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Abstract

The increasing number of biomedical and clinical texts such as research articles,

discharge summaries, electronic health records and texts created by social network

users is an immeasurable source of information. The extracted information can

be used for several applications, e.g., construction of medical knowledge bases,

drug repurposing etc. Extracting structured information from unstructured text

is called information extraction (IE) and is considered as a higher level of natural

language processing (NLP) task. Regular organization of shared challenges for the

last decade for various information extraction tasks in the biomedical domain has

made several standard benchmark datasets publicly available. Availability of the

benchmark datasets has led to a continuous development of various methods for

information extraction tasks. The majority of existing methods divide IE tasks

into several subtasks. Named entity recognition (NER), and relation classification

(RC) are the two main subtasks. In each subtask, explicitly designed features are

used in machine learning (ML) methods for classification into correct categories.

Although ML methods have been successfully used for many biomedical NER and

RC tasks, they still face a few challenges. The performance of such methods is

highly dependent on the quality of user-designed features. Further, these feature

sets also need to be adapted if domain or task is changed from one to another.

For instance, a set of morphological feature designed for gene entity recognition

may not work for drug or disease name recognition and features designed based on

lexical resources for gene entity recognition may not be suitable for disease name

vii



ABSTRACT

recognition. Other features may require domain-specific resources or NLP tools.

Another major challenge faced is in making the whole system reproducible and

usable in practice. This happens due to the lack of finer details of feature engineering

available in the public domain.

Recent years have seen renewed interest in representation learning using neural

network models. One of the primary motivations of such models is to reduce the

efforts required for explicit feature engineering. Representation learning is a way to

learn the projection of the data that helps a machine learning model to make the

correct prediction. For instance, in an NER task, a good projection is one which

embeds linguistics, orthographic, contextual and syntactic information of a word

with its representation. Similarly, in an RC task, a good projection would be one

which embeds semantic and syntactic information about the sentence with targeted

entities. In this thesis, we focus on these two subtasks of IE. Our objective is to

use representation learning with reduced explicit feature engineering to benchmark

against standard approaches and to analyze the results. Towards this end, we employ

several neural network models and analyze their performances on the two subtasks

of IE.

Firstly, we focus on diverse entity types occurring in two different text sources,

where the nature of the text also differs. In particular, we classify disease and drug

entities present in abstracts of biomedical research articles, and clinical entities

appearing in discharge summaries or clinical notes. In both scenarios, our objective

is to use the same set of features without utilizing any task or domain-specific

resources. Towards this objective, we propose a model based on a bi-directional long

short-term memory network (BLSTM) for different biomedical entity recognition

tasks. Our model uses two different BLSTMs. The first BLSTM works on characters

of each word in a given sequence to learn morphologically rich feature vectors,

whereas the second BLSTM works at the word level. Both BLSTMs together try to

viii
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learn contextually rich feature vectors for each word in the sequence. The extracted

feature vectors are used to predict entities in the sequence using a conditional

random field (CRF) layer. Our results indicate that the same model can achieve

state-of-the-art results in this manner even for diverse entity types appearing in a

different genre of texts. Motivated by the high level of performance in the NER task,

we subsequently explore convolution neural networks (CNN) and BLSTM networks

in multiple biomedical RC tasks. Here models use raw text (only word and sentence

segmentation has been done as pre-processing) with targeted entities as their input

and they predict either a correct class of relation or no relation as their output.

Extensive analysis performed on drug-drug interaction (DDI) extraction and clinical

relation classification (CRC) tasks show the following: state-of-the-art results can

be achieved, and LSTM models are likely to perform better than CNN models,

especially for identifying relations in longer sentences. Finally, we explore whether

a model trained on one task can be utilized for another task. Our main motivation

comes from the practical issue of generating a sufficient amount of training and test

data for a particular task. We propose three methods for utilizing the knowledge

learned from a source task, where we have sufficient training data, to a target task,

where we do not have sufficient training data. We systematically investigate the

effectiveness of the proposed methods in transferring the knowledge in multiple ways

related to different biomedical RC tasks, such as similarity or relatedness between

the source and target tasks, and the size of training data for the source task.

Across the two subtasks of NER and RC, all proposed neural network models

are systematically analyzed. The analysis is undertaken keeping in mind multiple

aspects, such as the usefulness of representation learning, the advantages of adding

additional features, e.g. POS tags, and error analysis of the models. In all models,

features are appropriately represented by a vector which is learned during training.

These vector representations, called latent features, work as learned discriminative
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features. Further, through our experiments, we also show that initializing the vector

representation of each word with pre-trained vectors improves the performance of

the models for both the tasks. Pre-trained word vectors are also obtained from an

in-house pre-processed PubMed corpus using different word embedding techniques.

All the proposed models are generic, end-to-end (almost raw text to prediction) and

use latent features in place of manually defined features. We observe in many tasks

that, such models achieve new state-of-the-art performance or otherwise achieve a

performance that is competitive with respect to the current state-of-the-art.

x
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Chapter 1

Introduction

Biomedical and clinical texts such as research articles, clinical trials, discharge

summaries, and other texts created by social network users, represent a large source

of information. For example, drug-drug interaction (DDI) information, adverse drug

reaction information, drug-disease association information, etc. can be obtained

from them. The extracted information can then be used for the curation of a medical

knowledge base, drug repurposing and other information retrieval tasks [Ananiadou

et al., 2006, Shang et al., 2011, Uzuner et al., 2014]. Although several relevant

manually curated datasets exist, keeping them updated with the increasing rate

of biomedical literature is a challenging task [Segura Bedmar et al., 2011, Segura-

Bedmar et al., 2013]. PubMed, a database of biomedical articles, contains about

27 million citations1 and approximately 0.8 million articles are added annually2.

Manually transforming this information from human-readable text to machine-

readable format is time-consuming and laborious. Therefore, it is important to

make an intelligent or automatic system which can read, understand and extract

relevant information from the unstructured or noisy text and create a machine-

readable knowledge base. Automatically extracting entities and their relationships

1https://www.ncbi.nlm.nih.gov/pubmed
2https://www.nlm.nih.gov/bsd/stats/cit_added.html
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1 Introduction

from the unstructured or semi-structured text is a part of IE and considered as a

higher level NLP task.

Conventional NLP techniques build a model for these tasks based on statistical

or manually-designed features extracted from the training dataset. These features

are designed based on observed patterns obtained by analyzing the training dataset.

Most of these features are obtained from the output of other existing NLP tools,

and some of them require domain-specific lexical recourses. This kind of explicit

feature engineering is task and domain-specific, and requires a large amount of trial

and error analysis to obtain a high-quality feature set having strong discriminative

characteristics. Moreover, commonly used models such as perceptron [Rosenblatt,

1958], linear SVM [Cortes and Vapnik, 1995] and linear CRF [Lafferty et al., 2001],

are shallow or linear in nature. The performance of the shallow models are heavily

dependent on the choice of good quality feature sets and are adversely affected if

poorly designed features are used.

On the other hand, representation or feature learning is a way to obtain

a suitable representation of data, which helps a model to make the correct

prediction. For instance, in the NER task, a good representation of a word

must embed linguistics, orthographic, contextual and syntactic information. All

these types of information are important clues for identifying entities in the text.

Representation learning helps in avoiding the need for manual feature engineering.

The current advancement in the optimization and regularization of neural network

models [Hinton et al., 2006, Kingma and Ba, 2014, Srivastava et al., 2014] as well

as technological progress in high-performance computing has resulted in the neural

network becoming a robust model for feature learning. Neural networks have shown

a powerful feature learning ability and have achieved appreciable results in the

different computer vision [Krizhevsky et al., 2012, Karpathy and Fei-Fei, 2014],

speech recognition [Dahl et al., 2012, Hinton et al., 2012] and a variety of NLP
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[Collobert et al., 2011,Kim, 2014] tasks.

This thesis takes its motivation from the above discussion and explores neural

network models for two classical problems of biomedical IE: biomedical entity

recognition and relation classification. All the proposed models use representation

learning in place of explicit feature engineering and learn a suitable representation

while training the models. To begin with, we propose a model based on different

neural network architectures for the task of biomedical entity recognition. The

proposed model is evaluated on drug name recognition (drug NER), disease name

recognition (disease NER) and clinical entity recognition (clinical NER) tasks.

The corpus for the disease NER contains abstracts of biomedical research articles,

whereas a collection of discharge summaries is used as a corpus for the clinical

NER. Although the corpora and nature of the text within them are task specific

and different from each other, the proposed models use the same set of features with

no domain-specific knowledge. The significant improvement over baseline methods

shows the importance of representation learning. Next, we propose different models

for relation classification tasks. Each of the proposed models takes a sentence and

targeted entities within the sentence as inputs and predicts either one of the relation

classes or no relation as their output. All of the proposed models are evaluated

on two different relation classification tasks, namely, clinical relation classification

(CRC) and drug relation classification (DDI Extraction). Here again, a collection

of discharge summaries is used as the corpus for the CRC task and abstracts

of biomedical research articles and documents from DrugBank are used for the

DDI Extraction task. The experimental results show that the proposed model

outperforms existing feature-based methods.

Although the CRC and DDI extraction tasks are analogous, traditional

methods require a sufficient number of annotated training instances for each of

these tasks. We have already observed that even without any domain or task-
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specific features, high level of performance can be achieved using neural network

models. Therefore, in the last part of the thesis, we explore whether knowledge

gained in one task can be utilized in other task. If the results are competitive, it

will reduce the time and effort required to prepare annotated training datasets. To

this end, we propose three frameworks for transferring the knowledge gained from

one task into another (Transfer Learning (TL)) in different relation classification

tasks. We show the efficacy of TL frameworks in various biomedical and clinical

relation classification tasks. Our results demonstrate that in general, a TL model

helps in improving the performance, although the extent of improvement depends

on the size of the dataset and the relatedness of two tasks.

We firstly describe each task and its formulation in Sec. 1.1. Sec. 1.2 briefly

discusses existing methods used for each of the tasks. The contribution of the thesis

is highlighted in Sec. 1.3.

1.1 Problem Formulation

In this section, we introduce a few necessary concepts that are required to describe

NER and RE tasks. Subsequently, we discuss biomedical NER and RE, and their

formulations.

Nomenclature

• Classification Problem: In machine learning, a classification problem is the

task of assigning a class from a predefined fixed set C of classes to an input

pattern. This is one of the core problems in machine learning and has a large

variety of practical applications in NLP.

• Classification Problem as a Supervised Learning Problem : Given

a training set, D = {(x1, y1), · · · ,(xn, yn)}, where xi ∈ Rd is a given input
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pattern, yi ∈ Y is its class and n indicates a number of training instances. A

supervised learning model will learn a hypothesis g : X → Y from the dataset

D for mapping an input x ∈ X to its class y ∈ Y . Here, X and Y represent

the input and output spaces respectively.

• Sequence Labeling Problem : Sequence labeling is the task of assigning a

label to an element of a sequence from a predefined label set L. More formally,

given a sequence of input tokens s = x1 · · ·xn and a set of labels L = {l1, · · · lk},

the sequence labeling problem is to determine the correct sequence of labels

a = t1 · · · tn such that ti ∈ L for 1 ≤ i ≤ n. Many problems in NLP can be

formulated as sequence labeling problems, e.g., parts of speech (PoS) tagging,

chunking, NER etc.

• Sequence Labeling as a Supervised Learning Problem : Given a

training setD = {(s1, a1) · · · (sn, an)}, where si = x1 · · ·xni is a word sequence,

ai = t1 · · · tni is its label sequence and ni is the length of ith sequence. A

supervised learning model will learn a hypothesis g : S → A, for mapping an

input s ∈ S, representing a word sequence to an output a ∈ A, representing

its label sequence. Here, S and A represent the input and output spaces

respectively.

• BIO Tagging Scheme: BIO tagging is the simplest and most widely used

tagging scheme employed for the sequence labeling task. It is applicable to

multiclass and multi-word entity recognition tasks. It maintains two labels,

B-Entity and I-Entity for each class of entity and an O (outside) label in its

label set [Settles, 2004]. In this scheme a token would be tagged with the label

B-Entity if it is the first word of an entity phrase, and it would be assigned

I-Entity if it is a token between the second and the last word of the entity

phrase. Otherwise, it would be tagged with the O label.
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Named Entity Recognition

Named entity recognition addresses the problem of identifying predefined classes of

named entities in text. In the biomedical domain, an entity can be a drug, disease,

treatment, test, etc. In literature, the named entity recognition task is modeled as

a sequence labeling problem, where every word in a text is assigned a label from

a predefined set. All the entities and their classes are identified based on assigned

labels. Table 1.1 shows an example of a clinical entity recognition task, where lasix

and congestive heart failure are entities of type Treatment and Problem respectively.

He was given lasix to prevent him from congestive heart failure .

O O O B-Treat O O O O B-Prob I-Prob I-Prob O

Table 1.1: Example of a clinical entity recognition task using the BIO tagging

scheme.

Relation Classification

Relation classification (RC) is the task of identifying how given entities are

semantically related in a text. In the biomedical domain, the relation can be an

interaction between drugs, the association of a problem and a treatment, etc. The

example shown in Table 1.1 shows a relation of type treatment administered for

medical problem between the two entities lasix and congestive heart failure. For the

relation classification task, we assume that entities have been already identified and

the goal is to determine the type of semantic relation between the given entities. In

general, RC tasks are more difficult than sequence labeling tasks because semantic

relations rely heavily on wider contexts and stronger semantic comprehension of the

sentence. In our experiments, we formulate the RC task as a supervised classification

problem and learn a hypothesis g, which assigns a class y to given input sentence

s with two entities e1 and e2, i.e., g(s, e1, e2) = y. In general, a sentence can often
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have multiple entities and multiple relations among them. In such cases, separate

instances will be created for each pair of entities, where sentence will remain the

same but target entities will differ. In this manner, model can classify relations

between all pairs of entities in a given sentence.

1.2 Standard Methods

Named Entity Recognition

Named entity recognition is a well-studied area of research in NLP. Existing methods

can be broadly categorized in three ways : dictionary-based, rule-based and learning-

based methods. The dictionary-based approach employs the help of certain lexical

resources whose vocabulary entities of interest such as drugs and diseases [Aronson,

2001]. The rule-based method uses morphological and orthographic patterns to

predict entities in the document [Farmakiotou et al., 2000]. Exact or partial

matching with different rules is generally used to determine whether classifying a

word should be classified as an entity. Complicated constructions, irregular naming

conventions, cascaded named entities, nonstandard abbreviations and the increasing

number of biomedical entities make the rules and dictionary-based methods poor

performers for NER tasks. Furthermore, neither method is generalizable for each

new entity type; it would require either specific lexical resources or a new set of rules

suitable for that specific entity type.

In contrast, the learning-based method uses a large annotated dataset and a

machine learning tool to identify entities in the text [Settles, 2005, Leaman and

Gonzalez, 2008,Leaman et al., 2009]. Most of the learning-based methods formulate

NER task as a sequence labeling task. To train an appropriate classifier, methods,

falling into this category, firstly, represent each word as a vector by generating

thousands of task-specific features. In the next step, a classifier is used to model
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a probability distribution over all possible labels or tags. Hidden Markov Models

(HMM) [Rabiner, 1989], Maximum Entropy Markov Models (MEMM) [McCallum

et al., 2000], Conditional Random Fields (CRF) [Lafferty et al., 2001] and Support

Vector Machines (SVM) [Cortes and Vapnik, 1995] are the most widely used machine

learning models in this category. HMM, being a generative model, estimates the

joint probability between word and label sequences. The estimated joint probability

is then used for prediction of a label sequence for a given sentence. HMM uses

n-gram statistics of the training dataset to estimate model parameters. MEMM is

a discriminative model and thus estimates conditional probability in contrast to the

joint probability used in HMM. MEMM is a conditional tagging model which uses a

log-linear model for modeling a distribution over all possible tags of a word. The key

advantage of MEMM over HMM is that it allows a model to incorporate a flexible set

of features. In contrast to MEMM, CRF uses the conditional probability distribution

of a whole sequence to predict the correct label sequence of an input sequence.

SVM is another widely used machine learning model for the entity recognition task.

High levels of performance have also been achieved through this method also [Li,

2012, Björne et al., 2013]. SVM can be effectively used for nonlinear classification

tasks [Cristianini and Shawe-Taylor, 2000] with the help of kernel trick [Milanfar,

2013]. In contrast to CRF, SVM does not use label dependency information.

Relation Classification

Relation classification in unstructured text has been modeled in many different ways.

Co-occurrence based methods are the most widely used methods in the biomedical

and clinical domain due to their simplicity and flexibility. In co-occurrence analysis,

it is assumed that if two entities occur together in many sentences, there must

be a relation between them [Bunescu et al., 2006, Song et al., 2011]. However,

these methods cannot differentiate between different types of relations and suffer
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from low precision and recall. Different statistical measures such as pointwise

mutual information, chi-square or log-likelihood ratio have been used in these

approaches [Stapley and Benoit, 2000] to improve the performance. Rule-based

methods are another commonly employed method for the relation classification task

[Thomas et al., 2000, Park et al., 2001, Leroy et al., 2003]. Rules are created

by carefully observing the syntactic and semantic patterns of relation instances.

The bootstrapping method [Xu, 2008] is used to improve the performance of rule-

based methods. Bootstrapping uses a small number of known relation pairs of each

relation type as seeds and uses these seeds to search patterns in a huge amount

of unannotated text in an iterative fashion [Xu, 2008]. The bootstrapping method

also generates many irrelevant patterns, which can be controlled by the distant

supervision approach. A distantly supervised method uses a large knowledge base

such as UMLS or Freebase as its input and extracts patterns from a large corpus

for all pairs of relations present in the knowledge base [Mintz et al., 2009, Riedel

et al., 2010, Roller and Stevenson, 2014]. The advantage of bootstrapping and

distantly supervised methods over supervised methods is that they do not require

large amounts of manually labeled training data which is typically hard to obtain.

Feature-based methods use sentences with predefined entities to construct a

feature vector through feature extraction [Hong, 2005, Minard et al., 2011, Rink

et al., 2011]. Feature extraction is mainly based on the output of linguistic and

domain-specific tools. The extracted feature vectors are used to determine the

correct class of relation using a given classification techniques. Kernel methods

are an extension of feature-based methods which utilize kernel functions to exploit

rich syntactic information such as parse trees [Zelenko et al., 2003, Culotta and

Sorensen, 2004,Qian and Zhou, 2012,Zeng et al., 2014]. State-of-the-art results have

been obtained by this class of methods. However, the performance of feature and

kernel-based methods is highly dependent on suitable feature set selection, which
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is not only tedious and time-consuming task, but also requires domain knowledge

and is dependent on other NLP systems. Often, such dependencies reduce the

reproducibility of existing work simply because of the absence of the full and finer

details of feature extraction. Often, these methods result in a huge number of

features and may be affected by the curse of dimensionality issues [Bengio et al.,

2003, Collobert et al., 2011]. Another issue faced by these methods is that feature

extraction needs to be adjusted according to the data source.

1.3 Contribution of the Thesis

In this thesis, we explore several neural network architectures for extracting entities

and relationships in biomedical and clinical text. Our main objective is to exploit the

power of representation learning and use minimal feature engineering in designing

models. The main contributions of the thesis are summarized below.

Named Entity Recognition

Most existing methods for the biomedical entity recognition task rely on manually

designed features which generally corresponds to the output of other existing NLP

tools and are specific to a particular task of interest. We propose a unified framework

for different biomedical and clinical entity recognition tasks. The model is unified

in the sense that it does not require any domain or task-specific features. In other

words, even though the nature and the source of texts vary for biomedical and clinical

entity recognition tasks, the unified model uses the same feature types. The proposed

unified framework uses two different bi-directional long short-term memory networks

(BLSTMs) in a hierarchy for learning morphologically and contextually rich feature

vectors. Similarly to other existing sequence labeling models, our model uses the

conditional random field (CRF) in a cascade of BLSTM to infer a label sequence
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from feature vectors. The use of the CRF layer in the model allows it to include

label dependencies. In our analysis, we also use other features such as PoS tags. All

of these features are also embedded in Rd. The objective of this analysis is to explore

the effectiveness of representation learning with and without the use of additional

features that are dependent on other tools and may also require specific training

datasets. By carrying out the experiments on three NER tasks, namely, disease

NER, drug NER and clinical NER, we demonstrate that state-of-art results can be

achieved with representation learning and minimal feature engineering. This chapter

is based on the papers [Sahu and Anand, 2016] and [Sahu and Anand, 2017b].

Convolution Neural Network for Relation Classification

Relation classification is the process of detecting and classifying the semantic relation

present between entities in a given text. Here, we assume that all the interested

entities are given, and our task is to determine which class of relations holds between

the target entities. Existing models for this task use either manually engineered

features or kernel methods to create a feature vector. These features are then fed

to a classifier to predict the correct class. The results of these methods are highly

dependent on the quality of user-designed features and they also suffer from the

curse of dimensionality. In this work, we focus on extracting relations from clinical

discharge summaries and MedLine abstracts. Our primary objective is to exploit the

power of CNN to learn features automatically and thus reduce to the dependency on

manual feature engineering. We evaluate the performance of the proposed model on

the I2B2/VA-2010 clinical relation classification and SemEval 2013 DDI extraction

challenge datasets. Our results indicate that CNN is an effective model for relation

exaction in the biomedical and clinical text without being dependent on manual

feature engineering. This chapter is based on the paper [Sahu et al., 2016].
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LSTM Network for Relation Classification

CNN is a powerful model to learn features from continuous n-grams in the sentence.

However, it may cause problems for long sentences or those having important clues

lying far away from each other. In this work, we present three models, namely,

BLSTM-RE, ABLSTM-RE and Joint ABLSTM-RE, based on the LSTM network.

All three models utilize word and position embedding as latent features and thus do

not rely on feature engineering. Further use of BLSTM networks allows extraction

of features from the whole sentence. The two models, ABLSTM-RE and Joint

ABLSTM-RE also use attentive pooling in the output of BLSTM layer to assign

weights to the features. We evaluate the performance of the proposed models

on clinical relation classification and drug-drug interaction extraction tasks. Our

results indicate that the proposed model achieves reasonable performance on both

the datasets. Analysis of our results indicates that LSTM based models also find it

difficult to make correct predictions for entity pairs in long sentences that contain

many other entities. However, if we compare CNN and LSTM based models, LSTM

models are generally found to be more accurate for longer sentences than the CNN

model. This chapter builds on the paper [Sahu and Anand, 2017a] and partially [Raj

et al., 2017].

Transfer Learning for Relation Classification

The lack of sufficient labeled data often limits the ability to apply advanced machine

learning algorithms to real-time problems. However, efficient use of Transfer

Learning (TL) has been shown to be very useful across domains. TL utilizes valuable

knowledge learned in one task (source task), where sufficient data is available, to a

task of interest in another domain (target task). In the biomedical and clinical

domains, it is quite common that a lack of sufficient training data restrict the

potential to fully exploit machine learning models. In this work, we present two
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unified recurrent neural models, leading to three transfer learning frameworks for

relation classification tasks. We systematically investigate the effectiveness of the

proposed frameworks in transferring the knowledge under multiple aspects related

to the source and target tasks, such as similarity or relatedness between the two

tasks, and the size of the training data for the source task. Our empirical results

show that the proposed frameworks, in general, improve the model performance.

However, these improvements do depend on different characteristics of the source

and target tasks. These dependencies, determine the choice of most appropriate TL

framework. This chapter is based on the [Sahu and Anand, 2018] paper.

1.4 Outline of the Thesis

Briefly, the thesis is organized as follows. We begin by giving a brief description of

various neural networks and word embedding techniques in Chapter 2. Different

biomedical and clinical entity recognition tasks are described in Chapter 3.

Chapter 4 and Chapter 5 explore CNN and LSTM networks for the two RE tasks,

namely drug-drug interaction and clinical relation classification tasks, respectively.

In Chapter 6, we present various transfer learning techniques which utilize the

knowledge learned on another for different relation classification tasks. Chapter 7

concludes the thesis and outlines future works.
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Chapter 2

Background

2.1 Overview

This chapter briefly describes all relevant neural networks used in our proposed

models and their training mechanisms. We also summarize two word embedding

techniques, namely, word2vec and GloVe. In this thesis, we used GloVe to obtain

word vectors. However, we observe that word2vec also gives similar performance.

Finally, we conclude this chapter by reporting about the corpus and preprocessing

used to obtain the pre-trained word vectors used in our experiments.

2.2 Neural Networks

A neural network or artificial neural network is a class of learning models. It was

originally inspired by the network of biological neurons, such as those found in the

brain. In this section, we give a brief description of the different neural networks

used in the thesis.
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Single Neuron

A neuron is a computational unit that takes as its input a vector and computes

a real number as an output, with the help of an activation function. A typical

neural network can have multiple neurons in a hierarchy. Each neuron has a set of

parameters, which are updated during the training.

Figure 2.1: Example of single neuron

Let x ∈ Rd be the input for the neuron h and weight, w ∈ Rd and bias, b ∈ R

are the parameters of the neuron, then activation of h would be:

h(x) = f(x · w + b)

Here, f is an activation function and · indicates the dot product. Typically, sigmoid

or tanh are used as the activation function. A single neuron can be used to model

a binary classifier, a linear and a nonlinear regression.

Feedforward Neural Network

The feedforward neural network is the simplest form of neural network. It takes

inputs in the first layer of the network and produces output at the final layer. All

the computations happen in a forward direction in a layer wise fashion. A typical

architecture of a three layered feedforward neural network is presented in Figure 2.2.
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Figure 2.2: Example of a feed forward neural network

Let x ∈ Rd1 be the input for the neural network and W1 ∈ Rd1×d2 , b1 ∈ Rd2 are

the parameters of the first layers’ neurons, then the activations of first hidden layer

would be:

z(2) = f(x ·W1 + b1)

Here, the activation function f is applied to the vector in an element-wise

fashion. In our subsequent discussions, we always assume that a function is applied

to a vector in an element-wise fashion, unless otherwise stated. The final output of

the entire network would be:

z(3) = f(z(2) ·W2 + b2)

where W2 ∈ Rd2×d3 and b2 ∈ Rd3 are the parameters of the output layer’s neurons.

A feedforward neural network can be used for multiclass classification problems. In

typical architecture, the number of neurons in the final layer is equal to the number

classes. A feedforward neural network is also called fully-connected neural network,

as all the nodes of the previous layer connect with each node of next layer.
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Figure 2.3: Convolution neural network

Convolution Neural Network

The convolution neural network (CNN) is a kind of feedforward neural network,

which learns local features by restricting the hidden layer neurons to take their

input from a part of the input layer or previous hidden layer neurons (as presented

in Figure 2.3) [LeCun et al., 1998,Krizhevsky et al., 2012]. The motivation behind

applying CNN to text is to learn local features, irrespective of their positions.

CNN has been successfully applied to several NLP problems, such as PoS tagging,

chunking and semantic role labeling [Collobert and Weston, 2008], text classification

[Kim, 2014,Kalchbrenner et al., 2014,Zhang et al., 2015] etc.

A typical CNN architecture consists of a convolution layer, a pooling layer and

a fully-connected layer. A convolution layer has a set of learnable filters. Each filter

is a small vector. During the forward pass, we slide (convolve) each filter across the

length of the input sequence and compute dot products between the entries of the

filter and the input at any position. As we slide the filter over the length of the input

sequence, we produce an activation map that provides the responses of that filter at

every spatial position. Intuitively, the network will learn filters that activate when

they see some clue that is important for the task. In experiments, we generally use

several such filters with different lengths. The output of the convolution layer is a
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set of activation maps for each filter over the input sequence. We use the pooling

layer after convolution layer to aggregate the learned features of the convolution

layer. In general, we use max pooling in the pooling layer. It only considers the

most useful features from the entire sequence.

Let x1, x2 . . . xm be the sequence of input vectors, where xj ∈ Rd is the vector

for 1 ≤ j ≤ m and m is the length of the sequence. Let wi ∈ Rd·c and bi ∈ R be

the parameters of CNN, where c is the length of filters. Also let xj:j+c represent

the concatenation of xj . . . xj+c input vectors. Then the convolution layer and max

pooling layer compute outputs as follows:

hij = f(wi · xj:j+c−1 + bi) for j = 1, 2, . . .m− c+ 1

zi = max
1≤j≤(m−c+1)

[hij]

where f is the activation function, wi and bi are the learning parameters that will

remain same for all i = 1, 2, . . .m − c + 1. In this computation, we used one filter

with length equals to c. Similar computations can be applied for all such filters.

Recurrent Neural Network

Feedforward neural networks are unable to take into account any dependencies

present in sequential data. However, in many NLP tasks, we need to accommodate

sequential information for learning appropriate feature representations. The

recurrent neural network (RNN) is a particular kind of network which maintains

a loop in the computation of its output. A loop allows information to be passed

from one step of the network to the next [Bengio et al., 1994,Graves, 2013]. At any

time step t, RNN takes as input a vector xt ∈ Rd and produces as output a vector

ht ∈ Rk. For the computation of output ht, RNN uses inputs xt as well as the state

of the output at (t− 1). Let U ∈ Rk×d, W ∈ Rk×d and b ∈ Rk be the parameters of

RNN and let ht−1 be the output of RNN at time step (t− 1), then the computation
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Figure 2.4: Block digram of RNN

of ht would be:

ht = tanh(W · xt + U · ht−1 + b)

Here, h0 is also a learning parameter, which is initialized with random values.

One can think of the hidden state ht as the memory of the network. ht captures

information about what happened in all of the previous time steps. The output at

step t is calculated solely based on the memory at time t. It is some what more

complicated in practice, because ht typically cannot capture information from more

distinct time steps.

Similarly, to a neural network, RNN requires training through the backpropa-

gation algorithm (discussed in section 2.3). Therefore, while training, it will unfold

the RNN to make it a feedforward neural network. When the gradient is passed

back through many time steps, it tends to grow or vanish, similarly to a multi layer

neural network [Pascanu et al., 2012]. This makes the training of RNN difficult in

real time.

Long Short-Term Memory Network

Traditional RNN models suffer from both vanishing and exploding gradient [Pascanu

et al., 2012,Bengio et al., 2013]. Such models are likely to fail where longer contexts

are required to carry out tasks effectively. These issues were the primary motivation
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behind the development of the long short-term memory (LSTM) model [Hochreiter

and Schmidhuber, 1997]. The LSTM layer is another way to compute hidden states

which introduces a new structure called a memory cell (ct) and three gates called

input (it), output (ot) and forget (ft) gates. These gates are composed of sigmoid

activation functions and the responsible for regulating information in the memory

cell. The input gate, by allowing an incoming signal to alter the state of the memory

cell, regulates the proportion of history information that the memory cell will keep.

On the other hand, the forget gate can modulate the memory cells and allows the

cell to remember or forget its previous state. Finally, the output gate regulates the

proportion of stored information in the memory cell that will influence the output.

The computation of memory cell (ct) is carried out using previous states of the

memory cell and candidate hidden state (gt) which we compute using the current

input and the previous hidden state. The final output of a hidden state is calculated

based on the current status of the memory cell and the output gate.

Let xt be the input vector for tth element in a sequence and ht−1 be the previous

hidden state, then computation of LSTM output (ht) would be:

it = σ(Ui · xt +Wi · ht−1 + bi)

ft = σ(Uf · xt +Wf · ht−1 + bf )

ot = σ(Uo · xt +Wo · ht−1 + bo)

gt = tanh(Ug · xt +Wg · ht−1 + bg)

ct = ct−1 ∗ ft + gt ∗ it

ht = tanh(ct) ∗ ot

where σ is a sigmoid activation function, ∗ is an element wise product, Ui, Uf , Uo,

Ug ∈ RN×d, Wi, Wo, Wf , Wg ∈ RN×N and bi, bf , bo, bg ∈ RN , h0, c0 ∈ RN are

learning parameters for the LSTM. Here, d is the dimension of input feature vector,

N is the hidden layer size and ht is the output of LSTM at time step t.
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It has become common practice to use LSTM in both forward and backward

directions to capture both past and future contexts, respectively. Firstly, LSTM

computes its hidden states by moving in a forward direction over the input sequence

and secondly it moves in a backwards direction. This way of using two LSTMs is

referred to as bi-directional LSTM or simply BLSTM. The final output of BLSTM

at time t is given as:

h(t) =
−→
ht ⊕

←−
ht (2.1)

where ⊕ is the concatenation operation and
−→
ht and

←−
ht are hidden states of forward

and backward LSTM at time t.

2.3 Training of Neural Network

A neural network based model can be trained in several ways depending upon the

task and architecture of the network. In this thesis, we use the neural network as

a supervised learning algorithm, which assumes that we have a training dataset

for which desired output is given. A supervised model creates a hypotheses

g : (x,w) → y, here x ∈ X is the input sample, y ∈ Y is the desired output

for x and w is the set of learning parameters of the model. In the classification

problem, Y is a set of discrete values.

2.3.1 Cross Entropy Loss

For training a neural network based model, we need to maintain a loss function

that measures the quality of a particular set of learning parameters based on how

well the induced scores agree with the ground truth labels in the training data.

In our experiments, we use a cross entropy loss function over softmax classifier for

training our models. At any time, softmax takes as input an unnormalized vector

and produces a normalized vector as output. Therefore, the cross entropy loss for
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an input instance i would be:

Li = − log

(
eo

(i)
yi∑

∀j e
o(i)
j

)
(2.2)

Here yi is correct relation class for ith instance and o(i) is the input vector for the

cross entropy loss function. In our models, o(i) is the output of final layer of neural

network models.

2.3.2 Backpropagation Algorithm

Like other machine learning based models, training a neural network also needs to

compute partial derivative (gradient) of loss function with respect to all the learning

parameters of the model. Because of the recursive nature of computation in neural

network (the output of a layer would be the input for next layer), it is not possible

to obtain the gradient of loss function in a classic manner. Backpropagation is a

way to compute the gradient for a loss function based on a recursive application of

the chain rule [Rumelhart et al., 1988].

A neural network based model can be seen as a composition of N recursive

functions or layers f lΘ(.). Each layer consist of a parameter matrix Θ which need to

be updated while training:

fΘ(.) = f (N)(..f (2)(f (1)(x))...) (2.3)

Let Θ1, · · ·Θl · · ·ΘN be the parameters of N layers in the network. We need to

compute the gradients of the loss function with respect to each Θl. If Ψ is the

loss function of the model then, by using chain rule we can obtain the classical

backpropagation recursion as:

∂Ψ

∂Θl
=
∂f l−1

Θ

∂Θl
∗ ∂Ψ

∂f l−1
Θ

(2.4)

∂Ψ

∂f l−1
Θ

=
∂f lΘ
∂f l−1

Θ

∗ ∂Ψ

∂f lΘ
(2.5)
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2.3.3 Parameter Update

Once we have computed the gradients for all parameters, they are used to perform

updates to the parameters. There are various approaches for performing the update,

which we discuss below. Suppose the vector of a parameter that we want to update

is w and its gradient is dw:

1. Vanilla update: The simplest and most common form of update is to

change the parameters opposite to their gradient directions (since the gradient

indicates the direction of increase, but we usually need to minimize a loss

function).

w = w − η ∗ dw

where η is a fixed constant, called learning rate. When evaluated on

the complete dataset, and when the learning rate is small enough, this is

guaranteed to make non-negative progress on the loss function.

2. Momentum update: Momentum update is another widely used optimization

technique. While updating, it assigns weights to the past gradients of the

parameters. It is used to diminish the fluctuations in weight changes over

consecutive iterations. It maintains a velocity vector v and a hyperparameter

µ called momentum. The size of v is the same as parameter vector w, and it

is initialized with zeros.

v = µ ∗ v − η ∗ dw

w = w + v

3. Adam: In our all experiments we use the adam optimization technique

for training the models. The name adam is derived from adaptive moment

estimation [Kingma and Ba, 2014]. Adam combines the properties of the
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AdaGrad [Duchi et al., 2011] and RMSProp1 algorithms to provide an

optimization algorithm that can handle sparse gradients on noisy problems.

It is well suited to problems that are large in terms of data or parameters.

Adam’s hyperparameters have intuitive interpretation and typically require

little tuning. The method computes individual adaptive learning rates for

different parameters from estimates of the first and second moments of the

gradients.

m = β1 ∗m+ (1− β1) ∗ dw

v = β2 ∗ v + (1− β2) ∗ (dw)2

w = w − η ∗m/(np.sqrt(v) + ε)

Notice that the variables v and m have sizes equal to the size of the gradients

and they keep track of the per-parameter sum of gradient and the sum

of squared gradients with momentum, respectively. This is then used to

normalize the parameter update step, element-wise. Recommended values

for hyperparameters in the paper [Kingma and Ba, 2014] are ε = 1e-8, β1 =

0.9, β2 = 0.999

2.4 Word Embedding

One of the crucial steps in machine learning (ML) based NLP models is to produce

an appropriate representation of words as input to a model. Initially most work

treated each word as an atomic symbol and assigned a one hot vector to each word

[Leaman et al., 2009, Ko, 2012]. The length of the vector in this representation is

equal to the size of the vocabulary and the element at the word index is 1, while

the other elements are 0s. The two major drawbacks with this representation are:

1http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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firstly, length of the vector is enormous, and secondly, there is no notion of similarity

between words. The inability of the one-hot vector representation to embody lexico-

semantic properties prompted researchers to develop methods which are based on

the idea that the “similar words appear in similar contexts” [Lin et al., 2003]. These

methods can be broadly classified into two categories [Turian et al., 2010], namely,

distributional representation and distributed representation. Both groups of methods

work in an unsupervised manner and utilize a massive corpus to obtain a vector

representation or embedding. Distributional representations are mainly based on a

co-occurrence matrix O of words in the vocabulary and their contexts. Here, among

other possibilities, contexts can be documents or words within a particular window.

Each entry Oij in the matrix may indicate either the frequency of word i in the

context j or simply whether the word i has appeared in the context j at least once.

Co-occurrence matrices can be designed in a variety of ways, as summarized by

[Turney and Pantel, 2010,Jurafsky, 2000] has discussed several of them. The major

issue with such methods is the huge size of the matrix O, and reducing its size tends

to be computationally very expensive. Nevertheless, the requirement of constructing

and storing O is always there. The second group of methods is mainly based on

language modeling [Bengio et al., 2003] which we used in all our experiments.

Outside the biomedical domain, word embeddings have resulted significant

improvements in the performance of many NLP tasks. For example, [Turian et al.,

2010] improved the performance of chunking and named entity recognition by using

word embedding as one of the features in their CRF model. Collobert and his

colleagues in [Collobert et al., 2011] formulated the NLP tasks of PoS tagging,

chunking, named entity recognition and semantic role labeling as a multi-task

learning problems. They showed improvement in the performance when word

vectors are learned together with other NLP tasks. Socher and co-authors in [Socher

et al., 2012] improved the performance of sentiment analysis and a semantic relation
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classification task using the recursive neural network. The common step among

these models is: learning of word embeddings from a huge unannotated corpus like

Wikipedia. The embedding were later used as a features in a variety of ways. We

next discuss the two most commonly used word embedding techniques, which we

used for learning word vectors in our experiments.

2.4.1 word2vec

word2vec is an efficient way of training neural network based word embedding as it

does not involve dense matrix multiplication [Mikolov et al., 2013b, Mikolov et al.,

2013a]. word2vec has two variants of the language model, called Continuous Bag of

Words (CBOW) and Skip-gram. Both of these models take huge corpus as an input

and learn two vector representations (input and output vector representation) for

each word in it. The final vector representation is simply the average of the two

learned vector representations. Below we briefly describe the two models.

1. CBOW: CBOW takes a window of preceding and following words its input

and predict the center word as its output. Let uw and vw denote the input and

output vector of word w, W, the number of words we have in vocabulary and

let c denote the context window size, then in CBOW the objective function

we need to maximize is :

1

T

T∑
t=1

log p(wt|w(t−c), ..w(t−1), w(t+1), ...w(t+c))

=
1

T

T∑
t=1

log
exp(hTt vwt)∑W
w=1 exp(hTt vw)

where
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ht =
1

2c

∑
−c≤j≤c,j 6=0

u(t+j)

2. Skip-gram: Skip-gram is the mirror image of CBOW. It takes one word as

its input and predicts the whole context of words as its output. The objective

function for skip-gram also uses softmax :

1

T

T∑
t=1

log p(w(t−c), ..w(t−1), w(t+1), ...w(t+c)|wt)

=
1

T

T∑
t=1

log
2c∏

j=0,j 6=c

p(w(t−c+j)|w(t))

where

p(w(t−c+j)|w(t)) =
exp(vT

w(t−c+j)uwt)∑W
w=1 exp(vTwuwt)

Since W is a huge number in any corpus, the author used hierarchical softmax

[Morin and Bengio, 2005] and negative sampling [Collobert and Weston, 2008]

approaches to approximate these objective functions. For our experiments, we

downloaded word2vec tool2 which is efficiently implemented in the C language.

2.4.2 GloVe

GloVe (Global Vector) [Pennington et al., 2014] combines the properties of

distributional semantics as well as continuous word vector models. It also maintains

two vectors for each word, one for the word itself and the other for the context of the

word. GloVe tries to learn vectors for words wx and wy such that their dot product

is proportional to their co-occurrence count. Let ui and vi denote the word vector

2https://code.google.com/p/word2vec/
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and context vector, respectively, for the word wi, Oi,j is the co-occurrence count of

words wi and wj and V is the vocabulary size, then objective function of GloVe is

calculated as:

J =
V∑

i,j=1

f(O(i,j))(u
T
i vj + bi + dj − logXi,j)

2 (2.6)

where bi and di denote the biases for word wi and f(x) is a weighting function. f(x)

takes the value zero if x is zero and one if x is larger than a number xmax.

f(x) =

 ( x
xmax

)α if x < xmax

1 otherwise.

In the experiments, the authors used xmax = 100 and α = 3
4
. It should

be noted here that when the co-occurrence count between the words is zero, the

weighting function will also return zero. Therefore, its complexity is not high. For

our experiments, we used the GloVe tool3 which is also implemented in C language.

2.4.3 Corpus Data and Preprocessing

PubMed Central® (PMC) is a repository of biomedical and life sciences journal

literature at the U.S. National Institutes of Health’s National Library of Medicine

(NIH/NLM). The PMC ftp service4 provides access to source files for articles in the

Open Access Subset in variety of ways. We downloaded the gzipped archived files of

full-length texts of all articles in the open access subset on 19th April 2015. This

corpus contains around 1.25 million articles having a total of around 400 million

tokens.

To pre-process the corpus, we performed the following operations-

• We used Stanford segmenter and tokenizer5 for sentence segmentation and

word tokenization respectively.

3http://nlp.stanford.edu/projects/glove/
4http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
5https://nlp.stanford.edu/software/tokenizer.html
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• All the words in our corpus are transformed to lower case.

• All numbers are converted to a special symbol DG.

• Words occurring less than 50 times in the corpus are converted to a special

token < RARE >.

2.5 Evaluation Metrics of NER and RE

For the evaluation of our model’s performance on the NER and RE tasks, we use

Precision, Recall and F Score measures, which depend on the following counts:

• True positive (TP): Number of samples which are correctly classified by the

model.

• False positive (FP): Number of samples which are incorrectly classified by

the model.

• False negative (FN): Number of samples which the model fails to classified.

Given that TP, FP and FN for the model we compute precision, recall and F score

as follows:

Precision =
TP

(TP + FP )

Recall =
TP

(TP + FN)

FScore =
2 ∗ Precision ∗Recall
(Precision+Recall)

In multi-class classification problems, we used micro score for each evaluation

metrics. Micro score calculates the metrics globally by counting the total true

positives, false negatives and false positives [Tjong Kim Sang and De Meulder,

2003a].
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2.6 Conclusion

In this chapter, we firstly briefly described different neural networks used in this

thesis and their training strategies. Next, we explained different word embedding

techniques i.e word2vec and GloVe. Finally, we introduced the evaluation scheme

used for NER and RE tasks.
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Chapter 3

Named Entity Recognition

3.1 Overview

Named entity recognition is one of the necessary steps in several biomedical and

clinical information extraction tasks. Most existing methods for this task rely on

explicit feature engineering, where many features are either specific to a particular

task or depend on the output of other existing NLP tools. In this chapter, we propose

a unified framework using BLSTM networks for the named entity recognition task

in the biomedical and clinical domains. Three important characteristics of the

framework are as follows - (1) the model learns contextual as well as morphological

features using two different BLSTMs, (2) the model uses a first order linear CRF in

its output layer in cascade of BLSTMs to a infer label sequence, (3) the model does

not use any domain specific features or dictionary, in other words, the same set of

features is used in the three different NER tasks, namely, disease NER, drug NER

and clinical NER. We compare the performance of the proposed model with that of

existing state-of-the-art models on standard benchmark datasets for the three tasks.

We show empirically that the proposed framework outperforms all existing models.

Furthermore, our analysis of the CRF layer and word-embedding obtained using
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character-based embedding demonstrates their importance.

3.2 Introduction

Biomedical and clinical named entity recognition is an essential step in several

biomedical and clinical information extraction tasks [Rosario and Hearst, 2004,

Segura-Bedmar et al., 2015,Uzuner et al., 2011]. State-of-the-art methods formulate

NER task as a sequence labeling problem where each word is labeled with a tag

and based on the tag sequence, entities of interest are identified. It has been

observed that named entity recognition in the biomedical and clinical domains is

more difficult than the general domain [Leaman et al., 2009, Uzuner et al., 2011].

There are several reasons for this, including the use of non-standard abbreviations or

acronyms, multiple ways of referring the same concepts, etc. Furthermore, clinical

notes are noisier, grammatically error prone and contain less context than standard

text due to shorter and incomplete sentences [Uzuner et al., 2011]. The most

widely used models, such as maximum entropy markov models (MEMMs), CRFs,

and support vector machines (SVMs), use manually designed features to obtain

morphological, syntactic, semantic and contextual information for a word or of a

piece of text surrounding a word, and use them as features for determining the

correct label [Lafferty et al., 2001, Mahbub Chowdhury and Lavelli, 2010, Jiang

et al., 2011, Rocktäschel et al., 2013, Björne et al., 2013]. It has been observed

that the performance of such models is limited by the choice of explicitly designed

features, which are generally specific to the task and its corresponding domain. For

example, Chowdhury and Lavelli explained several reasons why features designed

for biological entities such as protein or gene are not equally important for disease

name recognition [Mahbub Chowdhury and Lavelli, 2010].

Deep learning based models have been used to reduce manual efforts for

explicit feature design in [Collobert et al., 2011]. Here, distributional features
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are used in place of manually designed features and a multilayer neural network

is used in place of a linear model to overcome the needs of meticulous task-

specific feature engineering. Although the proposed methods outperformed several

generic domain sequence tagging tasks, their performance are fail to surpass the

state-of-art in the biomedical domain [Yao et al., 2015]. There are two plausible

reasons for this. Firstly, the model learned features only from a word level

embedding and secondly, it took into account only a fixed length context around

the word. It has been observed that word level embeddings preserve the syntactic

and semantic properties of a word, but they may fail to maintain morphological

information, which can also play an important role in biomedical entity recognition

[dos Santos and Zadrozny, 2014, Lample et al., 2016, Mahbub Chowdhury and

Lavelli, 2010,Leaman and Gonzalez, 2008]. For instance, the drug names Cefaclor,

Cefdinir, Cefixime, Cefprozil, Cephalexin have a common prefix and Doxycycline,

Minocycline, Tetracycline have a common suffix. Furthermore, a window based

neural architecture can only consider contexts falling within the user determined

window size and will fail to pick up on important clues lying outside the window.

This work aims to overcome the two issues mentioned above by using two

BLSTMs in a hierarchy. The first BLSTM works on character vectors of a word to

obtain morphologically rich word embeddings. The second BLSTM works on the

word vectors of a sentence to learn contextually rich feature vectors. As a result,

each feature vector will preserve morphological as well contextual features of a word

within the sentence. The learned feature vectors are used in a CRF layer to predict

the correct label sequence of a sentence. The CRF layer accommodates dependency

information about the labels. We evaluate the proposed model on three standard

biomedical entity recognition tasks, namely, disease NER, drug NER and clinical

NER. To the best of our knowledge, this is the first work which explores the use

of a single model using character-based word embedding in conjunction with word
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embedding for both drug and clinical entity recognition tasks. We compare the

proposed model with existing state-of-the-art models for each task and show that it

outperforms them. Further analysis of the model indicates the importance of using

character-based word embedding along with word embedding and the CRF layer in

the final output layer.

3.3 Model Architecture

Similarly to all named entity recognition tasks, we formulate the biomedical entity

recognition task as a token level sequence tagging problem. We use the BIO tagging

scheme in our experiments [Settles, 2004]. The architecture of the proposed model

is presented in Figure 3.1. Our model takes the whole sentence as its input and

computes a label sequence as its output. The first layer of the model learns

local feature vectors for each word in the sentence. We use the concatenation of

word embedding, PoS tag embedding, and character-based word embedding as a

local feature for every word. Character-based word embedding is learned through

applying a BLSTM to the character vectors of a word. We call this layer Char

BLSTM (Section 3.3.1). The subsequent layer, called Word BLSTM (Section 3.3.2),

incorporates contextual information within it using a separate BLSTM network.

Finally, we use a CRF layer (Section 3.3.3) to encode the correct label sequence

using the output of Word BLSTM. Hence forth, the proposed framework will be

referred to as CWBLSTM. The parameters of the entire network are trained in an

end-to-end manner using a cross entropy loss function. Subsequently, we describe

each part of the model in detail.
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Figure 3.1: Architecture of CWBLSTM model. Here w1w2...wm is the word sequence

of the sentence and t1 t2 ... tm is its computed label sequence and m represents length

of the sentence.

3.3.1 Features Layer

Word embeddings or distributed word representations are a compact vector repre-

sentations of words which preserve lexico-semantic properties [Bengio et al., 2003].

It is a common practice to initialize word embeddings with a pre-trained vector rep-

resentation of words. In addition to word embeddings, PoS tags and character-based

word embeddings are used as features. We use the GENIA1 tagger to obtain PoS

1http://www.nactem.ac.uk/GENIA/tagger/
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tags in all the datasets. Each PoS tag was initialized randomly and was updated

during the training. The output of feature layer is a sequence of vectors x1, · · ·xm
for a sentence of length m. Here xi ∈ Rd is the concatenation of word embeddings,

PoS tag embeddings and character-based word embeddings. We next explain how

character-based word embedding is learned.

Char BLSTM

Word embedding is a crucial component for all deep learning based NLP tasks. The

capability to preserve lexico-semantic properties in the vector representation of a

word makes it a powerful resource for NLP [Collobert et al., 2011, Turian et al.,

2010]. In biomedical and clinical entity recognition tasks in addition to semantic

information, morphological information such as prefix, suffix or certain standard

patterns of words also provide important clues [Mahbub Chowdhury and Lavelli,

2010, Leaman et al., 2009]. The motivation behind using character-based word

embeddings is to incorporate morphological information of words within feature

vectors.

To learn character based embeddings, we maintain a vector for every character

in an embedding matrix [dos Santos and Zadrozny, 2014,Lample et al., 2016]. These

vectors are initialized with random values. As in example, suppose cancer is a word

for which we want to learn an embedding. Figure 3.2 showed how we apply a

BLSTM to the vector of characters in cancer. As mentioned earlier, the forward

LSTM maintains information about past context in the computation of the current

hidden state while the backward LSTM is used to obtain future contexts. Hence,

after reading an entire sequence, the final hidden states of both LSTMs must have

knowledge of the whole word with respect to their directions. The final embedding

of a word is:

vcw =
−−→
h(m) ⊕

←−−
h(m) (3.1)
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Figure 3.2: Learning character based word embedding

where
−−→
h(m) and

←−−
h(m) are the final hidden states of the forward and backward LSTMs

respectively.

3.3.2 Word BLSTM Layer

The output of the feature layer is a sequence of vectors corresponding to the sequence

of words in the sentence. These vectors have semantic information about the words.

Although semantic information plays an important role in identifying entities, a word

can have different meanings in different contexts. Earlier works e.g., [Collobert et al.,

2011,Leaman and Gonzalez, 2008,Mahbub Chowdhury and Lavelli, 2010,Yao et al.,

2015] use a fixed length window to incorporate contextual information. However

important clues can lie anywhere within the whole sentence. Thus fixed length

window limits the ability of the learned vectors to obtain knowledge about the

complete sentence. To overcome this, we use a separate BLSTM network which

takes semantic vectors as input and outputs a vector for every word, based on both

contexts and current feature vectors.
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3.3.3 CRF Layer

The output of the Word BLSTM layer is again a sequence of vectors which have

contextual as well as semantic information. One simple way to decode the feature

vector of a word to determine its corresponding tag is to use word level log likelihood

(WLL) [Collobert et al., 2011]. Similar to MEMMs, WLL will map the feature

vector of a word to a score vector corresponding to each possible tag using a linear

transformation. Each word is then assigned a label based on the score vector,

independent of the labels of other words. The limitation of this decoding scheme

lies in its inability to take into account dependencies among tags. For instance, in the

BIO tagging scheme, a word can be tagged with I-Entity (standing for Intermediate-

Entity) only after a B-Entity (standing for Beginning-Entity). We apply CRF

[Lafferty et al., 2001] to the feature vectors to allow dependency information to

be used in decoding, we decode the whole sentence together with its tag sequence.

CRF maintains two parameters for decoding, i.e, the linear mapping parameter

Wu ∈ Rk×h and the pairwise transition score matrix T ∈ Rh×h. Here, k is the length

of the feature vector, h is the number of labels present in the task and Ti,j implies

the pair-wise transition score for moving from tag i to tag j. Let [v]
|s|
1 be a sequence

of feature vectors for a sentence [w]
|s|
1 and suppose that [z]

|s|
1 are the unary potential

scores obtained after applying a linear transformation on the feature vectors (here

zi ∈ Rh), CRE then decodes this with tag sequence using:

P ([y]
|s|
1 |[w]

|s|
1 ) = argmax

t∈Q|s|

exp Ψ([z]
|s|
1 , [t]

|s|
1 )∑

tψ∈Q|s| exp Ψ([z]
|s|
1 , [t

ψ]
|s|
1 )

(3.2)

where

Ψ([z]
|s|
1 , [t]

|s|
1 ) =

∑
1≤i≤|s|

(Tti−1,ti + zti) (3.3)

Here Q|s| is a set containing all possible tag sequences of length |s|, tj is the tag

for the jth word. The most probable tag sequence is estimated using the Viterbi

algorithm [Rabiner, 1989,Collobert et al., 2011].
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3.3.4 Training and Implementation

We use a cross-entropy loss function to train the model. Adam’s technique [Kingma

and Ba, 2014] is used to obtain the optimized values of model parameters. We use

a mini batch size of 50 in training for all tasks. In all experiments, we use pre-

trained word embeddings of 100 dimensions, which were trained on PubMed corpus

using GloVe [Pennington et al., 2014, TH et al., 2015], PoS tag embedding vectors

of 10 dimensions, character-based word embeddings of length 20 and a hidden layer

size of 250. We use l2 regularization with 0.001 as the corresponding parameter

value. These hyperparameters are obtained using the validation set of the disease

NER task. We considered batch sizes of 25, 50, 75 and 100, hidden layer sizes of

150, 200, 250 and 300 and l2 regularization with values of 0.1, 0.01, 0.001 and 0.0001

in tuning the hyperparameters in a greed search. The corresponding training,

validation, and test sets for the disease NER task are available as separate files

with the NCBI disease corpus. For the other two tasks, we used the same set of

hyperparameters as those obtained for the disease NER task. The same strategy is

used for tuning hyperparameters of baseline methods. The entire implementation is

carried out in the Python language using the TensorFlow2 library.

3.4 The Benchmark Tasks

In this section, we briefly describe the three standard tasks on which we evaluate

the performance of the CWBLSTM model. Statistics regarding the corresponding

benchmark datasets are provided in Table 3.1.

2https://www.tensorflow.org
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Dataset Corpus Train set Test set

disease NER
sentences 5661 961

disease 5148 961

drug NER

sentences 6976 665

drug 9369 347

brand 1432 59

group 3381 154

drug n 504 120

clinical NER

sentences 8453 14529

problem 7072 12592

treatment 2841 9344

test 4606 9225

Table 3.1: Statistics of benchmark datasets for the three tasks used in the study.

Disease NER

Identifying disease named entities in text is crucial for disease related knowledge

extraction [Bundschus et al., 2008, Agarwal and Searls, 2008]. Furthermore, it has

been observed that diseases are one of the most widely searched objects by users

in PubMed [Doğan and Lu, 2012]. We use the NCBI disease corpus3 to investigate

the performance of the model on the disease NER task. This dataset was annotated

by a team of 12 annotators (2 persons per annotation) on 793 PubMed abstracts

[Doğan and Lu, 2012,Dogan et al., 2014].

3https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
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Drug NER

Identifying names of drugs or pharmacological substances is an important first step

for drug-drug interaction extraction and other drug-related knowledge extraction

tasks. With this in mind, a challenge involving the recognition and classification

of pharmacological substances in text was organized as part of SemEval 2013. We

use SemEval-2013 task 9.1 [Segura-Bedmar et al., 2013] dataset for this task. The

dataset created for this challenge was collected from two sources i.e. DrugBank4

documents and MedLine5 abstracts. This dataset has four kinds of drugs as entities,

namely drug, brand, group and drug n. Here, drug represents a generic drug name,

brand is the brand name of a drug, group is a family name of drugs and drug n is

an active substance not approved for human use [Segura Bedmar et al., 2011]. In

this dataset, while parsing the data, 79 entities (56 drug, 18 group and 5 brand)

from the training set and 5 entities (4 drug and 1 group) from the test set were

not recognized by the parser. The entities are treated as the false negative in our

evaluation scheme.

Clinical NER

The publicly available (under license) I2B2/VA6 challenge dataset [Uzuner et al.,

2011] is used for clinical entity recognition. This dataset is a collection of discharge

summaries obtained from Partners Healthcare, Beth Israel Deaconess Medical

Center, and the University of Pittsburgh Medical Center. The dataset was annotated

with three kinds of entities, namely problem, treatment and test. Here problems

denotes phrases that contain observations made by patients or clinicians about the

patients’ body or mind that are thought to be abnormal or caused by a disease.

4https://www.drugbank.ca/
5https://www.nlm.nih.gov/bsd/pmresources.html
6https://www.i2b2.org/NLP/Relations/Main.php
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Treatments are phrases that describe procedures, interventions or substances given

to a patient to resolve a medical problem. Tests are procedures, and measures that

are undertaken on a patient or a bodily fluid or sample to discover, rule out, or find

more information about a medical problem.

The downloadable dataset for this task is only a part (only discharge summaries

from Partners Healthcare and Beth Israel Deaconess Medical Center) of the full

dataset originally used in the challenge. We performed our experiments on the

currently available partial dataset. The dataset is available in the preprocessed

form, in which sentence and word segmentations has already been carried out. We

removed patients’ information from each discharge summary before training and

testing, because this never contains entities of interest.

3.5 Results and Discussion

3.5.1 Experimental Design

We perform separate experiments for each task. We use the training set to learn

optimal parameters of the model for each dataset, while evaluation is performed

on the test set. The performance of each trained model is evaluated based on the

strict matching criteria, where exact span boundaries as well as the class need to be

correctly identified in order to count as a true positive. To apply the strict matching

evaluation scheme, we use CoNLL 2003 evaluation script to calculate precision, recall

and F1 score for each task [Tjong Kim Sang and De Meulder, 2003b].

3.5.2 Baseline Methods

We use the following methods as common baselines for comparison with the proposed

models in all of the considered tasks. We have implemented all of selected baseline

methods, and their corresponding hyperparameters are tuned similar strategies to
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those used in the proposed methods.

SENNA: SENNA applies a window based neural network to the embedding of

a word with its context to learn global features [Collobert et al., 2011]. To make an

inference, it also applies a CRF to the output of the window based neural network.

We set the window size to five based on hyperparameter tuning using the validation

set (20% of the training set), while the remaining hyperparameters have similar

values to our model.

CharWNN: This model [dos Santos and Zadrozny, 2014] is similar to SENNA

but uses word as well as character-based embedding in the chosen context window

[dos Santos and Guimarães, 2015]. Here character-based embeddings are learned

through a convolution neural network with max pooling scheme.

CharCNN: This method [Sahu and Anand, 2016] is similar to the proposed

model CWBLSTM but instead of using a BLSTM, it uses a convolution neural

network to learn character-based embedding.

3.5.3 Comparison with Baseline

Table 3.2 presents a comparison of CWBLSTM with different baseline methods on

disease, drug and clinical entity recognition tasks. We can observe that CWBLSTM

outperforms all three baselines on each of the three tasks. In particular, when

comparing with CharCNN, the differences are significant for drug NER and disease

NER tasks but difference is insignificant for clinical NER. The proposed model

improved the recall by 5% resulting about 2.5% relative improvement in F score over

the second best method, CharCNN for the disease NER task. For the drug NER

task, a relative improvement of more than 3% is observed for all three measures,

precision, recall and F score, over the CharCNN model. The relatively weaker

performance on clinical NER task could be attributed to the use of many non-

standard acronyms and abbreviations in clinical texts which makes it difficult for

45



3.5 Results and Discussion

Tasks Models Accuracy Precision Recall F Score

Disease NER

SENNA 97.26 77.93 76.80 77.36

CharWNN 97.24 78.34 78.67 78.50

CharCNN 97.61 84.26 78.56 81.31

CWBLSTM 97.77 84.42 82.31 83.35

Drug NER

SENNA 96.71 66.93 62.70 64.75

CharWNN 97.07 69.16 69.16 69.16

CharCNN 97.09 70.34 72.10 71.21

CWBLSTM 97.46 72.57 74.60 73.57

Clinical NER

SENNA 91.56 80.30 78.85 79.56

CharWNN 91.42 79.96 78.12 79.03

CharCNN 93.02 83.65 83.25 83.45

CWBLSTM 93.19 84.17 83.20 83.68

Table 3.2: Performance comparison of the proposed model CWBLSTM with baseline

models on the test sets of different datasets. Here Accuracy represents token level

accuracy in tagging.

character-based embedding models to learn appropriate representations.

We perform an approximate randomization test [Hoeffding, 1952,Koehn, 2004]

to determine if the observed differences in performance between the proposed model

and the baseline methods are statistically significant. We considered R = 2000 in

the approximate randomization test. Table 3.3 shows the p-values of the statistical

tests. As the p-values indicate, CWBLSTM significantly outperforms CharWNN

and SENNA in all three tasks (significance level: 0.05). However, CWBLSTM can

outperform CharCNN only on the disease NER task.

One can also observe that, even though drug NER has a sufficiently large

training dataset, all models achieved a relatively poor performance compared to the
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Model CharCNN CharWNN SENNA

Disease NER 0.043 0.49 × 10−3 0.48 × 10−3

Drug NER 0.090 0.21 × 10−2 0.49 × 10−3

Clinical NER 0.088 0.49 × 10−3 0.21 × 10−3

Table 3.3: p-values of the statistical significance test in comparing the performance

of the CWBLSTM model with other models.

other two tasks. One reason for this poor performance could be the nature of the

dataset. As previously discussed the drug NER dataset comprises of texts from two

sources, DrugBank and MedLine. Sentences from DrugBank which are written by

medical practitioners, are shorter and less comprehensive than MedLine sentences,

which are from research articles and generally tend to be longer. Furthermore,

the training set comprises 5675 sentences from DrugBank and 1301 from MedLine,

whereas this distribution is reversed in the test set. The test set contains 520

sentences from MedLine and only 145 sentences from DrugBank. The smaller set of

training instances from MedLine sentences do not provides sufficient examples for

the model to learn.

3.5.4 Comparison with Other Methods

In this section, we compare our results with other existing methods reported in

literature. Here, we consider results which are presented in the respective articles.

We do not compare our results with the others for the clinical NER task, as the

complete dataset (as was available in the I2B2 challenge) is not available and results

in literature are reported with respect to the complete dataset.

47



3.5 Results and Discussion

Model Features Precision Recall F Score

CWBLSTM Word, PoS and Character Embedding 84.42 82.31 83.35

BANNER [Doğan and Lu, 2012] Orthographic, morphological, syntactic - - 81.8

BLSTM+We [Sahu and Anand, 2016] Word Embedding 84.87 74.11 79.13

Table 3.4: Performance comparison of CWBLSTM with other existing models on

the disease NER task

Disease NER

Table 3.4 compares the performance of CWBLSTM on the NCBI disease corpus

with other existing methods. CWBLSTM improves upon the performance of

BANNER by 1.89% F Score. BANNER is a CRF-based method which primarily uses

orthographic, morphological and shallow syntactic features [Leaman and Gonzalez,

2008]. Many of these features are specially designed for biomedical entity recognition

tasks. The proposed model also gave better performance than another BLSTM

based model [Sahu and Anand, 2016] by improving recall by around 12%. The

BLSTM+WE model [Sahu and Anand, 2016] used a BLSTM network with word

embeddings only, whereas the proposed model makes use of extra features in terms

of PoS as well as character-based word embeddings.

Drug NER

Table 3.5 compare the performance of CWBLSTM on the drug NER task with the

submitted results of the SemEval-2013 Drug Name Recognition Challenge [Segura-

Bedmar et al., 2013]. CWBLSTM outperforms the best result obtained in the

challenge (WBI-NER [Rocktäschel et al., 2013]) by a margin of 1.8% in terms of F

score. WBI-NER is an extension of the ChemSpot chemical NER [Rocktäschel

et al., 2012] system, which is a hybrid method for chemical entity recognition.

ChemSpot primarily uses dictionary features to create a sequence classifier using

CRF. Additionally, WBI-NER includes features obtained from different domain-
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Model Features Precision Recall F Score

CWBLSTM Word,PoS and Character Embedding 72.57 74.05 73.30

WBI [Rocktäschel et al., 2013] ChemSpot and Ontologies 73.40 69.80 71.5

LASIGE [Grego et al., 2013] Ontology and Morphological 69.60 62.10 65.6

UTurku [Björne et al., 2013] Syntactic and Contextual 73.70 57.90 64.8

Table 3.5: Performance comparison of CWBLSTM with other existing models

submitted in the SemEval-2013 drug NER task

dependent ontologies. The performance of our proposed model is better than the

LASIGE [Grego et al., 2013] and UTurku [Björne et al., 2013] systems by a significant

margin. LASIGE is also a CRF based method, and UTurku uses the Turku Event

Extraction System (TEES) which is a kernel based model for entity and relation

extraction tasks.

3.5.5 Feature Ablation Study

We analyze the importance of each feature type by performing feature ablation.

The corresponding results are presented in Table 3.6. In this table, the first row

represents the performance of the proposed model using all feature types in all three

tasks and the second, third and fourth rows show performance when character-

based word embeddings, PoS tag embeddings, and pre-trained word embeddings are

removed from the model. Removal of pre-trained word embeddings implies the use

of random vectors in place of pre-trained vectors.

From the table, we can observe that the removal of character-based word

embeddings leads to 3.6%, 5.8% and 1.1% of relative decrement in the F Score on

the disease NER, drug NER, and clinical NER tasks respectively. This demonstrates

the importance of character-based embedding. As mentioned earlier character-based

word embedding helps our model in two ways: (1) it provides morphologically-rich

vector representation and (2) vector representations for out-of-vocabulary (OoV)
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Model disease NER drug NER clinical NER

CWBLSTM (84.42), (82.31), (83.35) (72.57), (74.60), (73.57) (84.17), (83.20), (83.68)

- CE (80.86), (80.02), (80.44) (64.29), (75.62), (69.50) (83.76), (81.74), (82.74)

- (CE+PE) (82.72), (77.73), (80.15) (65.96), (73.42), (69.49) (83.31), (80.51), (81.89)

- (CE+PE+WE) (79.66), (73.78), (76.61) (65.40), (55.80), (60.22) (79.53), (78.28), (78.90)

Table 3.6: Performance of the model and its variants in a feature ablation study. In

every block (X), (Y), (Z) denotes precision, recall and F score, respectively. Here

removal of WE represents use of random vectors in place of pre-trained word vectors

for the word embedding matrix.

Dataset Unique Words OoV Percent

disease NER 8270 819 9.90

drug NER 9447 1309 13.85

clinical NER 13000 2617 20.13

Table 3.7: Statistics of number of words not found in the word embedding files for

the different datasets. Here OoV indicates the number of words not found in the

pre-trained word embeddings and percent indicates the percentage of OoV words in

the complete vocabularies of each task.

words can be obtained from character-based word embeddings. OoV words represent

9.9%, 13.85% and 20.13% of the unique words in the drug NER, disease NER and

clinical NER dataset respectively (shown in Table 3.7). As discussed earlier, the

lower performance of model in clinical NER is because of the high-frequency presence

of acronyms and abbreviations, which means that the model cannot take advantage

of character-based word embeddings. From the third row of the table, we can also

observe that using PoS tag embeddings as a feature is not critical in any of the three

tasks. This is because distributed word embedding implicitly preserves that kind of

information.
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Main Word Nearest Neighbor Words

cough coughing, breathlessness, dyspnea, wheezing, coughs

tumor tumor, tumoral, tumoural, melanoma, tumors

surgery operation, decompression, dissection, resection, parathyroidectomy

Table 3.8: Lists of words and their five nearest neighbors obtained through pre-

trained word embeddings used in the model

In contrast to PoS tag embeddings, we observe that use of pre-trained word

embeddings is one of the most important feature types in our model for each task.

Pre-trained word embeddings improve the model performance by utilizing a large

unlabeled corpus. This helps the model to recognize entities in two ways: Firstly,

in the training dataset, there are words which appear very few times (in our case

approximately 10% of words in all datasets appear only once in the dataset). During

training, their randomly initialized vectors would not be sufficiently updated. On

the other hand, as mentioned earlier, pre-trained word embeddings are obtained

through training a model on a large unlabeled corpus. Thus, by using the pre-trained

word embeddings, we can obtain appropriate vectors for the words which are rare

in the training dataset. Secondly, word embeddings preserve lexical and semantic

properties in their embedding, which implies that words with similar meanings are

assigned similar vectors [Bengio et al., 2003] and that similar words would have a

similar label for entity recognition. We can observe from Table 3.8 that most of the

words in the nearest neighbor set would also have the same label as the main words.

3.5.6 Effects of CRF and BLSTM

We also analyze the unified framework to gain insights into the effects of using

different loss functions in the output layer (CRF vs. WLL) as well as effects of using

bi-directional or uni-directional (forward) LSTMs. For this analysis, we modify our
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Model disease NER drug NER clinical NER

CWBLSTM (84.42), (82.31), (83.35) (72.57), (74.60), (73.57) (84.17), (83.20), (83.68)

BLSTM+WLL (76.04), (78.25), (77.13) (71.81), (70.34), (71.07) (77.35), (80.91), (79.09)

LSTM+WLL (64.72), (77.32), (70.46) (68.41), (69.02), (68.71) (58.32), (68.11), (62.83)

Table 3.9: Effects of using CRF, WLL and BLSTM in the proposed model on

different datasets. In every block (X), (Y), (Z) denote precision, recall and F1 score,

respectively.

framework and named model variants as follows: the bi-directional LSTM with WLL

output layer is called BLSTM+WLL and the uni-directional or regular LSTM with

a WLL layer is called LSTM+WLL. In other words the BLSTM+WLL model uses

all the features of the proposed framework, except that it uses WLL in place of

CRF. Similarly, LSTM+WLL also uses all features, along with a forward LSTM

instead of bi-directional LSTM and WLL in place of CRF. The results are presented

in Table 3.9. The relative decrements of 7.5%, 5.5% and 3.4% in F Score on disease

NER, clinical NER and drug NER tasks, respectively obtained, by BLSTM+WLL

compared to the proposed model demonstrate the importance of using a CRF layer.

This suggests that identifying labels independently is not favored by the model and

it is better to use the implicit label dependencies. Calculation of the average token

length of entities in three tasks indicates a plausible reason for the difference in

performance for the three tasks. The average token length is 2.2 for disease entities,

2.1 for clinical entities and 1.2 for drug entities. The longer the average length

of entities, the better the performance of the model utilizing tag dependencies.

Similarly, relative improvements of 12.89%, 4.86% and 20.83% in F score on the

disease NER, drug NER and clinical NER tasks respectively are observed when

CWBLSTM is compared with LSTM+WLL. This clearly indicates that the use of

a bi-directional LSTM is always advantageous.
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Word Char BLSTM GloVe

2C19 2C9, 2C8/9, 29, 28.9, 2.9z NA

synergistic septic, symptomatic, synaptic, sero-

tonergic, synthetic

synergism, synergy, antagonistic,

dose-dependent, exerts

dysfunction dysregulation, desensitization, disso-

lution, addition, admistration

impairment, impaired, disturbances,

deterioration, insufficiency

false-positive false-negative, facultative, five, folate,

facilitate

false, falsely, erroneous, detecting, un-

reliable

micrograms/mL microg/mL micromol/L micro-

grams/ml mg/mL mimicked

NA

Table 3.10: Words and their five nearest neighbors (from left to right in increasing

order of Euclidean distance) learned by character-level word embeddings of our

model on drug NER corpus. NA denotes that the word is not present in the

vocabulary list of the GloVe vectors

3.5.7 Analysis of Learned Word Embeddings

Next, we analyze the characteristics of the learned word embeddings after training

of the proposed model. As mentioned earlier, we learn two different representations

of each word, one using its characters and the other using it distributional contexts.

We expect that the word embeddings obtained through character embeddings will

focus on morphological aspects, whereas distributional word embeddings focus on

semantic and syntactic contexts.

We obtained, character-based word embedding for each word of the drug NER

dataset after training. We picked five words from the vocabulary list of the test

set and observe their five nearest neighbors in the vocabulary list of the training

set. The nearest neighbors are selected using both types of word embeddings, and

the results are shown in Table 3.10. We can observe that the character-based word

embeddings primarily focus on morphologically similar words, whereas distributional

word embeddings preserve semantic properties. This clearly suggests that it is
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important to use the complementary nature of the two types of embeddings.

3.6 Conclusion

In this chapter, we have presented a unified model for drug, disease and clinical entity

recognition tasks. Our model, called CWBLSTM, uses BLSTMs in a hierarchy to

learn better feature representations and CRF to infer the correct labels for each

word in the sentence simultaneously. CWBLSTM outperforms all the baselines in

all three tasks. By carrying out various analyses, we demonstrated the importance

of each feature type used by CWBLSTM. Our analyses suggest that pre-trained

word embeddings and character-based word embeddings play complementary roles,

and along with the incorporation of tag dependencies, are essential ingredients for

improving the performance of NER tasks in the biomedical and clinical domains.
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Chapter 4

Convolution Neural Network for

Relation Classification

4.1 Overview

In the previous chapter, we examined how different neural networks can be used in a

hierarchy to learn morphologically and contextually rich feature representations for

different biomedical and clinical entity recognition tasks. This chapter investigates

the use of convolution neural network (CNN) in the another subtask of information

extraction, namely, the task of relation classification. Here, we assume that all the

entities of interest in the texts are already given and, we need to classify the semantic

relation between the entities into one of a set of predefined categories. Our model

uses CNN with a max pooling scheme to learn an optimal feature representation over

word level embeddings for the sentence. We use a softmax classifier on the output of

the pooling layer to predict the correct class of relation, or no relation existence. The

entire model is trained in an end-to-end manner with adam optimization technique.

We refer to this model as CNN-RE model in our subsequent discussions.
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4.2 Introduction

In recent years, extracting relevant information from biomedical and clinical texts

such as research articles, discharge summaries, or electronic health records has been

the subject of many research efforts and shared challenges. The automatic extraction

of relevant information from these resources can be useful for many applications,

such as drug repositioning, medical knowledge base creation, etc. The performance

of concept entity recognition systems for detecting the mention of proteins, genes,

drugs, diseases, tests, and treatments have achieved a sufficient level of accuracy.

This in turn gives us an opportunity to use these data for relation classification,

another sub-task of information extraction. Relation classification is the process of

identifying how given entities are semantically related in a sentence. As shown in

the example sentence [S1] below, the entities Lasix and congestive heart failure are

related by the treatment administered for medical problem relation. Such relations

are important for further upper-level NLP tasks and also for biomedical and clinical

research [Shang et al., 2011].

[S1]: He was given Lasix to prevent him from congestive heart failure.

In the literature, relation classification tasks in biomedical text have been

modeled in several ways. Co-occurrence based methods, due to their simplicity and

flexibility, are the most widely used. In co-occurrence methods, it is assumed that if

two entities occur together in many sentences, then there must be a relation between

them [Bunescu et al., 2006, Song et al., 2011]. However, this method suffers from

low precision and low recall as the assumption does not take into account contextual

information. Furthermore, this method is not designed to identify the exact semantic

relation type. Rule-based methods are another commonly used method for relation

classification task [Thomas et al., 2000, Park et al., 2001, Leroy et al., 2003]. Rules

are created by carefully observing the syntactic and semantic patterns of relation

instances or through domain knowledge.
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Feature-based methods use feature extraction techniques to utilize contextual

information present in a sentence containing predefined entities to extract a vector

representation [Zelenko et al., 2003,Culotta and Sorensen, 2004,Hong, 2005,Minard

et al., 2011, Qian and Zhou, 2012, Zeng et al., 2014]. Feature extraction is mainly

based on the output of linguistic and domain-specific tools. The extracted feature

vectors are then used by a classification technique to decide the correct class of

relation present between entities in the sentence. State-of-the art results have

been obtained by this class of methods. However, the performance of feature-based

methods is highly dependent on the selection of a suitable feature, which is not only a

tedious and time-consuming task, but also requires domain specific tools. Another

problem faced by these methods is that feature extraction needs to be adjusted

according to the data source. As discussed earlier, our dataset consist of multiple

but diverse information resources such as research articles, discharge summaries,

clinical notes, etc. While on one hand, multiple sources bring more information,

on the other hand, they make it challenging to extract meaningful information

automatically, simply because of diverse characteristics of the data sources. For

example, sentences in research articles are well formed, and likely to use only well-

accepted technical terms. In contrast, sentences in clinical discharge summaries may

not be well-formed, instead, they will often be fragmented sentences with many

acronyms or terms used only locally. Similarly, social media articles may use slang

or terms which are not technical. This makes it difficult to design a single set of

features that is suitable for all of the above text types.

Motivated by these issues, this work aims to exploit recent advances in the

machine learning and NLP domains to reduce such dependencies and utilizes CNN

to learn important features with minimal manual dependencies. CNN has been

shown to be a dominant model to solve problems in image processing and computer

vision [Krizhevsky et al., 2012,Karpathy and Fei-Fei, 2014]. Subsequently, in natural
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language processing, it has also demonstrated state-of-the-art results in different

tasks, such as sentence classification [Kim, 2014,Kalchbrenner et al., 2014,Hu et al.,

2014, Sharma et al., 2016], relation classification [Zeng et al., 2014, dos Santos and

Guimarães, 2015] and semantic role labeling [Collobert et al., 2011]. In this chapter,

we investigate the use of CNN to extract relations in biomedical and clinical texts.

In particular, we use dataset developed for clinical relation classification (CRC) task

organized by Informatics for Integrating Biology and the Bedside (I2B2) in 2010,

as part of I2B2/VA challenge [Uzuner et al., 2011], and the drug-drug interaction

extraction (DDI) task, organized at SemEval 2013 [Segura-Bedmar et al., 2013].

The CRC dataset consists of discharge summaries and progress report of patients.

Three types of entities, i.e. problem, treatment and test, are present in the dataset. In

contrast, the DDI dataset consists of MedLine abstracts and DrugBank documents,

and has different types of drug names as entities.

4.3 Model Architecture

The proposed model architecture is shown in Figure 4.1. It takes a complete sentence

with mentioned entities as input and outputs a probability vector corresponding to

all possible relation types. The first layer of the model is a feature layer which uses

exact word and distance from the first and the second targeted entities as features.

Each feature has a vector representation which is initialized randomly, except for

the word embedding feature. For the word embedding feature, we use pre-trained

word vectors learned from PubMed articles using the GloVe embedding tool. The

embedding layer maps every feature value with its corresponding feature vectors

and concatenates them. In order to obtain local features from each part of the

sentence, we have used multiple filters of different lengths [Kim, 2014] in all possible

continuous n-grams of the sentence, where n is the length of the filter. We use max

pooling over time to obtain global features through all filters. Here, time indicates
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Figure 4.1: CNN-RE model for relation classification.

that the filter is running over the length of the sentence. Pooled features are then

fed to a fully connected feed-forward neural network to make the inference. In the

output layer, we use a softmax classifier whose number of nodes is equal to the

number of possible relation types between entities. We next describe each part of

the model in detail.

Feature Layer

We represent each word in a given sentence with three discrete features, namely, the

word itself (W), the distance from the first entity (P1) and the distance from the

second entity (P2). Each feature is briefly described below:

1. W : Exact word as it appeared in the sentence.

2. P1: The distance from the first entity in terms of the number of words [Col-

lobert and Weston, 2008]. For instance in our earlier example [S1] He is at a
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distance of −3 and prevent is at a distance of +2 from the first entity Lasix.

This value would be zero for all words which are a part of the first entity.

3. P2: Similar to P1 but considers distance from the second entity.

In this way a word w ∈ D1×D2×D3, where Di is the dictionary for ith local feature.

Embedding Layer

In the embedding layer, each feature value is mapped to its vector representation

using a feature embedding matrix. Let M i ∈ Rni×Ni be the feature embedding

matrix for ith feature (here ni represents the number of dimensions of feature

embedding and Ni is the number of possible values or size of the dictionary for

ith local feature). Each column of M i is a vector of corresponding values of the ith

feature. Mapping can be done by taking the product of one hot vector of a feature

value with its embedding matrix [Collobert and Weston, 2008]. Suppose a
(i)
j is the

one hot vector for the jth feature value of the ith feature, then:

f
(i)
j = M i a

(i)
j (4.1)

xi = f
(i)
1 ⊕ f

(i)
2 ⊕ f

(i)
3 (4.2)

Here ⊕ is the concatenation operation so xi ∈ R(n1+n2+n3) is the feature vector

for the ith word of sentence and nk is the dimension of the kth feature. For word

embeddings, we used pre-trained word vectors obtained by running the GloVe tool on

a corpus of PubMed open source articles. The other feature matrices are initialized

randomly at the beginning.
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Convolution Layer

We apply convolution on text to obtain local features from each part of the sentence

[Collobert and Weston, 2008]. Consider x1x2.....xm to be the sequence of feature

vectors of a sentence, where xi ∈ Rd is a vector obtained by concatenating all

feature vectors of the ith word. Let xi:i+j represent the concatenation of xi.....xi+j

feature vectors. Suppose there is a filter parameterized by weight vector w ∈ Rc.d

where c is the length of the filter (in Figure 4.1, the filter length is two). Then, the

output sequence of the convolution layer would be

hi = f(w · xi:i+c−1 + b) (4.3)

where i = 1, 2, . . .m− c + 1, . indicates the dot product, f is a rectified linear unit

(ReLu) function and b ∈ R is a biased term. w and b are the learning parameters

and will remain same for all i = 1, 2, . . .m− c+ 1.

Max Pooling Layer

The length (m − c + 1) of the output of convolution layer will vary based on the

number of words m in the sentence. We applied max pooling [Collobert and Weston,

2008] over time to obtain fixed length global features for a sentence. The intuition

behind using max pooling is to consider only the most useful features from the entire

sentence.

z = max
1≤i≤(m−c+1)

[hi] (4.4)

We have explained the process of extracting one feature from a whole sentence

using one filter. In Figure 4.1 we extracted four features using four filters of the

same length, i.e. two. In our experiments, we use multiple filters of variable length

[Kim, 2014]. The objective of using different lengths of filter is to accommodate

contexts with varying window sizes around the words.
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Fully Connected Layer

The output of the max pooling layer is a vector z. We call this a global feature

because it is obtained by taking max over the entire sentence. To create a classifier

over the extracted global feature, we use a fully connected feed forward layer.

Suppose zi ∈ Rl is the output of the max pooling layer (l represents the number of

filters used) then the output of fully-connected layer would be

o(i) = W ozi + bo (4.5)

Here W o ∈ Rr×l and bo ∈ Rr are parameters of the neural network and r

denotes the number of classes.

Softmax Layer

A softmax classifier is used in in the output layer, where we minimize the following

objective function:

Li = − log

(
eo

(i)
yi∑

∀j e
o(i)
j

)
(4.6)

where yi is the correct class of the relation for the ith instance.

4.4 Implementation

We experiment with filter lengths in two different experimental settings. In the first,

we use h filters of a fixed length in the convolutional layer, while in the second set

of experiments we use k varying length filters. For each of the k varying lengths,

h different filters are used. So, in the first setting, we obtain h features after max

pooling, while in the second, h× k features are obtained. For regularization, we use

dropout [Srivastava et al., 2014] and the l2 regularization technique in the output of

max pooling layer. We use adam technique [Kingma and Ba, 2014] to optimize the
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Dataset Relations Training Set Test Set

DDI

Pairs 16495 4025

Positive 3844 979

Negatives 12451 3046

DDIC

Pairs 16495 4025

Int 140 96

Advice 820 221

Mechanism 1264 302

Effect 1620 360

Negatives 12451 3046

CRC

Pairs 49853 12461

TeCP 408 102

TrCP 434 109

PIP 1775 444

TrAP 2107 527

TeRP 2453 614

Negatives 42658 10665

Table 4.1: Statistics of the datasets used for relation classification tasks.

loss function. The entire set of neural network parameters, as well as the feature

vectors, are updated while training. We implemented the proposed model in the

Python language using the tensorflow1 package.

4.5 Tasks and Datasets

In this section, we briefly describe the tasks and the corresponding datasets used in

this study. Statistics of these datasets are given in Table 4.1.

Task: DDI Extraction

Two or more drugs can affect the activities of each other when administered together

[Segura-Bedmar et al., 2013]. Often, such interaction among drugs can have severe

1https://www.tensorflow.org/
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adverse consequences [Businaro, 2013]. Identifying DDIs present in a text is a kind

of relation classification task. In this task, given two drugs or pharmacological

substances in a sentence, we need to classify their interaction into one of the

four interaction categories (discussed later) or determine that no interaction exist

between them.

Ex.1: Lithiumdrug generally should not be given with diureticsdrug

In Ex.1, the drugs Lithium and Diuretics interact with each other and type of

interaction is advice because the sentence suggests that they should not be given

together. For the DDI Extraction task, we use the dataset from SemEval 20132

DDI Extraction challenge [Herrero-Zazo et al., 2013, Segura-Bedmar et al., 2013].

This dataset contains annotated sentences from two sources, i.e., MedLine abstracts

and the DrugBank database. MedLine contains biomedical research articles and

DrugBank contains manually curated texts collected from various sources and

verified by accredited experts. The dataset was annotated with the following four

kinds of interactions:

Advice: The text states an opinion or recommendation related to the

simultaneous use of the two drugs, e.g., “alpha-blockers should not be combined

with uroxatral”.

Effect : The sentence notes the effect of the drug-drug interaction or the

pharmacodynamic mechanism of the interaction. For example “Warfarin users

who initiated fluoxetine had an increased risk of hospitalization for gastrointestinal

bleeding”.

Mechanism : The sentence describes a pharmacokinetic mechanism, as in

“Paroxetine reduces the plasma concentration of endoxifen by about 20%”.

Int : The text mentions a drug interaction without providing any other

information. For example, “This is typical of the interaction of meperidine and

2https://www.cs.york.ac.uk/semeval-2013/task9/
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MAOIs.”.

We use the dataset in two separate tasks, namely, DDI detection which we call

the DDI task and DDI classification, which we refer to as the DDIC task. The

DDI task corresponds to the detection of a drug interaction in a given sentence for

a given pair of drugs. For this, we ignore the specific interaction type and class,

and instead, consider that all types of interactions belong to a single positive class,

while instance where there is no interaction instances are kept in the negative class.

However, in the DDIC task, we have to determine either the exact class of interaction

(one of the four types introduced above) or that no interaction exists.

Task: Clinical Relation Classification (CRC)

Clinical relation classification is the task of identifying relations among clinical

entities such as Problem, Treatment and Test in clinical notes or discharge

summaries. For instance, in Ex.2, allergic and rash have medical problem indicates

medical problem relation.

Ex.2: She is allergicProblem to augmentin which gives her a rashProblem.

I2B2 released a dataset for clinical relation classification as a part of I2B2/VA-2010

shared challenge [Uzuner et al., 2011]. This dataset consist of documents collected

from three different hospitals, and was manually annotated by medical practitioners

with problem, treatment and test entities, and eight relation types among these

entities. The relations are:

Treatment caused medical problems (TrCP)

Treatment administered for medical problem (TrAP)

Treatment worsens medical problem (TrWP)

Treatment improves or cure medical problem (TrIP)

Treatment was not administered because of medical problem (TrNAP)

Test reveals medical problem (TeRP)
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Test conducted to investigate medical problem (TeCP)

Medical problem indicates medical problems (PIP).

The original challenge dataset consist of 394 documents for training and 477

documents for testing. However, only 170 documents for training and 256 documents

for testing were available for download (under the license agreement) when we

accessed the website. We decided to remove instances of the TrWP and TrIP classes

as the partial dataset does not have sufficient instances of these in its training and

test sets. The statistics of the dataset are presented in Table 4.1.

Preprocessing

As a preprocessing step, we replace the texts of the entities in the I2B2 dataset with

the corresponding entity type labels. For instance, the sentence: “He was given

Lasix to prevent him from congestive heart failure” was converted to: “He was

given TREAT to prevent him from PROB”. Here TREAT stands for Treatment

and PROB stands for Problem. Similarly, for the DDI Extraction dataset, the

two targeted drug names are replaced with the labels DRUG-A and DRUG-B

respectively. If there are other drug names present in the same sentence, then

they are replaced with DRUG-N. Furthermore, all numbers were replaced with the

label DG. Similarly to previous studies [Rastegar-Mojarad et al., 2013, Kim et al.,

2015, Liu et al., 2016b], a small number of few negative instances is filtered from

the DDI Extraction dataset by applying rules. These rules have not eliminated any

positive instances from the test set. However, 144 positive instances (54 Mechanism,

65 Effects, 49 Int and 6 Advice) are removed from the training set by the rules. The

statistics shown in Table 4.1 shows the number of instances after negative instance

filtering rules to the complete dataset. We filter negative samples based on the

following rules:

1. If both the targeted drug mentions have the same name, remove the
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corresponding instance. The assumption behind this rule is that a drug cannot

interact with itself. We use string matching on both drug names to identify such

cases.

2. Remove the instance, if one drug is a kind of or a special case of the

other drugs in the corresponding sentence. To identify such cases, we use regular

expressions to match patterns in the dataset. “DRUG-A (DRUG-B)”, “DRUG-A

such as DRUG-B” are examples of such patterns.

3. If both target drugs appear in same coordinate structure, then remove the

corresponding instance. We use several regular expressions based on observation of

the patterns in training set to filter out such instances. A examples of one such

regular expression pattern is “DRUG-A , (DRUG-N , )+DRUG-B”.

4.6 Experiment Design

4.6.1 Hyper-parameters

As there is no separate development or validation set available, we divided the

original training datasets of each task into two parts, 80% for training and the

remaining 20% for validation. The hyper-parameters are tuned using this validation

set. In all our experiments, a hidden layer size of 200 is used for each filter, while

pre-trained word embeddings of 100 dimensions and distance embeddings of 10

dimensions are used in all three tasks. Word embeddings are obtained using the

GloVe tool [Pennington et al., 2014] applied to a corpus of PubMed open source

articles [TH et al., 2015]. The different values of the regularization parameters used

for each task are shown in Table 4.2.

67



4.6 Experiment Design

Tasks Dropout l2 regu.

DDI 0.6 0.1

DDIC 0.7 0.1

CRC 0.7 0.01

Table 4.2: Values of the different regularization parameters used in the three tasks.

4.6.2 Baseline Methods for comparison

We compare the performance of the proposed model with several baseline methods.

Approaches based on conventional features and kernel methods are included as

baseline methods. These methods can be classified into two categories: one-stage

and two-stage methods. In one-stage methods, a multi-class classifier is used to

map a sentence with two target entities either into one of the relation classes or

into the negative class. In contrast, two-stage methods, as the name suggests, break

the problem into two steps. The first step builds a binary classifier to determine

whether or not a relation exists between two target entities. Only those sentences

with target entity pairs, falling into the positive category of the binary classifier in

the first step, are considered as input to the multi-class classifier of the second step.

Below we briefly describe all the baseline methods, where superscript 1s indicates

one stage and superscript 2s indicates two stages methods.

Linear Methods

In this class of methods, a linear classifier is used to identify the correct class of

relation for each instance. All instances are represented using a vector of manually

designed features. UTurku1s used the Turku event extraction system (TEES)

[Björne et al., 2013] for drug-drug interaction extraction. The major features used

by TEES comes from dependency parsing and domain-dependent resources such, as
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MetaMap3. UWM-TRIADS2s [Rastegar-Mojarad et al., 2013] and Kim2s [Kim

et al., 2015] are two stage methods. Both of these methods use SVM with contextual,

lexical, semantic and tree structure features in both of the stages.

Kernel Methods

Kernel methods are powerful techniques for utilizing graph-based features in any

NLP task. WBI-DDI2s and FBK irst2s are two stage methods [Chowdhury and

Lavelli, 2013a, Thomas et al., 2013] for DDI classification. The first stages of both

models emply different kernel methods thus use syntax tree and dependency tree

features. In stage two, WBI-DDI2s uses TEES and FBK irst2s uses SVM with

a non-linear kernel for classification. NIL UCM1s uses a multi-class SVM with

kernel methods in the one stage framework.

As discussed earlier, the dataset used in this work for the CRC task is a partial

dataset. Therefore, a direct comparison of our model’s performance with the results

obtained in the I2B2/VA-2010 challenge is not possible. Hence, we created a SVM

classifier whose results are considered as a baseline for the CRC task. We call this

method SVM-RE model. The SVM-RE model uses similar set of features to [Rink

et al., 2011].

4.7 Results and Discussion

4.7.1 Influence of Filter Lengths

We train and evaluate the CNN-RE model on all three DDI, DDIC and CRC tasks

separately. In each case, we use the training set to train a CNN-RE model and

evaluation is performed using independent test set of each respective task. Firstly,

we show the influence of different filter lengths used in the CNN-RE model. Table

3https://metamap.nlm.nih.gov/
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Filter length
DDI DDIC CRC

Prec. Recall F Score Prec. Recall F Score Prec. Recall F Score

[3] 75.05 70.99 72.96 70.51 60.57 65.16 77.00 71.77 74.29

[4] 76.01 70.88 73.36 63.47 63.73 63.60 75.06 75.77 75.42

[5] 77.35 70.48 73.75 64.69 63.84 64.26 78.75 72.43 75.46

[6] 76.05 70.07 72.93 71.16 59.75 64.96 75.72 75.38 75.55

[3,4] 73.38 74.05 73.71 67.00 61.38 64.07 75.85 75.38 75.62

[4,5] 78.77 70.88 74.62 72.98 56.28 63.55 77.38 73.71 75.50

[3,4,5] 80.06 70.99 75.25 68.70 63.02 65.74 77.87 74.27 76.03

[3,4,5,6] 82.28 67.82 74.35 66.35 64.86 65.59 72.15 77.89 74.91

Table 4.3: Comparative performance of the CNN-RE model using filters of different

lengths separately and together.

4.3 shows the performance of CNN-RE model on the three tasks with different filter

lengths.

In case of a fixed filter length, we can observe that no single filter length achieves

giving the best performance in all the tasks. Specifically, five is the best filter size for

the DDI task, three is the best length for the DDIC task and six is the best filter size

for the CRC task. The observation that the optimal filter length is task-dependent is

to be excepted, because influential words or important features may vary across the

different datasets. However, in case of variable filter length, the best performance

was obtained by the [3,4,5] filter on all the tasks. We can also observe that, our

model obtained better performance by using variable filter lengths in all the tasks.

This is an agreement with observations made in other studies [Kim, 2014, Nguyen

and Grishman, 2015] using CNN-based models for NLP tasks. As mentioned earlier,

influential words or important features may not always lie within the same window

length. With a variable length filter, the model has the option for select best among

all local features.

Furthermore, one can also observe that the performance on DDI and DDIC

tasks are inferior to that on the CRC task, even though DDI and DDIC have
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fewer of classes than CRC. The possible reasons could be the heterogeneous

data sources and the relatively smaller training data size in the DDI and DDIC

tasks. As mentioned in section 4.5, the dataset for both of these tasks comes

from two sources, i.e., DrugBank documents and MedLine abstracts. MedLine

abstracts are likely to contain longer sentences that use technical terminologies, while

DrugBank documents are more concise and specifically concerns drug interaction

information. This heterogeneous nature of dataset increases the complexity of

relation identification.

4.7.2 Class wise Performance

We took the best combination of filter lengths ([3,4,5]) and examine the class-wise

performance of the DDIC and CRC tasks. The results are shown in Table 4.4 and 4.5.

We observe that for both the tasks, the CNN-RE model has greater difficulty in

predicting some relation classes then others. The performance in the CRC task

is considerably better for TeRP, TrAP and PIP classes than for the TeCP and

TrCP classes. A possible reason for this is that TeRP, TrAP and PIP are the most

common relation instances (88.26% of positive instances) in the dataset of CRC

task. Similarly, in the DDIC task, a much worse performance is observed for the int

class of interaction compared to the advice, mechanism and effect classes. In this

case the, int class covers only 0.84% of the entire training dataset. Moreover, the

best performance in the DDIC task is obtained for the advice class, even though

it is not the largest interaction class in the training dataset. The reason could be

that advice or suggestions regarding drug interactions are typically described using

very limited set of similar phrases, e.g., “should not be used” or “caution should be

observe” etc.
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Name Precision Recall F Score

Int 86.11 32.29 46.96

Advice 69.19 74.20 71.61

Mechanism 71.70 61.25 66.07

Effect 64.57 65.83 65.19

Table 4.4: Class wise performance of

the DDIC task (filter size : [3,4,5]

each with 100 filters.)

Name Precision Recall F Score

TeCP 79.62 42.15 55.12

TrCP 85.29 26.60 40.55

PIP 72.24 68.01 70.06

TrAP 74.73 80.26 77.40

TeRP 83.77 87.45 85.57

Table 4.5: Class wise performance of

the CRC task (filter size : [3,4,5]

each with 100 filters.)

4.7.3 Feature Ablation Study

In order to investigate the importance of each feature in the final result, we gradually

remove different features from CNN-RE and retrain the model on the same dataset.

Table 4.6 shows the results obtained when only position embedding is removed, and

when position embedding is removed as well as using random vectors in place of pre-

trained word vectors for the word embedding matrix. 4%, 2.4% and 9.3% of relative

decrements in the F scores obtained for the DDI, DDIC and CRC tasks respectively,

are observed when the position embedding feature is removed from CNN-RE (2nd

row). Similarly, 4%, 4.3% and 13.0% of further relative decrements are observed

in the performance on the DDI, DDIC and CRC tasks respectively, when neither

the position nor pre-trained word embeddings are used (3rd row). This shows the

importance of position and word embedding features.

4.7.4 Comparison with Baseline

Table 4.7 shows a detailed comparison of our models with other existing methods

on the DDI, DDIC and CRC tasks. We compare our model’s performance with the
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Filter length
DDI DDIC CRC

Prec. Recall F Score Prec. Recall F Score Prec. Recall F Score

CNN-RE 80.06 70.99 75.25 68.70 63.02 65.74 77.87 74.27 76.03

CNN-RE - {P} 73.98 70.58 72.24 65.22 63.02 64.10 71.91 66.14 68.90

CNN-RE - {(P+X)} 77.14 67.92 72.24 70.18 56.99 62.90 68.79 63.69 66.14

Table 4.6: Performance of the CNN-RE model in a feature ablation study. Here P

refers to random position embedding for both P1 and P2, and X refers to pre-trained

word vector embedding.

top performing methods in the respective challenges. We can observe that our best

performing model CNN-RE [3,4,5] is competitive with the state-of-the-art in the

DDI and DDIC tasks. However, it outperforms the baseline method in the CRC

task. All the baseline methods use manually crafted features obtained from other

NLP tools. Careful design of features requires considerable time and effort and it

is often difficult to reproduce results, because of the lack of explanation of feature

engineering in the referred papers that describe the methods.

4.7.5 Error Analysis

We have tried to determine relevant factors which are adversely affecting the

performance of the model. For this, we look at the average sentence lengths of

instances correctly and incorrectly classified by our models in the DDI and DDIC

tasks (Table 4.8). We observe that the average sentence length and the entity

separation length (number of words between the targeted entities) for incorrectly

classified instances are always higher compared to correctly classified instances.

Another feature of many incorrectly predicted instances was the presence of multiple

drug entities in the same sentence. Multiple mention of drugs repetitively are more

likely to behave like noise, which may cause neural models to disregard relevant

information from other words likely to be contextually important. Hence, a better
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Tasks Models Precision Recall F Score

DDI

UTurku1s [Björne et al., 2013] 85.8 58.5 69.6

Kim2s [Kim et al., 2015] - - 77.5

NIL UCM1s [Bokharaeian and DIAZ, 2013] 60.8 56.9 58.8

WBI-DDI2s [Thomas et al., 2013] 80.1 72.2 75.9

FBK irst2s [Chowdhury and Lavelli, 2013b] 79.4 80.6 80.0

CNN-RE Model 80.06 70.99 75.25

DDIC

UTurku1s [Björne et al., 2013] 73.2 49.9 59.4

UWM-TRIADS2s [Rastegar-Mojarad et al., 2013] 43.9 50.5 47.0

Kim2s [Kim et al., 2015] - - 67.0

NIL UCM1s [Bokharaeian and DIAZ, 2013] 53.5 50.1 51.7

WBI-DDI2s [Thomas et al., 2013] 64.2 57.9 60.9

FBK irst2s [Chowdhury and Lavelli, 2013b] 64.6 65.6 65.1

CNN-RE Model 68.70 63.02 65.74

CRC
SVM-RE1s [Rink et al., 2011] 76.64 72.55 74.54

CNN-RE Model 77.87 74.27 76.03

Table 4.7: Performance comparison of CNN-RE with baseline methods. Perfor-

mance is measured based on precision, recall and F score. The highest scores are

highlighted in bold.
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strategy is required to deal with such cases. Considering limited context along

with the removal of repeated mentions of entities could be one way to deal with

particularly long sentences.

Model
Sentence Length Entity Separation

True False True False

DDI 28.4(16.67) 41.5(21.17) 11.77(10.47) 14.96(11.15)

DDIC 26.39(13.68) 42.11(22.50) 11.24(9.39) 15.17(12.21)

Table 4.8: Mean and standard deviations (in subscript) of sentence length and entity

separation length for True Positive and False Negative instance for the CNN-RE

[3,4,5] model.

4.8 Conclusion

In this chapter, we have presented a unified model for biomedical and clinical relation

classification tasks. The proposed model, referred to as CNN-RE, uses word and

position embeddings as features in the input layer and learns an appropriate vector

representation for the sentence through CNN and pooling layers. The learned

vectors are then used in a softmax classifier to predict either the correct class of

the relation or that no relation exists, in the output layer of the CNN-RE model.

We have evaluated the performance of the proposed model on the DDI, DDIC and

CRC tasks. Our results demonstrate that CNN-RE can be used as an alternative

method to conventional feature-based methods. An analysis of the results reveald

the following important points: variable length filters perform better than same

length filters; word and position embeddings are essential ingredients for the CNN-

RE model; imbalance and noise in the dataset adversely affect the performance of

the model; and model is more likely to make an incorrect classification for longer

sentences.
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Chapter 5

LSTM Network for Relation

Classification

5.1 Overview

In the last chapter, we investigated the performance of a CNN model for different

biomedical and clinical relation classification tasks. We observe that CNN can be

used as an alternative to the conventional feature based methods for the relation

classification tasks. However, error analysis indicates that the CNN-RE model is

failing for the sentences of relatively longer length. In such cases, the presence

of important clues is lying in discontinuous places. In this chapter, our primary

objective is to improve the performance of the relation classification task by using

more powerful representation learning ability. Here for learning better feature

representation, we investigate the long short-term memory network in place of

convolution neural network and attentive pooling scheme in place of max pooling

over previous CNN-RE model.
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5.2 Introduction

Relation classification is the task of identifying the semantic relations present

between a given pair of entities in a text. Since most search queries are some forms of

binary factoids [Agichtein et al., 2005], modern question-answering systems heavily

rely upon relation classification as a preprocessing step [Fleischman et al., 2003,Lee

et al., 2007, Girju, 2003]. Accurate relation classification also facilitates discourse

processing and precise sentence interpretations. Hence, this task has witnessed

lots of attention over the last decade [Mintz et al., 2009, Surdeanu et al., 2012].

In the biomedical domain, in particular, extracting such tuples from data may be

essential for identifying protein and drug interactions [Thomas et al., 2000,Qian and

Zhou, 2012], symptoms, and causes of diseases [van Mulligen et al., 2012], among

others. Further, since clinical data tend to be obtained from multiple (and diverse)

information sources such as journal articles, discharge summaries, and electronic

patient records, relation classification becomes a more challenging task.

Existing methods can be classified into two categories: those relying on

handcrafted features and those using latent features. In the first category, support

vector machines (SVMs) with linear or non-linear kernels have mainly been employed

in several studies [Chowdhury and Lavelli, 2013b,Bokharaeian and DIAZ, 2013,Kim

et al., 2015]. All of these methods depend on manually engineered features such

as PoS tags, chunk tags, trigger words, shortest dependency trees and syntax

trees. Methods using non-linear kernels map structure features (dependency and

syntax trees) to real values. Such methods have successfully been employed for

similar relation classification tasks, including ADR extraction [Gurulingappa et al.,

2012b, Gurulingappa et al., 2012a, Harpaz et al., 2014], protein-protein interaction

extraction texts [Qian and Zhou, 2012], relations between genes and diseases [Bravo

et al., 2015], and relations among medical concepts [Rink et al., 2011]. Although such

methods have demonstrated effective performance, they require manually crafted
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features. However, the extraction of these features is dependent on other NLP tools

and the inherent noise and cost of such tools may adversely affect the performance of

models that depend on these features. Methods using latent features and belonging

to the second category result from re-emergence of deep learning models as a

powerful alternative to conventional feature based models. Certain notable studies

[Zhao et al., 2016,Sahu et al., 2016] on DDI and CRC tasks are based on convolution

neural networks and have been shown to achieve superior performance than the

existing state-of-the-art methods.

In this work, we also rely on latent features learned by neural network models.

As opposed to works in [Zhao et al., 2016,Sahu et al., 2016], which use CNN models,

we use LSTM based neural network models [Hochreiter and Schmidhuber, 1997].

CNN-RE model requires pooling on continuous n-grams, constructed on an entire

sentence in order to obtain constant length features. Here n is the length of the

convolution or filter. This may cause problems for the longer length sentences or

those containing relevant clues lying far away from one another. To overcome this

issue, we use BLSTM with two different pooling techniques for encoding variable

length features. Theoretically, a BLSTM can preserve information regarding the

past and future words while reading [Hochreiter and Schmidhuber, 1997]. Therefore,

when we apply pooling on the BLSTM output, we can get features containing

information on the complete context of the entire sentence. This is in contrast

to the CNN-RE models which extract features based on the sentence n-gram. With

this intuition, we propose three models, namely: BLSTM-RE, ABLSTM-RE and

Joint ABLSTM-RE for the CRC and DDI extraction tasks. Here BLSTM-RE and

ABLSTM-RE uses a BLSTM for encoding word and position features. BLSTM-RE

uses max pooling while ABLSTM-RE uses attentive pooling on the BLSTM outputs

to obtain fixed length features over the entire sentence. However, as an ensemble

of BLSTM-RE and ABLSTM-RE, Joint ABLSTM-RE uses two BLSTMs, one with
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max pooling and another with attentive pooling. In each of these models, we use a

fully connected neural network with a softmax function in the output layer.

5.3 Model Architecture

We present three BLSTM based models, namely, BLSTM-RE, ABLSTM-RE and

Joint ABLSTM-RE for the DDI, DDIC and CRC tasks. A generic architecture of

the proposed models is illustrated in figure 5.1. Each model uses embedding features

as input in the first layer and learns a fixed length vector representation through

subsequent layers. The score for each possible class is computed in the final layer,

and the final decision is reached using this score. Training of the model happens in

an end-to-end manner such a way that the correct class will get the high score after

training. We briefly explain each component of the three models in the following

sections.

Feature Layer

We represent each word in the sentence with three discrete features, namely: word

(W), distance1 (P1), and distance2 (P2). Here W is an exact word appear in the

sentence. P1 indicates the distance (in terms of words) from the first entity name

[Collobert et al., 2011, Sahu et al., 2016] and this value would be zero for first

targeted entity name word. P2 is similar to P1, but denotes the distance from the

second targeted entity name. In this manner, a word w ∈ D1 ×D2 ×D3, where Di

is the dictionary for ith local features. This feature layer constitutes the first layer

for all the models.
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Figure 5.1: Generic Architecture of Proposed Model for Biomedical Relation

Classification

Embedding Layer

In embedding layer, each discrete feature is mapped to a real-valued vector

representation using a lookup or embedding matrix. Let us say M i be the embedding

matrix for ith feature. Here each column of M i is a vector for the value in ith feature.

Mapping can be carried out by taking the product of one hot vector of feature value

and its embedding matrix. Suppose that a
(i)
j be the one hot vector for the jth feature

value of the ith feature then embedding layer can be obtained as follows:

f
(i)
j = M i.a

(i)
j (5.1)

xi = f
(i)
1 ⊕ f

(i)
2 ⊕ f

(i)
3 (5.2)

81



5.3 Model Architecture

Here, ⊕ is the concatenation operation:- thus, xi ∈ R(n1+....n3) is a feature vector

for the ith word in a sentence and nk is the dimension of kth feature. Pre-trained

word vectors are used for the word embedding matrix and other feature matrices

are initialized with random values.

BLSTM Layer

The output of embedding layer is a sequence of vectors for each word of the

sentence. These vectors have semantic information about the individual words.

In the relation classification task, important clues can be a combination of multiple

words or phrases. Earlier works [Collobert et al., 2011, Sahu et al., 2016] used

convolution neural network for learning features from continuous n-grams of the

sentence, where n is the length of the filter. However, important clues can lie

anywhere in the whole sentence and can be discontinuous. This limits the learned

vectors to preserve the knowledge of discontinuous clues. To overcome this issue,

we use the BLSTM network on the output of embedding layer. As we discussed,

theoretically an LSTM can preserve the information of any length while computing

the output. Therefore, by applying the BLSTM network on the output of embedding

layer, we get a sequence of vectors each with complete knowledge of the sentence.

Pooling Layer

The idea of the pooling layer is to derive a fixed length optimal feature from variable

number of word features. We experiment with two different pooling scheme types,

as follows;-

(A) Max Pooling

The intuition behind using Max pooling is, taking one optimal over the entire

sequence. BLSTM accumulates information in both forward and backward direction,
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and hence each node is assumed to have complete information of a sentence. Max

pooling takes the maximum over the entire sentence, considering all important and

relevant information is accumulated in that position. Let z1z2...zm (zi ∈ RN) be the

sequence of vectors obtained by concatenating forward, backward LSTM output of

each word then:

z = max
1≤i≤(m)

[zi] (5.3)

Where z ∈ RN is the dimension wise max of the entire zi’s.

(B) Attentive Pooling

Taking one max over the entire sequence may fail to perform well when important

clues for the relation are present in different clauses or lie far away in the sentence.

Consider an example belonging to the mechanism class of interaction: Preliminary

evidence suggests that cimetidineDrug inhibits mebendazoleDrug metabolism and may

result in an increase in plasma concentrations of mebendazoleDrug. The first clue

inhibits mebendazole metabolism indicates interaction class likely to be effect, but the

second clue increase in plasma concentration makes the interaction belonging to the

mechanism class. Taking one optimal over the complete sentence may incorrectly

classify this instance. To overcome this issue we use attentive pooling which takes

optimal based on a weighted linear combination of feature vectors. Weights of the

feature vectors are computed using attention mechanism which assigns weights based

on the importance of that features [Bahdanau et al., 2014, Zhou et al., 2016]. The

attention mechanism produces a vector α of size equal to the length of sentence.

The values in this vector are the weights we would assign to each word feature

vectors. Weighted linear combination of BLSTM outputs and attention weights are

the output of attentive pooling layer. Let Z ∈ RN×m be the matrix of outputs

obtained by BLSTM then, the output of attentive pooling would be:
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H = tanh(Z)

α = Softmax(waTH)

z = αZT

where wa ∈ RN are learning parameters, α ∈ Rm is attention weights and z ∈ RN

would be the attentive pooling layer output. The important thing to notice here is

that α would be different for every sentence, i.e., indicating that relevant context

words may appear in different positions in different sentences.

Fully Connected and Softmax

The pooling layer output is a fixed length vector, which can be non-linearize by

using tanh activation and then feed it to a fully connected neural network layer.

In fully connected layer, we maintain a number of nodes equals to the number of

classes.

h3 = tanh(h2)

p(y|x) = Softmax(W oh3 + bo)

Here h2 would be the pooling layer output, W o ∈ RN×C , bo ∈ RC are the fully

connected neural network parameters, and C is the number of classes present in the

task. We use the softmax function in the fully connected layer output to obtain a

normalized probability score for each class.

5.3.1 BLSTM-RE Model

BLSTM-RE is similar to the CNN-RE model. Here, we use BLSTM in place of

convolution neural network used in CNN-RE model. BLSTM-RE applies Max
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pooling in the BLSTM output in order to derive a optimal fixed length features.

Max pooling is obtained through Equation 5.3 for every instance. These features

are then fed to fully connected neural network followed by softmax layer to produce

final classification.

5.3.2 ABLSTM-RE Model

In the case of ABLSTM-RE model, we apply attentive pooling in the BLSTM layer

output. The attentive pooling layer output is used as features to make a classifier

by feeding this to fully connected and softmax layers.

5.3.3 Joint ABLSTM-RE Model

The idea of using Joint ABLSTM-RE is to take the advantages of both max and

attentive pooling techniques. Joint ABLSTM-RE model uses two separate modules

each with a BLSTM network. Both BLSTMs take same feature vectors as input

and produce output for every word in the sentence. We apply Max pooling to the

first and attentive pooling to the second BLSTM layer to get optimal features from

both the modules. Concatenation of both optimal features is used for classification

through fully connected and softmax layers.

5.4 Training and Implementation

All three models use cross entropy loss function for training the entire network.

Adam optimization technique [Kingma and Ba, 2014] is used to update the

parameters. Batch size of 200 is used during training of each model. Hidden layer

size in BLSTM-RE and ABLSTM-RE are kept as 200, and 150 in each module of

Joint ABLSTM-RE. For regularization, we use dropout [Srivastava et al., 2014] in

output of max pooling layer and l2 regularization technique. The optimal values for
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Model Tasks Dropout l2 regu.

BLSTM-RE

DDI 0.7 0.001

DDIC 0.7 0.001

CRC 0.7 0.01

ABLSTM-RE

DDI 0.8 0.01

DDIC 0.7 0.0001

CRC 0.7 0.01

Joint ABLSTM-RE

DDI 0.9 0.01

DDIC 1.0 0.0001

CRC 0.9 0.001

Table 5.1: Values of different regularization parameters used in three models.

both the parameters are obtained through validation set (20% of the each training

set considered as validation set) and mentioned in Table 5.1. Entire neural network

parameters and feature vectors are updated while training. We implemented the

proposed model in Python language using tensorflow1 package. We use pre-trained

100 dimension word vectors and randomly initialized 10 dimension distance vectors

for initializing embedding layer parameters.

5.5 Results and Discussion

Apart from baseline methods considered in the last chapter, here we included three

more newly proposed model for comparison. All three MV-RNN1 [Suárez-Paniagua

and Segura-Bedmar, 2016], Tree-LSTM2 [Lim et al., 2018] and Dep-LSTM1 [Wang

et al., 2017] are applied on DDIC task and use features from other NLP tools. MV-

RNN1 is a neural network based model. In particular, MV-RNN1 uses a recursive

neural network [Socher et al., 2011] for learning embedding of a sentence or a part

of a sentence recursively, thereby obtaining a final vector used for classification.

Dep-LSTM1 uses the sentence dependency tree in three distinct channels to learn

representation. The first channel applies BLSTM in the breadth-first search path

1https://www.tensorflow.org
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of the tree, the second channel applies it in the depth-first search path, and the

last channel uses it in the complete sentence. The concatenation of all the learned

feature vectors is used for classification in the softmax layer. On the other hand,

Tree-LSTM2 model uses LSTM network in the parse tree of the sentence and learn

representations for sentence.

5.5.1 Comparison with Baseline Methods

Table 5.2 provides a detailed comparison of our models’ performance with previous

approaches in all three DDI, DDIC and CRC tasks. We observe that, in all the

three tasks, the Joint ABLSTM-RE model performance are best among all the

existing feature based methods as well proposed deep learning based methods.

In particular, Joint ABLSTM-RE model outperforms previous best feature based

models by 2.08%, 3.56% and 3.66% on DDI, DDIC and CRC tasks respectively.

Among the deep learning based methods, all the LSTM based models outperform

the CNN-RE model in all the three tasks. However, in CRC task, this difference is

not significant. We performed McNemar test to verify this.

Based on the McNemar test BLSTM-RE, ABLSTM-RE, and Joint ABLSTM-

RE models outperformed CNN-RE model with p-values of 0.0005, 0.001 and

8.4× 10−9 respectively in the DDIC task. As the results indicate, all LSTM based

models outperformed CNN-RE model significantly in DDI extraction task. Among

the LSTM models, Joint ABLSTM-RE and BLSTM-RE models outperformed

ABLSTM-RE with p-values of 0.005 and 0.03 respectively on the DDIC task.

Further, the McNemar test suggests that there is no significant difference in

performance of the Joint ABLSTM-RE and BLSTM-RE models on the DDIC task.

Moreover, the McNemar test also suggests that there is no significant difference in

performance of the CNN-RE, BLSTM-RE and ABLSTM-RE models on the CRC

task.
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Tasks Models Precision Recall F1 Score

DDI

UTurku1 [Björne et al., 2013] 85.8 58.5 69.6

Kim2 [Kim et al., 2015] - - 77.5

NIL UCM1 [Bokharaeian and DIAZ, 2013] 60.8 56.9 58.8

WBI-DDI2 [Thomas et al., 2013] 80.1 72.2 75.9

FBK irst2 [Chowdhury and Lavelli, 2013b] 79.4 80.6 80.0

CNN-RE1 [Sahu et al., 2016] 80.06 70.99 75.25

BLSTM-RE1 82.23 76.60 79.32

ABLSTM-RE1 80.63 75.28 77.85

Joint ABLSTM-RE1 81.23 81.71 81.67

DDIC

UTurku1 [Björne et al., 2013] 73.2 49.9 59.4

UWM-TRIADS2 [Rastegar-Mojarad et al., 2013] 43.9 50.5 47.0

Kim2 [Kim et al., 2015] - - 67.0

NIL UCM1 [Bokharaeian and DIAZ, 2013] 53.5 50.1 51.7

WBI-DDI2 [Thomas et al., 2013] 64.2 57.9 60.9

FBK irst2 [Chowdhury and Lavelli, 2013b] 64.6 65.6 65.1

MV-RNN1s [Suárez-Paniagua and Segura-Bedmar, 2016] 52.00 48.0 50.00

Tree-LSTM2s [Lim et al., 2018] 79.30 67.2 72.70

Dep-LSTM1s [Wang et al., 2017] 72.53 71.49 72.0

CNN-RE1 [Sahu et al., 2016] 68.70 63.02 65.74

BLSTM-RE1 70.62 66.80 68.66

ABLSTM-RE1 73.34 62.41 67.43

Joint ABLSTM-RE1 74.47 64.96 69.39

CRC

SVM-RE [Rink et al., 2011] 76.64 72.55 74.54

CNN-RE [Sahu et al., 2016] 77.87 74.27 76.03

BLSTM-RE 79.97 73.83 76.78

ABLSTM-RE 78.49 74.38 76.38

Joint ABLSTM-RE 76.45 78.11 77.27

Table 5.2: Performance comparison of our models with all baseline methods.

Performance is measured based on precision, recall and f1 score. The highest scores

are highlighted in bold.
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Models Advice Mechanism Effect Int MAVG

UTurku [Björne et al., 2013] 63.0 58.2 60.0 50.7 58.7

UWM-TRIADS [Rastegar-Mojarad et al., 2013] 53.2 44.6 44.9 42.1 47.2

Kim [Kim et al., 2015] 72.5 69.3 66.2 48.3 64.1

FBK irst [Chowdhury and Lavelli, 2013b] 69.2 67.9 62.8 54.7 64.8

NIL UCM [Bokharaeian and DIAZ, 2013] 61.3 51.5 48.9 42.7 53.5

WBI-DDI [Thomas et al., 2013] 63.2 61.8 61.1 51.1 59.7

MV-RNN1 [Suárez-Paniagua and Segura-Bedmar, 2016] 57.0 46.0 49.0 49.0 50.25

Dep-LSTM1 [Wang et al., 2017] 80.5 75.35 68.37 49.0 68.39

CNN-RE 71.61 66.07 65.19 46.96 62.24

BLSTM-RE 75.92 72.66 65.15 47.40 65.28

ABLSTM-RE 69.68 68.06 68.28 54.16 65.04

Joint ABLSTM-RE 80.26 72.26 65.46 44.11 65.52

Table 5.3: Performance comparison between the proposed methods and top-ranking

approaches on the DDIExtraction 2013 test data for DDI classification. Performance

is measured through F1-Score for each class and Macro Average (MAVG). The

highest scores are highlighted in bold.

Among the newly proposed deep learning based methods, Tree-LSTM model

performance is 3.39 units higher than the Joint-ABLSTM-RE model performance

in terms of F score. Similarly, Dep-LSTM model performance is 4.68 units higher

than the BLSTM-RE model performance in terms of recall score. As discussed,

Tree-LSTM model uses syntactic tree and Dep-LSTM model uses dependency tree

for learning features. However, the proposed models does not use any features apart

from pre-trained word vectors.

5.5.2 Class Wise Performance Analysis

We compare class wise performance of the proposed models with existing models in

DDIC task (Table 5.3). We observe that FBK irst achieved the best performance

in Int class. However, Dep-LSTM achieved best performance on other three
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classes. BLSTM-RE, ABLSTM-RE and Joint ABLSTM-RE achieved the second

best performance for Mechanism, Effect and Advice classes respectively. However,

Joint ABLSTM-RE model performance is 2.8 units less than Dep-LSTM in terms of

aggregate performance measure( macro-average F1 score). All models find it easier

to detect the Advice interaction type compared to the instances of the other three

interaction types. Similarly, all models, it most difficult to detect Int interaction

types. The lower performance of the Int class can be attributed to insufficient

training data. Effect interaction class is found to be the second most difficult class

to detect by most models compared in this analysis.

5.5.3 Feature Analysis

To validate the importance of each feature, we further analyzed the Joint ABLSTM-

RE model performance by removing feature types one by one in DDIC task. It can be

observed from Table 5.4 that pre-trained word embedding and position embedding

are important features. About 4.6% of relative decrement is observed if the model

does not use position embedding and uses random vectors for words instead of

pre-trained word embedding. This indicates the importance of word embedding

features. On the other hand, removal of position features reduces the performance

of the model by around 1.1%.

Models Precision Recall F Score

Joint ABLSTM-RE 74.47 64.96 69.39

Joint ABLSTM-RE - {P} 70.62 66.80 68.66

Joint ABLSTM-RE - {P+X} 71.21 61.89 66.22

Table 5.4: Contribution of each feature in Joint ABLSTM-RE model in DDIC

task. Here P: Random Position Embedding for both P1 and P2, and X: Pre-trained

word vector embedding.
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5.5.4 LSTM vs CNN models

Earlier we discussed that intuitively it appears that LSTM models are likely to

outperform CNN model on longer sentences. We perform an analysis of our results

in order to determine whether or not that is the case. We investigated the length as

well as entity separation between two targeted drugs of all those sentences predicted

correctly by one model but incorrectly by the other in DDIC task. Figures 5.2a and

5.2b display the box plots for the sentence length and separation length between

targeted drugs. Here, {X}-{Y} represent instances correctly predicted by X but

not by Y . In all cases, the length represents the number of words, and numbers

at the top of the boxes indicate the number of instances in that category. From

the figures, we can observe that the proposed LSTM models outperformed CNN for

both longer sentences and cases with greater entity separation lengths.

(a) Box plot for sentence length (b) Box plot for entity separation

Figure 5.2: Boxplot for sentence length and entity separation length in instances.

Here {X}-{Y} represent instances correctly predicted by X but not by Y. In all of

these cases, length represents the number of words and numbers present at the top

of the boxes represent the number of instances present in that category.
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Model
Sentence Length Entity Separation

True False True False

CNN-RE 26.19(13.38) 42.51(21.00) 11.24(9.39) 15.17(12.21)

BLSTM-RE 29.12(16.19) 37.34(22.49) 12.15(9.55) 13.92(13.03)

ABLSTM-RE 28.52(17.57) 37.54(20.19) 11.12(10.11) 14.26(12.65)

Joint ABLSTM-RE 28.52(14.50) 39.97(21.70) 12.81(9.49) 14.19(11.86)

Table 5.5: Mean and standard deviations (in subscript) of length of sentence for

True Positive and False Negative instance in DDIC task.

5.5.5 Error Analysis

In addition to the imbalance issue, we attempted to determine whether any other

factors adversely affect the performance of the models. We investigated sentence

length of instances that were correctly and incorrectly classified by each of the

four models for the DDI classification task (Table 5.5). It can be observed that

the average sentence length and entity separation length for incorrectly classified

instances are always higher than in correctly classified sentences. However, LSTM

based models are better than CNN-RE model in these cases. A further aspect of

incorrectly predicted instances was the presence of multiple drug entities. A further

aspect of incorrectly predicted instances is the presence of multiple drug entities in

many such instances. Repetitive drug entities are more likely to behave like noise,

hence, may cause neural models to lose relevant information from other words likely

to be contextually important. Hence, a improved strategy is required to deal with

such cases.

5.5.6 Visual Analysis

In order to confirm the ability of the model to learn attention weights based on the

importance of words, we visualize the attention weights of certain of the sentences
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Figure 5.3: Heat map of attention weights, indicating importance of relevant words.

Darkness in red color indicates relevance.

after training Joint ABLSTM-RE. Figure 5.3 provides the heat map of the attention

weights for six instances of the test set. Here every line is a sentence with two

targeted drug names replaced with the special tokens DRUG-A and DRUG-B and

darkness in the red color indicate heedfulness. The figure demonstrate that our

model can select important words based on the task. For example, in the sentence

DRUG-A may enhance the effects of DRUG-B , DRUG-N and other DRUG-N, the

model could effectively assign high weights to may enhance the effects. Similarly,

in the sentence DRUG-N and DRUG-A increase the effects of DRUG-B, the model

assigns high weights to the words increase and effect.

5.6 Conclusion

In this work, we have propose three LSTM based models: BLSTM-RE, ABLSTM-

RE and Joint ABLSTM-RE for the DDI, DDIC and CRC tasks. All three models use

the simple word and distance embedding as features, and learn higher level feature

representation using BLSTM network. Furthermore, two of the proposed models
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utilize neural attention mechanism to achieve higher level feature representation.

The performances of all three models were compared to those of existing methods

on SemEval-2013 DDI extraction and I2B2/VA-2010 CRC dataset. Among the

three proposed models, Joint ABLSTM-RE model outperforms others for all the

three tasks. Analysis of our results indicates that all models find it difficult to

make correct predictions for drug pairs present in a long sentence and having too

many other drug entries. However, if we compare between CNN-RE and LSTM

based models, then LSTM models are generally found to have a better prediction

for longer sentences than the CNN-RE model. We believe that new models should

work in the direction of mitigating above issues to bring significant improvement.
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Chapter 6

Transfer Learning for Relation

Classification

6.1 Overview

In the biomedical and clinical domain, it is quite common that lack of sufficient

training data does not allow to fully exploit machine learning models. However,

the efficient use of transfer learning (TL) can help in utilizing knowledge learned

in one task (source task) to the resource scarce task of interest (target task).

In this chapter, we present three TL frameworks for relation classification tasks.

We systematically investigate the effectiveness of the proposed frameworks in

transferring the knowledge under multiple aspects related to source and target

tasks, such as similarity or relatedness between the source and target tasks,

and size of training data for source task. Our empirical results show that the

proposed frameworks, in general, improve the model performance. However, these

improvements do depend on aspects related to source and target tasks. This

dependence then finally determine the choice of a particular TL framework.
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6.2 Introduction

Recurrent neural networks and their variants, such as LSTM network, have shown

to be effective models for many natural language processing tasks [Mikolov et al.,

2010, Graves, 2013, Karpathy and Fei-Fei, 2014, Zhang and Wang, 2015, Chiu and

Nichols, 2015, Zhou et al., 2016] including the tasks presented in earlier chapters.

However, the requirement of huge gold standard labeled datasets for training makes

it difficult to apply them to task for which few such resources exist, which is often

the case in the biomedical domain. In the biomedical field, obtaining labeled data

is not only time consuming and costly but also requires domain knowledge. TL

has been used successfully in such cases across multiple domains. Transfer learning

aims to apply the knowledge gained while training a model for a Task-A (Source

Task), where we have sufficient gold standard labeled data to a different Task-B

(Target Task) where we do not have enough training data [Pan and Yang, 2010]. In

literature, various TL frameworks have been proposed [Pan and Yang, 2010, Mou

et al., 2016,Yosinski et al., 2014]. With the recent surge in applications of TL using

neural network based models in computer vision and image processing [Yosinski

et al., 2014, Azizpour et al., 2015] as well as in NLP [Mou et al., 2016, Zoph et al.,

2016, Yang et al., 2017], this work explores TL frameworks using a neural models

for relation classification in the biomedical domain.

A very common approach to applying TL is to train learning models on

source and target tasks in sequence. We refer to this approach as sequential TL.

Furthermore, if there exists a bijection mapping between the label sets of source and

target tasks, then the entire model trained on the source task can be transferred to

the target task. Otherwise, only a partial model can be transfered. In this work,

existence of a bijection mapping between two label sets is also called as same label

set and nonexistence of bijection mapping as disparate label set. In NLP, transfer of

feature representations is the most common form of partial model transfer. Instead
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of performing the training in a sequential manner, an alternative method is to train

the model on both source and target data simultaneously [Yang et al., 2017]. This

is very similar to multi-task learning MTL [Collobert and Weston, 2008]. This way

of simultaneous training can be carried out in multiple ways. These options make

it possible to design several variants of the TL framework.

In addition the options of using training data in different ways, using partial or

complete model transfer, and presence or absence of bijection mapping between two

label sets, other aspects such as selection of the source task, its size and relatedness

or similarity to the target task determine the selection of the most relevant TL model.

Intuitively, it is preferable for the source task to be as similar as possible to the target

task. For example, if the target task concerns the binary classification of drug-drug

interactions (DDIs) mentioned in social media text or in doctors’ notes, then a

potentially suitable source task would be the binary classification of DDI mentioned

in research articles. Here, the difference lies in the nature of texts appearing in the

two corpora. In the case of doctors’ notes, the text is likely to be short and precise

compared to the research articles. In other words, the feature spaces representing

data for the source and target tasks differ from each other, although the two label

sets are same. On the other hand, it is also possible that there does not exist any

bijection between the labels of the source and target tasks. An example of such a

scenario would be if the target task required multi-class classification of DDIs, while

the source task only concerned binary classification.

According to the various possible scenarios introduced in the above discussion,

we present three different TL frameworks in this study. Our motivation is to

systematically explore various TL frameworks for the task of relation classification

in the biomedical domain and try to empirically analyze the results we obtain. Our

contribution in this chapter can be summarized as follows:

• We present and evaluate three TL framework variants based on LSTM models
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for different relation classification tasks in biomedical and clinical text.

• We analyze the impact of relatedness (implicit or explicit) between the source

and target tasks on the effectiveness of TL framework.

• We explore how the size of the training data corresponding to source task

impacts on the effectiveness of TL frameworks.

6.3 Model Architectures

In this section, we explain the three TL frameworks using the BLSTM-RE

architecture. BLSTM-RE is the same model as discussed in the previous chapter.

BLSTM-RE model is briefly summarized for the sake of completeness. We assume

that positions of the two entities of interest, referred to as target entities, within the

sentence are known.

The generic neural network architecture for the relation classification task

consist of the following layers: word level feature layer, embedding layer, sentence

level feature extraction layer, fully connected and softmax layers. We define features

for all words in the word level feature layer, which also includes some features relative

to the two targeted entities. In the embedding layer every feature gets mapped to

a vector representation through a corresponding embedding matrix. Raw features

are combined with the entire sentence and a fixed length feature representation is

obtained in the sentence level feature extraction layer. Although a CNN or other

variants of the RNN can be used in this layer, we use BLSTM because of its relatively

better ability to take into account discontiguous features. The Fully connected and

softmax layer map sentence level feature vectors to a class probability. In summary,

the input for these models would be a sentence with the two targeted entities and the

output would be a probability distribution over each possible relation class between

them.
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(a) BLSTM-RE Model (b) T-BLSTM-Multi Model

Figure 6.1: Proposed Model Architecture: BLSTM is bi-directional long short term

memory network

BLSTM-RE

Suppose w1w2.....wm is a sentence of length m. Two targeted entities e1 and e2

correspond to some words (or phrases) wi and wj respectively. In this work we use

word and its position from both targeted entities as features in the word level feature

layer. Positional features are important for relation classification task because they

inform the model to know the targeted entities [Collobert et al., 2011]. The output

of embedding layer would be a sequence of vectors x1x2.....xm where xi ∈ R(d1+d2+d3)

is the concatenation of word and position vectors. d1,d2 and d3 are the embedding

dimensions corresponding to the word, the position from first entity and the position

from second entity features respectively. We use a BLSTM with max pooling in the

sentence level feature extraction layer. This layer is responsible for obtaining an

optimal fixed length feature vector from entire sentence. The basic architecture is

shown in the figure 6.1a.
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T-BLSTM-Mixed

T-BLSTM-Mixed is a specific way to use the BLSTM-RE model in a transfer learning

framework. In this case, instances from both source and target tasks are fed into

the same BLSTM-RE model. While training, we pick one batch of data from the

source or target in a random order with equal probability. Since training happens

simultaneously for both the source and target dataset, we can say that model will

learn features which are applicable to both dataset. It is quite obvious that this

model is only applicable for those cases in which bijection mapping between labels

of the source and target tasks exists.

T-BLSTM-Seq

The convergence of neural network based models depends on the initialization

of model parameters. Several studies [Hinton et al., 2006, Bengio et al., 2007,

Collobert et al., 2011] have shown that initializing parameters with values from

other supervised or unsupervised pre-trained models often improves the model

convergence. In this framework, we firstly train our model with the source task

dataset and use the learned parameters to initialize the model parameters for

training a separate model to carry out the target task. We call this framework

T-BLSTM-Seq. T-BLSTM-Seq can be applicable for the transfer of both the same

label set and disparate label sets. We transfer the entire set of network parameters if

there exists a bijection mapping between the source and target label sets. Otherwise,

we only share model parameters up to the second last layer of the network. The left

out last layer is randomly initialized.
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T-BLSTM-Multi

We propose another transfer learning framework, called T-BLSTM-Multi, using the

same backbone of BLSTM-RE model. As shown in figure 6.1b, this model has two

fully connected and softmax layers: one for the source task and other is for the

target task. The other layers of the models are shared for the two tasks. While

training, the parameters of the shared block are updated with training instances

from both source and target data and the fully connected layer is updated only with

its corresponding task data. A batch of instances is picked in a similar manner to

T-BLSTM-Mixed. This method of training is also called multi-task learning, but in

that case, the focus is on the performance of both the source and target tasks. The

T-BLSTM-Multi model is also applicable for both disparate label set as well as same

label set transfer.

Training and Implementation

Pre-trained word vectors are used to initialize the word embeddings, and random

vectors are used for other feature embeddings. We use GloVe [Pennington et al.,

2014] on PubMed corpus to obtain word vectors. The dimensions of word and

position embeddings are set to 100 and 10, respectively. Adam optimization [Kingma

and Ba, 2014] is used for training all models. All parameters, i.e., word embeddings,

position embeddings and network parameters are updated during training. We fixed

batch size to 100 for all the experiments. In the case of T-BLSTM-Mixed and T-

BLSTM-Multi one of the source and target task is chosen with equal probability

and one batch of instances from the corresponding training set are then picked. All

the remaining hyperparameters are set according to [Sahu and Anand, 2017a]. The

entire implementation is carried out in the Python language using the tensorflow1

library.

1https://www.tensorflow.org/
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6.4 Task Definitions and Used Datasets

In this section, we briefly describe the tasks and corresponding datasets used in

this study. Apart from the three tasks (DDI, DDIC and CRC), described in the

previous chapter, two more tasks are considered in this study. Adverse Drug Event

(ADE) extraction and Event Argument Extraction (EAE) are the two new tasks.

We present description of all tasks for the sake of completeness.

Drug Drug Interaction Extraction (DDI): Identifying DDIs present in

the text is a kind of relation classification task - given two drugs or pharmacological

substances that are mentioned in a sentence, it is necessary to determine whether

or not there is an interaction between them. .

Drug Drug Interaction Class Extraction (DDIC): DDI can appear in

the text with different semantic senses, which we call as DDI class. In case of

DDIC, we need to identity exact class of interactions among drugs in a sentence.

The SemEval 20132 DDI Extraction task had four kinds of interaction, i.e., Advice,

Effect, Mechanism and Int.

Clinical Relation Classification (CRC): Clinical relation classification is

the task of identifying relation among clinical entities such as Problem, Treatment

and Test in clinical notes or discharge summaries. In Ex.1, allergic and rash have

medical problem indicate medical problem relation.

Ex.1: She is allergicProblem to augmentin which gives her a rashProblem.

Adverse Drug Event Extraction (ADE): Adverse drug events occur when

an adverse effect happens due to consumption of a drug. In NLP, ADE extraction is

the process of extracting adverse relations between a drug and a condition or disease

in text. For instance in Ex.2, the treating of the patient suffering from thyrotoxicosis

disease with methimazole led to an adverse effect.

2https://www.cs.york.ac.uk/semeval-2013/task9/
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Ex.2: A 43 year old woman who was treated for thyrotoxicosisDisease with

methimazoleDrug developed agranulocytosis

Event Argument Extraction (EAE): In the biomedical domain, events

are broadly described as a change in the state of a bio-molecule or bio-molecules

[Pyysalo et al., 2012]. Every events has its own set of arguments and EAE is the

task of identifying all arguments of an event and their roles. In this task, entities

and triggers (representing event occurrences) are provided in each sentence and the

task is to find the role (relation) between all pairs of triggers and entities. For this

work, we do not differentiate between different types of role. This implies that if an

entity is an argument of a trigger, then there is a positive relation between them,

otherwise there is no relation. For instance, in Ex.3 (reptin, regulates), (regulates,

growth) and (growth, heart) represent positive relation.

Ex.3: ReptinProtein regulatesRegulation the growthGrowth of the heart Organ.

Source Data

Below we summarize datasets for source tasks. Statistics of all source datasets are

shown in Table 6.1.

BankDDI: This is a set of documents from DrugBank3 that has been manually

annotated with DDI relations. DrugBank contains drug information in the form of

documents which have been curated by accredited experts. We separated this from

the complete dataset of SemEval-2013 DDI extraction challenge dataset for our

experiments.

BankDDIC: This dataset is same as BankDDI, with the additional of class

labels for the DDI relations [Segura-Bedmar et al., 2013].

ADE: For ADE extraction, we used the dataset described in [Gurulingappa

et al., 2012b, Gurulingappa et al., 2012a]. The shared dataset contains manually

3https://www.drugbank.ca/
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annotated adverse drug events mentioned in a corpus of Medline abstracts.

Task Corpus Training Set Test Set

BankDDI

Pairs 14176 3694

Positive DDIs 3617 884

Negative DDIs 11559 2810

BankDDIC

Pairs 14176 3694

Negative DDIs 11559 2810

Effect 1471 298

Mechanism 1203 278

Advice 813 214

Int 130 94

ADE

Pairs 8867 3802

Positive ADEs 4177 1791

Negative ADEs 4690 2011

EAE

Pairs 21594 11443

Positive EAEs 4492 2202

Negative EAEs 17102 9241

CRC

Pairs 43602 18690

Negative CRCs 36324 15995

TeRP 2136 915

TrAP 1832 784

PIP 1541 660

TrCP 368 157

TeCP 353 150

Table 6.1: Statistics of source task datasets

EAE: We used the MLEE4 corpus for event argument identification [Pyysalo

et al., 2012]. the MLEE dataset has 20 types of events trigger and 11 entity types

for relation classification.

CRC: For clinical relation classification, we used the dataset from I2B2/VA

20105 clinical information extraction challenge [Uzuner et al., 2011]. Similarly to

earlier chapters, we consider TrCP , TrAP , PIP , TeRP and TeCP classes in this

4http://nactem.ac.uk/MLEE/
5https://www.i2b2.org/NLP/Relations/

104



6.4 Task Definitions and Used Datasets

case.

Target Data

Below we summarize datasets for the target tasks. Statistics of the datasets are

shown in Table 6.2.

Task Corpus Training Set Test Set

MedDDI

Pairs 1319 334

Positive DDIs 227 95

Negative DDIs 1092 239

MedDDIC

Pairs 1319 334

Negative DDIs 1092 239

Effect 149 62

Mechanism 61 24

Advice 7 7

Int 10 2

CRC5

Pairs 2125 18690

Negative CRCs 1816 15885

TeRP 106 915

TrAP 91 784

PIP 77 660

TrCP 18 157

TeCP 17 150

Table 6.2: Statistics of target task dataset

MedDDI: MedDDI is a set of MedLine abstracts that have been manually

annotated with DDI relations. The dataset was released as part of SemEval-2013

DDI extraction challenge. MedDDI differs from BankDDI in several ways, since:

MedDDI consists of MedLine abstracts whereas BankDDI consist of DrugBank

documents. Since MedLine abstract form an integral part of research articles,

they typically contain many technical terms and use long sentences. In contrast,

DrugBank documents consist of concise sentences written by medical practitioners,
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which are relatively shorter and more easily comprehensible than those found in

MedLine abstracts.

MedDDIC: This is the same dataset as MedDDI, but with semantic labels

that denote the exact class of the annotated DDI relations. Both MedDDI and

MedDDIC datasets were used in SemEval-2013 DDI extraction challenge.

CRC5: In this case we take a 5% subset of each class in the full CRC training

dataset and considered that to be the training set. The test set remains the same.

Preprocessing

We use the same preprocessing strategies for all datasets. Pre-processing steps

include: the conversion of all words into lower case form, the tokenization of sentence

using geniatagger6, and the replacement of digits with the DG symbol. Furthermore,

if any sentence has more than two entities, we create a separate instance for each pair

of entities. In all sentences, the two targeted entities were replaced with their types

and offset position. For example, the sentence in Ex.1 will become She is ProblemA

to augmentin which gives her a ProblemB. We removed few negative instances in

BankDDI and MedDDI datasets based on the similar set of rules as used in [Sahu

and Anand, 2017a,Zhao et al., 2016].

6.5 Results and Discussion

Firstly, we discuss our experimental design to evaluate performance of the three

TL frameworks using various settings. Subsequently, we analyze and discuss the

results that we obtained. We treat the performance of the BLSTM-RE model on

the target task as baseline. In the baseline experiments, training was carried out

on the training set of each of the three target datasets and performance on the

6http://www.nactem.ac.uk/GENIA/tagger/
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respective test sets are reported in Table 6.3.

Task Precision Recall F Score

MedDDI 0.561(0.03) 0.431(0.03) 0.488(0.02)

MedDDIC 0.684(0.08) 0.273(0.01) 0.390(0.03)

CRC5 0.529(0.04) 0.492(0.01) 0.510(0.009)

Table 6.3: Baseline Performance: Results of BLSTM-RE model applied on three

different target tasks. Figures in the Precision, Recall and F Score column indicate

result corresponding to best F1 Score and subscripts shows the standard deviation

of five runs of model.

The baseline model use pre-trained word embeddings, a form of unsupervised

transfer learning framework. As we have shown the superior performance of such

models using pre-trained vectors than using random vectors, we do not perform any

experiment related to that. Five runs with different random initialization were taken

for each model, and the best results in terms of F1-score along with corresponding

precision and recall are shown in Tables. We experiment with different combinations

of source and target tasks to analyze the effects of similarity between feature spaces

corresponding to the source and target tasks as well as their label sets on the choice

of TL frameworks.

6.5.1 Performance on Same Label Set Transfer

We firstly examine the relative improvement of various TL models over the baseline

results on the DDI and DDIC tasks. Table 6.4 shows the performance of all TL

models on these two tasks under various settings. Type in Table 6.4 indicates

the degree of semantic relatedness between the source and target tasks. For

example, annotations in both the BankDDI and MedDDI dataset denote drug-drug

interactions, and hence are of the similar semantic type. However, the EAE dataset
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Type Model PrecisionRecall F Score ∆

Similar

T-BLSTM-Mixed(BankDDI⇒MedDDI) 0.656(0.02) 0.705(0.03) 0.680(0.03) 39.34%

T-BLSTM-Seq(BankDDI⇒MedDDI) 0.678(0.02) 0.621(0.03) 0.648(0.03) 32.78%

T-BLSTM-Multi(BankDDI⇒MedDDI) 0.701(0.05) 0.568(0.05) 0.627(0.02) 28.48%

T-BLSTM-Mixed(BankDDIC⇒MedDDIC) 0.631(0.04) 0.505(0.02) 0.561(0.01) 43.84%

T-BLSTM-Seq(BankDDIC⇒MedDDIC) 0.600(0.03) 0.463(0.02) 0.550(0.01) 41.02%

T-BLSTM-Multi(BankDDIC⇒MedDDIC) 0.579(0.01) 0.421(0.006) 0.487(0.006) 24.87%

Dissimilar

T-BLSTM-Mixed(ADE⇒MedDDI) 0.494(0.02) 0.515(0.03) 0.505(0.02) 3.48%

T-BLSTM-Seq(ADE⇒MedDDI) 0.595(0.02) 0.294(0.03) 0.394(0.02) -19.26%

T-BLSTM-Multi(ADE⇒MedDDI) 0.533(0.02) 0.505(0.02) 0.518(0.01) 6.14%

T-BLSTM-Mixed(EAE⇒MedDDI) 0.540(0.03) 0.557(0.05) 0.549(0.02) 12.5%

T-BLSTM-Seq(EAE⇒MedDDI) 0.544(0.03) 0.515(0.04) 0.529(0.02) 8.40%

T-BLSTM-Multi(EAE⇒MedDDI)) 0.538(0.02) 0.589(0.05) 0.562(0.02) 15.16%

Table 6.4: Results of TL frameworks applied to same label set transfer. Here

(X ⇒ Y ) indicates transfer from X dataset to Y dataset and Type indicates

similarity between the source and target dataset. Figures in the Precision, Recall

and F Score columns indicate results corresponding to best F1 Score and subscripts

denote standard deviation of five runs of model. ∆ shows the relative percentage

improvement over the baseline (without TL) method

provides trigger-arguments relations, which are not of the same semantic type as

drug-drug interactions, although both tasks corresponds to binary classification task.

As the results indicate, the T-BLSTM-Mixed model gave the best performance (in

terms of F1-score) for the similar type tasks, whereas T-BLSTM-Multi produced

the worst performance. However, all of the TL models produced significant

improvements over the baseline results. T-BLSTM-Mixed obtained approximately

40% relative improvement over the baseline for the DDI task and approximately

44% for the DDIC task. On the other hand, T-BLSTM-Multi produced the best

performance for the dissimilar type tasks and T-BLSTM-Seq produced the worst.

In fact, T-BLSTM-Seq produced poorer performance than the baseline in one case.
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Source⇒Target
T-BLSTM-Seq T-BLSTM-Multi

Precision Recall F Score Precision Recall F Score

BankDDI⇒MedDDIC 0.50(0.08) 0.378(0.03) 0.431(0.008) 0.603(0.05) 0.368(0.03) 0.457(0.03)

CRC⇒MedDDIC 0.448(0.05) 0.368(0.03) 0.404(0.02) 0.468(0.02) 0.389(0.02) 0.425(0.01)

EAE⇒MedDDIC 0.596(0.04) 0.326(0.03) 0.421(0.02) 0.488(0.03) 0.452(0.06) 0.469(0.04)

ADE⇒MedDDIC 0.512(0.06) 0.221(0.01) 0.308(0.01) 0.447(0.04) 0.400(0.03) 0.422(0.02)

BankDDI⇒CRC5 0.555(0.02) 0.485(0.01) 0.518(0.01) 0.546(0.01) 0.508(0.02) 0.526(0.006)

BankDDIC⇒CRC5 0.564(0.04) 0.447(0.02) 0.498(0.01) 0.523(0.01) 0.557(0.02) 0.539(0.007)

EAE⇒CRC5 0.543(0.02) 0.533(0.02) 0.538(0.006) 0.587(0.01) 0.548(0.01) 0.567(0.01)

ADE⇒CRC5 0.516(0.003) 0.503(0.01) 0.509(0.006) 0.598(0.03) 0.483(0.02) 0.535(0.007)

BankDDIC⇒MedDDI 0.605(0.04) 0.452(0.03) 0.518(0.01) 0.623(0.04) 0.557(0.03) 0.588(0.02)

CRC⇒MedDDI 0.569(0.11) 0.473(0.17) 0.517(0.03) 0.631(0.05) 0.505(0.02) 0.561(0.02)

Table 6.5: Results of T-BLSTM-Seq and T-BLSTM-Multi on disparate label set

transfer task. Here (X ⇒ Y ) indicates transfer from X dataset to Y dataset.

Figures in Precision, Recall and F Score columns indicate results corresponding to

the best F1 Score and subscripts denote standard deviation of five runs of model.

6.5.2 Performance on Disparate Label Set Transfer

Next, we examine the performance of relevant TL models when there does not exist

a bijection mapping between the two label sets corresponding to the source and

target tasks (Table 6.5). As the T-BLSTM-Mixed, by design, requires the existence

of a bijection mapping between the two label sets, we exclude this model for this

case. Among the remaining two models, T-BLSTM-Multi always led to significantly

improved performance compared to the respective baseline results. On the other

hand, the performance of the T-BLSTM-Seq model is rather inconsistent, especially

when ADE was used as source data.
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6.5.3 Analyzing Similarity between Source and Target Tasks

Earlier, we observed that the level of similarity between the source and target tasks

affects the relative performance of each TL framework. Here, we try to analyze the

reason for this observation. T-BLSTM-Mixed and T-BLSTM-Seq models transfer

full knowledge, or in other words, in both cased, the complete model is shared

between the source and target tasks. This allows the last layers to see a higher

number of examples and to be adaptive to samples from both the source and target

data. On the other hand, T-BLSTM-Multi only shares the partial model up to the

second last layers. In this case, the last layers for the source and target tasks are

trained separately and are not being shared between the two. Thus, the last layers

are specific to the respective tasks. When there is similarity between the source

and target tasks, as well as the existence of a bijection mapping, target tasks benefit

from sharing the full model. In such scenarios, co-training seems better suited, as T-

BLSTM-Mixed was found to be the best among the three frameworks. On the other

hand, T-BLSTM-Multi fails to exploit the full knowledge present in the training data

of the source task. However, this becomes advantageous for the T-BLSTM-Multi

framework, in the case of an absence of bijection between the source and target label

sets. The last layer, in T-BLSTM-Multi, takes the shared knowledge and tunes it to

the specific target task. This observation also fits well with the observations made

in [Yosinski et al., 2014] which note that the initial layers are relatively generic and

become more specific as we move towards the last layer.

Variability amongst the different sizes of the source data training could have

influenced the observed performance differences. Therefore, in order to remove this

potential effect all source dataset were made to be of the same size (number of

training instances = 8867) as the smallest of all source training datasets. During

random selection, the proportion of instances from all classes were maintained to

be the same as in the original set. We show only the results for T-BLSTM-Multi
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(a) T-BLSTM-Multi Model (DDI task) (b) T-BLSTM-Multi Model (DDIC task)

Figure 6.2: Performance of proposed models with different source task on same size

data

in Figure 6.2. However, similar results are also obtained for the other models. We

observe that the performance obtained when using different source dataset of the

same size with the performance obtained using the same set of source data, but

of different sizes. This indicates that context and label mapping played the more

crucial roles than the size of the selected source data.

6.5.4 Analyzing Size of Source Task Dataset

One of the strongest arguments generally given in favour of the use of transfer

learning is datasets of an insufficient size hinder the performance of learning

algorithms applied to the target task. Performance can be enhanced by utilizing

information available in other, larger datasets. In this section, we investigate

the effect of the size of source data on the performance improvement of the T-

BLSTM-Mixed and T-BLSTM-Multi models. Figure 6.3 shows the results for both

similar and dissimilar tasks. In both scenarios, even having 20% of the complete

source data significantly improves the performance. However, for similar tasks,

there is a trend towards consistent improvement as the amount of source data is
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(a) T-BLSTM-Mixed: transfer on similar task

(b) T-BLSTM-Multi: transfer on dissimilar task

Figure 6.3: Performance graph of proposed model as the size if the source task

dataset is varied
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Models DDIC DDI

FBK-Irst [Chowdhury and Lavelli, 2013b] 0.398 0.530

SCAI [Bobic et al., 2013] 0.420 0.47

WBI [Thomas et al., 2013] 0.365 0.503

UTurku [Björne et al., 2013] 0.286 0.479

UMAD [Rastegar-Mojarad et al., 2013] 0.312 0.479

BLSTM-RE 0.390 0.488

T-BLSTM-MultiEAE=>� 0.469 0.562

T-BLSTM-MultiCRC=>� 0.425 0.561

T-BLSTM-MultiADE=>� 0.422 0.518

Table 6.6: Performance comparison of existing methods for DDI and DDIC tasks.

Here values represent the F1 Scores for each task. � is MedDDI or MedDDIC

increased. In contrast, for dissimilar task, there was a certain amount of fluctuation

in performance as the amount of source data was increased. A possible reason for

the fluctuation is the use of too much source data may confuse the model.

6.5.5 Comparison with state-of-art Results

As a final step, we compare our results with the state-of-the-art results obtained

for the target tasks of DDI and DDIC. Table 6.6 shows the best results reported

by teams that participated in the SemEval 2013 DDI extraction challenge [Segura-

Bedmar et al., 2013] as well as the results obtained by our BLSTM-RE and T-

BLSTM-Mixed models on dissimilar tasks. We can observe that BLSTM-RE cannot

outperform the results of the best performing teams in the original challenge.

However, using the TL framework, T-BLSTM-Multi is able to improve upon the

previous state-of-the-art systems, even for dissimilar tasks.
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6.6 Conclusions

In this work, we have presented various transfer learning frameworks based on

BLSTM-RE model for relation classification task in the biomedical domain. We

observe that, in general transfer learning does help in improving the performance.

However, the level of similarity between the source target task, as well as the size of

the corresponding source data affects the performance and hence plays an important

role in the selection of an appropriate TL framework.
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Chapter 7

Conclusion and Future Directions

In this thesis, firstly, we presented a unified model for drug, disease and clinical

entity recognition tasks. The presented model, called CWBLSTM, uses BLSTMs

in a hierarchy to learn better feature representations and uses CRF to infer the

correct labels for each word in the sentence simultaneously. The proposed model

outperforms task-specific as well as task-independent baselines in all the three tasks.

Through various analyses, we demonstrated the importance of each component

and the features used by the model. Our analyses suggest that pre-trained word

embeddings and character-based word embeddings play complementary roles to

learning appropriate representations. The embeddings along with the incorporation

of tag dependencies, are important ingredients in improving the performance of drug,

disease and clinical entity recognition tasks.

Next, we analyzed four models namely, CNN-RE, BLSTM-RE, ABLSTM-RE

and Joint ABLSTM-RE for relation classification tasks in biomedical and clinical

texts. All the four models use word and distance embeddings as features and learn

higher-level feature representations using a CNN or BLSTM network. ABLSTM-RE

and Joint ABLSTM-RE also utilize neural attention mechanisms to obtain higher

level feature representations. The performance of the all four models was compared
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with existing methods on SemEval-2013 DDI extraction and I2B2/VA-2010 CRE

datasets. The Joint ABLSTM-RE model achieves significantly better performance

in all the three tasks. Analysis of the results indicates the following important

points: imbalance and noise adversely affect all models, the Advice interaction class

is the easiest to predict in the DDIC task, multiple mentions of other drug names

negatively effect all models, models are more likely to make incorrect classification

for longer sentences and LSTM-based models are generally found to have better

performance for longer sentence in comparison to the CNN-RE model.

Finally, we presented three TL methods, namely, T-BLSTM-Mixed, T-BLSTM-

Multi and T-BLSTM-Seq which transfer knowledge from the dataset of one task, for

which there is sufficient gold standard labeled data, into the other task, where we do

not have enough training data. All the three proposed frameworks use a BLSTM-RE

model to obtain improved performance on various biomedical and clinical relation

classification tasks. We observe that, in general transfer learning does help to

improve the performance. However, the degree of similarity between source task

and the target task, as well as the size of corresponding source data, affects the

performance and hence plays important role in the selection of an appropriate

transfer learning method.

Future Work

Below, we describe a number of ways in which the present work could be extended:

Although the frameworks that we have proposed reduce the requirement for

explicit feature engineering, it is at the expense of the loss of an interpretable

learned feature representation. In the computer vision domain, there have been some

impressive works in the line of interpreting features [Yosinski et al., 2015,Liu et al.,

2016a], but in the NLP field, only a few such exploratory works have been reported

[Karpathy et al., 2015, Li et al., 2016]. Hence, building a model which can also
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provide an interpretable representation could be an immediate goal of subsequent

work.

In the transfer learning framework, our work was limited to exploring different

relation classification tasks [Sahu and Anand, 2018]. However, it would be possible

to use this framework for various named entity recognition tasks and a combination

of entity and relation classification together. As future work, we would like to explore

this direction.

In this thesis, we studied different deep learning based models for binary

relation classification tasks in biomedical and clinical texts [Sahu et al., 2016,Sahu

and Anand, 2017a, Raj et al., 2017]. However, higher order relationships such as

complex events are of more vital importance in the biomedical domain. In the

future, therefore, it will be important to systematically study the application of

deep learning methods to higher order relation classification tasks.

117





Glossary

CNN CNN stands for convolution neural network. It is a kind of feed-forward

network.. ix, xvii, 11, 12, 18, 55, 57, 77, 115

CRF CRF stands for conditional random field. It is a kind of graphical model that

can use for structure prediction.. ix, 2, 8, 10, 33, 34, 36, 40, 48, 49, 52, 115

DDI DDI stands for drug-drug interaction. It is a situation in which a drug affects

the activity of another drug when both are administered together.. 1, 65, 79,

93, 97, 102

GloVe GloVe stands for global vector. It is a word embedding technique. It

uses a large corpus and learn embeddings through preserving co-occurrence

knowledge of words.. xi, 15, 28, 31, 41, 58, 60, 67

HMM HMM stands for hidden markov model. It is a generative model that can

be use for structure prediction.. 8

LSTM LSTM stands for long short-term memory network. It is class of RNN

network. LSTM uses a memory cell and three gates to maintain past

information. viii, ix, xvii, 12, 21, 38, 51, 87, 93, 115

MTL Multi-task learning (MTL) is a subfield of machine learning in which multiple

learning tasks are solved at the same time, while exploiting commonalities and
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Glossary

differences across tasks.. 97

PubMed PubMed is a free search engine accessing primarily the MEDLINE

database of references and abstracts on life sciences and biomedical topics.

. x, 1, 29, 41, 42, 58, 60, 67, 101

RNN RNN stands for recurrent neural network. It is a class of artificial neural

network where connections between nodes form a directed graph along a

sequence. 19

SemEval SemEval has evolved from the SensEval word sense disambiguation

evaluation series. Every year it organizes challenges for several NLP task..

11, 43, 48, 49, 58, 64, 94, 102, 103, 105, 106, 113

softmax Softmax is a generalized form of logistic regression for multi-class

classification. It is very often used in output layer of a neural network models.

22, 80, 84, 85

SVM SVM stands for support vector machine. It is a linear classifier.. 2, 8, 34, 69,

78

TL Transfer learning is a research problem in machine learning that focuses on

storing knowledge gained while solving one problem and applying it to a

different but related problem. 4, 12, 95, 96, 98, 106, 114

UMLS The Unified Medical Language System (UMLS) is a compendium of many

controlled vocabularies in the biomedical sciences (created 1986). It provides

a mapping structure between the biomedical entities and it id.. 9

word2vec word2vec is a famous word embedding technique. It uses a large corpus

to learn embeddings.. xi, 15, 27, 31
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[Doğan and Lu, 2012] Doğan, R. I. and Lu, Z. (2012). An improved corpus of

disease mentions in PubMed citations. In Proceedings of the 2012 Workshop on

Biomedical Natural Language Processing, BioNLP ’12, pages 91–99, Stroudsburg,

PA, USA. Association for Computational Linguistics.

[Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive

subgradient methods for online learning and stochastic optimization. J. Mach.

Learn. Res., 12(Jul):2121–2159.

[Farmakiotou et al., 2000] Farmakiotou, D., Karkaletsis, V., Koutsias, J., Sigletos,

G., Spyropoulos, C. D., and Stamatopoulos, P. (2000). Rule-based named

entity recognition for greek financial texts. In Proceedings of the Workshop on

125



REFERENCES

Computational lexicography and Multimedia Dictionaries (COMLEX 2000), pages

75–78.

[Fleischman et al., 2003] Fleischman, M., Hovy, E., and Echihabi, A. (2003).

Offline strategies for online question answering: Answering questions before

they are asked. In Proceedings of the 41st Annual Meeting of the Association

for Computational Linguistics, pages 1–7, Sapporo, Japan. Association for

Computational Linguistics.

[Girju, 2003] Girju, R. (2003). Automatic detection of causal relations for question

answering. In Proceedings of the ACL 2003 workshop on Multilingual summariza-

tion and question answering-Volume 12, pages 76–83. Association for Computa-

tional Linguistics.

[Graves, 2013] Graves, A. (2013). Generating sequences with recurrent neural

networks. PhD thesis.

[Grego et al., 2013] Grego, T., Pinto, F., and Couto, F. M. (2013). LASIGE:

using conditional random fields and chebi ontology. In Proceedings of the 7th

International Workshop on Semantic Evaluation, pages 660–666.

[Gurulingappa et al., 2012a] Gurulingappa, H., Mateen-Rajpu, A., and Toldo, L.

(2012a). Extraction of potential adverse drug events from medical case reports.

Journal of biomedical semantics, 3(1):15.

[Gurulingappa et al., 2012b] Gurulingappa, H., Rajput, A. M., Roberts, A., Fluck,

J., Hofmann-Apitius, M., and Toldo, L. (2012b). Development of a benchmark

corpus to support the automatic extraction of drug-related adverse effects from

medical case reports. Journal of biomedical informatics, 45(5):885–892.

[Harpaz et al., 2014] Harpaz, R., Callahan, A., Tamang, S., Low, Y., Odgers, D.,

Finlayson, S., Jung, K., LePendu, P., and Shah, N. H. (2014). Text mining for

126



REFERENCES

adverse drug events: the promise, challenges, and state of the art. Drug safety,

37(10):777–790.

[Herrero-Zazo et al., 2013] Herrero-Zazo, M., Segura-Bedmar, I., Martnez, P., and

Declerck, T. (2013). The DDI corpus: An annotated corpus with pharmacological

substances and drugdrug interactions. Journal of Biomedical Informatics,

46(5):914 – 920.

[Hinton et al., 2012] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,

Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012).

Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97.

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast

learning algorithm for deep belief nets. Neural computation, 18(7):1527–1554.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).

Long Short-Term memory. Neural Comput., 9(8):1735–1780.

[Hoeffding, 1952] Hoeffding, W. (1952). The large-sample power of tests based on

permutations of observations. The Annals of Mathematical Statistics, pages 169–

192.

[Hong, 2005] Hong, G. (2005). Relation extraction using support vector machine.

In Natural Language Processing–IJCNLP 2005, pages 366–377. Springer.

[Hu et al., 2014] Hu, B., Lu, Z., Li, H., and Chen, Q. (2014). Convolutional neural

network architectures for matching natural language sentences. In Advances in

Neural Information Processing Systems, pages 2042–2050.

[Jiang et al., 2011] Jiang, M., Chen, Y., Liu, M., Rosenbloom, S. T., Mani, S.,

Denny, J. C., and Xu, H. (2011). A study of machine-learning-based approaches

127



REFERENCES

to extract clinical entities and their assertions from discharge summaries. Journal

of the American Medical Informatics Association, 18(5):601–606.

[Jurafsky, 2000] Jurafsky, D. (2000). Speech & language processing. Pearson

Education India.

[Kalchbrenner et al., 2014] Kalchbrenner, N., Grefenstette, E., and Blunsom, P.

(2014). A convolutional neural network for modelling sentences. In Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 655–665, Baltimore, Maryland. Association for

Computational Linguistics.

[Karpathy and Fei-Fei, 2014] Karpathy, A. and Fei-Fei, L. (2014). Deep visual-

semantic alignments for generating image descriptions. arXiv preprint

arXiv:1412.2306.

[Karpathy et al., 2015] Karpathy, A., Johnson, J., and Li, F. (2015). Visualizing

and understanding recurrent networks. CoRR, abs/1506.02078.

[Kim et al., 2015] Kim, S., Liu, H., Yeganova, L., and Wilbur, W. J. (2015).

Extracting drug–drug interactions from literature using a rich feature-based linear

kernel approach. Journal of biomedical informatics, 55:23–30.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classifi-

cation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1746–1751, Doha, Qatar. Association for

Computational Linguistics.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

128



REFERENCES

[Ko, 2012] Ko, Y. (2012). A study of term weighting schemes using class information

for text classification. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval, pages 1029–

1030. ACM.

[Koehn, 2004] Koehn, P. (2004). Statistical significance tests for machine translation

evaluation. In Proceedings of the 2004 conference on empirical methods in natural

language processing.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural networks. Advances in

neural information processing systems, pages 1097–1105.

[Lafferty et al., 2001] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).

Conditional random fields: Probabilistic models for segmenting and labeling

sequence data. In International Conference on Machine Learning, pages 282–

289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Lample et al., 2016] Lample, G., Ballesteros, M., Subramanian, S., Kawakami,

K., and Dyer, C. (2016). Neural architectures for named entity recognition.

In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages

260–270, San Diego, California. Association for Computational Linguistics.

[Leaman and Gonzalez, 2008] Leaman, R. and Gonzalez, G. (2008). BANNER: An

executable survey of advances in biomedical named entity recognition. In Altman,

R. B., Dunker, A. K., Hunter, L., Murray, T., and Klein, T. E., editors, Pacific

Symposium on Biocomputing, pages 652–663. World Scientific.

129



REFERENCES

[Leaman et al., 2009] Leaman, R., Miller, C., and Gonzalez, G. (2009). Enabling

recognition of diseases in biomedical text with machine learning: corpus and

benchmark. Symposium on Languages in Biology and Medicine, 82(9).

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324.

[Lee et al., 2007] Lee, C., Hwang, Y.-G., and Jang, M.-G. (2007). Fine-grained

named entity recognition and relation extraction for question answering. In

Proceedings of the 30th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 799–800. ACM.

[Leroy et al., 2003] Leroy, G., Chen, H., and Martinez, J. D. (2003). A shallow

parser based on closed-class words to capture relations in biomedical text. Journal

of biomedical Informatics, 36(3):145–158.

[Li, 2012] Li, G. (2012). Disease mention recognition using Soft-Margin SVM.

Training, 593:5–148.

[Li et al., 2016] Li, J., Monroe, W., and Jurafsky, D. (2016). Understanding neural

networks through representation erasure. CoRR, abs/1612.08220.

[Lim et al., 2018] Lim, S., Lee, K., and Kang, J. (2018). Drug drug interaction

extraction from the literature using a recursive neural network. PLOS ONE,

13(1):1–17.

[Lin et al., 2003] Lin, D., Zhao, S., Qin, L., and Zhou, M. (2003). Identifying

synonyms among distributionally similar words. In IJCAI, volume 3, pages 1492–

1493.

130



REFERENCES

[Liu et al., 2016a] Liu, M., Shi, J., Li, Z., Li, C., Zhu, J., and Liu, S.

(2016a). Towards better analysis of deep convolutional neural networks. CoRR,

abs/1604.07043.

[Liu et al., 2016b] Liu, S., Tang, B., Chen, Q., and Wang, X. (2016b). Drug-

Drug interaction extraction via convolutional neural networks. Computational

and mathematical methods in medicine, 2016:1–8.

[Mahbub Chowdhury and Lavelli, 2010] Mahbub Chowdhury, M. F. and Lavelli, A.

(2010). Disease mention recognition with specific features. In Proceedings of the

2010 Workshop on Biomedical Natural Language Processing, BioNLP ’10, pages

83–90, Stroudsburg, PA, USA. Association for Computational Linguistics.

[McCallum et al., 2000] McCallum, A., Freitag, D., and Pereira, F. C. (2000).

Maximum entropy markov models for information extraction and segmentation.

In International Conference on Machine Learning, volume 17, pages 591–598.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).

Efficient estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781.

[Mikolov et al., 2010] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and
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