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Abstract

In recent decades, technological advancements have led to the emergence of numerous
applications requiring increased computing power and larger on-chip and off-chip
memory capacities. However, the memory technologies are not scaling up with
the computational throughput of modern multi-core processors. Due to their low
packaging density and high leakage power, traditional memory technologies like
SRAM and DRAM face challenges in meeting substantial on-chip memory demands.
Researchers have developed alternative solutions to address the growing need for
memory, such as emerging non-volatile memory technologies like STT-RAM, PCM,
and ReRAM. These techniques have the advantages of high packaging density, low
power consumption and non-volatility. NVMs can be realized as Single Level Cells
(SLC) or Multi Level Cells (MLC). SLCs store one bit of information per cell, whereas
MLCs can store more than one bit per memory cell. The package density of NVMs
can be further improved by using MLC NVMs instead of SLC NVMs.

Despite their advantages, these memory technologies have limited write en-
durance, high write latency and high write energy consumption. This highlights the
necessity for policies that reduce write operations or evenly distribute them across
memory cells, extending the lifetime of memory by mitigating premature wear-out
caused by frequent writes. Considering the limitations of NVMs that need to be
addressed in order to use them as cache memory, the thesis proposes optimization
techniques for SLC and MLC NVM caches. The proposed techniques perform better
than existing lifetime improvement techniques for SLC and MLC NVMs. The thesis
shows that the proposed technique extends lifetime of MLC NVMs comparable to
that of SLC NVMs with less area overhead.
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1
C h a p t e r

Introduction

The amount of data we process daily has increased significantly over the last few

decades. The rapid rise of IoT, on-demand video platforms, and data-intensive

applications has drastically increased demand for high computing power and memory

for end devices. The processor works at a higher clock speed compared to memory.

To mitigate the speed mismatch between processor and memory, computing systems

employ cache memory, a high-speed small memory near the processing element.

Popular applications such as high-performance computing, gaming applications, and

video streaming platforms exhibit spatial or temporal locality, or both. The spatial

locality of an application refers to the tendency of an application to access contiguous

memory locations in a short period. Matrix multiplication, video/audio streaming, and

web browsing are popular applications that show spatial locality. On the other hand,

the tendency of an application to access the same memory location for a short period

is termed temporal locality. Using cache memory to keep frequently accessed blocks

improves system performance by reducing memory access time, thereby improving

CPU utilization. The small size of cache memories limits the blocks stored in them.

The applications with large memory footprint demand larger on-chip/off-chip caches

for better system performance. Unfortunately, conventional memory technologies



1.1. Thesis Motivation

such as SRAM and DRAM are inadequate to meet the demand for large volumes of

on- and off-chip memories, as they occupy a lot of space and dissipate more static

power [1]. This led to a search for alternative technologies to replace them in various

levels of memory hierarchy and non-volatile memory technologies. Spin Transfer

Torque Random Access Memory (STT-RAM) [2] [3], Phase Change Memory (PCM)

[4] and Resistive RAM [5] were found to be promising candidates. Although these

technologies are more compact and have non-volatility, they have limitations, such as

low write endurance, high write energy and latency. These issues are more severe

in the case of Multi-Level Cell (MLC) NVMs than Single Level Cell (SLC) NVMs.

Applications with non-uniform write patterns can cause some portions of memory

to be more heavily written than others, which results in the early wearing out of

corresponding non-volatile memory cells, owing to its limited write endurance. In the

following sections of the thesis we discuss, how to make use of NVM techniques to

realize cache memories using various optimization techniques in detail.

1.1 Thesis Motivation

Over the past few decades, the demand for on-chip memory has increased due to

data-intensive and compute-intensive applications, and the popular, conventional

memory technologies are inadequate to meet this demand.

Figure 1.1: Memory Hierarchy

Figure 1.1 shows the memory hierarchy of a system with two levels of cache and
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main memory. The size and latency increase as we move from L1 to the main memory

in the memory hierarchy. L1 and L2 caches are realized using SRAM cells. L1 cache

generally has a split architecture with separate space reserved for storing instructions

and data blocks. L2 cache generally follows a unified architecture in which memory

cells are not distinguished between instruction and data blocks. Realizing large

LLCs (L2 or L3) using SRAM is challenging as SRAM cells occupy more on-chip

space and dissipate more leakage power. So, we need better technology to realize

large LLCs with less area and power overhead. As mentioned before, NVMs have

the advantage of higher packaging density, low leakage power, and non-volatility

compared to conventional SRAM and DRAM technologies. However, their low

write endurance, high write energy and latencies are serious challenges that must

be addressed when implemented as caches. As previously mentioned, applications

without a well-distributed memory footprint may lead to frequent write operations

concentrated on a few memory cells, resulting in premature wear out of memory cells.

The early deterioration of specific memory cells can adversely impact the overall

performance, reliability, and lifespan of the memory unit. A straightforward solution

to address this issue is implementing a technique to ensure a uniform distribution of

writes across the memory, irrespective of the application’s memory footprint and is

referred to as wear-leveling [1] [6]. Write minimization is another approach which

minimize the number of writes to NVMs, thereby extending their lifetime [1]. In

cache memories, variations in write operation can occur at different levels. Intra-set

write variation refers to the variation within a set of cache memory, while inter-set

write variation pertains to the variation across different sets. These variations are

quantified using the coefficients of intra-set (IntraV ) and inter-set (InterV ) variation,

as given in the equations below [6].

IntraV =
1

N ·Writeavg

N∑
k=1

√∑M
l=1 (Wk,l −

∑M
m=1

Wk,m

M
)
2

M − 1
(1.1)

InterV =
1

Writeavg

√∑N
k=1 (

∑M
l=1

Wk,l

M
−Wavg)

2

N − 1
(1.2)

Where N is number of sets in cache.
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M is the number of ways in a set.

Wk,l is the write count in set k and way l.

Writeavgis average write count given by

Writeavg =

∑N
k=1

∑M
l=1Wk,l

N ·M
(1.3)

Write variation is a critical issue in designing cache or memory subsystems with

Figure 1.2: Intra-set write variation for L2 cache for various benchmarks

limited write endurance. Significant write variation can severely impact the product’s

lifetime, as a small subset of memory cells experiencing the highest write traffic can

lead to the failure of the entire cache or memory subsystem, even if most cells remain

far from wear-out. A large value of InterV indicates that cache lines in different sets

experience vastly different write frequencies, often caused by applications with skewed

address residency. Similarly, large IntraV value arises when one cache line within

a set frequently receives write hits, absorbing a disproportionate number of writes,

leaving the remaining M − 1 lines in an M way associative cache with uneven write

distribution.

Inter-set write variation can be mitigated by dynamic reallocation, where data is

moved between sets, or by improving address mapping schemes [7] to balance write

traffic across sets. However, addressing intra-set write variation is more challenging

because the cache replacement policies (e.g., LRU) are designed to manage temporal
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locality, not to distribute writes evenly across lines within a set. When a single cache

line in a set wears out, the entire set may become unusable due to associative conflicts

or invalid entries. This reduces the overall capacity of the cache and accelerates the

degradation of the memory subsystem, especially in technologies with limited write

endurance, like NVMs. Hence, intra-set write variation is a much more severe issue.

The enhancement techniques discussed in this thesis primarily focus on improving the

lifetime and performance of NVM caches by reducing the intra-set write variation.

The variation in writes within the sets of an L2 cache memory is illustrated

in Figure 1.2, depicting various benchmark programs from the SPEC CPU2006

benchmark suite [details of the benchmarks are given in Chapter 3]. A higher intra-

set variation value suggests that certain blocks within a cache memory set experience

more write accesses than others. This result emphasizes the importance of employing

techniques to prevent repeated writes to specific blocks, either by bypassing them or

distributing them throughout the memory.

1.2 Thesis Contributions

As discussed earlier, incorporating NVMs in on-chip caches offers significant advan-

tages. First, compared to SRAM and DRAM, NVMs provide denser storage due to

their smaller cell size. This enables substantially larger caches, leading to lower cache

miss rates and improved performance compared to SRAM-based caches. Second,

NVM caches can significantly reduce energy consumption. Studies have shown that

caches account for up to 50% of a microprocessor’s energy usage [8], with leakage

energy comprising as much as 80% of the total cache energy consumption [9]. By

eliminating leakage energy in standby mode, NVMs can help to lower overall energy

usage. However, write variation poses a major challenge in designing cache or memory

subsystems with limited write endurance. Severe write variation can drastically

reduce the product’s lifetime, as a small fraction of memory cells exposed to high

write traffic can render the entire cache or memory subsystem inoperative, even if

most cells remain far from wear-out. By exploiting this vulnerability, attackers can

create malicious applications that reportedly write on one or few memory locations,
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resulting in early wear out. Consequently, using NVMs as last-level caches (LLCs)

without optimization techniques is challenging.

This section briefly summarizes our three proposed techniques that address this

issue, enhancing the lifetime and performance of NVM caches. Figure 1.3 highlights

the three main contributions of this thesis: two-lifetime improvement techniques

tailored for SLC NVM LLCs and one combined lifetime and performance enhancement

method for MLC NVM LLCs. Detailed explanations and analyses of these techniques

are presented in the subsequent chapters.

In this thesis, we analyze the lifetime improvement and write distribution (intra-

set variation) achieved by our proposed techniques, which aim to ensure uniform

write distribution and prevent repeated writes to memory. A reduction in intra-set

variation inherently improves write distribution and reduces the system’s susceptibility

to malicious repeated write attacks. Therefore, we do not explicitly discuss detailed

mitigation strategies for such attacks.

Figure 1.3: Overview of Thesis Contributions
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1.2.1 Write Aware Last Level Non-Volatile Caches (WALL-

NVC)

WALL-NVC is a promising lifetime enhancement technique for SLC NVM LLCs.

Unlike the state-of-the-art lifetime improvement techniques for SLC NVM caches

[10] [11] [12] [13] [14], WALL-NVC focuses on the impact of the cache replacement

policies on the cache lifetime and implements a customized replacement policy for

SLC NVM caches. Conventional cache block replacement strategies, such as Least

Recently Used (LRU), cause the cache to wear down faster, as some cache blocks are

retrieved more frequently than others. The thesis discusses Write Aware Last Level

Non-Volatile Cache (WALL-NVC) for extending the lifetime of NVM while executing

applications with non-uniform writes and to safeguard against targeted malicious

attacks by repeatedly writing to certain blocks as its first contribution.

WALL-NVC is a dual-stage wear-leveling approach, contrasting with most modern

wear-leveling methods. Choosing a better victim block for cache replacement in NVMs

is handled by a new LRU-CB replacement policy, which is the first stage. The second

stage uses a conventional write distribution technique with LRU-CB to extend the

NVM lifetime. WALL-NVC is a reactive approach that uses counters at various levels

of memory hierarchy to activate the write distribution mechanism. The Chapter 4

discusses the detailed description and analysis of WALL-NVC.

1.2.2 Virtually Split Last Level Non-Volatile Cache

Most of the modern processors use private split cache architecture for L1 caches and

shared unified design for the subsequent levels of caches. The data blocks are more

frequently accessed for writes than the instruction blocks. When NVMs are utilised

in L1 caches, D-cache ages out more quickly than I-cache. Experimental studies

indicate that in an L1 split cache, the D-cache experiences an average of 472x more

writes than the I-cache [15]. This significant write variation between I and D caches

indicates a significant variance in write access between instruction and data blocks.

As stated before, data and instructions are stored together in unified last-level caches.

Compared to the number of write operations to the blocks that store instructions,
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we observe that the write count of the blocks that store data is high. By virtually

splitting unified LLC for wear-leveling, our proposed approach, ViSC (Virtually Split

Cache), explores the write variance across the data and instruction blocks.

ViSC logically divides the set of n-way set associative cache into m instructions

ways and m-n data ways. The m instruction ways are exclusive for instructions and

remaining m-n are exclusive for data. To distribute the writes uniformly, the logical

mapping of LLC blocks into instructions and data is modified periodically. After

every fixed time epoch, the blocks which are currently reserved for instruction will

act as data blocks in next time epoch. Similarly, blocks which are reserved for data

in current time epoch will act as instruction blocks. ViSC operates in three variants.

The most proactive is the base version, which uses a static reorganisation interval

and initiates reorganisation regardless of write pattern. The reorganisation interval

is dynamically selected in the other two variants, E-ViSC and P-ViSC, based on

the application write pattern. Chapter 5 of the thesis discusses the working and

experimental analysis in detail.

1.2.3 Trace buffer Assisted Last Level Non-Volatile Cache

NVMs can be realized as SLC or MLC. MLC NVMs store two or more bits of data

in each memory cell, in contrast to SLC NVMs, which can only store a single bit per

memory cell. Despite having a much higher packing density than SLCs, MLC NVMs

have short lifetime and large access time. MLC caches use 1.84x less space and 2.62x

less leakage power than SLC caches for a given cache size. To improve the lifetime

and performance of MLC LLCs the thesis proposes Trace buffer Assisted Non-volatile

Memory Cache (TANC) as its third contribution, which utilizes a portion of the

underutilized Embedded Trace Buffers (ETB) to reduce frequent writes to MLC

NVM LLCs. ETBs are storage spaces available in modern processors for post-silicon

validation but are left unused afterwards.

The LLC blocks which are frequently accessed for write operations are kept in

ETB and all the read/write request to that particular block are serviced from ETB

instead of LLC. When ETB is full, least recently written block replaced by writing

back its contents to LLC. This reduces the number of writes to MLC NVM LLC,
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which has less write endurance as most of the write operations are done on SRAM

based ETB. Based on the selection of LLC blocks stored in ETB, TANC has different

variants, and one variant addresses the thrashing effect of cache memories caused

by poor temporal and spatial locality of applications. Chapter 6 discusses on TANC

and its variants in detail.

1.3 Thesis Organization

The thesis is organized into seven chapters. The brief description of the subsequent

chapters is given below.

• Chapter 2 discusses about the background details of various NVM technologies,

their characteristic features and challenges. This chapter also summarizes

different state of the art techniques for life time and performance improvement

of SLC and MLC NVM caches.

• Chapter 3 discusses about the experimental setup used for analysis and

comparison of the proposed techniques with other state of the art techniques.

This chapter briefs about the simulator used for the experiment and benchmarks

used for the analysis.

• Chapter 4 discusses about the first contribution of the thesis, WALL-NVC

a technique to enhance the lifetime of SLC NVM LLCs. The chapter discuss

about working of the proposed technique, experimental setup, result analysis

and comparison with other state-of-the-art lifetime improvement techniques for

NVMs.

• Chapter 5 gives a detailed analysis of second contribution of the thesis, ViSC

and its variants. ViSC is lifetime enhancement technique for SLC NVM LLCs.

ViSC is a low overhead lifetime enhancement technique compared to similar

techniques. Results for various system configurations of the proposed techniques

are also discussed in this chapter.

• Chapter 6 is on the third contribution of the thesis, TANC which a novel

lifetime enhancement technique for NVM LLCs. Unlike previous contributions
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TANC is an enhancement technique customized for MLC NVMs. TANC is a low

overhead technique as it utilizes unused resources for lifetime enhancement and

the result analysis discussed in this chapter shows that the proposed technique

improves the lifetime and performance of SLC NVMs.

• Chapter 7 concludes the thesis and discusses few future works and extensions

that can be done based on the contributions of the thesis.

<<=8=;;
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2
C h a p t e r

Background

In this chapter, we explore the functioning of emerging memory technologies, including

Resistive RAM (ReRAM) [5], Phase Change Memory (PCM) [4], and Spin Transfer

Torque RAM (STT-RAM) [1] [3], along with the challenges associated with their

implementation as caches. Additionally, we review existing literature that provides

a detailed discussion on state-of-the-art lifetime improvement techniques for NVM

caches.

2.1 Emerging Memory Technologies

Emerging memory technologies, including STT-RAM, PCM and ReRAM are at the

forefront of research and development in the quest for faster, more efficient, and more

reliable memory storage solutions. These technologies offer unique advantages and

characteristics, making them suitable for various applications.

Spin-transfer torque is a phenomenon where the orientation of a magnetic layer

within a magnetic tunnel junction or spin valve can be altered by a spin-polarized

current. This phenomenon finds application in flipping the active elements in magnetic

random-access memory, known as Spin-Transfer Torque Magnetic Random-Access
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Memory (STT-RAM or STT-MRAM). STT-RAM offers non-volatility and minimal

leakage power consumption, a significant advantage over charge-based memories like

SRAM and DRAM.

Figure 2.1: Schematic representation of an STT-RAM cell

As seen in Figure 2.1, STT-RAM, the second generation of Magneto Resistive

RAM (MRAM) [2], uses the magnetic tunnel junction (MTJ) as a key component for

bit information storage. An MTJ is made up of two ferromagnetic layers separated

by a barrier layer. The fixed layer, also known as the reference layer, has a fixed

magnetization direction, and the free layer, which can be changed by passing a spin-

polarized current or an external magnetic field through the MTJ. When the reference

layer and the free layer’s magnetization directions are parallel, the MTJ displays a

low-resistance state, signifying logical ’0’. On the other hand, the MTJ assumes a

high-resistance state when the two ferromagnetic layers’ magnetization directions

are anti-parallel representing logical ’1’. STT-RAM also outperforms conventional

MRAM in terms of lower power consumption and improved scalability, as MRAM

relies on magnetic fields to switch the active elements.

A typical Phase Change Memory (PCM) cell is shown in Figure 2.2. The

crystalline phase of the phase change material has low resistivity, while the amorphous

phase has high resistivity. This significant resistivity difference is exploited by PCM.

In PCM, the states "set" and "reset" stand for low and high resistance conditions,

respectively. The processing temperature of the metal interconnect layers is high

enough to crystallize the phase-change material, resulting in an initial low-resistance

crystalline state. During a reset, a large electrical current pulse is applied for a
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brief period, melting and rapidly quenching the programming region of the PCM

cell to cause it to transition to the amorphous phase. This process results in an

amorphous, highly resistive region within the PCM cell, affecting the overall resistance

between the top electrode contact and the bottom electrode contact. To set the PCM

cell back to the crystalline phase, a moderate electrical current pulse is applied to

anneal the programming region at a temperature between the crystallization and

melting temperatures, ensuring sufficient time for crystallization. Reading the state

of the programming region involves measuring the cell’s resistance using a small

electrical current that does not disturb the current state. A Resistive Random Access

Figure 2.2: Schematic representation of a PCM cell

Memory (ReRAM) [5] comprises a memory cell with a resistive switching mechanism,

featuring a metal-insulator-metal structure. This structure involves an insulating

layer positioned between two metal electrodes. The schematic view of an ReRAM cell

are depicted in Figure 2.3. Applying an external voltage pulse across the ReRAM cell

facilitates a transition from a high resistance state or OFF state (logic value ’0’) to a

low resistance state or ON state (logic value ’1’), and vice versa. Initially, ReRAM is

in the high resistance state. To shift the device to low resistance state, a high-voltage

pulse, SET voltage, is applied and it results in formation of conductive paths in the

switching layer, resulting in the ReRAM cell transitioning low resistance state (SET

process). Conversely, to switch the ReRAM cell from low to high resistance state, a

voltage pulse, referred to as the RESET voltage, is applied, facilitating this transition

and is denoted as the RESET process. For efficient data reading from the ReRAM

13



2.1. Emerging Memory Technologies

Figure 2.3: Schematic representation of a ReRAM cell

Table 2.1: Approximate values of device level properties for different memory tech-
nologies

SRAM DRAM PCM STT-RAM Re-RAM
Cell size (F 2) 125-200 6-10 4-12 6-50 4-10

Access granularity 64 B 64 B 64 B 64 B 64 B
Read latency 1-10 ns 10-20ns 50-100 ns 10 ns 10-50 ns
Write latency 1-10 ns 10-20 ns 100-500 ns 10-100 ns 10-100 ns

Endurance (number of writes) > 1015 > 1015 108 − 109 > 1012 > 1011

Standby power 60 nW Refresh power 0 0 0

cell, a small read voltage, which does not disturb the current state of the cell, is

applied. This voltage helps determine whether the cell is in a logic 0 or logic 1 state.

Approximate values of device level properties for different memory technologies

are shown in Table 2.1. In comparison to SRAM and DRAM, emerging memory

technologies exhibit significantly higher densities and comparable fast access times.

Notably, non-volatile memory technologies possess zero standby power and are

resistant to radiation-induced soft errors. Despite these advantages, the direct

replacement of existing SRAM and DRAM technologies with the mentioned emerging

memory technologies is challenging. For instance, SRAM and DRAM arrays are

predominantly affected by leakage power. Conversely, while PCM or ReRAM arrays

consume no leakage power when idle due to non-volatility, they demand considerably

more energy during write operations. Consequently, exploring trade-offs in the

utilization of diverse memory technologies at various hierarchy levels becomes a
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crucial research area. Substituting SRAM-based on-chip cache with STT-RAM and

PCM can enhance performance and decrease power consumption. The higher packing

density of STT-RAM and PCM allows for a larger on-chip cache capacity, thereby

reducing cache miss rates and improving overall performance. Zero standby leakage

contributes to lowered power consumption. However, challenges associated with

emerging memory technologies include the prolonged duration and increased energy

consumption required for write operations. NVMs offer a more stable data storage

mechanism than volatile SRAM and DRAM. Yet, directly replacing SRAM caches

with PCM or STT-RAM caches may lead to performance drawbacks, particularly

under high cache write intensity. Employing hybrid cache memory, buffers, and data

compression becomes essential to mitigate the extended latency and elevated energy

consumption in write operations for PCM or STT-RAM caches. Despite STT-RAM’s

higher density compared to SRAM, utilizing it directly as on-chip caches with frequent

accesses proves impractical due to limited endurance. Wear-leveling is a technique

widely used in NAND-flash memory, seeks to address write endurance limitations by

evenly distributing write operations across storage cells, and this approach can also

be applied to NVM caches and memory.

Among different NVM technologies, STT-RAM , with its superior write endurance

and overall performance metrics, proves to be a more suitable choice for implementing

last-level caches. In this thesis, we specifically adopt STT-RAM as our candidate

to replace SRAM in cache memories, henceforth referring to NVM as STT-RAM.

NVMs can be categorized as Single Level Cell (SLC) or Multi Level Cells (MLC).

SLCs store one bit per memory cell, while MLCs can store two or more bits per

memory cell. Figure 2.4 (a) illustrates the structure of SLC STT-RAM cell. An

SLC STT-RAM cell consists of a Magnetic Tunneling Junction (MTJ) with free

and reference ferromagnetic layers separated by an oxide layer, where the reference

layer’s magnetization direction is fixed and bits are stored by changing the free layer’s

magnetization direction. The MLC STT-RAM cell, can be either serial or parallel

as shown in Figure 2.4 (b) and Figure 2.4 (c), respectively . In our work, we refer

to MLC as serial MLC due to its superior performance and reliability compared to

parallel MLCs. The serial MLC STT-RAM cell features two vertically stacked free
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Figure 2.4: Schematic representation of (a) SLC (b) Serial MLC and (c) Parallel
MLC STT-RAM cell

layers, while parallel MLC cells use a single MTJ with two independent free layers.

In this context, the larger MTJ is termed a hard-bit with a high switching current,

and the smaller MTJ, characterized by a lower switching current, is referred to as a

soft-bit. Although MLC NVMs enhance data density, they exhibit higher lifetime,

write energy, and latency compared to SLC. Soft-bit flipping is more straightforward

than hard-bit flipping due to the smaller switching currents. Hard-bits, on the other

hand, due to large switching currents, entail higher write energy and latency. The

writes to hard-bits lead to the flipping of soft-bits, termed as write disturbance.

Figure 2.5 illustrates how values are stored in the hard-bit (X) and the soft-bit (Y)

of an MLC NVM cell, indicating possible state transitions and the retention of the

current state. As illustrated in Figure 2.5, hard transitions cause the flipping of both

hard- and soft-bits, while soft transitions only flip the soft-bit, leaving the hard bit

unchanged. Therefore, to modify only the hard-bit, a two-step process is required:

a hard transition followed by a soft transition. Cells can move from one state to

another or retain its current state on following transitions, given below

• No transition: Current state of bits (hard and soft) are the same as new state

(both bits retain current state)

• Soft transition: Change in current soft-bit state only whereas hard-bit retains

16



2. Background

X Y

~X ~Y

X ~Y

~X Y

No Transition

Figure 2.5: Hard and Soft-bit states during different transitions of a MLC STT-RAM
cell

current state (small switching current)

• Hard transition: Change in hard-bit state. Soft-bit should retain/update its

current state to updated hard-bit state (high switching current).

• Two-step transition: Change in a hard-bit only. Hard transition followed by

soft transition.

The flipping of the soft-bit, denoted as Y to ∼Y, occurs in a single step as hard

bits are unaffected by the small switching current. When a hard-bit transitions

from X to ∼X, it leads to the simultaneous flipping of the associated soft-bit (from

Y to ∼Y). However, due to this write disturbance, exclusive bit flips for hard-bits

involve a two-step process. Initially, hard-bits undergo flipping using high switching

currents, followed by the soft-bit being flipped back to its original state using a

smaller switching current.

Since MLC NVMs have two different bits present in them, they can be configured

to organize cache lines through in different approaches. Direct Mapping (DM) and

Cell Split Mapping (CSM) as illustrated in Figure 2.6 are two popular stratagies for

MLC NVM cache organizations. The organization of cache lines in the DM strategy

involves a cache block comprising hard and soft bits, but it fails to leverage the faster

accessibility of soft-bit cells. Conversely, in CSM, the hard bits of memory cells are

grouped to form the hard-way, while all soft bits are grouped to form the soft-way.
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CSM introduces variable latency for blocks based on their location. Read and write

operations in the soft-way are streamlined into a single step. However, due to the

potential for write disturbance, writing to the hard-way requires an initial read of

the corresponding soft-way to safeguard its contents before completing the hard-way

write. Experimental studies demonstrate that MLC based on CSM enhances system

performance by 10.3% and reduces energy consumption by 26.0% [16] compared to

conventional MLC STT-RAM and hence here after we consider CSM STT-RAM for

our experiments and refer as MLC NVM.

Figure 2.6: 4 bit cache lines in (a) Direct Mapping (b) Cell Split Mapping

NVMs are prone to premature wear-out caused by non-uniform write patterns and

repeated write attacks [17] [18] due to the limited write endurance. Numerous state-

of-the-art techniques have been developed to enhance the lifetime and performance

of SLC and MLC NVMs. Next section delves into a detailed discussion of such

advancements. While the improvement in the lifetime of SLC NVMs has been

extensively explored, MLC NVMs face challenges due to their structural peculiarities.

Implementing conventional SLC wear-leveling algorithms in MLC is considered

challenging and not cost-effective.

2.2 Related Works

This section explores various techniques aimed at enhancing the lifetime and per-

formance of SLC and MLC NVMs. Researchers across the globe have proposed

diverse strategies to tackle the challenges associated with improving the endurance

of NVM LLCs. These approaches include wear-leveling techniques [11] [13] [12] [14]

[6], write reduction methods [19] [20], hybrid cache architectures [21] [10], and data

18



2. Background

compression schemes [22]. Each of these methods addresses specific aspects of write

variations and performance bottlenecks inherent in NVMs. In this section, we will

delve into some of the most relevant and impactful works in detail, highlighting their

contributions and limitations.

J. Wang et al. proposed i2wap[6], a technique which leverages two global counters

and registers. i2wap incorporates swap-shift, a wear-leveling strategy minimizing

cache inter-set write variations, and Probabilistic Set Line Flush (PoLF), a novel

approach for mitigating intra-set write variations. Key idea behind PoLF is that

the frequent access to hot data blocks, which remains unchanged in traditional

replacement policies, causes write variations. PoLF probabilistically flushes hot data

to optimize write distribution. In case of a cache write hit, instead of writing directly

to the hit data block, the new data is placed in the write-back buffer, marking the

cache line as invalid. Consequently, other cold data can replace the block containing

the hot data, allowing the relocation of hot data to other areas. Sparsh Mittal et

al. proposed EqualWrites [12] and EqualChance [11] techniques to reduce intra-set

variation and improve the lifetime of non-volatile memory caches. EqualWrites

identifies substantial intra-set write variation when the difference between the number

of writes to two blocks in a cache set exceeds a threshold. By swapping data items in

these blocks, intra-set write variation is reduced, leading to a better distribution of

writes and enhanced cache life. The EqualChance mechanism periodically changes

the block locations of data to distribute writes more uniformly across cache lines.

To achieve this, it uses counters to track the number of writes for each set. After a

certain threshold of writes is reached, hot (frequently written) data is swapped with

cold (infrequently written) data. The swap candidates may either be invalid blocks, a

process termed I-shifting, or clean blocks, referred to as C-shifting. Dirty blocks are

excluded from the swapping process since they are likely to be frequently written and

would not effectively reduce wear. Another state-of-the-art approach for extending

the lifetime of NVM caches is the use of periodically interchangeable write-restricted

window. Techniques like Static Window Write Restriction (SWWR) [14], Dynamic-

Window Write Restriction (DWWR), and Dynamic Way Aware Write Restriction

(DWAWR) [13] fall under this category. SWWR divides the cache into logical windows,

19



2.2. Related Works

treating one as a write-restricted window during each interval, with writes redirected

to other windows. The core concept of DWWR involves dividing the cache into m

equally sized windows and using a different window during each predefined execution

interval. Unlike SWWR, where the write-restricted window is chosen in a round-

robin manner, DWWR selects the window based on a counter associated with each

window. This counter tracks the number of writes during the previous interval (i.e.,

from the upper-level cache to the last-level cache). At the start of each interval,

the window with the highest number of writes is designated as the write-restricted

(or read-only) window. Once the interval ends, the next write-restricted window

is determined based on the counter values, and this process continues throughout

execution. To avoid selecting the same window consecutively, the counter for the

current write-restricted window is reset at the end of each interval. DWAWR selects

heavily written ways instead of fixed windows as write-restricted for a given interval,

providing effective wear-leveling. As previously discussed, the MLC NVM exhibits a

shorter lifetime compared to SLC due to write disturbance. To mitigate the impact

of write disturbance on soft-ways, a mechanism is required to safeguard data in

soft-ways during hard-way writes. One simplistic solution is the Immediate Restore

Scheme (IRS), in which the corresponding soft-way is read and rewritten after the

completion of the hard-way write operation to ensure data consistency. The Adaptive

Restoration Scheme [23] for write disturbance and read disturbance comprises two

schemes for addressing write and read disturbances in MLC NVMs. To tackle write

disturbances, this technique overwrites the soft-bit lines, which are less likely to be

read, accumulating potential writes to address read disturbance. The soft-bit line is

restored during eviction from the higher cache level. Both approaches demonstrate

performance enhancement and substantial energy savings for MLC STT-RAM caches.

The self-adaptive wear-leveling technique, designed for MLC NVM, achieves wear

leveling by balancing writes across memory cells using two mapping tables; a global

directory and an on-chip SRAM cache that maintains recently accessed mappings.

Another strategy for minimizing read disturbances is the restore-free mode [24],

involving two-step read/write operations for frequently used hard-ways in MLC

STT-RAM cache. This technique allows the logical turning off of specific hard/soft
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domains in an MLC by fixing their data to "0" or "1". In the restore-free mode,

the corresponding soft-way of the frequently used hard-way is deactivated after

invalidation, and its data is written to a lower-level memory. Although eliminating

write disturbance restorations streamlines hard-way writes into a one-step process

and reduces energy consumption, the energy required for hard-way writing remains

higher than for soft-way writing.

The technique of Alternative Encoding [22] aims to reduce two-step transitions

in MLC STT-RAM cache. It employs two 3-bit codes for each 2-bit data, providing

flexibility to eliminate two-step transitions. However, this encoding method results

in a larger data size, improving the lifetime of the MLC STT-RAM cache. Despite

sacrificing some data density, the data density of the alternating encoding-based

MLC STT-RAM cache still surpasses that of the SLC STT-RAM cache. P. Saraf

et al. [25] proposed replacement policies like the Refresh Aware Replacement Policy

(RFR) to improve the lifetime and performance of STT-RAM caches. The authors

focus on reducing the maximum number of writes, global write variation, and the

average number of writes to enhance the endurance of write-optimized STT-RAM

caches. Write-optimized STT-RAM refers to a configuration of STT-RAM designed

to reduce its inherently high write latency by lowering the thermal barrier of its

MTJ cells. The thermal barrier is a measure influenced by the physical and material

properties of the MTJ, such as planar area, magnetic parameters, and free layer

thickness. Reducing the thermal barrier decreases the switching current and the write

pulse width (the duration for applying the switching current), resulting in faster write

operations. However, reducing the thermal barrier also leads to a shorter retention

time, the duration for which data can be reliably stored in an STT-RAM cell without

a random bit flip. Refresh mechanisms are employed to mitigate the shorter retention

time in write-optimized STT-RAM. Blocks that remain in the cache beyond their

retention period are rewritten to prevent data loss, effectively maintaining reliability.

Refresh-aware cache replacement policies also prioritize evicting blocks about to expire

over recently refreshed blocks to balance performance and endurance. The techniques

for enhancing the lifetime of NVM caches discussed thus far can be categorized into

reactive and proactive approaches. Reactive methods use cache monitoring tools,
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such as counters, to trigger specific actions once predefined conditions (e.g., reaching

a threshold value) are met. On the other hand, proactive techniques continuously

maintain enhancement mechanisms active, regardless of the application’s behavior or

execution time window. Many of the previously mentioned approaches rely heavily

on counters or additional circuitry, leading to increased overhead. Upon further

analysis of these methods, i2wap [6] is found to have a drawback: it may invalidate

the Most Recently Used (MRU) blocks, causing more accesses to the main memory.

EqualChance swaps write-intensive blocks within a cache set with invalid or clean

blocks based on a write counter threshold, but this requires more write counters,

contributing to greater area and power overhead. SWWR uses a round-robin window

selection process, which does not consider the write counts of other windows within

the cache set, potentially allowing heavily written windows (or ways) to accumulate

in the cache bank and negatively affecting cache lifetime. DWWR lacks consideration

for heavily written ways that may exist in lightly written windows, meaning that

even if a window has a low write count, it could still contain some highly written

ways that are neglected. Lastly, RFR, while effective for write-optimized caches, is

less effective for unoptimized caches. These shortcomings prompted us to explore

techniques that can improve both the lifetime and performance of NVM caches with

minimal overhead. This thesis proposes the following approaches for SLC and MLC

NVM LLCs:

• WALL-NVC, a reactive technique utilizing a custom cache replacement algo-

rithm designed for SLC NVM caches to enhance their lifespan.

• ViSC, a proactive technique that involves logically splitting the SLC NVM-

based unified LLC. It also introduces variants E-ViSC and P-ViSC, falling into

the hybrid category, incorporating features from both proactive and reactive

approaches.

• TANC, a technique focused on enhancing the lifetime and reducing the write

latency of MLC-based NVM caches.

We discuss these techniques in detail in the subsequent chapters. Table 2.2

compares the key ideas of selected techniques discussed in this section along with the
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proposed techniques. Detailed analysis is given in coming chapters.

Table 2.2: Overview of proposed techniques and state-of-the-art approaches

Key feature Supports SLC NVM Supports MLC NVM
i2wap Probabilistic line flushing Yes No

EqualWrites Write distribution using counters Yes No
EqualChance Write distribution using counters Yes No

DWWR Write restriction using set partitioning (windows) Yes No
Restore Free Two step write reduction in MLC NVM caches No Yes
WALL-NVC Write distribution using counter with NVM friendly replacement policy Yes No

ViSC Write distribution using logical partitioning Yes No
TANC Write reduction using Embedded trace buffer Yes (Can be modified) Yes

<<=8=;;
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Experimental Setup

This chapter discusses about the overview of experimental setup used for analyzing

the proposed techniques. Detailed experimental details for each contributions are

given in corresponding chapters.

3.1 Adopted simulation environment

Simulators are software tools that mimic the operation of real-world systems or

processes in a controlled and reproducible environment. They are used for testing,

analysis, training, and research without the risks or costs associated with real-world

implementation. Simulators allow architects and engineers to test new designs

and configurations before physical implementation, identifying potential issues and

optimizing performance. They enable detailed performance analysis of various archi-

tectural components under different workloads, such as CPUs, memory hierarchies,

and interconnects. Organizations can reduce the costs and risks associated with

building and testing physical prototypes by simulating designs. They help to verify

that architectural changes or enhancements meet the required specifications and

performance targets.
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We employ the gem5 simulator [26] to analyze and implement the proposed

techniques. Widely embraced in both academic and industrial circles, the gem5

simulator originated from the merger of the m5 simulator [27] at the University of

Michigan and the GEMS simulator [28] from the University of Wisconsin. The gem5

simulator is highly modular, allowing users to customize and extend the simulator to

meet specific research needs. It supports multiple CPU models, memory systems, and

interconnects. The gem5 provides detailed and accurate models of modern processor

architectures, including in-order and out-of-order cores, detailed memory systems,

and various interconnects. It supports multiple instruction set architectures (ISAs),

including ALPHA, x86, ARM, MIPS, RISC-V, and SPARC, making it versatile

for different research scenarios. The gem5 simulator can simulate entire systems,

including operating systems and full applications, providing a comprehensive view

of system behaviour. Users can easily configure and modify various architectural

parameters, enabling experimentation with different design choices and performance

trade-offs. It can be integrated with other simulation and analysis tools, enhancing

its capability for comprehensive architectural studies.

In our experiments, we utilize Ruby to model memory. Ruby, the memory system

simulator within gem5, is a modular framework designed to model and simulate

detailed memory hierarchies in modern computer systems. Ruby’s advantage lies in

its ability to keep coherence protocol specifications distinct from replacement policies

and cache index mapping, allowing separate specification of network topology from

implementation. Additionally, Ruby is highly configurable in nature and facilitates

rapid prototyping. As shown in Figure 3.1, Ruby integrates three key components:

Figure 3.1: High-level view of the main components in Ruby [Image source: gem5
documentation (https://www.gem5.org)]
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the interconnection network, which facilitates communication between processors,

caches, and memory controllers using various topologies like mesh or bus; caches

and memory, representing the hierarchical structure of caches (L1, L2, L3) and main

memory, allowing detailed analysis of cache behaviours such as hits, misses, and

replacement policies; and coherence controllers, which enforce consistency across

caches using protocols like MSI (Modified, Shared, Invalid) or more advanced ones

like MESI or MOESI. The coherence controllers ensure proper transitions between

states (e.g., Modified, Shared, Invalid), while the interconnection network connects

all components, enabling seamless data flow. The cache coherence in our setup is

maintained using the MESI_Two_Level protocol [29], which features a two-level

cache hierarchy with private L1 cache and shared L2 cache. In this arrangement, L1

and L2 maintain inclusion between them. At a higher level, the MESI_Two_Level

protocol encompasses four stable states: M, E, S, and I. A block in the M state

indicates that it is writable and has exclusive permission, having been dirtied as

the only valid on-chip copy. The E state represents a cache block with exclusive

permission (writable) but not yet written. S state signifies that the cache block is

only readable, with multiple copies possibly existing in various private caches and

the shared cache. The I state denotes that the cache block is invalid.

3.2 Benchmark Programs

For experimenting with our proposed architectures across different application cate-

gories, we utilize the SPEC CPU2006 benchmark suite [30]. The SPEC CPU2006

benchmarks, developed by the Standard Performance Evaluation Corporation (SPEC),

are widely used in the evaluation of computer systems’ CPU performance. SPEC

CPU2006 includes diverse benchmarks designed to represent a wide range of applica-

tions. This ensures that the benchmarks are not biased toward any particular type of

workload. The benchmarks are derived from actual applications and scientific compu-

tations, providing a realistic performance measure. The benchmarks are designed

to be complex and compute-intensive, making them representative of real-world

scenarios that require significant computational power. SPEC CPU2006 benchmarks
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can be compiled and run on various computer architectures and operating systems,

facilitating performance comparisons across different systems.

Table 3.1: Selected SPEC CPU2006 Benchmarks with arconyms and category

Name Description WPKI MPKI
astar (As) Path finding algorithms Low Mid
bzip2 (Bz) Compression Mid High

calculix (Ca) Structural Mechanics Low Low
gromacs (Gr) Biochemistry/Molecular dynamics Low Low
h264ref (H2) Video compression Low Low
hmmer (Hm) Search gene sequence High Low

lbm (Lb) Fluid dynamics High High
leslie3d (Ls) Fluid dynamics High Mid

libquantum (Lq) Physics : Quantum computing Mid High
mcf (Mc) Combinatorial optimization High High
milc (Mi) Physics: Quantum chromodynamics Mid High

namd (Nd) Biology/Molecular dynamics Low Low
sjeng (Sj) Artificial intelligence : chess Mid Mid
soplex (So) Linear programming, optimization Low Mid

The benchmarks are provided as source code, allowing users to compile them

with different compilers and optimization settings specific to their systems. SPEC

CPU2006 specifies rigorous rules for conducting benchmark tests to ensure that

results are comparable across different systems and configurations. The benchmarks

are designed to produce consistent and repeatable results under the same conditions,

making them reliable for performance evaluation. Table 3.1 provides details on the

benchmarks used and acronyms associated with them.

We executed the benchmarks on a unicore system with a 512KB L2 cache using

the gem5 simulator, recording the number of writes and misses over one billion

instructions. From these measurements, we calculated Writes Per Kilo Instruction

(WPKI) and Misses Per Kilo Instruction (MPKI). Benchmarks were categorized

based on their WPKI to the last-level cache into Low (WPKI < 10), Mid (10 ≤
WPKI ≤ 30), and High (WPKI > 30), as shown in Table 3.1. Similarly, we classified

benchmarks by MPKI into Low (MPKI < 10%), Mid (10% ≤ MPKI ≤ 60%), and

High (MPKI > 60%). This classification allows us to assess the effects of both existing
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and proposed techniques on applications with different write characteristics.

The specific experimental setups for each technique are detailed in the respective

sections of each chapter.

3.3 Performance Metrics

The key performance metrics used for experimental analysis of each thesis contribu-

tions are given below. Each of these parameters helps to compare the effectiveness of

the techniques.

3.3.1 Intra and Inter Set Write Variation

Intra-set and inter-set write variations are two key performance metrics used to

evaluate the lifetime enhancement techniques. Intra-set write variation refers to the

variation within a set of cache memory, while inter-set write variation pertains to the

variation across different sets. These variations are quantified using the coefficients of

intra-set (IntraV ) and inter-set (InterV ) variation, as given in the equations below

[6].

IntraV =
1

N.Writeavg

N∑
k=1

√∑M
l=1 (Wk,l −

∑M
m=1

Wk,m

M
)
2

M − 1
(3.1)

InterV =
1

Writeavg

√∑N
k=1 (

∑M
l=1

Wk,l

M
−Wavg)

2

N − 1
(3.2)

Where N is number of sets in cache.

M is the number of ways in a set.

Wk,l is the write count in set k and way l.

Writeavgis average write count given by

Writeavg =

∑N
k=1

∑M
l=1Wk,l

N.M
(3.3)

IntraV and InterV values reflect how well the writes are distributed across the cache

memory. A low IntraV and InterV indicates that writes are equally distributed within

and across the sets of the cache memory respectively. In an ideal scenario, where all
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blocks have equal number of write count will result in IntraV and InterV values to

be zero. Low value of write variation indicates that writes are not concentrated in

few memory blocks and hence reducing the chances of early wearing out of memory

cells.

3.3.2 Relative Lifetime

Relative lifetime (RL) of a given architecture with respect to the baseline architecture

is given by

RL =
Maximumnumber of writes in baseline architecture

Maximumnumber of writes in given architecture
(3.4)

Relative lifetime is popular metric used to analyse the effectiveness of lifetime enhance-

ment techniques. We have utilized raw cache lifetime as it offers valuable insights and

serves as the foundation for error-tolerant lifetime[11]. The results are presented for

both the maximum number of writes on any block and intra-set variation (IntraV).

The former focuses on the worst-case scenario for writes on a single block, while the

latter accounts for the average number of writes and considers all blocks within the

cache. Together, these metrics provide a comprehensive evaluation of a technique.

Notably, these metrics have also been employed in other research studies [6], [31] [14]

[13] [32]. Baseline refers to the un-optimized cache memory. Large value of relative

lifetime indicate that given architecture is able to reduce the maximum write count.

3.3.3 Cache Hit Rate

Cache hit rate is a performance metric used in computing to measure the efficiency

of a cache system. It represents the percentage of cache accesses that result in a hit,

which means that the requested data were found in the cache. The higher the cache

hit rate, the more effectively the cache serves the requested data without retrieving

it from a slower level in the memory hierarchy [33].

CacheHitRate =
Number of CacheHits

Total Number of CacheAccesses
× 100 (3.5)
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3.3.4 Average Memory Access Time

Average Memory Access Time (AMAT) is a performance metric which measures

the average time taken to access a memory location, considering both cache and

main memory accesses [34]. AMAT provides insight into the overall speed at which

data can be retrieved from the memory system and is crucial for understanding and

optimizing the performance of system architectures. AMAT is calculated as

AMAT = Hit T ime+MissRate×MissPenalty (3.6)

Where

• Hit Time : The time it takes to access the data in the cache.

• Miss Rate : The fraction of memory accesses that result in a cache miss

• Miss Penalty: The additional time required to fetch the data from the next

level of the memory hierarchy when a cache miss occurs.

<<=8=;;
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Write Aware Last Level Non-Volatile

Cache

This chapter proposes a novel wear-leveling technique for improving the lifetime of

SLC NVM caches. Applications with non-uniform write patterns are a serious concern

for NVM caches as they might access some memory locations for write operation

more frequently than others, leading to the early wear-out of memory cells. In this

chapter we propose a two-stage technique that shows significant improvement in the

lifetime of NVM LLC compared to state-of-the-art techniques.

4.1 Introduction

As discussed in the previous sections, applications with non-uniform write patterns

can cause some cache memory cells to wear out faster than others. The lack of

write-aware cache replacement policies can lead to frequent writes to specific cache

blocks, causing those memory cells to wear out earlier than expected. These issues

underscore the need for a system that minimizes or evenly distributes writes when

using non-volatile memories at various levels of the memory hierarchy. We propose a
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Write Aware Last Level Non-Volatile Cache (WALL-NVC) that extends the lifespan of

non-volatile memory when used as a last-level cache. EqualWrites [12], a state-of-the-

art wear-leveling technique, reduces intra-set write variation and improves lifespan

by comparing LRU and random replacement policies for cache blocks. Conventional

cache replacements consider only the recency of use while selecting the victim block.

However, these blocks may have been heavily written in the past, and replacing them

with a new block might speed up the wear of those memory cells as the probability

of write access to a recently replaced block is higher than that of an existing block.

Hence, these policies need to be optimized for NVMs. Replacement strategies like the

Refresh Aware Replacement Policy (RFR) [25], discussed in Chapter 2, can extend

the life of NVMs, but they are challenging to implement as they are designed for

write-optimized cache memory and do not integrate well with traditional wear-leveling

schemes and NVM architecture. A more NVM-friendly replacement policy, combined

with an effective wear-leveling method, can significantly enhance the lifespan of NVM

LLCs. The major contributions of this chapter are as follows

• We analyse write variations in the last level NVM cache and draws meaningful

conclusions.

• We propose Write Aware Last level Non-Volatile Caches (WALL-NVC), which

can reduce the intra-set variation, thereby increasing its lifetime.

• For WALL-NVC, we use an NVM-friendly replacement policy called Least

Recently Used Cold Block (LRU-CB), which also contributes to increase the

lifetime.

• We test WALL-NVC using SPEC 2006 [30] benchmarks on the gem5 cycle-

accurate simulator [26], and show that our proposed method outperforms other

state-of-the-art solutions.

4.2 Motivation

To study the write variations of different applications, we analyze the maximum and

average writes to the LLC in a unicore architecture. We model a unicore system
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Figure 4.1: Average and maximum writes per way (Kilo writes per 1 billion instruc-
tions) of various SPEC CPU2006 benchmarks: height difference between bars of a
given benchmark indicates intensity of write level variations.

in gem5 with two levels of cache and main memory. The L1-I and L1-D caches are

configured as 32 KB, 2-way set associative. The unified L2 cache is 512 KB, 8-way

set associative, and we use 8 GB of main memory. The block size is 64 bytes. The

number of kilo writes per 1 billion instruction window for selected benchmarks from

the SPEC CPU2006 suite is shown in Figure 4.1. We plot the maximum writes per

way and the average writes across ways. Our study reveals that write variations can

occur within and across different sets. This highlights the importance of implementing

an effective wear-leveling policy for NVM-based LLCs. Popular cache replacement

policies, such as Least Recently Used (LRU) and Pseudo LRU, consider the recent use

of a cache block when selecting a victim block for replacement. However, in NVMs

where write endurance is critical, the number of writes to the victim block can affect

the cache memory’s lifespan. To our knowledge, current wear-leveling techniques do

not explore the impact of replacement policies on improving lifespan. EqualWrites

[12], which reduces intra-set write variation, compares LRU and random replacement

policies. Nevertheless, neither of these policies is designed explicitly for NVMs and do

not show much impact on its lifetime. This motivates us to explore how to effectively

combine a wear-leveling technique with a customized replacement policy to enhance

the lifetime of NVM caches.
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4.3 Proposed technique

We propose the Write Aware Last Level Non-Volatile Cache (WALL-NVC) to enhance

the lifespan of NVMs in applications with non-uniform writes. WALL-NVC also

protects against targeted malicious attacks through repeated writes to specific blocks.

Unlike most state-of-the-art wear-leveling techniques, WALL-NVC utilizes a dual-

stage wear-leveling approach. The first stage introduces a new Least Recently Used

Cold Block (LRU-CB) replacement policy, which optimizes the selection of victim

blocks for cache replacement in NVMs. The second stage applies a traditional write

distribution strategy that works with LRU-CB to extend the memory’s lifespan. The

following sections will delve into the details of these stages.

4.3.1 Least Recently Used Cold Block (LRU-CB)

An effective cache replacement strategy for NVMs should enhance write endurance

and minimize intra-set write variation. It should ideally prioritize the retention of

the most frequently accessed blocks, preventing frequent evictions and reducing write

variation among blocks. In scenarios where the cache hit rate is high, the number of

replacements is low, thus minimizing the impact of replacement policies. Conventional

policies like LRU and Pseudo LRU do not account for the write count of a block

in their victim block selection. To address these concerns, we propose a simple,

NVM-friendly cache block replacement policy known as the Least Recently Used

Cold Block (LRU-CB). Figure 4.2 shows the victim block selection using LRU-CB

policy in Set A of an 8-way set associative cache. The fundamental idea behind the

LRU-CB policy is to designate a block with fewer write occurrences in the cache set

as the victim block, thereby promoting a more uniform distribution of writes within

the set. To ensure infrequent eviction of blocks, we calculate a weighted aggregate

average of each block’s LRU age and write index. The block with the lowest aggregate

average is chosen as the victim block. To facilitate this, a write counter is associated

with each block. When the write counter of a set reaches its saturation value, the

counters for all blocks in that set are bitwise right-shifted. This downgrading of the

counter value leads to the loss of the least significant bit, which introduces a minor
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B0 B1 B2 B3 B4 B5 B6 B7

Weighted average 

LRU age Write index

Victim block

Figure 4.2: Schematic representation of victim block selection using LRU-CB policy
in Set A of an 8-way set associative cache

loss of precision. This mechanism ensures that the write counters are handled before

reaching saturation, but at same time reliable history is preserved. We evaluate

the impact of LRU-CB using various benchmarks and observe that it enhances the

lifespan of NVM caches. In our experiments we use a weight of 80% for LRU age and

20% for write count index for selecting victim block in LRU-CB policy. The details

of analysis on different weights for LRU age and write index is discussed in Section

4.4.4. Replacement policies are active only in the event of cache replacement. Due to

this LRU-CB has limited impact on the lifetime improvement of NVM LLC. This

modest improvement brings out the need for an additional augmenting technique to

further enhance the performance of LRU-CB.

4.3.2 Impact of LRU-CB with Write Distribution

Write-aware replacement policies exhibit limited influence on the endurance of NVM

caches when handling applications with high L1 cache hit rates due to fewer triggered

evictions. Write distribution policies contribute to enhanced lifetime by maintaining

an even distribution of writes. For extending the lifetime of NVM caches, combining

a robust wear-leveling policy with a write-aware replacement policy, as opposed to
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employing them separately will be a better approach.

To assess the impact of LRU-CB in conjunction with a standard state-of-the-

art wear-leveling technique, we compare the effectiveness of the EqualWrites [12]

technique with the pseudo LRU policy and LRU-CB. Figures 4.3, 4.4, and 4.5 illustrate

the relative lifetime, intra-set variation, and hit rate of NVM caches, respectively,

across different benchmarks in the SPEC CPU2006 suite. The graphs reveal that

EqualWrites with LRU-CB enhances the lifetime of the L2 cache by up to 1.39x

compared to the combination of EqualWrites with pseudo LRU. LRU-CB reduces

intra-set variation by up to 83.08% without impacting the hit rate. This improvement

is consistent across all benchmarks, affirming that LRU-CB stands out as a superior

cache block replacement algorithm for NVM caches.

Figure 4.3: Comparison of relative lifetime of NVM based L2 cache using EqualWrites
with Pseudo LRU and LRU-CB replacement policies.

4.3.3 Write Distribution in WALL-NVC

The LRU-CB policy enhances the performance of the EqualWrites technique; however,

this improvement comes at a significant cost. This is because LRU-CB requires

additional counters beyond those utilized by EqualWrites. The counters used in

LRU-CB results in 1.17% storage overhead and the EqualWrites adds another 2% as

storage overhead. This prompted us to explore the implementation of a wear-leveling
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Figure 4.4: Comparison of intra-set variation of NVM based L2 cache using Equal-
Writes with Pseudo LRU and LRU-CB replacement policies.

policy that mitigates intra-set variation, enhances lifetime, and synergizes with LRU-

CB. Cache memory blocks which are frequently accessed for write operation are

termed as hot blocks, whereas blocks which are rarely accessed for write operation

are called as cold blocks. Like other popular wear-leveling techniques, WALL-NVC

operates on redirecting writes from hot blocks to cold blocks.

In an n-way set associative WALL-NVC, each set is equipped with (n + 1)

counters: one set counter and n block counters. When a write hit occurs in WALL-

NVC, the corresponding set and block counters are updated. Once the set counter

surpasses a predetermined threshold T , it identifies a write redirection target among

the blocks in that set. The block with the least writes is favoured as the redirection

target, typically with zero write count. If such a block is available, a swap is initiated

between the accessed block and the chosen redirection target. In cases where the

target block is invalid, the data is written to the target block instead of swapping,

and the hot-line is invalidated. If a block with zero write count is not available and

the target is not found, all counters, including the set counter, are decremented by

the value of the least written block. This delay in write redirection is implemented

to avoid unnecessary redirection when the write pattern to the set is more uniform.

It is important to note that reducing the block counter value does not impact its

functionality. Furthermore, the reduction in counter values delays the need for bitwise
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Figure 4.5: Comparison of hit rate of NVM based L2 cache using EqualWrites with
Pseudo LRU and LRU-CB replacement policies.

right shift operations of counters for replacement victim selection, thereby enhancing

the precision of the technique.

To comprehend the working of WALL-NVC, we use an illustration featuring a

four-way set associative cache block within WALL-NVC, characterized by a threshold

value of 50. Each cache set is linked to a set counter and four block counters to

monitor the write count of each set and block, respectively. Let us focus on a specific

set, denoted as A, with four blocks labeled B0, B1, B2, and B3. Assume A’s set

counter and block counters are represented in the initial row of Figure 4.6. A write hit

in a block increments both the block counter and the set counter of A. Upon reaching

the threshold value (50), the set counter looks for a write redirection target for the

heavily written block (B2). If no target block with zero counts is found, all block

counters and the set counter values are reduced by the least count value creating a

block with zero count. In this case, 2 for B3 is reduced from all the block counters

and set counters, making the write count of the block B3, and therefore, it is a write

redirection target. After the decrement operation, the cache operates normally by

incrementing the counters on subsequent write hits. Upon reaching the threshold

again and initiating write redirection, the redirection occurs by swapping the contents

of the most written block (B2) with the least written block (B3) using a swap module.

Since B2 and B3 are valid blocks, the write redirection results in an additional write
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Figure 4.6: Sample counter updating of WALL-NVC for threshold value, T=50

in both B2 and B3, resetting the set counter. The block counters remain the same

as the value of the block counter, which indicates the write frequency of the blocks.

By preserving block counter values, WALL-NVC ensures that hot blocks are always

placed in locations with less write access and cold blocks are placed in locations with

more write access.

4.4 Experimental Setup and Result Analysis

The benchmarks are executed on an un-optimized NVM LLC (baseline), two state-

of-the-art wear-leveling methods (EqualWrites and EqualChance), and the newly

introduced WALL-NVC, utilizing a threshold value T=50 (WALL-NVC50). We

analyzed the lifetime improvement for our proposed system for various values of

threshold T , from T = 10 to T = 50. Our analysis shows that increasing the size

threshold will not improve the gains compared to the overhead associated with it.

Considering the gains and counter overheads, we fix the threshold value as 50 for our

experiments. Specific configuration details of the system can be found in Table 4.1.
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Table 4.1: System Configuration

CPU 2 GHz, Unicore, Dual-Core, Quad- Core,
L1 Cache Private, 32 KB, SRAM based split cache,

64 B block, 4-way set associative
L2 Cache Shared 512 KB | 2MB, NVM based unified cache

64 B block, 8-way set associative
Main Memory 8 GB

4.4.1 Impact on Write Variation

Figure 4.7: Comparison of IntraV for various NVM architectures in unicore system
of L2 cache size 512KB

Figure 4.7 compares the intra-set variation (IntraV ) among various cache archi-

tectures proposed above in unicore systems. The analysis reveals a fair distribution

of writes across different set ways exists in benchmarks such as leslie3d, lbm, mcf,

milc, and bzip2 across all architectures , resulting in lower IntraV . This tendency

is particularly pronounced in benchmarks with mid and high WPKI. Notably, low

WPKI benchmarks like namd, calculix, and gromacs exhibit significant enhancements

in IntraV . This leads us to the conclusion that write variance is more dependent on

the pattern of write hits within a given set than the total number of writes over time.

Additionally, regardless of the benchmark classification, WALL-NVC50 consistently
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demonstrates low write variance, making it a suitable addition to NVM caches.

Figure 4.8: Comparison of IntraV for various NVM architectures in dual-core system
of L2 cache size 512KB

Figure 4.9: Comparison of IntraV for various NVM architectures in quad-core system
L2 cache size 512KB

Intra-set variation in dual-core and quad-core systems is plotted in Figure 4.8 and

Figure 4.9, respectively. Since the multi-core framework requires multiple benchmarks,

workload composition is created based on WPKI values, categorized as Low, Mid,

Low-High, Mid-High, etc. Analysis reveals that shared NVM LLC is accessed by

multiple applications in multi-core systems, nullifying the write variations created by
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one core with natural random balancing from other cores. Consequently, only minor

improvements in lifetime are achieved using Mid-High workloads in dual-core and

quad-core systems.

Figure 4.10: Comparison of IntraV for various NVM architectures in unicore system
of L2 cache size 2MB

Figure 4.11: Comparison of IntraV for various NVM architectures in dual-core
system L2 cache size 2MB

To study the impact of WALL-NVC on larger caches, we ran our experiments

on an L2 cache size of 2MB. Like 512KB, we run experiments on unicore, dual-core

and quad-core systems. We also use the same benchmark mixes used for dual and
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Figure 4.12: Comparison of IntraV for various NVM architectures in quad-core
system L2 cache size 2MB

quad-core systems for 512KB cache size for 2MB. Figures 4.10, 4.11, 4.12 show the

impact of various wear-leveling techniques and the baseline a 2MB NVM L2 cache

for unicore, dual-core and quad-core respectively. The results follow a similar trend

to 512KB except for the increased intra-variation in the 2MB cache. As cache size

increases for a given application execution window, intra-set write variation increases.

For a given application execution window, increasing cache capacity improves the

hit rate and increases repeated access to a few cache blocks. This increases the

intra-set write variation, as evident from the IntraV value of 2MB. Hence, the write

distribution mechanism of WALL-NVC has a better impact on the larger LLCs as

the frequency of write redirection is high, reducing the intra-set write variation.

4.4.2 Impact on Relative Lifetime

Relative lifetime is a key indicator of the effectiveness of the wear-leveling techniques

implemented in different memory hierarchies. Most state-of-the-art lifetime enhance-

ment techniques use relative lifetime for analysis as they quantify the impact of

the proposed architecture on the maximum number of writes recorded in the cache

memory with respect to the baseline architecture.

Figure 4.13 compares relative lifetimes across various cache architectures of
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512KB size in unicore systems. The experimental results show that WALL-NVC50

significantly improves the lifetime for applications like calculix, gromacs, h2ref,

hmmer and namd. These applications have a higher L2 cache hit rate and intra-

set write variation than others, as the writes are concentrated in a few memory

locations. As write variation is high on these applications, the WALL-NVC50

can distribute the write concentrated on a few blocks to other less written blocks,

reducing maximum writes and write variation. Hence, the impact of WALL-NVC

is prominent in these benchmarks. As anticipated, benchmarks with high WPKI

exhibit limited improvement in lifetime due to intense writes to LLC. Also, we

observe that the benchmarks with high cache hit rates show better lifetime time with

WALL-NVC50. On average, WALL-NVC50 enhances lifetime by 2.90x compared to

the baseline architecture, showing 1.16x and 1.18x improvements over EqualWrites

and EqualChance, respectively. The evaluation extends to dual-core and quad-core

Figure 4.13: Comparison of relative lifetime for various NVM architectures in unicore
system of L2 cache size 512KB

systems, where WALL-NVC50 shows an average lifetime improvement of NVM by

2.25x and 1.63x compared to baseline systems, as depicted in Figure 4.14 and Figure

4.15. WALL-NVC50 shows better lifetime improvement for dual-core systems for low,

mid and low-high category benchmark combinations. Like unicore systems, these

combinations have better cache hit rates and high intra-set write variation; hence,

the impact of WALL-NVC50 is prominent.
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Figure 4.14: Comparison of relative lifetime for various NVM architectures in dual-
core system L2 cache size 512KB

As we move from dual-core to quad-core, the impact of WALL-NVC decreases as

the write distribution pattern becomes more uniform due to multi-core architecture

cache coherence. Compared to EqualWrites, it improves by 1.07x on dual-core systems

and 1.02x on EqualChance. For quad-core systems, lifetime improvements of 1.10x

and 1.02x are achieved, respectively.

We analyse the effectiveness of the proposed technique on relative lifetime with

respect to varying cache size by experiment with cache size of 2MB also. Figures

4.16, 4.17, 4.18 shows the relative lifetime improvement values for cache size 2MB

for unicore, dual-core and quad-core respectively. The results follow similar trend as

for intra-set variation. As mentioned before the as cache size increases the intra-set

write variation increases and the impact of WALL-NVC50 also becomes significant.

4.4.3 Impact on IPC

WALL-NVC uses the LRU-CB replacement policy, which has little impact on the

cache hit rate. The wear-leveling algorithm does not invalidate the cold blocks.

Instead, it keeps the block within the cache memory; hence, there is no impact on

the cache hit rate. Since there is no change in hit rate, there is no change memory

access time and hence WALL-NVC does not impact the system’s instructions per
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Figure 4.15: Comparison of relative lifetime for various NVM architectures in quad-
core system L2 cache size 512KB

Table 4.2: Relative lifetime improvement (LT) and IntraV of WALL-NVC for different
threshold values

Unicore Dual-core Quad-core
LT IntraV LT IntraV LT IntraV

Baseline 1 32.41 1 15.85 1 10.22
10 2.32 6.55 2.08 7.28 1.31 6.58
30 2.54 2.46 2.63 1.48 1.68 0.34
50 2.90 1.85 2.25 1.65 1.63 1.17
70 2.56 4.08 2.23 2.59 1.59 1.43
100 2.57 4.20 2.35 2.26 1.53 1.52

cycle (IPC).

4.4.4 Sensitivity Analysis

We study the influence of the threshold value (T ) through experimentation with five

distinct values, T = 10, 30, 50, 70, 100. After evaluating lifetime improvement and

its corresponding overhead, we converge to a default value of T as 50. Additionally,

we perform an extensive sensitivity analysis on various threshold values. Table 4.2

displays the relative lifetime and intra-set write variation, utilizing different threshold

values in WALL-NVC. The performance of the proposed architecture can be influenced
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Figure 4.16: Comparison of relative lifetime for various NVM architectures in unicore
system of L2 cache size 2MB

Figure 4.17: Comparison of relative lifetime for various NVM architectures in dual-
core system L2 cache size 2MB

by the weight assigned to LRU-CB during the selection of a victim block for cache

replacement. As discussed previously, we calculate the weighted aggregate average of

each cache block by considering both its LRU age and write count index. Two variants

are explored: (a) 80% for LRU age and 20% for write count index (0.2W), and (b)

60% for LRU age and 40% for write count index (0.4W). These variants are compared

in a unicore system, with the results for IntraV , relative lifetime with respect to the
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Figure 4.18: Comparison of relative lifetime for various NVM architectures in quad-
core system

Figure 4.19: Comparison of IntraV for WALL-NVC variants in unicore system

baseline, and LLC hit rate presented in Figures 4.19, 4.20, and 4.21, respectively. We

see that 0.2W yields a 1.13x improvement in lifetime and a 2.16% enhancement in

IntraV compared to 0.4W. Interestingly, there is no impact on the hit rate across

various benchmarks for these two variants. Considering that both 0.2W and 0.4W

outperform the baseline, it is suggested that a minimum weightage to LRU-CB (0.2W)

should be assigned to obtain a suitable victim block. We also see that an excessive

emphasis on the write count index (0.4W) diminishes the significance of LRU age.
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Figure 4.20: Comparison of relative lifetime for WALL-NVC variants in unicore
system

Figure 4.21: Comparison of LLC hit rate for WALL-NVC variants in unicore system

4.4.5 Overhead Analysis

WALL-NVC utilizes two types of counters: a set counter assigned to each set and

a block counter assigned to each block. A swapping module is also required to

interchange the contents of hot and cold data blocks. This swapping module consists

of 64 buffers, each with a size of 64 bytes, resulting in a total storage overhead of 2%

with respect to the baseline architecture. Based on the analysis using CACTI tool
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[35], the SRAM-based counters and swap buffers result in a maximum power and area

overhead of 0.47% and 1.47%, respectively, compared to the baseline configuration.

The cache block replacement policy, LRU-CB, utilizes the same counters for victim

selection, thereby incurring no additional overhead.

4.5 Conclusion

The limited write endurance of NVM presents a critical challenge. In this study, we

introduce a novel architecture named WALL-NVC, which employs a write distribu-

tion policy and an NVM-friendly, LRU-CB cache replacement strategy to enhance

the lifetime of NVM caches. Our observations indicate that the write-distribution

and write-aware replacement policies play equally significant roles in performance

improvement. Experimental results demonstrate that our approach enhances the

longevity of NVM caches for unicore, dual-core, and quad-core systems with minimal

area and power overhead.

<<=8=;;
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5
C h a p t e r

Virtually Split Last Level

Non-Volatile Cache

This chapter discusses Virtually Split Cache (ViSC), an innovative wear-leveling

technique, and its variants, which enhance the lifetime of SLC NVM LLCs. ViSC

exploits the write variation between data and instruction blocks to ensure that all

LLC cache blocks are accessed for writes at a more uniform rate. The proposed

technique shows significant improvement in lifetime compared to other state-of-the-art

techniques. ViSC also has less overhead.

5.1 Introduction

In the previous chapter, we discussed WALL-NVC, a technique for improving the

lifetime of SLC NVM by customizing the replacement policy and interchanging the

frequently written blocks and less written ones to ensure uniform write distribution.

This reactive approach of triggering the wear-leveling technique using counters and

thresholds results in storage overhead. To address this issue, we propose a proactive

wear-leveling technique, Virtually Split Cache (ViSC) and its variants. The following
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sections discuss ViSC and its variants, E-ViSC and P-ViSC. The key idea behind

ViSC is to logically split the cache sets of a unified cache and reserve them for

instruction and data blocks. Based on a prefixed interval, these blocks are remapped;

blocks previously reserved for data (hot blocks) will be reserved for instruction (cold)

blocks and vice versa. Unlike WALL-NVC and other state-of-the-art techniques [11]

[12] [13] [14], ViSC does not extensively use counters; hence, the associated area and

power overhead are less. The key contributions of this chapter are as follows

• We study the write variation among instruction and data blocks of different

applications in LLCs and its impact on lifetime.

• We propose a wear-leveling technique and its variants that can reduce the write

variation in NVM LLCs and improve their lifetime. We model the proposed

techniques on gem5 [26] and compare them in terms of performance metrics

using SPEC CPU2006 benchmarks [30].

5.2 Motivation

Traditional wear-leveling mechanisms in NVMs use write counters to identify hot and

cold data blocks, which incurs higher overhead due to the number of counters and

associated circuitry. The high overhead of wear-leveling techniques motivated us to

explore the possibility of a low-overhead wear-leveling technique.

Traditional architectures use split L1 cache architecture, segregating instructions

and data, while L2 caches typically adopt a unified approach, combining both

instructions and data. Data blocks undergo more write operations compared to

instruction blocks [15]. To study the memory access pattern of L2 caches, we run

various benchmark applications on the gem5 simulator.

Figure 5.1 shows the memory access pattern of in a unified L2 cache of 512KB

capacity while running various SPEC CPU2006 benchmark applications for one billion

instructions . The results indicate that the L2 cache accesses are predominantly

data blocks. The experimental result also reinforces that data blocks are frequently

accessed (hot blocks), whereas instruction blocks are less frequently accessed (cold

blocks). The scheme of categorizing cache blocks into instruction and data ways can
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Figure 5.1: L2 cache access pattern for different benchmark applications

be used to identify hot and cold blocks for wear-leveling. This is the the rationale

behind our proposed techniques and can be implemented with minimal overhead in

NVM caches. Coming sections discuss the proposed technique in detail.

5.3 Proposed Technique - ViSC

Virtually Split Cache (ViSC) is a novel low-overhead technique for improving the

lifetime of SLC NVM unified L2 caches which logically splits them into instruction

and data caches. As mentioned before, popular NVM wear-leveling strategies employ

counters at various levels of memory hierarchy, resulting in high overhead. Instead

of finding hot and cold data blocks using counters to distribute the writes, ViSC

logically splits the cache sets into instruction and data ways to reserve them for

storing respective blocks only. This mapping is periodically changed to ensure that

every block will be a hot block (when reserved for data) for some time interval and a

cold block (when reserved for instruction), ensuring better write distribution. This

approach reduces the counter overheads required for hot and cold block identification.

We propose three variants of ViSC and details are given below.
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      L1 Cache

 Swapping 
Module

       LLC LLC Controller

   Swapping
 Interval Timer

                ViSC

Figure 5.2: L1 cache - LLC interaction through the proposed ViSC module

5.3.1 Virtually Split Cache (ViSC)

ViSC partitions the unified NVM LLC into distinct data and instruction ways,

dedicating each for storing the respective blocks. ViSC periodically reorganizes this

logical mapping at fixed intervals, transitioning heavily utilized data ways to function

as instruction ways and vice versa. This process ensures a balanced distribution

of heavily accessed ways throughout the cache memory. The proposed architecture

integrates the ViSC module with the LLC controller as shown in Figure 5.2. Each

L1 cache miss reaching the LLC controller is directed to the ViSC module for

necessary background verification and updating. The ViSC module incorporates a

swapping interval timer, facilitating the mapping of instruction ways and data ways.

This process, managed by the swapping module, involves signalling to designate

the current k -ways for instruction storage as data ways while also assigning new

k -ways for instruction storage. This reassignment and interchange of ways between

instruction and data is called set reorganization. The swapping module initiates set

reorganization at regular intervals using an appropriate timer. Upon receiving a write

request to the LLC, it verifies if the time elapsed since the last set reorganization

exceeds a predetermined threshold. If it does, the swapping module is activated. By

converting heavily written data ways (hot ways) to less utilized instruction ways (cold
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ways), the number of writes is reduced, thereby minimizing write variation.

Algorithm 1 provides a comprehensive outline of the operations executed within

the ViSC module. The line numbers 1 - 8 of Algorithm 1 defines important parameters

such as cache associativity, number of instruction ways, etc. Initially, instr_start

is set to 0, and data_start is set to 3. Since the associativity is set to 8, way 0, 1

and 2 are reserved for instruction blocks and way 3 to way 7 is reserved for data and

are stored in instruction_way_list and data_way_list, respectively. The algorithm

processes each cache request (R, line number 9) sequentially. For read requests, it

performs the usual read operation (normal read operation, line number 11). For write

requests, the algorithm checks if the elapsed time (tp) exceeds the threshold (tp >

threshold, line number 14). If this condition is true, a reorganization occurs, and

the instruction and data ways are swapped using the swap function (line number

14). The starting indices of the instruction and data ways are updated using modular

arithmetic (instr_start and data_start, line numbers 15–16) to ensure the indices

wrap around the cache associativity. The updated indices are used to recalculate

instruction_way_list and data_way_list (line numbers 17–18), and the algorithm

proceeds with a normal write operation (line 19). If the threshold is not exceeded,

the write operation proceeds without any reorganization (lines 22–23).

The swap function (line 25) exchanges the roles of the instruction and data

ways by interchanging their corresponding entries in the instruction_way_list and

data_way_list (lines 29–31). This reorganization also resets the timer (tp = 0, line

32), marking the beginning of a new monitoring period.

L1 caches typically employ a split organization to mitigate structural hazards

within the instruction pipeline when accessing memory for instructions and data

simultaneously in a single clock cycle. Conversely, higher-level caches often adopt

a unified organization, accommodating instruction and data within the same cache.

Here, we delve into the specifics of our proposed architecture. Let us consider an 8-way

set associative L2 cache as shown in Figure 5.3, wherein we virtually allocate three

ways for instructions (k=3) and the remaining five for data (8-3=5). Unlike L1 split

caches, which commonly use equal-sized caches for instructions and data, our ViSC

architecture may feature unequal partitioning for the L2 cache. This discrepancy
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ALGORITHM 1: Operational steps in ViSC module
1 instr_start = 0 \\first way of instruction ways;
2 data_start = 3 \\first way of data ways;
3 cache_assoc = 8 \\cache associativity;
4 num_inst_ways =3 \\number of instruction ways;
5 tp: time elapsed since last set reorganisation, increments every clock cycle;
6 threshold = 100000;
7 List instruction_way_list : List of ways reserved for instructions sequentially from

instr_start. Size = 3;
8 List data_way_list : List of ways reserved for data; sequentially from data_start. Size

= 5;
9 repeatfor every L2 cache request R and block B do

10 if R==read then
11 normal read operation;
12 else
13 if tp > threshold then
14 swap(instruction_way_list,data_way_list);
15 instr_start = (instr_start+num_inst_ways) % cache_assoc;
16 data_start = (data_start+num_inst_ways) % cache_assoc;
17 instruction_way_list = {instr_start, instr_start+1, instr_start+2 };
18 data_way_list = {data_start, data_start+1, data_start+2, data_start+3,

data_start+4 };
19 normal write operation;
20 else

21 end
22 normal write operation;
23 end
24 end
25 until end of execution swap (instruction_way_list,data_way_list)
26 {
27 foreach instruction_way_list[i], 0 <= i < num_inst_ways
28 do
29 temp=instruction_way_list[i];
30 instruction_way_list[i]=data_way_list[i];
31 data_way_list[i] =temp ;
32 } tp=0;
33 end
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Figure 5.3: Organization of a set of 8-way set associative cache in ViSC architecture

stems from the observation that data typically requires more space in unified caches

due to its larger memory footprint. In ViSC, owing to its logical partitioning, each

cache set comprises three instruction ways for storing instructions fetched from main

memory, leaving the remaining five ways for data storage. The mapping of instruction

and data ways during the initial phase and subsequent reorganizations is illustrated

in Figure 5.3. Initially, during cache warm-up, way 0, way 1, and way 2 serve as

instruction ways, housing instruction blocks mapped to this set, while the remaining

ways store data. We establish a threshold time of 100,000 clock cycles. Upon its

expiration, reorganization occurs, and ways 3, 4, and 5 become the instruction ways,

as depicted in the figure. Similarly, instruction and data ways periodically shift across

the 8-ways at regular intervals.

All read requests to the LLC are handled as usual. However, regarding write

requests, ViSC assesses whether the elapsed time since the last cache reorganization

surpasses a predetermined threshold. If this condition is met, a set reorganization

process is triggered, wherein the contents of the current instruction/data way are

swapped with their counterparts in the new data/instruction way. This swapping and

copying procedure within the L2 cache occurs in the background and does not interfere

with the critical path of instruction execution. The processor continues its execution

57



5.3. Proposed Technique - ViSC

by retrieving instructions and data from the L1 cache. In ViSC, instruction ways are

written only while transferring a block from the main memory to the L2 cache. On

the other hand, data ways are written during L2 cache misses and subsequent block

transfers from main memory and during write-back or write-through operations from

the L1 cache. Evictions of L1-I cache blocks do not trigger the write operations in the

L2 cache. However, the removal of dirty cache blocks from the L1 cache significantly

contributes to writes on the data ways of the L2 cache in ViSC. By reorganizing

instruction (I) and data (D) ways in ViSC, the distribution of writes across each

way in a cache set is balanced. As previously mentioned, in a cache with m-way set

associativity, there are various possible logical configurations for the split between

instruction ways (k) and data ways (m-k).

Figure 5.4 shows relative lifetime values of different partition ratios of ViSC

enabled L2 cache for various benchmarks. It is observed that for an 8-way set

associative cache the setting k=3 yields optimal performance. ViSC presents a

promising proactive strategy for managing cache aging. Unlike reactive approaches

that only activate wear-leveling under specific conditions, ViSC’s proactive method

ensures continuous wear-leveling regardless of application behaviour. This eliminates

the need for write counters, minimizing overhead. However, ViSC employs static

values for crucial parameters like reorganization interval and instruction to data

partition ratio. Figure 5.5 shows the analysis of relative lifetime values of different

reorganization of ViSC enabled L2 cache for various benchmarks. We can observe

that the benchmarks with high write accesses necessitate frequent reorganization for

optimal write distribution, while others exhibit sudden bursts of writes, overwhelming

specific memory cells. ViSC’s limited number of ways allocated to data in LLC sets

may penalize data-intensive applications by constraining effective storage capacity.

These challenges drive the need for a dynamic, application-aware policy to adjust

critical parameters based on application behaviour. To address this, we propose two

low-overhead techniques, E-ViSC and P-ViSC, which augment conventional ViSC

capabilities. These techniques employ a hybrid wear-leveling policy triggered regularly

(proactive) and dynamically adjust wear-leveling frequency by analyzing application

write patterns (reactive). Detailed discussions on these proposed techniques follow in
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subsequent sections.

Figure 5.4: Relative lifetime values of different partition ratios of ViSC enabled L2
cache for various benchmarks

Figure 5.5: Relative lifetime values of different reorganization intervals (cycles) of
ViSC enabled L2 cache for various benchmarks

5.3.2 Enhanced-ViSC

Enhanced-ViSC (E-ViSC) operates by dividing a unified m-way LLC into distinct

sections, reserving n-ways for instructions and allocating the remaining (m-n) ways
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for data storage. This allocation is adjusted periodically, ensuring that instructions

and data are balanced optimally. As instruction blocks are less frequently modified

than data blocks, this periodic adjustment aids in more evenly distributing write

operations. E-ViSC dynamically adapts the frequency of these adjustments based on

the LLC’s write behaviour, utilizing a global counter to track total writes across the

LLC within specific time intervals. Unlike conventional methods that track writes at

the block level, E-ViSC analyzes writes at the LLC level, sacrificing some precision

for overhead savings.

Detailed workings of E-ViSC are described in Algorithms 2 and 3. Algorithm 2

introduces the key parameters and functions used in Algorithms 3 and 4. Algorithm 3

introduces dynamic reorganization based on elapsed time (t_p) and write thresholds

(T_i). Algorithm 3 initializes the reorganization interval (R_i) and threshold (T_i)

to their smallest values in line numbers 1–2. For every cache request, read requests

(line number 4) perform normal operations, while write requests trigger reorganization

checks. If the time elapsed exceeds the reorganization interval (t_p > R_i) in line

number 7, the swap function in line number 8 is executed, followed by set_reorganize

in line number 9 and a normal write operation follows. The algorithm dynamically

adjusts R_i based on the current write_count and thresholds (T_i) in line numbers

10–17, ensuring that the cache adapts to varying workloads. The loop repeats until

execution ends (line number 20), maintaining a balance between instruction and data

ways while minimizing wear.

Let us examine the working of E-ViSC in detail. Initially, the reorganization

interval is set to 100K cycles, with a fixed instruction-to-data partition ratio of

3:5. Each LLC write operation increments a 10-bit global counter, triggering a

set reorganization once the interval lapses. Reorganization occurs only upon the

first write to a set following the interval’s completion, ensuring uninterrupted cache

operation. A 64B write buffer facilitates partition adjustments by swapping contents.

Based on the normalized write count within the current interval, E-ViSC selects a new

reorganization interval from a predefined pool of standard intervals (25K, 50K, 75K,

100K, and 1M cycles). Opting discrete values for reorganization interval simplifies

complexity and reduces overhead. Figure 5.6 illustrates the configuration of set A
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in an E-ViSC-enabled 8-way set associative cache across different execution phases.

E-ViSC prolongs reorganization intervals during low-write phases to delay swaps and

associated writes. However, E-ViSC dynamically shortens intervals as write frequency

increases, leading to more frequent reorganizations and improved write distribution.

This dynamic adaptation of reorganization intervals yields superior performance to

traditional ViSC, as discussed in section 5.4.

ALGORITHM 2: Common terms and swap function for E-ViSC and P-ViSC
1 cache_assoc = A : Cache associativity;
2 num_inst_ways =Ni : Number of instruction ways;
3 num_data_ways =A−Ni : Number of data ways;
4 instr_way_start = 0 : First way among instruction ways;
5 data_way_start = Ni : First way data data ways;
6 write_count=0 : Number of writes;
7 tp: Time elapsed since last set reorganization, increments every clock cycle;
8 Ri ∈ {R1, ...Rn} : Set of reorganization intervals R1.. < Ri... < Rn;
9 Ti ∈ {T1, ...Tn} : Set of write thresholds T1.. < Ti... < Tn;

10 List instr_way_list : List of ways reserved for instructions sequentially from
instr_way_start. Size = 3k, k ∈ N;

11 List data_way_list : List of ways reserved for data; sequentially from
data_way_start. Size = 5k, k ∈ N;

12 data_count=0 : number of data writes;
13 threshold = 100000;
14 T : Maximum value of data_count;
15 p0, p1 = 0 : Number of consecutive reorganisation intervals;
16 s : Maximum number of consecutive reorganisation intervals;
17 swap(swap) { foreach instruction_way_list[i], 0 <= i < num_inst_ways do
18 temp=instr_way_list[i];
19 instr_way_list[i]=data_way_list[i];
20 data_way_list[i] =temp;

21 tp=0;
22 }
23 set_reorganize(set_reorganize)
24 {
25 instr_way_start = (instr_way_start+num_inst_ways) % cache_assoc;
26 data_way_start = (data_way_start+num_inst_ways) % cache_assoc;
27 instr_way_list = {instr_way_start,...,instr_start+ num_inst_ways− 1};
28 data_way_list = {data_way_start,... data_num_data_ways− 1};
29 }
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ALGORITHM 3: Operational steps in E-ViSC module
1 Ri = R1;
2 Ti = T1;
3 repeatfor every LLC request R and block B do
4 if R==read then
5 normal read operation;
6 else
7 if tp > Ri then
8 swap();
9 set_reorganize(); normal write operation;

10 if write_count < Ti then
11 Ri = R1

12 if write_count >= Ti AND write_count < Ti+1 then
13 Ri = Ri+1

14 if write_count >= Ti+1 AND write_count < Ti+2 then
15 Ri = Ri+3

16 ...if write_count >= Tn then
17 Ri = Rn

18 else
19 normal write operation;

20 until end of execution

5.3.3 Protean-ViSC

P-ViSC, like E-ViSC, operates by virtually partitioning the unified cache into separate

data and instruction caches. This involves dividing an m-way LLC into n-ways for

instructions and (m-n)-ways for data. Notably, the number of writes in instruction

blocks is considerably lower than in data blocks. While a fixed partition ratio may

penalize applications, especially those with either data or instruction write-intensive

operations, P-ViSC addresses this by dynamically managing the partition ratio based

on the application’s write count. To achieve this, P-ViSC utilizes a 10-bit saturating

global counter, data_count, which increments upon data writes and decrements upon

instruction writes in the LLC. This counter determines whether write accesses to the

LLC predominantly involve instruction or data blocks. Initially, the instruction-to-

data way ratio is set at 3:5, with a reorganization interval of 100K cycles. Following

each interval, if data_count stabilizes between 0 and 1023, indicating balanced write

patterns, no changes to the partition ratio occur. However, if data_count deviates
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ViSC

E-ViSC

P-ViSC

Execution time

Low data writes Moderate data writes High data writes

Instruction way Data way

Figure 5.6: Organisation of set A of eight-way set associative caches after each
reorganization of proposed techniques

from this range, signalling a need for adjustment, P-ViSC initiates a reorganization

process. For instance, if data_count reaches 0 or 1023 consistently over p consecutive

reorganization intervals, indicating a discrepancy in write patterns, P-ViSC adjusts

the partition ratio accordingly. It increases instruction ways by converting data

ways into instruction ways when data_count is 0 for p intervals, or vice versa when

data_count saturates to 1023. This realignment allows for accommodating more

blocks of the prevalent type. After each reorganization, the cache operates with

the new partition ratio and repeats the process periodically. The criterion of p

consecutive intervals ensures stability around the 3:5 partition ratio unless continuous

application behaviour necessitates otherwise. Additionally, P-ViSC ensures that at

least one way is reserved for instructions. The decision-making process for partition

ratio reorganization, guided by the global counter data_count, reduces the overhead

of estimating writes at the way-level granularity. Depending on the write pattern

to NVM, P-ViSC dynamically adjusts its instruction-to-data partition ratio. This

adjustment enables the accommodation of more data writes by increasing the number

of data blocks.

Algorithm 4 explains the working of P-ViSC. Cache requests are handled similar

to E-ViSC, with read operations following normal procedures (line number 4) and write
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operations triggering reorganization if t_p > threshold (line number 6). In this case,

the swap function and set_reorganize are executed in lines 7–8, followed by a normal

write operation (line number 9). Depending on data_count, adjustments are made

to the number of instruction ways. If data_count ≤ 0, counters p_0 is incremented

and and p_1 is reset (line numbers 10–12), potentially increasing instruction ways.

Conversely, when data_count ≥T, p_1 is incremented, and instruction ways may

decrease if conditions are met (line numbers 22–27). Default conditions reset the

counters in lines 29–30, and data_count is updated based on the type of write

operation (lines 33–36). Algorithm 5 shows the increment and decrement operations

on instruction way list in P-ViSC.

Table 5.1: Comparison of the proposed wear-leveling techniques

Reorganization interval Partition ratio Application awareness
ViSC Static Static No

E-ViSC Dynamic Static Yes
P-ViSC Static Dynamic Yes

Table 5.1 summarises the key features of ViSC, E-ViSC and P-ViSC such as

reorganization interval, partition ratio and application awareness. In ViSC reorgani-

zation and partition ratio are static where as in E-ViSC, the reorganization interval

and in P-ViSC, partition ratio are dynamic in nature. The third feature, application

awareness refers to the ability of the proposed technique to adjust it self to suit

according to the application behaviour. Further enhancements, such as combining

the dynamic reorganization interval and partition ratio adjustment seen in both

E-ViSC and P-ViSC, are possible for ViSC. However, experimental results suggest

that while such a combination yields performance similar to E-ViSC, the overhead

limits significant improvements. Therefore, the discussion primarily focuses on the

effectiveness of E-ViSC and P-ViSC individually.
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ALGORITHM 4: Operational steps in P-ViSC module
1 repeat
2 for every LLC request R and block B do
3 if R==read then
4 normal read operation;
5 else
6 if tp > threshold then
7 swap();
8 set_reorganize();
9 normal write operation;

10 if data_count <= 0 then
11 p0 ++;
12 p1 = 0;
13 if num_inst_ways <= num_data_ways then
14 if num_inst_ways%3 == 0 then
15 if p0 == s then
16 inst_way_increment();

17 else
18 inst_way_increment();

19 else if data_count >= T then
20 p1 ++;
21 p0 = 0;
22 if num_inst_ways>=1 then
23 if num_inst_ways == 3 then
24 if p1 == s then
25 inst_way_decrement();

26 else
27 inst_way_decrement();

28 else
29 p0 = 0
30 p1 = 0;

31 else
32 normal write operation;
33 if data_write then
34 data_count++;
35 else
36 data_count−−;

37 until end of execution
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ALGORITHM 5: P-ViSC :inst_way_increment() and inst_way_decrement()
1 inst_way_increment(inst_way_increment)()
2 {
3 num_data_ways−−;
4 num_inst_ways++;
5 data_count = 0; }
6 inst_way_decrement(inst_way_decrement)()
7 {
8 num_data_ways++;
9 num_inst_ways−−;

10 data_count = 0; }

5.4 Experimental Setup and Result Analysis

Our evaluation of proposed architectures involves running workloads composed of

SPEC CPU2006 benchmark applications using the system configurations outlined

in Table 5.2. We compare the proposed techniques with baseline architecture and

DWWR. Baseline architecture refers to the SLC NVM L2 cache without any opti-

mization. DWWR is an optimization technique for SLC NVM caches which uses a

dynamic window write restriction policy. A detailed description of DWWR can be

found in Section 2.2.

Table 5.2: Simulation parameters

CPU 2 GHz, Unicore, Dual-Core, Quad- Core, ALPHA
L1 Cache Private, 32KB, SRAM Split cache,

64 B block, 4-way set associative
L2 Cache Shared 512KB|2MB, STT-RAM cache,

4-way|8-way|16-way set associative, 64 B block
Main Memory 8 GB

5.4.1 Impact on Relative Lifetime

Relative lifetime is one of the most widely used metrics that can measure the aging

of NVMs [12] [11] [13]. As discussed before, limited endurance is a bottleneck for

NVMs. Attackers can also exploit this limitation to run applications that force more

writes on certain blocks of NVM LLC. In order to reduce the concentration of writes

to a few memory locations, we need to distribute the writes as much as possible to
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Figure 5.7: Relative lifetime of 512KB 8-way set associative NVM L2 cache in a
unicore system

avoid the early aging of memory cells. If an application produces concentrated writes

to a particular block, then it reduces the relative lifetime. We measure the relative

lifetime of NVM L2 cache in a unicore, dual-core and quad-core system using various

applications from the SPEC CPU2006 benchmark suite.

In the case of the unicore system illustrated in Figure 5.7, it is evident that

all three variants; ViSC, E-ViSC, and P-ViSC substantially enhance the lifetime

compared to the conventional ViSC. Both E-ViSC and P-ViSC exhibit respective

improvements in relative lifetime by 1.71x and 1.57x, while ViSC itself boosts the

relative lifetime by 1.64x compared to the baseline across a range of benchmark

categories. The adaptability to self-adjust reorganization intervals notably enhances

the lifetime in E-ViSC, especially evident in benchmarks with high WPKI values

such as hmmer and lbm, where frequent reorganizations are necessary for optimal

wear-leveling; a feature supported by E-ViSC. Conversely, for benchmarks with low

WPKI, ViSC outperforms E-ViSC. An examination of E-ViSC’s execution time

distribution (Table 5.4) reveals that applications with low WPKI tend to settle on

a reorganization interval of 1M, starting from an initial 100K interval. Since the

write count within this interval falls below the threshold, the system transitions to

a larger interval, leading to increased write variance across cache blocks, affecting

relative lifetime. ViSC’s operation at a fixed, shorter reorganization interval ensures
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a more balanced write distribution across cache blocks. Similarly, the dynamic

reorganization of instruction and data ways’ position and count based on application

behaviour enhances P-ViSC’s performance. Notably, benchmark leslie3d demonstrates

significant improvement in relative lifetime due to P-ViSC’s adaptive nature. Analysis

reveals that the instruction-to-data mapping shifts from 3:5 to 2:6 and then to 1:7 to

accommodate leslie3d ’s larger data memory footprint, increasing data blocks in L2

cache and reducing frequent writes from heavy L2 cache misses. Detailed examination

of P-ViSC’s execution time distribution (Table 5.5) indicates a preference for 3:5

and 4:4 partition ratios in low WPKI benchmarks, indicating lesser data storage

requirements in L2 cache. However, this can lead to uneven writes across ways,

occasionally reducing P-ViSC’s relative lifetime compared to ViSC, particularly in

scenarios where way reorganization affects write balance negatively for specific low

WPKI benchmarks.

We also investigate the effectiveness of the proposed methodologies in dual-core

systems that share NVM L2 cache. In the context of dual cores, we execute two

independent applications (one per core) and evaluate their combined impact on the

L2 cache. The influence on the L2 cache from write patterns generated by one core

may be enhanced or counterbalanced by the write patterns from the other core. To

comprehensively understand this impact across various application-level combinations,

we devise six workloads, each comprising a blend of two independent SPEC CPU2006

benchmark applications. The initial three workloads (designated as Low, Mid, and

High) consists of two independent applications with similar WPKI characteristics.

Additionally, we formulate three mixed-category workloads (Low-Mid, Low-High, and

Mid-High) by pairing applications from different categories.

In Figure 5.8, we present a comparative analysis of the relative lifetime in dual-

core systems. ViSC, E-ViSC, and P-ViSC enhance the lifetime by 1.81x, 2.03x,

and 1.57x, respectively, across diverse benchmark mix categories compared to the

baseline system. Notably, except for the Low category, E-ViSC demonstrates superior

performance to ViSC. Upon examining the distribution of execution time of E-ViSC

in dual-core systems (refer to Table 5.4), we observe that the reorganization interval

predominantly falls within 50K or 25K for most workloads. This adaptability stems
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Figure 5.8: Relative lifetime of 512KB 8-way set associative NVM L2 cache in a
dual-core system

from the adjustment of the reorganization interval based on L2 cache writes. Given

the identical L2 cache size of 512KB in dual-core setups, there are more writes and

evictions in the L2 cache compared to single-core systems. Consequently, the E-ViSC

mechanism adapts to a more frequent reorganization interval, leading to improved

relative lifetime by reducing uneven writes across cache blocks.

We conducted studies on quad-core systems, similar to those performed on

dual-core systems, utilizing various workloads. In selecting benchmark mixes, we

utilized two distinct benchmarks from the first and second WPKI categories.

Figure 5.9 illustrates the analysis of the relative lifetime of quad-core systems.

Like with dual-core systems, ViSC demonstrates superior performance with low

WPKI category benchmarks. Our strategies prove effective, particularly when encoun-

tering significant write variations. In quad-core systems, intra-set variation appears

reduced as the diverse write patterns from four different cores ultimately balance

out concentrated writes to specific blocks. P-ViSC exhibits the best performance for

high WPKI category benchmarks among the four techniques examined. Within the

execution window, benchmarks in the high WPKI category exhibit a notably higher

miss rate than others. Due to its ability to accommodate the maximum number

of data blocks throughout the execution window, P-ViSC effectively reduces writes

resulting from L2 replacements.

We study the impact on relative lifetime of proposed techniques against other
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Figure 5.9: Relative lifetime of 512KB 8-way set associative NVM L2 cache in a
quad-core system

Figure 5.10: Relative lifetime of 2MB 8-way set associative NVM L2 cache in a
unicore system

wear-leveling methods using a larger L2 cache of 2MB. This ensures the scalability of

our technique for various cache sizes. Similar to that of a 512KB L2 cache, impact of

balancing and write distribution becomes more pronounced with the higher cache

capacity, attributed to the increased number of cache blocks. As cache size increases

cache replacement due to capacity misses reduces, thereby enhancing block retention

and increasing cache intra-set variation due to a greater number of dead blocks. In
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Figure 5.11: Relative lifetime comparison of 2MB 8-way set associative NVM L2
cache in a dual-core system

Figure 5.12: Relative life time comparison of 2MB 8-way set associative NVM L2
cache in a quad-core system

a unicore system utilizing a 2MB NVM L2 cache, E-ViSC and P-ViSC elevate the

relative lifetime by 1.85x and 1.84x, respectively, compared to the baseline, with

ViSC achieving a 1.77x improvement. The outcomes align with those observed with

a 512KB cache size. In a dual-core system equipped with a 2MB L2 cache, E-ViSC

demonstrates a 23% enhancement in relative lifetime compared to ViSC, while P-ViSC

exhibits notable performance improvements across various benchmark mixes. Mainly,

P-ViSC shows approximately a 5% better relative lifetime for the Low benchmark

mix compared to E-ViSC. In quad-core systems featuring a 2MB L2 cache, both
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Figure 5.13: Relative lifetime of 512KB 16-way set associative NVM L2 cache in a
unicore system

Figure 5.14: Relative lifetime of 512KB 4-way set associative NVM L2 cache in a
unicore system

E-ViSC and P-ViSC demonstrate superior performance across all combinations except

for the Low category benchmark. The proposed techniques exhibit relative lifetime

improvements in larger caches for a given system architecture due to the potential

for enhanced write redistribution compared to smaller caches.

We study the impact of associativity of a given cache size on the relative lifetime

improvement of our proposed technique. Figures 5.13 and 5.14 illustrate the relative

lifetime of 16-way and 4-way 512KB L2 caches across various architectures. For the

16-way E-ViSC enabled L2 cache, employing six instruction ways and ten data ways,
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ViSC, E-ViSC, and P-ViSC increase the relative lifetime by 2.23x, 2.55x, and 2.29x,

respectively. Conversely, for the 4-way L2 cache with two instruction and two data

ways, the relative lifetime increases by 1.34x, 1.48x, and 1.32x, respectively. The

relative lifetime improvement escalates as set associativity increases for a particular

cache size, facilitating better write masking and inclusion of data blocks due to the

expanded number of ways.

5.4.2 Impact on Intra-set variation

Intra-set variation quantifies the efficiency of the wear-leveling method in distributing

write operations within the cache memory sets. The coefficient representing intra-set

variation, denoted as IntraV (as defined in equation 3.1), provides insights into

the uniformity of write distribution across different cache set ways. Lower values of

IntraV indicate a more balanced write distribution.

Figure 5.15: Intra-set variation comparison of 512KB 8-way set associative NVM L2
cache in a unicore system

Figure 5.15 illustrates the write distribution for a uni core system utilizing a

512KB L2 cache. Evidently, applications with low WPKI values, such as namd and

calculix, exhibit significant intra-set variation compared to those with mid and high

WPKI values. These low WPKI applications demonstrate uneven write patterns

across the cache ways, with certain ways heavily utilized over others. Conversely,
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applications like libquantum and mcf, characterized by high WPKI values, display a

more uniform distribution of writes across cache ways. Despite notable reductions in

intra-set variation compared to the baseline, both E-ViSC and P-ViSC outperform

other techniques, indicating their ability to balance effectively writes across cache

ways. Specifically, E-ViSC achieves a 4% greater intra-set variation reduction than

ViSC.

Figure 5.16: Intra-set variation comparison of 2MB 8-way set associative NVM L2
cache in a unicore system

Figure 5.16 presents the study of intra-set write variation in a unicore system

employing a 2MB NVM L2 cache. As the cache size increases, so does the intra-set

variation due to heightened cache block retention. Notably, the effectiveness of our

techniques, particularly E-ViSC, becomes more pronounced with larger cache sizes. E-

ViSC demonstrates superior performance across various applications, including namd,

gromacs, hmmer, and calculix, owing to its capability for frequent reorganization,

which facilitates better write distribution compared to static reorganization interval-

based approaches like ViSC and DWWR

Figures 5.17 and 5.18 depict the comparison of intra-set variation in a dual-core

system utilizing 512KB and 2MB L2 cache, respectively. As previously discussed

regarding relative lifetime, dual-core systems exhibit diminished write variation

and consequently lower IntraV compared to unicore systems. The presence of two

applications sharing an LLC mitigates the write imbalance and IntraV to some
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Figure 5.17: Intra-set variation comparison of 512KB 8-way set associative NVM L2
cache in a dual-core system

Figure 5.18: Intra-set variation comparison of 2MB 8-way set associative NVM L2
cache in a dual-core system

degree. In the case of a 512KB L2 cache, E-ViSC demonstrates a 53% reduction in

intra-set write variation compared to the baseline and a 13% reduction compared

to ViSC. Similarly, P-ViSC exhibits a reduction in intra-set variation by 50% and

7% compared to baseline and ViSC, respectively. Similar to unicore systems, as the

cache size increases from 512KB to 2MB, the write variation also increases. This

trend is evident from the results of the 2MB L2 cache in Figure 5.18.
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Given that multi-core systems inherently display less write variation compared

to unicore systems, the reduction in intra-set variation diminishes as the number of

cores increases. Quad-core systems demonstrate superior write distribution compared

to unicore and dual-core systems.

Figure 5.19: Intra-set variation comparison of 512KB 8-way set associative NVM L2
cache in a quad-core system

Figure 5.20: Intra-set variation comparison of 2MB 8-way set associative NVM L2
cache in a quad-core system

Figures 5.19 and 5.20 illustrate the write variation in quad-core systems utilizing

512KB and 2MB NVM caches. The results indicate that our proposed techniques
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enhance intra-set variation in quad-core systems as well. As anticipated, E-ViSC

exhibits the most significant reduction in write variation among all techniques. The

superior write distribution of E-ViSC compared to P-ViSC suggests that application-

aware dynamic reorganization interval selection yields better write distribution than

dynamic partition ratio selection.

Figure 5.21: Intra-set variation comparison of 512KB 16-way set associative NVM L2
cache in a unicore system

Figure 5.22: Intra-set variation comparison of 512KB 4-way set associative NVM L2
cache in a unicore system

Examining figures 5.21 and 5.22, we explore the intra-set write variation con-

cerning a 512KB L2 cache size, comparing 16-way and 4-way set associativity. Our
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Table 5.3: Percentage change in inter-set variation for various architectures and cache
sizes under study

DWWR ViSC E-ViSC P-ViSC

512KB
unicore +1.15 -1.17 -0.82 +0.90

dual-core -5.52 -7.78 +4.29 +0.55
quad-core -1.88 -3.34 -1.68 +0.94

2MB
unicore +2.53 +1.67 +0.66 +4.46

dual-core +1.44 -7.20 +1.00 -5.92
quad-core -1.11 -1.33 -1.69 -0.96

suggested methods exhibit a more pronounced impact on intra-set variation as as-

sociativity increases. This occurs because higher associativity facilitates the more

efficient distribution of writes within a set, thereby diminishing write variation.

5.4.3 Impact on Inter-set variation

Our proposed techniques aim to decrease the write variation within sets of NVM

LLCs. As cache block reorganization and swapping occur within sets, there is no

direct effect on the variability between sets. We examine the inter-set variability of

these techniques across unicore, dual-core, and quad-core configurations using 512KB

and 2MB NVM L2 caches. We observe minor fluctuations in the InterV, as detailed

in Table 5.3, with changes typically in the range of a few percentage points. These

fluctuations are primarily attributed to alterations in write counts within each set,

contributing to the overall estimation. Consequently, we conclude that our proposed

methods do not significantly influence inter-set variability, as our primary objective

is to achieve a balanced distribution of writes within each set.

5.4.4 Impact on IPC

Proposed techniques do not have any impact on the cache hit rate and memory

access time. Swapping operations during reorganizations are not on the critical path

of instruction execution and hence do not impact memory access time. Hence the

proposed techniques do not impact the instructions per cycle (IPC) value.
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5.4.5 Impact on Execution Time Distribution

E-ViSC dynamically adjusts its reorganization intervals based on the write pattern

behaviours exhibited by the application. Table 5.4 outlines the distribution of

execution times in various architectures using a 512KB NVM L2 cache for unicore,

dual-core, and quad-core systems.

In unicore setups, particularly with low WPKI benchmarks, E-ViSC often employs

longer reorganization intervals, constituting approximately 53% of the total execution

time on average. This delay in swapping instruction and data ways responds to fewer

writes. However, this strategy may slightly reduce lifetime in scenarios with low

WPKI and high write variation due to concentrated writes in fewer blocks. Instances

where bursts of heavy writes occur prompt E-ViSC to adopt shorter reorganization

intervals of 25K or 50K cycles, even though these are isolated cases (approximately

6% for 25K cycles and 3% for 50K cycles) to which E-ViSC adjusts accordingly.

For mid and high WPKI benchmarks, E-ViSC tends to utilize shorter reorganiza-

tion intervals, enhancing write distribution compared to conventional ViSC. Around

65% and 8% of the execution window adopt 50K cycles as the mid and high WPKI

benchmarks reorganization intervals, respectively. Notably, approximately 77% of the

execution time employs the shortest possible interval of 25K cycles for high WPKI

benchmarks. This detailed examination illustrates E-ViSC’s dynamic adaptation to

application behaviour.

Similar behaviour is observed in dual-core and quad-core systems. In dual-core

setups, except for low WPKI benchmark mixes, lower reorganization intervals are

predominantly used due to higher average write counts resulting from inter-core cache

block access and memory access interference from multiple applications. In quad-core

configurations, aside from low category benchmarks, E-ViSC overwhelmingly adopts

the shortest reorganization interval of 25K cycles for over 98% of the execution

window. Notably, there were no instances of employing a 1M cycle reorganization

interval, indicating that E-ViSC’s relative lifetime improvement over ViSC is from

the effective dynamic selection of reorganization intervals. Various design parameters

incorporated in Algorithm 3 contribute significantly to this performance enhancement.
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Table 5.4: Distribution of execution time (in %) of E-ViSC while running various
benchmark mixes

System Benchmark Mix Reorganization Interval
25K 50K 75K 100K 1M

Unicore
Low 5.79 3.28 9.23 28.97 52.75
Mid 22.26 64.79 6.43 6.47 0.06
High 77.29 7.44 2.51 9.21 3.56

Dual-core

Low 10.04 6.87 23.65 38.92 20.52
Mid 85.71 14.25 0.00 0.04 0.00
High 89.11 7.30 2.07 1.69 0.04

Low-Mid 61.52 33.71 1.62 2.48 0.67
Low-High 80.33 12.92 2.58 0.25 3.92
Mid-High 98.62 0.42 0.41 0.47 0.08

Quad-core

Low 16.51 8.27 36.42 38.78 0
Mid 99.98 0 0 0.01 0
High 99.97 0.01 0 0.01 0

Low-Mid 97.75 0.93 0.98 0.33 0
Low-High 99.16 0.77 0.40 0.1 0
Mid-High 99.96 0.03 0 0.01 0

We also conduct a thorough analysis of execution time variations to comprehend

the changes in partition ratios when employing P-ViSC. Like ViSC, P-ViSC employs a

fixed reorganization interval but dynamically adjusts the partition ratio for instruction

and data paths. The distribution of average execution time for various partition

ratios using P-ViSC is presented in Table 5.5.

In single-core systems, P-ViSC predominantly settles with a 3:5 partition ratio for

execution across all benchmark mixes. However, for low WPKI category benchmarks,

we observe that the 4:4 partition ratio also holds significant weight (38%) during

execution. This is attributed to the limited number of writes in such applications,

reserving five ways unnecessary for data, resulting in the conversion of one data

block per set for storing instructions. As we transition to mid and high WPKI

benchmarks, the proportion of execution time for 2:6 and 1:7 partition ratios increases.

This correlates with the expansion of WPKI, indirectly leading to a larger memory

footprint and a preference for a greater number of data blocks within a given set. The

rationale behind P-ViSC settling with 3:5, 2:6, and 1:7 partition ratios for workloads
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Table 5.5: Distribution of execution time of P-ViSC while running various benchmark
mixes (%)

System Benchmark Mix Partition Ratio
1:7 2:6 3:5 4:4

Unicore
Low 4 2.8 55.5 37.7
Mid 30.5 13.5 53.5 2.5
High 26.75 13.75 58.5 1

Dual-core

Low 4.67 4.33 77.00 14.00
Mid 25.50 15.00 57.50 2.00
High 24.67 16.67 58.67 0.00

Low-Mid 20.00 11.33 65.00 3.67
Low-High 31.50 15.00 53.00 0.50
Mid-High 28.25 17.32 54.43 0.00

Quad-core

Low 11.5 8.5 68.5 11.5
Mid 16.5 13.5 69.5 0.50
High 32 20.5 47.5 0

Low-Mid 23 16.5 60.5 0
Low-High 28 16.5 55 0.5
Mid-High 31 17.5 51 0.5

other than entirely low WPKI benchmarks is evident in dual-core and quad-core

systems. As previously discussed, a significant portion of cache block writes pertains

to data block writes. Allocating a way for instructions effectively mitigates writes

to that way and prolongs its lifespan. Given the fewer data writes for low WPKI

applications, reserving more instruction ways helps preserve them from premature

wear. Conversely, for high and mid-category benchmarks with more data writes,

P-ViSC allocates additional space for data blocks by converting existing instruction

ways into data ways. Therefore, we conclude that P-ViSC adapts to the dynamic

write patterns of applications and adjusts the partition ratio accordingly to enhance

lifetime of NVM LLCs.

5.4.6 Overhead Analysis

Most of the state-of-the art technologies typically incur substantial storage overhead

due to using counters, tables, and buffers for estimating writes and managing data

swapping [11] [12] [14] [13]. E-ViSC and P-ViSC employ counters, swap buffers, and
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threshold timers for write counting and swapping operations, thereby contributing

to the storage overhead. Let S, A, B, T , N , and M represent the quantities of

sets, associativity, block size, tag size, swap buffers, and bits for counters per block,

respectively. The storage overhead can be computed as follows:

θ =
M × S × A+N ×B

S × A(B + T )
× 100 (5.1)

In our experiment, we selected a buffer size (B) of 64 bytes and a 32-bit wide

memory address. E-ViSC employs a swap buffer of 64 bytes, a 10-bit global saturating

counter, a 10-bit threshold timer, and an additional bit per way for instruction and

data way mapping, resulting in a storage overhead of 0.21%. Similarly, P-ViSC

utilizes an additional 64-byte swap buffer, a 10-bit global saturating counter, a

storage mechanism for partition ratio, and instruction-data mapping, resulting in

a 0.22% overhead. The adoption of a global counter instead of multiple counters

for each set/way significantly reduces the associated overhead. Since this overhead

remains unaffected by cache size, both techniques can be applied to larger caches

without incurring additional hardware overhead. Swapping operations contribute

to increased write counts for the proposed techniques. In the case of the unicore

system with 512KB L2 cache, ViSC exhibits a 0.40% overhead compared to the

baseline architecture. For E-ViSC and P-ViSC, these overheads are 0.73% and 0.37%,

respectively. E-ViSC mitigates write overhead resulting from swapping, particularly

for low WPKI benchmarks, owing to longer reorganization intervals. Nevertheless,

the overall write count due to swapping remains high for E-ViSC due to frequent

swapping in mid and high WPKI benchmarks.

5.5 Conclusion and Future scope

This chapter introduces three techniques - ViSC, E-ViSC, and P-ViSC, that aim to

enhance the lifetime of SLC NVMs when employed as LLCs. These techniques use

the logical partitioning of NVM LLCs for storing data and instructions, periodically

reorganizing them to distribute write operations across the memory uniformly, thereby

mitigating memory cell wearout. While E-ViSC dynamically tunes reorganization
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intervals, P-ViSC adjusts partition ratios during application execution. Experimental

results show the efficacy of these techniques across unicore, dual-core, and quad-core

systems, showcasing superior performance compared to existing methods, particularly

in multi-core setups handling intensive workloads. Notably, E-ViSC exhibits better

performance by adaptively capturing application-specific write patterns, while P-ViSC

excels in scenarios where dynamic adjustment of instruction-data partition ratios is

crucial. Furthermore, these methodologies hold promise for customization to leverage

variations between hard and soft bits in Multi-Level Cell NVMs, thereby boosting

LLC packaging density.

<<=8=;;
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C h a p t e r

Trace buffer Assisted Last Level

Non-Volatile Caches

This chapter discusses Trace buffer Assisted Non-volatile memory Caches (TANC), a

novel technique to improve the lifetime, write latency, and energy efficiency of MLC

NVM LLC. Due to the structural peculiarity and limited write endurance, MLC

NVMs are more susceptible to repeated write attacks and early wear out due to non-

uniform writes [36] [37]. TANC uses embedded trace buffers to mitigate the effect of

repeated writes on MLC NVM LLCs. TANC gives superior performance in improving

the lifetime and performance of NVM LLCs when compared to other popular MLC

NVM cache optimization techniques. Unlike popular lifetime improvement techniques

TANC utilizes existing resources, hence the overhead is minimal.

6.1 Introduction

The previous chapters discuss lifetime enhancement techniques for SLC NVM LLCs.

As discussed in previous chapters, due to the unique structure of MLC NVMs, memory

cells can be of hard-bit or soft-bits. Write operations to hard-bit will result in extra
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write to corresponding soft-bit owing to the soft-bit restoration. Hence the lifetime

of MLC NVMs are less when compared to SLC NVMs [36]. The effectiveness of

wear-leveling techniques for SLC NVMs may diminish when applied to MLC due to

the inability to discern between hard and soft bits. Specialized techniques tailored

for MLC caches show superior performance compared to generic approaches. Our

proposed approach, known as Trace buffer Assisted Non-volatile memory Caches

(TANC), employs ETB to enhance the lifetime, write latency, and energy efficiency

of MLC NVM LLC. The key contributions of this chapter are as follows.

• We propose a technique, TANC and its variants, which use the Embedded Trace

Buffer (ETB) to minimize the effect of repeated writes on memory cells.

• We study the impact of TANC on the lifetime, write latency, and energy of MLC

NVMs with respect to SLC and other existing MLC optimization techniques.

• We study the impact of applications without cache locality and their impact on

NVM LLCs and address the issues.

Before discussing TANC, we will discuss the motivation and details of ETB.

6.2 Motivation

To study the impact of restoration of soft-ways during hard-way writes on MLC NVM

LLCs, we run SPEC CPU2006 benchmarks on SLC and MLC NVMs in a unicore

architecture. We model a unicore system in gem5 simulator with two levels of cache

and main memory. The L1-I and L1-D caches are configured as 32KB, 2-way set

associative. The unified L2 cache is 512KB, 8-way set associative, and we use 8 GB

of main memory. The block size is 64 bytes. We executed a 1 billion instruction

window for selected benchmarks from the SPEC CPU2006 suite for SLC and MLC

L2 cache and calculated the relative lifetime. Figure 6.1 shows the relative lifetime

of MLC NVMs with respect to SLC NVMs for various SPEC CPU2006 benchmark

programs. We can observe that MLC NVM LLC shows a lower lifetime than SLC

for all benchmarks. From the experimental analysis, it is evident that for a given
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Figure 6.1: Relative lifetime of SLC and MLC NVM LLC for various SPEC CPU2006
benchmarks

application execution window, MLC NVM incurs more writes than SLC NVM caches

due to soft-way restoration.

Hence, MLC NVMs are prone to early wear-out due to applications with non-

uniform write applications and targeted repeated write attacks through malicious

applications. The lifetime improvement techniques for SLC NVMs are unsuitable for

MLC NVMs as they do not distinguish between hard and soft ways. This motivated

us to develop an efficient, low-overhead technique that would enable us to use MLC

NVM as LLCs, addressing the major challenges such as lower lifetime, higher write

energy and latency. We discuss our proposed technique TANC and its variants in the

coming sections in detail.

6.3 Proposed Techniques

We propose an innovative technique, TANC, which uses ETBs to improve the lifetime

and performance of MLC NVM LLCs. Unlike the techniques discussed in the previous

chapters, TANC is customized for MLC NVMs considering its unique structure. Before

discussing the details of the technique, we discuss ETB, which is the core component

of TANC and its variants.
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6.3.1 Embedded Trace Buffer (ETB)

Embedded Trace Buffers (ETBs) [38] are available in modern processors for post-

silicon validation but often remain unused after this stage. Post-silicon validation

involves testing a chip for complete functional correctness in a laboratory setting,

where the accuracy of the design is verified on real hardware in a practical environment.

The primary goal of post-silicon validation is to identify design bugs overlooked during

pre-silicon validation and to ensure the chip or System-on-Chip (SoC) is ready for

deployment. An Embedded Trace Macrocell (ETM) is a real-time trace module

that traces the instructions and data of a processor. Retrieving trace data from

a chip using ETM becomes more complex as processor speeds increase, causing

challenges in maintaining signal quality or accommodating numerous trace port pins.

To address this, an on-chip buffer region is integrated to store trace data, which is

later accessed at a slower rate. The data generated by the ETM is stored in the ETB,

with its size varying depending on the processor architecture, ranging from 8 to 32KB.

Processors like ARM 7-9 [39], Cortex A8-A9 [40], CortexM0-M3 [41], and SPARC

Leon3 [42] utilize ETBs for post-silicon validation. However, after this stage, ETBs

often remain unused. Given their idle status, incorporating ETBs into the memory

hierarchy is proposed to reduce LLC writes, thereby enhancing performance. Various

optimization techniques utilize ETBs, such as opportunistic caching of evicted blocks

in Network-on-Chip (NoC) routers, which aims to reduce L1 cache miss penalties [43].

While using ETBs as victim caches for L1 D-cache can improve performance [44], it

may increase area and power consumption due to additional circuitry. Our proposed

technique, TANC, employs ETBs as write buffers for enhancing the performance of

MLC NVM LLCs. TANC is more area and power-efficient than hybrid caches, as it

utilizes existing resources and fewer SRAM components, storing hot data blocks in

the SRAM portion.

6.3.2 TANC Organization

Key elements of TANC include the ETB [38], wear-leveling module, and skip module.

The diagram in Figure 6.2 illustrates the memory hierarchy with TANC, while Figure

6.3 showcases the schematic of TANC-enabled L2 cache. ETB is closely linked with
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L1 I

L1 D

TANC 
enabled 

L2

Main
Memory

Figure 6.2: Schematic diagram of memory hierarchy with TANC

the L1 cache, and adjustments are made to the L2 cache controller to facilitate ETB

access from both the L2 cache and main memory. Following post-silicon validation,

control signals from the L2 cache controller enable the ETB to serve as an additional

storage buffer for L2 writes. This ensures that the ETB can effectively be utilized

for regular operations and validation. A segment of available ETB is utilized to

buffer writes in TANC. Our experimental study show that increasing the active ETB

size reduces effective writes in the MLC NVM cache enhancing both its lifetime and

performance. However, incorporating more SRAM based ETB incurs higher static

power dissipation. As shown in Table 2.1 SRAM cells consume 60nW per cell as

leakage power. This is because the SRAM cell usually operates in standby mode

[45]. The subthreshold and gate leakage current are the principal contributors to the

total leakage current, resulting in leakage power dissipation. As the size of SRAM

memory increases, the leakage power also increases due to an increase in memory

cells. Therefore, determining the ETB size involves a trade-off between extending

the lifetime and minimizing static power consumption. Based on our experimental

analysis, we set the ETB size to eight blocks (512B) for our experiments. During

execution, when recently written blocks fill the ETB, existing blocks must be replaced

to accommodate new ones. TANC identifies the least recently written block among
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Figure 6.3: Schematic representation of TANC enabled L2 cache

the ETB entries as the victim block, using a three-bit counter associated with each

entry. A counter value of zero indicates the block with the oldest write history.

The wear-leveling module is active only for specific TANC variants, enhancing write

distribution through an inter-pair way swapping mechanism similar to the state-

of-the-art ENDURA [46] technique. The skip module is key component of the

TANC_ALL_SKIP variant, which is activated when ETB write-backs are frequent

to the L2 cache due to a lack of memory locality. We summarize the key features of

various TANC variants.

• Enhances lifetime of MLC NVM LLCs by utilizing unused ETBs for write

reduction.

• Improves the write energy and latency by redirecting frequent writes to SRAM

based ETB.

• Reduces the intra-set variation using a naive SpH wear-leveling policy.

• Addresses the LLC thrashing issue in applications with poor temporal locality.

Utilizing soft-ways, which offer quicker access and lower write energy consumption

than hard-ways, to store heavily written blocks can enhance MLC NVM cache write
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Table 6.1: Service of requests in TANC

Request type Request ETB L2 Action Sequence of access
1 Read Miss Miss Main Memory Access Request : 1||2 -> 4 Response : 4 -> 1
2 Read Miss Hit Service the request from L2 Request : 1||2 Response : 1
3 Read Hit Miss INVALID STATE Not Applicable
4 Read Hit Hit Service the request from ETB Request : 1||2 Response : 2
5 Write Miss Miss Main Memory Access Request : 1||2 -> 4 Response : 4 -> 1
6 Write Miss Hit Write to ETB Request : 1||2 Response : 3 ->2
7 Write Hit Miss INVALID STATE Not Applicable
8 Write Hit Hit Service the request from ETB Request : 1||2 Response : 2

latency and energy efficiency. However, this strategy leads to uneven write distribution

and premature degradation of soft-ways, negatively impacting the overall lifespan

of the NVM cache. TANC addresses this issue by utilizing the unused SRAM-

based ETB to handle write requests for MLC NVMs. Leveraging the faster and

more energy-efficient write capabilities of SRAM cells, our proposed method reduces

latency and write energy while extending the relative lifetime of MLC NVM caches.

Unlike hybrid caches, which require more space and suffer from leakage power issues,

TANC optimally utilizes NVM features and allocates unused resources like the ETB

to enhance performance. Various types of potential requests within TANC are

outlined in Table 6.1. The columns of Table 6.1 shows request categories, request

characteristics, presence in either the ETB or L2 cache, actions taken for each request,

and their control flow as depicted in Figure 6.3. The L2 cache controller examines the

ETB and L2 for every request. Given that ETBs function as SRAM-based storage

units linked with processors, all read-write requests are handled within a single cycle.

Request types 1 and 5 denote read and write requests, respectively, which experience

misses in both the ETB and L2, necessitating their forwarding to main memory as

standard cache miss requests. Type 2 requests signify read accesses for blocks missing

in the ETB but present in the L2, which TANC accommodates by serving them

directly from the L2 cache. Since blocks in the ETB are invariably written from the

L2 cache, an L2 cache miss leads to an ETB miss, making type 3 and 7 requests

nonexistent. Read and write requests that hit the ETB (request types 4 and 8) are

catered to directly from the ETB. In instances of L2 write hits which are absent in

the ETB (request type 6), the block is written to the ETB, and subsequent requests
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Table 6.2: TANC variants and associated modules

Variant Name ETB contents Wear-leveling Skip
TANC_HW Hard-way blocks only Inactive Inactive

TANC_HW_SW Hard-way and selected soft-way blocks Inactive Inactive
TANC_ALL Hard-way and soft-way blocks Inactive Inactive

TANC_HW_WL Hard-way blocks only Active Inactive
TANC_HW_SW_WL Hard-way and selected soft-way blocks Active Inactive

TANC_ALL Hard-way and soft-way blocks Active Inactive
TANC_ALL_SKIP Hard-way and soft-way blocks Inactive Active

are fulfilled from the ETB until eviction occurs.

Depending on the processor, ETBs come in sizes ranging from 8KB to 32KB [47].

Our experimental studies show that increasing the ETB size in TANC enhances the

lifetime and performance of NVM LLC, but it amplifies the leakage power associated

with the SRAM-based ETB. Based on empirical analysis, we fix ETB size as 512B

(equivalent to 8 cache blocks) as the optimal design choice. Considering selection

criteria for block placement in the ETB, wear-leveling techniques, and ETB write-back

policies, we propose and evaluate seven variants of TANC, as summarized in Table 6.2.

The primary objective across all TANC variants is to minimize L2 writes by utilizing

the ETB. The initial three variants solely employ strategies for minimizing writes. The

subsequent three variants incorporates an additional wear-leveling module to improve

lifetime further. The final variant adopts a skip cache approach to mitigate the

impact of frequent ETB write-backs. The following sections discuss these techniques

comprehensively.

6.3.3 TANC variants with write minimization only

The main goal of TANC is to improve the lifetime and efficiency of MLC NVM by

reducing write operations using ETB. This section discusses three different approaches

that utilize ETB to reduce the frequency of writes to NVM, each varying in the

selection of blocks to keep in ETB. Following sections briefly describe the specific

techniques used in these approaches.
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• TANC_HW:

As previously discussed, hard-way writes are costly compared to soft-way writes.

Each hard-way write requires an additional write to the corresponding soft-way,

reducing the memory lifetime. Conversely, soft-way writes involve a single-step

procedure. In our initial variation, referred to as TANC_HW, the ETB is

exclusively designated for hard-way writes. When a write request is initiated to

the L2 cache, TANC assesses whether the requested block, such as block A, is

stored in a hard or soft way. If block A resides in a hard-way of the cache, the

process is executed by writing it in the ETB. Subsequent requests to block A,

until its eviction will be serviced from the ETB. In case of a hit in a soft-way,

the corresponding operation is managed directly from the L2 cache. Cache

misses are handled conventionally. The ETB is exclusive for storing hard-way

blocks.

• TANC_HW_SW

Frequent writes to the hard-ways and repeated writes to the soft-ways can

adversely affect the lifetime of MLC NVM. Hence, it is important to prioritize

heavily written soft-ways along with hard-ways for extending MLC NVMs

lifetime. In the TANC_HW_SW approach, the ETB accommodates hard-ways

and some frequently accessed soft-ways for write operations. When a soft-way

undergoes consecutive writes n times, it gains the status of a hard-way and

is stored in the ETB. During the ETB replacement block selection, hard-way

blocks are selected if and only if soft-way blocks absent in the ETB.

• TANC_ALL

As discussed, multiple soft-way writes are as important as hard-way writes.

Although the first two variants partly address challenges linked with hard-way

and repeated soft-way writes, some scenarios necessitate more frequent access

to soft-ways over hard-way writes. To address this issue, we present the third

variation of TANC, called TANC_ALL. In this version, all write requests are

managed via ETB, irrespective of their source, by directing them to ETB for

the initial write process.
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6.3.4 TANC Variants With Write Minimization And Wear-

leveling

Write variation occurs when certain segments of memory are accessed more frequently

for write operations than others. This discrepancy in write frequency can occur

due to various factors such as irregular write patterns in applications or intentional

repetitive writes induced by malicious attacks. Such write variations is visible at

various levels within the memory hierarchy. As mentioned in the previous chapters,

wear-leveling strategies aim to distribute writes evenly, thereby minimizing write

variation. In the context of cache memory, write variation is categorized into intra-set

variation, occurring within a set, and inter-set variation, which occurs across sets

[6]. These variations are quantified using the coefficients of intra-set (IntraV ) and

inter-set (InterV ) variation, respectively. If the write distribution is uniform, each

cache way will have approximately equal write counts, resulting in both InterV and

IntraV values approaching zero. A notable variation in inter-set writes suggests that

cache lines in different sets may experience significantly different write frequencies

due to biased address residency in applications. Similarly, substantial intra-set write

variations occur when a single cache line in a set receives frequent cache write hits,

causing it to absorb a significant portion of the cache writes. Consequently, the

remaining M − 1 lines in the set (for an M -way associative cache) may have unevenly

distributed write accesses. Maintaining low values for InterV and IntraV helps in

mitigating the risk of early wear-out of memory cells. Various advanced techniques

for SLC NVM and MLC NVM rely on uniform write distribution. TANC_HW_WL,

TANC_HW_SW_WL, and TANC_ALL_WL are variants that integrate wear-

leveling into the base TANC model. ETB reduces the actual number of writes to

NVM but does not guarantee uniform distribution across the memory. Wear-leveling

techniques such as ENDURA [46] employ customized strategies for MLC NVM-based

caches. We incorporate ENDURA’s SpH wear-leveling strategy into TANC variants

to ensure more uniform write distribution across the cache memory. The wear-leveling

module, depicted in Figure 6.2, gets activated after a fixed time interval (100K cycles).

We utilize a three-bit saturation counter per hard-way/soft-way pair to estimate block

write counts. While the wear-leveling module is active, write-back operations from
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ETB to the L2 cache trigger way pair swapping. This swapping exchanges the pair

with the highest write count and one with the lowest within a set, thereby improving

write distribution. Swapping is aborted if all counters are saturated, indicating

heavy writes to all pairs. After swapping, the counters are reset. Since ETB ensures

that most repeated write requests bypass the L2 cache, we opt for a less accurate

estimate of write counts, significantly reducing associated overhead. Activation of the

wear-leveling module by an ETB write-back at fixed intervals ensures that swapping

and related writes do not degrade the L2 cache’s lifetime. We analyze the impact of

the wear-leveling module in TANC in the experimental setup and results analysis

section.

6.3.5 TANC with Skip cache

Cache memories become effective only when applications exhibit either spatial or

temporal locality. However, specific applications fail to demonstrate locality either

throughout their entire execution or during specific phases. Consequently, such

applications incur a higher cache miss rate, leading to a phenomenon known as

thrashing [48]. Notably, applications like bzip2 and lbm exhibit a high miss rate,

reducing the impact of techniques like TANC. This degradation in effectiveness

is resulted from the absence of locality, resulting in frequent cache evictions from

the ETB. To mitigate this issue, we propose modifying the existing skip cache

approach [49]. In this approach the thrashing and non-thrashing phases of application

execution are identified and bypasses the cache accordingly using shadow tags to

monitor application behaviour. Specifically, the application execution is segmented

into 50-million-cycle phases to distinguish thrashing from non-thrashing phases. A

variant of TANC, namely TANC_ALL_SKIP, tackles the memory thrashing problem

by leveraging ETB writes to identify thrashing phases of application execution.

Skip cache-enabled TANC monitors ETB misses and activates skip cache mode

upon surpassing a predetermined threshold. During skip cache mode, write-backs
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ALGORITHM 6: Working of TANC_ALL_SKIP technique
1 ETB_HIT : TRUE if requested block is present in ETB else FALSE;
2 L2_HIT :TRUE if requested block is present in L2 else FALSE;
3 ETB_MISS_COUNT =0 : Counts consecutive ETB write miss;
4 ETB_FULL = FALSE :TRUE if ETB is full else FALSE;
5 SKIP = FALSE : FALSE if skip inactive else TRUE;
6 MAX = 10 : Maximum number of consecutive ETB write miss for activate skip cache;
7 ETB_READ : ETB READ HIT; Requested block is read from ETB;
8 ETB_UPDATE : ETB WRITE HIT; Requested block is updated in ETB;
9 L2_READ : L2 READ HIT; Requested block is read from L2;

10 ETB_WRITE : L2 WRITE HIT; Requested block is written to ETB;
11 MM_ACCESS : L2 Miss; Access Main Memory for the corresponding request;
12 ETB_EVICT_L2 : Write back the LRU block to L2;
13 ETB_EVICT_MM : Write back the LRU block to Main Memory;
14 repeatfor every L2 cache request R and block B do
15 if R==read then
16 if ETB_HIT then
17 ETB_READ;
18 else
19 if L2_HIT then
20 L2_READ;
21 else
22 MM_ACCESS;

23 else
24 if ETB_HIT then
25 ETB_UPDATE;
26 ETB_MISS_COUNT=0;
27 else
28 ETB_MISS_COUNT++;
29 if L2_HIT then
30 if ETB_FULL;
31 then
32 if SKIP then
33 ETB_EVICT_MM;
34 ETB_WRITE;
35 else
36 ETB_EVICT_L2;
37 ETB_WRITE;

38 else
39 ETB_WRITE;

40 else
41 MM_ACCESS;

if ETB_MISS_COUNT >=MAX then SKIP=TRUE;
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from ETB are directed to the next level of the memory hierarchy (main memory)

rather than the corresponding L2 cache. Activation of skip mode is triggered by ten

consecutive write misses to the trace buffer, and the system reverts to the default

mode immediately after the first trace buffer hit. Detailed working of the skip cache

module are provided in Algorithm 6. Further discussion on the experimental results

and analysis of this technique is presented in the experimental results and analysis

section.

6.4 Experimental Setup and Result Analysis

We use gem5 simulator for modeling our proposed variants of TANC architectures

using the configuration given in Table 6.3. Similar to the previous chapters we evaluate

the performance of our proposed techniques by we categorizing the SPEC CPU2006

benchmark programs into three categories based on WPKI and MPKI for L2 cache

and as summarized in Table 3.1. We do sufficient fast-forwarding and execute at

least one billion instructions covering the benchmarks sim points to collect statistics

for further analysis. We use Immediate Restore Scheme (IRS) [23] to address the

write disturbance where for every hard-way write, the corresponding soft-way is read

first and restored immediately after the completion of the hard-way write operation.

We use the RUBY memory model and MESI Two-Level protocol to maintain cache

coherence. To do a fair analysis, we compare TANC and its variants given in Table

6.2 with the following conventional NVM architectures denoted by,

• SLC_C: SLC NVM based L2 cache without any optimization

• SLC_ViSC: SLC NVM based L2 cache employing Virtually Split Cache tech-

nique [50]

• MLC_C: MLC NVM based L2 cache without any optimization

• MLC_WL: MLC NVM based L2 cache with the naive SpH wear-leveling policy

[46]

• ENDURA: A state-of-the-art wear-leveling technique customized for MLC NVM

based L2 cache[46]
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Table 6.3: Simulation parameters

CPU Unicore, 2 GHz
L1 Cache Private, 32KB, SRAM Split cache, 4-way set associative, 64B block
L2 Cache 4MB STT-RAM, 8-way set associative, 64B block

Main Memory 8 GB
ETB 512B, SRAM

Wear-leveling interval 100000 Cycles

• RESTORE: A state-of-the-art performance and lifetime improvement technique

customized for MLC NVM based L2 cache [24]

In subsequent sections, we discuss the impact of TANC on various parameters

compared to other state-of-the-art lifetime improvement technique based on different

popular performance metrics.

6.4.1 Impact on Relative Lifetime

The lifetime of NVM cells is a critical factor, especially considering their susceptibility

to premature aging due to limited write endurance. Exploiting security vulnerabilities,

malicious users may employ repeated write attacks to exploit these limitations. MLC

NVMs, with their multi-step writing process, are particularly vulnerable to early wear

out compared to SLC NVMs. Like previous chapters, we determine the effectiveness

of our proposed approach in improving the lifetime using relative lifetime. Figure

6.4 illustrates the geometric mean of relative lifetime across various benchmarks,

comparing TANC variants and other state-of-the-art wear-leveling techniques for SLC

and MLC NVMs. SLC_ViSC enhances lifetime by partitioning the unified cache

into virtual instruction and data caches, redistributing concentrated writes across

memory. ENDURA employs inter-pair swapping to balance write distribution in MLC

NVMs, enhancing lifetime. RESTORE minimizes restoration writes by deactivating

soft-ways associated with frequently used hard-ways. Implementing wear-leveling

with TANC ensures even write distribution in the cache, further enhancing lifetime.

The skip cache module addresses poor cache locality by diverting ETB evictions

to main memory when thrashing occurs, thereby reducing L2 cache wear. Results,

normalized to SLC_C, show SLC_ViSC improving lifetime by 66%, highlighting the
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efficacy of virtual cache partitioning. MLC_C exhibits approximately two-thirds of

SLC_C’s lifetime due to its multi-step writing policy, with MLC_WL enhancing its

lifetime by 19%. ENDURA and RESTORE show 3% and 14% lifetime improvements

over SLC_C, respectively, underlining the effectiveness of their respective strategies.

Figure 6.4: Relative lifetime of various techniques

All versions of TANC utilize ETB to limit writes to the L2 cache, significantly

enhancing their relative lifetime. The effectiveness of this technique depends largely

on the ETB access policy and application patterns. TANC_HW, which exclusively

employs ETB for hard-way writes, shows a 10% enhancement over SLC_C. Par-

ticularly, TANC_HW excels in benchmarks such as namd, characterized by low

WPKI and high write variation. Each hard-way write triggers an associated soft-way

write during restoration operations. TANC_HW mitigates such redundant writes,

especially in repeated writes to hard-ways. Variants of TANC without wear-leveling

reduce L2 cache writes but do not ensure uniform distribution. TANC_HW_WL, a

basic wear-leveling policy applied to TANC_HW, boosts relative lifespan by 35%

owing to its efficient write distribution. By utilizing ETB to process write requests

to frequently written soft-ways instead of hard-ways, TANC_HW_SW outperforms

TANC_HW, achieving a mean lifetime similar to SLC_C. Furthermore, wear-leveling

(TANC_HW_SW_WL) enhances its lifetime by an additional 17%. TANC_ALL,

employing ETB for all write requests, exhibits superior performance due to minimized

L2 writes. It exclusively handles write requests from ETB, with L2 cache writes

limited to write backs from ETB. TANC_ALL’s mean relative lifetime matches that
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of SLC_ViSC, with wear-leveling further extending it by 39%. Enabling cache skip-

ping for TANC_ALL yields the most substantial lifetime improvement, particularly

beneficial for benchmarks like bzip2, lbm and libquantum, which suffer from signifi-

cant cache thrashing due to frequent writebacks from ETB. TANC_ALL enhances

MLC_C’s mean lifespan by 4.36x compared to SLC_C and 2.62x to SLC_ViSC.

Table 6.4: Comparison of relative lifetime of various techniques for different benchmark
applications

Low WPKI Mid WPKI High WPKI MeanGr H2 Nd So Bz Lq Sj Hm Lb Ls
SLC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SLC_ViSC [50] 1.03 2.75 3.44 1.76 1.00 1.00 3.16 2.22 1.26 1.08 1.66
MLC 0.93 0.57 0.81 0.74 0.52 0.50 0.74 0.88 0.69 0.56 0.68

MLC_WL 1.38 1.25 1.12 0.69 0.52 0.50 1.13 1.17 0.78 0.73 0.87
MLC_ENDURA [46] 1.30 1.58 2.85 0.81 0.52 0.51 1.67 1.40 0.76 0.57 1.03
MLC_RESTORE [24] 0.93 0.62 0.81 0.74 0.52 0.52 0.74 0.88 0.69 2.01 0.78

TANC_HW 0.93 0.99 1.00 0.76 0.52 0.50 0.77 0.99 0.70 0.90 0.78
TANC_HW_SW 1.41 1.00 6.91 0.76 0.52 0.50 0.77 1.00 0.70 1.01 1.00

TANC_ALL 1.41 1.74 53.58 0.86 0.52 0.50 0.86 4.01 0.75 1.72 1.63
TANC_HW_WL 1.42 1.67 2.51 0.85 0.52 0.50 1.59 1.74 0.78 1.23 1.13

TANC_HW_SW_WL 1.42 1.81 3.40 0.85 0.52 0.50 1.59 1.76 0.78 1.13 1.17
TANC_ALL_WL 1.26 2.53 77.79 0.92 0.53 0.50 1.60 6.50 0.83 2.20 2.02

TANC_ALL_SKIP 3.27 2.14 53.80 1.37 1.94 114.44 1.45 4.01 2.5 2.50 4.36

Table 6.4 shows the relative lifetime of various techniques across different bench-

marks. The best values among the variants are highlighted in bold. In the low WPKI

benchmark category, particularly those with a high L2 cache hit rate, TANC_ALL

variants exhibit notable performance enhancements. The elevated L2 hit rate cor-

responds to a higher ETB hit rate, reducing writes to the L2 cache and enhancing

the lifetime. For benchmarks like namd and h264ref, where most write requests are

ETB hits and SKIP mode is rarely activated, TANC_ALL and TANC_ALL_WL

outperform TANC_ALL_SKIP. Specifically, namd experiences significant lifetime

improvement with TANC_ALL and TANC_ALL_WL due to its high L2 hit rate

and predominant soft-way writes. Conversely, the lower hit rate of soplex minimizes

the impact of ETB, resulting in the superior performance of TANC_ALL_SKIP

compared to other TANC variants. In mid-WPKI benchmarks such as bzip2 and

libquantum, MLC NVM caches show better lifetime when TANC_ALL_SKIP is
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activated. For instance, in libquantum with a meager L2 hit rate, TANC_ALL_SKIP

significantly prolongs the lifetime by mitigating thrashing effects, whereas other

techniques offer marginal improvements. Wear-leveling strategies like ViSC for SLC

NVM, ENDURA for MLC NVM, and the naive SpH technique in other variants have

minimal impact due to the negligible influence of write distribution schemes on such

applications with low L2 hit rates. These applications trigger frequent evictions from

ETB thus TANC exhibits minimal impact on lifetime. The skip cache policy of writing

back to memory instead of L2 cache improves lifetime as recently accessed blocks are

not re-referenced. Among mid-WPKI benchmarks, sjeng with the highest L2 hit rate

shows superior performance with TANC_ALL compared to TANC_ALL_SKIP, a

trend also observed in high WPKI benchmarks. For instance, hmmer benefits from a

high L2 hit rate, enabling ETB to significantly reduce L2 writes and thereby improve

lifetime, whereas lbm and leslie3d, with their low hit rates, achieve better lifetime

improvement by skipping cache for ETB writeback.

6.4.2 Impact on Average Memory Access Time

The high write latency of MLC NVM is a serious concern when utilized as cache

memories. Figure 6.5 illustrates the normalized geometric mean of average memory

access time in cycles (AMAT) across various cache architectures. For a given cache

size, the write latency of hard-ways is twice that of soft-ways and SLC NVMs, and 5x

greater than SRAM. SLC_C and SLC_ViSC exhibit similar average memory access

times, as ViSC employs wear-leveling techniques that do not minimize or bypass L2

writes. However, the write latency of MLC_C varies depending on the location of

the requested cache block. Due to the high write latency of hard-ways, MLC_C and

MLC_WL demonstrate a 6% higher AMAT than SLC_C. ENDURA employs intra-

pair swapping to ensure frequently accessed blocks are written in soft-ways, resulting

in a 7% reduction in the mean AMAT of MLC NVMs. Despite better application

write patterns, RESTORE exhibits a similar AMAT to MLC_C. With the majority of

writes handled by SRAM-based ETB, TANC variants notably reduce L2 write latency,

which is reflected in their AMAT values. TANC_HW and TANC_HW_SW exhibit

similar AMAT to ENDURA. In the TANC_ALL variant, where ETB manages all
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Figure 6.5: Comparison of normalized AMAT (cycles) of various techniques

write accesses, there is an 11% decrease in AMAT compared to MLC_C. Conversely,

the TANC_ALL_SKIP variant writes back to the main memory instead of the L2

cache during the active skip mode phase, resulting in a 1% increase in mean AMAT.

Table 6.5 shows the average memory access time (AMAT) corresponding to each cache

architecture across various benchmark applications. Lowest values are highlighted

in bold for easy reference. As the number of write hits in the ETB increases, the

AMAT decreases due to faster write accesses to the SRAM-based ETB than the

MLC NVM L2 cache. For applications falling within the low WPKI category, such as

namd, which exhibits a high cache hit rate and minimal memory thrashing, skip mode

remains inactive for the majority of the execution duration, resulting in a reduced

AMAT. Conversely, despite gromacs with a high L2 cache hit rate, the activation

of skip mode during execution leads to increased writebacks from the ETB to main

memory, consequently increasing the average access time for TANC_ALL_SKIP.

Similarly, for mid and high-category WPKI benchmarks, such as hmmer, which have

a high cache hit rate, TANC_ALL_SKIP similar to the TANC_ALL variant as skip

mode remains rarely active during execution. The SpH naive wear-leveling technique,

associated with various TANC variants, facilitates swapping heavily written and

lightly written hard-way soft-way pairs. Unlike in ENDURA which also facilitates

intra-pair swapping between hard-way and soft-way, our SpH naive wear-leveling

policy minimally impacts L2 write latency and AMAT.
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Table 6.5: Comparison of normalized AMAT (cycles) of various techniques for different
benchmark applications

Low WPKI Mid WPKI High WPKI MeanGr H2 Nd So Bz Lq Sj Hm Lb Ls
SLC 1.97 1.07 1.05 1.05 2.14 1.72 1.9 1.96 3.6 2.12 1.73

SLC_ViSC [50] 1.97 1.07 1.05 1.05 2.14 1.72 1.9 1.96 3.6 2.12 1.73
MLC 2.32 1.09 1.06 1.07 2.27 1.77 2.01 2.32 3.86 2.29 1.85

MLC_WL 2.32 1.09 1.06 1.07 2.27 1.77 2.01 2.32 3.86 2.29 1.85
MLC_ENDURA [46] 1.83 1.07 1.04 1.06 2.13 1.71 1.93 1.78 3.61 2.17 1.72
MLC_RESTORE [24] 2.25 1.09 1.05 1.07 2.27 1.77 2.01 2.31 3.86 2.29 1.86

TANC_HW 1.75 1.08 1.04 1.06 2.21 1.73 1.97 1.75 3.76 2.14 1.72
TANC_HW_SW 1.75 1.08 1.03 1.06 2.24 1.73 1.97 1.75 3.76 2.25 1.73

TANC_ALL 1.57 1.08 1.03 1.06 2.14 2.09 1.9 1.57 3.59 1.71 1.65
TANC_HW_WL 1.75 1.08 1.04 1.06 2.21 2.14 1.97 1.75 3.76 1.73 1.72

TANC_HW_SW_WL 1.75 1.08 1.03 1.06 2.24 2.25 1.97 1.75 3.76 1.73 1.73
TANC_ALL_WL 1.57 1.08 1.03 1.06 2.14 2.09 1.9 1.57 3.59 1.71 1.65

TANC_ALL_SKIP 2.67 1.11 1.03 1.08 2.47 2.3 2.16 1.57 4.3 1.87 1.87

6.4.3 Impact on Write Energy

The high energy write energy associated with MLC NVMs is serious challenge in

implementing L2 caches. Compared to soft-ways and SLC NVMs, hard-ways incur 3x

more energy for write operations and are 16x more energy intensive than SRAM for

a given cache size. Our proposed techniques aim to mitigate this issue by reducing

the average write energy of MLC NVM LLCs. TANC shows a significant decrease in

average write energy similar to that of SLC NVMs. Figure 6.6 shows the average write

energy of the proposed techniques alongside MLC_C, SLC_C, and state-of-the-art

wear leveling techniques for both SLC and MLC NVMs. In ENDURA, intra-pair

swapping, which prioritizes frequently written blocks to soft-ways, contributes to an

8.6% reduction in the mean write energy. By diverting the high energy hard-way

writes to ETB in TANC_HW and TANC_HW_SW, energy consumption is reduced

by 30% and 31.5%, respectively. TANC_HW outperforms TANC_HW_SW due to

the latter’s sharing of ETB for selected soft-way blocks, necessitating the writing

back of some hard-way blocks to the L2 cache, increasing the mean L2 write energy.

In TANC_ALL, where all writes are serviced by ETB resulting in lower write energy

hence the mean L2 write energy is reduced by 47.2%, surpassing that of SLC_C.
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Figure 6.6: Comparison of average write energy (nJ) of various techniques (shorter
the bar, the better)

However, during skip mode, TANC_ALL_SKIP writes back the blocks evicted from

ETB to the main memory, resulting in higher mean write energy than other modes.

Table 6.6 presents the write energy of the proposed techniques for each benchmark.

Lowest values for write energy are highlighted in bold. Notably, for benchmarks such

as namd and hmmer, which exhibit minimal L2 thrashing, TANC_ALL_SKIP show

less write energy consumption.

Similar to AMAT, the average write energy of L2 caches varies depending on

the application. Among all benchmark categories, TANC_ALL exhibits the lowest

average write energy. This is attributed to bypassing of all writes by TANC_ALL

to SRAM-based ETB which possesses significantly lower write energy. However,

when ETB writebacks to DRAM-based main memory occur, particularly during skip

mode in TANC_ALL_SKIP, the mean write energy increases due to the high energy

consumption of DRAM writes. Applications like namd and hmmer show lower write

energy because they seldom activate skip mode due to their access patterns, resulting

in fewer ETB to main memory writebacks

6.4.4 Impact on Hard-way Writes

Table 6.7 shows the average reduction of hard-way writes for different TANC variants.
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Table 6.6: Comparison of average write energy (nJ) of various techniques for different
benchmark applications

Low WPKI Mid WPKI High WPKI MeanGr H2 Nd So Bz Lq Sj Hm Lb Ls
SLC 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

SLC_ViSC [50] 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
MLC 1.4 1.38 1.42 1.4 1.4 1.39 1.39 1.4 1.4 1.4 1.40

MLC_WL 1.4 1.39 1.44 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.40
MLC_ENDURA [46] 1.23 1.13 1.28 1.4 1.38 1.39 1.39 0.9 1.46 1.4 1.28
MLC_RESTORE [24] 1.4 1.38 1.30 1.4 1.4 1.4 1.39 1.39 1.4 1.36 1.38

TANC_HW 1.1 1.04 0.59 1.08 1.19 0.95 1.19 0.64 1.2 1.09 0.98
TANC_HW_SW 1.1 1.04 0.39 1.08 1.19 1.12 1.19 0.65 1.2 1.09 0.96

TANC_ALL 0.9 0.86 0.35 0.9 0.9 0.8 0.9 0.4 0.9 0.9 0.74
TANC_HW_WL 1.09 1.05 0.63 1.09 1.09 0.8 1.08 0.61 1.09 1.09 0.94

TANC_HW_SW_WL 1.09 1.05 0.56 1.09 1.09 0.95 1.08 0.61 1.09 1.09 0.94
TANC_ALL_WL 0.9 0.87 0.38 0.91 0.9 0.95 0.9 0.4 0.9 0.9 0.76

TANC_ALL_SKIP 21.03 17.86 2.93 21.8 24.66 12.99 22.43 0.48 25.36 25.67 11.83

Table 6.7: Average reduction of hard-way writes for TANC variants

Reduction in hard-way writes
TANC_HW 23.08%

TANC_HW_SW 23.05%
TANC_ALL 21.13%

TANC_HW_WL 22.50%
TANC_HW_SW_WL 22.48%

TANC_ALL_WL 20.35%
TANC_ALL_SKIP 88.89%
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TANC_ALL_SKIP minimizes the occurrence of two-step writes (hard-way

writes) by redirecting all write operations to the ETB and in skip mode, transfers

data directly to main memory instead of the L2 cache. Among the different variants,

TANC_HW demonstrates the most significant reduction in hard-way writes by

exclusively allocating the ETB for this purpose. Table 6.7 shows that wear-leveling

variants marginally elevate the count of hard-way writes compared to their base

variant. This slight increase in hard-way writes primarily due to the wear-leveling

process and the additional writes resulting from inter-pair swapping.

6.4.5 Impact on Intra-set and Inter-set variations

Due to the multi-step writing process inherent in MLC NVMs, the write variation in

MLC NVM caches is notably higher compared to SLC NVM caches. The core concept

of TANC is minimizing write accesses to the L2 cache through ETB and does not

directly impact on intra-set and inter-set variations. Figure 6.7 shows the comparison

of the IntraV (%) value across different TANC variants, as calculated using equation

3.1, while Table 6.8 presents the same analysis for individual applications. Best

case values are highlighted in bold fond for easy analysis. For most of mid and

high category benchmarks like bzip2 and lbm, TANC has negligible impact on write

variation. However, benchmark programs with low WPKI exhibit an increase in

variation. TANC’s approach focuses on reducing the total number of writes rather

than concentrating them, resulting in significant differences between average and

maximum writes in cache memory, leading to substantial intra-set and inter-set

write variations. Variants employing the naive SpH wearing policy alongside TANC

demonstrate improved write distribution, yielding lower intra-set variation values.

The proposed techniques employ intra-set wear leveling to distribute writes within

the cache memory set. TANC_ALL_SKIP notably reduces writes to the cache, yet

it does not affect the write distribution pattern, resulting in higher IntraV values

and negligible impact on inter-set variation.
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Figure 6.7: Comparison of intra-set write variation of various TANC variants (shorter
the bar, the better)

Table 6.8: Comparison of intra-set write variation∗ of various TANC variants for
different benchmark applications

Low WPKI Mid WPKI High WPKI MeanGr H2 Nd So Bz Lq Sj Hm Lb Ls
MLC 55 72 118 39 34 36 50 37 36 37 47

MLC_WL 45 54 70 38 36 36 40 36 36 36 42
TANC_HW 54 66 211 39 36 36 49 88 36 48 56

TANC_HW_SW 54 66 110 39 36 36 49 89 36 48 52
TANC_ALL 54 66 54 39 36 36 49 43 36 36 44

TANC_HW_WL 47 56 97 38 36 36 40 89 36 47 49
TANC_HW_SW_WL 46 56 90 38 36 36 40 89 36 36 47

TANC_ALL_WL 46 53 39 38 36 36 40 38 36 36 39
TANC_ALL_SKIP 53 103 54 56 48 90 154 43 68 37 64

∗Low value of intra-set variation shows better distribution of writes within the set of a cache
memory
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6.4.6 Overhead Analysis

State-of-the-art wear leveling methods for both MLC and SLC NVMs come with

significant overheads, resulting from the counters, swapping buffers, and similar

components. Another popular strategy is to employ hybrid caches integrating NVM

and SRAM memory cells. Hybrid caches tend to occupy more space and consume

more power than their NVM only counterparts. In the basic versions of TANC

(which lack wear leveling), write reduction relies only on ETB with the aid of the

cache controller. Since ETBs remain unused after the debugging phase, they do not

contribute to additional spatial overhead. The SpH wear-leveling technique employs

a three-bit saturating counter for each block alongside four SRAM-based swapping

buffers of 64B each to facilitate inter-pair swapping. For a 4MB cache, the naive SpH

wear-leveling technique introduces a storage overhead of 0.15%, which is 33% lower

than ENDURA, a customized wear-leveling policy for MLC-NVM caches. Further

optimization of TANC’s wear-leveling policy could reduce the associated storage

overhead even more.

6.5 Conclusion and Future works

MLC NVMs are promising candidates for implementing LLCs due to their high

packing density and low leakage power. Our proposed method, TANC, and its

variations address several key drawbacks of MLC NVMs, such as limited lifetime,

high write latency, and high energy consumption. Compared to SLC NVM caches,

TANC enabled MLC NVM caches demonstrates significant advantages, including

up to 4.36x lifetime, write access times, and reduced energy usage. Contrasting

SLC NVMs, MLC NVMs occupy 1.84x less space and consume 2.62x less leakage

energy. MLC based caches exhibit a remarkable 42x reduction in leakage power

and require 7.20x less space than conventional SRAM caches. These favourable

characteristics of MLC NVMs, along with enhancements through TANC, make them

attractive for implementing large on-chip memories. However, using ETBs can lead

to thrashing in applications with poor L2 cache hit rates. Our proposed approach

addresses this concern with a skip cache policy. Additionally, MLC NVM caches
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often face challenges with multi-step write operations and associated overheads. To

mitigate write disturbance, our technique employs the Immediate Restore Scheme

(IRS). Furthermore, innovative strategies like the Adaptive Restoration Scheme (ARS)

can minimize energy overheads from write disturbances in MLC NVMs. A tailored

policy designed to alleviate write disturbance, working in conjunction with TANC,

can effectively reduce the write energy consumption of L2 caches.
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Conclusion and Future Work

Emerging NVM techniques such as STT-RAM, PCM, and ReRAM are promising

candidates for meeting the demand for high on-chip memory when executing modern

applications. As mentioned in Chapter 1, NVMs have excellent packing density and

low leakage power compared to traditional DRAM and SRAM technologies. However,

the high write energy, high latency and limited lifetime are critical challenges that must

be addressed when NVMs are implemented as LLCs. This chapter summarizes the

contributions of the thesis along with some of the future possible research directions.

7.1 Thesis Summary

The thesis addresses the limited lifetime of NVMs when implemented in LLCs as

three different contributions. The first contribution of the thesis is WALL-NVC.

WALL-NVC is a dual-stage wear-leveling mechanism for improving the lifetime of

SLC NVM caches. WALL-NVC uses Least Recently Used Cold Block (LRU-CB), an

NVM-friendly replacement policy and wear-leveling module, which works in tandem

to delay the aging of NVM memory cells. WALL-NVC improves lifetime by 2.90x with

respect to baseline and shows 1.16x and 1.18x improvement compared to EqualWrites
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and EqualChance, respectively and significantly reduces the intra-set write variation

up to 98.91%. For dual-core and quad-core systems, WALL-NVC improves lifetime

upto 3.34x and 4.11x, reduces intra-set write variation L2 caches upto 90.11% and

94.12%, respectively

The thesis’s second contribution discusses ViSC and its variants, which logically

split the unified NVM LLC into data and instruction ways, which will only store

the corresponding blocks. ViSC changes the logical mapping after a fixed time

interval called reorganization interval, which forces the ways exclusively reserved for

data (heavily written) to function as instruction ways (less written) and vice versa,

resulting in uniform distribution of heavily written ways across the cache memory.

E-ViSC and P-ViSC, variants of ViSC, improve the relative lifetime by 1.71x and

1.57x, respectively, whereas ViSC improves the relative lifetime by 1.64x compared

to the baseline.

The thesis discusses TANC and its variants as its third contribution. MLC

NVMs have better packaging density than SLC NVMs. However, we must address

the significant challenges such as limited write endurance, read/write disturbances,

high energy, and latency for write operations to make them suitable for use as LLCs

in the memory hierarchy. TANC uses a portion of ETB, which is left unused after

post-silicon validation. Since ETB is an existing resource, the overhead of TANC

is very less. Compared to the SLC NVM cache, the TANC offers up to 4.36x the

lifetime, faster access times, and low energy. Compared to SLC NVM, MLC NVM

has 1.84x smaller space and 2.62x less leakage energy. MLC-based caches exhibit

42x less leakage power and 7.20x less space when compared to conventional SRAM

caches.

7.2 Future Research Directions

All the contributions made in this thesis have been focused on general-purpose

applications. However, the future of computing is shifting towards domain-specific,

heterogeneous architectures tailored to specific workloads. Artificial Intelligence

(AI) and Machine Learning (ML) applications, in particular, are gaining immense
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popularity and are deeply integrated into our day-to-day lives. These applications

often require high-performance computing devices with substantial on-chip and

off-chip data storage capabilities, which makes them power-hungry.

On-chip NVM caches offer a promising solution to address the power challenges of

such systems due to their negligible leakage power. Additionally, MLC NVM caches

can provide more efficient data storage, enabling significant power savings when

optimized to handle the specific needs of AI/ML workloads. These optimizations

could also address challenges such as limited write endurance, thereby extending the

applicability of NVM in high-demand scenarios.

Another important future research direction is investigating the impact of security

vulnerabilities and potential attacks on conventional cache memories in NVMs. While

the contributions in this thesis mitigate most write/read attacks on cache memories

by ensuring a uniform distribution of writes, specific advanced attacks, as highlighted

in the latest literature, can bypass wear-leveling techniques. A deeper analysis of

such security vulnerabilities in NVMs and the development of robust countermeasures

remains a promising area of exploration.

Furthermore, customized NVM caches designed explicitly for AI and ML appli-

cations could be transformative, significantly reducing the static power consumption

in their compute nodes. Such advancements would enhance the energy efficiency of

AI/ML systems and contribute to their sustainability, making them more viable for

future large-scale deployments.

<<=8=;;
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