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ABSTRACT

In recent decades, technological advancements have led to the emergence of numerous
applications requiring increased computing power and larger on-chip and off-chip
memory capacities. However, the memory technologies are not scaling up with
the computational throughput of modern multi-core processors. Due to their low
packaging density and high leakage power, traditional memory technologies like
SRAM and DRAM face challenges in meeting substantial on-chip memory demands.
Researchers have developed alternative solutions to address the growing need for
memory, such as emerging non-volatile memory technologies like STT-RAM, PCM,
and ReRAM. These techniques have the advantages of high packaging density, low
power consumption and non-volatility. NVMs can be realized as Single Level Cells
(SLC) or Multi Level Cells (MLC). SLCs store one bit of information per cell, whereas
MLCs can store more than one bit per memory cell. The package density of NVMs
can be further improved by using MLC NVMs instead of SLC NVMs.

Despite their advantages, these memory technologies have limited write en-
durance, high write latency and high write energy consumption. This highlights the
necessity for policies that reduce write operations or evenly distribute them across
memory cells, extending the lifetime of memory by mitigating premature wear-out
caused by frequent writes. Considering the limitations of NVMs that need to be
addressed in order to use them as cache memory, the thesis proposes optimization
techniques for SLC and MLC NVM caches. The proposed techniques perform better
than existing lifetime improvement techniques for SLC and MLC NVMs. The thesis
shows that the proposed technique extends lifetime of MLC NVMs comparable to
that of SLC NVMs with less area overhead.
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CHAPTER

Introduction

The amount of data we process daily has increased significantly over the last few
decades. The rapid rise of IoT, on-demand video platforms, and data-intensive
applications has drastically increased demand for high computing power and memory
for end devices. The processor works at a higher clock speed compared to memory.
To mitigate the speed mismatch between processor and memory, computing systems
employ cache memory, a high-speed small memory near the processing element.
Popular applications such as high-performance computing, gaming applications, and
video streaming platforms exhibit spatial or temporal locality, or both. The spatial
locality of an application refers to the tendency of an application to access contiguous
memory locations in a short period. Matrix multiplication, video/audio streaming, and
web browsing are popular applications that show spatial locality. On the other hand,
the tendency of an application to access the same memory location for a short period
is termed temporal locality. Using cache memory to keep frequently accessed blocks
improves system performance by reducing memory access time, thereby improving
CPU utilization. The small size of cache memories limits the blocks stored in them.
The applications with large memory footprint demand larger on-chip/off-chip caches

for better system performance. Unfortunately, conventional memory technologies
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such as SRAM and DRAM are inadequate to meet the demand for large volumes of
on- and off-chip memories, as they occupy a lot of space and dissipate more static
power [1]. This led to a search for alternative technologies to replace them in various
levels of memory hierarchy and non-volatile memory technologies. Spin Transfer
Torque Random Access Memory (STT-RAM) [2] [3], Phase Change Memory (PCM)
[4] and Resistive RAM [5] were found to be promising candidates. Although these
technologies are more compact and have non-volatility, they have limitations, such as
low write endurance, high write energy and latency. These issues are more severe
in the case of Multi-Level Cell (MLC) NVMs than Single Level Cell (SLC) NVMs.
Applications with non-uniform write patterns can cause some portions of memory
to be more heavily written than others, which results in the early wearing out of
corresponding non-volatile memory cells, owing to its limited write endurance. In the
following sections of the thesis we discuss, how to make use of NVM techniques to

realize cache memories using various optimization techniques in detail.

1.1 Thesis Motivation

Over the past few decades, the demand for on-chip memory has increased due to
data-intensive and compute-intensive applications, and the popular, conventional

memory technologies are inadequate to meet this demand.

Cache | Cache

L2 Cache

Main Memory

Figure 1.1: Memory Hierarchy

Figure 1.1 shows the memory hierarchy of a system with two levels of cache and
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main memory. The size and latency increase as we move from L1 to the main memory
in the memory hierarchy. L1 and L2 caches are realized using SRAM cells. L1 cache
generally has a split architecture with separate space reserved for storing instructions
and data blocks. L2 cache generally follows a unified architecture in which memory
cells are not distinguished between instruction and data blocks. Realizing large
LLCs (L2 or L3) using SRAM is challenging as SRAM cells occupy more on-chip
space and dissipate more leakage power. So, we need better technology to realize
large LLCs with less area and power overhead. As mentioned before, NVMs have
the advantage of higher packaging density, low leakage power, and non-volatility
compared to conventional SRAM and DRAM technologies. However, their low
write endurance, high write energy and latencies are serious challenges that must
be addressed when implemented as caches. As previously mentioned, applications
without a well-distributed memory footprint may lead to frequent write operations
concentrated on a few memory cells, resulting in premature wear out of memory cells.
The early deterioration of specific memory cells can adversely impact the overall
performance, reliability, and lifespan of the memory unit. A straightforward solution
to address this issue is implementing a technique to ensure a uniform distribution of
writes across the memory, irrespective of the application’s memory footprint and is
referred to as wear-leveling [1] [6]. Write minimization is another approach which
minimize the number of writes to NVMs, thereby extending their lifetime [1]. In
cache memories, variations in write operation can occur at different levels. Intra-set
write variation refers to the variation within a set of cache memory, while inter-set
write variation pertains to the variation across different sets. These variations are
quantified using the coefficients of intra-set (IntraV') and inter-set (InterV') variation,

as given in the equations below [6].

2
1 f: \/Zf‘il (Wiy — oM P
k=1

IntraV = ———— 1.1
M T N W rite g, & M—1 1)
2
1 Zg—l ( l]\ill Tk — Wavg)
InterV = SRS 1.2
e Writeavg\/ N-1 (12

Where N is number of sets in cache.
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M is the number of ways in a set.
W, is the write count in set k and way [.
Writeqwgis average write count given by

N M
%1%

N-M

Write variation is a critical issue in designing cache or memory subsystems with

148

2] N =]
=] (=] (=]

5]
(=}

N w
=] (=]

Intraset Write Variation (%)
- [
(=] (=]

=]

As Ca Gr Nd So Bz Lq Mi Sj Hm Lb Ls Mc Mean
Benchmarks

Figure 1.2: Intra-set write variation for L2 cache for various benchmarks

limited write endurance. Significant write variation can severely impact the product’s
lifetime, as a small subset of memory cells experiencing the highest write traffic can
lead to the failure of the entire cache or memory subsystem, even if most cells remain
far from wear-out. A large value of InterVindicates that cache lines in different sets
experience vastly different write frequencies, often caused by applications with skewed
address residency. Similarly, large IntraV value arises when one cache line within
a set frequently receives write hits, absorbing a disproportionate number of writes,
leaving the remaining M — 1 lines in an M way associative cache with uneven write
distribution.

Inter-set write variation can be mitigated by dynamic reallocation, where data is
moved between sets, or by improving address mapping schemes [7| to balance write
traffic across sets. However, addressing intra-set write variation is more challenging

because the cache replacement policies (e.g., LRU) are designed to manage temporal

4
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locality, not to distribute writes evenly across lines within a set. When a single cache
line in a set wears out, the entire set may become unusable due to associative conflicts
or invalid entries. This reduces the overall capacity of the cache and accelerates the
degradation of the memory subsystem, especially in technologies with limited write
endurance, like NVMs. Hence, intra-set write variation is a much more severe issue.
The enhancement techniques discussed in this thesis primarily focus on improving the
lifetime and performance of NVM caches by reducing the intra-set write variation.
The variation in writes within the sets of an L2 cache memory is illustrated
in Figure 1.2, depicting various benchmark programs from the SPEC CPU2006
benchmark suite [details of the benchmarks are given in Chapter 3|. A higher intra-
set variation value suggests that certain blocks within a cache memory set experience
more write accesses than others. This result emphasizes the importance of employing
techniques to prevent repeated writes to specific blocks, either by bypassing them or

distributing them throughout the memory.

1.2 Thesis Contributions

As discussed earlier, incorporating NVMs in on-chip caches offers significant advan-
tages. First, compared to SRAM and DRAM, NVMs provide denser storage due to
their smaller cell size. This enables substantially larger caches, leading to lower cache
miss rates and improved performance compared to SRAM-based caches. Second,
NVM caches can significantly reduce energy consumption. Studies have shown that
caches account for up to 50% of a microprocessor’s energy usage |[8|, with leakage
energy comprising as much as 80% of the total cache energy consumption [9]. By
eliminating leakage energy in standby mode, NVMs can help to lower overall energy
usage. However, write variation poses a major challenge in designing cache or memory
subsystems with limited write endurance. Severe write variation can drastically
reduce the product’s lifetime, as a small fraction of memory cells exposed to high
write traffic can render the entire cache or memory subsystem inoperative, even if
most cells remain far from wear-out. By exploiting this vulnerability, attackers can

create malicious applications that reportedly write on one or few memory locations,
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resulting in early wear out. Consequently, using NVMs as last-level caches (LLCs)
without optimization techniques is challenging.

This section briefly summarizes our three proposed techniques that address this
issue, enhancing the lifetime and performance of NVM caches. Figure 1.3 highlights
the three main contributions of this thesis: two-lifetime improvement techniques
tailored for SLC NVM LLCs and one combined lifetime and performance enhancement
method for MLC NVM LLCs. Detailed explanations and analyses of these techniques
are presented in the subsequent chapters.

In this thesis, we analyze the lifetime improvement and write distribution (intra-
set variation) achieved by our proposed techniques, which aim to ensure uniform
write distribution and prevent repeated writes to memory. A reduction in intra-set
variation inherently improves write distribution and reduces the system’s susceptibility
to malicious repeated write attacks. Therefore, we do not explicitly discuss detailed

mitigation strategies for such attacks.

Thesis
Contributions
SLC NVM MLC NVM
WALL-NVC VisSC TANC
NVM Friendly Virtually Split ETB To Reduce
Replacement Policy+ Unified NVM Cache NVM Cache
Wear leveling Writes

Figure 1.3: Overview of Thesis Contributions
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1.2.1 Write Aware Last Level Non-Volatile Caches (WALL-
NVC)

WALL-NVC is a promising lifetime enhancement technique for SLC NVM LLCs.
Unlike the state-of-the-art lifetime improvement techniques for SLC NVM caches
[10] [11] [12] [13] [14], WALL-NVC focuses on the impact of the cache replacement
policies on the cache lifetime and implements a customized replacement policy for
SLC NVM caches. Conventional cache block replacement strategies, such as Least
Recently Used (LRU), cause the cache to wear down faster, as some cache blocks are
retrieved more frequently than others. The thesis discusses Write Aware Last Level
Non-Volatile Cache (WALL-NVC) for extending the lifetime of NVM while executing
applications with non-uniform writes and to safeguard against targeted malicious
attacks by repeatedly writing to certain blocks as its first contribution.
WALL-NVC is a dual-stage wear-leveling approach, contrasting with most modern
wear-leveling methods. Choosing a better victim block for cache replacement in NVMs
is handled by a new LRU-CB replacement policy, which is the first stage. The second
stage uses a conventional write distribution technique with LRU-CB to extend the
NVM lifetime. WALL-NVC is a reactive approach that uses counters at various levels
of memory hierarchy to activate the write distribution mechanism. The Chapter 4

discusses the detailed description and analysis of WALL-NVC.

1.2.2  Virtually Split Last Level Non-Volatile Cache

Most of the modern processors use private split cache architecture for L1 caches and
shared unified design for the subsequent levels of caches. The data blocks are more
frequently accessed for writes than the instruction blocks. When NVMs are utilised
in L1 caches, D-cache ages out more quickly than I-cache. Experimental studies
indicate that in an L1 split cache, the D-cache experiences an average of 472x more
writes than the I-cache [15]. This significant write variation between I and D caches
indicates a significant variance in write access between instruction and data blocks.
As stated before, data and instructions are stored together in unified last-level caches.

Compared to the number of write operations to the blocks that store instructions,

7
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we observe that the write count of the blocks that store data is high. By virtually
splitting unified LLC for wear-leveling, our proposed approach, ViSC (Virtually Split
Cache), explores the write variance across the data and instruction blocks.

ViSC logically divides the set of n-way set associative cache into m instructions
ways and m-n data ways. The m instruction ways are exclusive for instructions and
remaining m-n are exclusive for data. To distribute the writes uniformly, the logical
mapping of LLC blocks into instructions and data is modified periodically. After
every fixed time epoch, the blocks which are currently reserved for instruction will
act as data blocks in next time epoch. Similarly, blocks which are reserved for data
in current time epoch will act as instruction blocks. ViSC operates in three variants.
The most proactive is the base version, which uses a static reorganisation interval
and initiates reorganisation regardless of write pattern. The reorganisation interval
is dynamically selected in the other two variants, E-ViSC and P-ViSC, based on
the application write pattern. Chapter 5 of the thesis discusses the working and

experimental analysis in detail.

1.2.3 Trace buffer Assisted Last Level Non-Volatile Cache

NVMs can be realized as SLC or MLC. MLC NVMs store two or more bits of data
in each memory cell, in contrast to SLC NVMs, which can only store a single bit per
memory cell. Despite having a much higher packing density than SLCs, MLC NVMs
have short lifetime and large access time. MLC caches use 1.84x less space and 2.62x
less leakage power than SLC caches for a given cache size. To improve the lifetime
and performance of MLC LLCs the thesis proposes Trace buffer Assisted Non-volatile
Memory Cache (TANC) as its third contribution, which utilizes a portion of the
underutilized Embedded Trace Buffers (ETB) to reduce frequent writes to MLC
NVM LLCs. ETBs are storage spaces available in modern processors for post-silicon
validation but are left unused afterwards.

The LLC blocks which are frequently accessed for write operations are kept in
ETB and all the read/write request to that particular block are serviced from ETB
instead of LLC. When ETB is full, least recently written block replaced by writing
back its contents to LLC. This reduces the number of writes to MLC NVM LLC,

8
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which has less write endurance as most of the write operations are done on SRAM
based E'TB. Based on the selection of LLC blocks stored in ETB, TANC has different
variants, and one variant addresses the thrashing effect of cache memories caused
by poor temporal and spatial locality of applications. Chapter 6 discusses on TANC

and its variants in detail.

1.3 Thesis Organization

The thesis is organized into seven chapters. The brief description of the subsequent

chapters is given below.

e Chapter 2 discusses about the background details of various NVM technologies,
their characteristic features and challenges. This chapter also summarizes

different state of the art techniques for life time and performance improvement

of SLC and MLC NVM caches.

e Chapter 3 discusses about the experimental setup used for analysis and
comparison of the proposed techniques with other state of the art techniques.
This chapter briefs about the simulator used for the experiment and benchmarks

used for the analysis.

e Chapter 4 discusses about the first contribution of the thesis, WALL-NVC
a technique to enhance the lifetime of SLC NVM LLCs. The chapter discuss
about working of the proposed technique, experimental setup, result analysis

and comparison with other state-of-the-art lifetime improvement techniques for

NVMs.

e Chapter 5 gives a detailed analysis of second contribution of the thesis, ViSC
and its variants. ViSC is lifetime enhancement technique for SLC NVM LLCs.
ViSC is a low overhead lifetime enhancement technique compared to similar
techniques. Results for various system configurations of the proposed techniques

are also discussed in this chapter.

e Chapter 6 is on the third contribution of the thesis, TANC which a novel

lifetime enhancement technique for NVM LLCs. Unlike previous contributions

9
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TANC is an enhancement technique customized for MLC NVMs. TANC is a low
overhead technique as it utilizes unused resources for lifetime enhancement and
the result analysis discussed in this chapter shows that the proposed technique

improves the lifetime and performance of SLC NVMs.

e Chapter 7 concludes the thesis and discusses few future works and extensions

that can be done based on the contributions of the thesis.

NoRoH-JK-enen
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CHAPTER

Background

I this chapter, we explore the functioning of emerging memory technologies, including
Resistive RAM (ReRAM) [5], Phase Change Memory (PCM) [4], and Spin Transfer
Torque RAM (STT-RAM) [1] [3], along with the challenges associated with their
implementation as caches. Additionally, we review existing literature that provides
a detailed discussion on state-of-the-art lifetime improvement techniques for NVM

caches.

2.1 Emerging Memory Technologies

Emerging memory technologies, including STT-RAM, PCM and ReRAM are at the
forefront of research and development in the quest for faster, more efficient, and more
reliable memory storage solutions. These technologies offer unique advantages and
characteristics, making them suitable for various applications.

Spin-transfer torque is a phenomenon where the orientation of a magnetic layer
within a magnetic tunnel junction or spin valve can be altered by a spin-polarized
current. This phenomenon finds application in flipping the active elements in magnetic

random-access memory, known as Spin-Transfer Torque Magnetic Random-Access
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Memory (STT-RAM or STT-MRAM). STT-RAM offers non-volatility and minimal
leakage power consumption, a significant advantage over charge-based memories like

SRAM and DRAM.

High Resistance State Low Resistance State

ﬁ Free Layer —

_ Fixed Layer

Figure 2.1: Schematic representation of an STT-RAM cell

As seen in Figure 2.1, STT-RAM, the second generation of Magneto Resistive
RAM (MRAM) [2], uses the magnetic tunnel junction (MTJ) as a key component for
bit information storage. An MTJ is made up of two ferromagnetic layers separated
by a barrier layer. The fixed layer, also known as the reference layer, has a fixed
magnetization direction, and the free layer, which can be changed by passing a spin-
polarized current or an external magnetic field through the MTJ. When the reference
layer and the free layer’s magnetization directions are parallel, the MTJ displays a
low-resistance state, signifying logical ’0’. On the other hand, the M'TJ assumes a
high-resistance state when the two ferromagnetic layers’ magnetization directions
are anti-parallel representing logical '1’. STT-RAM also outperforms conventional
MRAM in terms of lower power consumption and improved scalability, as MRAM
relies on magnetic fields to switch the active elements.

A typical Phase Change Memory (PCM) cell is shown in Figure 2.2. The
crystalline phase of the phase change material has low resistivity, while the amorphous
phase has high resistivity. This significant resistivity difference is exploited by PCM.
In PCM, the states "set" and "reset" stand for low and high resistance conditions,
respectively. The processing temperature of the metal interconnect layers is high
enough to crystallize the phase-change material, resulting in an initial low-resistance

crystalline state. During a reset, a large electrical current pulse is applied for a
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brief period, melting and rapidly quenching the programming region of the PCM
cell to cause it to transition to the amorphous phase. This process results in an
amorphous, highly resistive region within the PCM cell, affecting the overall resistance
between the top electrode contact and the bottom electrode contact. To set the PCM
cell back to the crystalline phase, a moderate electrical current pulse is applied to
anneal the programming region at a temperature between the crystallization and
melting temperatures, ensuring sufficient time for crystallization. Reading the state
of the programming region involves measuring the cell’s resistance using a small

electrical current that does not disturb the current state. A Resistive Random Access

Top Electrode

Phase Change Material

Programmable
Region
Insulator < Heater
Bottom Electrode

Figure 2.2: Schematic representation of a PCM cell

Memory (ReRAM) [5] comprises a memory cell with a resistive switching mechanism,
featuring a metal-insulator-metal structure. This structure involves an insulating
layer positioned between two metal electrodes. The schematic view of an ReRAM cell
are depicted in Figure 2.3. Applying an external voltage pulse across the ReRAM cell
facilitates a transition from a high resistance state or OFF state (logic value ’0’) to a
low resistance state or ON state (logic value '17), and vice versa. Initially, ReRAM is
in the high resistance state. To shift the device to low resistance state, a high-voltage
pulse, SET voltage, is applied and it results in formation of conductive paths in the
switching layer, resulting in the ReRAM cell transitioning low resistance state (SET
process). Conversely, to switch the ReRAM cell from low to high resistance state, a
voltage pulse, referred to as the RESET voltage, is applied, facilitating this transition
and is denoted as the RESET process. For efficient data reading from the ReRAM

13
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Figure 2.3: Schematic representation of a ReRAM cell

Table 2.1: Approximate values of device level properties for different memory tech-
nologies

SRAM DRAM PCM STT-RAM | Re-RAM
Cell size (FQ) 125-200 6-10 4-12 6-50 4-10
Access granularity 64 B 64 B 64 B 64 B 64 B
Read latency 1-10 ns 10-20ns 50-100 ns 10 ns 10-50 ns
Write latency 1-10 ns 10-20 ns 100-500 ns || 10-100 ns || 10-100 ns
Endurance (number of writes) || > 10" > 10%° 10% — 10° > 10" > 101
Standby power 60 nW | Refresh power 0 0 0

cell, a small read voltage, which does not disturb the current state of the cell, is
applied. This voltage helps determine whether the cell is in a logic 0 or logic 1 state.

Approximate values of device level properties for different memory technologies
are shown in Table 2.1. In comparison to SRAM and DRAM, emerging memory
technologies exhibit significantly higher densities and comparable fast access times.
Notably, non-volatile memory technologies possess zero standby power and are
resistant to radiation-induced soft errors. Despite these advantages, the direct
replacement of existing SRAM and DRAM technologies with the mentioned emerging
memory technologies is challenging. For instance, SRAM and DRAM arrays are
predominantly affected by leakage power. Conversely, while PCM or ReRAM arrays
consume no leakage power when idle due to non-volatility, they demand considerably
more energy during write operations. Consequently, exploring trade-offs in the

utilization of diverse memory technologies at various hierarchy levels becomes a
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crucial research area. Substituting SRAM-based on-chip cache with STT-RAM and
PCM can enhance performance and decrease power consumption. The higher packing
density of STT-RAM and PCM allows for a larger on-chip cache capacity, thereby
reducing cache miss rates and improving overall performance. Zero standby leakage
contributes to lowered power consumption. However, challenges associated with
emerging memory technologies include the prolonged duration and increased energy
consumption required for write operations. NVMs offer a more stable data storage
mechanism than volatile SRAM and DRAM. Yet, directly replacing SRAM caches
with PCM or STT-RAM caches may lead to performance drawbacks, particularly
under high cache write intensity. Employing hybrid cache memory, buffers, and data
compression becomes essential to mitigate the extended latency and elevated energy
consumption in write operations for PCM or STT-RAM caches. Despite STT-RAM’s
higher density compared to SRAM, utilizing it directly as on-chip caches with frequent
accesses proves impractical due to limited endurance. Wear-leveling is a technique
widely used in NAND-flash memory, seeks to address write endurance limitations by
evenly distributing write operations across storage cells, and this approach can also
be applied to NVM caches and memory.

Among different NVM technologies, STT-RAM , with its superior write endurance
and overall performance metrics, proves to be a more suitable choice for implementing
last-level caches. In this thesis, we specifically adopt STT-RAM as our candidate
to replace SRAM in cache memories, henceforth referring to NVM as STT-RAM.
NVMs can be categorized as Single Level Cell (SLC) or Multi Level Cells (MLC).
SLCs store one bit per memory cell, while MLCs can store two or more bits per
memory cell. Figure 2.4 (a) illustrates the structure of SLC STT-RAM cell. An
SLC STT-RAM cell consists of a Magnetic Tunneling Junction (MTJ) with free
and reference ferromagnetic layers separated by an oxide layer, where the reference
layer’s magnetization direction is fixed and bits are stored by changing the free layer’s
magnetization direction. The MLC STT-RAM cell, can be either serial or parallel
as shown in Figure 2.4 (b) and Figure 2.4 (c), respectively . In our work, we refer

to MLC as serial ML.C due to its superior performance and reliability compared to

parallel ML.Cs. The serial MLC STT-RAM cell features two vertically stacked free
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Figure 2.4: Schematic representation of (a) SLC (b) Serial MLC and (c) Parallel
MLC STT-RAM cell

layers, while parallel MLC cells use a single MTJ with two independent free layers.
In this context, the larger M'TJ is termed a hard-bit with a high switching current,
and the smaller MTJ, characterized by a lower switching current, is referred to as a
soft-bit. Although MLC NVMs enhance data density, they exhibit higher lifetime,
write energy, and latency compared to SLC. Soft-bit flipping is more straightforward
than hard-bit flipping due to the smaller switching currents. Hard-bits, on the other
hand, due to large switching currents, entail higher write energy and latency. The
writes to hard-bits lead to the flipping of soft-bits, termed as write disturbance.
Figure 2.5 illustrates how values are stored in the hard-bit (X) and the soft-bit (Y)
of an MLC NVM cell, indicating possible state transitions and the retention of the
current state. As illustrated in Figure 2.5, hard transitions cause the flipping of both
hard- and soft-bits, while soft transitions only flip the soft-bit, leaving the hard bit
unchanged. Therefore, to modify only the hard-bit, a two-step process is required:
a hard transition followed by a soft transition. Cells can move from one state to

another or retain its current state on following transitions, given below

e No transition: Current state of bits (hard and soft) are the same as new state

(both bits retain current state)
e Soft transition: Change in current soft-bit state only whereas hard-bit retains
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Figure 2.5: Hard and Soft-bit states during different transitions of a MLC STT-RAM
cell

current state (small switching current)

e Hard transition: Change in hard-bit state. Soft-bit should retain/update its
current state to updated hard-bit state (high switching current).

e Two-step transition: Change in a hard-bit only. Hard transition followed by

soft transition.

The flipping of the soft-bit, denoted as Y to ~Y, occurs in a single step as hard
bits are unaffected by the small switching current. When a hard-bit transitions
from X to ~X, it leads to the simultaneous flipping of the associated soft-bit (from
Y to ~Y). However, due to this write disturbance, exclusive bit flips for hard-bits
involve a two-step process. Initially, hard-bits undergo flipping using high switching
currents, followed by the soft-bit being flipped back to its original state using a
smaller switching current.

Since MLC NVMs have two different bits present in them, they can be configured
to organize cache lines through in different approaches. Direct Mapping (DM) and
Cell Split Mapping (CSM) as illustrated in Figure 2.6 are two popular stratagies for
MLC NVM cache organizations. The organization of cache lines in the DM strategy
involves a cache block comprising hard and soft bits, but it fails to leverage the faster
accessibility of soft-bit cells. Conversely, in CSM, the hard bits of memory cells are

grouped to form the hard-way, while all soft bits are grouped to form the soft-way.
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CSM introduces variable latency for blocks based on their location. Read and write
operations in the soft-way are streamlined into a single step. However, due to the
potential for write disturbance, writing to the hard-way requires an initial read of
the corresponding soft-way to safeguard its contents before completing the hard-way
write. Experimental studies demonstrate that MLLC based on CSM enhances system
performance by 10.3% and reduces energy consumption by 26.0% [16] compared to
conventional MLC STT-RAM and hence here after we consider CSM STT-RAM for
our experiments and refer as MLC NVM.

. Hard Bit . Soft Bit

Cache Line 2 Cache Line 2

(a) (b)
Figure 2.6: 4 bit cache lines in (a) Direct Mapping (b) Cell Split Mapping

NVMs are prone to premature wear-out caused by non-uniform write patterns and
repeated write attacks [17] [18] due to the limited write endurance. Numerous state-
of-the-art techniques have been developed to enhance the lifetime and performance
of SLC and MLC NVMs. Next section delves into a detailed discussion of such
advancements. While the improvement in the lifetime of SLC NVMs has been
extensively explored, MLC NVMs face challenges due to their structural peculiarities.
Implementing conventional SLC wear-leveling algorithms in MLC is considered

challenging and not cost-effective.

2.2 Related Works

This section explores various techniques aimed at enhancing the lifetime and per-
formance of SLC and MLC NVMs. Researchers across the globe have proposed
diverse strategies to tackle the challenges associated with improving the endurance
of NVM LLCs. These approaches include wear-leveling techniques [11] [13] [12] [14]
[6], write reduction methods [19] [20], hybrid cache architectures [21] [10], and data
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compression schemes [22]. Each of these methods addresses specific aspects of write
variations and performance bottlenecks inherent in NVMs. In this section, we will
delve into some of the most relevant and impactful works in detail, highlighting their
contributions and limitations.

J. Wang et al. proposed i?wap|6], a technique which leverages two global counters
and registers. i?wap incorporates swap-shift, a wear-leveling strategy minimizing
cache inter-set write variations, and Probabilistic Set Line Flush (PoLF), a novel
approach for mitigating intra-set write variations. Key idea behind PoLF is that
the frequent access to hot data blocks, which remains unchanged in traditional
replacement policies, causes write variations. PoLF probabilistically flushes hot data
to optimize write distribution. In case of a cache write hit, instead of writing directly
to the hit data block, the new data is placed in the write-back buffer, marking the
cache line as invalid. Consequently, other cold data can replace the block containing
the hot data, allowing the relocation of hot data to other areas. Sparsh Mittal et
al. proposed EqualWrites [12] and EqualChance [11] techniques to reduce intra-set
variation and improve the lifetime of non-volatile memory caches. EqualWrites
identifies substantial intra-set write variation when the difference between the number
of writes to two blocks in a cache set exceeds a threshold. By swapping data items in
these blocks, intra-set write variation is reduced, leading to a better distribution of
writes and enhanced cache life. The EqualChance mechanism periodically changes
the block locations of data to distribute writes more uniformly across cache lines.
To achieve this, it uses counters to track the number of writes for each set. After a
certain threshold of writes is reached, hot (frequently written) data is swapped with
cold (infrequently written) data. The swap candidates may either be invalid blocks, a
process termed I-shifting, or clean blocks, referred to as C-shifting. Dirty blocks are
excluded from the swapping process since they are likely to be frequently written and
would not effectively reduce wear. Another state-of-the-art approach for extending
the lifetime of NVM caches is the use of periodically interchangeable write-restricted
window. Techniques like Static Window Write Restriction (SWWR) [14], Dynamic-
Window Write Restriction (DWWR), and Dynamic Way Aware Write Restriction
(DWAWR) [13] fall under this category. SWWR divides the cache into logical windows,
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treating one as a write-restricted window during each interval, with writes redirected
to other windows. The core concept of DWWR involves dividing the cache into m
equally sized windows and using a different window during each predefined execution
interval. Unlike SWWR, where the write-restricted window is chosen in a round-
robin manner, DWWR selects the window based on a counter associated with each
window. This counter tracks the number of writes during the previous interval (i.e.,
from the upper-level cache to the last-level cache). At the start of each interval,
the window with the highest number of writes is designated as the write-restricted
(or read-only) window. Once the interval ends, the next write-restricted window
is determined based on the counter values, and this process continues throughout
execution. To avoid selecting the same window consecutively, the counter for the
current write-restricted window is reset at the end of each interval. DWAWR selects
heavily written ways instead of fixed windows as write-restricted for a given interval,
providing effective wear-leveling. As previously discussed, the MLC NVM exhibits a
shorter lifetime compared to SLC due to write disturbance. To mitigate the impact
of write disturbance on soft-ways, a mechanism is required to safeguard data in
soft-ways during hard-way writes. One simplistic solution is the Immediate Restore
Scheme (IRS), in which the corresponding soft-way is read and rewritten after the
completion of the hard-way write operation to ensure data consistency. The Adaptive
Restoration Scheme [23] for write disturbance and read disturbance comprises two
schemes for addressing write and read disturbances in MLC NVMs. To tackle write
disturbances, this technique overwrites the soft-bit lines, which are less likely to be
read, accumulating potential writes to address read disturbance. The soft-bit line is
restored during eviction from the higher cache level. Both approaches demonstrate
performance enhancement and substantial energy savings for MLC STT-RAM caches.
The self-adaptive wear-leveling technique, designed for MLC NVM, achieves wear
leveling by balancing writes across memory cells using two mapping tables; a global
directory and an on-chip SRAM cache that maintains recently accessed mappings.
Another strategy for minimizing read disturbances is the restore-free mode [24],
involving two-step read/write operations for frequently used hard-ways in MLC

STT-RAM cache. This technique allows the logical turning off of specific hard /soft
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domains in an MLC by fixing their data to "0" or "1". In the restore-free mode,
the corresponding soft-way of the frequently used hard-way is deactivated after
invalidation, and its data is written to a lower-level memory. Although eliminating
write disturbance restorations streamlines hard-way writes into a one-step process
and reduces energy consumption, the energy required for hard-way writing remains
higher than for soft-way writing.

The technique of Alternative Encoding [22] aims to reduce two-step transitions
in MLC STT-RAM cache. It employs two 3-bit codes for each 2-bit data, providing
flexibility to eliminate two-step transitions. However, this encoding method results
in a larger data size, improving the lifetime of the MLC STT-RAM cache. Despite
sacrificing some data density, the data density of the alternating encoding-based
MLC STT-RAM cache still surpasses that of the SLC STT-RAM cache. P. Saraf
et al. [25] proposed replacement policies like the Refresh Aware Replacement Policy
(RFR) to improve the lifetime and performance of STT-RAM caches. The authors
focus on reducing the maximum number of writes, global write variation, and the
average number of writes to enhance the endurance of write-optimized STT-RAM
caches. Write-optimized STT-RAM refers to a configuration of STT-RAM designed
to reduce its inherently high write latency by lowering the thermal barrier of its
MTJ cells. The thermal barrier is a measure influenced by the physical and material
properties of the MTJ, such as planar area, magnetic parameters, and free layer
thickness. Reducing the thermal barrier decreases the switching current and the write
pulse width (the duration for applying the switching current), resulting in faster write
operations. However, reducing the thermal barrier also leads to a shorter retention
time, the duration for which data can be reliably stored in an STT-RAM cell without
a random bit flip. Refresh mechanisms are employed to mitigate the shorter retention
time in write-optimized STT-RAM. Blocks that remain in the cache beyond their
retention period are rewritten to prevent data loss, effectively maintaining reliability.
Refresh-aware cache replacement policies also prioritize evicting blocks about to expire
over recently refreshed blocks to balance performance and endurance. The techniques
for enhancing the lifetime of NVM caches discussed thus far can be categorized into

reactive and proactive approaches. Reactive methods use cache monitoring tools,
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such as counters, to trigger specific actions once predefined conditions (e.g., reaching
a threshold value) are met. On the other hand, proactive techniques continuously
maintain enhancement mechanisms active, regardless of the application’s behavior or
execution time window. Many of the previously mentioned approaches rely heavily
on counters or additional circuitry, leading to increased overhead. Upon further
analysis of these methods, i?wap [6] is found to have a drawback: it may invalidate
the Most Recently Used (MRU) blocks, causing more accesses to the main memory.
EqualChance swaps write-intensive blocks within a cache set with invalid or clean
blocks based on a write counter threshold, but this requires more write counters,
contributing to greater area and power overhead. SWWR uses a round-robin window
selection process, which does not consider the write counts of other windows within
the cache set, potentially allowing heavily written windows (or ways) to accumulate
in the cache bank and negatively affecting cache lifetime. DWWR lacks consideration
for heavily written ways that may exist in lightly written windows, meaning that
even if a window has a low write count, it could still contain some highly written
ways that are neglected. Lastly, RFR, while effective for write-optimized caches, is
less effective for unoptimized caches. These shortcomings prompted us to explore
techniques that can improve both the lifetime and performance of NVM caches with
minimal overhead. This thesis proposes the following approaches for SLC and MLC
NVM LLCs:

e WALL-NVC, a reactive technique utilizing a custom cache replacement algo-

rithm designed for SLC NVM caches to enhance their lifespan.

e ViSC, a proactive technique that involves logically splitting the SLC NVM-
based unified LLC. It also introduces variants E-ViSC and P-ViSC, falling into
the hybrid category, incorporating features from both proactive and reactive

approaches.

e TANC, a technique focused on enhancing the lifetime and reducing the write

latency of MLC-based NVM caches.

We discuss these techniques in detail in the subsequent chapters. Table 2.2

compares the key ideas of selected techniques discussed in this section along with the
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proposed techniques. Detailed analysis is given in coming chapters.

Table 2.2: Overview of proposed techniques and state-of-the-art approaches

Key feature Supports SLC NVM | Supports MLC NVM

2wap Probabilistic line flushing Yes No
EqualWrites Write distribution using counters Yes No
EqualChance Write distribution using counters Yes No
DWWR Write restriction using set partitioning (windows) Yes No
Restore Free Two step write reduction in MLC NVM caches No Yes
WALL-NVC | Write distribution using counter with NVM friendly replacement policy Yes No
VisC Write distribution using logical partitioning Yes No
TANC Write reduction using Embedded trace buffer Yes (Can be modified) Yes

Qoo 3&>Pen
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CHAPTER

Experimental Setup

This chapter discusses about the overview of experimental setup used for analyzing
the proposed techniques. Detailed experimental details for each contributions are

given in corresponding chapters.

3.1 Adopted simulation environment

Simulators are software tools that mimic the operation of real-world systems or
processes in a controlled and reproducible environment. They are used for testing,
analysis, training, and research without the risks or costs associated with real-world
implementation. Simulators allow architects and engineers to test new designs
and configurations before physical implementation, identifying potential issues and
optimizing performance. They enable detailed performance analysis of various archi-
tectural components under different workloads, such as CPUs, memory hierarchies,
and interconnects. Organizations can reduce the costs and risks associated with
building and testing physical prototypes by simulating designs. They help to verify
that architectural changes or enhancements meet the required specifications and

performance targets.
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3. EXPERIMENTAL SETUP

We employ the gemb simulator [26] to analyze and implement the proposed
techniques. Widely embraced in both academic and industrial circles, the gemb
simulator originated from the merger of the m5 simulator [27] at the University of
Michigan and the GEMS simulator [28] from the University of Wisconsin. The gem5
simulator is highly modular, allowing users to customize and extend the simulator to
meet specific research needs. It supports multiple CPU models, memory systems, and
interconnects. The gem) provides detailed and accurate models of modern processor
architectures, including in-order and out-of-order cores, detailed memory systems,
and various interconnects. It supports multiple instruction set architectures (ISAs),
including ALPHA, x86, ARM, MIPS, RISC-V, and SPARC, making it versatile
for different research scenarios. The gemb5 simulator can simulate entire systems,
including operating systems and full applications, providing a comprehensive view
of system behaviour. Users can easily configure and modify various architectural
parameters, enabling experimentation with different design choices and performance
trade-offs. It can be integrated with other simulation and analysis tools, enhancing
its capability for comprehensive architectural studies.

In our experiments, we utilize Ruby to model memory. Ruby, the memory system
simulator within gemb, is a modular framework designed to model and simulate
detailed memory hierarchies in modern computer systems. Ruby’s advantage lies in
its ability to keep coherence protocol specifications distinct from replacement policies
and cache index mapping, allowing separate specification of network topology from
implementation. Additionally, Ruby is highly configurable in nature and facilitates
rapid prototyping. As shown in Figure 3.1, Ruby integrates three key components:

Figure 3.1: High-level view of the main components in Ruby [Image source: gem5
documentation (https://www.gemb.org)|
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the interconnection network, which facilitates communication between processors,
caches, and memory controllers using various topologies like mesh or bus; caches
and memory, representing the hierarchical structure of caches (L1, L2, 1.3) and main
memory, allowing detailed analysis of cache behaviours such as hits, misses, and
replacement policies; and coherence controllers, which enforce consistency across
caches using protocols like MSI (Modified, Shared, Invalid) or more advanced ones
like MESI or MOESI. The coherence controllers ensure proper transitions between
states (e.g., Modified, Shared, Invalid), while the interconnection network connects
all components, enabling seamless data flow. The cache coherence in our setup is
maintained using the MESI Two_Level protocol [29]|, which features a two-level
cache hierarchy with private L1 cache and shared L2 cache. In this arrangement, L1
and L2 maintain inclusion between them. At a higher level, the MESI Two Level
protocol encompasses four stable states: M, E, S, and I. A block in the M state
indicates that it is writable and has exclusive permission, having been dirtied as
the only valid on-chip copy. The E state represents a cache block with exclusive
permission (writable) but not yet written. S state signifies that the cache block is
only readable, with multiple copies possibly existing in various private caches and

the shared cache. The I state denotes that the cache block is invalid.

3.2 Benchmark Programs

For experimenting with our proposed architectures across different application cate-
gories, we utilize the SPEC CPU2006 benchmark suite [30]. The SPEC CPU2006
benchmarks, developed by the Standard Performance Evaluation Corporation (SPEC),
are widely used in the evaluation of computer systems’ CPU performance. SPEC
CPU2006 includes diverse benchmarks designed to represent a wide range of applica-
tions. This ensures that the benchmarks are not biased toward any particular type of
workload. The benchmarks are derived from actual applications and scientific compu-
tations, providing a realistic performance measure. The benchmarks are designed
to be complex and compute-intensive, making them representative of real-world

scenarios that require significant computational power. SPEC CPU2006 benchmarks
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can be compiled and run on various computer architectures and operating systems,

facilitating performance comparisons across different systems.

Table 3.1: Selected SPEC CPU2006 Benchmarks with arconyms and category

Name Description WPKI || MPKI
astar (As) Path finding algorithms Low Mid
bzip2 (Bz) Compression Mid High

calculiz (Ca) Structural Mechanics Low Low
gromacs (Gr) Biochemistry /Molecular dynamics Low Low
h264ref (H2) Video compression Low Low
hmmer (Hm) Search gene sequence High Low
lbm (Lb) Fluid dynamics High High
leslie3d (Ls) Fluid dynamics High Mid
libquantum (Lq) Physics : Quantum computing Mid High
mef (Mc) Combinatorial optimization High High
mile (Mi) Physics: Quantum chromodynamics | Mid High
namd (Nd) Biology /Molecular dynamics Low Low
sjeng (Sj) Artificial intelligence : chess Mid Mid
soplez (So) Linear programming, optimization Low Mid

The benchmarks are provided as source code, allowing users to compile them
with different compilers and optimization settings specific to their systems. SPEC
CPU2006 specifies rigorous rules for conducting benchmark tests to ensure that
results are comparable across different systems and configurations. The benchmarks
are designed to produce consistent and repeatable results under the same conditions,
making them reliable for performance evaluation. Table 3.1 provides details on the
benchmarks used and acronyms associated with them.

We executed the benchmarks on a unicore system with a 512KB L2 cache using
the gemb5 simulator, recording the number of writes and misses over one billion
instructions. From these measurements, we calculated Writes Per Kilo Instruction
(WPKI) and Misses Per Kilo Instruction (MPKI). Benchmarks were categorized
based on their WPKI to the last-level cache into Low (WPKI < 10), Mid (10 <
WPKI < 30), and High (WPKI > 30), as shown in Table 3.1. Similarly, we classified
benchmarks by MPKI into Low (MPKI < 10%), Mid (10% < MPKI < 60%), and
High (MPKI > 60%). This classification allows us to assess the effects of both existing
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and proposed techniques on applications with different write characteristics.
The specific experimental setups for each technique are detailed in the respective

sections of each chapter.

3.3 Performance Metrics

The key performance metrics used for experimental analysis of each thesis contribu-
tions are given below. Each of these parameters helps to compare the effectiveness of

the techniques.

3.3.1 Intra and Inter Set Write Variation

Intra-set and inter-set write variations are two key performance metrics used to
evaluate the lifetime enhancement techniques. Intra-set write variation refers to the
variation within a set of cache memory, while inter-set write variation pertains to the
variation across different sets. These variations are quantified using the coefficients of

intra-set (IntraV') and inter-set (InterV') variation, as given in the equations below

[6].

Wi.m 2
1 f: \/El]\il (Wi — S| Sm
k=1

IntraV = ——— 3.1
nira N.Writegy, M—1 (3.1)
N M W 2
InterV = 1 \/Zk:l (2= 57" = Wawo) (3.2)
Writeq, N -1 )
Where N is number of sets in cache.
M is the number of ways in a set.
Wy, is the write count in set k and way [.
Writeqwgis average write count given by
N M
W,
Writeqn = Z’“Zlsz\? = (3.3)

IntraV and InterV values reflect how well the writes are distributed across the cache
memory. A low IntraV and InterV indicates that writes are equally distributed within

and across the sets of the cache memory respectively. In an ideal scenario, where all
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blocks have equal number of write count will result in IntraV and InterV values to
be zero. Low value of write variation indicates that writes are not concentrated in
few memory blocks and hence reducing the chances of early wearing out of memory

cells.

3.3.2 Relative Lifetime

Relative lifetime (RL) of a given architecture with respect to the baseline architecture

is given by

M azimum number o f writes in baseline architecture

RL = (3.4)

M azximum number o f writesin given architecture

Relative lifetime is popular metric used to analyse the effectiveness of lifetime enhance-
ment techniques. We have utilized raw cache lifetime as it offers valuable insights and
serves as the foundation for error-tolerant lifetime[11]. The results are presented for
both the maximum number of writes on any block and intra-set variation (IntraV).
The former focuses on the worst-case scenario for writes on a single block, while the
latter accounts for the average number of writes and considers all blocks within the
cache. Together, these metrics provide a comprehensive evaluation of a technique.
Notably, these metrics have also been employed in other research studies [6], [31] [14]
[13] [32]. Baseline refers to the un-optimized cache memory. Large value of relative

lifetime indicate that given architecture is able to reduce the maximum write count.

3.3.3 Cache Hit Rate

Cache hit rate is a performance metric used in computing to measure the efficiency
of a cache system. It represents the percentage of cache accesses that result in a hit,
which means that the requested data were found in the cache. The higher the cache
hit rate, the more effectively the cache serves the requested data without retrieving

it from a slower level in the memory hierarchy [33].

Number of Cache Hits

he Hit Rate =
Cache Hit Rate Total Number of Cache Accesses

x 100 (3.5)
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3.3.4 Average Memory Access Time

Average Memory Access Time (AMAT) is a performance metric which measures
the average time taken to access a memory location, considering both cache and
main memory accesses [34]. AMAT provides insight into the overall speed at which
data can be retrieved from the memory system and is crucial for understanding and

optimizing the performance of system architectures. AMAT is calculated as
AMAT = Hit Time + Miss Rate x Miss Penalty (3.6)

Where
e Hit Time : The time it takes to access the data in the cache.
e Miss Rate : The fraction of memory accesses that result in a cache miss

e Miss Penalty: The additional time required to fetch the data from the next

level of the memory hierarchy when a cache miss occurs.

Coto9-JEenen
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CHAPTER

Write Aware Last Level Non-Volatile
Cache

This chapter proposes a novel wear-leveling technique for improving the lifetime of
SLC NVM caches. Applications with non-uniform write patterns are a serious concern
for NVM caches as they might access some memory locations for write operation
more frequently than others, leading to the early wear-out of memory cells. In this
chapter we propose a two-stage technique that shows significant improvement in the

lifetime of NVM LLC compared to state-of-the-art techniques.

4.1 Introduction

As discussed in the previous sections, applications with non-uniform write patterns
can cause some cache memory cells to wear out faster than others. The lack of
write-aware cache replacement policies can lead to frequent writes to specific cache
blocks, causing those memory cells to wear out earlier than expected. These issues
underscore the need for a system that minimizes or evenly distributes writes when

using non-volatile memories at various levels of the memory hierarchy. We propose a
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Write Aware Last Level Non-Volatile Cache (WALL-NVC) that extends the lifespan of
non-volatile memory when used as a last-level cache. EqualWrites [12], a state-of-the-
art wear-leveling technique, reduces intra-set write variation and improves lifespan
by comparing LRU and random replacement policies for cache blocks. Conventional
cache replacements consider only the recency of use while selecting the victim block.
However, these blocks may have been heavily written in the past, and replacing them
with a new block might speed up the wear of those memory cells as the probability
of write access to a recently replaced block is higher than that of an existing block.
Hence, these policies need to be optimized for NVMs. Replacement strategies like the
Refresh Aware Replacement Policy (RFR) [25], discussed in Chapter 2, can extend
the life of NVMs, but they are challenging to implement as they are designed for
write-optimized cache memory and do not integrate well with traditional wear-leveling
schemes and NVM architecture. A more NVM-friendly replacement policy, combined
with an effective wear-leveling method, can significantly enhance the lifespan of NVM

LLCs. The major contributions of this chapter are as follows

e We analyse write variations in the last level NVM cache and draws meaningful

conclusions.

e We propose Write Aware Last level Non-Volatile Caches (WALL-NVC), which

can reduce the intra-set variation, thereby increasing its lifetime.

e For WALL-NVC, we use an NVM-friendly replacement policy called Least
Recently Used Cold Block (LRU-CB), which also contributes to increase the

lifetime.

e We test WALL-NVC using SPEC 2006 [30] benchmarks on the gemb cycle-
accurate simulator [26], and show that our proposed method outperforms other

state-of-the-art solutions.

4.2 Motivation

To study the write variations of different applications, we analyze the maximum and

average writes to the LLC in a unicore architecture. We model a unicore system
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Figure 4.1: Average and maximum writes per way (Kilo writes per 1 billion instruc-
tions) of various SPEC CPU2006 benchmarks: height difference between bars of a
given benchmark indicates intensity of write level variations.

in gem) with two levels of cache and main memory. The L1-I and LL1-D caches are
configured as 32 KB, 2-way set associative. The unified L2 cache is 512 KB, 8-way
set associative, and we use 8 GB of main memory. The block size is 64 bytes. The
number of kilo writes per 1 billion instruction window for selected benchmarks from
the SPEC CPU2006 suite is shown in Figure 4.1. We plot the maximum writes per
way and the average writes across ways. Our study reveals that write variations can
occur within and across different sets. This highlights the importance of implementing
an effective wear-leveling policy for NVM-based LL.Cs. Popular cache replacement
policies, such as Least Recently Used (LRU) and Pseudo LRU, consider the recent use
of a cache block when selecting a victim block for replacement. However, in NVMs
where write endurance is critical, the number of writes to the victim block can affect
the cache memory’s lifespan. To our knowledge, current wear-leveling techniques do
not explore the impact of replacement policies on improving lifespan. EqualWrites
[12], which reduces intra-set write variation, compares LRU and random replacement
policies. Nevertheless, neither of these policies is designed explicitly for NVMs and do
not show much impact on its lifetime. This motivates us to explore how to effectively
combine a wear-leveling technique with a customized replacement policy to enhance

the lifetime of NVM caches.
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4.3 Proposed technique

We propose the Write Aware Last Level Non-Volatile Cache (WALL-NVC) to enhance
the lifespan of NVMs in applications with non-uniform writes. WALL-NVC also
protects against targeted malicious attacks through repeated writes to specific blocks.
Unlike most state-of-the-art wear-leveling techniques, WALL-NVC utilizes a dual-
stage wear-leveling approach. The first stage introduces a new Least Recently Used
Cold Block (LRU-CB) replacement policy, which optimizes the selection of victim
blocks for cache replacement in NVMs. The second stage applies a traditional write
distribution strategy that works with LRU-CB to extend the memory’s lifespan. The

following sections will delve into the details of these stages.

4.3.1 Least Recently Used Cold Block (LRU-CB)

An effective cache replacement strategy for NVMs should enhance write endurance
and minimize intra-set write variation. It should ideally prioritize the retention of
the most frequently accessed blocks, preventing frequent evictions and reducing write
variation among blocks. In scenarios where the cache hit rate is high, the number of
replacements is low, thus minimizing the impact of replacement policies. Conventional
policies like LRU and Pseudo LRU do not account for the write count of a block
in their victim block selection. To address these concerns, we propose a simple,
NVM-friendly cache block replacement policy known as the Least Recently Used
Cold Block (LRU-CB). Figure 4.2 shows the victim block selection using LRU-CB
policy in Set A of an 8-way set associative cache. The fundamental idea behind the
LRU-CB policy is to designate a block with fewer write occurrences in the cache set
as the victim block, thereby promoting a more uniform distribution of writes within
the set. To ensure infrequent eviction of blocks, we calculate a weighted aggregate
average of each block’s LRU age and write index. The block with the lowest aggregate
average is chosen as the victim block. To facilitate this, a write counter is associated
with each block. When the write counter of a set reaches its saturation value, the
counters for all blocks in that set are bitwise right-shifted. This downgrading of the

counter value leads to the loss of the least significant bit, which introduces a minor
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Figure 4.2: Schematic representation of victim block selection using LRU-CB policy
in Set A of an 8-way set associative cache

loss of precision. This mechanism ensures that the write counters are handled before
reaching saturation, but at same time reliable history is preserved. We evaluate
the impact of LRU-CB using various benchmarks and observe that it enhances the
lifespan of NVM caches. In our experiments we use a weight of 80% for LRU age and
20% for write count index for selecting victim block in LRU-CB policy. The details
of analysis on different weights for LRU age and write index is discussed in Section
4.4.4. Replacement policies are active only in the event of cache replacement. Due to
this LRU-CB has limited impact on the lifetime improvement of NVM LLC. This
modest improvement brings out the need for an additional augmenting technique to

further enhance the performance of LRU-CB.

4.3.2 Impact of LRU-CB with Write Distribution

Write-aware replacement policies exhibit limited influence on the endurance of NVM
caches when handling applications with high L1 cache hit rates due to fewer triggered
evictions. Write distribution policies contribute to enhanced lifetime by maintaining
an even distribution of writes. For extending the lifetime of NVM caches, combining

a robust wear-leveling policy with a write-aware replacement policy, as opposed to
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employing them separately will be a better approach.

To assess the impact of LRU-CB in conjunction with a standard state-of-the-
art wear-leveling technique, we compare the effectiveness of the EqualWrites [12]
technique with the pseudo LRU policy and LRU-CB. Figures 4.3, 4.4, and 4.5 illustrate
the relative lifetime, intra-set variation, and hit rate of NVM caches, respectively,
across different benchmarks in the SPEC CPU2006 suite. The graphs reveal that
EqualWrites with LRU-CB enhances the lifetime of the L2 cache by up to 1.39x
compared to the combination of EqualWrites with pseudo LRU. LRU-CB reduces
intra-set variation by up to 83.08% without impacting the hit rate. This improvement
is consistent across all benchmarks, affirming that LRU-CB stands out as a superior

cache block replacement algorithm for NVM caches.
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Figure 4.3: Comparison of relative lifetime of NVM based L2 cache using EqualWrites
with Pseudo LRU and LRU-CB replacement policies.

4.3.3 Write Distribution in WALL-NVC

The LRU-CB policy enhances the performance of the EqualWrites technique; however,
this improvement comes at a significant cost. This is because LRU-CB requires
additional counters beyond those utilized by EqualWrites. The counters used in
LRU-CB results in 1.17% storage overhead and the EqualWrites adds another 2% as

storage overhead. This prompted us to explore the implementation of a wear-leveling
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Figure 4.4: Comparison of intra-set variation of NVM based L2 cache using Equal-
Writes with Pseudo LRU and LRU-CB replacement policies.

policy that mitigates intra-set variation, enhances lifetime, and synergizes with LRU-
CB. Cache memory blocks which are frequently accessed for write operation are
termed as hot blocks, whereas blocks which are rarely accessed for write operation
are called as cold blocks. Like other popular wear-leveling techniques, WALL-NVC
operates on redirecting writes from hot blocks to cold blocks.

In an n-way set associative WALL-NVC, each set is equipped with (n + 1)
counters: one set counter and n block counters. When a write hit occurs in WALL-
NVC, the corresponding set and block counters are updated. Once the set counter
surpasses a predetermined threshold 7', it identifies a write redirection target among
the blocks in that set. The block with the least writes is favoured as the redirection
target, typically with zero write count. If such a block is available, a swap is initiated
between the accessed block and the chosen redirection target. In cases where the
target block is invalid, the data is written to the target block instead of swapping,
and the hot-line is invalidated. If a block with zero write count is not available and
the target is not found, all counters, including the set counter, are decremented by
the value of the least written block. This delay in write redirection is implemented
to avoid unnecessary redirection when the write pattern to the set is more uniform.
It is important to note that reducing the block counter value does not impact its

functionality. Furthermore, the reduction in counter values delays the need for bitwise
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Figure 4.5: Comparison of hit rate of NVM based L2 cache using EqualWrites with
Pseudo LRU and LRU-CB replacement policies.

right shift operations of counters for replacement victim selection, thereby enhancing
the precision of the technique.

To comprehend the working of WALL-NVC, we use an illustration featuring a
four-way set associative cache block within WALL-NVC, characterized by a threshold
value of 50. Each cache set is linked to a set counter and four block counters to
monitor the write count of each set and block, respectively. Let us focus on a specific
set, denoted as A, with four blocks labeled B0, B1, B2, and B3. Assume A’s set
counter and block counters are represented in the initial row of Figure 4.6. A write hit
in a block increments both the block counter and the set counter of A. Upon reaching
the threshold value (50), the set counter looks for a write redirection target for the
heavily written block (B2). If no target block with zero counts is found, all block
counters and the set counter values are reduced by the least count value creating a
block with zero count. In this case, 2 for B3 is reduced from all the block counters
and set counters, making the write count of the block B3, and therefore, it is a write
redirection target. After the decrement operation, the cache operates normally by
incrementing the counters on subsequent write hits. Upon reaching the threshold
again and initiating write redirection, the redirection occurs by swapping the contents
of the most written block (B2) with the least written block (B3) using a swap module.

Since B2 and B3 are valid blocks, the write redirection results in an additional write
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Figure 4.6: Sample counter updating of WALL-NVC for threshold value, T=50

in both B2 and B3, resetting the set counter. The block counters remain the same
as the value of the block counter, which indicates the write frequency of the blocks.
By preserving block counter values, WALL-NVC ensures that hot blocks are always
placed in locations with less write access and cold blocks are placed in locations with

more write access.

4.4 Experimental Setup and Result Analysis

The benchmarks are executed on an un-optimized NVM LLC (baseline), two state-
of-the-art wear-leveling methods (EqualWrites and EqualChance), and the newly
introduced WALL-NVC, utilizing a threshold value T=50 (WALL-NVC50). We
analyzed the lifetime improvement for our proposed system for various values of
threshold 7', from 7" = 10 to T" = 50. Our analysis shows that increasing the size
threshold will not improve the gains compared to the overhead associated with it.
Considering the gains and counter overheads, we fix the threshold value as 50 for our

experiments. Specific configuration details of the system can be found in Table 4.1.
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Table 4.1: System Configuration

CPU 2 GHz, Unicore, Dual-Core, Quad- Core,
L1 Cache Private, 32 KB, SRAM based split cache,
64 B block, 4-way set associative
L2 Cache Shared 512 KB | 2MB, NVM based unified cache
64 B block, 8-way set associative
Main Memory || 8 GB

4.4.1 Impact on Write Variation
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Figure 4.7: Comparison of IntraV for various NVM architectures in unicore system
of L2 cache size 512KB

Figure 4.7 compares the intra-set variation (/ntral’) among various cache archi-
tectures proposed above in unicore systems. The analysis reveals a fair distribution
of writes across different set ways exists in benchmarks such as leslie3d, lbm, mcf,
milc, and bzip2 across all architectures , resulting in lower IntraV. This tendency
is particularly pronounced in benchmarks with mid and high WPKI. Notably, low
WPKI benchmarks like namd, calculiz, and gromacs exhibit significant enhancements
in IntraV . This leads us to the conclusion that write variance is more dependent on
the pattern of write hits within a given set than the total number of writes over time.

Additionally, regardless of the benchmark classification, WALL-NVC50 consistently
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demonstrates low write variance, making it a suitable addition to NVM caches.
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Figure 4.8: Comparison of IntraV for various NVM architectures in dual-core system
of L2 cache size 512KB
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Figure 4.9: Comparison of IntraV for various NVM architectures in quad-core system
L2 cache size 512KB

Intra-set variation in dual-core and quad-core systems is plotted in Figure 4.8 and
Figure 4.9, respectively. Since the multi-core framework requires multiple benchmarks,
workload composition is created based on WPKI values, categorized as Low, Mid,
Low-High, Mid-High, etc. Analysis reveals that shared NVM LLC is accessed by

multiple applications in multi-core systems, nullifying the write variations created by
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one core with natural random balancing from other cores. Consequently, only minor
improvements in lifetime are achieved using Mid-High workloads in dual-core and

quad-core systems.
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Figure 4.10: Comparison of IntraV for various NVM architectures in unicore system
of L2 cache size 2MB
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Figure 4.11: Comparison of IntraV for various NVM architectures in dual-core
system L2 cache size 2MB

To study the impact of WALL-NVC on larger caches, we ran our experiments
on an L2 cache size of 2MB. Like 512KB, we run experiments on unicore, dual-core

and quad-core systems. We also use the same benchmark mixes used for dual and
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Figure 4.12: Comparison of IntraV for various NVM architectures in quad-core
system L2 cache size 2MB

quad-core systems for 512KB cache size for 2MB. Figures 4.10, 4.11, 4.12 show the
impact of various wear-leveling techniques and the baseline a 2MB NVM L2 cache
for unicore, dual-core and quad-core respectively. The results follow a similar trend
to 512KB except for the increased intra-variation in the 2MB cache. As cache size
increases for a given application execution window, intra-set write variation increases.
For a given application execution window, increasing cache capacity improves the
hit rate and increases repeated access to a few cache blocks. This increases the
intra-set write variation, as evident from the IntraV value of 2MB. Hence, the write
distribution mechanism of WALL-NVC has a better impact on the larger LLCs as

the frequency of write redirection is high, reducing the intra-set write variation.

4.4.2 Impact on Relative Lifetime

Relative lifetime is a key indicator of the effectiveness of the wear-leveling techniques
implemented in different memory hierarchies. Most state-of-the-art lifetime enhance-
ment techniques use relative lifetime for analysis as they quantify the impact of
the proposed architecture on the maximum number of writes recorded in the cache
memory with respect to the baseline architecture.

Figure 4.13 compares relative lifetimes across various cache architectures of
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512KB size in unicore systems. The experimental results show that WALL-NVC50
significantly improves the lifetime for applications like calculiz, gromacs, h2ref,
hmmer and namd. These applications have a higher L2 cache hit rate and intra-
set write variation than others, as the writes are concentrated in a few memory
locations. As write variation is high on these applications, the WALL-NVC50
can distribute the write concentrated on a few blocks to other less written blocks,
reducing maximum writes and write variation. Hence, the impact of WALL-NVC
is prominent in these benchmarks. As anticipated, benchmarks with high WPKI
exhibit limited improvement in lifetime due to intense writes to LLC. Also, we
observe that the benchmarks with high cache hit rates show better lifetime time with
WALL-NVC50. On average, WALL-NVC50 enhances lifetime by 2.90x compared to
the baseline architecture, showing 1.16x and 1.18x improvements over EqualWrites

and EqualChance, respectively. The evaluation extends to dual-core and quad-core
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Figure 4.13: Comparison of relative lifetime for various NVM architectures in unicore
system of L2 cache size 512KB

systems, where WALL-NVC50 shows an average lifetime improvement of NVM by
2.25x and 1.63x compared to baseline systems, as depicted in Figure 4.14 and Figure
4.15. WALL-NVC50 shows better lifetime improvement for dual-core systems for low,
mid and low-high category benchmark combinations. Like unicore systems, these
combinations have better cache hit rates and high intra-set write variation; hence,

the impact of WALL-NVC50 is prominent.
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Figure 4.14: Comparison of relative lifetime for various NVM architectures in dual-
core system L2 cache size 512KB

As we move from dual-core to quad-core, the impact of WALL-NVC decreases as
the write distribution pattern becomes more uniform due to multi-core architecture
cache coherence. Compared to EqualWrites, it improves by 1.07x on dual-core systems
and 1.02x on EqualChance. For quad-core systems, lifetime improvements of 1.10x
and 1.02x are achieved, respectively.

We analyse the effectiveness of the proposed technique on relative lifetime with
respect to varying cache size by experiment with cache size of 2MB also. Figures
4.16, 4.17, 4.18 shows the relative lifetime improvement values for cache size 2MB
for unicore, dual-core and quad-core respectively. The results follow similar trend as
for intra-set variation. As mentioned before the as cache size increases the intra-set

write variation increases and the impact of WALL-NVC50 also becomes significant.

4.4.3 Impact on IPC

WALL-NVC uses the LRU-CB replacement policy, which has little impact on the
cache hit rate. The wear-leveling algorithm does not invalidate the cold blocks.
Instead, it keeps the block within the cache memory; hence, there is no impact on
the cache hit rate. Since there is no change in hit rate, there is no change memory

access time and hence WALL-NVC does not impact the system’s instructions per
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Figure 4.15: Comparison of relative lifetime for various NVM architectures in quad-

core system L2 cache size 512KB

Table 4.2: Relative lifetime improvement (LT) and IntraV of WALL-NVC for different

threshold values

Unicore Dual-core Quad-core
LT | IntraV | LT | IntraV | LT | IntraV

Baseline | 1 32.41 1 15.85 1 10.22
10 2.32 6.55 2.08 7.28 1.31 6.58

30 254 | 246 2.63 1.48 1.68 0.34

50 2.90 1.85 2.25 1.65 1.63 1.17
70 2.56 | 4.08 2.23 2.59 1.59 1.43
100 2.57 | 4.20 2.35 2.26 1.53 1.52

cycle (IPC).

4.4.4 Sensitivity Analysis

We study the influence of the threshold value (7") through experimentation with five
distinct values, T' = 10, 30, 50, 70, 100. After evaluating lifetime improvement and
its corresponding overhead, we converge to a default value of T" as 50. Additionally,
we perform an extensive sensitivity analysis on various threshold values. Table 4.2
displays the relative lifetime and intra-set write variation, utilizing different threshold

values in WALL-NVC. The performance of the proposed architecture can be influenced
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Figure 4.16: Comparison of relative lifetime for various NVM architectures in unicore
system of L2 cache size 2MB
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Figure 4.17: Comparison of relative lifetime for various NVM architectures in dual-
core system L2 cache size 2MB

by the weight assigned to LRU-CB during the selection of a victim block for cache
replacement. As discussed previously, we calculate the weighted aggregate average of
each cache block by considering both its LRU age and write count index. Two variants
are explored: (a) 80% for LRU age and 20% for write count index (0.2W), and (b)
60% for LRU age and 40% for write count index (0.4W). These variants are compared

in a unicore system, with the results for IntraV, relative lifetime with respect to the
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Figure 4.18: Comparison of relative lifetime for various NVM architectures in quad-
core system
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Figure 4.19: Comparison of IntraV for WALL-NVC variants in unicore system

baseline, and LLC hit rate presented in Figures 4.19, 4.20, and 4.21, respectively. We
see that 0.2W yields a 1.13x improvement in lifetime and a 2.16% enhancement in
IntraV compared to 0.4W. Interestingly, there is no impact on the hit rate across
various benchmarks for these two variants. Considering that both 0.2W and 0.4W
outperform the baseline, it is suggested that a minimum weightage to LRU-CB (0.2W)
should be assigned to obtain a suitable victim block. We also see that an excessive

emphasis on the write count index (0.4W) diminishes the significance of LRU age.
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Figure 4.20: Comparison of relative lifetime for WALL-NVC variants in unicore
system
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Figure 4.21: Comparison of LLC hit rate for WALL-NVC variants in unicore system

4.4.5 Overhead Analysis

WALL-NVC utilizes two types of counters: a set counter assigned to each set and
a block counter assigned to each block. A swapping module is also required to
interchange the contents of hot and cold data blocks. This swapping module consists
of 64 buffers, each with a size of 64 bytes, resulting in a total storage overhead of 2%

with respect to the baseline architecture. Based on the analysis using CACTTI tool
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[35], the SRAM-based counters and swap buffers result in a maximum power and area
overhead of 0.47% and 1.47%, respectively, compared to the baseline configuration.
The cache block replacement policy, LRU-CB, utilizes the same counters for victim

selection, thereby incurring no additional overhead.

4.5 Conclusion

The limited write endurance of NVM presents a critical challenge. In this study, we
introduce a novel architecture named WALL-NVC, which employs a write distribu-
tion policy and an NVM-friendly, LRU-CB cache replacement strategy to enhance
the lifetime of NVM caches. Our observations indicate that the write-distribution
and write-aware replacement policies play equally significant roles in performance
improvement. Experimental results demonstrate that our approach enhances the
longevity of NVM caches for unicore, dual-core, and quad-core systems with minimal

area and power overhead.
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CHAPTER

Virtually Split Last Level
Non-Volatile Cache

This chapter discusses Virtually Split Cache (ViSC), an innovative wear-leveling
technique, and its variants, which enhance the lifetime of SLC NVM LLCs. ViSC
exploits the write variation between data and instruction blocks to ensure that all
LLC cache blocks are accessed for writes at a more uniform rate. The proposed
technique shows significant improvement in lifetime compared to other state-of-the-art

techniques. ViSC also has less overhead.

5.1 Introduction

In the previous chapter, we discussed WALL-NVC, a technique for improving the
lifetime of SLC NVM by customizing the replacement policy and interchanging the
frequently written blocks and less written ones to ensure uniform write distribution.
This reactive approach of triggering the wear-leveling technique using counters and
thresholds results in storage overhead. To address this issue, we propose a proactive

wear-leveling technique, Virtually Split Cache (ViSC) and its variants. The following
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sections discuss ViSC and its variants, E-ViSC and P-ViSC. The key idea behind
ViSC is to logically split the cache sets of a unified cache and reserve them for
instruction and data blocks. Based on a prefixed interval, these blocks are remapped;
blocks previously reserved for data (hot blocks) will be reserved for instruction (cold)
blocks and vice versa. Unlike WALL-NVC and other state-of-the-art techniques [11]
[12] [13] [14], ViSC does not extensively use counters; hence, the associated area and

power overhead are less. The key contributions of this chapter are as follows

e We study the write variation among instruction and data blocks of different

applications in LLCs and its impact on lifetime.

e We propose a wear-leveling technique and its variants that can reduce the write
variation in NVM LLCs and improve their lifetime. We model the proposed
techniques on gemb [26] and compare them in terms of performance metrics

using SPEC CPU2006 benchmarks [30].

5.2 Motivation

Traditional wear-leveling mechanisms in NVMs use write counters to identify hot and
cold data blocks, which incurs higher overhead due to the number of counters and
associated circuitry. The high overhead of wear-leveling techniques motivated us to
explore the possibility of a low-overhead wear-leveling technique.

Traditional architectures use split L1 cache architecture, segregating instructions
and data, while L2 caches typically adopt a unified approach, combining both
instructions and data. Data blocks undergo more write operations compared to
instruction blocks [15]. To study the memory access pattern of L2 caches, we run
various benchmark applications on the gem5 simulator.

Figure 5.1 shows the memory access pattern of in a unified L2 cache of 512KB
capacity while running various SPEC CPU2006 benchmark applications for one billion
instructions . The results indicate that the L2 cache accesses are predominantly
data blocks. The experimental result also reinforces that data blocks are frequently
accessed (hot blocks), whereas instruction blocks are less frequently accessed (cold

blocks). The scheme of categorizing cache blocks into instruction and data ways can
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Figure 5.1: L2 cache access pattern for different benchmark applications

be used to identify hot and cold blocks for wear-leveling. This is the the rationale
behind our proposed techniques and can be implemented with minimal overhead in

NVM caches. Coming sections discuss the proposed technique in detail.

5.3 Proposed Technique - ViSC

Virtually Split Cache (ViSC) is a novel low-overhead technique for improving the
lifetime of SLC NVM unified L2 caches which logically splits them into instruction
and data caches. As mentioned before, popular NVM wear-leveling strategies employ
counters at various levels of memory hierarchy, resulting in high overhead. Instead
of finding hot and cold data blocks using counters to distribute the writes, ViSC
logically splits the cache sets into instruction and data ways to reserve them for
storing respective blocks only. This mapping is periodically changed to ensure that
every block will be a hot block (when reserved for data) for some time interval and a
cold block (when reserved for instruction), ensuring better write distribution. This
approach reduces the counter overheads required for hot and cold block identification.

We propose three variants of ViSC and details are given below.
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Figure 5.2: L1 cache - LLC interaction through the proposed ViSC module

5.3.1 Virtually Split Cache (ViSC)

ViSC partitions the unified NVM LLC into distinct data and instruction ways,
dedicating each for storing the respective blocks. ViSC periodically reorganizes this
logical mapping at fixed intervals, transitioning heavily utilized data ways to function
as instruction ways and vice versa. This process ensures a balanced distribution
of heavily accessed ways throughout the cache memory. The proposed architecture
integrates the ViSC module with the LLC controller as shown in Figure 5.2. Each
L1 cache miss reaching the LLC controller is directed to the ViSC module for
necessary background verification and updating. The ViSC module incorporates a
swapping interval timer, facilitating the mapping of instruction ways and data ways.
This process, managed by the swapping module, involves signalling to designate
the current k-ways for instruction storage as data ways while also assigning new
k-ways for instruction storage. This reassignment and interchange of ways between
instruction and data is called set reorganization. The swapping module initiates set
reorganization at regular intervals using an appropriate timer. Upon receiving a write
request to the LLC, it verifies if the time elapsed since the last set reorganization
exceeds a predetermined threshold. If it does, the swapping module is activated. By

converting heavily written data ways (hot ways) to less utilized instruction ways (cold
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ways), the number of writes is reduced, thereby minimizing write variation.

Algorithm 1 provides a comprehensive outline of the operations executed within
the ViSC module. The line numbers 1 - 8 of Algorithm 1 defines important parameters
such as cache associativity, number of instruction ways, etc. Initially, instr start
is set to 0, and data_start is set to 3. Since the associativity is set to 8, way 0, 1
and 2 are reserved for instruction blocks and way 3 to way 7 is reserved for data and
are stored in instruction way list and data way list, respectively. The algorithm
processes each cache request (R, line number 9) sequentially. For read requests, it
performs the usual read operation (normal read operation, line number 11). For write
requests, the algorithm checks if the elapsed time (tp) exceeds the threshold (tp >
threshold, line number 14). If this condition is true, a reorganization occurs, and
the instruction and data ways are swapped using the swap function (line number
14). The starting indices of the instruction and data ways are updated using modular
arithmetic (instr_start and data_start, line numbers 15-16) to ensure the indices
wrap around the cache associativity. The updated indices are used to recalculate
instruction way list and data way list (line numbers 17-18), and the algorithm
proceeds with a normal write operation (line 19). If the threshold is not exceeded,
the write operation proceeds without any reorganization (lines 22-23).

The swap function (line 25) exchanges the roles of the instruction and data
ways by interchanging their corresponding entries in the instruction way list and
data_way list (lines 29-31). This reorganization also resets the timer (tp = 0, line
32), marking the beginning of a new monitoring period.

L1 caches typically employ a split organization to mitigate structural hazards
within the instruction pipeline when accessing memory for instructions and data
simultaneously in a single clock cycle. Conversely, higher-level caches often adopt
a unified organization, accommodating instruction and data within the same cache.
Here, we delve into the specifics of our proposed architecture. Let us consider an 8-way
set associative L2 cache as shown in Figure 5.3, wherein we virtually allocate three
ways for instructions (k=3) and the remaining five for data (8-3=5). Unlike L1 split
caches, which commonly use equal-sized caches for instructions and data, our ViSC

architecture may feature unequal partitioning for the L2 cache. This discrepancy
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ALGORITHM 1: Operational steps in ViSC module

instr_start = 0 \ \first way of instruction ways;

data_start = 3 \\first way of data ways;

cache assoc = 8 \\cache associativity;

num_inst ways =3 \\number of instruction ways;

tp: time elapsed since last set reorganisation, increments every clock cycle;

threshold = 100000;

List instruction way list : List of ways reserved for instructions sequentially from
instr _start. Size = 3;

List data_way list : List of ways reserved for data; sequentially from data start. Size

repeatfor every L2 cache request R and block B do

if R==read then
normal read operation;
else
if ¢, > threshold then
swap (instruction_way _list,data_way _list);
instr_start = (instr_start+num_inst ways) % cache assoc;
data_start = (data_start+num_inst ways) % cache assoc;
instruction way list = {instr_start, instr_start-+1, instr _start+2 };
data_way list = {data_start, data_start+1, data_start-+2, data_start+3,
data_start+4 };
normal write operation;
else
end
normal write operation;
end
end
until end of execution swap (instruction way list,data_way_list)

{

foreach instruction_way listfi/, 0 <= i < num_inst_ways

do
temp=instruction way list|[i];
instruction _way list|i|=data_way list]i|;
data_way list[i] =temp ;
} tp=0;
end
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Initial organisation of set A into
instruction and data ways

Set A after first reorganisation

Set A after second reorganisation

Figure 5.3: Organization of a set of 8-way set associative cache in ViSC architecture

stems from the observation that data typically requires more space in unified caches
due to its larger memory footprint. In ViSC, owing to its logical partitioning, each
cache set comprises three instruction ways for storing instructions fetched from main
memory, leaving the remaining five ways for data storage. The mapping of instruction
and data ways during the initial phase and subsequent reorganizations is illustrated
in Figure 5.3. Initially, during cache warm-up, way 0, way 1, and way 2 serve as
instruction ways, housing instruction blocks mapped to this set, while the remaining
ways store data. We establish a threshold time of 100,000 clock cycles. Upon its
expiration, reorganization occurs, and ways 3, 4, and 5 become the instruction ways,
as depicted in the figure. Similarly, instruction and data ways periodically shift across
the 8-ways at regular intervals.

All read requests to the LLC are handled as usual. However, regarding write
requests, ViSC assesses whether the elapsed time since the last cache reorganization
surpasses a predetermined threshold. If this condition is met, a set reorganization
process is triggered, wherein the contents of the current instruction/data way are
swapped with their counterparts in the new data/instruction way. This swapping and
copying procedure within the L.2 cache occurs in the background and does not interfere

with the critical path of instruction execution. The processor continues its execution
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by retrieving instructions and data from the L1 cache. In ViSC, instruction ways are
written only while transferring a block from the main memory to the L2 cache. On
the other hand, data ways are written during L2 cache misses and subsequent block
transfers from main memory and during write-back or write-through operations from
the L1 cache. Evictions of L1-I cache blocks do not trigger the write operations in the
L2 cache. However, the removal of dirty cache blocks from the L1 cache significantly
contributes to writes on the data ways of the L2 cache in ViSC. By reorganizing
instruction (I) and data (D) ways in ViSC, the distribution of writes across each
way in a cache set is balanced. As previously mentioned, in a cache with m-way set
associativity, there are various possible logical configurations for the split between
instruction ways (k) and data ways (m-k).

Figure 5.4 shows relative lifetime values of different partition ratios of ViSC
enabled L2 cache for various benchmarks. It is observed that for an 8-way set
associative cache the setting k=3 yields optimal performance. ViSC presents a
promising proactive strategy for managing cache aging. Unlike reactive approaches
that only activate wear-leveling under specific conditions, ViSC’s proactive method
ensures continuous wear-leveling regardless of application behaviour. This eliminates
the need for write counters, minimizing overhead. However, ViSC employs static
values for crucial parameters like reorganization interval and instruction to data
partition ratio. Figure 5.5 shows the analysis of relative lifetime values of different
reorganization of ViSC enabled L2 cache for various benchmarks. We can observe
that the benchmarks with high write accesses necessitate frequent reorganization for
optimal write distribution, while others exhibit sudden bursts of writes, overwhelming
specific memory cells. ViSC’s limited number of ways allocated to data in LLC sets
may penalize data-intensive applications by constraining effective storage capacity.
These challenges drive the need for a dynamic, application-aware policy to adjust
critical parameters based on application behaviour. To address this, we propose two
low-overhead techniques, E-ViSC and P-ViSC, which augment conventional ViSC
capabilities. These techniques employ a hybrid wear-leveling policy triggered regularly
(proactive) and dynamically adjust wear-leveling frequency by analyzing application

write patterns (reactive). Detailed discussions on these proposed techniques follow in
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subsequent sections.
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Figure 5.4: Relative lifetime values of different partition ratios of ViSC enabled L2
cache for various benchmarks
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Figure 5.5: Relative lifetime values of different reorganization intervals (cycles) of
ViSC enabled L2 cache for various benchmarks

5.3.2 Enhanced-ViSC

Enhanced-ViSC (E-ViSC) operates by dividing a unified m-way LLC into distinct

sections, reserving n-ways for instructions and allocating the remaining (m-n) ways
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for data storage. This allocation is adjusted periodically, ensuring that instructions
and data are balanced optimally. As instruction blocks are less frequently modified
than data blocks, this periodic adjustment aids in more evenly distributing write
operations. E-ViSC dynamically adapts the frequency of these adjustments based on
the LLC’s write behaviour, utilizing a global counter to track total writes across the
LLC within specific time intervals. Unlike conventional methods that track writes at
the block level, E-ViSC analyzes writes at the LLC level, sacrificing some precision
for overhead savings.

Detailed workings of E-ViSC are described in Algorithms 2 and 3. Algorithm 2
introduces the key parameters and functions used in Algorithms 3 and 4. Algorithm 3
introduces dynamic reorganization based on elapsed time (t_p) and write thresholds
(T_i). Algorithm 3 initializes the reorganization interval (R_1i) and threshold (T i)
to their smallest values in line numbers 1-2. For every cache request, read requests
(line number 4) perform normal operations, while write requests trigger reorganization
checks. If the time elapsed exceeds the reorganization interval (t _p > R_1i) in line
number 7, the swap function in line number 8 is executed, followed by set reorganize
in line number 9 and a normal write operation follows. The algorithm dynamically
adjusts R_i based on the current write count and thresholds (T i) in line numbers
10-17, ensuring that the cache adapts to varying workloads. The loop repeats until
execution ends (line number 20), maintaining a balance between instruction and data
ways while minimizing wear.

Let us examine the working of E-ViSC in detail. Initially, the reorganization
interval is set to 100K cycles, with a fixed instruction-to-data partition ratio of
3:5. Each LLC write operation increments a 10-bit global counter, triggering a
set reorganization once the interval lapses. Reorganization occurs only upon the
first write to a set following the interval’s completion, ensuring uninterrupted cache
operation. A 64B write buffer facilitates partition adjustments by swapping contents.
Based on the normalized write count within the current interval, E-ViSC selects a new
reorganization interval from a predefined pool of standard intervals (25K, 50K, 75K,
100K, and 1M cycles). Opting discrete values for reorganization interval simplifies

complexity and reduces overhead. Figure 5.6 illustrates the configuration of set A
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in an E-ViSC-enabled 8-way set associative cache across different execution phases.
E-ViSC prolongs reorganization intervals during low-write phases to delay swaps and
associated writes. However, E-ViSC dynamically shortens intervals as write frequency
increases, leading to more frequent reorganizations and improved write distribution.
This dynamic adaptation of reorganization intervals yields superior performance to

traditional ViSC, as discussed in section 5.4.

ALGORITHM 2: Common terms and swap function for E-ViSC and P-ViSC

cache _assoc = A : Cache associativity;
num__inst_ways =N; : Number of instruction ways;
num_data_ways =A — N; : Number of data ways;
instr _way _start = 0 : First way among instruction ways;
data_way start = N; : First way data data ways;
write__count=0 : Number of writes;
tp: Time elapsed since last set reorganization, increments every clock cycle;
R; € {Ry1,...R,} : Set of reorganization intervals Rj.. < R;... < Rp;
T; € {T1,...T,,} : Set of write thresholds T7.. < T;... < Tp;
List instr way list : List of ways reserved for instructions sequentially from
instr_way _start. Size = 3k, k € N;
List data_way list : List of ways reserved for data; sequentially from
data_way_start. Size = bk, k € N;
data__count=0 : number of data writes;
threshold = 100000;
T : Maximum value of data _count;
o, p1 = 0 : Number of consecutive reorganisation intervals;
s : Maximum number of consecutive reorganisation intervals;
swap (swap) { foreach instruction way list[i],0 <=1i < num_inst_ ways do
temp=instr _way _list[i];
instr _way _listli]=data_way list[i];
data _way _list[i] =temp;
t,=0;
}
set_reorganize(set reorganize)
{
instr_way _start = (instr_way _start+num_inst _ways) % cache__assoc;
data _way _start = (data_way _start+num_inst _ways) % cache _assoc;
instr _way _list = {instr _way _start,...;instr _start + num__inst_ways — 1};
data_way_list = {data_way _start,... data_num_data_ways — 1};

}
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ALGORITHM 3: Operational steps in E-ViSC module

R; = Ry;
T =Ti;
repeatfor every LLC request R and block B do
if R==read then
normal read operation;
else
if ¢, > R; then
swap();
set _reorganize(); normal write operation;
if write_count < T; then
L R, =R,
if write_count >=T; AND write_count < T;;1 then
L R; = Ri1
if write_count >=T;+1 AND write count < T;1o then
L R; = Riy3
..if write_count >= T, then
| Ri =Ry,
else
L normal write operation;

until end of execution

5.3.3 Protean-ViSC

P-ViSC, like E-ViSC, operates by virtually partitioning the unified cache into separate
data and instruction caches. This involves dividing an m-way LLC into n-ways for
instructions and (m-n)-ways for data. Notably, the number of writes in instruction
blocks is considerably lower than in data blocks. While a fixed partition ratio may
penalize applications, especially those with either data or instruction write-intensive
operations, P-ViSC addresses this by dynamically managing the partition ratio based
on the application’s write count. To achieve this, P-ViSC utilizes a 10-bit saturating
global counter, data__count, which increments upon data writes and decrements upon
instruction writes in the LLC. This counter determines whether write accesses to the
LLC predominantly involve instruction or data blocks. Initially, the instruction-to-
data way ratio is set at 3:5, with a reorganization interval of 100K cycles. Following
each interval, if data_count stabilizes between 0 and 1023, indicating balanced write

patterns, no changes to the partition ratio occur. However, if data count deviates
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Figure 5.6: Organisation of set A of eight-way set associative caches after each
reorganization of proposed techniques

from this range, signalling a need for adjustment, P-ViSC initiates a reorganization
process. For instance, if data _count reaches 0 or 1023 consistently over p consecutive
reorganization intervals, indicating a discrepancy in write patterns, P-ViSC adjusts
the partition ratio accordingly. It increases instruction ways by converting data
ways into instruction ways when data_count is 0 for p intervals, or vice versa when
data__count saturates to 1023. This realignment allows for accommodating more
blocks of the prevalent type. After each reorganization, the cache operates with
the new partition ratio and repeats the process periodically. The criterion of p
consecutive intervals ensures stability around the 3:5 partition ratio unless continuous
application behaviour necessitates otherwise. Additionally, P-ViSC ensures that at
least one way is reserved for instructions. The decision-making process for partition
ratio reorganization, guided by the global counter data count, reduces the overhead
of estimating writes at the way-level granularity. Depending on the write pattern
to NVM, P-ViSC dynamically adjusts its instruction-to-data partition ratio. This
adjustment enables the accommodation of more data writes by increasing the number
of data blocks.

Algorithm 4 explains the working of P-ViSC. Cache requests are handled similar

to E-ViSC, with read operations following normal procedures (line number 4) and write
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operations triggering reorganization if t p > threshold (line number 6). In this case,
the swap function and set reorganize are executed in lines 7-8, followed by a normal
write operation (line number 9). Depending on data_count, adjustments are made
to the number of instruction ways. If data count < 0, counters p_0 is incremented
and and p_1 is reset (line numbers 10-12), potentially increasing instruction ways.
Conversely, when data_count >T, p_ 1 is incremented, and instruction ways may
decrease if conditions are met (line numbers 22-27). Default conditions reset the
counters in lines 29-30, and data_count is updated based on the type of write
operation (lines 33-36). Algorithm 5 shows the increment and decrement operations

on instruction way list in P-ViSC.

Table 5.1: Comparison of the proposed wear-leveling techniques

Reorganization interval | Partition ratio | Application awareness
ViSC Static Static No
E-ViSC Dynamic Static Yes
P-ViSC Static Dynamic Yes

Table 5.1 summarises the key features of ViSC, E-ViSC and P-ViSC such as
reorganization interval, partition ratio and application awareness. In ViSC reorgani-
zation and partition ratio are static where as in E-ViSC, the reorganization interval
and in P-ViSC, partition ratio are dynamic in nature. The third feature, application
awareness refers to the ability of the proposed technique to adjust it self to suit
according to the application behaviour. Further enhancements, such as combining
the dynamic reorganization interval and partition ratio adjustment seen in both
E-ViSC and P-ViSC, are possible for ViSC. However, experimental results suggest
that while such a combination yields performance similar to E-ViSC, the overhead
limits significant improvements. Therefore, the discussion primarily focuses on the

effectiveness of E-ViSC and P-ViSC individually.
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ALGORITHM 4: Operational steps in P-ViSC module

repeat
for every LLC request R and block B do
if R==read then
normal read operation;
else
if ¢, > threshold then
swap();
set _reorganize();
normal write operation;
if data_count <= 0 then
po + +;
p1=0;
if num_inst ways <=num_data_ways then
if num_inst ways%3 == 0 then
if pg == s then
L inst_way _increment();

else
L inst_way _increment();

Ise if data_count >=T then
p1++;
po = 0;
if num_inst_ways>=1 then
if num_inst_ways == 3 then
if p == s then
L inst_way decrement();

]

else
L inst_way decrement();

else
po =20
p1 = 0;

else
normal write operation;
if data write then
‘ data__count 4+ +;
else
L data__count — —;

37 until end of execution
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ALGORITHM 5: P-ViSC :inst_way increment() and inst way decrement()

inst_way_increment (inst_ way_increment) ()
{

num__data_ways — —;

num__inst_ways + +;

data__count = 0; }

inst_way_decrement (inst_ way decrement) ()
{

num_data_ways + +;

num__inst_ways — —;

data_count = 0; }

5.4 Experimental Setup and Result Analysis

Our evaluation of proposed architectures involves running workloads composed of
SPEC CPU2006 benchmark applications using the system configurations outlined
in Table 5.2. We compare the proposed techniques with baseline architecture and
DWWR. Baseline architecture refers to the SLC NVM L2 cache without any opti-
mization. DWWR is an optimization technique for SLC NVM caches which uses a
dynamic window write restriction policy. A detailed description of DWWR can be

found in Section 2.2.

Table 5.2: Simulation parameters

CPU 2 GHz, Unicore, Dual-Core, Quad- Core, ALPHA
L1 Cache Private, 32KB, SRAM Split cache,
64 B block, 4-way set associative
L2 Cache Shared 512KB|2MB, STT-RAM cache,
4-way|8-way|16-way set associative, 64 B block
Main Memory 8 GB

5.4.1 Impact on Relative Lifetime

Relative lifetime is one of the most widely used metrics that can measure the aging
of NVMs [12] [11] [13]. As discussed before, limited endurance is a bottleneck for
NVMs. Attackers can also exploit this limitation to run applications that force more
writes on certain blocks of NVM LLC. In order to reduce the concentration of writes

to a few memory locations, we need to distribute the writes as much as possible to
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Figure 5.7: Relative lifetime of 512KB 8-way set associative NVM L2 cache in a
unicore system

avoid the early aging of memory cells. If an application produces concentrated writes
to a particular block, then it reduces the relative lifetime. We measure the relative
lifetime of NVM L2 cache in a unicore, dual-core and quad-core system using various
applications from the SPEC CPU2006 benchmark suite.

In the case of the unicore system illustrated in Figure 5.7, it is evident that
all three variants; ViSC, E-ViSC, and P-ViSC substantially enhance the lifetime
compared to the conventional ViSC. Both E-ViSC and P-ViSC exhibit respective
improvements in relative lifetime by 1.71x and 1.57x, while ViSC itself boosts the
relative lifetime by 1.64x compared to the baseline across a range of benchmark
categories. The adaptability to self-adjust reorganization intervals notably enhances
the lifetime in E-ViSC, especially evident in benchmarks with high WPKI values
such as hmmer and [bm, where frequent reorganizations are necessary for optimal
wear-leveling; a feature supported by E-ViSC. Conversely, for benchmarks with low
WPKI, ViSC outperforms E-ViSC. An examination of E-ViSC’s execution time
distribution (Table 5.4) reveals that applications with low WPKI tend to settle on
a reorganization interval of 1M, starting from an initial 100K interval. Since the
write count within this interval falls below the threshold, the system transitions to
a larger interval, leading to increased write variance across cache blocks, affecting

relative lifetime. ViSC’s operation at a fixed, shorter reorganization interval ensures
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a more balanced write distribution across cache blocks. Similarly, the dynamic
reorganization of instruction and data ways’ position and count based on application
behaviour enhances P-ViSC’s performance. Notably, benchmark leslie3d demonstrates
significant improvement in relative lifetime due to P-ViSC’s adaptive nature. Analysis
reveals that the instruction-to-data mapping shifts from 3:5 to 2:6 and then to 1:7 to
accommodate leslie3d’s larger data memory footprint, increasing data blocks in L2
cache and reducing frequent writes from heavy L2 cache misses. Detailed examination
of P-ViSC’s execution time distribution (Table 5.5) indicates a preference for 3:5
and 4:4 partition ratios in low WPKI benchmarks, indicating lesser data storage
requirements in L2 cache. However, this can lead to uneven writes across ways,
occasionally reducing P-ViSC’s relative lifetime compared to ViSC, particularly in
scenarios where way reorganization affects write balance negatively for specific low
WPKI benchmarks.

We also investigate the effectiveness of the proposed methodologies in dual-core
systems that share NVM L2 cache. In the context of dual cores, we execute two
independent applications (one per core) and evaluate their combined impact on the
L2 cache. The influence on the L2 cache from write patterns generated by one core
may be enhanced or counterbalanced by the write patterns from the other core. To
comprehensively understand this impact across various application-level combinations,
we devise six workloads, each comprising a blend of two independent SPEC CPU2006
benchmark applications. The initial three workloads (designated as Low, Mid, and
High) consists of two independent applications with similar WPKI characteristics.
Additionally, we formulate three mixed-category workloads (Low-Mid, Low-High, and
Mid-High) by pairing applications from different categories.

In Figure 5.8, we present a comparative analysis of the relative lifetime in dual-
core systems. ViSC, E-ViSC, and P-ViSC enhance the lifetime by 1.81x, 2.03x,
and 1.57x, respectively, across diverse benchmark mix categories compared to the
baseline system. Notably, except for the Low category, E-ViSC demonstrates superior
performance to ViSC. Upon examining the distribution of execution time of E-ViSC
in dual-core systems (refer to Table 5.4), we observe that the reorganization interval

predominantly falls within 50K or 25K for most workloads. This adaptability stems
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Figure 5.8: Relative lifetime of 512KB 8-way set associative NVM L2 cache in a
dual-core system

from the adjustment of the reorganization interval based on L2 cache writes. Given
the identical L2 cache size of 512KB in dual-core setups, there are more writes and
evictions in the L2 cache compared to single-core systems. Consequently, the E-ViSC
mechanism adapts to a more frequent reorganization interval, leading to improved
relative lifetime by reducing uneven writes across cache blocks.

We conducted studies on quad-core systems, similar to those performed on
dual-core systems, utilizing various workloads. In selecting benchmark mixes, we
utilized two distinct benchmarks from the first and second WPKI categories.

Figure 5.9 illustrates the analysis of the relative lifetime of quad-core systems.
Like with dual-core systems, ViSC demonstrates superior performance with low
WPKI category benchmarks. Our strategies prove effective, particularly when encoun-
tering significant write variations. In quad-core systems, intra-set variation appears
reduced as the diverse write patterns from four different cores ultimately balance
out concentrated writes to specific blocks. P-ViSC exhibits the best performance for
high WPKI category benchmarks among the four techniques examined. Within the
execution window, benchmarks in the high WPKI category exhibit a notably higher
miss rate than others. Due to its ability to accommodate the maximum number
of data blocks throughout the execution window, P-ViSC effectively reduces writes
resulting from L2 replacements.

We study the impact on relative lifetime of proposed techniques against other
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Figure 5.9: Relative lifetime of 512KB 8-way set associative NVM L2 cache in a
quad-core system
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Figure 5.10: Relative lifetime of 2MB 8-way set associative NVM L2 cache in a
unicore system

wear-leveling methods using a larger L2 cache of 2MB. This ensures the scalability of

our technique for various cache sizes. Similar to that of a 512KB L2 cache, impact of

balancing and write distribution becomes more pronounced with the higher cache

capacity, attributed to the increased number of cache blocks. As cache size increases

cache replacement due to capacity misses reduces, thereby enhancing block retention

and increasing cache intra-set variation due to a greater number of dead blocks. In
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Figure 5.11: Relative lifetime comparison of 2MB 8-way set associative NVM L2
cache in a dual-core system
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Figure 5.12: Relative life time comparison of 2MB 8-way set associative NVM L2
cache in a quad-core system

a unicore system utilizing a 2MB NVM L2 cache, E-ViSC and P-ViSC elevate the
relative lifetime by 1.85x and 1.84x, respectively, compared to the baseline, with
ViSC achieving a 1.77x improvement. The outcomes align with those observed with
a H12KB cache size. In a dual-core system equipped with a 2MB L2 cache, E-ViSC
demonstrates a 23% enhancement in relative lifetime compared to ViSC, while P-ViSC
exhibits notable performance improvements across various benchmark mixes. Mainly,
P-ViSC shows approximately a 5% better relative lifetime for the Low benchmark
mix compared to E-ViSC. In quad-core systems featuring a 2MB L2 cache, both

71



5.4. EXPERIMENTAL SETUP AND RESULT ANALYSIS

61 Il Baseline
Il DWWR

o 51 E ViSC
a [ E-ViSC
E 4. I P-ViSC
=
omi
[
o 31
2
-
& 2]
[*]
&~

1_

Bz Lg Mi S§ Hm Lb
Benchmarks

Figure 5.13: Relative lifetime of 512KB 16-way set associative NVM L2 cache in a

unicore system
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Figure 5.14: Relative lifetime of 512KB 4-way set associative NVM L2 cache in a

unicore system

E-ViSC and P-ViSC demonstrate superior performance across all combinations except
for the Low category benchmark. The proposed techniques exhibit relative lifetime
improvements in larger caches for a given system architecture due to the potential
for enhanced write redistribution compared to smaller caches.

We study the impact of associativity of a given cache size on the relative lifetime
improvement of our proposed technique. Figures 5.13 and 5.14 illustrate the relative
lifetime of 16-way and 4-way 512KB L2 caches across various architectures. For the

16-way E-ViSC enabled L2 cache, employing six instruction ways and ten data ways,
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ViSC, E-ViSC, and P-ViSC increase the relative lifetime by 2.23x, 2.55x, and 2.29x,
respectively. Conversely, for the 4-way L2 cache with two instruction and two data
ways, the relative lifetime increases by 1.34x, 1.48x, and 1.32x, respectively. The
relative lifetime improvement escalates as set associativity increases for a particular
cache size, facilitating better write masking and inclusion of data blocks due to the

expanded number of ways.

5.4.2 Impact on Intra-set variation

Intra-set variation quantifies the efficiency of the wear-leveling method in distributing
write operations within the cache memory sets. The coefficient representing intra-set
variation, denoted as IntraV (as defined in equation 3.1), provides insights into
the uniformity of write distribution across different cache set ways. Lower values of

IntraV indicate a more balanced write distribution.
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Figure 5.15: Intra-set variation comparison of 512KB 8-way set associative NVM L2
cache in a unicore system

Figure 5.15 illustrates the write distribution for a uni core system utilizing a
512KB L2 cache. Evidently, applications with low WPKI values, such as namd and
calculiz, exhibit significant intra-set variation compared to those with mid and high
WPKI values. These low WPKI applications demonstrate uneven write patterns

across the cache ways, with certain ways heavily utilized over others. Conversely,
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applications like libquantum and mcf, characterized by high WPKI values, display a
more uniform distribution of writes across cache ways. Despite notable reductions in
intra-set variation compared to the baseline, both E-ViSC and P-ViSC outperform
other techniques, indicating their ability to balance effectively writes across cache
ways. Specifically, E-ViSC achieves a 4% greater intra-set variation reduction than

ViSC.
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Figure 5.16: Intra-set variation comparison of 2MB 8-way set associative NVM L2
cache in a unicore system

Figure 5.16 presents the study of intra-set write variation in a unicore system
employing a 2MB NVM L2 cache. As the cache size increases, so does the intra-set
variation due to heightened cache block retention. Notably, the effectiveness of our
techniques, particularly E-ViSC, becomes more pronounced with larger cache sizes. E-
ViSC demonstrates superior performance across various applications, including namd,
gromacs, hmmer, and calculiz, owing to its capability for frequent reorganization,
which facilitates better write distribution compared to static reorganization interval-
based approaches like ViSC and DWWR

Figures 5.17 and 5.18 depict the comparison of intra-set variation in a dual-core
system utilizing 512KB and 2MB L2 cache, respectively. As previously discussed
regarding relative lifetime, dual-core systems exhibit diminished write variation
and consequently lower IntraV compared to unicore systems. The presence of two

applications sharing an LLC mitigates the write imbalance and IntraV to some
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Figure 5.17: Intra-set variation comparison of 512KB 8-way set associative NVM L2
cache in a dual-core system
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Figure 5.18: Intra-set variation comparison of 2MB 8-way set associative NVM L2
cache in a dual-core system

degree. In the case of a 512KB L2 cache, E-ViSC demonstrates a 53% reduction in
intra-set write variation compared to the baseline and a 13% reduction compared
to ViSC. Similarly, P-ViSC exhibits a reduction in intra-set variation by 50% and
7% compared to baseline and ViSC, respectively. Similar to unicore systems, as the
cache size increases from 512KB to 2MB, the write variation also increases. This

trend is evident from the results of the 2MB L2 cache in Figure 5.18.
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Given that multi-core systems inherently display less write variation compared
to unicore systems, the reduction in intra-set variation diminishes as the number of
cores increases. (Quad-core systems demonstrate superior write distribution compared

to unicore and dual-core systems.
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Figure 5.19: Intra-set variation comparison of 512KB 8-way set associative NVM L2
cache in a quad-core system
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Figure 5.20: Intra-set variation comparison of 2MB 8-way set associative NVM L2
cache in a quad-core system

Figures 5.19 and 5.20 illustrate the write variation in quad-core systems utilizing

512KB and 2MB NVM caches. The results indicate that our proposed techniques
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enhance intra-set variation in quad-core systems as well. As anticipated, E-ViSC
exhibits the most significant reduction in write variation among all techniques. The
superior write distribution of E-ViSC compared to P-ViSC suggests that application-
aware dynamic reorganization interval selection yields better write distribution than

dynamic partition ratio selection.
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Figure 5.21: Intra-set variation comparison of 512KB 16-way set associative NVM L2
cache in a unicore system
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Figure 5.22: Intra-set variation comparison of 512KB 4-way set associative NVM L2
cache in a unicore system

Examining figures 5.21 and 5.22, we explore the intra-set write variation con-

cerning a 512KB L2 cache size, comparing 16-way and 4-way set associativity. Our
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Table 5.3: Percentage change in inter-set variation for various architectures and cache
sizes under study

DWWR | ViSC | E-ViSC | P-ViSC
unicore +1.15 -1.17 -0.82 +0.90
512KB | dual-core -5.52 -7.78 +4.29 +0.955
quad-core | -1.88 -3.34 -1.68 +0.94
unicore +2.53 | +1.67 | +0.66 +4.46
2MB | dual-core +1.44 -7.20 +1.00 -5.92
quad-core | -1.11 -1.33 -1.69 -0.96

suggested methods exhibit a more pronounced impact on intra-set variation as as-
sociativity increases. This occurs because higher associativity facilitates the more

efficient distribution of writes within a set, thereby diminishing write variation.

5.4.3 Impact on Inter-set variation

Our proposed techniques aim to decrease the write variation within sets of NVM
LLCs. As cache block reorganization and swapping occur within sets, there is no
direct effect on the variability between sets. We examine the inter-set variability of
these techniques across unicore, dual-core, and quad-core configurations using 512KB
and 2MB NVM L2 caches. We observe minor fluctuations in the InterV, as detailed
in Table 5.3, with changes typically in the range of a few percentage points. These
fluctuations are primarily attributed to alterations in write counts within each set,
contributing to the overall estimation. Consequently, we conclude that our proposed
methods do not significantly influence inter-set variability, as our primary objective

is to achieve a balanced distribution of writes within each set.

5.4.4 Impact on IPC

Proposed techniques do not have any impact on the cache hit rate and memory
access time. Swapping operations during reorganizations are not on the critical path
of instruction execution and hence do not impact memory access time. Hence the

proposed techniques do not impact the instructions per cycle (IPC) value.
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5.4.5 Impact on Execution Time Distribution

E-ViSC dynamically adjusts its reorganization intervals based on the write pattern
behaviours exhibited by the application. Table 5.4 outlines the distribution of
execution times in various architectures using a 512KB NVM L2 cache for unicore,
dual-core, and quad-core systems.

In unicore setups, particularly with low WPKI benchmarks, E-ViSC often employs
longer reorganization intervals, constituting approximately 53% of the total execution
time on average. This delay in swapping instruction and data ways responds to fewer
writes. However, this strategy may slightly reduce lifetime in scenarios with low
WPKI and high write variation due to concentrated writes in fewer blocks. Instances
where bursts of heavy writes occur prompt E-ViSC to adopt shorter reorganization
intervals of 25K or 50K cycles, even though these are isolated cases (approximately
6% for 25K cycles and 3% for 50K cycles) to which E-ViSC adjusts accordingly.

For mid and high WPKI benchmarks, E-ViSC tends to utilize shorter reorganiza-
tion intervals, enhancing write distribution compared to conventional ViSC. Around
65% and 8% of the execution window adopt 50K cycles as the mid and high WPKI
benchmarks reorganization intervals, respectively. Notably, approximately 77% of the
execution time employs the shortest possible interval of 25K cycles for high WPKI
benchmarks. This detailed examination illustrates E-ViSC’s dynamic adaptation to
application behaviour.

Similar behaviour is observed in dual-core and quad-core systems. In dual-core
setups, except for low WPKI benchmark mixes, lower reorganization intervals are
predominantly used due to higher average write counts resulting from inter-core cache
block access and memory access interference from multiple applications. In quad-core
configurations, aside from low category benchmarks, E-ViSC overwhelmingly adopts
the shortest reorganization interval of 25K cycles for over 98% of the execution
window. Notably, there were no instances of employing a 1M cycle reorganization
interval, indicating that E-ViSC’s relative lifetime improvement over ViSC is from
the effective dynamic selection of reorganization intervals. Various design parameters

incorporated in Algorithm 3 contribute significantly to this performance enhancement.
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Table 5.4: Distribution of execution time (in %) of E-ViSC while running various
benchmark mixes

. Reorganization Interval
System | Benchmark Mix 5FK T 50K 1 75K T 100K | 1M
Low 5.79 | 3.28 | 9.23 | 28.97 | 52.75
Unicore Mid 22.26 | 64.79 | 6.43 | 6.47 | 0.06
High 7729 | 744 | 251 | 9.21 | 3.56
Low 10.04 | 6.87 | 23.65 | 38.92 | 20.52
Mid 85.71 | 14.25 | 0.00 | 0.04 | 0.00
Dual-core High 89.11 | 7.30 | 2.07 | 1.69 | 0.04
Low-Mid 61.52 | 33.71 | 1.62 | 2.48 | 0.67
Low-High 80.33 | 12.92 | 2,58 | 0.25 | 3.92
Mid-High 98.62 | 0.42 | 0.41 | 0.47 | 0.08
Low 16.51 | 8.27 | 36.42 | 38.78 0
Mid 99.98 0 0 0.01 0
Quad-core High 99.97 | 0.01 0 0.01 0
Low-Mid 9775 093 | 0.98 | 0.33 0
Low-High 99.16 | 0.77 | 0.40 | 0.1 0
Mid-High 99.96 | 0.03 0 0.01 0

We also conduct a thorough analysis of execution time variations to comprehend
the changes in partition ratios when employing P-ViSC. Like ViSC, P-ViSC employs a
fixed reorganization interval but dynamically adjusts the partition ratio for instruction
and data paths. The distribution of average execution time for various partition
ratios using P-ViSC is presented in Table 5.5.

In single-core systems, P-ViSC predominantly settles with a 3:5 partition ratio for
execution across all benchmark mixes. However, for low WPKI category benchmarks,
we observe that the 4:4 partition ratio also holds significant weight (38%) during
execution. This is attributed to the limited number of writes in such applications,
reserving five ways unnecessary for data, resulting in the conversion of one data
block per set for storing instructions. As we transition to mid and high WPKI
benchmarks, the proportion of execution time for 2:6 and 1:7 partition ratios increases.
This correlates with the expansion of WPKI, indirectly leading to a larger memory
footprint and a preference for a greater number of data blocks within a given set. The

rationale behind P-ViSC settling with 3:5, 2:6, and 1:7 partition ratios for workloads
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Table 5.5: Distribution of execution time of P-ViSC while running various benchmark
mixes (%)

. Partition Ratio
System Benchmark Mix = 5. 3E i
Low 4 2.8 55.5 | 37.7
Unicore Mid 30.5 | 13.5 | 53.5 2.5
High 26.75 | 13.75 | 58.5 1
Low 4.67 | 4.33 | 77.00 | 14.00
Mid 25.50 | 15.00 | 57.50 | 2.00
Dual-core High 24.67 | 16.67 | 58.67 | 0.00
Low-Mid 20.00 | 11.33 | 65.00 | 3.67
Low-High 31.50 | 15.00 | 53.00 | 0.50
Mid-High 28.25 | 17.32 | 54.43 | 0.00
Low 11.5 8.5 68.5 11.5
Mid 16.5 | 13.5 | 69.5 | 0.50
High 32 20.5 | 47.5 0
Quad-core Low-Mid 23 | 165 | 605 | 0O
Low-High 28 16.5 55 0.5
Mid-High 31 17.5 51 0.5

other than entirely low WPKI benchmarks is evident in dual-core and quad-core
systems. As previously discussed, a significant portion of cache block writes pertains
to data block writes. Allocating a way for instructions effectively mitigates writes
to that way and prolongs its lifespan. Given the fewer data writes for low WPKI
applications, reserving more instruction ways helps preserve them from premature
wear. Conversely, for high and mid-category benchmarks with more data writes,
P-ViSC allocates additional space for data blocks by converting existing instruction
ways into data ways. Therefore, we conclude that P-ViSC adapts to the dynamic
write patterns of applications and adjusts the partition ratio accordingly to enhance

lifetime of NVM LLCs.

5.4.6 Overhead Analysis

Most of the state-of-the art technologies typically incur substantial storage overhead
due to using counters, tables, and buffers for estimating writes and managing data

swapping [11] [12] [14] [13]. E-ViSC and P-ViSC employ counters, swap buffers, and
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threshold timers for write counting and swapping operations, thereby contributing
to the storage overhead. Let S, A, B, T, N, and M represent the quantities of
sets, associativity, block size, tag size, swap buffers, and bits for counters per block,

respectively. The storage overhead can be computed as follows:

Q_MXSXA—i—NxB
 SxAB+T)

x 100 (5.1)

In our experiment, we selected a buffer size (B) of 64 bytes and a 32-bit wide
memory address. E-ViSC employs a swap buffer of 64 bytes, a 10-bit global saturating
counter, a 10-bit threshold timer, and an additional bit per way for instruction and
data way mapping, resulting in a storage overhead of 0.21%. Similarly, P-ViSC
utilizes an additional 64-byte swap buffer, a 10-bit global saturating counter, a
storage mechanism for partition ratio, and instruction-data mapping, resulting in
a 0.22% overhead. The adoption of a global counter instead of multiple counters
for each set/way significantly reduces the associated overhead. Since this overhead
remains unaffected by cache size, both techniques can be applied to larger caches
without incurring additional hardware overhead. Swapping operations contribute
to increased write counts for the proposed techniques. In the case of the unicore
system with 512KB L2 cache, ViSC exhibits a 0.40% overhead compared to the
baseline architecture. For E-ViSC and P-ViSC, these overheads are 0.73% and 0.37%,
respectively. E-ViSC mitigates write overhead resulting from swapping, particularly
for low WPKI benchmarks, owing to longer reorganization intervals. Nevertheless,
the overall write count due to swapping remains high for E-ViSC due to frequent

swapping in mid and high WPKI benchmarks.

5.5 Conclusion and Future scope

This chapter introduces three techniques - ViSC, E-ViSC, and P-ViSC, that aim to
enhance the lifetime of SLC NVMs when employed as LLCs. These techniques use
the logical partitioning of NVM LLCs for storing data and instructions, periodically
reorganizing them to distribute write operations across the memory uniformly, thereby

mitigating memory cell wearout. While E-ViSC dynamically tunes reorganization
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intervals, P-ViSC adjusts partition ratios during application execution. Experimental
results show the efficacy of these techniques across unicore, dual-core, and quad-core
systems, showcasing superior performance compared to existing methods, particularly
in multi-core setups handling intensive workloads. Notably, E-ViSC exhibits better
performance by adaptively capturing application-specific write patterns, while P-ViSC
excels in scenarios where dynamic adjustment of instruction-data partition ratios is
crucial. Furthermore, these methodologies hold promise for customization to leverage
variations between hard and soft bits in Multi-Level Cell NVMs, thereby boosting
LLC packaging density.

Qoo J&enen
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CHAPTER

Trace buffer Assisted Last Level
Non-Volatile Caches

This chapter discusses Trace buffer Assisted Non-volatile memory Caches (TANC), a
novel technique to improve the lifetime, write latency, and energy efficiency of MLC
NVM LLC. Due to the structural peculiarity and limited write endurance, MLC
NVMs are more susceptible to repeated write attacks and early wear out due to non-
uniform writes [36] [37]. TANC uses embedded trace buffers to mitigate the effect of
repeated writes on MLC NVM LLCs. TANC gives superior performance in improving
the lifetime and performance of NVM LLCs when compared to other popular MLC
NVM cache optimization techniques. Unlike popular lifetime improvement techniques

TANC utilizes existing resources, hence the overhead is minimal.

6.1 Introduction

The previous chapters discuss lifetime enhancement techniques for SLC NVM LLCs.
As discussed in previous chapters, due to the unique structure of MLC NVMs, memory

cells can be of hard-bit or soft-bits. Write operations to hard-bit will result in extra



6. TRACE BUFFER ASSISTED LAST LEVEL NON-VOLATILE CACHES

write to corresponding soft-bit owing to the soft-bit restoration. Hence the lifetime
of MLC NVMs are less when compared to SLC NVMs [36]. The effectiveness of
wear-leveling techniques for SLC NVMs may diminish when applied to MLC due to
the inability to discern between hard and soft bits. Specialized techniques tailored
for MLC caches show superior performance compared to generic approaches. Our
proposed approach, known as Trace buffer Assisted Non-volatile memory Caches
(TANC), employs ETB to enhance the lifetime, write latency, and energy efficiency
of MLC NVM LLC. The key contributions of this chapter are as follows.

e We propose a technique, TANC and its variants, which use the Embedded Trace

Buffer (ETB) to minimize the effect of repeated writes on memory cells.

e We study the impact of TANC on the lifetime, write latency, and energy of MLC
NVMs with respect to SLC and other existing MLC optimization techniques.

e We study the impact of applications without cache locality and their impact on

NVM LLCs and address the issues.

Before discussing TANC, we will discuss the motivation and details of ETB.

6.2 Motivation

To study the impact of restoration of soft-ways during hard-way writes on MLC NVM
LLCs, we run SPEC CPU2006 benchmarks on SLC and MLC NVMs in a unicore
architecture. We model a unicore system in gem5 simulator with two levels of cache
and main memory. The L1-I and L1-D caches are configured as 32KB, 2-way set
associative. The unified L2 cache is 512KB, 8-way set associative, and we use 8 GB
of main memory. The block size is 64 bytes. We executed a 1 billion instruction
window for selected benchmarks from the SPEC CPU2006 suite for SLC and MLC
L2 cache and calculated the relative lifetime. Figure 6.1 shows the relative lifetime
of MLC NVMs with respect to SLC NVMs for various SPEC CPU2006 benchmark
programs. We can observe that MLC NVM LLC shows a lower lifetime than SLC

for all benchmarks. From the experimental analysis, it is evident that for a given
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Figure 6.1: Relative lifetime of SLC and MLC NVM LLC for various SPEC CPU2006
benchmarks

application execution window, MLC NVM incurs more writes than SLC NVM caches
due to soft-way restoration.

Hence, MLC NVMs are prone to early wear-out due to applications with non-
uniform write applications and targeted repeated write attacks through malicious
applications. The lifetime improvement techniques for SLC NVMs are unsuitable for
MLC NVMs as they do not distinguish between hard and soft ways. This motivated
us to develop an efficient, low-overhead technique that would enable us to use MLC
NVM as LLCs, addressing the major challenges such as lower lifetime, higher write
energy and latency. We discuss our proposed technique TANC and its variants in the

coming sections in detail.

6.3 Proposed Techniques

We propose an innovative technique, TANC, which uses ETBs to improve the lifetime
and performance of MLC NVM LLCs. Unlike the techniques discussed in the previous
chapters, TANC is customized for MLC NVMs considering its unique structure. Before
discussing the details of the technique, we discuss ETB, which is the core component

of TANC and its variants.
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6.3.1 Embedded Trace Buffer (ETB)

Embedded Trace Buffers (ETBs) [38] are available in modern processors for post-
silicon validation but often remain unused after this stage. Post-silicon validation
involves testing a chip for complete functional correctness in a laboratory setting,
where the accuracy of the design is verified on real hardware in a practical environment.
The primary goal of post-silicon validation is to identify design bugs overlooked during
pre-silicon validation and to ensure the chip or System-on-Chip (SoC) is ready for
deployment. An Embedded Trace Macrocell (ETM) is a real-time trace module
that traces the instructions and data of a processor. Retrieving trace data from
a chip using ETM becomes more complex as processor speeds increase, causing
challenges in maintaining signal quality or accommodating numerous trace port pins.
To address this, an on-chip buffer region is integrated to store trace data, which is
later accessed at a slower rate. The data generated by the ETM is stored in the ETB,
with its size varying depending on the processor architecture, ranging from 8 to 32KB.
Processors like ARM 7-9 [39], Cortex A8-A9 [40], CortexM0-M3 [41], and SPARC
Leon3 [42] utilize ETBs for post-silicon validation. However, after this stage, ETBs
often remain unused. Given their idle status, incorporating ETBs into the memory
hierarchy is proposed to reduce LLC writes, thereby enhancing performance. Various
optimization techniques utilize ETBs, such as opportunistic caching of evicted blocks
in Network-on-Chip (NoC) routers, which aims to reduce L1 cache miss penalties [43].
While using ETBs as victim caches for L1 D-cache can improve performance [44], it
may increase area and power consumption due to additional circuitry. Our proposed
technique, TANC, employs ETBs as write buffers for enhancing the performance of
MLC NVM LLCs. TANC is more area and power-efficient than hybrid caches, as it
utilizes existing resources and fewer SRAM components, storing hot data blocks in

the SRAM portion.

6.3.2 TANC Organization

Key elements of TANC include the ETB [38|, wear-leveling module, and skip module.
The diagram in Figure 6.2 illustrates the memory hierarchy with TANC, while Figure
6.3 showcases the schematic of TANC-enabled L2 cache. ETB is closely linked with
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Figure 6.2: Schematic diagram of memory hierarchy with TANC

the L1 cache, and adjustments are made to the L2 cache controller to facilitate ETB
access from both the L2 cache and main memory. Following post-silicon validation,
control signals from the L2 cache controller enable the ETB to serve as an additional
storage buffer for L2 writes. This ensures that the ETB can effectively be utilized
for regular operations and validation. A segment of available ETB is utilized to
buffer writes in TANC. Our experimental study show that increasing the active ETB
size reduces effective writes in the MLC NVM cache enhancing both its lifetime and
performance. However, incorporating more SRAM based ETB incurs higher static
power dissipation. As shown in Table 2.1 SRAM cells consume 60nW per cell as
leakage power. This is because the SRAM cell usually operates in standby mode
[45]. The subthreshold and gate leakage current are the principal contributors to the
total leakage current, resulting in leakage power dissipation. As the size of SRAM
memory increases, the leakage power also increases due to an increase in memory
cells. Therefore, determining the ETB size involves a trade-off between extending
the lifetime and minimizing static power consumption. Based on our experimental
analysis, we set the ETB size to eight blocks (512B) for our experiments. During
execution, when recently written blocks fill the ETB, existing blocks must be replaced

to accommodate new ones. TANC identifies the least recently written block among
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Figure 6.3: Schematic representation of TANC enabled L2 cache

the ETB entries as the victim block, using a three-bit counter associated with each
entry. A counter value of zero indicates the block with the oldest write history.
The wear-leveling module is active only for specific TANC variants, enhancing write
distribution through an inter-pair way swapping mechanism similar to the state-
of-the-art ENDURA [46] technique. The skip module is key component of the
TANC _ALL_SKIP variant, which is activated when ETB write-backs are frequent
to the L2 cache due to a lack of memory locality. We summarize the key features of

various TANC variants.

e Enhances lifetime of MLC NVM LLCs by utilizing unused ETBs for write

reduction.

e Improves the write energy and latency by redirecting frequent writes to SRAM

based ETB.
e Reduces the intra-set variation using a naive SpH wear-leveling policy.
e Addresses the LLC thrashing issue in applications with poor temporal locality.

Utilizing soft-ways, which offer quicker access and lower write energy consumption

than hard-ways, to store heavily written blocks can enhance MLC NVM cache write

89



6.3. PROPOSED TECHNIQUES

Table 6.1: Service of requests in TANC

Request type | Request | ETB | L2 Action Sequence of access
1 Read | Miss | Miss Main Memory Access Request : 1|2 -> 4 Response : 4 -> 1
2 Read | Miss | Hit Service the request from L2 | Request : 1||2 Response : 1
3 Read Hit | Miss INVALID STATE Not Applicable
4 Read Hit | Hit | Service the request from ETB | Request : 1]|2 Response : 2
5 Write | Miss | Miss Main Memory Access Request : 1]|2 -> 4 Response : 4 -> 1
6 Write | Miss | Hit Write to ETB Request : 1||2 Response : 3 ->2
7 Write Hit | Miss INVALID STATE Not Applicable
8 Write Hit | Hit | Service the request from ETB | Request : 1]|2 Response : 2

latency and energy efficiency. However, this strategy leads to uneven write distribution
and premature degradation of soft-ways, negatively impacting the overall lifespan
of the NVM cache. TANC addresses this issue by utilizing the unused SRAM-
based ETB to handle write requests for MLC NVMs. Leveraging the faster and
more energy-efficient write capabilities of SRAM cells, our proposed method reduces
latency and write energy while extending the relative lifetime of MLC NVM caches.
Unlike hybrid caches, which require more space and suffer from leakage power issues,
TANC optimally utilizes NVM features and allocates unused resources like the ETB
to enhance performance. Various types of potential requests within TANC are
outlined in Table 6.1. The columns of Table 6.1 shows request categories, request
characteristics, presence in either the ETB or L2 cache, actions taken for each request,
and their control flow as depicted in Figure 6.3. The L2 cache controller examines the
ETB and L2 for every request. Given that ETBs function as SRAM-based storage
units linked with processors, all read-write requests are handled within a single cycle.
Request types 1 and 5 denote read and write requests, respectively, which experience
misses in both the ETB and L2, necessitating their forwarding to main memory as
standard cache miss requests. Type 2 requests signify read accesses for blocks missing
in the ETB but present in the L2, which TANC accommodates by serving them
directly from the L2 cache. Since blocks in the ETB are invariably written from the
L2 cache, an L2 cache miss leads to an ETB miss, making type 3 and 7 requests
nonexistent. Read and write requests that hit the ETB (request types 4 and 8) are
catered to directly from the ETB. In instances of L.2 write hits which are absent in

the ETB (request type 6), the block is written to the ETB, and subsequent requests
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Table 6.2: TANC variants and associated modules

Variant Name ETB contents Wear-leveling Skip
TANC_ HW Hard-way blocks only Inactive Inactive
TANC HW_SW Hard-way and selected soft-way blocks Inactive Inactive
TANC ALL Hard-way and soft-way blocks Inactive Inactive
TANC _HW_ WL Hard-way blocks only Active Inactive
TANC HW_ SW_ WL | Hard-way and selected soft-way blocks Active Inactive
TANC ALL Hard-way and soft-way blocks Active Inactive
TANC ALL_ SKIP Hard-way and soft-way blocks Inactive Active

are fulfilled from the ETB until eviction occurs.

Depending on the processor, ETBs come in sizes ranging from 8KB to 32KB [47].

Our experimental studies show that increasing the ETB size in TANC enhances the
lifetime and performance of NVM LLC, but it amplifies the leakage power associated
with the SRAM-based ETB. Based on empirical analysis, we fix ETB size as 512B
(equivalent to 8 cache blocks) as the optimal design choice. Considering selection

criteria for block placement in the ETB, wear-leveling techniques, and ETB write-back

policies, we propose and evaluate seven variants of TANC, as summarized in Table 6.2.

The primary objective across all TANC variants is to minimize L2 writes by utilizing
the ETB. The initial three variants solely employ strategies for minimizing writes. The
subsequent three variants incorporates an additional wear-leveling module to improve
lifetime further. The final variant adopts a skip cache approach to mitigate the
impact of frequent ETB write-backs. The following sections discuss these techniques

comprehensively.

6.3.3 TANC variants with write minimization only

The main goal of TANC is to improve the lifetime and efficiency of MLC NVM by
reducing write operations using ETB. This section discusses three different approaches
that utilize ETB to reduce the frequency of writes to NVM, each varying in the
selection of blocks to keep in ETB. Following sections briefly describe the specific

techniques used in these approaches.
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e TANC HW:

As previously discussed, hard-way writes are costly compared to soft-way writes.
Each hard-way write requires an additional write to the corresponding soft-way,
reducing the memory lifetime. Conversely, soft-way writes involve a single-step
procedure. In our initial variation, referred to as TANC HW, the ETB is
exclusively designated for hard-way writes. When a write request is initiated to
the L2 cache, TANC assesses whether the requested block, such as block A, is
stored in a hard or soft way. If block A resides in a hard-way of the cache, the
process is executed by writing it in the ETB. Subsequent requests to block A,
until its eviction will be serviced from the ETB. In case of a hit in a soft-way,
the corresponding operation is managed directly from the L2 cache. Cache
misses are handled conventionally. The ETB is exclusive for storing hard-way

blocks.

e TANC_HW_ SW

Frequent writes to the hard-ways and repeated writes to the soft-ways can
adversely affect the lifetime of MLC NVM. Hence, it is important to prioritize
heavily written soft-ways along with hard-ways for extending MLC NVMs
lifetime. In the TANC HW SW approach, the ETB accommodates hard-ways
and some frequently accessed soft-ways for write operations. When a soft-way
undergoes consecutive writes n times, it gains the status of a hard-way and
is stored in the ETB. During the ETB replacement block selection, hard-way
blocks are selected if and only if soft-way blocks absent in the ETB.

e TANC_ALL

As discussed, multiple soft-way writes are as important as hard-way writes.
Although the first two variants partly address challenges linked with hard-way
and repeated soft-way writes, some scenarios necessitate more frequent access
to soft-ways over hard-way writes. To address this issue, we present the third
variation of TANC, called TANC ALL. In this version, all write requests are
managed via ETB, irrespective of their source, by directing them to ETB for

the initial write process.
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6.3.4 TANC Variants With Write Minimization And Wear-

leveling

Write variation occurs when certain segments of memory are accessed more frequently
for write operations than others. This discrepancy in write frequency can occur
due to various factors such as irregular write patterns in applications or intentional
repetitive writes induced by malicious attacks. Such write variations is visible at
various levels within the memory hierarchy. As mentioned in the previous chapters,
wear-leveling strategies aim to distribute writes evenly, thereby minimizing write
variation. In the context of cache memory, write variation is categorized into intra-set
variation, occurring within a set, and inter-set variation, which occurs across sets
[6]. These variations are quantified using the coefficients of intra-set (IntraV’) and
inter-set (InterV') variation, respectively. If the write distribution is uniform, each
cache way will have approximately equal write counts, resulting in both InterV and
IntraV values approaching zero. A notable variation in inter-set writes suggests that
cache lines in different sets may experience significantly different write frequencies
due to biased address residency in applications. Similarly, substantial intra-set write
variations occur when a single cache line in a set receives frequent cache write hits,
causing it to absorb a significant portion of the cache writes. Consequently, the
remaining M — 1 lines in the set (for an M-way associative cache) may have unevenly
distributed write accesses. Maintaining low values for InterV and IntraV helps in
mitigating the risk of early wear-out of memory cells. Various advanced techniques
for SLC NVM and MLC NVM rely on uniform write distribution. TANC_HW WL,
TANC_HW _ SW_ WL, and TANC ALL_ WL are variants that integrate wear-
leveling into the base TANC model. ETB reduces the actual number of writes to
NVM but does not guarantee uniform distribution across the memory. Wear-leveling
techniques such as ENDURA [46] employ customized strategies for MLC NVM-based
caches. We incorporate ENDURA’s SpH wear-leveling strategy into TANC variants
to ensure more uniform write distribution across the cache memory. The wear-leveling
module, depicted in Figure 6.2, gets activated after a fixed time interval (100K cycles).
We utilize a three-bit saturation counter per hard-way /soft-way pair to estimate block

write counts. While the wear-leveling module is active, write-back operations from
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ETB to the L2 cache trigger way pair swapping. This swapping exchanges the pair
with the highest write count and one with the lowest within a set, thereby improving
write distribution. Swapping is aborted if all counters are saturated, indicating
heavy writes to all pairs. After swapping, the counters are reset. Since ETB ensures
that most repeated write requests bypass the L2 cache, we opt for a less accurate
estimate of write counts, significantly reducing associated overhead. Activation of the
wear-leveling module by an ETB write-back at fixed intervals ensures that swapping
and related writes do not degrade the L2 cache’s lifetime. We analyze the impact of
the wear-leveling module in TANC in the experimental setup and results analysis

section.

6.3.5 TANC with Skip cache

Cache memories become effective only when applications exhibit either spatial or
temporal locality. However, specific applications fail to demonstrate locality either
throughout their entire execution or during specific phases. Consequently, such
applications incur a higher cache miss rate, leading to a phenomenon known as
thrashing [48|. Notably, applications like bzip2 and lbm exhibit a high miss rate,
reducing the impact of techniques like TANC. This degradation in effectiveness
is resulted from the absence of locality, resulting in frequent cache evictions from
the ETB. To mitigate this issue, we propose modifying the existing skip cache
approach [49]. In this approach the thrashing and non-thrashing phases of application
execution are identified and bypasses the cache accordingly using shadow tags to
monitor application behaviour. Specifically, the application execution is segmented
into 50-million-cycle phases to distinguish thrashing from non-thrashing phases. A
variant of TANC, namely TANC ALL_SKIP, tackles the memory thrashing problem
by leveraging ETB writes to identify thrashing phases of application execution.
Skip cache-enabled TANC monitors ETB misses and activates skip cache mode

upon surpassing a predetermined threshold. During skip cache mode, write-backs
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ALGORITHM 6: Working of TANC ALL SKIP technique

ETB_ HIT : TRUE if requested block is present in ETB else FALSE;
L2 HIT :TRUE if requested block is present in L2 else FALSE;
ETB MISS COUNT =0 : Counts consecutive ETB write miss;
ETB FULL = FALSE :TRUE if ETB is full else FALSE;
SKIP = FALSE : FALSE if skip inactive else TRUE;
MAX = 10 : Maximum number of consecutive ETB write miss for activate skip cache;
ETB_READ : ETB READ HIT; Requested block is read from ETB;
ETB_UPDATE : ETB WRITE HIT; Requested block is updated in ETB;
L2 READ : L2 READ HIT; Requested block is read from L2;
ETB_WRITE : L2 WRITE HIT; Requested block is written to ETB;
MM ACCESS : L2 Miss; Access Main Memory for the corresponding request;
ETB_EVICT L2 : Write back the LRU block to L2;
ETB_EVICT MM : Write back the LRU block to Main Memory;
repeatfor every L2 cache request R and block B do
if R==read then
if ETB_HIT then

| ETB_READ;
else
if L2 HIT then

| L2_READ;
else

| MM _ACCESS;

else
if ETB_HIT then
ETB UPDATE;
ETB MISS COUNT=0;
else
ETB MISS COUNT++;
if L2 HIT then
it ETB FULL;
then
if SKIP then
ETB_ EVICT MM,
ETB_WRITE;
else
ETB_EVICT L2;
ETB_ WRITE;

else
| ETB_WRITE;

else
| MM _ACCESS;

if ETB MISS COUNT >=MAX then SKIP=TRUE;
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from ETB are directed to the next level of the memory hierarchy (main memory)
rather than the corresponding L2 cache. Activation of skip mode is triggered by ten
consecutive write misses to the trace buffer, and the system reverts to the default
mode immediately after the first trace buffer hit. Detailed working of the skip cache
module are provided in Algorithm 6. Further discussion on the experimental results
and analysis of this technique is presented in the experimental results and analysis

section.

6.4 Experimental Setup and Result Analysis

We use gemb simulator for modeling our proposed variants of TANC architectures
using the configuration given in Table 6.3. Similar to the previous chapters we evaluate
the performance of our proposed techniques by we categorizing the SPEC CPU2006
benchmark programs into three categories based on WPKI and MPKI for 1.2 cache
and as summarized in Table 3.1. We do sufficient fast-forwarding and execute at
least one billion instructions covering the benchmarks sim points to collect statistics
for further analysis. We use Immediate Restore Scheme (IRS) [23] to address the
write disturbance where for every hard-way write, the corresponding soft-way is read
first and restored immediately after the completion of the hard-way write operation.
We use the RUBY memory model and MESI Two-Level protocol to maintain cache
coherence. To do a fair analysis, we compare TANC and its variants given in Table

6.2 with the following conventional NVM architectures denoted by,

e SLC _C: SLC NVM based L2 cache without any optimization

e SLC_ViSC: SLC NVM based L2 cache employing Virtually Split Cache tech-
nique [50]

e MLC C: MLC NVM based L2 cache without any optimization

e MLC WL: MLC NVM based L2 cache with the naive SpH wear-leveling policy
[46]

e ENDURA: A state-of-the-art wear-leveling technique customized for MLC NVM
based L2 cache[46]
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Table 6.3: Simulation parameters

CPU Unicore, 2 GHz
L1 Cache Private, 32KB, SRAM Split cache, 4-way set associative, 64B block
L2 Cache 4MB STT-RAM, 8-way set associative, 64B block
Main Memory 8 GB
ETB 512B, SRAM
Wear-leveling interval 100000 Cycles

e RESTORE: A state-of-the-art performance and lifetime improvement technique
customized for MLC NVM based L2 cache [24]

In subsequent sections, we discuss the impact of TANC on various parameters
compared to other state-of-the-art lifetime improvement technique based on different

popular performance metrics.

6.4.1 Impact on Relative Lifetime

The lifetime of NVM cells is a critical factor, especially considering their susceptibility
to premature aging due to limited write endurance. Exploiting security vulnerabilities,
malicious users may employ repeated write attacks to exploit these limitations. MLC
NVMs, with their multi-step writing process, are particularly vulnerable to early wear
out compared to SLC NVMs. Like previous chapters, we determine the effectiveness
of our proposed approach in improving the lifetime using relative lifetime. Figure
6.4 illustrates the geometric mean of relative lifetime across various benchmarks,
comparing TANC variants and other state-of-the-art wear-leveling techniques for SLC
and MLC NVMs. SLC_ViSC enhances lifetime by partitioning the unified cache
into virtual instruction and data caches, redistributing concentrated writes across
memory. ENDURA employs inter-pair swapping to balance write distribution in MLC
NVMs, enhancing lifetime. RESTORE minimizes restoration writes by deactivating
soft-ways associated with frequently used hard-ways. Implementing wear-leveling
with TANC ensures even write distribution in the cache, further enhancing lifetime.
The skip cache module addresses poor cache locality by diverting ETB evictions
to main memory when thrashing occurs, thereby reducing L2 cache wear. Results,

normalized to SLC _C, show SLC_ViSC improving lifetime by 66%, highlighting the

97



6.4. EXPERIMENTAL SETUP AND RESULT ANALYSIS

efficacy of virtual cache partitioning. MLC C exhibits approximately two-thirds of
SLC _(C’s lifetime due to its multi-step writing policy, with MLC WL enhancing its
lifetime by 19%. ENDURA and RESTORE show 3% and 14% lifetime improvements

over SLC _C, respectively, underlining the effectiveness of their respective strategies.
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Figure 6.4: Relative lifetime of various techniques

All versions of TANC utilize ETB to limit writes to the L2 cache, significantly
enhancing their relative lifetime. The effectiveness of this technique depends largely
on the ETB access policy and application patterns. TANC HW, which exclusively
employs ETB for hard-way writes, shows a 10% enhancement over SLC_C. Par-
ticularly, TANC HW excels in benchmarks such as namd, characterized by low
WPKI and high write variation. Each hard-way write triggers an associated soft-way
write during restoration operations. TANC HW mitigates such redundant writes,
especially in repeated writes to hard-ways. Variants of TANC without wear-leveling
reduce L2 cache writes but do not ensure uniform distribution. TANC_HW _ WL, a
basic wear-leveling policy applied to TANC _HW, boosts relative lifespan by 35%
owing to its efficient write distribution. By utilizing ETB to process write requests
to frequently written soft-ways instead of hard-ways, TANC HW SW outperforms
TANC HW, achieving a mean lifetime similar to SLC _C. Furthermore, wear-leveling
(TANC_HW_SW_WL) enhances its lifetime by an additional 17%. TANC ALL,
employing ETB for all write requests, exhibits superior performance due to minimized
L2 writes. It exclusively handles write requests from ETB, with L2 cache writes

limited to write backs from ETB. TANC ALL’s mean relative lifetime matches that

98



6. TRACE BUFFER ASSISTED LAST LEVEL NON-VOLATILE CACHES

of SLC_ViSC, with wear-leveling further extending it by 39%. Enabling cache skip-
ping for TANC ALL yields the most substantial lifetime improvement, particularly
beneficial for benchmarks like bzip2, Ibm and libquantum, which suffer from signifi-
cant cache thrashing due to frequent writebacks from ETB. TANC ALL enhances
MLC_C’s mean lifespan by 4.36x compared to SLC _C and 2.62x to SLC_ViSC.

Table 6.4: Comparison of relative lifetime of various techniques for different benchmark
applications

Low WPKI Mid WPKI High WPKI

Gr TH2 [ Nd [ So | Bz | Tq | S |Hm| Lb | Ls | ean

SLC 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | L.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
SLC_ViSC [50] 1.03 [ 2.75 | 3.44 | 1.76 | 1.00 | 1.00 | 3.16 | 2.22 | 1.26 | 1.08 | 1.66
MLC 0.93 [ 0.57 | 0.81 | 0.74 | 0.52 | 0.50 | 0.74 | 0.88 | 0.69 | 0.56 | 0.68
MLC_ WL 138 [ 1.25 | 1.12 | 0.60 | 052 | 0.50 | 1.13 | 1.17] 0.78 [ 0.73 | 0.87

MLC_ENDURA [46] | 1.30 | 1.58 | 2.85 | 0.81 [ 0.52 | 0.51 | 1.67 | 1.40 | 0.76 | 0.57 | 1.03
MLC_RESTORE [24] | 0.93 | 0.62 | 0.81 | 0.74 [ 0.52 | 0.52 | 0.74 | 0.88 | 0.69 | 2.01 | 0.78

TANC_HW 0931099 | 1.00 | 0.76 | 0.52 | 0.50 | 0.77 ] 0.99 | 0.70 | 0.90 | 0.78
TANC HW_ SW 1.41 | 1.00 | 6.91 | 0.76 | 0.52 | 0.50 | 0.77 | 1.00 | 0.70 | 1.01 | 1.00
TANC ALL 1.41 | 1.74 | 53.58 | 0.86 | 0.52 | 0.50 | 0.86 | 4.01 | 0.75 | 1.72 | 1.63

TANC_HW_WL 142 | 1.67 | 251 | 085|052 | 050 |1.59|1.74]0.78 123 | 1.13
TANC HW SW_ WL | 142 | 1.81| 340 | 0.85|0.52| 0.50 | 1.59|1.76 | 0.78 | 1.13 | 1.17
TANC ALL WL 1.26 | 2.53 | 77791 0.92 | 0.53 | 0.50 | 1.60 | 6.50 | 0.83 | 2.20 | 2.02
TANC_ALL_SKIP |3.27|2.14 | 53.80 | 1.37 | 1.94 | 114.44 | 1.45 | 4.01 | 2.5 | 2.50 | 4.36

Table 6.4 shows the relative lifetime of various techniques across different bench-
marks. The best values among the variants are highlighted in bold. In the low WPKI
benchmark category, particularly those with a high L2 cache hit rate, TANC ALL
variants exhibit notable performance enhancements. The elevated L2 hit rate cor-
responds to a higher ETB hit rate, reducing writes to the L2 cache and enhancing
the lifetime. For benchmarks like namd and h264ref, where most write requests are
ETB hits and SKIP mode is rarely activated, TANC ALL and TANC ALL WL
outperform TANC ALL_ SKIP. Specifically, namd experiences significant lifetime
improvement with TANC ALL and TANC ALL_ WL due to its high L2 hit rate
and predominant soft-way writes. Conversely, the lower hit rate of sopler minimizes
the impact of ETB, resulting in the superior performance of TANC ALL SKIP
compared to other TANC variants. In mid-WPKI benchmarks such as bzip2 and
libquantum, MLC NVM caches show better lifetime when TANC ALL_ SKIP is
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activated. For instance, in libqguantum with a meager L2 hit rate, TANC ALL SKIP
significantly prolongs the lifetime by mitigating thrashing effects, whereas other
techniques offer marginal improvements. Wear-leveling strategies like ViSC for SLC
NVM, ENDURA for MLC NVM, and the naive SpH technique in other variants have
minimal impact due to the negligible influence of write distribution schemes on such
applications with low L2 hit rates. These applications trigger frequent evictions from
ETB thus TANC exhibits minimal impact on lifetime. The skip cache policy of writing
back to memory instead of L2 cache improves lifetime as recently accessed blocks are
not re-referenced. Among mid-WPKI benchmarks, sjeng with the highest L2 hit rate
shows superior performance with TANC ALL compared to TANC ALL _ SKIP, a
trend also observed in high WPKI benchmarks. For instance, hmmer benefits from a
high L2 hit rate, enabling ETB to significantly reduce L2 writes and thereby improve
lifetime, whereas [bm and leslie3d, with their low hit rates, achieve better lifetime

improvement by skipping cache for ETB writeback.

6.4.2 Impact on Average Memory Access Time

The high write latency of MLC NVM is a serious concern when utilized as cache
memories. Figure 6.5 illustrates the normalized geometric mean of average memory
access time in cycles (AMAT) across various cache architectures. For a given cache
size, the write latency of hard-ways is twice that of soft-ways and SLC NVMs, and 5x
greater than SRAM. SLC C and SLC_ViSC exhibit similar average memory access
times, as ViSC employs wear-leveling techniques that do not minimize or bypass L2
writes. However, the write latency of MLC C varies depending on the location of
the requested cache block. Due to the high write latency of hard-ways, MLC C and
MLC WL demonstrate a 6% higher AMAT than SLC _C. ENDURA employs intra-
pair swapping to ensure frequently accessed blocks are written in soft-ways, resulting
in a 7% reduction in the mean AMAT of MLC NVMs. Despite better application
write patterns, RESTORE exhibits a similar AMAT to MLC _C. With the majority of
writes handled by SRAM-based ETB, TANC variants notably reduce L2 write latency,
which is reflected in their AMAT values. TANC HW and TANC HW _SW exhibit
similar AMAT to ENDURA. In the TANC _ALL variant, where ETB manages all
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Figure 6.5: Comparison of normalized AMAT (cycles) of various techniques

write accesses, there is an 11% decrease in AMAT compared to MLC C. Conversely,
the TANC ALL SKIP variant writes back to the main memory instead of the L2
cache during the active skip mode phase, resulting in a 1% increase in mean AMAT.

Table 6.5 shows the average memory access time (AMAT) corresponding to each cache
architecture across various benchmark applications. Lowest values are highlighted
in bold for easy reference. As the number of write hits in the ETB increases, the
AMAT decreases due to faster write accesses to the SRAM-based ETB than the
MLC NVM L2 cache. For applications falling within the low WPKI category, such as
namd, which exhibits a high cache hit rate and minimal memory thrashing, skip mode
remains inactive for the majority of the execution duration, resulting in a reduced
AMAT. Conversely, despite gromacs with a high L2 cache hit rate, the activation
of skip mode during execution leads to increased writebacks from the ETB to main
memory, consequently increasing the average access time for TANC ALL _SKIP.
Similarly, for mid and high-category WPKI benchmarks, such as hmmer, which have
a high cache hit rate, TANC ALL_SKIP similar to the TANC ALL variant as skip
mode remains rarely active during execution. The SpH naive wear-leveling technique,
associated with various TANC variants, facilitates swapping heavily written and
lightly written hard-way soft-way pairs. Unlike in ENDURA which also facilitates
intra-pair swapping between hard-way and soft-way, our SpH naive wear-leveling

policy minimally impacts L2 write latency and AMAT.
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Table 6.5: Comparison of normalized AMAT (cycles) of various techniques for different
benchmark applications

Low WPKI Mid WPKI High WPKI

Gr TH2 [Nd [ So | Bz [ Lq | § |Hm | b | Ls | Mean

SLC 1.97 [ 1.07 | 1.05 | 1.05 | 2.14 | 1.72 | 1.9 | 1.96 | 3.6 | 2.12 | 1.73
SLC_ViSC [50] 1.97 [ 1.07 | 1.05 | 1.05 | 2.14 | 1.72 | 1.9 | 1.96 | 3.6 | 2.12 | 1.73
MLC 2.32 [ 1.0 | 1.06 | 1.07 | 2.27 | 1.77 | 2.01 | 2.32 | 3.86 | 2.29 | 1.85
MLC_WL 2.32 [ 1.00 | 1.06 | 1.07 | 2.27 | 1.77 | 2.01 | 2.32 | 3.86 | 2.29 | 1.85

MLC ENDURA [46] | 1.83 | 1.07 | 1.04 | 1.06 | 2.13 | 1.71 | 1.93 | 1.78 | 3.61 | 2.17 | 1.72
MLC_RESTORE [24] | 2.25 | 1.09 | 1.05 | 1.07 | 2.27 | 1.77 | 2.01 | 2.31 | 3.86 | 2.29 | 1.86

TANC HW 1751 1.08 | 1.04 | 1.06 | 2.21 | 1.73 | 1.97 | 1.75 | 3.76 | 2.14 | 1.72
TANC_HW_SW 1.75 ) 1.08 | 1.03 | 1.06 | 2.24 | 1.73 | 1.97 | 1.75 | 3.76 | 2.25 | 1.73
TANC ALL 1.5711.08 | 1.03 | 1.06 | 2.14 | 2.09 | 1.9 | 1.57 | 3.59 | 1.71 | 1.65

TANC HW_ WL 1.75 1 1.08 | 1.04 | 1.06 | 2.21 | 2.14 | 1.97 | 1.75 | 3.76 | 1.73 | 1.72
TANC_HW_SW_WL | 1.75 | 1.08 | 1.03 | 1.06 | 2.24 | 2.25 | 1.97 | 1.75 | 3.76 | 1.73 | 1.73
TANC ALL WL 1.57 | 1.08 | 1.03 | 1.06 | 2.14 | 2.09 | 1.9 | 1.57 | 3.59 | 1.71 | 1.65
TANC ALL_SKIP 2.67|1.11|1.03 |1.08|247| 23 |2.16| 157 | 43 | 1.87 | 1.87

6.4.3 Impact on Write Energy

The high energy write energy associated with MLC NVMs is serious challenge in
implementing .2 caches. Compared to soft-ways and SLC NVMs, hard-ways incur 3x
more energy for write operations and are 16x more energy intensive than SRAM for
a given cache size. Our proposed techniques aim to mitigate this issue by reducing
the average write energy of MLC NVM LLCs. TANC shows a significant decrease in
average write energy similar to that of SLC NVMs. Figure 6.6 shows the average write
energy of the proposed techniques alongside MLC C, SLC _C, and state-of-the-art
wear leveling techniques for both SLC and MLC NVMs. In ENDURA, intra-pair
swapping, which prioritizes frequently written blocks to soft-ways, contributes to an
8.6% reduction in the mean write energy. By diverting the high energy hard-way
writes to ETB in TANC _HW and TANC_HW _SW, energy consumption is reduced
by 30% and 31.5%, respectively. TANC HW outperforms TANC_HW __SW due to
the latter’s sharing of ETB for selected soft-way blocks, necessitating the writing
back of some hard-way blocks to the L2 cache, increasing the mean L2 write energy.
In TANC ALL, where all writes are serviced by ETB resulting in lower write energy
hence the mean L2 write energy is reduced by 47.2%, surpassing that of SLC_C.
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Figure 6.6: Comparison of average write energy (nJ) of various techniques (shorter
the bar, the better)

However, during skip mode, TANC ALL_SKIP writes back the blocks evicted from
ETB to the main memory, resulting in higher mean write energy than other modes.
Table 6.6 presents the write energy of the proposed techniques for each benchmark.
Lowest values for write energy are highlighted in bold. Notably, for benchmarks such
as namd and hmmer, which exhibit minimal L2 thrashing, TANC ALL SKIP show
less write energy consumption.

Similar to AMAT, the average write energy of L2 caches varies depending on
the application. Among all benchmark categories, TANC _ALL exhibits the lowest
average write energy. This is attributed to bypassing of all writes by TANC ALL
to SRAM-based ETB which possesses significantly lower write energy. However,
when ETB writebacks to DRAM-based main memory occur, particularly during skip
mode in TANC ALL_SKIP, the mean write energy increases due to the high energy
consumption of DRAM writes. Applications like namd and hmmer show lower write
energy because they seldom activate skip mode due to their access patterns, resulting

in fewer ETB to main memory writebacks

6.4.4 Impact on Hard-way Writes

Table 6.7 shows the average reduction of hard-way writes for different TANC variants.
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Table 6.6: Comparison of average write energy (nJ) of various techniques for different
benchmark applications

Low WPKI Mid WPKI High WPKI Mean

Gr H2 Nd | So Bz Lq Sj Hm | Lb Ls
SLC 0.84 | 0.84 | 084|084 | 084 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84
SLC_ViSC [50] 0.84 | 0.84 | 0.84|0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84
MLC 1.4 138 | 142 14 | 14 | 1.39 | 1.39 | 14 1.4 1.4 1.40
MLC WL 1.4 1.39 | 144 | 14 1.4 1.4 1.4 1.4 1.4 1.4 1.40

MLC_ENDURA [46] 123 | 1.13 | 1.28 | 1.4 | 1.38 | 1.39 | 1.39 | 0.9 | 1.46 1.4 1.28
MLC_RESTORE [24] 1.4 138 | 130 | 14 14 1.4 1.39 | 1.39 | 1.4 1.36 | 1.38

TANC_HW 1.1 1.04 | 059 | 1.08| 1.19 | 095 | 1.19 | 0.64 | 1.2 1.09 | 0.98
TANC_HW_SW 1.1 1.04 1039|108 | 1.19 | 1.12 | 1.19 | 0.65 | 1.2 1.09 | 0.96
TANC_ALL 09 | 086 [035| 09 | 09 0.8 09 | 04 | 09 09 | 0.74

TANC_HW_WL 1.09 | 1.05 | 0.63 | 1.09 | 1.09 | 0.8 1.08 | 0.61 | 1.09 | 1.09 | 0.94
TANC_HW_SW_WL | 1.09 | 1.05 | 0.56 | 1.09 | 1.09 | 0.95 | 1.08 | 0.61 | 1.09 | 1.09 | 0.94
TANC _ALL_WL 09 | 087 (038091 09 |09 | 09 | 04 | 09 09 | 0.76
TANC_ALL_SKIP | 21.03 | 17.86 | 2.93 | 21.8 | 24.66 | 12.99 | 22.43 | 0.48 | 25.36 | 25.67 | 11.83

Table 6.7: Average reduction of hard-way writes for TANC variants

Reduction in hard-way writes
TANC_ HW 23.08%
TANC _HW_SW 23.05%
TANC ALL 21.13%
TANC HW_ WL 22.50%
TANC _HW_ SW_ WL 22.48%
TANC ALL WL 20.35%
TANC ALL_ SKIP 88.89%
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TANC ALL SKIP minimizes the occurrence of two-step writes (hard-way
writes) by redirecting all write operations to the ETB and in skip mode, transfers
data directly to main memory instead of the L2 cache. Among the different variants,
TANC HW demonstrates the most significant reduction in hard-way writes by
exclusively allocating the ETB for this purpose. Table 6.7 shows that wear-leveling
variants marginally elevate the count of hard-way writes compared to their base
variant. This slight increase in hard-way writes primarily due to the wear-leveling

process and the additional writes resulting from inter-pair swapping.

6.4.5 Impact on Intra-set and Inter-set variations

Due to the multi-step writing process inherent in MLC NVMs, the write variation in
MLC NVM caches is notably higher compared to SLC NVM caches. The core concept
of TANC is minimizing write accesses to the L2 cache through ETB and does not
directly impact on intra-set and inter-set variations. Figure 6.7 shows the comparison
of the IntraV (%) value across different TANC variants, as calculated using equation
3.1, while Table 6.8 presents the same analysis for individual applications. Best
case values are highlighted in bold fond for easy analysis. For most of mid and
high category benchmarks like bzip2 and [bm, TANC has negligible impact on write
variation. However, benchmark programs with low WPKI exhibit an increase in
variation. TANC’s approach focuses on reducing the total number of writes rather
than concentrating them, resulting in significant differences between average and
maximum writes in cache memory, leading to substantial intra-set and inter-set
write variations. Variants employing the naive SpH wearing policy alongside TANC
demonstrate improved write distribution, yielding lower intra-set variation values.
The proposed techniques employ intra-set wear leveling to distribute writes within
the cache memory set. TANC ALL _ SKIP notably reduces writes to the cache, yet
it does not affect the write distribution pattern, resulting in higher IntraV values

and negligible impact on inter-set variation.
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Figure 6.7: Comparison of intra-set write variation of various TANC variants (shorter
the bar, the better)

Table 6.8: Comparison of intra-set write variation® of various TANC variants for
different benchmark applications

Low WPKI Mid WPKI | High WPKI Mean
Gr| H2 | Nd |So | Bz |Lq| Sj | Hm | Lb | Ls
MLC 55 | 72 | 118 | 39 | 34 | 36 | 50 | 37 | 36 | 37 | 47
MLC WL 45 | 54 | 70 | 38 {36 | 36 | 40 | 36 | 36 | 36 | 42
TANC HW 54 | 66 | 21139 |36 |36 | 49 | 88 | 36 | 48| 56
TANC_HW_SW 54 | 66 | 110 |39 | 36 | 36 | 49 | 89 | 36 | 48| 52
TANC ALL 54 | 66 | 54 |39 |36 | 36| 49 | 43 | 36 | 36 | 44

TANC_HW_WL | 47 | 56 | 97 | 38|36 | 36 | 40 | 89 | 36 | 47 | 49
TANC_HW _SW_WL | 46 | 56 | 90 | 38 | 36 | 36 | 40 | 89 | 36 | 36 | 47
TANC_ALL WL | 46 | 53 | 39 | 38| 36 | 36 | 40 | 38 | 36 | 36 | 39
TANC_ALL SKIP |53 | 103 | 54 | 56 | 48 | 90 | 154 | 43 | 68 | 37 | 64

*Low value of intra-set variation shows better distribution of writes within the set of a cache
memory
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6.4.6 Overhead Analysis

State-of-the-art wear leveling methods for both MLC and SLC NVMs come with
significant overheads, resulting from the counters, swapping buffers, and similar
components. Another popular strategy is to employ hybrid caches integrating NVM
and SRAM memory cells. Hybrid caches tend to occupy more space and consume
more power than their NVM only counterparts. In the basic versions of TANC
(which lack wear leveling), write reduction relies only on ETB with the aid of the
cache controller. Since ETBs remain unused after the debugging phase, they do not
contribute to additional spatial overhead. The SpH wear-leveling technique employs
a three-bit saturating counter for each block alongside four SRAM-based swapping
buffers of 64B each to facilitate inter-pair swapping. For a 4MB cache, the naive SpH
wear-leveling technique introduces a storage overhead of 0.15%, which is 33% lower
than ENDURA, a customized wear-leveling policy for MLC-NVM caches. Further
optimization of TANC’s wear-leveling policy could reduce the associated storage

overhead even more.

6.5 Conclusion and Future works

MLC NVMs are promising candidates for implementing LLCs due to their high
packing density and low leakage power. Our proposed method, TANC, and its
variations address several key drawbacks of MLC NVMs, such as limited lifetime,
high write latency, and high energy consumption. Compared to SLC NVM caches,
TANC enabled MLC NVM caches demonstrates significant advantages, including
up to 4.36x lifetime, write access times, and reduced energy usage. Contrasting
SLC NVMs, MLC NVMs occupy 1.84x less space and consume 2.62x less leakage
energy. MLC based caches exhibit a remarkable 42x reduction in leakage power
and require 7.20x less space than conventional SRAM caches. These favourable
characteristics of MLC NVMs, along with enhancements through TANC, make them
attractive for implementing large on-chip memories. However, using ETBs can lead
to thrashing in applications with poor L2 cache hit rates. Our proposed approach

addresses this concern with a skip cache policy. Additionally, MLC NVM caches
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often face challenges with multi-step write operations and associated overheads. To
mitigate write disturbance, our technique employs the Immediate Restore Scheme
(IRS). Furthermore, innovative strategies like the Adaptive Restoration Scheme (ARS)
can minimize energy overheads from write disturbances in MLC NVMs. A tailored
policy designed to alleviate write disturbance, working in conjunction with TANC,

can effectively reduce the write energy consumption of L2 caches.
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CHAPTER

Conclusion and Future Work

Emerging NVM techniques such as STT-RAM, PCM, and ReRAM are promising
candidates for meeting the demand for high on-chip memory when executing modern
applications. As mentioned in Chapter 1, NVMs have excellent packing density and
low leakage power compared to traditional DRAM and SRAM technologies. However,
the high write energy, high latency and limited lifetime are critical challenges that must
be addressed when NVMs are implemented as LL.Cs. This chapter summarizes the

contributions of the thesis along with some of the future possible research directions.

7.1 Thesis Summary

The thesis addresses the limited lifetime of NVMs when implemented in LLCs as
three different contributions. The first contribution of the thesis is WALL-NVC.
WALL-NVC is a dual-stage wear-leveling mechanism for improving the lifetime of
SLC NVM caches. WALL-NVC uses Least Recently Used Cold Block (LRU-CB), an
NVM-friendly replacement policy and wear-leveling module, which works in tandem
to delay the aging of NVM memory cells. WALL-NVC improves lifetime by 2.90x with

respect to baseline and shows 1.16x and 1.18x improvement compared to EqualWrites
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and EqualChance, respectively and significantly reduces the intra-set write variation
up to 98.91%. For dual-core and quad-core systems, WALL-NVC improves lifetime
upto 3.34x and 4.11x, reduces intra-set write variation L2 caches upto 90.11% and
94.12%, respectively

The thesis’s second contribution discusses ViSC and its variants, which logically
split the unified NVM LLC into data and instruction ways, which will only store
the corresponding blocks. ViSC changes the logical mapping after a fixed time
interval called reorganization interval, which forces the ways exclusively reserved for
data (heavily written) to function as instruction ways (less written) and vice versa,
resulting in uniform distribution of heavily written ways across the cache memory.
E-ViSC and P-ViSC, variants of ViSC, improve the relative lifetime by 1.71x and
1.57x, respectively, whereas ViSC improves the relative lifetime by 1.64x compared
to the baseline.

The thesis discusses TANC and its variants as its third contribution. MLC
NVMs have better packaging density than SLC NVMs. However, we must address
the significant challenges such as limited write endurance, read /write disturbances,
high energy, and latency for write operations to make them suitable for use as LLCs
in the memory hierarchy. TANC uses a portion of ETB, which is left unused after
post-silicon validation. Since ETB is an existing resource, the overhead of TANC
is very less. Compared to the SLC NVM cache, the TANC offers up to 4.36x the
lifetime, faster access times, and low energy. Compared to SLC NVM, MLC NVM
has 1.84x smaller space and 2.62x less leakage energy. MLC-based caches exhibit
42x less leakage power and 7.20x less space when compared to conventional SRAM

caches.

7.2 Future Research Directions

All the contributions made in this thesis have been focused on general-purpose
applications. However, the future of computing is shifting towards domain-specific,
heterogeneous architectures tailored to specific workloads. Artificial Intelligence

(AI) and Machine Learning (ML) applications, in particular, are gaining immense
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popularity and are deeply integrated into our day-to-day lives. These applications
often require high-performance computing devices with substantial on-chip and
off-chip data storage capabilities, which makes them power-hungry.

On-chip NVM caches offer a promising solution to address the power challenges of
such systems due to their negligible leakage power. Additionally, MLC NVM caches
can provide more efficient data storage, enabling significant power savings when
optimized to handle the specific needs of AI/ML workloads. These optimizations
could also address challenges such as limited write endurance, thereby extending the
applicability of NVM in high-demand scenarios.

Another important future research direction is investigating the impact of security
vulnerabilities and potential attacks on conventional cache memories in NVMs. While
the contributions in this thesis mitigate most write/read attacks on cache memories
by ensuring a uniform distribution of writes, specific advanced attacks, as highlighted
in the latest literature, can bypass wear-leveling techniques. A deeper analysis of
such security vulnerabilities in NVMs and the development of robust countermeasures
remains a promising area of exploration.

Furthermore, customized NVM caches designed explicitly for AT and ML appli-
cations could be transformative, significantly reducing the static power consumption
in their compute nodes. Such advancements would enhance the energy efficiency of
AT/ML systems and contribute to their sustainability, making them more viable for

future large-scale deployments.
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