Cost-efficient Load Balancing in
Cloud-assisted Vehicular Networks

Thesis submaitted to the
Indian Institute of Technology Guwahati
for the award of the degree

of

Doctor of Philosophy

Computer Science and Engineering

Submitted by
Swagat Ranjan Sahoo

Under the guidance of
Dr. Moumita Patra

&\,{g\?ﬁﬁ Ff@,’}

& 2
&
& :\
=
2
‘ ®
o

J)}.

%
3 S
% 0f Techn®®

“q
“Wahatie 22>

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
June 2025

mailto:swaga176101011@iitg.ac.in
https://www.iitg.ac.in/cse/internet-pages/moumita.patra
http://www.iitg.ac.in/cse/
http://www.iitg.ernet.in

Copyright (©) Swagat Ranjan Sahoo 2025. All Rights Reserved.

mailto:swaga176101011@iitg.ac.in

Dedicated to

My Parents
and
Famaily members

Who always picked me up on time
and encouraged me to go on every adventure,
especially this one

Declaration

I certify that:

e The work contained in this thesis is original and has been done by myself

and under the general supervision of my supervisor.

e The work reported herein has not been submitted to any other Institute

for any degree or diploma.

e Whenever I have used materials (concepts, ideas, text, expressions, data,
graphs, diagrams, theoretical analysis, results, etc.) from other sources, I
have given due credit by citing them in the text of the thesis and giving
their details in the references. Elaborate sentences used verbatim from

published work have been clearly identified and quoted.

e [also affirm that no part of this thesis can be considered plagiarism to the
best of my knowledge and understanding and take complete responsibility

if any complaint arises.

e [am fully aware that my thesis supervisor is not in a position to check for

any possible instance of plagiarism within this submitted work.

Date: June 03, 2025

Place: Guwahati (Swagat Ranjan Sahoo)

mailto:swaga176101011@iitg.ac.in

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervi-
sor Dr. Moumita Patra for her consistent support, inexhaustible patience, and
positive guidance during my doctoral research. I am thankful for her ethical
beliefs and philosophy which made me mature not only as a scientific researcher

but also as a human.

I am highly grateful to Prof. Tamarapalli Venkatesh for his invaluable support
and encouragement throughout my Ph.D. I would also like to thank the other
members of my Doctoral Committee - Dr. John Jose and Prof. Ashok Singh
Sairam for their insightful comments and suggestions which made me improve

the quality and clarity of my work.

I would like to thank Prof. Arobinda Gupta for his insightful comments and
suggestions regarding my Ph.D. work. I am also thankful to the anonymous
reviewers of my research work in various forums for their critical comments

which helped me to add quality to my work.

I want to thank the heads of the Department of Computer Science and Engi-
neering during my Ph.D. at IITG for allowing me to use the facilities and the
available resources. I acknowledge the Technical staff of the Department of Com-
puter Science. I would also like to thank the staff at the Academic Affairs office

who were supportive in processing my applications and grant requests.

I would like to gratefully acknowledge MHRD, Gouvt. of India for the financial
support rendered throughout my years of Ph.D. without which this research
could not have taken shape. I would also like to acknowledge the Department
of Computer Science and Engineering and the Welfare Board of IITG for the
travel grants which helped me to present my research work at the national and

international levels.

I would also like to thank the research scholars of the Department of Computer
Science and Engineering at IITG for creating a warm atmosphere of mutual

support and encouragement.

Finally, yet importantly, I would like to thank Almighty God and my family
members for their unconditional love, support, caring, warmth, and profound
encouragement all these years. They never doubted my intentions and whole-
heartedly supported me in all my endeavours. I fall short of words to express

my gratitude to them.

Certificate

This is to certify that this thesis entitled, “Cost-efficient Load Balancing in
Cloud-assisted Vehicular Networks”, being submitted by Swagat Ranjan
Sahoo, to the Department of Computer Science and Engineering, Indian Insti-
tute of Technology Guwahati, for partial fulfillment of the award of the degree
of Doctor of Philosophy, is a bonafide work carried out by him under my super-
vision and guidance. The thesis, in my opinion, is worthy of consideration for
award of the degree of Doctor of Philosophy in accordance with the regulation of
the institute. To the best of my knowledge, it has not been submitted elsewhere

for the award of the degree.

Date:

Place: Guwahati

Dr. Moumita Patra
Assistant Professor

Department of Computer Science and Engineering
IIT Guwahati

mailto:swaga176101011@iitg.ac.in
mailto:swaga176101011@iitg.ac.in
http://www.iitg.ernet.in
http://www.iitg.ernet.in
https://www.iitg.ac.in/cse/internet-pages/moumita.patra
http://www.iitg.ac.in/cse/

Abstract

Vehicular Ad hoc NETworks (VANETS) have become an important part of a smart city en-
vironment. Vehicles are equipped with on-board units which allow them to run applications
and communicate with Road Side Units (RSUs). RSUs are connected to a local server with
some amount of storage and computing resources to run Virtual Machines (VMs) that pro-
cess the application requests generated by vehicles. They act as a cloudlet and provide cloud
support to requests. These requests may have different deadlines and resource requirements
like storage, computing, and content delivery. Processing the application requests at RSUs
may make some of the RSUs overloaded, especially near road intersections where a larger
number of vehicles are present. This significantly affects the quality of service by increasing
delay and decreasing the number of requests processed. Deployment of more RSUs may
reduce the chances of overloaded RSUs. However, the cost of deployment of RSUs and their
maintenance cost does not allow us to add a large number of RSUs. In this scenario, it is
necessary to either increase the total resource availability by using the resources from some
entities in the scenario or utilize the available resources of the network efficiently. In this
thesis, we propose a set of algorithms to assign the application requests to a target node
in the network such that the number of requests processed is maximized while minimizing
the end-to-end delay. The target node may be an RSU, Central Cloud (CC) or Parked
Vehicle (PV). First, we have utilized the available resources of other RSUs by migrating the
Virtual Machines (VMs) from the overloaded RSU to other RSUs with available resources.
Second, we have rented the resources from other RSUs with consideration of migration cost
and rent-out cost. Third, we have rented the resources from other RSUs, PVs and the CC
to process the application request. In all the scenarios, we have focused on efficient man-
agement of cost such that the users and the service providers are benefited. The proposed
algorithms are evaluated by extensive simulations and their performance is compared with

state-of-the-art algorithms for similar scenarios.

Aot

Viil

1

2

Contents

Introduction
1.1 Vehicular Ad-Hoc Networks
1.1.1 Communication Modes L oL
1.1.2 Load Balancing in VANETs
1.1.3 Virtual Machines oo
1.1.4 Cloud-assisted Vehicular Networks
1.1.5 Motivation and Research Scope
1.2 Major Contributions of Thesis
1.2.1 Contribution on Load Balancing
1.2.1.1 Application aware load balancing for road side units
1.2.1.2 Resource renting for load balancing in VANETs
1.2.2 Contribution on Profit Maximization
1.2.2.1 Profit maximization in heterogeneous vehicular networks . .

1.3 Organization of Thesis

Background and Literature Review

2.1 Background
2.1.1 Challenges in Load Balancing at RSUs
2.1.2 Importance of Load Balancing
2.1.3 Existing Load Balancing Techniques

2.2 Literature Review
2.2.1 Load balancing in VANETs
2.2.2 Resource Renting in VANETs

1X

O © 00 o N O O Ot O e N = -

3 Application Aware Load Balancing in Vehicular Networks 20

3.1 Introduction 20
3.2 System Model 21
3.3 Problem Formulation 24
3.3.1 Assumptions. 24

3.3.2 Variable Declaration 26
3.3.2.1 Input Variables L. 26

3.3.2.2 Output Variables 27

3.3.3 Derived Variables 27
3.3.4 Objective Function 29
3.3.5 Constraints 29

3.4 AALB: Application Aware Load Balancing 31
3.4.1 Data Structures Used 33
3.4.2 Admission Control 34
3.4.3 VM Assignment 35
3.4.4 Scheduling of VMs 37
3.4.5 An Illustrative Example of the Proposed Approach 38
3.4.6 Time Complexity Analysis 40

3.5 Results and Discussion 42
3.5.1 Periodic Applications 43
3.5.2 Event-Driven Applications L. 44
3.5.3 Periodic and Event Driven Applications 46
3.5.4 Effect of Application Lifetime 49
3.5.5 Effect of Multiple Applications in Vehicles 50
3.5.6 Effect of Contention at RSUs 51
3.5.7 Average Delay 52
3.5.8 Effect of Vehicle Speed 53

3.6 Chapter Summary 54
4 Resource Renting for Load Balancing in Vehicular Networks 55
4.1 Introduction L 25
4.2 Problem Formulation 56

4.2.1 Input Variableso 56

4.2.2 Output Variables L 57

4.2.3 End-to-End Delay 0o o7
4.2.4 Objectives L 58
4.2.5 Constraints L 58
4.3 Proposed Methodology 60
4.3.1 Pricing Model oo 60
4.3.2 Graphical Representation 61
4.3.3 Efficient Resource Renting (ERR) 63
4.3.4 Complexity Analysis 66
4.4 Simulation Results oo 67
4.4.1 Performance of Periodic Applications 68
4.4.2 Performance of Event-driven Applications 70
4.4.3 Performance of Periodic and Event-driven Applications 71
4.5 Delay Analysis 72
4.5.1 Data Partitioning 73
4.5.2 Calculation of Delay L 73
4.5.3 Analytical Results L 74
4.6 Modified Efficient Resource Renting (MERR) 74
4.6.1 Modified Algorithm 75
4.6.2 Resultsof MERR 75
4.7 Chapter Summary 76
Profit Maximization in Heterogeneous Vehicular Networks 84
5.1 Imtroduction 84
5.2 System Model 85
5.3 Network Terminologies 86
5.3.1 Requester Vehicles L. 86
5.3.2 Road Side Units (RSUs) 86
5.3.3 Parked Vehicles (PVs)o o 86
5.3.4 Central Cloud (CC). 87
5.3.5 Service Federationo L 87
5.4 Request Assignment: An Economic Perspective 87

5.4.1 Cost Model (CM) o 88

5.4.1.1 Cost of Processing 88

54.1.2 Cost of Storageo 88

5.4.1.3 Cost of Computation 88

5.4.1.4 Cost of Content Delivery 88

5.4.2 Selection Criteria (SC) oo 88
5.4.2.1 Parked Vehicle Selection 89

5.4.2.2 Central Cloud Selection 89

5.4.2.3 RSU Selection 89

5.4.3 Strategy Determination, 89

5.5 Problem Formulation L 90
5.5.1 Assumptions. 91
5.5.2 Constraints 92
5.5.3 Calculation of Profit 92
5.5.4 QoS Measurement 93
5.5.5 Problem Definition 94

5.6 Proposed Methodology oL 94
5.6.1 Calculation of Weight 96
5.6.2 Adaptive Algorithm for Profit Maximization (AAPM) 98

5.7 Simulation Results and Discussion 101
5.8 Chapter Summary 105
6 Conclusions and Future Prospectives 106
6.1 Conclusions e 106
6.2 Future Prospectives 107

References 111

List of Figures

1.1 VANET architecture

1.2 Overloaded RSUs 4
1.3 Thesis organizationo 11
3.1 System model 23
3.2 Request assignment diagramo 24
3.3 VM to RSU assignment 32
3.4 Performance for periodic applications 43
3.5 Performance for event-driven applications (500MB/event) 45
3.6 Performance for event-driven applications (250MB/event) 46
3.7 Performance for periodic and event-driven applications (500MB/event) . . . 47
3.8 Performance for periodic and event-driven applications (250MB/event) . . . 48
3.9 Performance of periodic, event-driven applications, and their combination

with application lifetime 0oL 49
3.10 Performance of periodic, event-driven applications, and their combination

with varying numbers of vehicles running multiple applications 50
3.11 Variation of VM completion percentage with time range of requests 51

3.12 Average delay for periodic applications, event-driven applications, and their
combination L 52

3.13 Performance of periodic applications, event-driven applications, and their

combination with varying speed of vehicles 53
4.1 Graphical representation 62
4.2 Flow chart for ERR 7
4.3 Performance of algorithms for periodic applications 78

Xlil

4.4

4.5
4.6

4.7

4.8

4.9

4.10
4.11
4.12

0.1
5.2
2.3
5.4
2.5

Performance analysis after assigning zero weights to different parameters for
periodic applications Lo
Performance of algorithms for event-driven applications
Performance analysis after assigning zero weights to parameters for event-
driven applications
Performance of algorithms for a combination of periodic and event-driven
applications L
Performance analysis after assigning zero weights to parameters for a combi-
nation of periodic and event-driven applications
Trends of delay for (a) periodic applications, (b) event-driven applications,
and (c¢) their combinationo
Performance of algorithms for periodic applications
Performance of algorithms for event-driven applications
Performance of algorithms for a combination of periodic and event-driven

applications

System model
Flow chart of AAPM
Performance of AAPM with variation of vehicle count
Performance of AAPM with variation of RSU capacity

Performance of AAPM with variation of number of parked vehicles

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

5.1

6.1

List of Tables

Existing literatureo 19
Table of symbols o 25
RSU capacities 38
VM resource requirement L 38
Applicationso 39
Network setting 39
Example scenario 41
Simulation parameters for AALB 0L 42
Notations used L 65
Simulation parameters for ERR 68
Simulation parameters for AAPM 101
Performance comparison of load balancing algorithms 107

XV

Acronyms

A ALB Application Aware Load Balancing.

AAPM Adaptive Algorithm for Profit Maximization.

CC Central Cloud.

CM Cost Model.

DCORA Distributed Computation Offloading and Resource Allocatio.
DPR Data Processing Rate.

DSRC Dedicated Short Range Communication.

ERR Efficient Resource Renting.

FPGA Field-Programmable Gate Arrays.

ITS Intelligent Transportation Systems.

JSCO Joint algorithm for Selection decision, Computation resource, and Offloading.

LB Load Balancing.
LBClient Load Balancing Client.

LBServer Load Balancing Server.

MAMTS Multiple Applications Multiple Tasks Scheduling.

Xvi

MERR Modified Efficient Resource Renting.
OBU On Board Unit.
PV Parked Vehicle.

RA Request Approval.
RAA Resource Aware Assignment.
RC Remote Cloud.

RSU Road Side Units.

SC Selection Criteria.
SLA Service Level Agreement.

SP Service Provider.

SUMO Simulation in Urban Mobility.

VANETSs Vehicular Ad hoc NETworks.
VC Vehicular Cloud.

VM Virtual Machine.

Introduction

1.1 Vehicular Ad-Hoc Networks

A Vehicular Ad-hoc NETwork (VANET) is a type of mobile ad-hoc network that enables
communication between Vehicle and Vehicles (V2V), between Vehicles and roadside Infras-
tructure (V2I), and between Infrastructure to Infrastructure (I2I) [1] as shown in Figure
1.1. These communication modes collectively contribute to creating a connected and Intel-
ligent Transportation System (ITS). VANETSs are designed to improve road safety, traffic
efficiency, and provide various services to drivers and passengers [2]. These networks rely on
the wireless communication capabilities of vehicles to create a dynamic and self-organizing
network without the need for a pre-existing infrastructure. It uses Dedicated Short Range
Communication (DSRC) technology for communicating between the vehicles and between
vehicles and infrastructure. It operates in 5.9 GHz frequency band and is specifically de-
signed for vehicular communication. DSRC supports both point-to-point and broadcast
communications. It is based on the IEEE 802.11p protocol. It is optimized for low-latency
communication and high-speed data exchange in vehicular environments. Unlike traditional
Wi-Fi, which focuses on high data rates over longer ranges, 802.11p prioritizes reliability

and low latency for safety-critical applications.

Introduction

Vehicle to Vehicle ~Vehicle to Infrastructure Infrastructure to
(V2v) (v21) ' Infrastructure (121)

Figure 1.1: VANET architecture

1.1.1 Communication Modes

There are generally three communication modes in VANET. Each communication mode is

discussed below:

¢ Vehicle-to-Vehicle (V2V) Communication V2V communication refers to the di-
rect exchange of information between vehicles on the road. It enhances road safety by
allowing vehicles to share real-time data about their current status, such as speed, po-
sition, acceleration, and other relevant information. Vehicles can exchange information
to detect potential collision risks and take preventive actions. V2V communication en-
ables cooperative driving, where vehicles can coordinate their movements to optimize

traffic flow and reduce congestion.

e Vehicle-to-Infrastructure (V2I) Communication V2I communication involves
the exchange of information between vehicles and roadside infrastructure elements,
such as traffic lights, road signs, and other fixed installations. It improves traffic
management, provides real-time information to drivers, and enhances overall road

efficiency. Vehicles can receive information from traffic lights to optimize their speed

Vehicular Ad-Hoc Networks

and reduce unnecessary stops, improving fuel efficiency. Infrastructure can assist by

offering information about nearby services, traffic conditions, or emergencies.

e Infrastructure-to-Infrastructure (I2I) Communication I2I communication in-
volves the exchange of information between different elements of the roadside infras-
tructure without direct involvement of vehicles. This facilitates coordination and data
sharing among various infrastructure components to improve overall system efficiency.
Centralized traffic management systems can collect data from various infrastructure
elements to monitor and control traffic flow in real time. Coordination between differ-
ent infrastructure components, such as surveillance cameras and emergency response

systems, can enhance the response to possible accidents or emergencies.

Vehicles in VANETSs have less capacity in terms of storage and computing resources. An
increase in the number of applications in vehicles leads to the generation of huge amounts
of data. The lack of availability of resources in the vehicles forces them to send the service
requests to nearby Road Side Units (RSUs) which may have a higher capacity of resources.
However, due to the limited amount of resources even in the RSUs, in high-traffic scenarios

or road junctions, RSUs may become overloaded.

1.1.2 Load Balancing in VANETSs

The growing number of applications integrated into vehicles on the roads generates vast
amounts of data, surpassing the capacity for real-time storage and processing in vehicles [3].
For instance, applications such as advanced driver assistance systems, in-car entertainment,
and vehicle-to-everything communication contribute to an overwhelming volume of data
that exceeds the immediate capabilities for storage and real-time analysis of vehicles [4]. In
this scenario, RSUs play an important role. The RSUs serve as a fixed device, similar to
a compact base station, facilitating V2I communication with vehicles while simultaneously
connecting to the core network through a high-speed back-haul link. Although the ideal
scenario involves comprehensive RSU coverage across the entire road network, practical chal-
lenges hinder widespread deployment. One primary obstacle is the considerable investment
required for making full coverage to the city environment [5]. Moreover, RSUs demand reli-
able electrical power sources, and safety considerations further complicate their deployment.
To address these issues, researchers are exploring deployment strategies focused on achieving

maximum coverage with a minimal number of RSUs. A significant drawback of static RSUs

Introduction

is their inability to adapt to dynamic traffic patterns. During peak hours, RSUs may operate
at maximum capacity, while in off-peak hours resources may be underutilized. This nature
of RSUs becomes particularly problematic during sudden changes in road infrastructure or
routine maintenance, leading to road closures and traffic diversions that impede the RSU’s
ability to provide consistent VANET Quality of Service (QoS). Researchers are actively
addressing these challenges in the context of evolving traffic conditions and infrastructure
changes. One possible solution to the overloaded scenario is through Virtual Machine (VM)
migrations which helps to transfer the load from one RSU to another RSU in the network.

Figure 1.2: Owverloaded RSUs

1.1.3 Virtual Machines

A VM is a compute resource that uses software to run programs and deploy applications [6].
The data generated by vehicles can be processed by running VMs in the RSUs [7]. VMs
modularize task processing, enhancing security and aiding in decision making. There may
be situations where a VM is migrated from one RSU to another due to an overloaded

scenario, this process is known as VM migration [8]. VM migration is also costly as it

Vehicular Ad-Hoc Networks

uses system resources and incurs delays, which increases the completion time of tasks. The
resource capacity of RSUs becomes insufficient particularly on road junctions during peak
hours which leads to an overloaded scenario as shown in Figure 1.2. Researchers have
worked in this direction to use on-road vehicles, other RSUs, Parked Vehicles (PVs), and
Central Cloud (CC) to avoid overloaded scenarios. However, the maximization of profit for
the service provider is not focused on while doing Load Balancing (LB). In our approach,
we tried to reduce the chance of overloading RSU by assigning the vehicle requests to

appropriate nodes.

1.1.4 Cloud-assisted Vehicular Networks

The use of cloud resources to assist RSUs is suitable for delay-tolerant applications but in
vehicular networks, various delay-sensitive applications are there which need to process the
data within a very short period. Applications deployed in the remote cloud server cannot
guarantee low service latency for the user because of unpredictable delays in wide area
networks [9]. It affect the QoS in large extent [10]. The use of vehicles extends the capacity
of the RSUs by making use of the underutilized resources of vehicles near the RSUs [11].
Use of vehicles to assist RSUs [12] [13] leads to frequent service disconnections because of
the high mobility of vehicles. Notably, studies have shown that 70% of individual vehicles
almost spend 95% of time in parking lots, home garages, or street parking spaces [14] [15].
PVs occupy a significant portion of the total number of vehicles present globally with rich
resources. They have sufficient idle time to process offloading tasks by the RSUs [14] [16].
The idle resources combined together to alleviate the workload of the RSUs and extend
the resource capacity of vehicular networks [17]. This may significantly reduce the need to
add new RSUs which incurs huge infrastructure costs. However, RSUs are equipped with
storage and computing resources which becomes insufficient in an overloaded scenario. The

PVs and CCs can be used for processing the requests.

1.1.5 Motivation and Research Scope

An increase in the number of vehicles and applications in the vehicles generates a huge
number of requests. The amount of data generated by some of the applications is huge
(ex. gaming, augmented reality, image processing, etc.). Some of the applications are

computationally intensive (ex. augmented reality, image processing etc.) while some are

Introduction

storage-intensive (ex. video storage and transfer, storing traffic data, etc.). The deadlines
for requests generated by applications are not uniform. Some are delay tolerant while some
are delay sensitive. The speed of the vehicles brings extra challenges for the RSUs to serve
the vehicle requests because of dynamic changes in network topology and less time for
connectivity between the vehicles and nearby RSUs. The infrastructure cost of RSUs does
not allow the authorities to deploy them in large numbers to cover the entire city. This
creates regions where vehicles cannot connect to any RSUs. The RSUs in road intersections
are overloaded while some RSUs are far from the intersections with sufficient resources.
This creates a mismanagement of available resources. This leads to an increase in delay,
a decrease in the number of tasks completed, an increase in cost, and degraded QoS. The
RSUs have limited capacities but the connectivity of RSUs with other nodes with available
resources is not a constraint. Still, the service provided by the RSUs is not up to the
mark. This poses an opportunity to work on request assignments for the RSUs. For request
assignment, there is a need for a scheduler that can schedule the requests to the appropriate
nodes by which the performance of the system is enhanced without affecting the QoS of the

system.

1.2 Major Contributions of Thesis

This thesis contributes towards two major areas in vehicular networks: (1) Load balancing
in RSUs, and (2) Profit maximization of service providers. The following sections discuss

these contributions:

1.2.1 Contribution on Load Balancing

Load balancing is an important concept in the field of VANETSs due to rapid changes in
network topology and less time of interaction between the vehicles and the RSUs. The delay
in receiving service requests is important as the vehicles move very fast. Getting the response
after due time is not useful for some applications. The increase in applications in vehicles
generates a huge amount of data that needs processing by some of the nodes. Although
RSUs have more capacity in terms of resource availability, simultaneous requests from a
huge number of vehicles make the RSUs overloaded. It becomes a challenge for the RSUs to
allocate the request from the vehicles to suitable resources. Most of the proposed approaches

do not consider many factors such as storage and computing resources simultaneously, and

Major Contributions of Thesis

continuous data generation while doing LB. The first contribution of this thesis is to propose
a load-balancing algorithm considering the above factors. The following section explains the

first contribution.

1.2.1.1 Application aware load balancing for road side units

In this work, our objective is to schedule VMs to RSUs in such a way that the number of
VM requests that get served is maximized with minimum migration cost. In particular,
we propose an algorithm called Application Aware Load Balancing (AALB) to balance the
application load among RSUs while trying to meet the objectives stated above. AALB uses
a Hungarian Matching algorithm to perform optimal allocation of VMs to RSUs. We have
evaluated the performance of the proposed algorithm extensively through simulation using
real traffic traces generated using SUMO (Simulation in Urban MObility) traffic generator
[18]. The performance of AALB is compared with three other existing algorithms. The
results show that AALB significantly improves the number of applications served and VM
migration cost as compared to the three existing algorithms. The core contributions of our

work are summarized below:

e We have formulated a scenario to schedule the requests of vehicles in RSUs that uses
VM migration between RSUs to balance the load across RSUs. The objective is to

maximize the number of VMs completed while minimizing the cost of VM migration.

e We have proposed an algorithm called Application Aware Load Balancing (AALB),
that efficiently allocates VMs to RSUs to increase the number of VMs completed while

reducing the cost of VM migration.

e We have performed extensive simulations to evaluate the performance of AALB. In
particular, we have compared the performance of AALB with three other existing algo-
rithms with different types of applications to show that AALB performs significantly
better.

It is important for a scheduler to choose a suitable RSU for task assignment, where the
cost of migration and cost of renting the resources should be minimum without affecting

the objectives. The following section explains the second contribution.

Introduction

1.2.1.2 Resource renting for load balancing in VANETSs

In this work, we assign the VM requests to RSUs such that a maximum number of VMs
can execute with the least amount of time and cost. In particular, we have proposed
an algorithm that we call Efficient Resource Renting (ERR) to meet the aforementioned
objectives. Through simulations, we compared the effectiveness of ERR with two other
known methods. The ERR is further modified to show the effectiveness of data partitioning
by assigning requests to the RSUs. The results show a significant improvement with the
proposed method as compared to the existing algorithms in terms of rent-out cost, VM
completion percentage, total cost, and end-to-end delay. The following is a summary of this

work’s main contributions:

e To schedule the VMs’ requests for RSUs, we have formulated our scenario as a weighted

bipartite graph due to which problem becomes an assignment problem.
e We have proposed a pricing model to simulate the cost of renting out RSUs.

e We have proposed an algorithm that we call ERR to assign the VM requests to the
RSUs by considering remaining storage capacity, remaining computing capacity, Data

Processing Rate (DPR), and rent-out cost.

e Extensive simulations show the performance of ERR for periodic applications, event-
driven applications, and their combinations. We found that ERR outperforms other
existing algorithms in terms of average delay, average rent-out cost, VM completion

percentage, and average total cost.

e We have analyzed the end-to-end delay of requests to measure the performance of
ERR with consideration of data partitioning. We found that with data partitioning

the assignment methods can be further improved.

e Simulation results show an improved performance of Modified ERR over other algo-
rithms as well as ERR.
1.2.2 Contribution on Profit Maximization

RSUs have limited resources in VANETSs. The increase in the number of requests by the

applications running in the vehicles leads to the generation of a large number of service

Organization of Thesis

requests. This leads to service failure and a decrease in QoS. Renting resources from other
RSUs is considered one of the solutions. However, an increase in the number of applications
and the generated data makes the available resources insufficient. Some of the resources of
CC are not cost effective and accessing some resources increases the latency. Additionally,
the infrastructure cost of RSUs is huge. Considering these scenarios, there is a need for a
scheduling algorithm that can allocate the service requests of the vehicles to the appropriate
node(CC/RSU/PV). The following section describes our third contribution.

1.2.2.1 Profit maximization in heterogeneous vehicular networks

The core contributions of this work are summarized below:

e We have formulated a problem to schedule the requests generated by the application
of the vehicles to the nodes from RSUs, PVs, and CC.

e We have proposed an algorithm called Adaptive Assignment for Profit Maximization
(AAPM) which maximizes the profit of the Service Provider (SP) and number of tasks

completed.

e To show the cost associated with each node, a cost model is proposed. It helps in

maximization of profit for the SP.

e We have performed extensive simulations to evaluate the performance of our pro-
posed algorithm AAPM. We have compared the performance of AAPM with existing
algorithms along with a GREEDY approach.

1.3 Organization of Thesis

This thesis is divided into six chapters based on the contributions mentioned above. The
organization of the thesis is shown in Figure 1.3. The following is a list of the remaining

chapters in this thesis.

e Introduction, motivation, and thesis contributions are presented in this chapter.

e In Chapter 2, the background and prior works related to the thesis contributions are

discussed.

Introduction

e In Chapter 3 we present our first contribution. Here, we propose a load-balancing
algorithm while considering the application types. We call the algorithm Application
Aware Load Balancing (AALB). The application’s type and deadline are considered
while doing the assignment. AALB uses a Hungarian matching algorithm to perform
optimal allocation of VMs to RSUs.

e Chapter 4 details our second contribution, where we propose a resource renting
algorithm that we call Efficient Resource Renting (ERR) for RSUs. This maximizes
the number of VMs that finish running while minimizing total cost and average end-to-
end delay. In addition to this, the effect of data partitioning is shown using analytical
methods. To see the effect of data partitioning, the ERR is further modified while
assigning requests to RSUs.

e Chapter 5 presents our third contribution. Here, we propose an Adaptive Algorithm
for Profit Maximization (AAPM) algorithm. The profit of the SP gets maximized
without affecting the QoS. Here, the resources of other RSUs, PVs, and CC are rented

while providing service to the users.

e Chapter 6 concludes the thesis with a summary of the critical findings of the research.

In addition, we also describe the future direction of the work conducted in the thesis.

10

Organization of Thesis

-

{ Aim of the Thesis: Cost-efficient Load Balancing in Cloud-assisted Vehicular Networks
.
—>| Introduction: Chapter 1 | ‘ Backgroud and Literature Review: Chapter 2
Contribution 1: Application Aware Load Balancing in Vehicular Networks
(2]
- : 5
> e ol cant_jldate ROdE = Rn e Calculation of weight for each candidate node E‘
assignment =
w
Request assignment to the suitable nodes Schedule the Vs at an RSU based on the
based on matching based techniques availability of resources
Contribution 2: Resource Renting for Load Balancing in Vehicular Networks
(2]
g
» | Approval of requests for admission into the Partitioning the data into chunks for assignment °
system to some nodes g
-9
Weight calculation based on the proposed Applying the lock and processing the request for
pricing model a locked duration
Contribution 3: Profit Maximization in Heterogensous Vehicular Networks
(2]
.| lidentification of nodes for possible assignment Calculation of weight for identified node based on g
5 P 9 the application types, rent-out cost and resource E"
from set of RSUs, PVs and CC L =2
availability =
Process the request based on the allotment list| | UPAate the a""““fg;ﬂset;sﬂer pencessmg he

Conclusions and Future Prospectives: Chapter 6

Figure 1.3: Thesis organization

11

Background and Literature Review

This chapter presents a brief overview of the background and literature review on load
balancing. In the background study, we have presented the challenges, importance of load
balancing, and finally listed some of the load-balancing techniques used in the VANET envi-
ronment. Literature survey is broadly divided into two parts- 1) Load balancing techniques
in VANETSs and 2) Pricing Schemes in VANETS. Detailed works conducted on these topics

by the researcher are given in Section 2.2.

2.1 Background

Load balancing at RSUs in VANETS is a critical aspect of optimizing network performance
and resource utilization. As VANETSs continue to gain prominence in the field of intelligent
transportation systems, efficient management of network loads becomes of prime importance
for ensuring reliable and seamless communication among vehicles and infrastructure. This
background study provides an extensive overview of load-balancing techniques specifically
used for RSUs in VANET environments. It explores the challenges associated with load

distribution, the importance of load balancing, and existing methodologies in this domain.

12

Background

2.1.1 Challenges in Load Balancing at RSUs

VANETSs are characterized by rapidly changing traffic conditions which leads to fluctu-
ating communication demands at RSUs and less time of connectivity between RSU and
the vehicles. These RSUs handle diverse types of data, including safety-critical messages,
multimedia content, and internet connectivity requests. RSUs typically have constrained
processing power, memory, and bandwidth, necessitating efficient allocation and utilization
of resources. High-density vehicular environments can result in channel interference and

congestion, impacting the performance of RSUs.

2.1.2 Importance of Load Balancing

Load balancing mitigates the risk of network congestion and reduces the likelihood of packet
loss, enhancing the reliability of communication in VANETSs. By distributing the workload
evenly across RSUs, load balancing helps to maintain consistent QoS metrics such as la-
tency, throughput, and jitter. Efficient load balancing maximizes the utilization of RSU
resources, minimizing idle capacity and ensuring optimal network performance. Load bal-
ancing mechanisms facilitate the scalability of VANETSs by adapting to varying traffic loads

and network conditions, thus accommodating future growth.

2.1.3 Existing Load Balancing Techniques

There are various types of LB techniques used in the VANET:

o TrafficcAware Routing Algorithms: These algorithms consider traffic conditions and

network topology to dynamically route data packets towards less congested RSUs [19].

e Dynamic Resource Allocation: Here, RSUs dynamically allocate resources such as
bandwidth and processing power based on real-time demand, ensuring fair distribution

among vehicles [20].

e (QoS-based Load Balancing: These algorithms prioritize traffic based on QoS require-
ments, allocating resources accordingly to meet Service Level Agreements (SLAs) for

different applications [21].

e Centralized vs. Distributed Approaches: Load balancing can be performed centrally,
where a central controller manages resource allocation, or in a distributed manner

where RSUs cooperate to balance the load autonomously.

13

Background and Literature Review

Traffic aware load balancing focuses on the number of vehicle in a specified region. However,
the applications and their resource requirement is an important aspect while doing load
balancing. This is being overcome by the dynamic resource allocation methods. QoS-based
load balancing only focuses on service quality without considering the number of requests

processed within the deadline.

2.2 Literature Review

In this Section, we have focused on two important aspects - 1) Load balancing in VANETS
and 2) Resource renting in VANETS.

2.2.1 Load balancing in VANETSs

Load balancing plays a critical role in VANETSs due to the high-speed mobility of vehicles
and the constantly changing network topology. The generated data by these vehicles could
not be processed by the vehicles and even by the RSUs in an overloaded scenario. This
is because of higher vehicle density and a huge amount of data generation by some of the
applications running in the vehicles.

In [22], authors have proposed a cooperative load balancing algorithm where they have
used the direction of vehicles, load at destination RSUs, and delay bound of request as the
factors for load balancing. Here, as RSUs near the destination are selected for offloading, it
may lead to overloaded scenarios when many vehicles intend to reach a common destination.
In [23], a dynamic load balancing algorithm is proposed by partitioning the total number
of RSUs into three categories— light-load, normal-load, and heavy-load. A new task is
assigned to a relatively less loaded RSU. Here, due to the mobility of vehicles, the RSU sets
belonging to a particular group may change frequently. While their algorithm includes VM
migration, they haven’t addressed its impact from a load-balancing perspective. In [24],
authors proposed k-Shortest Paths between each source and destination willing to have
communication with the use of the cost model proposed. When forwarding packets, the
algorithm distributes the load between all intermediate nodes by choosing the next hop
according to road conditions, either to nodes with the same moving direction or those
with lower collision probability. During the connections, the protocol warns about path
congestions when confronting prior congestion threshold. In such cases, related connections

could switch to less congested paths. As a result, the traffic load will be balanced throughout

14

Literature Review

the entire network and the approach will gain a higher packet delivery ratio and throughput.
Chi-Fu et al. [25] have proposed two algorithms for load balancing in a VANET scenario.
The first algorithm partitions the scenario into sub-regions based on the RSUs’ location.
RSUs provide services to vehicles in their regions. An RSU provides Internet access for
vehicles in its sub-region and the boundaries between sub-regions change dynamically to
adapt to load and density changes. However, the authors do not address the cost of VM
migration. In the second algorithm, for offloading, they have proposed the selection of an
RSU from the group of vehicles. Here, the presence of coverage holes may significantly affect

the performance.

The work in [26] has considered a heterogeneous vehicular environment with variable
storage and computation capacity of vehicles. Their proposed algorithm provides service
partially by the Vehicular Cloud (VC) and partially by the Remote Cloud (RC). In the
overloaded scenario, the extra load is transferred from VC to RC. As the location of the
VC may be geographically far from the RC, it may induce a further delay in the execution
of the application. In [27], authors have considered a load-aware offloading scheme. They
have assumed that the load at each RSU will be known to all vehicles and the resource
requests will be offloaded to RSUs with minimum load. They have also assumed multi-hop
communication between vehicles which may introduce more delay in servicing the requests.
In [28], authors have considered both fiber and wireless mediums to offload data from
vehicles. Data is offloaded to one of the RSUs or the remote cloud based on the delay bound.
Game theoretic approach is used to decide the data offloading path. Here, the focus is on
minimization of processing delay of VMs. The authors have considered overlapping in RSU’s
transmission range, but the effect has not been discussed in the process of RSU selection.
In [29], authors have proposed a contract-based offloading scheme while considering the
delay bound of applications. They have also taken the price of each unit of computation
into consideration. However, in this work, the authors only focus on the computation
resource and the significance of available storage on the execution of applications has been

ignored too.

In [30], the authors have proposed a Joint algorithm for Selection decision, Computation
resource, and Offloading (JSCO). Here, a task/application request is partitioned into two
parts - one part is executed by the vehicle locally and the other part is executed in the RSU.
The JSCO algorithm selects an RSU for offloading tasks based on its available computation

capacity and the number of vehicles in its region. The focus of the authors is only on the

15

Background and Literature Review

computation capacity of RSUs. They have ignored the effect of available storage at RSUs
and do not address VM migrations and the corresponding cost incurred. In [31], authors
proposed one algorithm for selection of one computation unit from three different options.
The options are local vehicles, RSUs, and central cloud. The decision is made based on
the utilization value of the vehicle, RSU, and central cloud. The proposed algorithm is
termed Distributed Computation Offloading and Resource Allocation (DCORA). Although
the combination of cloud and MEC servers is used to schedule the task, its effect on the
number of tasks completed has not been discussed. The work in [32] focuses on dependencies
between tasks while doing the load balancing. In this work, the authors proposed a Multiple
Applications Multiple Tasks Scheduling (MAMTS) algorithm to solve the assignment issue.
Each application is modelled as a directed acyclic graph. Applications consist of several
tasks and some tasks are dependent on other tasks. Multiple applications and multiple
tasks are prioritized to minimize the completion time of applications. The overloaded RSU

scenario is not considered in this work.

2.2.2 Resource Renting in VANET'Ss

Here, we discuss the works that focus on resource renting. The pricing scheme is discussed
below.

Cloud computing brings the novel market-oriented pay-as-go model which makes it con-
venient for many users to use different types of resources without bothering about the
server’s infrastructure. The user only pays the rent-out cost for the resources and uses the
resources without any interruption [33]. Using this technique a number of researchers have
worked and proposed some pricing schemes for different scenarios. In [34], a cloud federation
formation framework is modelled for the case, when a request is made by a user to the cloud
broker, consisting of the requirement of a number of computing resources and a preferred
individual service provider through which the users seek to get resource services. Authors in
the work [35], present a cloud system model for the cloud provider to dynamically expand
the scale of geo-distributed data centers.

In [3], authors have proposed a dynamic resource pricing model for sharing resources
between the cloud providers. Here, the proposed algorithm tries to minimize the cost of the
vehicular service provider while meeting the delay bounds of different vehicular applications

with fewer VM migrations. Both cost and delay are considered while classifying the user’s

16

Literature Review

request for processing. In the study [36], authors focused on maximizing profit for cloud
brokers through optimal multiserver configuration and resource pricing. They treated the
cloud broker as a multiserver system and employed an M /M /n/n queuing model to analyze
various factors influencing profitability. The analysis included an examination of the rela-
tionship between the sales price of VMs and customer demand, leading to the calculation
of the expected charge for a VM request. Through a series of numerical calculations, the
authors demonstrated that the cloud broker could effectively reduce costs for cloud users

while maintaining a significant level of profitability.

Authors in [37] introduce a novel approach to virtual resource renting, aiming to adap-
tively refine the rental strategy based on both price distribution and task urgency. By
factoring in task urgency and price distribution, the authors devise a weak equilibrium op-
erator to compute the acceptable price for each virtual resource type. Virtual resources
meeting the acceptable price criteria are aggregated into a set. Subsequently, a price pre-
diction algorithm is proposed to forecast the next price interval for these virtual resources.
Lastly, an innovative rental decision-making algorithm is formulated to identify the most
profitable resource from the set. In paper [38], an algorithm is proposed that enables ve-
hicles to discover and consume services of mobile cloud servers that are moving nearby.
Public buses spread service registration information to the buses within the same bus line,
and to buses of connected lines, as well. A consumer vehicle can discover the available
services, along with their constraints, by querying the buses in their vicinity. To ensure
service consumption, the buses provide a routing protocol allowing communication between
the provider and consumer. Then the algorithm is extended. On the one hand, vehicle
providers select the most appropriate public bus for efficient service registration, and users
select the most satisfactory service, which satisfies both provider constraints and user pref-

erences. The cost of renting resources is not focused on while selecting the destination node.

In the era of beyond 5G technologies, deploying deep neural networks (DNNs) on IoT
devices is challenging due to limited computational resources. To address this, researchers
have proposed a split computing approach, where DNN inference is divided between the
[oT device and a nearby edge device. Key mechanisms supporting this approach include
Dynamic Split Computation (DSC) for optimal task partitioning, Reliable Communication
Network Switching (RCNS) for selecting the best available network, and Task Load Balanc-

17

Background and Literature Review

ing with Prioritization (TLBP) to manage workload distribution and device limitations such
as battery life and resource contention. Experimental results demonstrate that this approach
significantly reduces inference time and enhances system efficiency, making it suitable for
real-time [oT applications [39]. The rapid increase in mobile traffic and uneven distribution
across bands in multi-band networks can lead to congestion and degraded user experience.
Traditional load balancing methods often rely solely on channel quality, overlooking user
demands and band resource availability, which results in inefficient resource utilization.
To overcome this, an event-based load balancing algorithm has been proposed, modeling
the problem as a multi-objective stochastic optimization. It assigns user equipment (UE)
to bands probabilistically, aiming to balance traffic while minimizing inter-frequency han-
dovers. Simulations show improved throughput and reduced interruption time compared to
traditional approaches [40].

The data generation rate of applications running on vehicles can be periodic or event-
driven. The existing approaches in the literature do not focus on this aspect of data genera-
tion. In this thesis work, we have considered both periodic and event-driven data generation
from vehicles. Additionally, we have considered continuous data generation from vehicles

while performing load balancing.

18

Literature Review

Table 2.1: Euxisting literature

Reference | RSU RSU Continuous Approach Used
Storage Computa- | data genera-
tion tion
[22] 4 X X Direction of vehicles is used to assign
load
[41] v/ X X New request is assigned to relatively
less loaded RSUs
[42] v X X Find the lowest congested path between
source and destination
[43] 4 X X Transmission range of RSU is adapted
based on the load
[26] v v X Heterogeneous scenario with processing
in vehicular cloud and central cloud
[27] X v X Multi-hop communication between
RSUs
[29] X v X Contract-based uploading scheme is
used
[44] X 4 X Partition tasks into two parts, one is
executed locally and the other in RSU
[31] X v X Select one of the options from vehicles,
RSU, and central cloud based in utiliza-
tion value
[32] X v X Dependency among the tasks are fo-
cused while scheduling
Proposed v v v Matching based assignment of VMs to
Approach RSUs based on applications types

19

Application Aware Load Balancing in
Vehicular Networks

3.1 Introduction

In VANETS, LB refers to the efficient distribution of network traffic, communication tasks,
and computational tasks among the vehicles or nodes in the network [45]. VANETS are
a specific type of mobile ad-hoc network where vehicles communicate with each other and
with roadside infrastructure to enhance road safety, traffic management, and provide various
services. LB is crucial in VANETS to ensure optimal utilization of resources and to avoid
network congestion or uneven distribution of communication loads among vehicles [46]. LB
includes the dissemination of safety messages, traffic updates, and other information. Un-
even distribution could lead to congestion in certain areas and delays in message delivery.
Vehicles in a VANET generate and exchange messages for various purposes, such as collision
warnings, traffic information, and location updates. Load balancing can happen for vehicles
and RSUs. This chapter of the thesis focuses on load balancing in RSUs.

LB ensures that no single RSU or subset of RSUs is overloaded with communication

tasks, preventing bottlenecks, and improving overall network performance. LB optimizes

20

System Model

the utilization of available resources, including bandwidth and processing power, among
the vehicles. Efficient use of resources helps in reducing communication delays, enhanc-
ing the reliability of information dissemination, and maximizing the overall capacity of the
VANET [47]. VANETSs are dynamic and highly variable in terms of network topology and
communication patterns. LB mechanisms need to adapt to these changes in real-time. Dy-
namic LB algorithms can adjust the distribution of tasks based on the current network
conditions and the mobility of vehicles. LB plays a crucial role in maintaining QoS in
VANETSs. It ensures that the communication quality, in terms of latency, reliability, and
availability, meets the requirements of safety-critical applications, such as collision avoid-
ance systems. LB can be achieved through centralized or decentralized approaches. In a
centralized approach, a central entity coordinates the LB decisions for all RSUs. In a de-
centralized approach, RSUs collaboratively make LB decisions based on local information.
The primary causes of the overloading scenario are huge data generation by the applications

in the vehicles and an increase in the number of simultaneous service requests by the vehicles.

In VANET, vehicles are equipped with On-Board Units (OBUs) that can communi-
cate with RSUs placed at various locations along the roads to enable different types of
applications. Such applications can be categorized as safety applications, public service
applications, location-based services, multimedia, and entertainment applications, etc. [8].
Applications can generate data either in a periodic manner or on the occurrence of an event.
Some applications that generate data periodically are navigation systems, safety warnings,
lane change, etc. [48,49]. Online gaming, VoIP, multimedia, parking slot locator, etc. are
some examples of applications that generate event-driven data [49,50]. Many of these ap-
plications can generate a large amount of data that may need to be processed. RSUs can be
equipped with computing and storage resources to process such data. The data generated

may also have local relevance in terms of space, time, and user interest [51].

3.2 System Model

Our system model in the proposed work consists of vehicles, RSUs, and the CC as shown
in Figure 3.1. RSUs are connected via a wired connection. Each vehicle runs applications
(A1, Ag, ... Ax) according to the users’ interest as shown in Figure 3.2. Each application

in a vehicle has a different data generation rate. The amount of data generated by each

21

Application Aware Load Balancing in Vehicular Networks

vehicle at each time step is known. In our system model, we have assumed that each vehicle
generates requests for only one application at a time, and correspondingly, only one VM
is created in the RSU for the vehicle, i.e., 1 vehicle=1 application= 1VM. This asumption
is taken because, if a VM runs multiple applications then the migration of VMs will affect
the system’s performance due to task dependencies. Authors in [52] have considered such
a system. The amount of data generated by the applications is stored in the originating
vehicles temporarily. When a vehicle is within the transmission range of an RSU, it sends
a connection request to the RSU. A connection request is accepted based on availability of
channels and storage. In our work, we assume that the first instance of a vehicle’s request,
corresponding to a given application, creates a VM in an RSU depending on the availability
of resources. In subsequent instances, the request from the vehicle means getting service
from the VM already created in the RSU. There is a fixed number of channels that are
used by vehicles to transmit the data based on the IEEE 802.11p standard [53]. When
no channel is free, the data is held with the vehicle until the next time instant when it
comes in the transmission range of an RSU. This may lead to an increase in delay and/or
deadline miss of a task. The data present in the vehicles are transferred to one RSU in
the transmission range. A VM is created at the RSU to process the data generated by the
applications running in the vehicles. Each application has a lifetime and the data to be
processed within the lifetime of the application. The information about the lifetime of the

application is communicated to the RSU along with the request sent by a vehicle.

In this work, connecting the local server to RSUs means specifying that RSUs are not
simple interfaces. These RSUs are capable of storage and computing units. The connected
RSUs can be called edge clouds. The requirement of an edge cloud is there because of the
limited capacity of the edge node which is an RSU in our scenario. These resources are
used by the VMs running for different applications. A Load Balancing Client (LBClient) is
a software module that runs at RSUs. LBClient is a part of the load balancer that accepts
or rejects the connection request from the vehicles as shown in Figure 3.2. The transmission
range of RSUs is non-overlapping. For each vehicle, one VM is created at some RSU which
can be migrated to another RSU to meet the objectives and constraints. At any time, a
VM resides in exactly one RSU and occupies some amount of storage that depends on the
application type and the amount of unprocessed data. If a VM request is not accepted
at a particular time instant, an attempt is made to process it in the next time instants.

The Load Balancing Server (LBServer) running in the CC has information about all the

22

System Model

entral Cloud

Figure 3.1: System model

RSUs and makes decisions based on the information present in all RSUs. The storage and
computation resources used by LBServer and LBClient are negligible. Therefore, we have
ignored this in the current work. A VM can be present in an RSU without being scheduled
when the available computing resources of that RSU are less than the required computation
resources. At that time only the storage resources of RSU are used and not the computing
resources. The time taken to execute a task depends on the amount of unprocessed data
and the available computing capacity of the RSU to which it is assigned. In the case of
VM migration, the available unprocessed data is migrated from one RSU to another. The
migration incurs some amount of cost called migration cost. This migration cost has two
parts - a fixed cost and a variable cost. The fixed cost is the cost of migrating a VM from
one RSU to another RSU. It is the same for all migrations in the system. The variable cost
is calculated based on the amount of unprocessed data to be migrated and the cost per unit
of data already migrated. In our algorithm, a VM can migrate to any RSU in the network,
irrespective of whether the RSU is in the route of the vehicle or not. A VM remains alive

until the corresponding vehicle departs from the last RSU in its route.

23

Application Aware Load Balancing in Vehicular Networks

VM, LBServer -
* Request to admita VM
s VM migration information
Processed result during assignment phase

by RSU;

Connection Request for
VM admission with
application details
Vehicle >
1 >

Data transfer from
vehicle to RSU
i Vehicle; Vehicley

Figure 3.2: Request assignment diagram

3.3 Problem Formulation

In this Section, we present the problem addressed in this paper formally as an optimization
problem. In particular, we specify the input variables, the output variables, a set of variables
whose values are derived from the input and output variables, the constraints, and the
objective functions.
3.3.1 Assumptions

1. The coverage region of any two RSUs does not overlap.

2. The route and speed of each vehicle are known a-priori.

3. The data generation pattern of the vehicles (how much data is generated at each time

instant by a vehicle) is known a-priori.

4. Data from a vehicle can only be transferred to an RSU when the vehicle enters into

the coverage range of that RSU.

Problem Formulation

Table 3.1: Table of symbols

Symbol | Description

T Total duration of travel of all the vehicles

X Total number of vehicles

Y Total number of RSUs

R Set of RSUs

pr Maximum computing power of RSU r;

sy Maximum storage capacity of RSU r;

Dr Number of units of data that can be processed by RSU r; per unit time (same
for all RSUs)

Count, Maximum number of channels available for data transfer between a vehicle
and an RSU

V Set of vehicles

start; Start time of the journey for vehicle v;

Py Path followed by vehicle v;

a’ Application being run by vehicle v;

LY Lifetime of the application for v; (£; <T)

AY Rate of data generation by a vehicle v;

A Set of applications

Dy Amount of computing power needed by application ay,

Sk Fixed amount of storage required for the application ax(independent of user’s
data)

Cost!, Fixed migration cost for application ay

Cost, Migration cost for one unit of data (same for all applications)

Tijt Output variable. Its value is 1, if a VM for a vehicle v; is present in an RSU
r; at time ¢, 0 otherwise

Yijt Output variable. Its value is 1, if a VM for a vehicle v; is scheduled in an RSU
r; at time ¢, 0 otherwise

TJ? Duration for which vehicle v; remains in the transmission range of RSU 7;

Di, It Amount of data left in vehicle v; at the beginning of time instant ¢

Utj Quantity of unprocessed data in the RSUs for a vehicle v;’'s VM at time ¢

C; Indicator variable whose value is set to 1 if the amount of unprocessed data
of the vehicle v; is 0 when the vehicle leaves the last RSU in its path, and 0
otherwise

It Indicator variable whose value is 1 if vehicle v; has migrated from one RSU

to another at time ¢, 0 otherwise

25

Application Aware Load Balancing in Vehicular Networks

3.3.2 Variable Declaration

In this Subsection, we define three types of variables — input variables, output variables,

and derived variables in detail. All variables are also listed in the table of symbols given in

Table 3.1.

3.3.2.1 Input Variables

L.

IT.

IIT.

IV.

Let the total duration of travel of all the vehicles be T', with the time slots denoted by
1,2,...,T.

Let R = {ry,r2,...ry} be the set of RSUs. Hence, the number of RSUs is Y. Each
r; € R is represented by the tuple (pl, s, D") where

e p/ = Maximum computing power of r;
e s = Maximum storage capacity of r;

e D" = Number of units of data that can be processed by r; per unit time (same

for all RSUs)

Let Count, be the maximum number of channels available for data transfer between
a vehicle and an RSU. Hence, it is also the maximum number of requests that can be

accepted by one RSU at a particular time instant.

Let V' = {v1,v9,...,vx} be the set of vehicles where X is the number of vehicles.
Hence, the maximum number of VMs that can be present in the system at any time
is X, as each vehicle runs at most one application. Each vehicle v; € V' is represented
by the tuple (start;, PY,a?, LY, AY) where

e start; is the start time of the journey for v,

e P?is the path followed by v, represented as the sequence of RSUs (rl,r), ... r{ ")>

in the path before the lifetime of the application running in the vehicle v;, where
K7 is the number of RSUs in |P}|. For each RSU 7, the arrival and departure

time of v; at 77, is denoted by arrd_and dep! respectively
e a’ is the application being run by v;

e L7 denotes the lifetime of the application for v; (£; < T')

26

Problem Formulation

AY is the rate of data generation by a vehicle v; represented by the sequence
(A7 Ay, AF) where \)” denotes the amount of data generated by v; at time
slot k. The data generated after arrival at last RSU cannot be processed as there
is no other RSU in the route after that for the vehicle to get back the result of
the processing. Therefore, it is considered to be zero for all time instants after
the arrival at the last RSU. The data generated may be zero at some time instant
between start of the application and the lifetime of it. Also, as it is assumed that
one vehicle can run only one application at a time, the maximum number of VMs
that can be present in the system at any time is X. In this thesis, we refer to the

terms lifetime of an application and lifetime of vehicle interchangeably.

V. Let A = {ay,as,...a;} denote the set of applications. Each application a; € A is

represented by the tuple (pf, si;, th Cost!), where

3.3.2.2

p§ = amount of processing/computing power needed by ay

Sk = fixed amount of storage required for the application ax(independent of user’s
data)

Cost! = fixed migration cost for ay

Cost,, = migration cost for one unit of data (same for all applications)

Output Variables

o 7, forall v, € R, forallv; € V and forall ¢,1 <t <T

— x4t = 1, if a VM for a vehicle v; is present in an RSU r; at time ¢

— x5t = 0, if a VM for a vehicle v; is not present in an RSU r; at time ¢.

o y: forall ; € R, forall v; € V and forall t,1 <t <T

yi+ = 1, if a VM for a vehicle v; is scheduled in an RSU r; at time ¢*

yi;t = 0, if a VM for a vehicle v; is not scheduled in an RSU r; at time ¢.

3.3.3 Derived Variables

In this Subsection, we refer to a set of variables that are derived from the input and output

variables.

These are listed below.

27

Application Aware Load Balancing in Vehicular Networks

e Ji = dep], — arr], is the duration for which vehicle v; remains in the transmission

range of RSU r;.

e DI s, 1s the amount of data left in vehicle v; at the beginning of time instant ¢.

0, if (C A E) is true
Dfeftj = (Dfe_flt] +N2) = (T x t,), if (A ACAF)is true
(Dfe}ltj + N0, if (B v D) is true

where \;” denotes the amount of data generated by v; at time slot ¢ and T'~' is the
amount of data transferred at time instant ¢t — 1, and A, B, C, D, E, & F denote

conditions defined as follows:
— A- Vehicle v; is in the transmission range of 7;.
— B- Vehicle v; is not in the transmission range of r;.
— C: Channel is available for vehicle v; to transmit data.
— D: No channel is available for vehicle v; to transmit data.

t—1 v
Dleftj +A2q

— E: -

vehicle is less than or equal to the duration for which vehicle v; remains in the

< (77), time required to transmit the amount of data left in the

transmission range of RSU r;.

DITL 47 .
- F: % > (773), time required to transmit the amount of data left in the ve-
hicle is greater than the duration for which vehicle v; remains in the transmission

range of RSU r;.

e Let U be the amount of unprocessed data in the RSUs for the VM of a vehicle v; at
time ¢. It is the difference between the data transferred to the RSUs by the vehicle till
time ¢ and the data processed by the RSUs till time ¢. The amount of data transferred
is the difference of data generated and remaining data in the vehicle till time ¢. The
amount of data processed is equal to the sum of all the data processed by each RSU
till ¢. The data processed in an RSU can be calculated by multiplying the rate of data
processing by RSU with number of time instants at which the VM was scheduled.

U = (SN = Diegy)) = D" % S5 i (31)

28

Problem Formulation

where r. is the last RSU in the vehicle’s path before t. Let C; be an indicator variable
whose value is set to 1 if the amount of unprocessed data of the vehicle v; is 0 when
the vehicle leaves the last RSU in its path and 0 otherwise. Similarly, let I; be an
indicator variable whose value is set to 1if (z;, 0 = L A 50, = L Aty = t4+1 Ay # o),
0 otherwise. Thus, I; = 1 indicates that the vehicle v; has migrated from one RSU to

another at time t.

3.3.4 Objective Function

The problem we address is to maximize the number of VMs completed while minimizing

the cost of VM migration. Hence, the objective functions are stated as

maximize EjX:lC'j (3.2)

minimize EleZle_f; X (Ut] X Costy, + C’ostﬁl) (3.3)

3.3.5 Constraints

e A vehicle v; should not generate any data after the arrival at the last RSU, rlj , in its

route.

A =0, Yo; €V, Vt > arr], (3.4)
where 77 is the last RSU that the vehicle v; passes by before L7,
e VM will not be created for a vehicle until its arrival time at the first RSU in its route.

T =0, Yo e V, Vt, 1 <t < arril (3.5)

e [or any vehicle v;, at any time ¢ between the arrival time of v; at the first RSU r{
and the departure time of v; from the last RSU rlj in its route, the VM for v; must be

present in exactly one RSU.

Sz =1, Yu; €V, Vi, arrl, <t < dep), (3.6)

e A VM will be scheduled only when it is present at an RSU and there is some amount

of unprocessed data in the VM.

29

Application Aware Load Balancing in Vehicular Networks

At any time ¢, the total computing capacity needed by all the VMs scheduled at an
RSU should not exceed the total computing capacity of the RSU.

A
> bl Xy <pl, Vri € R, VE1<EST (3.8)

j=1

At any time t, the total storage needed by all VMs present at an RSU should not
exceed the storage capacity of the RSU.

X
(Z Ul + ngi) Xz <s;, Vr, e R, Vt,1 <t <T (3.9)

Jj=1 J=1

e A VM must be scheduled in only one contiguous time block at an RSU.

(injs = 1) A Winjes = 1) A Bio # 11, Yiggr, = 1) =
Vt,tl <t <ts, Yirjt = 1, V’Uj eV, Htl,tg,tg, 1<t <ty <ty (310)

Total execution time required by a vehicle’s application should be less than the de-
parture time of the vehicle from the last RSU, rlj , in its route.

(PN ND™ % S SR yig) < depl, oy €V (3.11)
The constraints are formed to based on the real life problem scenario. The vehicle may
generate data any time throughout its journey. However, the data generated beyond the
transmission of last RSU of its path can not be processed in the given scenario. To address
that first constraint is defined. A VM is only created if vehicle has generated some data
and its request to process is accepted by the RSU. To make the scenario realistic the second
assumption is defined. During the VM migration the a VM migrates from one RSU to other.
However, it can not considered as presence in multiple RSUs. To make the scenario realistic
third assumption is defined. Similarly in constraints fifth and sixth, it is defined that the
total need of the computing and storage resources should not exceed the total availability of
the resources. In real-life use of application if processing time is greater than the expected
deadline the output of the processing becomes meaningless for the user. To bring this idea

to the problem scenario, the assumption eighth is defined.

30

AALB: Application Aware Load Balancing

3.4 AALB: Application Aware Load Balancing

In this Section, we propose an algorithm that we call Application Aware Load Balancing
(AALB) where the major focus is to schedule the VM requests based on the data generation
rate of the applications. Application type is identified by its criticality and robustness. The
criticality is measured by its deadline and the robustness is measured by the data generation
rate of application. It is assumed that One task is generated per vehicle and the task whose
deadline is near gets a chance to execute before the task whose deadline is far. The proposed
AALB algorithm invokes a sequence of modules at each time step to assign VMs to RSUs.

AALB considers the state of RSUs and VMs in the last time step to make decisions
in the current time step. The basic working model of AALB consists of three modules —
AdmissionControl, VMAssignment, and VMScheduled.

1. AdmissionControl: The AdmissionControl module is the entry point of VMs to the
system. It updates the amount of data required by the VM based on the type of
application. It checks whether a VM can be assigned to at least one RSU in the
system or not. If such an RSU is found, the VM is admitted to the system, otherwise,
the VM tries to enter the system in the next time step. The data generated by the
vehicle may not get a chance to be uploaded to the RSU fully. In that case, the rest

of the data is transferred in subsequent time instants.

2. VMAssignment: It chooses a set of VMs to be considered for assignment in the current
time step and selects the RSUs to which the VMs will be assigned using the Hungarian
Matching algorithm. Note that, this can change the current assignment of a VM and

cause it to migrate to some other RSU.

3. VMScheduling: It checks for availability of computing resources for VMs assigned to
an RSU, and chooses the subset of VMs to be scheduled. The scheduled VMs are then

executed and their status is updated.

For VMAssignment, our system scenario can be considered as a bipartite graph, with
one partition representing the set of VMs and the other representing the set of RSUs, as
shown in Figure 3.3. Edges are assigned between a VM and an RSU depending on whether
the VM can be assigned to the RSU. Weights are assigned on each edge based on a com-

bination of two factors — migration cost and the time RSUs take to execute the VMs. A

31

Application Aware Load Balancing in Vehicular Networks

VMs RSUs

Dummy RSUs

Figure 3.3: VM to RSU assignment

matching algorithm is then run iteratively on this bipartite graph to find the assignment
of VMs to RSUs. We use the Hungarian Matching algorithm (also called Kuhn-Munkres
algorithm) [54] for finding the maximum-weight (minimum-weight) matching. The algo-
rithm works for a balanced problem where the number of nodes in both sets is equal. In
our scenario, the number of VMs may be more than that of RSUs. In such a case, some
dummy RSUs with zero resources are introduced into the system to make the number of
RSUs equal to the number of VMs, as shown in Figure 3.3. Assignments made to dummy
RSUs can be discarded at the end, and the corresponding VMs can be considered for as-
signment again. The motivation for selecting the Hungarian Matching algorithm for our
work is as follows. In this work, we consider an optimization problem which corresponds
to a matching problem, where a set of VMs need to be matched with a set of RSUs. The
potentially large number of vehicles and RSUs makes the scenario a large-scale assignment
problem. Hungarian matching algorithm is known to work better for such large-scale as-
signment problems [55]. One example application can be found in [56] that assigns several
mobile stations to a large number of distributed single-antenna access points. Therefore, we

have also been motivated to use the Hungarian Matching algorithm for assignment of VMs
to RSUs.

32

AALB: Application Aware Load Balancing

The pseudocode for the overall execution of the AALB algorithm is shown in Algorithm 1.
The algorithm calls three modules — AdmissionControl, VMAssignment, and VMScheduled

in each time step up to the final time T'.

Algorithm 1: Load Balancing

1 Ry < Array of RSUs at time instant t
2 for (t=0;t<T;t=t+1)do

3 AdmissionControl
4 V M Assignment
5 V' M Scheduled

Next, we describe the data structures used in these three modules along with a brief

description of the modules.

3.4.1 Data Structures Used

At each time step ¢, AALB algorithm keeps two primary data structures, an array R; for
storing the status of each RSU at time ¢, and an array M, for storing the status of all

existing VMs at time ¢. Each element R,[i] stores the following information:

e Identification number id of the RSU

List of VMs v that are assigned to the RSU

List of VMs v, that are scheduled in the RSU

The remaining storage capacity remainings of the RSU

The remaining computation capacity remaining. of the RSU

A binary variable rsu_scheduled that is set to 1 if at least one VM is scheduled in the
RSU at time ¢t — 1.

Similarly, each element of M,[j] stores following information:
e Identification number id of the VM

e Storage needs s of the VM

33

Application Aware Load Balancing in Vehicular Networks

e Computing needs ¢ of the VM
e The RSU r to which the VM is assigned to at the beginning of time ¢
e A binary variable scheduled which is set to 1 if the VM is scheduled at time ¢

e The amount of new data data_amount is generated for the VM at the beginning of

time ¢t

e The remaining amount of data data_remaining is to be processed at the beginning of

time ¢

e A binary variable data which is set to 1 if new data is there for the VM at the beginning

of time ¢t

e A variable completed is set to 1 if the VM has completed its execution at the end of

time ¢ — 1.

3.4.2 Admission Control

The pseudocode for the AdmissionControl module is presented in Algorithm 2. This module
checks if there exists any RSU with sufficient storage to accommodate the data in the new
VM. M, denotes the list of new VMs that arrive at the beginning of time ¢t and M(fll‘zlt“
denotes the list of VMs which are not new but have some new data generated till the end
of time ¢t — 1. The algorithm first updates the VM’s requirements based on the scheduling
information of the last time step and data generation information (Lines 5-13). For all
VMs, if a VM is scheduled in the last time step, then the processed data is subtracted from
the current need. Similarly, if any new data is generated for the VM, it is added to its
storage requirement. Then it checks if a new VM or an old VM with data can be assigned
to any RSU based on the VM’s storage requirement (Line 15). In case a suitable RSU is
found, the VM is added to the system, otherwise, the VM is dropped temporarily. Dropped
VMs are stored in a list temp_dropped. The VMs in temp_dropped are considered again for

AdmissionControl in the next time step (Line 4).

34

AALB: Application Aware Load Balancing

Algorithm 2: AdmissionControl

1 My[j] < Array of all existing V Ms at time t

2 Myew|] < new VMs at the beginning of time t

3 Mdda]] < Old V Ms with some data generated till
the end of timet — 1

4 Append temp_dropped to M, e,

5 for (each VM i in M;) do

6 if (M;_1[i].scheduled) then

7 if (M,[i].data) then

8 M,li].s — = D"

9 L M;i].s + = M[i].data_amount
10 M,li]l.s — = D"

11 else

12 if (M,[i].data) then

13 | Myi].s + = My[i].data_amount

14 for (each VM i in My, U M%) do

15 if (37 : Ri[j].remainings > storage need of VM i and Count,! = 0) then
16 Add i to M,

17 L Count, = Count, - 1,

18 else
19 L Add i to temp_dropped

3.4.3 VM Assignment

This module takes the admitted VMs and assigns the VMs in an iterative manner until
all VMs are assigned or no assignment is possible. It then updates the status of VMs and
RSUs.

Algorithm 3 shows the pseudo code for VMAssignment. In each iteration, it first chooses
a subset of VMs to be considered in this iteration and then assigns them to RSUs using a
matching-based algorithm. The status of the assigned VMs and the RSUs they are assigned
to are then updated, and the next iteration is entered to assign the remaining VMs. This

process continues until all VMs are assigned or no assignment can be done in an iteration.

The set of VMs to be considered is first updated by removing the set of VMs, M,e;,

which completed execution during time ¢ — 1. To choose a subset of VMs from all VMs (Line

35

Application Aware Load Balancing in Vehicular Networks

Algorithm 3: VMAssignment
1 Mt — Mt—l - Mover

2 VM Assigned = ¢

3 flag=1

4 while (M;! = VM Assigned and flag ==1) do

5 choice = a subset of VMs from M, chosen as per description and whose deadlines
are nearer

6 Assigned = subset of choice assigned by the Hungarian Matching algorithm as

per description
7 if (Assigned|] == ¢) then
L flag =0

continue

10 VM Assigned =V M Assigned U Assigned
11 Update M; for VMs assigned
12 Update R; for RSUs used in assignment

5), it places all the VMs present in an RSU into two different lists — the list of VMs which
were scheduled at time ¢ — 1 and the list of VMs which were not scheduled at time ¢ — 1.
The second list is given more priority than the first while choosing VMs to be considered
for assignment. This is done because prioritizing the VMs which were not scheduled in
the last time step increases their chance of being assigned to an RSU where they may be
scheduled at time step ¢, which may in turn increase the number of VMs that complete
their execution within their lifetime. The algorithm sorts all the VMs in ascending order of
remaining lifetime so that the VMs whose lifetimes are nearer are given higher preference
while selecting VMs for assignment. The chosen VMs are stored in a list choice, which is

considered for assignment in the next time step.

The assignment of the chosen VMs to RSUs is done using the Hungarian Matching
algorithm (Line 6). A bipartite graph is formed by considering a node for each VM in
one partition and a node for each RSU in the other partition. Dummy RSUs (with zero
resources) and VMs (with zero storage and computation requirements) are added as needed
to make the number of nodes equal in both partitions. Edges are then added between all
VMs and all RSUs to make the graph a complete bipartite graph as needed for running the
Hungarian Matching algorithm. The weight of an edge between a VM ¢ and an RSU j is

chosen as follows. The weight is set to 0 if the remaining storage capacity j is less than the

36

AALB: Application Aware Load Balancing

storage requirement of 7, otherwise,

weight = wi(Ry[j].remainings — M[i].data_remaining)/

S_MAX + wy(Ry[j].remaining. — My[i].c)/C_MAX).

Here, S_M AX is the maximum of the maximum remaining storage of any RSU and max-
imum storage need of any VM, and C_MAX is the maximum of the maximum remaining
computation of any RSU and maximum computation need of any VM. Thus, a VM is
assigned to an RSU only if the RSU has enough storage to accommodate the VM. Also,
preference is given to RSUs which have more storage and more computation capacity com-
pared to the need of the VM. The importance of storage and computation controlled by two
weights w; and ws, 0 < wy,wy < 1 and wy; + wy = 1. The Hungarian Matching algorithm
is then run to find a maximum weighted matching on this graph. In this work, we have
considered w; = wy = 0.5. Note that, the Hungarian Matching algorithm will assign each
VM to an RSU as it finds a perfect matching; however, some VMs may be assigned to
a dummy RSU. Such assignments are discarded and the corresponding VM is considered

again in the next iteration.

3.4.4 Scheduling of VMs

Algorithm 4: VMScheduled

1 for each RSU i in R, do

2 vme_edf < sort R[i].v in earliest deadline first order;
3 for each VM j in vm_edf do
4

5

if ((lvm_edf[j].completed) and(R;[i].remaining. > vm_edf[l].c)) then
L M,lj].data_remaining -= D"
else if (vm.edf[j].completed) then
7 Append vm.edf [j] to Myper;
vm.edf [j].r.remaining. += vm.edf[j].c;

=]

VMAssignment guarantees that the storage requirement of a VM will be met by the
RSU it is assigned to. However, the RSU may not have sufficient computation capacity
to schedule all the VMs assigned to it. The VMScheduled module chooses the VMs to be

37

Application Aware Load Balancing in Vehicular Networks

scheduled (Algorithm 4). The choice of VMs is made simply on the basis of an earliest-
deadline-first policy. In particular, for every RSU, it sorts the VMs assigned to the RSU
in a non-decreasing order of the remaining lifetime. The longest prefix of this list of VMs
whose total computation capacity does not exceed the computation capacity of the RSU is
then scheduled for execution. The VMs not scheduled will not get executed in the current
time step. The VMs scheduled for execution are assumed to be executed and their status

is updated accordingly.

3.4.5 An Illustrative Example of the Proposed Approach

In this Subsection, we give an example to demonstrate the working of proposed algorithm.
We have taken three RSUs (r; to r3), five vehicles (v; to vs), and two applications (a; and
ay) of same type (both generating data periodically). Table 3.2, Table 3.3, and Table 3.4
show the values chosen in the example. Table 3.5 shows the values for other parameters
for this example. We are assuming that each vehicle requests for only one application at a

time, as mentioned in the assumptions.

Table 3.2: RSU capacities

RSUs 71) r3
Storage Capacity 60MB 60MB 60MB
Computation Capacity 10MHz 10MHz 10MHz

Table 3.3: VM resource requirement

Vehicles (VM cre- | v1(V M) va(V M) v3(V M3) va(V My) vs(V Ms)
ated at RSU)

Storage Need 20MB 20MB 20MB 20MB 20MB

Computation Need 5MHz 5MHz 5MHz 5MHz 5MHz

38

AALB: Application Aware Load Balancing

Table 3.4: Applications

Applications ay as
Deadline 8 time units 10 time units
Application Type Periodic Periodic

Table 3.5: Network setting

Data Generation Rate 2 MB/time unit
Data Processing Rate by RSU 10 MB/time unit
Data Transfer Rate 10 MB/time unit
Data Generation Range 4 time units
Number of Channels 1

At time t = 0, v, v9, and vz are in the system. None of them are in the transmission
range of any RSU. Although they have some initial data already present to be processed at
t = 0, no request is there to any RSU as shown in Table 3.6. No VM is created at ¢t = 0.

At t =1, vy and vs join the network. Let vy, v9, v3, and vy be in the transmission range
of r; and vs be in the transmission range of 5. Vehicles (vq, v, v3, and v4) send their
requests to r; (when they get to access the channel for transmission). RSU r; accepts the
request of v; and 75 accepts the request of vs (Admission Control Module). Corresponding
VMs are created in r; and ro. At the end of time step 1, v; has 14 MB (22 — 10+ 2 = 14
MB) of data. In this time step, 10 MB of data is transferred to RSU r; and 2 MB of data
is generated by the application a; in vehicle v;. The same procedure is followed for other
vehicles as shown in Table 3.6. At each time instant, the remaining storage of an RSU is

updated based on the amount of data transferred by an application of a vehicle.

At t = 2, the request of vehicle v, is accepted and admitted to r; (Admission Control).
Then, on the basis of the proposed matching based algorithm, it is migrated to r3 (VM As-
signment Module). At ¢ = 3, v3’s request gets accepted by r; and V' Mj is created. Vehicle
v; has only 6 MB of data at the beginning of the time instant. Therefore, only 6 MB of
data is transferred to RSU r; and 2 MB of data is generated at ¢ = 3 which is processed at
t=4.

39

Application Aware Load Balancing in Vehicular Networks

At t = 4, vehicle vjs request gets accepted by . Thus, V M, gets created at ro (Admis-
sion Control Module). Then in the assignment phase, V' M, is migrated from ry to ry (VM
Assignment Module). Three VMs (V My, V M,, and V M;) complete their execution as they
have no unprocessed data and no data is going to be generated (refer Table 3.5). VM,
V My, and V Ms scheduled in ry, r3, and ry respectively. This example shows the overall

working of the proposed AALB algorithm.

3.4.6 Time Complexity Analysis

The time complexity of the proposed algorithm AALB can be computed from the time
complexities of its modules, AdmissionControl, VMAssignment, and VMScheduled. The
AdmissionControl module takes O(X) time to complete, where X is the total number of
vehicles. The VMAssignment module takes O(X?) time to complete. The VMScheduled
module takes O(XY') time to complete, where Y is the total number of RSUs. Thus, the
algorithm AALB has the time complexity of O(X? + XY') per time unit.

40

AALB: Application Aware Load Balancing

Table 3.6: Example scenario

Vehicles RSU Status (remain- | Requests | VMs in RSUs Migration

H Status ing storage, remaining | (Vehicle (From RSU—

% (storage computation, vehicles | to RSU) To RSU) using

‘= | need, ap- | in the range) during | at the matching-

= plication) | time ¢ beginning based tech-
at the end of ¢ nique
of ¢

0 | v1(22,a1) r1(60,10,{}) r2(60,10,{}) | No request | No VM present in | No migration
v2(22, az) r3(60,10,{}) the system
?)3(22, al)

1 v1(14,a1) r1(50, 5, {v1,ve,v3,v4}) vy — 11 | ri{VM} ro{V M5} | No migration
U2(24,CL2) 7’2(50,5, {05}) Vo — T
?)3(24, CL1) 7“3(60, 10, {}) v3 — T
v4(22, ag) v = T
1}5(12,(12) Vs — T2

2 v1(6,a1) r1(40, 5, {v1,ve,v3,v4}) vog — 11 | Admission Con- | VM; migrated
v2(16, az) r2(40,5, {vs}) r3(50,5,{}) | v3 — 1| trol: ri{V M, | from r; to r3
1}3(26,611) Vg4 — T VMQ}, T’Q{VM5}
v4(24, a2) VM Assign-
v5(4, a2) ment: 7 {VM;},

ro{V M5},
T3{VM2}

3 1}1(2,611) 7“1(24,0, {1}1,1}2,?}3,1}4}) Vg — T Tl{VMl, VMg} No migration
v2(8, az) r2(36,5, {vs}) 73(40,5,{}) | v3 = 1 ro{V Ms} rs{V M}

U3(18, al)
U4(26, ag)
v5(2,a2)

4 v1(0,a1) r1(12,0, {v1,ve,v3,v4}) vy — T Admission Con- | VM, migrated
v2(0, ag) r9(24,0,{vs}) r3(32,5,{}) trol: ri{V»M, | from r to ro,
U3(8, al) VM3, VM4} VMl, VM2 and
v4(16, az) ro{VMs} r3{VMa} | VM5 completes
v5(0,a2)(VM Assignment: | their execution
No data ri{V M, V Ms}
generation ro{V Ms, V My}
in this time rg{V My}

step)

41

Application Aware Load Balancing in Vehicular Networks

3.5 Results and Discussion

The proposed algorithm AALB is simulated using a Java-based discrete event simulator
developed for the implementation of thesis work. While designing the simulator the net-
work parameters are taken into consideration. To check the correctness of the simulator,
the performance is checked with a boundary condition. The results are not violating the
lower bound condition. We have also done a delay analysis in Chapter 4.5 to validate our
simulation results, as shown in Figure 4.8 of the thesis. Our simulation consists of a city
scenario with bidirectional roads and an area of 10 km?. Vehicular traffic is generated using
Simulation in Urban Mobility (SUMO) [18] by considering the lower Manhattan city sce-
nario. The simulation parameters are given in Table 3.7. Major parameters for simulation
are taken from the works [22,27].

Table 3.7: Simulation parameters for AALB

Parameters Values
Number of time steps 890
Number of RSUs 9

Data processing per unit time at RSU 10 Mbps
Transmission range of RSU 500 meters
Storage capacity of RSU 6000 MB
Computing capacity of RSU 1000 MHz
Range of VM’s initial storage need 100 MB - 300 MB
Range of VM’s computing need 5 MHz - 40 MHz
Fixed migration cost of VM 0.010 $
Migration cost per unit of data transfer 0.002 $
Data generation rate of periodic application 10 Mbps
Amount of data generated per event 500 MB

The inter arrival time for event-driven task 100 Sec
Distribution used for event generation Exponential
Number of channels 4

Area in the city considered for simulation 10 km?

We have evaluated our proposed algorithm with different types of applications hav-
ing variable data generation rates. We have considered periodic applications, event-driven

applications, and their combination for simulation. Periodic applications generate data peri-

42

Results and Discussion

odically and event-driven applications generate data based on the occurrence of events, their
combination consists of both periodically generated data and event-driven data. Further,
we have compared AALB with three existing algorithms in the literature — DCORA [31],
MAMTS [32], and JSCO [30]. Along with these algorithms, we have also compared AALB
with a baseline algorithm where the VMs are only migrated to the RSUs in the vehicle’s
route. We call the baseline algorithm as GREEDY algorithm. The amount of data gener-
ated per event in event-driven applications is dependent on the type of applications. We
have experimented with two different values, 500 MB and 250 MB based on the amount of
data generated in different applications [50].

100
1 AaB 90 DCORA
= DCORA @ 80 ¥ MAMTS —+—
9 T MAMTS —— < ool J5CO —8—
E’ JSCO —a— g 60 GREEDY —e—
2 1 GREEDY —e— £
K} . = 501
£ E 40
8 S 30
= 3z 20 ot
10 r
50 100 150 200 250 300 300 600 900 1200 1500
Number of Vehicles RSU Computation Capacity (MHz)
(a) Variation of VM completion percentage with (b) Variation of VM completion percentage
number of vehicles with computation capacities of RSU
1000 T T T T AALB
1SCO —=—
5800 7 GREEDY —s—
2 600 - 1
(@]
c
2400 :
©
2
£ 200} .

0 I :) i
50 100 150 200 250 300
Number of Vehicles

(c) Variation of VM migration cost with number of vehicles

Figure 3.4: Performance for periodic applications

3.5.1 Periodic Applications

In this Subsection periodic applications are considered for simulations where applications

generate data periodically with a data generation rate of 10 Mbps.

43

Application Aware Load Balancing in Vehicular Networks

Figure 3.4a shows the variation of VM completion percentage with the number of vehi-
cles. It can be observed that the percentage of VM completion is higher in the case of AALB
as compared to DCORA, MAMTS, JSCO, and GREEDY algorithms with an increase in
number of vehicles. This is because of the efficient VM migration technique used in AALB
when an RSU is overloaded. Figure 3.4b shows the variation of VM completion percentage
with computation capacities of RSUs. It can be seen that AALB shows better performance
than the other four algorithms. This is because of the fact that AALB prioritizes VMs which
were not scheduled in the last time steps. The trends for each algorithm show a linear pat-
tern except JSCO. This is because, JSCO only focuses on the computation resource while
the other four algorithms are dependent on other factors apart from computation. AALB
and GREEDY depend on both storage and computation, DCORA depends on utilization,
and MAMTS depends on other applications. Therefore, the effect of the increase in com-
putation capacity is clearly visible in the JSCO output. Figure 3.4c shows the variation of
VM migration cost of JSCO, GREEDY, and AALB algorithm with number of vehicles. It
can be observed that AALB shows lower costs than JSCO and GREEDY algorithms. This
is because of the efficient VM assignment technique used in AALB. We have compared VM
migration cost of AALB with JSCO and GREEDY algorithms. This is because, DCORA
and MAMTS algorithms do not focus on the migration cost. The migration cost of JSCO
is more as compared to AALB and GREEDY algorithms. This is because, JSCO focuses

only on the percentage of VM completion without considering VM migration cost.

3.5.2 Event-Driven Applications

In this Subsection event-driven applications are considered for simulations where applica-
tions generate data when an event occurs. In-vehicle infotainment and anomaly detection
from the video are examples of applications that generate data of nearly 500MB per second.
Several other applications, such as traffic management applications, emergency braking sys-
tems, online gaming, etc. are also considered in this work [49]. The task considered in this
work is either periodic or event-driven task. Traffic management, online gaming are exam-
ples of periodic applications where anomaly detection and emergency breaking systems are
even-driven tasks. Figure 3.5 shows the results for the algorithms when 500 MB data is
generated per event. Figure 3.6 shows the results when 250 MB data is generated per event.

The generation of events follows exponential distribution in both cases.

44

Results and Discussion

Figure 3.5a shows the variation of VM completion percentage with the number of vehicles
in the case of event-driven applications. The performance of AALB is better in comparison
to the other four algorithms. The drop in overall VM completion percentage is more in
event-driven applications as compared to periodic applications. This is because, the data
generated per event is larger in event-driven applications. The amount of data generated
increases as time proceeds. This leads to more load and less time to complete the task.

Therefore, VM completion percentage is less as compared to that of periodic applications.

100

AALB
AALB 20 DCORA
R DCORA — 80 MAMTS —r—
g MAMTS —+— £ 79 GREEDY —e—
= 3SCO —=— 5 6o
kS GREEDY —e— =
L - 50
£ E 40
g 40,
g z 30
> 20
| 10
1 1 Il 1
50 100 150 200 250 300 300 600 900 1200 1500
Number of Vehicles RSU Computation Capacity (MHz)
(a) Variation of VM completion percentage with (b) Variation of VM completion percent-
number of vehicles age with computation capacities of RSU
1000 : : ; AALB
15CO —a—
3800 7 GREEDY —s—
% 600 | .
O
=4
2400 g
©
5
£ 200 .

0 - . . :
50 100 150 200 250 300
Number of Vehicles

(c) Variation of VM migration cost with number of vehicles

Figure 3.5: Performance for event-driven applications (500MB/event)

Figure 3.5b shows the performance of all algorithms with an increase in computation
capacities of RSUs. It can be observed that the VM completion percentage of AALB shows
better performance while varying the computation capacities of RSUs. The reason behind
such performance is the use of efficient matching-based techniques for VM assignment and
consideration of status of VMs in the last time step. In Figure 3.5¢, output of VM migration
cost is shown with varying the number of vehicles for event-driven applications. It can be
observed that the performance of AALB for migration cost is better in comparison to JSCO

and GREEDY algorithms. The reason is the same as mentioned in subsection 3.5.1.

45

Application Aware Load Balancing in Vehicular Networks

AALB

: DCORA
DCORA -
Q 7 MAMTS —— g MARES T
< JSCO —=— < GREEDY —e—
2 GREEDY —e— S
[} o
-1 [=9
£ £
8 8
= =
> >
1 1 Il Il
50 100 150 200 250 300 300 600 900 1200 1500
Number of Vehicles RSU Computation Capacity (MHz)

(a) Variation of VM completion percentage with (b) Variation of VM completion percentage
number of vehicles with computation capacities of RSU

1000 T T T AALB

15CO —=—

5 800 7 GREEDY —s—

2 600]

(@]

=

2400 - .

©

o

£ 200 .

0 . . .
50 100 150 200 250 300
Number of Vehicles

(c) Variation of VM migration cost with number of vehicles

Figure 3.6: Performance for event-driven applications (250MB/event)

Figure 3.6 shows the same results for event-driven applications where the amount of data
generated per event is 250 MB. It can be observed in Figure 3.6a that the VM completion
percentage is higher as compared to Figure 3.5a. This is because, the amount of data
generated is less in this case. The VM completion percentage in Figure 3.6b shows a similar
pattern as Figure 3.5b, the only difference being in the percentage of VM completion. Here,
the percentage of VM completion is higher. This is again because of the lower amount
of data generated per event. Figure 3.6¢ shows that AALB performs better than JSCO
and GREEDY. This is because of the efficient VM allocation approach used in AALB. The
reason behind comparing AALB with JSCO and GREEDY while ignoring MAMTS and

DCORA is given in subsection 3.5.1.
3.5.3 Periodic and Event Driven Applications

Figure 3.7 shows performance of five algorithms while considering both periodic and event-
driven applications, where event-driven applications generate 500 MB of data per event.

In Figure 3.7a, it can be observed that the percentage of VM completion is less as

46

Results and Discussion

‘ ‘ ‘ ‘ AALB
| _AALB 20 DCORA
DCORA = 80 MAMTS ——
1 MAMTS —— £ 2 15C0 —8—
JSCO —a— 5 o GREEDY —e—
F - GREEDY —e— 5 o
|- — o
L g 40
L 2 30
\\ > 20
L 10
1 e e E/
50 100 150 200 250 300 300 600 900 1200 1500
Number of Vehicles RSU Computation Capacity (MHz)
(a) Variation of VM completion percentage with (b) Variation of VM completion percent-
number of vehicles age with computation capacities of RSU
1000 . ; AALB
15CO —a—
& 800 | GREEDY —a—
2 600 | .
(]
=
2400 - A
©
5
£ 200} i

0 : ;
50 100 150 200 250 300
Number of Vehicles

(¢) Variation of VM migration cost with number of vehicles

Figure 3.7: Performance for periodic and event-driven applications (500MB/event)

compared to either periodic or event-driven applications. The trends show a sharp drop in
the VM completion percentage for all the algorithms. This is because, the amount of data
generated in this case is more as compared to either an event-driven scenario or a periodic
scenario. In this case also, AALB performs better in comparison to the other algorithms.

This is because of the efficient VM assignment approach.

Figure 3.7b shows the variation of VM completion percentage with the computation
capacities of RSUs. Here too, AALB shows improved performance compared to the other
algorithms. This is because, AALB is independent of the time at which data is generated
and uses an efficient VM allocation approach. In Figure 3.7b, AALB saturates after the
computation capacity reaches 1000 MHz. This is because, AALB considers storage resources
while doing VM assignments along with computation resources. Even though computation
capacities of RSU increase, some VMs do not get sufficient storage resources in RSUs. VM
migration cost of AALB, JSCO and GREEDY algorithms are compared in Figure 3.7c. In
Figure 3.7c, it can be observed that the performance of AALB for migration cost is better
as compared to JSCO and GREEDY algorithms. This is because, AALB assigns the VMs

47

Application Aware Load Balancing in Vehicular Networks

100 - ; 100 AALB
20 | _AALB 90 | DCORA
o | pcora < 80t MAMTS ——
s MAMTS —+— g 15CO —8—
70 1SCO —a— c 70 GREEDY ——
S 60 GREEDY —e— 2 60
3 50 4 50
€ 40 g 40
8 30 ; 30
g 20 S 204
10 10
1 1 1 1
50 100 150 200 250 300 300 600 900 1200 1500
Number of Vehicles RSU Computation Capacity (MHz)
(a) Variation of VM completion percentage with (b) Variation of VM completion percent-
number of vehicles age with computation capacities of RSU
1000 T T | AALB
JSCO —a—
; 800] GREEDY
‘g‘ 600 P |
O
c
2400+ [/ : »
E .
=y - -
= 200 - i ; f

0 B } :
50 100 150 200 250 300
Number of Vehicles

(c) Variation of VM migration cost with number of vehicles

Figure 3.8: Performance for periodic and event-driven applications (250MB/event)

efficiently and minimizes the migration cost.

Figure 3.8 shows the results of all five algorithms, where data is generated by both
periodic applications and event-driven applications. The amount of data generated per
event in this case is 250MB. It can be seen in Figure 3.8a that the drop in VM completion
percentage is not sharp. This is because of less data generation. Here also AALB works
better than the other algorithms because of the same reason as discussed in subsection
3.5.1. In Figure 3.8c, AALB shows improved performance compared to the other algorithms
because of efficient VM assignment approach. Figure 3.8c shows that AALB migration cost
is less as compared to JSCO and GREEDY algorithms. The reason is the same as discussed

in subsection 3.5.1.

48

Results and Discussion

3.5.4 Effect of Application Lifetime

Here, we study the effect of application lifetime on the VM completion percentage. The life-
time of an application which is defined as the time within which the application’s execution
must be completed, is taken as the application delivery constraint in this work. The appli-
cation lifetime is varied from 450 to 850 time units. Note that in our simulations, vehicles
generate data to a maximum of 449 time units, and thus the range of application lifetime
chosen represents applications with very tight delivery constraints to those with more loose

constraints where more time is available to process the generated data.

100 [- - ‘ AALB 100 — ! ! ! AALB
e 997 | DCORA e 90 | DCORA
< 80y MAMTS —+— < 80 MAMTS ——
< 70f : 1 JSCO —8— £ 70 1. 35C0 =8
% 60 [—t+— | GREEDY —e— ‘8 60 {GREEDY —&—
o S07 I =
£ 40EF===_ib___=1;=:::1;:::::$ £
S 30 - 8
s 207 1 =
= 10t =
500 600 700 800 500 600 700 800
Lifetime of Application (Time Units) Lifetime of Application (Time Units)
(a) Variation of VM completion percentage with (b) Variation of VM completion percentage with
lifetime of periodic applications lifetime of event-driven applications
100 = ! ! ! AALB
o 90 1 DCORA
< 8o MAMTS ——
c 70 1 JSCO 8~
= 60 GREEDY ——
o
a
E
G
@]
=
>

500 600 700 800
Lifetime of Application (Time Units)

(c) Variation of VM completion percentage with lifetime of periodic and event-driven applications

Figure 3.9: Performance of periodic, event-driven applications, and their combination with ap-
plication lifetime

Figures 3.9a, 3.9b, and 3.9c show the variation in VM completion percentage with varying

lifetimes of periodic applications, event-driven applications, and their combination respec-

49

Application Aware Load Balancing in Vehicular Networks

tively. In all the three graphs, AALB shows improved performance as compared to the other
algorithms for all lifetime values. This is because, AALB prioritizes earlier deadlines while

scheduling VMs, and hence more VMs are able to finish within their lifetimes.

3.5.5 Effect of Multiple Applications in Vehicles

. AALB P AALB
= DCORA = DCORA
““:’ MAMTS —— ‘; MAMTS ——
o | JSCO —a— o JSCO —a—
K] | GREEDY —e— K] GREEDY —e—
a a
£ £
o [o]
o o
= =
> > | | | |

50 100 150 200 250 300 50 100 150 200 250 300

Number of vehicles Number of vehicles

(a) Variation of VM completion percentage with (b) Variation of VM completion percentage with

number of vehicles of periodic applications number of vehicles of event-driven applications

. 18g i T T T T] AALB

S gol | DCORA

T 70} | MAMTS ——
Xe] JSCO —=—
o | GREEDY —e—
(=N

E

o

O]

=

>

| | | |

50 100 150 200 250 300
Number of vehicles

(c) Variation of VM completion percentage with number of vehicles of periodic and event-driven appli-
cations

Figure 3.10: Performance of periodic, event-driven applications, and their combination with
varying numbers of vehicles running multiple applications

A vehicle may run more than one application simultaneously. To check the effect of
multiple applications running simultaneously on a vehicle, we have simulated a scenario
in which two vehicles, each running a different application, move as a convoy and reach
all RSUs in the route simultaneously. This scenario essentially simulates a single vehicle

running two applications simultaneously.

20

Results and Discussion

Figures 3.10a, 3.10b, and 3.10c show the variation of VM completion percentage with
number of vehicles for periodic applications, event-driven applications, and a combination
of periodic & event-driven applications respectively. It can be observed that for all three
cases, AALB shows better results as compared to other algorithms because even with an
increase in the number of applications per vehicle, the corresponding VMs will be executed
independently at different RSUs using the efficient method of matching the VMs with RSUs.

The applications considered in this scenarios are independent of each other.

3.5.6 Effect of Contention at RSUs

Contention at any RSU for data transfer from vehicles is dependent on the number of
vehicles whose contact times at the RSU overlap. To study the effect of RSU contention
on our algorithm, we vary the time range within which all vehicle requests are generated in
our simulation. A lower value of the time range implies more vehicles will arrive at an RSU
around the same time causing more contention, and vice-versa. The number of vehicles
considered for this simulation is 300, so as to achieve a high density of vehicles that arrive

more or less at the same time at RSUs.

T T T AALB
s 28 i] DCORA
- 70L 4 MAMTS ——
2 sol 4 JSCO —=—
T 5ol _| GREEDY —e—
a
g 40 - -
o 30 —
; 20 —a——p
> 10 -
1 1 1 l

50 100 150 200 250 300
Range of Request(Time Units)

Figure 3.11: Variation of VM completion percentage with time range of requests

Figure 3.11 shows the variation of VM completion percentage with the increase in the
contention at RSUs. The x-axis represents the time range of generating the requests in
simulation time units. It can be observed that AALB shows improved performance as
compared to other algorithms. This is primarily because contention is avoided by AALB by
admitting the requests to any RSUs in the network if sufficient storage is available. Thus,
it decreases the waiting time for the number of requests. This leads to better performance
of AALB over other algorithms.

ol

Application Aware Load Balancing in Vehicular Networks

3.5.7 Average Delay

We next study the average delay incurred by the requests generated by the vehicles. We
define delay as the difference in the time between the completion of a VM and the time of

generation of a VM.

o o
= L B B AALB i 1 AALB
< 700] | pcora < 700) | pcora
E 00 MAMTS —— E 00 | MAMTS ——
e 0% JSCO —=— £ 500 JSCO —=—
5. 200 - GREEDY —e— - 200 | GREEDY —e—
& 400] & 400]
2300 | 2 300 | |
© 200 | 1 © 200 | 1
© 100 - - © 100 -
g 0 1 1 1 1 g 0 I I 1 1
< 50 100 150 200 250 300 < 50 100 150 200 250 300
Number of Vehicles Number of Vehicles
(a) Variation of average delay with number of vehi- (b) Variation of average delay with number of ve-
cles of periodic applications hicles of event-driven applications
o
= T T T T
5800 | o
Eggg i 3 MAMTS ——
E500 / JSCO —a—
5400‘ _GREEDY—.—
A300F -
g‘200 = -
©100 | -
g 0 | | | |
I 50 100 150 200 250 300

Number of Vehicles
(c) Variation of average delay with number of vehicles of periodic and event-driven applications

Figure 3.12: Average delay for periodic applications, event-driven applications, and their combi-
nation

Figures 3.12a, 3.12b, and 3.12c¢ show the variation of average delay with number of vehi-
cles for periodic applications, event-driven applications, and a combination of periodic and
event-driven applications, respectively. It can be observed that the performance of AALB is
better as compared to the other existing algorithms in all cases. This is because, in general,
when an RSU gets overloaded, it is unable to accept any further requests from its neighbor-
ing vehicles, leading to an increase in delay incurred by the request. However, in AALB,

the requests are forwarded to any of the RSUs in the network which has enough resources

o2

Results and Discussion

available to accept the request, thereby giving an improved performance as compared to all

the other algorithms.

3.5.8 Effect of Vehicle Speed

- 188 i T T T T T T] AALB - 188 L T T T T] AALB
2 gof DCORA R gof DCORA
- 70t 1 MAMTS —— c 70t 1 MAMTS ——
2 60} | 150 —=— S 60l | 150 —=—
® 5of GREEDY —e— @ gp™ | GREEDY —e—
o o
£ 40-____'__'—"—'——-—11 g 40 ¢\
S ol T S 2oL I
§ 10 - - % 10 L T——n
| | | | | | | | | | | | | |
40 45 50 55 60 65 70 75 80 40 45 50 55 60 65 70 75 80
Speed of Vehicles (km/hour) Speed of Vehicles (km/hour)
(a) Variation of VM completion percentage with the (b) Variation of VM completion percentage with the
speed of vehicles for periodic applications speed of vehicles for event-driven applications
. 188 i T T T T T] AALB
S gol | DCORA
=~ 2ol + MAMTS ——
2 60l 4 JSCO —a—
T 5ol | GREEDY —e—
o
E gg_".\;
8 —
20 .
= ——
> 10
.'_—-f-__.h L & L & L

40 45 50 55 60 65 70 75 80
Speed of Vehicles (km/hour)

(¢) Variation of VM completion percentage with the speed of wvehicles for periodic and event-driven
applications

Figure 3.13: Performance of periodic applications, event-driven applications, and their combina-
tion with varying speed of vehicles

We have studied the effect of speed variation of vehicles on the VM completion percent-
age of the system. We have considered the number of vehicles as 150 for this simulation and
observed that an increase in speed of the vehicles leads to a decrease in the VM completion
percentage. However, the effect is very less as shown in Figure 3.13. This is because the
speed of the vehicles only affects the performance of the system till the time an application

data is transferred to RSUs. Figure 3.13a shows the performance of the periodic application

93

Application Aware Load Balancing in Vehicular Networks

with variation of speed. Figure 3.13b shows the performance of the event-driven application
and Figure 3.13c shows the performance of the periodic & event-driven applications together

with variation of speed.

It can be observed that AALB outperforms the three existing algorithms and the GREEDY
algorithm. It is because of the efficient VM migration technique and wired medium chosen
to transfer the data between RSUs.

3.6 Chapter Summary

This chapter discussed the approach to deal with load balancing considering application
types and resource requirements of each application request. Periodic applications, event-
driven applications, and their combination are considered for evaluation. The proposed
algorithm AALB is compared with existing algorithms. Effect of vehicle speed, multiple
applications are studied along with the available resources of RSUs. In case of periodic
applications, the VM completion percentage of AALB improves by 36.67% over MAMTS,
100% over JSCO and by 134.29% over DCORA.

o4

Resource Renting for Load Balancing in
Vehicular Networks

This chapter presents our second contribution. Here, we have proposed one pricing model
which is applied to the RSUs and their resources while doing the load balancing. The
requests generated by the vehicles are assigned to one of the RSUs in the networks. Each
RSU is considered as one independent entity which charges a fixed cost for sharing its

resources with any other RSUs in the network.

4.1 Introduction

Renting resources is a widely used idea in cloud computing environments where the resources
of one entity are rented based on one price scheme. It increases the service availability in
case of resource constraints environment. It reduces the cost of providing the services to end
users without deployment of vast network infrastructure. The price offered by the service
providers are generally two types -1) Fixed price and 2) Dynamic price [57]. In the case of
a fixed price, the price per unit of resource per unit of time does not vary. However, in the
case of dynamic price, the unit cost for a unit of resource is dependent on the availability
of the resources. Price per unit resources increases with a decrease in available resources.

In our work, we have focused on fixed pricing to reduce the time for decision making.

95

Resource Renting for Load Balancing in Vehicular Networks

4.2 Problem Formulation

We have formulated the issues raised by this study as an optimization problem in this
Section. We define the input and output variables. The afterword constraints and objectives
are specified with a detailed explanation. Our goal is to maximize the number of requests
processed and minimize the delay and total cost. The total cost is a combination of rent-out

cost and migration cost.

4.2.1 Input Variables

Let T be the total amount of time considered for the simulation. Total X number of vehicles
are there which is represented by set V' = {vy,vs,...,vx} and Y number of RSUs are there
which is represented by set R = {ry,72,...,ry}. Vehicle v; € V, is expressed by a tuple
(P;,a;,L;,N;), where

e Route of v; is specified as a series of RSUs (r],73,...,77) and is called P;, where [is

a variable which is dependent on the total number of RSUs in the path of v;
e The vehicle’s application is called a;
e The application deadline is £; and it runs at v,
e Application’s data generation rate for v; is A;.

Generated data A; is represented by ()\{)\%, e)\H as a sequence, where the quantity of data
produced by the vehicle v; at time slot k& is)\i > 0. Additionally, the arrival and departure
times of each RSU r; in the route of v; are shown as arr! and dep! , respectively. RSU r;
is represented by the tuple (s;, p;, DI), where, s; is the storage capacity, p; is the computing
capacity, and D] is the DPR of RSU r;.

A set of applications is represented by the notation A = {ay,as,...,a;}. Each appli-
cation ay is represented by a tuple (s, pr, Cost’), where s; denotes the amount of storage
required for application ag, pr denotes the amount of computation required for application
ay, and Cost! denotes the fixed cost of migration.

Let B = {by,bs,...bx} be the set of VMs generated for X vehicles in some RSU r; € R.
Let Q! represent rent-out cost for the resources offered by RSU r; at time ¢ and M/ is the
migration cost of VM from RSU 1.

o6

Problem Formulation

4.2.2 Output Variables

Output variables are expressed by two sets {z;;;} and {v;;1}, Vv, € V, Vr; € R, and
Vt,1 <t <T. In the case of VM b;,

o If b; is in RSU r; at time ¢, x;;; is set to 1; otherwise, it is set to 0
e If b; is scheduled in RSU r; at time ¢, y;;; is set to 1; otherwise, it is set to 0.

Difference between data sent by vehicle v; to RSU until time ¢ and the data processed
by RSUs until time ¢ for vehicle v; can be used to compute the quantity of unprocessed data

for VM b; at time instant ¢. This is represented as,

arrd,

y T
Ul = Z A — szzyz’jt (4.1)
k=1

i=1 t=1
Here, r. is RSU in v;’s path just before time instant ¢.
An indicator variable zj’“ is defined, where its value is set to 1 if and only if (zy;; =
LA 2y, =1 ANty =t+1A ki), 0 otherwise. z§ki indicates that the VM b; has migrated
from one RSU r; to other RSU r; at time ¢. Therefore,

Zj

A 1, if VM b; migrated from RSU k to 7 at time ¢
= (4.2)

0, otherwise

if £ =i, VM b; is not moved to another RSU, and there is no migration cost. We also define

an indicator variable I;, such that,

1, if U; = 0, if v; departs from last RSU on its route
I, = (4.3)

0, otherwise

4.2.3 End-to-End Delay

Delay is a crucial parameter in VANETSs due to the dynamic nature of network topology.
In VANETS, vehicles often stay within the coverage area of an RSU for a brief period due
to mobility, resulting in incomplete data transfers and increased waiting times for VMs at
RSUs. We defined end-to-end delay as the duration of processing a request, starting from
the request generation to the completion of data processing. It includes factors, such as
data transfer delay, waiting delay of the VMs at RSUs, VM migration delay between RSUs,
and the execution delay of the VM within RSUs.

57

Resource Renting for Load Balancing in Vehicular Networks

Let D; be the delay incurred by VM created for vehicle v;. Let ¢ be the time at which
VM b; gets created and tf be the time at which VM b; completes its processing. Delay is

calculated as follows:
D=t/ ¢ (44)

4.2.4 Objectives

In this work, our objectives are maximizing the number of completed VM executions, min-
imizing the delay incurred, and reducing the overall cost associated with VM migration.
By addressing these objectives, we aim to improve the efficiency and performance of RSUs
in processing the substantial amount of data generated by vehicles. Through our proposed
algorithm, Efficient Resource Renting (ERR), we maintain a balance between resource allo-

cation, cost management, and timely execution of VMs. Hence, we can define the objectives

maximize Z I; (4.5)
minimize ; tz; <(z§kl)(Qf + M) + (1- zj’“)(QZ)) (4.6)
minimize Z E(D;) | /(X) (4.7)

Our goal is to maximize the number of requests processed as represented by Equation
4.5. Equation 4.6 is to reduce the overall expense of assigning, scheduling, and migrating
VMs in the system. This objective considers cases when a VM migrates to some other RSUs
and when there is no VM migration at the current time step. Equation 4.7 represents the

objective to minimize end-to-end delay, where E(D;) is the expected delay for VM b;.

4.2.5 Constraints

Following are the constraints in our problem scenario with the objectives specified above:

o After reaching the final RSU (rl]) on its route, a vehicle should not continue to generate
data.
N =0, Vv €V,Vt> arr}, (4.8)

o8

Problem Formulation

e Until a vehicle reaches the first RSU in its path, no VM will be created for it.

it =0, Vo, € V,Vt, 1 <t < arrﬁl (4.9)

e Between its arrival at the initial RSU and departure from the last RSU on its path, a
VM should always be present in only one RSU at any given time ¢.

Y
injt =1, Vv, € VVtarr] <t <dep] (4.10)

i=1
e Only when a VM has some unprocessed data, then it can get scheduled.

e An RSU’s overall computing capacity should not be exceeded by the combined total
computing needs of all of its VMs.

X
Pr X Z Yijt S Di, V?"i < R,ij S ‘/7 Vt, 1 S t S T (412)

J=1

e An RSU’s storage capacity should not be exceeded by the combined total storage
requirements of all VMs.

X X

O U+ shaye < siv Vi€ Ry € V1<t < T, (4.13)

J
7j=1 J=1

o A VM’s total execution time should be less than the time at which the associated

vehicle departs from the final RSU (r7) on its route.

arr,zl Y depil
O-M/DESTS ") < depl,, Vo eV (4.14)
t=1 i=1 t=1

This problem is a mixed integer programming problem, which is NP-hard [58,59]. There-
fore, we propose a heuristic method as a solution to this problem. We call the algorithm as
Efficient Resource Renting (ERR).

29

Resource Renting for Load Balancing in Vehicular Networks

4.3 Proposed Methodology

In this Section, we have proposed an Efficient Resource Renting (ERR) algorithm, which
aims to maximize the number of VMs that complete execution by reducing the rent-out cost,
total cost, and end-to-end delay. Total cost is the sum of rent-out cost and migration cost.
While performing LB as described in Equation (4.19), ERR takes RSU’s remaining storage,
remaining computation, data processing rate, and rent-out cost into account. Rent-out cost
is incurred when RSU’s computational and storage resources are used. The problem scenario

is represented by graphical methods. We propose a static pricing model which is used in
ERR.

4.3.1 Pricing Model

We have proposed a pricing model for the resources of RSUs, where each RSU is associated
with a per unit storage cost (.5;), and per unit computing cost (C;) per unit of time. Addi-
tionally, we assume a predefined base cost per unit time (P;) when a VM is present at an
RSU but waiting for corresponding data to arrive. Using these definitions, we can calculate

¢ which represents the rent-out cost of the RSU r; at the current time step, based on the
VM’s storage and computing requirements. Now, let’s explore the different scenarios for the

cost:

e Case 1: A VM is currently waiting for data to proceed with its execution.

Cost incurred at time step ¢ is the base cost of VM b; for staying at RSU r;, and can

be written as:

Qi= P (4.15)

e Case 2: In the event that VM b;, which is present in RSU r; at time step t, has
some data to process but has not yet been scheduled. Or, when a vehicle requests the
formation of a VM, the RSU closest to the vehicle does not have enough resources,
therefore, the VM is instead created in another RSU.

60

Proposed Methodology

In this instance, the cost of storage for the VM’s unprocessed data is taken into

consideration, and the total cost offered is:

t gt
Q. =U!S; (4.16)
where, the unprocessed data in VM b; at time ¢ is represented by U Jt

o Case 3: VM b; has some amount of data to process and is scheduled to execute in

one RSU.

In this case, for the VM’s unprocessed data, we take into account storage as well as

computing costs. This is specified as:
Qi = US;i + V;C; (4.17)
where, V; is computing requirement of the VM b.

We additionally take into account the following costs if a migration of VM b; to RSU r;
occurs at time t¢:
t__ f t v
M; = Cost; + U; * Cost; (4.18)

where, the fixed cost of VM migration is C’ostj-c . The migration cost for each unit of data

transfer is C'ost,

VM and the rent-out cost together make up the total cost.

and the migration cost for the VM b; is M}. The migration cost of the

4.3.2 Graphical Representation

Assignment of VMs to RSUs at time step ¢ is depicted by a bipartite graph (Figure 4.1)
consisting of X number of VMs and ¥ number of RSUs. Each VM that is still in execution
at time ¢ is represented by a node in one partition, while each RSU is represented by a node
in the other partition. An edge between a VM node and an RSU node signifies that the
corresponding VM can be allocated to that particular RSU.

The problem scenario considered here is a large-scale assignment problem. It can be
solved by using the Hungarian algorithm which works well for balanced problems. This

means, number of nodes in both sets of bipartite graphs are the same. To maintain equal

61

Resource Renting for Load Balancing in Vehicular Networks

nodes in both partitions, dummy nodes (RSUs and VMs) are introduced as needed. The
objective of the allocation process is to maximize the number of VMs completing their
execution, while simultaneously minimizing overall cost and reducing end-to-end delay. The
primary goal is to assign each VM to one RSU from the RSU set at time ¢. Finally, a weight

is assigned to each edge as follows:

Wii = wi(Reli].s — (Fj + Ugt)) + wao (D)) 4+ ws(—Re[i).p/V[j]l.p) + wa(—Re[i].QF) (4.19)

VMs [

RSUs

Figure 4.1: Graphical representation

Here, wy + wy + w3 + wy = 1 and 0 < wy,wo, w3, wy < 1. The weights wy, ws, ws,
and wy, respectively, determine the relative importance of storage resources, DPR, compute
resources, and rent-out cost. Note that, these weights can be adjusted depending on the
type of applications and their requirements. The weight of the edge at time t between nodes
r; and v; is W;. Ry[i].s is the remaining storage available with RSU r;. F} is the data to
be generated till the deadline of the application j. D7 is the DPR of RSU r;. UJ'? is the
amount of data yet to be processed in VM b;. R[i].p is the amount of remaining computing
resources of RSU r;. V[j].p represents the computing requirement of b;. R;[i].Q} represents

the rent-out cost offered by r; to b;. Each part of Equation 4.19 is explained as follows:

o Ryfi]l.s — (Fj + U;) signifies the availability of storage resources. This is calculated
by taking the difference of remaining unprocessed data in VM b; from the remaining
storage of RSU r;. In order to select an appropriate RSU, the predicted data that
an application can generate until the deadline is added to the unprocessed data. The

generated data can be calculated as:

Fi=> A (4.20)

62

Proposed Methodology

e Each VM looks for an RSU with a higher DPR because the DPR of RSUs varies. D}
represents the DPR of RSU r;. Lower DPR means higher is the time for completion.
The RSU with a higher DPR value is given as the priority.

e The ratio of the RSU’s remaining computing resources to the VM’s necessary com-
putation requirements is represented by the expression R:[i].p/V[j].p. We employ the
best-fit policy to effectively distribute the remaining resources because a VM’s need

for computing resources is constant.

e Expression —R;[i].Q! indicates the possible maximum rent-out cost of RSU ;. Price

of the chosen RSU should be minimal in order to reduce the rent-out cost.

4.3.3 Efficient Resource Renting (ERR)

Here, we explain our proposed algorithm which we call ERR given in Algorithm 5. It has
two modules - Request_Approval (RA) module and Resource_Aware_Assignment (RAA)

module.

e Request_Approval (RA): A VM’s point of entry into the system is this module.
This module is activated when a vehicle carrying a certain amount of data enters the
transmission range of an RSU. A VM request is initiated by a vehicle to a nearby
RSU. The request is accepted in case any RSU in the network has sufficient resources
to store the generated data of requested vehicle. Once the request is accepted, a VM
is created in the RSU. There is a possibility that the RSU may not get all of the data
that the vehicle generates. The remaining data is then sent in successive time steps in
that scenario. If an appropriate RSU cannot be discovered, the request is taken into

account in the subsequent time steps.

e Resource_Aware_Assignment (RAA): An initial selection of VMs for the assign-
ment is made in this module. The Hungarian Matching algorithm, also known as
the Kuhn-Munkres algorithm [54], is then used to assign the selected VMs to the
best available RSUs. This is due to the fact that the Hungarian matching algorithm
performs better when tackling complicated assignment problems [55]. The problem
scenario considered in this work becomes a large-scale assignment problem in a major
city scenario due to an increase in vehicles and RSUs. Equation 4.19’s considerations

for storage resource, computation resource, DPR, and rent-out cost are taken into

63

Resource Renting for Load Balancing in Vehicular Networks

account while determining a suitable RSU. Once a suitable RSU has been identified,
the VM is moved from that RSU to the destination RSU in accordance with the

assignment criteria.

Algorithm 5: Efficient Resource Renting (ERR)
1 Ry < List of RSUs at time t

2 for (t=0;t<T;t=t+1)do

3 L Request_Approval()

4 Resource_Aware_Assignment|()

Table 4.1 shows the variables used in ERR. The proposed algorithm ERR is presented
in Algorithm 5. It first initializes a list of RSUs to R;, which stores the information of a
set of RSUs. It gets updated at each time step based on two different modules. Those two
modules - Request_Approval() and Resource_Aware_Assignment() are called at each time

step till T.

Algorithm 6: Request_Approval()

M;]] < List of all existing VMs at time t
Myew[] < List of newly created VMs
Mdata]] + List of Old VMs with some data
Append temp_dropped to Mpeyl]
for (each VM b; in M;) do
L Update_Storage()
7 for (each VM bj in Myey U Mgﬁf”) do
8 if (35 : Ry[i].remainings > storage need of VM j and Count,! = 0) then
9 L Add VM bj to M,

(=22 B VR

10 Count, = Count, - 1
11 else
12 L Add i to temp_dropped

Algorithm 6 admits requests of VMs to the system based on the availability of resources.
The algorithm, first initializes the existing VMs, new VMs, and Old VMs. Then add the
temporarily dropped VMs to the new VMs lists. It updates the amount of data in all
the VMs using M;. According to the VM’s storage requirements, this module once more

determines whether a new or an existing VM with data can be assigned to any RSU in the

64

Proposed Methodology

Table 4.1: Notations used

Notations Used to
R, At time ¢, the state of each RSU
M, Current state of each VM at time ¢
Mpew List of VMs that are created at t in time
M;ll"c‘lta List of existing VMs with ongoing production of new data till £ — 1

temp_dropped

Temporarily dropped VMs till time step ¢t — 1

Ry[i].remainings

Remaining storage in the RSU 7;

Count,

The most channels that can be used to transport data between a
vehicle and an RSU

D"

)

The maximum number of data units that RSU can process per unit
time

M;_1[j].scheduled

Scheduling status of VM b; in last time step

M,[j].data New data status of VM b; at the beginning of time step ¢

M,[j]-s The VM’s need for storage commencing with b; at time step ¢

M, [j].data_amount Amount of new data produced for VM b; at the beginning of time ¢
V M Assigned List of VMs assigned from the list M,

ch VMs from the subset of M; selected for assignment

Assigned Set of VMs assigned in each iteration using Hungarian algorithm
Ry[i].v Set of VMs in r; at time step ¢

vm_edf List of sorted VMs present in RSU r;

vm_edf|[j].completed

Denotes 1, if VM vm_edf|j] has completed its execution at the end
of time t — 1, else 0

vm_edf[l].c

Amount of computing need by the VM vm _edf|l]

Ry[i].remaining,

Availability of computing resources in RSU at ¢

M,[j].data_remaining

The quantity of data that needs to be processed at time t’s beginning

MO’U@T‘

List of VMs completed their execution

65

Resource Renting for Load Balancing in Vehicular Networks

system. The VM is introduced to the system if a compatible RSU is discovered; otherwise,
it is momentarily dropped. A list called temp_dropped contains the dropped VMs.

Algorithm 7: Update_Storage()

1 M;[] < List of all existing VMs at time t
2 if (M;_1[j].scheduled) then
3 if (M.[j].data) then
4 Myljl.s — = DI
5 M,[j].s + = M;[j].data_amount
B M[jl.s — = Dy
else
if (M.[j].data) then
L M.[j].s + = M[j].data_amount

(=]

© ®

The VM’s storage requirements are updated using Algorithm 7 based on knowledge of
the most recent scheduling and data generation step. The processed data is deducted from
the current VMs’ demand if a VM is scheduled in the most recent time step. Similar to
this, any new data generated for the VM increases its storage requirements.

Algorithm 8 is the core part of ERR, where, initially the VMs are migrated based on
the assignment policy and then executed in the RSU where they are assigned. For the
assignment, a set of VMs is chosen from the list M;, a weight is assigned by using Equation
4.19, and Hungarian matching algorithm is applied to get a suitable match. The process
of assignment continues until all the chosen VMs are assigned or no assignment is possible.
After the assignment, VMs present in each RSU are sorted based on the earliest deadline
first manner. Then, based on the availability of computing resources in the RSU, either the

VM is executed or considered in the next time step.

4.3.4 Complexity Analysis

ERR algorithm’s time complexity can be calculated using the time complexities of its current
modules, Request_Approval, and Resource_Aware_Assignment. The Request_Approval
module completes in O(X) time, where X is the total number of vehicles. The module
Resource_Aware_Assignment takes O(XY') time to complete, where Y is the total number
of RSUs. As a result, the temporal complexity of the algorithm ERR is O(X + XY') per

time unit.

66

Simulation Results

Algorithm 8: Resource_Aware_Assignment()

M,[] < Incomplete VM s
V M Assigned = ¢
flag=TRUFE
while (M,! = VM Assigned and flag == TRUFE) do
ch = subset of VMs chosen from M; for assignment
Wii 4= wi(Re[i].s — (Fj + UJ)) + w2(Df) + ws(—Re[i].p/alj].p) + wa(—Rei].Q7)
Assigned = Hungarian_Algo(W;;)
if (Assigned[] == ¢) then
flag= FALSE
L continue

© W N O s W N =

—
(=}

11 VM Assigned =V M Assigned U Assigned
12 VMs migrated to the assigned RSUs

13 Update R;, M; of RSUs used in assignment
14 for each RSU r; in R; do

15 vm_edf < sort R;[i].v by earliest deadline first order

16 for each VM b; in vm_edf do

17 if ((lvm_edf[j].completed) and (R:[i].remaining. > vm_edf[l].c)) then
18 L M,[j].data_remaining -= D}

19 else if (vm.edf[j].completed) then

20 Append vm.edf[j] to Myyer

21 vm.edf[j].r.-remaining. += vm.edf[j].c

The flowchart for the proposed algorithm ERR is given in Figure 4.2.

4.4 Simulation Results

In this Section, we discuss the results obtained from implementing ERR using a Java-
based discrete event simulator. A detailed analysis is carried out to measure the end-to-end
delay with data partitioning at the end of the section along with the results. A lower
Manhattan city scenario [60] with 10 square kilometers of area and a bidirectional road in
the city is taken into consideration. There are 9 RSUs placed uniformly in the scenario
with a transmission range of 500 meters implying that RSUs are non-overlapping and many
areas are not covered by any RSU. Simulation of Urban MObility (SUMO) [18] is used to
generate the vehicle’s movement. The simulation parameters are taken from [22,27] and

are specified in Table 4.2. We have evaluated ERR for a periodic application, event-driven

67

Resource Renting for Load Balancing in Vehicular Networks

Table 4.2: Simulation parameters for ERR

Parameters Values
Vehicles count 50-300
Total simulation time 890
RSU count 9

RSU’s per unit base cost

0.001$ - 0.004%

RSU’s per unit storage cost

0.001$ - 0.007$

RSU’s data processing rate 8-15 Mbps

RSU’s per unit computing cost | 0.001% - 0.007$
Per unit data transfer cost 0.002%

VM’s fixed migration cost 0.01%

Initial storage needs of VM 100 MB - 300 MB
RSU’s transmission range 500 meters

Initial computing need of VM 5 MHz - 40 MHz
RSU’s total computing capacity | 1000 MHz

RSU’s total storage capacity 6000 MB

application, and their combination. A periodic application is one that produces data on a
regular basis with a fixed period, whereas an event-driven application only produces data in
response to particular events. We have compared the results of ERR with Application Aware
Load Balancing (AALB) algorithm [61], Joint algorithm for Selection decision, Computation
resource, and Offloading ratio (JSCO) [44], and one Lower Bound (LB) scenario. For the
LB scenario, we have considered a fictitious RSU with limitless storage and computing
capabilities and a rent-out cost that is the lowest of all RSUs. As a result, all vehicles in the
scenario can send any request or data they generate right away to this RSU for processing.
We also evaluate ERR with varying weights for values between 0 to 1. To demonstrate a
generic case, performance of ERR is shown by giving zero weight to one of the factors and
giving non-zero weights to other factors in Equation 4.19. Zero weight signifies that the
corresponding factor is ignored while making an assignment decision. Results for periodic,
event-driven, and combined applications have been demonstrated in Figures 4.4, 4.6, and

4.8, respectively. Major parameters for simulation are taken from the works [22,27].

4.4.1 Performance of Periodic Applications

Here, performance of algorithms is shown for periodic applications for different parameters

along with the scenario where zero weight is given to one of the factors given in Equation

68

Simulation Results

4.19. Performance of ERR is shown in Figure 4.3 for periodic applications scenario. Fig-
ure 4.3a illustrates how VM completion percentage changes with a change in the number of
vehicles. It can be observed that percentage of VM completion is higher in the case of ERR
as compared to JSCO and AALB. This is because, ERR allocates the VMs to RSUs based
on the expected storage needs of VMs (Equation 4.20), thereby resulting in low migrations
and a higher completion rate. Figure 4.3b shows the variation of average end-to-end delay
with an increase in vehicle count. It can be seen that average end-to-end delay is lesser
in the case of ERR as compared to JSCO and AALB. This is due to the fact that ERR
uses the best-fit technique for scheduling VMs and the DPR of RSUs for assigning them.
Best-fit technique search for RSU with closest available resources. The use of RSU with
greater DPR and the best-fit method both help reduce application execution time. Figure
4.3c shows a variation in average rent-out cost with an increase in vehicle count. Average
rent-out cost of ERR is lower as compared to JSCO and AALB. This is because, ERR
allocates the VMs by considering computing and storage capability, price of the resources,
and DPR of RSUs. AALB only focuses on storage and computing resources and JSCO
only focuses on computation resources. Figure 4.3d shows a variation of total cost with an
increase in the number of vehicles. It can be shown that ERR’s overall costs are lower than
those of AALB and JSCO. This is because, ERR incurs a smaller number of migrations
because of consideration of pricing, along with storage, computing resources, and DPR. The
fact that the VM completion percentage, end-to-end delay, rent-out cost, and overall cost
are all extremely close to those of the LB scenario shows that ERR is the least expensive
option. Overall, it can be seen that the use of rent-out cost and DPR along with remaining
storage and computation helps in maximizing the VM completion percentage and minimiz-

ing rent-out cost along with the total cost.

Periodic applications - Zero weights

The pricing model given in Equation 4.19 has four weights wq,ws,ws, and w,. Weights
w1, Wws, w3, and wy assign priorities to storage, DPR, computing resources, and rent-out cost,
respectively. To check the performance of our proposed pricing model, we carried out ex-

periments by assigning zero weights to each of the parameters used in Equation 4.19.

Figure 4.4b shows average rent-out cost of completed VMs with an increase in the number

of vehicles with various weights considered as zero in ERR along with ERR when all weights

69

Resource Renting for Load Balancing in Vehicular Networks

are considered. It can be observed that the performance of ERR is better in all the cases as
compared to AALB and JSCO algorithms. This is because, ERR considers factors such as
available storage and computing resources, DPR, and rent-out cost for VM allocation. The
rent-out cost for ERR when wy = 0 is more as compared to the other three cases as the
chances of VM assignment to those RSUs with more rent-out cost increases in this case. The
average rent-out cost with wy; = 0 is higher as compared to the case where computation and
data processing of RSU are ignored. This is because, when storage factor is ignored during
the assignment, a VM may get assigned to different RSUs having lesser available storage
resources leading to more migrations and higher rent-out costs. Figure 4.4c shows average
total cost of the completed VMs with an increase in the number of vehicles. Total cost is the
summation of rent-out cost and migration cost. The trends show that ERR performs better
than JSCO and AALB even when different weights are considered as zero. The migration
cost with wy = 0 is lesser as compared to the other cases where one of the weights is ignored
at a time. This is because, when rent-out cost is ignored, the algorithm selects the best
RSU by considering only storage resources, computation resources, and DPR required for
execution of the VM resulting in a lower number of VM migrations. The migration cost
is more in the case of w; = 0. This is because, by ignoring storage factor, a VM may get
assigned to RSUs with lesser available storage leading to more migrations. Due to the same

reason the trend in ERR in Figure 4.4a can be observed.

4.4.2 Performance of Event-driven Applications

In this Subsection, performance of algorithms is shown for event-driven applications with
different parameters as shown in Figure 4.5. It can be seen in all the figures (Fig.4.5a -
4.5d) that ERR performs better than all the other algorithms as well as the LB scenario.
This is because, ERR considers factors such as available storage, computation, DPR, and

rent-out cost for assignment.

It can also be observed that performance of ERR for periodic application scenarios is
better than event-driven application scenarios. This is because, a huge amount of data is
generated during an event, and number of VM migrations increases to accommodate extra
data generated. This leads to an increase in end-to-end delay, a decrease in VM completion

percentage, and an increase in total cost. Even though a huge amount of data is generated

70

Simulation Results

from different events ERR is able to perform better, this shows how efficiently ERR per-
forms. It is able to complete execution of more number of VMs, less rent-out cost, and total

costs even in peak load scenario.

Event-Driven applications - Zero Weights

In Figure 4.6, ERR is evaluated with assigning zero weight to one of the weight factors at a
time. Figure 4.6a displays the effect of change in number of vehicles on percentage of VM
completion for each weight taken as zero at a time along with ERR with all the weights
(w1, ws, w3, wyq) taken together. It can be observed that the trends are similar to that of
periodic applications. However, the percentage of VM completion is lesser as compared
to the periodic application scenario. This is because, a huge amount of data is generated
with the occurrence of events leading to unavailability of RSU resources. This increases the
overall delay. Due to the same reason a similar performance is there in Figures 4.6b and
4.6c.

4.4.3 Performance of Periodic and Event-driven Applications

In this Subsection, performance of algorithms is shown for both periodic and event-driven
applications with different parameters as shown in Figure 4.7. It can be seen in all the
figures (Fig. 4.7a - 4.7d) that ERR performs better than all the other algorithms as well
as the LB scenario even though more data is generated in this case. This is because, ERR
considers factors such as available storage, computation, DPR, and rent-out cost for as-
signment. Overall, it can be observed that the use of rent-out cost and DPR along with
remaining storage and computation helps in maximizing the VM completion percentage
and minimizing the rent-out cost and total cost even in case of periodic and event-driven

scenarios.

Periodic and Event-Driven Applications: Zero Weights

Here, we show the outcome of ERR for a combination of periodic and event-driven applica-
tions when one of the weight factors is assumed to be zero. Figure 4.8a shows a variation
of VM completion percentage with the number of vehicles for each weight taken as zero (as
mentioned in Section 4.4) at a time along with ERR with all the weights taken together.
According to the trends, the percentage of VMs that complete their tasks drops dramati-

71

Resource Renting for Load Balancing in Vehicular Networks

cally when compared to event-driven and periodic applications separately. This is because, a
huge amount of data is generated when periodic and event-driven applications are combined
together. Figure 4.8b shows rent-out cost for a combination of periodic and event-driven
applications with an increase in the number of vehicles. The rent-out cost shows a significant
increase in data generation with an increase in number of vehicles. This is because of more
data generation for this type of application which implies that VM waits in the RSUs for
a longer duration resulting in increased rent-out cost. ERR outperforms JSCO and AALB.
Figure 4.8c shows the variation of average total cost with respect to the number of vehicles
for a combination of periodic and event-driven applications. The trends show that the total
cost and rent-out cost of ERR is similar. This is because, ignoring rent-out costs at the

time of assignment of VMs to the RSUs may lead to a lesser number of migrations.

4.5 Delay Analysis

Delay is an important parameter in VANETSs. Here, we are focusing on end-to-end delay. It
is defined as the duration of data processing of a request generated by a vehicle. It comprises
four major components - 1) the time taken to transfer data from the vehicle to RSU, 2)
the duration for which a VM migrates from one RSU to another, 3) the duration for which
a VM waits in any RSU for getting the computing resources or the duration for which a
VM waits for arrival of data from the vehicles, and 4) the duration of VM execution in an
RSU. The waiting time may vary depending on application types. Waiting time is more in
case the period is larger in the case of periodic applications or inter-event duration is larger
in the case of event-driven applications. The different components of end-to-end delay are

mentioned below.

1. Transfer delay: It is defined as the duration for transferring data from a vehicle to a
neighboring RSU.

2. Migration delay: It is the sum of the time taken to migrate a VM along with its
associated data from one RSU to another RSU till the deadline of the corresponding

applications.

3. Waiting delay: 1t is the duration for which- (a) a VM waits in an RSU to receive data
from vehicles, and (b) a VM waits for computation resources from the RSU to execute

the received data from vehicles.

72

Delay Analysis

4. Ezecution delay: It is the duration for processing the data present in a VM at an RSU.

Measurement of end-to-end delay for each portion of data can help to analyze perfor-
mance of the algorithm for randomly incoming data. This is why it is necessary to partition
the data into small parts. Partitioning data into small parts helps in scheduling the VM
requests in the RSUs. We consider four states for the generated data by a vehicle. These
are — 1) Transfer state, 2) Migration state, 3) Waiting state, and 4) Execution state.

4.5.1 Data Partitioning

Identification of data that remains in one of the aforementioned states is important to ana-
lyze the end-to-end delay. We partition the data into fixed-sized blocks that we call chunks
to analyze the performance of ERR for randomly incoming data. Each chunk of data is

identified by one identification number which helps in maintaining the order of chunks.

Let us assume that there are m chunks of data generated at vehicle v; and processed
by a VM b; using the resources of some of the RSUs present in the scenario. Chunks are
represented by C’{. ..C4 . Data; is the data generated by the vehicle v; and is calculated as

follows:
Data; = Z c} (4.21)
k=1

4.5.2 Calculation of Delay

We calculate end-to-end delay of each request as per Equation 4.22. End-to-end delay D; is
calculated as the summation of the delay incurred for each chunk of data at different RSUs
and the VM’s waiting time in an RSU. D, is defined below:

Y m;
Dy=> | D de+¢" (4.22)
=1 k=1

diy = di+ i + dif + (4.23)

where d}, is the data transfer delay for chunk Cj, d* is the migration delay for chunk Cj,

dy is the waiting delay for chunk Cj, df is the execution delay for chunk Cj, and ij is

73

Resource Renting for Load Balancing in Vehicular Networks

the waiting delay of VM b; at RSU r; for event number n. CJZ" is modeled as gamma
distribution [62] with probability density function represented by Equation 4.24. Gamma
distribution predicts the waiting time of the n'® event. Therefore, Gamma distribution is
chosen to analyze the waiting delay of the VM. The waiting time of the VM varies between
0 and T'. In our scenario, we assume that the occurrence of an event follows the memoryless
property in the case of event-driven applications. In the case of periodic applications, data
gets generated based on the period.

,n_n

fon(t) = —t"leT™0<t ST (4.24)

i n
Here, 7 is the arrival rate, n is the event number, and f is the probability density function

as given in Equation 4.24.

4.5.3 Analytical Results

Data partitioning helps to analyze the end-to-end delay for each chunk of data. In case a
chunk of data is available with the RSU, it gets processed and does not wait for the next
chunk of data. The end-to-end delay is calculated for each chunk of data along with the
VM’s waiting time. We have analyzed the end-to-end delay with data partitioning. The
results obtained from simulation without data partitioning and the analytical data obtained
with data partitioning are shown in Figure 4.9. Data partitioning helps to measure the
end-to-end delay of ERR effectively for different types of applications with variations in
incoming data. Figures 4.9a, 4.9b, and 4.9¢ show the performance of periodic applications,
event-driven applications, and their combination, respectively both with and without data
partitioning. The analytical results with data partitioning and the results obtained from
the simulations without data partitioning follow similar trends. However, the delay in case
of data partition is lesser as compared to the no data partition scenario as shown in Figure
4.9. This is because, the chunks of data are scheduled even with the availability of a small

amount of resources.

4.6 Modified Efficient Resource Renting (MERR)

In the previous section, we have partitioned data into chunks, that modify our algorithm
ERR and we call that algorithm MEER. Here, each chunk of data can be assigned to

74

Modified Efficient Resource Renting (MERR)

any RSU of the network. This leads to a significant decrease in VM migrations result-
ing in lower delay and higher VM completion percentage. The core part of ERR i.e. Re-
source_Aware_Assignment() has been modified to change the assignment procedure as shown
in Algorithm 9. Here, in the first iteration, all the data generated by the VM request in one
RSU is partitioned and considered as remaining chunks. After scheduling the request the
remaining chunks are assigned to some other RSUs. Along with that lock time for the VM
in the last assignment is taken into consideration. Lock time is the time for which the VM
is locked for rescheduled and never rescheduled. To minimize the number of VM migrations
the lock is applied to the assignment. During the lock period, the added chunks to the
VM are assigned to other RSUs of the network which minimizes the end-to-end delay and

increases the number of VM completion. The overall cost also gets minimized.

4.6.1 Modified Algorithm

The proposed modification applied to ERR and the modified version of the algorithm is
specified in Algorithm 9.

4.6.2 Results of MERR

The performance of MERR is shown in Figures 4.10, 4.11, and 4.12 for periodic applications,
event-driven applications, and their combinations respectively. In all scenarios, MERR
outperforms other algorithms for VM completion percentage, end-to-end delay, rent-out
cost, and total cost. This is because, the chunk of data of each VM can be processed in
other RSUs in case of availability of resources. This reduces end-to-end delay, and overall

cost, and increases VM completion percentage.

75

Resource Renting for Load Balancing in Vehicular Networks

Algorithm 9: Modified Resource_Aware_Assignment()

1 @; < remaining chunks of VM j
2 té» < lock time for VM; for last assignment
3 M) < Incomplete VMs
4 VM Assigned = ¢
5 flag=TRUFE
6 while (M,;! = VM Assigned and flag == TRUE) do
7 ch = subset of VMs chosen from M; for assignment
Wji — w1 (Rt[i].s - (Fj + U]t)) + (JJQ(D;) + W3(—Rt[i].p/a[j].p) + W4(—Rt[i].Q§)
8 Assigned = Hungarian_Algo(Wj;)
9 Apply lock on assigned V M s
10 if (Assigned[] == ¢) then
11 flag= FALSE
12 L continue

13 VM Assigned = VM Assigned U Assigned
14 VMs migrated to the assigned RSUs

15 Update Ry, M; of RSUs used in assignment
16 for each RSU r; in R; do

17 vm_edf < sort R;[i].v by earliest deadline first order

18 for each VM b; in vm_edf do

19 if ((lvm_edf[j].completed) and (R:[i].remaining. > vm_edf[l].c)) then
20 L M,[j].data_remaining -= D}

21 else if (vm.edf[j].completed) then

22 Append vm.edf[j] to Myyer

23 vm.edf[j].r.-remaining. += vm.edf[j].c

24 | Assign the remaining chunks of each V.M to another RSU

4.7 Chapter Summary

This chapter proposed a pricing model that addresses the problem of resource renting within
the RSU network. A resource renting algorithm is proposed which takes care of rent-out cost,
available storage, available computation, and data processing rate. To further optimize the
approach, the tasks are partitioned into chunks before doing the request assignment. ERR
increases the VM completion percentage by approximately 61.82%, decreases the delay by
62.5%, and decreases the total cost by 80% compared to JSCO for 150 vehicles for periodic

applications.

76

Chapter Summary

[Request generation]

Update Storage

Send request for processing to nearby
RSUs

Jy Request Approval

—

List existing VMs

v

Process each VM one by one

—_—

Find RSUs wth sufficient storage and
computation

.

Prepare a list of candidate nodes

Add the data |
generated at t

-

Resource-aware Assignment

--------------------- ' [Decrease the remaining data to be }
Calculate weights of the request for processed
candidate nodes B i 1 1 !
¥

Create the weight Matrix

v
' Assigns the requests to nodes using |
| the Hungarian Matching algorithm J
v
|' Migrate the VMs to the assigned |
RSUs
¥

LS

‘Calculate migration cost and total cost‘
v "
I Update VM allotment lists ‘

L2
List the VMs in each RSU based on
EDF
¥

{Process the request if not processed]

yet
v

~Request~.

. -

~processed?-
‘“*-‘;-""Yes

No

| Release the resources }

\d

A
A,
< Time \\ No ()
< exceeds)—»[Finish |
“deadline?” \)
-
-
) \Yes

IAnd the request to incomplete request]
list

Figure 4.2: Flow chart for ERR

7

Resource Renting for Load Balancing in Vehicular Networks

applications

100

VM completion (%)

0
50

9]
o

o
o

Average rg_rjtoutﬁost ("ﬂ

o]
o

[2)]
o

n
o

N
o

o
o

ul
o

AALE ——
FISC0 —¥—
ERR —¥—
B —&—

100
Number of Vehicles

150 200 250

(a)

[AALE ——
15CO —%—

ERR =—it—
LB —B—

100 150 200 250
Number of Vehicles

(c)

Figure 4.3: Performance

50

300

300

ul
o o o
o O o©o

o
o

Avergge qSIay_h(Unit tilc'hne)
[e]
o

AALB —t—
15CO —%—
ERR —#—

’—LB__E;/‘

/—_—'—_'F_A

-+

oo—A__a—a— 1
50 100 150 200 250 300
Number of Vehicles
(b)
— AALE ——
¥500 150 = 3
- ERR —#—
9 LB —B—
0150
5
2100
(0]
o
£ 50
>
< T 1
50 100 150 200 250 300

Number of Vehicles

(d)

of algorithms for periodic applications

160
©140
%120
o

Y100
< 80
L

v 60
o

© 40

2
Z 20

100 150 200 250 300
Number of Vehicles

(a)

50

78

100 150 200 250 300
Number of vehicles

(b)

Figure 4.4: Performance analysis after assigning zero weights to different parameters for periodic

50 100 150 200 250 300

Number of vehicles

(c)

Chapter Summary

100

o]
o

[2)]
o

N
o

AALB ——
FISC0 —%—
ERR —¥—
LB &

N
o

VM completion (%)

0 L
50 100 150

200 250

300

Number of Vehicles

(a)

| AALE ——
15C0 —3¢—
ERR —#—
18 —B—

X
o
o

[y
w
o

(%))
o

Average rentout cost
ek
o
o

50 100 150

200 250

300

Number of Vehicles

(c)

ul
o O
o o

Avergge qS:Iay_h(Unit tilc'hr\e)
o [e] o
o o 9

+

i m—

00 ‘ ‘
50 100 150 200 250 300
Number of Vehicles
(b)
— AALE ——
¥500 150 =
- ERR —i#—
9 LB —B—
0150+
5
2100
(U]
o
S 50(
>
x

100 150 200 250
Number of Vehicles

(d)

50 300

Figure 4.5: Performance of algorithms for event-driven applications

(o)
o

VM completion (%

HNWA OSSN
[=leololololoele]

50

100 150 200 250 300
Number of Vehicles

(a)

Figure 4.6: Performance analysis
applications

(b)

after assigning zero weights to parameters for event-driven

79

100 150 200 250 300
Number of vehicles

100 150 200 250 300
Number of vehicles

(c)

Resource Renting for Load Balancing in Vehicular Networks

100 m
< £600
& 80 bt
~ 500
c
2 &0 2
= 54007
a o
g 40 3300
o AALB —+— v r
= 20 risco —— 2200 X/l
> ERR —#%— 5 1
e R — Sloop—a—a—e—" 1
50 100 150 200 250 300 50 100 150 200 250 300
Number of Vehicles Number of Vehicles
(a) (b)
AALB —— —~ AALE ——
#200 [5c0 —s— ¥500 150 =
= ERR —— - ERR —#—
3 L8 —B— 0 LB —B—
1507 8150
3 =
§100 L100
(0]
& ol g *
g 50 £ 50
z z
50 100 150 200 250 300 50 100 150 200 250 300
Number of Vehicles Number of Vehicles
(c) (d)

Figure 4.7: Performance of algorithms for a combination of periodic and event-driven applications

160
©140
%120
o
Y100
< 80
L
v 60
o
© 40
g
Z 20

<
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Number of Vehicles Number of vehicles Number of vehicles

(a) (b) (c)

Figure 4.8: Performance analysis after assigning zero weights to parameters for a combination
of periodic and event-driven applications

80

Chapter Summary

TIBOO ERR—nofpart!t!On —_— ?00 ERR—no—Dartftion f— :E‘;SOO ERano—part!tfon s
250 ERR-partition —#%— 5250 ERR-partition —#— 5250 ERR-partition —#%—
e = =

S00 500 5200

3150 3150 3150

v v v

©100 100 ©100

[0 [

j=2) o o

© 50 © 50 © 50

Q % v

> > >

< x 0 < 0

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Number of Vehicles Number of Vehicles

Number of Vehicles

(a) (b) (c)

Figure 4.9: Trends of delay for (a) periodic applications, (b) event-driven applications, and (c)
their combination

[y
o
[=]

[es]
o

N
o

IS
o

AALB ——
500 —H—
ERR —#—
MERR —li—
LB —B—
50 100 150 200 250 300 50 100 150 200 250 300

Number of Vehicles Number of Vehicles
(a) (b)

AALB —i—

VM completion (%)

N
o

AALB —+—
JSCO —¥—
ERR —#—
IMERR —l—
LB —B—

[=)

o
st (i)
[=)
o

ul

o
ey
wu
o

o
o

total co

=
o
o

%))
o

wul
=]
Average

Average rentout cost (,{5)

50 100 150 200 250 300 50 100 150 200 250 300
Number of Vehicles Number of Vehicles

(c) (d)

Figure 4.10: Performance of algorithms for periodic applications

81

Resource Renting for Load Balancing in Vehicular Networks

100
280
c
2 60
[
a
£ 40
o
0 AALB ——
1SCO —¥—
E 20 ["epp ——
MERR —ii—
ol & —E—
50 100 150 200 250 300
Number of Vehicles
(a)

o ul o
o o o

Average rentout cost (@
wu
<}

50 100 150 200 250 300
Number of Vehicles
(c)

@600 AALB ——
£ 1500 ——
= ERR —#%—
:500 MERR ——
= LB —B—
2400
>
0300
o
[-
EZDO /‘/K’l
TR
>
<100ﬁ:/;_£§
50 100 150 200 250 300
Number of Vehicles
(b)
@200
B
8150
&
=]
(1]
[#)]
e
Q
>
=3
50 100 150 200 250 300
Number of Vehicles
(d)

Figure 4.11: Performance of algorithms for event-driven applications

82

Chapter Summary

100

<80
6
= 60
(]
a L
E 40 <
S +
O AALB —— 32

JSCO —¥—

MERR —l— 2

0 LB —B— : : ; <100 i i
50 100 150 200 250 300 50 100 150 20 250 300
Number of Vehicles Number of Vehicles
(a) (b)

AALB —t— ! ! ! AALE —i—
@00 1SCO —H— 5200 S0 ==
. ERR —#— — ERR —#—
Q MEFES - k o MEFEI; -
2190 8150
3 —
2 8
100 S100
pust + (]
0] o -
=y e
© 50 o 50
[} >
> o <
<3

50 100 150 200 250 300 50 100 150 200 250 300
Number of Vehicles Number of Vehicles
(c) (d)

Figure 4.12: Performance of algorithms for a combination of periodic and event-driven applica-
tions

83

Profit Maximization in Heterogeneous
Vehicular Networks

In this chapter, we have proposed an algorithm for maximization of profit for SPs in het-
erogeneous vehicular networks while maintaining the QoS for processing the application
requests. To increase resource availability, PVs and CC are considered as options for pro-

cessing the service requests.

5.1 Introduction

Vehicles in the city scenarios are unevenly distributed. This distribution is due to the
location of the city and the time of the day. Vehicles use multiple applications, each with
different resource requirements and deadlines. Due to the huge number of requests, RSUs
sometimes get overloaded. This leads to high chances of service failure and a decrease
in QoS. Deployment of more RSUs to the city is one of the possible options for avoiding
this overloaded scenario. However, due to the huge deployment and maintenance costs of
RSUs, it is not economical to cover the entire city with RSUs. PVs are considered as an
economically viable option for processing the requests. However, due to its limited resource

capacities, PVs can not be used for all request types. In this scenario, CC is considered as

84

System Model

one option for processing the requests. This motivates us, to propose better solutions that

can handle overloaded scenarios.

5.2 System Model

In this Section, we describe a system model which includes all the network components. We

&P S
RSU Coverage

- - g G

L >

iﬁ Central Cloud]
S
w - -l @ H e o e e
b Sl B ST LBLD
= £ == : -ﬂta’aa -
¢ @ @ ¢ e ome e & o e

Figure 5.1: System model

consider a city scenario with an area of 10 square kilometres where nine RSUs are placed

uniformly. We consider three SPs, each of which consists of three RSUs. SPs accept requests

85

Profit Maximization in Heterogeneous Vehicular Networks

from the on-road vehicles through one RSU. Each vehicle runs several applications. Each
application generates single resource requests based on the user’s preference. The average
data generation rate for each application is known. Data generated by an application
is temporarily stored in the vehicles, which need to be processed within the deadline of
application. The SPs coordinate with other SPs along with the CC and PVs to process the
requests. There is a fixed number of parking lots in the city, where vehicles are parked.
All vehicles in one parking lot are within the transmission range of one RSU as shown in

Figure 5.1.

5.3 Network Terminologies

In this Section, we defined some terminologies considered in this work.

5.3.1 Requester Vehicles

Requester vehicles are on-road vehicles that have some resource requirements. These vehicles
have a fixed route and run one or more applications. Each application generates one resource
request. The request includes storage resources, computing resources, and content delivery

time.

5.3.2 Road Side Units (RSUs)

RSUs are static nodes placed in the city along the side of roads. These are equipped with
computing and storage capabilities to provide services to the requester vehicles. These
RSUs serve as intermediate nodes between vehicles and the CC, helping to reduce latency
and network congestion by assigning the requests to either CC or PVs. RSUs can perform

tasks such as data aggregation, processing, and analysis of data generated by vehicles.

5.3.3 Parked Vehicles (PVs)

PVs are stationary vehicles located within a specific region of a city and fall within the
transmission range of an RSU. The information about PVs, such as parking duration, avail-
able storage and computation is communicated to the nearby RSUs continuously. This helps
SPs to make decisions about request assignments. Assigned requests are processed within

the parking duration. This arrangement allows PVs to actively participate in the processing

86

Request Assignment: An Economic Perspective

and transmission of data, leveraging their available resources and contributing to the overall

service provisioning ecosystem.

5.3.4 Central Cloud (CC)

A CC is a distant data centre utilized for storing, processing, and managing data and ap-
plications. It serves as a platform that offers various services, including real-time traffic
information, route planning, and other data-intensive operations. The robust infrastructure
and extensive storage capacity enable CC to execute large-scale data processing tasks effi-
ciently. It acts as a centralized hub, facilitating the delivery of critical services that require
substantial computational power and storage capabilities. CC plays a major role in pro-
viding scalable and high-performance solutions for diverse applications and services in the

networked environment.

5.3.5 Service Federation

Service federation is a process by which service requests are processed by renting resources
from other entities. Here, the SPs establish interconnections with one another, as well as
with PVs and the CC. Through this network of RSUs, SPs facilitate communication and data
exchange among themselves, PVs, and the CC. This interconnected infrastructure allows for
seamless connectivity and efficient management of resources and services provided by the
SP to various entities. The process involves SPs providing services to requester vehicles by
utilizing resources from other SPs, PVs, and the CC with guaranteed QoS. This collaboration
allows SPs to leverage the combined resources and capabilities of multiple entities, ensuring
efficient service delivery and maintaining the desired level of performance. In case a request
is made to an SP, it is necessary to assign the request to an appropriate node out of CC,

PVs other SPs. This increases the chance of maximizing profit for the SPs.

5.4 Request Assignment: An Economic Perspective

Vehicles generate requests that are transferred to nearby RSUs for processing and assignment
based on optimal node assignment policy. To ensure completion of request processing, RSUs,
PVs, or CC are assigned the request by the SPs. Cost Model (CM) and Selection Criteria

(SC) are considered before the assignment of requests.

87

Profit Maximization in Heterogeneous Vehicular Networks

5.4.1 Cost Model (CM)

The cost associated with each resource type is specified in the CM. To process a request a
vehicle may pay the cost to RSUs or CC or PVs. There are four types of costs — 1) cost of

processing, 2) cost of storage, 3) cost of computation, and 4) cost of content delivery.

5.4.1.1 Cost of Processing

It is a fixed cost for processing a request by an SP. This cost is applicable each time when a
request is processed. Payment is received by the RSU which takes the service request from

vehicles. Cost of processing is only charged by SPs not by a PV or CC.

5.4.1.2 Cost of Storage

It is a fixed cost charged by all types of nodes (RSUs, PVs, and CC). Each of these three
nodes has a different rent-out cost. This makes the scenario complex for the SPs to assign

the request to one of these nodes.

5.4.1.3 Cost of Computation

Computation cost of CM focuses on per-unit computing cost. Each type of node has a
different cost profile. In case an RSU does not have sufficient resources, it rents resources
from other RSUs or PVs, or CC.

5.4.1.4 Cost of Content Delivery

Content delivery services in VANETSs can be designed to support different types of in-
formation dissemination, such as safety messages, traffic updates, or multimedia content
including video streaming. Content delivery service allows the SPs to provide the service
to vehicles by utilizing the resources of RSUs of other SPs, PVs, or CC. This is done to

provide uninterrupted services without affecting the QoS of SPs.

5.4.2 Selection Criteria (SC)

There are three types of nodes used to assist the SPs - 1) parked vehicles, 2) central cloud,
and 3) RSUs of other SPs. It is important to select those nodes in such a way that more

number of requests get processed with minimum cost.

38

Request Assignment: An Economic Perspective

5.4.2.1 Parked Vehicle Selection

Selection of PVs should be done based on available resources and “time of stay” in a partic-
ular parking lot. Probability of PVs remaining in the parking lot is too high which avoids
the situation of the sudden departure of PVs. Each PV stays in the parking lot for a fixed
duration. This information is intimated to the nearby RSUs when a vehicle enters to the
parking lot. Each PV is an independent entity. It gets paid for the resources it provides to
the SPs.

5.4.2.2 Central Cloud Selection

CC is the most suitable option for applications that are delay-tolerant and require a huge
amount of resources. The time of uploading a task to a CC takes a significant amount of
time that depends on the amount of data and network bandwidth. The applications that
require less interaction with servers or applications that generate huge amounts of data are

most suitable for CC in overloaded scenarios.

5.4.2.3 RSU Selection

RSUs are the nodes connected to the current node via the backbone network. They have
resource capacities larger than the PVs and lesser than the CC. Applications that require
requests to be processed with minimum delay with moderate computation required can be
assigned to the RSUs. During assignments, rent-out cost of RSUs belonging to the same SP

is considered as zero.

5.4.3 Strategy Determination

The request received by an RSU needs assignment to a node by which SP gets maximum
profit without affecting the QoS. Thus, it is necessary to have an approach for selecting
a suitable node out of the available options. There are three options for processing the
requests - 1) at an RSU of other SPs, 2) at the CC, and 3) in a PV. The RSU’s DPR is
lesser as compared to CC but greater than PVs. The PVs have less resource capacity than
other options. However, the cost and transmission delays are lesser in the case of PVs than
in other node types. In scenarios where none of the RSUs and PVs are able to serve the
request or requests with huge resource requirements, CC is chosen as the option. Thus,

determining whether a request is assigned to PVs or other RSUs or CC is challenging. A

89

Profit Maximization in Heterogeneous Vehicular Networks

decision is made based on application types, resource requirements, deadlines, and available

resources for which maximum profit is generated by the SPs without affecting QoS.

5.5 Problem Formulation

Let T be the total time considered for simulation. Let there be N number of SPs repre-
sented by the set 8 = {s1, s2,...sx }. SPs have different numbers of RSUs represented by the
variable I'. Each set of RSUs in an SP is represented by & = {ry,79,...,rp}. We represent
an RSU r; by the tuple (C;, S;, Dy, P¢, P¢, PY), where C; is the computing capacity, S; is
the storage capacity, D; is the DPR, P is the per unit rent-out cost, P is the per unit

computation cost, and P¢ is the per unit content delivery cost.

Let there be X vehicles represented by the set V = {vy,v9,...,vx}. Each vehicle v; € V
is represented by a tuple (P}, a;), where

e P; is the path followed by v; represented as a sequence of RSUs (i, ... ,r@, where

k is a variable whose value depends on the number of RSUs covered by the vehicles

till the end of the journey
e a; is the total number of applications run by vehicle v;.

Let there be H number of total requests generated by all vehicles of the system represented
by the set Q = {q1, ¢2, . . ., qu }. Each request gy is represented by a tuple (s, cg, tx, Li, AL, NS, ALY,

where

e s is the storage requirement of request ¢

e ¢, is the computing requirement of request ¢

e {; is the content delivery duration requirement of request ¢

e [, is the deadline of request g

e A} is the per unit storage cost that a vehicle pays for request g to any SPs

e Af is the per unit computing cost that a vehicle pays for request ¢; to any SPs

e Al is the cost per unit time of content delivery a vehicle pays to an SP.

90

Problem Formulation

Let there be B number of PVs that rent their resources to one of the SPs represented
by the set Z = {21, 22,...,25}. 2 is represented by the tuple (¢, s;,d;, 1), where ¢ is the
computing capacity, s; is the storage capacity, d; is the DPR, and r; is the index of associated
RSU to which z; can rent it’s resource.

The outputs are represented by three sets of variables {z;;:}, {vi;i}, and {2}, Vr; € €,
Vv; € V,and Vt,1 <t < T'. Request generated by an application of vehicle v; is represented

by the output variables, which are:
e 1;;; is set to 1 if the request is assigned in RSUs, PVs or CC at time ¢, otherwise 0
e y;;; is set to 1 if the request is scheduled in RSUs, PVs or CC at time ¢, otherwise 0
e z;;; is set to 1 if the request is executing in RSUs, PVs or CC at time ¢, otherwise 0.

Let (;; be the vehicle’s position. It is set to 1 if a vehicle is present in the parking lot
otherwise it is 0. Let I be the total number of incomplete requests at a time t. We also
define indicator variables F], F’]p , and F¥ to record the finishing node. Value of F7, Fjp , and
F7 is 1 indicates that the request finishes its processing by RSUs, PVs, and CC respectively,

otherwise, the value is 0. Let I; be the total number of incomplete requests.

5.5.1 Assumptions

e SPs provide services such as data storage, computation, and content delivery to vehi-

cles.

e Route of a vehicle is fixed i.e. set of RSUs the vehicle passes through in the lifetime

of its applications is always the same.

e There is a delay in the transfer of data from the vehicles to RSU and between the
RSUs.

e Application running in vehicles consumes all its resources while running on roads.

e A vehicle present in the parking lot uses some memories for running basic applications
at the back end.

e Requests generated in vehicles may wait in the vehicle’s queue in case of unavailability
of RSUs.

91

Profit Maximization in Heterogeneous Vehicular Networks

e A request can be processed by at most one of the nodes from RSU, CC, or PVs at a

time.

e The resource used by a request can not exceed the available resources at RSUs, PVs,

and CC at any instant.

5.5.2 Constraints

e The sum of the number of requests completed their processing by RSUs, PVs, and CC
along with the number of incomplete requests is less than equal to the total number

of requests generated by all vehicles.

S (F+F+F+1)<Q (5.1)

j=1

e Total execution time required by a request generated by the applications of vehicle v,

is less than departure time of vehicle from the last RSU in its path.

T
Zziﬁ S Lj,VUj eV (52)

t=0
e Each request must be assigned to at most one RSU or one PV or CC at a time.

T € (‘:,t € T, Tije <= I,V'Uj eV (53)

e One SP can not assign a request to PVs of other SPs.

Tije < 1,V7’1’ cé & Zi € Z,qu < Q,Zi ¢ & (54)

5.5.3 Calculation of Profit

The profit is calculated by subtracting expenditure towards infrastructure cost, rent-out
cost, and penalty cost from service cost. Revenue is calculated by multiplying the unit price
for resources and the time of use of those resources. Resource utilization plays an impor-
tant role in the maximization of profit for SPs. Thus, the duration for which SPs use their

resources should have to be maximized to maximize profit. The infrastructure cost is fixed

92

Problem Formulation

for an RSU. Rent-out cost is dependent on the time for which an SP uses the resources of
other RSUs or PVs of other SPs or CC.

Let us assume that Fy; is the profit generated by the SP s;, which can be defined as:

E.y = Py — (costizf "4 costlEM™ + costi’fl”) (5.5)
Pu = Pl + P+ Py + P (5.6)
N T B
cost)i" = Z Z costy" + Z costy " + costt (5.7)
i=1 j—1 =1
costy" = o1 X 5y + 02 X Yy + 05 X Y (5.8)

where P,; is the cost of using the resources at time ¢ for the vehicle, Pgl is the processing
cost for using the service from the SP at time ¢, P, is the per unit storage cost, F; is the
per unit computing cost, P¢, is the per unit content delivery cost, cost7$™ is the rent-out
cost incurred by RSU i by using the resources of RSU k at time ¢, cost}§™ is the rent-out
cost incurred by RSU ¢ by using the resources of PV [from the set of PVs B at time t,
costig™ is the rent-out cost incurred by RSU 4 by using the resources of CC, and costt;" is
the penalty cost incurred for violating the Service Level Agreement (SLA) at time ¢.

In Equation 5.8, o1, 09, and o3 are penalties per unit of storage, per unit computing, and
per unit content delivery time, in case of failure in SLA. ~;;, is the amount of data requested
for processing by the request g;, ;; is the amount of computation requested by the request

¢, and ¢, is the content delivery duration requested by g;.

5.5.4 QoS Measurement

The applications running within the vehicles possess distinct QoS parameters such as delay,
jitters, and others. The SP must ensure the fulfilment of these QoS requirements. The
specific details regarding these QoS parameters are documented in the SLA established
between the requesting vehicle and the SP. The SLA serves as a contractual agreement that
outlines the agreed-upon levels of service quality. In case an SP fails to meet the obligations
outlined in the SLA, penalties are enforced upon SPs. These penalties are designed to be
more significant than the actual service cost. The purpose of imposing penalties is to hold the

SP accountable for any shortcomings or failures in meeting the agreed-upon QoS standards.

93

Profit Maximization in Heterogeneous Vehicular Networks

By implementing penalties that exceed the service cost, there is a strong indication for the SP
to prioritize and maintain the specified QoS. Penalties imposed on an SP for SLA violations
serve multiple purposes. Firstly, discouraging the SPs from neglecting or disregarding the
QoS requirements of applications running in the vehicles. Secondly, penalties act as a form of
compensation for requesting vehicles, compensating them for the inconvenience or negative
impact caused by service failure. It helps to ensure that requesting vehicles receive proper

compensation in cases where the QoS expectations are not met.

5.5.5 Problem Definition

The problem we address is to schedule the requests to one of the destination nodes in
such a way that profit of SPs is maximized and number of requests processed is maximized
with QoS guarantee subject to the constraint given in Section 5.5.2. Hence, the objective

functions are stated as

T N T
maxrimize Z Z Z <Pm — (c()stizfm 4 cost:fl"t T costi’ﬁ")) (5.9)
t=1 i=1 I=1
T H
mazximize Z Z (Fj; + Ff + FY) (5.10)

t=1 i=1

In this work, we consider an optimization problem that corresponds to a matching prob-
lem, where a set of requests need to be assigned to a set of nodes (RSUs, PVs, CC). The
potentially large number of vehicles and RSUs makes the scenario a large-scale assignment
problem. The objective is to make the right decision to maximize the number of requests
processed is an optimization problem. The RSUs have limited capacity and the requests
have to be processed with QoS guaranteed is similar to the patient hospital problem, which
is NP-hard [63]. Thus, our problem becomes an NP-hard problem. We propose a heuristic
algorithm to optimally assign the vehicle request to one of the nodes (RSU, PV, or CC) by
which a maximum number of requests gets processed within the lifetime and maximizing
the profit of the SPs.

5.6 Proposed Methodology

In this Section, we propose an algorithm that we call Adaptive Algorithm for Profit Maxi-
mization (AAPM). Profit of the SPs is maximized by the efficient assignment of requests to

94

Proposed Methodology

a node from RSUs, CC, and PVs. Once the vehicle comes in the transmission range of an
RSU and the vehicle has some request to be processed, a request is sent to the correspond-
ing RSU of a SPs. Then the SP coordinates with other SPs, CC, and PVs before deciding
where to assign the request. Flow chart of the proposed methodology is given in Figure 5.2.
Proposed algorithm AAPM has three different modules:

|. Request generation |

) v .

‘Send request for processing to nearby
RSUs

............. . - Node Identification

Find RSUs wth sufficient storage and
computation
L
Find PVs wth sufficient storage and
computation
4
Add the CC to the list of nodes

v

Prepare a list of candidate nodes

Calculate weights of the request for ‘

candidate nodes
¥

‘ Calculate available slots |

1

1

1

1

1

1

1

1

v '
‘ Assign zero weights If QoS is not ‘ !
satisfied i
v 1
1

1

1

L]

1

1

1

1

1

1

1

1

Find the maximum weights ‘

¥

‘ Assign the request to node with ‘
maximum weight

¥

]
1
]
1
]
1
]
I
]
I
]
L
]
|
]
I
]
1
L}
L
]
L
]
]

| Calculate cost, penalty and profit |

Request Processing

Update allotment list

v
[PTOCGSS the request as per allotment
list

eques
rocessed
Yes

[Release the resources]

list

Figure 5.2: Flow chart of AAPM

FGG the request to incomplete request]

95

Profit Maximization in Heterogeneous Vehicular Networks

1. Node Identification: This module aims to identify nodes that have sufficient available
resources by evaluating the remaining resources. It focuses on selecting nodes that
possess equal or greater amounts of resources for the assignment process. By doing so,
this module ensures that only capable nodes are considered. This increases the likeli-
hood of successful assignments. This approach helps to optimize request assignment

with compatible nodes and ensure efficient utilization of available resources.

2. Request Assignment: The request assignment process involves allocating each request
to a specific node for a fixed duration. This duration is crucial because, in a scenario
with heterogeneous nodes, each node has its capacity while each request has its re-
source requirements. Preempting requests frequently during execution can increase
context switch time. To minimize context switching, the proposed assignment algo-
rithm adapts a non-preemptive approach. However, a non-preemptive process may
increase waiting time for other requests in the queue. Hence, selecting an ideal time
slot for a request assignment becomes crucial. The proposed algorithm considers fac-
tors such as node types, available resources, and the number of pending requests to

determine the optimal slot time for request assignment.

3. Request Processing: Each request from the set of requests is chosen for processing
using the round-robin scheduling method. However, the duration for which the re-
quests are processed is as per the time assigned in request assignment phase. In case
a request completes its processing before the pre-assigned slot, the resources allocated
for that slot are deallocated, which is used by other requests. Requests which take
more time to process than their lifetimes are terminated and added to the incomplete

request lists.

5.6.1 Calculation of Weight

Weight is a value calculated based on the target node’s resource capacity and resource
need of a request. To maximize profit of SP, it is necessary to maximize the resource uses.
However, in the scenarios where profit is maximized without the use of resources of cur-
rent SP, is considered in Equation 5.15. Here, the weight equation considers several factors
such as preference, type of nodes, SP, remaining available storage, remaining available com-

putations, and rent-out cost. The preference is given to execute the request in the same SPs.

96

Proposed Methodology

Let us represent w as the preference factor for assigning the service request. Consider wy,
ws, and w3 as the weights for rent-out cost, available storage, and available computation,
respectively. It is very crucial to assign weights to each of the factors. This is because, the
weight affects the profit for the RSU on one side and QoS for the vehicle request on the
other side.

Let us discuss each of them:

e w is the preference given for node types. This factor is important for the fairness
aspect. First, priority is given to current SP. This increases the resource utilization of
the current SP and thus increases the profit. Then, the preference is given to other
SPs of the network. In case none of the SPs satisfy requirement of the request, priority
is given to PVs and CC that satisfy the QoS requirement and generate the highest
profit for the current SP.

e w; is the weight assigned for rent-out costs charged for service requests. It is directly
associated with the profit for the SP. In case of a request transfer to one of the RSUs
of the same SP, the rent-out cost is considered to be zero. Here, a higher rent-out cost

means lesser profit for the SP.

e w, is the weight assigned for the available storage in the target node. Although
the requested amount of storage is necessary for all the nodes to be chosen for the
assignment. However, larger storage in the targeted node helps to minimize the context

switch time in case additional data is requested in the subsequent time instant.

e w;3 is the weight assigned for the available computation in the target node. Although
the requested amount of computation is necessary for all the nodes to be chosen for
the assignment. However, larger computation in the targeted node helps to minimize
the delay.

If a request has to be assigned to one RSU of the same SP, then
w=1 (5.11)
If the request has to be assigned to one RSU of a different SP, then

w=0.8 (5.12)

97

Profit Maximization in Heterogeneous Vehicular Networks

If the request has to be assigned to one PV of SP, then

w=0.3 (5.13)
If the request has to be assigned to the CC (II), then

w=0.2 (5.14)

Profit obtained by the SPs depends on the type of service and the amount of service the
requested vehicle needs from the targeted node. Each service request from the vehicle may
have a combination of storage, computation, and content delivery type of service. The
weight assignment depends on the amount of resources the requested vehicle needs. The
values of weights chosen for rent-out cost, storage, and computation as 0.5, 0.25, and 0.25,
respectively. This is because the rent-out cost directly affects the profit of the SP. The
storage and computation affect the QoS, delay, and number of requests completed. The

weight is represented by W and is defined as follows:

1 Si C;
U =w X X X — + X — 5.15
v i (HSXSIC—FHCXCk—f—Pidth)—}_wQ Sk s Ck ()

5.6.2 Adaptive Algorithm for Profit Maximization (AAPM)

Algorithm 10: Adaptive Algorithm for Profit Maximization (AAPM)
Initialize:

1 R< NULL, P+ NULL, Pi <~ NULL, F" <0, FP < 0, F° < 0, E < 0.0,
I+0

2 for (1 =0;i <T;i++) do

Identify_Nodes()

Assign_Requests()

Process_Requests()

(LB V)

6 Calculate F' for each vehicles
7 Calculate E for each SP

Algorithm 10 is the main algorithm that calls three different modules of the algorithm in
an iterative manner from time 0 to 7. At the end, it calculates the total number of requests

completed processing and the total profit of each SP.

98

Proposed Methodology

Algorithm 11: Identify_Node

Initialize
1 N+~ NULL
2 for (1 =0;i < N;i=i+1) do
3 for (1 =0;i<Ii=1i+1)do
4 if ((rremst > o™ &&(rreme™ > ¢em)) then
5 L Add r; to N°¢
6 for (1 =0;i< B;i=i+1) do

v if ((pjm" > ¢i")&&e(pfm™ > ¢i")) then

)

L Add p; to N¢

9 ffdall_[zfo]\fc

10 return N°€

Algorithm 11 checks for the availability of sufficient storage and computing needs in
RSUs and PVs of each SP. In line 4, 775! is the remaining storage of RSU 7y, ¢;" is the

storage need of the request g;, r7*"C™ is the remaining computing resources of RSU 7;, and
gi" is the storage need of the request ¢;. The nodes that satisfy the storage need and the
computation need get added to the candidate node list N¢ along with the CC node. This is
because, we assume that the CC always has sufficient storage and computation. Similarly,
remSt

in line 7, p!

: is the remaining storage of PV p; and p/*"“™ is the remaining computing

)

resources of PV p;.

Algorithm 12 takes a list of candidate nodes and a list of requests as input to assign the
requests to candidate nodes. Assignments is a dictionary to store the assignments. Then
the algorithm calculates the weight and available slots in case a request is assigned to the
candidate nodes. QoS parameters are checked for each possible assignment. In case the
requirement is not satisfied, the weight is considered as zero. The node with highest weight
is chosen for assignment in the available time slot for each unassigned request. At the end,
information related to the assignment, request list, and node list gets updated.

Algorithm 13 takes the requests one by one from the allotment list and processes them
within the allocated slots. In case a request completes its processing at any given instant,

the resources allocated to that request get released.

99

Profit Maximization in Heterogeneous Vehicular Networks

Algorithm 12: Assign_Requests

Initialize:

Selected_nodes <— N°

Assignments < NULL

for (each ¢} in Q) do

for (each node in Selected_nodes) do
calculate weight(q})
calculate available — slots
if (QoS(¢}', node) == false) then

L weight(g!) = 0.0

[TS =SNG B U R C R

9 for (each ¢ in Q) do
10 Wmaz S Max(wezght(qi‘))

=

11 indexof(Wmaz) < ¢

12 duration < available — slots

13 Assignments = Assignments + Ass;
14 Calculate Cost

15 Update Q)

16 | Update Selected nodes
17 for (each r; in R) do

18 L Calculate Py, cost™"™ costi™ cost’™" | E;

19 return Assingments

Algorithm 13: Process_Request

Initialize:

1 Allotment _list < Assignments

2 for (r; in RSU) do

3 for (g; in allotment_list) do

4 process(q;)

5 if (complete(q;) == True) then
6 L release_resource(q;)

7 if (t > £(g;)) then

8 L Append q; to I

9 return Allotment_list

100

Simulation Results and Discussion

Table 5.1: Simulation parameters for AAPM

Parameters Values
Vehicles count 50-300
Number of time steps 890

Number of RSUs 9

Per unit storage cost of RSU 0.001$ - 0.007$
Per unit computing cost of RSU 0.001$ - 0.007$
Per unit cost of content delivery 0.002%

Per unit storage cost paid by vehicles 0.001$ - 0.005%
Per unit computing cost paid by vehicles 0.001$ - 0.005%
Per unit cost of content delivery paid by vehicles 0.0015%
Penalty per unit of storage resource paid by SPs 0.001$ - 0.009%
Penalty per unit of computing resource paid by SPs 0.001$ - 0.009%
Penalty per unit time of content delivery paid by SPs | 0.0022$

RSU’s transmission range 500 Meters
Total storage capacity of each RSU 6000 MB
Total computing capacity of each RSU 1000 Units

5.7 Simulation Results and Discussion

This section presents the results achieved through the implementation of AAPM using a
Java-based discrete event simulator. The study focuses on a lower Manhattan city sce-
nario [60] encompassing a 10-square-kilometers area with bidirectional roads. Nine RSUs
are uniformly distributed within this scenario, each having a transmission range of 500 me-
ters. Consequently, the RSUs do not overlap, leaving certain areas without RSU coverage.
The movement of vehicles in the simulation is generated using the Simulation of Urban
MObility (SUMO) [18]. The simulation parameter is specified in the table 5.1. Important

simulation parameters are taken from the existing works [22,27].

We have evaluated our proposed algorithm for periodic applications. By periodic ap-
plication, we mean an application that generates data periodically. We have compared the
result of AAPM with Simulated annealing-based Migrating Birds Optimization (SMBO) [64]
and Parked Vehicle-assisted Task Offloading (PVATO) [65]. Along with that, we compare
the results with a GREEDY approach. By GREEDY approach we mean that a request

is assigned to RSUs of the same SP first and if sufficient resources are not available it is

101

Profit Maximization in Heterogeneous Vehicular Networks

mN AAPM mEE SMBO mEE PVATO mEm GREEDY 801 mmm AAPM
m SMBO
70| mmm PVATO
B GREEDY

S (=)} [o]
o o o

Request processed (%)
N
)

o

50 100 150 200 250 300

50 100 150 200 250 300

Vehicle count Vehicle count
(a) (b)
M 35 =0= AAPM == PVATO S == AAPM = PVATO
s =p SMBO == GREEDY g =p= SMBO == GREEDY
0 30 o
£ (]
= 25 g
& >
s £
-
% 20 =
g S
o 15 o
g o
< 10 E
[>
z C < 20 /
50 100 150 200 250 300 50 100 150 200 250 300
Vehicle count Vehicle count
(c) (d)

Figure 5.3: Performance of AAPM with variation of vehicle count

assigned to RSUs of other SPs. However, AAPM assigns the request to one of the target
nodes. The node may be an RSU, PV, or CC.

In Figure 5.3 performance of AAPM is shown with varying numbers of vehicles. The
vehicle count is varied from 50 to 300 to evaluate the algorithm. Figure 5.3a shows the
request completion percentage for different vehicle counts. It can be observed that AAPM
outperforms other algorithms because of the consideration of remaining storage and com-
putation of available nodes. AAPM allocates the request to the node which can complete
the request with a minimum time and gives less preference to PVs and CC. This reduces
the delay and increases the chances of processing a larger number of requests. Figure 5.3b
demonstrates the result for total profit obtained by SPs. AAPM shows an improved perfor-
mance as compared to the existing algorithms as well as the GREEDY algorithm. This is
because of consideration of rent-out cost and selection of right node types before allocating a
request. The trends of average response time and average waiting time are shown in Figure

5.3c and Figure 5.3d respectively. AAPM outperforms other algorithms for these metrics.

102

Simulation Results and Discussion

This is because of the availability of multiple options for a request during the assignment
phase. Based on the resource requirements of the request, a suitable node is chosen for the

assignment that minimizes the response time and waiting time of the resource requests.

EEN AAPM BN SMBO MEM PVATO WM GREEDY

©
o

[AAPM
B SMBO
. PVATO
s GREEDY

~

o
(%4
o

o
S
o

o

o

Total profit ($)
N w
o o

Request processed (%)
S

= N W A U o
o

o

o

4000 5000 6000 7000 8000

4000 5000 6000 7000 8000

RSU Capacities (MB) RSU Capacities (MB)
(a) (b)

'g == AAPM il PVATO 90 == AAPM =@= PVATO
) 27.5 wpe= SMBO == GREEDY =p= SMBO == GREEDY
g 25.0 80
E 22.5 . 70
£ 20.04
o

175
()]

-

0 15.0

§12.5 \\
)\(\

w
o

Average waiting time (Sec)
[}
o

2100 > 40 —
4000 5000 6000 7000 8000 4000 5000 6000 7000 8000
RSU capacities (MB) RSU capacities (MB)

(c) (d)

Figure 5.4: Performance of AAPM with variation of RSU capacity

Figure 5.4 shows the performance of AAPM with variation in RSU capacities. Value
of the vehicle count is taken as 150 in this scenario. Figure 5.4a shows the performance
of AAPM for request completion percentage with varying RSU capacities. It can be seen
that AAPM performs better as compared to other existing algorithms for different RSU
capacities. The reason behind this is the use of preference values while assigning a request
to one of the node types. An increase in RSU capacities leads to more number request
processing at the SP, which leads to more request completion. Figure 5.4b shows the change
in profit values with respect to the change in RSU capacities. This is because of efficient
resource utilization of SP in the case of AAPM which increases the profit of SPs. Figure 5.4c
and Figure 5.4d show the response time and waiting time respectively. AAPM outperforms

other algorithms for these scenarios. This is because of the availability of multiple options

103

Profit Maximization in Heterogeneous Vehicular Networks

for SPs in AAPM while there is a need for request assignments. The resources available to

RSUs belonging to other SPs are used while there is a need.

80

I AAPM mmm PVATO mmm GREEDY

[o5)
o

mm AAPM mmm PVATO mmm GREEDY

270 70
§ 60 5 60
@ e

8 50 % 50
£ 40 540
% 30 830
) 2

T 20 20
[}

(-3

[y
o

10

o

10 20 30 40 50 10 20 30 40 50
PV count per parking lot PV count per parking lot

(a) (b)

0= AAPM
== PVATO
=#= GREEDY

w
v

= AAPM
== PVATO
=#= GREEDY

O
o

w

o
©
o

N

w
~
o

Average waiting time (Sec)
w [=)]
o o

Average response time (Sec)
N
S

151 ¢ -
10 C \
40 \
5 © o]
10 20 30 40 50 10 20 30 40 50
PV count per parking lot PV count per parking lot
(c) (d)

Figure 5.5: Performance of AAPM with variation of number of parked vehicles

Figure 5.5 shows the performance of AAPM with the variation of PV count at each
parking lot. In this scenario, we have not considered SMBO as it does not use PVs. It can
be observed in Figure 5.5a that the request completion percentage is higher in the case of
AAPM as compared to PVATO and GREEDY approaches. This is because, the overloaded
RSU gives more preference to the PVs. Figure 5.5b shows the total profit incurred by
SPs. The increase in PVs leads to the use of low-cost resources by the SPs which leads
to a decrease in cost. Thus, the profit increases for the SP. Figure 5.5¢ and Figure 5.5d
show the variation of response time and waiting time of the algorithm respectively. In this
scenario also AAPM performs better than the existing algorithms. This is because, it uses
the resources of PVs and the CC while processing data. The availability of various types of

resources help the scheduler to choose the right resources while scheduling.

104

Chapter Summary

5.8 Chapter Summary

In this chapter, the proposed algorithm AAPM maximizes the profit of SPs in heterogeneous
vehicular environments without affecting the QoS. To increase resource availability, PVs,
CC, and RSUs are considered as options while doing request assignments. An SP consists
of a fixed number of RSUs which interact with the vehicles and other RSUs of the network.
AAPM improves request processing by 46.30% compared to SMBO, and by 54.90% com-
pared to PVATO. The proposed algorithm improves total profit by 62.50% compared to
SMBO and by 30% compared to PVATO. The average response time is reduced by 18.75%
compared to SMBO and by 27.78% compared to PVATO. AAPM reduces average waiting
time by 38.57% compared to SMBO and by 44.16% compared to PVATO.

105

Conclusions and Future Prospectives

In this chapter we summarize the work done, highlight the contributions, and suggest the

directions for possible future work.

6.1 Conclusions

In this thesis, we have proposed a set of algorithms for request assignment at RSU that
helps in load balancing. To maximize the number of requests processed and minimize the
end-to-delay, we have used three different approaches. In the first approach, we have utilized
the resources of all the RSUs in the network. Here, we have used VM migrations from the
overloaded RSU to other RSUs with available resources and focused on minimizing the cost
of migration. In the second approach, we have rented the resources from other RSU’s of
the network for that we have proposed a price model. Here, we have tried to maximize the
number of requests served and minimize the total cost. The total cost consists of migration
cost and rent-out cost. In the third approach, we have increased the availability of resources
by renting the required resources from CC, PVs and other RSUs. Here, we have considered
SPs which consist of more than one RSUs. To maximize the profit of SPs without affecting
QoS, we have proposed an algorithm that assigns the request to one of the nodes out of

PVs, CC and RSUs. In particular, we have proposed the following algorithms:

106

Future Prospectives

1.

Here,

AALB: An Application Aware Load Balancing algorithm for RSU in VANETS.
This algorithm considers application types, deadline of the request along with the
storage and computation availability of RSUs. This algorithm maximizes the number

of requests processed and minimizes the migration cost.

ERR: Resource Renting Algorithm for Load Balancing in Road Side Units. This
algorithm focuses on renting the resources from other RSUs of the network. It max-
imizes the number of requests processed and minimizes the total cost. Total cost

consists of migration costs and rent-out costs.

. AAPM: Adaptive Algorithm for Profit Maximization in Heterogeneous Vehicular

Environment. This algorithm takes care of the scenarios where none of the RSUs in
the network is able to process the request. To increase the availability of the resources,
other nodes with available resources are considered. Those nodes are CC, PVs and
RSUs of another SPs. This algorithm maximizes the profit of SPs without affecting
the QoS.

we have shown a basic comparison of the proposed algorithms with the existing

algorithms for the 150-vehicle scenario.

Table 6.1: Performance comparison of load balancing algorithms

Metrics AALB ERR AAPM JSCO MAMTS DCORA SMBO PVATO
VM Completion (%) 82 89 - 53 60 35 - -
Migration Cost (%) 50 - - 800 — - - —
Total Cost ($) - 25 - 125 - - - -
Average Delay(sec) 162 151 - 400 - - - -
Requests Processed (%) — - 79 - - - 54 o1
Total Profit (8) - - 39 - - - 24 30
Avg. Res. Time(sec) - - 13 - - - 16 18
Avg. Wait. Time(sec) - - 43 - - - 70 7
6.2 Future Prospectives

The work reported in the chapters of this thesis provides ample scope and shows several

clear directions for future research endeavors. One can think of designing prediction-based

107

Conclusions and Future Prospectives

resource reservation policy before the actual scheduling. This can enhance the scheduling
decisions for more optimal task assignments. Task dependencies are problems in the case of
task partition. This can be taken into consideration while making the assignment decisions.
The number of applications generating resource requests in a vehicle can be considered as
a factor while formulating the problem in case of task assignment in VANETSs. This is be-
cause with increase in the number of applications and increased data generation rate of the
application may lead to the generation of simultaneous requests from a single vehicle. This
factor can be taken into consideration while doing the task assignment and VM migration.
The nearby vehicles with available resources can take part in load balancing either individ-
ually or by forming a cloud. Those resources are vital from a load-balancing point of view.
This can be considered in future research directions to make the assessment decision better.
However, the problem of quick disconnection and limited transmission range of vehicles is

always a problem in the case of fast-moving vehicles in the case of VANETSs.

The proposed load balancing framework for VANETS presents multiple avenues for future
research that could enhance its effectiveness and applicability in real-world urban environ-
ments. One of the most promising directions is the integration of 5G and beyond. The
ultra-low latency, high reliability, and network slicing capabilities of 5G can be leveraged
to dynamically prioritize traffic loads across roadside units (RSUs), parked vehicles (PVs),
and central cloud infrastructure. This can support diverse quality-of-service (QoS) require-
ments, particularly for critical applications like emergency services and autonomous vehicle

coordination.

Expanding the architecture to include edge and fog computing is another valuable di-
rection. Future work can design layered coordination strategies between RSUs, PVs, and
fog nodes to enhance real-time data processing. Additionally, incorporating energy-aware
scheduling and federated learning at the edge can improve scalability while preserving data
privacy and minimizing energy consumption, especially for electric vehicles acting as edge
nodes. Incorporating Al-driven predictive models can enable proactive load balancing. Ma-
chine learning models trained on historical traffic, weather, and event data can anticipate
surges in demand, while reinforcement learning can adapt load distribution strategies in real
time based on continuous feedback. Together, these future research avenues can significantly
enhance the resilience, efficiency, and adaptability of VANET-based load balancing systems,

contributing meaningfully to the development of next-generation smart cities.

108

Future Prospectives

Following are the three major research directions that can be taken into consideration

in the future:

e In Chapter 3, applications running in vehicles generate data based on the application
types and user’s preferences. Prediction of the amount of data generation in the future
is suitable for the assignment of VMs to RSUs. Lack of information about future data
makes some assignments which lead to unnecessary VM migration. Thus, there is an
increase in migration cost and end-to-end delay. In this scenario, a prediction of re-
quest assignment is a suitable option. However, existing prediction-based algorithms
require a huge amount of computation which may not be able to run on those RSUs
that are overloaded with the current requests. Thus, there is a need for a suitable

approach to deal with this scenario.

e In Chapter 4, the cost of deployment of RSU and its maintenance cost makes it dif-
ficult for the authorities to cover an entire city. This is because the RSU setup and
maintenance cost is too high RSU [66]. However, in an overloaded scenario, the place-
ment of mobile RSUs is one of the options that alleviates the the chance of overloading
and service disruption. It is critical to decide how many mobile RSUs are needed for

the overloaded scenario along with their position of deployment.

e In Chapter 5, to increase the availability of resources, PVs and CC are considered.
However, the resources of nearby vehicles are not considered. The nearby vehicles may
have available resources that can be used to eliminate overloaded scenarios in RSU.
The nearby vehicles might be taken into consideration individually or in a group. In
case, those vehicles are considered individually, the available resources may not be
sufficient to serve the request and in case of cluster how to decide the cluster size in
case of fast-moving vehicles with different speeds and directions. All these problems

have to be taken care while using the resources of nearby vehicles.

PP JE- ot

109

Disseminations out of the Thesis Work

Journals

1. Swagat Ranjan Sahoo, Moumita Patra, and Arobinda Gupta, “AALB: Appli-
cation Aware Load Balancing Algorithm for Road Side Units”, Elsevier
Journal on Vehicular Communications, vol. 36, pp. 100475, Aug. 2022. [Con-
tribution 1]

2. Swagat Ranjan Sahoo, Moumita Patra, Shivank Thapa, and Arobinda Gupta,
“Resource Renting Algorithm for Load Balancing in Road Side Units”,
submitted to Elsevier Journal of Adhoc Networks, May. 2025. [Contribution 3]

3. Swagat Ranjan Sahoo and Moumita Patra, “AAPM: Adaptive Algorithm for
Profit Maximization in Heterogeneous Vehicular Environment”, submitted

to Springer Journal of Wireless Networks, Aug. 2024 [Contribution 4]

Conferences

1. Swagat Ranjan Sahoo, Moumita Patra, and Arobinda Gupta, “MDLB: A Match-
ing based Dynamic Load Balancing Algorithm for Road Side Units”, in

Proceedings of IEEE International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 291-296, Aug. 2021. [Contribution 1]

2. Shivank Thapa, Swagat Ranjan Sahoo, Moumita Patra, and Arobinda Gupta,
“A Novel Cost-Aware Load Balancing Algorithm for Road Side Units in
Internet of Vehicles”, in Proceedings of 18th IEEE International Conference on
Network and Service Management (CNSM), pp. 359-363, Dec. 2022. [Contribution 2]

Y A RataC

110

1]

References

F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. A. Mini, and A. A. Loureiro,
“Data communication in VANETSs: Protocols, applications and challenges,” FElsevier
Ad hoc networks, vol. 44, pp. 90-103, Jul. 2016. [Pg.1]

E. C. Eze, S.-J. Zhang, E.-J. Liu, and J. C. Eze, “Advances in vehicular ad-hoc networks
(VANETS): Challenges and road-map for future development,” Springer International
Journal of Automation and Computing, vol. 13, pp. 1-18, Jan. 2016. [Pg.1]

N. Moustafa, M. Patra, and V. Tamarapalli, “Cost-and-delay aware dynamic resource
allocation in federated vehicular clouds,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 6, pp. 6159-6171, May. 2021. [Pg.3], [Pg.16]

C. Maag, D. Muhlbacher, C. Mark, and H.-P. Kruger, “Studying effects of Advanced
Driver Assistance Systems (ADAS) on individual and group level using multi-driver
simulation,” IEEFE Intelligent Transportation Systems Magazine, vol. 4, no. 3, pp. 45—
54, Aug. 2012. [Pg.3]

J. Wright, J. Garrett, C. Hill, G. Krueger, J. Evans, S. Andrews, C. Wilson, R. Rajb-
handari, and B. Burkhard, “American association of state highway and transportation
officials. national connected vehicle field infrastructure footprint analysis,” Technical
Report FHWA-JPO-14-125, Tech. Rep., Jun. 2014. [Pg.3]

M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual machine placement
schemes in cloud computing,” Elsevier Journal of Network and Computer Applications,
vol. 66, pp. 106-127, May. 2016. [Pg.4]

R. Yu, Y. Zhang, H. Wu, P. Chatzimisios, and S. Xie, “Virtual machine live migra-

tion for pervasive services in cloud-assisted vehicular networks,” in IEEFE International

111

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

Conference on Communications and Networking in China (CHINACOM), Aug. 2013,
pp. 540-545. [Pg.4]

R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang, “Toward cloud-based vehicular
networks with efficient resource management,” IEEFE Network, vol. 27, no. 5, pp. 48-55,
Sep. 2013. [Pg.4], [Pg.21]

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for
mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5,
pp. 2795-2808, Oct. 2015. [Pg.5]

J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: Autonomous vehicular edge computing
framework with aco-based scheduling,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 12, pp. 10660-10675, Jun. 2017. [Pg.5]

X.-Q. Pham, T. Huynh-The, E.-N. Huh, and D.-S. Kim, “Partial computation of-
floading in parked vehicle-assisted multi-access edge computing: A game-theoretic ap-
proach,” IEEFE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 10 220-10 225,
Jun. 2022. [Pg.5]

X.-Q. Pham, T.-D. Nguyen, V. Nguyen, and E.-N. Huh, “Joint node selection and re-
source allocation for task offloading in scalable vehicle-assisted multi-access edge com-

puting,” Symmetry, vol. 11, no. 1, Jan. 2019. [Pg.5]

Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez, “Computation
resource allocation and task assignment optimization in vehicular fog computing: A

contract-matching approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 4, pp. 3113-3125, Jan. 2019. [Pg.5]

X. Huang, R. Yu, J. Liu, and L. Shu, “Parked vehicle edge computing: Exploiting
opportunistic resources for distributed mobile applications,” IEEFE Access, vol. 6, pp.
66 649-66 663, Nov. 2018. [Pg.5]

F. H. Rahman, A. Y. M. Igbal, S. S. Newaz, A. T. Wan, and M. S. Ahsan, “Street
parked vehicles based vehicular fog computing: TCP throughput evaluation and future

research direction,” in IEEE International Conference on Advanced Communication
Technology (ICACT), May. 2019, pp. 26-31. [Pg.5]

112

REFERENCES

[16]

18]

[19]

[20]

[21]

22]

[23]

X. Huang, R. Yu, D. Ye, L. Shu, and S. Xie, “Efficient workload allocation and user-
centric utility maximization for task scheduling in collaborative vehicular edge comput-
ing,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3773-3787, Mar.
2021. [Pg.5]

K. Wang, H. Yin, W. Quan, and G. Min, “Enabling collaborative edge computing for
software defined vehicular networks,” IEEFE Network, vol. 32, no. 5, pp. 112-117, Mar.
2018. [Pg.5]

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod, R. Hilbrich,
L. Liicken, J. Rummel, P. Wagner, and E. Wiessner, “Microscopic traffic simulation us-

ing SUMO,” in IEEFE International Conference on Intelligent Transportation Systems,
Dec. 2018, pp. 2575-2582. [Pg.7], [Pg.42], [Pg.67], [Pg.101]

F. Goudarzi, H. Asgari, and H. S. Al-Raweshidy, “Traffic-aware VANET routing for city
environments—a protocol based on ant colony optimization,” IEEE Systems Journal,
vol. 13, no. 1, pp. 571-581, Mar. 2019. [Pg.13]

J. Shi, Z. Yang, H. Xu, M. Chen, and B. Champagne, “Dynamic resource allocation for
Ite-based vehicle-to-infrastructure networks,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 5, pp. 5017-5030, Mar. 2019. [Pg.13]

K. Abrougui, A. Boukerche, and H. Ramadan, “Efficient load balancing and QoS-based
location aware service discovery protocol for vehicular ad hoc networks,” EURASIP

Journal on Wireless Communications and Networking, vol. 2012, pp. 1-15, Mar. 2012.
[Pg.13]

G. G. M. N. Ali, E. Chan, and W. Li, “On scheduling data access with cooperative
load balancing in vehicular ad hoc networks,” Springer The Journal of Supercomputing,
vol. 67, no. 2, pp. 438-468, Feb. 2014. [Pg.14], [Pg.19], [Pg.42], [Pg.67], [Pg.68], [Pg.101]

G. Li, Y. Yao, J. Wu, X. Liu, X. Sheng, and Q. Lin, “A new load balancing strategy by
task allocation in edge computing based on intermediary nodes,” Springer EURASIP

Journal on Wireless Communications and Networking, vol. 1, pp. 1-10, Jan. 2020.
[Pg.14]

113

REFERENCES

[24]

[25]

[27]

[29]

[30]

[31]

[32]

H. T. Hashemi and S. Khorsandi, “Load balanced VANET routing in city environ-
ments,” in IEEE Vehicular Technology Conference, May. 2012, pp. 1-6. [Pg.14]

H. Chi-Fu and J.-H. Jhang, “Efficient RSU selection approaches for load balancing in
vehicular ad-hoc networks,” TAETI, Advances in Technology Innovation, vol. 5, no. 1,

pp. 5663, Jan. 2019. [Pg.15]

C. Lin, D. Deng, and C. Yao, “Resource allocation in vehicular cloud computing systems
with heterogeneous vehicles and road side units,” IEEE IoT Journal, vol. 5, no. 5, pp.
3692-3700, Oct. 2018. [Pg.15], [Pg.19]

L. Li, H. Zhou, S. X. Xiong, J. Yang, and Y. Mao, “Compound model of task arrivals
and load-aware offloading for vehicular mobile edge computing networks,” IEEE Access,
vol. 7, pp. 26 631-26 640, Feb. 2019. [Pg.15], [Pg.19], [Pg.42], [Pg.67], [Pg.68], [Pg.101]

J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular edge computing

7

networks: A load-balancing solution,
vol. 69, no. 2, pp. 2092-2104, Dec. 2019. [Pg.15]

IEEE Transactions on Vehicular Technology,

K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, “Delay constrained offloading for
mobile edge computing in cloud-enabled vehicular networks,” in IEEE International
Workshop on Resilient Networks Design and Modeling, Oct. 2016, pp. 288-294. [Pg.15],
[Pg.19]

Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and ofHoading in
vehicular edge computing and networks,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4377-4387, Oct. 2018. [Pg.15], [Pg.43]

J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and resource allo-
cation for cloud assisted mobile edge computing in vehicular networks,” IEFE Trans-
actions on Vehicular Technology, vol. 68, no. 8, pp. 7944-7956, Jun. 2019. [Pg.16],
[Pg.19], [Pg.43]

Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang, “Dependency-aware
task scheduling in vehicular edge computing,” IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 4961-4971, Feb. 2020. [Pg.16], [Pg.19], [Pg.43]

114

REFERENCES

[33]

[34]

[35]

[37]

[39]

[40]

[41]

L. Chen, X. Li, and R. Ruiz, “Resource renting for periodical cloud workflow applica-
tions,” IEFE Transactions on Services Computing, vol. 13, no. 1, pp. 130-143, Mar.
2017. [Pg.16]

B. K. Ray, A. Saha, S. Khatua, and S. Roy, “Toward maximization of profit and
quality of cloud federation: solution to cloud federation formation problem,” Springer
The Journal of Supercomputing, vol. 75, no. 2, pp. 885-929, Feb. 2019. [Pg.16]

H. Deng, L. Huang, H. Xu, X. Liu, P. Wang, and X. Fang, “Revenue maximization
for dynamic expansion of geo-distributed cloud data centers,” IEEE Transactions on
Cloud Computing, vol. 8 no. 3, pp. 899-913, Sep. 2020. [Pg.16]

J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization for cloud brokers in
cloud computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 1, pp. 190-203, Jan. 2019. [Pg.17]

A. Zhou, Q. Sun, L. Sun, J. Li, and F. Yang, “Maximizing the profits of cloud service
providers via dynamic virtual resource renting approach,” FURASIP Journal on Wire-
less Communications and Networking, vol. 2015, no. 1, pp. 1-12, Mar. 2015. [Pg.17]

B. Brik, N. Lagraa, N. Tamani, A. Lakas, and Y. Ghamri-Doudane, “Renting out
cloud services in mobile vehicular cloud,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 10, pp. 9882-9895, Jul. 2018. [Pg.17]

J. Karjee, P. Naik S, K. Anand, and V. N. Bhargav, “Split computing:
Dnn inference partition with load balancing in iot-edge platform for beyond
5g,” Measurement: — Sensors, vol. 23, p. 100409, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article /pii/S2665917422000435 [Pg.18]

S. A. Lahham, D. Wu, E. Hossain, X. Liu, and G. Dudek, “Probabilistic mobility
load balancing for multi-band 5g and beyond networks,” in 2024 IEEE International
Conference on Communications Workshops (ICC Workshops), 2024, pp. 1673-1678.
[Pg.18]

G. Li, Y. Yao, J. Wu, X. Liu, X. Sheng, and Q. Lin, “A new load balancing strategy by
task allocation in edge computing based on intermediary nodes,” Springer EURASIP

115

https://www.sciencedirect.com/science/article/pii/S2665917422000435

REFERENCES

[42]

[43]

[44]

[45]

[47]

48]

[49]

[50]

Journal on Wireless Communications and Networking, vol. 2020, no. 1, p. 3, Jan. 2020.
[Pg.19]

H. T. Hashemi and S. Khorsandi, “Load balanced vanet routing in city environments,”
in 2012 IEEE 75th Vehicular Technology Conference (VTC Spring). TEEE, 2012, pp.
1-6. [Pg.19]

C.-F. Huang and J.-H. Jhang, “Efficient rsu selection approaches for load balancing in
vehicular ad hoc networks,” Adv. Technol. Innov, vol. 5, no. 1, pp. 56-63, 2020. [Pg.19]

Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and offloading in
vehicular edge computing and networks,” IEEFE Internet of Things Journal, vol. 6,
no. 3, pp. 4377-4387, Jun. 2019. [Pg.19], [Pg.68]

Y. Wu, J. Wu, L. Chen, J. Yan, and Y. Han, “Load balance guaranteed vehicle-to-
vehicle computation offloading for min-max fairness in vanets,” IEEFE Transactions on
Intelligent Transportation Systems, vol. 23, no. 8, pp. 11994-12013, Aug. 2022. [Pg.20]

D. L. Msongaleli and K. Kucuk, “Optimal resource utilisation algorithm for visible light
communication-based vehicular ad-hoc networks,” IET Intelligent Transport Systems,
vol. 14, no. 2, pp. 65-72, Feb. 2020. [Pg.20]

T.-Y. Wu, M. S. Obaidat, and H.-L. Chan, “Qualityscan scheme for load balancing
efficiency in vehicular ad hoc networks,” Journal of Systems and Software, vol. 104, pp.
60-68, Jun. 2015. [Pg.21]

K. Kamini and R. Kumar, “VANET parameters and applications: A review,” Global
Journal of Computer Science and Technology,, vol. 10, no. 7, pp. 1-6, Jan. 2010. [Pg.21]

M. Lee and T. Atkison, “VANET applications: Past, present, and future,” Vehicular
Communications, vol. 28, p. 100310, Apr. 2021. [Pg.21], [Pg.44]

M. S. Akbar, M. S. Khan, K. A. Khaliq, A. Qayyum, and M. Yousaf, “Evaluation of
IEEE 802.11 n for multimedia application in VANET,” Procedia Computer Science,
vol. 32, pp. 953-958, Jun. 2014. [Pg.21], [Pg.43]

116

REFERENCES

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

E. Lee, E.-K. Lee, M. Gerla, and S. Y. Oh, “Vehicular cloud networking: architecture
and design principles,” IEEE Communications Magazine, vol. 52, no. 2, pp. 148-155,
Feb. 2014. [Pg.21]

C. Tang, C. Zhu, X. Wei, H. Wu, Q. Li, and J. J. Rodrigues, “Intelligent resource
allocation for utility optimization in rsu-empowered vehicular network,” IFEFE access,

vol. 8, pp. 9445394462, 2020. [Pg.22]

J. B. Kenney, “Dedicated short-range communications (DSRC) standards in the united
states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, Jul. 2011. [Pg.22]

Y. Zeng, X. Wu, and J. Cao, “Research and implementation of hungarian method based
on the structure index reduction for dae systems,” Journal of Algorithm and Comput
Tech, vol. 8, no. 2, pp. 219-231, Jun. 2014. [Pg.32], [Pg.63]

H. Cui, J. Zhang, C. Cui, and Q. Chen, “Solving large-scale assignment problems by
kuhn-munkres algorithm,” in 2nd International Conference on Advances in Mechanical
Engineering and Industrial Informatics(AMEII 2016), Jan. 2016. [Pg.32], [Pg.63]

S. Buzzi, C. D’Andrea, M. Fresia, Y.-P. Zhang, and S. Feng, “Pilot assignment in
cell-free massive MIMO based on the Hungarian algorithm,” IEEE Wireless Commu-
nications Letters, vol. 10, no. 1, pp. 34-37, Aug. 2020. [Pg.32]

H. Ye, Y. Chen, and X. Li, “Resource pricing model based on double auction for the
cloudlet federation,” ICIC International Journal of Innovative Computing, Information
and Control, vol. 17, no. 1, pp. 431-446, Apr. 2023. [Pg.55]

N. V. Sahinidis, “Mixed-integer nonlinear programming 2018,” Springer Optimization
and Engineering, vol. 20, no. 2, pp. 301-306, Apr. 2019. [Pg.59]

Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, and X. Shen, “Delay-minimization
routing for heterogeneous vanets with machine learning based mobility prediction,”
IEEFE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3967-3979, Apr. 2019.
[Pg.59]

H. Noori, “Impact of VANET-based traffic signal control on the response time of emer-
gency vehicles in realistic large scale urban area,” in IEEE International Conference
on Communication Workshop, Jun. 2013. [Pg.67], [Pg.101]

117

REFERENCES

[61]

[62]

[63]

[64]

[65]

[66]

S. R. Sahoo, M. Patra, and A. Gupta, “AALB: Application-aware load balancing al-
gorithm for road side units,” FElsevier Vehicular Communications, vol. 36, p. 100475,
Aug. 2022. [Pg.68]

J. I. Mbegbu and U. V. Echebiri, “Juchez probability distribution: properties and
applications,” Asian Journal of Probability and Statistics, vol. 20, no. 2, pp. 5671,
Nov. 2022. [Pg.74]

K. Dorgham, I. Nouaouri, H. Ben-Romdhane, and S. Krichen, “A hybrid simulated an-
nealing approach for the patient bed assignment problem,” Procedia Computer Science,
vol. 159, pp. 408-417, Oct. 2019. [Pg.94]

H. Yuan and M. Zhou, “Profit-maximized collaborative computation offloading and
resource allocation in distributed cloud and edge computing systems,” IEEE Transac-
tions on Automation Science and Engineering, vol. 18, no. 3, pp. 1277-1287, Jul. 2021.
[Pg.101]

C. Ma, J. Zhu, M. Liu, H. Zhao, N. Liu, and X. Zou, “Parking edge computing: Parked-
vehicle-assisted task offloading for urban VANETS,” IEEFE Internet of Things Journal,
vol. 8, no. 11, pp. 9344-9358, Jun. 2021. [Pg.101]

A. Guerna, S. Bitam, and C. T. Calafate, “Roadside unit deployment in internet of
vehicles systems: A survey,” MDPI Sensors, vol. 22, no. 9, p. 3190, Apr. 2022. [Pg.109]

118

: :DC\\
M; e AT

T

;/,/.WM %ﬂ @ 4 :

Indian Institute of Technology Guwahati

Department of Computer Science and Engineering
Guwahati 781039, India

=
”____/E ==k =

\%\m/\w . zmc@s&o

A

o\o@

,g\ﬁ\?ﬁ %Tgce”?

z
~“f
/{t‘,te
Of Tech®

%&5 _:9%/

	1 Introduction
	1.1 Vehicular Ad-Hoc Networks
	1.1.1 Communication Modes
	1.1.2 Load Balancing in VANETs
	1.1.3 Virtual Machines
	1.1.4 Cloud-assisted Vehicular Networks
	1.1.5 Motivation and Research Scope

	1.2 Major Contributions of Thesis
	1.2.1 Contribution on Load Balancing
	1.2.1.1 Application aware load balancing for road side units
	1.2.1.2 Resource renting for load balancing in VANETs

	1.2.2 Contribution on Profit Maximization
	1.2.2.1 Profit maximization in heterogeneous vehicular networks

	1.3 Organization of Thesis

	2 Background and Literature Review
	2.1 Background
	2.1.1 Challenges in Load Balancing at RSUs
	2.1.2 Importance of Load Balancing
	2.1.3 Existing Load Balancing Techniques

	2.2 Literature Review
	2.2.1 Load balancing in VANETs
	2.2.2 Resource Renting in VANETs

	3 Application Aware Load Balancing in Vehicular Networks
	3.1 Introduction
	3.2 System Model
	3.3 Problem Formulation
	3.3.1 Assumptions
	3.3.2 Variable Declaration
	3.3.2.1 Input Variables
	3.3.2.2 Output Variables

	3.3.3 Derived Variables
	3.3.4 Objective Function
	3.3.5 Constraints

	3.4 AALB: Application Aware Load Balancing
	3.4.1 Data Structures Used
	3.4.2 Admission Control
	3.4.3 VM Assignment
	3.4.4 Scheduling of VMs
	3.4.5 An Illustrative Example of the Proposed Approach
	3.4.6 Time Complexity Analysis

	3.5 Results and Discussion
	3.5.1 Periodic Applications
	3.5.2 Event-Driven Applications
	3.5.3 Periodic and Event Driven Applications
	3.5.4 Effect of Application Lifetime
	3.5.5 Effect of Multiple Applications in Vehicles
	3.5.6 Effect of Contention at RSUs
	3.5.7 Average Delay
	3.5.8 Effect of Vehicle Speed

	3.6 Chapter Summary

	4 Resource Renting for Load Balancing in Vehicular Networks
	4.1 Introduction
	4.2 Problem Formulation
	4.2.1 Input Variables
	4.2.2 Output Variables
	4.2.3 End-to-End Delay
	4.2.4 Objectives
	4.2.5 Constraints

	4.3 Proposed Methodology
	4.3.1 Pricing Model
	4.3.2 Graphical Representation
	4.3.3 Efficient Resource Renting (ERR)
	4.3.4 Complexity Analysis

	4.4 Simulation Results
	4.4.1 Performance of Periodic Applications
	4.4.2 Performance of Event-driven Applications
	4.4.3 Performance of Periodic and Event-driven Applications

	4.5 Delay Analysis
	4.5.1 Data Partitioning
	4.5.2 Calculation of Delay
	4.5.3 Analytical Results

	4.6 Modified Efficient Resource Renting (MERR)
	4.6.1 Modified Algorithm
	4.6.2 Results of MERR

	4.7 Chapter Summary

	5 Profit Maximization in Heterogeneous Vehicular Networks
	5.1 Introduction
	5.2 System Model
	5.3 Network Terminologies
	5.3.1 Requester Vehicles
	5.3.2 Road Side Units (RSUs)
	5.3.3 Parked Vehicles (PVs)
	5.3.4 Central Cloud (CC)
	5.3.5 Service Federation

	5.4 Request Assignment: An Economic Perspective
	5.4.1 Cost Model (CM)
	5.4.1.1 Cost of Processing
	5.4.1.2 Cost of Storage
	5.4.1.3 Cost of Computation
	5.4.1.4 Cost of Content Delivery

	5.4.2 Selection Criteria (SC)
	5.4.2.1 Parked Vehicle Selection
	5.4.2.2 Central Cloud Selection
	5.4.2.3 RSU Selection

	5.4.3 Strategy Determination

	5.5 Problem Formulation
	5.5.1 Assumptions
	5.5.2 Constraints
	5.5.3 Calculation of Profit
	5.5.4 QoS Measurement
	5.5.5 Problem Definition

	5.6 Proposed Methodology
	5.6.1 Calculation of Weight
	5.6.2 Adaptive Algorithm for Profit Maximization (AAPM)

	5.7 Simulation Results and Discussion
	5.8 Chapter Summary

	6 Conclusions and Future Prospectives
	6.1 Conclusions
	6.2 Future Prospectives

	References

