Scheduling Policies for Improving
Performance, Utilisation, and
Longevity of DRAM and PCM

Memories

Thesis submitted to the
Indian Institute of Technology Guwahat:
for the award of the degree

Doctor of Philosophy

Computer Science and Engineering

Submitted by
Aswathy N S

Under the guidance of
Prof. Hemangee K. Kapoor and Prof. Arnab Sarkar

calk)
6&\&%‘ 75

)
R G

%
“ S
% 0f Techno©

%'
hatie 22>

2
&
.
=7
2
>
A

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
October, 2024

mailto:aswat176101002@iitg.ac.in
http://www.iitg.ac.in/hemangee/
http://www.iitg.ac.in/cse/
http://www.iitg.ernet.in

Copyright (©) Aswathy N S 2024. All Rights Reserved.

mailto:aswat176101002@iitg.ac.in

Dedicated to

My beloved parents and partner

Acknowledgements

I would like to take this opportunity to express my gratitude to everyone
who has made this thesis possible. I express my deepest gratitude to my
supervisor, Prof. Hemangee K. Kapoor, for her valuable guidance, inspi-
ration, and advice. I feel very privileged to have had the opportunity to
learn from and work with her. Her constant guidance and support paved
the way for my development as a research scholar and changed my per-
sonality, ability, and nature in many ways. I have been fortunate to have
such a supervisor who gave me the freedom to explore on my own and,
simultaneously, the guidance to recover when my steps faltered. Besides
this, I would like to thank my external supervisor, Prof. Arnab Sarkar,
for his insightful comments and encouragement. His comments and sug-

gestions helped me to widen my research from various perspectives.

I thank all my Doctoral Committee Members, Prof. Jatindra Kumar
Deka, Dr. Aryabartta Sahu, and Dr. Chandan Karfa, for their produc-
tive and constructive suggestions for my thesis work. Their opinions and
comments helped me to shape my final thesis. I would like to express my
heartful gratitude to the administration of II'T Guwahati and all faculty
and staff of the Department of Computer Science and Engineering for
extending their cooperation in terms of technical and official support for

the successful completion of my research work.

During my Ph.D., I got the opportunity to work with Dr. Palash Das,
Dr. Sheel Sindhu Manohar, Dr. Arijit Nath, Imlijungla Longchar, Swati
Upadhyay, Neeraj Sharma, Rishabh Mahanta, Nishant Bharti, Deep
Bhuniya, Chetan, Aishwarya Gupta, Zeeshan Anwar, Gautam Gandhi
and Jash Vipul Ratanghayra. I had numerous productive technical con-
versations and knowledge exchanges with them that helped me to carry

out my research.

I am thankful to my friends Gaadha Madhav, Christy K. Benny, Ra-
jeswari Suance, Jith J R, Hrishikeshan, Vivek Lukose, Jiss J Nallikuzhy,
Induchoodan T G, Syamili Sharma, Pradeep, Vishnu G, Akhila Das,
Anjali, Akhila, Arun Sathyan, Sujisha, Vijith, Piyoosh, Dileep, Naveen,
Achyut Tripathi, Rakesh, Rajesh Devaraj, Sanjit Ray, Rishi Shreedhar,
Gokul, Merlin, Caraline, Sivakumar, Priyanka, Nilotpola, Debabrata,
Swagat, Sumita, Nilotpal, and Akanksha, for sharing beautiful moments
during my life in II'T Guwahati. You made my life at II'T Guwahati a
memorable experience. A special thanks to Riya Roy; she has encour-
aged, supported, and made me happy during this journey of many ups
and downs. I am extremely grateful to Aditya K. Moorthy, my younger

brother, who has been my strength on this journey.

I want to thank Dr. A. Rajesh for the motivation, strength, and smiles
given during the entire IITG journey. I would like to especially thank
Uma Narayanan for always being there as an elder sister and Malu for
the beautiful moments at IITG. I am thankful to Gayathri ma’am for
creating a safe space for me to work through the challenges. I am also
grateful to the professors of the Malayali community, Dr. John Jose, Dr.
Benny George K, Dr. Ravi K, Dr. Suresh Kartha, Dr. Sreedeep S, Dr.
Sreeja P, Dr. Archana, Dr. Tony Jacob, Dr. Vibin Ramakrishnan, Dr.

John Thomas, Dr. Sreenath, and their families.

Most importantly, I thank for the love and patience of my family. I
want to thank my parents for being a constant source of love, concern,
support, and strength all these years. To my valiachan and ettamma,
thank you for all the encouragement and motivation. I thank my brother
Aswin for inspiring me throughout the Ph.D. journey. I would also like to
thank my sister-in-law Anagha, brother-in-law Padmanabhan, co-sister

Parvathi, and my in-laws for being so supportive during the journey.

Last but not least, I thank Vasudevan, who encouraged and supported
me in each step of my journey with due respect to every thought and
decisions I made. Thanks for all the sacrifices and love you have made
to brighten my days. I apologize if I am missing some important names

that need to be acknowledged.

Declaration

I, Aswathy N S, certify that:

e The work contained in this thesis is original and has been done by

myself and under the general supervision of my supervisors.

e The work reported herein has not been submitted to any other

Institute for any degree or diploma.

e Whenever I have used materials (concepts, ideas, text, expressions,
data, graphs, diagrams, theoretical analysis, results, etc.) from
other sources, I have given due credit by citing them in the text of

the thesis and giving their details in the references.

e [also affirm that no part of this thesis can be considered plagiarism
to the best of my knowledge and understanding and take complete

responsibility if any complaint arises.

Date:

Place: Guwahati Aswathy N S
(176101002)

mailto:aswat176101002@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “Scheduling Policies for Im-
proving Performance, Utilisation, and Longevity of DRAM and
PCM Memories”, being submitted by Aswathy N S(176101002),
to the Department of Computer Science and Engineering, Indian Insti-
tute of Technology Guwahati, for partial fulfillment of the award of the
degree of Doctor of Philosophy, is a bonafide work carried out by her un-
der my supervision and guidance. The thesis, in my opinion, is worthy of
consideration for award of the degree of Doctor of Philosophy in accor-
dance with the regulation of the institute. To the best of my knowledge,

it has not been submitted elsewhere for the award of the degree.

Date:
Place: Guwahati

Prof. Hemangee K. Kapoor

Professor

Department of Computer Science and Engineering
I[IT Guwahati

Prof. Arnab Sarkar

Associate Professor

Advanced Technology Development Centre (ATDC)
I[IT Kharagpur

mailto:aswat176101002@iitg.ac.in
http://www.iitg.ernet.in
http://www.iitg.ernet.in
http://www.iitg.ac.in/hemangee/
http://www.iitg.ac.in/cse/
http://www.facweb.iitkgp.ac.in/~arnab/

Abstract

The increased transistor density in recent years helps modern chip multi-processors
include many processing cores in a single chip, which enables the concurrent execu-
tion of data-intensive workloads. The need for large-sized memories also increased
due to the high pressure. Memory performance in terms of latency, reliability,
longevity, and scalability have now become a critical constraint for modern com-
puter systems. Fven though traditional DRAM memories have low access latency,
they cannot meet the high-density demands of modern workloads. Emerging non-
volatile memories provide high density and low-leakage power. However, they suffer
from shortcomings, especially on writes and reliability issues. Hybrid memory with
a combination of DRAM and NVM exploits the benefits of both memories and can
be used as a main memory alternative.

Memory controllers act as a bridge between these main memories and the re-
questors and manage the flow of data between them. It is necessary to evolve the
memory controller designs to achieve better performance and utilisation of the grow-
ing memory technologies. Memory request scheduling, which reorders memory op-
erations from the same and different applications is used by the memory controller
to manage the flow of data and optimize memory performance. The memory con-
troller manages reqular read/write requests and other memory service requests. The
adopted memory scheduling policy determines the memory service time and, thus,
the total execution time of applications executing on the cores. Therefore, memory
scheduling policy plays a vital role in the performance of these memory technologies.

In this thesis, we aim to build scheduling policies to improve the effectiveness of
these main memory designs by providing solutions to the challenges faced by each
of these memory techniques. In particular, the contributions of the thesis revolve
around scheduling policies for memory requests and other service operations, such
as de-stress and migration, to improve the performance of hybrid DRAM and Phase
Change Memories (PCM). We aim to design memory access scheduling policies,
which, along with throughput, improve the service predictability. This research also
focused on improving the longevity and utilisation of PCM memories. Towards this
end, we provide de-stress and migration scheduling policies that control aging and

reduce the number of write operations in PCM memories.

NS JE>- ot

X1

Contents

Abstract xi
List of Figures xviii
List of Tables xxi
List of Abbreviations xxiii
1 Introduction 1
1.1 Design of Memory Controllers 2
1.2 Memory Access Scheduling Policies 3
1.3 Memory Service Operations 4
1.3.1 Refreshin DRAM 5
1.3.2 De-stress in Phase Change Memory (PCM). 5
1.3.3 Page Migration in Hybrid Memory 5
1.4 Motivation 6
1.5 Objectives L 9
1.6 Thesis Contributions L. 10
1.6.1 Request Scheduling Policies for Pure DRAM and Pure PCM
Memorieso 10
1.6.2 Migration Scheduling Policies for Hybrid DRAM-PCM Mem-
OTIES . . v v v v i 11
1.6.3 De-stress Scheduling Policies for Pure PCM Memories 13
1.6.4 Avenues for Improving Migration and Aging 14
1.7 Summary 16
1.8 Organization of Thesis 17

xiil

2 Background 18

2.1 Main Memory Technologies 19
2.1.1 Dynamic Random Access Memories (DRAM) 19
2.1.2 Non-Volatile Memories (NVM) 21

2.1.2.1 Phase Change Memory (PCM) 21
2.1.3 Hybrid Memories 23

2.2 Challenges with Different Types of Memories 24

2.3 Request Scheduling Techniques 25
2.3.1 Predictable Memory Request Scheduling for DRAM 27
2.3.2 Predictable Memory Request Scheduling for PCM 29

2.3.2.1 Write Reduction and Wear-Leveling Techniques for
PCM 29

2.3.2.2 Scheduling Techniques for PCM 30

2.3.2.3 Predictable Scheduling Techniques for PCM 30

2.4 Page Migration for Hybrid memories 32
2.4.1 Topology of Hybrid Memory 32
2.4.2 Migration Candidate Selection 34
2.4.3 Granularity of Migration 36
2.4.4 Time of Migration 37
2.4.5 Victim Page Migration00 38

2.5 Aging Control Mechanisms for Non-Volatile Memories 38
2.5.1 BTI Aging in Non-Volatile Memories 38
2.5.2 BTI Aging Measuring Techniques 40

2.5.2.1 Reaction/Diffusion (RD) Model 40

2.5.2.2 Trapping/De-trapping (TD) Model 41

2.5.2.3 As-grown-generation (AG) model 42

2.5.3 BTI Aging Countermeasures 42

2.6 Summary 45

3 Request Scheduling Policies 47

3.1 Introduction 47

3.2 System Model 49

3.3 Working of a Frame-based Scheduling 54

3.4 Predictable Memory Request Schedulers for DRAM memories 54

3.4.1 RMRS: Real-time Memory Request Scheduler
3.4.1.1 Working Exampleo

3.4.2 R-RMRS: Reward-aware RMRS
3.4.3 Handling Phased Execution

3.5 Predictable Memory Request Schedulers for PCM memories
3.5.1 LARS: Latency-Aware Request Scheduler.
3.5.2 Re-LARS: Reward-aware LARS

3.6 Evaluation
3.6.1 Experimental Setup
3.6.2 Complexity Analysis
3.6.3 Area Overhead
3.6.4 Performance Analysis
3.6.5 Performance Metrics

3.7 Results of DRAM Scheduling Policies
3.7.1 Derivingoptimal o oo
3.7.2 System load Vs. Dyorm -+« o v v o o oo
3.7.3 System load Vs. D&t oo
3.7.4 Effect of memory intensity on Reward
3.7.5 Effect of reward reduction rates (RRR;) of tasks on R,orm - -
3.7.6 Private Vs. Shared Banks

3.8 Results for PCM Scheduling Policies

3.9 Summary

Migration Scheduling Policies
4.1 Introduction
4.2 Slot-based Migration Scheduling
4.3 Motivationo
4.4 System Modelo
4.5 SRS-Mig: Selection and Run-time Scheduling of page Migration . . .
4.6 Mig-Slot: Migration-aware Slot-based Memory Request Scheduler . .
4.7 QoS-Aware Migration Lo
4.7.1 Impact of Migration on QoS
4.7.2 Mig-QoS: QoS-aware Mig-Slot
4.8 Victim Page Migration

4.9 Evaluation 97
4.9.1 Experimental Setup oL 97
4.9.2 Workloads 99
4.9.3 Performance Analysis Lo 99

4.10 Results o 100
4.10.1 Execution Time o 100
4.10.2 Memory Service Time 101
4.10.3 Memory Response Time 102
4.10.4 Memory Service Rate L. 103
4.10.5 Energy Consumption 105
4.10.6 Distribution of Accesses to Migrated Pages 106
4.10.7 Sensitivity Analysiso 107

4.10.7.1 Sensitivity Analysis for MigHT 107
4.10.7.2 Sensitivity Analysis for Margin Value mg 109
4.10.8 Overhead Analysis 110

411 Summary e 111

De-stress Scheduling Policies 113

5.1 Imtroduction 113

5.2 Basic De-stress Scheduler 00000 115

5.3 Motivationo 116

54 Aging Model 117

5.5 Thresholds used during Scheduling 118
5.5.1 Request Threshold (RQT) 118
5.5.2 Partial Request Threshold PRT 119
5.5.3 Age Threshold (AGT) 120

5.6 System Model 120

5.7 AGRAS: Age and Request rate Aware Scheduler 121

5.8 RODESA: Request and Opportunistic De-stress Scheduler 122
581 RODESA-p 123
582 RODESA-b 125

5.9 Evaluation o 128
5.9.1 Experimental Setup 128

5.9.2 Performance Analysis 130

5.10.2 Effect on Memory Service Time
5.10.3 Impact on Age Degradation
5.10.4 Analysis of Threshold and Impact of the Decision Criteria

5. 11 Summary

Avenues for Improving Migration and Aging
6.1 Introduction
6.2 Motivation
6.2.1 Comparing impact of write count versus write intensity
6.2.2 Comparing impact of de-stress interval sizes
6.3 System Architecture L
6.4 WiMig: Write intensity based Migration
6.5 WikForeMig: Write intensity based Foresightful Migration
6.6 DOPMig: De-stress aware Opportunistic Migration
6.6.1 Working of DOPMig
6.6.2 Two variants of DOPMig

6.6.3 Victim Page Migration

6.7 Evaluationo
6.7.1 Experimental Setup and Workloads
6.7.2 Hardware Overhead
6.7.3 Performance Analysis L.

6.8 Results.
6.8.1 Results for WiMig and WiForeMig Policies
6.8.1.1 IPC

6.8.1.2 Memory Service Time
6.8.1.3 Energy oo
6.8.1.4 Distribution of Accesses to Migrated Pages
6.8.1.5 Sensitivity Analysis of the Threshold values
6.8.1.6 Discussion oL
6.8.2 Results for DOPMig policy
6.8.2.1 IPC
6.8.2.2 Memory Service Rate

6.8.2.3 DRAM Hits for Migrated Pages

6.8.2.4 Sensitivity Analysis on Buffer Size

6.8.3 Comparison with Existing Methods

6.9 Summary

7 Conclusions and Future Perspectives

7.1 Summary of Contributions L.
7.2 Scope for Future Work Lo

A Appendix

A.1 Simulation Framework
ATl Gemb
ALLLT M5 ...

A1.1.2 GEMS

A12 NVMain
A.1.3 GEMb5-NVMain Co-simulation Framework

A2 Benchmarks
A2.1 Parsec
A22 SPEC2006

A.2.3 MiBench

Publications

References

171
172
176

177
177
177
178
178
178
179
179
180
181
182

183

185

1.1
1.2

1.3

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

3.3
3.4
3.5
3.6

3.7

3.8
3.9

List of Figures

Memory controller unit oo 3

Memory service time for PCM and Hybrid memory normalized with

DRAM 7
Number of delayed requests due to migration 8
DRAM memory organization 20
Represenatational view of a PCMcell 22
Operations in PCM cell o L. 22
Hybrid memory a) Parallel Organization, b)Hierarchical Organization 24
Stress and Recovery phases of BTT 39
Threshold voltage shift (Awy,) during continuous and interrupted stress 43

Working Example oo 59
Phased memory profile obtained during standalone execution of the
patricia application from MiBench 62
LARS-System model oL 64
Deriving optimal avo Lo 72
(@) Dyorm, (b) DEEL 73
(a) Effect of phased execution on Dy, (b)Effect of phased execution
on Dt 75
(a) Effect of low memory intensity workload mix on Ry,omm, (b) Effect
of high memory intensity workload mix on R,prm - - - - - o 76
Effect of phased execution on Romm -« - v v v v v v v i 7
(a) Effect of reward reduction rates (RRR;) (b) Shared Vs. Private
Banks 78

XIiX

4.1

4.2

4.3
4.4
4.5
4.6

4.7

4.8
4.9
4.10
4.11
4.12
4.13

4.14

5.1
5.2

2.3
5.4
2.5
2.6

5.7
5.8
5.9
5.10

Example of slot-based scheduling of memory requests. Here blue
colour represent batched requests and red colour represent servicing
requests . . . oL . L e e e
Example of batched requests getting postponed due to presence of
migration requests L. L. Lo
Number of batched requests that get delayed
Proposed memory controller model with migration unit
Hlustration of reserving space for migration in the slot
(a) Memory request rate at different points in execution, (b) Number
of requests delayed to get batched
HNlustration of Mig-QoS showing postponement of migration due to
high input request rate oL
Normalized execution time (lower is better)
Normalized memory service time (lower is better)
Normalized PCM response time (lower is better)
Normalized memory service rate (higher is better)
Normalized energy consumption (lower is better).
Distribution of total PCM accesses in techniques a) SRS-Mig, b) Mig-
Slot, and ¢) Mig-QoS
Effect of varying MigHT on the memory service rate, (b) Sensitivity

analysis on margin values L.

Execution timeline with Stress/De-stress periods
(a) Normalized age degradation over RegDes, (b) Normalized CPI

over Baseline
Memory request rate at continuous Stress periods
Memory controller with De-stress Management Unit
Flowchart of our proposed AGRAS
Per bank memory access count normalized over maximum access

count among the banks for (a) lbm, (b) leslie3d, (c) canneal
Memory request rate at continuous Stress periods
Normalized IPC over Baseline (higher is better)
Normalized service time over Baseline (lower is better)

Normalized age degradation over RegDes

5.11 Distribution of full vs partial de-stress performed by observing the
memory request rate oL Lo Lo oL 136
5.12 Age degradation for two banks that got de-stress in background dur-

ing random points of execution (for canneal benchmark) 138

6.1 (a) Difference in Write count (WC) and write intensity (WI) for lbm,
(b) Difference for sjeng, (WC is represented as circles and WI is rep-
resented as triangles) 144
6.2 (a) Normalized age degradation of RegDes with Large Interval (LI)
over RegDes with Small Interval (SI), (b) Normalized IPC over No

De-stress method; SI= Small Interval and LI=Large Interval 145
6.3 Hybrid memory controller with migration and de-stress unit 147
6.4 Execution timeline with de-stress and migration intervals 153
6.5 Working of proposed DOPMig 153
6.6 Normalized speedup (higher is better) 159
6.7 Normalized memory service time (lower is better) 159
6.8 Normalized total energy consumption (lower is better) 160
6.9 Distribution of PCM accesses for migrated pages 161
6.10 (a) Sensitivity analysis for Wait_T, (b) Sensitivity analysis for Max_Dem_T162
6.11 Normalized speedup (higher is better) 164
6.12 Normalized memory service rate (higher is better) 165
6.13 Number of DRAM hits for migrated PCM pages normalized to DesMig166
6.14 Number of return back migrations normalized to DesMig 167
6.15 Sensitivity analysis on buffer size (BSize) 168

7.1 Overview of the thesis 175

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2

5.3

5.4

6.1
6.2
6.3

List of Tables

Notations used
Important system parameters
Chosen tasks along with their execution times and memory intensity

class (From MiBench)
Workload mix details with task set used for each mix, allocated

#cores and associated memory intensity class L.
Comparison of deadline misses
Comparison of rewardo
Comparison of performance with EDF-PCM
Comparison of performance with EDF-DRAM

Important system parameters
Benchmark classification based on write-backs
Overhead analysis (lesser is better)

Comparison of proposed migration policies

Important system parameters
Effect of different values of AGT on performance and aging, normal-
ized wrt RegDeso o
Number of intervals and banks that got the opportunity to perform
background de-stress
Impact of static versus dynamic selection of banks for background

de-stress on Performance and Aging

Important system parameters
Advantage of demotiono oo
DOPMig_modest Vs DOPMig_greedy normalized over DesMig

xxii

6.4

Al
A2
A3
A4
A5

Comparison with existing policies 168

he Inherent Key Characteristics of PARSEC Benchmarks 180
The Data Usage Behavior of PARSEC Benchmarks 180
Application Domains of Various CINT 2006 Benchmark Suite 181
Application Domains of Various CFP 2006 Benchmark Suite 182
MiBench Benchmarks 183

List of Abbreviations

CPU Central Processing Unit.

GPU Graphic Processing Unit.

DRAM Dynamic Random Access Memory.
NVM Non-Volatile Memory.

PCM Phase Change Memory.

MRAM Magnetic Random Access Memory.
FeRAM Ferroelectric Random Access Memory.
STT-RAM Spin Transfer Torque Random Access Memory.
Re-RAM Resistive Random Access Memory.
NOP No Operation

PRE Precharge

REF Refresh

CAS Column Address Strobe

ACT Activate

BTI Biased Temperature Instability

NBTI Negative Biased Temperature Instability

PBTI Positive Biased Temperature Instability

XxXiv

HCI Hot Carrier Injection

QoS Quality of Service

WBPKI Write Backs Per Kilo Instructions
MPKI Misses Per Kilo Instructions

IPC Instructions Per Cycles

CPI Cycles Per Instructions

WCET Worst Case Execution Time

HRT Hard Real-Time Task

SRT Soft Real-Time Task

FCFS First Come First Serve Policy
FR-FCFS First Row hit - First Come First Serve
TDM Time Division Multiplexing

EDF Earliest Deadline First

RM Rate Monotonic

RR Round Robin

LRU Least Recently Used

EDF-WQF Earliest Deadline First-Write Queue Full
RegDes Regular De-stress

AlterDes Alternate De-stress

RegMig Regular Migration

DesMig De-stress Migration

RMRS Real time Memory Request Scheduling

R-RMRS Reward-aware Real time Memory Request Scheduling
LARS Latency-aware Request Scheduling

Re-LARS Reward-aware Latency-aware Request Scheduling
AGRAS Aging and Request rate Aware Scheduling

RODESA Request and Opportunistic De-stress Scheduler
WiMig Write Intensity based Migration

WiForeMig Write Intensity based Foresightful Migration

DOPMig De-stress aware Opportunistic Migration

Introduction

The Von Neumann architecture is the basis for most modern computing systems,
where memory and computing devices, such as CPUs, are kept apart. These com-
puting devices have depended on using the principles of Dennard scaling and Moore’s
laws to scale up their performance. On the contrary, memory devices cannot meet
the performance of these computing devices due to their limited scalability, which
leads to a huge performance gap between computing and memory devices. Modern
data-intensive workloads exhibit large memory footprints and place much pressure
on the memory subsystem. A scalable memory system is needed to meet the require-
ments of these workloads. Traditional DRAM memory systems have been widely
used for decades and provide low memory access latency. These memory lose their
ability to provide high density and low leakage power. Constructing large-capacity
memory systems within the restricted area and power budget is challenging because

of the need for high refresh energy and poor scalability.

Non-volatile memories (NVMs) like Phase Change Memory (PCM), Spin Trans-
fer Torque RAM (STT-RAM), and Resistive RAM (Re-RAM) have emerged as
viable alternatives for DRAM, which are denser and have low leakage power. These
NVMs offer exciting features necessary for developing large-capacity, energy-efficient
main memory systems, including non-volatility, low-leakage energy, and high den-

sity. However, these non-volatile memories have costlier writes in terms of high write

Introduction

latency, high write energy, and low write endurance. These drawbacks restrict them
from becoming the widely accepted primary memory standard.

One alternative is to combine the two memory types and use the best of both.
Thus, scalability and performance can be improved by developing a hybrid memory
environment with DRAM and NVM memory types. Based on the application re-
quirements, the size of each partition in the hybrid memories varies. Data placement
in such memories must be carefully handled to benefit from the different memory
partitions. Hybrid memory systems exploit the benefits of both types of memory
partitions and make them suitable for data-intensive applications. More informa-
tion regarding the working methodology and the characteristics of different memory
technologies is discussed in Chapter 2.

Modern computer systems use memory controllers to access data from these main
memory systems. Memory controllers carry out such types of data access control by
selectively multiplexing memory devices and/or the data bus in response to varying
memory requests. As memory technology grows, it is necessary to evolve the memory
controller designs to achieve better performance. This research intends to develop
memory controller designs that support advanced main memory technologies to
enhance the memory service time and, thus, the total execution time of applications
executing on the processing cores.

The rest of the chapter is organized as follows: section 1.1 discusses the functions
of a memory controller. The need for memory access scheduling is discussed in sec-
tion 1.2. Other memory controller services are presented in sections 1.3. Motivation
and Objectives of this dissertation are presented in sections 1.4 and 1.5. Section 1.7

finally concludes the chapter.

1.1 Design of Memory Controllers

The most advanced memory controller designs and the most recently released mem-
ory fabrication technology, such as emerging non-volatile memories and Double Data
Rate Dynamic RAM (DDR DRAM), are used by modern systems to take advantage
of the high transfer rates and low power consumption. The design of memory con-
trollers, which should correctly regulate the data flow to ensure improved memory
performance, is prompted by the significant data rate from numerous applications

running simultaneously on multi-core processors.

Memory Access Scheduling Policies

T Memory Controller
Request
Queue 0

Command

Be Queue 0

Command
Queue 1

Request
Queue 1

Commands| Main
Memory

CPU >

Request

Address Mapping
Request Scheduler ‘
v

Command
Queue n-1

Request
Queue n-1

L

Figure 1.1: Memory controller unit

‘ Command Generator ‘
I
‘ Command Scheduler ‘

Figure 1.1 depicts the different components of a memory controller. The virtual
address of a memory request is mapped to a memory address location with the
help of an address mapping unit. Two important memory mapping strategies are
sequential memory mapping and interleaved memory mapping [1]. In sequential
address mapping, successive words in the address space are mapped onto a single row
of a single bank. On the other hand, in the case of interleaved mapping, successive
words are placed in distinct banks. After address translation, these memory requests
are placed in distinct bank queues. A request arbiter will select one among a set
of memory requests and convert it to a sequence of memory commands using a
command generator. The sequence of commands are then placed in command queues
in the memory controller. A command queue can be configured as a generic pool
queue, a per-bank queue, or a per-rank queue [1]. Commands to the memory devices
are ordered according to the command scheduling policy. The timing relationships

between different memory commands determines the final execution time [1].

1.2 Memory Access Scheduling Policies

Memory performance is becoming a more significant constraint for modern computer
systems. Recent memory components offer pipelining of memory accesses to maxi-
mize memory bandwidth. They also heavily rely on the access pattern to determine
how well the memory performs. Modern memories are three-dimensional memory
devices with bank, row, and column dimensions [1]. Memory access scheduling
is a technique for optimizing memory system performance that schedules memory

operations, completing memory references out of order.

Introduction

Applications/tasks are executing on the processing cores. These tasks/applications
include instructions and spawns memory requests/accesses. The actual completion
time of the task may change based on run-time memory behavior. The adopted
memory scheduling policy plays a significant role in influencing task completion
times. Commonly used memory request scheduling policies in traditional memory
controllers include First Come First Serve (FCFS) and Time Division Multiplexing
(TDM) variations. Apart from these techniques, Rixner et al. in [2] discussed First
Ready-First Come First Serve (FR-FCFS), which attempts to exploit row-buffer
affinities of memory banks by prioritizing requests targeted to the row currently
in the row-buffer. Otherwise, the oldest requests are prioritized first, following the
FCFS policy. An important drawback of FR-FCFS is that by being aggressively
aware of row-buffer affinities, the policy becomes skewed towards maximizing mem-
ory request service throughput and completely oblivious to the latency sensitivities
of tasks spawning the request.

The task-aware designs attempt to incorporate fairness in scheduling memory
requests of different competing tasks. Although these memory controllers provide
some Quality of Service (QoS) sensitivity towards memory resource access, they are
still inadequate for real-time systems. Real-time applications have latency require-
ments, meaning certain computations must be finished within a specified deadline,
which can be hard or soft. Missing a hard deadline causes functional failure, whereas
missing a soft deadline results in quality degradation. Real-time systems require
predictable memory request service latencies in addition to fairness. This allows
tasks that generate these memory access requests with a reasonable and bounded

worst-case execution time estimates.

In this thesis, scheduler or arbiter and access or request are used
interchangeably.

1.3 Memory Service Operations

Based on the underlying memory type, the memory controller handles additional
service operations in addition to regular read/write requests. In this section, a few
of these service operations are covered. To improve memory performance, these

operations must be scheduled in conjunction with regular requests.

Memory Service Operations

1.3.1 Refresh in DRAM

An access transistor and a capacitor make up a DRAM cell, which can store a
single bit of data. However, the capacitor eventually drains the charge. A DRAM
chip needs to be refreshed regularly to prevent data loss from charge leakage in
DRAM cells. Refresh cycle time is the duration of a refresh, which is 64ms on
average. A memory bank is unavailable to service any access requests during this
period. Therefore, the regular memory requests are stalled and may lead to increased
memory service time. At the same time, the refresh operation is mandatory to
elongate the storage of data in the cell, and if we postpone refresh operations, the
data may not be available. Thus, refresh is considered a compulsory operation that
delays the memory service. Scheduling the refresh operation is not the scope of our

dissertation.

1.3.2 De-stress in Phase Change Memory (PCM)

De-stress operation control Biased Temperature Instability (BTI) aging in PCM
memories. BTI causes an increase in the threshold voltage of a transistor, which is
the minimum voltage required to create a conducting path between the transistor
terminals. The increase in threshold voltage is due to the high operating voltage and
temperature needed for PCM cells. By removing the stress voltage for a certain pe-
riod, the de-stress operation partially recovers the increase in the threshold voltage.
All the operations towards PCM memories are halted during the de-stress operation
as the method removes the application of operating voltage for a de-stress period.
These delayed memory requests result in increased memory service time and, thus,
higher execution time. Therefore, it is necessary to schedule de-stress operations

along with regular memory requests to maintain memory performance.

1.3.3 Page Migration in Hybrid Memory

Hybrid memory exploits the benefits of associated different types of memory. Page
management in hybrid memory is challenging due to the various characteristics of
memory partitions. Random placement of pages in hybrid DRAM-PCM memory
may cause performance degradation due to the access latency difference in DRAM
and PCM partitions. Page migration moves pages across different partitions of

hybrid memory to optimize memory performance and cost efficiency. The goal of

Introduction

page migration is to place frequently accessed (hot) pages in the faster memory
(DRAM) and less frequently accessed (cold) pages in the slower but larger memory
(PCM).

To ensure that the advantages outweigh the migration costs, it is necessary to
monitor the access pattern accurately, prudently select the migration candidate,
and migrate these pages at the right time. The overhead or cost of migration is in
terms of execution of migration as well as the interference on the service of regular
read /write requests. In other words, migration extends memory service times by
delaying the processing of regular requests. Therefore, scheduling migration with

regular requests is beneficial in improving memory performance.

1.4 Motivation

Memory system performance can be optimized using memory request scheduling
which reorders memory operations and may even complete memory references out
of order. The scheduling policies can be static or dynamic based on the scheduling
decision at design or run time. The static scheduling policy is more predictable as it
can bind the maximum number of interfering requests. Dynamic scheduling policies
make the scheduling decisions by using the run-time information. A memory arbiter
operates at a significantly finer level of granularity than processor scheduling.

The objective of memory access scheduling policies depends on the applications
that spawn these memory requests. A memory request scheduling policy could pro-
vide service predictability, throughput, and fairness for memory requests to achieve
bounded worst-case execution time estimates for applications executing on the cores.
Furthermore, based on the type of memory used, the scheduling policy also varies
due to the different characteristics of each memory type.

Main memory is usually composed of pure DRAM technology. Alternatively,
non-volatile memories like Phase Change Memory (PCM), Resistive RAM (Re-
RAM), Spin Transfer Torque RAM (STT-RAM), or hybrid memory systems have
been used in recent years. Due to different characteristics, the memory service time
varies even with the same scheduling policy.

Figurel.2 presents the memory service time obtained for the DRAM-only, PCM-
only, and hybrid DRAM-PCM systems where the memory requests are scheduled
using the FR-FCF'S policy. The first bar depicts the memory service time obtained

Motivation

DRAM pummm Hybrid DRAM-PCM ——
PCM

Memory Service Time

Benchmarks

Figure 1.2: Memory service time for PCM and Hybrid memory normalized with DRAM

when all memory requests are mapped to DRAM-only, the second bar represents
when memory requests are targeted to PCM-only, and the third bar represents when
all memory requests are targeted to a DRAM-PCM hybrid memory system. In the
case of hybrid memory, the pages are randomly allocated to each memory type.
The memory service time is high, 45%, when the requests are serviced from PCM-
only because of the high write latency of PCM memories compared to DRAM-only
systems. From the figure, it is observed that the average memory service time is
7.4% lower for hybrid memory over PCM-only memory systems. The hybrid memory
system uses the latency advantage of DRAM memory over PCM memory.

The increase in memory service time for both PCM-only systems and hybrid
memory is more evident for write-intensive benchmarks like lbm, sjeng and libquan-
tum (greater than 35%) because of the high write latency for PCM memories.
Among the multi-threaded benchmarks, the increase in memory service time is more
significant for canneal (= 24%) due to high WBPKI (Write-backs Per Kilo Instruc-
tions) compared to streamcluster (= 17%). The hybrid memory system utilizes the
latency advantage that DRAM memory has over PCM memory. However, the av-
erage memory service time is high when requests are serviced from hybrid memory
over DRAM-only systems because of the high write latency of PCM memory.

It is to be noted from the figure that the memory service time also depends on
the type of memory. Therefore, it is necessary that the scheduling policy should be
aware of the underlying memory type to improve the memory service time.

Along with regular read /write requests, the memory controller also receives other

Introduction

sjeng calculix canneal —¢—
lbm streamcluster —@—

#Delayed requests

Q\f\ Q\' Q\’rb Q\.’bK Q\?) Q\’b Q\’/\ Q\f‘b Q\’q
Random execution points

Figure 1.3: Number of delayed requests due to migration

service requests based on the type of memory: like page migration requests, re-
fresh requests, and de-stress requests, etc. These service requests halt the regular
read /write requests and increase the memory service time, which finally affects the
worst-case execution time of applications. This is because memory scheduling poli-
cies are unaware of such service requests, which causes performance degradation.
Figure 1.3 presents the number of delayed read/write requests due to migration.
The number is large for every benchmark. It is observed from the figure that the
number of delayed requests due to migration is more prominent for write-intensive
benchmarks. For example, for a benchmark with low WBPKI, such as namd, the
number is 73 on average, whereas for write-intensive (high WBPKI) benchmark
like lbm, it is 428 on average, which is very high. However, the number of re-
quests that got delayed due to migration is significant for low WBPKI benchmarks.
This increased number of delayed requests can result in longer memory service time
and higher application execution time. Therefore, it is beneficial that, along with
memory accesses, these services should be scheduled to achieve better memory per-

formance.

Objectives

1.5 Objectives

The following are the objectives of our thesis:

1. Supporting different main memory standards: This research aims to
provide support for different memory types. This research provides solutions
for challenges faced by different memory types such as DRAM, Phase Change
Memory (PCM), and Hybrid DRAM-PCM memory.

2. Achieving improved memory service time: One of the main objectives
of this research is to manage memory operations to achieve improved memory
service time, which leads to improved execution time for applications running
on the processing cores. Multiple scheduling policies are proposed to achieve
better memory service time, which arbitrates the data flow in and out to the

memory controller.

3. Attaining memory service predictability: We aim to design memory
access scheduling policies, which, along with throughput, improve the service
predictability. The scheduling policies incorporate run-time information about
applications to achieve predictability and Quality of Service (QoS). This re-
search aims to use DRAM and PCM as the main memory standard for systems

with real-time applications executing on the cores.

4. Minimizing Write operations: Our research focuses on discovering a way
to reduce the number of writes to the PCM and use it as the primary memory
standard. Towards this end, we aim to explore page migration techniques
in hybrid memory. In this research, we propose scheduling policies for page
migration that maximize the hits in the DRAM partition and reduce write in

the PCM partition of hybrid memory.

5. Improving longevity: This research also aims to improve the longevity of
PCM memories. PCM memories are vulnerable to Biased Temperature Insta-
bility (BTI) aging, which causes an increase in the threshold voltage of the
device and affects the lifetime of PCM cells. To improve longevity, we propose
de-stress scheduling mechanisms that control BTT aging and thus improve the

reliability and longevity of PCM cells.

Introduction

1.6 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

1.6.1 Request Scheduling Policies for Pure DRAM and Pure
PCM Memories

In this contribution, we have proposed four predictable memory request scheduling
policies for soft real-time systems with DRAM or PCM as the main memory stan-
dard. Real-time systems demand predictable memory service latencies to provide
reasonable worst-case execution time bounds for tasks. A significant factor deter-
mining task completion times can be memory request scheduling. The allowable
response latency for a memory request indicates the service urgency associated with
it and is in tune with the real-time demand of the task that spawned the request.
We propose QoS-aware memory request scheduling policies that consider the
relative priorities of a group of memory requests based on task urgencies. The
proposed methods can balance throughput and timeliness appropriately, resulting
in fewer deadline misses and better Quality of Service (QoS) with a unique frame-
based deadline-aware group reordering approach. The proposed scheduling policy
is based on the observation that the memory request service priority of a real-time
task is primarily influenced by the amount of remaining service that needs to be
provided for the spawning task and the time remaining before the deadline of the
task. Based on these factors, the scheduling policy dynamically assigns distinct
task-aware priorities to different memory requests, and fair scheduling of memory
requests is carried out to provide the required predictability for the memory request
service. Furthermore, the scheduling policy employs a novel row-buffer affinity-aware
memory request grouping scheme to maintain a high average throughput. We have
proposed four variations for this QoS-aware memory scheduling technique based on

the underlying memory type for the real-time systems.

e Two DRAM-based memory scheduling polices

1. RMRS: The proposed Real-time Memory Request Scheduler (RMRS)
prioritizes memory requests spawned from real-time tasks based on row-
buffer affinities, expected remaining memory requests, and task deadline

urgencies. This policy is discussed in Section 3.4.1.

10

Thesis Contributions

2. R-RMRS: This method, Reward-aware RMRS, is an extension of RMRS
and aims to maximize the total QoS acquired by the system when a set
of soft real-time tasks are executed over the length of the hyper-period.
Here, awareness of task rewards is also used to determine memory request

priorities. This policy is discussed in Section 3.4.2.
e Two PCM-based memory scheduling policies

1. LARS: The proposed method intends to replace DRAM with PCM as the
primary memory for real-time systems. LARS uses a row-buffer affinity-
aware memory request grouping system and urgency-based scheduling
approach to achieve predictability and maintain high average throughput.
LARS prioritizes reads over writes to compensate for the differing read

and write latencies of PCM memory. This policy is discussed in Section
3.5.1.

2. Re-LARS: An extension of LARS attempts to enhance the Quality of
Service (QoS) by including reward awareness in memory request prioriti-

zation. This policy is discussed in Section 3.5.2.

The proposed methods reduce deadline misses by 25.4% compared to FR-FCFS,
23.4% compared to RR, and 19.6% compared to EDF. Also, the acquired reward
improves by 33.9% compared to FR-FCFS, 32.4% compared to RR, and 14.8%
compared to EDF.The policies are fully discussed in Chapter 3.

In this dissertation, tasks or applications is used interchangeably.]

1.6.2 Migration Scheduling Policies for Hybrid DRAM-PCM
Memories

In this contribution, we have proposed three migration scheduling policies for hybrid
DRAM-PCM memories. Hybrid memory comprises two memory types, DRAM and
PCM, which exploit the benefits of DRAM and PCM. Page management in hybrid
memory is challenging due to the different characteristics of the memory types. The
random placement of pages may cause write-intensive pages to be placed in the PCM
partition, and the costlier writes for PCM memory may result in performance degra-

dation of such memories. Page migration is a method to improve the performance

11

Introduction

of hybrid memory systems, which helps to migrate pages between the partitions of
the hybrid memory. The two most crucial issues to address during page migration
are which pages to migrate and when to migrate a page.

We propose three-page migration scheduling policies. The proposed policies
migrate write-intensive pages from PCM to DRAM, which helps to improve memory
service time due to the high write latency of PCM memories. The proposed policies
perform migrations at regular intervals. The interval length is either dynamically
adjusted as in our first policy, SRS-Mig, or is statically decided as in our other two
proposed policies, Mig-Slot and Mig-QoS. The proposed policies schedule migration
while handling the regular read /write requests. Consequently, the policies enhance

the overall execution time of the system by improving memory service time.

e SRS-Mig: Selection and Run-time Scheduling of page Migration schedules the
migration along with regular memory accesses through dynamic slot-based
scheduling. The scheduling method considers the regular flow of read/write
requests and ensures that migration does not hamper the response time of
regular memory accesses. SRS-Mig reduces migration overhead and guarantees
future access to migrated pages, yielding improved execution time and memory

response time.

e Mig-Slot: The method uses a slot-based scheduling approach where the exe-
cution timeline is divided into equal-length slots. This method schedules the
migration in the reserved slot space without hampering regular requests. Thus,

the method helped to improve execution time and memory response time.

e Mig-QoS: Mig-QoS is an extension of Mig-Slot. Mig-QoS improves memory
service rate along with memory response time. For this to happen, instead of
always scheduling migration in the reserved space in the slot, Mig-QoS post-
pones migration based on the memory request rate. If we schedule migration
when the incoming request rate is high, it will affect the service response time
of regular requests. To avoid this, Mig-QoS postpones migrations if the in-
coming memory request rate is high and thus improves the memory service

rate.

On average, our proposed policies could improve application execution time by

27%, improve memory service time by 24%, improve the response time of PCM by

12

Thesis Contributions

21%, improve memory service rate by 25%, and reduce energy consumption by 22%
over baseline. The full description of these migration policies are given in Chapter
4.

1.6.3 De-stress Scheduling Policies for Pure PCM Memories

This work proposes two de-stress scheduling policies to control BTI aging. The
increasing scaling of transistors has made non-volatile memories more challenging in
terms of device reliability. Transistor aging reduces the lifetime and reliability of the
circuit as well as system performance. Transistor aging in PCMs is accelerated by
high voltage requirements, raised temperatures, increased power consumption, etc.
Biased Temperature Instability (BTI) is a major failure that causes transistor aging.
BTTI increases the threshold voltage. To avoid permanent failure, aging control
techniques regularly de-stress the circuit by lowering the voltage or eliminating the
stress voltage. De-stressing thereby facilitates recovery from an increase in threshold
voltage. The de-stress operations cease regular read/write requests. This, in turn,
hurts the average memory service time of the system. Therefore, de-stressing should
be dynamically controlled to balance BTI aging and system performance carefully.

We propose two de-stress scheduling policies, AGRAS and RODESA, which
schedule de-stress based on incoming memory request rate. The proposed methods
achieve better performance and reduce age degradation by dynamically scheduling
de-stress operations based on memory access rate. For this to happen, the meth-
ods monitor the rate of incoming requests and the current age. With the help of
threshold-based decisions, the proposed de-stress scheduling policies schedule de-
stress operations to control BTI aging while less hampering the service of regular

requests. The following variations of de-stress scheduling policies are proposed.

e AGRAS: We suggest an age and memory request rate-aware scheduling ap-
proach called AGRAS to manage device aging while preserving system perfor-
mance. AGRAS monitors the age and rate of incoming requests to schedule
the de-stress operation. AGRAS schedules the de-stress operation only when
the request rate falls below a threshold. This threshold value is dynamically

adjusted at regular intervals.

e RODESA: A request and opportunistic de-stress scheduler called RODESA
with two variations, RODESA-p and RODESA-b, are proposed. Based on the

13

Introduction

memory access pattern, both variations strategically schedule de-stress oper-
ations to control BTI aging. In order to lessen the impact on regular request
service and achieve lower age degradation, the suggested RODESA-p takes
into account the dynamic incoming memory request rate of executing applica-
tions and permits it to perform partial de-stress opportunistically. RODESA-b
proposes a bank-specific de-stress scheduling policy. It schedules de-stress in
the background based on the memory access pattern of the bank. Because the
background de-stress occurs concurrently with the normal request service, it

improves memory performance and reduces age degradation.

The proposed RODESA-p improves performance by 18%, and RODESA-b im-
proves performance by 25% compared to RegDes. The age degradation for RODESA-
p is 17%, whereas it is 21% for RODESA-b over RegDes. The detailed description

of each de-stress scheduling policy is given in Chapter 5.

1.6.4 Avenues for Improving Migration and Aging

Data placement in hybrid memory is complicated because of the different charac-
teristics of memory types. According to the needs of the system, page migration
facilitates the movement of pages between memory types to increase performance.
To reduce the increased write latency caused by PCM, state-of-the-art methods
move hot pages—which receive more write requests—to DRAM. In cases when the
hotness of the page is wrongly judged or the page almost exhausts its write requests
while in PCM, migrating such pages to DRAM turns out to be futile. To prevent
unsatisfactory page migrations and enhance hybrid memory performance, it is es-
sential to accurately identify candidates for page migrations and migrate at the right
time.

Besides the expensive writing, PCM memory can have reliability problems such
as Biased Temperature Instability (BTI), Hot Carrier Injection (HCI), Dielectric
breakdown, etc. The most important is BTI aging, which increases transistor thresh-
old voltage (vy,). An irreversible functional breakdown may result from BTI aging.
Current methods regularly de-stress/recover the circuit by removing the stress volt-
age to prevent permanent functional failure. De-stressing thus causes a delay in the
regular request service, which may hurt the program execution time. Therefore, it
is essential to plan de-stress procedures in addition to migration to assure hybrid

memory performance.

14

Thesis Contributions

We propose a write intensity-based migration scheme and an opportunistic de-
stress scheduling policy to enhance hybrid memory performance. The migration
policy selects page migration candidates based on write intensity, which reflects
the current memory behavior rather than the cumulative write access count. The
write-intensity-based page migration maximizes the hits in DRAM and improves
the execution time due to the low access latency of DRAM. Furthermore, to control
BTI aging, the memory controller buffers write-intensive pages from PCM in regular
slots using a migration buffer by the proposed policy. During the de-stress process,
these buffered pages are moved in the background to DRAM. Since the migration is
carried out in the background, the de-stress procedure partially offsets the overhead
of the migration. Therefore, the proposed policies maintain age degradation while
achieving improved execution time. The following variations of migration and de-

stress operations are proposed.

e WiMig: The technique carefully selects candidates for page migration based
on write intensity, the number of write requests received in a given time.
The method initiates page migration at regular intervals. The highest write-
intensive page is selected from a set of pages with a write access count greater
than a predefined threshold.

e WikForeMig: The second policy incorporates the concept of demotion to op-
timize the selection of migration candidates. The method demotes certain
pages from migration if it is not worth enough. Demoting a page means it is
no longer eligible for migration. The page with low write intensity and has
been in the queue for a long time is demoted from migration. It is anticipated
that in the future, there will be fewer writes to these kinds of pages. This aids
in stopping the migration of certain pages, which reduces the benefits of the

migration.

e DOPMig: The proposed method enhances the performance of hybrid memory
by migrating write-intensive pages to DRAM with the awareness of de-stress
operation to mitigate BTI aging. The method classifies pages as migration
candidates based on their write intensity and opportunistically migrates them
to DRAM in parallel with PCM de-stress operations. The policy improves

memory service time by performing de-stress operations at regular intervals

15

Introduction

and scheduling the migration of pages in the background. The memory con-
troller buffers write-intensive pages from PCM in regular slots using a migra-
tion buffer. During the de-stress operation, these buffered pages are moved
to DRAM in the background. Since the migration is carried out in the back-

ground, the de-stress procedure partially offsets the overhead of the migration.

By demoting less beneficial page from migration, the proposed WiForeMig policy
improve performance by 35%. The proposed DOPMig opportunistically migrates
pages during de-stress, and keeping the de-stress interval the same as RegDes im-

proves performance by 22%. These works are explained in Chapter 6.

1.7 Summary

Recent emergence of non-volatile memories has shifted the paradigm, and computer
architects are looking at them as an alternate choice for DRAM in the memory
hierarchy due their high density. These NVMs have high write latency, high write
energy and are prone to reliability issues. To exploit the benefits of both types of
memory, researchers have come up with the idea of hybrid DRAM-NVM memories.
In this dissertation, we aim to enhance the performance, utilisation, and longevity
of DRAM and PCM memories by dealing with their challenges and making them
capable candidates to fit into the memory hierarchy through effective scheduling
policies.

We have presented predictable memory request scheduling policies for DRAM
and PCM memories to improve performance. The presented QoS-aware memory
request schedulers consider the urgencies associated with the memory requests and
characteristics of memory types. To improve the utilisation of both DRAM and PCM
memories, we propose migration mechanisms to overcome the limitations caused by
the random placement of pages in the hybrid DRAM-PCM memories. Our re-
search intends to look into the memory access pattern and migrate write-intensive
pages while less hampering the service of regular requests. To improve reliability
and longevity of PCM memories, we propose aging control mechanisms through de-
stress scheduling. The proposed de-stress scheduling mechanisms opportunistically
schedule de-stress by monitoring the memory access rate to control early aging of
the PCM memories. Overall, the research aims to use DRAM and PCM memories

as main memory alternatives by improving memory service time and thus the execu-

16

Organization of Thesis

tion time of applications running on the cores. This dissertation proposes different
scheduling strategies for memory requests and service operations like de-stress and

migration.

1.8 Organization of Thesis

The rest of the thesis is organized as follows:

e Chapter 2 summarizes the background and state-of-the-art techniques related

to the contributions of the thesis.

e Chapter 3 presents the first contribution: the predictable memory request
scheduling policies for real-time systems with main memory as DRAM or
PCM. The QoS-aware memory request scheduler for DRAM and PCM in-
cludes the task-level information to schedule the memory requests and looks

into the disparity in read and write access latencies of these memories.

e Chapter 4 illustrates the migration scheduling policies to improve the perfor-
mance of hybrid DRAM-PCM memories. The scheduling policies use slot-

based migration scheduling for write-intensive pages.

e Chapter 5 presents the de-stress scheduling policies to control BTI aging in
PCM memories. The proposed methods consider the incoming memory re-
quest rate before scheduling de-stress to reduce the delay in service of regular

requests.

e Chapter 6 discusses the methods to improve the migration strategy and better
control BTI aging in hybrid memories. The chapter proposes a migration-
aware de-stress mechanism to enhance the performance of hybrid DRAM-PCM

memory.

e Chapter 7 finally conclude the thesis.

17

Background

Modern computer systems use memory controllers to access data from memory sys-
tems. Memory controllers manage such data access by judiciously multiplexing the
data bus and devices among multiple contending memory requests. The function of
a DRAM memory controller is to manage the flow of data into and out of DRAM
devices connected to that of the DRAM controller in the memory system. Based
on the underlying memory technology and its characteristics, the memory controller
manages the data flow differently. This chapter presents the different memory tech-
nologies, their properties, and existing techniques for performing various functions

of memory controllers.

The rest of the chapter is organized as follows: section 2.1 discusses different
main memory technologies like DRAM, NVMs, and Hybrid DRAM-NVM memories.
Their characteristics and organization are presented in detail in this section. The
challenges associated with different memory technologies are discussed in section 2.2.
This section gives an overview of how the memory controller handles the needs of
different memories to enhance performance. Existing solutions and drawbacks of the
state-of-the-art techniques are presented in sections 2.3, 2.4 and 2.5. These sections
present the existing techniques for the challenges associated with each memory type
and their advantages and disadvantages in detail. Section 2.6 finally concludes the

chapter.

18

Main Memory Technologies

2.1 Main Memory Technologies

Memory subsystems are essential in determining power consumption, dependability,
and application performance for all systems, from embedded devices to supercom-
puters. Traditional DRAM memories have long been the standard components of
primary memory systems. It is debatable that this technology can advance further
and meet the demands of modern multi-processor computers running data-intensive
applications. Emerging non-volatile memories (NVM) can offer many advantages
over current DRAM devices, such as low leakage power and higher density. Com-
pletely replacing DRAMs with these NVMs is not a suitable option due to the costlier
writes of such memories in terms of write endurance, write latency, and write en-
ergy. Also, NVMs are prone to reliability issues due to high voltage requirements.
Therefore, directly replacing DRAMs with these emerging NVMs is unsuitable. Hy-
brid memories, which combine the advantages of DRAM and NVMs, have evolved
as a solution to the drawbacks of both memory types and offer a balance between
performance, capacity, and persistence.

The following subsections provide a detailed analysis of different types of memory

technologies and their advantages and disadvantages.

2.1.1 Dynamic Random Access Memories (DRAM)

Figure 2.1 presents an overview of the DRAM memory architecture. A DRAM
chip has several banks that provide parallel data access from various banks. Every
DRAM bank comprises numerous rows and columns of storage cells arranged in a
two-dimensional array. A DRAM cell is composed of transistors and capacitors that
store the data. Every bank furthermore has a row-buffer. A row of data must be
brought to the row buffer before a data element corresponding to that row may be
accessed from the bank. A row hit happens when the requested data is already
present in the row buffer. This incurs lower latency than a row miss where the
requested data is absent in the row buffer.

To build a rank, multiple DRAM chips are assembled and operate in lockstep.
One or more ranks form a channel. All banks share a common set of command and
data buses on a channel. A memory controller uses the channel to access the DRAM
device. The memory controller is responsible for scheduling requests, creating the

commands corresponding to each request, scheduling the commands so that only one

19

Background

RANK | DRAMChip7 -

[DRAM Chip 1
DRAM Chip 0

Bank 0 Bank 7

olumn[0
m

£
)
-
<3
2}
@
(a]
2
o
o

Column
Address

Command Bus

oram | DRAM Memory Controller T
Address Bus Data Bus

Figure 2.1: DRAM memory organization

bank uses each bus at a time, and translating physical addresses as a combination
of channel, rank, bank, row, and column addresses.

The memory controller generates five different sorts of commands: no operation
(NOP), precharge (PRE), refresh (REF), column address strobe (CAS), and activate
(ACT). Using its row address, the activate (ACT) instruction retrieves a specific row
and places it into the bank’s row buffer. The required data in the row buffer can
be read or written using a column address strobe (CAS) command. To write the
contents of the row buffer back into the memory cells of a specific row, use the
precharge (PRE) command. A DRAM must be regularly refreshed using the refresh
(REF) command to maintain its stored data. There are tight timing requirements
for each of these commands, which all memory controller designs must meet. An
NOP command inserts empty cycles to meet these timing constraints. Double Data
Rate DRAM (DDRx DRAM) uses data bursts to improve data throughput. In
Double Data Rate DRAMSs, the memory controller prefetches data corresponding to
a requested column address and data from several adjacent addresses.

The arrays of sense amplifiers, used to read data from a memory cell, act as
row-buffers that provide temporary data storage. A memory controller can employ
two types of row-buffer management policies: the open-row policy and the closed-

page policy. The open-row policy keeps the row buffer open for as long as possible

20

Main Memory Technologies

and various columns of the same row can be accessed with minimum latency. The
row buffer is precharged only when a distinct memory row must be accessed or the
start of the refresh period is encountered. In contrast, the closed-page policy auto-
precharges the row buffer after each access. This strategy is intended to ideally
handle memory request patterns with low degrees of access locality and promote

accesses to random locations in memory.

2.1.2 Non-Volatile Memories (NVM)

Emerging non-volatile memory technologies are promising main memory candidates
that can store more data for a lower price than the costly silicon chips used in
common consumer electronics like cell phones, digital cameras, etc. The density of
dynamic random-access memory (DRAM) and the non-volatility of flash memory
are combined in emerging non-volatile memory technologies like magnetic random-
access memory (MRAM), spin-transfer torque random-access memory (STT-RAM),
ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and
resistive random-access memory (RRAM). As a result, these technologies have be-
come highly attractive and are a further choice for future memory hierarchies.

Unlike DRAM, magnetic storage devices are used to store the data instead of
an electric charge flow in MRAM. STT-RAM is a non-volatile MRAM that scales
more efficiently than conventional MRAM. The STT effect allows a spin-polarized
current to be used to change the orientation of a magnetic layer in a magnetic tunnel
junction or spin valve. FeRAM uses a ferroelectric material to achieve non-volatility,
exhibiting spontaneous polarization and reversible by an external electric field. The
principle of PCM involves the reversible phase transition of a chalcogenide glass from
its amorphous to crystalline state. This is accomplished by heating and cooling the
glass. RRAM is based on the memristor technology where the resistance change
based on polarity, magnitude, and duration of applied voltage.

In this dissertation, we focus our research to PCM because it has been well

studied and is considered to be a competitive alternative to DRAM-based memory.

2.1.2.1 Phase Change Memory (PCM)

Phase Change Random Access Memory (PCRAM) or Phase Change Memory (PCM)
[3] is a type of non-volatile memory that is the currently most matured emerging

memory technology. Figure 2.2 shows the basic structure of a PCM memory cell

21

Background

Top Electrode

E—

GST

i
o =

WL

Substrate

Figure 2.2: Represenatational view of a PCM cell

Amq!itude

RESET Pulse

SET| “ melting

SET Pulse

IRESET
/ Tcrystallization
lgan---HREQ

uls

teeao treser teer Time

Figure 2.3: Operations in PCM cell

consisting of a transistor and a phase change device. The cell consists of an access
transistor and a phase change material like GST (GeySbyTes, or Germanium, Anti-
mony, and Tellurium). The difference in the resistivity of this phase change material
is used to store a bit in the PCM cell. The phase change material can exist in either
an amorphous or crystalline state. PCM exploits the electrical resistivity of GST
between the two states to store information. A phase transition occurs when heat
and current are applied to the junction in the chalcogenide alloy. Because of the
consistent crystalline structure, the crystalline phase gets its name, and it has low
resistance. On the other hand, the disordered lattice of the amorphous phase offers
large resistance. The amorphous state of GST is obtained by heating GST to a high
temperature and cooling it down quickly. The crystalline state of GST is obtained
when GST is heated to a temperature between the crystallization and melting point

and cooled down quickly.

Each operation, such as reading, writing ”0,” and writing ”1”, requires a different

current, as shown in Figure 2.3. Writing bit "1’ is known as a SET operation, whereas

22

Main Memory Technologies

writing bit ’0” is known as a RESET operation. The RESET operation requires a
high amplitude electrical pulse for short duration to heat the phase-change material
above its melting temperature, while the SET operation heats the material to its
crystallization temperature by applying a moderate-amplitude electrical current for
long-duration. A READ operation typically involves reading the electrical resistance
of the PCM device, which indicates the amorphous (high-resistance, logical ‘0’) or
crystalline(low-resistance, logical ‘17) state of the PCM device. To read a bit from the
cell, a small voltage is applied across the GST. The applied voltage may result in the
creation of current because of the large resistance difference between the crystalline
and amorphous states of the changing material. The reading bit is identified by
sensing this generated current with the help of the access transistor. The latency of
the read operation in PCM cells is typically tens of nanoseconds.

The write latency of PCM is high compared to its read latency (3 times). The
current needed to write to a PCM cell increases the current variance, which sub-
sequently increases the resistance variability. Furthermore, among the SET and
RESET operations, SET requires low power and long latency, while RESET re-
quires relatively high power and small latency. Also, PCM write operation is a
highly energy-consuming process. Therefore, PCM cells can withstand only a lim-
ited number of writes (10® writes).

Along with these costlier writes, the increasing scaling of transistors has made
non-volatile memories more challenging in terms of device reliability, such as Bi-
ased Temperature Instability (BTI), Hot carrier injection (HCI) [4], and dielectric
breakdown [5] etc. The most important failure mechanism is BTT [6], which causes
an increase in threshold voltage (vy,) of transistors and leads to transistor aging.
The aging of the transistor steadily reduces the lifetime and system performance. In
PCMs, elevated temperature, high voltage requirement, increased power consump-

tion, etc., accelerate transistor aging.

2.1.3 Hybrid Memories

DRAM technology has significant drawbacks, including high idle power, poor scal-
ability, and low density. Even if emerging non-volatile memories overcome these
drawbacks, they still have shortcomings, such as low write endurance, high write
energy, and high write latency. Combining DRAM with non-volatile memory—Ilike
PCM, ReRAM, and STT-RAM- is a useful way to expand capacity and improve

23

Background

Hybrid
__ i Memory
: Hybrid . [Memory Controller]
: Memory : 5 !
[Memory Controller] DRAM
:
PCM |DRAM| | PCM

: : :
[Storage } [Storage }

Figure 2.4: Hybrid memory a) Parallel Organization, b)Hierarchical Organization

performance.

Hybrid DRAM-NVM memory has emerged in recent years and exploits the ben-
efit of both types of memories. Two primary designs for hybrid memory exist:
vertical or hierarchical organization and horizontal or parallel organization. The
first one arranges DRAM and NVM at different levels. DRAM acts as a cache or
write buffer for the lower-level NVM in this arrangement. The size of the DRAM
is small and NVM is accessed only when DRAM misses. The second one, as the
name indicates, places DRAM and NVM horizontally, and the linear address space
is shared. In parallel architecture, NVM and DRAM are coupled to the memory
bus, and a memory page is exclusively stored in any of the partitions. Figure 2.4a

and Figure 2.4b present the parallel and hierarchical organization of hybrid memory.

2.2 Challenges with Different Types of Memories

The memory controller receives memory requests from heterogeneous requestors,
such as processors, DMAs, and hardware accelerators. These requestors generate
diverse memory traffic in terms of arbitrary read/write transactions with variable
sizes on behalf of the applications they run. The memory controller acts as a con-
necting point between these requestors and the main memory. Based on the under-

lying memory type, the memory controller manages the spawned memory requests

24

Request Scheduling Techniques

to achieve better memory performance and, thus, improved system performance.
Along with regular read/write requests, the memory controller must also handle
other service operations that are required for the functioning of the memory types.
For example, DRAM must be refreshed regularly to restore the data in the DRAM
cell.

Similarly, regular de-stress operations need to be performed for NVM cells to
control the aging of the device. For hybrid memory, the pages can be randomly
placed in either partition. Due to the varying properties of different memory types,
memory pages may need to be correctly placed initially or migrated to another
partition at run time to achieve better performance. All these service operations
cause high penalties on memory performance as they delay the service of regular
read/write requests.

Therefore, the memory controller has to manage such service operations along
with regular requests to achieve a better memory performance and, thus, an im-
proved overall system performance. Researchers have devised different solutions
for these operations and proposed various memory controller models. The rest of
the sections in this chapter discusses the memory controller models to manage the

following operations :

1. Request scheduling techniques for pure DRAM and NVM memories
2. Page migration policies for hybrid DRAM-NVM memories

3. Aging control mechanisms for pure NVM techniques.

2.3 Request Scheduling Techniques

Even though a memory controller only needs to schedule individual instructions to
meet JEDEC timing requirements [7], a specifications for semiconductor memory
circuits. A front-end request scheduler is also part of the memory controller design,
which manages the order in which requests are processed. This scheduler helps to
achieve better memory service time. First Come First Serve (FCFS) is the basic
scheduling policy where the memory requests are scheduled in the order they arrive
at the memory controller.

First Row hit First Come First Serve (FR-FCFS) is a conventional memory

request scheduling strategy used earlier in most general purpose systems. The

25

Background

scheduling method prioritizes memory requests targeted to an open-row over the
closed-row requests. Among the open-row requests, the method schedule is in FCFS
order. FR-FCFS aims to maximize the throughput of the memory by prioritizing
ready accesses to an already-open row, that is, row hits. The goal of ATLAS [8] is to
increase system performance by giving priority to applications with lower achieved
memory service over other requests. Both these methods can cause unfair service
for some applications as the applications have a large number of row hits, or ap-
plications with a large number of requests will always get prioritized, and other

applications are starved.

There exist scheduling techniques [9-11] that attempt to solve this problem by
adding application awareness while scheduling requests. These methods maximize
memory throughput and provide fairness in service for applications executing on
the core. PAR-BS [9] processes requests as batches to avoid starvation and pro-
vide fairness. To optimize throughput, PAR-BS employs a parallelism-aware batch
scheduling policy that processes requests from a thread parallel to the bank. This

parallelism reduces the stall time experienced by a thread.

In order to increase system throughput further, Thread Cluster Memory Schedul-
ing (TCM) [10] dynamically groups threads with comparable memory access behav-
ior into two clusters: the latency-sensitive (memory-non-intensive) and the bandwidth-
sensitive (memory-intensive). The latency-sensitive cluster is given priority over
the bandwidth-sensitive cluster. The technique uses a niceness metric to alter-
nately shuffle the priority of threads in the bandwidth-sensitive cluster, allowing
each thread fair access while minimizing inter-thread interference. Lavanya et al.
propose a Blacklisting memory scheduler (BLISS) [11], which groups applications
into interference-vulnerable applications and interference-causing applications. The

vulnerable-to-interference group is prioritized over the interference-causing group.

Core-Aware Dynamic Scheduler (CADS), a multicore memory controller, pro-
posed by authors in [12] dynamically modifies its scheduling technique at run-
time through reinforcement learning (RL). This scheduler uses parallelism to ac-
cess several DRAM banks and locality between data requests from many cores. An
application-aware memory request scheduling strategy is introduced in [13]. The
method classifies memory requests into CPU and GPU requests. A dynamic bank
partitioning rule is applied to the CPU requests, and GPU requests are assigned

with criticality to determine the priority of requests.

26

Request Scheduling Techniques

Real-time memory controllers, on the other hand, demand predictability more
than fairness. Critical applications executing on real-time systems have a latency
bound, and the above-discussed techniques may not guarantee the latency bound
due to prioritization. The inability to provide such predictability forces real-time
systems to use very conservative estimates corresponding to service time latencies
of memory requests. This often leads to significantly increased worst-case execution

time estimation of the tasks, resulting in low resource usage efficiency.

2.3.1 Predictable Memory Request Scheduling for DRAM

Researchers have devised a few memory access scheduling methods where memory
requests or commands are scheduled to provide guaranteed latency bounds, as the
memory access scheduling policy plays a vital role in controlling the task completion
time and deadline misses.

A mixed-row policy memory controller is proposed by Gossen et al. in [14]
that keeps the row open for a predetermined period before closing it. The method
incorporates a command re-ordering method that sets lower limitations on the band-
widths allotted to memory requests by using fixed, precomputed patterns of SDRAM
commands. Reinke et al. propose a PRET memory controller [15], which employs
bank privatization for each requesting core. The DRAM accesses from different
cores are multiplexed using Time Division Multiplexing (TDM) and predetermine
the order of accesses.

A considerable reduction in memory utilisation might occur during bank priva-
tization, mainly if the workload is unevenly distributed among cores. Palloc [16]
proposed by Yun et al. avoids bank privatization by distributing memory pages
across different cores, whereas the method controls the bank sharing among concur-
rently executing applications.

Recent predictable memory controller designs look into the criticality levels of
applications executing on the cores. The criticality or temporal requirement of
applications divides these applications into HRT (Hard Real-Time) and SRT (Soft
Real-Time). HRT applications need strong latency guarantees, but SRT applications
need a good throughput and are not very concerned with worst-case time-bound.
Existing techniques like [17-20] are some of the criticality-aware predictable memory
controller designs.

A memory control technique for dual criticality task systems, abbreviated DCmc,

27

Background

is presented by Jalle et al. in [17]. In this method, the collection of banks is di-
vided into critical and non-critical ones. Round Robin (RR) scheduling is used in
critical banks assigned to critical requestors to ensure latency limits. The remaining
requestors are scheduled using FR-FCFS and assigned to non-critical banks to im-
prove average-case performance. An application criticality-aware bank-level address
mapping is proposed in [19]. The application set is partitioned into disjoint memory
access groups (MAGs). A particular MAG may comprise non-critical tasks (non-
critical MAG) or crucial tasks (critical MAG). Each bank is assigned a single critical
MAG and a set number of non-critical MAGs by the method, and applications in

the critical MAG are prioritized during request and command-level scheduling.

In [21], authors proposed a request bundling mechanism for mixed-criticality
applications. The method divides banks into HRT and SRT banks and follows
different arbitration schemes. HRT banks follow FCFS scheduling and enforce that
commands belonging to at most one HRT bank can be in the command queue. Mean-
while, SRT banks are scheduled in the FR-FCFS order. Furthermore, the method
also employs a command-level scheduler both in round and out round. Command
execution is divided into a sequence of rounds, arbitrated by the inRound sched-
uler, and interleaved with out-of-round time intervals, scheduled by the outRound

scheduler.

The distributed architecture of the Globally Arbitrated Memory Tree (GMT)
technique is presented in [20] and may expand in response to the number of memory
clients or applications. GMT assigns different arbitration policies for each applica-
tion based on their criticality. The one-gang-at-a-time scheduling policy is globally
enforced by the scheduler in RT-Gang [22] to ensure precise and tight Worst-Case
Execution Time (WCET). DRAMbulism [23] proposed by Reza et al. employs
read /write bundling based on request direction. The method achieves improved

WCET by pipelining commands in each bundle.
Using static priority scheduling, the techniques mentioned above [17, 19, 20, 23]

improve the service predictability of critical applications. These techniques can only
ensure latency bound for this fixed set of critical applications. As a result, these
techniques cannot be used for the general scheduling of memory requests spawned

from real-time applications with similar criticalities.

Furthermore, most of these techniques employ command-level scheduling, whereas
requests in these schemes are scheduled in FR-FCFS or TDM order. The main

28

Request Scheduling Techniques

memory is distributed in a relatively predictable manner via TDM-based arbitra-
tion. Under utilisation of the resource is one drawback of this strategy; if a processor
has a time slot reserved but does not use it, the slot cannot be supplied to another
processor. FR-FCFS may cause starvation for such applications, which spawns a
smaller number of row-hit requests. Furthermore, these FR-FCFS or TDM policies
do not consider the real-time requirements, which will impact the predictability of
real-time systems.

Therefore, a predictable memory request scheduling scheme for tasks with similar

criticalities is necessary for the performance enhancement of real-time systems.

2.3.2 Predictable Memory Request Scheduling for PCM

The scheduling policy varies based on the memory type. All the above-discussed
techniques consider the DRAM memory type. A recent trend towards the design of
real-time embedded systems is the use of Phase Change Memory (PCM) as the main
memory. PCM is desirable as it is non-volatile, scales better than DRAM, and is
more power efficient. The read and write access latency for DRAM are comparable,
while this is not true for PCM. The write latency for PCM is high and is 3-5 times
larger than the read latency. This may cause many tasks in the real-time embedded
systems to incur longer completion times and cause tasks to miss their deadlines.
Furthermore, due to the disparity in read and write latencies, these predictable
DRAM controller designs cannot be directly adapted to predictable PCM controller

designs.

2.3.2.1 Write Reduction and Wear-Leveling Techniques for PCM

Most of the state-of-the-art techniques [24-36] in PCMs deal with the write manage-
ment such as write reduction techniques or wear-leveling techniques. Write reduction
techniques are mainly divided into encoding or compression techniques. Data Com-
parison Write (DCW) [37] and Flip-N-Write (FNW) are compression [24] techniques
that aim to reduce unnecessary write to NVM by writing only the modified bits or
by data inversion. READ [31] reduces the number of writes by encoding only the
updated words of the blocks using fine granularity encoding. DATACON [34] routes
the memory requests to the most optimal overwritten memory regions, reducing the

latency and energy usage of PCM writes.

29

Background

In order to extend life, wear leveling approaches uniformly distribute the uneven
bitflip pressure among the PCM cells. The wear leveling techniques can be intra-line
or inter-line. Intra-line techniques balance the bitflip pressure inside memory cells,
whereas inter-line systems balance the write pressure across the physical memory
lines. Horizontal wear-leveling proposed in [28] rotates the data bits within the
memory lines. In [29], authors proposed WAlloc, an efficient wear-aware manual
memory allocator, which employs the Less Allocated First Out allocation policy.
A wear-leveling-aware counter mode for data encryption is presented in [30]. In
contrast to current encryption schemes, this method uses wear-leveling remappings

to reset the line counter and prevent counter overflow.

2.3.2.2 Scheduling Techniques for PCM

All these above-discussed methods aim to reduce the number of writes to the PCM
due to the costlier writes for such memory. There exist a few scheduling techniques
[38] for non-volatile memories, which aim to improve total memory performance
through write reduction. Hu et al. design an ILP-based write-aware scheduling
technique [38] to minimize the number of writes. The authors also propose a re-
computation algorithm that calculates the cost of recomputing related nodes that
produce each dirty page. The algorithm decides to discard dirty eviction or recom-
pute based on the cost.

PALP [39], a memory access scheduling mechanism proposed by Song et al.,
works with the observation that PCM banks are operated in independent partition.
The method introduces new memory commands to enable parallelism, which avoids
read /write conflict. The memory access scheduling mechanism prioritizes requests

that exploit partition-level parallelism.

2.3.2.3 Predictable Scheduling Techniques for PCM

While none of the above methods aim to improve task-level predictability, a few pre-
dictable memory controller designs exist for PCM that try to imbibe task/application-
level predictability to make PCM a more suitable main memory candidate for real-
time systems. With PCM serving as the underlying memory technology, Zhang
et al. [40] developed energy-efficient real-time task scheduling systems based on
the Earliest Deadline First (EDF) and Rate Monotonic (RM) techniques. By dy-

namically recovering the slack periods created when real task completion times are

30

Request Scheduling Techniques

shorter than worst-case execution times (WCETSs), both techniques try to maximize
system-level QoS through energy minimization.

Wang et al. address task scheduling using ILP and heuristic techniques in [41],
taking into account various temporal and memory constraints. In [42], authors pro-
pose a real-time schedulability analysis for transiently powered applications by com-
puting the energy and computing capability in the real-time domain. The schedu-
lability of such applications is analyzed using existing EDF and RM scheduling
policies.

The heuristic proposed in [43] uses per-cluster dynamic voltage and frequency
scaling (DVFS) and dynamic slack to minimize the system’s peak power usage during
runtime. The tasks are scheduled using EDF at design time, and at run time, the
most appropriate task is assigned to the currently available slack based on the impact
of the task on power and temperature. All these techniques deal with task-level
scheduling to improve the predictability of real-time systems while not considering
memory access predictability and performance.

Memory request scheduling is a technique to improve system predictability by
achieving predictable memory request service. In [44], Ferreira et al. suggested a
Phase Change Main Memory Architecture (PMMA) that uses DRAM as a page
cache for PCM-based main memory. They describe a read-write-read (RWR) strat-
egy to enhance endurance by writing only the dirty writes back to PCM. Zhou et
al. presented real-time scheduling solutions for PMMA architecture in [45], where
the memory requests are assigned with task priorities and schedule requests based
on these priorities.

A technique to determine the upper bound on the worst-case execution time
(WCET) of tasks taking contention on the shared PCM is proposed by Dasari et al.
in [46]. The method considers the interference produced by co-executing tasks and
task criticalities to compute the upper bound. Bazzaz et al. propose an NVM-based
data memory [47], which includes a special write buffer and multi-bank memory
module. The write buffer helps improve performance by reducing average memory

access latency.

Observations

State-of-the-art predictable PCM memory controller systems are focused on persis-

tently co-executing task sets, for which fixed statically assigned priorities can be

31

Background

employed based on the criticality of the tasks. Consequently, these memory con-
trollers cannot improve predictability by scheduling memory requests of a group
of real-time threads with similar criticalities. Furthermore, the disparity in read
and write latencies for PCM memories is not considered in most of the existing
predictable memory controller designs.

To meet real-time needs by enhancing memory service time, it is desirable to de-
velop predictable memory request scheduling strategies for DRAM and PCM mem-
ories, which incorporate task-level information into account. With this task-level
information, the predictable memory request scheduling policy for PCM memories
should take note of the variation in read and write latencies for such memories.
Chapter 3 presents predictable memory request scheduling policies for DRAM and
PCM memories, which adapt the run-time information of tasks to prioritize memory

requests distinctly.

2.4 Page Migration for Hybrid memories

Hybrid memory addresses the drawbacks of NVM and DRAM technologies by lever-
aging their respective advantages. Page migration is designed to rearrange data
pages in these memory divisions according to access patterns. Creating effective
page migration algorithms is challenging as the migration is a costlier process. When
we do page migration, the main questions are what data to migrate, when to mi-
grate, and how much to migrate. The page migration algorithms must answer these
questions. Furthermore, the organization of hybrid memory also impacts the ef-
fectiveness of the page migration algorithm. This subsection discusses the existing
solutions for these questions, which we divided into the following four categories:
(i) the topology of hybrid memory, (ii) decision criteria for candidate selection for
migration, (iii) granularity of migration, and (iv) the time of migration to minimize

the cost of migration.

2.4.1 Topology of Hybrid Memory

Hybrid memory is organized either in parallel /horizontally or hierarchically /vertically.
DRAM is used as a write buffer or cache in hierarchical organizations [3, 48-51].
Meanwhile, DRAM and NVM share the linear address space in a parallel architec-

ture. All these solutions aim to circumvent the costlier writes of NVMs by limiting

32

Page Migration for Hybrid memories

the number of writes to NVM memories.

The hierarchical solutions reduce the writes through some cache management
techniques. In [3], Qureshi et al. propose PCM-based hybrid memory where a page
is kept in the DRAM cache if it results in a page fault. In [48], Park et al. propose
an in-DRAM write buffer for hybrid memory. The proposed hybrid memory setup
has two DRAM parts; one acts as a DRAM cache for NVM, and the other is the in-
DRAM write buffer. The DRAM cache is managed at the DRAM row granularity,
and the dynamic-sized in-DRAM write buffer stores the dirty lines evicted from
the DRAM cache. By coalescing the writes, the in-DRAM write buffer reduces the
number of writes to the NVM partition in the hybrid memory.

Khouzani et al. discuss a segment and conflict-aware page allocation policy in
[49]. The proposed method identifies the segment information on page fault and LLC
writeback, and only the data segment is allocated to DRAM. Upon page fault for
a data segment, the physical page is mapped to a less-conflicting DRAM set. The
authors have presented a unique NVM-MLC-based memory storage architecture
in [50], which includes a DRAM buffer and a self-adaptive data filtering module
(SADFM). A large block set can be retrieved from the NVM at a time using a large
block fetch buffer, which improves spatial locality. The self-adaptive filtering buffer
helps to handle possibly reusable data between blocks, which collectively make a

large block set that has been removed from the large block fetch buffer.

The performance of these methods is hampered by their inability to utilize the
total memory bandwidth due to the finite quantity of DRAM capacity. The hori-
zontal or parallel architecture shares the address space, and memory pages can be

allocated exclusively to any partition.

There exist some state-of-the-art techniques [52] that propose a hybrid architec-
ture that can switch the hybrid memory organization between parallel and hierarchi-
cal. In [52], the authors suggest an energy-saving hybrid memory architecture that
alternates DRAM between a cache for NVM and a different DIMM for applications
running on the core.

Chen et al. propose Hardware/Software Cooperative Caching (HSCC) [53],
which logically supports cache/memory hierarchy while organizing NVM and DRAM
in flat address space. The NVM hot pages are cached in the DRAM partition. The
NVM pages with a hotness value, which is based on access count and recency, greater
than the dynamic fetching threshold are cached in DRAM. Wen et al. propose hard-

33

Background

ware accelerated memory manager HMMU [54]. Instead of moving the complete
page on an access, HMMU moves the requested block to the faster DRAM. The
pages with more cached blocks than a predefined threshold are swapped completely
to the faster DRAM.

The memory pages are exclusively placed in NVM and DRAM partitions in a
parallel architecture. The memory performance of such architecture can be enhanced
by migrating write-intensive pages into the DRAM partition because NVM memory
has a high write delay. However, given the significant migration overhead, it is
critical to properly identify hot pages in NVM and shift them to DRAM.

2.4.2 Migration Candidate Selection

Given the high write-latency of NVMs, the most advanced techniques [52, 55-62]
suggest effective page placement or migration strategies in which the pages with the
highest write count are either placed or migrated to DRAM.

CLOCK-DWF [55] is one of the earlier CLOCK-based policies in which new
pages for write requests are always loaded in DRAM. If a write request reaches the
pages in NVM memory, the pages in NVM will shift to DRAM. Double LRU [56],
an LRU-based policy, manages pages in DRAM and NVM using two LRU lists.
The read/write request count of the page is checked against the migration threshold
during page access, and if the count exceeds the threshold, the page is migrated
at fixed, regular intervals. The method always stores new pages in DRAM in this
manner.

Chen et al. propose Refinery swap [57] to reduce the number of swap opera-
tions. The page is swapped into DRAM if the number of writes crosses a predefined
threshold. Otherwise, the pages are loaded to NVM. The refinery swap technique
performs a write-aware swap-out operation, which checks the write count and re-
cency of a page before swapping out from DRAM using three LRU queues. M-Clock
mechanism described in [63] is an adaptive clock-based page migration that uses two
clock hands: a D-hand to point hot-dirty pages that are frequently referenced by
write operations in short periods, and a C-hand to point pages that are less fre-
quently referenced by write operations. M-clock uses a reference bit and a dirty bit
to identify if the page is write-intensive and thus monitored by D-hand.

In [64], Yang et al. propose a utility-based migration scheme where the utility of

a page depends on the stall time reduction of an application due to the migration of

34

Page Migration for Hybrid memories

the page and the sensitivity of the entire application towards system performance.
Based on a dynamic migration threshold, the proposed UH-Mem method migrates
pages with the highest utility to DRAM. In [65], authors proposed PageSeer, a
hardware-managed page swapping mechanism. The method introduces three types
of page-swapping mechanisms: regular swapping, MMU-triggered swapping, and
prefetch-triggered swapping. The regular swapping mechanism uses a hot page table
to determine the status of the page and trigger swapping from NVM to DRAM if the
access count crosses a predefined threshold. MMU-triggered swapping initiates when
the MMU signal reaches the memory controller. The prefetch-triggered swapping
is initiated when an LLC misses a request that the page table entry reaches the

memory controller.

Tan et al. propose APMigration [58, 59], an adaptive page migration policy
that focuses on reducing the number of invalid migrations. APMigration combines
two techniques: UlMigrate [58], which identifies page migration candidates and
reduces invalid migration, and Lazy write-back, which reduces unnecessary writes
in NVM. UIMigrate uses a unified hot page identification method for both cold and
hot page identification and places or migrates pages based on dynamic thresholds.
The thresholds get self-updated based on migration revenue, which is defined as the
advantage obtained on latency due to the migration. The Lazy write-back technique
remove unnecessary writes when the old NVM page is not used by other pages. The
method uses a bitmap to record the page access status and last used tables for NVM

and DRAM pages to record the page frame used when migrating a page.

Islam et al. propose on the fly page migration [60] technique, which transparently
migrates pages immediately when the page becomes hot. The method migrates
more recent hot pages with the help of a hardware unit called Migration Controller.
The on-chip remap table keeps track of the locations of the migrated pages and
periodically evicts the entries to make space available for new entries. A hardware-
assisted address reconciliation process reconciles pages evicted from the remapped
table. This additional migration controller allows the migration of new pages and

simultaneously addresses the reconciliation of older migrated pages.

In [66], authors proposed a dynamic hardware-based page migration algorithm,
which predicts the hotness of a page for migration based on periodical read and write
access frequencies. The authors also propose a self-migration mechanism within

DRAM to reduce energy consumption by distributing the written hot pages to fixed

35

Background

banks. Choi et al. propose TA-clock [67], where the access tendency of migration
candidate pages is checked to classify them based on the read and write threshold.
The method uses two clocks: a DRAM clock and a PCM clock. DRAM clock main-
tains the read /write count of each page to analyze the access tendency and points to
the write-intensive pages in DRAM. PCM clock maintains the read-intensive pages
migrated from the DRAM clock. The DRAM clock maintains the pages with access
tendency as Strong Write. If the selected page access tendency is Weak Read, the
page is evicted to disk. If it is Strong Read, the page is moved to PCM, whereas
the page with access tendency as Weak Write is maintained by the DRAM clock.

Fu et al. propose CAHRAM [61], which keeps the highly referred pages in DRAM
through a reference-based page migration scheme that uses a threshold to identify
such pages. Adnan et al. propose Mulit-clock [68], where the pages are classified as
hot, warm, and cold based on access frequency and recency. The method uses three
lists: active, inactive, and promotion lists for both higher-performing and lower-
performing partitions, which are used to identify migration candidates. Hot pages
in the active list of lower-performing partitions eventually move to the promotion
list and are promoted to higher-performing partitions. If required, the cold pages
remain inactive and will be demoted to the lower-performing partition.

These techniques mentioned above migrate pages at a larger granularity level;
a huge page is migrated during a single migration. Most of the memory references
are distributed across the small regions of a page of a larger size. Page migration
at the super page granularity, a large virtual page that maps to several continuous
physical small (base) pages, may result in an intolerable performance penalty due
to an enormous loss of DRAM capacity and bandwidth. The cost may exceed the
advantages of super page migration. Therefore, adjusting the granularity of page

migration is desirable to maximize its benefits.

2.4.3 Granularity of Migration

A set of state-of-the-art techniques exists that manage the granularity of page mi-
gration candidates to outweigh the benefit of migration over the cost of migration.
Wang et al. propose Rainbow [51], which manages hybrid memory by supporting
pages at both super page lightweight page granularity. Rainbow uses Translation
Look aside Buffer (TLB) and tries to reduce TLB misses through the grouping

of multiple smaller pages into larger super pages and lightweight migration. The

36

Page Migration for Hybrid memories

utility-based page migration policy depends on the total cycles saved due to migra-
tion.

Yan et al. in [69] proposes transparent huge page migration with an OS-integrated
multi-level memory management system. In fast and slow memory, the inactive list
keeps track of the cold pages, whereas the active list keeps track of the hot pages.
Pages in the inactive list of fast memory are candidates for migration to slow mem-
ory, while a page in an active list of slow memory needs to move to fast memory.
Heo et al. discuss an adaptive page migration policy with huge pages in [70]. The
method records the access history of each page using a bit vector. The method uses
a feature metric that correlates the fast memory hit ratio, page migration stabil-
ity, and accessed page ratio. Based on the value of the feature metric, the method
chooses the migration policy that maximizes the benefit of migration from the list

of migrations as LRU, Least Frequently Used (LFU), or random.

2.4.4 Time of Migration

Along with the selection of a migration candidate, it is also important to decide the
time of migration, that is, when the page should get migrated. The existing method
discussed in the previous subsections migrates pages at regular fixed intervals or
immediately when the page becomes hot. There exists very little literature that

discusses the time of migration.

Doudali et al. in [71] proposes a page scheduling policy Cori that tunes data
migration frequency at runtime adapted based on the data reuse distance. Cori
collects information regarding data reuse by profiling the executing application.
By analyzing the data reuse profile, the method provides a range of possible data
migration frequencies, and a tuner in the design selects the best possible frequency to
perform page migration. The decision to select frequency is based on the application

run time and resource use after performing the migration.

Most of the existing page migration techniques focus on identifying page migra-
tion candidates or reducing unwanted migrations. If these pages are not migrated
at the right time, the migration may not be beneficial as most accesses will be ser-
viced from NVM itself. Migrating the correctly identified page at the right time
is very important to maximize the hits in DRAM, which maximizes the memory

performance due to the lower access latency of DRAM compared to NVM.

37

Background

2.4.5 Victim Page Migration

Furthermore, there may be no free space in the DRAM while migrating a page
from NVM because of the limited capacity of the DRAM. Therefore, victim pages
must be transferred from DRAM to NVM to make room for pages migrating from
NVM. State-of-the-art techniques use LRU pages as victim pages. Migrating a write-
intensive victim page to NVM will hurt performance. Additionally, the overhead
of the migration is doubled by this victim page transfer. Thus, generating page
migration algorithms that carefully identify the victim page is preferable.

Chapter 4 discusses the proposed page migration scheduling policies for hybrid
DRAM-PCM memories. The techniques identify the time for migration to maximize
the hits in DRAM, leading to improved memory performance. Furthermore, Chapter

6 presents effective migration candidate selection policies to enhance performance.

2.5 Aging Control Mechanisms for Non-Volatile
Memories

NVMs such as phase-change memory (PCM) require high voltage to function. The
higher voltages accelerate the aging process of the CMOS components within the
hardware, resulting in either soft or hard defects. This further impacts the lifetime
of NVMs. It is necessary to propose reliability solutions to mitigate this aging and
improve the longevity of NVM memories.

Dielectric breakdown, hot carrier injection, and biased temperature instability
(BTI) are some of the reliability threats NVMs face, which affect the performance
and lifetime of such memories. The primary mechanism of failure, leading to an ele-
vation in threshold voltage, is BTI. The following subsections discuss the BTI aging
mechanism, existing measuring methods for BTI aging, and the countermeasures for

BTT aging.

2.5.1 BTI Aging in Non-Volatile Memories

A transistor is a basic building block of any modern electronic device with a gate,
source, and drain terminals. A voltage/current applied between any two terminals
controls the current through another pair of terminals. A Field Effect Transistor

(FET) uses an electric field to regulate the current flowing through a semiconductor.

38

Aging Control Mechanisms for Non-Volatile Memories

Recovered

4
I
Recovery Time

Figure 2.5: Stress and Recovery phases of BTI

Stress

MOSFET is a type of FET fabricated by the controlled oxidation of silicon. The
conductivity of a MOSFET is determined by the voltage applied to its insulated
gate. The minimum gate-to-source voltage required to create a conducting path
between the source and drain terminal is called threshold voltage and is denoted by
Veh.-

The constant demand for high performance and low power consumption pushes
aggressive technology scaling for transistors. At the same time, further down-scaling
leads to a major challenge, such as wear-out or aging, which becomes a reliability
threat. Bias Temperature Instability (BTI) [6, 72-79]. is a dominant aging factor
that causes basic parameter drifts for the transistor. BTI generates traps, and these
traps capture the charge carriers. Thus, it reduces the current flow and degrade
the system. In order to maintain the drain current to the pre-degraded state, a
higher voltage bias must be applied to the gate. Thus, BTI causes an increase
in threshold voltage (vy,) of transistors over time under voltage stress. There are
two types of BTI: negative bias temperature instability (NBTI) for pMOS under
negative voltage stress and positive bias temperature instability (PBTI) for nMOS
under positive stress voltage. The effect of PBTI is considered negligible in the
previous technologies but has become a significant issue with the introduction of

high-k and metal gates.

Based on the biased condition of the gate, BTI aging occurs in two phases:

39

Background

stress and recovery. During the stress phase, voltage is applied to the gate over a
period of time (transistor is ON, V,, < 0 for pMOS and V,, > 0 for nMOS). In the
recovery phase or de-stress phase, the stress voltage is removed. Figure 2.5 presents
the voltage shift difference when a single stress and recovery phase happened. It
is observed from the figure that after the recovery phase, there is a shift in the
threshold voltage as the circuit could only partially recover.

NBTTI has two degradation components: (i) a fixed and (ii) a recoverable. The
fixed or permanent component is not decreased after stress removal, while the re-
versible or recoverable component is based on the stress bias applied. The stress is
periodically interrupted by removing the stress voltage and making them passively

recover from the degradation due to stress.

2.5.2 BTI Aging Measuring Techniques

The critical challenge to solving BTT is correctly measuring degradation. The fol-

lowing are the most commonly used BTI degradation models:
1. Reaction-Diffusion Theory (RD theory) [72, 80, 81]

2. Switching oxide trap model (TD model) [81-83]

2.5.2.1 Reaction/Diffusion (RD) Model

According to the RD model [72, 80, 81], the Si-H bonds at the interface of the
transistor terminal are broken, and hydrogen diffuses away. The accumulation of
positive charges causes BTI degradation. As the name suggests, RD is a two-step
process: reaction (R) and diffusion (D). The RD model explains that the stress
voltage breaks the Si-H covalent bonds at the interface and is called reaction. At
the same time, the broken hydrogen atoms combine to form H, and diffuse towards
the gate during the diffusion step. During recovery, the stress voltage is removed,
and the dissociated Si—H bonds are healed. The dissociated bond may be almost
recovered if adequate recovery time is given. Most fragmented Si-H bonds typically
repair as H partners are available with silicon atoms Si+. However, complete recov-
ery might not be achievable if the H2 departs the gate dielectric after reaching the
metal gate. As a result of the missing bonding atomic H, the corresponding disso-
ciated Si-H bond may no longer be able to be repaired. Therefore, the threshold

voltage partially recovers to the level of prior stress and thus has a threshold voltage

40

Aging Control Mechanisms for Non-Volatile Memories

shift (Avy,). The interface state left at Si — SiOy due to diffusion of Hj increases
the threshold voltage.

The classic RD model describes the power law dependence of charge generation
during BTI. The fundamental power law defines the functional relationship between
any two quantities where one quantity varies as a power of another and is indepen-
dent of the initial values. RD model defines the power law relationship between time

and threshold voltage shift, i.e., Avy, o< t™ and is given by:

A’Uth =kt" + M (21)

where t is the stress or recovery time, the time exponent n is a function of hydrogen
species usually equal to 0.166 and is independent of process parameters, k exponen-
tially depends on voltage and temperature, and M is a material-dependent constant.

The above equation presents the RD model for constant voltage stress.

2.5.2.2 Trapping/De-trapping (TD) Model

The electric field applied between the gate and source terminals of a transistor
can cause the generation of holes/traps. These traps collect the charged carriers,
reducing the current flow between the drain and source terminals. The threshold
voltage of the device increases each time a trap captures a charge carrier. As a result
of charge loss, the device generates more charged traps and narrows the transistor
channel. In other words, the performance of the device will deteriorate as only a
reduced amount of current may pass through it.

This TD model describes how the generated traps affect the threshold voltage
shift. The created traps at the dielectric receive enough energy when a bias voltage
is supplied to capture the charged carriers responsible for the current flow between
the drain and source terminals. As a result, the number of carriers and the drain
current are reduced. In turn, this raises the threshold voltage, vy,. Removing the
bias releases trapped charges, which results in the threshold voltage shift being
recovered.

The threshold voltage shift increase relies upon the average number of available

traps. The TD model compute the Awvy, as follows:

Avy, = ¢[A +log(1 + Ct)] (2.2)

41

Background

where the value of ¢ is proportional to the number of available charged traps,
stress voltage, and temperature, A and C' are the model parameters and are based
on the trap’s time constants. These two parameters, A and C, are constant under a
given stress condition; hence, ¢ causes the shift in threshold voltage. The value of
A and C are 1.28 % 10~* and 0.0099 respectively. The mean value of ¢ is 0.0013 with
a standard deviation of 26% of the mean. The TD model describes the logarithmic

dependence of Avy, with stress time.

2.5.2.3 As-grown-generation (AG) model

Researchers have observed that NBTT kinetics no longer follows a simple power law
against stress time. So many models have been introduced, including variations of
RD and TD models, to solve this issue. These models are all able to match test data
satisfactorily. However, NBTI modeling aims to forecast NBTI over the long run,
beyond the duration of a practical test. As-grown-generation (AG) model [76, 84—
87] is introduced to provide the necessary prediction capacity. The As-Grown Hole
Traps (AHTs) and Generated Defects (GDs) classes of traps are separated by the AG
model. AHTs are the traps that follow filling-detrapping; that is, their subsequent
filling efficiency will not increase, and their energy levels remain the same. GDs
refer to traps that have changed to their various qualities, other than charge state,
either before or during the capture of a carrier. GD follows an empirical power law
against both stress time and gate.

The threshold voltage shift given by AG model is as follows:
Avyp, = A+ Gt (2.3)

where A and Gt" represent Awvy,(AHT) and Avy,(GD) [87]. If the BTI stress
voltage is eliminated (de-stress), annealing at high temperatures can recover AHT's

and a tiny percentage of GDs.

2.5.3 BTI Aging Countermeasures

The transistor parameter may significantly deviate from its nominal value when
operated at high temperatures and voltages, which is called transistor aging. BTI is
a critical aging factor that results in threshold voltage shifts at high temperatures

and voltage. The threshold voltage shift is proportional to aging (Awvy, o< Age). The

42

Aging Control Mechanisms for Non-Volatile Memories

—o&— continuous stress
[__e— interrupted stress

threshold voltage shift (a.u.)

0 1000

2000 3000 4000

stress time (s)

Figure 2.6: Threshold voltage shift (Avy,) during continuous and interrupted stress

circuit ages faster when there is a larger shift in threshold voltage. Furthermore, a

circuit with a quick aging period will have a shorter lifespan.

The transistor ages quickly because of the voltage shift brought on by continuous
stress. Due to the consistent effects of BTI on devices, the recovery or de-stressing
of transistors is given significant consideration. Compared to continuous stress, the
intermediate stress and recovery cycles reduce the absolute value of threshold shift
AVy,. The threshold voltage shift with respect to time for both continuous and

interrupted stress is shown in Figure 2.6.

It must be noted from the figure that interrupted stress with recovery cycles may,
over time, produce a less severe absolute shift to the threshold voltage. The threshold
voltage vy, quickly recovers following each stress interval. However, the subsequent
stress cycle sees a more gradual decline. The duty cycle of stress and recovery affects

the ratio of voltage shift degradation under interrupted and continuous stress.

Existing techniques aim to control the stress and de-stress cycle to control BTI
aging. Most of the works propose architectural solutions for cache memory as SRAM
is vulnerable to BTT aging due to long stress times. This section discusses hardware

and software-level BTT aging control mechanisms for SRAM and emerging NVMS.

Sadeghi et al. propose an aging mitigation mechanism for L1 cache [88]. The
method exchanges the content of data and instruction cache because of the observed

difference in duty cycles for these memories. The method assumes that both caches

43

Background

are equal in size and tries to make the duty cycle of both instruction and data cache
more uniform. The Flush Signal Generator, a special circuitry in the aging mitiga-
tion unit of the system, interrupts the CPU to switch instruction and data cache
in regular intervals. The aging rate of caches is controlled through this proposed

switching mechanism.

Authors in [89] propose a data-cache memory called NVDL-Cache, where the
operating voltage VDD of memory blocks is dynamically adjusted. There is a trade-
off when choosing the VDD of the cache. Higher VDD increases power usage and
quickens the aging process. Lower VDD, on the other hand, reduces memory sta-
bility and increases access speed to the SRAM cells. With a minimum impact on
cache memory latency, the proposed NVDL-Cache dynamically modifies the oper-
ating voltage of various memory blocks in cache memory to lower both static and
dynamic power consumption. The memory blocks that store the most significant

bits of cache words operate on lower VDD, whereas other blocks operate in normal
VDD.

In [90, 91], authors proposed MAGIC, a low-cost aging mitigation circuitry, and
an application-aware aging analysis for SRAM memories. The method proposes
an aging-aware memory netlist generator, which generates a netlist of SRAM for
selected points, and the aging parameters are set for this generated netlist. The
SRAM is simulated based on these configured parameters, and the impact of aging
on the timing of the SRAM is measured using sensing delay(SD) and bit line swing
(BS). Based on these SD and BS values, the method distributes read stress evenly
across the complete SRAM array.

Lin et al. in [92] proposes a majority-based technique to reduce circuit degra-
dation in STT-MRAM sense amplifiers. The authors observed that reading zeros
has more impact on BTI-induced degradation than reading ones. Considering these
observations, the technique adaptively inverted data in the cache way with the help
of a counter, an inversion bit, and a reference bit on each cache line. The method
also includes a sensing technique that can balance the quantity of reading-zero and
reading-one operations between two nearby sense amplifier groups and pairs two

groups of adjacent sense amplifiers into a cluster.

Zhang et al. propose a reliable architecture [93] for STT-MRAM sense amplifiers.
The architecture includes a switching transistor, which decreases the effect of NBTI

on pMOS devices. The authors observed that removing logic “0” applied at the

44

Summary

gate terminal can eliminate some of the interface traps that cause the NBTT effect.
Therefore, in the proposed sense amplifier architecture, the authors include switching
transistors, and these two transistors decrease the stress on the terminal when logic
“0” is applied at the terminal.

Song et al. propose HEBE [94], an architectural and software-level solution for
mitigating aging and lifetime issues in non-volatile memories. The method intro-
duces a dynamic way of solving the aging issue through the scheduling de-stress,
which controls the shift in threshold voltage. The method proposes an analytical
model for dynamically computing the aging of the circuit. The aging model com-
putes the aging of each memory bank based on the bank’s utilisation. Using this
aging model, the method proposes an intelligent scheduler that de-stress the periph-
eral circuitry of a memory bank only when its aging exceeds a critical threshold. The
intelligent memory request scheduler prioritizes requests to a bank whose peripheral
circuitry has the highest number of idle cycles. HEBE also introduces an isolation
transistor to decouple the different units of the peripheral circuits, which operate at
different voltages to perform de-stress operations independently.

Most of the existing aging control mechanisms propose hardware solutions, which
are more costly than software solutions. As the de-stress operation delays the regular
read /write requests, it is necessary to control the de-stress in order to maintain the
system performance. Chapter 5 discusses scheduling policies for de-stress to mitigate

BTT aging while balancing the memory performance in terms of service time.

2.6 Summary

The memory controller, which acts as a bridge between the processor and the mem-
ory device, manages access to the memory. The access latency of memory systems
depends on the design and implementation of memory controllers. Memory con-
troller designs manage the memory accesses to improve memory performance. Re-
quest ordering is important as it directly impacts the execution time of applications
running on the cores. The request ordering scheme varies based on the underlying
memory type and the executing applications. As the characteristics of each memory
type are different, the memory controller needs to look into the properties of each
memory type before performing the request ordering.

Over the years, many attempts have been made to schedule memory requests to

45

Background

improve throughput and fairness. Real-time memory designs focus on predictabil-
ity, and the scheduling policies aim to achieve bounded memory latency bounds.
There have been predictable memory scheduling policies for DRAM and PCM mem-
ory types, which take care of the criticality of tasks to order the memory requests
spawned from these tasks.

Furthermore, the memory controller handles different service operations like re-
fresh, de-stress, and migration, which vary according to the memory type and are
essential for the performance enhancement of different memory types. Researchers
have come up with different strategies to perform these service operations to im-
prove memory performance. In particular, researchers propose threshold-based page
migration techniques for hybrid DRAM-PCM memories, where the write count and
recency of a page are used to determine the migration candidates. This helps to
overcome PCM memory limitations in terms of costlier writes and leads to better
memory service time.

Even though all these memory service operations help to improve the perfor-
mance, they stall the regular execution and may negatively impact the memory
service time. It is beneficial if the ordering of regular read/write requests is made
aware of such operations and both regular requests and service operations are man-
aged to improve memory performance. Thus, scheduling of memory requests and
service operations can manage the memory service time effectively and make each

memory type a suitable candidate in the memory hierarchy for an efficient system.

46

Request Scheduling Policies for Pure
DRAM and Pure PCM memories

This chapter covers the first contribution to improving the performance of DRAM
and PCM memories. We proposed urgency-based memory access scheduling poli-
cies that achieve predictable memory service time and bounded worst-case execu-
tion time estimates. A row-buffer affinity-aware grouping of memory requests allows
higher throughput and predictable memory service time. The proposed PCM mem-
ory scheduling mechanism also considers the difference in read and write latency of
PCM memory. The proposed policies are evaluated on a quad-core system against

the current scheduling policies.

3.1 Introduction

Memory controller manages data access by multiplexing the memory bus and/or
memory device among contending memory requests from tasks. The order in which
the memory controller services memory requests significantly influences the delay
experienced by each task and the aggregate system performance. Existing memory
schedulers provide a certain degree of Quality of Service (QoS) sensitivity towards
memory resource access, but they still need to be improved for real-time systems.

This is because real-time systems demand fairness and predictable memory request

47

Request Scheduling Policies

service latencies to provide reasonable and bounded worst-case execution time esti-

mates for the tasks that spawn these memory access requests.

State-of-the-art predictable memory scheduler designs are oriented towards per-
sistently co-executing task sets, and fixed statically assigned priorities can be used
based on task criticalities. Therefore, these memory schedulers do not provide any
mechanisms for scheduling memory requests of a set of real-time tasks with similar
criticalities in a way that enhances predictability in the latencies of tasks. Exist-
ing approaches resort to static task priorities to obtain an ordering among memory

requests from a given task mix.

This work proposes predictable memory request scheduling policies for DRAM
and PCM memories. The essence of the scheduling mechanisms is founded on the
observation that the memory request service priority of a real-time task 7; (at time
instant ¢) may be considered to be affected by three connected factors: (i) the
amount of remaining service (e; — e}) to be provided for T; (where e; and €} denote
the total execution demand and amount of service already received by T; at time t),
(i) amount of time (D; —t) remaining before deadline D;, and (iii) expected number
of memory requests still to be serviced (n;) before the completion of execution of
T;. This expected number may be obtained by exhaustively profiling the task’s
execution over varied input data sets to derive a signature memory access pattern
for the task.

The ability to dynamically assign distinct task-aware priorities to different mem-
ory requests of a task could yield improved resource management in real-time sys-
tems with multiple contending requests of similar timeliness criticalities. In the
proposed scheduler, the memory controller is equipped with run-time information
about allowable response latencies corresponding to the memory requests from a
set of tasks. The service urgency of memory requests can be obtained from these
allowable response latencies, which are in tune with the real-time demand of the
spawning tasks. The priority for scheduling memory requests is obtained from these
known urgency demands to achieve the desired predictability in memory request
service time. While delivering acceptable predictability in memory request service
latencies, the scheduling policies also attempt to maintain high average through-
puts through a novel row-buffer affinity-aware memory request grouping scheme.
The proposed memory request scheduling schemes can be integrated with existing

command-level scheduling schemes.

48

System Model

The main contribution of this work are as follows:

e RMRS: Real-time Memory Request Scheduler (RMRS) is an online memory
control policy. In RMRS, run-time data about allowable response latencies
corresponding to the memory requests from a group of threads is available to

the memory controller.

e R-RMRS: Reward-aware RMRS (R-RMRS), which is an extension of the
RMRS algorithm. The aim of R-RMRS is to generate memory request sched-
ules so that the total QoS acquired by the system, when a set of soft real-time

tasks are executed is maximized over the length of the hyper-period.

e LARS: Latency Aware Request Scheduler (LARS) is proposed with the ob-
jective of choosing PCM as the main memory for real-time systems instead of
DRAM. LARS implements this predictability and maintains a high average
throughput using a novel row-buffer affinity-aware memory request grouping
scheme. To handle disparate read/write latencies, it gives priority to reads

over writes.

e Re-LARS: Reward-aware LARS maximizes the QoS acquired by the system

by imbibing reward-aware deadlines for memory requests.

e The proposed techniques are evaluated in Gemb [95] full system simulator
integrated with NVMain [96]. The techniques are compared against FR-FCFS
2], Round Robin (RR), Earliest Deadline First (EDF), and EDF-Write Queue
Full (EDF-WQF) [46]. The designed memory controller is seen to perform

satisfactorily over a comprehensive set of realistic test case scenarios.

This chapter is organized as follows: Proposed system model is discussed in 3.2.
Section 3.3 explains the technique of frame-based scheduling. Sections 3.4, and 3.5
illustrate the proposed request scheduling policies for DRAM and PCM memories.
Experimental setup and results are discussed in sections 3.6.1, 3.7, and 3.8. Finally,

we summarize this chapter in section 3.9.

3.2 System Model

In real-time embedded systems, the exhaustive set of applications that may ever

execute during system operation, is usually known apriori. Each application in the

49

Request Scheduling Policies

set is profiled offline to obtain information about its characteristic properties such
as worst-case execution time estimates, appropriate execution frequencies (period-
icities/deadlines). Such information becomes indispensable in order to determine
relative task priorities during online schedule generation. This section describes the
set of properties used in our scheduling algorithm.

Notations: The system considered in this work consists of n real-time peri-
odic/sporadic tasks T' = {13, T5,--- ,T,}, to be executed on a multi-core system.
Each task is characterized by a 8-tuple (s;, e;, n;, ki, p;, d;, mrew;, 6;), where s; refers
to the start time of current instance of T}, e; is its worst-case execution time demand,
n; denotes the average number of memory requests spawned by T; in each execution
instance (the value of n; is obtained from the execution profile of T; over various
input scenarios), at any given time k; represents the number of memory requests
already spawned by the current instance of T}, p; represents the period (inter arrival
time for sporadic tasks) and d; denotes its relative deadline (d; < p;). Table 3.1
contains a list of important notations and definitions.

Definitions:

e Fairness: Fairness is the practice of ensuring that all tasks receive a fair share

of resources.
e Criticality: Criticality defines the priority of the task.

e Quality of Service (QoS): We achieve QoS by prioritizing requests from tasks
within a real-time system to ensure that all these tasks meet their deadline by

providing deadline for each request.

e Predictability: Predictability is the ability to accurately forecast and guarantee
that a system will consistently meet the timing requirements of soft real-time

tasks executing on the cores.

e Hyperperiod: Hyperperiod is the least common multiple (LCM) of the periods

of all the tasks in a set of periodic tasks.

Reward and its Calculation: Any task within the given task set, has an inherent
relative importance or criticality value (sometimes alternatively referred to as static
priority). In this work, we have considered the criticality of a task in three different

dimensions: (i) The relative reward: Based on the time at which a task instance T;;

20

System Model

Table 3.1: Notations used

Notations | Definitions

T, Task 7

S; Start time of T;

e; Execution time of T;

n; Average number of memory requests spawned by T;
k; Number of memory requests already spawned by 7;
Di Period of T;

d; Deadline of T;

mrew; Maximum reward of T;

0; Reward becomes zero at extended deadline d; + 9;
Ryt Row hit latency

Riss Row miss latency

T Request ¢

A(r;) Task which spawns memory request r;

PA(r) Remaining time before the deadline of Tx(,)

HA(r;) Remaining number of memory requests to be spawned by Ta(,)
YA(r) Relative maximum reward

n(r;) Relative duration where reward of Ta(,,) reduces from mrewa,) to 0
fre Frame k

6] Lower bound on frame length

Xr; Targeted bank for 7;

Q-Xr; Queue of bank x,,

d,, Deadline of r;

Td,, Reward-aware deadline of r;

o A design constant

P, Current execution phase

I(P,) Number of instructions in P,

M(P,) Number of memory requests in P,

[(P,) Duration of P,

WA (ry) Rate of instruction execution

VA(ry) Remaining number of instructions

Faer) Number of instructions in future phases

YA, Remaining number of instructions in P,

TA(r:) Additional time remaining for completion of P,
Qaer) Average number of memory requests per instruction
KA(r) Expected number of memory requests in P,

51

Request Scheduling Policies

completes its execution, the system acquires a reward rew;;. The acquired reward
rew;; is equal to a maximum reward mrew;, when it completes execution on or
before its deadline d; (i.e., the completion time ¢;; < d;). (ii) The penalty to this
reward: If the execution delays beyond d;, acquired reward reduces at a constant
rate RRR; (= mrew;/d;). Here, RRR; is the reward reduction rate and is defined
as the rate at which T;’s reward reduces from its maximum value mrew; to zero.
Thus, if ¢;; of task instance Tj; is d; + = (< d; + 9;), the reward acquired becomes:
mrew;(1 —x/d;). The time instant d; + J; (relative to the arrival time) is referred to
as the extended deadline of task 7;. (iii) Zero reward beyond extended deadline: If
the completion of execution occurs at an instant even beyond the extended deadline,
the output received from the task no longer has any relevance to the system. Hence,
when execution completes at any instant beyond d; 4 9;, the obtained reward is zero.
As shown in equation 3.9 below, the overall priority (urgency) of a task’s memory
request is dependent on the relative criticalities along these three dimensions.
Memory Controller Model: The memory controller sees a memory request as
a b5-tuple representation (A(7;), pa(r,)s HA(r)s YA®r)> a(r)) Where, A(r;) denotes the
task id. of a spawned memory request 7;, pa(,) is the currently remaining time
before the deadline of the task Ta(,,) which has spawned r;, pa(,) is the expected
number of remaining memory requests to be spawned by the current instance of
TA(r)» Ya(r) Tepresents the relative maximum reward that may be obtained from
the corresponding task (cf. equation (3.3)) and 1a(,) denotes the relative duration
over which the reward associated with the task reduces from its maximum value to

zero (cf. equation (3.4)). The values of pa(,,) and pa(,) are calculated as follows:

PAGr) = Aa@ry) — [ar, — Sa(ry)] (3.1)
JAr = NA@;) — k‘A(ri), Zf NA(ry) > kA(ri) (32)
" 1, Otherwise

where, a,, denotes the instant at which request r; is spawned. The relative reward

Ya(r,) takes the form:

1 n
= - : 3.3
Va(r) = mrew / n(;:l mrew;) (3.3)

where mrew; denotes the maximum reward fetched by Tx(.,) on completion be-

fore the stipulated task deadline da(,,). The denominator in the RHS represents the

02

System Model

average reward over all tasks. Similarly, 7a(,) is symbolically represented as:

1 n
NA(r) = 0A(r) / EZ(SAW) (3.4)
j=1

Generally, in real-time embedded systems, the operating system knows about
task parameters such as task deadline, relative reward, and relative duration over
which the reward associated with a task reduces from its maximum value to zero.
Here, we propose an extended offline profiling mechanism to extract additional in-
formation about the applications’ memory behavior.

To know the number of memory requests spawned by a given set of applications,
each one of them is separately profiled while executing standalone. This profile
provides (i) an estimate of the total number of data access requests over the appli-
cation’s lifetime and (ii) a measure of the fraction of these requests that actually
goes to the main memory for service (given by the number of last level cache misses).
As we have used a private cache architecture, these measures are expected to remain
similar when the application co-executes with other applications in the system. By
appropriately adjusting the size of the cache used during standalone profiling, the
above estimates can be made to hold approximately during actual co-execution,
even in scenarios when the last level cache is shared. When a request goes to the
memory controller, the designed framework provides information on the estimated
number of remaining main memory requests from the following: (i) the expected
total number of data access requests for this application, (ii) the number of data ac-
cess requests spawned thus far (this information can be maintained by the OS) and
(iii) the approximate fraction of requests that actually goes to the main memory.

Memory Model: In this work, we assume a DRAM/PCM device to be com-
posed of a constant number b of banks. The banks follow an open-page row-buffer
management policy in which once a memory row is opened by bringing it to the
row-buffer, consecutive accesses to the same row can be conducted without closing
the row-buffer after each intermediate access. This allows row-hit response times to
be significantly reduced (to the value Ry;; = t RL for row-hit on a read request) com-
pared to a closed page policy where a row must be closed after each access. However,
in case of a row-miss the response time increases to R,,;ss = tRL +tRCD + tRP
where, tRP, tRC'D and tRL represent latencies related to different memory com-
mands. The delay between ACT to RD/WR commands is called tgcp, trp is the

53

Request Scheduling Policies

PRE to ACT delay, and tgy, is the delay between RD to Data Start. The different

types of commands are discussed in Chapter 2 (cf. section 2.1).

3.3 Working of a Frame-based Scheduling

Memory requests of threads executing on a multi-processor system at a given time
usually arrive as a continuous stream to the memory controller. On arrival, these
requests are buffered where they wait for their turn to be serviced. The scheduling
timeline is divided into non-overlapping frames, where the k' frame is denoted
as frg. Buffering, scheduling, and servicing of requests occur in a frame-by-frame
manner, such that the requests which arrive over the duration of frame fr, are
collected in a buffer and then serviced at the (k + 1) frame, after being scheduled
at the boundary of fry and fry,;. Thus, memory requests may get delayed at most
till the end of the current frame, but not across frames. Typically, the length of
a frame equals the service response time of the last request in the frame, subject
to a lower bound [when this response time is lower than 5. Although this lower
bound S on frame length may make the system slightly non-work conserving, it
allows a minimum number of memory requests to accumulate in the buffer before

being serviced and helps control overheads associated with the scheduler.

3.4 Predictable Memory Request Schedulers for
DRAM memories

This section describes the proposed predictable memory schedulers RMRS and R-
RMRS for DRAM memories. This scheduler assigns distinct memory request prior-
ities derived from allowable task response times at the instants when the requests
are spawned. Based on this dynamic prioritization mechanism, an efficient real-time
memory request scheduling scheme has been designed with the objective of max-
imizing aggregate system-level QoS for a set of soft real-time tasks. Along with
predictability, the developed scheduling mechanism is able to achieve high average

throughput with the help of a novel row-buffer affinity-aware grouping method.

o4

Predictable Memory Request Schedulers for DRAM memories

Algorithm 3.1: RM RS for frame fry
Input: Set of n pending requests R = {ry,rs,...r,} with the information
(A(73), pA@r)» Ha@y) for each request 7
Output: Schedule S;
1 Let the requests in R be targeted to b distinct banks {x1, x2, ... xs} and Let
(Q-x; be the queue corresponding to bank x;;
2 Determine the bank y; of each request 7;;
3 for all Q_x; do
4 L temp,; = Request_Handling(Q)_x;)

5 {Let r;,,,,., be the request at the front of temp;};
6 S = EDF_Multiplexer(temp);

3.4.1 RMRS: Real-time Memory Request Scheduler

Algorithm 3.1 presents the pseudo-code of RMRS. Let the set of requests R =
{ry,ra,...r,} (to be serviced in frame fry) be targeted to b distinct banks {x1, x2, X3 - - - Xo}-
The algorithm RMRS first identifies the bank x,. corresponding to each request r;
and places it in x,,’s bank queue Q)_x,,. RMRS then estimates an urgency bound
or deadline for each request r; in Q_x,, (cf. Algorithm 3.2). Assuming that all the
KA future requests associated with T,y will be equally spaced over the remaining

time pa(r,), the deadline d,, of r; is expressed as:

dr; = PA@y)HA(r) (3.5)

As discussed earlier, the response time associated with a miss request (Ryss) is
significantly higher than that of a hit request (Rj;). With this observation, it may
be inferred that the response time of the last request of a given batch of memory
requests can be reduced considerably by ordering the requests such that requests
targeted to the same row are scheduled consecutively. With this insight, RMRS
classifies the requests (to be scheduled in the ensuing frame) into groups based on
targeted rows, such that all requests in a group may be scheduled consecutively.
Each group Gy, (e{G1,Ga........ Gm}) contains the requests targeted towards row k,
sorted in non-decreasing order of deadlines. The groups are further sorted in non-
decreasing order of group deadlines. Here, the group deadline dg, of group G is

given by:

%)

Request Scheduling Policies

Algorithm 3.2: Request_Handling(Queue_x;)

1 Find deadline of each request r; in Queue_x, using equation 3.5;
2 {Let the requests in Queue_x; be targeted to m distinct rows, m < n}

10
11
12

13
14

15
16
17
18
19
20
21

Partition Queue_y; into m disjoint groups Gy, G,G,,, such that, G;
contains requests targeted to the i** row;

Sort each group in non-decreasing order of request deadlines;

Assign Aprey =n+1and Sy, = NULL;

while up to max_attempts do

Determine group deadlines (dg,), for all groups (G;);

Construct tentative schedule S, of requests in Queue_x;, by arranging
the groups in earliest group-deadline first order;

Compute turn around time ETT,, and laxity [z, for each request
r; € Sy, using equations 3.7 and 3.8;

Determine the total number \; of requests in G; for which lz,, <0
{lz,, < 0 = deadline miss};

Compute A = > \;;

if A =0 then
L return Sp;

else if A > \,.., then
L return S, ., ;

else
Assign S, = Sp and Aprey = A;
for each group G do
if Ay > 1 then
Find the last deadline miss request rf;
if i # |G| then
| Split Gy into G = {rf, .75}, G = {rhy, ol 1

Algorithm 3.3: EDF_Multiplexer (Queue)

1 while Queue /EMPTY do

2 Compare the deadlines of requests 71, ., 720000+ - Topront
3 Select the earliest deadline request 7y, .;

4 Add ryg,,,,, to schedule S;

5 return S;

26

Predictable Memory Request Schedulers for DRAM memories

dg, = maxd,, (3.6)

TjEGi
Now, a tentative schedule is generated based on the order as provided by the
sorted list of groups (line number 7 in Algorithm 3.2). The average response time

ART,, of a request 7; is estimated.

ART,, + Rpy, if r; is a row hit

. (3.7)
ART,; + Rpiss, Otherwise

ARﬂ,:{

where, r; immediately follows r; in the tentative schedule. Since DRAM operates
in burst mode, the average response time may vary for each request. Given ART,,,

the laxity lz,, of each request r; is calculated as:

Iz, =d, — ART,, (3.8)

In case there are no deadline misses, the generated tentative schedule is accepted
as the final schedule. Otherwise, a further set of steps are taken in an attempt to
reduce the number of deadline miss requests.

First, we observe that each group may contain zero or more requests which miss
the deadline. All groups which contain one or more deadline miss requests are
partitioned into two subgroups. For example, if {r¥ rk.r(“Gk‘} be the ordered list
of requests in group Gy and r¥ be the last request in G} which miss its deadline,
G} is partitioned into two subsets Gy and G- such that, Gy contains {r},....r¥}
and Gy contains {rf,,TfCGH}. Referring equation (3.6), it may be noted that
the group deadlines dg,, of all sub-groups Gy which contain deadline miss requests,
will be less than the group deadlines dg, of their parent groups Gy, provided Gy
1s non-empty. Subsequent to this operation, the two sub-groups are considered
individual groups, and their parent group is removed. Given the modified set of
groups, they are resorted based on group deadlines, and a tentative schedule of
requests is determined as before. The number of deadline miss requests in the new
schedule may possibly be less than in the preceding schedule because sub-groups
that contained deadline miss requests could have received higher priorities in the
new schedule due to lower group deadlines. However, the system must now incur
an overall increase in overhead caused by group partitioning. The newly generated
schedule is accepted as the final schedule if it does not contain any deadline miss

requests, whereas the previous tentative schedule becomes the final schedule if the

57

Request Scheduling Policies

number of deadline miss requests in it is not more than the number of misses in the
new schedule. Otherwise, the new schedule becomes the current tentative schedule
(when the number of deadline misses in it is less than that in the previous schedule)
based on the steps adopted to further reduce the number of deadline miss requests,
are re-applied. This process of splitting groups and scheduling is repeated for a
maximum number of attempts.

All banks are scheduled according to the procedure as discussed above. A sepa-
rate earliest deadline first multiplexer (cf. Algorithm 3.3) then compares the highest
priority request of all banks and chooses the request ry,, ,, with the most urgent
deadline across all banks and sends it to the command generator and then to DRAM
for service (line number 4 in Algorithm 3.3). This process continues until all requests

of all banks in the frame have been serviced.

3.4.1.1 Working Example

Figure 3.1 presents a working example for the proposed RMRS algorithm. Let
{R1,R2, R3,--- R10} be the set of requests spawned by tasks {T'1,72,73}. The
spawned tasks of each request and their deadlines are shown in Table 1 and Table 2
of Figure 3.1. Figure 3.1(A) shows the initial grouping of requests based on row-hit
where G1, G2, and G3 group requests target three different rows. The requests are
sorted based on the deadline within each group and are shown in Figure 3.1(B). The
group deadline, which is the maximum among the request deadlines, is computed
next. The groups are sorted based on the group deadline as shown in Figure 3.1(C).
Now, the estimated turnaround time for each request is computed. In this example,
we have taken the average service time of each request as 2 cycles. Based on the
turnaround time, we identify requests which miss their deadline. In this example,
R1, R2, and R5 miss the deadline. Therefore, we divide group G1 into G1’ and
G17 as shown in Figure 3.1(D). The group deadline for this new set of groups is
computed and scheduled again based on the group deadline. The sorted order is
shown in Figure 3.1 (E). This process of splitting groups and scheduling is repeated

until we get a schedule with a minimum number of deadline misses.

3.4.2 R-RMRS: Reward-aware RMRS

R-RMRS is an extension of the RMRS algorithm whose objective is to generate
memory request schedules such that the total reward TR (cf. equation (3.17))

o8

Predictable Memory Request Schedulers for DRAM memories

1 2 G3 Task Deadine
R1,R2,R4,R5 R3, R6, R9 R7, R8, R10 T1=(RLR2,R6,R8,R10} 30
T2 = {R3, R4, R7} 25
(A) .
= [R5, RO} 20
G1 G2 G3 Table: 1
R1,R2,R5,R4 R3, R9, R6 RS, R7, R10
(B) .
R2 9.33
G2 63 61 L I
R3, R9, R6 R8, R7, R10 R1,R2,R5,R4 R4 21
B
(C) R6 17
] RT 18
G2 G3 G1’ Gl R8 11
Ra.Ro.R6 | | me.r7.R10 | | Rimoms || Ra e i
R10 20
(D) Table: 2
Gl G2 G3 G1”
R1,R2,R5 R3, R9, R6 RS, R7, R10 R4
(E)

Figure 3.1: Working Fxample

99

Request Scheduling Policies

acquired by the system through the execution of a set of soft real-time tasks over
the length of the hyper-period, is maximized.

The essential difference between RMRS and R-RMRS is in the calculation of
memory request deadlines d,,. In RMRS, the deadlines are assigned in a fair manner
solely in terms of the deadline urgencies of the corresponding task instances by
making the memory request deadlines proportional to the amount of remaining
time for the task instance and the expected number of future memory requests
pending service, as shown in equation (3.5). Thus, d,. is completely oblivious of
the reward that may be fetched by a soft real-time task by completing within a
certain time limit (less than the extended deadline d; + ¢;). In comparison, R-
RMRS attempts to imbibe reward-awareness into memory request deadlines (r_d,,),
by making them proportionately fair to, (i) the relative maximum reward (ya(,))
that may be obtained from the corresponding task, and (ii) the relative duration
(Na(ry)) over which the reward associated with the task reduces from its maximum
value to zero.

The reward-aware urgency bound/deadline (r_d,,) associated with each request

r; is calculated as:

_ Pay) n ax (Na@,) — 1)
HA(r) YA(rs)
The RHS of equation (3.9) has two terms. The first term, which is same as the

RHS of equation (3.5), attempts to assign a memory request deadline in accordance

r_d,,

(3.9)

to task T'a(y,)’s instantaneous deadline urgency. This term is dynamic in the sense
that it may vary for different memory requests of Ta(,,). The second term moder-

ates the deadline obtained through the first term by adding (when 7a(,) > 1) or
ax(na(;)—1)

YA(r;))
imbibe reward-awareness in the determination of deadlines. Here, na(.,) (cf. equa-

subtracting (na(,) < 1) a task specific constant quantity (in order to
tion (3.4)) and ya¢,) (cf. equation (3.3)) relative deadline extension duration and
relative reward respectively.

Let us now focus on the static term. Firstly, the value of ya(,) becomes greater
than 1 when mrewa(,,) is higher than the average maximum reward over all tasks
(cf. equation (3.3)). Similarly na(,) > 1, when 6a(,) is higher than the average
duration over which the rewards of the tasks reduce from their maximum values to
zero (cf. equation (3.4)). Hence, na(,) > 1 means that the reward associated with

Ta(r;) reduces comparatively at a slower pace in comparison to others. It may be

60

Predictable Memory Request Schedulers for DRAM memories

noted that the static term is positive when 7., > 1, thus postponing the request
deadline with respect to that suggested by RMRS in equation (3.5). On the other
hand, when na(,) < 1, the static term becomes negative, preponing the R-RMRS
request deadline with respect to the corresponding RMRS deadline.

Further, it can be seen that when mrewa,) > average reward (yaw,) > 1),
the absolute value of the static term as gets lower, which restricts both positive as
well as negative shifts to the RMRS deadline effected through the static term. In
equation (3.9), « is a design constant which appropriately controls the amount of
RMRS deadline shift such that the obtained reward may be maximized for a given
system scenario. R-RMRS follows the steps of RMRS as discussed in Algorithm 3.1,
except that the deadline is calculated using equation (3.9) instead of equation (3.5).
It is important to incorporate the influence of a task’s criticality when determin-
ing the service urgency of a memory request via appropriate deadline assignment.
The reward-aware memory request deadline assignment mechanism actually aims to

incorporate awareness of a task’s priority.

3.4.3 Handling Phased Execution

The memory request deadline calculation mechanisms presented in sections 3.4.1 and
3.4.2 assume that the probability of memory access requests remains the same over
the execution lifespan of an application. This assumption may be a bit simplistic in
many real-world execution scenarios. Based on further analysis of the characteristics
of typical embedded applications, the definitions of the memory request deadline
have been extended to make it more accurately applicable in practical execution
scenarios. It is generally observed that processors typically tend to exhibit phased
execution behavior where each phase is characterized by the application performing
a similar set of activities/functions. Phenomena such as specific working set sizes,
locality of reference, etc. are founded on the existence of such characteristic behavior
associated with running programs. Similarly, we observed through our experimental
analysis that each phase also has a typical memory request pattern, with the average
memory access request rates of distinct phases being markedly different.

With this insight, memory profile traces (for each application when running stan-
dalone) have been generated, and the distinct phases in the execution lifespan of
each application considered are noted. Information captured for each phase include

number of instructions I(FP,), number of memory access requests M (P,) and phase

61

Request Scheduling Policies

0.02

Memory Hequé%l ﬁalérl —
LI I)

in

R(P,)=0.009
P) : R(P,)=0.012
En.ms— 11 RIEJFOOIEES 34t R(P,)=0.0135
= ;i ?/ TP # R(P,)=0.011
1 4
= uy s R(P,)=0.007
S oor} ;rwli b R(P,)=0.003
g it i
g |
= 0.005 '

2x10° 4x10® ex10° 8x10° 1x10°
Time (in ms)

Figure 3.2: Phased memory profile obtained during standalone execution of the patricia
application from MiBench

duration [(P,). A phase is thus represented as a 3-tuple (I(P,),M(P,), [(P,)). Mem-
ory request rate is assumed to remain the same for a given phase, while they may be
different for distinct phases. For example, let us consider the memory request profile
(bold red-colored line curves) for the Patricia application from the MiBench bench-
mark, shown in Fig 3.2. Observing the curve of the memory request rates over time,
we have divided the execution into seven phases such that memory request rates are
similar within a given phase and are significantly distinct from its preceding and suc-
ceeding phases. Intervals marked by the vertical lines represent distinct phases, while
the bold flat horizontal lines represent the average memory request rates (R) for each
phase. The 3-tuples (I(P,),M(P.), l[(P,)) characterising the different phases (P,) are
as follows: (43480944,8527, 1 % 10%), (21814226, 6505, 1.5 x 10°), (21790347, 7064, 2 *
10%), (21790347,7064, 2 x 10°), (21790347,7064,2 * 10°), (21790347,7064,2 % 10%),
(21790347,7064, 2 * 10°), (21790347,7064,2 * 10°), (307112857,97939,9 * 10°),
(199984069, 2387, 3 » 10°), (17614837, 2033,9.6 * 10°), (160171737,1007,1 * 107)

The relative deadline d,, of a memory request r; spawned by a task Ta(,) is
calculated as follows: Let va(,) and pa(,) be the number of instructions pending
execution and the remaining time before deadline for task Ta(,), at the instant (say
t) when r; is spawned. In order to complete before the stipulated duration pa,),

the minimum rate wa,) at which instructions must be executed for Tx(.,) is given

by:

62

Predictable Memory Request Schedulers for DRAM memories

WA(r) = PA(r)/VA(r) (3.10)

Given va(,) and information regarding different phases in Ta(,,) (obtained from
profile), the current execution phase P, ((I(P.),M(P.), I(P.))) of Ta(, can be
determined. The total number of instructions in the future phases (Fa(r,)) of Tae,)

can now be obtained as:

FA(H‘) = Ef:z+1I<Pj>A(T’i) (3'11)

where P denotes the number of phases in Tx(,). The remaining number of

instructions ¥, in P, becomes:

YA@),: = VA@r) — Fam) (3.12)

The remaining time 7a(,),. by which the current phase P, must be completed so
that task T'a(,) meets its deadline da,) (executing instructions at the rate wA(m),

is obtained as:

TA(),: = VA®M),z ¥ WA(r) (3.13)

where 1Ay, is the remaining number of instructions in P, and wa(,) is the rate
at which these instructions are executing.
The average number of memory requests per instruction in current execution

phase P, is:

QA = Mp,/1p, (3.14)

where Mp_ is the number of memory requests in P, and Ip is the number of
instructions in P,.

So, expected number of remaining memory requests ka(r,) to be spawned in phase
P, is

KA(r) = VA * QA (3.15)

where () is the remaining number of instructions in P, and Qa(.,) is the

average number of requests per instruction in P,.

63

Request Scheduling Policies

PCM Bank Mapping

Controller i
Req_t;aoe=R ! RDeq_type=W

Priority

High

\@mparator

PCM

Figure 3.3: LARS-System model

Thus, deadline d,, for memory request r; become:

TA T
dri = (rs) = (,UA(TZ.)/QA(”) (316)
Ra(r)

3.5 Predictable Memory Request Schedulers for
PCM memories

Embedded systems need energy-efficient and denser memory systems. Non-volatile
memory (NVM), such as Phase Change Memory (PCM) and Spin Transfer Torque
Magnetic RAM (STT-MRAM), is suitable for embedded systems as it is non-volatile,
denser, and has less leakage power. A recent trend towards the design of real-time
embedded systems is the use of Phase Change Memory (PCM) as main memory.
PCM is desirable as it is non-volatile, scales better than DRAM, and is more power
efficient. However, PCM has its own challenges: low endurance, slower and consume
more energy on writes.

The primary advantage of PCM memory against DRAM comes from its drasti-
cally lower leakage power dissipation due to the advantage of not requiring periodic
memory refresh, as with DRAM. However, execution times of tasks may become
significantly longer with PCM memories in the absence of additional carefully de-
signed memory access control mechanisms that attempt to minimize the negative

effects imposed by significantly larger write request service latencies.

64

Predictable Memory Request Schedulers for PCM memories

In addition to knowing the service urgency (which benefits even a DRAM sched-
uler like RMRS and R-RMRS), for PCM, we must cater to the disparity between
the service latencies for read and write requests. As the writes are slower, naively
scheduling them might affect the predictability of read requests. We propose two
scheduling policies: Latency-Aware Request Scheduling (LARS) and an extension
Reward-aware LARS (Re-LARS), which handle the disparity by prioritizing reads
over writes.

The considered platform model for LARS and Re-LARS is shown in Figure
3.3. The tasks executing on the cores spawn memory requests and arrive at the
memory controller. The PCM memory controller consists of separate read and write
request buffers, one per bank. Each read/write request is received and stored in
an appropriate buffer based on the targeted memory bank corresponding to the
request. In addition, the controller employs a per bank LARS/Re-LARS scheduler,
which prioritizes the requests waiting to be serviced by a given bank. Finally, the
scheduled requests from all bank buffers pass through an EDF comparator, which
multiplexes and chooses the most urgent request among them.

The design principles of both LARS and Re-LARS are based on the following in-
sight: while read requests must be serviced as soon as possible on arrival for seamless
progress of task execution on processors, write requests may be deferred by accumu-
lating them in a separate buffer provided previously written data may be directly read
from the buffer if needed. To enhance system performance with PCM memories, the
LARS algorithm selectively prioritizes reads over writes as follows. The read and
write requests are first received and batched within separate per bank read and
write buffers (RQ_x; and WQ_x; for bank x;, respectively). Within any frame, all
requests in RQ)_y; are serviced before the requests in WQ_x;.

3.5.1 LARS: Latency-Aware Request Scheduler

The scheduling policy is similar to the RMRS discussed for DRAM memory. Due to
the difference in memory service latencies for DRAM and PCM memories, this policy
employs separate read and write request buffers, one per bank. Each read/write
request is received and stored in an appropriate buffer based on the targeted memory
bank corresponding to the request.

For each bank x;, separate schedules RQ_x; and WQ_x; are generated for its

read and write queues. This separate schedule is based on the urgency of the request

65

Request Scheduling Policies

Table 3.2: Important system parameters

Components Parameters

Processor ARM, Dual,Quad and Octa core

L1 Cache Private, 32KB SRAM split I/D caches,2-way associative, 64B block
L2 Cache Private, 512KB SRAM, 64B block, 8-way associative

DRAM: 4GB, Single Channel

PCM: 4 GB, Single channel

DRAM:: Row hit (miss) = 40 (80) ns

PCM :: Row hit (read miss,write miss) = 40 (120,150) ns

Main Memory

Memory Latency

(cf. 3.5 and is similar to the deadline and row-buffer affinity-aware scheme discussed
rlfv‘ont’ /r2f7‘ont7 . .. be?‘ont) belng at the

front of each queue. In each frame, all read requests are first serviced before servicing

in Section 3.4.1. The highest priority requests (

the write requests. For this purpose, the schedules RQ)_y; of all banks x; are fed to
the Earliest Deadline First (EDF) multiplexer, which sequentially selects the read
requests in the earliest deadline first order until all read requests are serviced. After
this, all the W) _x; schedules are similarly fed to the EDF multiplexer and serviced.

The frame is complete after all write requests have been serviced.

3.5.2 Re-LARS: Reward-aware LARS

Re-LARS tries to imbibe reward awareness in the calculation of deadlines as in R-
RMRS (cf. Section 3.4.2. Here, the reads are also given priority over the writes to
cater to the disparity in the read and write latencies of PCM memories. Re-LARS
incorporates reward awareness by making the request deadline proportionately fair
to (i) the relative maximum reward (ya()) (cf. 3.3) that may be obtained from the
corresponding task, and (ii) the relative duration (na(,)) (cf. 3.4) over which the

reward associated with the task reduces from its maximum value to zero.

3.6 Evaluation

This section illustrates the experimental methodology used to examine the proposed

architecture.

3.6.1 Experimental Setup

We implemented our technique on a full system simulator Gem5 [95] integrated with

NVMain [96], a cycle-accurate main memory simulator designed for non-volatile

66

Evaluation

Table 3.3: Chosen tasks along with their execution times and memory intensity class
(From MiBench)

Benchmark Application](i’;};i;utlon Time Memory Intensity
gsm 0.77 Low
jpeg 0.71 Low
susan 1.58 Low
blowfish 0.49 Low
gsort 2791.06 Medium
dijkstra 1686.99 Medium
bitcount 588.69 Medium
CRC32 2009.99 High
patricia 4814.59 High
basicmath 476.4 High

PCMs. Table 3.2 shows the system parameters used for the evaluation. All of our
experiments are conducted using 10 real-time applications (tasks 7;) chosen from
the MiBench [97] benchmark. These applications are individually executed on a
single core to calculate their execution times (e;) when running standalone. Table
3.3 depicts the execution times along with the memory intensity classes of these
10 applications. Subsequently, 9 different task mixes (cf. Table 3.4) are created
by choosing various subsets of tasks from these 10 applications to be executed on
distinct number of cores such that each such task mix reflects a system with a given
average characteristic memory intensity. The memory controller has the knowledge
of parameters such as (s;, e;,n;, ki, p;, d;, mrew;, 6;) (cf. section 3.2) of each task T;.
The deadline d;, period p; and maximum reward mrew; values for the tasks have
been generated from normal distributions having different means (u) and standard
deviations(o) while §; (time interval beyond deadline after which the reward reduces

to zero) has been generated from uniform distributions.

Each memory request is associated with the following information: (i) task ID:
ID of the task which spawns the request (ii) request ID: ID of the memory re-
quest (iii) address: target address corresponding to request (iv) arrival time: time
at which the request is spawned. Simulation environment gives the memory re-
quest completion times as outputs, which are analyzed and consolidated to obtain
task completion time estimates. Finally, using these estimates, performance results

related to deadline misses and obtained reward are generated.

67

Request Scheduling Policies

Table 3.4: Workload mix details with task set used for each miz, allocated #cores and
associated memory intensity class

&Vf}:kload lggllezf Benchmark Application ﬁf;?l(s)i?;
Mix_1 2 jpeg,susan Low
Mix_2 2 gsort,bitcount Medium
Mix_3 2 basicmath,patricia High
Mix_4 4 blowfish,gsm Low
Mix_5 4 gsort,dijkstra,bitcount,blowfish Medium
Mix_6 4 dijkstra,CRC32,patricia,basicmath High
Mix_7 8 gsm,jpeg,blowfish,susan Low
Mix_8 8 dijkstra,qsort,bitcount,jpeg,susan Medium
Mix 9 8 patricia,basicmath,CRC32,qgsort,dijkstra | High

3.6.2 Complexity Analysis

The computational complexity of the proposed algorithm (cf. 3.1) can be analysed as
follows: Let m be the number of groups, B be the number of banks and n, the number
of requests. The complexity associated with the placement of requests in respective
bank queues, deadline computation for the n input requests, and partitioning of
these requests into m groups all incur O(n) overhead. The requests in each group
are sorted based on their deadlines. On average, the number of requests within a
group is n/m. The complexity related to the sorting of these n/m requests within
the m groups, become O(nlogn). The group deadline computation takes constant
amount of time for a single group, and hence for m groups, the complexity involved
is O(m). The overhead associated with the sorting of the m generated groups
is O(mlogm). Group splitting takes O(n) time. Finally, merging the B bank
schedules also incurs an overhead of O(n). As O(nlogn) is the dominant overhead
among all the above mentioned operations, the overall complexity of the algorithm

is O(nlogn).

3.6.3 Area Overhead

Let us assume a hypothetical frame in which n memory requests are spawned by
T tasks, and these requests are targeted to at most m distinct rows in any of the
available B banks. For each task spawns memory requests in a certain frame, the

memory controller stores the information of size approximately equal to 6bytes +

68

Evaluation

lognbits. For each memory request, the total storage required is 12bytes + (log T' +
log B)bits. The storage required for additional information is equal to 2logn +
2nlogn + 32 x m x Bx bits. Hence, total storage required for all the B banks is
(2 x n[logn] + 2 x [logn])B.

To get a numeric estimate of this storage overhead, we consider a typical frame
of size, say 100u s and assume that at most 6 tasks spawn memory requests within
this frame. From our simulation based experimentation set up, we have found that
a typical frame of size 100us may contain about 30 requests from all these 6 tasks
and these requests are targeted on an average to about 5 distinct groups. With
these values, the additional overhead becomes 13258 bits (=~ 1.65KB). This can be
considered as a tolerable overhead for the performance advantage that the scheme

is able to provide for real-time systems.

3.6.4 Performance Analysis

We have considered the following scheduling approaches for comparative perfor-

mance evaluation:

e FR-FCFS: A baseline memory request scheduler which prioritizes row-hit re-

quests first and then the oldest request.

e Round Robin (RR): A baseline memory request scheduler which cyclically
services requests from all cores, with each core being assigned a fixed time slot

within a cycle.

e Earliest Deadline First (EDF): A baseline memory request scheduler where

the memory requests are prioritized in earliest task deadline first order.

e EDF with Write Queue Full (EDF-WQF): An existing scheduler [46] that
uses PCM as main memory. It schedules memory requests with earliest task
deadline first. In addition, it uses separate queues for read and write requests
and prioritizes reads over writes. When the write queue is full, pending reads
and write requests are sorted based on deadlines and scheduled using earliest

deadline. This process is repeated when the write queue is full again.

e RMRS: Our proposed Real-time Memory Request Scheduler which assigns
distinct priorities to requests based on awareness of task deadline urgencies,

expected number of remaining memory requests and row-buffer affinities.

69

Request Scheduling Policies

e R-RMRS: This technique is an extension of RMRS, where awareness of rewards

associated with tasks are also used to determine memory request priorities.

e Phased RMRS: Another extension of RMRS which exploits phased behaviour
of tasks related to memory access intensities in determining memory request

priorities.

e Phased R-RMRS: Another extension of R-RMRS which exploits phased be-
haviour of tasks related to memory access intensities in determining memory

request priorities.

e LARS: Our proposal Latency-Aware Request Scheduler for PCM memories
assigns distinct priorities to memory requests derived from a combination of
allowable task response time, arrival time and remaining number of memory
requests to get serviced. A separate write and read queue is maintained and

prioritizes reads over writes. Schedules requests with smaller deadline first.

e Re-LARS: This technique is an extension of LARS, where memory request
deadlines are imbibed with reward-awareness to maximize acquired system

reward. The main memory is considered as PCM.

3.6.5 Performance Metrics

Two performance metrics have been derived for experimental evaluation. To obtain
a closed-form expression for the reward fetched by a given system, we assume a
persistent task set for which a static non-preemptive periodic CPU schedule is known
before putting the system in operation. Hence, the schedule repeats every hyper-
period H = LCM (p1, pa, ...pn) of the given task set, where LCM is the least common
multiple of all periods. Let T'R denote the total system reward gained by executing
the scheduled task instances over the length of a hyper-period. Thus, T'R is derived

as:

n H/pi

TR = Z Z rew;, (3.17)

i=1 j=1
where, rew;; is the reward obtained by the j instance of task T} within hyper-
period H. With this discussion on the system model assumed in our experimental

framework, we now present the two performance metrics used by us.

70

Results of DRAM Scheduling Policies

1. Normalized Reward (R,): Ratio of the actual reward for a CPU schedule
S, and the maximum possible reward that could possibly have been fetched by

the task instances in S. That is,

R. Actual reward obtained by S (3.18)

Maximum possible reward for S

2. Normalized Deadline Misses (D,): Ratio of the number of task in-
stances in a schedule S that miss their deadlines, and the total number of task
instances in S. That is,

Let e;; denote the execution time associated with 4% instance of task T} in
schedule S. Let x;; (v;;) be a binary variable which assumes the value of 1

when e;; > d; (e;; > d; + ;)

H/pi n

Dnorm = Z Z Tij Zg{/pz (319)
i|TheT =1 i=1
H/pi n

Dt =3 wy /D H/p (3.20)
i|TieT j=1 1=1

3.7 Results of DRAM Scheduling Policies

In subsection 3.7.1, 3.7.2, 3.7.3 and 3.7.5, experiments have been carried out on
the 9 workload mixes discussed in Table 3.4. Each data point for these experiments
depicts the average value of the results obtained from ten executions of all 9 workload
mixes. In subsection 3.7.4, workload mixes 1 and 3 are used to analyze impact of

memory intensity on normalized reward.

3.7.1 Deriving optimal «

This experiment is conducted to empirically determine the optimal value of a (cf.
equation (3.9)) which can maximize obtained rewards. Figure 3.4 depicts the average
normalized reward values, as « is varied in the range [0,1]. Each plot in Figure
3.4 presents a specific scenario in which the workloads associated with all tasks
are generated within a specific range. Here, the workload imparted by any task
T; has been defined by the combination of the following 2 parameters: execution-

time/period (e;/p;) and execution-time/deadline (e;/d;). The values of ¢; (d; + ¢;

71

Request Scheduling Policies

€/p=0.2-0.3, £/d=0.3-0.5
€/p=0.2-0.3, 8/d=0.5-0.7
e/p=0.1-0.2, €/d=0.3-0.5
e/p=0.1-0.2, €/d=0.5-0.7 —K—

Normalized reward (R, orm)

Alpha (o)

Figure 3.4: Deriving optimal o

denotes the extended deadline) for any task 7; is generated randomly from a uniform
distribution [0.6(p; — d;), p; — d;]. From the figure, it may be observed that higher
the system load imparted by a workload mix, lower becomes the reward acquired.
For a fixed e;/p; range (say, [0.1,0.2]), the plot with smaller e;/d; achieves better
rewards. This may be attributed to the fact that for fixed values of p;, lower values
of d; lead to higher average ¢; values. Hence for any workload mix, rewards reduce
at a slower pace when e;/d; values are smaller. Similarly, for a fixed e;/d; range (say,
[0.3,0.5]), the plot with smaller e;/p; delivers better rewards, as Figure 3.4 shows.
In the calculation of R-RMRS deadlines r_d,, (cf. equation (3.9)), we observe that
higher values of a boosts both positive and negative shifts to the RMRS deadline
d,, (cf. equation (3.5)). In this regard, it may be appreciated that both very small
and very large shifts to the RMRS deadline is detrimental to the achievement of
high aggregate rewards as such shifts tend to adversely affect the response latencies

of other requests.

From the figure, we see that the system delivers highest rewards when o = 0.3,
for all plots. Reward values for @« = 0 depicts the scenario when the R-RMRS
request deadlines are same as the RMRS deadlines (cf. equations (3.5) and (3.9)).
Hence, we selected a = 0.3 for R-RMRS and Phased R-RMRS.

72

Results of DRAM Scheduling Policies

FR-FCFS EDF R-RMRS —¢— FR-FCFS EDF R-RMRS —¢—
RR RMRS —@— RR RMRS —@—

Normalized dealdine miss
Normalized dealdine miss

Y & o S & &) & o & S &
System load (U) System load (U)

®) (b)
Figure 3.5: (a) Dyorm, (b) D2

norm

3.7.2 System load Vs. D,y

In Figure 3.5a, we plot normalized deadline misses D, (cf. equation (3.19))
for R-RMRS, RMRS, FR-FCFS, and RR, as the system load U (= > (e;/d;)) is
varied between 50% and 100%. The experiment is conducted by assuming « to be
0.3 for R-RMRS. Reward Reduction Rate (RRR;) of a task T; is defined as the
rate at which the reward reduces from its maximum value to zero. Symbolically,
RRR; = mrew;/(§; — x + d;), where z is the completion time of task T; relative to
the start of the task. To conduct this experiment, RRR; is in the range 0.4 and 0.7.
It is observed that normalized deadline misses D, incurred by FR-FCFS, RR
and EDF are significantly higher than both RMRS and R-RMRS for all cases. This
shows that the use of task-level characteristics along with the run-time information
associated with them have proved to be effective in the proposed strategies towards
controlling deadline misses.

For example, reduction in D,,., for R-RMRS is 16.9% and RMRS is 25.4%
compared to FR-FCFS, for system load U = 80%. Similarly, for R-RMRS, it is
15.5%, and RMRS is 23.4% compared to RR, for system load U = 80%.

3.7.3 System load Vs. D!

norm

Figure 3.5b shows the normalized extended deadline misses D¢~ (cf. equation

(3.20))obtained when the memory request scheduling follows FR-FCFS, RR, and the
proposed RMRS and R-RMRS. The value of « is taken as 0.4, RRR; is in the range

73

Request Scheduling Policies

Table 3.5: Comparison of deadline misses

D_norm D_ext_norm
FR-FCFS | RR | EDF | FR-FCFS | RR | EDF
RMRS -25.4 -23.4 | -12.5 | -26.4 -23.5 | -9.8
R-RMRS | -16.9 -15.5 | -6.25 | -35.8 -33.3 | -19.6

0.4 — 0.7 and the system load U varied between 50% and 100%. From the figure,
we can see that with distinct task-aware priorities assigned to memory requests,
both the proposed methods, RMRS and R-RMRS, improve the task completion
times. For example, reduction in D%~ for RMRS is 26.4% and R-RMRS is 35.8%
compared to FR-FCFS, for system load U = 80%. Similarly, for RMRS, it is 23.5%,
and R-RMRS is 33.3% compared to RR, for system load U = 80%.The reduction in
Dert - for RMRS is 9.8% and for R-RMRS is 19.6% compared to EDF, for system
load U = 70%.

The poor performance of FR-FCFS and RR may be attributed to the fact that
both these algorithms are not deadline urgency-aware. While FR-FCFS targets
throughput maximization through row-buffer affinity awareness, RR attempts to be
fair by providing equal opportunities to memory requests from different applica-
tions. Hence, although FR-FCFS and RR with their distinct design objectives have
found suitable applications in many systems, they are both ignorant about task
deadlines and are therefore, seen to perform equally poorly for real-time systems.
We also observe that due to its deadline awareness, EDF is able to perform bet-
ter than FR-FCFS. However, results for EDF may be observed to be significantly
poorer compared to RMRS/R-RMRS because, although task deadline-aware, EDF
is ignorant about the expected number of remaining memory requests, row-buffer

affinities, and task rewards.

Comparing the proposed RMRS and R-RMRS strategies, it may be observed
that the reward unaware strategy RMRS which attempts to solely minimize misses of
deadline d;, is able to perform better than the reward aware strategy R-RMRS with
respect to the plots for D,,y.n. In comparison, the reward aware strategy R-RMRS
performs slightly better than RMRS with respect to the plots for D¢ . Table 3.5
presents the normalized deadline misses obtained for RMRS and R-RMRS compared
to FR-FCFS, and RR for a system load U = 80%. Negative values represent the

reduction in deadline misses. In particular, R-RMRS reduces deadline miss by 16.9%

74

Results of DRAM Scheduling Policies

RMRS —@— R-RMRS —g— RMRS R-RMRS
Phased RMRS ——— Phased R-RMRS —— Phased RMRS ——— Phased R-RMRS —}—
» »
& =
5 Q
= £
= =
3 g
=l b=}
e el
31 5]
N N
=3 <
g g
= -
S)
Z 4
System load (U) System load (U)
() (b)

Figure 3.6: (a) Effect of phased execution on Dyorm, (b)Effect of phased execution on
De:vt

over FR-FCFS.
Effect of phased execution on D,,,,, and D
Figure 3.6a and Figure 3.6b plot the normalized deadline misses and extended
deadline misses for RMRS, Phased RMRS, R-RMRS, and Phased R-RMRS. From
the figures it may be noted that, Phased RMRS and Phased R-RMRS suffer lower
deadline misses compared to their phase-unaware counterparts. This happens be-
cause phased versions of the algorithms are able to exploit their better awareness
of instantaneous memory access intensities for a more precise estimation of re-
quest deadlines. Such accurate deadline urgency estimation in turn, helps towards
smoother task execution progress, ultimately resulting in lower task deadline misses.
For example, with system load U = 70%, reduction in D¢ for Phased RMRS is

6.5% and for Phased R-RMRS is 12.1%, compared to their phase-unaware counter-
parts.

3.7.4 Effect of memory intensity on Reward

Figure 3.7a and 3.7b shows the normalized rewards obtained using RMRS, R-RMRS,
RR and FR-FCFS for two specific workload mixes Mix_1 and Mix_10, which are
marked by low and high memory intensities, respectively. In this experiment, RRR;
values of all tasks vary in the range [0.4,0.7]. The value of « is assumed to be 0.4
for R-RMRS. Figure 3.7a and 3.7b depicts plots for R,,.» as the system load U
(= > (e;/d;)) is varied between 50% and 100%. From the figures, it may be ob-

1)

Request Scheduling Policies

FR-FCFS EDF R-RMRS —¢— FR-FCFS EDF R-RMRS —¢—
RR RMRS —@— RR RMRS —@—

Normalized dealdine miss
Normalized dealdine miss

@Q QJQ /\Q %0 Q‘Q \QQ
System load (U) System load (U)
(a) (b)

Figure 3.7: (a) Effect of low memory intensity workload mix on Ryorm, (b) Effect of high
memory intensity workload miz on Ryuorm

Table 3.6: Comparison of reward

Low Intensity High Intensity
FR-FCFS | RR | EDF | FR-FCFS | RR | EDF
RMRS 15.3 14 |6.75 | 29.8 26.8 | 5.35
R-RMRS | 33.9 32.4 | 14.86 | 474 44 | 8.92

served that all the presented strategies deliver better results for the lower intensity
memory workload Mix_1 compared to higher intensity memory workload Mix_10.
This is because the number of memory requests per unit time that arrive at the
controller is relatively lower for Mix_1, giving the controller a better opportunity
to appropriately reorder the memory requests leading to higher throughput as well
as rewards. FR-FCFS, RR and EDF are seen to deliver significantly poorer re-
wards compared to the proposed strategies due to better deadline awareness for
both Mix_1 and Mix_10. It may be noted that, with a frame-based deadline-aware
group reordering approach, the proposed schemes are able to judiciously balance
both throughput and timeliness, leading to better performance as seen in the figure.
In addition, being equipped with reward awareness (cf. equation (3.9)), R-RMRS is
able to deliver better rewards than RMRS in all scenarios.

Figure 3.7a shows that R-RMRS delivers 33.9% better normalized rewards com-
pared to FR-FCFS and 32.4% compared to RR, for system load U = 80%. In
comparison, RMRS is able to provide 15.4% better normalized rewards compared
to FR-FCFS and 14% compared to RR for the same system load (U = 80%). For

76

Results of DRAM Scheduling Policies

RMRS —@— R-RMRS —g—
Phased RMRS] Phased R-RMRS ——

=

Normalized reward (R,orm)

02 -

S & o & o &
System load (U)

Figure 3.8: Effect of phased execution on Ruorm

a system load U = 80%, the normalized reward obtained for Mix_10, when mem-
ory scheduling follows RMRS is 29.8% and 26.8% compared to FR-FCFS and RR,
respectively and when memory scheduling follows R-RMRS, it is 47.4% and 44%
compared to FR-FCFS and RR respectively. Table 3.6 presents the normalized re-
ward obtained for RMRS and R-RMRS compared to FR-FCFS and RR when the
system load U = 80%. For example, RMRS acquires 15.3% better reward compared

to FR-FCFS for a low memory intensity mix.

As FR-FCFS,RR EDF are reward unaware in addition to being deadline unaware,
for this case as well, they may be observed to perform poorly with respect to the

proposed schemes.
Effect of phased execution on R,

Figure 3.8 shows the normalized reward R, obtained using RMRS, phased
RMRS, R-RMRS, and Phased R-RMRS. It may be observed that due to similar
reasons as discussed for Figure 3.6a and Figure 3.6b, Phased RMRS (Phased R-
RMRS) outperforms RMRS (R-RMRS) in terms of delivered normalized rewards.
For example, Phased RMRS (Phased R-RMRS) is able to achieve 6.4% (8.2%) higher
normalized rewards compared to RMRS (R-RMRS), for system load U = 70%.

7

Request Scheduling Policies

RRR;=[0.4,0.7] (R-RMRS) —K— RRRi=[1,2] (RMRS) —&— RRR;=[0.4,0.7] (R-RMRS) —K— RRRi=[1,2] (RMRS)
RRR;=[0.4,0.7] (RMRS) —@— RRR;=[2,3] (R-RMRS) —}— RRR;=[0.4,0.7] (RMRS) —@— RRRi=[2,3] (R-RMRS)

RRRi=[1,2] (R-RMRS) —3¢— RRR;=[2,3] (RMRS) [RRRi=[1,2] (R-RMRS) —3¢—

Normalized reward (R, o)

0.2

Normalized reward (R, orm)

(,)0 QJQ /\Q %0 Q‘Q \00
System load (U) System load (U)
(a) (b)

Figure 3.9: (a) Effect of reward reduction rates (RRR;) (b) Shared Vs. Private Banks

3.7.5 Effect of reward reduction rates (RRR;) of tasks on
Rnorm

In this experiment, we present plots for the normalized rewards acquired by R-
RMRS and RMRS as the system load U (= > (e;/d;)) is varied between 50% and
100%. This experiment assumes the value of o to be 0.4 for R-RMRS. Each plot
in Figure 3.9a represents scenarios where the RRR; (= mrew;/(d; — x + d;)) values
of the tasks in all data sets are within a specific range. It may be observed that
lower the RRR; range, higher becomes the rewards acquired for both R-RMRS and
RMRS. This is because, higher RRR; values imply quicker reward reduction rates of
tasks allowing less slack times for reward enhancement through appropriate memory
request scheduling. In Figure 3.9a, we additionally see that R-RMRS outperforms
RMRS in all cases. For example, when RRR; range is [2, 3], R-RMRS delivers 44.1%
better normalized rewards compared to RMRS for system load U = 80%.

3.7.6 Private Vs. Shared Banks

In Figure3.9b, we plot the normalized rewards acquired by R-RMRS and RMRS
as the system load U (= > (e;/d;)) is varied between 50% and 100%. This ex-
periment assumes the value of a to be 0.4 for R-RMRS and the rate of reward
reduction (RRR;) for a task to be between 0.4 and 0.7. Each plot represents a sce-
nario when bank mapping follows either a private or shared policy. In private bank

mapping, each core gets exclusive access to designated banks, whereas, in shared

78

Results for PCM Scheduling Policies

Table 3.7: Comparison of performance with EDF-PCM

% Improvement
Method Dnorm | Dextnorm | Rnorm
EDF-WQF | -14.51 -15 16.27
LARS -24.19 -25 30.23
Re-LARS | -16.6 -28.3 -41.86

mapping, each core can access all banks. In this experiment, the number of banks
has been considered to be equal to the number of cores. Hence each core has pri-
vate access to a single bank. From the figure, it may be observed that obtained
reward is higher when private bank mapping is used. This is because, private bank
mapping avoids row-buffer interference from applications executing on other cores.
With reduced row-buffer access conflicts, average memory request service times are
reduced fetching higher reward compared to the scenarios when shared mapping is
employed. However, it may be noted that both R-RMRS and RMRS do not depend
on whether the applied mapping scheme is shared or private. The figure shows R-
RMRS (RMRS) delivers 21.8% (18.1%) better normalized reward with private bank
mapping compared to shared bank mapping, for system load U = 70%.

3.8 Results for PCM Scheduling Policies

We also have to account for the difference in service latencies between read and write
requests, in addition to knowing the service urgency, which benefits even a DRAM
scheduler. Because the writes require a longer time, if they are scheduled blindly, it
could impact the predictability of read requests. We propose LARS and Re-LARS
to address this disparity by prioritizing reads over writes. This section provides an
analysis of the proposed LARS and Re-LARS policies.

The value of « is taken as 0.3, RRR; is in the range 0.3—0.5, and the system load
U varied between 50% and 100%. Table 3.7 presents the improvement obtained for
existing EDF-WQF and proposed LARS and Re-LARS over the baseline technique
EDF-PCM with a system load U = 70%. Negative values represent a reduction in
deadline misses, and positive values represent an improvement in acquired reward.
We can see that the proposed methods, LARS and Re-LARS, improve task com-
pletion times with distinct deadline-aware priorities assigned to memory requests.

Additionally, separate queues for read and write requests also improve task comple-

79

Request Scheduling Policies

Table 3.8: Comparison of performance with EDF-DRAM

% Improvement
Method Dnorm | Dextnorm | Rnorm
EDF-WQF | 26.19 34.21 -23.07
LARS 11.90 18.42 -13.84
Re-LARS 16.66 13.15 -6.15

tion times. Hence, they could achieve fewer deadline misses compared to EDF-PCM
and EDF-WQF.

Table 3.8 presents the reduction in performance for proposed LARS and Re-
LARS and existing EDF-WQF over existing EDF-DRAM. Negative values indicate a
reduction in acquired reward, and positive values indicate increased deadline misses.
The proposed LARS and Re-LARS achieve comparable normalized rewards to that
of EDF-DRAM, which achieves the highest reward among the policies. Furthermore,
the proposed policies reduce deadline misses comparable with EDF-DRAM, while
the existing EDF-WQF' could not achieve such reduction. EDF-DRAM achieves
better performance due to the reduced read/write latency for DRAM memories
compared to PCM memories.

Both LARS and Re-LARS could reduce normalized deadline misses (both D,
and D) and improve Romm close to the range of EDF-DRAM. This indicates
that the PCM can be chosen as an alternative memory for real-time systems instead

of DRAM in the presence of an improved memory request scheduler.

3.9 Summary
The key insights of this chapter are as follows:

e We have proposed low overhead heuristic memory request scheduling tech-
niques targeted towards soft real-time systems executing persistent periodic
tasks.

e With a novel frame-based deadline aware group reordering mechanism, the
proposed algorithms are able to provide a judicious balance between through-
put and timeliness leading to lower deadline misses as well as higher Quality

of Service (QoS) in soft real-time systems.

80

Summary

We have presented different predictable scheduling policies for DRAM and

PCM memories.

In particular, the limitation of PCM of having different latency for reads over
writes, in that the writes being slower, is considered while designing the mem-

ory request schedulers for PCM memories.

An urgency-based, read-over-write prioritization scheduler is proposed to deal
with slower PCM.

We have designed, implemented, and evaluated both the proposed techniques
by conducting simulation-based experiments, and the results are compared

with existing memory request scheduling techniques FR-FCFS, RR, and EDF.

This chapter discusses various memory request scheduling strategies for DRAM
and PCM memories. The experimental results demonstrate a considerable re-
duction in deadline misses and an improvement in acquired reward compared
to the state-of-the-art approaches, FR-FCFS, RR, and variants of EDF. Our
proposal could reduce deadline misses by 25.4% compared to FR-FCFS, 23.4%
compared to RR, and 19.6% compared to EDF. Also, the acquired reward im-
proves by 33.9% compared to FR-FCFS, 32.4% compared to RR, and 14.8%
compared to EDF.

81

Migration Scheduling Policies for Hybrid
DRAM-PCM Memories

This chapter proposes three page-migration scheduling policies, SRS-Mig, Mig-Slot,
and Mig-QoS, to improve the performance of hybrid-memory systems. All the pro-
posed policies schedule migration at the boundary of a slot, ensuring page migration
does not adversely affect regular read /write access. Our first technique is based on a
dynamic slot-based technique where the length of the slot is updated depending on
the service response time of batched memory requests. The remaining two policies
use a fixed-slot technique where the migration is performed in the reserved space
within the slot. All the proposed policies aim to maximize the DRAM hits and thus
improve the Quality of Service (QoS) in terms of memory service rate and memory
service time. The proposed policies are evaluated against the existing two migration

techniques on a quad-core system.

4.1 Introduction

Emerging hybrid memory technologies composed of non-volatile memories (NVM)
like PCMs and DRAMs exhibit significant access speeds and capacity improvement.
During application execution, the memory pages get randomly allocated to the PCM

and DRAM partition of the hybrid memory. High application performance is feasible

82

Introduction

by dynamic migration (or relocation) of pages (data) between these memory types.
The selection of page migration candidates and the time of migration favorably
impact the memory execution time and memory service rate of the application.
Existing techniques propose solutions to dynamically identify the pages that need
to be moved immediately or at regular intervals. These techniques select migration
candidates based on the write access counts and migrate when they cross the write
count threshold. Such an immediate or interval-based rigid migration regime may
hamper the service of the regular memory requests, affecting the memory service
rate. During application execution, as the time instant of migration significantly im-
pacts both memory service time and execution time, appropriately finding the time
of migration is essential, along with finding the best candidate for page migration.
To alleviate the impact on service time and improve the Quality of Service (QoS)
of the device, this chapter proposes migration scheduling methods to identify the
instant at which to migrate the eligible page. The main contribution of this work

are as follows:

e SRS-Mig: This method selectively identifies page migration candidates and
schedules migration at run-time. SRS-Mig is a dynamic slot-based approach
where the length of the slot is determined by the service response time of
batched requests. The migration is scheduled at the boundary of slots of
varying lengths.

e Mig-Slot: Migration-aware Slot-based Memory Request Scheduler, which re-
serves space for migration in every slot along with the regular batched requests.
Such reservation helps to improve the response time by performing migration

without hampering regular requests.

e Mig-QoS: QoS-aware Mig-Slot is an extension of Mig-Slot. The objective of
Mig-QoS is to schedule migration and regular requests so that the QoS acquired
by the system is maximized. The proposed Mig-QoS schedule migration based
on the incoming memory request rate to improve the memory service rate as

the QoS.

e Our victim page selection policy considers the write count and recency of pages

to minimize return-back migration of PCM pages from DRAM.

83

Migration Scheduling Policies

ABCDE FGH 1J KL
| ABCDE | FGH 1J KL |
" Slotsl, Slot s, Slot s, Slot sl,_, Slotsl,, |

Figure 4.1: Ezample of slot-based scheduling of memory requests. Here blue colour
represent batched requests and red colour represent servicing requests

e The proposed techniques are implemented and evaluated using the full system
simulator Gem5 [95] integrated with NVMain [96] on applications from SPEC

2006 and Parsec benchmark suites.

e The presented techniques are evaluated extensively against two existing tech-
niques, UIMigrate [58] and OntheFly [60], and a Baseline technique without
any migration support. Experimental evaluation shows significant improve-
ment in execution time and memory service rate for the applications and thus

improves the QoS acquired by the system.

The rest of the chapter is organized as follows: Slot-based Migration scheduling
is presented in 4.2. Motivation is discussed in section 4.3. Section 4.4 presents the
system model for the proposed migration unit. The proposed migration schedul-
ing techniques are illustrated in sections 4.5, 4.6 and 4.7. Section 4.8 presents the
proposed victim page migration technique. Section 4.9 discusses the experimen-
tal methodology. Results and analysis are presented in section 4.10. Finally, we

summarize this chapter in section 4.11.

4.2 Slot-based Migration Scheduling

In a slot-based scheduling method, the memory requests are batched in a slot and
are scheduled at the boundary of the subsequent slot. The memory response time
is computed from the time when the request gets batched. Figure 4.1 shows the
working of slot-based scheduling of memory requests A, B, --- L. The figure shows
the scheduling of slots from slj_1 to sliy3. The memory requests batched (shown
in blue color in 4.1) during slot slj are scheduled at the boundary of sl and slj4
and serviced during slot sl 1 (shown in red color in 4.1). In sl,1, while serving
requests, we also batch requests for the next slot. As our work aims to migrate pages

between DRAM and PCM, such migration requests also need to be scheduled. In

84

Motivation

{MP } {MP_}
' 1
ABCDE FGH 1J P KL :
ABCDE |MMMMF GHM,MM,M,;IJKL
f Slot s, , Slot sl, Slotsl,,, i Slotsl,,, i Slot s, 1

Delay for F “Delay for |

Figure 4.2: Ezxample of batched requests getting postponed due to presence of migration
requests

a slot-based scheduling method, the most prominent place to schedule migration
requests is at the boundary of slots, i.e., before the next set of requests starts. To
migrate a page of size 4KB, we need to perform 128 read and 128 write for a memory
device with access granularity of 64bytes. These migration requests are interleaved
with regular read/write requests.

Figure 4.2 demonstrates the scheduling of regular and migration requests at the
boundary of slots along with regular read/write requests. Here, M P, and M P,
are two candidate pages to be migrated, and each migration requires four memory
requests in this example (the real number of migration requests is given in Section
4.9). Note in the figure, M P, is scheduled as four M; requests and serviced during

slot sljy1. Similarly, M P, is serviced as four M, requests and serviced in slot sl o.

4.3 Motivation

Migration helps to improve the performance of hybrid memory systems. To maxi-
mize the benefit of migration, it is necessary to migrate the right pages at the right
time, and it is challenging. Also, these pages need to be migrated along with the
regular requests.

It is evident from Figure 4.2 that certain regular requests batched earlier get
scheduled much later compared to their original timestamp because of intermediate
migration requests. For example, requests F,G, H are able to get serviced after
some delay in the slot sl;,;. The number of such delayed requests at random
points in execution is plotted in Figure 4.3. It is observed from the figure that the
number of delayed requests due to migration is more prominent for write-intensive
benchmarks, i.e., benchmarks with high write-backs per Kilo Instructions (WBPKI).

For example, for a benchmark with low WBPKI, such as namd, the number is 73

85

Migration Scheduling Policies

lbm namd —j— streamcluster
libquantum canneal —@—

800

#Delayed Requests

N
& ®

Random Execution Slots

Figure 4.3: Number of batched requests that get delayed

CPU
Global Queue Hybrid Memory Controller
E0DNEEDDONEDDDONCOOEEOE
Regular DRAM [m] m Regular PC|
E Request 0 DRAM Queue PCM Queue ng:easrll
08 03
< 63 53 b
m Regular DRAM z < L2 Regular PCM 0
D Response @ o 3 & 8 Response B g
. Hot Page A = =
L Migration Unit
Dol _J..fromPCM__ g Hot Page
. isi i from PCM ; A
Voo -l ’DGCISIOH & Control Unit| | "fom &M ¥
Victim Page = = P EETEETRTE P -
from DRAM ’Mlgratlon Buffer‘ | Meta Data‘ Victim Page
from DRAM
Pending Migration Queue‘

Figure 4.4: Proposed memory controller model with migration unit

on average, whereas for write-intensive (high WBPKI) benchmark like lbm, it is 428
on average, which is very high. However, the number of batched requests that got
delayed due to migration is also significant for low WBPKI benchmarks. Therefore,
it is much required that while creating slots, we should also consider the scheduling
of migration requests instead of mindlessly doing so at the boundary between the

two slots.

4.4 System Model

We consider a hybrid memory composed of a single DRAM and three PCM channels.
However, the proposed migration scheduling policies apply to all memory channel

distributions i.e, the policies can apply on any number of DRAM and PCM channels.

86

System Model

We assume the memory sizes of DRAM and PCM are scalable enough to hold the
complete application executing on the core. The adapted hybrid memory controller
model with migration unit is shown in Figure 4.4. The memory controller consists
of a global queue and separate DRAM and PCM queues for memory requests, a
scheduler to schedule memory requests, and a migration unit for page migration.

Memory requests spawned from applications executing on the CPU cores are
received in the global queue. Based on the targeted memory type, these requests
are batched separately to the PCM or DRAM queue. The underlying memory
technologies consist of banks with row buffers and adhere to an open-page row-
buffer management policy. In the open-page policy, a memory row is opened by
bringing it to the row buffer, and the same row can be accessed repeatedly without
the row buffer being closed. In contrast, a row must be closed after each access in the
close-page policy, increasing the row-hit response times significantly. The memory
requests in PCM and DRAM queues are scheduled separately using the First-Ready
First Come First Serve (FR-FCFS) policy and memory requests targeted to open
rows are prioritized.

A page migration unit incorporated within the memory controller handles the
page migration. The unit comprises a decision and control unit, a metadata unit, a
migration buffer, and a queue for pending migrations. The migration and decision
control unit keeps track of the write count of each page targeted by the memory
request in the queue and efficiently selects migration candidates based on the write
count of pages. These selected candidate pages are placed in the migration pending
queue and migrated based on the write count at the slot boundary. The metadata
unit holds a write counter for each DRAM and PCM page. An eDRAM-based
migration buffer is used to hold the migrating page. The page is first read from
PCM into a migration buffer and subsequently written into DRAM and vice versa.
The proposed methods migrate a single page at a time. The incoming requests for
pages under migration are serviced from the migration buffer if that page is available
or from the older memory. A remapping table handles the changes in the physical
address after migrations. The table keeps track of all the migrated pages with their
old and remapped addresses.

The system model considers the following metrics to evaluate Quality of Service

(QoS):

1. Execution Time: Time required to complete the execution of an application.

87

Migration Scheduling Policies

2. Memory Service Time: Total turn-around time required to completely serve

a memory request after reaching the memory controller.

3. Response Time: Time elapsed from when the request is batched to the time

when the request gets serviced.

4. Memory Service Rate: Number of memory requests serviced per unit time.

A predefined threshold called Migration Hot Threshold (MigHT) determines the
possibility of a page for migration. The page access patterns vary across work-
loads. To effectively adapt to the change of access patterns, the proposed migration
scheduling policies select MigHT depending on the workload characteristics. The
empirical evaluation of MigHT for different workloads is given in the evaluation

section 4.9.

4.5 SRS-Mig: Selection and Run-time Scheduling
of page Migration

As discussed earlier, the memory controller receives memory requests as a continuous
stream. The system divides the discrete timeline into non-overlapping slots where
k' slot is denoted as sl,. We propose SRS-Mig, a dynamic slot-based migration
scheduling technique. Here, the length of sl is determined by the service response
time (z) of the last request in the batch and is lower bounded by a design constant
[and upper bounded by a design constant (. As the schedule is generated slot-by-
slot, 8 provides an upper bound on the number of scheduling events and controls
overheads associated with the scheduler. This lower bound leads to a rare possibility
for the schedule to be slightly non-work conserving when system loads are very low.
¢ provides an upper bound on the number of requests that can be scheduled within
a slot so that a request will not be starved for a long period of time.

Algorithm 4.1 explains the proposed SRS-Mig method. The set of memory re-
quests R in the current slot sl are targeted to m distinct rows. Initially, these
requests are scheduled in FR-FCFS order. The write count of each page is cal-
culated and compared with a predefined migration hot threshold (MigHT) for the
migration candidate selection. The pages with a write count exceeding the hotness
threshold are selected as migration candidates. We assume a single migration can

happen in a particular slot.

88

SRS-Mig: Selection and Run-time Scheduling of page Migration

Algorithm 4.1: SRS-Mig(sly)

® N O oA W N -

10
11

12

13

14

15

16
17
18
19
20

21
22
23
24
25

Input: R={ry,re,...7,}
Output: Schedule S¢;q
P, : Page 1
mem_type(P;) : Memory type of page P,
lruprany @ LRU list of DRAM pages
W (P;) : Write count of page P,
MigHT : Migration Hot Threshold
P, : Victim page
SD: Slot Duration
Let the requests in R be batched for sl and are targeted to m distinct
rows, m <n
if mem_type(P;) is DRAM then
Add P; to the LRU list if P; is not present in [rupranm
L Update lrupran

Requests are buffered in DRAM queue and PCM queue and scheduled in
First Row Hit-First Come First Serve (FR-FCFES) order
Compute the write count W (F;) of each page P; targeted by the requests in
R
Let Py be a page whose write count W (Py) is greater than the migration
hot threshold (W (P;) > MigHT)
Select page P, as migration candidate M P and set as ready for migration
for next slot slgi1
if M P is ready for migration then
if Space in DRAM then
Insert migration requests for migration ready page M P in S
Stinal = Schedule migration of M P in next slot slj1;
Update SD

else

P, = victimpage_sel(M P)

Complete migration of P, to PCM

Stinar= Schedule migration of M P
Update SD

89

Migration Scheduling Policies

Before migrating a page from PCM to DRAM, the current DRAM size is checked
to find a free DRAM page. If a free DRAM page is available, we schedule a mi-
gration from PCM to DRAM for the first pending page in the migration candidate
queue. During migration, migration requests are prepared and inserted when the
next slot is batched. These requests are scheduled along with the regular read /write
requests. The page is first read from PCM into a migration buffer available in the
memory controller and subsequently written into DRAM in the consecutive slot.
The incoming requests during migration are serviced from the migration buffer or
the older memory. The slot duration SD is updated with the service response time
of the last request in the slot. The regular requests and migration scheduled at the

boundary of sl and sl are serviced in slot sl .

4.6 Mig-Slot: Migration-aware Slot-based Mem-
ory Request Scheduler

SRS-Mig looks into the regular flow of read/write requests and ensures that migra-
tion does not hamper the response time of regular memory accesses by dynamically
adjusting the slot length at run-time. At the same time, Mig-Slot updates the slot
length to reserve space for migration if there are pending migrations; otherwise,
the slot length is fixed. This is based on the observation that reserving space for
migration within a slot also helps to improve the delay for requests, as it performs
the migration without hampering regular read /write requests.

Our proposed Mig-Slot scheduling algorithm makes the following decisions:

e Identify migration candidate: The page is selected as a migration can-

didate when its write count exceeds a predefined Migration Hot Threshold
(MigHT).

e When to migrate a page?”: We migrate a page at the immediate slot after
a page becomes eligible. A portion of the slot is reserved for scheduling mi-
gration. If there is pending migration, a limited number of regular requests

are batched to keep space for migration.

The memory timeline is divided into continuous and equal length slots sly, sls, - - - sl,,.

90

Mig-Slot: Migration-aware Slot-based Memory Request Scheduler

Algorithm 4.2: Mig-Slot: Slot-based Scheduling

Input: R={ry,re,...7,}
Output: Schedule Stinq
SD and SD’: Slot Duration; MigHT": Migration Hot Threshold; Migp:
Migration Duration; M(@): Pending Migration Queue; M P: Migration
candidate Page
Let the requests in R be batched for sl and are targeted to m distinct
rows, m <n
if mem_type(P;) is DRAM then

Add P; to the LRU list if P; is not present in lruppraum
L Update lrupranm

Requests are queued separately in DRAM queue and PCM queue and
scheduled in First Row hit-First Come First Serve (FR-FCFS) order

7 Increment the write count of page targeted by the requests
8 Compare the write count of each targeted page with MigHT

10
11

12
13
14

15
16

17
18
19
20

21
22
23
24

25
26

Pages with write count greater than MigH'T are queued in M) and are
ready for migration in next slot sl

if page M P ¢ M) then
| Stina=Mig-Slot(MP)

Function Mig-Slot(MP)

if Pending migration M P then
| SD’ =SD - Migp

else
| SD> =SD

Batch requests for slot slj; for slot duration SD’
if free pages in DRAM partition then
Insert migration requests for ‘M P’ in the slot

Stinar=Schedule batched requests followed by migration requests in
FR-FCEFS order

else
P,=victimpage_sel(M P)
if P, is not NULL then
L Migrate first ‘P,’, then ‘M P’

else
L Discard migration of ‘M P’

91

Migration Scheduling Policies

{MP_} {MP,}

¥ y

AB CD EFGHIJ KL

| ABMMMM, [CDMMMM[EFGHIJKL

" Slotsl,, Slot s, Slot s, , Slot s, , Slot s,

Figure 4.5: [llustration of reserving space for migration in the slot

Algorithm 4.2 explains the proposed Mig-Slot for two consecutive slots sl; and
slgy1. Assume there is no pending migration at the beginning of sl;,. Memory re-
quests are batched for slot sl, which has slot duration SD. These requests are
queued and scheduled separately based on the targeted memory type. The write
count of each targeted page is computed and compared against the predefined mi-
gration hot threshold MigHT. Pages with a write count greater than MigH'T are
queued in the pending migration queue. We assume that a single migration can
happen within a slot. Function Mig-Slot explains the proposed Mig-Slot technique.
Requests are batched only for the duration SD’. At the beginning of slx,1, if there
are ready migrations in the pending queue, SD’ is updated to reserve space for
migration as shown in line number 14 in Algorithm 4.2. The updated slot duration
thus batches a lesser number of requests and, thus, makes sure that the regular
batched requests are not delayed. Before migrating a page from PCM to DRAM,
the current size of DRAM is checked, and it identifies a free page in DRAM.

Illustration: Continuing the example, Figure 4.5 shows the resultant slot struc-
ture after applying Mig-Slot. Here M P, and M P, are pending migrations at the
beginning of sl, and we assume that the write intensity of M P, is higher than the
write intensity of M P,. Hence, Mig-Slot schedules migration of M P; before M P,.
To allow pending migration, Mig-Slot modifies the slot duration to schedule migra-
tion requests. It is observed from the figure that the number of requests batched
gets reduced, which controls the memory response time as they are not getting de-
layed after batching. For example, in slot sl;_1, before reserving space, five requests
are batched (cf. Figure 4.2), while after applying Mig-Slot, only two requests are
batched to allocate space for migration. The response time is computed once the
request gets batched (cf. Section 4.4).

92

QoS-Aware Migration

r=0.001 pmmsm r=0.005 pm r=0.01 —— r=0.05 p—
Ibm namd —J— streamcluster = 80
libquantum canneal g
008 g0
°
0.07 B 60
2)
51
& 006 Sso t
= =
3 g
g 0.05 3 40
Q
S °
% 004 230
s § 20
g 0.03 g
E 0.02 % 1 H H
[¢]
>

N & > > % N
Y Y Y

Random Execution Slots Benchmarks
(a) (b)

Figure 4.6: (a) Memory request rate at different points in execution, (b) Number of
requests delayed to get batched

4.7 QoS-Aware Migration

4.7.1 Impact of Migration on QoS

During the execution of an application, regular memory requests arrive at the mem-
ory at varying rates. Figure 4.6a shows the memory request rate of four benchmarks
from SPEC 2006 and Parsec benchmark suites. From the figure, we can observe that
the incoming request rate varies at different intervals and is not monotonic. For ex-
ample, the rate is 0.01 for namd at the initial slots and increases to 0.02 in the middle
and end slots. In contrast, for Ibm, the rate is 0.02 at the initial slot, increases to
0.06 in the middle slots, and reduces to 0.01 in the end slots. For streamcluster, a
multi-thread benchmark, the rate is 0.003 at the initial slots and continues in the
range till the end slots. In contrast, for canneal, another multi-threaded benchmark
has a rate of 0.01 at the initial slot and reduces to 0.003 at the middle slots, then
increases again. The rate varies across the benchmark execution and among the
benchmarks, too.

The memory response time and memory service time are improved as we reserve
space for migration without batching the regular requests. However, this results in
several requests that get delayed to batch due to Mig-Slot. The number of requests
that get delayed to batch for varying incoming request rates (r) is shown in Figure
4.6b. On average, for a small request rate (r = 0.001), the number of requests
delayed to get batched is 3, and it becomes as high as 56 for a high request rate (r =

0.05). For multi-thread benchmarks like canneal and streamcluster, the memory

93

Migration Scheduling Policies

request rate is less than 0.05 during the entire execution, and therefore, requests
delayed for r = 0.05 is zero for these benchmarks. However, it is evident from the
figure that the number of delayed requests increases with an increase in request
rate. The increased number of requests that could not batch will affect the memory
service rate as the Quality of Service (QoS). As the memory service rate depends on
the incoming request rate, to maintain QoS, we must consider the incoming request
rate (). Therefore, we propose a QoS-aware extension of Mig-Slot to consider the

input request rate before scheduling migration.

4.7.2 Mig-QoS: QoS-aware Mig-Slot

The objective of QoS-aware Mig-Slot, an extension of Mig-Slot, is to improve QoS.
From the examples and figures discussed in the previous section, it is observed that
the number of requests that are delayed to get batched is large, which reduces the
memory service rate. We aim to reduce the number of requests delayed for batch-
ing to improve the memory service rate. For this to happen, Mig-QoS tracks the
incoming memory request rate before scheduling a migration in a slot. In Mig-QoS,
the migration is scheduled only when the incoming memory request rate is below a
threshold. This helps to control the number of requests that get delayed for batch-
ing. If the incoming rate is high, the slot space is not reserved for migration, so the
batching is not delayed, and it improves the memory service rate. To account for the
memory service rate, we use the incoming memory request rate and average memory

request rate as parameters. Following are the definitions of these parameters:

1. Memory service rate: Number of requests serviced per unit time. We define
this metric as our QoS parameter. A higher memory service rate indicates

better QoS.

2. r: Incoming request rate: Number of requests arriving at the memory con-

troller per unit time.

3. Tavg: Average memory request rate: Average rate of requests that arrived at

the memory controller over a given duration.

The proposed Mig-QoS algorithm is explained in Algorithm 4.3. Mig-Slot always
reserves a portion of the slot for migration if there are pending migrations. Instead,

Mig-QoS checks the incoming memory request rate before reserving the slot for

94

QoS-Aware Migration

Algorithm 4.3: Mig-QoS
Input: R={ry,re,...7,}
Output: Schedule Stinq
1 M P: Migration candidate page; r: Incoming request rate; 74,4: Average
incoming request rate; mg: 10% of Tavg; Wi Taug — myg
2 Function Mig-QoS(MP)

3 if Pending migration M P then

4 if r < W then

5 LSD’ = SD - Migp

6 else

7 L SD’ =8SD

8 Batch requests for slot sl for slot duration SD’

if Space in DRAM then
10 Insert migration requests for "M P’ in the slot
11 S'tinai=Schedule batched requests and then migration requests in
B FR-FCEFS order

12 else
13 P, = victimpage sel(M P)
14 | Migrate first ‘P,’, then ‘M P’{If P, is not NULL}

migration. The proposed method keeps track of the incoming request rate r of each
slot. If the current request rate is greater than the average request rate 74,4, Mig-QoS
postpones the migration. To account for the dynamic change in the incoming request
rate, we keep a margin of 10% around r,,, to make the decision. The margin value
is denoted by mg, and the sensitivity analysis for different margin values is done in
the result section (cf. Section 4.10). The same steps as Algorithm 4.2 are followed
by Mig-QoS, with the exception that in Mig-Slot, if there is a pending migration,
space is reserved in every slot for migration. In contrast, Mig-QoS examines the
rate of incoming requests to determine whether to serve any pending migrations in
the queue (line number 4).

Ilustration: Continuing the example, Figure 4.7 shows the impact of Mig-QoS
in the batching and scheduling of regular and migration requests. For this example,
we assume that the slot length is five units, the initial average request rate is 0.5, and
the margin is 10% of the incoming request rate. M P; is in the pending queue before
the beginning of the slot sl;_;. From the figure, the current incoming request rate

is 1 (rg, = #requests/slot length) and is greater than the current average incoming

95

Migration Scheduling Policies

{™MP} {MP MP} {MP}
V ,
ABCDE |FG H I JKL
ABCDE [FGMMMM[HIMMMM,[JKL
Slot sl, , Slot sl, Slot s, , Slot sl,,, Slot sl,,,

Figure 4.7: lllustration of Mig-QoS showing postponement of migration due to high input
request rate

request rate. Hence, M P; is not scheduled in the boundary of slot sl;_; and sl
using Mig-QoS; that is, since the incoming request rate of slot sly_; is high, the
batching is performed for regular requests, and migration is postponed for M P;.
For slot sly, the incoming request rate is 0.4, and the current average request rate
with margin is 0.825. As the incoming request rate is less than the average value,
in slot sli, we reserve space for migration by batching fewer regular requests and
schedule the migration of M P, during slot sli.;. Similarly, for slot sly,;, Mig-QoS
batches fewer requests and performs the remaining (pending) migration for page
MP; in slot sljo.

4.8 Victim Page Migration

As the DRAM size is limited while moving a page to DRAM, the allocated capacity
of DRAM for the particular application may be full. In this scenario, we must choose
a victim DRAM page to be moved to PCM to make space for the migrating PCM
page. An LRU list of pages with their write counts is maintained for all DRAM
pages. The write count of m% least recently used pages are compared. We took the
value of m as 25% of LRU list size. This list selects the LRU page with a minimum
write count as a possible victim page. If its write count is less than the write count
of the migrating page, the page is selected as the victim page. The LRU list has
been updated for each memory access and migration from PCM to DRAM. If no
victim page is found that has a write count less than the incoming PCM page, then
migration is canceled for this PCM page.

Algorithm 4.4 presents the victim page selection method. An LRU list is main-
tained for the accessed DRAM pages. The function returns the least recently used
page with minimum write count as the victim page. If the write count of the victim

page is less than the migrating page, it is migrated similarly to regular migration.

96

Evaluation

Algorithm 4.4: Victim Page Selection

1 Function victimpage_sel(MP)

2 Get the minimum write count page P, from the last m% pages in
DRAM LRU list

if write count of P, less than the write count of M P then
L return victim page P,

else
6 return NULL {‘P,’ is not selected as victim page, hence discard
migration}

The victim page migration is performed before the regular migration. The LRU list

is updated on each memory access and after each migration from PCM to DRAM.

4.9 Evaluation

The experimental approach used to evaluate the proposed architecture is shown in

this section.

4.9.1 Experimental Setup

We use Gemb [95] full system simulator integrated with NVMain [96], a cycle-
accurate main memory simulator designed for NVMs to implement our proposed
algorithm. The memory simulator models a hybrid memory with three PCM and
single DRAM channels. DRAM-PCM hybrid memories are typically constructed
with small DRAM and big PCM portions to gain the high density of PCM without
sacrificing the advantages of DRAM in terms of latency. For our studies, we have
employed a big PCM chunk (3GB) and a tiny DRAM portion (1GB) to approximate
such memory. We assume DRAM size to be between 20% and 30% of the application
size, with PCM able to store the remaining application size. A page size of 4KB
is used for migration in our experiments with an access granularity of 32bytes per
read/write. So, to migrate a page of size 4KB, we use 128 read and 128 write
requests. The details of the system parameter used in our experiments are shown
in Table 4.1.

97

Migration Scheduling Policies

Table 4.1: Important system parameters

Components Parameters
Processor Quad-core, X86/ALPHA
L1 Cache Private, 32KB SRAM split I/D caches,

2-way associative, 64B block

Shared, 512KB SRAM, 64B block,

L2 Cache .
8-way associative

PCM: 3GB, 3 channels, 32 entry request queue
Memory Controller: FR-FCFS

DRAM: 1GB, Single channel

Memory Controller: FR-FCFS

Main Memory

Memory Latency PCM :: Read = 100ns, Write = 350ns
[55, 98] DRAM:: Read = 50ns, Write = 50ns
PCM :: Read = 0.2nJ/bit, Write=1 nJ/bit

Energy DRAM:: Read=0.1 nJ/bit, Write—0.1 nJ /bit

No. of migration requests to

transfer single page of size 4KB 128 Read & 128 Write

Benchmarks:

SPEC2006: 1bm, sjeng, gobmk, calculix, namd

Parsec: canneal,x264 streamcluster,dedup

SPEC-Mixes: Mix-High: gobmk,1bm,sjeng,libquantum,;
Mix-Low: namd,calculix,milc,gromacs;
Mix-Medium: lbm, sjeng, calculix, gromacs

Table 4.2: Benchmark classification based on write-backs

Benchmark | MPKI | WBPKI | Classification
gobmk 27.82 20.59 High
Ibm 25.31 18.28 High
sjeng 8.52 8.46 High
libquantum 6.95 6.93 High
milc 5.68 1.62 Low
gromacs 0.64 0.35 Low
calculix 0.28 0.14 Low
namd 0.09 0.02 Low
canneal 3.4 1.9 Low
x264 2.6 0.9 Low
streamcluster | 0.8 0.7 Low
dedup 0.34 0.23 Low

98

Evaluation

4.9.2 Workloads

We analyzed our results using the multi-programmed SPEC 2006 [99] and the multi-
threaded Parsec [100] benchmark suite. We selected benchmarks based on their write
intensity and classified them as high and low, as shown in Table 4.2. The Misses
Per Kilo Instruction (MPKI) and Write-Back Per Kilo Instruction (WBPKI) metrics
are used to measure the read and write intensities, respectively. Depending on the
WBPKI, we categorize the benchmarks as High and Low. Each SPEC workload
is executed for 1 billion instructions while being given 250 million instructions to

warm it up.

4.9.3 Performance Analysis

We have considered the following techniques for performance analysis of our pro-

posed technique:

e Baseline: Baseline method, which schedules memory requests in FR-FCFS

order and does not perform migration.

e UIMigrate [58]: An existing migration method migrates pages in regular
intervals, and pages are selected based on a dynamic threshold. The threshold

gets updated based on migration benefits.

e OntheFly [60]: An existing page migration policy is where the pages are
migrated when the access count crosses the predefined static threshold. The
threshold gets updated with the highest access count at the beginning of each

migration.

e SRS-Mig: Our proposed dynamic slot-based page migration technique mi-
grates pages depending on the write count and scheduled at run-time. The

slot-length is updated based on the service response time of requests.

e Mig-Slot: Our proposed method is a slot-based page migration technique
that migrates pages based on write count. The method reserves space for

migration in every slot if there is pending migration.

e Mig-QoS: Our proposed technique is a slot-based method, which checks the

incoming request rate before reserving space for migration within a slot.

99

Migration Scheduling Policies

Baseline mmmm OntheFly —— Mig-Slot pmmm
UlMigrate pm SRS-Mig Mig-QoS ==

Normalized execution time

Benchmarks

Figure 4.8: Normalized execution time (lower is better)

4.10 Results

This section analyzes the results of the proposed techniques and compares them to

the existing migration methods.

4.10.1 Execution Time

Figure 4.8 shows the execution time obtained for existing and proposed policies
normalized with the baseline. From the figure, it is observed that the proposed
SRS-Mig, Mig-Slot, and Mig-QoS could reduce execution time by 22%, 21%, and
27%, respectively, than the corresponding baseline method, while UIMigrate and
OntheFly could improve execution time only by 14% and 16%, respectively. The
proposed SRS-Mig, Mig-Slot, and Mig-QoS use slot-based scheduling, which helps
achieve better execution time improvement than the existing method. OntheFly
migrates pages when the page surpasses the hotness threshold, increasing computa-
tional complexity. UIMigrate migrates in fixed-size intervals, whereas our proposed
Mig-Slot and Mig-QoS methods reserve space for migration within a slot. This space
reservation does not hamper the service of regular read /write requests within a slot;
hence, they get serviced timely to improve execution time. Furthermore, due to the
dynamic slot-based approach, the service of read/write requests batched in a slot
will not be detrimental due to migration in the SRS-Mig technique. So, memory re-
quests will be serviced on time, which helps improve execution time for applications.

Also, the timely migration of pages by the proposed methods maximizes access to

100

Results

migrated pages, and thus, future requests will be handled by the quicker DRAM
partition. This further improves the execution time of the proposed methods.

It is also evident from the figure that the benchmarks having high WBPKI, like
gobmk and sjeng, show more improvement in execution time as the migration of
write-intensive pages helps to increase write hits in DRAM. For gobmk, the im-
provement in execution time is 40% for SRS-Mig, 42% for Mig-Slot, and 47% for
Mig-QoS.

Multi-programmed workloads:

Observing the multi-programmed workloads, the high and medium-intensive bench-
marks show a large improvement in execution time compared to the low-intensive
benchmarks. The proposed methods could also improve execution time for low-
intensive mixes. The existing UIMigrate and OntheFly improve execution time only
by 1% whereas SRS-Mig, Mig-Slot, and Mig-QoS improve execution time by 4%,
4% and 6%, respectively for Mix_Low. Further, the improvement in execution time
for Mig-QoS is 49% for Miz-High and 33% for Miz-Medium.

Comparing the proposed SRS-Mig, Mig-Slot, and Mig-QoS strategies, it is ob-
served from the figure that Mig-QoS obtains 5% better execution time improvement
compared to Mig-Slot, 4% better than SRS-Mig. Mig-QoS schedules migration only
if the incoming request rate is less than the current average. This helps to reduce
the delay for the service of regular requests and thus improves the execution time

of the application.

4.10.2 Memory Service Time

Memory service time represents the average time required to serve a memory request
and indicates memory performance. Figure 4.9 presents the normalized memory
service time obtained for baseline, existing, and proposed policies. The improvement
in service time for SRS-Mig and Mig-Slot are 17% while Mig-QoS improves memory
service time by 24% over baseline. At the same time, UIMigrate improves only by
5%, and OntheFly improves 7%. The proposed SRS-Mig, Mig-Slot, and Mig-QoS
try to migrate write-intensive pages in a timely manner and thus increase the hits in
DRAM for both reads and writes. This leads to an improved memory service time.

In particular:

e Write intensive benchmarks such as lbm, sjeng, and gobmk exhibits higher

101

Migration Scheduling Policies

Baseline mmmm OntheFly —— Mig-Slot pmmm
UlMigrate pm SRS-Mig Mig-QoS ==

Normalized service time

N N Y
q}oo\\ & 606‘ & \&'\0 & bbo N l+‘\,o e&o @@rp
& [q,(*\o & \§\+ N ._\:@

9\$®
Benchmarks

Figure 4.9: Normalized memory service time (lower is better)

improvements in memory service time than the benchmarks with low write in-
tensity (calculiz, namd, streamcluster, canneal). The improvement in memory

service time for Mig-QoS is 37% for gobmk and 6% for namd.

e For multi-programmed workloads, the memory service time improvement for
Mig-QoS is 47% for Miz_High, 30% for Miz_Medium and 10% for Mix_Low.

e The multi-threaded workloads are less write intensive and among that canneal
performs better than the remaining because of the higher WBPKI compared to
other multi-threaded benchmarks (streamcluster, 264 and dedup). Mig-QoS
improve memory service time by 18% and Mig-Slot improve memory service

time by 15% for canneal.

4.10.3 Memory Response Time

PCM response time (cf. Section 4.4) is more dominant in DRAM-PCM hybrid
memory systems because of the longer write latency of PCM. In Figure 4.10, we
plot the average PCM memory response time for the proposed methods normal-
ized with the baseline technique. By updating the slot-length at run-time based on
service response time and scheduling of migration at the slot boundary, SRS-Mig
improves PCM response time by 17%. Mig-Slot and Mig-QoS reserve space for mi-
gration in each slot, which leads to improved memory response time. The average

response time improvement for Mig-Slot is 17%, and Mig-QoS is 21%, while UIMi-

102

Results

Baseline mmmm OntheFly —— Mig-Slot s
UlMigrate pm SRS-Mig Mig-QoS ==

0.8

0.6
0.4 ‘

Normalized PCM response time

-] R S N
RO R I A ; PO S
K O & ¥ FF S & =
& § TS T
& S
&
Benchmarks

Figure 4.10: Normalized PCM response time (lower is better)

grate improves response time for PCM only by 11% and OntheFly improves by 13%
in comparison with Baseline.

The benefit of timely migration is more evident if the application has a higher
WBPKI. From the figure, it is evident that high WBPKI workloads have better
improvement in response time than low WBPKI workloads. Similarly, the multi-
programmed workload with high WBPKI (Mix_High) has more improvement as 36%
for SRS-Mig, 38% for Mig-Slot, and 45% for Mig-QoS, respectively over Baseline.

Our proposed Mig-Slot and Mig-QoS serve migration without disturbing the
regular read and write requests by reserving a migration space within a slot, while
SRS-Mig schedules migration at run-time in a variable length slot. The proposed
methods help to reduce the delay after batching the requests and involve timely page
migration that maximizes access to migrated pages. As a result, future requests will
experience a shorter memory response time since the faster DRAM division will
handle them. Thus, it improves the PCM response time for proposed SRS-Mig,
Mig-Slot, and Mig-QoS compared to the existing methods.

4.10.4 Memory Service Rate

Memory service rate defines the number of memory requests serviced per unit time.
A higher service rate indicates that the migration benefit is significant. Figure 4.11
shows the memory service rate obtained for existing and proposed methods nor-

malized with baseline technique. Due to the slot-based scheduling, the proposed

103

Migration Scheduling Policies

Baseline mmmm OntheFly —— Mig-Slot pmmm
UIMigrate mmmmsm SRS-Mig s Mig-QoS ==

Normalized memory service rate

& @ & > oS > L
Q}&\\ S & & & ¢ & 2 eé,\°® &
IS S q,@o & \§\+ N “\:@
Q\SQ
Benchmarks

Figure 4.11: Normalized memory service rate (higher is better)

methods yield a larger benefit in memory service rate than the existing UIMigrate
and OntheFly techniques. Mig-QoS handles the service rate as the QoS. It yields a
better memory service rate than Mig-Slot and SRS-Mig because it schedules migra-
tion only when the incoming memory request rate is below a threshold to reduce the
number of requests delayed due to migration. This helps to control migrations to im-
prove the memory service rate. Mig-QoS improves both memory response time and
memory service rate by keeping track of the incoming request rate before scheduling
migration for the current slot. From the figure, it is observed that the proposed
SRS-Mig and Mig-Slot could improve the memory service rate by 13% and Mig-QoS
improves the memory service rate by 21% while the UIMigrate method improves the
memory service rate only by 5% and OntheFly improves by 7% than the baseline
method on average.

For multi-programmed workloads:

Mig-QoS improves memory service rate by 50% for Mixz_High and 12% for Miz_Low
over Baseline. The improvement is more visible for high intensity workload.

For multi-threaded workloads:

Like canneal, streamcluster, 264 and dedup, the average improvement in mem-
ory service rate is 6% for SRS-Mig, 5% for Mig-Slot and 9% for Mig-QoS. Even
though these benchmarks have less WBPKI, the proposed methods could improve
the memory service rate better than existing methods by judiciously scheduling mi-
gration through reserving space for migration. The constant incoming request rate

for streamcluster results in a similar memory service rate for proposed Mig-Slot and

104

Results

Baseline mmmm OntheFly —— Mig-Slot s
UlMigrate pm SRS-Mig Mig-QoS ==

Normalized energy consumption

o > & X N > Q Y Q&
&"0\\ & & F e@b\) © & & &
d e N RN

N N

Benchmarks

Figure 4.12: Normalized energy consumption (lower is better)
Mig-QoS.

4.10.5 Energy Consumption

The total read energy and write energy comprise the energy used in memory. In
hybrid memories, the total energy consumption is a combination of energy consumed
for regular read/write requests and energy consumed for migration. Equation 4.1
provides the formula for calculating the total energy where the subscript D and P
represent DRAM and PCM, respectively.

Total Energy = # Readsp X ReadEnerqgyp
+#Writesp x Write Energyp
+# Readsp x ReadEnergyp + #Writesp X WriteEnergyp
+# Migrationp X ReadEnergyp + #Migrationp X WriteEnergyp
+#Migrationp X ReadEnergyp + #Migrationp x WriteEnergyp (4.1)

where # Readsp and #Writesp represent the number of reads and writes for
DRAM, ReadEnergyp and Write Energyp indicate the read and write energy for
DRAM. Similarly the subscript P for these parameters represent PCM. # Migrationp
indicate number of migrations from PCM to DRAM and #Migrationp represent
number of migrations from DRAM to PCM.

Figure 4.12 shows the total energy consumption for the proposed and existing

methods normalized with their baseline method. Migrating write-intensive pages

105

Migration Scheduling Policies

to DRAM controls the expensive writes to PCM, which can significantly lower the
overall energy consumption in the hybrid memory system as writes consume more
energy in the case of PCMs. Proposed SRS-Mig, Mig-Slot, and Mig-QoS reduce
energy consumption by 17%, 16%, and 22% compared to Baseline, whereas the
UlMigrate reduces energy consumption only by 10% and OntheFly reduces it by
12%. The write energy for DRAM is much lower than the write energy for PCM. The
proposed methods maximize write hits in DRAM and reduce energy consumption by
migrating write-intensive pages to a faster DRAM partition at the right time. SRS-
Mig reduces energy consumption with the help of run-time slot-based migration
scheduling. Judiciously controlling the time of migration and reserving space for
migration helps the proposed Mig-QoS and Mig-Slot reduce energy consumption
significantly. For example, Mig-QoS reduce energy consumption by 46% for multi-

program workload Mix_High and 8% for Mix_Low.

4.10.6 Distribution of Accesses to Migrated Pages

The objective of this work is to migrate write-intensive pages to PCM to improve
overall execution time. Selection of migration candidates and migrating them with-
out affecting regular read /write requests is achieved by proposed SRS-Mig, Mig-Slot,
and Mig-QoS. To demonstrate the appropriate selection of migration candidates at
the right time, we plot the access patterns to these pages. We show that the write-
intensive pages loaded in PCM when moved to DRAM, incur several writes. This
demonstrates that our migration candidates were the correct choices. Access to
these pages while in DRAM improves performance. In some cases, certain PCM
pages get selected as a victim from DRAM and moved back to PCM. However, our
victim selection guarantees that such returned pages are not accessed much after
returning back to PCM.

Figure 4.13 presents the percentage of memory access count for the proposed
migration techniques. The distribution of memory access count is as follows: (i) the
percentage of accesses when a page is loaded to PCM, (ii) the percentage of accesses
after the PCM page is migrated to DRAM, and (iii) the percentage of accesses
if the migrated PCM page is returned back to PCM. Normalized PCM migration
access is typically greater than access to normalized return back migration. It is
observed that the percentage of accesses when it is in DRAM is higher for all the

proposed techniques, indicating that the proposed methods effectively migrate pages

106

Results

% PCM Access mmmm% Return back PCM Access mmmm % PCM Access mmmm% Return back PCM Acc % PCM Acc —%R back PCM Acc
% Migrated PCM Access % Migrated PCM Access WI\’IgaAd}(MA

100 100 100
0 %
% 80 3
Z 7
& 7 IR
3 &
g 60 60
S 50 50
40 w0
s0 s 30
20 20
0 0
i S

% PC

/ P(,M accesses
8838

% PCM accesse:

3

0 & ©
\\j““i“ﬁezé’%x\"&p@ &c‘e’&f 5‘?5‘¢Q’§$¢) 0“*"“”6@@*@@‘}
Benchmarks Benchmarks Benchmarks
(a) (b) (c)

Figure 4.13: Distribution of total PCM accesses in techniques a) SRS-Mig, b) Mig-Slot,
and c¢) Mig-QoS

in a timely manner. The response time and execution time of the application will
progressively improve as a result.

The migrated PCM access for Mig-QoS is 78.03%, Mig-Slot is 64.6%, and SRS-
Mig is 61.7% on average. Due to the timely migration of pages, the proposed
methods could reduce the before-migration access percentage. It is only 18.4%
for Mig-QoS, 29.96% for Mig-Slot, and 33.93% for SRS-Mig. The migrated pages
achieved a significant increase in access after moving to DRAM, demonstrating the
effectiveness of our selection of migration candidates and the timeliness of migration.

The victim selection process using DRAM is also efficient. This is evident from
the figure that the number of PCM pages that migrated to DRAM and then back
to PCM was very small. The number of access to return back pages is about 3.56%
for Mig-Qos, it is 5.39% for Mig-Slot, and 6.97% for SRS-Mig as shown in Figure
4.13.

4.10.7 Sensitivity Analysis

We have conducted a study to empirically determine the value of hotness threshold
MuigHT and margin value mg. This section provides the sensitivity analysis for these

values.

4.10.7.1 Sensitivity Analysis for MigHT

The proposed methods migrate a page when the write intensity of the page crosses
the migration threshold MigHT. To study the impact of MigHT on memory service
rate, we performed experiments with different values of MigHT, as shown in Figure

4.14a. A higher value of MigHT results in fewer pages crossing the threshold, which

107

Migration Scheduling Policies

sjeng —dh— calculix canneal

Ibm namd —j— streamcluster Ibm —g@— namd —j—
libquantum —— canneal | 15 i i

| >M
z
2gl
[,

°
>
Memory service rate

Memory Service Rate
°
®

o
IS

o
o ®
o
©
L S
4
od

® © ®

0|

L & & &
$ £ & & ©

B KRR S

$
o

Migration Threshold (MigT) % Margin values
(a) (b)

Figure 4.14: Effect of varying MigHT on the memory service rate, (b) Sensitivity analysis
on margin values

I
@

lowers the number of migrations. So, the number of accesses to PCM increases,
as does the execution time. With the small value of MigHT, there will be more
migrations and more reverse migrations. Also, the migration overhead increases
and lowers the memory service rate. As a result, the value of MigHT cannot be
too low or too high. Figure 4.14a presents the memory service rate obtained for

Mig-QoS with varying MigHT for different benchmarks normalized with Baseline.

It has been noted that the trend is consistent across plots for various benchmarks.
However, because of the distinct memory access patterns for each benchmark, the
same MigHT value results in a different memory service rate across the benchmarks.
For example, write-intensive benchmarks such as lbm and gobmk have the best rate
when MigHT is greater than 100 while less write-intensive benchmarks like namd
and calculix have the best rate when the MigHT value is less than 100. For multi-
programmed workloads, Miz_Low has the best rate at 100, and for Mix_High, the
rate is best at MigHT = 500 while for Mix_M edium, the service rate is best when
MigHT is 200. The multi-threaded benchmarks like canneal, dedup, streamcluster,
and 2264 have lesser WBPKI, and hence the memory service rate is best for MigHT
value less than 100 for these workloads. It is evident that the service rate depends
on the MigHT value, and choosing MigHT appropriately based on write intensity

helps to improve the memory service rate.

108

Results

4.10.7.2 Sensitivity Analysis for Margin Value mg

Mig-QoS schedule page migration only when the incoming request rate is less than
the current average incoming request rate, along with a small margin. We update
the average request rate for each slot and check with the incoming request rate of
the current slot. To accommodate the dynamic change in the incoming request rate
r, we keep a margin (mg) on the average request rate r,,,. In particular, we define

a window, W, around the average rate:
W = 1r4p —mg

We say that if » < W, then schedule migration; otherwise, we postpone mi-
gration. We conducted experiments with various values for margin mg to examine
the effect on memory service rate, as shown in Figure 4.14b. If the value of the
mg is small, then W becomes large; hence, migration (of possible candidate pages)
is scheduled frequently, even when the incoming request rate might be high. In
contrast, a higher margin value indicates a small value for W, and hence, Mig-QoS
postpones the migrations even when the current incoming request rate may be low.

Figure 4.14b presents the memory service rate obtained for different values of
margin for various benchmarks normalized with Baseline. The figure shows that
margin has a high impact on the service rate. As the memory access pattern differs
for each benchmark, the impact on the service rate for the same margin value mg
is different. For a small value of mg (say mg = 10%), the algorithm schedules more
migrations (if there are candidates), and this increases the overhead, leading to a
lesser memory service rate. In contrast, for a large value of mg (e.g., 30% or 40%),
the value of W becomes very small. This leads to most of the migrations getting
postponed. As the migrations have yet to take place, the requests to these pages are
served from the (slower) PCM memory, leading to a lesser memory service rate. For
intermediate/medium values of mg, we see improvement in service rate as we are
able to judiciously perform migrations to valid candidate pages. In the experiments,
we found 20% as the best value for mg. For example, sjeng has a relatively lower
service rate of 1.19 at mg = 10% and 1.07 for mg = 40%. At the same time, we see
a better service rate of more than 1.32 for mg = 20%.

To conduct our experiments, we took the average 20 for the value of the margin
mg. Hence, Mig-QoS reserves space for migration only when the incoming request

rate for the current slot is less than the current average incoming rate with a margin

109

Migration Scheduling Policies

Table 4.3: Ouverhead analysis (lesser is better)

Parameter % Overhead over Baseline
UlIMigrate | OntheFly | SRS-Mig | Mig-Slot | Mig-QoS
Migration Count | 11.99 12.4 11.57 14.3 7.6
Energy 11.93 12.1 10.01 11.18 8.8
DRAM . 1.91 1.8 0.65 0.34 0.02
Response Time

of 20%.

4.10.8 Overhead Analysis

Total Migration Count:

Existing UIMigrate and OntheFly techniques and the proposed SRS-Mig, Mig-Slot,
and Mig-QoS control the number of migrations to reduce the migration-related over-
heads and thus improve memory performance. Table 4.3 presents the percentage of
the number of migrations obtained for both the existing and proposed techniques. It
can be deduced from the table that along with improving memory response time, the
proposed Mig-QoS yields fewer migrations because of its better migration decision
control logic. The average percentage of migration count for SRS-Mig, Mig-Slot, and
Mig-QoS are 11.57%, 14.3%, and 7.6%, respectively, whereas OntheFly has a migra-
tion count of 12.4% and UIMigrate has a migration count of 11.99%. By updating
the threshold based on the current highest access count, OntheFly could control the
number of migrations. Among the proposed techniques, Mig-QoS has less number of
migrations as the technique controls migration based on the incoming request rate

yet gives better performance.

Energy Overhead:

A page migration involves data movement from one partition of memory to the
other partition, which includes additional data access and data movement. This
causes energy and memory delay overheads. The energy overheads associated with
existing UIMigrate and OntheFly techniques and proposed SRS-Mig, Mig-Slot, and
Mig-QoS due to page migration are shown in Table 4.3. The proposed methods

produce better execution and response times with less energy overhead compared

110

Summary

Table 4.4: Comparison of proposed migration policies

Parameter % Improvement over Baseline
SRS-Mig | Mig-Slot | Mig-QoS
Execution Time 40 42 47
Memory Service Time 17 17 24
Memory Response Time 36 38 45
Memory Service Rate 13 13 21
Energy Consumption 17 16 22

to the existing method. The energy overhead is 10.01% for SRS-Mig, 11.18% for
Mig-Slot, and 8.8% for Mig-QoS, while the energy overhead is 11.93% and 12.1%
for UIMigrate and OntheFly.

DRAM Response Time:

In hybrid memory, write-intensive pages are migrated to DRAM from PCM to im-
prove the memory response time and execution time of the application. As the pages
migrate to DRAM, the average DRAM response time may increase compared to the
baseline technique. Table 4.3 presents the percentage of increase in the average
DRAM response time for UIMigrate, OntheFly, SRS-Mig, Mig-Slot, and Mig-QoS.
The DRAM response time increased by 1.91% for UIMigrate and increased by 1.8%
for OntheFly, whereas SRS-Mig, Mig-Slot, and Mig-QoS increased it only by 0.65%,
0.34%, and 0.02%, respectively, compared to the baseline technique.

4.11 Summary

The page migration affects the performance of regular read /write requests. Hence,
migrating a page without hampering the regular requests is necessary. This chapter
presented three migration scheduling techniques to improve the memory service rate,
memory response time, and execution time of the application: the first proposal,
SRS-Mig, schedules migration at run-time using a dynamic slot-based technique.
SRS-Mig ensures page migration does not adversely affect regular read/write access.
This helps to reduce execution time and memory response time with a negligible
migration overhead. The second proposal is Mig-Slot, where the migration is sched-

uled in the reserved space in the slot without hampering regular requests. This

111

Migration Scheduling Policies

helped to improve execution time and memory response time. The third contribu-
tion, Mig-QoS, improves memory service rate and response time. Mig-QoS improves
the memory service rate by postponing migrations based on the incoming memory
request rate.

We have evaluated the proposed techniques by conducting simulation-based ex-
periments, and the results are compared with existing techniques. Table 4.4 presents
the improvement obtained for proposed migration policies over baseline for different
evaluation parameters. We have concluded that the proposed methods work better
for high write-intensity workloads than low write-intensity workloads. For example,
SRS-Mig, Mig-Slot and Mig-QoS improve execution time by 4%, 4% and 6% for
Mix_Low whereas the improvement in execution time for Miz-High is 40%, 41% and
49% for SRS-Mig, Mig-Slot and Mig-QoS respectively. On average, our proposal
could improve application execution time by 27%, improve memory service time by
24%, improve the response time of PCM by 21%, improve memory service rate by
25%, and reduce energy consumption by 22% over baseline.

We know that migrating pages will help enhance performance. However, migra-
tion scheduling and keeping track of the quality of service for memory service rate

will make these methods more effective and scalable.

112

De-stress Scheduling Policies for Pure
PCM Memories

This chapter proposes de-stress scheduling policies to mitigate Biased Temperature
Instability (BTI) aging and thus improve the longevity of PCM memories. The
proposed methods schedule de-stress operation such that de-stress less hampers the
service of regular read/write requests, leading to an improved memory service time.
In particular, the proposed methods monitor the incoming request rate before per-
forming de-stress operation. The proposed techniques are evaluated on two existing

methods with quad-core systems.

5.1 Introduction

With the advanced scaling of transistors, device reliability has become an important
challenge for non-volatile memories. Transistor aging gradually degrades system per-
formance and affects the reliability and lifetime of the circuit. In NVMs, elevated
temperature, high voltage requirement, increased power consumption, etc., acceler-
ate transistor aging. Biased Temperature Instability (BTI) [6, 72, 73, 76, 78, 80, 81,
101] is a major aging-causing factor that leads to transistor aging. BT increases the
threshold voltage (vy,), which is the minimum voltage required to create a conduct-

ing path between the terminals of a transistor. BTI aging is proportional to the in-

113

De-stress Scheduling Policies

crease in threshold voltage, i.e., the higher the shift in threshold voltage, the quicker
the cell aging. When performing memory operations, the voltage applied is called
stress voltage, which increases threshold voltage in NVMs. The high-stress voltage
requirement of NVMs for read and write operations makes them more vulnerable to
BTI aging. This indicates that BT aging is highly dependent on the memory foot-
print of the executing application. Note that BTI is highly variable and reversible
upon removing stress voltage. However, if the stress condition extends over a long
duration, the shift in threshold voltage due to BTI becomes irreversible and leads
to permanent functional failure and hardware faults.

State-of-the-art aging control methods periodically de-stress the circuit by either
removing the stress voltage or reducing the voltage to a lower amount to prevent
permanent failure. As a result, de-stressing aids in recovering from a rise in thresh-
old voltage. The duration for which the circuit is subjected to stress or de-stress
operation determines the resultant threshold voltage shift amount. Therefore, de-
stressing must be done regularly to prevent the circuit from aging. It should be noted
that de-stress operations halts the service of regular read/write requests. This, in
turn, adversely impacts the performance and average memory service time of the
system. However, if de-stress is not performed long, the threshold voltage shift be-
comes irreversible, leading to permanent functional failure. So, it is desirable to
control de-stress dynamically so that the system performance and BTT aging can be
prudently balanced.

As mentioned before, BTT aging depends on the memory footprint of the appli-
cation. Therefore, it is better to control de-stress based on the memory request rate
to maintain a desirable regular memory service rate.

The main contributions of this chapter are as follows:

e We propose AGRAS, a scheduling technique for memory requests and de-
stress to improve performance and control BTI aging. The method schedules

de-stress based on the incoming request rate.
e We propose RODESA with two variants: RODESA-p and RODESA-b.

e RODESA-p schedules a partial de-stress if the memory request rate is within a
predefined threshold to lessen the impact of de-stress on the service of regular

requests.

114

Basic De-stress Scheduler

e RODESA-b is a per-bank de-stress scheduling technique that schedules de-
stress operations in the background based on the memory access pattern of
each bank.

e The proposed methods are validated against current interval-based de-stress
scheduling techniques in the Gem5 [95] full system simulator integrated with
NVMain [96] using benchmark applications from SPEC 2006 [99] and Par-
sec [100] benchmark suite. Both techniques achieve better performance and

comparable age degradation compared to regular de-stress methods.

e We have also provided the necessary sensitivity analysis to determine the

thresholds used in our algorithms.

This chapter organized as follows: basic de-stress scheduler is discussed in 5.2.
Motivation of the scheduling policy is presented in section 5.3. Section 5.6 illus-
trates proposed system model. Section 5.4 describes the model used to compute the
aging in our proposed de-stress scheduling techniques. The thresholds used for our
proposed scheduling methods are discussed in 5.5. Proposed de-stress scheduling
policies are discussed in sections 5.7 and 5.8. Section 5.9 discusses the experimen-
tal methodology. Results and analysis are presented in section 5.10. Finally, we

summarize this chapter in section 5.11.

5.2 Basic De-stress Scheduler

Non-volatile memories are susceptible to BTI aging due to the high-stress voltage
required to perform read/write operations in such memories. Performing de-stress
at regular intervals by removing the high voltage for a small duration helps the
memories to recover from BTI aging. The de-stress operation reduces the increase
in threshold voltage shift and reduces the overall voltage shift. Therefore, de-stress
operation controls BTT aging.

The execution timeline of an application can be divided into continuous stress/
de-stress periods as shown in Figure 5.1 where memory operations are performed
during the stress period (shown as red color in Figure 5.1) and the memory is
de-stressed to control BTI aging during de-stress period (shown as green color in

Figure 5.1). The decision for de-stress is taken at the boundary of the stress/de-

115

De-stress Scheduling Policies

Schedule Schedule Schedule
de-stress de-stress de-stress
De-stress | De-stress | 'De-stress |
/étress Period (51)_;P;i:dr TSTiétress Period (Szfpe':i:ﬁ;;f ------- #tress Period (Sn)tlpe.:i:‘;?;:i
Time

Figure 5.1: Ezxecution timeline with Stress/De-stress periods

RegDes pummm AlterDes —— Baseline mmmm RegDes pummm AlterDes ——

—_

N =
oM B O ® =N D

Normalized Age Degradation

T E G5 5§ ® 2 3 E £ © T E G5 5 ® 2 3 E £ O
s 2 E gtz dsgzg ¥ 82 E g 2332928
@ S § ©v X & Xx ¢ @ T § ©v X & x 9
2 E © S = s < 2 E © = 2 5 <
s x s x
= = = =
@ Benchmarks @ Benchmarks
(a) (b)
Figure 5.2: (a) Normalized age degradation over RegDes, (b) Normalized CPI over Base-

line

stress period, and the de-stress is performed by stalling the regular memory requests

during the de-stress period.

5.3 Motivation

We use RegDes as an existing de-stress scheduling policy that performs de-stress
in every de-stress period (i.e., after every red color in Figure 5.1). RegDes is known
to control BTT aging to a maximum extent as it de-stresses regularly. As a result, it
also stalls the regular requests more frequently. Alternatively, instead of de-stressing
after every stress period, we can perform de-stress after every alternate interval, i.e.,
after two red color periods in Figure 5.1. We call such a policy as AlterDes.
Figure 5.2a presents the age degradation for AlterDes normalized over RegDes.

AlterDes performs de-stress in alternate intervals and accumulates more age than

116

Aging Model

RegDes. On average, AlterDes degrades age by 49% compared to RegDes. AlterDes
performs de-stress in alternate intervals, while RegDes performs de-stress in every
interval. Thus, the accumulated age for AlterDes is approximately double that
of RegDes. RegDes reduces the increase in threshold voltage shift and thus BTI
aging by performing de-stress in regular intervals. Even though regular de-stress
helps control BTT aging, it stalls the service of regular requests more frequently and
degrades the Cycles Per Instruction (CPI). Figure 5.2b presents CPI obtained for
the RegDes method, which performs de-stress in regular intervals, and AlterDes,
which performs de-stress in alternate intervals normalized over a baseline execution
where the BTT effect is not considered. From the figure, we can observe that RegDes
increases the CPI on average by 23%, and AlterDes increases it by 11%. RegDes
disturbs regular requests service more frequently than AlterDes and thus increases
CPI compared to AlterDes.

From the figures Figure 5.2a and Figure5.2b, we can observe that performing de-
stress in the alternate interval, as in AlterDes, improves CPI compared to RegDes,
whereas the method degrades age critically. Alternatively, RegDes can reduce the
age degradation by performing de-stress at every interval but increases CPI as the
system is affected (stalled) more frequently. Therefore, it is essential to have a
policy to schedule de-stress opportunistically to balance CPI and age degradation.
Scheduling de-stress based on the incoming request rate and aging of the circuit is

a method to reduce aging and improve CPI.

5.4 Aging Model

The increase in threshold voltage, according to the Trapping/Detrapping (TD)
model [81-83], is caused by traps that collect charge carriers and recover when
released. The TD-based BTT aging model has an exponential relationship with tem-
perature and stress voltage and a logarithmic relationship with time. The TD model

computes the Avy, as follows:

Avg, = ¢[A + log(1 + Ct)] (5.1)

The model parameters A and C' rely on the trap’s time constants. Under a spe-
cific stress condition, these two parameters remain constant, so the shift in threshold
voltage is caused by ¢. The value of A and C are 1.28x10~* and 0.0099 respectively.

117

De-stress Scheduling Policies

mcf —@— X264 —m—
lbm canneal —¢—

o
o
o

o o© ©
o o o
(¥ @ I

Incoming Request Rate

o
o
=

o

- 9 9 ¥ »w o© . o o Q
o o o o o o o o o '
n O »w nu o o o O o %

Stress Periods

Figure 5.3: Memory request rate at continuous Stress periods

The mean value of ¢ is given as 0.0013 with a standard deviation of 26% of the mean
[83].
If the stress and recovery cycle continues monotonously, the shift in voltage after

m stress and recovery cycles using TD model is determined by:

Avm = m * [Avg,(ts) — Avg(t,)] (5.2)

where ¢, and ¢, are the stress and recovery duration, and Awvy,(ts) and Awvy,(t,)

can be calculated using equation 5.1.

5.5 Thresholds used during Scheduling

The proposed scheduling policies use threshold-based decision logic. Various thresh-

olds used in our proposed scheduling algorithms are discussed in this section.

5.5.1 Request Threshold (RQT)

Applications running on the CPU cores executes in phased manner. CPU cores
executing applications generate memory requests, reaching the memory controller
at different rates. The incoming request rate varies among applications and also
during the execution of the application. The varying incoming request rate for
four applications from SPEC 2006 and Parsec benchmark suites is presented in

Figure 5.3. In this figure, the X-axis represents randomly distributed periods of

118

Thresholds used during Scheduling

execution during which memory operations are performed. The Y-axis represents
the incoming memory request rate at that interval. We can observe from the figure
that the memory access rate is not monotonic. For example, the rate is 0.008 for
mcf at the initial slots, increases to 0.02 in middle slots, and reduces to 0.007 in
end slots. While for [bm, the rate is 0.05 at the initial, reduces to 0.01 at the middle
slots, and continues to reduce to 0.003 in the end slots. For low memory-intensive
benchmarks like 264, the rate is 0.01 at the initial slots, reduces to 0.0004 in the
middle slots, and increases to 0.01 at the end slots. It is to be noted that none of
the applications follow same memory pattern. The rate varies even in continuous
stress periods. For example, the rate 0.05 for bm at SP-1, while it reduced to 0.02
at SP-2.

The memory needs to be de-stressed in regular intervals to control BTI aging.
However, if the request rate is high and during that interval, we schedule de-stress,
then the service of a large number of requests is affected due to stalls introduced by
a de-stress, leading to a decreased Instruction Per Cycle (IPC). Thus, it is better
to decide the time and duration of de-stress based on the incoming request rate for

applications. We maintain a threshold for this request rate called RQT.

The request threshold RQT is adaptive. In that, it keeps track of the changes
in the request rate. RQT is updated in each interval based on the incoming request
rate in the previous interval. In particular, if the request rate increases by 10% over
the rate in the previous interval, then RQT is updated to the rate; otherwise, the
existing value of RQT is used. The RQT is updated to the new value, which is
equal to the incoming request rate of the previous interval added with its 10%. The
dynamic RQT helps to schedule de-stress according to the memory access pattern

of the application.

5.5.2 Partial Request Threshold PRT

From Figure 5.3, we can observe that the incoming request rate increases marginally.
We maintain a Partial Request Threshold (PRT') with upper and lower bounds as
PRT,, and PR1T), to determine the duration of de-stress as either full or partial.
PRT is also updated similar to RQT.

119

De-stress Scheduling Policies

Memory Controller

Read/Write
Response

FR-FCFS
Scheduler €

v

Read/Write Request
Queue

Y

De-stress Management Unit Read/Write PCM

(DMU) Requests
Decision De-stress Destress
Logic Scheduler Requests

Figure 5.4: Memory controller with De-stress Management Unit

5.5.3 Age Threshold (AGT)

If the de-stress is postponed for a long time, then the threshold voltage deterioration
grows, adversely affecting the age of the device. Therefore, it is important to keep
track of age degradation and schedule de-stress accordingly. Our proposed methods
ensure the de-stress is scheduled before a permitted age degradation value. We have
considered the age threshold AGT, where proposed methods are allowed to postpone

de-stress for consecutive AGT intervals.

5.6 System Model

Figure 5.4 presents the overview of the memory controller, which manages de-stress
operations and regular read/write requests. We assume that PCM follows an open
page row-buffer management policy where a memory row is accessed by bringing it
to the row-buffer, allowing further access to the same row without closing it. The
memory requests that arrive at the memory controller are scheduled by the FR-FCFS
scheduler, where the row-hit requests are prioritized. The de-stress Management
Unit controls de-stress operations. The unit comprises two components: (i) Decision
and Computing Logic and (ii) De-stress Scheduler. The decision and computing logic
determine the type of de-stress operation based on the policy. The unit keeps track
of the incoming request rate and aging. Also, they update the age and request
thresholds, which are used to make decisions about de-stress scheduling. The de-

stress scheduler schedules de-stress together with regular requests.

120

AGRAS: Age and Request rate Aware Scheduler

Request Queue]

End of stress
interval ?

Schedule Request

Update request
threshold

l

Check and update
current request rate

Current request
rate > RQT

Current age >
AGT

Schedule destress

Figure 5.5: Flowchart of our proposed AGRAS

5.7 AGRAS: Age and Request rate Aware Sched-

uler

The proposed AGRAS is an age and request rate aware scheduling mechanism where
the de-stress operation is scheduled in accordance with incoming memory request
rate. The memory requests that arrive at the memory are batched and scheduled
in FR-FCF'S order, where the row-hit requests are prioritized. In regular intervals,
the computation unit in the de-stress scheduling unit computes the incoming mem-
ory request rate and aging of the circuit. At the end of every stress interval, the
incoming memory request rate is compared against a request threshold (RQT) be-
fore scheduling a de-stress in the interval. The de-stress is scheduled only when the
incoming rate is less than the request threshold.

Figure 5.5 explains the proposed age and request aware de-stress scheduler. The
proposed method updates the request threshold at regular intervals based on the

previous incoming memory request rate. The current incoming request rate is com-

121

De-stress Scheduling Policies

pared with this updated request threshold. If the request rate is more than RQT,
then the proposed method does not de-stress the device for this interval and contin-
ues to service memory requests. This is done because, as the request rate is high,
if we stall the device for de-stressing it might affect the system performance. How-
ever, delaying de-stress for a long duration increases the aging of the circuit. Hence,
our proposed method also keeps track of age degradation. In that, it compares the
current age degradation of the device with the age threshold (AGT). If the age
degradation is more than AGT, then we schedule the de-stress of the device irre-
spective of the request rate. This is done because an increase in age may eventually

lead to permanent functional degradation.

5.8 RODESA: Request and Opportunistic De-stress
Scheduler

From Figure 5.3, it is evident that the memory request rates vary during the execu-
tion of the application. If the rate is high and we schedule a de-stress operation, the
memory response will be stalled, leading to slowing the execution of the application.
Therefore, before scheduling the de-stress operation, it is necessary to monitor the
request rate at run-time dynamically. AGRAS schedule de-stress only when the
request rate falls below RQT. It is preferable to base the decision to de-stress on
the range of values of request rate because these vary. Moreover, executing a full
de-stress will cause the application service to stall if the request rate is lower than
RQT yet the value is closer to RQT. To lessen the impact on the service of regular
requests and achieve better performance with lower age degradation, it is, there-
fore, advantageous to divide the request rates into a range of classes and execute
de-stressing partially or fully based on this range.

We propose RODESA, a request and opportunistic de-stress scheduler with two
variants, RODESA-p and RODESA-b. The proposed RODESA-p considers the
dynamic incoming memory request rate of the executing application and allows it
to opportunistically perform de-stress partially to less hamper the service of regular
requests while achieving reduced age degradation. The other variant, RODESA-
b, proposes a bank-wise de-stress scheduling policy. Based on the memory access
pattern of each bank, it schedules de-stress in the background. This background

de-stress helps the proposed method achieve better performance and reduced age

122

RODESA: Request and Opportunistic De-stress Scheduler

degradation as the de-stress happens in parallel to the service of regular requests.

5.8.1 RODESA-p

RODESA-p performs partial de-stress if the rate is within a threshold by reducing
the duration of de-stress to half of the time required for a full de-stress. To decide
this, we categorize the memory request rate of the current stress period into Low,
Medium, and High in comparison with the request rate of the previous stress period.
This category indicates that compared to the previous stress period, the memory
request rate has reduced or remained the same (low), increased a little (medium),

or increased very much (high).

o If category is low, RODESA-p performs full de-stress, because performing de-

stress will not affect the system performance much.

o If category is high, RODESA-p postpones de-stress to reduce the impact of
de-stress on memory service rate and performance given that age threshold is

not crossed.

o If category is medium, RODESA-p schedules a partial de-stress, which per-

forms de-stress only for half of the duration of full de-stress.

Algorithm 5.1 presents the proposed RODESA-p. The proposed RODESA-p
monitors age degradation and compares it with Age Threshold, AGT. 1t schedules a
full de-stress if de-stress was skipped for continuous AGT de-stress periods regardless
of the current request rate (lines 9-11). Otherwise, RODESA-p classifies the current
memory request rate into Low, Medium, and High categories based on the change
(0) in the request rate in the current interval over the previous interval (line 13 and
25).

If the request rate increases marginally, then we can take the opportunity to
perform the de-stress. For this, we define a range of values to make the decision
called partial request threshold (PRT'). If the rate increases in the range of PRT},
to PRT,;,, then we consider this increase as a medium increase. Otherwise, it is
either low or high (lines 26-32). In our experiments, we use PRTj;, = 5% and
PRT,;, = 10%. In other words, if the request rate increases between 5 to 10 percent,

then we perform partial de-stress.

123

De-stress Scheduling Policies

Algorithm 5.1: RODESA-p

Input: Incoming requests for k" stress period S},
Output: De-stress decision
Q = {R,,} j" request for i"* bank, B;
RR;, = Request rate for current stress period Sy
RRj_1 = Request rate for previous stress period S;_
AGC = Age count
AGT = Age Threshold
PRT = Range of values to perform partial de-stress
PRTy, & PRT,, = Lower and upper bound of PRT
Category(Sk) = Low/Medium/High based on the request rate
if AGC > AGT then

Full de-stress for the memory

AGC =0

12 else
13 Category(Sk) = IdentifyCategory(Sk)
14 if Category(Sy) is Low then

© W N OO A W N =

=
= o

15 Full de-stress for the memory

16 | AGC =0

17 else

18 if Category(S) is Medium then

19 Partial de-stress for the memory
20 | AGC =0

21 else

22 Skip de-stress

23 | Increment AGC

24 Function IdentifyCategory(Sy)
25 0= RRk - RRk_l

26 if 6 < PR1Ty, then

27 L Category(Sy) = Low

28 else

29 if PRT,, <6 < PRT,; then
30 L Category(Sk) = Medium
31 else

32 L Category(Sk) = High

Once the category is identified, we do the following. If the increase in request

124

RODESA: Request and Opportunistic De-stress Scheduler

o
®

Normalized Memory Requests
o
2

~ @
o o
b @

Random Stress Periods
(a)

Figure 5.6: Per bank memory access count normalized over mazimum access count among
the banks for (a) lbm, (b) leslie3d, (c) canneal

rate is low, then we can take this opportunity to perform a full de-stress as it may
not significantly affect the system performance and memory service rate (lines 14-
16). If the increase in rate is medium, i.e., in the range of the PRT threshold, we
decide to perform partial de-tress (lines 18-20). During partial de-stress, we de-
stress the device for a shorter duration than during a full de-stress. This is done
so that the requests are not stalled for a prolonged duration. In the case when the
rate of increase is high, it is judicious to skip the de-stress as it might affect the
system performance (lines 22-23). Here, the age counter (AGT) is incremented to
keep track of the age threshold. In that, if we have skipped de-stress for consecutive
intervals (maintained by AGT), then we should perform a de-stress irrespective of
the request rate. This is done to keep aging under control.

With the help of PRT and AGT, RODESA-p achieves better performance than
existing regular de-stress methods. RODESA-p varies the duration of de-stress
by performing partial de-stress and thus can less hamper the service of regular
requests. Also, the method could reduce the impact of age degradation on account
of postponing de-stress due to the high request rate. Our proposal is dynamic as the
PRT is checked in comparison with consecutive intervals. It adapts to the current
request rates and performs opportunistic de-stressing instead of statically deciding

the de-stress intervals.

5.8.2 RODESA-b

Each memory bank receives memory requests at a different rate in various stress
periods. Figure 5.6a, Figure 5.6b and Figure 5.6¢ present the number of memory

requests received by four memory banks at random stress periods (SP) for three

125

De-stress Scheduling Policies

benchmarks [(bm,leslie3d,canneal respectively, from SPEC 2006 and Parsec bench-
mark suites. The request count is normalized over the maximum request count
received during the corresponding stress period. We can observe from the figures
that the memory access count varies across stress periods for each bank. For ex-
ample, consider [bm benchmark; the normalized memory access count for bank-0
is 0.72 at the initial stress period. It varied to 1 at the middle-stress period and
reduced to 0.25 at the end-stress period. At the same time, the trend is different for
bank-4, where the access count is 0.51 at the beginning and reduced to 0.31 at the
middle. Further, it increased to 1 at the end-stress period. For canneal, the access
count is 0.6 and 0.4 at the initial and end stress periods, respectively, for bank-2.
The count will decrease and then increase in the middle-stress periods. On the other
hand, for bank-1, the access count is 1 at the initial period and reduced to 0.3 at
the middle-stress period and then to 0 at the end-stress period.

As mentioned before, de-stressing is the method to reduce the aging of the banks.
We propose RODESA-b, which schedules opportunistic de-stress in the background
for each bank. In this method, the lightly loaded banks are de-stressed in the
background to improve performance and reduce age degradation. To identify lightly
loaded banks, RODESA-b keeps track of the access count per bank at run-time.
The bank which has maximum access will take a long time to serve. Here, ST;
refers to the sum of service time of accumulated requests targeted to the bank B;.
ST nae refers to the maximum among S7T;. While the bank with maximum access
count completes, we can de-stress banks with low access count where the sum of
service time ST; for bank B; and the de-stress time DT is less than ST,,,,, where
ST,qe 1s the total service time required by the bank with maximum access count,
ie., STyaw > ST, + DT.

The broad steps for the procedure are as follows. We maintain the age counter
for each bank and the total requests the bank is supposed to serve in this interval.
In case the age threshold is crossed, then we de-stress all the banks. Otherwise, we
search for opportunities to de-stress the bank in the background. We can de-stress a
bank in the background, provided there are other banks that serve regular requests,
and the requests to this particular bank are very low. By doing this, we are able to
hide the de-stress latency, and hence, the system does not incur a stall on account
of de-stress. This helps to maintain system performance while reducing the aging
of lightly loaded banks.

126

RODESA: Request and Opportunistic De-stress Scheduler

Algorithm 5.2: RODESA-b

© 00 N O Uk W N =

10
11
12

13
14
15
16
17
18
19

20
21
22

Input: Incoming requests for &t stress period Sy,
Output: De-stress decision

Q = {R;;} j" request for i"" bank, B;

ReqCnt; = Total requests for B; in this interval
AGC; = Age count for B;
AGT = Age Threshold

DT = De-stress duration

ST; = Total time required to serve ReqCnt; for bank B;
MST = Average memory service time (Given)
Vjif R;; € Q) then

L Increment ReqCnt;
if i : AGC; > AGT then

Foreground de-stress for all banks B;
| Vi, AGC; =0 // reset counters

else

ST; = ReqCnt; x MST

ReqCntper = MAX(ReqCnt;) Vi

STnaz = MAX(ST;) Vi

if 3 B; where (ST; + DT) < ST,4, then
De-stress B; in background
AGC; =0

else
Skip de-stress for B;
B Increment AGC;

127

De-stress Scheduling Policies

Algorithm 5.2 explains the proposed RODESA-b. If any of the bank B; is not
de-stressed for continuous AGT number of de-stress periods, i.e., age counter for the
bank: AGC; is greater than age threshold: AGT, RODESA-b forcefully schedules
(foreground) de-stress for all the banks to reduce age degradation (lines 10-12).
Otherwise, RODESA-b either performs or postpones de-stress for each bank by
comparing the access/request count of the bank with that of the bank that has the
maximum requests for service.

RODESA-b computes the time, ST},.., required by the bank, which has to ser-
vice the maximum number of requests in this interval (lines 14-16). For the other
banks, we can perform de-stress in the background provided it does not incur ad-
ditional stalls in request service. All the other banks need to service the regular
request (in time ST;) and schedule a de-stress (over duration DT'). We compute the
time required for these operations (line 17) and check if this time is lesser than the
time taken by the bank serving maximum regular requests (ST 4.). If certain banks
satisfy this condition, we perform a background de-stress for those banks once their
regular requests are serviced (lines 18-19). In the case when all the banks have equal
load, we forgo the de-stress operation and update the age counters for the banks
(lines 21-22).

RODESA-b monitors the memory access pattern of each bank to perform de-
stress either in the foreground or background opportunistically for each bank based
on their memory request load. Thus, it can reduce age degradation and improve

performance compared to existing regular de-stress methods.

5.9 Evaluation

The experimental framework used to evaluate the proposed methods is discussed in

this section.

5.9.1 Experimental Setup

The proposed method is implemented using Gemb [95] full system simulator inte-
grated with NVMain [96], a cycle-accurate memory simulator for non-volatile mem-
ories. The memory simulator models a 4GB PCM memory. However, our policy will
work for other recent memory setups such as hybrid DRAM-PCM memory as BTI

aging issues still exists for these type of memories also. We evaluate our results us-

128

Evaluation

Table 5.1: Important system parameters

Components Parameters

Processor Quad-core, X86/ALPHA

I1 Cache Private, 32KB SRAM Slit I/D caches,

2-way associative, 64B block

L2 Cache Shared, 512KB SRAM, 64B block, 8-way associative
PCM: 4GB, 4 channels, 32 entry request queue
Memory Controller: FR-FCFS

PCM :: Read = 100ns, Write = 350ns

Stress Time = 0.2 Million Cycles

De-stress Time = 0.04 Million Cycles
Benchmarks and their classification

SPEC 2006: leslie3d(Low), libquantum(Low), sjeng(Low),
Ibm(High), mcf(High), bzip2(High)

PARSEC: canneal (Low),x264(Low),streamcluster(Low),
dedup(Low),blacksholes(Low)

SPEC-Mixes: Mix-High: gobmk,lbm mcf bzip2;

Mix-Low: mcf, libquantum, sjeng, leslie3d

Main Memory

Memory Latency
[55, 98]

ing multi-programmed SPEC 2006 [99] and multi-threaded Parsec [100] benchmark
suites. We execute the SPEC 2006 workloads for 1B instructions after warming up
for 250M instructions. Based on their misses per kilo instruction (MPKI), these
benchmarks are classified into high and low-intensity classes. The SPEC-mixes are
created by considering MPKI and classified into high and low. The important sys-
tem parameters used in our experiments and the benchmarks used are shown in
Table 5.1.

Applications go through different execution phases and memory access patterns.
As our proposals are based on the history of accesses, if the execution phase changes,
then we will not be able to adapt to the same. Keeping this in mind, we have
chosen the stress intervals so that the execution patterns remain similar over some
number of consecutive stress periods. Fig 5.7 shows a sequence of stress periods
(SP1 to SP8) and demonstrates that the memory request rates are similar over
continued stress intervals. The figure also shows that after several stress intervals,
the behavior changes (SP1’ to SP7’). Thus, our stress and recovery periods are
chosen by considering this phased execution behavior, such that we can use the
history of accesses to make correct decisions. This ensures that the consecutive

stress periods follow the history of the incoming request rate.

129

De-stress Scheduling Policies

mcf —@— X264 —m—

lbm canneal —¢—
0.05
2
[
~ 0.04
-
2]
s
§0.03
~
g
g
0.02
=
S
=
= 0.01
0 ‘ L ‘ :
o doadoaoad o B A
BB DD D DB DL L H S ES S
Stress Periods

Figure 5.7: Memory request rate at continuous Stress periods

We assume the value of AGT as 2 !. For the partial de-stress decision, the
range of values taken to decide the categories (as low/medium/high) is taken as
5-10%. In particular, if the request rate increases by 10%? over the rate in the
previous interval, then postpone de-stress; otherwise, full de-stress is performed. To
do partial de-stress, we define the range of request rate as PRT. In particular, if the
rate is between 5% and 10% over the rate in the previous interval, partial de-stress

is performed.

5.9.2 Performance Analysis

The following techniques are considered during the evaluation for the performance

analysis of our proposed technique:

1. Baseline: Baseline method that does not take BTT effects into account during
application execution. We compare performance using this as a benchmark as

it never de-stresses.

2. RegDes: A method that schedules the de-stress of all banks at regular in-
tervals without considering the per-bank memory request (access) rate. The

method stalls the arrived memory requests during the de-stress operation.

LA sensitivity analysis of AGT is given in Section 5.10

2We can experiment for different values of increase in request rate as part of future work. If
we take a higher value of RQT, then we will postpone de-stress, thus aggravating aging. Whereas
if RQT is small, then we will schedule de-stress at regular intervals more often, thus affecting
performance.

130

Results

Baseline mmmm AlterDes ——— RODESA-p mmmm
RegDes pmmmm AGRAS pmmmm RODESA-D mmmm

0.8 +

06 -

0.4

Normalized IPC

02

leslie3d

Ibm

mcf

sjeng

bzip2
libquantum
streamcluster
canneal
dedup
blacksholes
X264
Mix-Low
Mix-High
Average

Benchmarks

Figure 5.8: Normalized IPC over Baseline (higher is better)

3. AlterDes: This method schedules de-stress in alternate intervals. The method

stalls the arrived memory requests during the de-stress operation.

4. AGRAS: Our proposed method schedules the de-stress based on the incoming

request rate and keeps track of device age degradation.

5. RODESA-p: Our proposed method optimizes AGRAS by opportunistically

performing partial de-stress if the incoming request rate is within a threshold.

6. RODESA-b: The proposed method where the de-stress is performed op-
portunistically by looking at the bank-wise read/write access pattern and at-

tempts to schedule the de-stress of lightly loaded banks in the background.

5.10 Results

The performance of the proposed methods is evaluated using various metrics. This
section analyzes the obtained results for proposed and existing techniques.
5.10.1 Effect on Performance:

Instructions Per Cycle is an indicator to assess the performance of the CPU. The
average number of instructions executed for each cycle is known as IPC. De-stressing

memory adds delay to the service of regular requests and thus increases the average

131

De-stress Scheduling Policies

memory latency. This, in turn, increases the time required to complete instruc-
tion, and so negatively impacts IPC. Figure 5.8 presents IPC obtained for existing
RegDes, AlterDes, and proposed AGRAS, RODESA-p and RODESA-b normalized
over baseline technique. As mentioned before, de-stressing incurs additional la-
tency and decreases IPC. We can observe from the figure that RegDes, AlterDes,
AGRAS, RODESA-p, and RODESA-b decrease IPC compared to baseline, which
does not perform de-stress during execution. The proposed AGRAS, RODESA-D,
and RODESA-p decrease IPC by 16%, 5%, and 12%, respectively, over baseline.
While RegDes and AlterDes decrease IPC over baseline by 30% and 11%, respec-
tively.

The proposed techniques check the memory access count before performing de-
stress to balance age degradation and performance. Therefore, over RegDes, AGRAS
improves IPC by 14%, RODESA-b improves IPC by 25%, and RODESA-p improves
it by 18% because RegDes performs de-stress in regular intervals and affects the ser-
vice of regular requests more frequently. Between our proposed policies, RODESA-b
improves IPC by 7% over RODESA-p and 11% over AGRAS. RODESA-b oppor-
tunistically de-stress lightly loaded banks in the background and thus hides the de-
stress latency. This results in an improved IPC. With the help of partial de-stress,
RODESA-p improves IPC by 4% over AGRAS.

For Multi-programmed workloads:

Compared to low intensive benchmark, high intensive benchmark exhibits a sig-
nificant improvement in IPC for multi-programmed workloads over RegDes. For
Miz-High and Miz-Low, the improvement in IPC for RODESA-b is 32% and 17%,
respectively, over RegDes.

For Multi-threaded workloads:

Memory intensive benchmark shows better improvement in IPC for RODESA-b over
RegDes. For canneal, the improvement in IPC for RODESA-b is 19%, whereas for

low memory intensive benchmark like streamcluster, the improvement in IPC is only

1%.

5.10.2 Effect on Memory Service Time

Memory service time defines the time required to complete the service of a memory
request. De-stress incurs additional delay to the service of requests as it stalls the

service of requests for a de-stress period. Thus, it increases the memory service time

132

Results

Baseline mmmm AlterDes ——— RODESA-p mmmm
RegDes pmmmm AGRAS pmmmm RODESA-D mmmm

Normalized Memory Service Time

leslie3d

Ibm

mcf

sjeng

bzip2
libquantum
streamcluster
canneal
dedup
blacksholes
X264
Mix-Low
Mix-High
Average

Benchmarks

Figure 5.9: Normalized service time over Baseline (lower is better)

of applications. The memory service time for de-stress scheduling policies normalized
over baseline is shown in Figure 5.9. The average increase in memory service time is
22% and 9% for RegDes and AlterDes compared to baseline. The proposed AGRAS
increases memory service time by 19%, RODESA-p increases memory service time
by 15%, and RODESA-b increases memory service time only by 4% compared to

baseline.

Compared to RegDes, our proposed AGRAS, RODESA-p, and RODESA-b im-
prove memory service time by 3%, 7%, and 16%, respectively. By opportunistically
de-stressing memory in full, partial, or in the background based on memory ac-
cess count, the proposed policies could achieve better average memory service time
compared to RegDes. RODESA-b shows an improvement of 4% with AlterDes.

For Multi-programmed workloads:
The memory service time improvement for RODESA-b is 16.6% for Miz_High and
10.34% for Mixz_Low over RegDes.

For Multi-threaded workloads:
The multi-threaded workloads are less memory intensive. The low intensive bench-
marks like streamcluster and blacksholes shows an increase of only 1% for RODESA-

b in comparison with baseline.

133

De-stress Scheduling Policies

RegDes pmmmm AGRAS pmmmm RODESA-b mmmm
AlterDes ———RODESA-p mmmm

1.6

Normalized Age Degradation

- A ” <
2 E T 2 94 E & T S 8 ¥ &2 5 %
o 2 E o § 2 B 2 5 5 @« 3 F o
2 g § £ %2 £ g & ¢ 74 I 9
8 8 S & T @ X x 9
= > € © S S s 2

8 & S

£ 9 3

K

Benchmarks

Figure 5.10: Normalized age degradation over RegDes

5.10.3 Impact on Age Degradation

BTT increases threshold voltage over time, voltage, and temperature. This increase
quickens the aging of the device as well as its rate of wear-out. Figure 5.10 depicts the
age degradation that occurred for AlterDes, AGRAS, RODESA-p, and RODESA-
b normalized with RegDes. The age degradation for baseline is not shown as the
method does not de-stress at any point of execution. Thus, comparing the de-stress
scheduling policies with the baseline is not fair. From the equation 5.2, we can notice
that age degradation depends highly on the duration in which the circuit is stressed
and de-stressed. If the duration of stress is high, age degradation is more. We
can observe from the figure that existing AlterDes and proposed policies degrade
age more than RegDes. The reason is that AlterDes schedules de-stress only in
alternate intervals, and AGRAS, RODESA-p, and RODESA-b schedule de-stress
based on incoming request rate. Thus, all these techniques postpone de-stress to
improve IPC. Therefore, the circuit is stressed for a longer duration and degrades

age more.

The proposed AGRAS and RODESA-b degrade age by 26% and 19% whereas Al-
terDes degrade age by 49%. The age degradation for RODESA-p is only 17%, which
is less compared to existing AlterDes and proposed RODESA-b and AGRAS. The
RODESA-b degrades age by 2% compared to RODESA-p, whereas the RODESA-b
improves IPC by 7% compared to RODESA-p. Furthermore, RODESA-p improves
IPC by 4% over AGRAS.

134

Results

Table 5.2: Effect of different values of AGT on performance and aging, normalized wrt
RegDes

% CPI Improvement % Age Degradation

Benchmark (higher is better) (lower is better)
AGT=1 | AGT=2 | AGT=5 | AGT=1 | AGT=2 | AGT=5

leslie3d 16.4 20.0 22.5 29.6 39.3 47.2
Ibm 17.6 19.8 23.5 18.5 24.4 36.1
mcf 15.8 19.5 22.4 28.8 40.3 49.6
canneal 13.9 16.9 214 13.2 38.6 66.2
x264 12.8 15.0 16.9 28.5 41.9 52.7
streamcluster | 13.8 22.9 21.6 13.2 24.9 24.6
Mix_Low 10.9 13.1 14.4 11.9 26.0 30.8
Mix_High 16.7 20.5 23.9 14.9 26.9 38.6
Average 14.6 18.5 20.8 19.8 26.6 37.1

Conclusions: (i) If the system needs better IPC then RODESA-b is prefer-
able over RODESA-p. (ii) If the system needs control on age degradation, then

RODESA-p is the best option. Based on the requirements, the de-stress can be
scheduled using either RODESA-p or RODESA-b.

5.10.4 Analysis of Threshold and Impact of the Decision
Criteria

In addition to the results presented in the previous text, we also conducted a study
to empirically determine the value of AGT for RODESA and to analyse the effect
of the decision criteria.
1. Sensitivity Analysis on Age Threshold, AGT:
The proposed de-stress scheduler, RODESA, attempts to de-stress memory oppor-
tunistically so that the performance is not hampered and, at the same time, age
degradation remains under control. The best option to maintain performance is to
avoid de-stressing, which might greatly affect the device’s aging. Therefore, we use
an age threshold, AGT, which indicates the number of intervals over which one can
avoid de-stress; and crossing this threshold, we schedule a regular de-stress of the
device. In our experiments, we have used the value of AGT=2.

To see the impact of AGT over performance and aging, we conducted a sensitiv-

ity study by varying the AGT with values 1, 2, and 5. The results are compared with

135

De-stress Scheduling Policies

% Regular Full De-stress ———
% Partial De-stress pmmm
% Skipped Intervals mmmm

o
o

90
80
70
60
50
40 +
30
20
10 -

% De-stress Distribution

leslie3d
Ibm

mcf
canneal
X264
Mix-Low
Mix-High
Average

streamcluster
Mix-Medium

Benchmarks

Figure 5.11: Distribution of full vs partial de-stress performed by observing the memory
request rate

those of a basic regular de-stress scheduler, RegDes. Note that a smaller value of
AGT forces frequent de-stress scheduling and hence improves age but hampers per-
formance (as they stall the regular memory requests). Whereas a large AGT value
gives better performance but affects aging as the de-stress gets delayed. Table 5.2
presents the improvement in CPI and degradation in age over RegDes for RODESA-
b with varying AGT. RegDes policy has the best control over aging but has the worst
impact on performance. We use this as the baseline to report the values. From the
table, we note that our proposal improves performance, and the improved values
are 13.6%, 17.3%, and 19.6% respectively, for the thresholds: AGT = 1, AGT = 2,
and AGT = 5. As discussed before, with a higher value of AGT, the memory ser-
vice is not affected much, and hence we get better performance improvement for
AGT=5. We see the reverse trend for the aging metric. The age degrades more if
AGT is higher, as we skip doing the de-stress for a longer duration. In particular,
for AGT=5, the age degrades maximally by 42.4%, whereas for AGT=1, we only
get 23.1% degradation over RegDes.

Conclusions: A larger value of AGT is required if we are focusing on better
performance. On the other hand, we can use a small value of AGT to protect the
device from aging. In our experiments, we have taken the value of AGT = 2, which

helps us to balance between performance and age degradation.

2. Analysing the impact of partial de-stress in RODESA-p:

136

Results

Table 5.3: Number of intervals and banks that got the opportunity to perform background
de-stress

Percentage of Average banks
Benchmark | intervals doing undergoing

background de-stress | background de-stress
leslie3d 54.7 2
Ibm 90.1 4
mcf 374 1
canneal 6.7 1
x264 53.7 1
streamcluster 34.5 3
Mix_Low 14.2 1
Mix_Medium 62.1 4
Mix_High 76.5 3
Average 42.9 2

The proposed RODESA-p can skip de-stress if the age threshold is not met. How-
ever, we take the opportunity to perform a full /partial de-stress based on the memory
request rate. To analyze the impact of this scheme, Figure 5.11 shows the percent-
age distribution of the de-stress performed on these occasions. The distribution is
shown for those intervals where we were permitted to skip the de-stress. Although
there was the feasibility of skipping de-stress, our proposal looked at the request rate
and was able to perform full de-stress for 54.7% of such intervals. In some cases, the
request rate was medium, and we could perform 35.7% partial de-stress. Whereas,

in the remaining cases, as the rate was high, we had to skip the de-stress.

Keeping track of the memory request rate, we were able to perform either full or
partial de-stress. This led to having good control on aging (due to the opportunistic
de-stress), and at the same time, the performance was not impacted much due to

fine control on either skipping the de-stress or doing it partially.

3. Analysing the impact of background de-stress in RODESA-b:

The proposed RODESA-b can skip de-stress if the age threshold is not met. How-
ever, we take the opportunity to perform de-stress of some banks in the background,
taking into account the memory request rate for the individual banks. To analyze
the impact of this scheme, Table 5.3 shows the percentage of skipped intervals that

were able to take this opportunity. On average, instead of skipping the de-stress, we

137

De-stress Scheduling Policies

Bank-1 —@— Bank-2

_ 40

j<)

£35 | &

E '/->

330]

o

=1

g25¢

o

220 L

5

s15 1

&

A10 L

)

< 51
Or\’—’\’“’v’ . L \ ,
T 9 ® ¥ o o N o o 9
o o o o o o o o o o
nw »n [»w »n (7 7 B %

Random Stress Periods

Figure 5.12: Age degradation for two banks that got de-stress in background during
random points of execution (for canneal benchmark)

were able to perform background de-stress in 43% intervals. In each such interval,
we performed background de-stress for 2 (out of 8) banks on average.

A higher percentage value indicates that we make the best use of the opportunity
to de-stress the banks in the background. This avoids the stalling of the system as
we service the regular requests for such banks in addition to background de-stress,
which in turn controls aging.

The banks which get de-stressed in the background vary across intervals. In
that, a bank which is de-stressed in the background in the interval ¢ may not get the
opportunity in the interval ¢+ 1. Hence, the aging of the banks varies as they get de-
stressed at different time instances. Figure 5.12 presents the age degradation accrued
for two (representative) banks at different points of execution. We can observe
from the figure that age degradation is different at various points during execution.
This difference indicates that the banks were de-stressed in the background during
different intervals.

Normally, the OS tries to map memory addresses equally among banks [1], and
the application accesses are also distributed equally during execution. On account

of this, we note that, by the end of execution, the age of both banks becomes similar.
4. Analysing the impact of static vs. dynamic selection of banks for

background de-stress:

In RODESA-p, the decision to perform partial de-stress depended on the amount

138

Results

Table 5.4: Impact of static versus dynamic selection of banks for background de-stress
on Performance and Aging

% CPI Improvement | % Age Degradation Percentage of intervals doing

Benchmark | (higher is better) (lower is better) background de-stress
(higher is better)

10% | 50% | Dynamic | 10% | 50% | Dynamic | 10% | 50% | Dynamic
leslie3d 17.0 | 19.9 22.3 46.8 | 39.3 33.8 15.7 | 24.7 29.4
Ibm 16.8 | 18.8 19.3 48.5 | 244 194 13.9 | 37.2 41.8
mcf 12.5 | 16.9 19.9 51.5 | 40.3 37.6 59 | 20.6 21.8
canneal 13.9 | 15.7 17.8 56.1 | 58.6 53.9 1.3 5.8 26.6
x264 11.0 | 15.6 23.0 60.2 | 41.9 32.9 4.9 | 276 29.9
streamcluster | 16.9 | 22.9 32.1 66.7 | 65.7 64.9 17.1 | 29.5 51.5
Mix_Low 9.1 | 11.8 20.6 52.4 | 30.6 26.0 16.7 | 46.2 57.1
Mix_High 13.5 | 19.8 28.5 49.5 | 33.1 26.9 6.3 | 244 34.0
Average 13.8 | 17.6 22.9 37.3 | 25.3 20.7 10.2 | 27.0 36.5

of increase in request rate in the current interval over the previous interval. We
took this range to be between 5-10% (cf. section 5.8). For RODESA-b, we can
take a similar approach while deciding the number of banks to be de-stressed in the
background. In this section, we demonstrate that the static selection of a number
of banks is less effective compared to our proposed dynamic selection.

A static selection of a number of banks can be done by deciding to perform
background de-stress on the banks that have accesses lesser than X% compared to
the banks having maximum accesses. We show the results by taking X = 10% and
X = 50%. Let ST, be the service time taken by the bank having a maximum
number of requests for the current interval. As we perform de-stress in the back-
ground, we should be able to hide the latency (=ST; + DT) of regular requests and
de-stress for the selected banks. This means that the duration should be less than
ST az-

To perform background de-stress for the banks with access count less than X =
10% and X = 50% of ST,4., the following inequalities should be satisfied for any
bank B; having service time ST;:

0.1 X STpae + DT > ST, + DT (5.3)
0.5 X STmae + DT > ST, + DT (5.4)

From equations 5.3 and 5.4, we can conclude that there is higher probability for
satisfying the inequality in equation-5.3. But here the number of banks satisfying

139

De-stress Scheduling Policies

the condition is very less. If we take the second condition of X = 50% then the
number of banks is more, but those satisfying equation-5.4 are very less. Table 5.4

shows the various metrics for all the conditions.

e We note that for X = 10%, we get the worst age degradation (of 37.3%) as we
do not take full advantage of background de-stress; also, the CPI is not very
good (only 13.8% improvement), because not doing background de-stress will

result in more foreground de-stress and system stalls.

e Whereas, for X = 50%, the age control and CPI are better, but there may be
missed chances of doing background de-stress. In particular, age degradation
is reduced to 20.7%, and CPI improves by 17.6%.

e However, our proposal of dynamic bank selection gives the best results, as it
selects the optimal number of banks that satisfy the timing constraints. The
same impact can be seen on age degradation. In particular, the age degrada-
tion reduces to 20.7% while the CPI improves by 22.9%. Here, the dynamic

selection can control aging optimally compared to its static counterparts.

The table also shows the percentage of intervals that succeeded in doing back-
ground de-stress. For X = 10%, only 10.2% intervals could select such banks,
whereas X = 50% could select banks in 27% intervals. Our dynamic policy was able

to perform background de-stress in 36.5% intervals.

5.11 Summary

Bias Temperature Instability (BTI) is a reliability issue that affects the performance
of modern semiconductor devices, including Phase Change Memory (PCM). The
high voltage required to perform memory operations makes PCM more susceptible
to BTT aging. The BTT aging process involves two main phases: stress and de-stress.
The stress voltage, along with the high temperature, causes a gradual increase in
the threshold voltage, leading to performance degradation. De-stress helps to obtain
a partial recovery for the increased threshold voltage and control the aging of the
device. If the stress phase is extended over a period, age degradation will be more
and may lead to permanent functional failure. Thus, de-stressing the device at

regular intervals is required to prevent early breakdown of the device, which is called

140

Summary

the RegDes policy. Regular read/write requests are delayed by de-stress operations,
which lowers the system’s performance.

This chapter presents scheduling methods AGRAS and RODESA for regular
requests and de-stress operations. The proposed AGRAS and RODESA take into
account the memory request rate while scheduling de-stress operations to less ham-
per the service of regular read /write requests. AGRAS schedule de-stress only when
the incoming request rate is below a predefined threshold. RODESA proposes two
variants, RODESA-p and RODESA-b, which opportunistically de-stress to improve
performance and control age degradation. RODESA-p is an optimization of AGRAS
that keeps track of the memory request rate to opportunistically de-stress in par-
tial if the rate is within a threshold. This results in good control on aging and
improved performance. The second variant, RODESA-b, opportunistically de-stress
banks with less memory access count in the background. The background de-stress
allows RODESA-b to hide the de-stress latency and prevents stalls when servicing
regular requests. To control the aging of the device, the proposed policies make
sure that we do not skip de-stress operations over prolonged intervals. This way,
our proposed scheduling methods control the de-stress operation without affecting
the service of regular read/write requests to maintain performance. The proposed
RODESA-p improves performance by 18%, and RODESA-b improves performance
by 25% compared to RegDes. The age degradation for RODESA-p is 17%, whereas
it is 21% for RODESA-b over RegDes.

In summary, to make use of the advantages of non-volatile memories, we need
to take care of the aging issues of such memories. Regular de-stressing helps to
control the aging of the device, but this hampers system performance. The pro-
posed AGRAS and RODESA help to achieve better performance and reduce age
degradation by opportunistically de-stressing the device based on memory access

count.

141

Avenues for Improving Migration and
Aging

This chapter proposed avenues for improving the performance of hybrid memo-
ries. Towards this, we propose write-intensity-based page migration techniques and
migration-aware de-stress methods by considering the latency overhead associated
with migration and de-stress operations. The efficacy of the proposed methods is

evaluated with a baseline and existing mechanisms.

6.1 Introduction

The chapters till now concentrated on either scheduling only memory requests (refer
Chapter 3) or scheduling service requests like migration requests (refer Chapter 4) or
de-stress requests (refer Chapter 5) along with regular requests. In this chapter, we
aim to focus on page selection for migration to enhance the performance of hybrid
memory. Existing techniques migrate hot pages that receive several write requests
from PCM to DRAM at regular intervals or immediately when the page becomes
hot. The selection of hot pages is based on the access history, assuming that the hot
page will remain hot after migration to DRAM. If a page is incorrectly identified
as hot, its migration becomes ineffective and may cause high-performance overhead.

To improve hybrid memory performance, the selection of migration candidates must

142

Introduction

be carefully managed. In this chapter, we wish to explore other options for choosing
migration candidates. For example, we use write intensity to do this. Also, we aim
to show a combined impact of migration and de-stress on the system performance.
Towards this, we present three policies: WiMig, WiForeMig, and DOPMig.

The main contributions of this chapter are as follows:

e Proposed WiMig identifies efficient migration candidates based on the write
intensity of memory pages to improve the performance of hybrid DRAM-PCM
systems. Note that the initial condition of crossing a hotness threshold of mi-
gration is required before write intensity can be checked. The method initiates
page migration at regular intervals. In every interval, the method maintains a
pending queue with information on those pages that receive a number of writes
more than the predefined hotness threshold. For actual migration, the page
with the highest write intensity from this pending migration queue is selected

as a candidate.

e Proposed WiForeMig uses foresight to predict that pages that stay longer in
the pending migration queue and have low write intensity may not benefit
from moving to DRAM. We propose to demote the migration of such pages as
they are likely to receive fewer write requests in the future. Demotion means
this page is no longer a candidate for migration. The foresight here is that
such pages will likely receive fewer writes in the future. This helps to cancel

the migration of pages, which will give less migration benefit.

e DOPMig examines the write intensity of the page and opportunistically mi-
grates those pages to DRAM in parallel with PCM de-stress operations. The
memory controller buffers write-intensive pages from PCM in regular slots us-
ing a migration buffer. These buffered pages are migrated to DRAM in the
background during de-stress operation. DOPMig improves application execu-
tion time while controlling BTI aging by performing de-stress operations at

regular intervals and scheduling the part of migration in the background.

e We have compared our proposed policies with existing techniques and achieved

better performance with reduced migration overheads.

This chapter organized as follows: Section 6.2 presents the motivation. Pro-

posed system architecture is discussed in 6.3. Sections 6.4, 6.5 and 6.6 illustrate the

143

Avenues for Improving Migration and Aging

1.00 1 A - PL(WI)

P1(WC)

0.951 - P2(WI)
0.90 1 l l l P2(WC)
- P3(WI)

P3(WC)

. PL(WI)

PL(WC)
. P2(WI)
P2(WC)
. P3(WI)

H
o
—
—_
>

>

o
©

0.85 - P3(WC)

o
©

0.80 -

Normalized WC,WI
o
<

Normalized WC,WI

5 0.75

0.70 A

o
o
>
>
>

0.65 A

e
n

A A A
X1 X2 X3 Y1l Y2 Y3 X1 X2 X3 Y1l Y2 Y3
Execution Points Execution Points

(a) (b)

Figure 6.1: (a) Difference in Write count (WC) and write intensity (WI) for lbm, (b)
Difference for sjeng, (WC is represented as circles and WI is represented as triangles)

proposed policies to improve hybrid memory performance via write-intensity based
migration scheme and opportunistic de-stress method. Experimental setup and re-
sults are discussed in 6.7 and 6.8. Finally, we summarize this chapter in section
6.9.

6.2 Motivation

6.2.1 Comparing impact of write count versus write inten-
sity

Hybrid memories are designed to overcome the shortcomings of conventional DRAM
and PCM memories. Memory pages in a hybrid architecture can be exclusively
stored in any of the partitions by sharing address space. The performance can be
enhanced by moving write-intensive pages of PCM to DRAM. To maximize the
DRAM hits, the pages must be prudently identified and migrated at the right time.
Existing techniques [56, 58, 60, 64] migrate hot pages with many writes to DRAM.
The application execution involves multiple stages, and the memory access behavior
of each stage might be different. The total write count may not reflect the current
memory behavior. In contrast, write intensity indicates the number of write requests
received per unit of time and represents the temporal behavior of memory pages.
Figure 6.1a, and Figure 6.1b present the write count and write intensity of mi-
gration candidate pages P1, P2, P3 at different execution points. The endpoints of

cach line in the figures represent the write count (WC) and write intensity (WI)

144

Motivation

RegDes (S|) pmmmm RegDes (L) —— No De-stress pmmm RegDes (LI) ——
RegDes (S|) mmmm
=14 [
% o 1.4 |
BOO 12|
21 £
S 15 1
g 54
208 1308
el
506} 1 Eos |
204/ S %04
[}
“02| 0.2 |
° S &) 2 ¢ 0 & o & > o
NS 5@ \05} (\(\0 @'&Q Y 5@ \\{o\ é‘e 0@%
N & & & @ O & N
& &
) Benchmarks) Benchmarks
(a) (b)

Figure 6.2: (a) Normalized age degradation of RegDes with Large Interval (LI) over
RegDes with Small Interval (SI), (b) Normalized IPC over No De-stress method; SI=
Small Interval and LI=Large Interval

of the corresponding page at a point of execution. The pages P1, P2 and P3 ! are
present in the pending migration queue for consecutive execution points X1, X2, X3
and for consecutive points Y'1,Y2, Y3. From the figures, we can observe that the
write count and write intensity follow different trends. In Figure 6.1a, we can ob-
serve that at point X2, the page with the highest write count is P3, whereas the
highest write intensity page is P2. For Figure 6.1b, the descending order of pages,
at point Y'1, based on write count is { P3, P1, P2}, whereas based on write intensity,
the order is {P1, P2, P3}.

We can observe from Figure 6.1a and Figure 6.1b that the page with the highest
write intensity and write count varies during the execution points. In Figure 6.1b,
the page P2 has the most writes at X1, whereas at point Y1, it is P3. We note that
write intensity (instead of write count) depicts the current memory access pattern
of a page, and therefore, it is beneficial to select migration candidate pages based

on write intensity.

6.2.2 Comparing impact of de-stress interval sizes

Figure 6.2a depicts the age degradation that occurs when the de-stress is performed
regularly (as in the Regular De-stress or RegDes method) in different interval du-

rations. As discussed earlier, performing de-stress in regular small intervals reduces

'Page indices are only representations of the actual page numbers

145

Avenues for Improving Migration and Aging

age degradation compared to when de-stress is performed in large intervals. On
average, RegDes with large interval (LI) degrades age by 46% more than RegDes
with small interval (ST). Regular de-stressing reduces BT aging, but it causes more
frequent service stalls, which lowers performance.

Figure 6.2b presents the Instruction Per Cycle (IPC) obtained for methods that
perform de-stress in regular small or large intervals normalized to the technique
that does not perform de-stress (No De-stress). It can be observed that the IPC
decreases when de-stress is performed more frequently. The reduction in IPC is 13%
for RegDes with LI while it is 27% for RegDes with SI over No De-stress method.

From these observations, it is to be noted that:

e Page migration improves the performance of hybrid memory. The write inten-

sity of a page is more adaptive to the run-time behavior of a memory page.

e De-stress operation controls BTI aging. However, de-stress hampers perfor-

mance as regular requests are stalled during de-stress.

e De-stress needs to be controlled to maintain performance while reducing age

degradation.

Therefore, this chapter proposes a de-stress-aware page migration technique to
cover up the de-stress overhead by performing migrations in the background. This
way, we utilize the stall time of de-stress to move useful pages to DRAM. Also,
this chapter introduces a write-intensity-based migration scheme to maximize the

DRAM hits and thus improve the performance of hybrid memory.

6.3 System Architecture

The hybrid memory controller manages memory requests spawned from different
applications executing on the processing cores. We assume that both DRAM and
PCM follow an open-page row-buffer management policy. In the proposed method,
the memory requests are scheduled in First-Ready First Come First Serve (FR-
FCFS) order, where the row hit requests are prioritized over other requests. The
address translator and command generator help to serve the scheduled memory
requests.

Figure 6.3 presents the proposed hybrid memory controller with a migration and

de-stress unit. The unit is composed of the following components:(i) Decision &

146

System Architecture

[' —
i Memory Controller :
| [FR-FCFs | | Address | | command |
- | Scheduler Mapping Generator |:
i _ Migration and De-stress Unit
I Migration and
i e A |l eL e L L L TR ERREREEED Y a -
H De-stress Unit [~ "~ """ """ 1 . ‘ Decision & Control Unit ‘
e H_Otpage__ _Hmpage i :
E#g:npggin migration from PCM; . B RV g
i request ; . [a
; De-stress H . E,ﬁ:
i Memory request | Memory B ' ’ De-stress Scheduler ‘ -
Request/ Response ! Requesthesponsg } =m
VT PCM <_':'_"_':‘_"_'_'_"_‘:'_'Y_ o
Victim Page Victim Page
from DRAM from DRAM

Figure 6.3: Hybrid memory controller with migration and de-stress unit

Control unit, (ii) Pending Migration Queue, (iii) Migration Buffer, (iv) De-stress
Scheduler, and (v) Metadata unit. The proposed method migrates pages from PCM
to DRAM based on both write count and write intensity. The metadata unit keeps
track of the write count and write intensity of the accessed PCM pages. The PCM
page, which receives the number of writes greater than the predefined hotness thresh-
old HoT, is considered a possible migration candidate. The pending queue in the
migration unit keeps track of these page references and their corresponding write in-
tensity. The proposed method checks the pending queue during regular intervals and
migrates the write-intensive page from PCM to DRAM. We define write intensity
(WI) as follows:

W — number of writes
~ time since the page was first accessed

(6.1)

The migration buffer acts as an intermediate point where the contents of PCM
pages are copied to the migration buffer and later to DRAM. All the memory access
requests received during the migration are serviced from the migration buffer. The
decision and control unit manages all these operations. Based on the information
from the metadata unit and pending queue, this unit decides if the page should get

migrated from PCM to DRAM at the current interval.
In case the allocated DRAM capacity is full, some pages need to be migrated

147

Avenues for Improving Migration and Aging

from DRAM to PCM to make space for the migrating page. A Least Recently Used
(LRU) list is maintained for all the accessed DRAM pages. The decision control
unit selects the LRU page as a victim for migration from DRAM to PCM. Thus, the
decision & control unit handles the complete page migration from PCM to DRAM

and vice versa.

Along with migration, the migration and de-stress unit controls de-stress opera-
tion to mitigate BTI aging. The de-stress scheduler schedules de-stress with regular
read /write and migration requests. The meta-data unit keeps track of the accrued

aging of the device along with the write behavior of pages.

6.4 WiMig: Write intensity based Migration

Algorithm 6.1 explains the proposed method, which wisely selects the page migration
candidates based on accrued write count and write intensity. The proposed method
continuously keeps track of the write count of pages (line 11) and the corresponding
write intensity (line 12). It compares the write count of pages against a pre-defined
hotness threshold HoT. If the write count is greater than HoT, the page is a possible
migration candidate and gets added to the pending migration queue Pend(@ (lines
13-15). At regular intervals, the proposal migrates one page from the pending queue.
The page selection is based on write intensity (lines 16-19). The pages in the pending
queue are sorted in write intensity order at the interval boundary. The highest write-

intensive page is migrated to DRAM if there is space available in DRAM.

A victim page is selected and migrated to PCM if DRAM is full. We monitor
the accesses for DRAM pages and maintain the Least Recently Used (LRU) list
of DRAM pages. Function Victim_DRAM explains the proposed LRU-based vic-
tim selection algorithm. The proposed method selects the lowest write count page
V_DRAM from the least recently used m% pages (line 33). We took the value of m
as 25. The proposed method also compares the write count of the selected V_.DRAM
and the write count of migrating page CP (line 34). The V_.DRAM is selected as
the victim page only if the write count of V_.DRAM is less than CP (lines 34-35).
If there is no V_.DRAM, the migration of CP is canceled.

148

WiMig: Write intensity based Migration

Algorithm 6.1: Write Intensity based Page Migration

1 HoT: Hotness Threshold

2 C'P: Candidate Page

3 Pend(@): Pending Queue

4 Writes[]: Array of Write Counts of pages

5 WI[]: Array of Write Intensity of pages

6 duration| |: Array storing Duration since first access to pages
7 Function WilMig

8 duration[P] = time elapsed since page P was first accessed
9 for (every write request coming to page P) do

10 // increment write count and update write intensity
11 writes[P]++

12 | WI[P] = writes[P] / duration[P]

13 if (writes(P) > HoT) then

14 // add P to pending queue

15 | PendQ = PendQJ P

16 for every interval boundary do

17 sort PendQ based on write intensity

18 CP = P|P € PendQ A WI[P] = maximum

19 | migratePage(CP)

20

21 Function migratePage(CP)

22 if DRAM has space then

23 L Migrate C'P to DRAM

24 else

25 v_dram = Victim_DRAM(CP)

26 if v_dram != NULL then

27 Migrate v_dram to PCM

28 Migrate C'P to DRAM

29 // remove CP from the pending queue
30 Pend(@ = PendQ \ CP

31

32 Function Victim_ DRAM(CP)

33 Get the minimum write count page V_DRAM from the last m% pages
in DRAM LRU list

34 if writes(V_DRAM) < writes(CP) then

35 L return victim page V_DRAM

36 else return NULL

149

Avenues for Improving Migration and Aging

6.5 WiForeMig: Write intensity based Foresight-
ful Migration

The proposal in the above section migrates pages based on write intensity. The
regular requests get stalled during page migration, affecting application performance.
Therefore, we cannot migrate several pages at a time. Given this, the candidate
pages in the pending migration queue may be queued for a longer duration. Here,
as long as the pages stay in the pending queue, they continue to serve regular
requests from PCM. We note that in case pages stay in the pending queue for a
long time, their write intensity would change over time, and there may be reduced
benefits from migrating such pages. For example, consider Figure 6.1a, the write
intensity of page P1 is 1 at point X1, while it is reduced to 0.5 at X2. Similarly, for
another page P2, the write intensity is 0.85 at X1 and then increased to 1 at X2,
but then again reduced to 0.8 at X3.

The foresight we apply is that the pages that stay longer in the pending queue and
have less write intensity will likely receive fewer write requests in the future. Hence,
it is prudent not to move them to DRAM, as it will reduce the migration benefit.
In other words, when the page gets an opportunity to migrate to DRAM, most of
its access may already be over. Migration of such pages will be unrewarded and
may result in performance degradation. To avoid such undesirable migrations, we
propose WikForeMig, which demotes such pages from the migration pending queue.
By demotion, we mean these pages will not be considered as migration candidate
pages.

Algorithm 6.2 explains the proposed method WiForeMig. The idea is to remove
certain pages from the pending migration queue and cancel their migration decision.
To select these pages, we use two thresholds: Wait_T and Maz_Dem_T. The former
indicates the (minimum) time limit a page can remain waiting in the pending queue
before it is considered to be demoted. As there is a possibility of having several
pages satisfying such criteria, we need to put a limit on demotion. In that, if we
demote every waiting page, then it falsifies the idea behind page migration. To
demote pages from this selection, we only select a certain number of pages with the
lowest write intensity. The second threshold, Maz_Dem_T, is used for this decision.
This threshold controls the number of demotions. Next, we discuss the method in
detail.

150

WiForeMig: Write intensity based Foresightful Migration

Algorithm 6.2: Foresightful Migration:: that takes decision of cancelling
Migration of pages

W N =

9]

© 0w N &

10
11
12
13
14
15
16
17
18
19
20
21

Writes| |: Array of Write Counts of pages

Pend@: Pending Queue; Dem(): Demotion Queue

Wait T: Threshold of number of intervals a page waits before getting
demoted

Max_Dem T Threshold used to put maximum limit on number of pages
getting demoted

Intervals[] : Array holding the number of intervals a page is residing in the
pending queue

Function WiForeMig

at the end of every interval

// Call WiMig to migrate a page

WiMig()

VP € Pend(Q:

Intervals[P]+-+

//1f pages have crossed waiting threshold, add them to demotion queue
Dem@ = {P|P € PendQ A Intervals[P] > Wait T}

//From the demotion queue select Max_Dem_T number of pages
Sort Dem() based on write intensity

Dem@ = Keep Max_Dem_T number of least write intensity pages
//Remove these selected pages from pending queue

Pend@ = Pend@ \ Dem(@

reset the write counter of these demoted pages

VP € Dem@ : Writes[P] =0

151

Avenues for Improving Migration and Aging

At the end of each interval, we first migrate the most write-intensive page to
DRAM using the method WiMig (lines 9-10). We keep track of the total number of
intervals each page has been residing in the pending migration queue (line 11). For
all the pages in the pending queue that have been waiting for more than Wait_T
number of intervals, we add them to a temporary demotion queue, Dem@ (lines
12-13). To demote only the least write intensive pages, we first sort this temporary
Dem(@. From this sorted queue, we keep only Maz_Dem_T number of pages (lines
14-16). These selected demotion candidate pages are removed from the pending
queue (lines 17-18). Thus, they will not be considered for migration in the near

future. Note that the write count of these pages is reset (lines 19-20).

The proposed method accurately identifies demotion candidate pages using the
two thresholds: Wait_T and Max_Dem_T. In that, as they have resided in the pend-
ing queue for a longer duration and given that they have very less write intensity,
such pages are less likely to get access while in DRAM. If the accesses are predicted
to be lesser, then there is less benefit in moving them to DRAM. This foresightful
decision to revoke pages from getting migrated helps to improve the performance of

hybrid memory systems.

6.6 DOPMig: De-stress aware Opportunistic Mi-
gration

To further enhance hybrid DRAM-PCM system performance, we propose DOPMig,
which uses the write intensity of the page to categorize them as migration candidates;
and opportunistically migrates such pages to DRAM concurrent to PCM de-stress

operation.

Figure 6.4 presents the execution timeline of the proposed DOPMig. We divide
the timeline into continuous stress intervals (Strint) and a short de-stress period.
Each stress intervals includes multiple migration intervals (MigInt). After each mi-
gration interval, a write-intensive page is migrated from PCM to DRAM to improve
the performance of hybrid memory. After each stress interval, the memory banks

are de-stressed for a duration to control BTI aging.

152

DOPMig: De-stress aware Opportunistic Migration

Schedule Schedule
De-stress De-stress

Schedule;wig;atic;n L Requests schedule Migration L Requests

vy Not YV VYV YV ¥ |Not
‘ ‘ ‘ serviced ‘ ‘ ‘ serviced
. | | | | | | Time
Migration Migration
Interval B Interval

Stress |nterval PE'StreSS Stress |nterval De-stress Stress InterVa|
interval interval

Figure 6.4: Ezecution timeline with de-stress and migration intervals

‘ Run applications for
Migint cycles

Migint — Migration Interval
Strint — Stress Interval

MQ- Migration pending Queue <
MT - Migration Threshold MQ <- Add pages with WC
WC -Write Count reater than MT
WI -Write Intensity

No

Calculate WI of pages in MQ;
Pick highest WI page for migration

A
Migrate page to DRAM;

May need victim migration
from DRAM

> Update MQ

Figure 6.5: Working of proposed DOPMig

6.6.1 Working of DOPMig

Figure 6.5 presents the working principle of the proposed DOPMig. The application
executes continuously on the cores, and our proposal migrates write-intensive pages
from PCM to DRAM at regular intervals denoted by MigInt. After we execute an
application for MigInt duration, we choose the page(s) with a write count greater
than the migration threshold (W C > MT) and add them to the pending migration

153

Avenues for Improving Migration and Aging

queue (Pend@). After every MigInt cycle, DOPMig checks for the completion of
Strint cycles. If application execution has not completed Strint cycles, DOPMig
performs migration. For this, we select a page from Pend(@) with the highest write
intensity (/1) and migrate it to DRAM at the interval boundary. The migration
queue is updated after each migration (a detailed explanation of write intensity-
based migration is given in Section 6.4).

If the execution timeline completes Strint cycles, DOPMig performs the de-
stress operation to control BTT aging. During de-stress operation, the regular mem-
ory requests cannot be serviced, which leads to an increased execution time. To
alleviate the overhead of de-stress, DOPMig performs migration of certain buffered
pages in parallel to the de-stress operation. As the PCM can not service regular
requests during de-stress operation, the proposed DOPMig buffers P write-intensive
pages from Pend(in a migration buffer in the memory controller. Once all P pages
are buffered in the migration buffer, DOPMig initiates de-stress for PCM banks. In
parallel, DOPMig also migrates buffered pages from the migration buffer to DRAM
if DRAM has space. Thus, the proposed DOPMig performs part of the migration
in the background with the help of a fixed-size migration buffer inside the mem-
ory controller. DOPMig improves performance and reduces migration overhead by

utilizing the de-stress period.

6.6.2 Two variants of DOPMig

1. DOPMig_modest: Here, as the P number of migrations are done parallel to
the de-stress operation, we do not perform migration of pages up to the next P
intervals. In particular, as we do one migration per Miglnt, and given that P
migrations have already taken place while doing de-stress, we do not perform
migrations for the next P number of migration intervals. The advantage of

skipping migrations is the reduction in migration overheads.

2. DOPMig _greedy: Here, we take a greedy approach and continue to perform
page migrations at every migration interval, even after performing the P mi-
grations during de-stress. This greedy approach relies on the hypothesis that
migrating more pages will give better DRAM hits for these pages and further

reduce memory access time (at the cost of more overheads).

154

Evaluation

6.6.3 Victim Page Migration

If the allotted DRAM capacity for an application is full, DOPMig has to migrate
some pages from DRAM to PCM to make space available for the new incoming
migration candidates. The method uses the same criteria discussed in the previous
sections for victim page selection (cf. Section 6.4). We maintain an LRU list of
DRAM pages. To ensure that the victim page incurs less number of writes after
migrating from DRAM to PCM, our policy DOPMig compares the write count of
a set of LRU pages and selects the least write-count page. Also, the victim page
is migrated if the write count of the victim page is less than that of the incoming

migrating page. Otherwise, the migration from buffer to DRAM is discarded.

6.7 Evaluation

This section highlights the experimental setups, hardware overhead and existing

methods that we used to evaluate the effectiveness of our proposed methods.

6.7.1 Experimental Setup and Workloads

The proposed approach applies to any distribution of DRAM and PCM. However,
we have considered a hybrid memory consisting of a single DRAM channel and three
PCM channels for experimental analysis. To implement our proposed method, we
use Gemb [95] full-system simulator integrated with NVMain [96] memory simulator.
Table 6.1 shows the important system parameters employed in our experiments. We
analyzed our results using applications from multi-programmed SPEC 2006 [99] and
the multi-threaded Parsec [100] benchmark suites with high and low write intensities.
The applications and their write intensity classes (in brackets) are shown in Table
6.1. With 250 million instructions to warm it up, each SPEC application is run for 1
billion instructions. The available DRAM capacity is assumed to range from 20% to
30% of pages for each application. We assume the page size is 4KB with an access

granularity of 32 bytes.

6.7.2 Hardware Overhead

We maintain two 8-bit counters for each page to store the write counts and write

intensity. Our design assumes that the memory size is 4GB and the page size is 4KB.

155

Avenues for Improving Migration and Aging

Table 6.1: Important system parameters

Components Parameters

Processor Single/Quad-core, X86/ALPHA

Private, 32KB SRAM split I/D caches,
L1 Cache 2-way associative, 64B block

L2 Cache Shared, 512KB SRAM, 64B block, 8-way associative

PCM: 3GB, 3 channels, 32 entry request queue
Memory Controller: FR-FCFS

DRAM: 1GB, Single channel

Memory Controller: FR-FCFS

Main Memory

Memory Latency PCM :: Read = 100ns, Write = 350ns
98] DRAM:: Read = 50ns, Write = 50ns

PCM :: Read = 0.2nJ/bit, Write=1 nJ/bit

Energy [3] DRAM:: Read=0.1 nJ/bit, Write=0.1 nJ/bit

Page Size and

Access Granularity 4KB and 64B

Interval Length 15us

Benchmarks:

SPEC 2006: 1bm (high), sjeng (high), leslie3d (low), mcf(low), libquantum (low)
Parsec: canneal,x264,streamcluster (all are low)

SPEC-Mixes: Mix-High: gobmk,lbm,sjeng,libquantum,;

Mix-Low: namd,calculix,milc,gromacs;

156

Evaluation

Thus, the additional overhead associated with pages is 2.24MB. Our design includes
a migration buffer that can hold eight pages of size 32KB at a time. Additionally, the
design has a pending migration queue that stores the page IDs for all the migration
candidate pages and requires 64 bytes. Thus, the additional storage overhead is

2.27MB, approximately 0.05% of total memory size.

6.7.3 Performance Analysis

For performance analysis of our proposed methods, we consider the following meth-

ods:
e Baseline: Baseline method, which does not perform migration and de-stress.

e RegMig: An existing page migration method which performs migration in

regular intervals for pages with a write count greater than the threshold.

e RegDes: A method that schedules de-stress at regular intervals while does

not perform the migration.

e DesMig: This method migrates pages based on write count. In addition, it

also performs de-stresses after Strint intervals to control BTI aging.

e UIMigrate [58]: An existing migration method that migrates pages based

on write count and uses a dynamic threshold.

e OntheFly [60]: An existing migration technique that migrates pages imme-
diately when the page surpasses the static threshold and updates the threshold

with the highest access count at the start of each migration.

e WiMig and WiForeMig: Our proposed migration techniques where the mi-
gration is performed based on write intensity augmented with logic to cancel

migration for less beneficial candidate pages.

e DOPMig: Our proposed de-stress-aware migration technique. The method
migrates write-intensive pages in parallel with the de-stress operation. The
proposed DOPMig has two variations: DOPMig_modest and DOPMig_greedy.
The first variant skips migrations after de-stress, whereas the second variant

greedily performs migrations.

157

Avenues for Improving Migration and Aging

6.8 Results

The outcomes for the proposed write-intensity-based migration and migration-aware
de-stress approaches are examined in the following subsections. It should be noted
that various contributions in the literature either address page migration or PCM
de-stress methods. Because DOPMig combines migration and de-stress, whereas
WiMig and WiForeMig do not address de-stress, we could not compare the suggested
policies directly. Subsection 6.8.3, however, contains a comparative analysis of all

the existing and proposed policies.

6.8.1 Results for WiMig and WiForeMig Policies

This section discusses the results of proposed write-intensity-based WiMig and
WiForeMig techniques compared to the existing write count-based migration tech-

niques.

6.8.1.1 IPC

Instruction Per Cycle, or IPC, measures the system’s performance. The higher the
IPC, the better the performance. Figure 6.6 presents the IPC obtained for exist-
ing and proposed WiMig and WiForeMig techniques for various benchmarks. The
proposed WiMig and WiForeMig improve performance by 31% and 35% compared
to Baseline, whereas existing RegMig, UIMigrate, and OntheFly improve perfor-
mance only by 8%, 11% and 15%, respectively. The proposed methods judiciously
identify page migration candidates based on write intensity, which considers the cur-
rent memory access behavior of memory pages to improve system performance. As
the correct migration candidates are moved to DRAM at the proper instant, these
pages cater to accesses while in DRAM, thus reducing the memory access time and
improving performance.

It can be observed from the figure that benchmarks with high write intensity
like Ibm and sjeng show higher improvement than benchmarks with low intensity
(leslie3d). For example, the improvement in IPC is 54% for lbm, while it is 26% for
leslie3d. The write intensity is low for all of the multi-threaded workloads, including
canneal, streamcluster and x264. Despite this, the proposed approaches WiMig and
WiForeMig could enhance performance for all of these multi-threaded workloads by

28% and 33% on average. Mix-High, which is a multi-programmed high-intensity

158

Results

Baseline —— OntheFly m— WiMig ——
RegMig mmmmm UIMigrate pmmmm WiForeMig s

ef\o"

oo S
Figure 6.6: Normalized speedup (higher is better)

0.8

0.6

Normalized IPC

0.4

fbb
\0

4 @éb
2 '+' +
o 0& W Q\

Benchmarks

Baseline ——— OntheFly mmmm WiMig ==
RegMig mmmmm UIMigrate pummm WiForeMig mmmm

0.8 |- .
0.6 j
0.4 .
02 | .
[oJ S— | -
SN
A\

Normalized Memory Service Time

& S > X N o
o)
¢ & & L F & &
&L EF TS
¢ & 9 PR
N &
N
<
Benchmarks

Figure 6.7: Normalized memory service time (lower is better)

workload, shows the highest improvement in performance on average as 54% and
58% for WiMig and WiForeMig, respectively.

Among the proposed methods, WiForeMig improves IPC by 4% over WiMig.
This improvement is due to the foresightful demotion of pages that receive fewer
writes during the stay in the pending queue or are waiting in the pending queue

over a long duration.

6.8.1.2 Memory Service Time

Memory service time indicates the efficiency of memory in terms of how quickly a

request can be served. The lower the memory service time, memory requests get

159

Avenues for Improving Migration and Aging

Baseline —— OntheFly m— WiMig ——
RegMig mmmmm UIMigrate pmmssm WiForeMig mmmm

0.8 -

06 -

0.4 -

02 -

Normalized Total Energy Consumption

5 > S > N < N NS
€ -
& & & & & & ¢ S ® @&
N ES S S R S, > >
& R S & &
& & & AN
NJ &
&
Benchmarks

Figure 6.8: Normalized total energy consumption (lower is better)

service faster. The memory service time for the proposed and existing methods
normalized over Baseline is depicted in Figure 6.7. The improvement in service time
for WiMig and WiForeMig are 27% and 30%, respectively, over Baseline, whereas
RegMig improves only by 8%, UIMigrate improves by 10%, and OntheFly improves
by 15% on average. The proposed methods observe the current memory behavior
by keeping track of the write intensity of pages and thus obtain higher improvement

than the existing methods over Baseline.

6.8.1.3 Energy

In hybrid memory, the overall energy consumption includes energy used for migra-
tion and regular read/write requests. The formula to calculate the total energy
(consumed by memory read-writes) is given in equation 6.2, where the subscripts
D and P stand for DRAM and PCM, respectively. #Migrations is the total num-
ber of requests involved in migrations. The values for the constants are taken from
Table 6.1.

Total Energy = #Readsp X ReadEnergyp
+#Writesp x WriteEnergyp
+# Readsp X ReadEnergyp + #Writesp x WriteEnergyp
+#Migrationp X ReadEnergyp + #Migrationp X WriteEnergyp
+#Migrationp X ReadEnergyp + #Migrationp x WriteEnergyp (6.2)

The total energy consumption for the proposed and existing methods is shown

160

Results

% PCM Access —— % Return back PCM Access mmmmm
% Migrated PCM Access

% PCM accesses

Benchmarks

Figure 6.9: Distribution of PCM accesses for migrated pages

in Figure 6.8. This energy consumption can be greatly reduced by moving write-
intensive pages to DRAM, given that PCM write energy is more. In comparison to
Baseline, the proposed WiMig and WiForeMig reduce energy consumption by 29%
and 34% respectively, while the RegMig, UIMigrate, and OntheFly only reduce it by
7%, 12% and 13%, respectively. By judiciously identifying page migration candidates
based on write-intensity and cautious demotion of unrewarded candidates, WiMig

and WiForeMig reduce energy consumption more than the existing methods.

6.8.1.4 Distribution of Accesses to Migrated Pages

Figure 6.9 presents the normalized memory access distribution for PCM pages in
the proposed WiForeMig. The access distribution in the figure is divided into three
categories: (i) accesses incurred when the page is loaded in PCM, (ii) during its
residency in DRAM, and (iii) after the page gets migrated back to PCM as a vic-
tim from DRAM. WiForeMig identifies page migration candidates based on write
intensity, which helps to maximize the DRAM hits. Also, the method demotes those
pages that do not follow the history of write access and have been pending in the
queue for a long time. Thus, WiForeMig reduces the return back migrations from
DRAM. The average migrated PCM access count is 72.39%, whereas the average

return back migration access is only 2.58%.

161

Avenues for Improving Migration and Aging

Ibm leslie3d —j— X264 —K— lom leslie3d —jg— X264 —K—
mcf canneal —@— mcf canneal —@p—

Normalized IPC

kN ©

7
|

Max_Dem_T

(a) (b)
Figure 6.10: (a) Sensitivity analysis for Wait_T, (b) Sensitivity analysis for Maz_Dem_T

6.8.1.5 Sensitivity Analysis of the Threshold values

Sensitivity Analysis for Wait_T: The proposed WiForeMig demote pages from
migration if the migration is unrewarded. The method demotes such pages wait-
ing in the pending queue for Wait_T number of intervals. To study the impact of
Wait T over the performance, we conduct experiments with the value of Wait T
as 10, 20,30 and 50 as shown in Figure 6.10a. For a higher value of Wait T, the
page can stay in the pending queue for long before demotion. This falsifies the idea
of maximizing the writes when the page is in DRAM, as most of the writes happen
while the page is in the pending queue. For a smaller value of Wait_T', the page will
not get enough chance of getting migrated and will get prematurely demoted. From

the figure, we can infer that Wait_ T = 20 gives better results for most benchmarks.

Sensitivity Analysis for Max_Dem_T: WiForeMig chooses an appropriate
percentage of the pages with the lowest writing intensity for demotion from the
pending queue. The value of Max_Dem T determines the percentage. Figure 6.10b
presents the sensitivity analysis for Maxz_Dem_T where the value ranges from 10%
to 30%. If the value of Max_Dem_T is small, only a few pages will get demoted from
the queue, leaving several (low write-intensive) pages to face unrewarded migrations.
This results in performance degradation. On the contrary, if Max_Dem_T is large,
the number of demotions will be large, leading to the demotion of medium write

intensive pages and thus reducing the performance and falsifying the objective of

162

Results

Table 6.2: Advantage of demotion

Method % IPC % Energy %Return back
Improvement | Reduction | access

WiMig 31 29 7.18

WiForeMig | 35 34 2.58

page migration. The figure indicates that Maxz_Dem_ T = 20% is providing better

results for all benchmarks.

6.8.1.6 Discussion

The proposed WiForeMig is an optimization of WiMig, where both methods migrate
pages based on write intensity, whereas WiForeMig demotes pages, which are not
beneficial if migrated to DRAM. The foresight we applied in WiForeMig, such that
the pages with lower write intensity and spend more time in the pending queue are
expected to encounter less number of write requests in the future. As the DRAM
size is limited, we need to keep actual write-intensive pages in DRAM to improve
the performance. Therefore, it is wise to avoid migrating them to DRAM as this
will lessen the migration benefit. Also, such pages with lower write-intensity may
return to PCM soon after being selected as victim pages because these pages would
not receive enough access while placed in DRAM. Thus, demotion based on write
intensity helps to accurately identify page migration candidates to outweigh the
benefit of migration over migration overhead. Table 6.2 shows the performance
gain, energy savings due to the foresightful WiForeMig policy (higher the better),
and accesses a page receives after returning back to PCM. The values are normalized
with the Baseline. From the figure, we can infer that WiForeMig performs better
than WiMig by demoting less beneficial pages from migration. The performance,
energy, and percentage of return back access improvements of WiForeMig are 4%,

5%, and 4.6%, respectively, over WiMig.

6.8.2 Results for DOPMig policy

We have compared our proposed migration-aware de-stress policy, DOPMig policy,
with existing RegDes and DesMig policies. Note that the literature has contributions
that either focus on page migration or de-stressing PCM. Therefore, we could not

compare them with a particular research study that combined both.

163

Avenues for Improving Migration and Aging

RegDes mmmmm DOPMig_modest
DesMig m———3 DOPMig_greedy mmmm

N
i

o + + &
& _\‘} W 3 4
S & R

N

Normalized IPC
o o o =
S [} @ — N

o
M)
T

&‘
Benchmarks

Figure 6.11: Normalized speedup (higher is better)

The proposed DOPMig outperforms existing DesMig and RegDes for all work-
loads. Among the proposed methods DOPMig_modest works better for modest_workloads
like lbm, libquantum, x264, Mix_High, and Miz_Low because they have reasonable
number of write intensive pages. DOPMig_greedy works better for greedy_workloads
like sjeng, leslie3d, streamcluster and canneal which have a large number of write-

intensive pages.

6.8.2.1 IPC

The IPC obtained for various benchmarks using existing and proposed methods is
shown in Figure 6.11. The proposed DOPMig_modest and DOPMig_greedy improve
IPC on average by 22% and 21%, respectively, over RegDes. The DesMig policy
migrates pages based only on write count and gets an IPC improvement of only
8% over RegDes. This demonstrates the importance of using the write intensity of
pages for migration compared to using only the write count. Due to the absence of
migration, the current RegDes method may place write-intensive pages on the PCM
partition and perform worse.

In addition to using write intensity, our proposed policies also migrate pages
parallel to the de-stress operation. DOPMig utilizes the stalled time due to de-stress
operation with the help of a migration buffer. The proposed method can efficiently
migrate pages at the earliest in the background during de-stress operation. This
helps to maximize the DRAM hits, which results in reduced execution time due to
the lower write latency of DRAM.

164

Results

RegDes mmmmm DOPMig_modest mmmmm
DesMig 3 DOPMig_greedy mmmm

Normalized Memory Service Rate
o
@

> X » N N
LI R I I © & >
£ I T F S E
R N © &
& &
A\ 2
&
Benchmarks

Figure 6.12: Normalized memory service rate (higher is better)

It can be noted from the figure that DOPMig_modest improves performance
by 23% whereas DOPMig_greedy gives 16% for modest_workloads. Similarly, for
greedy_workload, DOPMig_greedy improves performance by 25% while DOPMig_modest
gives only 17% for this set.

The figure demonstrates that neither the greedy policy nor the modest policy
is always beneficial. Modest takes advantage of less overhead, while greedy takes
advantage of more migrations. DOPMig_greedy works better for workloads having
a significantly larger number of write-intensive pages like greedy_workloads and vice
versa for DOPMig_modest.

6.8.2.2 Memory Service Rate

The number of memory requests serviced per unit time defines the memory request
rate. Figure 6.12 shows the memory service rate obtained for proposed methods
and DesMig normalized with RegDes. DOPMig achieves a higher service rate due
to the early migration of write-intensive pages, which maximizes the DRAM hits.
The average improvement in service rate is 15% for DOPMig_modest, 14% for DOP-
Mig_greedy, whereas DesMig could improve only 4% over RegDes.

6.8.2.3 DRAM Hits for Migrated Pages

Figure 6.13 presents the number of DRAM accesses to the migrated PCM pages for
proposed DOPMig normalized to DesMig. It can be observed from the figure that

165

Avenues for Improving Migration and Aging

DesMig m——o DOPMig_modest mmmmm DOPMig greedy mmm

DRAM Hits

&

A
@ébb & 2
2

& N 12 N
© wig 4 o
O o o)
R S CHEN SN S
RS N (& o’o
&

\4 Y
AN @

&

Benchmarks

Figure 6.13: Number of DRAM hits for migrated PCM pages normalized to DesMig

Table 6.3: DOPMig-modest Vs DOPMig_greedy normalized over DesMig

% Improvement on
Method Workload - Memory DRAM
Service Rate Access
. modest 23 18 22
DOPMig modest greedy 18 3 9
. modest 17 11 11
DOPMig greedy | ooy 25 21 24

both the proposed methods improve the number of DRAM accesses, which results in
better performance than DesMig. DOPMig_modest improves the DRAM accesses
by 11% on average for modest_workloads, and DOPMig_greedy improves DRAM
access by 24% for greedy_workloads on average.

Table 6.3 presents the improvement on different performance metrics of pro-
posed DOPMig modest and DOPMig_greedy normalized over RegDes. We can ob-
serve from the table that DOPMig_modest performs better in all metrics for mod-
est_workloads, whereas DOPMig_greedy achieves better performance for greedy_workloads.
For example, the improvement in IPC for DOPMig_modest is 23% for the mod-
est_workload, while it is 18% for greedy workloads. A similar result is observed for
DOPMig_greedy also. It can be noted that DOPMig_modest improves memory ser-
vice rate by 7% than DOPMig_greedy for modest_workloads and DOPMig_greedy
improve it by 13% for greedy_workloads than DOPMig_modest.

Figure 6.14 presents the number of returned back migrations for proposed policies

166

Results

DesMig =——5 DOPMig_modest mmmmm DOPMig greedy mmmsm

o
™

g
)

o
IS
T

#Return Back Migrations

o
M)
T

N N
© & PP & & i
IR G R B RN R N

R N © &

& &

A\ 2

&
Benchmarks

Figure 6.14: Number of return back migrations normalized to DesMig

normalized with DesMig. These pages moved from PCM to DRAM and were made
victims and moved from DRAM back to PCM. We get a good reduction in such
return back pages, with 66% for DOPMig modest and 62% for DOPMig_greedy
over DesMig.

The performance improvement is achieved due to the early migration of the right
candidate pages which maximizes the DRAM accesses. As the migrated pages obtain
higher DRAM accesses, the likelihood of these pages getting selected as victim pages
is highly unlikely.

6.8.2.4 Sensitivity Analysis on Buffer Size

The proposed policy DOPMig buffers a set of pending migration candidate pages
before a de-stress operation, and these pages are migrated in the background from
buffer to DRAM during de-stress operation. The size of the migration buffer (BSize)
determines the P number of pages that will be buffered before de-stress. We conduct
a study with different buffer sizes to understand the impact on performance as shown
in Figure 6.15. With a smaller buffer size value (BSize = 4), fewer pages are getting
buffered and migrated to DRAM in parallel with de-stress. Thus, a smaller buffer
size can not use the de-stress duration and reduce the migration overhead. Also,
with a smaller buffer size, early migration of write-intensive pages is limited, leading
to a reduction in DRAM hits. With a larger buffer size (BSize = 16), DOPMig
causes high storage overhead, and more pages should be buffered before de-stress.

This buffering causes a large number of delayed requests and leads to higher memory

167

Avenues for Improving Migration and Aging

sieng —@— streamcluster —Jj—
Ibm canneal —@—

Normalized IPC

» ?

)

BSize
Figure 6.15: Sensitivity analysis on buffer size (BSize)

Table 6.4: Comparison with existing policies

. Migration Migration | De-stress De—stre.ss Performance (IPC)
Policy . Regular Regular | Dynamic
Immediate Improvement
Interval Interval | Interval

RegDes X X v X -
RegMig X v X X -
DesMig X v v X -
Aging-aware [94] | x X X v 12% over RegDes
UIMigrate [58] X v X X 15% over RegMig
OntheFly [60] v X X X 17% over RegMig
WiMig v v X X 31% over RegMig
WiForeMig v v X X 35% over RegMig

. 22% over RegDes
DOPMig % v v % 14% over DefMig

service time and reduced performance. Thus, the migration buffer size cannot be
too large or too small.
From the figure, we can observe that buffer size BSize = 8 gives better results

for all benchmarks.

6.8.3 Comparison with Existing Methods

Table 6.4 presents the performance improvement of various policies with respect
to their baseline(s). The existing aging-aware de-stress method [94] manages de-
stress interval dynamically and improves performance by 12% over RegDes. The
existing migration policies: UIMigrate [58] and OntheFly [60], improve performance
by 15% and 17% over RegMig, which performs migration at regular intervals. At

168

Summary

the same time, the proposed write-intensity-based page migration schemes, WiMig
and WiForeMig, improve performance by 31% and 35%, respectively, over RegMig.
Even though these proposed migration schemes improve performance than exist-
ing methods, the proposed WiMig and WikoreMig do not deal with a de-stress
mechanism to control BTI aging. A proposed baseline, DesMig, which combined
migration and de-stress and stalls migration of hot pages during de-stress, could
improve performance by 8% over RegDes. Finally, our proposed DOPMig oppor-
tunistically migrates pages during de-stress, and keeping the de-stress interval the

same as RegDes improves performance by 22%.

6.9 Summary

Hybrid memory systems composed of DRAM and NVM provide high memory ca-
pacity and low leakage power. Due to the high write latency of PCM memory, it is
better to place write-intensive pages in the DRAM partition. Page migration tech-
niques migrate the highest write count page to DRAM to improve the performance
of hybrid memory systems. The performance of hybrid memory systems can be im-
proved by migrating write-intensive pages to DRAM due to the high write latency
of PCM memory.

Also, the high voltage requirement of PCM memory accelerates the BTI aging of
hybrid memory systems. De-stressing the circuit at regular intervals helps to control
BTI aging. Since migration and de-stress hamper the service of regular requests,
it is important to properly manage both operations to improve the performance of
hybrid memory systems. We have proposed write-intensity-based migration tech-
niques, WiMig and WiForeMig, to outweigh the overhead of migration through
the prudent selection of migration candidates. We also proposed a de-stress-aware,
write-intensity-based page migration technique, DOPMig, to control BTT aging and
improve the performance of hybrid memory.

To conclude, although migration of heavily written pages is beneficial, checking
the intensity of writes and timeliness of migration is equally important. Keeping this
foresight and migrating the correct candidates can improve system performance. The
proposed WiMig and WiForeMig migrate write-intensive pages in regular intervals
to maximize the hits in DRAM. As the PCM memories are prone to BTI aging, de-

stressing the circuit in regular intervals helps to improve longevity while hindering

169

Avenues for Improving Migration and Aging

the performance of hybrid memory systems. The proposed DOPMig policy improves

performance by migrating write-intensive pages parallel to the de-stress operation.

170

Conclusions and Future Perspectives

This research aims to extend the lifetime, increase utilisation, and enhance the
performance of main memories based on DRAM and PCM. To achieve this, we pro-
posed memory scheduling strategies for PCM, DRAM, and hybrid memory. The
proposed scheduling policies order regular read/write requests and memory service
requests such as migration and de-stress requests. We have proposed predictable
memory request scheduling policies to achieve memory service predictability and
higher throughput for real-time tasks executing on the processing cores. Addition-
ally, scheduling policies for migration and de-stress procedures are included in the
dissertation. The proposed migration and de-stress scheduling policies aim to sched-
ule these service operations such that without much affecting the service of regular
requests. The objective of all the proposed scheduling policies is to improve mem-
ory service time, which eventually leads to improved system performance, memory
utilisation, and memory longevity. In this chapter, we summarize the work done,
highlight the contributions of this dissertation (in Section 7.1), and suggest direc-

tions for possible future work (in Section 7.2).

171

Conclusions and Future Perspectives

7.1 Summary of Contributions

All the contributions fulfill the first and second objectives, and each one in particular

completes the remaining objectives explained in this section.

e Request scheduling policies to improve memory service time and
predictability: [fulfils Objectives:1,2,3 | Real-time embedded systems
demand predictable memory request service latencies to provide reasonable
worst-case execution time bounds for tasks. Memory request scheduling can
play a vital role in influencing task completion times. The allowable response
latency for a memory request measures the service urgency corresponding to
this request. This urgency is in tune with the real-time demand of the task
that spawned the request. Given the urgencies associated with a set of memory
requests, this work has proposed a QoS-aware memory request scheduler. Ex-
act solutions to this problem are highly compute-intensive and dependent on
numerous competing factors. Hence, applying complex optimization methods
for deriving the required scheduling decisions becomes prohibitively expen-
sive in terms of time and memory. In addition, as the proposed strategy is
intended to be implemented as part of the memory controller hardware, the
associated overhead needs to be low and bounded. We have proposed four
low overhead heuristic memory request scheduling techniques, RMRS and R-
RMRS for DRAM and LARS and Re-LARS for PCM memories, targeted
towards soft real-time systems executing persistent periodic tasks. With a
novel frame-based deadline-aware group reordering mechanism, the proposed
algorithms can provide a judicious balance between throughput and timeliness,
leading to lower deadline misses and higher Quality of Service (QoS) in soft
real-time systems. These proposed policies fulfill our objective 3 (Refer 1.5).
We have designed, implemented, and evaluated the proposed techniques by
conducting simulation-based experiments, and the results are compared with
existing memory request scheduling techniques FR-FCFS, RR, and EDF. Our
proposal could reduce deadline misses by 25.4% compared to FR-FCFS, 23.4%
compared to RR, and 19.6% compared to EDF. Also, the acquired reward im-
proves by 33.9% compared to FR-FCFS, 32.4% compared to RR, and 14.8%
compared to EDF.

172

Summary of Contributions

e Migration policies to minimize costly write operations: [fulfils Ob-
jectives:1,2,4 | Emerging non-volatile memory technologies are seen as a
competitive alternative to existing DRAM technologies. Despite their high
density and low leakage power, these memories have limited write endurance,
high write latency, and high energy consumption. As a result, hybrid memory
systems—which combine DRAM and non-volatile memories to maximize the
advantages of both kinds of memories emerged. Because non-volatile memory
has a higher write latency than the DRAM partition, placing write-intensive
pages there extends the memory service time. The speed of a hybrid memory
system can be increased by using page migration, which moves pages across
the memory partition. Choosing candidates for page migration and determin-
ing the best time to migrate pages are the two main issues involved in page
migration. We have proposed techniques for determining page migration can-
didates based on write intensity and scheduling the migration for such pages to
improve memory service time. The proposed write-intensity-based migration
techniques WiMig and WiForeMig keep track of the write count and write
intensity of the accessed PCM pages. WiMig carefully moves the most write-
intensive page to DRAM regularly among the group of pages whose write count
exceeds the predetermined threshold to enhance performance. Additionally,
we propose an optimization called WiForeMig, which demotes migration pages
that have been in the pending queue for an extended period and have had few
writes. As a result, fewer unrewarded migrations occur. To determine the time
of migration, we propose slot-based scheduling techniques, SRS-Mig, Mig-Slot,
and Mig-QoS, where the migrations are scheduled in the reserved slots based
on the incoming request rate to less hamper the service of regular requests.
All of these migration policies fulfill our fourth objective (refer Section 1.5).
The proposed methods could improve performance in the range of 27% to 35%

and improve service rate by 25% over baseline.

e De-stress scheduling policies to improve longevity: [fulfils Objec-
tives:1,2,5 | Phase Change Memories are a viable alternative for DRAM
because of their properties, such as low leakage power and high density. The
high voltage requirement for such memories accelerates the threshold voltage
shift, leading to BTI aging and an early breakdown of the device. The BTI

aging consists of stress and de-stress phases, and the degradation rate highly

173

Conclusions and Future Perspectives

depends on the duration the device is exposed to these stress and de-stress
phases. To control the early breakdown of the device, it is necessary to de-
stress it at regular intervals. De-stress operation stalls the service of regular
read /write requests, which results in system performance degradation. Thus,
it is important to schedule the de-stress operation to control the rate of age
degradation without hampering the regular read/write requests. We propose
age and memory request rate aware scheduling policies AGRAS and RODESA
with the objective of controlling the aging of the device while maintaining the
system performance. The proposed methods keep track of the incoming re-
quest rate and the current age to schedule the de-stress operation. The meth-
ods schedule the de-stress operation either partially or fully only when the
request rate is lower than a request threshold, which is dynamically updated
at regular intervals. To control the aging of the device, the proposed methods
ensure that we do not skip de-stress operations over prolonged intervals. This
way, our proposed scheduling methods control the de-stress operation without
affecting the service of regular read/write requests to maintain performance.
Our fifth objective is achieved by these de-stress scheduling techniques (refer
Section 1.5). Compared to the existing regular de-stress method, the proposed
methods improve performance by 25% and age degradation of only 17%, on

average.

e Migration-aware de-stress mechanism to enhance the utilisation of
hybrid memory: [fulfils Objectives:1,2,4,5 | The performance of hybrid
memory systems can be improved by migrating write-intensive pages to DRAM
due to the high write latency of PCM memory. Also, de-stressing the circuit at
regular intervals helps to control BTT aging and enhances longevity. Since both
migration and de-stress hamper the service of regular requests, it is important
to properly manage both operations to improve the performance of hybrid
memory systems. We proposed a de-stress-aware, write-intensity-based page
migration technique DOPMig. Here, part of the migration is opportunistically
performed in the background to the de-stress operation. DOPMig uses a fixed-
size migration buffer to buffer a set of write-intensive pages from PCM. These
buffered pages are migrated to DRAM when the PCM is de-stressed. Thus,
DOPMig reduces migration overhead and maximizes DRAM hits by early mi-

grating a set of write-intensive pages during de-stress operation. Our proposals

174

Summary of Contributions

Scheduling Policies for Improving Performance, Utilization and Longevity of

DRAM and PCM memories

Objective 1 & 2: W
Improve Memory Service
Time and Performance

.

Contribution 1: |

Predictable Memory Request Contribution 2: Contribution 4: Contribution 3: |
Scheduling Policies for Write cmgra“ o Write-intensity based Memory Request Rate-aware |
DRAM and PCM memories Policies [SRS-Mig.Mig-QoS Migration with Opportunistic De-stress Scheduling
[RMRS,R-RMRS,LARS,Re- [9,19] De-stress Policies Policies [AGRAS,RODESA] |

LARS] [WiForeMig,DOPMig]

Title: Migration Scheduling ey =
Policies for Hybrid DRAM- Title : De-stress Scheduling |

Title: Request Scheduling PCM memories Title: Avenues for Improving Policies for Pure PCM
Policies for Pure DRAM and Migration and Aging memories

_ PCMmemories
A > 4 |)

Objective 3: Objective 4: Obijective 5:
Improve Predictability Minimize Write Operations Improve Longevity

Figure 7.1: Overview of the thesis

establish a delicate balance of migration and de-stress through proper schedul-
ing and opportunistic background migrations. This migration-aware de-stress
scheduling technique also fulfills the fourth and fifth objectives (refer Section
1.5).

The overview of the thesis is shown in Figure 7.1. Each contribution aims to
improve the memory service time through different memory scheduling policies. The
overall objective is to maximize the utilisation, performance, and longevity of DRAM

and PCM memories.

175

Conclusions and Future Perspectives

7.2 Scope for Future Work

The contributions of this thesis can be extended in several ways. The following is a

list of a few of these potential avenues for future research:

e Each proposal in this thesis requires specific alterations to the memory con-
troller. All the necessary alterations need to be modeled to evaluate the ef-
fectiveness of the proposed solutions; other considerations related to power,

timing, and area can be addressed in the future.

e Our proposed victim page migration scheme from DRAM to PCM is based on
LRU. Considering the uncertainty in the memory access pattern, it may be
beneficial to look into the least frequently used (LFU) policy. An appropriate
LFU policy that dynamically updates the frequency of pages for a fixed window

size can be proposed.

e The proposed write-intensity-based migration scheme demotes certain pages
from migration based on write intensity and recency. A weight-based selec-
tion criteria based on the same can further improve the selection of pages for

demotion and reduce the amount of unrewarded migrations.

e All the proposed migration schemes perform complete migration at a time.
A partial migration scheme based on incoming memory request rate can be

proposed.

e To further enhance the advantage of page migration, it is possible to propose a
metrically weighted write intensity-based migration where the write intensity
of previous intervals is also considered for the selection of migration candidates.
The previous write intensity is given less weight than the intensity of the

current interval.

e Our current aging calculation model is based on the duration of the stress and
de-stress phase. A request-based aging model can be proposed considering the

operating voltage difference in read and write requests.

176

Appendix

A.1 Simulation Framework

We provide the simulation framework that we employed in our research in this
appendix. We have used a GEM5-NVMain based co-simulation framework and
used PARSEC and SPEC 2006 benchmark suite. In the following sections, we give
brief overview of GEM5 and NVMain simulators and the methodology used for
integrating the two simulators. In the end, we outline the characteristics of the

benchmarks that were used in the experiments.

A.1.1 Gemb

GEMS5 [95] is a framework for simulating modular event-driven computer systems.
The key aspects of two existing simulators, M5 and GEMS, were combined to create
GEMb5. It allows user to model the behavior of CPUs, caches, memory systems,
and even entire heterogeneous systems with multiple processors. Gemb5 supports
various ISAs (Instruction Set Architectures) like x86, ARM, and RISC-V, and is
widely used to simulate systems ranging from small embedded devices to large-scale
supercomputers. GEMS5 offers memory systems with the support of cache coherence

protocols and the complete interconnection network.

177

Appendix

A11.1 M5

The full system simulator M5 creates a virtual computer that runs on top of the host
system or a whole target system. It serves as a substitute for commercial simulators
like Simics and is open source. It was developed to measure the throughput of
interconnect and network protocols. Because of its adaptability, M5 can handle

both in-order and out-of-order modes of execution for different CPU models.

A.1.1.2 GEMS

Ruby and Garnet are the two main modules that make up GEMS. The entire CMP
memory hierarchy, including the L1 and L2 caches, memory banks, directories, etc.,
is simulated by Ruby. In Ruby, every component is referred to as a machine and
is recognized by its own machine ID. Through the underlying Network on Chip
(NoC), which is controlled by Garnet, the components exchange information with
one another using their machine IDs. Garnet models the real-time events for packet
transfer over the NoC and provides a range of network topologies for the NoC.
The GEMS Ruby module receives the block request from the M5 processor. The
M5 processor receives the requested block straight from the simulated first level of
cache and proceeds with its execution. Otherwise, if there is a miss, the processor
will halt until the block is supplied. Ruby is in charge of the timing-dependent

functional simulation.

A.1.2 NVMain

An architectural-level simulator called NVMain [96] is used to replicate main mem-
ory using both traditional DRAM and the recently developed non-volatile memories.
It easily interfaces with GEMS5, allowing for cycle-level modeling of the system’s var-
ious primary memory technologies. Additionally, NVMain may execute trace-based
simulations by using traces as inputs. In addition to integrating the NVM timing
parameters, NVMain provides modeling for endurance, fault recovery, and MLC
operation, which represents the distinctive characteristics of NVMs.

Each module in NVMain is designed as an independent object that may be added
to or removed from the simulator. Each item in the simulator records its own time
parameters. DRAM data sheets and parameters supplied by CACTI and NVSIM,
respectively, are the sources of the timing parameters pertaining to DRAM, SRAM,

178

Benchmarks

and NVM technologies. The memory system hierarchy and general configuration
parameters, such as the number of banks, rows, columns, and ranks, as well as
other parameters, such as the address mapping scheme, encoder/decoder, row buffer

policies, etc., are specified using configuration files.

A.1.3 GEM5-NVMain Co-simulation Framework

Memory requests are received by NVMain from GEMS5 at particular time instants in
the GEM5-NVMain co-simulation framework. In NVMain, the requests cause many
processes, such as scheduling and queuing of requests, data transfer to main memory,
computation of bank latency, and data transfer back to controller,etc. Before GEM5

may begin its further responsibilities, these must be completed.

The Abstract-Memory class of GEM5 and the NVMObject class of NVMain are
combined to form an interacting object known as NVMainMemory during simula-
tion. The GEMb5 requests appear as request packets, or pkts. Before sending the
request to NVMain, the contents of the packet pkt are moved to a fresh request
packet (req) that is particular to NVMain. To maintain track of the memory re-
quests that are issued, the interacting object keeps track of pkt and the associated
req in a map data structure. With the aid of the RequestCompleted function, the
interfacing object is informed when memory requests are completed. After that,
GEMS5 receives the matching pkt that was obtained from the map data structure.
Furthermore, NVMainMemory, the interfacing object and NVMain are cycled using
the tick function, which transfers the GEM5 cycles to NVMain.

A.2 Benchmarks

Benchmarks are real applications that are executed on the simulated architecture
that simulators have generated. The parameters pertaining to power and perfor-
mance are assessed for the new architecture based on the simulation findings. The
multi-programmed SPEC CPU 2006 benchmark set [99] and multi-threaded PAR-
SEC [100] were utilized in this thesis to assess the efficacy of the architectural solu-
tions we suggested. The following provides an in-depth discussion of these bench-

marks.

179

Appendix

Table A.1: he Inherent Key Characteristics of PARSEC Benchmarks

.. . Parallelization .
Benchmarks Application Domain Model Granularity Working set
blacksholes Financial Analysis data-parallel coarse small
canneal Engineering unstructured fine unbounded
dedup Enterprise Storage pipeline medium unbounded
streamcluster Data Mining data-parallel medium medium
swaptions Financial Analysis data-parallel coarse medium
x264 Media Processing pipeline coarse medium

Table A.2: The Data Usage Behavior of PARSEC Benchmarks

Data Exchange

Benchmarks Sharing Exchange
blacksholes,swaptions low low
canneal dedup,x264 high medium
streamcluster low medium

A.2.1 Parsec

The suite of multi-threaded benchmarks known as the Princeton Application Repos-
itory for Shared-Memory Computers (PARSEC) [100] was created especially for the
assessment and validation of the next generation CMPs. It was created jointly by
Intel and Princeton University to assist the scientific community in effectively de-
signing the computer systems of the future. It is widely used in both academic and
industrial research and is open source. Each of the 12 apps in the PARSEC version

2.1 package is multi-threaded and parallelized.

The applications are chosen from a variety of real-world domains, including me-
dia processing, finance, animation physics, and computer vision. The benchmarks
are described in full in Table A.1. These applications distribute data among the
created threads as an outcome of multi-threading. The applications’ data sharing
and exchange practices are displayed in Table A.2. There are three different in-
put sizes and working sets for each benchmark in the PARSEC benchmark suite:
small, medium, and large. Users can conduct benchmarks with the right input sizes,

depending on the requirements and architecture design.

180

Benchmarks

Table A.3: Application Domains of Various CINT 2006 Benchmark Suite

Workload Programming Language Application Domain
400.perlbench C Programming language
401.bzip2 C Compression

403.gcc C C Compiler

429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: Go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum C Physics / Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xalanchmk C++ XML Processing

A.2.2 SPEC 2006

Standard Performance Evaluation Corporation (SPEC) CPU 2006 [99] is an indus-
try standard benchmark suite developed to measure the performance of compilers,
processors, and memory hierarchies. The two variations of SPEC 2006 suites that

cater to different kinds of compute-intensive performance are described below.

e CINT 2006 benchmark suite: The performance of the compute-intensive
integer operations is assessed using the benchmarks. It has twelve benchmarks,

and Table A.3 gives a description of each benchmark.

e CFP 2006 benchmark suite: The performance of the computationally de-
manding floating point operations is assessed using these benchmarks. Table

A4 provides a description of the 17 benchmarks that are included in it.

The simulation has employed a number of multi-threaded and multi-programmed
benchmarks to evaluate the proposed architectural solutions. Multi-threading is
supported by PARSEC benchmarks. Depending on the program load and input
size, each PARSEC benchmark has a different number of threads. Multi-threading
execution in the PARSEC benchmark takes place inside a time frame known as the
Region Of Interest (ROI). Prior to entering the ROI, the variables are scanned and
initialized. The ROI concludes after producing the output, marking the end of the

workload’s execution.

181

Appendix

Table A.4: Application Domains of Various CFP 2006 Benchmark Suite

Workload Programming Language Application Domain

410.bwaves Fortran Fluid Dynamics

416.gamess Fortran Quantum Chemistry

433.milc C Physics/Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD

435.gromacs C,Fortran Biochemistry / Molecular Dynamics
436.cactusADM C, Fortran Physics / General Relativity

437 lesliedd Fortran Fluid Dynamics

444 namd C++ Biology / Molecular Dynamics

447 .dealll CH++ Finite Element Analysis

450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing

454.calculix C, Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry

470.1bm C Fluid Dynamics

481.wrf C, Fortran Weather

482.sphinx3 C Speech recognition

On the other hand, multiple SPEC 2006 benchmarks are combined to create
multi-programmed benchmarks. For a four core CMP, for instance, we can combine
the four benchmarks bzip2, mcf, milc, and leslie3d to generate a mix benchmark.
Until the predetermined number of instructions is completed, each application runs
on its own core. Each of the SPEC multi-programmed benchmarks is loaded one
at a time and executed during a warm-up phase of 250 million instructions. The
warm-up step gets the proposed design ready to settle correctly for simulation and
helps it get past the necessary misses in the cache. In order to gather the statistics
required for evaluating the performance of the proposed architectural design, each

benchmark is run for one billion instructions following the warm-up phase.

A.2.3 MiBench

An embedded benchmark called MiBench is made up of open source code. A more
demanding, real-world application of the benchmark is provided by the large data
set, whilst the small data set represents a lightweight, practical embedded appli-
cation. Table A.5 presents different MiBench applications. The six categories of

MiBench are: Network, Security, Consumer Devices, Office Automation, Automo-

182

Benchmarks

Table A.5: MiBench Benchmarks

Auto/Industrial Consumer Office Network Security Telecommunication
basicmath jpeg ghostscript dijkstra blowfish ~ CRC32
bitcoun lame ispell Patricia pgp IFFT
gsort mad rsynth (CRC32) rijndael ADPCM
susan tiff sphinx (sha) sha GSM
typeset stringsearch (blowfish)

tive and Industrial Control, and Telecommunications. These groups provide various

program features that help compilers and architectural researchers better analyze

their designs for a specific market sector.

pent Fdrouns

183

Publications

Journals

1. Aswathy N S, Arnab Sarkar and Hemangee K. Kapoor. “A Predictable
QoS-aware Memory Request Scheduler for Soft Real-time Systems 7. ACM
Transactions on Embedded Computing Systems (ACM TECS), Vol. 22(2):
39:1-39:25 (2023).

2. Aswathy N S, and Hemangee K. Kapoor. “Migration-aware slot-based mem-
ory request scheduler to guarantee QoS in DRAM-PCM hybrid memories ”.
Journal of Systems Architecture 152 (2024): 103174.

Conferences

1. Aswathy N S, Hemangee K. Kapoor and Arnab Sarkar. “A Soft Real-time
Memory Request Scheduler for Phase Change Memory Systems”, 27th In-

ternational Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2021.

2. Aswathy N S, Sreesiddesh Bhavanasi, Arnab Sarkar, Hemangee K. Kapoor.
“SRS-Mig: Selection and Run-time Scheduling of page Migration for improved
response time in hybrid PCM-DRAM memories.”, Proceedings of the Great
Lakes Symposium on VLSI1.2022.

3. Aswathy N S and Hemangee K. Kapoor. “AGRAS: Aging and memory re-
quest rate aware scheduler for PCM memories 7, 24th International Symposium
on Quality Electronic Design, ISQED 2023.

4. Aswathy N S and Hemangee K. Kapoor. “Write Intensity based Foresight-
ful Page Migration for Hybrid memories 7, 25th International Symposium on
Quality FElectronic Design, ISQED 2024.

5. Aswathy N S and Hemangee K. Kapoor. “Opportunistic Migration for Hy-
brid memories while Mitigating Aging Effects 7, (2024 IEEE }2nd Interna-
tional Conference on Computer Design (ICCD). IEEE. 2024).

:,Oc/:‘&)}-QC\gC\:

184

1]

2]

[7]

References

B. Jacob, D. Wang, and S. Ng, Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010. [Pg.3|, [Pg.138]

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
access scheduling,” in ACM SIGARCH Computer Architecture News, vol. 28,
pp. 128-138, ACM, 2000. [Pg.4], [Pg.49]

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance
main memory system using phase-change memory technology,” in Proceedings
of the 36th annual international symposium on Computer architecture, pp. 24—
33, ACM, 2009. [Pg.21], [Pg.32], [Pg.33], [Pg.156]

X. Wan, B. Zhu, M. Mohan, K. Wu, D. Choi, and A. Gondal, “Hci improve-
ment on 14nm finfet io device by optimization of 3d junction profile,” in 2019
IEEE International Reliability Physics Symposium (IRPS), pp. 1-4, IEEE,
2019. [Pg.23]

P. J. Roussel, A. Chasin, S. Demuynck, N. Horiguchi, D. Linten, and A. Mo-
cuta, “New methodology for modelling mol tddb coping with variability,” in
2018 IEEE International Reliability Physics Symposium (IRPS), pp. 3A-5,
IEEE, 2018. [Pg.23]

R. Gao, Z. Ji, A. B. Manut, J. F. Zhang, J. Franco, S. W. M. Hatta, W. D.
Zhang, B. Kaczer, D. Linten, and G. Groeseneken, “Nbti-generated defects in
nanoscaled devices: Fast characterization methodology and modeling,” IFEE
Transactions on Electron Devices, vol. 64, no. 10, pp. 4011-4017, 2017. [Pg.23],
[Pg.39], [Pg.113]

D. JEDEC, “Jedec ddr4 sdram standard,” JESD79-4, Sep, 2012. [Pg.25]

185

REFERENCES

8]

[10]

[11]

[12]

[13]

[14]

[15]

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable and
high-performance scheduling algorithm for multiple memory controllers,” in
HPCA-16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, pp. 1-12, IEEE, 2010. [Pg.26]

O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared dram systems,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 3, pp. 63-74, 2008. [Pg.26]

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster
memory scheduling: Exploiting differences in memory access behavior,” in
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 65676, IEEE, 2010. [Pg.26]

L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “Bliss:
Balancing performance, fairness and complexity in memory access schedul-
ing,” IEEFE Transactions on Parallel and Distributed Systems, vol. 27, no. 10,
pp. 3071-3087, 2016. [Pg.26]

E. O. Sanchez and X.-H. Sun, “Cads: Core-aware dynamic scheduler for mul-

ticore memory controllers,” arXiv preprint arXiv:1907.07776, 2019. [Pg.26]

J. Fang, M. Wang, and Z. Wei, “A memory scheduling strategy for elimi-
nating memory access interference in heterogeneous system,” The Journal of
Supercomputing, vol. 76, pp. 3129-3154, 2020. [Pg.26]

B. Akesson and K. Goossens, Memory controllers for real-time embedded sys-
tems. Springer, 2011. [Pg.27]

J. Reineke, 1. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram con-
troller: Bank privatization for predictability and temporal isolation,” in 2011
Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ 1SSS), pp. 99-108,
[EEE, 2011. [Pg.27]

H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “Palloc: Dram bank-aware

memory allocator for performance isolation on multicore platforms,” in 2014

186

REFERENCES

[17]

[18]

[19]

[23]

[24]

IEEFE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 155-166, IEEE, 2014. [Pg.27]

J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F. J. Cazorla,
“A dual-criticality memory controller (demc): Proposal and evaluation of a
space case study,” in Real-Time Systems Symposium (RTSS), 201 IEEE,
pp. 207217, IEEE, 2014. [Pg.27], [Pg.28]

L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical memory
controller using bank privatization and fixed priority scheduling,” in Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE
20th International Conference on, pp. 1-10, IEEE, 2014.

H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh,
“A predictable and command-level priority-based dram controller for mixed-

criticality systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2015 IEEE, pp. 317-326, IEEE, 2015. [Pg.28]

M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens, “A
globally arbitrate analyzable memory controllerd memory tree for mixed-time-
criticality systems,” IEEE Transactions on Computers, vol. 66, no. 2, pp. 212—
225, 2017. [Pg.27], [Pg.28]

D. Guo and R. Pellizzoni, “A requests bundling dram controller for mixed-
criticality systems,” in RTAS, pp. 247-258, IEEE, 2017. [Pg.28]

W. Ali and H. Yun, “Rt-gang: Real-time gang scheduling framework for safety-
critical systems,” in 2019 IEEFE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pp. 143-155, IEEE, 2019. [Pg.28]

R. Mirosanlou, M. Hassan, and R. Pellizzoni, “Drambulism: Balancing per-
formance and predictability through dynamic pipelining,” in 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp. 82—
94, IEEE, 2020. [Pg.28]

S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to improve

pram write performance, energy and endurance,” in Proceedings of the 42nd

187

REFERENCES

[25]

[20]

[27]

28]

[31]

[32]

Annual IEEE/ACM International Symposium on Microarchitecture, pp. 347
357, 2009. [Pg.29]

J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asymmetries,” in
2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), pp. 282-293, IEEE, 2013.

B. Li, S. Shan, Y. Hu, and X. Li, “Partial-set: Write speedup of pcm main

memory,” in 2014 Design, Automation € Test in Europe Conference € Exhi-
bition (DATE), pp. 1-4, IEEE, 2014.

H.-Y. Cheng, M. J. Irwin, and Y. Xie, “Adaptive burst-writes (abw) memory
requests scheduling to reduce write-induced interference,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 21, no. 1, pp. 1-
26, 2015.

V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient encryption
for non-volatile memories,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 1, pp. 33-44, 2015. [Pg.30]

S. Yu, N. Xiao, M. Deng, Y. Xing, F. Liu, Z. Cai, and W. Chen, “Walloc: An
efficient wear-aware allocator for non-volatile main memory,” in 2015 IEEE
34th International Performance Computing and Communications Conference
(IPCCC), pp. 1-8, IEEE, 2015. [Pg.30]

F. Huang, D. Feng, Y. Hua, and W. Zhou, “A wear-leveling-aware counter
mode for data encryption in non-volatile memories,” in Design, Automation
€9 Test in Europe Conference € Exhibition (DATE), 2017, pp. 910-913, IEEE,
2017. [Pg.30]

J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, G. Xu, and Y. Chen, “Adap-
tive granularity encoding for energy-efficient non-volatile main memory,” in

Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1-6,
2019. [Pg.29]

M. Imran, T. Kwon, and J.-S. Yang, “Effective write disturbance mitigation
encoding scheme for high-density pcm,” in 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1490-1495, IEEE, 2020.

188

REFERENCES

[33] K. Huang, Y. Mei, and L. Huang, “Quail: Using nvm write monitor to en-

7

able transparent wear-leveling,” Journal of Systems Architecture, vol. 102,

p. 101658, 2020.

[34] S.Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase change mem-
ory performance with data content aware access,” in Proceedings of the 2020
ACM SIGPLAN International Symposium on Memory Management, pp. 30—
47, 2020. [Pg.29]

[35] R. Xu, E. H.-M. Sha, Q. Zhuge, Y. Song, and J. Lin, “Optimal loop tiling for
minimizing write operations on nvms with complete memory latency hiding,”
in 2022 27th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 389-394, IEEE, 2022.

[36] C. Hakert, K.-H. Chen, H. Schirmeier, L. Bauer, P. R. Genssler, G. von der
Briiggen, H. Amrouch, J. Henkel, and J.-J. Chen, “Software-managed read

and write wear-leveling for non-volatile main memory,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 21, no. 1, pp. 1-24, 2022. [Pg.29]

[37] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low
power phase-change random access memory using a data-comparison write

scheme,” in 2007 IEEE International Symposium on Circuits and Systems,
pp. 3014-3017, IEEE, 2007. [Pg.29]

[38] J. Hu, C. J. Xue, W.-C. Tseng, Q. Zhuge, and E. H.-M. Sha, “Minimizing write
activities to non-volatile memory via scheduling and recomputation,” in 2010
IEEFE 8th Symposium on Application Specific Processors (SASP), pp. 101-106,
IEEE, 2010. [Pg.30]

[39] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Enabling and exploiting
partition-level parallelism (palp) in phase change memories,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1-25,
2019. [Pg.30]

[40] Z. Zhang, Z. Jia, P. Liu, and L. Ju, “Energy efficient real-time task scheduling
for embedded systems with hybrid main memory,” Journal of Signal Process-

ing Systems, vol. 84, no. 1, pp. 69-89, 2016. [Pg.30]

189

REFERENCES

[41]

[42]

[43]

[45]

[46]

[48]

G. Wang, Y. Guan, Y. Wang, and Z. Shao, “Energy-aware assignment and
scheduling for hybrid main memory in embedded systems,” Computing, vol. 98,
no. 3, pp. 279-301, 2016. [Pg.31]

D. Lee, H. Jung, and H. Yang, “Real-time schedulability analysis and en-
hancement of transiently powered processors with nvms,” IEEFE Transactions
on Computers, vol. 70, no. 3, pp. 372-383, 2020. [Pg.31]

B. Ranjbar, T. D. Nguyen, A. Ejlali, and A. Kumar, “Power-aware runtime
scheduler for mixed-criticality systems on multicore platform,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 10, pp. 2009-2023, 2020. [Pg.31]

A. P. Ferreira, B. Childers, R. Melhem, D. Mossé, and M. Yousif, “Using pcm
in next-generation embedded space applications,” in 2010 16th IEEE Real-

Time and Embedded Technology and Applications Symposium, pp. 153-162,
IEEE, 2010. [Pg.31]

M. Zhou, S. Bock, A. P. Ferreira, B. Childers, R. Melhem, and D. Mossé,
“Real-time scheduling for phase change main memory systems,” in 2011IEEE
10th International Conference on Trust, Security and Privacy in Computing
and Communications, pp. 991-998, IEEE, 2011. [Pg.31]

D. Dasari, V. Nelis, and D. Mosse, “Timing analysis of pcm main memory in
multicore systems,” in 2013 IEEE 19th International Conference on Embedded
and Real-Time Computing Systems and Applications, pp. 5261, IEEE, 2013.
[Pg.31], [Pg.49], [Pg.69]

M. Bazzaz, A. Hoseinghorban, and A. Ejlali, “Fast and predictable non-volatile
data memory for real-time embedded systems,” IEEE Transactions on Com-
puters, 2020. [Pg.31]

H. Park, C. Kim, S. Yoo, and C. Park, “Filtering dirty data in dram to
reduce pram writes,” in 2015 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 319-324, IEEE, IEEE, 2015. [Pg.32],
[Pg.33]

190

REFERENCES

[49] H. A. Khouzani, C. Yang, and J. Hu, “Improving performance and lifetime of
dram-pcm hybrid main memory through a proactive page allocation strategy,”
in The 20th Asia and South Pacific Design Automation Conference, pp. 508—
513, IEEE, IEEE, 2015. [Pg.33]

[50] S.-K. Yoon, J. Yun, J.-G. Kim, and S.-D. Kim, “Self-adaptive filtering algo-
rithm with pecm-based memory storage system,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 17, no. 3, pp. 1-23, 2018. [Pg.33]

[51] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He, and
S. Jiang, “Supporting superpages and lightweight page migration in hybrid
memory systems,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 16, no. 2, pp. 1-26, 2019. [Pg.32], [Pg.36]

[52] C. Su, D. Roberts, E. A. Leén, K. W. Cameron, B. R. de Supinski, G. H.
Loh, and D. S. Nikolopoulos, “Hpmc: An energy-aware management system
of multi-level memory architectures,” in Proceedings of the 2015 International
Symposium on Memory Systems, pp. 167-178, ACM, 2015. [Pg.33], [Pg.34]

[53] H. Liu, Y. Chen, X. Liao, H. Jin, B. He, L. Zheng, and R. Guo, “Hard-
ware/software cooperative caching for hybrid dram/nvm memory architec-
tures,” in Proceedings of the International Conference on Supercomputing,
pp. 1-10, 2017. [Pg.33]

[54] F. Wen, M. Qin, P. V. Gratz, and A. N. Reddy, “Hardware memory man-
agement for future mobile hybrid memory systems,” IEEE Transactions on

computer-aided design of integrated circuits and systems, vol. 39, no. 11,
pp. 3627-3637, 2020. [Pg.34]

[55] S. Lee, H. Bahn, and S. H. Noh, “Clock-dwf: A write-history-aware page
replacement algorithm for hybrid pcm and dram memory architectures,” IEEE
Transactions on Computers, vol. 63, no. 9, pp. 2187-2200, 2013. [Pg.34],
[Pg.98], [Pg.129]

[56] R. Salkhordeh and H. Asadi, “An operating system level data migration
scheme in hybrid dram-nvm memory architecture,” in Design, Automation
€9 Test in Europe Conference & Exhibition (DATE), pp. 936-941, IEEE, 2016.
[Pg.34], [Pg.144]

191

REFERENCES

[57]

[59]

[60]

[62]

[63]

[64]

X. Chen et al., “The design of an efficient swap mechanism for hybrid dram-
nvm systems,” in International Conference on Embedded Software (EMSOFT),
pp. 1-10, IEEE, 2016. [Pg.34]

Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen, and D. Liu, “Uimigrate: Adaptive
data migration for hybrid non-volatile memory systems,” in Design, Automa-
tion & Test in Europe Conference & Ezhibition (DATE), pp. 860-865, IEEE,
IEEE, 2019. [Pg.35], [Pg.84], [Pg.99], [Pg.144], [Pg.157], [Pg.168]

Y. Tan, B. Wang, Z. Yan, W. Srisa-an, X. Chen, and D. Liu, “Apmigration:
Improving performance of hybrid memory performance via an adaptive page
migration method,” IEFE Transactions on Parallel and Distributed Systems,
vol. 31, no. 2, pp. 266-278, 2019. [Pg.35]

M. Islam, S. Adavally, M. Scrbak, and K. Kavi, “On-the-fly page migration and
address reconciliation for heterogeneous memory systems,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 16, no. 1, pp. 1-27,
2020. [Pg.35], [Pg.84], [Pg.99], [Pg.144], [Pg.157], [Pg.168]

Y. Fu, Y. Lu, Z. Chen, Y. Wu, and N. Xiao, “Design and simulation of content-
aware hybrid dram-pcm memory system,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 7, pp. 1666-1677, 2021. [Pg.36]

Z. Peng, D. Feng, J. Chen, J. Hu, and C. Huang, “Agdm: An adaptive gran-
ularity data migration strategy for hybrid memory systems,” in 2023 Design,
Automation & Test in Europe Conference & FEzhibition (DATE), pp. 1-6,
IEEE, 2023. [Pg.34]

M. Lee, D. H. Kang, J. Kim, and Y. [. Eom, “M-clock: Migration-optimized
page replacement algorithm for hybrid dram and pcm memory architecture,”
in Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pp. 2001-2006, 2015. [Pg.34]

Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-based hybrid
memory management,” in 2017 IEEE International Conference on Cluster

Computing (CLUSTER), pp. 152165, IEEE, IEEE, 2017. [Pg.34], [Pg.144]

192

REFERENCES

[65] A. Kokolis, D. Skarlatos, and J. Torrellas, “Pageseer: Using page walks to
trigger page swaps in hybrid memory systems,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 596—
608, IEEE, 2019. [Pg.35]

[66] N. Niu, F. Fu, B. Yang, Q. Wang, X. Li, F. Lai, and J. Wang, “Pfha: A
novel page migration algorithm for hybrid memory embedded systems,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 10,
pp. 1685-1692, 2021. [Pg.35]

[67] J. H. Choi, K. M. Kim, and J. W. Kwak, “Ta-clock: Tendency-aware page
replacement policy for hybrid main memory in high-performance embedded
systems,” Electronics, vol. 10, no. 9, p. 1111, 2021. [Pg.36]

[68] A. Maruf, A. Ghosh, J. Bhimani, D. Campello, A. Rudoff, and R. Ran-
gaswami, “Multi-clock: Dynamic tiering for hybrid memory systems.,” in

HPCA, pp. 925-937, 2022. [Pg.36]

[69] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page manage-
ment for tiered memory systems,” in Proceedings of the Twenty-Fourth In-

ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 331-345, 2019. [Pg.37]

[70] T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive page migration
policy with huge pages in tiered memory systems,” IEEFE Transactions on
Computers, vol. 71, no. 1, pp. 53-68, 2020. [Pg.37]

[71] T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the right beat
of periodic data movements over hybrid memory systems,” in 2021 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pp. 350
359, IEEE, 2021. [Pg.37]

[72] M. A. Alam and S. Mahapatra, “A comprehensive model of pmos nbti degra-
dation,” Microelectronics Reliability, vol. 45, no. 1, pp. 71-81, 2005. [Pg.39],
[Pg.40], [Pg.113]

[73] J. H. Stathis and S. Zafar, “The negative bias temperature instability in mos
devices: A review,” Microelectronics Reliability, vol. 46, no. 2-4, pp. 270-286,
2006. [Pg.113]

193

REFERENCES

[74]

[75]

[78]

[79]

[80]

[81]

W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao,
“Compact modeling and simulation of circuit reliability for 65-nm cmos tech-
nology,” IEEE Transactions on Device and Materials Reliability, vol. 7, no. 4,
pp. 509-517, 2007.

C. Yilmaz, L. Heifl, C. Werner, and D. Schmitt-Landsiedel, “Modeling of
nbti-recovery effects in analog cmos circuits,” in 2013 IEEE International Re-
liability Physics Symposium (IRPS), pp. 2A—4, IEEE, 2013.

7. Ji, S. Hatta, J. Zhang, J. Ma, W. Zhang, N. Soin, B. Kaczer, S. De Gendyt,
and G. Groeseneken, “Negative bias temperature instability lifetime predic-
tion: Problems and solutions,” in 2013 IEEFE International Electron Devices
Meeting, pp. 15-6, IEEE, 2013. [Pg.42|, [Pg.113]

S. Shaheen, G. Golan, M. Azoulay, and J. Bernstein, “A comparative study
of reliability for finfet,” Facta universitatis-series: Electronics and Energetics,
vol. 31, no. 3, pp. 343-366, 2018.

G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings,
P. Weckx, M. Jech, T. Knobloch, M. Waltl, et al., “Comphy—a compact-

physics framework for unified modeling of bti,” Microelectronics Reliability,
vol. 85, pp. 49-65, 2018. [Pg.113]

A. Campos-Cruz, G. Espinosa-Flores-Verdad, A. Torres-Jacome, and E. Tlelo-
Cuautle, “On the prediction of the threshold voltage degradation in cmos
technology due to bias-temperature instability,” FElectronics, vol. 7, no. 12,
p. 427, 2018. [Pg.39]

T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehen-
berger, P.-J. Wagner, F. Schanovsky, J. Franco, M. T. T. Luque, et al.,
“The paradigm shift in understanding the bias temperature instability: From

reaction—diffusion to switching oxide traps,” IEEE Transactions on Electron
Deuvices, vol. 58, no. 11, pp. 3652-3666, 2011. [Pg.40], [Pg.113]

K. Sutaria, A. Ramkumar, R. Zhu, R. Rajveev, Y. Ma, and Y. Cao, “Bti-
induced aging under random stress waveforms: Modeling, simulation and sil-
icon validation,” in Proceedings of the 51st Annual Design Automation Con-

ference, pp. 1-6, 2014. [Pg.40], [Pg.113], [Pg.117]

194

REFERENCES

[82] J. B. Velamala, K. B. Sutaria, H. Shimizu, H. Awano, T. Sato, G. Wirth, and
Y. Cao, “Compact modeling of statistical bti under trapping/detrapping,”
IEEE transactions on electron devices, vol. 60, no. 11, pp. 3645-3654, 2013.

[83] K. B. Sutaria, J. B. Velamala, C. H. Kim, T. Sato, and Y. Cao, “Aging
statistics based on trapping/detrapping: Compact modeling and silicon vali-
dation,” IEEFE Transactions on Device and Materials Reliability, vol. 14, no. 2,
pp. 607-615, 2014. [Pg.40], [Pg.117], [Pg.118]

[84] M. Duan, J. Zhang, Z. Ji, W. Zhang, B. Kaczer, T. Schram, R. Ritzenthaler,
A. Thean, G. Groeseneken, and A. Asenov, “Time-dependent variation: A
new defect-based prediction methodology,” in 2014 Symposium on VLSI Tech-
nology (VLSI-Technology): Digest of Technical Papers, pp. 1-2, IEEE, 2014.
[Pg.42]

[85] Z. Ji, J. Zhang, L. Lin, M. Duan, W. Zhang, X. Zhang, R. Gao, B. Kaczer,
J. Franco, T. Schram, et al., “A test-proven as-grown-generation (ag) model
for predicting nbti under use-bias,” in 2015 Symposium on VLSI Technology
(VLSI Technology), pp. T36-T37, IEEE, 2015.

[86] R. Gao, Z. Ji, S. Hatta, J. Zhang, J. Franco, B. Kaczer, W. Zhang, M. Duan,
S. De Gendt, D. Linten, et al., “Predictive as-grown-generation (ag) model for
bti-induced device/circuit level variations in nanoscale technology nodes,” in
2016 IEEE International Electron Devices Meeting (IEDM), pp. 31-4, IEEE,
2016.

[87] J. Zhang, Z. Ji, and W. Zhang, “The as-grown-generation (ag) model: A
reliable model for reliability prediction under real use conditions,” in 2017
IEEE 2/4th International Symposium on the Physical and Failure Analysis of
Integrated Circuits (IPFA), pp. 1-7, IEEE, 2017. [Pg.42]

[88] M. Sadeghi and H. Nikmehr, “Aging mitigation of 11 cache by exchanging
instruction and data caches,” Integration, vol. 62, pp. 6875, 2018. [Pg.43]

[89] N. Rohbani, T. K. Maiti, D. Navarro, M. Miura-Mattausch, H. J. Mattausch,
and H. Takatsuka, “Nvdl-cache: Narrow-width value aware variable delay low-

power data cache,” in 2019 IEEE 37th International Conference on Computer
Design (ICCD), pp. 264-272, IEEE, 2019. [Pg.44]

195

REFERENCES

[90]

[91]

[92]

93]

[94]

A. Listl, D. Mueller-Gritschneder, and U. Schlichtmann, “Magic: A wear-
leveling circuitry to mitigate aging effects in sense amplifiers of srams,” in 2019
17th IEEE International New Circuits and Systems Conference (NEWCAS),
pp. 1-4, IEEE, 2019. [Pg.44]

A. Listl, D. Mueller-Gritschneder, and U. Schlichtmann, “Application-aware
aging analysis and mitigation for sram design-for-relability,” Microelectronics
Reliability, vol. 134, p. 114548, 2022. [Pg.44]

C. Lin, Y. K. Law, and Y. Xie, “Mitigating bti-induced degradation in stt-
mram sensing schemes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 1, pp. 5062, 2017. [Pg.44]

L. Zhang, L. Liu, Y. Zhuang, H. Tang, B. Xu, J. Bao, and H. Wu, “A novel
sense amplifier to mitigate the impact of nbti and pvt variations for stt-mram,”
IEICE Electronics Express, vol. 16, no. 12, pp. 20190238-20190238, 2019.
[Pg.44]

S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Aging-aware request schedul-
ing for non-volatile main memory,” in Proceedings of the 26th Asia and South
Pacific Design Automation Conference, pp. 657-664, 2021. [Pg.45], [Pg.168]

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gemb simulator,”
ACM SIGARCH computer architecture news, vol. 39, no. 2, pp. 1-7, 2011.
[Pg.49], [Pg.66], [Pg.84], [Pg.97], [Pg.115], [Pg.128], [Pg.155], [Pg.177]

M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly memory
simulator to model (non-) volatile memory systems,” IEEE Computer Archi-
tecture Letters, vol. 14, no. 2, pp. 140-143, 2015. [Pg.49], [Pg.66], [Pg.84],
[Pg.97], [Pg.115], [Pg.128], [Pg.155], [Pg.178]

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded bench-
mark suite,” in Proceedings of the fourth annual IEEFE international workshop
on workload characterization. WWC-4 (Cat. No. 01EX538), pp. 3-14, IEEE,
2001. [Pg.67]

196

REFERENCES

[98]

[99]

[100]

[101]

R. Salkhordeh, O. Mutlu, and H. Asadi, “An analytical model for performance
and lifetime estimation of hybrid dram-nvm main memories,” IEEE Transac-
tions on Computers, vol. 68, no. 8, pp. 1114-1130, 2019. [Pg.98], [Pg.129],
[Pg.156]

J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006. [Pg.99], [Pg.115],
[Pg.129], [Pg.155], [Pg.179], [Pg.181]

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the 17th

international conference on Parallel architectures and compilation techniques,

pp. 72-81, 2008. [Pg.99], [Pg.115], [Pg.129], [Pg.155], [Pg.179], [Pg.180]

S. Song and A. Das, “A case for lifetime reliability-aware neuromorphic com-
puting,” arXiv preprint arXiv:2007.02210, 2020. [Pg.113]

197

Department of Computer Science and Engineering

a
cb

SRR

A
&

K
7g)‘
2,

»

>

S
B
2

Indian Institute of Technology Guwahati

Guwahati 781039, India

:mcw\:
7,
9

o\°®

7
@,
€ of Techn

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Design of Memory Controllers
	1.2 Memory Access Scheduling Policies
	1.3 Memory Service Operations
	1.3.1 Refresh in DRAM
	1.3.2 De-stress in Phase Change Memory (PCM)
	1.3.3 Page Migration in Hybrid Memory

	1.4 Motivation
	1.5 Objectives
	1.6 Thesis Contributions
	1.6.1 Request Scheduling Policies for Pure DRAM and Pure PCM Memories
	1.6.2 Migration Scheduling Policies for Hybrid DRAM-PCM Memories
	1.6.3 De-stress Scheduling Policies for Pure PCM Memories
	1.6.4 Avenues for Improving Migration and Aging

	1.7 Summary
	1.8 Organization of Thesis

	2 Background
	2.1 Main Memory Technologies
	2.1.1 Dynamic Random Access Memories (DRAM)
	2.1.2 Non-Volatile Memories (NVM)
	2.1.2.1 Phase Change Memory (PCM)

	2.1.3 Hybrid Memories

	2.2 Challenges with Different Types of Memories
	2.3 Request Scheduling Techniques
	2.3.1 Predictable Memory Request Scheduling for DRAM
	2.3.2 Predictable Memory Request Scheduling for PCM
	2.3.2.1 Write Reduction and Wear-Leveling Techniques for PCM
	2.3.2.2 Scheduling Techniques for PCM
	2.3.2.3 Predictable Scheduling Techniques for PCM

	2.4 Page Migration for Hybrid memories
	2.4.1 Topology of Hybrid Memory
	2.4.2 Migration Candidate Selection
	2.4.3 Granularity of Migration
	2.4.4 Time of Migration
	2.4.5 Victim Page Migration

	2.5 Aging Control Mechanisms for Non-Volatile Memories
	2.5.1 BTI Aging in Non-Volatile Memories
	2.5.2 BTI Aging Measuring Techniques
	2.5.2.1 Reaction/Diffusion (RD) Model
	2.5.2.2 Trapping/De-trapping (TD) Model
	2.5.2.3 As-grown-generation (AG) model

	2.5.3 BTI Aging Countermeasures

	2.6 Summary

	3 Request Scheduling Policies
	3.1 Introduction
	3.2 System Model
	3.3 Working of a Frame-based Scheduling
	3.4 Predictable Memory Request Schedulers for DRAM memories
	3.4.1 RMRS: Real-time Memory Request Scheduler
	3.4.1.1 Working Example

	3.4.2 R-RMRS: Reward-aware RMRS
	3.4.3 Handling Phased Execution

	3.5 Predictable Memory Request Schedulers for PCM memories
	3.5.1 LARS: Latency-Aware Request Scheduler
	3.5.2 Re-LARS: Reward-aware LARS

	3.6 Evaluation
	3.6.1 Experimental Setup
	3.6.2 Complexity Analysis
	3.6.3 Area Overhead
	3.6.4 Performance Analysis
	3.6.5 Performance Metrics

	3.7 Results of DRAM Scheduling Policies
	3.7.1 Deriving optimal
	3.7.2 System load Vs. Dnorm
	3.7.3 System load Vs. Dnormext
	3.7.4 Effect of memory intensity on Reward
	3.7.5 Effect of reward reduction rates (RRRi) of tasks on Rnorm
	3.7.6 Private Vs. Shared Banks

	3.8 Results for PCM Scheduling Policies
	3.9 Summary

	4 Migration Scheduling Policies
	4.1 Introduction
	4.2 Slot-based Migration Scheduling
	4.3 Motivation
	4.4 System Model
	4.5 SRS-Mig: Selection and Run-time Scheduling of page Migration
	4.6 Mig-Slot: Migration-aware Slot-based Memory Request Scheduler
	4.7 QoS-Aware Migration
	4.7.1 Impact of Migration on QoS
	4.7.2 Mig-QoS: QoS-aware Mig-Slot

	4.8 Victim Page Migration
	4.9 Evaluation
	4.9.1 Experimental Setup
	4.9.2 Workloads
	4.9.3 Performance Analysis

	4.10 Results
	4.10.1 Execution Time
	4.10.2 Memory Service Time
	4.10.3 Memory Response Time
	4.10.4 Memory Service Rate
	4.10.5 Energy Consumption
	4.10.6 Distribution of Accesses to Migrated Pages
	4.10.7 Sensitivity Analysis
	4.10.7.1 Sensitivity Analysis for MigHT
	4.10.7.2 Sensitivity Analysis for Margin Value mg

	4.10.8 Overhead Analysis

	4.11 Summary

	5 De-stress Scheduling Policies
	5.1 Introduction
	5.2 Basic De-stress Scheduler
	5.3 Motivation
	5.4 Aging Model
	5.5 Thresholds used during Scheduling
	5.5.1 Request Threshold (RQT)
	5.5.2 Partial Request Threshold PRT
	5.5.3 Age Threshold (AGT)

	5.6 System Model
	5.7 AGRAS: Age and Request rate Aware Scheduler
	5.8 RODESA: Request and Opportunistic De-stress Scheduler
	5.8.1 RODESA-p
	5.8.2 RODESA-b

	5.9 Evaluation
	5.9.1 Experimental Setup
	5.9.2 Performance Analysis

	5.10 Results
	5.10.1 Effect on Performance:
	5.10.2 Effect on Memory Service Time
	5.10.3 Impact on Age Degradation
	5.10.4 Analysis of Threshold and Impact of the Decision Criteria

	5.11 Summary

	6 Avenues for Improving Migration and Aging
	6.1 Introduction
	6.2 Motivation
	6.2.1 Comparing impact of write count versus write intensity
	6.2.2 Comparing impact of de-stress interval sizes

	6.3 System Architecture
	6.4 WiMig: Write intensity based Migration
	6.5 WiForeMig: Write intensity based Foresightful Migration
	6.6 DOPMig: De-stress aware Opportunistic Migration
	6.6.1 Working of DOPMig
	6.6.2 Two variants of DOPMig
	6.6.3 Victim Page Migration

	6.7 Evaluation
	6.7.1 Experimental Setup and Workloads
	6.7.2 Hardware Overhead
	6.7.3 Performance Analysis

	6.8 Results
	6.8.1 Results for WiMig and WiForeMig Policies
	6.8.1.1 IPC
	6.8.1.2 Memory Service Time
	6.8.1.3 Energy
	6.8.1.4 Distribution of Accesses to Migrated Pages
	6.8.1.5 Sensitivity Analysis of the Threshold values
	6.8.1.6 Discussion

	6.8.2 Results for DOPMig policy
	6.8.2.1 IPC
	6.8.2.2 Memory Service Rate
	6.8.2.3 DRAM Hits for Migrated Pages
	6.8.2.4 Sensitivity Analysis on Buffer Size

	6.8.3 Comparison with Existing Methods

	6.9 Summary

	7 Conclusions and Future Perspectives
	7.1 Summary of Contributions
	7.2 Scope for Future Work

	A Appendix
	A.1 Simulation Framework
	A.1.1 Gem5
	A.1.1.1 M5
	A.1.1.2 GEMS

	A.1.2 NVMain
	A.1.3 GEM5-NVMain Co-simulation Framework

	A.2 Benchmarks
	A.2.1 Parsec
	A.2.2 SPEC 2006
	A.2.3 MiBench

	Publications
	References

