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Abstract

Vehicular Ad hoc NETworks (VANETs) have become an important part of a smart city en-

vironment. Vehicles are equipped with on-board units which allow them to run applications

and communicate with Road Side Units (RSUs). RSUs are connected to a local server with

some amount of storage and computing resources to run Virtual Machines (VMs) that pro-

cess the application requests generated by vehicles. They act as a cloudlet and provide cloud

support to requests. These requests may have different deadlines and resource requirements

like storage, computing, and content delivery. Processing the application requests at RSUs

may make some of the RSUs overloaded, especially near road intersections where a larger

number of vehicles are present. This significantly affects the quality of service by increasing

delay and decreasing the number of requests processed. Deployment of more RSUs may

reduce the chances of overloaded RSUs. However, the cost of deployment of RSUs and their

maintenance cost does not allow us to add a large number of RSUs. In this scenario, it is

necessary to either increase the total resource availability by using the resources from some

entities in the scenario or utilize the available resources of the network efficiently. In this

thesis, we propose a set of algorithms to assign the application requests to a target node

in the network such that the number of requests processed is maximized while minimizing

the end-to-end delay. The target node may be an RSU, Central Cloud (CC) or Parked

Vehicle (PV). First, we have utilized the available resources of other RSUs by migrating the

Virtual Machines (VMs) from the overloaded RSU to other RSUs with available resources.

Second, we have rented the resources from other RSUs with consideration of migration cost

and rent-out cost. Third, we have rented the resources from other RSUs, PVs and the CC

to process the application request. In all the scenarios, we have focused on efficient man-

agement of cost such that the users and the service providers are benefited. The proposed

algorithms are evaluated by extensive simulations and their performance is compared with

state-of-the-art algorithms for similar scenarios.
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1
Introduction

1.1 Vehicular Ad-Hoc Networks

A Vehicular Ad-hoc NETwork (VANET) is a type of mobile ad-hoc network that enables

communication between Vehicle and Vehicles (V2V), between Vehicles and roadside Infras-

tructure (V2I), and between Infrastructure to Infrastructure (I2I) [1] as shown in Figure

1.1. These communication modes collectively contribute to creating a connected and Intel-

ligent Transportation System (ITS). VANETs are designed to improve road safety, traffic

efficiency, and provide various services to drivers and passengers [2]. These networks rely on

the wireless communication capabilities of vehicles to create a dynamic and self-organizing

network without the need for a pre-existing infrastructure. It uses Dedicated Short Range

Communication (DSRC) technology for communicating between the vehicles and between

vehicles and infrastructure. It operates in 5.9 GHz frequency band and is specifically de-

signed for vehicular communication. DSRC supports both point-to-point and broadcast

communications. It is based on the IEEE 802.11p protocol. It is optimized for low-latency

communication and high-speed data exchange in vehicular environments. Unlike traditional

Wi-Fi, which focuses on high data rates over longer ranges, 802.11p prioritizes reliability

and low latency for safety-critical applications.
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Figure 1.1: VANET architecture

1.1.1 Communication Modes

There are generally three communication modes in VANET. Each communication mode is

discussed below:

� Vehicle-to-Vehicle (V2V) Communication V2V communication refers to the di-

rect exchange of information between vehicles on the road. It enhances road safety by

allowing vehicles to share real-time data about their current status, such as speed, po-

sition, acceleration, and other relevant information. Vehicles can exchange information

to detect potential collision risks and take preventive actions. V2V communication en-

ables cooperative driving, where vehicles can coordinate their movements to optimize

traffic flow and reduce congestion.

� Vehicle-to-Infrastructure (V2I) Communication V2I communication involves

the exchange of information between vehicles and roadside infrastructure elements,

such as traffic lights, road signs, and other fixed installations. It improves traffic

management, provides real-time information to drivers, and enhances overall road

efficiency. Vehicles can receive information from traffic lights to optimize their speed
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and reduce unnecessary stops, improving fuel efficiency. Infrastructure can assist by

offering information about nearby services, traffic conditions, or emergencies.

� Infrastructure-to-Infrastructure (I2I) Communication I2I communication in-

volves the exchange of information between different elements of the roadside infras-

tructure without direct involvement of vehicles. This facilitates coordination and data

sharing among various infrastructure components to improve overall system efficiency.

Centralized traffic management systems can collect data from various infrastructure

elements to monitor and control traffic flow in real time. Coordination between differ-

ent infrastructure components, such as surveillance cameras and emergency response

systems, can enhance the response to possible accidents or emergencies.

Vehicles in VANETs have less capacity in terms of storage and computing resources. An

increase in the number of applications in vehicles leads to the generation of huge amounts

of data. The lack of availability of resources in the vehicles forces them to send the service

requests to nearby Road Side Units (RSUs) which may have a higher capacity of resources.

However, due to the limited amount of resources even in the RSUs, in high-traffic scenarios

or road junctions, RSUs may become overloaded.

1.1.2 Load Balancing in VANETs

The growing number of applications integrated into vehicles on the roads generates vast

amounts of data, surpassing the capacity for real-time storage and processing in vehicles [3].

For instance, applications such as advanced driver assistance systems, in-car entertainment,

and vehicle-to-everything communication contribute to an overwhelming volume of data

that exceeds the immediate capabilities for storage and real-time analysis of vehicles [4]. In

this scenario, RSUs play an important role. The RSUs serve as a fixed device, similar to

a compact base station, facilitating V2I communication with vehicles while simultaneously

connecting to the core network through a high-speed back-haul link. Although the ideal

scenario involves comprehensive RSU coverage across the entire road network, practical chal-

lenges hinder widespread deployment. One primary obstacle is the considerable investment

required for making full coverage to the city environment [5]. Moreover, RSUs demand reli-

able electrical power sources, and safety considerations further complicate their deployment.

To address these issues, researchers are exploring deployment strategies focused on achieving

maximum coverage with a minimal number of RSUs. A significant drawback of static RSUs
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is their inability to adapt to dynamic traffic patterns. During peak hours, RSUs may operate

at maximum capacity, while in off-peak hours resources may be underutilized. This nature

of RSUs becomes particularly problematic during sudden changes in road infrastructure or

routine maintenance, leading to road closures and traffic diversions that impede the RSU’s

ability to provide consistent VANET Quality of Service (QoS). Researchers are actively

addressing these challenges in the context of evolving traffic conditions and infrastructure

changes. One possible solution to the overloaded scenario is through Virtual Machine (VM)

migrations which helps to transfer the load from one RSU to another RSU in the network.

Figure 1.2: Overloaded RSUs

1.1.3 Virtual Machines

A VM is a compute resource that uses software to run programs and deploy applications [6].

The data generated by vehicles can be processed by running VMs in the RSUs [7]. VMs

modularize task processing, enhancing security and aiding in decision making. There may

be situations where a VM is migrated from one RSU to another due to an overloaded

scenario, this process is known as VM migration [8]. VM migration is also costly as it
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uses system resources and incurs delays, which increases the completion time of tasks. The

resource capacity of RSUs becomes insufficient particularly on road junctions during peak

hours which leads to an overloaded scenario as shown in Figure 1.2. Researchers have

worked in this direction to use on-road vehicles, other RSUs, Parked Vehicles (PVs), and

Central Cloud (CC) to avoid overloaded scenarios. However, the maximization of profit for

the service provider is not focused on while doing Load Balancing (LB). In our approach,

we tried to reduce the chance of overloading RSU by assigning the vehicle requests to

appropriate nodes.

1.1.4 Cloud-assisted Vehicular Networks

The use of cloud resources to assist RSUs is suitable for delay-tolerant applications but in

vehicular networks, various delay-sensitive applications are there which need to process the

data within a very short period. Applications deployed in the remote cloud server cannot

guarantee low service latency for the user because of unpredictable delays in wide area

networks [9]. It affect the QoS in large extent [10]. The use of vehicles extends the capacity

of the RSUs by making use of the underutilized resources of vehicles near the RSUs [11].

Use of vehicles to assist RSUs [12] [13] leads to frequent service disconnections because of

the high mobility of vehicles. Notably, studies have shown that 70% of individual vehicles

almost spend 95% of time in parking lots, home garages, or street parking spaces [14] [15].

PVs occupy a significant portion of the total number of vehicles present globally with rich

resources. They have sufficient idle time to process offloading tasks by the RSUs [14] [16].

The idle resources combined together to alleviate the workload of the RSUs and extend

the resource capacity of vehicular networks [17]. This may significantly reduce the need to

add new RSUs which incurs huge infrastructure costs. However, RSUs are equipped with

storage and computing resources which becomes insufficient in an overloaded scenario. The

PVs and CCs can be used for processing the requests.

1.1.5 Motivation and Research Scope

An increase in the number of vehicles and applications in the vehicles generates a huge

number of requests. The amount of data generated by some of the applications is huge

(ex. gaming, augmented reality, image processing, etc.). Some of the applications are

computationally intensive (ex. augmented reality, image processing etc.) while some are

5



Introduction

storage-intensive (ex. video storage and transfer, storing traffic data, etc.). The deadlines

for requests generated by applications are not uniform. Some are delay tolerant while some

are delay sensitive. The speed of the vehicles brings extra challenges for the RSUs to serve

the vehicle requests because of dynamic changes in network topology and less time for

connectivity between the vehicles and nearby RSUs. The infrastructure cost of RSUs does

not allow the authorities to deploy them in large numbers to cover the entire city. This

creates regions where vehicles cannot connect to any RSUs. The RSUs in road intersections

are overloaded while some RSUs are far from the intersections with sufficient resources.

This creates a mismanagement of available resources. This leads to an increase in delay,

a decrease in the number of tasks completed, an increase in cost, and degraded QoS. The

RSUs have limited capacities but the connectivity of RSUs with other nodes with available

resources is not a constraint. Still, the service provided by the RSUs is not up to the

mark. This poses an opportunity to work on request assignments for the RSUs. For request

assignment, there is a need for a scheduler that can schedule the requests to the appropriate

nodes by which the performance of the system is enhanced without affecting the QoS of the

system.

1.2 Major Contributions of Thesis

This thesis contributes towards two major areas in vehicular networks: (1) Load balancing

in RSUs, and (2) Profit maximization of service providers. The following sections discuss

these contributions:

1.2.1 Contribution on Load Balancing

Load balancing is an important concept in the field of VANETs due to rapid changes in

network topology and less time of interaction between the vehicles and the RSUs. The delay

in receiving service requests is important as the vehicles move very fast. Getting the response

after due time is not useful for some applications. The increase in applications in vehicles

generates a huge amount of data that needs processing by some of the nodes. Although

RSUs have more capacity in terms of resource availability, simultaneous requests from a

huge number of vehicles make the RSUs overloaded. It becomes a challenge for the RSUs to

allocate the request from the vehicles to suitable resources. Most of the proposed approaches

do not consider many factors such as storage and computing resources simultaneously, and
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continuous data generation while doing LB. The first contribution of this thesis is to propose

a load-balancing algorithm considering the above factors. The following section explains the

first contribution.

1.2.1.1 Application aware load balancing for road side units

In this work, our objective is to schedule VMs to RSUs in such a way that the number of

VM requests that get served is maximized with minimum migration cost. In particular,

we propose an algorithm called Application Aware Load Balancing (AALB) to balance the

application load among RSUs while trying to meet the objectives stated above. AALB uses

a Hungarian Matching algorithm to perform optimal allocation of VMs to RSUs. We have

evaluated the performance of the proposed algorithm extensively through simulation using

real traffic traces generated using SUMO (Simulation in Urban MObility) traffic generator

[18]. The performance of AALB is compared with three other existing algorithms. The

results show that AALB significantly improves the number of applications served and VM

migration cost as compared to the three existing algorithms. The core contributions of our

work are summarized below:

� We have formulated a scenario to schedule the requests of vehicles in RSUs that uses

VM migration between RSUs to balance the load across RSUs. The objective is to

maximize the number of VMs completed while minimizing the cost of VM migration.

� We have proposed an algorithm called Application Aware Load Balancing (AALB),

that efficiently allocates VMs to RSUs to increase the number of VMs completed while

reducing the cost of VM migration.

� We have performed extensive simulations to evaluate the performance of AALB. In

particular, we have compared the performance of AALB with three other existing algo-

rithms with different types of applications to show that AALB performs significantly

better.

It is important for a scheduler to choose a suitable RSU for task assignment, where the

cost of migration and cost of renting the resources should be minimum without affecting

the objectives. The following section explains the second contribution.
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1.2.1.2 Resource renting for load balancing in VANETs

In this work, we assign the VM requests to RSUs such that a maximum number of VMs

can execute with the least amount of time and cost. In particular, we have proposed

an algorithm that we call Efficient Resource Renting (ERR) to meet the aforementioned

objectives. Through simulations, we compared the effectiveness of ERR with two other

known methods. The ERR is further modified to show the effectiveness of data partitioning

by assigning requests to the RSUs. The results show a significant improvement with the

proposed method as compared to the existing algorithms in terms of rent-out cost, VM

completion percentage, total cost, and end-to-end delay. The following is a summary of this

work’s main contributions:

� To schedule the VMs’ requests for RSUs, we have formulated our scenario as a weighted

bipartite graph due to which problem becomes an assignment problem.

� We have proposed a pricing model to simulate the cost of renting out RSUs.

� We have proposed an algorithm that we call ERR to assign the VM requests to the

RSUs by considering remaining storage capacity, remaining computing capacity, Data

Processing Rate (DPR), and rent-out cost.

� Extensive simulations show the performance of ERR for periodic applications, event-

driven applications, and their combinations. We found that ERR outperforms other

existing algorithms in terms of average delay, average rent-out cost, VM completion

percentage, and average total cost.

� We have analyzed the end-to-end delay of requests to measure the performance of

ERR with consideration of data partitioning. We found that with data partitioning

the assignment methods can be further improved.

� Simulation results show an improved performance of Modified ERR over other algo-

rithms as well as ERR.

1.2.2 Contribution on Profit Maximization

RSUs have limited resources in VANETs. The increase in the number of requests by the

applications running in the vehicles leads to the generation of a large number of service
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requests. This leads to service failure and a decrease in QoS. Renting resources from other

RSUs is considered one of the solutions. However, an increase in the number of applications

and the generated data makes the available resources insufficient. Some of the resources of

CC are not cost effective and accessing some resources increases the latency. Additionally,

the infrastructure cost of RSUs is huge. Considering these scenarios, there is a need for a

scheduling algorithm that can allocate the service requests of the vehicles to the appropriate

node(CC/RSU/PV). The following section describes our third contribution.

1.2.2.1 Profit maximization in heterogeneous vehicular networks

The core contributions of this work are summarized below:

� We have formulated a problem to schedule the requests generated by the application

of the vehicles to the nodes from RSUs, PVs, and CC.

� We have proposed an algorithm called Adaptive Assignment for Profit Maximization

(AAPM) which maximizes the profit of the Service Provider (SP) and number of tasks

completed.

� To show the cost associated with each node, a cost model is proposed. It helps in

maximization of profit for the SP.

� We have performed extensive simulations to evaluate the performance of our pro-

posed algorithm AAPM. We have compared the performance of AAPM with existing

algorithms along with a GREEDY approach.

1.3 Organization of Thesis

This thesis is divided into six chapters based on the contributions mentioned above. The

organization of the thesis is shown in Figure 1.3. The following is a list of the remaining

chapters in this thesis.

� Introduction, motivation, and thesis contributions are presented in this chapter.

� In Chapter 2, the background and prior works related to the thesis contributions are

discussed.
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� In Chapter 3 we present our first contribution. Here, we propose a load-balancing

algorithm while considering the application types. We call the algorithm Application

Aware Load Balancing (AALB). The application’s type and deadline are considered

while doing the assignment. AALB uses a Hungarian matching algorithm to perform

optimal allocation of VMs to RSUs.

� Chapter 4 details our second contribution, where we propose a resource renting

algorithm that we call Efficient Resource Renting (ERR) for RSUs. This maximizes

the number of VMs that finish running while minimizing total cost and average end-to-

end delay. In addition to this, the effect of data partitioning is shown using analytical

methods. To see the effect of data partitioning, the ERR is further modified while

assigning requests to RSUs.

� Chapter 5 presents our third contribution. Here, we propose an Adaptive Algorithm

for Profit Maximization (AAPM) algorithm. The profit of the SP gets maximized

without affecting the QoS. Here, the resources of other RSUs, PVs, and CC are rented

while providing service to the users.

� Chapter 6 concludes the thesis with a summary of the critical findings of the research.

In addition, we also describe the future direction of the work conducted in the thesis.
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Figure 1.3: Thesis organization
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2
Background and Literature Review

This chapter presents a brief overview of the background and literature review on load

balancing. In the background study, we have presented the challenges, importance of load

balancing, and finally listed some of the load-balancing techniques used in the VANET envi-

ronment. Literature survey is broadly divided into two parts- 1) Load balancing techniques

in VANETs and 2) Pricing Schemes in VANETs. Detailed works conducted on these topics

by the researcher are given in Section 2.2.

2.1 Background

Load balancing at RSUs in VANETs is a critical aspect of optimizing network performance

and resource utilization. As VANETs continue to gain prominence in the field of intelligent

transportation systems, efficient management of network loads becomes of prime importance

for ensuring reliable and seamless communication among vehicles and infrastructure. This

background study provides an extensive overview of load-balancing techniques specifically

used for RSUs in VANET environments. It explores the challenges associated with load

distribution, the importance of load balancing, and existing methodologies in this domain.
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2.1.1 Challenges in Load Balancing at RSUs

VANETs are characterized by rapidly changing traffic conditions which leads to fluctu-

ating communication demands at RSUs and less time of connectivity between RSU and

the vehicles. These RSUs handle diverse types of data, including safety-critical messages,

multimedia content, and internet connectivity requests. RSUs typically have constrained

processing power, memory, and bandwidth, necessitating efficient allocation and utilization

of resources. High-density vehicular environments can result in channel interference and

congestion, impacting the performance of RSUs.

2.1.2 Importance of Load Balancing

Load balancing mitigates the risk of network congestion and reduces the likelihood of packet

loss, enhancing the reliability of communication in VANETs. By distributing the workload

evenly across RSUs, load balancing helps to maintain consistent QoS metrics such as la-

tency, throughput, and jitter. Efficient load balancing maximizes the utilization of RSU

resources, minimizing idle capacity and ensuring optimal network performance. Load bal-

ancing mechanisms facilitate the scalability of VANETs by adapting to varying traffic loads

and network conditions, thus accommodating future growth.

2.1.3 Existing Load Balancing Techniques

There are various types of LB techniques used in the VANET:

� Traffic-Aware Routing Algorithms: These algorithms consider traffic conditions and

network topology to dynamically route data packets towards less congested RSUs [19].

� Dynamic Resource Allocation: Here, RSUs dynamically allocate resources such as

bandwidth and processing power based on real-time demand, ensuring fair distribution

among vehicles [20].

� QoS-based Load Balancing: These algorithms prioritize traffic based on QoS require-

ments, allocating resources accordingly to meet Service Level Agreements (SLAs) for

different applications [21].

� Centralized vs. Distributed Approaches: Load balancing can be performed centrally,

where a central controller manages resource allocation, or in a distributed manner

where RSUs cooperate to balance the load autonomously.
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Traffic aware load balancing focuses on the number of vehicle in a specified region. However,

the applications and their resource requirement is an important aspect while doing load

balancing. This is being overcome by the dynamic resource allocation methods. QoS-based

load balancing only focuses on service quality without considering the number of requests

processed within the deadline.

2.2 Literature Review

In this Section, we have focused on two important aspects - 1) Load balancing in VANETs

and 2) Resource renting in VANETs.

2.2.1 Load balancing in VANETs

Load balancing plays a critical role in VANETs due to the high-speed mobility of vehicles

and the constantly changing network topology. The generated data by these vehicles could

not be processed by the vehicles and even by the RSUs in an overloaded scenario. This

is because of higher vehicle density and a huge amount of data generation by some of the

applications running in the vehicles.

In [22], authors have proposed a cooperative load balancing algorithm where they have

used the direction of vehicles, load at destination RSUs, and delay bound of request as the

factors for load balancing. Here, as RSUs near the destination are selected for offloading, it

may lead to overloaded scenarios when many vehicles intend to reach a common destination.

In [23], a dynamic load balancing algorithm is proposed by partitioning the total number

of RSUs into three categories– light-load, normal-load, and heavy-load. A new task is

assigned to a relatively less loaded RSU. Here, due to the mobility of vehicles, the RSU sets

belonging to a particular group may change frequently. While their algorithm includes VM

migration, they haven’t addressed its impact from a load-balancing perspective. In [24],

authors proposed k-Shortest Paths between each source and destination willing to have

communication with the use of the cost model proposed. When forwarding packets, the

algorithm distributes the load between all intermediate nodes by choosing the next hop

according to road conditions, either to nodes with the same moving direction or those

with lower collision probability. During the connections, the protocol warns about path

congestions when confronting prior congestion threshold. In such cases, related connections

could switch to less congested paths. As a result, the traffic load will be balanced throughout
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the entire network and the approach will gain a higher packet delivery ratio and throughput.

Chi-Fu et al. [25] have proposed two algorithms for load balancing in a VANET scenario.

The first algorithm partitions the scenario into sub-regions based on the RSUs’ location.

RSUs provide services to vehicles in their regions. An RSU provides Internet access for

vehicles in its sub-region and the boundaries between sub-regions change dynamically to

adapt to load and density changes. However, the authors do not address the cost of VM

migration. In the second algorithm, for offloading, they have proposed the selection of an

RSU from the group of vehicles. Here, the presence of coverage holes may significantly affect

the performance.

The work in [26] has considered a heterogeneous vehicular environment with variable

storage and computation capacity of vehicles. Their proposed algorithm provides service

partially by the Vehicular Cloud (VC) and partially by the Remote Cloud (RC). In the

overloaded scenario, the extra load is transferred from VC to RC. As the location of the

VC may be geographically far from the RC, it may induce a further delay in the execution

of the application. In [27], authors have considered a load-aware offloading scheme. They

have assumed that the load at each RSU will be known to all vehicles and the resource

requests will be offloaded to RSUs with minimum load. They have also assumed multi-hop

communication between vehicles which may introduce more delay in servicing the requests.

In [28], authors have considered both fiber and wireless mediums to offload data from

vehicles. Data is offloaded to one of the RSUs or the remote cloud based on the delay bound.

Game theoretic approach is used to decide the data offloading path. Here, the focus is on

minimization of processing delay of VMs. The authors have considered overlapping in RSU’s

transmission range, but the effect has not been discussed in the process of RSU selection.

In [29], authors have proposed a contract-based offloading scheme while considering the

delay bound of applications. They have also taken the price of each unit of computation

into consideration. However, in this work, the authors only focus on the computation

resource and the significance of available storage on the execution of applications has been

ignored too.

In [30], the authors have proposed a Joint algorithm for Selection decision, Computation

resource, and Offloading (JSCO). Here, a task/application request is partitioned into two

parts - one part is executed by the vehicle locally and the other part is executed in the RSU.

The JSCO algorithm selects an RSU for offloading tasks based on its available computation

capacity and the number of vehicles in its region. The focus of the authors is only on the
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computation capacity of RSUs. They have ignored the effect of available storage at RSUs

and do not address VM migrations and the corresponding cost incurred. In [31], authors

proposed one algorithm for selection of one computation unit from three different options.

The options are local vehicles, RSUs, and central cloud. The decision is made based on

the utilization value of the vehicle, RSU, and central cloud. The proposed algorithm is

termed Distributed Computation Offloading and Resource Allocation (DCORA). Although

the combination of cloud and MEC servers is used to schedule the task, its effect on the

number of tasks completed has not been discussed. The work in [32] focuses on dependencies

between tasks while doing the load balancing. In this work, the authors proposed a Multiple

Applications Multiple Tasks Scheduling (MAMTS) algorithm to solve the assignment issue.

Each application is modelled as a directed acyclic graph. Applications consist of several

tasks and some tasks are dependent on other tasks. Multiple applications and multiple

tasks are prioritized to minimize the completion time of applications. The overloaded RSU

scenario is not considered in this work.

2.2.2 Resource Renting in VANETs

Here, we discuss the works that focus on resource renting. The pricing scheme is discussed

below.

Cloud computing brings the novel market-oriented pay-as-go model which makes it con-

venient for many users to use different types of resources without bothering about the

server’s infrastructure. The user only pays the rent-out cost for the resources and uses the

resources without any interruption [33]. Using this technique a number of researchers have

worked and proposed some pricing schemes for different scenarios. In [34], a cloud federation

formation framework is modelled for the case, when a request is made by a user to the cloud

broker, consisting of the requirement of a number of computing resources and a preferred

individual service provider through which the users seek to get resource services. Authors in

the work [35], present a cloud system model for the cloud provider to dynamically expand

the scale of geo-distributed data centers.

In [3], authors have proposed a dynamic resource pricing model for sharing resources

between the cloud providers. Here, the proposed algorithm tries to minimize the cost of the

vehicular service provider while meeting the delay bounds of different vehicular applications

with fewer VM migrations. Both cost and delay are considered while classifying the user’s
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request for processing. In the study [36], authors focused on maximizing profit for cloud

brokers through optimal multiserver configuration and resource pricing. They treated the

cloud broker as a multiserver system and employed an M/M/n/n queuing model to analyze

various factors influencing profitability. The analysis included an examination of the rela-

tionship between the sales price of VMs and customer demand, leading to the calculation

of the expected charge for a VM request. Through a series of numerical calculations, the

authors demonstrated that the cloud broker could effectively reduce costs for cloud users

while maintaining a significant level of profitability.

Authors in [37] introduce a novel approach to virtual resource renting, aiming to adap-

tively refine the rental strategy based on both price distribution and task urgency. By

factoring in task urgency and price distribution, the authors devise a weak equilibrium op-

erator to compute the acceptable price for each virtual resource type. Virtual resources

meeting the acceptable price criteria are aggregated into a set. Subsequently, a price pre-

diction algorithm is proposed to forecast the next price interval for these virtual resources.

Lastly, an innovative rental decision-making algorithm is formulated to identify the most

profitable resource from the set. In paper [38], an algorithm is proposed that enables ve-

hicles to discover and consume services of mobile cloud servers that are moving nearby.

Public buses spread service registration information to the buses within the same bus line,

and to buses of connected lines, as well. A consumer vehicle can discover the available

services, along with their constraints, by querying the buses in their vicinity. To ensure

service consumption, the buses provide a routing protocol allowing communication between

the provider and consumer. Then the algorithm is extended. On the one hand, vehicle

providers select the most appropriate public bus for efficient service registration, and users

select the most satisfactory service, which satisfies both provider constraints and user pref-

erences. The cost of renting resources is not focused on while selecting the destination node.

In the era of beyond 5G technologies, deploying deep neural networks (DNNs) on IoT

devices is challenging due to limited computational resources. To address this, researchers

have proposed a split computing approach, where DNN inference is divided between the

IoT device and a nearby edge device. Key mechanisms supporting this approach include

Dynamic Split Computation (DSC) for optimal task partitioning, Reliable Communication

Network Switching (RCNS) for selecting the best available network, and Task Load Balanc-
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ing with Prioritization (TLBP) to manage workload distribution and device limitations such

as battery life and resource contention. Experimental results demonstrate that this approach

significantly reduces inference time and enhances system efficiency, making it suitable for

real-time IoT applications [39]. The rapid increase in mobile traffic and uneven distribution

across bands in multi-band networks can lead to congestion and degraded user experience.

Traditional load balancing methods often rely solely on channel quality, overlooking user

demands and band resource availability, which results in inefficient resource utilization.

To overcome this, an event-based load balancing algorithm has been proposed, modeling

the problem as a multi-objective stochastic optimization. It assigns user equipment (UE)

to bands probabilistically, aiming to balance traffic while minimizing inter-frequency han-

dovers. Simulations show improved throughput and reduced interruption time compared to

traditional approaches [40].

The data generation rate of applications running on vehicles can be periodic or event-

driven. The existing approaches in the literature do not focus on this aspect of data genera-

tion. In this thesis work, we have considered both periodic and event-driven data generation

from vehicles. Additionally, we have considered continuous data generation from vehicles

while performing load balancing.
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Table 2.1: Existing literature

Reference RSU
Storage

RSU
Computa-
tion

Continuous
data genera-
tion

Approach Used

[22] ✓ ✗ ✗ Direction of vehicles is used to assign
load

[41] ✓ ✗ ✗ New request is assigned to relatively
less loaded RSUs

[42] ✓ ✗ ✗ Find the lowest congested path between
source and destination

[43] ✓ ✗ ✗ Transmission range of RSU is adapted
based on the load

[26] ✓ ✓ ✗ Heterogeneous scenario with processing
in vehicular cloud and central cloud

[27] ✗ ✓ ✗ Multi-hop communication between
RSUs

[29] ✗ ✓ ✗ Contract-based uploading scheme is
used

[44] ✗ ✓ ✗ Partition tasks into two parts, one is
executed locally and the other in RSU

[31] ✗ ✓ ✗ Select one of the options from vehicles,
RSU, and central cloud based in utiliza-
tion value

[32] ✗ ✓ ✗ Dependency among the tasks are fo-
cused while scheduling

Proposed
Approach

✓ ✓ ✓ Matching based assignment of VMs to
RSUs based on applications types
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3
Application Aware Load Balancing in

Vehicular Networks

3.1 Introduction

In VANETs, LB refers to the efficient distribution of network traffic, communication tasks,

and computational tasks among the vehicles or nodes in the network [45]. VANETs are

a specific type of mobile ad-hoc network where vehicles communicate with each other and

with roadside infrastructure to enhance road safety, traffic management, and provide various

services. LB is crucial in VANETs to ensure optimal utilization of resources and to avoid

network congestion or uneven distribution of communication loads among vehicles [46]. LB

includes the dissemination of safety messages, traffic updates, and other information. Un-

even distribution could lead to congestion in certain areas and delays in message delivery.

Vehicles in a VANET generate and exchange messages for various purposes, such as collision

warnings, traffic information, and location updates. Load balancing can happen for vehicles

and RSUs. This chapter of the thesis focuses on load balancing in RSUs.

LB ensures that no single RSU or subset of RSUs is overloaded with communication

tasks, preventing bottlenecks, and improving overall network performance. LB optimizes
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the utilization of available resources, including bandwidth and processing power, among

the vehicles. Efficient use of resources helps in reducing communication delays, enhanc-

ing the reliability of information dissemination, and maximizing the overall capacity of the

VANET [47]. VANETs are dynamic and highly variable in terms of network topology and

communication patterns. LB mechanisms need to adapt to these changes in real-time. Dy-

namic LB algorithms can adjust the distribution of tasks based on the current network

conditions and the mobility of vehicles. LB plays a crucial role in maintaining QoS in

VANETs. It ensures that the communication quality, in terms of latency, reliability, and

availability, meets the requirements of safety-critical applications, such as collision avoid-

ance systems. LB can be achieved through centralized or decentralized approaches. In a

centralized approach, a central entity coordinates the LB decisions for all RSUs. In a de-

centralized approach, RSUs collaboratively make LB decisions based on local information.

The primary causes of the overloading scenario are huge data generation by the applications

in the vehicles and an increase in the number of simultaneous service requests by the vehicles.

In VANET, vehicles are equipped with On-Board Units (OBUs) that can communi-

cate with RSUs placed at various locations along the roads to enable different types of

applications. Such applications can be categorized as safety applications, public service

applications, location-based services, multimedia, and entertainment applications, etc. [8].

Applications can generate data either in a periodic manner or on the occurrence of an event.

Some applications that generate data periodically are navigation systems, safety warnings,

lane change, etc. [48, 49]. Online gaming, VoIP, multimedia, parking slot locator, etc. are

some examples of applications that generate event-driven data [49, 50]. Many of these ap-

plications can generate a large amount of data that may need to be processed. RSUs can be

equipped with computing and storage resources to process such data. The data generated

may also have local relevance in terms of space, time, and user interest [51].

3.2 System Model

Our system model in the proposed work consists of vehicles, RSUs, and the CC as shown

in Figure 3.1. RSUs are connected via a wired connection. Each vehicle runs applications

(A1, A2, ...Ak) according to the users’ interest as shown in Figure 3.2. Each application

in a vehicle has a different data generation rate. The amount of data generated by each
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vehicle at each time step is known. In our system model, we have assumed that each vehicle

generates requests for only one application at a time, and correspondingly, only one VM

is created in the RSU for the vehicle, i.e., 1 vehicle=1 application= 1VM. This asumption

is taken because, if a VM runs multiple applications then the migration of VMs will affect

the system’s performance due to task dependencies. Authors in [52] have considered such

a system. The amount of data generated by the applications is stored in the originating

vehicles temporarily. When a vehicle is within the transmission range of an RSU, it sends

a connection request to the RSU. A connection request is accepted based on availability of

channels and storage. In our work, we assume that the first instance of a vehicle’s request,

corresponding to a given application, creates a VM in an RSU depending on the availability

of resources. In subsequent instances, the request from the vehicle means getting service

from the VM already created in the RSU. There is a fixed number of channels that are

used by vehicles to transmit the data based on the IEEE 802.11p standard [53]. When

no channel is free, the data is held with the vehicle until the next time instant when it

comes in the transmission range of an RSU. This may lead to an increase in delay and/or

deadline miss of a task. The data present in the vehicles are transferred to one RSU in

the transmission range. A VM is created at the RSU to process the data generated by the

applications running in the vehicles. Each application has a lifetime and the data to be

processed within the lifetime of the application. The information about the lifetime of the

application is communicated to the RSU along with the request sent by a vehicle.

In this work, connecting the local server to RSUs means specifying that RSUs are not

simple interfaces. These RSUs are capable of storage and computing units. The connected

RSUs can be called edge clouds. The requirement of an edge cloud is there because of the

limited capacity of the edge node which is an RSU in our scenario. These resources are

used by the VMs running for different applications. A Load Balancing Client (LBClient) is

a software module that runs at RSUs. LBClient is a part of the load balancer that accepts

or rejects the connection request from the vehicles as shown in Figure 3.2. The transmission

range of RSUs is non-overlapping. For each vehicle, one VM is created at some RSU which

can be migrated to another RSU to meet the objectives and constraints. At any time, a

VM resides in exactly one RSU and occupies some amount of storage that depends on the

application type and the amount of unprocessed data. If a VM request is not accepted

at a particular time instant, an attempt is made to process it in the next time instants.

The Load Balancing Server (LBServer) running in the CC has information about all the
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Figure 3.1: System model

RSUs and makes decisions based on the information present in all RSUs. The storage and

computation resources used by LBServer and LBClient are negligible. Therefore, we have

ignored this in the current work. A VM can be present in an RSU without being scheduled

when the available computing resources of that RSU are less than the required computation

resources. At that time only the storage resources of RSU are used and not the computing

resources. The time taken to execute a task depends on the amount of unprocessed data

and the available computing capacity of the RSU to which it is assigned. In the case of

VM migration, the available unprocessed data is migrated from one RSU to another. The

migration incurs some amount of cost called migration cost. This migration cost has two

parts - a fixed cost and a variable cost. The fixed cost is the cost of migrating a VM from

one RSU to another RSU. It is the same for all migrations in the system. The variable cost

is calculated based on the amount of unprocessed data to be migrated and the cost per unit

of data already migrated. In our algorithm, a VM can migrate to any RSU in the network,

irrespective of whether the RSU is in the route of the vehicle or not. A VM remains alive

until the corresponding vehicle departs from the last RSU in its route.
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Figure 3.2: Request assignment diagram

3.3 Problem Formulation

In this Section, we present the problem addressed in this paper formally as an optimization

problem. In particular, we specify the input variables, the output variables, a set of variables

whose values are derived from the input and output variables, the constraints, and the

objective functions.

3.3.1 Assumptions

1. The coverage region of any two RSUs does not overlap.

2. The route and speed of each vehicle are known a-priori.

3. The data generation pattern of the vehicles (how much data is generated at each time

instant by a vehicle) is known a-priori.

4. Data from a vehicle can only be transferred to an RSU when the vehicle enters into

the coverage range of that RSU.
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Table 3.1: Table of symbols

Symbol Description
T Total duration of travel of all the vehicles
X Total number of vehicles
Y Total number of RSUs
R Set of RSUs
pri Maximum computing power of RSU ri
sri Maximum storage capacity of RSU ri
Dr Number of units of data that can be processed by RSU ri per unit time (same

for all RSUs)
Countr Maximum number of channels available for data transfer between a vehicle

and an RSU
V Set of vehicles
startj Start time of the journey for vehicle vj
P v
j Path followed by vehicle vj

aj Application being run by vehicle vj
Lv

j Lifetime of the application for vj (Lj ≤ T )

Λv
j Rate of data generation by a vehicle vj

A Set of applications
pak Amount of computing power needed by application ak
sakf Fixed amount of storage required for the application ak(independent of user’s

data)
Costfm Fixed migration cost for application ak
Costm Migration cost for one unit of data (same for all applications)
xijt Output variable. Its value is 1, if a VM for a vehicle vj is present in an RSU

ri at time t, 0 otherwise
yijt Output variable. Its value is 1, if a VM for a vehicle vj is scheduled in an RSU

ri at time t, 0 otherwise
T i
j Duration for which vehicle vj remains in the transmission range of RSU ri

Dt
leftj

Amount of data left in vehicle vj at the beginning of time instant t

U j
t Quantity of unprocessed data in the RSUs for a vehicle vj’s VM at time t

Cj Indicator variable whose value is set to 1 if the amount of unprocessed data
of the vehicle vj is 0 when the vehicle leaves the last RSU in its path, and 0
otherwise

I tj Indicator variable whose value is 1 if vehicle vj has migrated from one RSU
to another at time t, 0 otherwise
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3.3.2 Variable Declaration

In this Subsection, we define three types of variables – input variables, output variables,

and derived variables in detail. All variables are also listed in the table of symbols given in

Table 3.1.

3.3.2.1 Input Variables

I. Let the total duration of travel of all the vehicles be T , with the time slots denoted by

1, 2, . . . , T.

II. Let R = {r1, r2, . . . rY } be the set of RSUs. Hence, the number of RSUs is Y . Each

ri ∈ R is represented by the tuple ⟨pri , sri , Dr⟩ where

� pri = Maximum computing power of ri

� sri = Maximum storage capacity of ri

� Dr = Number of units of data that can be processed by ri per unit time (same

for all RSUs)

III. Let Countr be the maximum number of channels available for data transfer between

a vehicle and an RSU. Hence, it is also the maximum number of requests that can be

accepted by one RSU at a particular time instant.

IV. Let V = {v1, v2, . . . , vX} be the set of vehicles where X is the number of vehicles.

Hence, the maximum number of VMs that can be present in the system at any time

is X, as each vehicle runs at most one application. Each vehicle vj ∈ V is represented

by the tuple ⟨startj, P v
j , a

j,Lv
j ,Λ

v
j ⟩ where

� startj is the start time of the journey for vj

� P v
j is the path followed by vj, represented as the sequence of RSUs ⟨rj1, r

j
2, . . . r

j
(Kj)
⟩

in the path before the lifetime of the application running in the vehicle vj, where

Kj is the number of RSUs in |P v
j |. For each RSU rjk, the arrival and departure

time of vj at r
j
k is denoted by arrjrk and depjrk respectively

� aj is the application being run by vj

� Lv
j denotes the lifetime of the application for vj (Lj ≤ T )
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� Λv
j is the rate of data generation by a vehicle vj represented by the sequence

⟨λvj
1 , λ

vj
2 , . . . , λ

vj
T ⟩ where λ

vj
k denotes the amount of data generated by vj at time

slot k. The data generated after arrival at last RSU cannot be processed as there

is no other RSU in the route after that for the vehicle to get back the result of

the processing. Therefore, it is considered to be zero for all time instants after

the arrival at the last RSU. The data generated may be zero at some time instant

between start of the application and the lifetime of it. Also, as it is assumed that

one vehicle can run only one application at a time, the maximum number of VMs

that can be present in the system at any time is X. In this thesis, we refer to the

terms lifetime of an application and lifetime of vehicle interchangeably.

V. Let A = {a1, a2, . . . ak} denote the set of applications. Each application ak ∈ A is

represented by the tuple ⟨pak, sakf , takf , Costfm⟩, where

� pak = amount of processing/computing power needed by ak

� sakf = fixed amount of storage required for the application ak(independent of user’s

data)

� Costfm = fixed migration cost for ak

� Costm = migration cost for one unit of data (same for all applications)

3.3.2.2 Output Variables

� xijt for all ri ∈ R, for all vj ∈ V and for all t, 1 ≤ t ≤ T

– xijt = 1, if a VM for a vehicle vj is present in an RSU ri at time t

– xijt = 0, if a VM for a vehicle vj is not present in an RSU ri at time t.

� yijt for all ri ∈ R, for all vj ∈ V and for all t, 1 ≤ t ≤ T

– yijt = 1, if a VM for a vehicle vj is scheduled in an RSU ri at time t‘

– yijt = 0, if a VM for a vehicle vj is not scheduled in an RSU ri at time t.

3.3.3 Derived Variables

In this Subsection, we refer to a set of variables that are derived from the input and output

variables. These are listed below.
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� Ti
j = depjri − arrjri is the duration for which vehicle vj remains in the transmission

range of RSU ri.

� Dt
leftj

is the amount of data left in vehicle vj at the beginning of time instant t.

Dt
leftj

=


0, if ( C ∧ E) is true

(Dt−1
leftj

+ λ
vj
t−1)− (T t−1

r × tr), if (A ∧ C ∧ F) is true

(Dt−1
leftj

+ λ
vj
t−1), if (B ∨ D) is true

where λ
vj
t denotes the amount of data generated by vj at time slot t and T t−1

r is the

amount of data transferred at time instant t − 1, and A, B, C, D, E, & F denote

conditions defined as follows:

– A- Vehicle vj is in the transmission range of ri.

– B- Vehicle vj is not in the transmission range of ri.

– C: Channel is available for vehicle vj to transmit data.

– D: No channel is available for vehicle vj to transmit data.

– E:
Dt−1

leftj
+λ

vj
t−1

tr
≤ (Ti

j), time required to transmit the amount of data left in the

vehicle is less than or equal to the duration for which vehicle vj remains in the

transmission range of RSU ri.

– F:
Dt−1

leftj
+λ

vj
t−1

tr
> (Ti

j), time required to transmit the amount of data left in the ve-

hicle is greater than the duration for which vehicle vj remains in the transmission

range of RSU ri.

� Let U j
t be the amount of unprocessed data in the RSUs for the VM of a vehicle vj at

time t. It is the difference between the data transferred to the RSUs by the vehicle till

time t and the data processed by the RSUs till time t. The amount of data transferred

is the difference of data generated and remaining data in the vehicle till time t. The

amount of data processed is equal to the sum of all the data processed by each RSU

till t. The data processed in an RSU can be calculated by multiplying the rate of data

processing by RSU with number of time instants at which the VM was scheduled.

U j
t = (Σ

arrjrc
k=1 λ

vj
k −Dt

leftj
)−Dr × ΣY

i=1Σ
T
t=1yijt (3.1)
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where rc is the last RSU in the vehicle’s path before t. Let Cj be an indicator variable

whose value is set to 1 if the amount of unprocessed data of the vehicle vj is 0 when

the vehicle leaves the last RSU in its path and 0 otherwise. Similarly, let I tj be an

indicator variable whose value is set to 1 if (xi1jt = 1 ∧ xi2jt1 = 1 ∧ t1 = t+1 ∧ i1 ̸= i2),

0 otherwise. Thus, I tj = 1 indicates that the vehicle vj has migrated from one RSU to

another at time t.

3.3.4 Objective Function

The problem we address is to maximize the number of VMs completed while minimizing

the cost of VM migration. Hence, the objective functions are stated as

maximize ΣX
j=1Cj (3.2)

minimize ΣX
j=1Σ

T
t=1I

t
j ×

(
U j
t × Costm + Costfm

)
(3.3)

3.3.5 Constraints

� A vehicle vj should not generate any data after the arrival at the last RSU, rjl , in its

route.

λv
t = 0, ∀vj ∈ V, ∀t > arrjrl (3.4)

where rjl is the last RSU that the vehicle vj passes by before Lv
j .

� VM will not be created for a vehicle until its arrival time at the first RSU in its route.

xijt = 0, ∀vj ∈ V, ∀t, 1 ≤ t < arrjr1 (3.5)

� For any vehicle vj, at any time t between the arrival time of vj at the first RSU rj1

and the departure time of vj from the last RSU rjl in its route, the VM for vj must be

present in exactly one RSU.

ΣY
i=1xijt = 1, ∀vj ∈ V, ∀t, arrjr1 ≤ t ≤ depjrl (3.6)

� A VM will be scheduled only when it is present at an RSU and there is some amount

of unprocessed data in the VM.

yijt = 1 =⇒ (xijt = 1 ∧ U j
t ̸= 0) (3.7)
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� At any time t, the total computing capacity needed by all the VMs scheduled at an

RSU should not exceed the total computing capacity of the RSU.

A∑
j=1

paaj × yijt ≤ pri , ∀ri ∈ R, ∀t, 1 ≤ t ≤ T (3.8)

� At any time t, the total storage needed by all VMs present at an RSU should not

exceed the storage capacity of the RSU.

(
X∑
j=1

U j
t +

X∑
j=1

sa
j

kf
)× xijt ≤ sri , ∀ri ∈ R, ∀t, 1 ≤ t ≤ T (3.9)

� A VM must be scheduled in only one contiguous time block at an RSU.

((yi1jt1 = 1) ∧ (yi1jt3 = 1) ∧ ∄ i2 ̸= i1, yi2jt2 = 1) =⇒

∀t, t1 ≤ t ≤ t3, yi1jt = 1, ∀vj ∈ V, ∃t1, t2, t3, 1 ≤ t1 < t2 < t3 (3.10)

� Total execution time required by a vehicle’s application should be less than the de-

parture time of the vehicle from the last RSU, rjl , in its route.

(Σ
arrjrl
t=1 λj

t )/(D
r × ΣY

i=1Σ
depjrl
t=1 yijt) ≤ depjrl , ∀vj ∈ V (3.11)

The constraints are formed to based on the real life problem scenario. The vehicle may

generate data any time throughout its journey. However, the data generated beyond the

transmission of last RSU of its path can not be processed in the given scenario. To address

that first constraint is defined. A VM is only created if vehicle has generated some data

and its request to process is accepted by the RSU. To make the scenario realistic the second

assumption is defined. During the VM migration the a VM migrates from one RSU to other.

However, it can not considered as presence in multiple RSUs. To make the scenario realistic

third assumption is defined. Similarly in constraints fifth and sixth, it is defined that the

total need of the computing and storage resources should not exceed the total availability of

the resources. In real-life use of application if processing time is greater than the expected

deadline the output of the processing becomes meaningless for the user. To bring this idea

to the problem scenario, the assumption eighth is defined.
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3.4 AALB: Application Aware Load Balancing

In this Section, we propose an algorithm that we call Application Aware Load Balancing

(AALB) where the major focus is to schedule the VM requests based on the data generation

rate of the applications. Application type is identified by its criticality and robustness. The

criticality is measured by its deadline and the robustness is measured by the data generation

rate of application. It is assumed that One task is generated per vehicle and the task whose

deadline is near gets a chance to execute before the task whose deadline is far. The proposed

AALB algorithm invokes a sequence of modules at each time step to assign VMs to RSUs.

AALB considers the state of RSUs and VMs in the last time step to make decisions

in the current time step. The basic working model of AALB consists of three modules –

AdmissionControl, VMAssignment, and VMScheduled.

1. AdmissionControl : The AdmissionControl module is the entry point of VMs to the

system. It updates the amount of data required by the VM based on the type of

application. It checks whether a VM can be assigned to at least one RSU in the

system or not. If such an RSU is found, the VM is admitted to the system, otherwise,

the VM tries to enter the system in the next time step. The data generated by the

vehicle may not get a chance to be uploaded to the RSU fully. In that case, the rest

of the data is transferred in subsequent time instants.

2. VMAssignment : It chooses a set of VMs to be considered for assignment in the current

time step and selects the RSUs to which the VMs will be assigned using the Hungarian

Matching algorithm. Note that, this can change the current assignment of a VM and

cause it to migrate to some other RSU.

3. VMScheduling : It checks for availability of computing resources for VMs assigned to

an RSU, and chooses the subset of VMs to be scheduled. The scheduled VMs are then

executed and their status is updated.

For VMAssignment, our system scenario can be considered as a bipartite graph, with

one partition representing the set of VMs and the other representing the set of RSUs, as

shown in Figure 3.3. Edges are assigned between a VM and an RSU depending on whether

the VM can be assigned to the RSU. Weights are assigned on each edge based on a com-

bination of two factors – migration cost and the time RSUs take to execute the VMs. A
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Figure 3.3: VM to RSU assignment

matching algorithm is then run iteratively on this bipartite graph to find the assignment

of VMs to RSUs. We use the Hungarian Matching algorithm (also called Kuhn-Munkres

algorithm) [54] for finding the maximum-weight (minimum-weight) matching. The algo-

rithm works for a balanced problem where the number of nodes in both sets is equal. In

our scenario, the number of VMs may be more than that of RSUs. In such a case, some

dummy RSUs with zero resources are introduced into the system to make the number of

RSUs equal to the number of VMs, as shown in Figure 3.3. Assignments made to dummy

RSUs can be discarded at the end, and the corresponding VMs can be considered for as-

signment again. The motivation for selecting the Hungarian Matching algorithm for our

work is as follows. In this work, we consider an optimization problem which corresponds

to a matching problem, where a set of VMs need to be matched with a set of RSUs. The

potentially large number of vehicles and RSUs makes the scenario a large-scale assignment

problem. Hungarian matching algorithm is known to work better for such large-scale as-

signment problems [55]. One example application can be found in [56] that assigns several

mobile stations to a large number of distributed single-antenna access points. Therefore, we

have also been motivated to use the Hungarian Matching algorithm for assignment of VMs

to RSUs.
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The pseudocode for the overall execution of the AALB algorithm is shown in Algorithm 1.

The algorithm calls three modules – AdmissionControl, VMAssignment, and VMScheduled

in each time step up to the final time T .

Algorithm 1: Load Balancing

1 Rt ← Array of RSUs at time instant t
2 for (t = 0; t < T ; t = t+ 1) do
3 AdmissionControl
4 VMAssignment
5 VMScheduled

Next, we describe the data structures used in these three modules along with a brief

description of the modules.

3.4.1 Data Structures Used

At each time step t, AALB algorithm keeps two primary data structures, an array Rt for

storing the status of each RSU at time t, and an array Mt for storing the status of all

existing VMs at time t. Each element Rt[i] stores the following information:

� Identification number id of the RSU

� List of VMs v that are assigned to the RSU

� List of VMs vs that are scheduled in the RSU

� The remaining storage capacity remainings of the RSU

� The remaining computation capacity remainingc of the RSU

� A binary variable rsu scheduled that is set to 1 if at least one VM is scheduled in the

RSU at time t− 1.

Similarly, each element of Mt[j] stores following information:

� Identification number id of the VM

� Storage needs s of the VM
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� Computing needs c of the VM

� The RSU r to which the VM is assigned to at the beginning of time t

� A binary variable scheduled which is set to 1 if the VM is scheduled at time t

� The amount of new data data amount is generated for the VM at the beginning of

time t

� The remaining amount of data data remaining is to be processed at the beginning of

time t

� A binary variable data which is set to 1 if new data is there for the VM at the beginning

of time t

� A variable completed is set to 1 if the VM has completed its execution at the end of

time t− 1.

3.4.2 Admission Control

The pseudocode for the AdmissionControl module is presented in Algorithm 2. This module

checks if there exists any RSU with sufficient storage to accommodate the data in the new

VM. Mnew denotes the list of new VMs that arrive at the beginning of time t and Mdata
old

denotes the list of VMs which are not new but have some new data generated till the end

of time t− 1. The algorithm first updates the VM’s requirements based on the scheduling

information of the last time step and data generation information (Lines 5-13). For all

VMs, if a VM is scheduled in the last time step, then the processed data is subtracted from

the current need. Similarly, if any new data is generated for the VM, it is added to its

storage requirement. Then it checks if a new VM or an old VM with data can be assigned

to any RSU based on the VM’s storage requirement (Line 15). In case a suitable RSU is

found, the VM is added to the system, otherwise, the VM is dropped temporarily. Dropped

VMs are stored in a list temp dropped. The VMs in temp dropped are considered again for

AdmissionControl in the next time step (Line 4).
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Algorithm 2: AdmissionControl

1 Mt[j]← Array of all existing VMs at time t
2 Mnew[]← new VMs at the beginning of time t
3 Mdata

old []← Old VMs with some data generated till
the end of time t− 1

4 Append temp dropped to Mnew

5 for (each VM i in Mt) do
6 if (Mt−1[i].scheduled) then
7 if (Mt[i].data) then
8 Mt[i].s − = Dr

9 Mt[i].s + = Mt[i].data amount

10 Mt[i].s − = Dr

11 else
12 if (Mt[i].data) then
13 Mt[i].s + = Mt[i].data amount

14 for (each VM i in MNew ∪Mdata
old ) do

15 if (∃j : Rt[j].remainings ≥ storage need of VM i and Countr! = 0) then
16 Add i to Mt

17 Countr = Countr - 1;

18 else
19 Add i to temp dropped

3.4.3 VM Assignment

This module takes the admitted VMs and assigns the VMs in an iterative manner until

all VMs are assigned or no assignment is possible. It then updates the status of VMs and

RSUs.

Algorithm 3 shows the pseudo code for VMAssignment. In each iteration, it first chooses

a subset of VMs to be considered in this iteration and then assigns them to RSUs using a

matching-based algorithm. The status of the assigned VMs and the RSUs they are assigned

to are then updated, and the next iteration is entered to assign the remaining VMs. This

process continues until all VMs are assigned or no assignment can be done in an iteration.

The set of VMs to be considered is first updated by removing the set of VMs, Mover,

which completed execution during time t−1. To choose a subset of VMs from all VMs (Line
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Algorithm 3: VMAssignment

1 Mt ←Mt−1 – Mover

2 VMAssigned = ϕ
3 flag = 1
4 while (Mt! = VMAssigned and flag == 1) do
5 choice = a subset of VMs from Mt chosen as per description and whose deadlines

are nearer
6 Assigned = subset of choice assigned by the Hungarian Matching algorithm as

per description
7 if (Assigned[] == ϕ) then
8 flag = 0
9 continue

10 VMAssigned = VMAssigned ∪ Assigned
11 Update Mt for VMs assigned
12 Update Rt for RSUs used in assignment

5), it places all the VMs present in an RSU into two different lists – the list of VMs which

were scheduled at time t − 1 and the list of VMs which were not scheduled at time t − 1.

The second list is given more priority than the first while choosing VMs to be considered

for assignment. This is done because prioritizing the VMs which were not scheduled in

the last time step increases their chance of being assigned to an RSU where they may be

scheduled at time step t, which may in turn increase the number of VMs that complete

their execution within their lifetime. The algorithm sorts all the VMs in ascending order of

remaining lifetime so that the VMs whose lifetimes are nearer are given higher preference

while selecting VMs for assignment. The chosen VMs are stored in a list choice, which is

considered for assignment in the next time step.

The assignment of the chosen VMs to RSUs is done using the Hungarian Matching

algorithm (Line 6). A bipartite graph is formed by considering a node for each VM in

one partition and a node for each RSU in the other partition. Dummy RSUs (with zero

resources) and VMs (with zero storage and computation requirements) are added as needed

to make the number of nodes equal in both partitions. Edges are then added between all

VMs and all RSUs to make the graph a complete bipartite graph as needed for running the

Hungarian Matching algorithm. The weight of an edge between a VM i and an RSU j is

chosen as follows. The weight is set to 0 if the remaining storage capacity j is less than the
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storage requirement of i, otherwise,

weight = w1(Rt[j].remainings −Mt[i].data remaining)/

S MAX + w2(Rt[j].remainingc −Mt[i].c)/C MAX).

Here, S MAX is the maximum of the maximum remaining storage of any RSU and max-

imum storage need of any VM, and C MAX is the maximum of the maximum remaining

computation of any RSU and maximum computation need of any VM. Thus, a VM is

assigned to an RSU only if the RSU has enough storage to accommodate the VM. Also,

preference is given to RSUs which have more storage and more computation capacity com-

pared to the need of the VM. The importance of storage and computation controlled by two

weights w1 and w2, 0 ≤ w1, w2 ≤ 1 and w1 + w2 = 1. The Hungarian Matching algorithm

is then run to find a maximum weighted matching on this graph. In this work, we have

considered w1 = w2 = 0.5. Note that, the Hungarian Matching algorithm will assign each

VM to an RSU as it finds a perfect matching; however, some VMs may be assigned to

a dummy RSU. Such assignments are discarded and the corresponding VM is considered

again in the next iteration.

3.4.4 Scheduling of VMs

Algorithm 4: VMScheduled

1 for each RSU i in Rt do
2 vm edf ← sort Rt[i].v in earliest deadline first order;
3 for each VM j in vm edf do
4 if ((!vm edf [j].completed) and(Rt[i].remainingc > vm edf [l].c)) then
5 Mt[j].data remaining -= Dr

6 else if (vm.edf[j].completed) then
7 Append vm.edf [j] to Mover;
8 vm.edf [j].r.remainingc += vm.edf [j].c;

VMAssignment guarantees that the storage requirement of a VM will be met by the

RSU it is assigned to. However, the RSU may not have sufficient computation capacity

to schedule all the VMs assigned to it. The VMScheduled module chooses the VMs to be
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scheduled (Algorithm 4). The choice of VMs is made simply on the basis of an earliest-

deadline-first policy. In particular, for every RSU, it sorts the VMs assigned to the RSU

in a non-decreasing order of the remaining lifetime. The longest prefix of this list of VMs

whose total computation capacity does not exceed the computation capacity of the RSU is

then scheduled for execution. The VMs not scheduled will not get executed in the current

time step. The VMs scheduled for execution are assumed to be executed and their status

is updated accordingly.

3.4.5 An Illustrative Example of the Proposed Approach

In this Subsection, we give an example to demonstrate the working of proposed algorithm.

We have taken three RSUs (r1 to r3), five vehicles (v1 to v5), and two applications (a1 and

a2) of same type (both generating data periodically). Table 3.2, Table 3.3, and Table 3.4

show the values chosen in the example. Table 3.5 shows the values for other parameters

for this example. We are assuming that each vehicle requests for only one application at a

time, as mentioned in the assumptions.

Table 3.2: RSU capacities

RSUs r1 r2 r3
Storage Capacity 60MB 60MB 60MB

Computation Capacity 10MHz 10MHz 10MHz

Table 3.3: VM resource requirement

Vehicles (VM cre-
ated at RSU)

v1(VM1) v2(VM2) v3(VM3) v4(VM4) v5(VM5)

Storage Need 20MB 20MB 20MB 20MB 20MB

Computation Need 5MHz 5MHz 5MHz 5MHz 5MHz
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Table 3.4: Applications

Applications a1 a2
Deadline 8 time units 10 time units

Application Type Periodic Periodic

Table 3.5: Network setting

Data Generation Rate 2 MB/time unit
Data Processing Rate by RSU 10 MB/time unit
Data Transfer Rate 10 MB/time unit
Data Generation Range 4 time units
Number of Channels 1

At time t = 0, v1, v2, and v3 are in the system. None of them are in the transmission

range of any RSU. Although they have some initial data already present to be processed at

t = 0, no request is there to any RSU as shown in Table 3.6. No VM is created at t = 0.

At t = 1, v4 and v5 join the network. Let v1, v2, v3, and v4 be in the transmission range

of r1 and v5 be in the transmission range of r2. Vehicles (v1, v2, v3, and v4) send their

requests to r1 (when they get to access the channel for transmission). RSU r1 accepts the

request of v1 and r2 accepts the request of v5 (Admission Control Module). Corresponding

VMs are created in r1 and r2. At the end of time step 1, v1 has 14 MB (22 − 10 + 2 = 14

MB) of data. In this time step, 10 MB of data is transferred to RSU r1 and 2 MB of data

is generated by the application a1 in vehicle v1. The same procedure is followed for other

vehicles as shown in Table 3.6. At each time instant, the remaining storage of an RSU is

updated based on the amount of data transferred by an application of a vehicle.

At t = 2, the request of vehicle v2 is accepted and admitted to r1 (Admission Control).

Then, on the basis of the proposed matching based algorithm, it is migrated to r3 (VM As-

signment Module). At t = 3, v3’s request gets accepted by r1 and VM3 is created. Vehicle

v1 has only 6 MB of data at the beginning of the time instant. Therefore, only 6 MB of

data is transferred to RSU r1 and 2 MB of data is generated at t = 3 which is processed at

t = 4.
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At t = 4, vehicle v′4s request gets accepted by r1. Thus, VM4 gets created at r2 (Admis-

sion Control Module). Then in the assignment phase, VM4 is migrated from r1 to r2 (VM

Assignment Module). Three VMs (VM1, V M2, and VM5) complete their execution as they

have no unprocessed data and no data is going to be generated (refer Table 3.5). VM1,

VM2, and VM5 scheduled in r1, r3, and r2 respectively. This example shows the overall

working of the proposed AALB algorithm.

3.4.6 Time Complexity Analysis

The time complexity of the proposed algorithm AALB can be computed from the time

complexities of its modules, AdmissionControl, VMAssignment, and VMScheduled. The

AdmissionControl module takes O(X) time to complete, where X is the total number of

vehicles. The VMAssignment module takes O(X2) time to complete. The VMScheduled

module takes O(XY ) time to complete, where Y is the total number of RSUs. Thus, the

algorithm AALB has the time complexity of O(X2 +XY ) per time unit.
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Table 3.6: Example scenario

T
im

e
(t)

Vehicles
Status
(storage
need, ap-
plication)
at the end
of t

RSU Status (remain-
ing storage, remaining
computation, vehicles
in the range) during
time t

Requests
(Vehicle
to RSU)
at the
beginning
of t

VMs in RSUs Migration
(From RSU→
To RSU) using
matching-
based tech-
nique

0 v1(22, a1)
v2(22, a2)
v3(22, a1)

r1(60, 10, {}) r2(60, 10, {})
r3(60, 10, {})

No request No VM present in
the system

No migration

1 v1(14, a1)
v2(24, a2)
v3(24, a1)
v4(22, a2)
v5(12, a2)

r1(50, 5, {v1, v2, v3, v4})
r2(50, 5, {v5})
r3(60, 10, {})

v1 → r1
v2 → r1
v3 → r1
v4 → r1
v5 → r2

r1{VM1} r2{VM5} No migration

2 v1(6, a1)
v2(16, a2)
v3(26, a1)
v4(24, a2)
v5(4, a2)

r1(40, 5, {v1, v2, v3, v4})
r2(40, 5, {v5}) r3(50, 5, {})

v2 → r1
v3 → r1
v4 → r1

Admission Con-
trol: r1{VM1,
VM2}, r2{VM5}
VM Assign-
ment: r1{VM1},
r2{VM5},
r3{VM2}

VM2 migrated
from r1 to r3

3 v1(2,a1)
v2(8, a2)
v3(18, a1)
v4(26, a2)
v5(2,a2)

r1(24, 0, {v1, v2, v3, v4})
r2(36, 5, {v5}) r3(40, 5, {})

v4 → r1
v3 → r1

r1{VM1, VM3}
r2{VM5} r3{VM2}

No migration

4 v1(0,a1)
v2(0, a2)
v3(8, a1)
v4(16, a2)
v5(0,a2)(
No data
generation
in this time
step)

r1(12, 0, {v1, v2, v3, v4})
r2(24, 0, {v5}) r3(32, 5, {})

v4 → r1 Admission Con-
trol: r1{VM1,
VM3, VM4}
r2{VM5} r3{VM2}
VM Assignment:
r1{VM1, VM3}
r2{VM5, VM4}
r3{VM2}

VM4 migrated
from r1 to r2,
VM1, VM2 and
VM5 completes
their execution
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3.5 Results and Discussion

The proposed algorithm AALB is simulated using a Java-based discrete event simulator

developed for the implementation of thesis work. While designing the simulator the net-

work parameters are taken into consideration. To check the correctness of the simulator,

the performance is checked with a boundary condition. The results are not violating the

lower bound condition. We have also done a delay analysis in Chapter 4.5 to validate our

simulation results, as shown in Figure 4.8 of the thesis. Our simulation consists of a city

scenario with bidirectional roads and an area of 10 km2. Vehicular traffic is generated using

Simulation in Urban Mobility (SUMO) [18] by considering the lower Manhattan city sce-

nario. The simulation parameters are given in Table 3.7. Major parameters for simulation

are taken from the works [22,27].

Table 3.7: Simulation parameters for AALB

Parameters Values

Number of time steps 890

Number of RSUs 9

Data processing per unit time at RSU 10 Mbps

Transmission range of RSU 500 meters

Storage capacity of RSU 6000 MB

Computing capacity of RSU 1000 MHz

Range of VM’s initial storage need 100 MB - 300 MB

Range of VM’s computing need 5 MHz - 40 MHz

Fixed migration cost of VM 0.010 $

Migration cost per unit of data transfer 0.002 $

Data generation rate of periodic application 10 Mbps

Amount of data generated per event 500 MB

The inter arrival time for event-driven task 100 Sec

Distribution used for event generation Exponential

Number of channels 4

Area in the city considered for simulation 10 km2

We have evaluated our proposed algorithm with different types of applications hav-

ing variable data generation rates. We have considered periodic applications, event-driven

applications, and their combination for simulation. Periodic applications generate data peri-
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odically and event-driven applications generate data based on the occurrence of events, their

combination consists of both periodically generated data and event-driven data. Further,

we have compared AALB with three existing algorithms in the literature – DCORA [31],

MAMTS [32], and JSCO [30]. Along with these algorithms, we have also compared AALB

with a baseline algorithm where the VMs are only migrated to the RSUs in the vehicle’s

route. We call the baseline algorithm as GREEDY algorithm. The amount of data gener-

ated per event in event-driven applications is dependent on the type of applications. We

have experimented with two different values, 500 MB and 250 MB based on the amount of

data generated in different applications [50].

(a) Variation of VM completion percentage with
number of vehicles

(b) Variation of VM completion percentage
with computation capacities of RSU

(c) Variation of VM migration cost with number of vehicles

Figure 3.4: Performance for periodic applications

3.5.1 Periodic Applications

In this Subsection periodic applications are considered for simulations where applications

generate data periodically with a data generation rate of 10 Mbps.

43



Application Aware Load Balancing in Vehicular Networks

Figure 3.4a shows the variation of VM completion percentage with the number of vehi-

cles. It can be observed that the percentage of VM completion is higher in the case of AALB

as compared to DCORA, MAMTS, JSCO, and GREEDY algorithms with an increase in

number of vehicles. This is because of the efficient VM migration technique used in AALB

when an RSU is overloaded. Figure 3.4b shows the variation of VM completion percentage

with computation capacities of RSUs. It can be seen that AALB shows better performance

than the other four algorithms. This is because of the fact that AALB prioritizes VMs which

were not scheduled in the last time steps. The trends for each algorithm show a linear pat-

tern except JSCO. This is because, JSCO only focuses on the computation resource while

the other four algorithms are dependent on other factors apart from computation. AALB

and GREEDY depend on both storage and computation, DCORA depends on utilization,

and MAMTS depends on other applications. Therefore, the effect of the increase in com-

putation capacity is clearly visible in the JSCO output. Figure 3.4c shows the variation of

VM migration cost of JSCO, GREEDY, and AALB algorithm with number of vehicles. It

can be observed that AALB shows lower costs than JSCO and GREEDY algorithms. This

is because of the efficient VM assignment technique used in AALB. We have compared VM

migration cost of AALB with JSCO and GREEDY algorithms. This is because, DCORA

and MAMTS algorithms do not focus on the migration cost. The migration cost of JSCO

is more as compared to AALB and GREEDY algorithms. This is because, JSCO focuses

only on the percentage of VM completion without considering VM migration cost.

3.5.2 Event-Driven Applications

In this Subsection event-driven applications are considered for simulations where applica-

tions generate data when an event occurs. In-vehicle infotainment and anomaly detection

from the video are examples of applications that generate data of nearly 500MB per second.

Several other applications, such as traffic management applications, emergency braking sys-

tems, online gaming, etc. are also considered in this work [49]. The task considered in this

work is either periodic or event-driven task. Traffic management, online gaming are exam-

ples of periodic applications where anomaly detection and emergency breaking systems are

even-driven tasks. Figure 3.5 shows the results for the algorithms when 500 MB data is

generated per event. Figure 3.6 shows the results when 250 MB data is generated per event.

The generation of events follows exponential distribution in both cases.
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Figure 3.5a shows the variation of VM completion percentage with the number of vehicles

in the case of event-driven applications. The performance of AALB is better in comparison

to the other four algorithms. The drop in overall VM completion percentage is more in

event-driven applications as compared to periodic applications. This is because, the data

generated per event is larger in event-driven applications. The amount of data generated

increases as time proceeds. This leads to more load and less time to complete the task.

Therefore, VM completion percentage is less as compared to that of periodic applications.

(a) Variation of VM completion percentage with
number of vehicles

(b) Variation of VM completion percent-
age with computation capacities of RSU

(c) Variation of VM migration cost with number of vehicles

Figure 3.5: Performance for event-driven applications (500MB/event)

Figure 3.5b shows the performance of all algorithms with an increase in computation

capacities of RSUs. It can be observed that the VM completion percentage of AALB shows

better performance while varying the computation capacities of RSUs. The reason behind

such performance is the use of efficient matching-based techniques for VM assignment and

consideration of status of VMs in the last time step. In Figure 3.5c, output of VM migration

cost is shown with varying the number of vehicles for event-driven applications. It can be

observed that the performance of AALB for migration cost is better in comparison to JSCO

and GREEDY algorithms. The reason is the same as mentioned in subsection 3.5.1.
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(a) Variation of VM completion percentage with
number of vehicles

(b) Variation of VM completion percentage
with computation capacities of RSU

(c) Variation of VM migration cost with number of vehicles

Figure 3.6: Performance for event-driven applications (250MB/event)

Figure 3.6 shows the same results for event-driven applications where the amount of data

generated per event is 250 MB. It can be observed in Figure 3.6a that the VM completion

percentage is higher as compared to Figure 3.5a. This is because, the amount of data

generated is less in this case. The VM completion percentage in Figure 3.6b shows a similar

pattern as Figure 3.5b, the only difference being in the percentage of VM completion. Here,

the percentage of VM completion is higher. This is again because of the lower amount

of data generated per event. Figure 3.6c shows that AALB performs better than JSCO

and GREEDY. This is because of the efficient VM allocation approach used in AALB. The

reason behind comparing AALB with JSCO and GREEDY while ignoring MAMTS and

DCORA is given in subsection 3.5.1.

3.5.3 Periodic and Event Driven Applications

Figure 3.7 shows performance of five algorithms while considering both periodic and event-

driven applications, where event-driven applications generate 500 MB of data per event.

In Figure 3.7a, it can be observed that the percentage of VM completion is less as
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(a) Variation of VM completion percentage with
number of vehicles

(b) Variation of VM completion percent-
age with computation capacities of RSU

(c) Variation of VM migration cost with number of vehicles

Figure 3.7: Performance for periodic and event-driven applications (500MB/event)

compared to either periodic or event-driven applications. The trends show a sharp drop in

the VM completion percentage for all the algorithms. This is because, the amount of data

generated in this case is more as compared to either an event-driven scenario or a periodic

scenario. In this case also, AALB performs better in comparison to the other algorithms.

This is because of the efficient VM assignment approach.

Figure 3.7b shows the variation of VM completion percentage with the computation

capacities of RSUs. Here too, AALB shows improved performance compared to the other

algorithms. This is because, AALB is independent of the time at which data is generated

and uses an efficient VM allocation approach. In Figure 3.7b, AALB saturates after the

computation capacity reaches 1000 MHz. This is because, AALB considers storage resources

while doing VM assignments along with computation resources. Even though computation

capacities of RSU increase, some VMs do not get sufficient storage resources in RSUs. VM

migration cost of AALB, JSCO and GREEDY algorithms are compared in Figure 3.7c. In

Figure 3.7c, it can be observed that the performance of AALB for migration cost is better

as compared to JSCO and GREEDY algorithms. This is because, AALB assigns the VMs
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(a) Variation of VM completion percentage with
number of vehicles

(b) Variation of VM completion percent-
age with computation capacities of RSU

(c) Variation of VM migration cost with number of vehicles

Figure 3.8: Performance for periodic and event-driven applications (250MB/event)

efficiently and minimizes the migration cost.

Figure 3.8 shows the results of all five algorithms, where data is generated by both

periodic applications and event-driven applications. The amount of data generated per

event in this case is 250MB. It can be seen in Figure 3.8a that the drop in VM completion

percentage is not sharp. This is because of less data generation. Here also AALB works

better than the other algorithms because of the same reason as discussed in subsection

3.5.1. In Figure 3.8c, AALB shows improved performance compared to the other algorithms

because of efficient VM assignment approach. Figure 3.8c shows that AALB migration cost

is less as compared to JSCO and GREEDY algorithms. The reason is the same as discussed

in subsection 3.5.1.
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3.5.4 Effect of Application Lifetime

Here, we study the effect of application lifetime on the VM completion percentage. The life-

time of an application which is defined as the time within which the application’s execution

must be completed, is taken as the application delivery constraint in this work. The appli-

cation lifetime is varied from 450 to 850 time units. Note that in our simulations, vehicles

generate data to a maximum of 449 time units, and thus the range of application lifetime

chosen represents applications with very tight delivery constraints to those with more loose

constraints where more time is available to process the generated data.

(a) Variation of VM completion percentage with
lifetime of periodic applications

(b) Variation of VM completion percentage with
lifetime of event-driven applications

(c) Variation of VM completion percentage with lifetime of periodic and event-driven applications

Figure 3.9: Performance of periodic, event-driven applications, and their combination with ap-
plication lifetime

Figures 3.9a, 3.9b, and 3.9c show the variation in VM completion percentage with varying

lifetimes of periodic applications, event-driven applications, and their combination respec-
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tively. In all the three graphs, AALB shows improved performance as compared to the other

algorithms for all lifetime values. This is because, AALB prioritizes earlier deadlines while

scheduling VMs, and hence more VMs are able to finish within their lifetimes.

3.5.5 Effect of Multiple Applications in Vehicles

(a) Variation of VM completion percentage with
number of vehicles of periodic applications

(b) Variation of VM completion percentage with
number of vehicles of event-driven applications

(c) Variation of VM completion percentage with number of vehicles of periodic and event-driven appli-
cations

Figure 3.10: Performance of periodic, event-driven applications, and their combination with
varying numbers of vehicles running multiple applications

A vehicle may run more than one application simultaneously. To check the effect of

multiple applications running simultaneously on a vehicle, we have simulated a scenario

in which two vehicles, each running a different application, move as a convoy and reach

all RSUs in the route simultaneously. This scenario essentially simulates a single vehicle

running two applications simultaneously.
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Figures 3.10a, 3.10b, and 3.10c show the variation of VM completion percentage with

number of vehicles for periodic applications, event-driven applications, and a combination

of periodic & event-driven applications respectively. It can be observed that for all three

cases, AALB shows better results as compared to other algorithms because even with an

increase in the number of applications per vehicle, the corresponding VMs will be executed

independently at different RSUs using the efficient method of matching the VMs with RSUs.

The applications considered in this scenarios are independent of each other.

3.5.6 Effect of Contention at RSUs

Contention at any RSU for data transfer from vehicles is dependent on the number of

vehicles whose contact times at the RSU overlap. To study the effect of RSU contention

on our algorithm, we vary the time range within which all vehicle requests are generated in

our simulation. A lower value of the time range implies more vehicles will arrive at an RSU

around the same time causing more contention, and vice-versa. The number of vehicles

considered for this simulation is 300, so as to achieve a high density of vehicles that arrive

more or less at the same time at RSUs.

Figure 3.11: Variation of VM completion percentage with time range of requests

Figure 3.11 shows the variation of VM completion percentage with the increase in the

contention at RSUs. The x-axis represents the time range of generating the requests in

simulation time units. It can be observed that AALB shows improved performance as

compared to other algorithms. This is primarily because contention is avoided by AALB by

admitting the requests to any RSUs in the network if sufficient storage is available. Thus,

it decreases the waiting time for the number of requests. This leads to better performance

of AALB over other algorithms.
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3.5.7 Average Delay

We next study the average delay incurred by the requests generated by the vehicles. We

define delay as the difference in the time between the completion of a VM and the time of

generation of a VM.

(a) Variation of average delay with number of vehi-
cles of periodic applications

(b) Variation of average delay with number of ve-
hicles of event-driven applications

(c) Variation of average delay with number of vehicles of periodic and event-driven applications

Figure 3.12: Average delay for periodic applications, event-driven applications, and their combi-
nation

Figures 3.12a, 3.12b, and 3.12c show the variation of average delay with number of vehi-

cles for periodic applications, event-driven applications, and a combination of periodic and

event-driven applications, respectively. It can be observed that the performance of AALB is

better as compared to the other existing algorithms in all cases. This is because, in general,

when an RSU gets overloaded, it is unable to accept any further requests from its neighbor-

ing vehicles, leading to an increase in delay incurred by the request. However, in AALB,

the requests are forwarded to any of the RSUs in the network which has enough resources
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available to accept the request, thereby giving an improved performance as compared to all

the other algorithms.

3.5.8 Effect of Vehicle Speed

(a) Variation of VM completion percentage with the
speed of vehicles for periodic applications

(b) Variation of VM completion percentage with the
speed of vehicles for event-driven applications

(c) Variation of VM completion percentage with the speed of vehicles for periodic and event-driven
applications

Figure 3.13: Performance of periodic applications, event-driven applications, and their combina-
tion with varying speed of vehicles

We have studied the effect of speed variation of vehicles on the VM completion percent-

age of the system. We have considered the number of vehicles as 150 for this simulation and

observed that an increase in speed of the vehicles leads to a decrease in the VM completion

percentage. However, the effect is very less as shown in Figure 3.13. This is because the

speed of the vehicles only affects the performance of the system till the time an application

data is transferred to RSUs. Figure 3.13a shows the performance of the periodic application
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with variation of speed. Figure 3.13b shows the performance of the event-driven application

and Figure 3.13c shows the performance of the periodic & event-driven applications together

with variation of speed.

It can be observed that AALB outperforms the three existing algorithms and the GREEDY

algorithm. It is because of the efficient VM migration technique and wired medium chosen

to transfer the data between RSUs.

3.6 Chapter Summary

This chapter discussed the approach to deal with load balancing considering application

types and resource requirements of each application request. Periodic applications, event-

driven applications, and their combination are considered for evaluation. The proposed

algorithm AALB is compared with existing algorithms. Effect of vehicle speed, multiple

applications are studied along with the available resources of RSUs. In case of periodic

applications, the VM completion percentage of AALB improves by 36.67% over MAMTS,

100% over JSCO and by 134.29% over DCORA.
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4
Resource Renting for Load Balancing in

Vehicular Networks

This chapter presents our second contribution. Here, we have proposed one pricing model

which is applied to the RSUs and their resources while doing the load balancing. The

requests generated by the vehicles are assigned to one of the RSUs in the networks. Each

RSU is considered as one independent entity which charges a fixed cost for sharing its

resources with any other RSUs in the network.

4.1 Introduction

Renting resources is a widely used idea in cloud computing environments where the resources

of one entity are rented based on one price scheme. It increases the service availability in

case of resource constraints environment. It reduces the cost of providing the services to end

users without deployment of vast network infrastructure. The price offered by the service

providers are generally two types -1) Fixed price and 2) Dynamic price [57]. In the case of

a fixed price, the price per unit of resource per unit of time does not vary. However, in the

case of dynamic price, the unit cost for a unit of resource is dependent on the availability

of the resources. Price per unit resources increases with a decrease in available resources.

In our work, we have focused on fixed pricing to reduce the time for decision making.
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4.2 Problem Formulation

We have formulated the issues raised by this study as an optimization problem in this

Section. We define the input and output variables. The afterword constraints and objectives

are specified with a detailed explanation. Our goal is to maximize the number of requests

processed and minimize the delay and total cost. The total cost is a combination of rent-out

cost and migration cost.

4.2.1 Input Variables

Let T be the total amount of time considered for the simulation. Total X number of vehicles

are there which is represented by set V = {v1, v2, . . . , vX} and Y number of RSUs are there

which is represented by set R = {r1, r2, . . . , rY }. Vehicle vj ∈ V , is expressed by a tuple

⟨Pj, aj,Lj,∧j⟩, where

� Route of vj is specified as a series of RSUs ⟨rj1, r
j
2, . . . , r

j
l ⟩ and is called Pj, where l is

a variable which is dependent on the total number of RSUs in the path of vj

� The vehicle’s application is called aj

� The application deadline is Lj and it runs at vj

� Application’s data generation rate for vj is ∧j.

Generated data ∧j is represented by ⟨λj
1 λ

j
2, . . . λ

j
T ⟩ as a sequence, where the quantity of data

produced by the vehicle vj at time slot k is λj
k ≥ 0. Additionally, the arrival and departure

times of each RSU ri in the route of vj are shown as arrjri and depjri , respectively. RSU ri

is represented by the tuple ⟨si, pi, Dr
i ⟩, where, si is the storage capacity, pi is the computing

capacity, and Dr
i is the DPR of RSU ri.

A set of applications is represented by the notation A = {a1, a2, . . . , ak}. Each appli-

cation ak is represented by a tuple ⟨sk, pk, Costf⟩, where sk denotes the amount of storage

required for application ak, pk denotes the amount of computation required for application

ak, and Costf denotes the fixed cost of migration.

Let B = {b1, b2, . . . bX} be the set of VMs generated for X vehicles in some RSU ri ∈ R.

Let Qt
i represent rent-out cost for the resources offered by RSU ri at time t and M t

i is the

migration cost of VM from RSU i.
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4.2.2 Output Variables

Output variables are expressed by two sets {xijt} and {yijt}, ∀vj ∈ V , ∀ri ∈ R, and

∀t, 1 ≤ t ≤ T . In the case of VM bj,

� If bj is in RSU ri at time t, xijt is set to 1; otherwise, it is set to 0

� If bj is scheduled in RSU ri at time t, yijt is set to 1; otherwise, it is set to 0.

Difference between data sent by vehicle vj to RSU until time t and the data processed

by RSUs until time t for vehicle vj can be used to compute the quantity of unprocessed data

for VM bj at time instant t. This is represented as,

U t
j =

arrjrc∑
k=1

λj
k −Dr

i

Y∑
i=1

T∑
t=1

yijt (4.1)

Here, rc is RSU in vj’s path just before time instant t.

An indicator variable ztkij is defined, where its value is set to 1 if and only if (xkjt =

1 ∧ xijt1 = 1 ∧ t1 = t+1 ∧ k ̸= i), 0 otherwise. ztkij indicates that the VM bj has migrated

from one RSU rk to other RSU ri at time t. Therefore,

ztkij =

{
1, if VM bj migrated from RSU k to i at time t

0, otherwise
(4.2)

if k = i, VM bj is not moved to another RSU, and there is no migration cost. We also define

an indicator variable Ij, such that,

Ij =

{
1, if U t

j = 0, if vj departs from last RSU on its route

0, otherwise
(4.3)

4.2.3 End-to-End Delay

Delay is a crucial parameter in VANETs due to the dynamic nature of network topology.

In VANETs, vehicles often stay within the coverage area of an RSU for a brief period due

to mobility, resulting in incomplete data transfers and increased waiting times for VMs at

RSUs. We defined end-to-end delay as the duration of processing a request, starting from

the request generation to the completion of data processing. It includes factors, such as

data transfer delay, waiting delay of the VMs at RSUs, VM migration delay between RSUs,

and the execution delay of the VM within RSUs.
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Let Dj be the delay incurred by VM created for vehicle vj. Let t
s
j be the time at which

VM bj gets created and tfj be the time at which VM bj completes its processing. Delay is

calculated as follows:

Dj = tfj − tsj (4.4)

4.2.4 Objectives

In this work, our objectives are maximizing the number of completed VM executions, min-

imizing the delay incurred, and reducing the overall cost associated with VM migration.

By addressing these objectives, we aim to improve the efficiency and performance of RSUs

in processing the substantial amount of data generated by vehicles. Through our proposed

algorithm, Efficient Resource Renting (ERR), we maintain a balance between resource allo-

cation, cost management, and timely execution of VMs. Hence, we can define the objectives

as,

maximize
X∑
j=1

Ij (4.5)

minimize
X∑
j=1

T∑
t=1

(
(ztkij )(Qt

i +M t
i ) + (1− ztkij )(Qt

k)
)

(4.6)

minimize

 X∑
j=1

E(Dj)

 /(X) (4.7)

Our goal is to maximize the number of requests processed as represented by Equation

4.5. Equation 4.6 is to reduce the overall expense of assigning, scheduling, and migrating

VMs in the system. This objective considers cases when a VM migrates to some other RSUs

and when there is no VM migration at the current time step. Equation 4.7 represents the

objective to minimize end-to-end delay, where E(Dj) is the expected delay for VM bj.

4.2.5 Constraints

Following are the constraints in our problem scenario with the objectives specified above:

� After reaching the final RSU (rjl ) on its route, a vehicle should not continue to generate

data.

λj
t = 0, ∀vj ∈ V, ∀t > arrjrl (4.8)
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� Until a vehicle reaches the first RSU in its path, no VM will be created for it.

xijt = 0, ∀vj ∈ V, ∀t, 1 ≤ t < arrjr1 (4.9)

� Between its arrival at the initial RSU and departure from the last RSU on its path, a

VM should always be present in only one RSU at any given time t.

Y∑
i=1

xijt = 1, ∀vj ∈ V, ∀t, arrjr1 ≤ t ≤ depjrl (4.10)

� Only when a VM has some unprocessed data, then it can get scheduled.

yijt = 1 =⇒ (xijt = 1 ∧ U t
j ̸= 0) (4.11)

� An RSU’s overall computing capacity should not be exceeded by the combined total

computing needs of all of its VMs.

pk ×
X∑
j=1

yijt ≤ pi, ∀ri ∈ R, ∀vj ∈ V, ∀t, 1 ≤ t ≤ T (4.12)

� An RSU’s storage capacity should not be exceeded by the combined total storage

requirements of all VMs.

(
X∑
j=1

U t
j +

X∑
j=1

sjk)xijt ≤ si, ∀ri ∈ R, ∀vj ∈ V, ∀t, 1 ≤ t ≤ T, (4.13)

� A VM’s total execution time should be less than the time at which the associated

vehicle departs from the final RSU (rjl ) on its route.

(

arrjrl∑
t=1

λj
t)/(D

r
i

Y∑
i=1

depjrl∑
t=1

yijt) ≤ depjrl , ∀vj ∈ V (4.14)

This problem is a mixed integer programming problem, which is NP-hard [58,59]. There-

fore, we propose a heuristic method as a solution to this problem. We call the algorithm as

Efficient Resource Renting (ERR).
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4.3 Proposed Methodology

In this Section, we have proposed an Efficient Resource Renting (ERR) algorithm, which

aims to maximize the number of VMs that complete execution by reducing the rent-out cost,

total cost, and end-to-end delay. Total cost is the sum of rent-out cost and migration cost.

While performing LB as described in Equation (4.19), ERR takes RSU’s remaining storage,

remaining computation, data processing rate, and rent-out cost into account. Rent-out cost

is incurred when RSU’s computational and storage resources are used. The problem scenario

is represented by graphical methods. We propose a static pricing model which is used in

ERR.

4.3.1 Pricing Model

We have proposed a pricing model for the resources of RSUs, where each RSU is associated

with a per unit storage cost (Si), and per unit computing cost (Ci) per unit of time. Addi-

tionally, we assume a predefined base cost per unit time (Pi) when a VM is present at an

RSU but waiting for corresponding data to arrive. Using these definitions, we can calculate

Qt
i, which represents the rent-out cost of the RSU ri at the current time step, based on the

VM’s storage and computing requirements. Now, let’s explore the different scenarios for the

cost:

� Case 1: A VM is currently waiting for data to proceed with its execution.

Cost incurred at time step t is the base cost of VM bj for staying at RSU ri, and can

be written as:

Qt
i = Pi (4.15)

� Case 2: In the event that VM bj, which is present in RSU ri at time step t, has

some data to process but has not yet been scheduled. Or, when a vehicle requests the

formation of a VM, the RSU closest to the vehicle does not have enough resources,

therefore, the VM is instead created in another RSU.
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In this instance, the cost of storage for the VM’s unprocessed data is taken into

consideration, and the total cost offered is:

Qt
i = U t

jSi (4.16)

where, the unprocessed data in VM bj at time t is represented by U t
j

� Case 3: VM bj has some amount of data to process and is scheduled to execute in

one RSU.

In this case, for the VM’s unprocessed data, we take into account storage as well as

computing costs. This is specified as:

Qt
i = U t

jSi + VjCi (4.17)

where, Vj is computing requirement of the VM bj.

We additionally take into account the following costs if a migration of VM bj to RSU ri

occurs at time t:

M t
j = Costfj + U t

j ∗ Costvj (4.18)

where, the fixed cost of VM migration is Costfj . The migration cost for each unit of data

transfer is Costvj , and the migration cost for the VM bj is M t
j . The migration cost of the

VM and the rent-out cost together make up the total cost.

4.3.2 Graphical Representation

Assignment of VMs to RSUs at time step t is depicted by a bipartite graph (Figure 4.1)

consisting of X number of VMs and Y number of RSUs. Each VM that is still in execution

at time t is represented by a node in one partition, while each RSU is represented by a node

in the other partition. An edge between a VM node and an RSU node signifies that the

corresponding VM can be allocated to that particular RSU.

The problem scenario considered here is a large-scale assignment problem. It can be

solved by using the Hungarian algorithm which works well for balanced problems. This

means, number of nodes in both sets of bipartite graphs are the same. To maintain equal
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nodes in both partitions, dummy nodes (RSUs and VMs) are introduced as needed. The

objective of the allocation process is to maximize the number of VMs completing their

execution, while simultaneously minimizing overall cost and reducing end-to-end delay. The

primary goal is to assign each VM to one RSU from the RSU set at time t. Finally, a weight

is assigned to each edge as follows:

Wji = ω1(Rt[i].s− (Fj + U t
j )) + ω2(D

r
i ) + ω3(−Rt[i].p/V [j].p) + ω4(−Rt[i].Q

t
i) (4.19)

Figure 4.1: Graphical representation

Here, ω1 + ω2 + ω3 + ω4 = 1 and 0 ≤ ω1, ω2, ω3, ω4 ≤ 1. The weights ω1, ω2, ω3,

and ω4, respectively, determine the relative importance of storage resources, DPR, compute

resources, and rent-out cost. Note that, these weights can be adjusted depending on the

type of applications and their requirements. The weight of the edge at time t between nodes

ri and vj is Wji. Rt[i].s is the remaining storage available with RSU ri. Fj is the data to

be generated till the deadline of the application j. Dr
i is the DPR of RSU ri. U t

j is the

amount of data yet to be processed in VM bj. Rt[i].p is the amount of remaining computing

resources of RSU ri. V [j].p represents the computing requirement of bj. Rt[i].Q
t
j represents

the rent-out cost offered by ri to bj. Each part of Equation 4.19 is explained as follows:

� Rt[i].s − (Fj + U t
j ) signifies the availability of storage resources. This is calculated

by taking the difference of remaining unprocessed data in VM bj from the remaining

storage of RSU ri. In order to select an appropriate RSU, the predicted data that

an application can generate until the deadline is added to the unprocessed data. The

generated data can be calculated as:

Fj =
T∑

k=t

λk (4.20)
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� Each VM looks for an RSU with a higher DPR because the DPR of RSUs varies. Dr
i

represents the DPR of RSU ri. Lower DPR means higher is the time for completion.

The RSU with a higher DPR value is given as the priority.

� The ratio of the RSU’s remaining computing resources to the VM’s necessary com-

putation requirements is represented by the expression Rt[i].p/V [j].p. We employ the

best-fit policy to effectively distribute the remaining resources because a VM’s need

for computing resources is constant.

� Expression −Rt[i].Q
t
i indicates the possible maximum rent-out cost of RSU ri. Price

of the chosen RSU should be minimal in order to reduce the rent-out cost.

4.3.3 Efficient Resource Renting (ERR)

Here, we explain our proposed algorithm which we call ERR given in Algorithm 5. It has

two modules - Request Approval (RA) module and Resource Aware Assignment (RAA)

module.

� Request Approval (RA): A VM’s point of entry into the system is this module.

This module is activated when a vehicle carrying a certain amount of data enters the

transmission range of an RSU. A VM request is initiated by a vehicle to a nearby

RSU. The request is accepted in case any RSU in the network has sufficient resources

to store the generated data of requested vehicle. Once the request is accepted, a VM

is created in the RSU. There is a possibility that the RSU may not get all of the data

that the vehicle generates. The remaining data is then sent in successive time steps in

that scenario. If an appropriate RSU cannot be discovered, the request is taken into

account in the subsequent time steps.

� Resource Aware Assignment (RAA): An initial selection of VMs for the assign-

ment is made in this module. The Hungarian Matching algorithm, also known as

the Kuhn-Munkres algorithm [54], is then used to assign the selected VMs to the

best available RSUs. This is due to the fact that the Hungarian matching algorithm

performs better when tackling complicated assignment problems [55]. The problem

scenario considered in this work becomes a large-scale assignment problem in a major

city scenario due to an increase in vehicles and RSUs. Equation 4.19’s considerations

for storage resource, computation resource, DPR, and rent-out cost are taken into
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account while determining a suitable RSU. Once a suitable RSU has been identified,

the VM is moved from that RSU to the destination RSU in accordance with the

assignment criteria.

Algorithm 5: Efficient Resource Renting (ERR)

1 Rt ← List of RSUs at time t
2 for (t = 0; t < T ; t = t+ 1) do
3 Request Approval()
4 Resource Aware Assignment()

Table 4.1 shows the variables used in ERR. The proposed algorithm ERR is presented

in Algorithm 5. It first initializes a list of RSUs to Rt, which stores the information of a

set of RSUs. It gets updated at each time step based on two different modules. Those two

modules - Request Approval() and Resource Aware Assignment() are called at each time

step till T.

Algorithm 6: Request Approval()

1 Mt[]← List of all existing VMs at time t
2 Mnew[]← List of newly created VMs

3 Mdata
old []← List of Old VMs with some data

4 Append temp dropped to Mnew[]
5 for (each VM bj in Mt) do
6 Update Storage()

7 for (each VM bj in MNew ∪Mdata
old ) do

8 if (∃j : Rt[i].remainings ≥ storage need of VM j and Countr! = 0) then
9 Add VM bj to Mt

10 Countr = Countr - 1

11 else
12 Add i to temp dropped

Algorithm 6 admits requests of VMs to the system based on the availability of resources.

The algorithm, first initializes the existing VMs, new VMs, and Old VMs. Then add the

temporarily dropped VMs to the new VMs lists. It updates the amount of data in all

the VMs using Mt. According to the VM’s storage requirements, this module once more

determines whether a new or an existing VM with data can be assigned to any RSU in the
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Table 4.1: Notations used

Notations Used to

Rt At time t, the state of each RSU

Mt Current state of each VM at time t

Mnew List of VMs that are created at t in time

Mdata
old List of existing VMs with ongoing production of new data till t− 1

temp dropped Temporarily dropped VMs till time step t− 1

Rt[i].remainings Remaining storage in the RSU ri
Countr The most channels that can be used to transport data between a

vehicle and an RSU

Dr
i The maximum number of data units that RSU can process per unit

time

Mt−1[j].scheduled Scheduling status of VM bj in last time step

Mt[j].data New data status of VM bj at the beginning of time step t

Mt[j].s The VM’s need for storage commencing with bj at time step t

Mt[j].data amount Amount of new data produced for VM bj at the beginning of time t

V MAssigned List of VMs assigned from the list Mt

ch VMs from the subset of Mt selected for assignment

Assigned Set of VMs assigned in each iteration using Hungarian algorithm

Rt[i].v Set of VMs in ri at time step t

vm edf List of sorted VMs present in RSU ri
vm edf [j].completed Denotes 1, if VM vm edf [j] has completed its execution at the end

of time t− 1, else 0

vm edf [l].c Amount of computing need by the VM vm edf [l]

Rt[i].remainingc Availability of computing resources in RSU at t

Mt[j].data remaining The quantity of data that needs to be processed at time t’s beginning

Mover List of VMs completed their execution
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system. The VM is introduced to the system if a compatible RSU is discovered; otherwise,

it is momentarily dropped. A list called temp dropped contains the dropped VMs.

Algorithm 7: Update Storage()

1 Mt[]← List of all existing VMs at time t
2 if (Mt−1[j].scheduled) then
3 if (Mt[j].data) then
4 Mt[j].s − = Dr

i

5 Mt[j].s + = Mt[j].data amount

6 Mt[j].s − = Dr
i

7 else
8 if (Mt[j].data) then
9 Mt[j].s + = Mt[j].data amount

The VM’s storage requirements are updated using Algorithm 7 based on knowledge of

the most recent scheduling and data generation step. The processed data is deducted from

the current VMs’ demand if a VM is scheduled in the most recent time step. Similar to

this, any new data generated for the VM increases its storage requirements.

Algorithm 8 is the core part of ERR, where, initially the VMs are migrated based on

the assignment policy and then executed in the RSU where they are assigned. For the

assignment, a set of VMs is chosen from the list Mt, a weight is assigned by using Equation

4.19, and Hungarian matching algorithm is applied to get a suitable match. The process

of assignment continues until all the chosen VMs are assigned or no assignment is possible.

After the assignment, VMs present in each RSU are sorted based on the earliest deadline

first manner. Then, based on the availability of computing resources in the RSU, either the

VM is executed or considered in the next time step.

4.3.4 Complexity Analysis

ERR algorithm’s time complexity can be calculated using the time complexities of its current

modules, Request Approval, and Resource Aware Assignment. The Request Approval

module completes in O(X) time, where X is the total number of vehicles. The module

Resource Aware Assignment takes O(XY ) time to complete, where Y is the total number

of RSUs. As a result, the temporal complexity of the algorithm ERR is O(X + XY ) per

time unit.
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Algorithm 8: Resource Aware Assignment()

1 Mt[]← Incomplete VMs
2 VMAssigned = ϕ
3 flag = TRUE
4 while (Mt! = VMAssigned and flag == TRUE) do
5 ch = subset of VMs chosen from Mt for assignment
6 Wji ← ω1(Rt[i].s− (Fj + U t

j )) + ω2(D
r
i ) + ω3(−Rt[i].p/a[j].p) + ω4(−Rt[i].Q

t
i)

7 Assigned = Hungarian Algo(Wji)
8 if (Assigned[] == ϕ) then
9 flag = FALSE

10 continue

11 VMAssigned = VMAssigned ∪Assigned
12 VMs migrated to the assigned RSUs
13 Update Rt, Mt of RSUs used in assignment
14 for each RSU ri in Rt do
15 vm edf ← sort Rt[i].v by earliest deadline first order
16 for each VM bj in vm edf do
17 if ((!vm edf [j].completed) and (Rt[i].remainingc > vm edf [l].c)) then
18 Mt[j].data remaining -= Dr

i

19 else if (vm.edf[j].completed) then
20 Append vm.edf [j] to Mover

21 vm.edf [j].r.remainingc += vm.edf [j].c

The flowchart for the proposed algorithm ERR is given in Figure 4.2.

4.4 Simulation Results

In this Section, we discuss the results obtained from implementing ERR using a Java-

based discrete event simulator. A detailed analysis is carried out to measure the end-to-end

delay with data partitioning at the end of the section along with the results. A lower

Manhattan city scenario [60] with 10 square kilometers of area and a bidirectional road in

the city is taken into consideration. There are 9 RSUs placed uniformly in the scenario

with a transmission range of 500 meters implying that RSUs are non-overlapping and many

areas are not covered by any RSU. Simulation of Urban MObility (SUMO) [18] is used to

generate the vehicle’s movement. The simulation parameters are taken from [22, 27] and

are specified in Table 4.2. We have evaluated ERR for a periodic application, event-driven
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Table 4.2: Simulation parameters for ERR

Parameters Values

Vehicles count 50-300

Total simulation time 890

RSU count 9

RSU’s per unit base cost 0.001$ - 0.004$

RSU’s per unit storage cost 0.001$ - 0.007$

RSU’s data processing rate 8-15 Mbps

RSU’s per unit computing cost 0.001$ - 0.007$

Per unit data transfer cost 0.002$

VM’s fixed migration cost 0.01$

Initial storage needs of VM 100 MB - 300 MB

RSU’s transmission range 500 meters

Initial computing need of VM 5 MHz - 40 MHz

RSU’s total computing capacity 1000 MHz

RSU’s total storage capacity 6000 MB

application, and their combination. A periodic application is one that produces data on a

regular basis with a fixed period, whereas an event-driven application only produces data in

response to particular events. We have compared the results of ERR with Application Aware

Load Balancing (AALB) algorithm [61], Joint algorithm for Selection decision, Computation

resource, and Offloading ratio (JSCO) [44], and one Lower Bound (LB) scenario. For the

LB scenario, we have considered a fictitious RSU with limitless storage and computing

capabilities and a rent-out cost that is the lowest of all RSUs. As a result, all vehicles in the

scenario can send any request or data they generate right away to this RSU for processing.

We also evaluate ERR with varying weights for values between 0 to 1. To demonstrate a

generic case, performance of ERR is shown by giving zero weight to one of the factors and

giving non-zero weights to other factors in Equation 4.19. Zero weight signifies that the

corresponding factor is ignored while making an assignment decision. Results for periodic,

event-driven, and combined applications have been demonstrated in Figures 4.4, 4.6, and

4.8, respectively. Major parameters for simulation are taken from the works [22,27].

4.4.1 Performance of Periodic Applications

Here, performance of algorithms is shown for periodic applications for different parameters

along with the scenario where zero weight is given to one of the factors given in Equation
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4.19. Performance of ERR is shown in Figure 4.3 for periodic applications scenario. Fig-

ure 4.3a illustrates how VM completion percentage changes with a change in the number of

vehicles. It can be observed that percentage of VM completion is higher in the case of ERR

as compared to JSCO and AALB. This is because, ERR allocates the VMs to RSUs based

on the expected storage needs of VMs (Equation 4.20), thereby resulting in low migrations

and a higher completion rate. Figure 4.3b shows the variation of average end-to-end delay

with an increase in vehicle count. It can be seen that average end-to-end delay is lesser

in the case of ERR as compared to JSCO and AALB. This is due to the fact that ERR

uses the best-fit technique for scheduling VMs and the DPR of RSUs for assigning them.

Best-fit technique search for RSU with closest available resources. The use of RSU with

greater DPR and the best-fit method both help reduce application execution time. Figure

4.3c shows a variation in average rent-out cost with an increase in vehicle count. Average

rent-out cost of ERR is lower as compared to JSCO and AALB. This is because, ERR

allocates the VMs by considering computing and storage capability, price of the resources,

and DPR of RSUs. AALB only focuses on storage and computing resources and JSCO

only focuses on computation resources. Figure 4.3d shows a variation of total cost with an

increase in the number of vehicles. It can be shown that ERR’s overall costs are lower than

those of AALB and JSCO. This is because, ERR incurs a smaller number of migrations

because of consideration of pricing, along with storage, computing resources, and DPR. The

fact that the VM completion percentage, end-to-end delay, rent-out cost, and overall cost

are all extremely close to those of the LB scenario shows that ERR is the least expensive

option. Overall, it can be seen that the use of rent-out cost and DPR along with remaining

storage and computation helps in maximizing the VM completion percentage and minimiz-

ing rent-out cost along with the total cost.

Periodic applications - Zero weights

The pricing model given in Equation 4.19 has four weights ω1, ω2, ω3, and ω4. Weights

ω1, ω2, ω3, and ω4 assign priorities to storage, DPR, computing resources, and rent-out cost,

respectively. To check the performance of our proposed pricing model, we carried out ex-

periments by assigning zero weights to each of the parameters used in Equation 4.19.

Figure 4.4b shows average rent-out cost of completed VMs with an increase in the number

of vehicles with various weights considered as zero in ERR along with ERR when all weights
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are considered. It can be observed that the performance of ERR is better in all the cases as

compared to AALB and JSCO algorithms. This is because, ERR considers factors such as

available storage and computing resources, DPR, and rent-out cost for VM allocation. The

rent-out cost for ERR when w4 = 0 is more as compared to the other three cases as the

chances of VM assignment to those RSUs with more rent-out cost increases in this case. The

average rent-out cost with w1 = 0 is higher as compared to the case where computation and

data processing of RSU are ignored. This is because, when storage factor is ignored during

the assignment, a VM may get assigned to different RSUs having lesser available storage

resources leading to more migrations and higher rent-out costs. Figure 4.4c shows average

total cost of the completed VMs with an increase in the number of vehicles. Total cost is the

summation of rent-out cost and migration cost. The trends show that ERR performs better

than JSCO and AALB even when different weights are considered as zero. The migration

cost with w4 = 0 is lesser as compared to the other cases where one of the weights is ignored

at a time. This is because, when rent-out cost is ignored, the algorithm selects the best

RSU by considering only storage resources, computation resources, and DPR required for

execution of the VM resulting in a lower number of VM migrations. The migration cost

is more in the case of w1 = 0. This is because, by ignoring storage factor, a VM may get

assigned to RSUs with lesser available storage leading to more migrations. Due to the same

reason the trend in ERR in Figure 4.4a can be observed.

4.4.2 Performance of Event-driven Applications

In this Subsection, performance of algorithms is shown for event-driven applications with

different parameters as shown in Figure 4.5. It can be seen in all the figures (Fig.4.5a -

4.5d) that ERR performs better than all the other algorithms as well as the LB scenario.

This is because, ERR considers factors such as available storage, computation, DPR, and

rent-out cost for assignment.

It can also be observed that performance of ERR for periodic application scenarios is

better than event-driven application scenarios. This is because, a huge amount of data is

generated during an event, and number of VM migrations increases to accommodate extra

data generated. This leads to an increase in end-to-end delay, a decrease in VM completion

percentage, and an increase in total cost. Even though a huge amount of data is generated
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from different events ERR is able to perform better, this shows how efficiently ERR per-

forms. It is able to complete execution of more number of VMs, less rent-out cost, and total

costs even in peak load scenario.

Event-Driven applications - Zero Weights

In Figure 4.6, ERR is evaluated with assigning zero weight to one of the weight factors at a

time. Figure 4.6a displays the effect of change in number of vehicles on percentage of VM

completion for each weight taken as zero at a time along with ERR with all the weights

(ω1, ω2, ω3, ω4) taken together. It can be observed that the trends are similar to that of

periodic applications. However, the percentage of VM completion is lesser as compared

to the periodic application scenario. This is because, a huge amount of data is generated

with the occurrence of events leading to unavailability of RSU resources. This increases the

overall delay. Due to the same reason a similar performance is there in Figures 4.6b and

4.6c.

4.4.3 Performance of Periodic and Event-driven Applications

In this Subsection, performance of algorithms is shown for both periodic and event-driven

applications with different parameters as shown in Figure 4.7. It can be seen in all the

figures (Fig. 4.7a - 4.7d) that ERR performs better than all the other algorithms as well

as the LB scenario even though more data is generated in this case. This is because, ERR

considers factors such as available storage, computation, DPR, and rent-out cost for as-

signment. Overall, it can be observed that the use of rent-out cost and DPR along with

remaining storage and computation helps in maximizing the VM completion percentage

and minimizing the rent-out cost and total cost even in case of periodic and event-driven

scenarios.

Periodic and Event-Driven Applications: Zero Weights

Here, we show the outcome of ERR for a combination of periodic and event-driven applica-

tions when one of the weight factors is assumed to be zero. Figure 4.8a shows a variation

of VM completion percentage with the number of vehicles for each weight taken as zero (as

mentioned in Section 4.4) at a time along with ERR with all the weights taken together.

According to the trends, the percentage of VMs that complete their tasks drops dramati-

71



Resource Renting for Load Balancing in Vehicular Networks

cally when compared to event-driven and periodic applications separately. This is because, a

huge amount of data is generated when periodic and event-driven applications are combined

together. Figure 4.8b shows rent-out cost for a combination of periodic and event-driven

applications with an increase in the number of vehicles. The rent-out cost shows a significant

increase in data generation with an increase in number of vehicles. This is because of more

data generation for this type of application which implies that VM waits in the RSUs for

a longer duration resulting in increased rent-out cost. ERR outperforms JSCO and AALB.

Figure 4.8c shows the variation of average total cost with respect to the number of vehicles

for a combination of periodic and event-driven applications. The trends show that the total

cost and rent-out cost of ERR is similar. This is because, ignoring rent-out costs at the

time of assignment of VMs to the RSUs may lead to a lesser number of migrations.

4.5 Delay Analysis

Delay is an important parameter in VANETs. Here, we are focusing on end-to-end delay. It

is defined as the duration of data processing of a request generated by a vehicle. It comprises

four major components - 1) the time taken to transfer data from the vehicle to RSU, 2)

the duration for which a VM migrates from one RSU to another, 3) the duration for which

a VM waits in any RSU for getting the computing resources or the duration for which a

VM waits for arrival of data from the vehicles, and 4) the duration of VM execution in an

RSU. The waiting time may vary depending on application types. Waiting time is more in

case the period is larger in the case of periodic applications or inter-event duration is larger

in the case of event-driven applications. The different components of end-to-end delay are

mentioned below.

1. Transfer delay: It is defined as the duration for transferring data from a vehicle to a

neighboring RSU.

2. Migration delay: It is the sum of the time taken to migrate a VM along with its

associated data from one RSU to another RSU till the deadline of the corresponding

applications.

3. Waiting delay: It is the duration for which- (a) a VM waits in an RSU to receive data

from vehicles, and (b) a VM waits for computation resources from the RSU to execute

the received data from vehicles.

72



Delay Analysis

4. Execution delay: It is the duration for processing the data present in a VM at an RSU.

Measurement of end-to-end delay for each portion of data can help to analyze perfor-

mance of the algorithm for randomly incoming data. This is why it is necessary to partition

the data into small parts. Partitioning data into small parts helps in scheduling the VM

requests in the RSUs. We consider four states for the generated data by a vehicle. These

are – 1) Transfer state, 2) Migration state, 3) Waiting state, and 4) Execution state.

4.5.1 Data Partitioning

Identification of data that remains in one of the aforementioned states is important to ana-

lyze the end-to-end delay. We partition the data into fixed-sized blocks that we call chunks

to analyze the performance of ERR for randomly incoming data. Each chunk of data is

identified by one identification number which helps in maintaining the order of chunks.

Let us assume that there are m chunks of data generated at vehicle vj and processed

by a VM bj using the resources of some of the RSUs present in the scenario. Chunks are

represented by Cj
1 . . .C

j
m. Dataj is the data generated by the vehicle vj and is calculated as

follows:

Dataj =
m∑
k=1

Cj
k (4.21)

4.5.2 Calculation of Delay

We calculate end-to-end delay of each request as per Equation 4.22. End-to-end delay Dj is

calculated as the summation of the delay incurred for each chunk of data at different RSUs

and the VM’s waiting time in an RSU. Dj is defined below:

Dj =
Y∑
i=1

 mi∑
k=1

di
Cj

k

+ ζ i,nj

 (4.22)

di
Cj

k

= dtk + dmk + dwk + dek (4.23)

where dtk is the data transfer delay for chunk Ck, d
m
k is the migration delay for chunk Ck,

dwk is the waiting delay for chunk Ck, d
e
k is the execution delay for chunk Ck, and ζ i,nj is
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the waiting delay of VM bj at RSU ri for event number n. ζ i,nj is modeled as gamma

distribution [62] with probability density function represented by Equation 4.24. Gamma

distribution predicts the waiting time of the nth event. Therefore, Gamma distribution is

chosen to analyze the waiting delay of the VM. The waiting time of the VM varies between

0 and T . In our scenario, we assume that the occurrence of an event follows the memoryless

property in the case of event-driven applications. In the case of periodic applications, data

gets generated based on the period.

fζi,nj
(t) =

πn

n!
tn−1e−πt, 0 ≤ t ≤ T (4.24)

Here, π is the arrival rate, n is the event number, and f is the probability density function

as given in Equation 4.24.

4.5.3 Analytical Results

Data partitioning helps to analyze the end-to-end delay for each chunk of data. In case a

chunk of data is available with the RSU, it gets processed and does not wait for the next

chunk of data. The end-to-end delay is calculated for each chunk of data along with the

VM’s waiting time. We have analyzed the end-to-end delay with data partitioning. The

results obtained from simulation without data partitioning and the analytical data obtained

with data partitioning are shown in Figure 4.9. Data partitioning helps to measure the

end-to-end delay of ERR effectively for different types of applications with variations in

incoming data. Figures 4.9a, 4.9b, and 4.9c show the performance of periodic applications,

event-driven applications, and their combination, respectively both with and without data

partitioning. The analytical results with data partitioning and the results obtained from

the simulations without data partitioning follow similar trends. However, the delay in case

of data partition is lesser as compared to the no data partition scenario as shown in Figure

4.9. This is because, the chunks of data are scheduled even with the availability of a small

amount of resources.

4.6 Modified Efficient Resource Renting (MERR)

In the previous section, we have partitioned data into chunks, that modify our algorithm

ERR and we call that algorithm MEER. Here, each chunk of data can be assigned to
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any RSU of the network. This leads to a significant decrease in VM migrations result-

ing in lower delay and higher VM completion percentage. The core part of ERR i.e. Re-

source Aware Assignment() has been modified to change the assignment procedure as shown

in Algorithm 9. Here, in the first iteration, all the data generated by the VM request in one

RSU is partitioned and considered as remaining chunks. After scheduling the request the

remaining chunks are assigned to some other RSUs. Along with that lock time for the VM

in the last assignment is taken into consideration. Lock time is the time for which the VM

is locked for rescheduled and never rescheduled. To minimize the number of VM migrations

the lock is applied to the assignment. During the lock period, the added chunks to the

VM are assigned to other RSUs of the network which minimizes the end-to-end delay and

increases the number of VM completion. The overall cost also gets minimized.

4.6.1 Modified Algorithm

The proposed modification applied to ERR and the modified version of the algorithm is

specified in Algorithm 9.

4.6.2 Results of MERR

The performance of MERR is shown in Figures 4.10, 4.11, and 4.12 for periodic applications,

event-driven applications, and their combinations respectively. In all scenarios, MERR

outperforms other algorithms for VM completion percentage, end-to-end delay, rent-out

cost, and total cost. This is because, the chunk of data of each VM can be processed in

other RSUs in case of availability of resources. This reduces end-to-end delay, and overall

cost, and increases VM completion percentage.
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Algorithm 9: Modified Resource Aware Assignment()

1 φj ← remaining chunks of VM j

2 tlj ← lock time for VMj for last assignment

3 Mt[]← Incomplete VMs
4 VMAssigned = ϕ
5 flag = TRUE
6 while (Mt! = VMAssigned and flag == TRUE) do
7 ch = subset of VMs chosen from Mt for assignment

Wji ← ω1(Rt[i].s− (Fj + U t
j )) + ω2(D

r
i ) + ω3(−Rt[i].p/a[j].p) + ω4(−Rt[i].Q

t
i)

8 Assigned = Hungarian Algo(Wji)
9 Apply lock on assigned VMs

10 if (Assigned[] == ϕ) then
11 flag = FALSE
12 continue

13 VMAssigned = VMAssigned ∪Assigned
14 VMs migrated to the assigned RSUs
15 Update Rt, Mt of RSUs used in assignment
16 for each RSU ri in Rt do
17 vm edf ← sort Rt[i].v by earliest deadline first order
18 for each VM bj in vm edf do
19 if ((!vm edf [j].completed) and (Rt[i].remainingc > vm edf [l].c)) then
20 Mt[j].data remaining -= Dr

i

21 else if (vm.edf[j].completed) then
22 Append vm.edf [j] to Mover

23 vm.edf [j].r.remainingc += vm.edf [j].c

24 Assign the remaining chunks of each VM to another RSU

4.7 Chapter Summary

This chapter proposed a pricing model that addresses the problem of resource renting within

the RSU network. A resource renting algorithm is proposed which takes care of rent-out cost,

available storage, available computation, and data processing rate. To further optimize the

approach, the tasks are partitioned into chunks before doing the request assignment. ERR

increases the VM completion percentage by approximately 61.82%, decreases the delay by

62.5%, and decreases the total cost by 80% compared to JSCO for 150 vehicles for periodic

applications.
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Figure 4.2: Flow chart for ERR
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(a) (b)

(c) (d)

Figure 4.3: Performance of algorithms for periodic applications

(a) (b) (c)

Figure 4.4: Performance analysis after assigning zero weights to different parameters for periodic
applications
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(a) (b)

(c) (d)

Figure 4.5: Performance of algorithms for event-driven applications

(a) (b) (c)

Figure 4.6: Performance analysis after assigning zero weights to parameters for event-driven
applications

79



Resource Renting for Load Balancing in Vehicular Networks

(a) (b)

(c) (d)

Figure 4.7: Performance of algorithms for a combination of periodic and event-driven applications

(a) (b) (c)

Figure 4.8: Performance analysis after assigning zero weights to parameters for a combination
of periodic and event-driven applications
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(a) (b) (c)

Figure 4.9: Trends of delay for (a) periodic applications, (b) event-driven applications, and (c)
their combination

(a) (b)

(c) (d)

Figure 4.10: Performance of algorithms for periodic applications
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(a) (b)

(c) (d)

Figure 4.11: Performance of algorithms for event-driven applications
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(a) (b)

(c) (d)

Figure 4.12: Performance of algorithms for a combination of periodic and event-driven applica-
tions
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5
Profit Maximization in Heterogeneous

Vehicular Networks

In this chapter, we have proposed an algorithm for maximization of profit for SPs in het-

erogeneous vehicular networks while maintaining the QoS for processing the application

requests. To increase resource availability, PVs and CC are considered as options for pro-

cessing the service requests.

5.1 Introduction

Vehicles in the city scenarios are unevenly distributed. This distribution is due to the

location of the city and the time of the day. Vehicles use multiple applications, each with

different resource requirements and deadlines. Due to the huge number of requests, RSUs

sometimes get overloaded. This leads to high chances of service failure and a decrease

in QoS. Deployment of more RSUs to the city is one of the possible options for avoiding

this overloaded scenario. However, due to the huge deployment and maintenance costs of

RSUs, it is not economical to cover the entire city with RSUs. PVs are considered as an

economically viable option for processing the requests. However, due to its limited resource

capacities, PVs can not be used for all request types. In this scenario, CC is considered as
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one option for processing the requests. This motivates us, to propose better solutions that

can handle overloaded scenarios.

5.2 System Model

In this Section, we describe a system model which includes all the network components. We

Figure 5.1: System model

consider a city scenario with an area of 10 square kilometres where nine RSUs are placed

uniformly. We consider three SPs, each of which consists of three RSUs. SPs accept requests
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from the on-road vehicles through one RSU. Each vehicle runs several applications. Each

application generates single resource requests based on the user’s preference. The average

data generation rate for each application is known. Data generated by an application

is temporarily stored in the vehicles, which need to be processed within the deadline of

application. The SPs coordinate with other SPs along with the CC and PVs to process the

requests. There is a fixed number of parking lots in the city, where vehicles are parked.

All vehicles in one parking lot are within the transmission range of one RSU as shown in

Figure 5.1.

5.3 Network Terminologies

In this Section, we defined some terminologies considered in this work.

5.3.1 Requester Vehicles

Requester vehicles are on-road vehicles that have some resource requirements. These vehicles

have a fixed route and run one or more applications. Each application generates one resource

request. The request includes storage resources, computing resources, and content delivery

time.

5.3.2 Road Side Units (RSUs)

RSUs are static nodes placed in the city along the side of roads. These are equipped with

computing and storage capabilities to provide services to the requester vehicles. These

RSUs serve as intermediate nodes between vehicles and the CC, helping to reduce latency

and network congestion by assigning the requests to either CC or PVs. RSUs can perform

tasks such as data aggregation, processing, and analysis of data generated by vehicles.

5.3.3 Parked Vehicles (PVs)

PVs are stationary vehicles located within a specific region of a city and fall within the

transmission range of an RSU. The information about PVs, such as parking duration, avail-

able storage and computation is communicated to the nearby RSUs continuously. This helps

SPs to make decisions about request assignments. Assigned requests are processed within

the parking duration. This arrangement allows PVs to actively participate in the processing
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and transmission of data, leveraging their available resources and contributing to the overall

service provisioning ecosystem.

5.3.4 Central Cloud (CC)

A CC is a distant data centre utilized for storing, processing, and managing data and ap-

plications. It serves as a platform that offers various services, including real-time traffic

information, route planning, and other data-intensive operations. The robust infrastructure

and extensive storage capacity enable CC to execute large-scale data processing tasks effi-

ciently. It acts as a centralized hub, facilitating the delivery of critical services that require

substantial computational power and storage capabilities. CC plays a major role in pro-

viding scalable and high-performance solutions for diverse applications and services in the

networked environment.

5.3.5 Service Federation

Service federation is a process by which service requests are processed by renting resources

from other entities. Here, the SPs establish interconnections with one another, as well as

with PVs and the CC. Through this network of RSUs, SPs facilitate communication and data

exchange among themselves, PVs, and the CC. This interconnected infrastructure allows for

seamless connectivity and efficient management of resources and services provided by the

SP to various entities. The process involves SPs providing services to requester vehicles by

utilizing resources from other SPs, PVs, and the CC with guaranteed QoS. This collaboration

allows SPs to leverage the combined resources and capabilities of multiple entities, ensuring

efficient service delivery and maintaining the desired level of performance. In case a request

is made to an SP, it is necessary to assign the request to an appropriate node out of CC,

PVs other SPs. This increases the chance of maximizing profit for the SPs.

5.4 Request Assignment: An Economic Perspective

Vehicles generate requests that are transferred to nearby RSUs for processing and assignment

based on optimal node assignment policy. To ensure completion of request processing, RSUs,

PVs, or CC are assigned the request by the SPs. Cost Model (CM) and Selection Criteria

(SC) are considered before the assignment of requests.
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5.4.1 Cost Model (CM)

The cost associated with each resource type is specified in the CM. To process a request a

vehicle may pay the cost to RSUs or CC or PVs. There are four types of costs – 1) cost of

processing, 2) cost of storage, 3) cost of computation, and 4) cost of content delivery.

5.4.1.1 Cost of Processing

It is a fixed cost for processing a request by an SP. This cost is applicable each time when a

request is processed. Payment is received by the RSU which takes the service request from

vehicles. Cost of processing is only charged by SPs not by a PV or CC.

5.4.1.2 Cost of Storage

It is a fixed cost charged by all types of nodes (RSUs, PVs, and CC). Each of these three

nodes has a different rent-out cost. This makes the scenario complex for the SPs to assign

the request to one of these nodes.

5.4.1.3 Cost of Computation

Computation cost of CM focuses on per-unit computing cost. Each type of node has a

different cost profile. In case an RSU does not have sufficient resources, it rents resources

from other RSUs or PVs, or CC.

5.4.1.4 Cost of Content Delivery

Content delivery services in VANETs can be designed to support different types of in-

formation dissemination, such as safety messages, traffic updates, or multimedia content

including video streaming. Content delivery service allows the SPs to provide the service

to vehicles by utilizing the resources of RSUs of other SPs, PVs, or CC. This is done to

provide uninterrupted services without affecting the QoS of SPs.

5.4.2 Selection Criteria (SC)

There are three types of nodes used to assist the SPs - 1) parked vehicles, 2) central cloud,

and 3) RSUs of other SPs. It is important to select those nodes in such a way that more

number of requests get processed with minimum cost.
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5.4.2.1 Parked Vehicle Selection

Selection of PVs should be done based on available resources and “time of stay” in a partic-

ular parking lot. Probability of PVs remaining in the parking lot is too high which avoids

the situation of the sudden departure of PVs. Each PV stays in the parking lot for a fixed

duration. This information is intimated to the nearby RSUs when a vehicle enters to the

parking lot. Each PV is an independent entity. It gets paid for the resources it provides to

the SPs.

5.4.2.2 Central Cloud Selection

CC is the most suitable option for applications that are delay-tolerant and require a huge

amount of resources. The time of uploading a task to a CC takes a significant amount of

time that depends on the amount of data and network bandwidth. The applications that

require less interaction with servers or applications that generate huge amounts of data are

most suitable for CC in overloaded scenarios.

5.4.2.3 RSU Selection

RSUs are the nodes connected to the current node via the backbone network. They have

resource capacities larger than the PVs and lesser than the CC. Applications that require

requests to be processed with minimum delay with moderate computation required can be

assigned to the RSUs. During assignments, rent-out cost of RSUs belonging to the same SP

is considered as zero.

5.4.3 Strategy Determination

The request received by an RSU needs assignment to a node by which SP gets maximum

profit without affecting the QoS. Thus, it is necessary to have an approach for selecting

a suitable node out of the available options. There are three options for processing the

requests - 1) at an RSU of other SPs, 2) at the CC, and 3) in a PV. The RSU’s DPR is

lesser as compared to CC but greater than PVs. The PVs have less resource capacity than

other options. However, the cost and transmission delays are lesser in the case of PVs than

in other node types. In scenarios where none of the RSUs and PVs are able to serve the

request or requests with huge resource requirements, CC is chosen as the option. Thus,

determining whether a request is assigned to PVs or other RSUs or CC is challenging. A
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decision is made based on application types, resource requirements, deadlines, and available

resources for which maximum profit is generated by the SPs without affecting QoS.

5.5 Problem Formulation

Let T be the total time considered for simulation. Let there be N number of SPs repre-

sented by the set S = {s1, s2, ...sN}. SPs have different numbers of RSUs represented by the

variable Γ. Each set of RSUs in an SP is represented by E = {r1, r2, . . . , rΓ}. We represent

an RSU ri by the tuple ⟨Ci, Si, Di, P
s
i , P

c
i , P

d
i ⟩, where Ci is the computing capacity, Si is

the storage capacity, Di is the DPR, P s
i is the per unit rent-out cost, P c

i is the per unit

computation cost, and P d
i is the per unit content delivery cost.

Let there be X vehicles represented by the set V = {v1, v2, . . . , vX}. Each vehicle vj ∈ V

is represented by a tuple ⟨Pj, aj⟩, where

� Pj is the path followed by vj represented as a sequence of RSUs ⟨rj1, r
j
2, . . . , r

j
k⟩, where

k is a variable whose value depends on the number of RSUs covered by the vehicles

till the end of the journey

� aj is the total number of applications run by vehicle vj.

Let there be H number of total requests generated by all vehicles of the system represented

by the set Q = {q1, q2, . . . , qH}. Each request qk is represented by a tuple ⟨sk, ck, tk,Lk,∧sk,∧ck,∧tk⟩,
where

� sk is the storage requirement of request qk

� ck is the computing requirement of request qk

� tk is the content delivery duration requirement of request qk

� Lk is the deadline of request qk

� ∧sk is the per unit storage cost that a vehicle pays for request qk to any SPs

� ∧ck is the per unit computing cost that a vehicle pays for request qk to any SPs

� ∧tk is the cost per unit time of content delivery a vehicle pays to an SP.
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Let there be B number of PVs that rent their resources to one of the SPs represented

by the set Z = {z1, z2, . . . , zB}. zl is represented by the tuple ⟨cl, sl, dl, rl⟩, where cl is the

computing capacity, sl is the storage capacity, dl is the DPR, and rl is the index of associated

RSU to which zl can rent it’s resource.

The outputs are represented by three sets of variables {xijt}, {yijt}, and {zijt}, ∀ri ∈ E,

∀vj ∈ V , and ∀t, 1 ≤ t ≤ T . Request generated by an application of vehicle vj is represented

by the output variables, which are:

� xijt is set to 1 if the request is assigned in RSUs, PVs or CC at time t, otherwise 0

� yijt is set to 1 if the request is scheduled in RSUs, PVs or CC at time t, otherwise 0

� zijt is set to 1 if the request is executing in RSUs, PVs or CC at time t, otherwise 0.

Let ζjt be the vehicle’s position. It is set to 1 if a vehicle is present in the parking lot

otherwise it is 0. Let I be the total number of incomplete requests at a time t. We also

define indicator variables F r
j , F

p
j , and F c

j to record the finishing node. Value of F r
j , F

p
j , and

F c
j is 1 indicates that the request finishes its processing by RSUs, PVs, and CC respectively,

otherwise, the value is 0. Let Ij be the total number of incomplete requests.

5.5.1 Assumptions

� SPs provide services such as data storage, computation, and content delivery to vehi-

cles.

� Route of a vehicle is fixed i.e. set of RSUs the vehicle passes through in the lifetime

of its applications is always the same.

� There is a delay in the transfer of data from the vehicles to RSU and between the

RSUs.

� Application running in vehicles consumes all its resources while running on roads.

� A vehicle present in the parking lot uses some memories for running basic applications

at the back end.

� Requests generated in vehicles may wait in the vehicle’s queue in case of unavailability

of RSUs.
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� A request can be processed by at most one of the nodes from RSU, CC, or PVs at a

time.

� The resource used by a request can not exceed the available resources at RSUs, PVs,

and CC at any instant.

5.5.2 Constraints

� The sum of the number of requests completed their processing by RSUs, PVs, and CC

along with the number of incomplete requests is less than equal to the total number

of requests generated by all vehicles.

H∑
j=1

(
F r
j + F p

j + F c
j + Ij

)
≤ Q (5.1)

� Total execution time required by a request generated by the applications of vehicle vj

is less than departure time of vehicle from the last RSU in its path.

T∑
t=0

zijt ≤ Lj, ∀vj ∈ V (5.2)

� Each request must be assigned to at most one RSU or one PV or CC at a time.

ri ∈ E, t ∈ T, xijt <= 1,∀vj ∈ V (5.3)

� One SP can not assign a request to PVs of other SPs.

xijt < 1,∀ri ∈ E & zi ∈ Z,∀qi ∈ Q, zi /∈ E (5.4)

5.5.3 Calculation of Profit

The profit is calculated by subtracting expenditure towards infrastructure cost, rent-out

cost, and penalty cost from service cost. Revenue is calculated by multiplying the unit price

for resources and the time of use of those resources. Resource utilization plays an impor-

tant role in the maximization of profit for SPs. Thus, the duration for which SPs use their

resources should have to be maximized to maximize profit. The infrastructure cost is fixed
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for an RSU. Rent-out cost is dependent on the time for which an SP uses the resources of

other RSUs or PVs of other SPs or CC.

Let us assume that Etil is the profit generated by the SP si, which can be defined as:

Etil = Ptil −
(
costinfratil + costrenttil + costpentil

)
(5.5)

Ptil = P p
til + P s

til + P c
til + P d

til (5.6)

costrenttil =
N∑
i=1

Γ∑
j=1

costrenttij +
B∑
l=1

costrenttil + costrenttic (5.7)

costpentil = σ1 × γs
til + σ2 × γc

til + σ3 × γd
til (5.8)

where Ptil is the cost of using the resources at time t for the vehicle, P p
til is the processing

cost for using the service from the SP at time t, P s
til is the per unit storage cost, P c

til is the

per unit computing cost, P d
til is the per unit content delivery cost, costrenttil is the rent-out

cost incurred by RSU i by using the resources of RSU k at time t, costrenttil is the rent-out

cost incurred by RSU i by using the resources of PV l from the set of PVs B at time t,

costrenttil is the rent-out cost incurred by RSU i by using the resources of CC, and costpentil is

the penalty cost incurred for violating the Service Level Agreement (SLA) at time t.

In Equation 5.8, σ1, σ2, and σ3 are penalties per unit of storage, per unit computing, and

per unit content delivery time, in case of failure in SLA. γs
til is the amount of data requested

for processing by the request qi, γ
c
til is the amount of computation requested by the request

qi, and γd
til is the content delivery duration requested by qi.

5.5.4 QoS Measurement

The applications running within the vehicles possess distinct QoS parameters such as delay,

jitters, and others. The SP must ensure the fulfilment of these QoS requirements. The

specific details regarding these QoS parameters are documented in the SLA established

between the requesting vehicle and the SP. The SLA serves as a contractual agreement that

outlines the agreed-upon levels of service quality. In case an SP fails to meet the obligations

outlined in the SLA, penalties are enforced upon SPs. These penalties are designed to be

more significant than the actual service cost. The purpose of imposing penalties is to hold the

SP accountable for any shortcomings or failures in meeting the agreed-upon QoS standards.
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By implementing penalties that exceed the service cost, there is a strong indication for the SP

to prioritize and maintain the specified QoS. Penalties imposed on an SP for SLA violations

serve multiple purposes. Firstly, discouraging the SPs from neglecting or disregarding the

QoS requirements of applications running in the vehicles. Secondly, penalties act as a form of

compensation for requesting vehicles, compensating them for the inconvenience or negative

impact caused by service failure. It helps to ensure that requesting vehicles receive proper

compensation in cases where the QoS expectations are not met.

5.5.5 Problem Definition

The problem we address is to schedule the requests to one of the destination nodes in

such a way that profit of SPs is maximized and number of requests processed is maximized

with QoS guarantee subject to the constraint given in Section 5.5.2. Hence, the objective

functions are stated as

maximize
T∑
t=1

N∑
i=1

Γ∑
l=1

(
Ptil −

(
costinfratil + costrenttil + costpentil

))
(5.9)

maximize
T∑
t=1

H∑
i=1

(
F r
ti + F p

ti + F c
ti

)
(5.10)

In this work, we consider an optimization problem that corresponds to a matching prob-

lem, where a set of requests need to be assigned to a set of nodes (RSUs, PVs, CC). The

potentially large number of vehicles and RSUs makes the scenario a large-scale assignment

problem. The objective is to make the right decision to maximize the number of requests

processed is an optimization problem. The RSUs have limited capacity and the requests

have to be processed with QoS guaranteed is similar to the patient hospital problem, which

is NP-hard [63]. Thus, our problem becomes an NP-hard problem. We propose a heuristic

algorithm to optimally assign the vehicle request to one of the nodes (RSU, PV, or CC) by

which a maximum number of requests gets processed within the lifetime and maximizing

the profit of the SPs.

5.6 Proposed Methodology

In this Section, we propose an algorithm that we call Adaptive Algorithm for Profit Maxi-

mization (AAPM). Profit of the SPs is maximized by the efficient assignment of requests to
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a node from RSUs, CC, and PVs. Once the vehicle comes in the transmission range of an

RSU and the vehicle has some request to be processed, a request is sent to the correspond-

ing RSU of a SPs. Then the SP coordinates with other SPs, CC, and PVs before deciding

where to assign the request. Flow chart of the proposed methodology is given in Figure 5.2.

Proposed algorithm AAPM has three different modules:

Figure 5.2: Flow chart of AAPM
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1. Node Identification: This module aims to identify nodes that have sufficient available

resources by evaluating the remaining resources. It focuses on selecting nodes that

possess equal or greater amounts of resources for the assignment process. By doing so,

this module ensures that only capable nodes are considered. This increases the likeli-

hood of successful assignments. This approach helps to optimize request assignment

with compatible nodes and ensure efficient utilization of available resources.

2. Request Assignment: The request assignment process involves allocating each request

to a specific node for a fixed duration. This duration is crucial because, in a scenario

with heterogeneous nodes, each node has its capacity while each request has its re-

source requirements. Preempting requests frequently during execution can increase

context switch time. To minimize context switching, the proposed assignment algo-

rithm adapts a non-preemptive approach. However, a non-preemptive process may

increase waiting time for other requests in the queue. Hence, selecting an ideal time

slot for a request assignment becomes crucial. The proposed algorithm considers fac-

tors such as node types, available resources, and the number of pending requests to

determine the optimal slot time for request assignment.

3. Request Processing: Each request from the set of requests is chosen for processing

using the round-robin scheduling method. However, the duration for which the re-

quests are processed is as per the time assigned in request assignment phase. In case

a request completes its processing before the pre-assigned slot, the resources allocated

for that slot are deallocated, which is used by other requests. Requests which take

more time to process than their lifetimes are terminated and added to the incomplete

request lists.

5.6.1 Calculation of Weight

Weight is a value calculated based on the target node’s resource capacity and resource

need of a request. To maximize profit of SP, it is necessary to maximize the resource uses.

However, in the scenarios where profit is maximized without the use of resources of cur-

rent SP, is considered in Equation 5.15. Here, the weight equation considers several factors

such as preference, type of nodes, SP, remaining available storage, remaining available com-

putations, and rent-out cost. The preference is given to execute the request in the same SPs.
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Let us represent w as the preference factor for assigning the service request. Consider w1,

w2, and w3 as the weights for rent-out cost, available storage, and available computation,

respectively. It is very crucial to assign weights to each of the factors. This is because, the

weight affects the profit for the RSU on one side and QoS for the vehicle request on the

other side.

Let us discuss each of them:

� w is the preference given for node types. This factor is important for the fairness

aspect. First, priority is given to current SP. This increases the resource utilization of

the current SP and thus increases the profit. Then, the preference is given to other

SPs of the network. In case none of the SPs satisfy requirement of the request, priority

is given to PVs and CC that satisfy the QoS requirement and generate the highest

profit for the current SP.

� w1 is the weight assigned for rent-out costs charged for service requests. It is directly

associated with the profit for the SP. In case of a request transfer to one of the RSUs

of the same SP, the rent-out cost is considered to be zero. Here, a higher rent-out cost

means lesser profit for the SP.

� w2 is the weight assigned for the available storage in the target node. Although

the requested amount of storage is necessary for all the nodes to be chosen for the

assignment. However, larger storage in the targeted node helps to minimize the context

switch time in case additional data is requested in the subsequent time instant.

� w3 is the weight assigned for the available computation in the target node. Although

the requested amount of computation is necessary for all the nodes to be chosen for

the assignment. However, larger computation in the targeted node helps to minimize

the delay.

If a request has to be assigned to one RSU of the same SP, then

w = 1 (5.11)

If the request has to be assigned to one RSU of a different SP, then

w = 0.8 (5.12)
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If the request has to be assigned to one PV of SP, then

w = 0.3 (5.13)

If the request has to be assigned to the CC (Π), then

w = 0.2 (5.14)

Profit obtained by the SPs depends on the type of service and the amount of service the

requested vehicle needs from the targeted node. Each service request from the vehicle may

have a combination of storage, computation, and content delivery type of service. The

weight assignment depends on the amount of resources the requested vehicle needs. The

values of weights chosen for rent-out cost, storage, and computation as 0.5, 0.25, and 0.25,

respectively. This is because the rent-out cost directly affects the profit of the SP. The

storage and computation affect the QoS, delay, and number of requests completed. The

weight is represented by Ψ and is defined as follows:

Ψ = w ×

w1 ×

(
1

P s
i × sk + P c

i × ck + P d
i × tk

)
+ w2 ×

Si

sk
+ w3 ×

Ci

ck

 (5.15)

5.6.2 Adaptive Algorithm for Profit Maximization (AAPM)

Algorithm 10: Adaptive Algorithm for Profit Maximization (AAPM)

Initialize:
1 R← NULL, P ← NULL, Pi← NULL, F r ← 0, F p ← 0, F c ← 0, E ← 0.0,
I ← 0

2 for (i = 0; i < T ; i++) do
3 Identify Nodes()
4 Assign Requests()
5 Process Requests()

6 Calculate F for each vehicles
7 Calculate E for each SP

Algorithm 10 is the main algorithm that calls three different modules of the algorithm in

an iterative manner from time 0 to T . At the end, it calculates the total number of requests

completed processing and the total profit of each SP.
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Algorithm 11: Identify Node

Initialize
1 N c ← NULL
2 for (i = 0; i < N ; i = i+ 1) do
3 for (i = 0; i < Γ; i = i+ 1) do
4 if ((rremSt

i > qsni )&&(rremCm
i > qcni )) then

5 Add ri to N
c

6 for (i = 0; i < B; i = i+ 1) do
7 if ((premSt

i > qsni )&&(premCm
i > qcni )) then

8 Add pi to N
c

9 Add Π to N c

10 return N c

Algorithm 11 checks for the availability of sufficient storage and computing needs in

RSUs and PVs of each SP. In line 4, rremSt
i is the remaining storage of RSU ri, q

sn
i is the

storage need of the request qi, r
remCm
i is the remaining computing resources of RSU ri, and

qcni is the storage need of the request qi. The nodes that satisfy the storage need and the

computation need get added to the candidate node list N c along with the CC node. This is

because, we assume that the CC always has sufficient storage and computation. Similarly,

in line 7, premSt
i is the remaining storage of PV pi and premCm

i is the remaining computing

resources of PV pi.

Algorithm 12 takes a list of candidate nodes and a list of requests as input to assign the

requests to candidate nodes. Assignments is a dictionary to store the assignments. Then

the algorithm calculates the weight and available slots in case a request is assigned to the

candidate nodes. QoS parameters are checked for each possible assignment. In case the

requirement is not satisfied, the weight is considered as zero. The node with highest weight

is chosen for assignment in the available time slot for each unassigned request. At the end,

information related to the assignment, request list, and node list gets updated.

Algorithm 13 takes the requests one by one from the allotment list and processes them

within the allocated slots. In case a request completes its processing at any given instant,

the resources allocated to that request get released.
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Algorithm 12: Assign Requests

Initialize:
1 Selected nodes← N c

2 Assignments← NULL
3 for (each qui in Q) do
4 for (each node in Selected nodes) do
5 calculate weight(qui )
6 calculate available− slots
7 if (QoS(qui , node) == false) then
8 weight(qui ) = 0.0

9 for (each qui in Q) do
10 wmax ←Max(weight(qui ))
11 indexof(wmax)← qui
12 duration← available− slots
13 Assignments = Assignments+ Asst
14 Calculate Cost
15 Update Q
16 Update Selected nodes

17 for (each ri in R) do

18 Calculate Pi, cost
infra
i , costrenti , costpeni , Ei

19 return Assingments

Algorithm 13: Process Request

Initialize:
1 Allotment list← Assignments
2 for (ri in RSU) do
3 for (qi in allotment list) do
4 process(qi)
5 if (complete(qi) == True) then
6 release resource(qi)

7 if (t > L(qi)) then
8 Append qi to I

9 return Allotment list
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Table 5.1: Simulation parameters for AAPM

Parameters Values
Vehicles count 50-300
Number of time steps 890
Number of RSUs 9
Per unit storage cost of RSU 0.001$ - 0.007$
Per unit computing cost of RSU 0.001$ - 0.007$
Per unit cost of content delivery 0.002$
Per unit storage cost paid by vehicles 0.001$ - 0.005$
Per unit computing cost paid by vehicles 0.001$ - 0.005$
Per unit cost of content delivery paid by vehicles 0.0015$
Penalty per unit of storage resource paid by SPs 0.001$ - 0.009$
Penalty per unit of computing resource paid by SPs 0.001$ - 0.009$
Penalty per unit time of content delivery paid by SPs 0.0022$
RSU’s transmission range 500 Meters
Total storage capacity of each RSU 6000 MB
Total computing capacity of each RSU 1000 Units

5.7 Simulation Results and Discussion

This section presents the results achieved through the implementation of AAPM using a

Java-based discrete event simulator. The study focuses on a lower Manhattan city sce-

nario [60] encompassing a 10-square-kilometers area with bidirectional roads. Nine RSUs

are uniformly distributed within this scenario, each having a transmission range of 500 me-

ters. Consequently, the RSUs do not overlap, leaving certain areas without RSU coverage.

The movement of vehicles in the simulation is generated using the Simulation of Urban

MObility (SUMO) [18]. The simulation parameter is specified in the table 5.1. Important

simulation parameters are taken from the existing works [22,27].

We have evaluated our proposed algorithm for periodic applications. By periodic ap-

plication, we mean an application that generates data periodically. We have compared the

result of AAPM with Simulated annealing-based Migrating Birds Optimization (SMBO) [64]

and Parked Vehicle-assisted Task Offloading (PVATO) [65]. Along with that, we compare

the results with a GREEDY approach. By GREEDY approach we mean that a request

is assigned to RSUs of the same SP first and if sufficient resources are not available it is
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(a) (b)

(c) (d)

Figure 5.3: Performance of AAPM with variation of vehicle count

assigned to RSUs of other SPs. However, AAPM assigns the request to one of the target

nodes. The node may be an RSU, PV, or CC.

In Figure 5.3 performance of AAPM is shown with varying numbers of vehicles. The

vehicle count is varied from 50 to 300 to evaluate the algorithm. Figure 5.3a shows the

request completion percentage for different vehicle counts. It can be observed that AAPM

outperforms other algorithms because of the consideration of remaining storage and com-

putation of available nodes. AAPM allocates the request to the node which can complete

the request with a minimum time and gives less preference to PVs and CC. This reduces

the delay and increases the chances of processing a larger number of requests. Figure 5.3b

demonstrates the result for total profit obtained by SPs. AAPM shows an improved perfor-

mance as compared to the existing algorithms as well as the GREEDY algorithm. This is

because of consideration of rent-out cost and selection of right node types before allocating a

request. The trends of average response time and average waiting time are shown in Figure

5.3c and Figure 5.3d respectively. AAPM outperforms other algorithms for these metrics.
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This is because of the availability of multiple options for a request during the assignment

phase. Based on the resource requirements of the request, a suitable node is chosen for the

assignment that minimizes the response time and waiting time of the resource requests.

(a) (b)

(c) (d)

Figure 5.4: Performance of AAPM with variation of RSU capacity

Figure 5.4 shows the performance of AAPM with variation in RSU capacities. Value

of the vehicle count is taken as 150 in this scenario. Figure 5.4a shows the performance

of AAPM for request completion percentage with varying RSU capacities. It can be seen

that AAPM performs better as compared to other existing algorithms for different RSU

capacities. The reason behind this is the use of preference values while assigning a request

to one of the node types. An increase in RSU capacities leads to more number request

processing at the SP, which leads to more request completion. Figure 5.4b shows the change

in profit values with respect to the change in RSU capacities. This is because of efficient

resource utilization of SP in the case of AAPM which increases the profit of SPs. Figure 5.4c

and Figure 5.4d show the response time and waiting time respectively. AAPM outperforms

other algorithms for these scenarios. This is because of the availability of multiple options
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for SPs in AAPM while there is a need for request assignments. The resources available to

RSUs belonging to other SPs are used while there is a need.

(a) (b)

(c) (d)

Figure 5.5: Performance of AAPM with variation of number of parked vehicles

Figure 5.5 shows the performance of AAPM with the variation of PV count at each

parking lot. In this scenario, we have not considered SMBO as it does not use PVs. It can

be observed in Figure 5.5a that the request completion percentage is higher in the case of

AAPM as compared to PVATO and GREEDY approaches. This is because, the overloaded

RSU gives more preference to the PVs. Figure 5.5b shows the total profit incurred by

SPs. The increase in PVs leads to the use of low-cost resources by the SPs which leads

to a decrease in cost. Thus, the profit increases for the SP. Figure 5.5c and Figure 5.5d

show the variation of response time and waiting time of the algorithm respectively. In this

scenario also AAPM performs better than the existing algorithms. This is because, it uses

the resources of PVs and the CC while processing data. The availability of various types of

resources help the scheduler to choose the right resources while scheduling.
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5.8 Chapter Summary

In this chapter, the proposed algorithm AAPM maximizes the profit of SPs in heterogeneous

vehicular environments without affecting the QoS. To increase resource availability, PVs,

CC, and RSUs are considered as options while doing request assignments. An SP consists

of a fixed number of RSUs which interact with the vehicles and other RSUs of the network.

AAPM improves request processing by 46.30% compared to SMBO, and by 54.90% com-

pared to PVATO. The proposed algorithm improves total profit by 62.50% compared to

SMBO and by 30% compared to PVATO. The average response time is reduced by 18.75%

compared to SMBO and by 27.78% compared to PVATO. AAPM reduces average waiting

time by 38.57% compared to SMBO and by 44.16% compared to PVATO.
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6
Conclusions and Future Prospectives

In this chapter we summarize the work done, highlight the contributions, and suggest the

directions for possible future work.

6.1 Conclusions

In this thesis, we have proposed a set of algorithms for request assignment at RSU that

helps in load balancing. To maximize the number of requests processed and minimize the

end-to-delay, we have used three different approaches. In the first approach, we have utilized

the resources of all the RSUs in the network. Here, we have used VM migrations from the

overloaded RSU to other RSUs with available resources and focused on minimizing the cost

of migration. In the second approach, we have rented the resources from other RSU’s of

the network for that we have proposed a price model. Here, we have tried to maximize the

number of requests served and minimize the total cost. The total cost consists of migration

cost and rent-out cost. In the third approach, we have increased the availability of resources

by renting the required resources from CC, PVs and other RSUs. Here, we have considered

SPs which consist of more than one RSUs. To maximize the profit of SPs without affecting

QoS, we have proposed an algorithm that assigns the request to one of the nodes out of

PVs, CC and RSUs. In particular, we have proposed the following algorithms:
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1. AALB: An Application Aware Load Balancing algorithm for RSU in VANETs.

This algorithm considers application types, deadline of the request along with the

storage and computation availability of RSUs. This algorithm maximizes the number

of requests processed and minimizes the migration cost.

2. ERR: Resource Renting Algorithm for Load Balancing in Road Side Units. This

algorithm focuses on renting the resources from other RSUs of the network. It max-

imizes the number of requests processed and minimizes the total cost. Total cost

consists of migration costs and rent-out costs.

3. AAPM: Adaptive Algorithm for Profit Maximization in Heterogeneous Vehicular

Environment. This algorithm takes care of the scenarios where none of the RSUs in

the network is able to process the request. To increase the availability of the resources,

other nodes with available resources are considered. Those nodes are CC, PVs and

RSUs of another SPs. This algorithm maximizes the profit of SPs without affecting

the QoS.

Here, we have shown a basic comparison of the proposed algorithms with the existing

algorithms for the 150-vehicle scenario.

Table 6.1: Performance comparison of load balancing algorithms

Metrics AALB ERR AAPM JSCO MAMTS DCORA SMBO PVATO

VM Completion (%) 82 89 – 53 60 35 – –
Migration Cost ($) 50 – – 800 – – – –
Total Cost ($) – 25 – 125 – – – –
Average Delay(sec) 162 151 – 400 – – – –
Requests Processed (%) – – 79 – – – 54 51
Total Profit ($) – – 39 – – – 24 30
Avg. Res. Time(sec) – – 13 – – – 16 18
Avg. Wait. Time(sec) – – 43 – – – 70 77

6.2 Future Prospectives

The work reported in the chapters of this thesis provides ample scope and shows several

clear directions for future research endeavors. One can think of designing prediction-based
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resource reservation policy before the actual scheduling. This can enhance the scheduling

decisions for more optimal task assignments. Task dependencies are problems in the case of

task partition. This can be taken into consideration while making the assignment decisions.

The number of applications generating resource requests in a vehicle can be considered as

a factor while formulating the problem in case of task assignment in VANETs. This is be-

cause with increase in the number of applications and increased data generation rate of the

application may lead to the generation of simultaneous requests from a single vehicle. This

factor can be taken into consideration while doing the task assignment and VM migration.

The nearby vehicles with available resources can take part in load balancing either individ-

ually or by forming a cloud. Those resources are vital from a load-balancing point of view.

This can be considered in future research directions to make the assessment decision better.

However, the problem of quick disconnection and limited transmission range of vehicles is

always a problem in the case of fast-moving vehicles in the case of VANETs.

The proposed load balancing framework for VANETs presents multiple avenues for future

research that could enhance its effectiveness and applicability in real-world urban environ-

ments. One of the most promising directions is the integration of 5G and beyond. The

ultra-low latency, high reliability, and network slicing capabilities of 5G can be leveraged

to dynamically prioritize traffic loads across roadside units (RSUs), parked vehicles (PVs),

and central cloud infrastructure. This can support diverse quality-of-service (QoS) require-

ments, particularly for critical applications like emergency services and autonomous vehicle

coordination.

Expanding the architecture to include edge and fog computing is another valuable di-

rection. Future work can design layered coordination strategies between RSUs, PVs, and

fog nodes to enhance real-time data processing. Additionally, incorporating energy-aware

scheduling and federated learning at the edge can improve scalability while preserving data

privacy and minimizing energy consumption, especially for electric vehicles acting as edge

nodes. Incorporating AI-driven predictive models can enable proactive load balancing. Ma-

chine learning models trained on historical traffic, weather, and event data can anticipate

surges in demand, while reinforcement learning can adapt load distribution strategies in real

time based on continuous feedback. Together, these future research avenues can significantly

enhance the resilience, efficiency, and adaptability of VANET-based load balancing systems,

contributing meaningfully to the development of next-generation smart cities.
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Following are the three major research directions that can be taken into consideration

in the future:

� In Chapter 3, applications running in vehicles generate data based on the application

types and user’s preferences. Prediction of the amount of data generation in the future

is suitable for the assignment of VMs to RSUs. Lack of information about future data

makes some assignments which lead to unnecessary VM migration. Thus, there is an

increase in migration cost and end-to-end delay. In this scenario, a prediction of re-

quest assignment is a suitable option. However, existing prediction-based algorithms

require a huge amount of computation which may not be able to run on those RSUs

that are overloaded with the current requests. Thus, there is a need for a suitable

approach to deal with this scenario.

� In Chapter 4, the cost of deployment of RSU and its maintenance cost makes it dif-

ficult for the authorities to cover an entire city. This is because the RSU setup and

maintenance cost is too high RSU [66]. However, in an overloaded scenario, the place-

ment of mobile RSUs is one of the options that alleviates the the chance of overloading

and service disruption. It is critical to decide how many mobile RSUs are needed for

the overloaded scenario along with their position of deployment.

� In Chapter 5, to increase the availability of resources, PVs and CC are considered.

However, the resources of nearby vehicles are not considered. The nearby vehicles may

have available resources that can be used to eliminate overloaded scenarios in RSU.

The nearby vehicles might be taken into consideration individually or in a group. In

case, those vehicles are considered individually, the available resources may not be

sufficient to serve the request and in case of cluster how to decide the cluster size in

case of fast-moving vehicles with different speeds and directions. All these problems

have to be taken care while using the resources of nearby vehicles.

;;=8=<<
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