100

Results

migrated pages, and thus, future requests will be handled by the quicker DRAM

partition. This further improves the execution time of the proposed methods.

It is also evident from the figure that the benchmarks having high WBPKI, like

gobmk and sjeng, show more improvement in execution time as the migration of

write-intensive pages helps to increase write hits in DRAM. For gobmk, the im-

provement in execution time is 40% for SRS-Mig, 42% for Mig-Slot, and 47% for

Mig-QoS.

Multi-programmed workloads:

Observing the multi-programmed workloads, the high and medium-intensive bench-

marks show a large improvement in execution time compared to the low-intensive

benchmarks. The proposed methods could also improve execution time for low-

intensive mixes. The existing UIMigrate and OntheFly improve execution time only

by 1% whereas SRS-Mig, Mig-Slot, and Mig-QoS improve execution time by 4%,

4% and 6%, respectively for Mix Low. Further, the improvement in execution time

for Mig-QoS is 49% for Mix-High and 33% for Mix-Medium.

Comparing the proposed SRS-Mig, Mig-Slot, and Mig-QoS strategies, it is ob-

served from the figure that Mig-QoS obtains 5% better execution time improvement

compared to Mig-Slot, 4% better than SRS-Mig. Mig-QoS schedules migration only

if the incoming request rate is less than the current average. This helps to reduce

the delay for the service of regular requests and thus improves the execution time

of the application.

4.10.2 Memory Service Time

Memory service time represents the average time required to serve a memory request

and indicates memory performance. Figure 4.9 presents the normalized memory

service time obtained for baseline, existing, and proposed policies. The improvement

in service time for SRS-Mig and Mig-Slot are 17% while Mig-QoS improves memory

service time by 24% over baseline. At the same time, UIMigrate improves only by

5%, and OntheFly improves 7%. The proposed SRS-Mig, Mig-Slot, and Mig-QoS

try to migrate write-intensive pages in a timely manner and thus increase the hits in

DRAM for both reads and writes. This leads to an improved memory service time.

In particular:

• Write intensive benchmarks such as lbm, sjeng, and gobmk exhibits higher

101

Migration Scheduling Policies

Figure 4.9: Normalized memory service time (lower is better)

improvements in memory service time than the benchmarks with low write in-

tensity (calculix, namd, streamcluster, canneal). The improvement in memory

service time for Mig-QoS is 37% for gobmk and 6% for namd.

• For multi-programmed workloads, the memory service time improvement for

Mig-QoS is 47% for Mix High, 30% for Mix Medium and 10% for Mix Low.

• The multi-threaded workloads are less write intensive and among that canneal

performs better than the remaining because of the higher WBPKI compared to

other multi-threaded benchmarks (streamcluster, x264 and dedup). Mig-QoS

improve memory service time by 18% and Mig-Slot improve memory service

time by 15% for canneal.

4.10.3 Memory Response Time

PCM response time (cf. Section 4.4) is more dominant in DRAM-PCM hybrid

memory systems because of the longer write latency of PCM. In Figure 4.10, we

plot the average PCM memory response time for the proposed methods normal-

ized with the baseline technique. By updating the slot-length at run-time based on

service response time and scheduling of migration at the slot boundary, SRS-Mig

improves PCM response time by 17%. Mig-Slot and Mig-QoS reserve space for mi-

gration in each slot, which leads to improved memory response time. The average

response time improvement for Mig-Slot is 17%, and Mig-QoS is 21%, while UIMi-

102

Results

Figure 4.10: Normalized PCM response time (lower is better)

grate improves response time for PCM only by 11% and OntheFly improves by 13%

in comparison with Baseline.

The benefit of timely migration is more evident if the application has a higher

WBPKI. From the figure, it is evident that high WBPKI workloads have better

improvement in response time than low WBPKI workloads. Similarly, the multi-

programmed workload with high WBPKI (Mix High) has more improvement as 36%

for SRS-Mig, 38% for Mig-Slot, and 45% for Mig-QoS, respectively over Baseline.

Our proposed Mig-Slot and Mig-QoS serve migration without disturbing the

regular read and write requests by reserving a migration space within a slot, while

SRS-Mig schedules migration at run-time in a variable length slot. The proposed

methods help to reduce the delay after batching the requests and involve timely page

migration that maximizes access to migrated pages. As a result, future requests will

experience a shorter memory response time since the faster DRAM division will

handle them. Thus, it improves the PCM response time for proposed SRS-Mig,

Mig-Slot, and Mig-QoS compared to the existing methods.

4.10.4 Memory Service Rate

Memory service rate defines the number of memory requests serviced per unit time.

A higher service rate indicates that the migration benefit is significant. Figure 4.11

shows the memory service rate obtained for existing and proposed methods nor-

malized with baseline technique. Due to the slot-based scheduling, the proposed

103

Migration Scheduling Policies

Figure 4.11: Normalized memory service rate (higher is better)

methods yield a larger benefit in memory service rate than the existing UIMigrate

and OntheFly techniques. Mig-QoS handles the service rate as the QoS. It yields a

better memory service rate than Mig-Slot and SRS-Mig because it schedules migra-

tion only when the incoming memory request rate is below a threshold to reduce the

number of requests delayed due to migration. This helps to control migrations to im-

prove the memory service rate. Mig-QoS improves both memory response time and

memory service rate by keeping track of the incoming request rate before scheduling

migration for the current slot. From the figure, it is observed that the proposed

SRS-Mig and Mig-Slot could improve the memory service rate by 13% and Mig-QoS

improves the memory service rate by 21% while the UIMigrate method improves the

memory service rate only by 5% and OntheFly improves by 7% than the baseline

method on average.

For multi-programmed workloads:

Mig-QoS improves memory service rate by 50% for Mix High and 12% for Mix Low

over Baseline. The improvement is more visible for high intensity workload.

For multi-threaded workloads:

Like canneal, streamcluster, x264 and dedup, the average improvement in mem-

ory service rate is 6% for SRS-Mig, 5% for Mig-Slot and 9% for Mig-QoS. Even

though these benchmarks have less WBPKI, the proposed methods could improve

the memory service rate better than existing methods by judiciously scheduling mi-

gration through reserving space for migration. The constant incoming request rate

for streamcluster results in a similar memory service rate for proposed Mig-Slot and

104

Results

Figure 4.12: Normalized energy consumption (lower is better)

Mig-QoS.

4.10.5 Energy Consumption

The total read energy and write energy comprise the energy used in memory. In

hybrid memories, the total energy consumption is a combination of energy consumed

for regular read/write requests and energy consumed for migration. Equation 4.1

provides the formula for calculating the total energy where the subscript D and P

represent DRAM and PCM, respectively.

TotalEnergy = #ReadsD ×ReadEnergyD

+#WritesD ×WriteEnergyD

+#ReadsP ×ReadEnergyP +#WritesP ×WriteEnergyP

+#MigrationD ×ReadEnergyD +#MigrationD ×WriteEnergyP

+#MigrationP ×ReadEnergyP +#MigrationP ×WriteEnergyD (4.1)

where #ReadsD and #WritesD represent the number of reads and writes for

DRAM, ReadEnergyD and WriteEnergyD indicate the read and write energy for

DRAM. Similarly the subscript P for these parameters represent PCM. #MigrationP

indicate number of migrations from PCM to DRAM and #MigrationD represent

number of migrations from DRAM to PCM.

Figure 4.12 shows the total energy consumption for the proposed and existing

methods normalized with their baseline method. Migrating write-intensive pages

105

Migration Scheduling Policies

to DRAM controls the expensive writes to PCM, which can significantly lower the

overall energy consumption in the hybrid memory system as writes consume more

energy in the case of PCMs. Proposed SRS-Mig, Mig-Slot, and Mig-QoS reduce

energy consumption by 17%, 16%, and 22% compared to Baseline, whereas the

UIMigrate reduces energy consumption only by 10% and OntheFly reduces it by

12%. The write energy for DRAM is much lower than the write energy for PCM. The

proposed methods maximize write hits in DRAM and reduce energy consumption by

migrating write-intensive pages to a faster DRAM partition at the right time. SRS-

Mig reduces energy consumption with the help of run-time slot-based migration

scheduling. Judiciously controlling the time of migration and reserving space for

migration helps the proposed Mig-QoS and Mig-Slot reduce energy consumption

significantly. For example, Mig-QoS reduce energy consumption by 46% for multi-

program workload Mix High and 8% for Mix Low.

4.10.6 Distribution of Accesses to Migrated Pages

The objective of this work is to migrate write-intensive pages to PCM to improve

overall execution time. Selection of migration candidates and migrating them with-

out affecting regular read/write requests is achieved by proposed SRS-Mig, Mig-Slot,

and Mig-QoS. To demonstrate the appropriate selection of migration candidates at

the right time, we plot the access patterns to these pages. We show that the write-

intensive pages loaded in PCM when moved to DRAM, incur several writes. This

demonstrates that our migration candidates were the correct choices. Access to

these pages while in DRAM improves performance. In some cases, certain PCM

pages get selected as a victim from DRAM and moved back to PCM. However, our

victim selection guarantees that such returned pages are not accessed much after

returning back to PCM.

Figure 4.13 presents the percentage of memory access count for the proposed

migration techniques. The distribution of memory access count is as follows: (i) the

percentage of accesses when a page is loaded to PCM, (ii) the percentage of accesses

after the PCM page is migrated to DRAM, and (iii) the percentage of accesses

if the migrated PCM page is returned back to PCM. Normalized PCM migration

access is typically greater than access to normalized return back migration. It is

observed that the percentage of accesses when it is in DRAM is higher for all the

proposed techniques, indicating that the proposed methods effectively migrate pages

106

Results

(a) (b) (c)

Figure 4.13: Distribution of total PCM accesses in techniques a) SRS-Mig, b) Mig-Slot,
and c) Mig-QoS

in a timely manner. The response time and execution time of the application will

progressively improve as a result.

The migrated PCM access for Mig-QoS is 78.03%, Mig-Slot is 64.6%, and SRS-

Mig is 61.7% on average. Due to the timely migration of pages, the proposed

methods could reduce the before-migration access percentage. It is only 18.4%

for Mig-QoS, 29.96% for Mig-Slot, and 33.93% for SRS-Mig. The migrated pages

achieved a significant increase in access after moving to DRAM, demonstrating the

effectiveness of our selection of migration candidates and the timeliness of migration.

The victim selection process using DRAM is also efficient. This is evident from

the figure that the number of PCM pages that migrated to DRAM and then back

to PCM was very small. The number of access to return back pages is about 3.56%

for Mig-Qos, it is 5.39% for Mig-Slot, and 6.97% for SRS-Mig as shown in Figure

4.13.

4.10.7 Sensitivity Analysis

We have conducted a study to empirically determine the value of hotness threshold

MigHT and margin value mg. This section provides the sensitivity analysis for these

values.

4.10.7.1 Sensitivity Analysis for MigHT

The proposed methods migrate a page when the write intensity of the page crosses

the migration threshold MigHT. To study the impact of MigHT on memory service

rate, we performed experiments with different values of MigHT, as shown in Figure

4.14a. A higher value of MigHT results in fewer pages crossing the threshold, which

107

Migration Scheduling Policies

(a) (b)

Figure 4.14: Effect of varying MigHT on the memory service rate, (b) Sensitivity analysis
on margin values

lowers the number of migrations. So, the number of accesses to PCM increases,

as does the execution time. With the small value of MigHT, there will be more

migrations and more reverse migrations. Also, the migration overhead increases

and lowers the memory service rate. As a result, the value of MigHT cannot be

too low or too high. Figure 4.14a presents the memory service rate obtained for

Mig-QoS with varying MigHT for different benchmarks normalized with Baseline.

It has been noted that the trend is consistent across plots for various benchmarks.

However, because of the distinct memory access patterns for each benchmark, the

same MigHT value results in a different memory service rate across the benchmarks.

For example, write-intensive benchmarks such as lbm and gobmk have the best rate

when MigHT is greater than 100 while less write-intensive benchmarks like namd

and calculix have the best rate when the MigHT value is less than 100. For multi-

programmed workloads, Mix Low has the best rate at 100, and for Mix High, the

rate is best at MigHT = 500 while for Mix Medium, the service rate is best when

MigHT is 200. The multi-threaded benchmarks like canneal, dedup, streamcluster,

and x264 have lesser WBPKI, and hence the memory service rate is best for MigHT

value less than 100 for these workloads. It is evident that the service rate depends

on the MigHT value, and choosing MigHT appropriately based on write intensity

helps to improve the memory service rate.

108

Results

4.10.7.2 Sensitivity Analysis for Margin Value mg

Mig-QoS schedule page migration only when the incoming request rate is less than

the current average incoming request rate, along with a small margin. We update

the average request rate for each slot and check with the incoming request rate of

the current slot. To accommodate the dynamic change in the incoming request rate

r, we keep a margin (mg) on the average request rate ravg. In particular, we define

a window, W , around the average rate:

W = ravg −mg

We say that if r < W , then schedule migration; otherwise, we postpone mi-

gration. We conducted experiments with various values for margin mg to examine

the effect on memory service rate, as shown in Figure 4.14b. If the value of the

mg is small, then W becomes large; hence, migration (of possible candidate pages)

is scheduled frequently, even when the incoming request rate might be high. In

contrast, a higher margin value indicates a small value for W , and hence, Mig-QoS

postpones the migrations even when the current incoming request rate may be low.

Figure 4.14b presents the memory service rate obtained for different values of

margin for various benchmarks normalized with Baseline. The figure shows that

margin has a high impact on the service rate. As the memory access pattern differs

for each benchmark, the impact on the service rate for the same margin value mg

is different. For a small value of mg (say mg = 10%), the algorithm schedules more

migrations (if there are candidates), and this increases the overhead, leading to a

lesser memory service rate. In contrast, for a large value of mg (e.g., 30% or 40%),

the value of W becomes very small. This leads to most of the migrations getting

postponed. As the migrations have yet to take place, the requests to these pages are

served from the (slower) PCM memory, leading to a lesser memory service rate. For

intermediate/medium values of mg, we see improvement in service rate as we are

able to judiciously perform migrations to valid candidate pages. In the experiments,

we found 20% as the best value for mg. For example, sjeng has a relatively lower

service rate of 1.19 at mg = 10% and 1.07 for mg = 40%. At the same time, we see

a better service rate of more than 1.32 for mg = 20%.

To conduct our experiments, we took the average 20 for the value of the margin

mg. Hence, Mig-QoS reserves space for migration only when the incoming request

rate for the current slot is less than the current average incoming rate with a margin

109

Migration Scheduling Policies

Table 4.3: Overhead analysis (lesser is better)

Parameter
% Overhead over Baseline

UIMigrate OntheFly SRS-Mig Mig-Slot Mig-QoS
Migration Count 11.99 12.4 11.57 14.3 7.6
Energy 11.93 12.1 10.01 11.18 8.8
DRAM
Response Time

1.91 1.8 0.65 0.34 0.02

of 20%.

4.10.8 Overhead Analysis

Total Migration Count:

Existing UIMigrate and OntheFly techniques and the proposed SRS-Mig, Mig-Slot,

and Mig-QoS control the number of migrations to reduce the migration-related over-

heads and thus improve memory performance. Table 4.3 presents the percentage of

the number of migrations obtained for both the existing and proposed techniques. It

can be deduced from the table that along with improving memory response time, the

proposed Mig-QoS yields fewer migrations because of its better migration decision

control logic. The average percentage of migration count for SRS-Mig, Mig-Slot, and

Mig-QoS are 11.57%, 14.3%, and 7.6%, respectively, whereas OntheFly has a migra-

tion count of 12.4% and UIMigrate has a migration count of 11.99%. By updating

the threshold based on the current highest access count, OntheFly could control the

number of migrations. Among the proposed techniques, Mig-QoS has less number of

migrations as the technique controls migration based on the incoming request rate

yet gives better performance.

Energy Overhead:

A page migration involves data movement from one partition of memory to the

other partition, which includes additional data access and data movement. This

causes energy and memory delay overheads. The energy overheads associated with

existing UIMigrate and OntheFly techniques and proposed SRS-Mig, Mig-Slot, and

Mig-QoS due to page migration are shown in Table 4.3. The proposed methods

produce better execution and response times with less energy overhead compared

110

Summary

Table 4.4: Comparison of proposed migration policies

Parameter
% Improvement over Baseline
SRS-Mig Mig-Slot Mig-QoS

Execution Time 40 42 47
Memory Service Time 17 17 24
Memory Response Time 36 38 45
Memory Service Rate 13 13 21
Energy Consumption 17 16 22

to the existing method. The energy overhead is 10.01% for SRS-Mig, 11.18% for

Mig-Slot, and 8.8% for Mig-QoS, while the energy overhead is 11.93% and 12.1%

for UIMigrate and OntheFly.

DRAM Response Time:

In hybrid memory, write-intensive pages are migrated to DRAM from PCM to im-

prove the memory response time and execution time of the application. As the pages

migrate to DRAM, the average DRAM response time may increase compared to the

baseline technique. Table 4.3 presents the percentage of increase in the average

DRAM response time for UIMigrate, OntheFly, SRS-Mig, Mig-Slot, and Mig-QoS.

The DRAM response time increased by 1.91% for UIMigrate and increased by 1.8%

for OntheFly, whereas SRS-Mig, Mig-Slot, and Mig-QoS increased it only by 0.65%,

0.34%, and 0.02%, respectively, compared to the baseline technique.

4.11 Summary

The page migration affects the performance of regular read/write requests. Hence,

migrating a page without hampering the regular requests is necessary. This chapter

presented three migration scheduling techniques to improve the memory service rate,

memory response time, and execution time of the application: the first proposal,

SRS-Mig, schedules migration at run-time using a dynamic slot-based technique.

SRS-Mig ensures page migration does not adversely affect regular read/write access.

This helps to reduce execution time and memory response time with a negligible

migration overhead. The second proposal is Mig-Slot, where the migration is sched-

uled in the reserved space in the slot without hampering regular requests. This

111

Migration Scheduling Policies

helped to improve execution time and memory response time. The third contribu-

tion, Mig-QoS, improves memory service rate and response time. Mig-QoS improves

the memory service rate by postponing migrations based on the incoming memory

request rate.

We have evaluated the proposed techniques by conducting simulation-based ex-

periments, and the results are compared with existing techniques. Table 4.4 presents

the improvement obtained for proposed migration policies over baseline for different

evaluation parameters. We have concluded that the proposed methods work better

for high write-intensity workloads than low write-intensity workloads. For example,

SRS-Mig, Mig-Slot and Mig-QoS improve execution time by 4%, 4% and 6% for

Mix Low whereas the improvement in execution time for Mix-High is 40%, 41% and

49% for SRS-Mig, Mig-Slot and Mig-QoS respectively. On average, our proposal

could improve application execution time by 27%, improve memory service time by

24%, improve the response time of PCM by 21%, improve memory service rate by

25%, and reduce energy consumption by 22% over baseline.

We know that migrating pages will help enhance performance. However, migra-

tion scheduling and keeping track of the quality of service for memory service rate

will make these methods more effective and scalable.

112

5
De-stress Scheduling Policies for Pure

PCM Memories

This chapter proposes de-stress scheduling policies to mitigate Biased Temperature

Instability (BTI) aging and thus improve the longevity of PCM memories. The

proposed methods schedule de-stress operation such that de-stress less hampers the

service of regular read/write requests, leading to an improved memory service time.

In particular, the proposed methods monitor the incoming request rate before per-

forming de-stress operation. The proposed techniques are evaluated on two existing

methods with quad-core systems.

5.1 Introduction

With the advanced scaling of transistors, device reliability has become an important

challenge for non-volatile memories. Transistor aging gradually degrades system per-

formance and affects the reliability and lifetime of the circuit. In NVMs, elevated

temperature, high voltage requirement, increased power consumption, etc., acceler-

ate transistor aging. Biased Temperature Instability (BTI) [6, 72, 73, 76, 78, 80, 81,

101] is a major aging-causing factor that leads to transistor aging. BTI increases the

threshold voltage (vth), which is the minimum voltage required to create a conduct-

ing path between the terminals of a transistor. BTI aging is proportional to the in-

113

De-stress Scheduling Policies

crease in threshold voltage, i.e., the higher the shift in threshold voltage, the quicker

the cell aging. When performing memory operations, the voltage applied is called

stress voltage, which increases threshold voltage in NVMs. The high-stress voltage

requirement of NVMs for read and write operations makes them more vulnerable to

BTI aging. This indicates that BTI aging is highly dependent on the memory foot-

print of the executing application. Note that BTI is highly variable and reversible

upon removing stress voltage. However, if the stress condition extends over a long

duration, the shift in threshold voltage due to BTI becomes irreversible and leads

to permanent functional failure and hardware faults.

State-of-the-art aging control methods periodically de-stress the circuit by either

removing the stress voltage or reducing the voltage to a lower amount to prevent

permanent failure. As a result, de-stressing aids in recovering from a rise in thresh-

old voltage. The duration for which the circuit is subjected to stress or de-stress

operation determines the resultant threshold voltage shift amount. Therefore, de-

stressing must be done regularly to prevent the circuit from aging. It should be noted

that de-stress operations halts the service of regular read/write requests. This, in

turn, adversely impacts the performance and average memory service time of the

system. However, if de-stress is not performed long, the threshold voltage shift be-

comes irreversible, leading to permanent functional failure. So, it is desirable to

control de-stress dynamically so that the system performance and BTI aging can be

prudently balanced.

As mentioned before, BTI aging depends on the memory footprint of the appli-

cation. Therefore, it is better to control de-stress based on the memory request rate

to maintain a desirable regular memory service rate.

The main contributions of this chapter are as follows:

• We propose AGRAS, a scheduling technique for memory requests and de-

stress to improve performance and control BTI aging. The method schedules

de-stress based on the incoming request rate.

• We propose RODESA with two variants: RODESA-p and RODESA-b.

• RODESA-p schedules a partial de-stress if the memory request rate is within a

predefined threshold to lessen the impact of de-stress on the service of regular

requests.

114

Basic De-stress Scheduler

• RODESA-b is a per-bank de-stress scheduling technique that schedules de-

stress operations in the background based on the memory access pattern of

each bank.

• The proposed methods are validated against current interval-based de-stress

scheduling techniques in the Gem5 [95] full system simulator integrated with

NVMain [96] using benchmark applications from SPEC 2006 [99] and Par-

sec [100] benchmark suite. Both techniques achieve better performance and

comparable age degradation compared to regular de-stress methods.

• We have also provided the necessary sensitivity analysis to determine the

thresholds used in our algorithms.

This chapter organized as follows: basic de-stress scheduler is discussed in 5.2.

Motivation of the scheduling policy is presented in section 5.3. Section 5.6 illus-

trates proposed system model. Section 5.4 describes the model used to compute the

aging in our proposed de-stress scheduling techniques. The thresholds used for our

proposed scheduling methods are discussed in 5.5. Proposed de-stress scheduling

policies are discussed in sections 5.7 and 5.8. Section 5.9 discusses the experimen-

tal methodology. Results and analysis are presented in section 5.10. Finally, we

summarize this chapter in section 5.11.

5.2 Basic De-stress Scheduler

Non-volatile memories are susceptible to BTI aging due to the high-stress voltage

required to perform read/write operations in such memories. Performing de-stress

at regular intervals by removing the high voltage for a small duration helps the

memories to recover from BTI aging. The de-stress operation reduces the increase

in threshold voltage shift and reduces the overall voltage shift. Therefore, de-stress

operation controls BTI aging.

The execution timeline of an application can be divided into continuous stress/

de-stress periods as shown in Figure 5.1 where memory operations are performed

during the stress period (shown as red color in Figure 5.1) and the memory is

de-stressed to control BTI aging during de-stress period (shown as green color in

Figure 5.1). The decision for de-stress is taken at the boundary of the stress/de-

115

De-stress Scheduling Policies

Figure 5.1: Execution timeline with Stress/De-stress periods

(a) (b)

Figure 5.2: (a) Normalized age degradation over RegDes, (b) Normalized CPI over Base-
line

stress period, and the de-stress is performed by stalling the regular memory requests

during the de-stress period.

5.3 Motivation

We use RegDes as an existing de-stress scheduling policy that performs de-stress

in every de-stress period (i.e., after every red color in Figure 5.1). RegDes is known

to control BTI aging to a maximum extent as it de-stresses regularly. As a result, it

also stalls the regular requests more frequently. Alternatively, instead of de-stressing

after every stress period, we can perform de-stress after every alternate interval, i.e.,

after two red color periods in Figure 5.1. We call such a policy as AlterDes.

Figure 5.2a presents the age degradation for AlterDes normalized over RegDes.

AlterDes performs de-stress in alternate intervals and accumulates more age than

116

Aging Model

RegDes. On average, AlterDes degrades age by 49% compared to RegDes. AlterDes

performs de-stress in alternate intervals, while RegDes performs de-stress in every

interval. Thus, the accumulated age for AlterDes is approximately double that

of RegDes. RegDes reduces the increase in threshold voltage shift and thus BTI

aging by performing de-stress in regular intervals. Even though regular de-stress

helps control BTI aging, it stalls the service of regular requests more frequently and

degrades the Cycles Per Instruction (CPI). Figure 5.2b presents CPI obtained for

the RegDes method, which performs de-stress in regular intervals, and AlterDes,

which performs de-stress in alternate intervals normalized over a baseline execution

where the BTI effect is not considered. From the figure, we can observe that RegDes

increases the CPI on average by 23%, and AlterDes increases it by 11%. RegDes

disturbs regular requests service more frequently than AlterDes and thus increases

CPI compared to AlterDes.

From the figures Figure 5.2a and Figure5.2b, we can observe that performing de-

stress in the alternate interval, as in AlterDes, improves CPI compared to RegDes,

whereas the method degrades age critically. Alternatively, RegDes can reduce the

age degradation by performing de-stress at every interval but increases CPI as the

system is affected (stalled) more frequently. Therefore, it is essential to have a

policy to schedule de-stress opportunistically to balance CPI and age degradation.

Scheduling de-stress based on the incoming request rate and aging of the circuit is

a method to reduce aging and improve CPI.

5.4 Aging Model

The increase in threshold voltage, according to the Trapping/Detrapping (TD)

model [81–83], is caused by traps that collect charge carriers and recover when

released. The TD-based BTI aging model has an exponential relationship with tem-

perature and stress voltage and a logarithmic relationship with time. The TD model

computes the ∆vth as follows:

∆vth = ϕ[A+ log(1 + Ct)] (5.1)

The model parameters A and C rely on the trap’s time constants. Under a spe-

cific stress condition, these two parameters remain constant, so the shift in threshold

voltage is caused by ϕ. The value of A and C are 1.28∗10−4 and 0.0099 respectively.

117

De-stress Scheduling Policies

Figure 5.3: Memory request rate at continuous Stress periods

The mean value of ϕ is given as 0.0013 with a standard deviation of 26% of the mean

[83].

If the stress and recovery cycle continues monotonously, the shift in voltage after

m stress and recovery cycles using TD model is determined by:

∆vth,m = m ∗ [∆vth(ts)−∆vth(tr)] (5.2)

where ts and tr are the stress and recovery duration, and ∆vth(ts) and ∆vth(tr)

can be calculated using equation 5.1.

5.5 Thresholds used during Scheduling

The proposed scheduling policies use threshold-based decision logic. Various thresh-

olds used in our proposed scheduling algorithms are discussed in this section.

5.5.1 Request Threshold (RQT)

Applications running on the CPU cores executes in phased manner. CPU cores

executing applications generate memory requests, reaching the memory controller

at different rates. The incoming request rate varies among applications and also

during the execution of the application. The varying incoming request rate for

four applications from SPEC 2006 and Parsec benchmark suites is presented in

Figure 5.3. In this figure, the X-axis represents randomly distributed periods of

118

Thresholds used during Scheduling

execution during which memory operations are performed. The Y-axis represents

the incoming memory request rate at that interval. We can observe from the figure

that the memory access rate is not monotonic. For example, the rate is 0.008 for

mcf at the initial slots, increases to 0.02 in middle slots, and reduces to 0.007 in

end slots. While for lbm, the rate is 0.05 at the initial, reduces to 0.01 at the middle

slots, and continues to reduce to 0.003 in the end slots. For low memory-intensive

benchmarks like x264, the rate is 0.01 at the initial slots, reduces to 0.0004 in the

middle slots, and increases to 0.01 at the end slots. It is to be noted that none of

the applications follow same memory pattern. The rate varies even in continuous

stress periods. For example, the rate 0.05 for lbm at SP-1, while it reduced to 0.02

at SP-2.

The memory needs to be de-stressed in regular intervals to control BTI aging.

However, if the request rate is high and during that interval, we schedule de-stress,

then the service of a large number of requests is affected due to stalls introduced by

a de-stress, leading to a decreased Instruction Per Cycle (IPC). Thus, it is better

to decide the time and duration of de-stress based on the incoming request rate for

applications. We maintain a threshold for this request rate called RQT.

The request threshold RQT is adaptive. In that, it keeps track of the changes

in the request rate. RQT is updated in each interval based on the incoming request

rate in the previous interval. In particular, if the request rate increases by 10% over

the rate in the previous interval, then RQT is updated to the rate; otherwise, the

existing value of RQT is used. The RQT is updated to the new value, which is

equal to the incoming request rate of the previous interval added with its 10%. The

dynamic RQT helps to schedule de-stress according to the memory access pattern

of the application.

5.5.2 Partial Request Threshold PRT

From Figure 5.3, we can observe that the incoming request rate increases marginally.

We maintain a Partial Request Threshold (PRT) with upper and lower bounds as

PRTub and PRTlb to determine the duration of de-stress as either full or partial.

PRT is also updated similar to RQT.

119

De-stress Scheduling Policies

Figure 5.4: Memory controller with De-stress Management Unit

5.5.3 Age Threshold (AGT)

If the de-stress is postponed for a long time, then the threshold voltage deterioration

grows, adversely affecting the age of the device. Therefore, it is important to keep

track of age degradation and schedule de-stress accordingly. Our proposed methods

ensure the de-stress is scheduled before a permitted age degradation value. We have

considered the age threshold AGT, where proposed methods are allowed to postpone

de-stress for consecutive AGT intervals.

5.6 System Model

Figure 5.4 presents the overview of the memory controller, which manages de-stress

operations and regular read/write requests. We assume that PCM follows an open

page row-buffer management policy where a memory row is accessed by bringing it

to the row-buffer, allowing further access to the same row without closing it. The

memory requests that arrive at the memory controller are scheduled by the FR-FCFS

scheduler, where the row-hit requests are prioritized. The de-stress Management

Unit controls de-stress operations. The unit comprises two components: (i) Decision

and Computing Logic and (ii) De-stress Scheduler. The decision and computing logic

determine the type of de-stress operation based on the policy. The unit keeps track

of the incoming request rate and aging. Also, they update the age and request

thresholds, which are used to make decisions about de-stress scheduling. The de-

stress scheduler schedules de-stress together with regular requests.

120

AGRAS: Age and Request rate Aware Scheduler

 End of stress
 interval ?

Update request
threshold

Current age >
 AGT

Schedule destress

Schedule Request

Yes

Yes

Yes

No

No

Check and update
current request rate

Current request
rate > RQT

No

Request Queue

Figure 5.5: Flowchart of our proposed AGRAS

5.7 AGRAS: Age and Request rate Aware Sched-

uler

The proposed AGRAS is an age and request rate aware scheduling mechanism where

the de-stress operation is scheduled in accordance with incoming memory request

rate. The memory requests that arrive at the memory are batched and scheduled

in FR-FCFS order, where the row-hit requests are prioritized. In regular intervals,

the computation unit in the de-stress scheduling unit computes the incoming mem-

ory request rate and aging of the circuit. At the end of every stress interval, the

incoming memory request rate is compared against a request threshold (RQT) be-

fore scheduling a de-stress in the interval. The de-stress is scheduled only when the

incoming rate is less than the request threshold.

Figure 5.5 explains the proposed age and request aware de-stress scheduler. The

proposed method updates the request threshold at regular intervals based on the

previous incoming memory request rate. The current incoming request rate is com-

121

De-stress Scheduling Policies

pared with this updated request threshold. If the request rate is more than RQT,

then the proposed method does not de-stress the device for this interval and contin-

ues to service memory requests. This is done because, as the request rate is high,

if we stall the device for de-stressing it might affect the system performance. How-

ever, delaying de-stress for a long duration increases the aging of the circuit. Hence,

our proposed method also keeps track of age degradation. In that, it compares the

current age degradation of the device with the age threshold (AGT). If the age

degradation is more than AGT, then we schedule the de-stress of the device irre-

spective of the request rate. This is done because an increase in age may eventually

lead to permanent functional degradation.

5.8 RODESA: Request and Opportunistic De-stress

Scheduler

From Figure 5.3, it is evident that the memory request rates vary during the execu-

tion of the application. If the rate is high and we schedule a de-stress operation, the

memory response will be stalled, leading to slowing the execution of the application.

Therefore, before scheduling the de-stress operation, it is necessary to monitor the

request rate at run-time dynamically. AGRAS schedule de-stress only when the

request rate falls below RQT . It is preferable to base the decision to de-stress on

the range of values of request rate because these vary. Moreover, executing a full

de-stress will cause the application service to stall if the request rate is lower than

RQT yet the value is closer to RQT . To lessen the impact on the service of regular

requests and achieve better performance with lower age degradation, it is, there-

fore, advantageous to divide the request rates into a range of classes and execute

de-stressing partially or fully based on this range.

We propose RODESA, a request and opportunistic de-stress scheduler with two

variants, RODESA-p and RODESA-b. The proposed RODESA-p considers the

dynamic incoming memory request rate of the executing application and allows it

to opportunistically perform de-stress partially to less hamper the service of regular

requests while achieving reduced age degradation. The other variant, RODESA-

b, proposes a bank-wise de-stress scheduling policy. Based on the memory access

pattern of each bank, it schedules de-stress in the background. This background

de-stress helps the proposed method achieve better performance and reduced age

122

RODESA: Request and Opportunistic De-stress Scheduler

degradation as the de-stress happens in parallel to the service of regular requests.

5.8.1 RODESA-p

RODESA-p performs partial de-stress if the rate is within a threshold by reducing

the duration of de-stress to half of the time required for a full de-stress. To decide

this, we categorize the memory request rate of the current stress period into Low,

Medium, and High in comparison with the request rate of the previous stress period.

This category indicates that compared to the previous stress period, the memory

request rate has reduced or remained the same (low), increased a little (medium),

or increased very much (high).

• If category is low, RODESA-p performs full de-stress, because performing de-

stress will not affect the system performance much.

• If category is high, RODESA-p postpones de-stress to reduce the impact of

de-stress on memory service rate and performance given that age threshold is

not crossed.

• If category is medium, RODESA-p schedules a partial de-stress, which per-

forms de-stress only for half of the duration of full de-stress.

Algorithm 5.1 presents the proposed RODESA-p. The proposed RODESA-p

monitors age degradation and compares it with Age Threshold, AGT . It schedules a

full de-stress if de-stress was skipped for continuous AGT de-stress periods regardless

of the current request rate (lines 9-11). Otherwise, RODESA-p classifies the current

memory request rate into Low, Medium, and High categories based on the change

(δ) in the request rate in the current interval over the previous interval (line 13 and

25).

If the request rate increases marginally, then we can take the opportunity to

perform the de-stress. For this, we define a range of values to make the decision

called partial request threshold (PRT). If the rate increases in the range of PRTlb

to PRTub, then we consider this increase as a medium increase. Otherwise, it is

either low or high (lines 26-32). In our experiments, we use PRTlb = 5% and

PRTub = 10%. In other words, if the request rate increases between 5 to 10 percent,

then we perform partial de-stress.

123

De-stress Scheduling Policies

Algorithm 5.1: RODESA-p

Input: Incoming requests for kth stress period Sk

Output: De-stress decision
1 Q = {Ri,j} jth request for ith bank, Bi

2 RRk = Request rate for current stress period Sk

3 RRk−1 = Request rate for previous stress period Sk−1

4 AGC = Age count
5 AGT = Age Threshold
6 PRT = Range of values to perform partial de-stress
7 PRTlb & PRTub = Lower and upper bound of PRT
8 Category(Sk) = Low/Medium/High based on the request rate
9 if AGC > AGT then

10 Full de-stress for the memory
11 AGC = 0

12 else
13 Category(Sk) = IdentifyCategory(Sk)
14 if Category(Sk) is Low then
15 Full de-stress for the memory
16 AGC = 0

17 else
18 if Category(Sk) is Medium then
19 Partial de-stress for the memory
20 AGC = 0

21 else
22 Skip de-stress
23 Increment AGC

24 Function IdentifyCategory(Sk)
25 δ = RRk −RRk−1

26 if δ < PRTlb then
27 Category(Sk) = Low

28 else
29 if PRTlb < δ < PRTub then
30 Category(Sk) = Medium

31 else
32 Category(Sk) = High

Once the category is identified, we do the following. If the increase in request

124

RODESA: Request and Opportunistic De-stress Scheduler

(a) (b) (c)

Figure 5.6: Per bank memory access count normalized over maximum access count among
the banks for (a) lbm, (b) leslie3d, (c) canneal

rate is low, then we can take this opportunity to perform a full de-stress as it may

not significantly affect the system performance and memory service rate (lines 14-

16). If the increase in rate is medium, i.e., in the range of the PRT threshold, we

decide to perform partial de-tress (lines 18-20). During partial de-stress, we de-

stress the device for a shorter duration than during a full de-stress. This is done

so that the requests are not stalled for a prolonged duration. In the case when the

rate of increase is high, it is judicious to skip the de-stress as it might affect the

system performance (lines 22-23). Here, the age counter (AGT) is incremented to

keep track of the age threshold. In that, if we have skipped de-stress for consecutive

intervals (maintained by AGT), then we should perform a de-stress irrespective of

the request rate. This is done to keep aging under control.

With the help of PRT and AGT, RODESA-p achieves better performance than

existing regular de-stress methods. RODESA-p varies the duration of de-stress

by performing partial de-stress and thus can less hamper the service of regular

requests. Also, the method could reduce the impact of age degradation on account

of postponing de-stress due to the high request rate. Our proposal is dynamic as the

PRT is checked in comparison with consecutive intervals. It adapts to the current

request rates and performs opportunistic de-stressing instead of statically deciding

the de-stress intervals.

5.8.2 RODESA-b

Each memory bank receives memory requests at a different rate in various stress

periods. Figure 5.6a, Figure 5.6b and Figure 5.6c present the number of memory

requests received by four memory banks at random stress periods (SP) for three

125

De-stress Scheduling Policies

benchmarks lbm,leslie3d,canneal respectively, from SPEC 2006 and Parsec bench-

mark suites. The request count is normalized over the maximum request count

received during the corresponding stress period. We can observe from the figures

that the memory access count varies across stress periods for each bank. For ex-

ample, consider lbm benchmark; the normalized memory access count for bank-0

is 0.72 at the initial stress period. It varied to 1 at the middle-stress period and

reduced to 0.25 at the end-stress period. At the same time, the trend is different for

bank-4, where the access count is 0.51 at the beginning and reduced to 0.31 at the

middle. Further, it increased to 1 at the end-stress period. For canneal, the access

count is 0.6 and 0.4 at the initial and end stress periods, respectively, for bank-2.

The count will decrease and then increase in the middle-stress periods. On the other

hand, for bank-1, the access count is 1 at the initial period and reduced to 0.3 at

the middle-stress period and then to 0 at the end-stress period.

As mentioned before, de-stressing is the method to reduce the aging of the banks.

We propose RODESA-b, which schedules opportunistic de-stress in the background

for each bank. In this method, the lightly loaded banks are de-stressed in the

background to improve performance and reduce age degradation. To identify lightly

loaded banks, RODESA-b keeps track of the access count per bank at run-time.

The bank which has maximum access will take a long time to serve. Here, STi

refers to the sum of service time of accumulated requests targeted to the bank Bi.

STmax refers to the maximum among STi. While the bank with maximum access

count completes, we can de-stress banks with low access count where the sum of

service time STi for bank Bi and the de-stress time DT is less than STmax, where

STmax is the total service time required by the bank with maximum access count,

i.e., STmax ≥ STi +DT .

The broad steps for the procedure are as follows. We maintain the age counter

for each bank and the total requests the bank is supposed to serve in this interval.

In case the age threshold is crossed, then we de-stress all the banks. Otherwise, we

search for opportunities to de-stress the bank in the background. We can de-stress a

bank in the background, provided there are other banks that serve regular requests,

and the requests to this particular bank are very low. By doing this, we are able to

hide the de-stress latency, and hence, the system does not incur a stall on account

of de-stress. This helps to maintain system performance while reducing the aging

of lightly loaded banks.

126

RODESA: Request and Opportunistic De-stress Scheduler

Algorithm 5.2: RODESA-b

Input: Incoming requests for kth stress period Sk

Output: De-stress decision
1 Q = {Ri,j} jth request for ith bank, Bi

2 ReqCnti = Total requests for Bi in this interval
3 AGCi = Age count for Bi

4 AGT = Age Threshold
5 DT = De-stress duration
6 STi = Total time required to serve ReqCnti for bank Bi

7 MST = Average memory service time (Given)
8 ∀j if Ri,j ∈ Q then
9 Increment ReqCnti

10 if ∃i : AGCi > AGT then
11 Foreground de-stress for all banks Bi

12 ∀i, AGCi = 0 // reset counters

13 else
14 STi = ReqCnti ∗MST
15 ReqCntmax = MAX(ReqCnti) ∀i
16 STmax = MAX(STi) ∀i
17 if ∃ Bi where (STi +DT) < STmax then
18 De-stress Bi in background
19 AGCi = 0

20 else
21 Skip de-stress for Bi

22 Increment AGCi

127

De-stress Scheduling Policies

Algorithm 5.2 explains the proposed RODESA-b. If any of the bank Bi is not

de-stressed for continuous AGT number of de-stress periods, i.e., age counter for the

bank: AGCi is greater than age threshold: AGT , RODESA-b forcefully schedules

(foreground) de-stress for all the banks to reduce age degradation (lines 10-12).

Otherwise, RODESA-b either performs or postpones de-stress for each bank by

comparing the access/request count of the bank with that of the bank that has the

maximum requests for service.

RODESA-b computes the time, STmax, required by the bank, which has to ser-

vice the maximum number of requests in this interval (lines 14-16). For the other

banks, we can perform de-stress in the background provided it does not incur ad-

ditional stalls in request service. All the other banks need to service the regular

request (in time STi) and schedule a de-stress (over duration DT). We compute the

time required for these operations (line 17) and check if this time is lesser than the

time taken by the bank serving maximum regular requests (STmax). If certain banks

satisfy this condition, we perform a background de-stress for those banks once their

regular requests are serviced (lines 18-19). In the case when all the banks have equal

load, we forgo the de-stress operation and update the age counters for the banks

(lines 21-22).

RODESA-b monitors the memory access pattern of each bank to perform de-

stress either in the foreground or background opportunistically for each bank based

on their memory request load. Thus, it can reduce age degradation and improve

performance compared to existing regular de-stress methods.

5.9 Evaluation

The experimental framework used to evaluate the proposed methods is discussed in

this section.

5.9.1 Experimental Setup

The proposed method is implemented using Gem5 [95] full system simulator inte-

grated with NVMain [96], a cycle-accurate memory simulator for non-volatile mem-

ories. The memory simulator models a 4GB PCM memory. However, our policy will

work for other recent memory setups such as hybrid DRAM-PCM memory as BTI

aging issues still exists for these type of memories also. We evaluate our results us-

128

Evaluation

Table 5.1: Important system parameters

Components Parameters
Processor Quad-core, X86/ALPHA

L1 Cache
Private, 32KB SRAM Slit I/D caches,
2-way associative, 64B block

L2 Cache Shared, 512KB SRAM, 64B block, 8-way associative

Main Memory
PCM: 4GB, 4 channels, 32 entry request queue
Memory Controller: FR-FCFS

Memory Latency
[55, 98]

PCM :: Read = 100ns, Write = 350ns
Stress Time = 0.2 Million Cycles
De-stress Time = 0.04 Million Cycles

Benchmarks and their classification
SPEC 2006: leslie3d(Low), libquantum(Low), sjeng(Low),
lbm(High), mcf(High), bzip2(High)
PARSEC: canneal (Low),x264(Low),streamcluster(Low),
dedup(Low),blacksholes(Low)
SPEC-Mixes: Mix-High: gobmk,lbm,mcf,bzip2;
Mix-Low: mcf, libquantum, sjeng, leslie3d

ing multi-programmed SPEC 2006 [99] and multi-threaded Parsec [100] benchmark

suites. We execute the SPEC 2006 workloads for 1B instructions after warming up

for 250M instructions. Based on their misses per kilo instruction (MPKI), these

benchmarks are classified into high and low-intensity classes. The SPEC-mixes are

created by considering MPKI and classified into high and low. The important sys-

tem parameters used in our experiments and the benchmarks used are shown in

Table 5.1.

Applications go through different execution phases and memory access patterns.

As our proposals are based on the history of accesses, if the execution phase changes,

then we will not be able to adapt to the same. Keeping this in mind, we have

chosen the stress intervals so that the execution patterns remain similar over some

number of consecutive stress periods. Fig 5.7 shows a sequence of stress periods

(SP1 to SP8) and demonstrates that the memory request rates are similar over

continued stress intervals. The figure also shows that after several stress intervals,

the behavior changes (SP1’ to SP7’). Thus, our stress and recovery periods are

chosen by considering this phased execution behavior, such that we can use the

history of accesses to make correct decisions. This ensures that the consecutive

stress periods follow the history of the incoming request rate.

129

De-stress Scheduling Policies

Figure 5.7: Memory request rate at continuous Stress periods

We assume the value of AGT as 2 1. For the partial de-stress decision, the

range of values taken to decide the categories (as low/medium/high) is taken as

5-10%. In particular, if the request rate increases by 10%2 over the rate in the

previous interval, then postpone de-stress; otherwise, full de-stress is performed. To

do partial de-stress, we define the range of request rate as PRT. In particular, if the

rate is between 5% and 10% over the rate in the previous interval, partial de-stress

is performed.

5.9.2 Performance Analysis

The following techniques are considered during the evaluation for the performance

analysis of our proposed technique:

1. Baseline: Baseline method that does not take BTI effects into account during

application execution. We compare performance using this as a benchmark as

it never de-stresses.

2. RegDes: A method that schedules the de-stress of all banks at regular in-

tervals without considering the per-bank memory request (access) rate. The

method stalls the arrived memory requests during the de-stress operation.

1A sensitivity analysis of AGT is given in Section 5.10
2We can experiment for different values of increase in request rate as part of future work. If

we take a higher value of RQT, then we will postpone de-stress, thus aggravating aging. Whereas
if RQT is small, then we will schedule de-stress at regular intervals more often, thus affecting
performance.

130

Results

Figure 5.8: Normalized IPC over Baseline (higher is better)

3. AlterDes: This method schedules de-stress in alternate intervals. The method

stalls the arrived memory requests during the de-stress operation.

4. AGRAS: Our proposed method schedules the de-stress based on the incoming

request rate and keeps track of device age degradation.

5. RODESA-p: Our proposed method optimizes AGRAS by opportunistically

performing partial de-stress if the incoming request rate is within a threshold.

6. RODESA-b: The proposed method where the de-stress is performed op-

portunistically by looking at the bank-wise read/write access pattern and at-

tempts to schedule the de-stress of lightly loaded banks in the background.

5.10 Results

The performance of the proposed methods is evaluated using various metrics. This

section analyzes the obtained results for proposed and existing techniques.

5.10.1 Effect on Performance:

Instructions Per Cycle is an indicator to assess the performance of the CPU. The

average number of instructions executed for each cycle is known as IPC. De-stressing

memory adds delay to the service of regular requests and thus increases the average

131

De-stress Scheduling Policies

memory latency. This, in turn, increases the time required to complete instruc-

tion, and so negatively impacts IPC. Figure 5.8 presents IPC obtained for existing

RegDes, AlterDes, and proposed AGRAS, RODESA-p and RODESA-b normalized

over baseline technique. As mentioned before, de-stressing incurs additional la-

tency and decreases IPC. We can observe from the figure that RegDes, AlterDes,

AGRAS, RODESA-p, and RODESA-b decrease IPC compared to baseline, which

does not perform de-stress during execution. The proposed AGRAS, RODESA-b,

and RODESA-p decrease IPC by 16%, 5%, and 12%, respectively, over baseline.

While RegDes and AlterDes decrease IPC over baseline by 30% and 11%, respec-

tively.

The proposed techniques check the memory access count before performing de-

stress to balance age degradation and performance. Therefore, over RegDes, AGRAS

improves IPC by 14%, RODESA-b improves IPC by 25%, and RODESA-p improves

it by 18% because RegDes performs de-stress in regular intervals and affects the ser-

vice of regular requests more frequently. Between our proposed policies, RODESA-b

improves IPC by 7% over RODESA-p and 11% over AGRAS. RODESA-b oppor-

tunistically de-stress lightly loaded banks in the background and thus hides the de-

stress latency. This results in an improved IPC. With the help of partial de-stress,

RODESA-p improves IPC by 4% over AGRAS.

For Multi-programmed workloads:

Compared to low intensive benchmark, high intensive benchmark exhibits a sig-

nificant improvement in IPC for multi-programmed workloads over RegDes. For

Mix-High and Mix-Low, the improvement in IPC for RODESA-b is 32% and 17%,

respectively, over RegDes.

For Multi-threaded workloads:

Memory intensive benchmark shows better improvement in IPC for RODESA-b over

RegDes. For canneal, the improvement in IPC for RODESA-b is 19%, whereas for

low memory intensive benchmark like streamcluster, the improvement in IPC is only

1%.

5.10.2 Effect on Memory Service Time

Memory service time defines the time required to complete the service of a memory

request. De-stress incurs additional delay to the service of requests as it stalls the

service of requests for a de-stress period. Thus, it increases the memory service time

132

Results

Figure 5.9: Normalized service time over Baseline (lower is better)

of applications. The memory service time for de-stress scheduling policies normalized

over baseline is shown in Figure 5.9. The average increase in memory service time is

22% and 9% for RegDes and AlterDes compared to baseline. The proposed AGRAS

increases memory service time by 19%, RODESA-p increases memory service time

by 15%, and RODESA-b increases memory service time only by 4% compared to

baseline.

Compared to RegDes, our proposed AGRAS, RODESA-p, and RODESA-b im-

prove memory service time by 3%, 7%, and 16%, respectively. By opportunistically

de-stressing memory in full, partial, or in the background based on memory ac-

cess count, the proposed policies could achieve better average memory service time

compared to RegDes. RODESA-b shows an improvement of 4% with AlterDes.

For Multi-programmed workloads:

The memory service time improvement for RODESA-b is 16.6% for Mix High and

10.34% for Mix Low over RegDes.

For Multi-threaded workloads:

The multi-threaded workloads are less memory intensive. The low intensive bench-

marks like streamcluster and blacksholes shows an increase of only 1% for RODESA-

b in comparison with baseline.

133

De-stress Scheduling Policies

Figure 5.10: Normalized age degradation over RegDes

5.10.3 Impact on Age Degradation

BTI increases threshold voltage over time, voltage, and temperature. This increase

quickens the aging of the device as well as its rate of wear-out. Figure 5.10 depicts the

age degradation that occurred for AlterDes, AGRAS, RODESA-p, and RODESA-

b normalized with RegDes. The age degradation for baseline is not shown as the

method does not de-stress at any point of execution. Thus, comparing the de-stress

scheduling policies with the baseline is not fair. From the equation 5.2, we can notice

that age degradation depends highly on the duration in which the circuit is stressed

and de-stressed. If the duration of stress is high, age degradation is more. We

can observe from the figure that existing AlterDes and proposed policies degrade

age more than RegDes. The reason is that AlterDes schedules de-stress only in

alternate intervals, and AGRAS, RODESA-p, and RODESA-b schedule de-stress

based on incoming request rate. Thus, all these techniques postpone de-stress to

improve IPC. Therefore, the circuit is stressed for a longer duration and degrades

age more.

The proposed AGRAS and RODESA-b degrade age by 26% and 19% whereas Al-

terDes degrade age by 49%. The age degradation for RODESA-p is only 17%, which

is less compared to existing AlterDes and proposed RODESA-b and AGRAS. The

RODESA-b degrades age by 2% compared to RODESA-p, whereas the RODESA-b

improves IPC by 7% compared to RODESA-p. Furthermore, RODESA-p improves

IPC by 4% over AGRAS.

134

Results

Table 5.2: Effect of different values of AGT on performance and aging, normalized wrt
RegDes

Benchmark
% CPI Improvement
(higher is better)

% Age Degradation
(lower is better)

AGT=1 AGT=2 AGT=5 AGT=1 AGT=2 AGT=5
leslie3d 16.4 20.0 22.5 29.6 39.3 47.2
lbm 17.6 19.8 23.5 18.5 24.4 36.1
mcf 15.8 19.5 22.4 28.8 40.3 49.6
canneal 13.9 16.9 21.4 13.2 38.6 66.2
x264 12.8 15.0 16.9 28.5 41.9 52.7
streamcluster 13.8 22.9 21.6 13.2 24.9 24.6
Mix Low 10.9 13.1 14.4 11.9 26.0 30.8
Mix High 16.7 20.5 23.9 14.9 26.9 38.6
Average 14.6 18.5 20.8 19.8 26.6 37.1

Conclusions: (i) If the system needs better IPC then RODESA-b is prefer-

able over RODESA-p. (ii) If the system needs control on age degradation, then

RODESA-p is the best option. Based on the requirements, the de-stress can be

scheduled using either RODESA-p or RODESA-b.

5.10.4 Analysis of Threshold and Impact of the Decision
Criteria

In addition to the results presented in the previous text, we also conducted a study

to empirically determine the value of AGT for RODESA and to analyse the effect

of the decision criteria.

1. Sensitivity Analysis on Age Threshold, AGT:

The proposed de-stress scheduler, RODESA, attempts to de-stress memory oppor-

tunistically so that the performance is not hampered and, at the same time, age

degradation remains under control. The best option to maintain performance is to

avoid de-stressing, which might greatly affect the device’s aging. Therefore, we use

an age threshold, AGT, which indicates the number of intervals over which one can

avoid de-stress; and crossing this threshold, we schedule a regular de-stress of the

device. In our experiments, we have used the value of AGT=2.

To see the impact of AGT over performance and aging, we conducted a sensitiv-

ity study by varying the AGT with values 1, 2, and 5. The results are compared with

135

De-stress Scheduling Policies

Figure 5.11: Distribution of full vs partial de-stress performed by observing the memory
request rate

those of a basic regular de-stress scheduler, RegDes. Note that a smaller value of

AGT forces frequent de-stress scheduling and hence improves age but hampers per-

formance (as they stall the regular memory requests). Whereas a large AGT value

gives better performance but affects aging as the de-stress gets delayed. Table 5.2

presents the improvement in CPI and degradation in age over RegDes for RODESA-

b with varying AGT. RegDes policy has the best control over aging but has the worst

impact on performance. We use this as the baseline to report the values. From the

table, we note that our proposal improves performance, and the improved values

are 13.6%, 17.3%, and 19.6% respectively, for the thresholds: AGT = 1, AGT = 2,

and AGT = 5. As discussed before, with a higher value of AGT , the memory ser-

vice is not affected much, and hence we get better performance improvement for

AGT=5. We see the reverse trend for the aging metric. The age degrades more if

AGT is higher, as we skip doing the de-stress for a longer duration. In particular,

for AGT=5, the age degrades maximally by 42.4%, whereas for AGT=1, we only

get 23.1% degradation over RegDes.

Conclusions: A larger value of AGT is required if we are focusing on better

performance. On the other hand, we can use a small value of AGT to protect the

device from aging. In our experiments, we have taken the value of AGT = 2, which

helps us to balance between performance and age degradation.

2. Analysing the impact of partial de-stress in RODESA-p:

136

Results

Table 5.3: Number of intervals and banks that got the opportunity to perform background
de-stress

Benchmark
Percentage of
intervals doing
background de-stress

Average banks
undergoing
background de-stress

leslie3d 54.7 2
lbm 90.1 4
mcf 37.4 1
canneal 6.7 1
x264 53.7 1
streamcluster 34.5 3
Mix Low 14.2 1
Mix Medium 62.1 4
Mix High 76.5 3
Average 42.9 2

The proposed RODESA-p can skip de-stress if the age threshold is not met. How-

ever, we take the opportunity to perform a full/partial de-stress based on the memory

request rate. To analyze the impact of this scheme, Figure 5.11 shows the percent-

age distribution of the de-stress performed on these occasions. The distribution is

shown for those intervals where we were permitted to skip the de-stress. Although

there was the feasibility of skipping de-stress, our proposal looked at the request rate

and was able to perform full de-stress for 54.7% of such intervals. In some cases, the

request rate was medium, and we could perform 35.7% partial de-stress. Whereas,

in the remaining cases, as the rate was high, we had to skip the de-stress.

Keeping track of the memory request rate, we were able to perform either full or

partial de-stress. This led to having good control on aging (due to the opportunistic

de-stress), and at the same time, the performance was not impacted much due to

fine control on either skipping the de-stress or doing it partially.

3. Analysing the impact of background de-stress in RODESA-b:

The proposed RODESA-b can skip de-stress if the age threshold is not met. How-

ever, we take the opportunity to perform de-stress of some banks in the background,

taking into account the memory request rate for the individual banks. To analyze

the impact of this scheme, Table 5.3 shows the percentage of skipped intervals that

were able to take this opportunity. On average, instead of skipping the de-stress, we

137

De-stress Scheduling Policies

Figure 5.12: Age degradation for two banks that got de-stress in background during
random points of execution (for canneal benchmark)

were able to perform background de-stress in 43% intervals. In each such interval,

we performed background de-stress for 2 (out of 8) banks on average.

A higher percentage value indicates that we make the best use of the opportunity

to de-stress the banks in the background. This avoids the stalling of the system as

we service the regular requests for such banks in addition to background de-stress,

which in turn controls aging.

The banks which get de-stressed in the background vary across intervals. In

that, a bank which is de-stressed in the background in the interval i may not get the

opportunity in the interval i+1. Hence, the aging of the banks varies as they get de-

stressed at different time instances. Figure 5.12 presents the age degradation accrued

for two (representative) banks at different points of execution. We can observe

from the figure that age degradation is different at various points during execution.

This difference indicates that the banks were de-stressed in the background during

different intervals.

Normally, the OS tries to map memory addresses equally among banks [1], and

the application accesses are also distributed equally during execution. On account

of this, we note that, by the end of execution, the age of both banks becomes similar.

4. Analysing the impact of static vs. dynamic selection of banks for

background de-stress:

In RODESA-p, the decision to perform partial de-stress depended on the amount

138

Results

Table 5.4: Impact of static versus dynamic selection of banks for background de-stress
on Performance and Aging

Benchmark
% CPI Improvement
(higher is better)

% Age Degradation
(lower is better)

Percentage of intervals doing
background de-stress
(higher is better)

10% 50% Dynamic 10% 50% Dynamic 10% 50% Dynamic
leslie3d 17.0 19.9 22.3 46.8 39.3 33.8 15.7 24.7 29.4
lbm 16.8 18.8 19.3 48.5 24.4 19.4 13.9 37.2 41.8
mcf 12.5 16.9 19.9 51.5 40.3 37.6 5.9 20.6 21.8
canneal 13.9 15.7 17.8 56.1 58.6 53.9 1.3 5.8 26.6
x264 11.0 15.6 23.0 60.2 41.9 32.9 4.9 27.6 29.9
streamcluster 16.9 22.9 32.1 66.7 65.7 64.9 17.1 29.5 51.5
Mix Low 9.1 11.8 20.6 52.4 30.6 26.0 16.7 46.2 57.1
Mix High 13.5 19.8 28.5 49.5 33.1 26.9 6.3 24.4 34.0
Average 13.8 17.6 22.9 37.3 25.3 20.7 10.2 27.0 36.5

of increase in request rate in the current interval over the previous interval. We

took this range to be between 5-10% (cf. section 5.8). For RODESA-b, we can

take a similar approach while deciding the number of banks to be de-stressed in the

background. In this section, we demonstrate that the static selection of a number

of banks is less effective compared to our proposed dynamic selection.

A static selection of a number of banks can be done by deciding to perform

background de-stress on the banks that have accesses lesser than X% compared to

the banks having maximum accesses. We show the results by taking X = 10% and

X = 50%. Let STmax be the service time taken by the bank having a maximum

number of requests for the current interval. As we perform de-stress in the back-

ground, we should be able to hide the latency (=STi +DT) of regular requests and

de-stress for the selected banks. This means that the duration should be less than

STmax.

To perform background de-stress for the banks with access count less than X =

10% and X = 50% of STmax, the following inequalities should be satisfied for any

bank Bi having service time STi:

0.1× STmax +DT ≥ STi +DT (5.3)

0.5× STmax +DT ≥ STi +DT (5.4)

From equations 5.3 and 5.4, we can conclude that there is higher probability for

satisfying the inequality in equation-5.3. But here the number of banks satisfying

139

De-stress Scheduling Policies

the condition is very less. If we take the second condition of X = 50% then the

number of banks is more, but those satisfying equation-5.4 are very less. Table 5.4

shows the various metrics for all the conditions.

• We note that for X = 10%, we get the worst age degradation (of 37.3%) as we

do not take full advantage of background de-stress; also, the CPI is not very

good (only 13.8% improvement), because not doing background de-stress will

result in more foreground de-stress and system stalls.

• Whereas, for X = 50%, the age control and CPI are better, but there may be

missed chances of doing background de-stress. In particular, age degradation

is reduced to 20.7%, and CPI improves by 17.6%.

• However, our proposal of dynamic bank selection gives the best results, as it

selects the optimal number of banks that satisfy the timing constraints. The

same impact can be seen on age degradation. In particular, the age degrada-

tion reduces to 20.7% while the CPI improves by 22.9%. Here, the dynamic

selection can control aging optimally compared to its static counterparts.

The table also shows the percentage of intervals that succeeded in doing back-

ground de-stress. For X = 10%, only 10.2% intervals could select such banks,

whereas X = 50% could select banks in 27% intervals. Our dynamic policy was able

to perform background de-stress in 36.5% intervals.

5.11 Summary

Bias Temperature Instability (BTI) is a reliability issue that affects the performance

of modern semiconductor devices, including Phase Change Memory (PCM). The

high voltage required to perform memory operations makes PCM more susceptible

to BTI aging. The BTI aging process involves two main phases: stress and de-stress.

The stress voltage, along with the high temperature, causes a gradual increase in

the threshold voltage, leading to performance degradation. De-stress helps to obtain

a partial recovery for the increased threshold voltage and control the aging of the

device. If the stress phase is extended over a period, age degradation will be more

and may lead to permanent functional failure. Thus, de-stressing the device at

regular intervals is required to prevent early breakdown of the device, which is called

140

Summary

the RegDes policy. Regular read/write requests are delayed by de-stress operations,

which lowers the system’s performance.

This chapter presents scheduling methods AGRAS and RODESA for regular

requests and de-stress operations. The proposed AGRAS and RODESA take into

account the memory request rate while scheduling de-stress operations to less ham-

per the service of regular read/write requests. AGRAS schedule de-stress only when

the incoming request rate is below a predefined threshold. RODESA proposes two

variants, RODESA-p and RODESA-b, which opportunistically de-stress to improve

performance and control age degradation. RODESA-p is an optimization of AGRAS

that keeps track of the memory request rate to opportunistically de-stress in par-

tial if the rate is within a threshold. This results in good control on aging and

improved performance. The second variant, RODESA-b, opportunistically de-stress

banks with less memory access count in the background. The background de-stress

allows RODESA-b to hide the de-stress latency and prevents stalls when servicing

regular requests. To control the aging of the device, the proposed policies make

sure that we do not skip de-stress operations over prolonged intervals. This way,

our proposed scheduling methods control the de-stress operation without affecting

the service of regular read/write requests to maintain performance. The proposed

RODESA-p improves performance by 18%, and RODESA-b improves performance

by 25% compared to RegDes. The age degradation for RODESA-p is 17%, whereas

it is 21% for RODESA-b over RegDes.

In summary, to make use of the advantages of non-volatile memories, we need

to take care of the aging issues of such memories. Regular de-stressing helps to

control the aging of the device, but this hampers system performance. The pro-

posed AGRAS and RODESA help to achieve better performance and reduce age

degradation by opportunistically de-stressing the device based on memory access

count.

141

6
Avenues for Improving Migration and

Aging

This chapter proposed avenues for improving the performance of hybrid memo-

ries. Towards this, we propose write-intensity-based page migration techniques and

migration-aware de-stress methods by considering the latency overhead associated

with migration and de-stress operations. The efficacy of the proposed methods is

evaluated with a baseline and existing mechanisms.

6.1 Introduction

The chapters till now concentrated on either scheduling only memory requests (refer

Chapter 3) or scheduling service requests like migration requests (refer Chapter 4) or

de-stress requests (refer Chapter 5) along with regular requests. In this chapter, we

aim to focus on page selection for migration to enhance the performance of hybrid

memory. Existing techniques migrate hot pages that receive several write requests

from PCM to DRAM at regular intervals or immediately when the page becomes

hot. The selection of hot pages is based on the access history, assuming that the hot

page will remain hot after migration to DRAM. If a page is incorrectly identified

as hot, its migration becomes ineffective and may cause high-performance overhead.

To improve hybrid memory performance, the selection of migration candidates must

142

Introduction

be carefully managed. In this chapter, we wish to explore other options for choosing

migration candidates. For example, we use write intensity to do this. Also, we aim

to show a combined impact of migration and de-stress on the system performance.

Towards this, we present three policies: WiMig, WiForeMig, and DOPMig.

The main contributions of this chapter are as follows:

• Proposed WiMig identifies efficient migration candidates based on the write

intensity of memory pages to improve the performance of hybrid DRAM-PCM

systems. Note that the initial condition of crossing a hotness threshold of mi-

gration is required before write intensity can be checked. The method initiates

page migration at regular intervals. In every interval, the method maintains a

pending queue with information on those pages that receive a number of writes

more than the predefined hotness threshold. For actual migration, the page

with the highest write intensity from this pending migration queue is selected

as a candidate.

• Proposed WiForeMig uses foresight to predict that pages that stay longer in

the pending migration queue and have low write intensity may not benefit

from moving to DRAM. We propose to demote the migration of such pages as

they are likely to receive fewer write requests in the future. Demotion means

this page is no longer a candidate for migration. The foresight here is that

such pages will likely receive fewer writes in the future. This helps to cancel

the migration of pages, which will give less migration benefit.

• DOPMig examines the write intensity of the page and opportunistically mi-

grates those pages to DRAM in parallel with PCM de-stress operations. The

memory controller buffers write-intensive pages from PCM in regular slots us-

ing a migration buffer. These buffered pages are migrated to DRAM in the

background during de-stress operation. DOPMig improves application execu-

tion time while controlling BTI aging by performing de-stress operations at

regular intervals and scheduling the part of migration in the background.

• We have compared our proposed policies with existing techniques and achieved

better performance with reduced migration overheads.

This chapter organized as follows: Section 6.2 presents the motivation. Pro-

posed system architecture is discussed in 6.3. Sections 6.4, 6.5 and 6.6 illustrate the

143

Avenues for Improving Migration and Aging

X1 X2 X3 Y1 Y2 Y3
Execution Points

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
W

C,
W

I

P1(WI)
P1(WC)
P2(WI)
P2(WC)
P3(WI)
P3(WC)

(a)

X1 X2 X3 Y1 Y2 Y3
Execution Points

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
W

C,
W

I

P1(WI)
P1(WC)
P2(WI)
P2(WC)
P3(WI)
P3(WC)

(b)

Figure 6.1: (a) Difference in Write count (WC) and write intensity (WI) for lbm, (b)
Difference for sjeng, (WC is represented as circles and WI is represented as triangles)

proposed policies to improve hybrid memory performance via write-intensity based

migration scheme and opportunistic de-stress method. Experimental setup and re-

sults are discussed in 6.7 and 6.8. Finally, we summarize this chapter in section

6.9.

6.2 Motivation

6.2.1 Comparing impact of write count versus write inten-
sity

Hybrid memories are designed to overcome the shortcomings of conventional DRAM

and PCM memories. Memory pages in a hybrid architecture can be exclusively

stored in any of the partitions by sharing address space. The performance can be

enhanced by moving write-intensive pages of PCM to DRAM. To maximize the

DRAM hits, the pages must be prudently identified and migrated at the right time.

Existing techniques [56, 58, 60, 64] migrate hot pages with many writes to DRAM.

The application execution involves multiple stages, and the memory access behavior

of each stage might be different. The total write count may not reflect the current

memory behavior. In contrast, write intensity indicates the number of write requests

received per unit of time and represents the temporal behavior of memory pages.

Figure 6.1a, and Figure 6.1b present the write count and write intensity of mi-

gration candidate pages P1, P2, P3 at different execution points. The endpoints of

each line in the figures represent the write count (WC) and write intensity (WI)

144

Motivation

(a) (b)

Figure 6.2: (a) Normalized age degradation of RegDes with Large Interval (LI) over
RegDes with Small Interval (SI), (b) Normalized IPC over No De-stress method; SI=
Small Interval and LI=Large Interval

of the corresponding page at a point of execution. The pages P1, P2 and P3 1 are

present in the pending migration queue for consecutive execution points X1, X2, X3

and for consecutive points Y 1, Y 2, Y 3. From the figures, we can observe that the

write count and write intensity follow different trends. In Figure 6.1a, we can ob-

serve that at point X2, the page with the highest write count is P3, whereas the

highest write intensity page is P2. For Figure 6.1b, the descending order of pages,

at point Y 1, based on write count is {P3, P1, P2}, whereas based on write intensity,

the order is {P1, P2, P3}.
We can observe from Figure 6.1a and Figure 6.1b that the page with the highest

write intensity and write count varies during the execution points. In Figure 6.1b,

the page P2 has the most writes at X1, whereas at point Y 1, it is P3. We note that

write intensity (instead of write count) depicts the current memory access pattern

of a page, and therefore, it is beneficial to select migration candidate pages based

on write intensity.

6.2.2 Comparing impact of de-stress interval sizes

Figure 6.2a depicts the age degradation that occurs when the de-stress is performed

regularly (as in the Regular De-stress or RegDes method) in different interval du-

rations. As discussed earlier, performing de-stress in regular small intervals reduces

1Page indices are only representations of the actual page numbers

145

Avenues for Improving Migration and Aging

age degradation compared to when de-stress is performed in large intervals. On

average, RegDes with large interval (LI) degrades age by 46% more than RegDes

with small interval (SI). Regular de-stressing reduces BTI aging, but it causes more

frequent service stalls, which lowers performance.

Figure 6.2b presents the Instruction Per Cycle (IPC) obtained for methods that

perform de-stress in regular small or large intervals normalized to the technique

that does not perform de-stress (No De-stress). It can be observed that the IPC

decreases when de-stress is performed more frequently. The reduction in IPC is 13%

for RegDes with LI while it is 27% for RegDes with SI over No De-stress method.

From these observations, it is to be noted that:

• Page migration improves the performance of hybrid memory. The write inten-

sity of a page is more adaptive to the run-time behavior of a memory page.

• De-stress operation controls BTI aging. However, de-stress hampers perfor-

mance as regular requests are stalled during de-stress.

• De-stress needs to be controlled to maintain performance while reducing age

degradation.

Therefore, this chapter proposes a de-stress-aware page migration technique to

cover up the de-stress overhead by performing migrations in the background. This

way, we utilize the stall time of de-stress to move useful pages to DRAM. Also,

this chapter introduces a write-intensity-based migration scheme to maximize the

DRAM hits and thus improve the performance of hybrid memory.

6.3 System Architecture

The hybrid memory controller manages memory requests spawned from different

applications executing on the processing cores. We assume that both DRAM and

PCM follow an open-page row-buffer management policy. In the proposed method,

the memory requests are scheduled in First-Ready First Come First Serve (FR-

FCFS) order, where the row hit requests are prioritized over other requests. The

address translator and command generator help to serve the scheduled memory

requests.

Figure 6.3 presents the proposed hybrid memory controller with a migration and

de-stress unit. The unit is composed of the following components:(i) Decision &

146

System Architecture

PCM DRAM

LLC

Migration and De-stress Unit

 Decision & Control Unit

M
ig

ra
ti

o
n

B

u
ff

er

Pending
Migration Queue

Meta DataHot page
migration
request

Hot Page
from PCM

Hot Page
from PCM

Victim Page
from DRAM

Memory Controller

Memory
Request/ Response

Memory
Request/Response

FR-FCFS
Scheduler

Migration and
De-stress Unit

Address
Mapping

Command
Generator

Victim Page
from DRAM

De-stress
request De-stress Scheduler

Figure 6.3: Hybrid memory controller with migration and de-stress unit

Control unit, (ii) Pending Migration Queue, (iii) Migration Buffer, (iv) De-stress

Scheduler, and (v) Metadata unit. The proposed method migrates pages from PCM

to DRAM based on both write count and write intensity. The metadata unit keeps

track of the write count and write intensity of the accessed PCM pages. The PCM

page, which receives the number of writes greater than the predefined hotness thresh-

old HoT, is considered a possible migration candidate. The pending queue in the

migration unit keeps track of these page references and their corresponding write in-

tensity. The proposed method checks the pending queue during regular intervals and

migrates the write-intensive page from PCM to DRAM. We define write intensity

(WI) as follows:

WI =
number of writes

time since the page was first accessed
(6.1)

The migration buffer acts as an intermediate point where the contents of PCM

pages are copied to the migration buffer and later to DRAM. All the memory access

requests received during the migration are serviced from the migration buffer. The

decision and control unit manages all these operations. Based on the information

from the metadata unit and pending queue, this unit decides if the page should get

migrated from PCM to DRAM at the current interval.

In case the allocated DRAM capacity is full, some pages need to be migrated

147

Avenues for Improving Migration and Aging

from DRAM to PCM to make space for the migrating page. A Least Recently Used

(LRU) list is maintained for all the accessed DRAM pages. The decision control

unit selects the LRU page as a victim for migration from DRAM to PCM. Thus, the

decision & control unit handles the complete page migration from PCM to DRAM

and vice versa.

Along with migration, the migration and de-stress unit controls de-stress opera-

tion to mitigate BTI aging. The de-stress scheduler schedules de-stress with regular

read/write and migration requests. The meta-data unit keeps track of the accrued

aging of the device along with the write behavior of pages.

6.4 WiMig: Write intensity based Migration

Algorithm 6.1 explains the proposed method, which wisely selects the page migration

candidates based on accrued write count and write intensity. The proposed method

continuously keeps track of the write count of pages (line 11) and the corresponding

write intensity (line 12). It compares the write count of pages against a pre-defined

hotness threshold HoT. If the write count is greater than HoT, the page is a possible

migration candidate and gets added to the pending migration queue PendQ (lines

13-15). At regular intervals, the proposal migrates one page from the pending queue.

The page selection is based on write intensity (lines 16-19). The pages in the pending

queue are sorted in write intensity order at the interval boundary. The highest write-

intensive page is migrated to DRAM if there is space available in DRAM.

A victim page is selected and migrated to PCM if DRAM is full. We monitor

the accesses for DRAM pages and maintain the Least Recently Used (LRU) list

of DRAM pages. Function V ictim DRAM explains the proposed LRU-based vic-

tim selection algorithm. The proposed method selects the lowest write count page

V DRAM from the least recently used m% pages (line 33). We took the value of m

as 25. The proposed method also compares the write count of the selected V DRAM

and the write count of migrating page CP (line 34). The V DRAM is selected as

the victim page only if the write count of V DRAM is less than CP (lines 34-35).

If there is no V DRAM, the migration of CP is canceled.

148

WiMig: Write intensity based Migration

Algorithm 6.1: Write Intensity based Page Migration

1 HoT : Hotness Threshold
2 CP : Candidate Page
3 PendQ: Pending Queue
4 Writes[]: Array of Write Counts of pages
5 WI[]: Array of Write Intensity of pages
6 duration[]: Array storing Duration since first access to pages
7 Function WiMig
8 duration[P] = time elapsed since page P was first accessed
9 for (every write request coming to page P) do

10 // increment write count and update write intensity
11 writes[P]++
12 WI[P] = writes[P] / duration[P]

13 if (writes(P) ≥ HoT) then
14 // add P to pending queue
15 PendQ = PendQ

⋃
P

16 for every interval boundary do
17 sort PendQ based on write intensity
18 CP = P |P ∈ PendQ ∧WI[P] = maximum
19 migratePage(CP)

20

21 Function migratePage(CP)
22 if DRAM has space then
23 Migrate CP to DRAM

24 else
25 v dram = Victim DRAM(CP)
26 if v dram != NULL then
27 Migrate v dram to PCM
28 Migrate CP to DRAM
29 // remove CP from the pending queue
30 PendQ = PendQ \ CP

31

32 Function Victim DRAM(CP)
33 Get the minimum write count page V DRAM from the last m% pages

in DRAM LRU list
34 if writes(V DRAM) < writes(CP) then
35 return victim page V DRAM

36 else return NULL

149

Avenues for Improving Migration and Aging

6.5 WiForeMig: Write intensity based Foresight-

ful Migration

The proposal in the above section migrates pages based on write intensity. The

regular requests get stalled during page migration, affecting application performance.

Therefore, we cannot migrate several pages at a time. Given this, the candidate

pages in the pending migration queue may be queued for a longer duration. Here,

as long as the pages stay in the pending queue, they continue to serve regular

requests from PCM. We note that in case pages stay in the pending queue for a

long time, their write intensity would change over time, and there may be reduced

benefits from migrating such pages. For example, consider Figure 6.1a, the write

intensity of page P1 is 1 at point X1, while it is reduced to 0.5 at X2. Similarly, for

another page P2, the write intensity is 0.85 at X1 and then increased to 1 at X2,

but then again reduced to 0.8 at X3.

The foresight we apply is that the pages that stay longer in the pending queue and

have less write intensity will likely receive fewer write requests in the future. Hence,

it is prudent not to move them to DRAM, as it will reduce the migration benefit.

In other words, when the page gets an opportunity to migrate to DRAM, most of

its access may already be over. Migration of such pages will be unrewarded and

may result in performance degradation. To avoid such undesirable migrations, we

propose WiForeMig, which demotes such pages from the migration pending queue.

By demotion, we mean these pages will not be considered as migration candidate

pages.

Algorithm 6.2 explains the proposed method WiForeMig. The idea is to remove

certain pages from the pending migration queue and cancel their migration decision.

To select these pages, we use two thresholds: Wait T and Max Dem T. The former

indicates the (minimum) time limit a page can remain waiting in the pending queue

before it is considered to be demoted. As there is a possibility of having several

pages satisfying such criteria, we need to put a limit on demotion. In that, if we

demote every waiting page, then it falsifies the idea behind page migration. To

demote pages from this selection, we only select a certain number of pages with the

lowest write intensity. The second threshold, Max Dem T, is used for this decision.

This threshold controls the number of demotions. Next, we discuss the method in

detail.

150

WiForeMig: Write intensity based Foresightful Migration

Algorithm 6.2: Foresightful Migration:: that takes decision of cancelling
Migration of pages

1 Writes[]: Array of Write Counts of pages
2 PendQ: Pending Queue; DemQ: Demotion Queue
3 Wait T : Threshold of number of intervals a page waits before getting

demoted
4 Max Dem T : Threshold used to put maximum limit on number of pages

getting demoted
5 Intervals[] : Array holding the number of intervals a page is residing in the

pending queue
6

7 Function WiForeMig
8 at the end of every interval
9 // Call WiMig to migrate a page

10 WiMig()
11 ∀P ∈ PendQ:
12 Intervals[P]++
13 //If pages have crossed waiting threshold, add them to demotion queue
14 DemQ = {P |P ∈ PendQ ∧ Intervals[P] > Wait T}
15 //From the demotion queue select Max Dem T number of pages
16 Sort DemQ based on write intensity
17 DemQ = Keep Max Dem T number of least write intensity pages
18 //Remove these selected pages from pending queue
19 PendQ = PendQ \DemQ
20 reset the write counter of these demoted pages
21 ∀P ∈ DemQ : Writes[P] = 0

151

Avenues for Improving Migration and Aging

At the end of each interval, we first migrate the most write-intensive page to

DRAM using the method WiMig (lines 9-10). We keep track of the total number of

intervals each page has been residing in the pending migration queue (line 11). For

all the pages in the pending queue that have been waiting for more than Wait T

number of intervals, we add them to a temporary demotion queue, DemQ (lines

12-13). To demote only the least write intensive pages, we first sort this temporary

DemQ. From this sorted queue, we keep only Max Dem T number of pages (lines

14-16). These selected demotion candidate pages are removed from the pending

queue (lines 17-18). Thus, they will not be considered for migration in the near

future. Note that the write count of these pages is reset (lines 19-20).

The proposed method accurately identifies demotion candidate pages using the

two thresholds: Wait T and Max Dem T. In that, as they have resided in the pend-

ing queue for a longer duration and given that they have very less write intensity,

such pages are less likely to get access while in DRAM. If the accesses are predicted

to be lesser, then there is less benefit in moving them to DRAM. This foresightful

decision to revoke pages from getting migrated helps to improve the performance of

hybrid memory systems.

6.6 DOPMig: De-stress aware Opportunistic Mi-

gration

To further enhance hybrid DRAM-PCM system performance, we propose DOPMig,

which uses the write intensity of the page to categorize them as migration candidates;

and opportunistically migrates such pages to DRAM concurrent to PCM de-stress

operation.

Figure 6.4 presents the execution timeline of the proposed DOPMig. We divide

the timeline into continuous stress intervals (StrInt) and a short de-stress period.

Each stress intervals includes multiple migration intervals (MigInt). After each mi-

gration interval, a write-intensive page is migrated from PCM to DRAM to improve

the performance of hybrid memory. After each stress interval, the memory banks

are de-stressed for a duration to control BTI aging.

152

DOPMig: De-stress aware Opportunistic Migration

Stress Interval

Schedule
De-stress

Migration
Interval

De-stress
interval

Schedule Migration Requests
Not
serviced

Stress Interval

Schedule
De-stress

Migration
Interval

De-stress
interval

Schedule Migration Requests
Not
serviced

Time

Stress Interval

Figure 6.4: Execution timeline with de-stress and migration intervals

Run applications for
 MigInt cycles

 MQ <- Add pages with WC
 greater than MT

End of StrInt
cycles?

Calculate WI of pages in MQ;
Pick highest WI page for migration

Migrate page to DRAM;
May need victim migration
from DRAM

Update MQ

Buffer P no. of pages from
MQ in a buffer

PCM
De-stress

Migrate P no. of
pages from
buffer to DRAM

No

Yes

MigInt – Migration Interval
StrInt – Stress Interval
MQ- Migration pending Queue
MT – Migration Threshold
WC -Write Count
WI -Write Intensity

Figure 6.5: Working of proposed DOPMig

6.6.1 Working of DOPMig

Figure 6.5 presents the working principle of the proposed DOPMig. The application

executes continuously on the cores, and our proposal migrates write-intensive pages

from PCM to DRAM at regular intervals denoted by MigInt. After we execute an

application for MigInt duration, we choose the page(s) with a write count greater

than the migration threshold (WC > MT) and add them to the pending migration

153

Avenues for Improving Migration and Aging

queue (PendQ). After every MigInt cycle, DOPMig checks for the completion of

StrInt cycles. If application execution has not completed StrInt cycles, DOPMig

performs migration. For this, we select a page from PendQ with the highest write

intensity (WI) and migrate it to DRAM at the interval boundary. The migration

queue is updated after each migration (a detailed explanation of write intensity-

based migration is given in Section 6.4).

If the execution timeline completes StrInt cycles, DOPMig performs the de-

stress operation to control BTI aging. During de-stress operation, the regular mem-

ory requests cannot be serviced, which leads to an increased execution time. To

alleviate the overhead of de-stress, DOPMig performs migration of certain buffered

pages in parallel to the de-stress operation. As the PCM can not service regular

requests during de-stress operation, the proposed DOPMig buffers P write-intensive

pages from PendQ in a migration buffer in the memory controller. Once all P pages

are buffered in the migration buffer, DOPMig initiates de-stress for PCM banks. In

parallel, DOPMig also migrates buffered pages from the migration buffer to DRAM

if DRAM has space. Thus, the proposed DOPMig performs part of the migration

in the background with the help of a fixed-size migration buffer inside the mem-

ory controller. DOPMig improves performance and reduces migration overhead by

utilizing the de-stress period.

6.6.2 Two variants of DOPMig

1. DOPMig modest: Here, as the P number of migrations are done parallel to

the de-stress operation, we do not perform migration of pages up to the next P

intervals. In particular, as we do one migration per MigInt, and given that P

migrations have already taken place while doing de-stress, we do not perform

migrations for the next P number of migration intervals. The advantage of

skipping migrations is the reduction in migration overheads.

2. DOPMig greedy: Here, we take a greedy approach and continue to perform

page migrations at every migration interval, even after performing the P mi-

grations during de-stress. This greedy approach relies on the hypothesis that

migrating more pages will give better DRAM hits for these pages and further

reduce memory access time (at the cost of more overheads).

154

Evaluation

6.6.3 Victim Page Migration

If the allotted DRAM capacity for an application is full, DOPMig has to migrate

some pages from DRAM to PCM to make space available for the new incoming

migration candidates. The method uses the same criteria discussed in the previous

sections for victim page selection (cf. Section 6.4). We maintain an LRU list of

DRAM pages. To ensure that the victim page incurs less number of writes after

migrating from DRAM to PCM, our policy DOPMig compares the write count of

a set of LRU pages and selects the least write-count page. Also, the victim page

is migrated if the write count of the victim page is less than that of the incoming

migrating page. Otherwise, the migration from buffer to DRAM is discarded.

6.7 Evaluation

This section highlights the experimental setups, hardware overhead and existing

methods that we used to evaluate the effectiveness of our proposed methods.

6.7.1 Experimental Setup and Workloads

The proposed approach applies to any distribution of DRAM and PCM. However,

we have considered a hybrid memory consisting of a single DRAM channel and three

PCM channels for experimental analysis. To implement our proposed method, we

use Gem5 [95] full-system simulator integrated with NVMain [96] memory simulator.

Table 6.1 shows the important system parameters employed in our experiments. We

analyzed our results using applications from multi-programmed SPEC 2006 [99] and

the multi-threaded Parsec [100] benchmark suites with high and low write intensities.

The applications and their write intensity classes (in brackets) are shown in Table

6.1. With 250 million instructions to warm it up, each SPEC application is run for 1

billion instructions. The available DRAM capacity is assumed to range from 20% to

30% of pages for each application. We assume the page size is 4KB with an access

granularity of 32 bytes.

6.7.2 Hardware Overhead

We maintain two 8-bit counters for each page to store the write counts and write

intensity. Our design assumes that the memory size is 4GB and the page size is 4KB.

155

Avenues for Improving Migration and Aging

Table 6.1: Important system parameters

Components Parameters
Processor Single/Quad-core, X86/ALPHA

L1 Cache
Private, 32KB SRAM split I/D caches,
2-way associative, 64B block

L2 Cache Shared, 512KB SRAM, 64B block, 8-way associative

Main Memory

PCM: 3GB, 3 channels, 32 entry request queue
Memory Controller: FR-FCFS
DRAM: 1GB, Single channel
Memory Controller: FR-FCFS

Memory Latency
[98]

PCM :: Read = 100ns, Write = 350ns
DRAM:: Read = 50ns, Write = 50ns

Energy [3]
PCM :: Read = 0.2nJ/bit, Write=1 nJ/bit
DRAM:: Read=0.1 nJ/bit, Write=0.1 nJ/bit

Page Size and
Access Granularity

4KB and 64B

Interval Length 15µs
Benchmarks:
SPEC 2006: lbm (high), sjeng (high), leslie3d (low), mcf(low), libquantum(low)
Parsec: canneal,x264,streamcluster (all are low)
SPEC-Mixes: Mix-High: gobmk,lbm,sjeng,libquantum;
Mix-Low: namd,calculix,milc,gromacs;

156

Evaluation

Thus, the additional overhead associated with pages is 2.24MB. Our design includes

a migration buffer that can hold eight pages of size 32KB at a time. Additionally, the

design has a pending migration queue that stores the page IDs for all the migration

candidate pages and requires 64 bytes. Thus, the additional storage overhead is

2.27MB, approximately 0.05% of total memory size.

6.7.3 Performance Analysis

For performance analysis of our proposed methods, we consider the following meth-

ods:

• Baseline: Baseline method, which does not perform migration and de-stress.

• RegMig: An existing page migration method which performs migration in

regular intervals for pages with a write count greater than the threshold.

• RegDes: A method that schedules de-stress at regular intervals while does

not perform the migration.

• DesMig: This method migrates pages based on write count. In addition, it

also performs de-stresses after StrInt intervals to control BTI aging.

• UIMigrate [58]: An existing migration method that migrates pages based

on write count and uses a dynamic threshold.

• OntheFly [60]: An existing migration technique that migrates pages imme-

diately when the page surpasses the static threshold and updates the threshold

with the highest access count at the start of each migration.

• WiMig and WiForeMig: Our proposed migration techniques where the mi-

gration is performed based on write intensity augmented with logic to cancel

migration for less beneficial candidate pages.

• DOPMig: Our proposed de-stress-aware migration technique. The method

migrates write-intensive pages in parallel with the de-stress operation. The

proposed DOPMig has two variations: DOPMig modest and DOPMig greedy.

The first variant skips migrations after de-stress, whereas the second variant

greedily performs migrations.

157

Avenues for Improving Migration and Aging

6.8 Results

The outcomes for the proposed write-intensity-based migration and migration-aware

de-stress approaches are examined in the following subsections. It should be noted

that various contributions in the literature either address page migration or PCM

de-stress methods. Because DOPMig combines migration and de-stress, whereas

WiMig and WiForeMig do not address de-stress, we could not compare the suggested

policies directly. Subsection 6.8.3, however, contains a comparative analysis of all

the existing and proposed policies.

6.8.1 Results for WiMig and WiForeMig Policies

This section discusses the results of proposed write-intensity-based WiMig and

WiForeMig techniques compared to the existing write count-based migration tech-

niques.

6.8.1.1 IPC

Instruction Per Cycle, or IPC, measures the system’s performance. The higher the

IPC, the better the performance. Figure 6.6 presents the IPC obtained for exist-

ing and proposed WiMig and WiForeMig techniques for various benchmarks. The

proposed WiMig and WiForeMig improve performance by 31% and 35% compared

to Baseline, whereas existing RegMig, UIMigrate, and OntheFly improve perfor-

mance only by 8%, 11% and 15%, respectively. The proposed methods judiciously

identify page migration candidates based on write intensity, which considers the cur-

rent memory access behavior of memory pages to improve system performance. As

the correct migration candidates are moved to DRAM at the proper instant, these

pages cater to accesses while in DRAM, thus reducing the memory access time and

improving performance.

It can be observed from the figure that benchmarks with high write intensity

like lbm and sjeng show higher improvement than benchmarks with low intensity

(leslie3d). For example, the improvement in IPC is 54% for lbm, while it is 26% for

leslie3d. The write intensity is low for all of the multi-threaded workloads, including

canneal, streamcluster and x264. Despite this, the proposed approaches WiMig and

WiForeMig could enhance performance for all of these multi-threaded workloads by

28% and 33% on average. Mix-High, which is a multi-programmed high-intensity

158

Results

Figure 6.6: Normalized speedup (higher is better)

Figure 6.7: Normalized memory service time (lower is better)

workload, shows the highest improvement in performance on average as 54% and

58% for WiMig and WiForeMig, respectively.

Among the proposed methods, WiForeMig improves IPC by 4% over WiMig.

This improvement is due to the foresightful demotion of pages that receive fewer

writes during the stay in the pending queue or are waiting in the pending queue

over a long duration.

6.8.1.2 Memory Service Time

Memory service time indicates the efficiency of memory in terms of how quickly a

request can be served. The lower the memory service time, memory requests get

159

Avenues for Improving Migration and Aging

Figure 6.8: Normalized total energy consumption (lower is better)

service faster. The memory service time for the proposed and existing methods

normalized over Baseline is depicted in Figure 6.7. The improvement in service time

for WiMig and WiForeMig are 27% and 30%, respectively, over Baseline, whereas

RegMig improves only by 8%, UIMigrate improves by 10%, and OntheFly improves

by 15% on average. The proposed methods observe the current memory behavior

by keeping track of the write intensity of pages and thus obtain higher improvement

than the existing methods over Baseline.

6.8.1.3 Energy

In hybrid memory, the overall energy consumption includes energy used for migra-

tion and regular read/write requests. The formula to calculate the total energy

(consumed by memory read-writes) is given in equation 6.2, where the subscripts

D and P stand for DRAM and PCM, respectively. #Migrations is the total num-

ber of requests involved in migrations. The values for the constants are taken from

Table 6.1.

TotalEnergy = #ReadsD ×ReadEnergyD

+#WritesD ×WriteEnergyD

+#ReadsP ×ReadEnergyP +#WritesP ×WriteEnergyP

+#MigrationD ×ReadEnergyD +#MigrationD ×WriteEnergyP

+#MigrationP ×ReadEnergyP +#MigrationP ×WriteEnergyD (6.2)

The total energy consumption for the proposed and existing methods is shown

160

Results

Figure 6.9: Distribution of PCM accesses for migrated pages

in Figure 6.8. This energy consumption can be greatly reduced by moving write-

intensive pages to DRAM, given that PCM write energy is more. In comparison to

Baseline, the proposed WiMig and WiForeMig reduce energy consumption by 29%

and 34% respectively, while the RegMig, UIMigrate, and OntheFly only reduce it by

7%, 12% and 13%, respectively. By judiciously identifying page migration candidates

based on write-intensity and cautious demotion of unrewarded candidates, WiMig

and WiForeMig reduce energy consumption more than the existing methods.

6.8.1.4 Distribution of Accesses to Migrated Pages

Figure 6.9 presents the normalized memory access distribution for PCM pages in

the proposed WiForeMig. The access distribution in the figure is divided into three

categories: (i) accesses incurred when the page is loaded in PCM, (ii) during its

residency in DRAM, and (iii) after the page gets migrated back to PCM as a vic-

tim from DRAM. WiForeMig identifies page migration candidates based on write

intensity, which helps to maximize the DRAM hits. Also, the method demotes those

pages that do not follow the history of write access and have been pending in the

queue for a long time. Thus, WiForeMig reduces the return back migrations from

DRAM. The average migrated PCM access count is 72.39%, whereas the average

return back migration access is only 2.58%.

161

Avenues for Improving Migration and Aging

(a) (b)

Figure 6.10: (a) Sensitivity analysis for Wait T, (b) Sensitivity analysis for Max Dem T

6.8.1.5 Sensitivity Analysis of the Threshold values

Sensitivity Analysis for Wait T: The proposed WiForeMig demote pages from

migration if the migration is unrewarded. The method demotes such pages wait-

ing in the pending queue for Wait T number of intervals. To study the impact of

Wait T over the performance, we conduct experiments with the value of Wait T

as 10, 20, 30 and 50 as shown in Figure 6.10a. For a higher value of Wait T , the

page can stay in the pending queue for long before demotion. This falsifies the idea

of maximizing the writes when the page is in DRAM, as most of the writes happen

while the page is in the pending queue. For a smaller value of Wait T , the page will

not get enough chance of getting migrated and will get prematurely demoted. From

the figure, we can infer that Wait T = 20 gives better results for most benchmarks.

Sensitivity Analysis for Max Dem T: WiForeMig chooses an appropriate

percentage of the pages with the lowest writing intensity for demotion from the

pending queue. The value of Max Dem T determines the percentage. Figure 6.10b

presents the sensitivity analysis for Max Dem T where the value ranges from 10%

to 30%. If the value ofMax Dem T is small, only a few pages will get demoted from

the queue, leaving several (low write-intensive) pages to face unrewarded migrations.

This results in performance degradation. On the contrary, if Max Dem T is large,

the number of demotions will be large, leading to the demotion of medium write

intensive pages and thus reducing the performance and falsifying the objective of

162

Results

Table 6.2: Advantage of demotion

Method
% IPC
Improvement

% Energy
Reduction

%Return back
access

WiMig 31 29 7.18
WiForeMig 35 34 2.58

page migration. The figure indicates that Max Dem T = 20% is providing better

results for all benchmarks.

6.8.1.6 Discussion

The proposed WiForeMig is an optimization of WiMig, where both methods migrate

pages based on write intensity, whereas WiForeMig demotes pages, which are not

beneficial if migrated to DRAM. The foresight we applied in WiForeMig, such that

the pages with lower write intensity and spend more time in the pending queue are

expected to encounter less number of write requests in the future. As the DRAM

size is limited, we need to keep actual write-intensive pages in DRAM to improve

the performance. Therefore, it is wise to avoid migrating them to DRAM as this

will lessen the migration benefit. Also, such pages with lower write-intensity may

return to PCM soon after being selected as victim pages because these pages would

not receive enough access while placed in DRAM. Thus, demotion based on write

intensity helps to accurately identify page migration candidates to outweigh the

benefit of migration over migration overhead. Table 6.2 shows the performance

gain, energy savings due to the foresightful WiForeMig policy (higher the better),

and accesses a page receives after returning back to PCM. The values are normalized

with the Baseline. From the figure, we can infer that WiForeMig performs better

than WiMig by demoting less beneficial pages from migration. The performance,

energy, and percentage of return back access improvements of WiForeMig are 4%,

5%, and 4.6%, respectively, over WiMig.

6.8.2 Results for DOPMig policy

We have compared our proposed migration-aware de-stress policy, DOPMig policy,

with existing RegDes and DesMig policies. Note that the literature has contributions

that either focus on page migration or de-stressing PCM. Therefore, we could not

compare them with a particular research study that combined both.

163

Avenues for Improving Migration and Aging

Figure 6.11: Normalized speedup (higher is better)

The proposed DOPMig outperforms existing DesMig and RegDes for all work-

loads. Among the proposed methods DOPMig modest works better formodest workloads

like lbm, libquantum, x264, Mix High, and Mix Low because they have reasonable

number of write intensive pages. DOPMig greedy works better for greedy workloads

like sjeng, leslie3d, streamcluster and canneal which have a large number of write-

intensive pages.

6.8.2.1 IPC

The IPC obtained for various benchmarks using existing and proposed methods is

shown in Figure 6.11. The proposed DOPMig modest and DOPMig greedy improve

IPC on average by 22% and 21%, respectively, over RegDes. The DesMig policy

migrates pages based only on write count and gets an IPC improvement of only

8% over RegDes. This demonstrates the importance of using the write intensity of

pages for migration compared to using only the write count. Due to the absence of

migration, the current RegDes method may place write-intensive pages on the PCM

partition and perform worse.

In addition to using write intensity, our proposed policies also migrate pages

parallel to the de-stress operation. DOPMig utilizes the stalled time due to de-stress

operation with the help of a migration buffer. The proposed method can efficiently

migrate pages at the earliest in the background during de-stress operation. This

helps to maximize the DRAM hits, which results in reduced execution time due to

the lower write latency of DRAM.

164

Results

Figure 6.12: Normalized memory service rate (higher is better)

It can be noted from the figure that DOPMig modest improves performance

by 23% whereas DOPMig greedy gives 16% for modest workloads. Similarly, for

greedy workload, DOPMig greedy improves performance by 25% while DOPMig modest

gives only 17% for this set.

The figure demonstrates that neither the greedy policy nor the modest policy

is always beneficial. Modest takes advantage of less overhead, while greedy takes

advantage of more migrations. DOPMig greedy works better for workloads having

a significantly larger number of write-intensive pages like greedy workloads and vice

versa for DOPMig modest.

6.8.2.2 Memory Service Rate

The number of memory requests serviced per unit time defines the memory request

rate. Figure 6.12 shows the memory service rate obtained for proposed methods

and DesMig normalized with RegDes. DOPMig achieves a higher service rate due

to the early migration of write-intensive pages, which maximizes the DRAM hits.

The average improvement in service rate is 15% for DOPMig modest, 14% for DOP-

Mig greedy, whereas DesMig could improve only 4% over RegDes.

6.8.2.3 DRAM Hits for Migrated Pages

Figure 6.13 presents the number of DRAM accesses to the migrated PCM pages for

proposed DOPMig normalized to DesMig. It can be observed from the figure that

165

Avenues for Improving Migration and Aging

Figure 6.13: Number of DRAM hits for migrated PCM pages normalized to DesMig

Table 6.3: DOPMig modest Vs DOPMig greedy normalized over DesMig

Method Workload
% Improvement on

IPC
Memory
Service Rate

DRAM
Access

DOPMig modest
modest 23 18 22
greedy 18 8 9

DOPMig greedy
modest 17 11 11
greedy 25 21 24

both the proposed methods improve the number of DRAM accesses, which results in

better performance than DesMig. DOPMig modest improves the DRAM accesses

by 11% on average for modest workloads, and DOPMig greedy improves DRAM

access by 24% for greedy workloads on average.

Table 6.3 presents the improvement on different performance metrics of pro-

posed DOPMig modest and DOPMig greedy normalized over RegDes. We can ob-

serve from the table that DOPMig modest performs better in all metrics for mod-

est workloads, whereas DOPMig greedy achieves better performance for greedy workloads.

For example, the improvement in IPC for DOPMig modest is 23% for the mod-

est workload, while it is 18% for greedy workloads. A similar result is observed for

DOPMig greedy also. It can be noted that DOPMig modest improves memory ser-

vice rate by 7% than DOPMig greedy for modest workloads and DOPMig greedy

improve it by 13% for greedy workloads than DOPMig modest.

Figure 6.14 presents the number of returned back migrations for proposed policies

166

Results

Figure 6.14: Number of return back migrations normalized to DesMig

normalized with DesMig. These pages moved from PCM to DRAM and were made

victims and moved from DRAM back to PCM. We get a good reduction in such

return back pages, with 66% for DOPMig modest and 62% for DOPMig greedy

over DesMig.

The performance improvement is achieved due to the early migration of the right

candidate pages which maximizes the DRAM accesses. As the migrated pages obtain

higher DRAM accesses, the likelihood of these pages getting selected as victim pages

is highly unlikely.

6.8.2.4 Sensitivity Analysis on Buffer Size

The proposed policy DOPMig buffers a set of pending migration candidate pages

before a de-stress operation, and these pages are migrated in the background from

buffer to DRAM during de-stress operation. The size of the migration buffer (BSize)

determines the P number of pages that will be buffered before de-stress. We conduct

a study with different buffer sizes to understand the impact on performance as shown

in Figure 6.15. With a smaller buffer size value (BSize = 4), fewer pages are getting

buffered and migrated to DRAM in parallel with de-stress. Thus, a smaller buffer

size can not use the de-stress duration and reduce the migration overhead. Also,

with a smaller buffer size, early migration of write-intensive pages is limited, leading

to a reduction in DRAM hits. With a larger buffer size (BSize = 16), DOPMig

causes high storage overhead, and more pages should be buffered before de-stress.

This buffering causes a large number of delayed requests and leads to higher memory

167

Avenues for Improving Migration and Aging

Figure 6.15: Sensitivity analysis on buffer size (BSize)

Table 6.4: Comparison with existing policies

Policy
Migration
Immediate

Migration
Regular
Interval

De-stress
Regular
Interval

De-stress
Dynamic
Interval

Performance (IPC)
Improvement

RegDes × × ✓ × -
RegMig × ✓ × × -
DesMig × ✓ ✓ × -
Aging-aware [94] × × × ✓ 12% over RegDes
UIMigrate [58] × ✓ × × 15% over RegMig
OntheFly [60] ✓ × × × 17% over RegMig
WiMig ✓ ✓ × × 31% over RegMig
WiForeMig ✓ ✓ × × 35% over RegMig

DOPMig × ✓ ✓ × 22% over RegDes
14% over DesMig

service time and reduced performance. Thus, the migration buffer size cannot be

too large or too small.

From the figure, we can observe that buffer size BSize = 8 gives better results

for all benchmarks.

6.8.3 Comparison with Existing Methods

Table 6.4 presents the performance improvement of various policies with respect

to their baseline(s). The existing aging-aware de-stress method [94] manages de-

stress interval dynamically and improves performance by 12% over RegDes. The

existing migration policies: UIMigrate [58] and OntheFly [60], improve performance

by 15% and 17% over RegMig, which performs migration at regular intervals. At

168

Summary

the same time, the proposed write-intensity-based page migration schemes, WiMig

and WiForeMig, improve performance by 31% and 35%, respectively, over RegMig.

Even though these proposed migration schemes improve performance than exist-

ing methods, the proposed WiMig and WiForeMig do not deal with a de-stress

mechanism to control BTI aging. A proposed baseline, DesMig, which combined

migration and de-stress and stalls migration of hot pages during de-stress, could

improve performance by 8% over RegDes. Finally, our proposed DOPMig oppor-

tunistically migrates pages during de-stress, and keeping the de-stress interval the

same as RegDes improves performance by 22%.

6.9 Summary

Hybrid memory systems composed of DRAM and NVM provide high memory ca-

pacity and low leakage power. Due to the high write latency of PCM memory, it is

better to place write-intensive pages in the DRAM partition. Page migration tech-

niques migrate the highest write count page to DRAM to improve the performance

of hybrid memory systems. The performance of hybrid memory systems can be im-

proved by migrating write-intensive pages to DRAM due to the high write latency

of PCM memory.

Also, the high voltage requirement of PCM memory accelerates the BTI aging of

hybrid memory systems. De-stressing the circuit at regular intervals helps to control

BTI aging. Since migration and de-stress hamper the service of regular requests,

it is important to properly manage both operations to improve the performance of

hybrid memory systems. We have proposed write-intensity-based migration tech-

niques, WiMig and WiForeMig, to outweigh the overhead of migration through

the prudent selection of migration candidates. We also proposed a de-stress-aware,

write-intensity-based page migration technique, DOPMig, to control BTI aging and

improve the performance of hybrid memory.

To conclude, although migration of heavily written pages is beneficial, checking

the intensity of writes and timeliness of migration is equally important. Keeping this

foresight and migrating the correct candidates can improve system performance. The

proposed WiMig and WiForeMig migrate write-intensive pages in regular intervals

to maximize the hits in DRAM. As the PCM memories are prone to BTI aging, de-

stressing the circuit in regular intervals helps to improve longevity while hindering

169

Avenues for Improving Migration and Aging

the performance of hybrid memory systems. The proposed DOPMig policy improves

performance by migrating write-intensive pages parallel to the de-stress operation.

170

7
Conclusions and Future Perspectives

This research aims to extend the lifetime, increase utilisation, and enhance the

performance of main memories based on DRAM and PCM. To achieve this, we pro-

posed memory scheduling strategies for PCM, DRAM, and hybrid memory. The

proposed scheduling policies order regular read/write requests and memory service

requests such as migration and de-stress requests. We have proposed predictable

memory request scheduling policies to achieve memory service predictability and

higher throughput for real-time tasks executing on the processing cores. Addition-

ally, scheduling policies for migration and de-stress procedures are included in the

dissertation. The proposed migration and de-stress scheduling policies aim to sched-

ule these service operations such that without much affecting the service of regular

requests. The objective of all the proposed scheduling policies is to improve mem-

ory service time, which eventually leads to improved system performance, memory

utilisation, and memory longevity. In this chapter, we summarize the work done,

highlight the contributions of this dissertation (in Section 7.1), and suggest direc-

tions for possible future work (in Section 7.2).

171

Conclusions and Future Perspectives

7.1 Summary of Contributions

All the contributions fulfill the first and second objectives, and each one in particular

completes the remaining objectives explained in this section.

• Request scheduling policies to improve memory service time and

predictability: [fulfils Objectives:1,2,3] Real-time embedded systems

demand predictable memory request service latencies to provide reasonable

worst-case execution time bounds for tasks. Memory request scheduling can

play a vital role in influencing task completion times. The allowable response

latency for a memory request measures the service urgency corresponding to

this request. This urgency is in tune with the real-time demand of the task

that spawned the request. Given the urgencies associated with a set of memory

requests, this work has proposed a QoS-aware memory request scheduler. Ex-

act solutions to this problem are highly compute-intensive and dependent on

numerous competing factors. Hence, applying complex optimization methods

for deriving the required scheduling decisions becomes prohibitively expen-

sive in terms of time and memory. In addition, as the proposed strategy is

intended to be implemented as part of the memory controller hardware, the

associated overhead needs to be low and bounded. We have proposed four

low overhead heuristic memory request scheduling techniques, RMRS and R-

RMRS for DRAM and LARS and Re-LARS for PCM memories, targeted

towards soft real-time systems executing persistent periodic tasks. With a

novel frame-based deadline-aware group reordering mechanism, the proposed

algorithms can provide a judicious balance between throughput and timeliness,

leading to lower deadline misses and higher Quality of Service (QoS) in soft

real-time systems. These proposed policies fulfill our objective 3 (Refer 1.5).

We have designed, implemented, and evaluated the proposed techniques by

conducting simulation-based experiments, and the results are compared with

existing memory request scheduling techniques FR-FCFS, RR, and EDF. Our

proposal could reduce deadline misses by 25.4% compared to FR-FCFS, 23.4%

compared to RR, and 19.6% compared to EDF. Also, the acquired reward im-

proves by 33.9% compared to FR-FCFS, 32.4% compared to RR, and 14.8%

compared to EDF.

172

Summary of Contributions

• Migration policies to minimize costly write operations: [fulfils Ob-

jectives:1,2,4] Emerging non-volatile memory technologies are seen as a

competitive alternative to existing DRAM technologies. Despite their high

density and low leakage power, these memories have limited write endurance,

high write latency, and high energy consumption. As a result, hybrid memory

systems—which combine DRAM and non-volatile memories to maximize the

advantages of both kinds of memories emerged. Because non-volatile memory

has a higher write latency than the DRAM partition, placing write-intensive

pages there extends the memory service time. The speed of a hybrid memory

system can be increased by using page migration, which moves pages across

the memory partition. Choosing candidates for page migration and determin-

ing the best time to migrate pages are the two main issues involved in page

migration. We have proposed techniques for determining page migration can-

didates based on write intensity and scheduling the migration for such pages to

improve memory service time. The proposed write-intensity-based migration

techniques WiMig and WiForeMig keep track of the write count and write

intensity of the accessed PCM pages. WiMig carefully moves the most write-

intensive page to DRAM regularly among the group of pages whose write count

exceeds the predetermined threshold to enhance performance. Additionally,

we propose an optimization called WiForeMig, which demotes migration pages

that have been in the pending queue for an extended period and have had few

writes. As a result, fewer unrewarded migrations occur. To determine the time

of migration, we propose slot-based scheduling techniques, SRS-Mig, Mig-Slot,

and Mig-QoS, where the migrations are scheduled in the reserved slots based

on the incoming request rate to less hamper the service of regular requests.

All of these migration policies fulfill our fourth objective (refer Section 1.5).

The proposed methods could improve performance in the range of 27% to 35%

and improve service rate by 25% over baseline.

• De-stress scheduling policies to improve longevity: [fulfils Objec-

tives:1,2,5] Phase Change Memories are a viable alternative for DRAM

because of their properties, such as low leakage power and high density. The

high voltage requirement for such memories accelerates the threshold voltage

shift, leading to BTI aging and an early breakdown of the device. The BTI

aging consists of stress and de-stress phases, and the degradation rate highly

173

Conclusions and Future Perspectives

depends on the duration the device is exposed to these stress and de-stress

phases. To control the early breakdown of the device, it is necessary to de-

stress it at regular intervals. De-stress operation stalls the service of regular

read/write requests, which results in system performance degradation. Thus,

it is important to schedule the de-stress operation to control the rate of age

degradation without hampering the regular read/write requests. We propose

age and memory request rate aware scheduling policies AGRAS and RODESA

with the objective of controlling the aging of the device while maintaining the

system performance. The proposed methods keep track of the incoming re-

quest rate and the current age to schedule the de-stress operation. The meth-

ods schedule the de-stress operation either partially or fully only when the

request rate is lower than a request threshold, which is dynamically updated

at regular intervals. To control the aging of the device, the proposed methods

ensure that we do not skip de-stress operations over prolonged intervals. This

way, our proposed scheduling methods control the de-stress operation without

affecting the service of regular read/write requests to maintain performance.

Our fifth objective is achieved by these de-stress scheduling techniques (refer

Section 1.5). Compared to the existing regular de-stress method, the proposed

methods improve performance by 25% and age degradation of only 17%, on

average.

• Migration-aware de-stress mechanism to enhance the utilisation of

hybrid memory: [fulfils Objectives:1,2,4,5] The performance of hybrid

memory systems can be improved by migrating write-intensive pages to DRAM

due to the high write latency of PCM memory. Also, de-stressing the circuit at

regular intervals helps to control BTI aging and enhances longevity. Since both

migration and de-stress hamper the service of regular requests, it is important

to properly manage both operations to improve the performance of hybrid

memory systems. We proposed a de-stress-aware, write-intensity-based page

migration technique DOPMig. Here, part of the migration is opportunistically

performed in the background to the de-stress operation. DOPMig uses a fixed-

size migration buffer to buffer a set of write-intensive pages from PCM. These

buffered pages are migrated to DRAM when the PCM is de-stressed. Thus,

DOPMig reduces migration overhead and maximizes DRAM hits by early mi-

grating a set of write-intensive pages during de-stress operation. Our proposals

174

Summary of Contributions

Figure 7.1: Overview of the thesis

establish a delicate balance of migration and de-stress through proper schedul-

ing and opportunistic background migrations. This migration-aware de-stress

scheduling technique also fulfills the fourth and fifth objectives (refer Section

1.5).

The overview of the thesis is shown in Figure 7.1. Each contribution aims to

improve the memory service time through different memory scheduling policies. The

overall objective is to maximize the utilisation, performance, and longevity of DRAM

and PCM memories.

175

Conclusions and Future Perspectives

7.2 Scope for Future Work

The contributions of this thesis can be extended in several ways. The following is a

list of a few of these potential avenues for future research:

• Each proposal in this thesis requires specific alterations to the memory con-

troller. All the necessary alterations need to be modeled to evaluate the ef-

fectiveness of the proposed solutions; other considerations related to power,

timing, and area can be addressed in the future.

• Our proposed victim page migration scheme from DRAM to PCM is based on

LRU. Considering the uncertainty in the memory access pattern, it may be

beneficial to look into the least frequently used (LFU) policy. An appropriate

LFU policy that dynamically updates the frequency of pages for a fixed window

size can be proposed.

• The proposed write-intensity-based migration scheme demotes certain pages

from migration based on write intensity and recency. A weight-based selec-

tion criteria based on the same can further improve the selection of pages for

demotion and reduce the amount of unrewarded migrations.

• All the proposed migration schemes perform complete migration at a time.

A partial migration scheme based on incoming memory request rate can be

proposed.

• To further enhance the advantage of page migration, it is possible to propose a

metrically weighted write intensity-based migration where the write intensity

of previous intervals is also considered for the selection of migration candidates.

The previous write intensity is given less weight than the intensity of the

current interval.

• Our current aging calculation model is based on the duration of the stress and

de-stress phase. A request-based aging model can be proposed considering the

operating voltage difference in read and write requests.

;;=8=<<

176

A
Appendix

A.1 Simulation Framework

We provide the simulation framework that we employed in our research in this

appendix. We have used a GEM5-NVMain based co-simulation framework and

used PARSEC and SPEC 2006 benchmark suite. In the following sections, we give

brief overview of GEM5 and NVMain simulators and the methodology used for

integrating the two simulators. In the end, we outline the characteristics of the

benchmarks that were used in the experiments.

A.1.1 Gem5

GEM5 [95] is a framework for simulating modular event-driven computer systems.

The key aspects of two existing simulators, M5 and GEMS, were combined to create

GEM5. It allows user to model the behavior of CPUs, caches, memory systems,

and even entire heterogeneous systems with multiple processors. Gem5 supports

various ISAs (Instruction Set Architectures) like x86, ARM, and RISC-V, and is

widely used to simulate systems ranging from small embedded devices to large-scale

supercomputers. GEM5 offers memory systems with the support of cache coherence

protocols and the complete interconnection network.

177

Appendix

A.1.1.1 M5

The full system simulator M5 creates a virtual computer that runs on top of the host

system or a whole target system. It serves as a substitute for commercial simulators

like Simics and is open source. It was developed to measure the throughput of

interconnect and network protocols. Because of its adaptability, M5 can handle

both in-order and out-of-order modes of execution for different CPU models.

A.1.1.2 GEMS

Ruby and Garnet are the two main modules that make up GEMS. The entire CMP

memory hierarchy, including the L1 and L2 caches, memory banks, directories, etc.,

is simulated by Ruby. In Ruby, every component is referred to as a machine and

is recognized by its own machine ID. Through the underlying Network on Chip

(NoC), which is controlled by Garnet, the components exchange information with

one another using their machine IDs. Garnet models the real-time events for packet

transfer over the NoC and provides a range of network topologies for the NoC.

The GEMS Ruby module receives the block request from the M5 processor. The

M5 processor receives the requested block straight from the simulated first level of

cache and proceeds with its execution. Otherwise, if there is a miss, the processor

will halt until the block is supplied. Ruby is in charge of the timing-dependent

functional simulation.

A.1.2 NVMain

An architectural-level simulator called NVMain [96] is used to replicate main mem-

ory using both traditional DRAM and the recently developed non-volatile memories.

It easily interfaces with GEM5, allowing for cycle-level modeling of the system’s var-

ious primary memory technologies. Additionally, NVMain may execute trace-based

simulations by using traces as inputs. In addition to integrating the NVM timing

parameters, NVMain provides modeling for endurance, fault recovery, and MLC

operation, which represents the distinctive characteristics of NVMs.

Each module in NVMain is designed as an independent object that may be added

to or removed from the simulator. Each item in the simulator records its own time

parameters. DRAM data sheets and parameters supplied by CACTI and NVSIM,

respectively, are the sources of the timing parameters pertaining to DRAM, SRAM,

178

Benchmarks

and NVM technologies. The memory system hierarchy and general configuration

parameters, such as the number of banks, rows, columns, and ranks, as well as

other parameters, such as the address mapping scheme, encoder/decoder, row buffer

policies, etc., are specified using configuration files.

A.1.3 GEM5-NVMain Co-simulation Framework

Memory requests are received by NVMain from GEM5 at particular time instants in

the GEM5-NVMain co-simulation framework. In NVMain, the requests cause many

processes, such as scheduling and queuing of requests, data transfer to main memory,

computation of bank latency, and data transfer back to controller,etc. Before GEM5

may begin its further responsibilities, these must be completed.

The Abstract-Memory class of GEM5 and the NVMObject class of NVMain are

combined to form an interacting object known as NVMainMemory during simula-

tion. The GEM5 requests appear as request packets, or pkts. Before sending the

request to NVMain, the contents of the packet pkt are moved to a fresh request

packet (req) that is particular to NVMain. To maintain track of the memory re-

quests that are issued, the interacting object keeps track of pkt and the associated

req in a map data structure. With the aid of the RequestCompleted function, the

interfacing object is informed when memory requests are completed. After that,

GEM5 receives the matching pkt that was obtained from the map data structure.

Furthermore, NVMainMemory, the interfacing object and NVMain are cycled using

the tick function, which transfers the GEM5 cycles to NVMain.

A.2 Benchmarks

Benchmarks are real applications that are executed on the simulated architecture

that simulators have generated. The parameters pertaining to power and perfor-

mance are assessed for the new architecture based on the simulation findings. The

multi-programmed SPEC CPU 2006 benchmark set [99] and multi-threaded PAR-

SEC [100] were utilized in this thesis to assess the efficacy of the architectural solu-

tions we suggested. The following provides an in-depth discussion of these bench-

marks.

179

Appendix

Table A.1: he Inherent Key Characteristics of PARSEC Benchmarks

Benchmarks Application Domain
Parallelization

Working set
Model Granularity

blacksholes Financial Analysis data-parallel coarse small
canneal Engineering unstructured fine unbounded
dedup Enterprise Storage pipeline medium unbounded
streamcluster Data Mining data-parallel medium medium
swaptions Financial Analysis data-parallel coarse medium
x264 Media Processing pipeline coarse medium

Table A.2: The Data Usage Behavior of PARSEC Benchmarks

Benchmarks
Data Exchange
Sharing Exchange

blacksholes,swaptions low low
canneal,dedup,x264 high medium
streamcluster low medium

A.2.1 Parsec

The suite of multi-threaded benchmarks known as the Princeton Application Repos-

itory for Shared-Memory Computers (PARSEC) [100] was created especially for the

assessment and validation of the next generation CMPs. It was created jointly by

Intel and Princeton University to assist the scientific community in effectively de-

signing the computer systems of the future. It is widely used in both academic and

industrial research and is open source. Each of the 12 apps in the PARSEC version

2.1 package is multi-threaded and parallelized.

The applications are chosen from a variety of real-world domains, including me-

dia processing, finance, animation physics, and computer vision. The benchmarks

are described in full in Table A.1. These applications distribute data among the

created threads as an outcome of multi-threading. The applications’ data sharing

and exchange practices are displayed in Table A.2. There are three different in-

put sizes and working sets for each benchmark in the PARSEC benchmark suite:

small, medium, and large. Users can conduct benchmarks with the right input sizes,

depending on the requirements and architecture design.

180

Benchmarks

Table A.3: Application Domains of Various CINT 2006 Benchmark Suite

Workload Programming Language Application Domain
400.perlbench C Programming language
401.bzip2 C Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: Go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum C Physics / Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xalancbmk C++ XML Processing

A.2.2 SPEC 2006

Standard Performance Evaluation Corporation (SPEC) CPU 2006 [99] is an indus-

try standard benchmark suite developed to measure the performance of compilers,

processors, and memory hierarchies. The two variations of SPEC 2006 suites that

cater to different kinds of compute-intensive performance are described below.

• CINT 2006 benchmark suite: The performance of the compute-intensive

integer operations is assessed using the benchmarks. It has twelve benchmarks,

and Table A.3 gives a description of each benchmark.

• CFP 2006 benchmark suite: The performance of the computationally de-

manding floating point operations is assessed using these benchmarks. Table

A.4 provides a description of the 17 benchmarks that are included in it.

The simulation has employed a number of multi-threaded and multi-programmed

benchmarks to evaluate the proposed architectural solutions. Multi-threading is

supported by PARSEC benchmarks. Depending on the program load and input

size, each PARSEC benchmark has a different number of threads. Multi-threading

execution in the PARSEC benchmark takes place inside a time frame known as the

Region Of Interest (ROI). Prior to entering the ROI, the variables are scanned and

initialized. The ROI concludes after producing the output, marking the end of the

workload’s execution.

181

Appendix

Table A.4: Application Domains of Various CFP 2006 Benchmark Suite

Workload Programming Language Application Domain
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry
433.milc C Physics/Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD
435.gromacs C,Fortran Biochemistry / Molecular Dynamics
436.cactusADM C, Fortran Physics / General Relativity
437.leslie3d Fortran Fluid Dynamics
444.namd C++ Biology / Molecular Dynamics
447.dealII C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454.calculix C, Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.lbm C Fluid Dynamics
481.wrf C, Fortran Weather
482.sphinx3 C Speech recognition

On the other hand, multiple SPEC 2006 benchmarks are combined to create

multi-programmed benchmarks. For a four core CMP, for instance, we can combine

the four benchmarks bzip2, mcf, milc, and leslie3d to generate a mix benchmark.

Until the predetermined number of instructions is completed, each application runs

on its own core. Each of the SPEC multi-programmed benchmarks is loaded one

at a time and executed during a warm-up phase of 250 million instructions. The

warm-up step gets the proposed design ready to settle correctly for simulation and

helps it get past the necessary misses in the cache. In order to gather the statistics

required for evaluating the performance of the proposed architectural design, each

benchmark is run for one billion instructions following the warm-up phase.

A.2.3 MiBench

An embedded benchmark called MiBench is made up of open source code. A more

demanding, real-world application of the benchmark is provided by the large data

set, whilst the small data set represents a lightweight, practical embedded appli-

cation. Table A.5 presents different MiBench applications. The six categories of

MiBench are: Network, Security, Consumer Devices, Office Automation, Automo-

182

Benchmarks

Table A.5: MiBench Benchmarks

Auto/Industrial Consumer Office Network Security Telecommunication
basicmath jpeg ghostscript dijkstra blowfish CRC32
bitcoun lame ispell Patricia pgp IFFT
qsort mad rsynth (CRC32) rijndael ADPCM
susan tiff sphinx (sha) sha GSM

typeset stringsearch (blowfish)

tive and Industrial Control, and Telecommunications. These groups provide various

program features that help compilers and architectural researchers better analyze

their designs for a specific market sector.

;;=8=<<

183

Publications

Journals

1. Aswathy N S, Arnab Sarkar and Hemangee K. Kapoor. “A Predictable

QoS-aware Memory Request Scheduler for Soft Real-time Systems ”. ACM

Transactions on Embedded Computing Systems (ACM TECS), Vol. 22(2):

39:1-39:25 (2023).

2. Aswathy N S, and Hemangee K. Kapoor. “Migration-aware slot-based mem-

ory request scheduler to guarantee QoS in DRAM-PCM hybrid memories ”.

Journal of Systems Architecture 152 (2024): 103174.

Conferences

1. Aswathy N S, Hemangee K. Kapoor and Arnab Sarkar. “A Soft Real-time

Memory Request Scheduler for Phase Change Memory Systems”, 27th In-

ternational Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA). IEEE, 2021.

2. Aswathy N S, Sreesiddesh Bhavanasi, Arnab Sarkar, Hemangee K. Kapoor.

“SRS-Mig: Selection and Run-time Scheduling of page Migration for improved

response time in hybrid PCM-DRAM memories.”, Proceedings of the Great

Lakes Symposium on VLSI.2022.

3. Aswathy N S and Hemangee K. Kapoor. “AGRAS: Aging and memory re-

quest rate aware scheduler for PCMmemories ”, 24th International Symposium

on Quality Electronic Design, ISQED 2023.

4. Aswathy N S and Hemangee K. Kapoor. “Write Intensity based Foresight-

ful Page Migration for Hybrid memories ”, 25th International Symposium on

Quality Electronic Design, ISQED 2024.

5. Aswathy N S and Hemangee K. Kapoor. “Opportunistic Migration for Hy-

brid memories while Mitigating Aging Effects ”, (2024 IEEE 42nd Interna-

tional Conference on Computer Design (ICCD). IEEE. 2024).

;;=8=<<

184

References

[1] B. Jacob, D. Wang, and S. Ng, Memory systems: cache, DRAM, disk. Morgan

Kaufmann, 2010. [Pg.3], [Pg.138]

[2] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory

access scheduling,” in ACM SIGARCH Computer Architecture News, vol. 28,

pp. 128–138, ACM, 2000. [Pg.4], [Pg.49]

[3] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance

main memory system using phase-change memory technology,” in Proceedings

of the 36th annual international symposium on Computer architecture, pp. 24–

33, ACM, 2009. [Pg.21], [Pg.32], [Pg.33], [Pg.156]

[4] X. Wan, B. Zhu, M. Mohan, K. Wu, D. Choi, and A. Gondal, “Hci improve-

ment on 14nm finfet io device by optimization of 3d junction profile,” in 2019

IEEE International Reliability Physics Symposium (IRPS), pp. 1–4, IEEE,

2019. [Pg.23]

[5] P. J. Roussel, A. Chasin, S. Demuynck, N. Horiguchi, D. Linten, and A. Mo-

cuta, “New methodology for modelling mol tddb coping with variability,” in

2018 IEEE International Reliability Physics Symposium (IRPS), pp. 3A–5,

IEEE, 2018. [Pg.23]

[6] R. Gao, Z. Ji, A. B. Manut, J. F. Zhang, J. Franco, S. W. M. Hatta, W. D.

Zhang, B. Kaczer, D. Linten, and G. Groeseneken, “Nbti-generated defects in

nanoscaled devices: Fast characterization methodology and modeling,” IEEE

Transactions on Electron Devices, vol. 64, no. 10, pp. 4011–4017, 2017. [Pg.23],

[Pg.39], [Pg.113]

[7] D. JEDEC, “Jedec ddr4 sdram standard,” JESD79-4, Sep, 2012. [Pg.25]

185

REFERENCES

[8] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable and

high-performance scheduling algorithm for multiple memory controllers,” in

HPCA-16 2010 The Sixteenth International Symposium on High-Performance

Computer Architecture, pp. 1–12, IEEE, 2010. [Pg.26]

[9] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared dram systems,” ACM SIGARCH

Computer Architecture News, vol. 36, no. 3, pp. 63–74, 2008. [Pg.26]

[10] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster

memory scheduling: Exploiting differences in memory access behavior,” in

2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 65–76, IEEE, 2010. [Pg.26]

[11] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “Bliss:

Balancing performance, fairness and complexity in memory access schedul-

ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 10,

pp. 3071–3087, 2016. [Pg.26]

[12] E. O. Sanchez and X.-H. Sun, “Cads: Core-aware dynamic scheduler for mul-

ticore memory controllers,” arXiv preprint arXiv:1907.07776, 2019. [Pg.26]

[13] J. Fang, M. Wang, and Z. Wei, “A memory scheduling strategy for elimi-

nating memory access interference in heterogeneous system,” The Journal of

Supercomputing, vol. 76, pp. 3129–3154, 2020. [Pg.26]

[14] B. Akesson and K. Goossens, Memory controllers for real-time embedded sys-

tems. Springer, 2011. [Pg.27]

[15] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram con-

troller: Bank privatization for predictability and temporal isolation,” in 2011

Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 99–108,

IEEE, 2011. [Pg.27]

[16] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “Palloc: Dram bank-aware

memory allocator for performance isolation on multicore platforms,” in 2014

186

REFERENCES

IEEE 19th Real-Time and Embedded Technology and Applications Symposium

(RTAS), pp. 155–166, IEEE, 2014. [Pg.27]

[17] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F. J. Cazorla,

“A dual-criticality memory controller (dcmc): Proposal and evaluation of a

space case study,” in Real-Time Systems Symposium (RTSS), 2014 IEEE,

pp. 207–217, IEEE, 2014. [Pg.27], [Pg.28]

[18] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical memory

controller using bank privatization and fixed priority scheduling,” in Embedded

and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE

20th International Conference on, pp. 1–10, IEEE, 2014.

[19] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh,

“A predictable and command-level priority-based dram controller for mixed-

criticality systems,” in Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2015 IEEE, pp. 317–326, IEEE, 2015. [Pg.28]

[20] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens, “A

globally arbitrate analyzable memory controllerd memory tree for mixed-time-

criticality systems,” IEEE Transactions on Computers, vol. 66, no. 2, pp. 212–

225, 2017. [Pg.27], [Pg.28]

[21] D. Guo and R. Pellizzoni, “A requests bundling dram controller for mixed-

criticality systems,” in RTAS, pp. 247–258, IEEE, 2017. [Pg.28]

[22] W. Ali and H. Yun, “Rt-gang: Real-time gang scheduling framework for safety-

critical systems,” in 2019 IEEE Real-Time and Embedded Technology and Ap-

plications Symposium (RTAS), pp. 143–155, IEEE, 2019. [Pg.28]

[23] R. Mirosanlou, M. Hassan, and R. Pellizzoni, “Drambulism: Balancing per-

formance and predictability through dynamic pipelining,” in 2020 IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS), pp. 82–

94, IEEE, 2020. [Pg.28]

[24] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to improve

pram write performance, energy and endurance,” in Proceedings of the 42nd

187

REFERENCES

Annual IEEE/ACM International Symposium on Microarchitecture, pp. 347–

357, 2009. [Pg.29]

[25] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asymmetries,” in

2013 IEEE 19th International Symposium on High Performance Computer

Architecture (HPCA), pp. 282–293, IEEE, 2013.

[26] B. Li, S. Shan, Y. Hu, and X. Li, “Partial-set: Write speedup of pcm main

memory,” in 2014 Design, Automation & Test in Europe Conference & Exhi-

bition (DATE), pp. 1–4, IEEE, 2014.

[27] H.-Y. Cheng, M. J. Irwin, and Y. Xie, “Adaptive burst-writes (abw) memory

requests scheduling to reduce write-induced interference,” ACM Transactions

on Design Automation of Electronic Systems (TODAES), vol. 21, no. 1, pp. 1–

26, 2015.

[28] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient encryption

for non-volatile memories,” ACM SIGARCH Computer Architecture News,

vol. 43, no. 1, pp. 33–44, 2015. [Pg.30]

[29] S. Yu, N. Xiao, M. Deng, Y. Xing, F. Liu, Z. Cai, and W. Chen, “Walloc: An

efficient wear-aware allocator for non-volatile main memory,” in 2015 IEEE

34th International Performance Computing and Communications Conference

(IPCCC), pp. 1–8, IEEE, 2015. [Pg.30]

[30] F. Huang, D. Feng, Y. Hua, and W. Zhou, “A wear-leveling-aware counter

mode for data encryption in non-volatile memories,” in Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2017, pp. 910–913, IEEE,

2017. [Pg.30]

[31] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, G. Xu, and Y. Chen, “Adap-

tive granularity encoding for energy-efficient non-volatile main memory,” in

Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6,

2019. [Pg.29]

[32] M. Imran, T. Kwon, and J.-S. Yang, “Effective write disturbance mitigation

encoding scheme for high-density pcm,” in 2020 Design, Automation & Test

in Europe Conference & Exhibition (DATE), pp. 1490–1495, IEEE, 2020.

188

REFERENCES

[33] K. Huang, Y. Mei, and L. Huang, “Quail: Using nvm write monitor to en-

able transparent wear-leveling,” Journal of Systems Architecture, vol. 102,

p. 101658, 2020.

[34] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase change mem-

ory performance with data content aware access,” in Proceedings of the 2020

ACM SIGPLAN International Symposium on Memory Management, pp. 30–

47, 2020. [Pg.29]

[35] R. Xu, E. H.-M. Sha, Q. Zhuge, Y. Song, and J. Lin, “Optimal loop tiling for

minimizing write operations on nvms with complete memory latency hiding,”

in 2022 27th Asia and South Pacific Design Automation Conference (ASP-

DAC), pp. 389–394, IEEE, 2022.

[36] C. Hakert, K.-H. Chen, H. Schirmeier, L. Bauer, P. R. Genssler, G. von der

Brüggen, H. Amrouch, J. Henkel, and J.-J. Chen, “Software-managed read

and write wear-leveling for non-volatile main memory,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 21, no. 1, pp. 1–24, 2022. [Pg.29]

[37] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low

power phase-change random access memory using a data-comparison write

scheme,” in 2007 IEEE International Symposium on Circuits and Systems,

pp. 3014–3017, IEEE, 2007. [Pg.29]

[38] J. Hu, C. J. Xue, W.-C. Tseng, Q. Zhuge, and E. H.-M. Sha, “Minimizing write

activities to non-volatile memory via scheduling and recomputation,” in 2010

IEEE 8th Symposium on Application Specific Processors (SASP), pp. 101–106,

IEEE, 2010. [Pg.30]

[39] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Enabling and exploiting

partition-level parallelism (palp) in phase change memories,” ACM Transac-

tions on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–25,

2019. [Pg.30]

[40] Z. Zhang, Z. Jia, P. Liu, and L. Ju, “Energy efficient real-time task scheduling

for embedded systems with hybrid main memory,” Journal of Signal Process-

ing Systems, vol. 84, no. 1, pp. 69–89, 2016. [Pg.30]

189

REFERENCES

[41] G. Wang, Y. Guan, Y. Wang, and Z. Shao, “Energy-aware assignment and

scheduling for hybrid main memory in embedded systems,” Computing, vol. 98,

no. 3, pp. 279–301, 2016. [Pg.31]

[42] D. Lee, H. Jung, and H. Yang, “Real-time schedulability analysis and en-

hancement of transiently powered processors with nvms,” IEEE Transactions

on Computers, vol. 70, no. 3, pp. 372–383, 2020. [Pg.31]

[43] B. Ranjbar, T. D. Nguyen, A. Ejlali, and A. Kumar, “Power-aware runtime

scheduler for mixed-criticality systems on multicore platform,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40,

no. 10, pp. 2009–2023, 2020. [Pg.31]

[44] A. P. Ferreira, B. Childers, R. Melhem, D. Mossé, and M. Yousif, “Using pcm

in next-generation embedded space applications,” in 2010 16th IEEE Real-

Time and Embedded Technology and Applications Symposium, pp. 153–162,

IEEE, 2010. [Pg.31]

[45] M. Zhou, S. Bock, A. P. Ferreira, B. Childers, R. Melhem, and D. Mossé,

“Real-time scheduling for phase change main memory systems,” in 2011IEEE

10th International Conference on Trust, Security and Privacy in Computing

and Communications, pp. 991–998, IEEE, 2011. [Pg.31]

[46] D. Dasari, V. Nelis, and D. Mosse, “Timing analysis of pcm main memory in

multicore systems,” in 2013 IEEE 19th International Conference on Embedded

and Real-Time Computing Systems and Applications, pp. 52–61, IEEE, 2013.

[Pg.31], [Pg.49], [Pg.69]

[47] M. Bazzaz, A. Hoseinghorban, and A. Ejlali, “Fast and predictable non-volatile

data memory for real-time embedded systems,” IEEE Transactions on Com-

puters, 2020. [Pg.31]

[48] H. Park, C. Kim, S. Yoo, and C. Park, “Filtering dirty data in dram to

reduce pram writes,” in 2015 IFIP/IEEE International Conference on Very

Large Scale Integration (VLSI-SoC), pp. 319–324, IEEE, IEEE, 2015. [Pg.32],

[Pg.33]

190

REFERENCES

[49] H. A. Khouzani, C. Yang, and J. Hu, “Improving performance and lifetime of

dram-pcm hybrid main memory through a proactive page allocation strategy,”

in The 20th Asia and South Pacific Design Automation Conference, pp. 508–

513, IEEE, IEEE, 2015. [Pg.33]

[50] S.-K. Yoon, J. Yun, J.-G. Kim, and S.-D. Kim, “Self-adaptive filtering algo-

rithm with pcm-based memory storage system,” ACM Transactions on Em-

bedded Computing Systems (TECS), vol. 17, no. 3, pp. 1–23, 2018. [Pg.33]

[51] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He, and

S. Jiang, “Supporting superpages and lightweight page migration in hybrid

memory systems,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 16, no. 2, pp. 1–26, 2019. [Pg.32], [Pg.36]

[52] C. Su, D. Roberts, E. A. León, K. W. Cameron, B. R. de Supinski, G. H.

Loh, and D. S. Nikolopoulos, “Hpmc: An energy-aware management system

of multi-level memory architectures,” in Proceedings of the 2015 International

Symposium on Memory Systems, pp. 167–178, ACM, 2015. [Pg.33], [Pg.34]

[53] H. Liu, Y. Chen, X. Liao, H. Jin, B. He, L. Zheng, and R. Guo, “Hard-

ware/software cooperative caching for hybrid dram/nvm memory architec-

tures,” in Proceedings of the International Conference on Supercomputing,

pp. 1–10, 2017. [Pg.33]

[54] F. Wen, M. Qin, P. V. Gratz, and A. N. Reddy, “Hardware memory man-

agement for future mobile hybrid memory systems,” IEEE Transactions on

computer-aided design of integrated circuits and systems, vol. 39, no. 11,

pp. 3627–3637, 2020. [Pg.34]

[55] S. Lee, H. Bahn, and S. H. Noh, “Clock-dwf: A write-history-aware page

replacement algorithm for hybrid pcm and dram memory architectures,” IEEE

Transactions on Computers, vol. 63, no. 9, pp. 2187–2200, 2013. [Pg.34],

[Pg.98], [Pg.129]

[56] R. Salkhordeh and H. Asadi, “An operating system level data migration

scheme in hybrid dram-nvm memory architecture,” in Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 936–941, IEEE, 2016.

[Pg.34], [Pg.144]

191

REFERENCES

[57] X. Chen et al., “The design of an efficient swap mechanism for hybrid dram-

nvm systems,” in International Conference on Embedded Software (EMSOFT),

pp. 1–10, IEEE, 2016. [Pg.34]

[58] Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen, and D. Liu, “Uimigrate: Adaptive

data migration for hybrid non-volatile memory systems,” in Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), pp. 860–865, IEEE,

IEEE, 2019. [Pg.35], [Pg.84], [Pg.99], [Pg.144], [Pg.157], [Pg.168]

[59] Y. Tan, B. Wang, Z. Yan, W. Srisa-an, X. Chen, and D. Liu, “Apmigration:

Improving performance of hybrid memory performance via an adaptive page

migration method,” IEEE Transactions on Parallel and Distributed Systems,

vol. 31, no. 2, pp. 266–278, 2019. [Pg.35]

[60] M. Islam, S. Adavally, M. Scrbak, and K. Kavi, “On-the-fly page migration and

address reconciliation for heterogeneous memory systems,” ACM Journal on

Emerging Technologies in Computing Systems (JETC), vol. 16, no. 1, pp. 1–27,

2020. [Pg.35], [Pg.84], [Pg.99], [Pg.144], [Pg.157], [Pg.168]

[61] Y. Fu, Y. Lu, Z. Chen, Y. Wu, and N. Xiao, “Design and simulation of content-

aware hybrid dram-pcm memory system,” IEEE Transactions on Parallel and

Distributed Systems, vol. 33, no. 7, pp. 1666–1677, 2021. [Pg.36]

[62] Z. Peng, D. Feng, J. Chen, J. Hu, and C. Huang, “Agdm: An adaptive gran-

ularity data migration strategy for hybrid memory systems,” in 2023 Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6,

IEEE, 2023. [Pg.34]

[63] M. Lee, D. H. Kang, J. Kim, and Y. I. Eom, “M-clock: Migration-optimized

page replacement algorithm for hybrid dram and pcm memory architecture,”

in Proceedings of the 30th Annual ACM Symposium on Applied Computing,

pp. 2001–2006, 2015. [Pg.34]

[64] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-based hybrid

memory management,” in 2017 IEEE International Conference on Cluster

Computing (CLUSTER), pp. 152–165, IEEE, IEEE, 2017. [Pg.34], [Pg.144]

192

REFERENCES

[65] A. Kokolis, D. Skarlatos, and J. Torrellas, “Pageseer: Using page walks to

trigger page swaps in hybrid memory systems,” in 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pp. 596–

608, IEEE, 2019. [Pg.35]

[66] N. Niu, F. Fu, B. Yang, Q. Wang, X. Li, F. Lai, and J. Wang, “Pfha: A

novel page migration algorithm for hybrid memory embedded systems,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 10,

pp. 1685–1692, 2021. [Pg.35]

[67] J. H. Choi, K. M. Kim, and J. W. Kwak, “Ta-clock: Tendency-aware page

replacement policy for hybrid main memory in high-performance embedded

systems,” Electronics, vol. 10, no. 9, p. 1111, 2021. [Pg.36]

[68] A. Maruf, A. Ghosh, J. Bhimani, D. Campello, A. Rudoff, and R. Ran-

gaswami, “Multi-clock: Dynamic tiering for hybrid memory systems.,” in

HPCA, pp. 925–937, 2022. [Pg.36]

[69] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page manage-

ment for tiered memory systems,” in Proceedings of the Twenty-Fourth In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 331–345, 2019. [Pg.37]

[70] T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive page migration

policy with huge pages in tiered memory systems,” IEEE Transactions on

Computers, vol. 71, no. 1, pp. 53–68, 2020. [Pg.37]

[71] T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the right beat

of periodic data movements over hybrid memory systems,” in 2021 IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS), pp. 350–

359, IEEE, 2021. [Pg.37]

[72] M. A. Alam and S. Mahapatra, “A comprehensive model of pmos nbti degra-

dation,” Microelectronics Reliability, vol. 45, no. 1, pp. 71–81, 2005. [Pg.39],

[Pg.40], [Pg.113]

[73] J. H. Stathis and S. Zafar, “The negative bias temperature instability in mos

devices: A review,” Microelectronics Reliability, vol. 46, no. 2-4, pp. 270–286,

2006. [Pg.113]

193

REFERENCES

[74] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao,

“Compact modeling and simulation of circuit reliability for 65-nm cmos tech-

nology,” IEEE Transactions on Device and Materials Reliability, vol. 7, no. 4,

pp. 509–517, 2007.

[75] C. Yilmaz, L. Heiß, C. Werner, and D. Schmitt-Landsiedel, “Modeling of

nbti-recovery effects in analog cmos circuits,” in 2013 IEEE International Re-

liability Physics Symposium (IRPS), pp. 2A–4, IEEE, 2013.

[76] Z. Ji, S. Hatta, J. Zhang, J. Ma, W. Zhang, N. Soin, B. Kaczer, S. De Gendt,

and G. Groeseneken, “Negative bias temperature instability lifetime predic-

tion: Problems and solutions,” in 2013 IEEE International Electron Devices

Meeting, pp. 15–6, IEEE, 2013. [Pg.42], [Pg.113]

[77] S. Shaheen, G. Golan, M. Azoulay, and J. Bernstein, “A comparative study

of reliability for finfet,” Facta universitatis-series: Electronics and Energetics,

vol. 31, no. 3, pp. 343–366, 2018.

[78] G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings,

P. Weckx, M. Jech, T. Knobloch, M. Waltl, et al., “Comphy—a compact-

physics framework for unified modeling of bti,” Microelectronics Reliability,

vol. 85, pp. 49–65, 2018. [Pg.113]

[79] A. Campos-Cruz, G. Espinosa-Flores-Verdad, A. Torres-Jacome, and E. Tlelo-

Cuautle, “On the prediction of the threshold voltage degradation in cmos

technology due to bias-temperature instability,” Electronics, vol. 7, no. 12,

p. 427, 2018. [Pg.39]

[80] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehen-

berger, P.-J. Wagner, F. Schanovsky, J. Franco, M. T. T. Luque, et al.,

“The paradigm shift in understanding the bias temperature instability: From

reaction–diffusion to switching oxide traps,” IEEE Transactions on Electron

Devices, vol. 58, no. 11, pp. 3652–3666, 2011. [Pg.40], [Pg.113]

[81] K. Sutaria, A. Ramkumar, R. Zhu, R. Rajveev, Y. Ma, and Y. Cao, “Bti-

induced aging under random stress waveforms: Modeling, simulation and sil-

icon validation,” in Proceedings of the 51st Annual Design Automation Con-

ference, pp. 1–6, 2014. [Pg.40], [Pg.113], [Pg.117]

194

REFERENCES

[82] J. B. Velamala, K. B. Sutaria, H. Shimizu, H. Awano, T. Sato, G. Wirth, and

Y. Cao, “Compact modeling of statistical bti under trapping/detrapping,”

IEEE transactions on electron devices, vol. 60, no. 11, pp. 3645–3654, 2013.

[83] K. B. Sutaria, J. B. Velamala, C. H. Kim, T. Sato, and Y. Cao, “Aging

statistics based on trapping/detrapping: Compact modeling and silicon vali-

dation,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 2,

pp. 607–615, 2014. [Pg.40], [Pg.117], [Pg.118]

[84] M. Duan, J. Zhang, Z. Ji, W. Zhang, B. Kaczer, T. Schram, R. Ritzenthaler,

A. Thean, G. Groeseneken, and A. Asenov, “Time-dependent variation: A

new defect-based prediction methodology,” in 2014 Symposium on VLSI Tech-

nology (VLSI-Technology): Digest of Technical Papers, pp. 1–2, IEEE, 2014.

[Pg.42]

[85] Z. Ji, J. Zhang, L. Lin, M. Duan, W. Zhang, X. Zhang, R. Gao, B. Kaczer,

J. Franco, T. Schram, et al., “A test-proven as-grown-generation (ag) model

for predicting nbti under use-bias,” in 2015 Symposium on VLSI Technology

(VLSI Technology), pp. T36–T37, IEEE, 2015.

[86] R. Gao, Z. Ji, S. Hatta, J. Zhang, J. Franco, B. Kaczer, W. Zhang, M. Duan,

S. De Gendt, D. Linten, et al., “Predictive as-grown-generation (ag) model for

bti-induced device/circuit level variations in nanoscale technology nodes,” in

2016 IEEE International Electron Devices Meeting (IEDM), pp. 31–4, IEEE,

2016.

[87] J. Zhang, Z. Ji, and W. Zhang, “The as-grown-generation (ag) model: A

reliable model for reliability prediction under real use conditions,” in 2017

IEEE 24th International Symposium on the Physical and Failure Analysis of

Integrated Circuits (IPFA), pp. 1–7, IEEE, 2017. [Pg.42]

[88] M. Sadeghi and H. Nikmehr, “Aging mitigation of l1 cache by exchanging

instruction and data caches,” Integration, vol. 62, pp. 68–75, 2018. [Pg.43]

[89] N. Rohbani, T. K. Maiti, D. Navarro, M. Miura-Mattausch, H. J. Mattausch,

and H. Takatsuka, “Nvdl-cache: Narrow-width value aware variable delay low-

power data cache,” in 2019 IEEE 37th International Conference on Computer

Design (ICCD), pp. 264–272, IEEE, 2019. [Pg.44]

195

REFERENCES

[90] A. Listl, D. Mueller-Gritschneder, and U. Schlichtmann, “Magic: A wear-

leveling circuitry to mitigate aging effects in sense amplifiers of srams,” in 2019

17th IEEE International New Circuits and Systems Conference (NEWCAS),

pp. 1–4, IEEE, 2019. [Pg.44]

[91] A. Listl, D. Mueller-Gritschneder, and U. Schlichtmann, “Application-aware

aging analysis and mitigation for sram design-for-relability,” Microelectronics

Reliability, vol. 134, p. 114548, 2022. [Pg.44]

[92] C. Lin, Y. K. Law, and Y. Xie, “Mitigating bti-induced degradation in stt-

mram sensing schemes,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 26, no. 1, pp. 50–62, 2017. [Pg.44]

[93] L. Zhang, L. Liu, Y. Zhuang, H. Tang, B. Xu, J. Bao, and H. Wu, “A novel

sense amplifier to mitigate the impact of nbti and pvt variations for stt-mram,”

IEICE Electronics Express, vol. 16, no. 12, pp. 20190238–20190238, 2019.

[Pg.44]

[94] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Aging-aware request schedul-

ing for non-volatile main memory,” in Proceedings of the 26th Asia and South

Pacific Design Automation Conference, pp. 657–664, 2021. [Pg.45], [Pg.168]

[95] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,”

ACM SIGARCH computer architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[Pg.49], [Pg.66], [Pg.84], [Pg.97], [Pg.115], [Pg.128], [Pg.155], [Pg.177]

[96] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly memory

simulator to model (non-) volatile memory systems,” IEEE Computer Archi-

tecture Letters, vol. 14, no. 2, pp. 140–143, 2015. [Pg.49], [Pg.66], [Pg.84],

[Pg.97], [Pg.115], [Pg.128], [Pg.155], [Pg.178]

[97] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown, “Mibench: A free, commercially representative embedded bench-

mark suite,” in Proceedings of the fourth annual IEEE international workshop

on workload characterization. WWC-4 (Cat. No. 01EX538), pp. 3–14, IEEE,

2001. [Pg.67]

196

REFERENCES

[98] R. Salkhordeh, O. Mutlu, and H. Asadi, “An analytical model for performance

and lifetime estimation of hybrid dram-nvm main memories,” IEEE Transac-

tions on Computers, vol. 68, no. 8, pp. 1114–1130, 2019. [Pg.98], [Pg.129],

[Pg.156]

[99] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006. [Pg.99], [Pg.115],

[Pg.129], [Pg.155], [Pg.179], [Pg.181]

[100] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in Proceedings of the 17th

international conference on Parallel architectures and compilation techniques,

pp. 72–81, 2008. [Pg.99], [Pg.115], [Pg.129], [Pg.155], [Pg.179], [Pg.180]

[101] S. Song and A. Das, “A case for lifetime reliability-aware neuromorphic com-

puting,” arXiv preprint arXiv:2007.02210, 2020. [Pg.113]

197

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Design of Memory Controllers
	1.2 Memory Access Scheduling Policies
	1.3 Memory Service Operations
	1.3.1 Refresh in DRAM
	1.3.2 De-stress in Phase Change Memory (PCM)
	1.3.3 Page Migration in Hybrid Memory

	1.4 Motivation
	1.5 Objectives
	1.6 Thesis Contributions
	1.6.1 Request Scheduling Policies for Pure DRAM and Pure PCM Memories
	1.6.2 Migration Scheduling Policies for Hybrid DRAM-PCM Memories
	1.6.3 De-stress Scheduling Policies for Pure PCM Memories
	1.6.4 Avenues for Improving Migration and Aging

	1.7 Summary
	1.8 Organization of Thesis

	2 Background
	2.1 Main Memory Technologies
	2.1.1 Dynamic Random Access Memories (DRAM)
	2.1.2 Non-Volatile Memories (NVM)
	2.1.2.1 Phase Change Memory (PCM)

	2.1.3 Hybrid Memories

	2.2 Challenges with Different Types of Memories
	2.3 Request Scheduling Techniques
	2.3.1 Predictable Memory Request Scheduling for DRAM
	2.3.2 Predictable Memory Request Scheduling for PCM
	2.3.2.1 Write Reduction and Wear-Leveling Techniques for PCM
	2.3.2.2 Scheduling Techniques for PCM
	2.3.2.3 Predictable Scheduling Techniques for PCM

	2.4 Page Migration for Hybrid memories
	2.4.1 Topology of Hybrid Memory
	2.4.2 Migration Candidate Selection
	2.4.3 Granularity of Migration
	2.4.4 Time of Migration
	2.4.5 Victim Page Migration

	2.5 Aging Control Mechanisms for Non-Volatile Memories
	2.5.1 BTI Aging in Non-Volatile Memories
	2.5.2 BTI Aging Measuring Techniques
	2.5.2.1 Reaction/Diffusion (RD) Model
	2.5.2.2 Trapping/De-trapping (TD) Model
	2.5.2.3 As-grown-generation (AG) model

	2.5.3 BTI Aging Countermeasures

	2.6 Summary

	3 Request Scheduling Policies
	3.1 Introduction
	3.2 System Model
	3.3 Working of a Frame-based Scheduling
	3.4 Predictable Memory Request Schedulers for DRAM memories
	3.4.1 RMRS: Real-time Memory Request Scheduler
	3.4.1.1 Working Example

	3.4.2 R-RMRS: Reward-aware RMRS
	3.4.3 Handling Phased Execution

	3.5 Predictable Memory Request Schedulers for PCM memories
	3.5.1 LARS: Latency-Aware Request Scheduler
	3.5.2 Re-LARS: Reward-aware LARS

	3.6 Evaluation
	3.6.1 Experimental Setup
	3.6.2 Complexity Analysis
	3.6.3 Area Overhead
	3.6.4 Performance Analysis
	3.6.5 Performance Metrics

	3.7 Results of DRAM Scheduling Policies
	3.7.1 Deriving optimal
	3.7.2 System load Vs. Dnorm
	3.7.3 System load Vs. Dnormext
	3.7.4 Effect of memory intensity on Reward
	3.7.5 Effect of reward reduction rates (RRRi) of tasks on Rnorm
	3.7.6 Private Vs. Shared Banks

	3.8 Results for PCM Scheduling Policies
	3.9 Summary

	4 Migration Scheduling Policies
	4.1 Introduction
	4.2 Slot-based Migration Scheduling
	4.3 Motivation
	4.4 System Model
	4.5 SRS-Mig: Selection and Run-time Scheduling of page Migration
	4.6 Mig-Slot: Migration-aware Slot-based Memory Request Scheduler
	4.7 QoS-Aware Migration
	4.7.1 Impact of Migration on QoS
	4.7.2 Mig-QoS: QoS-aware Mig-Slot

	4.8 Victim Page Migration
	4.9 Evaluation
	4.9.1 Experimental Setup
	4.9.2 Workloads
	4.9.3 Performance Analysis

	4.10 Results
	4.10.1 Execution Time
	4.10.2 Memory Service Time
	4.10.3 Memory Response Time
	4.10.4 Memory Service Rate
	4.10.5 Energy Consumption
	4.10.6 Distribution of Accesses to Migrated Pages
	4.10.7 Sensitivity Analysis
	4.10.7.1 Sensitivity Analysis for MigHT
	4.10.7.2 Sensitivity Analysis for Margin Value mg

	4.10.8 Overhead Analysis

	4.11 Summary

	5 De-stress Scheduling Policies
	5.1 Introduction
	5.2 Basic De-stress Scheduler
	5.3 Motivation
	5.4 Aging Model
	5.5 Thresholds used during Scheduling
	5.5.1 Request Threshold (RQT)
	5.5.2 Partial Request Threshold PRT
	5.5.3 Age Threshold (AGT)

	5.6 System Model
	5.7 AGRAS: Age and Request rate Aware Scheduler
	5.8 RODESA: Request and Opportunistic De-stress Scheduler
	5.8.1 RODESA-p
	5.8.2 RODESA-b

	5.9 Evaluation
	5.9.1 Experimental Setup
	5.9.2 Performance Analysis

	5.10 Results
	5.10.1 Effect on Performance:
	5.10.2 Effect on Memory Service Time
	5.10.3 Impact on Age Degradation
	5.10.4 Analysis of Threshold and Impact of the Decision Criteria

	5.11 Summary

	6 Avenues for Improving Migration and Aging
	6.1 Introduction
	6.2 Motivation
	6.2.1 Comparing impact of write count versus write intensity
	6.2.2 Comparing impact of de-stress interval sizes

	6.3 System Architecture
	6.4 WiMig: Write intensity based Migration
	6.5 WiForeMig: Write intensity based Foresightful Migration
	6.6 DOPMig: De-stress aware Opportunistic Migration
	6.6.1 Working of DOPMig
	6.6.2 Two variants of DOPMig
	6.6.3 Victim Page Migration

	6.7 Evaluation
	6.7.1 Experimental Setup and Workloads
	6.7.2 Hardware Overhead
	6.7.3 Performance Analysis

	6.8 Results
	6.8.1 Results for WiMig and WiForeMig Policies
	6.8.1.1 IPC
	6.8.1.2 Memory Service Time
	6.8.1.3 Energy
	6.8.1.4 Distribution of Accesses to Migrated Pages
	6.8.1.5 Sensitivity Analysis of the Threshold values
	6.8.1.6 Discussion

	6.8.2 Results for DOPMig policy
	6.8.2.1 IPC
	6.8.2.2 Memory Service Rate
	6.8.2.3 DRAM Hits for Migrated Pages
	6.8.2.4 Sensitivity Analysis on Buffer Size

	6.8.3 Comparison with Existing Methods

	6.9 Summary

	7 Conclusions and Future Perspectives
	7.1 Summary of Contributions
	7.2 Scope for Future Work

	A Appendix
	A.1 Simulation Framework
	A.1.1 Gem5
	A.1.1.1 M5
	A.1.1.2 GEMS

	A.1.2 NVMain
	A.1.3 GEM5-NVMain Co-simulation Framework

	A.2 Benchmarks
	A.2.1 Parsec
	A.2.2 SPEC 2006
	A.2.3 MiBench

	Publications
	References

