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Abstract

With their ultra-high data speeds, minimal latency, and huge connection, fifth-generation
(5G) wireless networks hope to transform mobile communication completely. It is challenging
to accommodate a wide range of user needs within the constrained spectrum resources, such
as low-power sensor data transmission and high-bandwidth video streaming. In this case,
typical Orthogonal Multiple Access (OMA) approaches employed in previous generations
have drawbacks that might be addressed by Non-Orthogonal Multiple Access (NOMA), a
promising technology that has emerged as a crucial information-theoretic method, especially
in 5G and beyond. Specifically, this paper explores the area of power-domain NOMA, which
is known for its more flexible resource distribution than code-domain NOMA networks.
NOMA lets numerous users share the same resources, but OMA allocates specialized
resources to each user, resulting in inefficient spectrum usage when user requirements differ
dramatically.

However, the introduction of several optimization issues by the growth of user equipment
inside 5G has prompted the investigation of multi-objective optimization (MOO) in NOMA
networks. This work uniquely tackles the trade-off between spectral efficiency (SE) and
energy efficiency (EE), whereas previous studies mainly concentrated on single or dual
objectives that suffer from local minimization problems. NOMA technology is a viable
way to improve spectral efficiency because of its distinct power-domain approach. This
eventually forces us to investigate the use of NOMA in multiuser MIMO communications,
highlighting the possible improvements in system throughput overall. Although there are
obstacles like intra-cluster interference, adding device-to-device (D2D) connectivity to 5G
networks lowers power consumption while simultaneously increasing spectral efficiency and
system throughput. NOMA uses successive interference cancellation (SIC) technique at the
receiving end which solely depends on perfect channel state information (CSI). Perfect CSI
in real scenario in not possible due to dynamic nature of the environment. A very few work
has been done in this direction to take partially decoded data as an addition to traditional
CSI to predict channel status. Existing study evaluates conventional Data-Aided Channel
Estimation techniques in the search for more effective channel estimation in NOMA networks,
highlighting their shortcomings in dynamic and interference-prone situations. The following
sections explore the complexities of these suggested approaches, highlighting the importance
of trade-offs in network optimization and reducing the local minimization problem due to the
use of existing multi-objective optimization (MOO) solutions. In Contribution 1, we work
on the collaboration between reinforcement learning (RL) and multi-objective optimization
genetic algorithms (MOGA) to minimize the local minimization problem. Integrating RL
algorithms with MOGA provides a dynamic way to optimize long-term decision-making



inside networks. In order to reduce intra-cluster interference due to the reason for using
the SIC technique at the receiver and enhance the performance of MIMO-NOMA networks,
the research in contribution 2 suggests using Multiple Interference Cancellation (MIC)
techniques. The SIC technique solely depends on perfect CSI, which is not possible in
wireless 5G networks. In contribution 3, we researched a unique channel estimation technique
for a dynamic and fast-changing environment to overcome the challenges of imperfect CSI.
Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks are used
as a channel estimation technique that highlights the need for data-driven and adaptable
solutions in a dynamic environment. Utilizing machine learning to forecast future channel
values effectively replaces iterative approaches and tackles issues related to imprecise channel
state information. In Contribution 4, we propose a viable resolution to the inherent user
separation difficulties seen in NOMA systems. This study examines the performance of Gold
coding and Conventional-V-BLAST (C-V-BLAST) techniques in Non-Orthogonal Multiple
Access (NOMA) systems. We have devised a novel channel prediction function (CPF)
that enhances the accuracy of channel estimation by using pilot signals, power allocation
information, and partially decoded data symbols. Additionally, we provide a subcarrier
selection approach that assigns priority to subcarriers depending on their impact on the
channel estimation. This work further investigates the use of Gold sequences in NOMA
systems. Gold sequences include distinctive correlation characteristics that facilitate the
differentiation of users and the identification of data, especially in situations when subcarrier
signals overlap. Our simulations demonstrate that our methods surpass others in terms of
accuracy in channel estimation, separation of users, and overall system performance. Our
findings indicate that the use of gold coding and channel prediction methodologies has the
potential to enhance NOMA systems.
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1
C h a p t e r

Introduction

1.1 Background

1.1.1 Towards 5G and Beyond

The relentless pursuit of higher data rates, lower latency, and massive connectivity has

driven the evolution of wireless communication systems. While 4G LTE networks have

revolutionized mobile broadband, the burgeoning demands of emerging applications such

as IoT, augmented reality, and autonomous vehicles necessitate a paradigm shift. 5G

technology [1], with its promise of enhanced mobile broadband, ultra-reliable low-latency

communications, and massive machine-type communications, is poised to address these

challenges as shown in Fig 1.1. However, the rapid pace of technological advancement

suggests that 5G may be just the first step in a continuous evolution towards even more

sophisticated wireless networks, capable of supporting the ever-increasing complexity and

diversity of future applications.

1.1.2 Multiple Access Techniques for 5G

Multiple access techniques have undergone significant evolution across generations of wireless

networks. From the analog FDMA in 1G to the digital TDMA and CDMA in 2G and 3G,

respectively, the industry has continuously sought to improve spectral efficiency and system

capacity [2] as depicted in Fig 1.2. The introduction of OFDMA in 4G marked a significant

step forward. However, the explosive growth of IoT devices and demanding applications



1.1. Background

Figure 1.1: Key applications of 5G networks.

necessitate further advancements. Non-orthogonal multiple access (NOMA) has emerged

as a promising candidate for 5G networks, offering the potential to substantially enhance

spectral efficiency by allowing multiple users to share the same time and frequency resources.

This is achieved through power domain multiplexing and successive interference cancellation,

fundamentally differentiating NOMA from conventional orthogonal multiple access schemes

like FDMA, TDMA, CDMA, and OFDMA, which assign orthogonal resources to different

users.

1.1.3 Towards Non-orthogonal Multiple Access

Non-orthogonal Multiple Access (NOMA) [3] has emerged as a promising technology to

address the increasing demand for higher spectral efficiency and massive connectivity in

fifth-generation (5G) and beyond wireless networks. Unlike conventional orthogonal multiple

access (OMA) schemes that assign orthogonal resources to different users, NOMA allows

multiple users to share the same time, frequency, or code resources. This is achieved

primarily through power-domain NOMA, where users are differentiated by power levels and

successive interference cancellation (SIC) is employed at the receiver. NOMA’s ability to

2



1. Introduction

Figure 1.2: Cellular technology evolution, copied from [2].

serve multiple users within a single resource block offers significant advantages in terms

of spectral efficiency and user fairness [4]. Furthermore, NOMA can be synergistically

combined with other technologies, such as multiple-antenna [5] techniques and conventional

OMA schemes [6], to create even more efficient and flexible wireless communication systems.

1.1.4 5G Interference Management

The advent of 5G technology has ushered in a new era of wireless communication, promising

unprecedented data rates, low latency, and massive connectivity. However, interference

[7] poses a critical challenge to achieving the promised benefits. The realization of these

benefits is hindered by the ever-increasing interference challenges in network environments,

necessitating advanced techniques to address this issue. Interference arises when signals

from different sources overlap, leading to signal degradation and reduced performance.

Effective interference management is crucial for realizing the full potential of 5G. To

address these interference challenges, a combination of advanced techniques, including Multi-

Objective Genetic Algorithms with Reinforcement Learning (MOGA-RL) [8], Recurrent

Neural Networks with Long Short-Term Memory (RNN-LSTM) [9], Gold Coding [10], and

Multiple Interference Cancellation (MIC) [11], has emerged as a promising solution.

Our work delves into the critical role of these techniques in mitigating interference in 5G

networks. We will explore how the proposed techniques can effectively suppress interference.

Gold codes are a family of binary sequences with good auto-correlation and cross-correlation

3



1.2. Motivation and Contributions

properties. They can be used in spread spectrum techniques to reduce interference between

users. In NOMA, Gold codes can be used to spread the user signals over a wider bandwidth,

reducing the impact of intra-cell interference. By carefully selecting and assigning Gold codes

to different users, it is possible to minimize the interference between their signals. MOGA-RL

and RNN-LSTM represent powerful AI-driven approaches to tackling the complex challenge

of interference management in 5G networks. By exploring and refining these techniques,

researchers aim to develop more intelligent and efficient solutions that enable higher data

rates, lower latency, and improved user experience in future 5G and beyond networks.

MOGA-RL combines evolutionary algorithms with reinforcement learning principles. It

explores a diverse range of solutions by evolving a population of potential interference

mitigation strategies. It leverages reinforcement learning to fine-tune these strategies based

on real-time network feedback, optimizing performance metrics like throughput and fairness.

This approach is particularly well-suited for complex scenarios with multiple objectives and

dynamic environments, making it a promising solution for 5G interference management. On

the other hand, RNN-LSTM employs deep learning to learn and predict interference patterns

from historical data. LSTM’s ability to capture long-term dependencies in time series data

enables accurate predictions of future interference levels. RNN-LSTM can adapt to dynamic

and time-varying interference conditions, making it suitable for rapidly changing network

environments. This approach focuses on proactive interference mitigation by anticipating

future interference and adjusting resource allocation accordingly.

1.2 Motivation and Contributions

The overarching motivation behind this research lies in the urgent need to overcome challenges

associated with resource limitations, conflicting objectives, and the dynamic nature of wireless

communication environments. Through innovative algorithms, cooperative communication

strategies, and adaptive channel estimation methodologies, we aim to contribute to the

advancement of wireless communication technology, ensuring its feasibility, versatility, and

precision in meeting the demands of contemporary and future communication systems. In

light of the above, we identify the following challenges:

Challenge #1: Navigating Spectrum Scarcity: A Hybrid Algorithmic Solution

for Dynamic NOMA Networks.
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The motivation for this research is deeply rooted in addressing critical challenges

within the landscape of wireless communication networks, specifically in the context of

NOMA 5G networks. One of the paramount issues revolves around the limited availability

of radio spectrum resources, leading to intricate problems related to resource allocation

and optimization, mainly when aiming to enhance the overall throughput of the network.

When dealing with conflicting objectives, the complexity intensifies, where improving one

aspect may compromise another. In response to these challenges, we propose a hybrid

meta-heuristic algorithm, the Multi-Objective Optimization Genetic Algorithm based Rein-

forcement Learning Algorithm (MOGA-RL). By synergizing the simplicity of interaction

with the environment offered by Reinforcement Learning (RL) with the optimization capa-

bilities of Genetic Algorithms (GAs), our approach seeks to navigate the dynamic nature of

networks, where rapid changes in user information demand simultaneous updates to both

environmental information and optimization metrics.

Challenge #2: Overcoming Interference Challenges with MIMO-NOMA-D2D

Networks

This research is motivated by the dual potential of Non-Orthogonal Multiple Access

(NOMA) and Multiple Input Multiple Output (MIMO) techniques in wireless communication

networks. NOMA’s cost-effectiveness enhances spectrum efficiency, yet inter-user interference

remains a challenge. Simultaneously, MIMO, with its multiple antennas, promises substan-

tial spectral efficiency gains. Using Multiple Interference Cancellation (MIC) to increase

system capacity and energy efficiency while minimizing total interference. Innovations like

efficient resource allocation, ideal relay device selection, energy efficiency maximization, and

power consumption reduction by doing away with decoders and regenerators make green

communication essential. Thorough simulations conducted at various power and antenna

levels confirm that the suggested system outperforms current MIMO-NOMA solutions in

terms of interference mitigation and user clustering efficiency.

Challenge #3: Leveraging Partially Decoded Data for CSI Prediction in NOMA-

HO.

This research is motivated by the critical role of accurate Channel State Information

(CSI) in ensuring efficient and reliable NOMA communication. Existing CSI estimation

methods face challenges due to dynamic channel conditions, imperfect models, and feedback

5
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overhead. To address these limitations, we propose a novel CSI prediction technique that

leverages partially decoded data (PDD) as a valuable source of information. By incorporating

machine learning, our approach offers improved accuracy, reduced computational complexity,

and enhanced adaptability compared to traditional methods. Our contributions include

developing a CSI prediction model that effectively utilizes PDD, demonstrating its efficacy

in handover failure prediction, and reducing the need for excessive pilot overhead, ultimately

leading to improved NOMA system performance and user experience.

Challenge #4: Gold Coding and Fractional Power Allocation for NOMA Channel

Estimation.

This research is motivated by the challenges associated with channel estimation in

NOMA systems, where traditional pilot-based methods face limitations due to superimposed

signals and reduced pilot power. To address these issues, we propose a novel channel

estimation technique that combines the strengths of Gold coding, fractional power alloca-

tion, and partially decoded data. Our contributions include the development of a novel

channel prediction function (CPF) that significantly outperforms existing methods. By

leveraging a comprehensive dataset and comparing our approach to conventional techniques,

we demonstrate the effectiveness of our proposed method in enhancing NOMA system

performance.

1.3 Literature Review

Non-Orthogonal Multiple Access (NOMA) [3] is a promising technology for future wireless

networks due to its potential to support diverse applications. Unlike traditional methods

like TDMA and OFDMA, NOMA enables multiple users to share the same radio resources

simultaneously. This technique is primarily categorized into power-domain NOMA and

code-domain NOMA [12].

Power-domain NOMA assigns different power levels to users based on their channel

conditions, the focus of this study. In contrast, code-domain NOMA uses unique code

sequences for each user. This category includes variations like Low-Density Spreading

CDMA (LDS-CDMA), LDS-OFDM, Sparse Code Multiple Access (SCMA), Pattern Division

Multiple Access (PDMA), and Multi-User Shared Access (MUSA) [13].
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1.3.1 Multi-Objective Optimization

Multi-objective optimization [14] is a critical aspect of NOMA system design due to the

inherent trade-offs. NOMA systems typically aim to optimize multiple conflicting objectives

simultaneously, such as Spectral efficiency (SE), Energy efficiency (EE), User fairness (UF)

[15]. By employing multi-objective optimization techniques, NOMA system designers can

explore the trade-off space between these objectives and identify optimal operating points

that balance different performance metrics. This leads to more efficient and equitable

resource allocation, ultimately enhancing overall system performance. The two types of

algorithms used to tackle Multi-objective Optimization (MOO) issues are the classical

method and the metaheuristic algorithm [16]. A few examples of metaheuristic algorithms

that are used in evolutionary optimization include Multi-objective Genetic Algorithms

(MOGA) [15], Vector Evaluated Genetic Algorithms (VEGA) [17], Non-dominated Sorting

Genetic Algorithms (NSGA) [18], and Niched Pareto Genetic Algorithms (NPGA) [19].

Weighted sum method, ε−Constraint Method, the hierarchical optimization method, the

goal programming method, and the optimization methods belong to the classical group for

multi-objective optimization [20].

1.3.2 NOMA with Multiple-Antenna Techniques

Multiple-antenna techniques have emerged as a fundamental component of contemporary

wireless communication systems, delivering substantial improvements in data transmission

rates, error resilience, and interference suppression. By effectively harnessing the spatial

dimension of the wireless channel, these systems can significantly enhance spectral efficiency

and link robustness. Massive MIMO [21], a cutting-edge technology characterized by the

deployment of a large number of antennas at the base station, takes these advantages to new

heights. Through the creation of highly focused antenna beams, massive MIMO systems

enable simultaneous communication with multiple users, thereby increasing system capacity

and coverage. When integrated with NOMA [22], as illustrated in Fig 1.3, the resultant

system can achieve remarkable gains in spectral efficiency, energy efficiency, and spatial

diversity compared to traditional single-antenna systems. This synergistic combination

unlocks the full potential of both technologies, paving the way for advanced wireless

communication applications.
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Figure 1.3: Four-user 64 × 64 MIMO-NOMA system, copied from [22].

1.3.3 NOMA under Imperfect Channel Conditions

The performance of NOMA systems is significantly impacted by the accuracy of channel

state information (CSI). Imperfect CSI [23], arising from factors such as channel estimation

errors, feedback delays, and dynamic channel variations, can degrade system performance.

These imperfections lead to suboptimal power allocation, reduced user fairness, and increased

interference among users. To mitigate the effects of imperfect CSI, robust power allocation

algorithms [24] and advanced channel estimation techniques are crucial. Additionally,

incorporating error correction coding and diversity schemes can enhance the system’s

resilience to channel uncertainties.
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1.3.4 NOMA with Gold Sequence Spreading

To address the challenge of user separation in NOMA systems, where superimposed signals

can cause interference, Gold sequences [25] can be employed as a spreading code. These

sequences offer near-orthogonal properties, enabling better user differentiation compared to

conventional power-domain NOMA. By spreading user signals across multiple subcarriers

using Gold sequences, the system can achieve improved performance in terms of user fairness

and system capacity. This approach can be considered as a hybrid of code-domain and

power-domain NOMA [26], leveraging the benefits of both techniques.

<<=8=;;
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2
C h a p t e r

Fundamentals Concepts

2.1 Basic principles of NOMA

NOMA operates on the principle of superposition coding and successive interference cancella-

tion (SIC). Multiple users share the same time, frequency, and code resources, with different

power levels assigned to each user. Users with better channel conditions are allocated lower

power levels. At the receiver, users with higher channel gains decode their own signals first,

treating signals from other users as interference. Subsequently, they decode signals for users

with lower channel gains by subtracting their own signal from the received superposition.

This process, known as SIC, enables the separation of users and improves spectral efficiency

compared to conventional orthogonal multiple access schemes. A visual presentation of the

NOMA and OMA systems is visually shown in Fig 2.1 from the reference [27].

2.1.1 Superposition Coding and Successive Interference Cancellation

Superposition coding (SC) is a signal-processing technique that enables the simultaneous

transmission of information to multiple users from a single source. This contrasts traditional

orthogonal multiple access (OMA) methods, which allocate orthogonal resources (time,

frequency, or code) to different users. In SC, multiple users’ signals are superimposed and

transmitted together over the same resource block. To illustrate, users are ordered based

on their channel conditions, such that user U1 experiences the weakest channel, followed

by U2, and so on, with UN having the strongest channel. NOMA enables simultaneous
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Figure 2.1: Two-user channel sharing strategies (a) NOMA (b) OMA, copied from [27].

transmission to all users within the same bandwidth by employing superposition coding at

the base station and successive interference cancellation (SIC) at the user terminals. The

BS superposes the modulated data of all N users into a single signal, allocating a power

fraction βi to user Ui. The received signal at user Ui can be expressed as:

yi = hix+ wi (2.1)

where hi is the channel gain of user Ui, x =
∑N

i=1

√
PβiSi is the superimposed signal from

the BS, and wi is additive white Gaussian noise (AWGN). To decode its intended signal,

user Ui first decodes the signals of users with weaker channels (i.e., users 1 to i− 1) using

SIC. Subsequently, it decodes its own signal, treating signals from stronger users (i.e., users

i+ 1 to N) as interference. The achievable data rate for user Ui is given by:

Ri = log2(1 +
βiP |hi|2

P |hi|2
∑N

k=i+1 βk + σ2
n

) (2.2)

The user with the best channel UN experiences no intra-cell interference and achieves the

highest data rate.

2.1.2 Downlink NOMA

In the downlink, using the SC technique, the BS superimposes signal x =
∑N

i=1

√
PβiSi

and transmits over the network. Here, the total number of users is N , Si denotes the
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message signal for user i. The received signal at user i is denoted by yi = hix+ wi, where

wi is additive white Gaussian noise (AWGN) hi is the channel gain. The process behind

extracting the desired signal at user i, decoding signal one by one from user 1 to user N − 1,

then re-modulating then subtracting them from the received signal x, represented pictorially

in fig 1.2. Finally, user m decodes its signal.

2.1.3 Uplink NOMA

In the uplink, SIC is applied at the BS and the received signal at BS is defined by

x =
∑N

i=1

√
PβihiSi + wi, where wi indicates noise, the power for each user is different

depending on the user’s battery power. The BS sequentially decodes users, beginning with

the user who has the maximum channel gain. Before decoding the next user, the received

signal is subtracted from the decoded signal of each user. The channel model, denoted by

βi and hi, encompasses signal propagation characteristics and fading occurrence. Precise

channel assessment is crucial for the effective functioning of NOMA.

2.1.4 Information-theoretic Views of NOMA

Information-theoretic analysis has played a crucial role in comprehending NOMA’s underlying

boundaries and possibilities. Researchers have explored the capacity areas of NOMA systems

by using ideas from information theory. Through this exploration, they have discovered the

complex relationship between power allocation, user clustering, and SIC. The theoretical

foundation has facilitated the creation of optimum power allocation techniques, which allow

NOMA to achieve maximum spectrum efficiency and user fairness. Moreover, Information

theory, a cornerstone of communication systems, has provided critical insights into the

error performance of NOMA systems [28] [29]. Researchers have been able to design robust

error correction codes by quantifying the information capacity and error rates under various

channel conditions. These codes are specifically tailored to the unique error patterns

introduced by NOMA, such as those arising from interference and noise. Researchers can

optimize the code rate and block length to achieve the best balance between error correction

capability and spectral efficiency. By selecting modulation schemes that are robust to the

non-orthogonal nature of NOMA and the associated interference and by adapting modulation

parameters such as constellation size and coding rate to varying channel conditions and traffic

13
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loads, researchers can significantly improve the performance of NOMA systems. Information

theory provides a benchmark for practical system design by analyzing the theoretical limits

of NOMA systems. This analysis allows for evaluating the impact of crucial factors such

as power allocation strategies, user pairing decisions, and channel estimation accuracy

on the overall system performance, enabling researchers to optimize these parameters for

optimal system efficiency and reliability. By leveraging these information-theoretic insights,

researchers and engineers can develop advanced NOMA techniques that can accommodate

more users in a given bandwidth, leading to higher data rates and improved network capacity.

Researchers can ensure reliable communication even in challenging environments by designing

NOMA systems that are resilient to channel impairments like fading, interference, and

noise. Information theory enables real-time applications such as video conferencing and

autonomous vehicle communication by optimizing NOMA systems to minimize delay and

jitter. By leveraging information-theoretic insights, NOMA can facilitate the exploration of

new applications demanding high data rates, low latency, and reliable communication, such

as the Internet of Things (IoT), virtual reality, and augmented reality. The future of wireless

communication promises to be more efficient, reliable, and versatile by understanding the

information-theoretic foundations of NOMA.

<<=8=;;
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3
C h a p t e r

Multi-objective Optimization in NOMA
Networks

3.1 Introduction

Considering the large scale of user equipment, multiple optimization problems exist, which

we will discuss in this chapter. Here, we consider the tradeoff between spectral efficiency

(SE) and energy efficiency (EE). Reinforcement learning algorithms were initially proposed

for machine learning (ML) and decision-making applications. An RL agent takes information

from the environment, and based on that information, it learns the optimal action policy

via interaction over and over again. The agent decides which action is best for maximizing

reward in each episode. RL algorithm is best suited for long-term decision-making purposes.

A genetic algorithm is used for optimization purposes. After using this technique for

single-objective optimization, the fitness function has been modified for multi-objective

optimization purposes. The limited resource availability of the radio spectrum leads to a

problem with resource allocation and optimization in a network when the primary goal

is to improve the total throughput of the network. This must be an even worse situation

when handling multiple objectives, especially those that are conflicting. Improvement of one

objective deteriorates the performance of another objective [30] [31]. A simple solution for

conflicting objectives can be to find a set of solutions satisfying each conflicting objective

to a certain level, and those solutions are non-dominated solutions. Here, we propose a

hybrid meta-heuristic algorithm, a multi-objective optimization genetic algorithm based on

a reinforcement learning algorithm (MOGA-RL). The simple way of interacting with the

environment makes the RL algorithm suitable for taking information from the environment,
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whereas GA is used for optimization objectives. Most of the work for optimization using

the RL algorithm uses backpropagation, weighted sum method [32], constraint method

[33], sequential method [34] and max-min method [35]. This work has limitations of local

minimization problems, which have been overcome in evolutionary optimization algorithms.

GA can rival back propagation-based algorithms, and the joint work of GA and RL algorithms

performs best in dynamic environments where user information changes rapidly and needs

to update environment information as well as optimize metrics in the NOMA network. This

work aims to determine the trade-off between the total power consumption of the network

and spectral efficiency by formulating a MOO problem to maximize SE and minimize power

consumption. Also, the work combines the benefits of both GA and RL algorithms with the

Q-learning method to find an optimal action selection policy in a particular state.

3.2 System Model

The NOMA network is comprised of a base station (BS) and k number of users. The

system’s total bandwidth is denoted by B, which is divided into n number of sub-channels

denoted by B1, B2, . . . , Bn such that Bi =
B
n ; i = 1, 2, . . . , n. The power allocation coef-

ficients for n number of Resource Blocks (RB) are denoted as α1,n ≥ α2,n ≥ . . . ≥ αk,n,

subject to
∑k

i=1 αi = 1, where k is the number of users assigned to sub-channel n. Power

allocation coefficients are the fractional power allocation to all the users for NOMA downlink

transmission based on their distances from BS. The nearest user gets the lowest fractional

power, and the farthest user gets the highest. The rest of the user’s power allocation

stays in between them. h1,n, h2,n, . . . , hk,n denotes the channel coefficients for all users

allocated to nth sub-channel. Without loss of generality, the channel gains are ordered as

|h1,n|2 ≤ |h2,n|2 ≤ . . . ≤ |hk,n|2. For simplicity, we assume BS holds perfect channel state

information (CSI). The total power assigned to sub-channel n denoted as:
∑k

i=1 αi,n and∑n
i=1 Pi = αtotal is the total power from BS. The total power is divided into n sub-channels,

and hypothetically, each sub-channel gets equal power. The signal interference to noise ratio

(SINR) for user k of subchannel n is denoted as :

SINRk,n =
αk,n |hk,n|2

σ2
. (3.1)
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Parameters Names
k Total number of number of users
B Total bandwidth
n Total number of sub-channels
αi Fractional power assigned to user i

αtotal Total power from BS
hi Channel coefficient for user i

Rtotal Total sum rate
ηSE Spectral Efficiency and
ηEE Energy Efficiency
κ Drain efficiency of the power amplifier at the BS
αc Total circuit power consumption
Rmin Minimum guaranteed data rate of each user
θ The priority between power consumption and capacity

Table 3.1: Table of parameters

where k is the nearest user of BS. The SINR of jth user of subchannel n denoted as:

SINRj,n =
αj,n |hj,n|2

|hj,n|2
∑k

i=j+1 αi + σ2
. (3.2)

Rtotal is the total sum rate for sub channel n indicating as:

Rtotal(n) = log2(1 +
αk,n |hk,n|2

σ2
) +

k−1∑
j=1

log2(1 +
αj,n |hj,n|2

|hj,n|2
∑k

i=j+1 αi + σ2
). (3.3)

The Spectral Efficiency and Energy Efficiency are indicated as follows:

ηSE =
Rtotal

B
. (3.4)

ηEE =
Rtotal

B(καtotal + αc)
. (3.5)

Where κ denotes the drain efficiency of the power amplifier at the BS. αc is the total

circuit power consumption. The abbreviation referenced in this chapter may be found in

Table 3.1.
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3.2.1 Problem Statement

Our goal is to maximize the total sum rate and minimize power consumption. The sum rate

is denoted as Rtotal, which is the sum of all user’s data rates. During sum rate maximization,

each user should maintain user fairness, which is the minimum data rate requirement for

each user, which must be greater than 0 if the user is active. Our goal is to maximize the

total sum rate of each sub-channel so that the overall sum rate will be maximized. The

problem statement can be formulated as:

Rtotal = max

N∑
n=1

K∑
k=1

Rk,n (3.6)

subject to:
N∑

n=1

Rk,n ≥ Rmin ∀k (3.7)

Constraints C1 indicates each user should maintain a minimum data rate greater or equal

to Rmin. Rmin is the minimum guaranteed data rate of each user.

C2 : αK =
k∑

i=1

αi,j ,∀j ∈ {1, 2, . . . , n} . (3.8)

Here n is the number of sub-channels, and k is the total number of users assigned to each

sub-channel.

C3 : αi,j > 0. (3.9)

αi,j is the fractional power assigned to ith user in jth sub channel.

The formulation in Eqs. 3.10 and 3.14 adopts a weighted-sum approach to multi-

objective optimization (MOO) rather than constraint-based prioritization for three key

reasons: 1. Dynamic Trade-off Control: The priority index θ (or θ′ in Eq. 3.13) allows

adaptive balancing between SE and EE based on real-time network demands (e.g., peak

vs. off-peak hours), whereas fixed constraints lack this flexibility. 2. Pareto Frontier

Exploration: The weighted sum (λSE−EE = θηSE + (1− θ)ηEE) explicitly generates Pareto-

optimal solutions in a single run, revealing the full trade-off curve. Constraint-based methods

require iterative tuning to approximate this frontier. 3. Algorithmic Compatibility: The

MOGA-RL framework leverages Eq. 3.10’s structure to efficiently explore the solution space
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via genetic operations (crossover/mutation) and RL-guided weight adaptation (θ), avoiding

the convergence issues of constrained methods in dynamic NOMA environments.

SE and EE both have contradictory objectives. Depending on different situational

demands, the different objectives need to be taken care of. During peak hours, SE needs to

improve, but during peak-off time, EE needs to improve. The MOO method uses priority

index θ to find the optimal solution. So, the new objective can be defined as:

λSE−EE = θ × ηSE + (1− θ)× ηEE . (3.10)

Where θ defines the priority between power consumption and capacity. The problem

statement can be defined as maxλEE−SE , where,

C2 : PT =

N∑
i=1

Pi. (3.11)

In Eq. 3.11, N represents the total number of sub-channels, Pi is the transmit power

for the i-th element, and PT =
∑N

i=1 Pi is the aggregate transmit power. These directly

affect the objective λSE−EE :

λSE−EE = θ

(
Rtotal

B

)
︸ ︷︷ ︸

ηSE

+(1− θ)

(
Rtotal

B(κPT + αc)

)
︸ ︷︷ ︸

ηEE

where:

• λSE−EE : Combined SE-EE objective function

• θ ∈ [0, 1]: Priority weight between SE and EE

• Rtotal =
K∑
k=1

log2(1 + SINRk) (Sum rate)

• PT =
N∑
i=1

Pi: Total transmit power

• κ: Power amplifier inefficiency factor

• αc: Circuit power consumption

• B: System bandwidth
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ηSE typically increases with higher Pi (more power → better signal quality → higher data

rates). ηEE measures “bits transmitted per Joule” and decreases if PT grows excessively.

Higher PT reduces EE because more energy is consumed for marginal gains in SE (ηSE).

User Fairness should quantify minimum rate compliance as
∑N

n=1Rk,n ≥ Rmin ∀k (refer

equation. 3.7), ensuring no user falls below Rmin.

User fairness is a performance metric in the NOMA network, where each user needs to

maintain a minimum data rate irrespective of its CSI value. Increasing the distance between

BS and UE’s will require more power to maintain a fairness index, which in turn affects

power requirements. The priority index θ′ helps to find the optimal solution of the new

objective:

λEE−UF = θ′ × ηEE + (1− θ′)× UF. (3.12)

3.3 Multi-Objective Optimization

To date, very little work has been done focusing on multi-objective optimization (MOO) in

NOMA networks. Our work mainly focuses on multi-objective optimization using a Multi-

Objective Genetic Algorithm (MOGA) that combines the features of Reinforcement learning

(MOGA-RL). This framework helps to optimize multiple objectives while maintaining

users’ quality of service (QoS). It removes the requirements of manual tuning to handle

multiple objectives. Most of the MOO focuses on a random selection of objectives in different

Episodes, which in this work has been eliminated using the Reinforcement Learning approach.

Reference [36] presents a PD-NOMA and Deep Reinforcement Learning (DRL) framework for

multi-objective optimization in satellite networks, balancing link utilization, latency, power

efficiency, and throughput. The approach uses predictive network analysis, PD-NOMA for

spectral efficiency, and DRL for dynamic resource allocation, enabling real-time adaptation.

Reference [37] proposes an IRS-aided PD-NOMA system with multi-relay selection strategies

to enhance physical-layer security against eavesdroppers. The study optimizes secrecy

capacity and energy efficiency through: (1) Three relay selection methods (best-relay,

max-min, harmonious); (2) Joint IRS phase-shift and NOMA power allocation control; (3)

Artificial noise transmission to disrupt eavesdroppers. Reference [38] proposes a multi-

vector optimization (MVO) framework for RIS-assisted NOMA in satellite-aerial-terrestrial

networks (SATINs), addressing dynamic optimization challenges through a novel MV-DDPG
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algorithm that jointly optimizes UAV energy efficiency, transmit beamforming, and RIS

phase-shifts in real-time. The study demonstrates effective simultaneous optimization of

three key objectives with adaptable weighting, showing significant improvements in spectral

efficiency and network reconfigurability for next-generation communications. This work

advances NOMA multi-objective optimization by integrating RIS with DRL for intelligent

resource allocation in complex heterogeneous networks.

In this section, we present a detailed mathematical model for the multi-objective

optimization method, which optimizes N number of objectives, and N must be greater than

or equal to 2. The optimal solution for each objective must satisfy associated constraints.

In MOO, a set of optimal solutions from different set of populations are obtained. [39],

[40] ensure convergence guarantee of the MOO GA algorithm. The MOO problem can be

defined as:

f(x) = max(f1(x), f2(x)). (3.13)

Since both of the functions, f1 and f2, are maximization functions, equation 3.13 indicates

maximizing both objectives. where N = 2. Here, we have taken spectral efficiency (SE)

and energy efficiency (EE) as maximization functions.

Pareto Optimality In the MOO problem, it results in a set of non-dominated solution

sets P ′ out of the total solution set P . P ′ is the solution set where any member of P ′ are

not dominated by any member of P .

A point x∗ ∈ X is considered Pareto optimal if and only if there exists no point x ∈ X such

that fn(x
∗) ≥ fn(x), for all n = 1, 2, . . . , N .

3.4 Proposed Architecture

3.4.1 MOGA

The concept of Genetic Algorithm (GA) came from evolutionary optimization algorithms.

This is the most widely used and well-known optimization technique in the area of optimiza-

tion. GA works on four basic principles: Initial random population, selection, crossover,

and mutation. MOGA is a concept for optimizing multiple objectives when one objective

may compromise another one. It is a simple approach and an extension of a single objective
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genetic algorithm. The output of the algorithm is a set of Pareto optimal solutions. Accord-

ing to the preference of the decision maker, the best solution is then selected. Algorithm 1

shows step by step explanation of MOGA: Step 1: The algorithm starts with generating a

random number of population P0 at Episode t = 0;

Step 2: Evaluate the fitness function of each chromosome in the population. The evaluate

function follows the steps below.

Step 2.1: Assigned rank r(x, t) to each solution x ∈ P in each generation t. The rank

assignment follows the process below.

r(x, t) = 1 + nq(x, t) (3.14)

nq(x, t) represents the number of dominating solutions (chromosomes) x at generation t.

Identify non-dominated solutions(P1, P2, . . . , Pn) in the population set P for each generation

where P1 ∪ P2 ∪ . . . ∪ Pn = P . Assign each non-dominated set to a non-dominated front Fi,

where i = 1, 2, . . . , n.

Step 2.2: Assign fitness values to each chromosome based on the rank assigned in step

2.1.

f(x, t) = N −
r(x,t)−1∑

k=1

nk − 0.5 ∗ (nr(x,t) − 1) (3.15)

where nk represents the number of solutions with rank k.

Step 2.3: GA tends to converge to a single solution as the diversity of the population

diminishes. Calculate niche count nc(x, t) of each solution in each generation to maintain

diversity in the population based on the distance between the population members.

nc(x) =

µ(ri)∑
y=1

Sh(dx,y) (3.16)

µ(ri) is the number of solutions with rank value equal to ri. Sharing function value

Sh(dx,y) is a function of the distance between two solutions x and y and can be calculated

as:

Sh(dx,y) =

 1− (
dx,y

σshare
)α, if dx,y <= σshare,

0, otherwise.
(3.17)
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α is a constant value used to regulate the shape of the sharing function, and it is usually

set to 1.

d(x, y) =

√√√√ M∑
k=1

(
fk(x)− fk(y)

fmax
k − fmin

k

)2

(3.18)

For the solution x, d(x, y) represents the Euclidean distance for each solution y, which

has the same rank. fmax
k and fmin

k indicates maximum and minimum kth objective function

values. M represents the number of objectives. The niching technique is used to maintain

diversity and avoid genetic drift.

Step 2.4: Calculate the shared fitness value

f ′(x, t) =
f(x, t)

nc(x, t)
(3.19)

Step 3: Apply the selection method based on the fitness value f ′, crossover, and

mutation for generating the next generation of population.

Step 4: Check if t has not reached the maximum number of generations, set t = t+ 1,

and go to step 2.

fmax
k and fmin

k are the observed maximum and minimum values of the k-th objective

function in the current population, calculated dynamically each generation as fmax
k =

maxx∈P fk(x) and fmin
k = minx∈P fk(x), where fk(x) is the k-th objective value for solution

x. The calculation involves: (1) evaluating all objectives f1(x), . . . , fM (x) for each x ∈ P ,

(2) extracting per-objective extremes across the population (fmax
k = maxx∈P fk(x) and

fmin
k = minx∈P fk(x)), and (3) optionally normalizing values via fk(x)−fmin

k

fmax
k −fmin

k

for distance

metrics. Genetic drift [41] refers to the unintended loss of population diversity in evolutionary

algorithms, where certain traits dominate by chance rather than fitness, leading to premature

convergence. Our niching technique counters this through: (1) a sharing function (Eq. 3.18)

that penalizes overcrowded solutions, (2) niche counts (Eq. 3.17) quantifying solution density

via pairwise distances, and (3) shared fitness scaling (Eq. 3.20) that preserves diversity by

adjusting raw fitness values. The selection method in Step 3 combines tournament selection

(using shared fitness f ′(x, t)) with elitism to prioritize high-quality, diverse solutions while

retaining top non-dominated candidates between generations.
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3.4. Proposed Architecture

3.4.2 Proposed MOGA-RL Algorithm for Spectral Efficiency and Energy

Efficiency

he MOGA-RL hybrid synergistically combines the population-based Pareto-front search

of Multi-Objective Genetic Algorithms (MOGA) with Reinforcement Learning (RL) to

overcome fundamental limitations of standalone MOGA in dynamic NOMA networks. While

MOGA effectively solves static multi-objective problems, its fixed weight parameters (e.g., θ

in Eq. 3.10) and predetermined genetic operators fail to adapt to real-time network dynamics

like fluctuating user demands or channel conditions. The hybrid approach addresses this

by: (1) dynamically adjusting SE/EE trade-off weights through Q-learning (Eq. 3.21), (2)

intelligently selecting crossover/mutation operators (an/am) based on state-action rewards

(Eq. 3.26), and (3) continuously refining solutions via environmental feedback. By preserving

MOGA’s optimization core while augmenting it with RL’s decision-making adaptability,

MOGA-RL maintains Pareto-optimality while gaining critical responsiveness to time-varying

conditions

Reinforcement Learning

In recent years, the Reinforcement Learning (RL) [42] method has gained success in the

area of decision-making approach and machine learning. The standard RL algorithm works

with a learning agent and an environment. The agent receives state and reward information

from the environment and gives an optimal result through trial and error interaction. In this

chapter, we use a genetic algorithm for optimization purposes and a reinforcement learning

approach for taking information from the environment. In each episode, the proposed

MOGA-RL algorithm takes state information and generates a Pareto optimal solution using

a multi-objective genetic algorithm. Markov decision process (MDP) is a mathematical

model used to describe the RL algorithm. MDP can be formulated as a tuple (S,A, T,R, γ),

where S represents a set of states, A represents a set of actions, T is the transition probability

from one state to another p(s′
∣∣s, a), where s′, s ∈ S and a ∈ A, R is the reward function and

γ ∈ [0, 1] represents discount factor. MDP components are formally defined as: (1) State

space S comprising current spectral efficiency ηSE , energy efficiency ηEE , power allocations

αi,n; (2) Action space A = ac, am where ac/am select genetic operators (Algorithm 2) and

the continuous component adjusts priority weight θ (Eq. 3.10); (3) Reward function rt
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3. Multi-objective Optimization in NOMA Networks

balancing SE/EE trade-offs; and (4) Transition probabilities P(st+1|st, at) modeled via

Gaussian perturbations for αi,n updates and deterministic efficiency recalculation.

Proposed MOGA-RL Algorithm

Evolutionary strategies are an alternative to gradient-based neural network training [43],

which uses backpropagation. Most of the gradient-based algorithms for neural networks

stagnate in local minima. The multi-objective genetic algorithm is a subclass of evolutionary

algorithms. It avoids getting stuck in the local minima by using the niching technique, which

maintains diversity based on the distance between the population members. Backpropagation

usually takes too long to find an optimal solution so it is very difficult to get convergence

in a short period of time. Our work is to replace backpropagation with GA to get better

convergence in a short time duration.

Crossover and mutation are two different actions taken to generate Pareto optimal

solutions and store them in the Q-Table. After completion of the predefined maximum

number of generations, the scaled fitness values are the final set of Pareto solutions. Then,

based on the decision maker’s choice or the system’s requirement, the solution is taken.

The first two parents are randomly selected from the population. Then, the crossover

and mutation operations are applied as two different actions, and based on different actions

in different states, the reward is generated. Q-Table holds all possible state-action values,

which are initially set to 0. There is an iterative process that updates the Q-values over

and over again. During the exploration of the environment, the Q-function gives better

approximations by continuously updating the Q-values. The flow chart of the Q-learning

algorithm is described in Fig 3.1. The reward function is calculated from f ′(x, t) of multi-

objective genetic algorithm based on crossover or mutation process as an action taken. In

Q-Table, columns represent actions, and rows represent states. The action set represented

as: a ∈ {ac, am}. The Q-table update rule [44], [45] can be calculated as:

Q(st, at)
new = Q(st, at) + α′(rt + γmax

a′
Q(st+1, a

′)−Q(st, at)) (3.20)

where a′ ∈ a,

γ ∈ [0, 1]: discount factor,

Q(st, at): old value,
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α′(0 < α′ <= 1): learning rate,

α′rt: the calculated reward r(st, at), if action at is taken in state st, weighted by learning

rate

α′γmax
a′

Q(st+1, a
′): the maximum reward that can be obtained from state st+1, weighted

by learning rate and discount factor.

Figure 3.1: Q-Learning.

Q-learning is an iterative optimization method where state information in different

episodes is fed into the agent. To avoid the exploration-exploitation problem in the RL

algorithm, ε− greedy algorithm is used, which selects the action with the highest estimated

reward, where ε ∈ [0, 1]. The working principle of ε− Greedy Action Selection is described

in Algorithm 1.
ALGORITHM 1: ε− Greedy Action Selection

1 Generate a random number R.

2 if R ≤ ε then

3 Choose random action at

4 else

5 Choose the current best action argmax
a

Q(a).

26
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Where argmax specifies choosing the action a for which Qt(a) is maximized, the

working principle of ε− Greedy Action Selection is based on a trial and error strategy. The

ϵ-greedy approach is incorporated to avoid the exploration-exploitation problem. We set ε

is set to 1 to explore the available actions with a probability of 1/2. This will obtain the

best result for crossover and mutation. The flowchart of the proposed MOGA-RL algorithm

(Algorithm 2) is represented in Fig 3.2.

3.4.3 Reward Function

The reward function rt must incorporate both spectral efficiency (SE) and energy efficiency

(EE). SE is calculated as:

SE =
N∑
i=1

B · log2(1 + SINRi) (3.21)

where: B: Bandwidth, SINRi: Signal-to-interference-plus-noise ratio for user i. EE is

calculated as:

EE =
Ptotal∑N
i=1Ri

(3.22)

where: Ri: Data rate for user i, Ptotal: Total power consumption. Normalize SE and EE to

ensure they are on the same scale and to facilitate a balanced comparison between the two

objectives.

SEnorm =
SE

SEmax
(3.23)

EEnorm =
EE

EEmax
(3.24)

The reward rt is a weighted sum of normalized SE and EE:

rt = w1 · SEnorm + w2 · EEnorm (3.25)

where: w1: weight for SE (w1 ∈ [0, 1]), w2: weight for EE (w2 ∈ [0, 1]) and w1 + w2 = 1.

The weights w1 and w2 are selected using the ε-greedy strategy to balance exploration and

exploitation:
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Exploitation (with probability 1 - ϵ):

Select the weights w1 and w2 that maximize the reward based on the current knowledge

(e.g., historical performance of SE and EE).

Exploration (with probability ϵ):

Randomly select w1 and w2 from the range [0, 1] such that w1 + w2 = 1.

Integration with Q-Learning involves using the reward rt in the Q-table update rule:

Q(st, at)new = Q(st, at) + α′
(
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)

)
. (3.26)

Each state st represents a configuration of the NOMA network, such as power allocation or

user pairing, while actions at are either crossover (ac) or mutation (am). For each action at,

the resulting SE and EE are calculated, and the reward rt is computed using the weighted

sum of normalized SE and EE to guide the optimization process.

The implementation steps begin with initializing the Q-table, where states are represented

as rows and actions (ac, am) as columns. For each state st, the actions ac and am are

evaluated by performing crossover or mutation, calculating the resulting SE and EE, and

computing the reward rt. The Q-table is then updated using the Q-learning update rule

based on the reward rt. An exploration-exploitation strategy, such as ε-greedy, is employed

to select the next action, and the process is repeated iteratively until convergence or a

predefined stopping criterion is met.
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3. Multi-objective Optimization in NOMA Networks

ALGORITHM 2: Multi-Objective Genetic Algorithm with RL
Input: Population size P , max generations G, MOO problem

Output: Pareto optimal solution set P∗

1 // Initialization

2 Initialize random population P0 of size P

3 Initialize empty Pareto archive A0

4 foreach state-action pair (s, a) ∈ Q-table do

5 Initialize Q(s, a) // s = (ηSE , ηEE , UF ), a ∈ {ac, am}

6 end

7 for t← 1 to G do

8 // RL-Guided Evolution

9 Evaluate fitness: f(x) = [ηSE(x), ηEE(x)] for all x ∈ Pt−1

10 Observe current state st from population metrics

11 Select action at ∈ {ac, am} using ϵ-greedy policy

12 // Genetic Operations

13 if at = ac then

14 Perform crossover to generate offspring

15 else

16 Perform mutation

17 end

18 // Multi-Objective Optimization

19 Apply multi-objective genetic algorithm

20 // RL Update

21 Compute reward: rt = w1ηSE + w2ηEE − λ
∑

max(0, Rmin −Ri)

22 Update Q(st, at)← Q(st, at) + α[rt + γmaxa Q(st+1, a)−Q(st, at)]

23 Update Pareto archive At with current non-dominated solutions

24 end

25 return P∗ = AG // Final Pareto front

3.5 Comparative Analysis

In NOMA networks, optimizing for multiple objectives like sum rate and energy efficiency is

crucial. While the weighted-sum method [46] is a common approach, MOGA demonstrates

superior performance. The weighted-sum method relies heavily on predefined weights, which
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Start
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Initialize parameters: Population
size, Max_number of generation


Generate initial
population set

Calculate objective
function value

Objective 1: Total
Sum Rate

Objective 2:
Energy Efficiency

Multi-objective Genetic Algorithm:
Assign Rank, Calculate fitness values

based on shared fitness values

    Apply:

1. Selection
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3. Mutation (am)
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generation

Stop

Learning from Environment

Select an action
according to greedy

action selection strategy

Calculate Reward

Update Q-Table

Figure 3.2: Flow chart of MOGA-RL algorithm.

can lead to skewed optimization and difficulty in capturing complex trade-offs between

objectives. Moreover, it typically generates a single solution, limiting the exploration of the

Pareto front. In contrast, MOGA directly addresses multiple objectives, avoiding arbitrary

weight assignments and effectively exploring the solution space to discover a diverse set

of Pareto-optimal solutions. Their flexibility and adaptability make them well-suited for

complex optimization scenarios in NOMA networks. While the weighted-sum method

provides a basic framework, MOGAs offer several advantages, particularly in achieving

optimal trade-offs between sum rate and energy efficiency.

In a NOMA network, while the Weighted Sum Method offers a computationally efficient

approach with a complexity of O(T ·N), where N is the number of user equipment (UE)

and T is the number of iterations, making it linearly scalable for smaller-scale problems, the

Multi-Objective Genetic Algorithm (MOGA) is fundamentally superior for multi-objective

optimization. Despite its higher computational cost, represented by O(T ·(P ·N+P · logP )),

where P is the population size, MOGA’s population-based approach and maintenance of

Pareto-optimal solutions allow for a significantly more comprehensive exploration of the

30



3. Multi-objective Optimization in NOMA Networks

objective space. This capability is crucial in complex, large-scale scenarios where balancing

multiple, often conflicting, objectives is paramount. While the Weighted Sum Method’s

simplicity and lower cost are appealing, its inherent limitation in exploring the full Pareto

front makes MOGA the preferred method for achieving truly optimal, multi-objective

solutions, as evidenced by the substantial difference in computational overhead in the

provided example, which underscores the trade-off for enhanced optimization quality.

3.6 Results and Discussion

In this section, we have evaluated the performance of the proposed system. The result

shows the tradeoff between sum rate and energy efficiency. The Pareto optimal solutions are

obtained at different SINR values depicted in Fig 3.3, Fig 3.4, and Fig 3.5. It is observed

that improvement in energy efficiency is obtained at the cost of spectral efficiency. The

Pareto optimal solution obtained by the proposed algorithm exhibits its performance in

terms of search space and population diversity. Fig 3.6 tracks the evolution of the sum rate

(measured in bps/Hz) over 140 generations for five different mutation rates: 0.01, 0.05, 0.1,

0.2, and 0.3. The graph shows how each mutation rate influences the convergence behavior,

with lower rates (e.g., 0.01) potentially leading to slower but steadier improvements, while

higher rates (e.g., 0.3) may result in faster initial gains but with possible instability or

early plateaus. The comparison suggests an optimal mutation rate that balances speed and

stability to maximize the sum rate, providing insights into the performance of evolutionary

algorithms or optimization processes under varying genetic mutation intensities. The

simulation employs the following parameters and models: The system configuration includes

K = 10 users and N = 5 sub-channels with B = 20 MHz bandwidth, power constraints

Pmax = 30 dBm and αc = 10 dBm circuit power, and QoS requirements Rmin = 0.5

Mbps/user, and RL parameters γ = 0.9, α′ = 0.1, ϵ = 0.2. Channels follow Rayleigh fading

(hk,n ∼ CN (0, 1)) with 100ms coherence time and path loss PL(dk) = 128.1 + 37.6 log10(dk)

dB for uniformly distributed user distances dk ∼ U(50, 500) m. AWGN noise is modeled

with σ2 = −174 + 10 log10(B/N) + 7 dBm, where channels are fixed at each iteration (for

simplicity).

Fig. 3.7 generates a graph illustrating the trade-off between EE and SE for two

optimization methods: MOGA and the Weighted Sum Method [46] across varying signal-
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Figure 3.3: Pareto optimal solution at SINR = 4dB.

Figure 3.4: Pareto optimal solution at SINR = 8dB.
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Figure 3.5: Pareto optimal solution at SINR = 12dB.

Figure 3.6: Convergence rate of the proposed scheme at different generations.
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to-Noise Ratio (SNR) values. The graph reveals an inherent trade-off: increasing SE (e.g.,

via higher-order modulation) typically reduces EE due to higher energy demands while

improving EE (e.g., by lowering transmission power) can decrease SE. Higher SNR improves

EE for a given SE, as it reduces the energy needed for reliable communication. MOGA,

a heuristic optimization technique, consistently outperforms the Weighted Sum Method,

achieving higher EE values for the same SE and SNR, as the latter’s performance is scaled

down by 0.8 to reflect its suboptimal nature. The curves exhibit exponential decay in EE

with increasing SE. These results highlight MOGA’s effectiveness in balancing EE and

SE, emphasizing the importance of energy-aware strategies in designing wireless systems,

especially in varying SNR environments. Fig. 3.8 compares the performance of MOGA-RL

Figure 3.7: Trade-off between EE and SE: Comparison of MOGA and Weighted Sum Method
for Different SNR Values.

with traditional optimization methods (Constraint, Weighted Sum, Sequential, and Max-

Min). The x-axis represents SE (bps/Hz), while the y-axis shows EE (bits/Joule), where

higher values on both axes indicate better performance. MOGA-RL’s blue points form a

Pareto front, demonstrating its ability to discover multiple optimal trade-offs between SE

and EE, outperforming traditional methods that only produce single suboptimal solutions

(marked by colored shapes). The graph clearly shows how MOGA-RL dominates by covering

superior SE-EE combinations that other methods misses. This visualization highlights
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MOGA-RL’s advantage in exploring the full solution space and finding globally optimal

trade-offs compared to traditional approaches that are limited to fixed constraints or weighted

objectives.

Figure 3.8: Comparison of MOGA-RL, weighted Sum, constraint, sequential, and max-min
method.

The performance of the proposed multi-objective optimization algorithm works better

than the conventional algorithms weighted sum method [32], constraint method [33], se-

quential method [34], and max-min method [35] in terms of the local minimization problem.

Niching technique maintains diversity based on the distance between the population mem-

bers to avoid genetic drift in a Multi-objective genetic algorithm. Also, the negative aspects

of cognitive uncertainty are one of the major challenges in the MOO problem, which has

been overcome in the proposed method.

3.7 Algorithm Analysis

3.7.1 Space Complexity

The space complexity to store Q-table is O(|S|×|A|), where |A| = 2. So the space complexity

becomes O(|S|). The space complexity of MOGA: Θ(max_pop), where max_pop: total
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number of population. The space complexity of the proposed algorithm: O(max_pop×|S|).

The state space size is determined through discretization of key system parameters as

|S| = NηSE × NηEE × NKN
α , where NηSE = Number of bins for spectral efficiency (SE),

NηEE= Number of bins for energy efficiency (EE), Nα = Number of discrete levels for

power allocation parameters, K = Number of users, and N = Number of resources (e.g.,

subcarriers, antennas)

3.7.2 Time Complexity

The time complexity of MOGA is O(max_gen×max_obj×max_pop2), where max_gen

is the maximum number of generations and max_obj is the maximum number of objec-

tives which here is 2. Therefore, the total time complexity of the proposed algorithm is

O(max_gen×max_pop2). We have used the worst-case O(max_gen×max_pop2) anal-

ysis. We assume a maximum number of generations as a safeguard to ensure computational

feasibility, preventing infinite runtime in cases of slow or non-convergence while balancing

solution quality with resource constraints. This limit accounts for diminishing returns in

later generations, where improvements become marginal, and guarantees termination with

the best-available solution even if Pareto front convergence isn’t achieved earlier.

3.8 Summary

In this chapter, maximizing the total sum rate of the network and minimizing power

consumption can be formulated as a Multi-objective optimization (MOO) problem. The

problem is solved by searching for the optimal set of solutions. The addition of reinforcement

learning in multi-objective optimization helps to tune the parameter automatically to reduce

manual interference. The proposed algorithm provides a Pareto optimal solution between

conflicting objectives under a dynamic environment.

<<=8=;;

36



4
C h a p t e r

Multiple Interference Cancellation in
MIMO-NOMA Network

4.1 Introduction

The increasing need for fast and dependable wireless access has driven the advancement

of cellular networks to fifth-generation (5G) and beyond. NOMA is a fundamental aspect

of 5G technology that improves spectrum efficiency by enabling multiple users to use

the same time and frequency resources. In addition to NOMA, Multiple-Input Multiple-

Output (MIMO) technology utilizes antenna arrays to enhance system capacity and coverage.

Furthermore, Device-to-Device (D2D) communication has emerged as an auspicious approach

to improve the efficiency of spectrum use and reduce the burden on the base station by

transferring traffic. This study explores the incorporation of NOMA, MIMO, and D2D

technologies to construct a resilient and effective wireless communication system. NOMA

is a low-cost technology that boosts cell spectrum efficiency without needing additional

resources or infrastructure. Inter-user interference is NOMA’s main barrier. However, user

clustering and power distribution may minimize it and boost spectral efficiency. In contrast,

MIMO may triple spectral efficiency gain in proportion to spatial multiplexing order by

using multiple antennas at the transmitter and receiving ends. Inter-cluster interference

in MIMO may be eliminated when a cell has the same or fewer receive antennas than

broadcast antennas. We want to build a groundbreaking multiuser MIMO-NOMA-D2D

system employing Multiple Interference Cancellation (MIC) to maximize system capacity

and energy efficiency while reducing net interference. Green communication will become

necessary. We aim to improve system performance by using MIC approaches to reduce inter-
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user and intra-user interferences. We prioritize optimizing resource allocation, enhancing

spectral efficiency (SE), and improving energy efficiency (EE), considering the influence of

D2D communication on the whole network. We conduct extensive simulations to compare

our proposed MIMO-NOMA-D2D system with traditional MIMO-OMA and MIMO-NOMA

schemes to emphasize the advantages of our method. This chapter discusses using correlated

channel gains to allocate resources in the MIMO-NOMA-D2D network. MIMO-NOMA

networks using MIC instead of SIC reduce intra-cluster interference to perfection. Instead

of SIC, MIC is used at the receiving end to reduce interference. The final total sum rate is

higher. The MIMO-NOMA network’s huge antennas, decoders, detectors, and regenerator

circuits need much power. Eliminating the receiver decoder and regenerator may promote

green communication and a less power-hungry network. The system’s hardware complexity

is reduced.

4.2 System Model

Consider a single-cell downlink MIMO network where the base station (BS) has M broadcast

antennas and k devices have N receive antennas on each of them (k ranges 1 to K ≈ 4M (2

pairs × M clusters))., whereas M ⩾ 2N , which are frequently seen in real-world settings

involving IoT devices of low complexity and high-complexity BSs. All the devices can be

equipped with one or more receiving antennas. The devices are grouped into M clusters.

Wireless channels may be subject to any distribution, such as the Rayleigh distribution,

assuming that fading is assumed to be quasi-static independent and identically distributed

(i.i.d.). The network considers MIMO-NOMA transmission with D2D communication

to serve multiple D2D pairs. For the l -th D2D pair in the m -th cluster denoted as

dl ∈ {d1, d2, . . . , dl} and m ∈ {1, 2, . . . ,M}. In this chapter, we assume there are a

maximum of up to two D2D pairs being assigned different power levels on the same cluster

denoted as {d1, d2} where d1 denotes (w, x) pair and d2 denotes (y, z) pair. The MIMO-

NOMA network with D2D device communication is broadly described herein Figure 4.1.

The abbreviation referenced in this chapter may be found in Table 4.1.

This chapter proposes a downlink MIMO-NOMA system with D2D integration to

enhance spectral efficiency (SE) and energy efficiency (EE). The BS, equipped with M

antennas, serves k devices grouped into M clusters, where each cluster contains a relay device
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Cluster Head

D2D Device

NOMA Communication Link

D2D Communication Link

Desired MIMO Beam

Relay Device

Figure 4.1: General MIMO-NOMA D2D network

Parameters Names
M Number of broadcast antennas
k Number of devices
N Number of receive antennas on each device
dl l -th D2D pair
tm,i modulated symbol for the i-th D2D pair in the m-th cluster
tm,i modulated transmit symbol vector
X broadcast data vector
xm data stream for m-cluster
pm,l transmit power for the l-th D2D pair in the m-th cluster
B Beamforming precoding matrix
Hm,k Channel response matrix for device k in m-th cluster
Gwx Channel matrix between device w and device x

dsm,l decoding scaling weight factor
ym,l Received signal for the lth pair in the mth cluster
I1 Intra-cluster interference
I2 Inter-cluster interference
PT The total power from BS
pm The total power used by all pairings in a cluster
h∗k,n The channel between k-th device’s send antenna and n-th receive antenna
yk The received signal at device k

d1 The closest pair of BS
d2 The farthest pair from BS
t1 The signal detected at d1
t2 The signal detected at d2

Table 4.1: Table of parameters
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which is called cluster head (M relays) and two D2D pairs (e.g., (w, x) and (y, z)). The BS

transmits superposed signals using a beamforming matrix B, with cluster heads receiving

ym,l = dsm,l[h̃m,lBX + nm,l]. D2D pairs communicate locally (≤ 20m apart) using NOMA

principles: near users employ SIC to decode their signals first, while far users leverage MIC

(Multiple Interference Cancellation) to bypass SIC complexity. Key innovations include

(1) MIC for reduced far-user decoding power, (2) optimized power allocation (more power

to weak channels), and (3) Algorithm-driven D2D pairing based on channel correlation

(Ri,j ≥ 0.5) and proximity. The model mitigates interference through orthogonal beams

(inter-cluster) and MIC (intra-cluster), outperforming traditional MIMO-OMA in SE/EE

by combining MIMO’s spatial multiplexing, NOMA’s spectral efficiency, and D2D’s load

reduction.

In this chapter, tm,i indicates i-th D2D pair of m-th cluster where i ∈ {w, x} and

tm,j indicates j-th D2D pair of m-th cluster where j ∈ {y, z}. The modulated transmit

symbol vector tm,i for D2D cooperation may be utilized for symbol transmission for device

w alone, device x only, or both, depending on the resource allocation. In this scenario,

resource allocation implies a time-sharing method. The time slot can only be used for

symbol transmission for device w if tm,i is dedicated to that device; otherwise, it can be

used for device x or, in rare circumstances, for both devices in the m−th cluster. In this

chapter, since NOMA is used, superposition coding (SC) is used at the transmitting end,

and each D2D pair uses the SIC technique to decode its own messages at the receiver end.

In this work, we take into consideration that each cluster holds two D2D pairs which

reduces the computational complexity. In the case of a downlink transmission from BS to

users, licensed spectrums are being used, and for D2D transmission, all the devices use an

unlicensed bandwidth spectrum. The D2D communication is for short-range communication

relative to downlink communication from BS to users.

It is assumed that X = [x1, x2, . . . , xM ]T ∈ CM×M is the broadcast data vector, where

xm =
∑|dl|

l=1 pm,ltm,l is the data stream for m-cluster in which pm,l and tm,l are the transmit

power and modulated symbol, individually for the l-th D2D pair in the m-th cluster. where
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4. Multiple Interference Cancellation in MIMO-NOMA Network

tm,l ∈ CM×1, l ∈ {{i} , {j}} and m ∈ {1, 2, . . . ,M}.

tm,l =


t1,i + t1,j

...

tM,i + tM,j

 (4.1)

Let’s further assume that a beamforming precoding matrix B modulates the data

vector, and denotes the M ×M . The channel response matrix for device k in m-th cluster

denoted as Hm,k = [hmk,1, hmk,2, . . . , hmk,N ]T (BS to 1st antenna of device k in the mth

cluster). The dimension of Hm,k is N ×M . Therefore, the transmitted superposed signal

x̃ = BX, where x̃ ∈ CM×1.

The channel matrix provides information about the D2D link between device w and

device x denoted as Gwx = [gwx,1, gwx,2, , . . . , gwx,N ]. In D2D connections, the channel

reciprocity is maintained as Gw,x = Gx,w. This essay makes the supposition that the BS

has the ideal CSI on the channels. The channel matrix provides information about the D2D

link between device w and device x denoted as

The decoding scaling weight factor, dsm,l, is what multiplies the received signal before

it is decoded at the l-th pair in the m-th cluster. Because of this, the signal that was

received for the lth pair in the mth cluster is expressed as follows:

ym,l = dsm,l

[
h̃m,lBX + nm,l

]
(4.2)

where, l ∈ {{i} , {j}},
∣∣∣h̃m,l

∣∣∣2 = channel gain of l-th D2D pair and channel gains

are expressed as
∣∣∣h̃m,1

∣∣∣2 ≥ ∣∣∣h̃m,2

∣∣∣2 ≥ . . .
∣∣∣h̃m,dl

∣∣∣2. The effective channel gain h̃m,l for the

l-th D2D pair in the m-th cluster represents the composite downlink channel gain from

the BS to the pair. While G models the D2D channel between paired devices (e.g., w

and x) for local communication within a cluster (Algorithm 2). h̃m,l governs the BS-to-

pair signal strength (impacting SINRm,l in Equation 4.4). h̃m,l is ordered by magnitude

(
∣∣∣h̃m,1

∣∣∣2 ≥ ∣∣∣h̃m,2

∣∣∣2 ≥ . . .) to enforce NOMA power allocation, while G is used for D2D pair

formation and local communication. nm,l ∈ C represents circularly symmetric complex

Gaussian noise with variance σ2. However, if bm denotes the n-th column of the BF
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precoding matrix B, then (2) can be expressed as follows:

ym,l = dsm,lh̃m,lbmpm,ltm,l + dsm,lh̃m,lbm

|dl|−1∑
j=1

pm,jtm,j + dsm,lh̃m,l

M∑
i=1,i ̸=m

bixi + dsm,lnm,l

(4.3)

The received signal-to-intra-cell interference-plus-noise ratio (SINR) for the lth pair of

the mth cluster is as follows:

SINRm,l =

∣∣∣(dsm,lh̃m,l

)
bm

∣∣∣2 pm,l

I1 + I2 + dsm,lnm,l
(4.4)

where I1 implies Intra-cluster interference, I2 implies Inter-cluster interference and dsm,lnm,l

implies Noise. I1 can be expressed as follows:

I1 =
∣∣∣(dsm,lh̃m,l

)
bm

∣∣∣2 |dl|−1∑
j=1

pm,j (4.5)

I2 can be expressed as follows:

I2 =
M∑

i=1,i ̸=m

∣∣∣(dsm,lh̃m,l

)
bi

∣∣∣2 pi (4.6)

In the case of MIMO-NOMA-D2D communication, Intra-cluster interference can be expressed

as I1 = Im,l(1) + Im,l(2) which is the n-th pair’s interference with the l-th pair on the same

subchannel at a distance of dmax, and because the pair has larger channel gains than the

l-th pair, respectively. where

Im,l(1) =
∑

l′∈D,l′ ̸=l

pm,l′
∣∣hm,l′

∣∣2 (4.7)

and

Im,l(2) =
∣∣hm,l′

∣∣2 ∑
j∈{dk|hm,k>hm,l}

pm,k (4.8)

In this study, the number of D2D pairings in each cluster is fixed. Also, the distance

between two different pairs also considered as the constraint during pair formation to

minimize intra-cluster interference. Thus, we are able to eliminate Im,l(1) interference level

which proves that our proposed scheme outperforms the conventional network. In Algorithm
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4. Multiple Interference Cancellation in MIMO-NOMA Network

1, we determine the D2D communication in the MIMO-NOMA network. The D2D pair

formation technique using correlated channel gain is depicted in Algorithm 2.
ALGORITHM 3: D2D Communication in the Downlink MIMO-NOMA Network
Input: Number of D2D devices: k

Number of transmit antennas or clusters: M

Number of receive antennas of each device: N

Channel response matrix: H

Number of clusters and cluster-heads: M

1 Initialization: All the higher channel gain devices are the cluster-head (within 150 metres of

BS).

2 Generate locations of each device randomly (minimum distance from BS = 200 metres).

3 The total transmit power from BS is equally divided into all clusters.

4 Taking an average of all channel gains of all antennas for each device in the network :

hi,1, hi,2, . . . , hi,N , hi, = Average channel gain of i-th device, i ∈ {1, 2, . . . , k},

n ∈ {1, 2, . . . , N}.

5 Device locations are sorted by channel gain in ascending order h1 ≥ h2 ≥ . . . ≥ hk, hi = i-th

device’s channel gain.

6 Select set A = {1, 2, . . . ,M} of relay nodes for pair d1 (closest to BS) depending on

the channel gain, the higher channel gain devices are set as a relay device,

h1 ≥ h2 ≥ . . . ≥ hM , hi = i-th device’s channel gain.

7 Include the second set of relay nodes for pair d2 (far from BS),

B = {M + 1,M + 2, . . . , 2M}. Ri,j = correlation coefficient between hi and hj

8 for t← 1 to M do

9 for s←M + 1 to 2M do

10 if Rt,s > Rt,r ⩾ 0.5,∀r ̸= s ∈ B then

11 add s−th device into t−th cluster

12 update A← A− {t}, B ← B − {s}

In Algorithm 3, complex channel coefficients hi (with magnitude and phase) are re-

ordered for clustering using a three-step magnitude-based approach: First, the average

magnitude per device |hi| = 1
N

∑N
n=1 |hi,n| is computed across all N receive antennas. Second,

devices are sorted in descending order of these magnitudes (|h1| ≥ |h2| ≥ · · · ≥ |hk|). Finally,

cluster heads are selected from the top-M devices with strongest channels. This magnitude-

focused method is justified because (1) phase information is irrelevant for NOMA power allo-

cation, (2) it prioritizes devices with the strongest channels as relays, and (3) aligns with prac-
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tical implementations where Channel Quality Indicator (CQI) feedback typically uses mag-

nitude measurements. Notably, while the sorting uses magnitudes, the channel correlation

calculation Ri,j =
|hH

i hj |
∥hi∥∥hj∥ retains the complex inner product to properly assess spatial rela-

tionships between devices, ensuring optimal cluster formation despite the scalar-based sorting.
ALGORITHM 4: D2D Pair formation
Input: Number of devices: k

Number of transmit antennas or clusters: M

Number of receive antennas of each device: N

Channel response matrix: H

Number of relay devices: L

Relay set: C = A+B, A = {1, 2, . . . ,M} and B = {M + 1,M + 2, . . . , 2M}

Non-relay set: D = {L+ 1, L+ 2, . . . , k}

Number of D2D pairs in each cluster: 2

Maximum distance between two D2D pairs = 20 metre.

1 Initialization: Generate locations of each D2D device randomly.

2 Set D2D pair count d to zero.

3 for p← 1 to number of relay devices: L do

4 for q ← L+ 1 to k do

5 Measure the distance between devices:
√
dist = (xp − xq)2 + (yp − yq)2

6 if dist ≤ 20 AND d ≤ 2 then

7 Device p and device q will form pair.

8 Set D2D count ← d+ 1

ALGORITHM 5: Computing performance indicator data
Input: Number of clusters: M

1 for i =← 1 to M do

2 for j =← 1 to dl

3 Compute t1 and t2 from Equation (4.22) and (4.24)

4 Compute R

5 Compute SE

6 Compute EE
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ALGORITHM 6: MIMO-NOMA-D2D with Multiple Interference Cancellation
Input: Number of BS antennas M , devices k, receive antennas N , channel matrix H, total

power PT

Output: solution set P with optimized SE and EE

1 // Network Initialization

2 Randomly deploy devices with minimum 200m from BS, cluster heads within 150m

3 Divide PT equally among M clusters

4 Compute average channel gains hi =
1
N

∑N
n=1 hi,n for all devices

5 // D2D Pair Formation

6 for each relay device p ∈ {1, ...,M} do

7 if dist(p, q) ≤ 20m AND pair count ≤ 2 then

8 Form D2D pair (p, q) with correlation Rp,q ≥ 0.2 AND Rp,q ≤ 0.8

9 end

10 end

11 Transmission Phase

12 Construct broadcast vector X = [x1, ..., xM ]T where xm =
∑|dl|

l=1 pm,ltm,l

13 Apply beamforming precoding: x̃ = BX

14 Transmit superposed signal to each cluster

15 Receiver Processing with MIC

16 for each cluster m ∈ {1, ...,M} do

17 Compute SINR: SINRm,l =
|dsm,lh̃m,lbm|2pm,l

I1+I2+σ2

18 Multiple Interference Cancellation

19 For user d1 (stronger channel):

20 Detect t1 = ⟨yk−
∑|dl|−1

l=1

√
pltl√

p1
⟩

21 For user d2 (weaker channel):

22 Cancel d1’s signal: y2 = yk −
√
p1t1

23 Detect t2 = ⌊y2/
√
p2⌋ (no decoder needed)

24 Eliminate Im,l(2) interference through MIC

25 end

26 // Performance Metrics Calculation

27 Compute sum rate: RT =
∑M

m=1

∑|dl|
l=1 log2(1 + SINRm,l)

28 Compute energy efficiency: EET = max
∑M

m=1
Rm

ζ
∑

pm,l+pckt

29 Update solution set P with optimized SE and EE

30 return P
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4.3 PROBLEM FORMULATION

This section initially introduces the computation of the MIMO-NOMA-D2D network’s

spectral efficiency (SE) and energy efficiency (EE).

4.3.1 Sum Rate

The data rate of the l-th D2D pair may be given as follows using the formulas derived for

SINR at the receiver of the l-th D2D pair, as in (4) of the m-th cluster:

Rm,l = log2 (1 + SINRm,l) (4.9)

Therefore, the total sum rate achievable for all M clusters in the system can be expressed

as:

RT =
M∑

m=1

|dl|∑
l=1

Rm,l (4.10)

4.3.2 Energy Efficiency

Through efficient resource management and improved EE, the goal of an energy-efficient

network is accomplished. As a result, a MIMO-NOMA-D2D network performs EE calcula-

tions as the sum of the proportion of the total sum rate achieved from a cluster to the total

power assigned to the cluster. In this chapter, we assign an equal power allocation to all

clusters. Inside each cluster, the power allocation assignments are different, depending on

the channel gain for each device. The sum of the l-th pair’s transmission power and circuit

power consumption is used to determine how much power it uses overall. The formula for

the overall amount of power used by all pairings in a cluster is:

pm = ζ

|dl|∑
l=1

pm,l + pckt,l (4.11)

where ζ denotes the drain efficiency of the amplifier, pckt,l implies the total amount of power

used by the regenerator, decoder, and detector, and the total power from BS is denoted as

PT :

PT =

M∑
m=1

pm (4.12)
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The EE maximization problem of the network can be formulated as:

EET = max

(
M∑

m=1

∑|dl|
l=1Rm,l

pm

)
(4.13)

C1 : pm ≤ PT (4.14)

C2 :

|dl|∑
l=1

pm,l ≤ pm (4.15)

4.3.3 Multiple Interference Cancellation

The pairs in each cluster get the super-positioned signal from the cellular user. The signal

that the m-th cluster receives at each of the D2D pairings is as stated in (2). The suggested

approach focuses on extracting the information of pairs with the maximum channel gain

from the received signal because the n-th pair experiences interference from other pairs for

|h1,m|2 ≥ |h2,m|2 ≥ . . . ≥ |hn,m|2. As a result, the interference is removed.

The matrix form of the signal received at the receiving end is thus represented as:

ym,l = dsm,l

[
H̃m,lBX ′ + nm,l

]
(4.16)

where

X ′ =


x1 x1 − p1,1t1,1 . . .

∑|dl|−1
l=1 p1,lt1,l

x2 x2 − p2,1t2,1 . . .
∑|dl|−1

l=1 p2,lt2,l
...

...
...

...

xM xM − pM,1tM,1 . . .
∑|dl|−1

l=1 pM,ltM,l

 (4.17)

ym,l =


y1,1 y1,2 . . . y1,|dl|

y2,1 y2,2 . . . y2,|dl|
...

...
...

...

yM,1 yM,2 . . . yM,|dl|

 (4.18)

H̃m,l =


h1,1 h1,2 . . . h1,|dl|

h2,1 h2,2 . . . h2,|dl|
...

...
...

...

hM,1 hM,2 . . . hM,|dl|

 (4.19)
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nm,l =


n1,1 n1,2 . . . n1,|dl|

n2,1 n2,2 . . . n2,|dl|
...

...
...

...

nM,1 nM,2 . . . nM,|dl|

 (4.20)

Equation (4.16) represents the received signal after Multiple Interference Cancellation

(MIC), derived by modifying the original signal from Eq. (4.2) through three key steps:

First, the interference-cancelled signal matrix X ′ is constructed by subtracting intra-cluster

interference components from the original signal X, where each column of X ′ progressively

removes more interference terms (Column 1: original signal; Column 2: minus the first

pair’s component; etc.). Second, the scalar effective channel gain h̃m,l is expanded to a

matrix H̃m,l to handle multiple signal components, with dimensions matching the number

of antennas (M) and pairs (|dl|). Finally, these components are combined with noise to

yield the MIC-processed signal ym,l = dsm,lH̃m,lBX ′ + dsm,lnm,l. Crucially, this approach

proactively removes intra-cluster interference in the signal domain (via X ′) rather than

relying on successive cancellation at the receiver, enabling far users (d2) to decode directly

without SIC as shown by t2 =
⌊
y2/
√
p2
⌋
, while maintaining the beamforming gain through

B and the channel adaptation through H̃m,l.

Since each device has N antennas at the receiving end, at device k ∈ {w, x, y, z}, the

corresponding received signal vector is represented as yk = [yk,1, yk,2, . . . , yk,N ]T , where yk,n

represents the signal received at k-th device’s n-th (n = 1, 2, . . . , N) receive antenna and

h∗k,n represents the channel between k-th device’s send antenna and n-th receive antenna.

The received signal at device k is denoted as:

yk =

∑N
n=1 h

∗
k,nyk,n∑N

n=1

∣∣∣h∗k,n∣∣∣2 (4.21)

where k ∈ {1, 2} are the relay devices. The signal detected at the closest pair of BS which

is here d1 can present as:

t1 =

〈
yk −

∑|dl|−1
l=1

√
pltl√

p1

〉
(4.22)

Here, ⟨.⟩ denotes the detection of the symbol as well as its demodulation and decoding.

The <> operator in Equation (4.22) represents a joint demodulation-decoding process for
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the near user (d1) in NOMA systems, defined as ⟨x⟩ ≜ Decode(Demodulate(x)). It first

normalizes the interference-cancelled signal x = (yk −
∑|dl|−1

l=1

√
pltl)/

√
p1, then performs

QAM demapping to convert the analog signal to digital symbols, followed by error-correction

decoding (e.g., LDPC/Polar codes) to recover the transmitted bits t̂1. Unlike the far user’s

⌊·⌋ operator (Eq. 4.24) that only demodulates, <> is nonlinear (combining thresholding and

algebraic operations) and operates across domains (complex baseband → bitstream). This

two-stage process is implemented physically as: demodulation (e.g., 16-QAM constellation

mapping) → decoding (e.g., LDPC syndrome checking), is critical for SIC at near users

where full decoding precedes interference cancellation.

The signal received at d2 is given by the first pair’s signal, which is canceled after

reception.

y2 = yk −
√
p1t1 (4.23)

The signal at d2 (farthest pair from BS) is the demodulated signal because SIC receivers do

not decode the signal at the second pair. Thus d2 is represented as:

t2 =

⌊
y2√
p2

⌋
(4.24)

The last pair only receives its own signal with MIC; therefore, in this case, ⌊.⌋ stands

for symbol demodulation. Decoders and regenerators are no longer necessary because of

this. This also signifies Im,l(2) has been eliminated from the received signal because the

decoding mechanism eliminates higher gain pairs to interfere with the lower gain pairs [47].

Elimination of Im,l(2) significantly improves the SINR performance. It also reduces the

power consumption of the decoder and regenerator circuits.

4.3.4 Beamformer Design and Performance Analysis

In MIMO-NOMA-D2D systems, beamformers are designed by optimizing antenna

weights to jointly maximize spectral efficiency (SE), energy efficiency (EE), and interference

management through various approaches. Heuristic methods include MRT (maximizing

signal power but ignoring interference), ZF (suppressing interference while amplifying noise

at low SNR), and RZF which balances these trade-offs via regularization. Optimality is

verified by benchmarking against theoretical bounds like DPC or weighted MMSE to quantify

49



4.4. Simulations Results and Discussion

performance gaps, while respecting system constraints such as power budgets (∥W∥2F ≤

Pmax) and D2D interference thresholds (∥wH
k gj∥2 ≤ ϵ). For dynamic environments, adaptive

optimization techniques like reinforcement learning further refine beamformer selection in

real-time to minimize optimality gaps and maintain robust performance across varying

channel conditions.

4.4 Simulations Results and Discussion

In this section, we show simulation results that show how the proposed MIMO-NOMA-D2D

system improves spectrum and energy efficiency. We also compare these results to those

of other MIMO-OMA and MIMO-NOMA networks. The relay and non-relay devices are

dispersed at random throughout the cellular network. All cluster heads are believed to

be within 150 metres of the BS. The 400-meter cell radius is commonly accepted, and it

is presumed that the perfect CSI is available. Also, all the devices have been scattered a

minimum of 200 metres from BS and formed NOMA networks with a parameter restriction

of Ri,j ≥ 0.5 mentioned in Algorithm 1, i e., device i, and device j, the correlation coefficient

should be greater or equal to 0.5. All the transmissions transpire in two phases. Data

is sent from BS to the relay device during the first phase. In a specific cluster, the relay

device transmits data to the non-relay devices in the network during the second phase

of transmission. In order for all of the clusters to utilise full spectrum resources, it is

also anticipated that the number of BS transmit antennas will be equal to the number

of MIMO-NOMA-D2D clusters. We consider all MIMO-NOMA-D2D cluster sizes to be

the same for a given simulation. In this work, MATLAB simulations are used to look into

the effectiveness of the suggested MIMO-NOMA-D2D strategy. Comparisons are made

between the performance of the proposed system and that of conventional MIMO-NOMA

and MIMO-OMA. The spectral efficiency of the MIMO-NOMA system greatly increases

with increasing transmit power and when strongly correlated users are grouped, as shown in

Figure 4.2, Figure 4.3, and Figure 4.4. Based on Equation (4.10), Figure 4.2, Figure 4.3,

and Figure 4.4 analyze the overall sum rate performance for various numbers of clusters.

The image makes it obvious that the MIMO-OMA network will have the lowest attainable

sum rate. The experiment takes place in three different transmit power scenarios from the

BS. It is clear that increasing the transmit power also improves the overall spectral efficiency
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of the whole network.
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Figure 4.2: Spectral efficiency comparison under transmit power Power 30 dBm

Fig 4.5, Fig 4.6, and Fig 4.7 shows the improvement of EE as the number of clusters,

which is equivalent to the number of transmit antennas, grows. The graph shows that

compared to MIMO-NOMA and MIMO-OMA networks, MIMO-NOMA-D2D networks

are much more energy-efficient. The experimental setup for calculating energy efficiency

takes a transmit power = 30 dBm for different antenna configurations. Also, our pivotal

attention is on cell-centered devices since all the devices are located at a significant distance

from BS. The value of circuit power decreases due to the power savings realized with the

suggested approach’s regenerator circuit, as mentioned in Equations (4.22) and (4.24). The

EE benefits from this in a favorable way. Figure 4.8 illustrates the spectral efficiency of

MIMO-OMA, MIMO-NOMA, and MIMO-NOMA-D2D networks at various transmit powers.

Energy efficiency comparison in different antenna setups is shown in Figure 4.9.

In Figure 4.10, the SE for all curves is very close for the first few clusters but diverges
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Figure 4.3: Spectral efficiency comparison under transmit power Power 40 dBm
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Figure 4.4: Spectral efficiency comparison under transmit power Power 50 dBm
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Figure 4.5: Energy efficiency comparison under different antenna setup, Antenna = 5
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Figure 4.6: Energy efficiency comparison under different antenna setup, Antenna = 10
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Figure 4.7: Energy efficiency comparison under different antenna setup, Antenna = 15

Figure 4.8: Spectral efficiency comparison
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Figure 4.9: Energy efficiency comparison

significantly afterward due to the interplay between signal power, interference, and correlation.

For M ≤ 3, the power per cluster is high, leading to strong signal power that dominates

interference, making SE less sensitive to correlation. Additionally, with fewer clusters,

interference is low, and the limited number of D2D pairs means the benefits of D2D

communication (e.g., interference reduction and signal power enhancement) are not fully

utilized, resulting in high and similar SE for all correlation coefficients. However, for M ≥ 4,

the power per cluster decreases, reducing signal power and making the system more sensitive

to interference. With more clusters, interference increases, and the impact of correlation

becomes significant: a higher correlation (‘corr = 1.0‘) increases interference by making

channels more similar, while a lower correlation (‘corr = 0.2‘) reduces interference by making

channels less similar. Although more D2D pairs can be formed for larger M , enhancing signal

power and reducing interference, the benefits are more pronounced for lower correlation

coefficients, as higher correlation counteracts these benefits by increasing interference. This

explains that SE diverges from M = 4 onward, with lower correlation coefficients showing

better SE due to reduced interference and higher correlation coefficients showing worse SE

due to increased interference.

Figure 4.11 compares the SE of MIMO-NOMA and MIMO-NOMA-D2D systems across

increasing channel correlation ( ρ = 0 to 0.9), where MIMO-NOMA (blue curve) shows

consistent degradation from ∼ 7 to ∼ 3.5 bps/Hz due to reduced spatial diversity, while

MIMO-NOMA-D2D (red dashed curve) demonstrates significant improvement from ∼ 4.5 to
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Figure 4.10: Analysis of Spectral Efficiency vs. Cluster Count

∼ 9.5 bps/Hz by leveraging D2D links to mitigate correlation effects, eventually saturating

beyond ρ ≈ 0.70–0.80 as channel similarity limits further gains. The performance gap

widens progressively from -2.5 to +6 bps/Hz, highlighting D2D’s advantage in correlated

environments, with a ∼ 2.7× higher SE than NOMA at ρ = 0.9, though the saturation

indicates diminishing returns at extreme correlation levels.

Figure 4.12 presents a performance comparison of beamforming schemes in a MIMO-

NOMA-D2D system, analyzing three key metrics: Spectral Efficiency (Sum Rate in bps/Hz),

which compares MRT, ZF, and the proposed RZF-MRT schemes to show variations in

achievable rates; Energy Efficiency (EE in bps/Hz/W), highlighting power-efficiency trade-

offs among the methods; and User SINR Distribution, displaying cumulative probability

curves for SINR (dB) to demonstrate signal quality across users. The graph labels suggest

the proposed RZF-MRT method may outperform conventional MRT and ZF by balancing

spectral and energy efficiency while maintaining robust SINR performance.
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Figure 4.11: Spectral Efficiency vs. Correlation Coefficient

Figure 4.12: Beamforming Scheme Performance Comparison
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4.5 Summary

A viable strategy for improving spectral and energy efficiency is using the MIC technique

in MIMO-NOMA wireless cellular systems. This work focused on the downlink multiuser

MIMO-NOMA, in which there are many more devices with receiving antennas than BS

broadcast antennas in a cell. Each MIMO-NOMA cluster is supplied by a single MIMO

beam that is orthogonal to the beams of the other clusters, and all users in a cluster are

scheduled in accordance with NOMA. Most of the MIMO-NOMA solutions in the literature

address inter-cluster interference; very little work has been done to address intra-cluster

interference. Our work using the MIC technique and applying it to the MIMO-NOMA

network significantly improves spectral and energy efficiency. Also, we have used the

correlation coefficient to form the NOMA network inside each cluster, which significantly

enhances the system’s SE and EE performance. In Algorithm 1, we determine the relay nodes

based on the channel state information of the device and work on two time stamps. The

future direction of this study could be taken from the imperfect channel state information

for further improvement.

<<=8=;;
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5
C h a p t e r

Channel Estimation in NOMA Network

5.1 Introduction

The relentless pursuit of enhanced wireless communication capabilities has led to the

development of advanced technologies such as NOMA. While NOMA offers significant

advantages regarding spectral efficiency and user capacity, it relies heavily on accurate

channel state information (CSI) for optimal performance. Conventional channel models

might not fully capture the intricacies of real-world situations [48], leading to suboptimal

system performance and potential service disruptions. This chapter addresses the critical

challenge of accurate CSI estimation in NOMA networks by exploring the potential of

utilizing a rich set of channel metrics, including reference signal received quality (RSRQ),

signal-to-interference-plus-noise ratio (SINR), channel quality indicator (CQI), and partially

decoded data (PDD). We aim to develop a robust and adaptive channel prediction model by

incorporating these metrics and leveraging machine learning techniques. Our contributions

focus on demonstrating the effectiveness of PDD as a valuable source of information for

CSI estimation and investigating the impact of accurate channel prediction on NOMA

system performance, particularly regarding handover management and resource allocation.

By addressing the limitations of existing approaches, this research seeks to advance the

state-of-the-art in NOMA channel estimation and contribute to developing more reliable and

efficient wireless communication systems. Handover failures [49], [50] in NOMA networks

happen when a user switches between cell towers and needs to pair with a new device in the

next cell base station, as shown in Fig 5.1, but the handoff doesn’t go through. These can

result in dropped calls, slow data connections, and an unpleasant user experience. Predicting
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CSI is essential to ensuring seamless handovers. The network is able to make educated

judgments about when and to which cell tower to hand off a user by precisely forecasting

future channel conditions. By doing this, the likelihood of a faulty handover and the feared

"ping-pong" effect in which a user switches between two towers as a result of poor handover

decisions is decreased. Essentially, smooth handovers and enhanced network performance

are dependent on accurate CSI prediction.

5.2 System model

Within the scope of a downlink NOMA system, the analytical model consists of a base

station of M antennas and N user equipment (UEs), each equipped with a single antenna.

The Rayleigh fading channel model is used to describe the probabilistic behavior of wireless

channels. The formulation of the received signal y is achieved by taking into account

parameters such as channel matrices hi = {h1, h2, . . . , hN}, transmitted signals xi =

{x1, x2, . . . , xN}, ∀i ∈ {1, 2, . . . , N}, and the additive white Gaussian noise n. The equation

is denoted as:

y =

N∑
i=1

hixi + n (5.1)

We can rewrite Equation 5.1:

y1 = h1x1(j)︸ ︷︷ ︸
User1

+

N∑
i ̸=1

hixi(j) + n1(j) (5.2)

where j indicates the time index and j ∈ {1, 2, . . . , J}. Equation (5.1) does not explicitly

include beamforming. The equation represents the received signal as a sum of products of

channel matrices ( hi ) and transmitted signals ( xi ), plus noise.

In this article, we have taken a new parameter, PDD, as a supplementary CSI metric.

The analytical equation is expressed below. To understand this, we have taken two user

scenarios in a NOMA network for easy understanding; user 1 indicated near user, and user

2 indicated far user from BS. Equation (5.3) is the received signal at User 1 after SIC, then

the interference term reflect residual errors from imperfect SIC

y1,SIC = h1x̃1 + h1x2 + n1 (5.3)
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where x̃1 = x1 − x̂1 is the residual interference (PDD). PDD (x̃1) Represents undecoded

residual interference. In the pre-SIC scenario, User 2 receives the original signal y2 =

h2x1 + h2x2 + n2 where both x1 and x2 experience the same channel fading. During

post-SIC processing, after imperfect decoding, the received signal at User 2 becomes:

y2,SIC = h2x1 + h2x̃2 + n2 (5.4)

where the partially decoded data (PDD) term x̃2 = x2 − x̂2 represents only the undecoded

portion of x2 and is generated locally during SIC. Crucially, all terms (including the residual

interference) are properly scaled by h2, addressing the concern about fading consistency.

Within the context of NOMA networks operating in the Rayleigh fading channel model,

the need for efficient channel estimation to make the handover choice becomes apparent.

As the number of UEs increases, the likelihood of user pairing based on handover decisions

to improve the total sum rate also becomes difficult. In order to guarantee the resilience

and effectiveness of these networks, it is important to cultivate channel status and different

CSI parameters in the NOMA network. Fig 5.1 illustrates the concept of the NOMA

handover. We have considered a two-cell scenario for ease of understanding. We have

checked the condition for making a handover decision, CSI0 + PDD0 < CSI1 + PDD1,

then the handover has been made, and user UF
0 will connect to the base station BS1.

Fig 5.2 illustrates the architecture of the NOMA transceiver using the RNN-LSTM

model. The exclusive error information for channel status will be given after the demodulation

state to the SIC/PIC module through the RNN-LSTM model to predict channel status.

Channel prediction relies on exploiting information extracted after demodulation but before

final data decoding. Following CP removal and FFT, demodulation recovers the symbols,

potentially containing channel errors. These errors themselves become valuable clues. By

analyzing these post-demodulation symbols with error patterns, techniques can estimate the

channel’s characteristics (fading, noise) and create CSI to predict future channel behavior

and improve transmission reliability.
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Figure 5.1: System model of NOMA-HO
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Figure 5.2: System model of NOMA transceiver with RNN-LSTM model
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5.3 Proposed RNN-LSTM model

5.3.1 Data Preperation

Algorithm 1 outlines a transfer learning approach for predicting future channel state

information in a wireless communication system using RNNs. It leverages a pre-trained

RNN model, originally trained on a different but relevant task, to extract informative

features from current and historical channel measurements CSI data like RSRQ, CQI, SNR,

and PDD). These features are then fed into a newly trained regressor model to predict

future values. This approach aims to improve channel prediction accuracy by utilizing the

knowledge learned by the pre-trained RNN model and fine-tuning it for the specific task

of channel state prediction. Fig 5.3 provides a pictorial representation of the workflow

outlined in Algorithm 1. As evidenced in Fig 5.4, Fig 5.5, and Fig 5.6 (data source: [51]),

we can visualize the impact of data augmentation. Fig 5.4 presents the initial distribution

of the data, while Fig 5.5 showcases the transformed distribution after augmentation. To

enhance our understanding of these changes, Fig 5.6 utilizes kernel density estimation (KDE)

plots, providing a smoother representation of the data distributions in both figures. This

comparative analysis allows for a clear assessment of how augmentation has modified the

data. The new data set will be available in [52]. The number of epochs E and batch size B

determine the number of times the regressor model processes the features extracted from

the pre-trained model h. The total complexity depends on the product of these factors

multiplied by the complexity per batch Tnew(h). The total time complexity of the algorithm

becomes O(E ∗B ∗ Tnew(h)).
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ALGORITHM 7: Transfer Learning Algorithm to generate Regressor model

1 Input: Pre-trained RNN model Mpre(x; θpre), Training data set {xi},

i ∈ {RSRQ,CQI, PDD,SNR}

2 Output: Regressor model Mnew(h; θnew) Feature Extraction: Mpre(x; θpre) takes an input

vector x containing current and historical CSI measurements and outputs h.

h = Mpre(x; θpre) (5.5)

Regressor Model Mnew(h; θnew) takes the extracted hidden state sequence h as input and

predicts ŷ, where yi ∈ {RSRQ,SNR}.

ŷ = Mnew(h; θnew) (5.6)

Training the Regressor model Mnew(h; θnew) by minimizing the MSE loss function L.

L(ŷ, y) = (y − ŷ)2 (5.7)

where y represents the actual RSRQ and SNR values.

5.3.2 Complexity Analysis

The complexity of a simple RNN-LSTM model is determined by examining the comparable

operations that are involved. The fundamental operations of RNN-LSTMs depend on per-

forming matrix multiplications and activation functions inside a backpropagation algorithm

during the training process. An RNN-LSTM architecture comprises an RNN layer, often

including LSTMs, followed by a final dense layer to provide the output. The internal gate

actions (input, forget, output) and cell state update inside each LSTM unit contribute

to the complexity every time step. The commonly used notation for this complexity is

O(Di ∗Do +D2
o), where Di represents the input dimension (the number of features in the

input vector) and Do represents the output dimension (the number of hidden units in the

LSTM). The complexity of the final dense layer stays constant at O(Do ∗Dout), where Do

represents the output dimension from the RNN layer (number of hidden units) and Dout

represents the number of neurons in the output layer (typically 1 for RSRQ/SNR prediction).

RNN-LSTMs sequentially process data. Hence, the intricacy increases with each successive

time step T, whereas S is the number of training samples (iterations). The RNN-LSTM
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Figure 5.3: Flowchart of algorithm 1

Figure 5.4: Distribution of original values
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Figure 5.5: Distribution of augmented values

Figure 5.6: KDE plots
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model’s overall computational complexity is estimated as follows:

O(T ∗ S ∗ (Di ∗Do +D2
o +Do ∗Dout))

The primary factors contributing to its complexity are the quantity of time steps (T )

and the calculations performed inside the LSTM unit (Di, Do). The level of complexity may

exhibit variability based on the number of hidden units (Do) and the input sequence length

(T ).

5.4 Results and Discussion

This research investigates three key aspects of NOMA networks. The first part explores

the application of an RNN-LSTM model for improving CSI prediction. The second part

analyzes the relationship between handover frequency (switching between cell towers) and

UE speeds within the network. The third part compares BER performance with existing

pilot-based channel estimation techniques. All of the given pronged approaches aim to

optimize network performance in NOMA systems by understanding handover behavior at

different UE speeds and leveraging machine learning for more accurate CSI prediction.

5.4.1 Simulation Setup and Results

This study presents a feasible parameter configuration for the NOMA system model in

the context of 5G. In this case, we have two BSs that are responsible for servicing two

different cells. The number of Users per Cell is 2. Each Base Station has 4x4 antenna

configurations. Each UE is equipped with a single antenna. In Table III, we have mentioned

a precise description of network parameter configuration. We will establish precise channel

models for the base station-to-user equipment connections, taking into account issues like

route loss and fading. Regarding the fading feature, we will make the assumption that

the distribution of x(t) conforms to a Rayleigh distribution, which is often used to model

real-world fading situations. The simulation will assess the NOMA system’s performance

under several scenarios, such as altering the Transmit SNR at the BSs and the power

allocation factor of different UEs within each cell. The precise values for these parameters

will be specified in Table III.

The number of hidden units (Ncell) in the LSTMs is set at 16. In addition, configure

distinct activation functions such as Rectified Linear Unit (ReLU) for the Long Short-Term
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Parameters Names Values
K Number of time steps 1000
ti Number of input time

steps
10

to Number of future time
steps

1

N Number of users 4
B Number of BS 2
C Number of cells 2
v Uniform speed per one

time step
0.1m

γ Transmit SNR -9dB to
14dB

ρ Transmit RSRQ -8dB to -
20dB

dbn Distance from BS to
near user

20

dbf Distance from BS to far
user

50

M Number of antennas at
BS

4

a Number of antennas at
UE

1

Table 5.1: Parameters setup

Memory (LSTM) units. Using three LSTM layers might be advantageous for capturing

intricate temporal connections. The duration of the input sequence, referred to as the

look-back window, also has a significant impact. Usually, the window size is set at L = 10

in order to provide context. Ultimately, using methods such as dropout regularization with

a dropout rate of around 0.2 may effectively mitigate overfitting by randomly eliminating

neurons throughout the training process.

5.4.2 Performance Metrics

A mix of scale-free and scale-dependent measurements will be the most appropriate perfor-

mance metrics. Normalized Root Mean Square Error (NRMSE) is a kind of scale-free metric.

The Root Mean Square Error (RMSE) is normalized by partitioning it by the standard

deviation of the actual target values (RSRQ/SNR). This facilitates the comparison of

performance by using datasets that include varying scales. Standardized RMSE and Mean
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Absolute Scaled Error (MASE) are examples of scale-free metrics. The NRMSE is calculated

by:

NRMSE =
1

σactual
(

√∑
(predictedi − actuali)2

N
) (5.8)

In this context, N represents the total number of samples, σactual denotes the standard

deviation of the actual RSRQ/SNR values, and predictedi and actuali represent the

predicted and actual values for sample i.

MASE is a statistical technique that involves comparing the average absolute errors of

a model with the average absolute difference of a naïve prediction that replicates the prior

value. This measure serves as a valuable tool for evaluating and comparing performance

across datasets that include varying sizes. MASE is calculated as:

MASE = N ∗
∑
|predictedi − actuali|∑
|actuali − actuali−1|

(5.9)

One example of a scale-dependent metric is the Mean Squared Error (MSE). Although

not optimal for cross-dataset comparisons, the MSE may nonetheless provide valuable

insights into assessing the overall accuracy of predictions within a particular dataset. It is

calculated by:

MSE =

∑
(predictedi − actuali)

2

N
(5.10)

In this context, N represents the total number of samples, whereas predictedi and actuali

denote the predetermined and observed values for samplei, respectively.

The R-squared (R2) score quantifies the extent to which the model’s predictions account

for the variability seen in the actual RSRQ/SNR values. Although not devoid of scale,

it offers insight into the degree to which the model aligns with the observed data. The

use of NRMSE and MASE enables the evaluation of the model’s efficacy across diverse

datasets characterized by varied magnitudes of RSRQ and SNR values. MSE may provide

valuable insights into the overall accuracy of predictions within our particular dataset. The

R2 score is a measure of how well the model captures the fundamental patterns in the data.

Evaluating performance across different datasets is essential, and NRMSE and MASE play a

vital role in this aspect. While the main emphasis is on comprehending the overall accuracy

of predictions within the dataset, the MSE may also be a beneficial tool in conjunction with

R2.
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5.4.3 Evaluation Of RNN-LSTM model

The graph in Fig 5.7 illustrates the convergence of three architectures, namely Convolutional

Neural Network (CNN), Recurrent Neural Network (RNN), and RNN-LSTM, in forecasting

RSRQ values for a given User located distant from the BS (far user). The models are

trained using normalized RSRQ data with a sequence length of 10. Their performance is

then compared using RMSE metrics. The objective is to choose the model that produces

the most optimal convergence by evaluating their RMSE on a time series dataset for a

specified UE. Based on the training RMSE plots, it can be seen that RNN-LSTM has the

ability to achieve superior convergence compared to CNN and RNN models. A lower RMSE

implies superior model performance since it suggests that the model’s predictions are, on

average, more accurate and closer to the actual values. This indicates that the RNN-LSTM

architecture is more appropriate for capturing the sequential characteristics of RSRQ data

and acquiring knowledge of temporal relationships in order to make precise predictions.

Figure 5.7: Training convergence of three architectures: CNN, RNN and RNN-LSTM

This graph in Fig 5.8 displays the Normalized Root Mean Squared Error (NRMSE)

for predicting RSRQ on two User equipment (UE2 and UE1) located at different distances

from the Base Station (BS). The RNN-LSTM model yielded projected RSRQ values that

were more closely aligned with the actual values for nearby users. This would result in a

decreased NRMSE for the nearby user and an increased NRMSE for the distant user in

comparison to the nearby user. UE that is in close proximity to the providing cell tower
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usually has a greater RSRQ, indicated by a higher number. UE that is situated at a greater

distance from the providing cell tower often encounters a weaker RSRQ, which is indicated

by a lower value and eventually more fluctuating NRMSE graph.

Figure 5.8: NRMSE of near user and far user over epochs (UE2 and UE1)

The graph in Fig 5.9 illustrates the MAE performance of two situations in forecasting

channel information using an RNN-LSTM model. The blue curve indicates the MAE

measure when the model is trained on channel data that does not contain partially decoded

information, whereas the orange curve reflects the MAE when the model is trained using

partially decoded data. It is noteworthy that both curves have variations instead of a

completely smooth drop, which is a typical occurrence during the training of LSTM models.

The variations occur due to the random characteristics of gradient descent, the optimization

process used to train the model. Although there may be some variations, it is preferable to

have a continuous decreasing trend in the MAE curve across epochs. Through a comparison

of the curves, we can assess the influence of including partly decoded data on the model’s

convergence and prediction accuracy. If the orange curve (representing partly decoded data)

exhibits a more pronounced and persistent reduction in MAE in comparison to the blue

curve, it indicates that integrating additional information aids in the model’s more efficient

learning. In contrast, if the orange curve exhibits comparable or more pronounced variations,

it suggests that partly decoded data has little impact on the model’s convergence or may

potentially contribute unwanted random signals.
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Figure 5.9: Training MAE with PDD and without PDD

R-squared (R2) is a statistical measure used to assess the degree to which a regression

model accurately represents a dataset. The coefficient of determination quantifies the amount

of variability in the predicted values of the dependent variable that can be attributed to

the independent variable(s) included in the model. The R2 values vary between 0 and 1. A

value of 0 shows no connection between the predicted and actual values, while a value of

1 indicates a perfect fit, where the model accurately predicts the dependent variable. By

including PDD information, the model achieves a more accurate alignment between the

predicted and actual channel information, demonstrating its enhanced effectiveness. The

inclusion of PDD in the model is anticipated to enhance its ability to account for the effects

of signal delays on CSI, hence resulting in more precise predictions. By processing the

raw signal to extract PDD characteristics, the model gains more comprehensive knowledge

about the behavior of the signal. This eventually leads to a deeper understanding of the

link between the features and the target state of CSI. By visually comparing the graphs

in Fig 5.10, we can verify if the model trained with PDD regularly achieves a better R2

compared to the model without PDD. If the errors in partially decoded data are excessive

or incomprehensible, they may introduce noise rather than useful information, resulting in

a paradoxical scenario. This might result in a decreased R2 in comparison to only using

CSI. In the NOMA network we are studying, a user located far away may experience an

abrupt change in the R-squared value during training. This might be due to difficulties
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in accurately recording the signal behavior for remote users. If the learning algorithm of

the model can detect patterns that are unique to distant user signals, it may encounter a

dramatic increase in R-squared. This indicates the enhanced capability of the model to

address the difficulties related to predicting signals from distant users.

Figure 5.10: R-squared comparison with PDD and without PDD

The R-squared score curve in Fig 5.11 demonstrates a distinct ranking in the effectiveness

of different models in predicting RSRQ results. The RNN-LSTM model regularly attains

the greatest R-squared scores throughout the training phase, showing its better capacity to

capture the underlying connections between the input data and the target variable. The

training data may include a fresh data point or a group of points that have a noticeable

and well-defined connection to RSRQ at that particular time period. The CNN uses 1D

convolution with 32 filters and utilizes the Rectified Linear Unit (ReLU) activation function

to extract features. The RNN model uses a single LSTM layer with 20 units and a ReLU

activation function to capture the temporal dependencies present in the data effectively. The

RNN-LSTM model consists of two LSTM layers, with the first layer having 50 units and the

second layer having 20 units. The ReLU activation function is used to facilitate the learning
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of intricate associations. Nevertheless, the constraints of the CNN design result in negative

R-squared values. This suggests a worse match compared to the reference point. The

Figure 5.11: R-squared score (without PDD): CNN, RNN, RNN-LSTM

findings and discussion center on the influence of using PDD to evaluate the status of the

channel. The RNN-LSTM model makes predictions on the Signal-to-interference-plus-Noise

Ratio (SINR), which is an important measure of channel quality. The quantity of data

frames defines the quantity of training data used for prediction. Fig 5.12 depicts the training

patterns of models that use CSI exclusively and those that include PDD as input. The

CSI-exclusive model shows a curve that falls below 0 in some epochs. This suggests that

the model may not be well-suited for some data points, indicating that it has difficulty

capturing the intricacies of the channel without more information. On the other hand, the

model that includes partially decoded data regularly produces a curve that is higher than 1,

indicating a more pronounced positive relationship with the goal values. Fig 5.13 of the

testing comparison between SINR values illustrates the superiority of taking PDD as CSI,

which results in a better SINR output. This emphasizes the advantage of PDD in improving

the model’s comprehension of channel fluctuations. Comparable trends are noted while
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comparing testing data sets.

Figure 5.12: Training SINR comparison over data frames

We employ scale-free and scale-dependent measures, such as RMSE, MAE, and MSE

scores in TABLE IV, to assess the behavior of various models on a dataset. Table IV lists

the performance metrics for several ML models, such as CNN, RNN, and RNN-LSTM.

Table IV presents the accuracy superiority of the proposed RNN-LSTM model over the

two remaining models, namely CNN and RNN, based on different datasets from [51]. The

complete code related to simulation can be found in [52].
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Figure 5.13: Testing SINR comparison over data frames

Metrics ModelsAmazon
Prime

Download Netflix

Driving Static Driving Static Driving Static
RMSE CNN

RNN
RNN-
LSTM

0.0798
0.0722
0.0608

0.0364
0.0323
0.0119

0.1092
0.0845
0.0737

0.1889
0.1478
0.1322

0.1116
0.0764
0.0685

0.1056
0.0837
0.0712

MAE CNN
RNN
RNN-
LSTM

0.0695
0.0585
0.0386

0.0069
0.0065
0.0021

0.0949
0.0543
0.0502

0.1543
0.1014
0.0922

0.0816
0.0489
0.0343

0.0853
0.0541
0.0429

MSE CNN
RNN
RNN-
LSTM

0.0075
0.0054
0.0034

0.0013
0.0009
8.3417e-
01

0.0136
0.0075
0.0063

0.0346
0.0218
0.0173

0.0117
0.0068
0.0046

0.0095
0.0062
0.0047

Table 5.2: Performance metrics of different ML models
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5.4.4 Comparative Analysis of RNN-LSTM

In NOMA networks, accurate channel estimation is crucial for efficient resource allocation

and reliable communication. Three baseline machine learning methods, RNN-LSTM, SVM,

and Random Forest have been applied for channel estimation using two approaches: (1) using

only CSI and (2) using CSI combined with PDD. RNN-LSTM excels in handling temporal

dependencies and non-linear relationships, making it highly suitable for time-varying channel

conditions and achieving superior accuracy, especially when PDD is included. However,

it comes with high computational complexity due to its sequential processing and large

parameter space. SVM performs well in high-dimensional spaces and generalizes effectively

with CSI alone but struggles with scalability and temporal data handling, leading to lower

accuracy. Random Forest, an ensemble method, reduces overfitting and provides feature

importance insights, performing well with CSI alone but lacking in temporal dependency

handling and scalability for high-dimensional data. In terms of computational complexity,

RNN-LSTM is the most demanding, followed by SVM (moderate to high, depending on

the kernel) and Random Forest (moderate, scaling with the number of trees). While all

three methods have merits, RNN-LSTM stands out as the best in terms of accuracy and

adaptability, making it the preferred choice for channel estimation in NOMA networks.

Fig 5.14 predicts and analyzes the spectral efficiency of a NOMA network under varying

SNR conditions. It begins by simulating NOMA network parameters, including channel

gains and spectral efficiency, using synthetic data. Three models are trained: an RNN-LSTM

with Bidirectional LSTM layers and dropout regularization for handling complex patterns,

an SVM with an RBF kernel for capturing non-linear relationships, and a Random Forest

regressor for robust generalization. The models predict spectral efficiency across SNR values

ranging from 0 dB to 20 dB, with results visualized using ‘matplotlib‘ to compare the

performance of RNN-LSTM (solid blue line), SVM (dashed orange line), and Random Forest

(dash-dotted green line). The RNN-LSTM model is expected to outperform the others,

as indicated by its higher R2 score, due to its ability to model complex dependencies and

prevent overfitting. The SVM and Random Forest models, while effective, may struggle with

high-dimensional data or fail to capture intricate patterns as effectively as the RNN-LSTM.

The plot of spectral efficiency vs. SNR should show an increasing trend, with the RNN-

LSTM closely following the theoretical curve, while the other models may deviate slightly
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at higher SNR values. Limitations include the use of synthetic data, which may not fully

reflect real-world NOMA network dynamics, and fixed power allocation coefficients, which

simplify the problem. Future work could involve experimenting with advanced architectures

like Transformers, incorporating real-world data, and exploring adaptive power allocation

strategies. Overall, the code highlights the potential of deep learning models, particularly

RNN-LSTM, in optimizing spectral efficiency for wireless communication systems, though

further validation and optimization are needed for practical applications.

Figure 5.14: A Comparative Analysis of RNN-LSTM, SVM, and Random Forest Models
Under Varying SNR Conditions.

Fig 5.15, evaluates the performance of three models RNN-LSTM, SVM, and Random

Forest in predicting the symbol error rate for two scenarios in a wireless communication

system, Scenario 1: using only CSI, and Scenario 2: using both CSI and PDD. The data

[51] is split into training and testing sets. An RNN-LSTM model with dropout and batch

normalization is trained for both scenarios, with early stopping to prevent overfitting, while

SVM and Random Forest models are trained with varying hyperparameters. The models

predict the channel state, and the symbol error rate is calculated using ’mean squared error’.

Results show that RNN-LSTM outperforms SVM and Random Forest in both scenarios

due to its ability to capture temporal dependencies, with the performance gap potentially
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widening in Scenario 2 as RNN-LSTM leverages the additional data. A plot compares

the symbol error rate of the models across scenarios, highlighting RNN-LSTM’s superior

performance. Limitations include the use of fixed hyperparameters, while future work could

explore advanced architectures like Transformers, and optimize feature selection.

Figure 5.15: A Comparative Study of LSTM, SVM, and Random Forest Models Using CSI
and Partially Decoded Data.

In Fig 5.16, the LSTM model architecture includes two LSTM layers to capture temporal

dependencies, with dropout (fixed at 0.3) and batch normalization for regularization, and

a dense output layer to predict channel gains for all users. The Adam optimizer, with

a fixed learning rate of 0.001, minimizes the Mean Squared Error (MSE) loss function.

Hyperparameter tuning evaluates the model’s performance across different LSTM unit

configurations (64, 128, 256, 512, 1024), using parallel training and early stopping to optimize

computational efficiency and prevent overfitting. Performance is assessed using MSE, with

results visualized to analyze the impact of model complexity on accuracy. Key findings reveal

that increasing LSTM units improves performance up to a point beyond which overfitting

occurs, while dropout and batch normalization enhance generalization. The study highlights

the trade-offs between model complexity, computational cost, and performance, providing

insights for designing deep learning models in NOMA systems. However, limitations include
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a restricted hyperparameter search suggesting future work should explore comprehensive

hyperparameter tuning. In Fig 5.17, the LSTM model architecture includes two LSTM

Figure 5.16: Impact of Varying LSTM Units on Channel Estimation Performance with
Fixed Dropout Rate (0.3) and Learning Rate (0.001).

layers with a fixed number of units (256) to capture temporal dependencies, with dropout

(fixed at 0.3) and batch normalization for regularization, and a dense output layer to predict

channel gains for all users. The Adam optimizer, with varying learning rates (0.0001, 0.0005,

0.001, 0.005, 0.01), minimizes the MSE loss function. Hyperparameter tuning evaluates the

model’s performance across different learning rates using parallel training and early stopping

to optimize computational efficiency and prevent overfitting. Performance is assessed using

MSE, with results visualized to analyze the relationship between learning rate and accuracy.

Key findings reveal that the learning rate significantly impacts model performance, with

very low rates leading to slow convergence and very high rates causing instability, while

dropout and batch normalization enhance generalization. The study highlights the trade-offs

between learning rate, convergence speed, and performance, providing insights for designing

deep learning models in NOMA systems.

The computational complexity of RNN-LSTM, SVM, and Random Forest, applied in

NOMA networks for channel estimation using only CSI and CSI+PDD, varies significantly

based on implementation details, dataset size, and hyperparameters. For RNN-LSTM, the
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Figure 5.17: Impact of Varying Learning Rate on Channel Estimation Performance with
Fixed LSTM Units (256) and Dropout Rate (0.3)

complexity is dominated by sequential processing and parameter size, with a single time step

complexity of O(T · (nh · nx + n2
h)), where T is the number of time steps, nh is the number

of hidden units, and nx is the input dimension. For training over N samples and E epochs,

the total complexity becomes O(E ·N · T · (nh · nx + n2
h)). SVM’s complexity depends on

the kernel choice, with a nonlinear kernel (e.g., Radial Basis Function) having a complexity

of O(N2 · d), where N is the number of training samples and d is the input dimensionality,

while a linear kernel reduces this to O(N · d). Random Forest’s complexity is determined

by the number of trees T , features M , and dataset size, with a single tree’s complexity

being O(M · d ·N logN) and the total complexity for the forest being O(T ·M · d ·N logN).

When applied in NOMA networks, using only CSI keeps the input dimension d limited

to CSI features, but incorporating PDD increases d, raising complexity for all methods.

RNN-LSTM, despite its higher computational cost, handles this increased dimensionality

and temporal dependencies effectively, making it the most suitable choice. In contrast, SVM

and Random Forest struggle with scalability and temporal data handling, making them

less effective for scenarios involving CSI+PDD. Thus, while RNN-LSTM is computationally

demanding, its superior adaptability and accuracy make it the preferred method for channel

estimation in NOMA networks.
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5.4.5 Application of the Proposed Technique to HLF/RLF

This research aims to examine the influence of handover decision-making, which is based

on changing CSI, on the frequencies of handover failures. We use five handover profiles

obtained from [53], each of which may reflect different network setups defined by specific

values for Time to Trigger (TTT), A3 Offset, and L3 Filter K. Next, we model handover

situations for UE moving at different velocities. Each profile is evaluated using two CSI

configurations: 1) using only RSRQ and 2) employing both RSRQ and PDD. The generated

graph effectively illustrates how the selection of CSI affects handover performance. This

is done in Fig 5.18 by comparing the handover failure rates for these two CSI setups at

various UE speeds and handover profiles. This analysis will provide valuable insights into

optimizing handover strategies based on the available CSI and network conditions. We

Figure 5.18: Handover failure rates over UE speeds (km/hour)

examine how handover decision-making affects ping pong rates (handover frequency) for UEs

moving at different speeds. Five handover profiles from [53] reflect various network settings.

We evaluate two CSI setups for each profile. We have given a complete graph in Fig 5.19

that shows how CSI and network design (as specified by handover profiles) affect handover

frequency by comparing ping-pong rates across various UE speeds, handover profiles, and
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CSI configurations. PDD provides more real-time channel quality information than signal

strength (RSRQ), which improves handover choices and reduces ping pong. Handover

failures arise from inaccurate forecasts of forthcoming channel conditions. Unsuccessful

transfers might result in a consistent pattern in the curves that represent the rate of failure

in transferring responsibilities. The ping pong rate takes into account both successful and

unsuccessful handovers, which might result in less predictable patterns. The setup of the

network and the information about the PDD may have a significant influence on both the

success and failure rates, therefore affecting the distribution of ping-pong rates. The analysis

Figure 5.19: Ping-pong rates over UE speeds (km/hour)

of false alarm rates reveals a U-shaped curve when plotted against UE speeds. At very low

speeds, even minor fluctuations in the channel, which might appear significant, can trigger

unnecessary handover attempts (false alarms) due to limitations in predicting future channel

conditions based solely on Received Signal Strength Received Quality (RSRQ). However, as

UE speeds increase dramatically, the channel environment changes rapidly, making frequent

handovers inevitable to maintain a good connection. This contrasting behavior at both ends
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of the speed spectrum leads to a peak in the number of false alarms at moderate speeds.

Here, the challenge lies in accurately distinguishing between temporary fluctuations and

actual signal degradations, making handover decisions more critical. The graph in Fig 5.20

incorporates two curves representing the impact of CSI used for handover decisions, one only

relying on RSRQ and another one considering both RSRQ and PDD. The data suggests

that utilizing both CSI and PDD leads to generally lower false alarm rates compared to

relying solely on RSRQ across most UE speeds.

Figure 5.20: Number of false alarm vs. UE speeds (km/hour)

5.5 Summary

A novel method for NOMA channel prediction was introduced in this study, which makes

use of a larger variety of CSI parameters, such as RSRP, RSRQ, CQI, SNR, and, most

importantly, PDD. System-level simulations showed that low CSI has a major effect on radio

link and handover failures. Our results demonstrate the benefits of PDD as a supplementary

CSI metric. By doing away with the requirement for specialized pilot signals, PDD lowers
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signaling overhead while providing a more realistic depiction of channel dynamics than

conventional techniques. Additionally, this method is adaptable to shifting user traffic

patterns. In comparison to a deterministic model, our suggested approach performed

better in terms of MSE and BER. This is the first study to investigate the application of

PDD in NOMA networks to forecast handover and radio link failures. Realizing that ML

can be used for channel estimation because it doesn’t require as many strict assumptions.

In addition, we used a transfer learning strategy to get around dataset size constraints.

Furthermore, we exhibited the competitive performance of our model in comparison to

earlier research and investigated the use of scale-free and scale-dependent metrics. By

using PDD as a useful source of channel information for forecasting channel behavior in

NOMA networks, this study sets itself apart. In subsequent deployments, this strategy

could enhance network performance and handover decision-making. Future objectives for

the study include examining the effects of PDD on network performance under different

traffic scenarios and delving deeper into the incorporation of ML algorithms for channel

estimation.

<<=8=;;
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6
C h a p t e r

Improving Channel Estimation Through Gold
Sequences

6.1 Introduction

NOMA has emerged as a viable solution for improving spectral efficiency and ensuring

fairness among users in wireless communication networks. Although NOMA has notable

benefits compared to classic orthogonal multiple access (OMA) schemes, its performance is

greatly affected by variables such as the accuracy of channel estimates and the mitigation

of interference. This study examines the efficiency of a NOMA system using Gold coding, a

method that enhances user isolation and provides supplementary variety. The assumption

of a common pilot channel (Hp) for all users is adopted in this chapter to analyze the

fundamental challenges of channel estimation in NOMA systems, where superimposed signals

inherently cause pilot contamination. While real-world scenarios involve distinct channel

responses (hn) for each user, this initial abstraction demonstrates why traditional pilot-

based estimation fails under NOMA’s interference-heavy regime. Dedicated pilots consume

orthogonal resources (time/frequency slots), wasting resource consumption, which eventually

conflicts with the massive connectivity characteristics of NOMA. The use of dedicated pilot

signals exacerbates the near-far effect in NOMA systems by causing inaccurate channel

estimation for distant users due to power disparity. Gold sequences mitigate user interference

through their low cross-correlation properties, while the CPF leverages power allocation

and partially decoded data to refine estimates dynamically. This phased approach—first

exposing the problem via simplification, then resolving it with advanced techniques—aligns

with methodological best practices in NOMA research. Moreover, the paper investigates
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the use of deep learning for channel prediction in NOMA systems. A deep learning model is

trained on a dataset to properly predict channel behavior, resulting in enhanced channel

estimation and overall system performance. The proposed channel estimate approach

integrates received pilot signals, power allocation vectors, and data symbols, showcasing its

superiority over conventional pilot-based algorithms. This discovery has the potential to be

used in different fields, such as 5G and future wireless networks. To guarantee effective and

dependable NOMA communication, network operators may improve resource allocation,

power control, and interference management by comprehending the influence of various

noise components and channel circumstances on system performance.

6.2 System Model

We consider a downlink NOMA network where a transmitter transmits signals to multiple

receivers. We focus on a single-antenna per-user decoding approach and a N number of users.

The wireless channel between the transmitter and a receiver is modeled as a frequency-flat

Rayleigh fading channel denoted by H = [h1, h2, . . . , hN ] ∈ CN . We assume a block-fading

channel where the elements of H remain constant during a transmission frame.

A transmission block consists of a pilot subcarrier and data subcarriers. The transmitter

sends a known pilot symbol xp on the pilot subcarrier during the pilot transmission. All

users experience the same pilot channel Hp. The received pilot signal at time slot t is:

yp(t) = Hpxp + zp(t) (6.1)

Where zp(t) is the additive white Gaussian noise at the receiver. During data transmission,

user data symbols xkn(t) are transmitted on specific subcarriers k within the block for user

n. Vector power allocation ϕn =
[
ϕ1
n, ϕ

2
n, . . . , ϕ

K
n

]
assigns power to each subcarrier k for

user n. The received signal for user n at time slot t is:

yn(t) =

K∑
k=1

√
ϕk
nH

k
nx

k
n(t) +

∑
(i ̸=n)

K∑
k=1

√
ϕk
iH

k
i x

k
i (t) + z(t) (6.2)

where,

Hk
n: Channel gain for user n on subcarrier k, xkn(t): Data symbol for user n on subcarrier
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k at time slot t, z(t): Additive white Gaussian noise. Here, we consider a system with a total

of K subcarriers. While a portion p of these subcarriers is dedicated to pilot signals. The

remaining subcarriers are dynamically assigned to user data. A block diagram of subcarrier

allocation is illustrated in Fig 6.1.

Figure 6.1: Transmission block structure at the BS in NOMA network.

In this work, we propose a CPF that incorporates not only the received pilot signal

yp(t) and the allocated power vector ϕk
n(t), reliable partially decoded data symbols x̂kn(t)

for user n on subcarrier k. Here, x̂ denotes the estimated symbol value based on the initial

decoding attempt.

Hk
n (predicted) = CPF

(
ĥrawn , ϕk

n(t), x̂
k
n(t)

)
(6.3)

We consider a downlink NOMA system with a single-antenna base station serving N

users over frequency-flat Rayleigh fading channels (h1, . . . , hN ) with block fading. The

transmission comprises: (1) a common pilot phase where all users share pilot xp, resulting

in contaminated reception yp(t) =
∑N

n=1 hnxp + zp(t) (Eq.1), and (2) a data phase with
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superimposed user signals yn(t) =
∑K

k=1

√
ϕk
nhnx

k
n(t)+

∑
i ̸=n

√
ϕk
i hix

k
i (t)+ z(t) (Eq.2). To

address pilot contamination and interference, we propose a Gold-CP framework where: (i)

each user is assigned a unique Gold code Cn (lengths L = 31, 63, 127) for spreading (x =
√
P
∑N

n=1 SnCn, Eq.4), leveraging low cross-correlation (|ρij | ≤ 1/
√
L) for initial channel

estimation via despreading (ĥrawn = yp ⋆ C
H
n ); and (ii) a Channel Prediction Function (CPF)

refines estimates using power allocation weights ϕk
n (prioritizing far users via wfar > wnear)

and partially decoded data x̂kn, yielding final estimates ĥfinaln = CPF (ĥrawn , ϕk
n, x̂

k
n) (Eq.3).

6.3 Channel Estimation Problem in NOMA Network

Building upon the well-established data-aided channel estimation technique, this work

proposes a novel approach tailored explicitly for downlink NOMA networks with a single

pilot for two users. Here, the data blocks containing superimposed symbols from both

users are utilized. A "semi-data-aided" approach [54] is used in the MIMO system to

improve the channel estimation accuracy. Reliable data symbols are crucial for accurate

channel estimation. However, the number of reliably decoded symbols might be limited

in NOMA with solid interference, even with advanced decoding techniques. This scarcity

of reliable data can make it challenging to obtain accurate channel estimates, especially

for the user experiencing more substantial interference. Instead of blindly using all reliable

information symbols that can be contaminated by residual interference, our work involves

selecting subcarriers with a higher power allocation (fractional power) from the superimposed

data blocks. These subcarriers are likely to carry stronger signals for a particular user.

Additionally, reliable data symbols detected before reaching this point in the decoding

process are also incorporated. This combined information set, including the pilot signal,

highly reliable data symbols, and high power-allocated subcarriers, empowers the channel

estimation process, leading to more accurate channel knowledge for improved NOMA system

performance.

In NOMA, the transmission frame contains superimposed symbols from multiple users,

making reliable channel estimation using only detected data symbols (even reliable ones)

insufficient. Reliable data symbols for one user might still be corrupted by interference

from the other user’s superimposed signal. This residual interference can lead to inaccurate

channel estimates. In contrast, MIMO systems benefit significantly from data-aided channel
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estimation using reliable detected symbol vectors. MIMO channels typically experience

independent fading for each path. Reliable data from one path can provide accurate channel

information for that specific path, aiding overall channel estimation. It exploits multiple

antennas to achieve spatial diversity. Reliable data from different antennas can offer valuable

insights into the channel response. Therefore, while data-aided channel estimation is effective

in MIMO, the superimposed nature of NOMA signals necessitates a more sophisticated

approach.

In a NOMA network with a single pilot for two users and superimposed data blocks,

selecting the "best" fractional power allocation for channel estimation depends on balancing

reliable data for user estimation and information gain for both users. In the first scenario,

We want to leverage data symbols with a high probability of correct decoding for channel

estimation. In the second one, the chosen subcarriers should provide valuable information

for estimating channels of both the near user (good channel) and the far user (challenging

channel).

In Algorithm 8, we calculate a weighted average for each subcarrier. The weights of wnear

and wfar determine the relative contribution of power allocation from each user. Sorting

the weighted average ensures subcarriers with a more robust combined power allocation

based on their weights appear at the beginning of the list. Finally, the algorithm selects the

top K subcarriers based on their weighted average for channel estimation. This approach

prioritizes subcarriers with potentially stronger signals for either user while incorporating

information from both users.

In our work, we adjust the weighting factors wnear and wfar to prioritize the far

user’s contribution (higher wfar compared to wnear). This will include subcarriers with a

stronger power allocation from the far user in the weighted average calculation for selecting

subcarriers for channel estimation.
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ALGORITHM 8: Channel Estimation using Weighted Power Allocation in NOMA
Input: ϕnear: Vector of fractional power allocation for near user (length: number of

subcarriers)
ϕfar: Vector of fractional power allocation for far user (length: number of subcarriers)
wnear: Weighting factor for the near user (0 ≤ wnear ≤ 1)
wfar: Weighting factor for far user (0 ≤ wfar ≤ 1)
K: Number of subcarriers to select for channel estimation

1 Initialization: Selected subcarriers: List of K subcarrier indices chosen for channel estimation
2 Calculate Weighted Average:
3 Initialize an empty list weightedaverage to store the weighted average for each subcarrier.
4 for k ← 0 to number of subcarriers −1 do
5 Calculate the weighted average:

weightedaverage[k] = (ϕnear[k]× wnear) + (ϕfar[k]× wfar) (6.4)

6 Sort Subcarriers: Sort the weighted average list in descending order. This ensures subcarriers
with the highest weighted average appear first. Select Subcarriers: Initialize an empty list of
selected subcarriers.

7 for i← 0 to K − 1 do
8 Add the corresponding subcarrier index from the sorted weightedaverage list to

selected subcarriers.

ALGORITHM 9: Channel Estimation using a two-step process in NOMA
Input: User set U = {1, ..., N}, Gold code length Lc ∈ {31, 63, 127}, Subcarriers K

Output: Refined channel estimates ĥfinal
n

1 Common Pilot Transmission:

2 4. Broadcast xp: yp(t) =
∑N

n=1 hnxp + zp(t) //Contaminated pilot

3 Phase 2: Gold Code Processing

4 for i← 1 to N do

5 5. Correlate: ĥraw
n = yp ∗ CH

n //Despreading

6 6. Apply cross-correlation bound: |ρij | ≤ 1/
√
Lc

7 7. Weighted subcarrier (wn) selection (from Algorithm 2)

8 Phase 3: Data Transmission

9 8. Allocate power: ϕk
n = P · d−α

n /K //Fractional allocation

10 9. Transmit superimposed signal: x =
√
P
∑N

n=1 SnCn

11 10. Receive: yn(t) =
∑K

k=1

√
ϕk
nhnx

k
n(t) +

∑
i ̸=n

√
ϕk
i hix

k
i (t) + z(t)

12 Phase 4: CPF Refinement

13 for i← 1 to N do

14 11. Perform SIC to obtain x̂k
n

15 12. LSTM Processing: ĥfinal
n = CPF (ĥraw

n , ϕk
n, x̂

k
n)

16 13. Update via MSE: L = ∥hn − ĥfinal
n ∥2
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6.4 Gold Sequences for NOMA Channel Estimation

Unlike MIMO systems, NOMA networks cannot directly exploit the spatial correlation

between subcarriers for user separation. Identifying which subcarriers reliably carry data for

a specific user is challenging, especially when multiple users’ data is superimposed on the

same subcarriers. However, Gold sequences offer a solution. The system can differentiate

between the users’ data by applying a Gold sequence to a transmission frame containing

one pilot and two superimposed data blocks. The key lies in finding reliable data symbols.

Gold sequences’ properties allow the system to distinguish between different users’ data,

even when occupying overlapping subcarriers. This enables the NOMA network to separate

and decode data intended for each user effectively.

Our work builds upon the concept of NOMA downlink channel estimation with Gold

codes, where we have a single transmit antenna at the BS and a total of N number of UEs

with a single antenna each. Data symbol vector S = (S1, S2, . . . , SN ) where Sn represents

information intended for user n where n = (1, 2, . . . , N). The channel between the BS and

each UE is represented by a vector H = (H1, H2, . . . ,HN ), where Hn represents the channel

for user n. A unique code Cn of size Lc is assigned to user n from a spreading code vector

C = (C1, C2, . . . , CN ). Lc represents the Spreading code length. P represents the total

transmit power at the BS. The transmitted signal x is a vector of size Lc×N and is formed

as follows:

x =
√
P ∗

N∑
n=1

Sn ∗ Cn (6.5)

Gold codes have specific Autocorrelation Function (ACF) and Cross-correlation Function

(CCF) properties. These properties are crucial for user separation in NOMA. Low out-

of-phase ACF and CCF values allow the NOMA system to differentiate between users’

data encoded with different Gold codes. The analysis of user separation and identification

of reliable data symbols remains similar to the uplink case. In this scenario, UEs can

potentially identify reliable data symbols Ŝn from their received signals yn. At the BS, we

can exploit the uplink channel reciprocity (assuming a quasi-static channel) to estimate the

downlink channel for each user. Each UE transmits a pilot signal encoded with its assigned

Gold code Cn during a designated channel estimation phase. The BS receives the pilot

signals from all UEs and can leverage the reliable data symbols Ŝn for user n to estimate the
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channel (hn). We can estimate the downlink channel ĥn of user n by utilizing the received

pilot signal ypilotn :

ĥn =
(
ypilotn ∗ CH

n

)
∗ diag

(
Ŝn

)
∗ inv

(
P ∗H ∗ Cn ∗ CH

n +N
)

(6.6)

where ypilotn is the pilot signal received from user n. CH
n represents the hermitian transpose

of user n’s spreading code. diag(Ŝn) represents the diagonal matrix with reliable data

symbols of user n on the diagonal. inv() represents the matrix inversion and N is the noise

vector.

We can evaluate the effectiveness of using Gold codes by analyzing metrics like Mean

Squared Error (MSE) between the estimated channel (ĥn) and the actual channel (hn) for

each user. Symbol Error Rate (SER) of each user’s data after channel estimation and data

decoding at the UEs. By incorporating Gold codes in a NOMA downlink network with a

single transmit antenna, we can improve user separation during decoding at the UEs. This

allows for identifying reliable data symbols, which the BS can then use to estimate downlink

channels for each user. This approach can lead to more accurate channel estimation and

improved system performance. Further analysis in the next section involving simulations on

real-world data can provide more concrete performance evaluations.

Building upon the initial approach from Section III of using reliable data and power

allocation for channel estimation in NOMA, further improvements can be achieved through

techniques like Gold sequences in Section IV through an iterative technique. Traditional

methods struggle to differentiate between users’ data on the same subcarriers. However, with

their specific correlation properties, Gold sequences allow the system to distinguish between

users’ data even when occupying the same subcarriers. The iterative channel estimation

method enables more accurate channel estimation and improved system performance in

NOMA networks.

6.5 Results and Discussion

6.5.1 Simulation Setup

A single-cell network with 43 dBm transmission power and 5 MHz bandwidth at 2 GHz

is simulated. Path loss is modeled using a 3.76 exponent and 10 dB shadowing standard
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deviation. Noise has a spectral density of -174 dBm/Hz and a figure of 7 dB. The simulation

assumes a minimum 10 meters between the base station and users, with near and distant

users at 20 and 50 meters. The simulation lasts 10,000 attempts at -15 to 25 dB SNR.

Parameter Value
Number of Cells 1
Max Transmission Power 43 dBm
Bandwidth 5 MHz
Carrier Frequency 2 GHz
Path Loss Exponent 3.76
Shadowing Standard Deviation 10 dB
Noise Spectral Density -174 dBm/Hz
Noise Figure 7 dB
Min Distance BS to User 10 meters
Number of Simulation Trials 10,000
Signal-to-Noise Ratio (SNR) Range -15 dB to 25 dB
Distance from BS to near user 20
Distance from BS to far user 50

Table 6.1: Simulation Setup.

Model Parameter values
Total Time Steps 10000
Phased Time Steps 120
Prediction Steps 20
LSTM Layers 128, 64
GRU Layer 32
Dropout Rate 0.2, 0.3
Batch Normalization After each layer
Dense Layer 50
Output Layer 20, Linear Activation
Optimizer Adam
Learning rate 0.0008
Loss Function Mean Squared Error
Batch Size 32
Epochs 15

Table 6.2: Model Parameters for LSTM-based Prediction Model
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6.5.2 Performance Comparison of NOMA with Gold Coding and C-V-

BLAST

Fig 6.2 presents the symbol error rate (SER) performance of a two-user NOMA system

equipped with single antennas, utilizing Gold sequences of lengths 31, 63, and 127. The

plot illustrates the SER as a function of signal-to-noise ratio (SNR) for both the near and

far users. Ideally, the SER curves for both users should exhibit a downward trend with

increasing SNR. However, a significant disparity in SER is expected between the near and far

users due to the inherent path loss advantage of the former. While the impact of code length

on the near user’s SER might be less pronounced, it could potentially offer improvements

for the far user, especially in challenging propagation conditions.

Figure 6.2: SER performance comparison of a two-user NOMA system employing Gold
sequence lengths 31, 63, and 127.

Fig 6.3 contrasts the SER performance of a two-user NOMA system utilizing C-V-

BLAST [54] and Gold sequences of lengths 31, 63, and 127. Due to the constrained spatial

degrees of freedom in our single-antenna system, the potential benefits of C-V-BLAST,

which relies on spatial processing for interference mitigation, are limited. Consequently,
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the figure demonstrates that gold-coded NOMA outperforms C-V-BLAST across a range

of SNR values, typically spanning from -20 dB to 0 dB. The diversity inherent in Gold

sequences proves to be particularly advantageous in overcoming the challenges posed by the

limited spatial dimensions.

Figure 6.3: SER performance comparison of Gold coding and C-V BLAST for a two-user
NOMA system.

6.5.3 Performance Evaluation Via Deep Learning Model

To generate a realistic simulation environment for a 5G NOMA network, we constructed

a noisy dataset of 11000 data points using the latitude and longitude data from [51]. We

introduced a combination of noise sources relevant to 5G networks to mimic real-world

propagation conditions. This includes additive white Gaussian noise (AWGN) with a

standard deviation of 0.001 to represent thermal noise in the system. Additionally, we

incorporated Rayleigh fading, characterized by a scale factor of 1.0, to simulate the multipath

propagation effects prevalent in urban environments. A shadowing component modeled

as a log-normal distribution with a mean of 0.0 dB and a standard deviation of 8.0 dB
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was added to capture large-scale path loss. This comprehensive noise model, incorporating

AWGN, Rayleigh fading, and shadowing, provides a robust foundation for evaluating the

performance of our proposed NOMA system under realistic channel conditions.

To capture the dynamic nature of 5G wireless channels, we employed a rolling window

approach with a window size of 2 minutes on the generated 10-minute dataset in Fig 6.4.

This method effectively balances the need for capturing rapid channel fluctuations, essential

for 5G systems, with maintaining sufficient data points for statistically reliable analysis.

By analyzing data within this window, we can effectively evaluate the impact of different

noise components on system performance, identify channel dynamics, and develop robust

channel estimation and decoding algorithms tailored for the 5G environment. Moreover, the

rolling window approach allows for the analysis of time-varying channel conditions, enabling

the study of channel coherence time and Doppler spread, crucial parameters for 5G system

design.

Figure 6.4: A rolling window approach with a 2-minute window size was applied to the
10-minute dataset.

To balance computational efficiency and model effectiveness, a subset of 3000 data

points was meticulously selected for training the LSTM model, as shown in Fig 6.5.

This approach allowed for a focused exploration of the dataset’s key characteristics while

preventing overfitting issues arising from excessively large datasets. By training on this
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representative subset, the model was able to learn essential patterns and dependencies within

the data, leading to improved generalization capabilities and accurate channel predictions.

Figure 6.5: Loss function of training and validation dataset.

Our proposed CPF incorporating received pilot signals, power allocation vectors, and

partially decoded data symbols significantly enhances channel estimation accuracy compared

to a CPF relying solely on received pilot signals in NOMA networks. By leveraging additional

information about the fractional power allocation to the subcarrier, the CPF can more

effectively capture the dynamic channel variations and interference characteristics inherent

in NOMA systems. This refined CPF translates to superior SNR performance compared to

traditional methods that rely solely on pilot-based estimation, as shown in Fig 6.6.

6.5.4 Addressing Scalability Challenges for Larger Networks

In Fig 6.7, simulates and evaluates the performance of channel estimation in the NOMA

network using Gold sequences, which are ideal for multi-user environments due to their

excellent correlation properties and low cross-correlation. The process begins with generating

Gold sequences by combining two preferred pairs of maximum-length sequences (m-sequences)

using linear feedback shift registers (LFSRs) with specific polynomial coefficients. The

simulation models a NOMA network with varying numbers of users, incorporating sequence

reuse to accommodate larger networks, which introduces interference, a realistic challenge in
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Figure 6.6: Enhanced channel estimation in NOMA via CPF with fractional power allocation.

large-scale systems. Channel estimation is performed using matched filtering, where received

signals are correlated with the transmitted Gold sequences to estimate channel coefficients.

The performance is evaluated using the Mean Squared Error (MSE) metric, with results

showing that as for the larger network of size 40 to 100 UEs sequences are reused, and

interference grows, leading to higher MSE values. Despite this, Gold sequences maintain

relatively low MSE values, demonstrating their robustness in multi-user environments.

However, the simulation reveals scalability limitations, as performance degrades in very large

networks (> 60 UEs) due to increased interference. The findings emphasize the importance

of sequence design and interference management in NOMA systems, highlighting the need

for advanced techniques like interference cancellation or adaptive sequence allocation to

improve scalability. Limitations include the use of a fixed Gold sequence length (31), a

simplified interference model, suggesting future work should explore adaptive sequence

lengths, more realistic interference models.

Gold sequences are widely used in communication systems, including NOMA, due to

their good correlation properties and low cross-correlation values, making them suitable

for user separation and interference mitigation in multi-user environments. However, their
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Figure 6.7: Channel Estimation in NOMA Networks Using Gold Sequences: Evaluating
Scalability, Interference, and MSE.

scalability for larger networks in NOMA systems depends on several factors. First, Gold

sequences are generated using preferred pairs of m-sequences with a length of 2n−1, where n

is the degree of the polynomial used to generate the m-sequences. As the network size grows,

the number of required sequences increases, and if the number of users exceeds the available

Gold sequences, sequences must be reused, leading to increased interference. To support

larger networks, the sequence length must be increased, which raises the complexity of

sequence generation and processing. Second, Gold sequences have bounded cross-correlation

values, which are crucial for minimizing interference between users, but as the network

size grows, cross-correlation may become a limiting factor, especially with sequence reuse,

degrading system performance through increased multi-user interference (MUI). Third,

generating and processing longer Gold sequences requires more computational resources,

posing challenges for larger networks, particularly in real-time systems, while the complexity

of detecting and decoding signals in NOMA systems also increases with the number of

users and sequence length. Fourth, NOMA relies on superposition coding and successive

interference cancellation (SIC) to achieve high spectral efficiency, and Gold sequences must

be designed to ensure that the SIC process is not overly complicated by high cross-correlation
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or interference, with the trade-off between sequence length, correlation properties, and

spectral efficiency becoming critical for larger networks. Fifth, if Gold sequences are not

scalable for very large networks, alternative sequence designs or multiple access techniques,

such as Zadoff-Chu sequences, random sequences, or hybrid approaches combining Gold

sequences with power-domain or spatial-domain NOMA, may be considered. Finally, in

practice, the scalability of Gold sequences for NOMA systems depends on the specific

application, channel conditions, and hardware limitations, with simulation and testing

essential to evaluate their performance in larger networks and determine whether they meet

the required quality of service (QoS) metrics. In conclusion, Gold sequences are effective

for small to medium-sized NOMA networks due to their excellent correlation properties,

but for larger networks, their scalability is limited by sequence length, cross-correlation,

and computational complexity, necessitating alternative sequences or hybrid approaches to

ensure efficient and reliable communication in large-scale NOMA systems.

6.6 Summary

The presented research investigates the performance of a NOMA system utilizing Gold coding

and compares its efficacy to traditional C-V-BLAST techniques. The results demonstrate

the superiority of gold-coded NOMA in terms of SER across a range of SNR values. This

advantage is attributed to the inherent diversity offered by Gold sequences, which mitigates

the challenges posed by limited spatial dimensions in single-antenna systems. A deep

learning model network was trained on a dataset to predict channel behavior and lead

to accurate channel predictions. The proposed channel estimation method, incorporating

received pilot signals, power allocation vectors, and data symbols, significantly outperforms

traditional pilot-based methods. The proposed methodology and findings have potential

applications in various domains. Identifying the impact of different noise components

and channel conditions on system performance can guide network operators in optimizing

resource allocation, power control, and interference management.

<<=8=;;
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Conclusions and Future Works

7.1 Conclusions

NOMA has lately been recognized as a viable multiple access approach for 5G and beyond

wireless networks owing to its potential advantages, such as greater spectral efficiency and

user fairness. In contrast to traditional OMA systems like TDMA and OFDMA, NOMA-

based DL transmission allows many users to share the same orthogonal radio resources, such

as time and frequency, by using power-domain multiplexing at the transmitter. This kind

of multiplexing is known as Space Division Multiple Access (SDMA), where signals destined

for various users are encoded with varying power levels that are inversely proportionate

to the users’ channel strengths. Specifically, enabling the simultaneous service of several

users inside the same resource block using NOMA facilitates the widespread adoption of

IoTs by providing extensive connection. The receiver uses the SIC approach to decipher the

signals meant for weaker users before decoding their own signals. In addition, NOMA has

recently been integrated with other multiple-access approaches. These approaches include

NOMA with multiple antennae. These strategic pairings provide extra opportunities for

flexibility, allowing for the development of its inherent advantages. Resource allocation and

interference management are essential in the design of wireless systems and networks as they

facilitate the optimal use of resources. Thus, this thesis concentrated on various resource

allocation and interference management strategies for distinct kinds of NOMA systems.

Chapter 3 discusses how the aim of maximizing the total sum rate of the network
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and decreasing power consumption may be expressed as a Multi-objective optimization

(MOO) problem in this study. The issue is resolved by seeking the most favorable collection

of solutions. Integrating reinforcement learning into multi-objective optimization enables

automated parameter tuning, minimizing the need for human intervention. The method

described offers a Pareto optimum solution for competing goals in a dynamic setting.

Chapter 4 discusses the use of the MIC method in MIMO-NOMA wireless cellular

systems as a practical approach to enhance spectrum and energy efficiency. This study

specifically examined the downlink multiuser MIMO-NOMA, where the number of devices

with receiving antennas in a cell is much more than the number of broadcast antennas at the

base station. Each MIMO-NOMA cluster is equipped with a distinct MIMO beam that is

perpendicular to the beams of the other clusters. Additionally, all users within a cluster are

scheduled based on NOMA. The majority of MIMO-NOMA solutions discussed in existing

literature focus on mitigating inter-cluster interference, whereas there is a limited amount of

research dedicated to tackling intra-cluster interference. The use of the MIC approach in the

MIMO-NOMA network leads to a substantial improvement in both spectrum and energy

efficiency. In addition, we have used the correlation coefficient to establish the NOMA

network inside each cluster, resulting in a substantial improvement in the system’s spectral

efficiency (SE) and energy efficiency (EE) performance. Algorithm 1 utilizes the channel

status information of the device to identify the relay nodes and operates on two time stamps.

Potential future research might focus on enhancing the study by using imperfect channel

state information.

Chapter 5 provides an explanation of... This work proposed a unique approach for

predicting NOMA channels, using a wider range of CSI characteristics including RSRP,

RSRQ, CQI, SNR, and particularly PDD. System-level simulations demonstrated that a low

Channel State Information (CSI) significantly impacts the occurrence of radio connection

failures and handover failures. The findings of our study clearly illustrate the advantages

of PDD as an additional measure for measuring CSI. PDD reduces signaling overhead

and improves the representation of channel dynamics compared to traditional methods

by eliminating the need for specific pilot signals. Moreover, this approach is flexible in

accommodating changing user traffic patterns. Our proposed technique outperformed a

deterministic model in terms of Mean Squared Error (MSE) and Bit Error Rate (BER).
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This research is the first to examine the use of PDD in NOMA networks for predicting

handover and radio link failures. Recognizing that machine learning may be used for channel

estimation due to its ability to operate without the need for several stringent assumptions.

Furthermore, we used a transfer learning approach to circumvent limitations imposed by

the size of the dataset. Moreover, we demonstrated the competitive efficacy of our model in

contrast to previous studies and explored the use of scale-free and scale-dependent metrics.

This research distinguishes itself by using PDD as a valuable source of channel information

to predict channel activity in NOMA networks. In future deployments, this method has

the potential to improve network performance and the process of determining handover

decisions. Future goals for the project include investigating the impact of PDD on network

performance in various traffic situations and further exploring the integration of machine

learning methods for channel estimation.

Chapter 6 discusses a research study that examines the performance of a NOMA system

using Gold coding and compares it to classic C-V-BLAST methodologies. The findings

indicate that gold-coded NOMA outperforms other methods in terms of Symbol Error

Rate (SER) across various Signal-to-Noise Ratio (SNR) levels. The benefit is due to the

intrinsic variety provided by Gold sequences, which helps to overcome the limitations caused

by restricted spatial dimensions in single-antenna systems. A deep learning model was

developed on a dataset to accurately anticipate channel activity. The suggested channel

estimation technique, which includes received pilot signals, power allocation vectors, and data

symbols, exhibits superior performance compared to conventional pilot-based approaches.

The suggested approach and discoveries have the capacity to be used in diverse fields.

Analyzing the influence of various noise components and channel conditions on system

performance may assist network operators in improving resource allocation, power control,

and interference management.

7.2 Future Works

The current research in this thesis on NOMA has mainly used conventional genetic and rein-

forcement learning (RL) algorithms. Future researchers may look into other RL methods to

make the proposed multi-objective optimization framework for NOMA networks work better

and be more adaptable. Deep Reinforcement Learning (DRL) uses deep and reinforcement
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learning methods to help agents learn and make choices in complicated settings. Using

neural networks involves DRL combining reinforcement learning with deep neural networks

to describe states and make more complex decisions. NOMA networks with high-dimensional

state spaces benefit from this. DRL’s flexibility to learn from prior experiences may lead to

more effective methods in shifting environments, making it ideal for NOMA systems that

operate in different environments. Reinforcement learning techniques with actor and critic

components are called actor-critical methods. Actor-critic methods can learn policies (actors)

that can make decisions in a more stable environment faster than standard policy gradient

methods. Actor-critic algorithms may perform better in complex NOMA settings, especially

when opposing objectives are present. Combination approaches include integrating DRL

with traditional RL, which may improve performance and adaptability by combining DRL

and RL algorithms. DRL may be used for specific optimization problem components and

RL for others. Alternatively, these two strategies may be hierarchically mixed.

This thesis’ NOMA study largely uses Successive interference cancellation (SIC). Fur-

ther research will examine various multiple interference cancellation (MIC) methods. By

eliminating user interference, MIC improves NOMA system performance. The present

research focused on one MIC approach, but future studies may analyze others to deter-

mine their pros and cons. SIC decodes user signals one after another, treating them as

interference. SIC is computationally efficient but prone to error propagation, where early

decoding errors might impair later decoding accuracy. Joint detection methods decode all

users’ signals simultaneously, considering interference. Joint detection may perform better

in interference-filled environments but requires more processing power. Using SIC and

joint detection, hybrid methods may sacrifice performance and computational complexity.

Adapting between SIC and joint detection depending on channel or other criteria might

improve performance. Finding the optimum MIC strategy for diverse NOMA conditions may

need further investigation. This evaluation will include computer complexity, performance

improvements, and channel resilience.

The current research in this thesis mostly focuses on small-scale NOMA networks.

Addressing challenges in large-scale NOMA networks will be the focus of future research. In

order to address the difficulties presented by extensive NOMA networks, future studies should

investigate methods to improve scalability and computing efficiency. Distributed processing
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approaches enable the distribution of computing tasks across numerous nodes, therefore

alleviating the workload on individual systems. Dimensionality reduction strategies may

reduce the effect of huge datasets, hence enhancing computing performance. Furthermore,

the usage of lightweight or compact machine learning models may enhance the efficiency of

resource allocation in situations with limited resources. This makes the suggested channel

prediction technique more appropriate for practical implementation in large-scale NOMA

networks.

The current research in this thesis on NOMA has mostly depended on using conven-

tional Gold coding. To enhance the performance of NOMA systems, optimizing both power

allocation and Gold code selection using a combined optimization framework is crucial.

Researchers may determine the most advantageous combination that optimizes system

performance by meticulously examining the trade-offs involving these two characteristics,

such as user fairness, computing complexity, and implementation limitations. By investi-

gating various optimization strategies, such as evolutionary algorithms or particle swarm

optimization, it is possible to discover effective solutions to this intricate optimization issue.

This may enhance spectral efficiency, user fairness, and overall system performance.

<<=8=;;
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