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ABSTRACT

The main objective of this thesis is to explore experiments about re-
duction of computations involved in the Automatic Speaker Recog-
nition (ASR) task and about generating representations for speaker-
related information from speech data automatically. ASR systems
heavily depend on the features used for representation of speech
information. Over the years, there has been a continuous effort to
generate features that can represent speech as best as possible. This
has led to the use of larger feature sets in speech and speaker recog-
nition systems. However, with the increasing size of the feature set,
it may not necessarily be true that all features are equally important
for speech representation. We investigate the relevance of individual
features in one of popular feature sets, MFCCs. The objective was to
identify features which are more important from speech information
representation perspective. Experiments were conducted for the task
of speaker recognition. Both linear and non-linear dimension reduc-
tion techniques were used for reducing features. Results indicate that
it is possible to reduce the feature set size by more than 60% without
significant loss in accuracy, leading to improvement in the response
of the recognition system due to reduction in computations.

Furthermore, it is also possible to reduce the computational re-
sources required for ASR at the model level. Recent trends have in-
dicated the use of very high computations for solving the problem
of speaker recognition. However, there are cases when gains are not
commensurate to the additional computations involved. We studied
the effect of size of UBM and the total variability matrix, T, in i-vector
modeling on the recognition performance. Results indicate that in-
creasing T beyond 50 does not improve the performance significantly.
For UBM size, 128 is observed as the optimal mixture count. We also
investigate the effect of length of training and testing data on the per-
formance. For performing the experiments, we have used the ALIZE
toolkit and TED-LIUM database. We were able to reduce the time for
extraction of i-vectors from 2 hours and 30 minutes to about 12 min-
utes using our reduced parameters. We then extend the experiments
for a two-pass speaker recognition system where first, the broad ac-
cent category of the test utterance is determined before proceeding to
speaker recognition.

We achieved significant reductions in the sizes of feature sets, some-
times more than 60% reduction in certain cases and improvements
were also obtained using i-vector modeling. The scope of reduction
in computation and the obtained experimental results indicate that
it may possible to derive and create better features than those that



currently exist for speech representation. Hence, we investigated the
issue of learning features directly from speech data, rather than using
handcrafted features, for the task of automatic speaker recognition.
This strategy can provide us with features that are able to capture and
represent important characteristics of speech data that are needed for
the speaker recognition task. From the results of the experiments, it
may be concluded that learning features directly from data instead
of using human expertise to derive features can be highly beneficial.
Besides saving resources in terms of expertise, it is indicated by ex-
perimental results for ASR task that they outperform the traditional
MEFCC feature set on average. It may also be inferred that using a fea-
ture set of size 15 can be beneficial for ASR task. Further, using the
GMM-UBM architecture to model the speakers using the learned fea-
tures leads to good performance without incurring the heavy compu-
tations involved in deep architectures used in end-to-end recognition
systems.
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INTRODUCTION

1.1 WHAT IS SPEECH?

Speech is the ability of humans (and some animals) that enables us
to communicate with each other. It is based on a set of rules that
ensures only the intended meaning is communicated to the recipi-
ent. Humans have a very high degree of tolerance with respect to
the deterioration of the speech and can understand what is spoken
and who is speaking even in a very high noise environment. From a
machine’s point of view, speech is a signal, a set of continuously sam-
pled numbers. To enable a machine to understand speech and derive
the message from these numbers is a challenging task for the research
community. Similarly difficult is the task of determining who is the
message’s producer, that is, the speaker or talker. The investigation
into how to determine the speaker of a speech signal is the topic of
this thesis.

Speech Recognition is the process through which a spoken utter-
ance, produced by a speaker, is understood by a listener. Understand-
ing, in this context, means that the listener successfully recognizes the
idea that the speaker wants to convey. The usefulness of the speech
recognition is so obvious that we see it everywhere in our daily life.
For example, searching about a product on Google app through voice
is enabled by a speech recognition engine under the hood. The inter-
action with assistive technologies have speech recognition as one of
the modalities. Amazon Alexa is a personal assistant that uses speech
recognition as one of its subsystems. Similar assistants are also avail-
able for use while driving a vehicle.

Speaker Recognition, a related task, is the process of determin-
ing the identity of the speaker from an utterance. This task is not
concerned with what has been spoken, only who has spoken the
utterance. The difference between speech and speaker recognition
systems is illustrated in figure 1.1. There are applications, including
some mentioned above, that use speaker recognition, sometimes with
speech recognition as well. For example, a personal assistant could
have functionality to make sure that it provides search results to a
query only when its owner (or someone from a list of verified or
pre-specified speakers) is the one asking about the information. The
access to certain areas of a premises could also be regulated using
speaker identity. There are security safes that not only use passcodes
but also owner authentication through voice. Several other creative
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Figure 1.1: The difference between a speech recognition system and a
speaker recognition system

and useful applications of speaker recognition task can also be found
in other spheres of life.

1.2 MOTIVATION

Speech is a natural mode of communication for humans. The impor-
tance of this modality increases further when we consider people who
are unable to access digital technology due to some unfortunate dis-
ability. It is imperative to pursue research that can enable everyone to
have a quality life. Speech research is one such pursuit.

Besides, there are several specific areas that can be improved with
the help of speech research, specifically speaker recognition. Such ar-
eas include access control and password reset facilities, speech data
management and organisation as in diarization of meetings, transac-
tion management and authentication through voice, forensic applica-
tions and personalization based on users. Speaker recognition directly
serves to improve these application areas.

Over the years, speech and speaker recognition systems have be-
come very complex and computationally intensive. They also need a
lot of data to generalize well. While the generalization criterion is a
good measure of the success of the system, there are cases where a
specialized system can function well. In these cases, there are other
constraints. For example, non-availability of intensive computational
resources could be one. Another could be the availability of only low
power and/or battery-powered devices. Here, resource could be com-
putational power, battery, memory or internet connectivity. Some of
these resources may be interdependent on each other such as compu-
tational power and battery. The mentioned constraints hold true in ge-
ographical regions that are not readily accessible from the mainland
or are in deep rural pockets. A relevant example is the northeastern
region of India where such resources can be hard to find.

To solve this problem, we need methods and systems that can work
well with a relatively small dataset and are also fast. We can constrain
these systems to work only in specific, critical applications to ensure
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good performance. This kind of specific requirement of speech recog-
nition systems goes exactly opposite to current research trends of big
data and deeper neural networks. This thesis tries to address this
niche area.

1.3 BRIEF LITERATURE SURVEY

Speech research has been an active area of research, especially since
the 1950s. Even before people started working on recognizing sounds
through machines, studies were already underway to know more
about the process of hearing and understanding sounds by humans
[6]. Soon the importance of automatic recognition of speech and speak-
ers were realised and the field began to emerge out into the main-
stream. Quickly, some of the theoretical aspects of automatic speech/s-
peaker recognition and synthesis systems were formulated [19, 68]
which were improved and adapted as was required in later systems.

One of the first speech recognition systems was developed using
ideas (like formants determination) from acoustic-phonetics domain
to recognize isolated sounds such as vowels [18]. Researchers at Bell
Labs developed a simple, isolated digit recognition system. In this
system, the main task was to locate spectral resonances in vowel re-
gions of spoken digits. Phoneme recognition was the next milestone
of researchers when Fry and Denes from University College in Eng-
land tried to recognize four vowels and nine consonants [19]. This
work used spectrum analysis and pattern matching techniques in
background, along with a rudimentary language syntax in the form
of allowable sequences of phonemes, to reach a recognition decision.
It was discovered by researchers that using frequency analysis could
be useful for recognition purposes and hence such a study was con-
ducted with very promising results for recognizing spoken digits [14].
Similar experiments for recognizing speakers and voices also started
to be conducted [64].

Earlier speaker recognition and verification approaches were fo-
cused on the acoustic-phonetic aspects of the speech and speaker
characteristics. Figure 1.2 depicts a typical speech waveform along
with some formants information. Many studies were conducted in the
1960s with such approaches to solve the speaker recognition problem
[23, 73]. Some frequency domain based approaches were also pro-
posed [27]. Other approaches such as cepstral measurements based
[45], spectrum based [5], voice-prints based [38], etc. were also pos-
tulated for the problem. Several similarity measures for comparisons
between sounds were soon devised to make efficient judgements [62].

As time progressed, technologies advanced and new concepts were
formulated, more complicated approaches soon began to be devised
for automatic speaker recognition and verification. Researchers pro-
posed several fresh methods such as based on pitch contours [3],
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Figure 1.2: A typical speech waveform analysis window showing formants
and resonances

efficient acoustic parameters [74], long term feature averaging tech-
niques [48], etc. A lot of focus was given to developing good features
at this stage of speech research. It was widely understood that spend-
ing time and resources on features can lead to a better recognition
system. Hence, a lot of new features were proposed at this time. But
the Mel Frequency Cepstral Coefficients (MFCC) [9], Linear Predic-
tion Coeficients (LPC) [33] and the Perceptual Linear Prediction (PLP)
[28] are recognized as most useful features that have stood the test of
time. Figure 1.3 illustrates conversion of speech signal into features.
Due to advancements in statistical processing, several such methods
also came to the fore. Approaches using orthogonal linear prediction
[60] and fuzzy sets decision making [52] were devised to improve the
performance of the systems. With isolated and small vocabulary sys-
tems already in place, researcher also put their efforts in large and
continuous recognition systems [47].

While some researchers were using vocal tract, pitch information
[15, 51] and other acoustic parameters of speech signal to propose
speaker recognition models, others started their work in areas such as
features that would most describe a specific speaker [21], recognition
with short utterances from the speakers [42], statistical methods such
as vector quantization techniques for speaker recognition [67], etc.
Finding speech segments that would enable better speaker discrimi-
nation [41], normalization techniques and comparisons of several sta-
tistical and dynamic features [20] were done to further improve the
recognition techniques for speakers.

Further on, the field of speaker recognition came to be dominated
by probabilistic methods such as Hidden Markov Models (HMMs)
[55], Gaussian Mixture Models (GMMs) [57], Support Vector Machines
(SVMs) [8] and Artficial Neural Networks (ANNSs) [16]. GMMs were
most successful among these methods [56]. I-vectors [11] method was
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Figure 1.3: Conversion of speech signal to feature representation. Each row
represents a block of signal and a column represents a dimension

then proposed based on GMMs to improve the performance also re-
duce the dimension of the speaker models. Currently, due to major
advances in GPU technologies, deep neural networks have become
state of art in speech recognition tasks [25].

1.4 RESEARCH ISSUES ADDRESSED IN THIS THESIS

The following research issues are addressed in this thesis:

1. The issue of speech representation is critical to the automatic
processing of speech input. One of the main issues discussed
in this thesis is how to represent the speech input most effi-
ciently such that the recognition system performs quickly and
without extensive computational load while not sacrificing on
accuracy. To identify and rectify such problems, experiments for
vowel and speaker recognition were performed and improve-
ments were obtained. Based on the results of these experiments,
significant reduction in the size of feature sets were obtained
that lead to faster processing of speech inputs.

2. Reduction at model stage is also explored in this thesis through
the method of i-vectors. The method is based on Gaussian Mix-
ture Models and converts the high dimensional models to inter-
mediate sized vectors. The parameters values that can optimize
the model were found through speaker recognition experiments.
These experiments provide the values that can lead to good
recognition performance along with savings in computational
time and resources. Experiments for recognizing speakers after
recognizing accents are also discussed.

3. As discussed above, the issue of feature representation is very
important for speech based systems. Learning of features from
data automatically instead of using hand devised features for
speaker recognition task was explored with promising results.
When sufficient amount of data is available, it may be possible
to learn the representations from the data itself. Experiments re-
lating to feature learning were conducted and benefits of such
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an approach are discussed along with their limitations and ap-
plications.

1.5 CONTRIBUTIONS OF THIS THESIS

The following details the major contributions of the thesis:

1. Experiments for reducing the dimension of features (such as
LPCC, MFCC, PLP) were conducted for the tasks of vowel recog-
nition. Following the promising results in this experiment, fea-
ture reduction experiments were also conducted for speaker
recognition task. Features were reduced from 12 dimension do-
wn to 2 to observe the effects of such reduction on the per-
formance of the recognition task. Several dimension reduction
techniques such as Principal Component Analysis (PCA), Lin-
ear Discriminant Analysis (LDA), etc. were utilized to reduce
the dimension of features.

2. I-vectors, an approach that can be seen as a way to reduce model
size, was used for speaker recognition experiments. It has been
used successfully to identify speakers but it still involves a high
computational load. Experiments were performed in order to
determine the best configuration for the method such that sig-
nificant computations can be saved without sacrificing on ac-
curacy. Based on this method, accent recognition experiments
were also conducted as a form of two-step recognition process
where accent is recognized first and then speaker recognition is
done from a smaller set of speakers.

3. On experimenting with feature reduction approaches, it was
hypothesized that there is a limit to which performance can
be achieved using traditional handcrafted features for speech
representation. Hence, a new representation or feature learn-
ing technique was proposed and implemented that has shown
promising results for the task of speaker recognition.

1.6 ORGANISATION OF THE THESIS

This thesis is organised as follows:

1. Chapter 2 discusses the feature reduction experiments perform-
ed to reduce the feature set sizes for speaker recognition tasks.
It also briefly relates the major concepts needed for the experi-
ments, along with major works in the literature.

2. Chapter 3 deals with the reduction at the model level, by us-
ing the concept of i-vectors to represent speaker models. The
experiments include determining key parameter values for the
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speaker recognition system, followed by some accent recogni-
tion experiments to support speaker recognition task.

. Chapter 4 presents the representation or feature learning exper-
iments using Autoencoders with Recurrent Neural Networks.
This chapter deals with the learning of low dimensional repre-
sentation of features rather than reducing the hand-engineered
features.

. Chapter 5 summarizes the thesis and lays out the scope of fur-
ther improvements in future works.

7






EXPLORING FEATURE REDUCTION IN
AUTOMATIC SPEAKER RECOGNITION (ASR)
EXPERIMENTS

Speech recognition, as described in the previous chapter, deals with
the recognition of the content that is embedded in the speech signal.
Speaker recognition deals with determining the identity of the per-
son who generated the given speech signal. The task, therefore, is to
ascertain the identity of the speaker, given a spoken utterance.

Speech signals cannot be directly compared to each other due to
their time-dependent behaviour. Furthermore, two similar utterances
can be spoken in such a way that they may appear different but would
be semantically equivalent. For example, pronouncing the digit ‘7’
(seven) by elongating the stress and time spent on vowels can lead
to a longer utterance. On the other hand, a normally pronounced ‘7’
would be comparatively shorter in duration. These kinds of practical
issues render direct comparison useless for speech signals. Hence, we
need some other representation that can help us compare different
speech signals in order to determine their similarity or dissimilarity.
This is achieved through what are known as features.

Features are required to represent a speech signal so that it can be
processed by machines. A feature is a characteristic or property of an
observed phenomenon that is individually measurable. In the domain
of machine learning, it is recommended that the features be chosen
in such a way that they are independent, informative as well as have
high discriminating capacity. Choosing features appropriately can of-
ten be the difference between a robust system and an unreliable one.
Features are often numeric in nature but can also be in other forms
such as graphs and strings values, depending on the application. Fea-
tures are usually represented conveniently as a vector, known as Fea-
ture vector. The selection and extraction of proper features falls under
what is called as feature engineering. Automating the process of fea-
ture calculation is known as Feature learning, where not only the
model but also the features themselves are learnt by the system itself.

In a lot of applications, the observed raw features are not directly
useful. They may be redundant or can be too many in number to be
applied for pattern recognition purposes. Therefore, a set of prepro-
cessing techniques are usually applied to render the features more
useful and relevant to the application at hand. These operations help
to obtain a reduced set of features while improving the ability of
the features to generalize well on unseen examples. This chapter ex-
plores the effect of some of the feature reduction and transformation
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techniques applied on a feature set called Mel Frequency Cepstral
Coefficients (MFCCs) for the task of automatic speaker recognition
(ASR).

Mel Frequency Cepstrum (MFC) is obtained from short-term power
spectrum of sounds. The MFCCs taken together make up the MFC.
MEFCCs are derived using a linear cosine transform of log power spec-
trum of a sound over the non-linear Mel scale of frequency. In MFC,
the frequency bands are spaced equally on the mel scale rather than
the ordinary frequency scale. This is believed to approximate the re-
sponse of the human auditory system better than ordinary, linearly
spaced frequency bands that are utilised in calculation of normal cep-
strum. MFCC values are not considered very robust with regard to
noise such as additive noise. As such, it is a useful practice to nor-
malise the coefficient values. The power of log-mel-amplitudes can
also be raised before applying DCT in order to make the features ro-
bust. Over the years, MFCCs have been considered as the most popu-
lar and useful feature set for speech representation. Some other pop-
ular features include Linear Predictive Cepstral Coefficients (LPCCs)
and Perceptual Linear Prediction Cepstral Coefficients (PLPCCs).

It has also been observed that the size of feature sets has become
larger over time. The goal behind the increasing size has been to rep-
resent as much information as possible with a large sized feature vec-
tor. But it may be the case that all the features in the feature set are
not representing similar amount of information. Some of the features
may be less important than others in conveying speech information.
Therefore, it is worthwhile to determine which of the features can be
more useful to the task of speaker recognition and which features are
redundant or impact the recognition system negatively. Also useful
is to find out if the features could be improved for speaker recogni-
tion task by applying some preprocessing methods. We explore these
issues in the following experiments. The motivation behind this work
is to understand the importance and utility of individual features in
the feature sets. With this understanding, we can try to tailor our ASR
systems such that they use fewer overall operations and can perform
recognition tasks on low resource devices. One way to achieve this
is to reduce the size of the features used to represent the audio sam-
ple in the system. This reduction process is the focus of this chapter.
As we see in the results section, it is worthwhile to perform some
preprocessing to reduce the feature vector size as we can get good
performance even after significantly reducing the feature vector size.
The details are presented in the Results and Discussion section of the
chapter.

Several studies have been conducted exploring dimensionality re-
duction and speaker modeling. [31] has tried non-linear reduction
techniques for HMM based phonetic recognition. [54] has used the
Principal Component Analysis (PCA) reduction technique to develop
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a speech emotion engine. [17] provides a lucid survey of major dimen-
sionality reduction techniques that can be applied to various prob-
lems. [57] discussed the use of Gaussian Mixture Models to represent
the speakers. This was a novel approach at the time. Further, [56] pro-
posed modifications to existing GMM models for improving training
time of the models. More advanced models were also introduced such
as Joint Factor Analysis (JFA) [35], i-vector modeling [11], deep learn-
ing and neural networks based methods [26].

2.1 SPEAKER MODELING APPROACHES
2.1.1  Gaussian Mixture Models

Gaussian Mixture Models (GMMs) have been widely recognised as
state-of-the-art method for speaker recognition and verification tasks
[57]. The objective of a GMM is to find a set of finite, multi-dimension-
al Gaussian probability distributions that can best model the given
input data. The input data, in case of speech domain, can be the fea-
tures extracted from the raw signal.

More formally, a GMM is a parametric probability density function
(PDF) that is represented as a weighted sum of component Gaussian
densities. GMMs are employed as parametric models of the proba-
bility distribution of speech features. An example of such model can
be the model for vocal-tract related spectral features (MFCCs, LPCCs,
etc.) in a speaker recognition system.

A GMM model can be represented as a weighted sum of M com-
ponent Gaussian densities as follows:

M
p(x|A) = ) wig(x|pi, L) (2.1)

i=1

where x is a D-dimensional vector, w;, i = 1,2, ..., M, are the mixture
weights and g(x|u;, %;),i = 1,2,..., M, are the component densities
of the Gaussian. Each individual component density is a D-variate
Gaussian function as follows:

1 1 o
g(x[ui Ei) = (@) E, 1P {—z(x — )T (x - #i)} (2.2)

where y; is the mean vector for component i and %; is the covariance
matrix. The sum of all the weights must be equal to unity.

It is hypothesized that using a finite number of Gaussian compo-
nents functions, we can represent a speaker’s characteristics. That is,
given enough Gaussian components, we should be able to capture the
properties of a speaker. This characterisation needs to be such that it
has sufficient discrimination capacity for different speakers in order
to be successful as a speaker model.

11
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The parameters for GMM can be estimated from training data us-
ing training algorithms such as the iterative algorithm Expectation
Maximization (EM) [13] to obtain a Maximum Likelihood Estimate
(MLE). Maximum A Posteriori (MAP) estimation can also be used
in such cases when we have a well-trained prior model that can be
adapted to the specific speaker models.

2.1.2  Universal Background Models (LIBMs)

In the task of speaker verification, the log-likelihood ratio is calculated
to determine if there is sufficient evidence to conclude that the given
audio sample belongs to the claimed speaker. To calculate such a ratio,
a ‘background” model is needed against which the claimed speaker
model is tested. There are many ways that this background model
can be constructed. For example, a cohort of speakers can be selected
for each speaker to act as background speakers for that speaker. This
approach is expensive in terms of time, effort and expertise. Another
approach can be to pool all the available data and estimate a ‘neu-
tral” or ‘average’ model and use this model as the background model
for all the speakers. This is much more efficient than the former ap-
proach and does not require a huge amount of time and expertise.
This model which uses all of the speakers” data is called as Universal
Background Model (UBM). A UBM is, thus, a speaker independent
Gaussian mixture model which is trained from a large set of speakers
to represent the general speech characteristics.

It is apparent that the application of the UBM seems to be in the
verification task rather than speaker identification or recognition task.
However, there does exist an important application of UBMs in speak-
er identification task.

After obtaining the data (audio samples) for a particular speaker,
we can build the speaker model by estimating the means and vari-
ances of the Gaussian components through MLE. Here we begin with
a random initialization of the model and apply EM algorithm itera-
tively to refine that model. This approach had some issues. Due to
random initialization it is possible that the time needed for the model
to converge to stable values may become large. It is also possible that
it may not converge to a good model unless initialized multiple times.

Another way to build speaker model is to use the UBM as the initial
model and then improve on that. Since UBM may be considered to
represent the general speech characteristics, it is a good idea to start
with such a model as our initial model. The speaker model can, there-
fore, be obtained by using the UBM parameters as priors for each of
the speakers. This approach to obtain speaker models by adapting
the UBM model to speakers leads to Adapted GMMS. It has been ver-
ified through experiments that the adaptation approach to building
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speaker models gives better models which leads to improved perfor-
mance in the speaker recognition task.

2.2 FEATURE REDUCTION

As discussed above, speech signal is represented in the system through
features. To make the feature less redundant, more expressive and
manageable, some form of preprocessing can be applied. One of the
desirable properties of preprocessing is that it can lead to huge re-
ductions in the size of the feature vectors. This can be a significant
advantage for low resource devices such as mobile phones and tablets.
Another advantage is that by reducing the number of free variables,
visualisation and interpretation becomes possible in many cases.

Feature reduction techniques [17] can be classified into two cate-
gories — Feature selection methods and Feature re-extraction methods.

Feature selection is the process of choosing a subset of features for
building a model. We can use the individual merit of each feature in
the feature vector and decide whether to retain it or not. The critical
part of this approach is deciding the merit of the individual features.

It is also expected that in the presence of redundancy, we can elim-
inate some features without loosing much information in the process.
Redundancy is said to occur in features if any two or more features
are strongly correlated with each other. Feature selection can also
help in model’s generalization capability. Some of the feature selec-
tion methods are mentioned below.

2.2.1 Feature Selection Methods

During the course of this work, we investigated two methods to de-
cide the merit of features and rank them — Naive dropping method and
F-Ratio.

2.2.1.1  Naive dropping

In Naive dropping method, we consider the order of the feature in
the feature set as their rank. In case of MFCC feature vectors, the
lower order coefficients, representing the lower bands of audio fre-
quencies, were given higher preference than the higher frequencies.
This is not a sophisticated method for the ranking of features as it
does not use any analysis of the data to arrive at a decision. Rather it
is based on the fact that for human audio samples, it is widely con-
sidered that lower frequencies contain more important information
than the details present in the higher frequency region. We present
the experiments performed using this approach in the experiments
section.
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2.2.1.2 F-Ratio

Another method for feature selection is called F-Ratio method [7, 53].
It uses inter-feature and intra-feature variance to arrive at the merit
of the features. F-Ratio for i feature can be calculated as follows:

F=— (2.3)

where B; is the inter-feature variance and W, is the intra-feature
variance. The inter-feature variance is given by

K

1
B; = 7 Y (i — pi)? (2.4)
k=1

and the intra-feature variance is given by
1 K
Wi=—Y) Wy (2.5)
K3

where 11 and Wy, are the mean and variance of the i feature and the
k" group and p; is the overall mean of the i feature across groups.
Here, a class is a particular feature within the feature vector. All the
features vectors for a particular speaker are used to estimate the intra
class and inter class variances. The above relation is then applied to
reach an F-ratio, which gives the merit of each individual feature in
the feature vector.

2.2.2 Feature re-extraction

Feature re-extraction is the process of transforming the features ac-
cording to some predetermined criteria. This process is often used
to obtain reduced features from existing features. The input to a fea-
ture re-extraction algorithm is an initial set of observations of a phe-
nomenon. The algorithm then takes the input observations and trans-
forms them into a set of derived values. These new derived values
(features) are expected to remove redundancy and disentangle infor-
mation contained in the observations. Moreover, this process can also
lead to better interpretations of the model and system.

Feature re-extraction techniques can be classified as linear or non-
linear. Linear dimension reduction techniques are applied first in the
following experiments and two of the non-linear dimensionality re-
duction techniques are also investigated. Linear dimensionality re-
duction techniques are preferred since it is easy to analyze high di-
mensional data with linear methods due to their simple geometric
interpretations. Usually the linear methods are also computationally
less intensive than their non-linear counterparts. These methods fo-
cus on simple data characteristics such as covariance, eigen vectors,
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eigen values, etc. Linear dimensionality reduction techniques can be
used for exploring the geometric structure, compressing the data and
extracting meaningful feature spaces.

On the other hand, non-linear dimensionality reduction techniques,
in general, project data on to a higher dimensional space, instead of a
same or lower dimensional space, where the geometry of the data is
learnt. Many times, due to the intrinsic properties of data, it becomes
nearly impossible to separate the data in lower dimensions for the
purposes of classification and related tasks. In such cases, the data
is higher dimensions where it becomes possible to linearly separate
the data belonging to different classes. Examples of non-linear dimen-
sionality reduction techniques include Kernel Principal Components
Analysis, Isometric Mapping, Locally Linear Embedding, Non-Linear
Principal Components Analysis, etc.

2.2.2.1  Principal Components Analysis (PCA)

One of the most popular linear methods for feature re-extraction is
Principal Components Analysis (PCA). PCA [54] is a statistical tech-
nique. It uses orthogonal transformation to convert a set of measure-
ments of possibly correlated variables into a set of linearly uncorre-
lated values. These values are called principal components. The num-
ber of principal components obtained through this technique is equal
to the number of original variables. The formulation of PCA ensures
that the first principal component has the largest variance. Each suc-
cessive component has the next largest variance while being orthogo-
nal to each of the previous components. Thus, it provides a new set
of basis vectors.

The next part of the procedure comprises of actually obtaining the
transformed representation using the basis vectors obtained through
PCA. We can achieve this by projecting the original feature vector
on the new basis. Furthermore, we can drop the vectors from the ba-
sis that have very low variance associated with them. In effect, we
drop those columns from the transformation matrix that are associ-
ated with low variances. Using this transformation, the feature space
can be projected onto a smaller subspace which best preserves most
of the variance of the input data [53].

2.2.2.2  Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [65] is another method used for
dimensionality reduction that aims to retain as much class discrimina-
tory information as possible. The main objective in LDA is to project
the feature space onto a smaller subspace that contains most of the
class variability. This is achieved by maximizing the F-Ratio of the
training data in the transformed space. In this way, it can be con-
sidered as a generalization of the F-ratio method. LDA is different
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from PCA in that LDA explicitly considers the class labels whereas
PCA does not consider the class information. LDA has been success-
fully applied in many areas of research. Example applications include
face recognition, where reduced representation of face images are ob-
tained before proceeding to the classification stage. Another appli-
cation is bankruptcy prediction using accounting and other financial
data. LDA has also been successfully applied in biomedical and earth
science domains.

2.2.2.3 Factor Analysis (FA)

Factor Analysis (FA) [69] is a linear generative model in which the
latent variables are assumed to be Gaussian. The core idea of the
technique is to model the observed variables in terms of a smaller
number of ‘factors” which are hypothesised to cause the observations.
That is, factor analysis is a statistical tool that helps to explain the
variability in the observed data, with the help of fewer, uncorrelated
variables. For example, it is possible that in a given set of observations
of 5 variables only 3 underlying factors are causing variations in all
of those 5 variables. These kinds of problems can be tackled using
factor analysis method.

The main objective is to try to model the observed measurements in
terms of linear combinations of the hypothesized factors, along with
some error term. With this kind of formulation, we can potentially
represent a large sized observation in terms of smaller, unobserved
causal variables. Not only is this beneficial for a faster processing of
the signal, but this also tends to improve performance accuracy. With
this kind of representation, we can then convert the original features
into new and smaller sized features. The transformation of features
into a smaller subspace is achieved by a loading matrix. The loading
matrix is estimated using the formulation mentioned above.

2.2.2.4 Kernel Principal Components Analysis (KPCA)

The classical PCA approach works well only if the data is linearly
separable. However, it is not guaranteed that data will always be of
such type. Many natural phenomena produce data that can be highly
non-linear. For data that is not directly linearly separable, non-linear
reduction techniques have to be applied in order to make sense of the
underlying structure of the data. The use of kernel functions or kernel
trick is one of the solutions to deal with linearly inseparable data. A
non-linear mapping function ¢ is defined so that the mapping of a
data point can be written as x — ¢(x). This is called kernel function.

In case of classical PCA, covariance matrix is calculated for the data
set but in case of KPCA the covariance matrix in the higher dimen-
sional space is not computed explicitly, thus saving tedious computa-



2.3 EXPERIMENTAL LAYOUT

tions. One such implementation is Radial Basis Function (RBF) kernel
PCA.

2.2.2.5 Isometric Mapping (ISOMAP)

In [70] an approach to overcome the problem of finding intrinsic ge-
ometry by PCA or Multi Dimensional Scaling (MDS) is presented.
Linear methods such as PCA and MDS fail to detect geometry of
non-linear manifolds. This approach combines major features of PCA
and MDS to learn non-linear manifolds. With all pairwise distance
of data points, the approach tries to discover the intrinsic geometry
of data. The crux of the algorithm lies in finding the geodesic dis-
tance between far away points. Far away distances are approximated
by adding up sequence of short hops. These approximations are com-
puted by finding shortest paths in a graph with edges connecting
neighboring data points.

2.3 EXPERIMENTAL LAYOUT
2.3.1 Data

For the following experiments, we used two datasets. First, for a quick
testing of the concept, we used our own recorded data. It consists of
the ten English digits spoken by 10 male speakers in the age group
from 23 to 27 years. Each digit was recorded 20 times at 16000 sam-
ples/sec with 16 bit representation using Cool Edit Pro 2.1 recording
studio software. A total of 2000 utterances were used in the complete
process. For the training part, 1500 utterances out of the 2000 were
used. The rest 500 utterances were used as test data. The complete
setup used for recording our own data is detailed in Table 2.1.

Table 2.1: Table showing details of recorded data

S.No Item Value
1 Utterances spoken 10 English digits (0-9)
2 No of speakers 10
3 Age 23-27 years
4 Repetitions per digit 20
5 Sampling Rate 16000
6 Representation 16 bit
7 Software used Cool Edit Pro 2.1
8 No of training utterances 1500
9 No of testing utterances 500
10 Total utterances 2000

17
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For a more complete and robust set of experiments, we used the
TED-LIUM dataset [59]. It consists of recorded Ted Talks by differ-
ent people with different backgrounds. For our experiments, the data
consisted of 20 speakers. Each speaker’s talk is for 4 minutes. Most
of the talks contained some music, claps and silence. Since these com-
ponents do not contribute toward speaker recognition, they were re-
moved manually while retaining most of the speech. Each speaker
had approximate 2 minutes of training data and 50 utterances of test-
ing data, each of approximately 1 second. The details of TED-LIUM
data are presented in Table 2.2.

Table 2.2: Table showing details of TED-LIUM data

S.No Item Value
1 Utterances spoken TED Talks
2 No of speakers used 20
3 Training data 2 minutes
4 Testing data 1 sec
5 No of test cases per speaker 50

2.3.2 Feature extraction

For feature extraction in our experiments, we used the Hidden Mark-
ov Model Toolkit (HTK) [75]. The HTK toolkit is a toolkit for build-
ing Hidden Markov Models (HMMs). The toolkit is used widely to
develop and deploy mainly speech recognition systems all over the
world. It contains a suite of tools in C source code as well as binary
executables that can be directly run. We used the HCOPY tool from
HTK for the purpose of extracting Mel Frequency Cepstrum Coeffi-
cients (MFCCs) for each frame of the audio sample. The audio sam-
ples were first converted into frames of 320 samples each, along with
sliding window of 8o samples. Finally, 12 dimensional feature vectors
were obtained from HCOPY tool, along with the log energy compo-
nent. We choose a relatively smaller sized feature vector to begin with
because the focus of the current experiments is to reduce the size of
the feature vector in order to achieve a faster processing and output
time. Hence the size of feature vector was chosen as 12 and further
reduced thereafter to achieve a minimal sized feature vector.

2.3.3 Feature selection and transformation

The following describes how the actual process of selection and trans-
formation of features was carried out for the experiments. To perform
feature selection, the feature vector was reduced by leaving out a par-
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ticular feature from the feature vector. The decision as to what feature
should be dropped was determined by the rank of the particular fea-
ture. Concretely, we leave out one feature that has the lowest merit
as determined by the chosen criterion. From 12 features, we drop 1
and perform the speaker recognition experiments with 11 features.
Next, we drop the lowest merit feature from the current features and
perform recognition experiments with 10 features. This dropping of
features is carried out until we are left with only 2 features. We ob-
served the behaviour of the speaker recognition system during the
course of this feature dropping process. The results and graphs are
discussed in the following pages.

The process of feature re-extraction follows a slightly different path.
First, we need to obtain a transformation matrix. The transformation
matrix represents the crux of the process of feature re-extraction. The
transformational capabilities of the matrix will depend on the method
used to estimate the matrix. This matrix is a direct result of the un-
derlying preprocessing method such as the already discussed PCA,
LDA, Factor Analysis, etc. Thereafter obtaining this matrix, which
represents a type of new basis, we project our existing data (raw fea-
tures) on to this new projection space, thereby obtaining the new and
possibly better representation. But this vanilla version of the feature
re-extraction process doesn’t yet lead to the reduction in the size of
the feature vector. To actually reduce the feature vector size, we can
leave out those basis vectors from the new basis obtained that account
for relatively smaller amount of information. This corresponds to re-
moving appropriate columns from the transformation matrix. Finally,
we can just multiply the transformation matrix with the existing fea-
tures to obtain a reduced feature vector. For the reduction part, we
again follow similar procedure as in the the feature selection pro-
cess. We begin with 12 features. We remove the lowest information
containing vector from the new basis to obtain an 11 dimensional fea-
ture vector. We use this 11 dimensional vector to perform the speaker
recognition experiment. Next we go on to reduce the feature vector
to size 10 in a similar way and repeat the experiments with each new
smaller dimension.

2.3.4 Experiments

We performed 5 experiments with our recorded dataset and simi-
lar experiments with the TED-LIUM dataset. Each of the five experi-
ments correspond to one of techniques for feature reduction — either
selection or re-extraction.

First, we used the Naive dropping technique to reduce the features
through selection. We started by reducing the data to 11 dimensions
by leaving out the last feature as per the original order of the features,
i.e. MFCCs. This process was continued until only 2 features were left
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in the feature vector. Every time a feature was dropped from the fea-
ture vector, we performed a separate speaker recognition experiment
to determine the accuracy of the reduced feature set for that particular
dimension. The same strategy was followed for the F-Ratio method as
well, only with the difference that the merit criterion was changed to
F-Ratio of the features instead of the order of the MFCCs. The feature
with the least F-Ratio was dropped first.

While working with feature re-extraction techniques, we obtained
a transformation matrix that enables the transformation and reduc-
tion of feature vector. This matrix was obtained differently for each
of the technique used. Next, we dropped the appropriate columns
from each of the matrix, for each of the dimension (11 down to 2), to
prepare the transformation matrix. Lastly, we multiplied the feature
vector with the corresponding matrices to obtain reduced features,
also from dimensions 11 down to 2.

For each of these reduced dimensions, we input the complete train-
ing data to the system for estimating the speaker models using the
GMM-UBM approach. For training model, we used 32 mixtures of
Gaussians to represent each speaker. The decision to use a lower
count of mixtures was again motivated by our main objective which
is to lower the computations.

2.4 RESULTS AND DISCUSSION

Figures 2.1 to 2.5 depict the trends of accuracy at speaker recognition
experiments with reduced features for our recorded dataset. With
Naive Dropping method (Fig. 2.1), we observe that as we start leav-
ing out coefficients from the feature vector, reducing the number of
MEFCC coefficients from 12 to 7, the accuracy hovers between 78.2%
to 83.4%. But as we continue dropping the MFCCs further, the accu-
racy drops significantly — to 66.2% with 4 coefficients, to 47.2% with
3 coefficients and to 34% with only 2 coefficients. This trend of per-
formance indicates that the first 5 MFC Coefficients are very critical
to the speaker distinguishing and recognition process. The rest of
the features, 6/ MFCC up to 12 MFCC, help increase the accuracy
and augment the performance of the speaker recognition system only
slightly, especially when compared to the first 5 coefficients. If we
select and use only first 5 coefficients for speaker recognition exper-
iments, we can reduce the feature set size by more than 60% while
still achieving a reasonable performance as shown in the results.
With the F-ratio method (Fig. 2.2) for feature selection, we again
observe that dropping the last 5 MFC coefficients do not hamper the
recognition performance significantly. With such a configuration, the
accuracy ranges between 81.4% to 86.2%. However, on further drop of
MEC coefficients, speaker recognition performance starts to degrade
rapidly. This behaviour points toward the importance of first 7 fea-
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Figure 2.1: System performance as dimension is reduced with Naive drop-
ping for our own recorded data
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Figure 2.2: System performance as dimension is reduced with F-Ratio for
our own recorded data

tures as determined by the F-ratio criterion. By retaining only the first
7 features as per the above criterion of F-Ratio, we are able to reduce
the size of our feature vectors by more than 41% while maintaining
reasonable accuracy in speaker recognition experiments.

We find similar trends in the experimental outcomes with feature
re-extraction techniques. We observe that with PCA (Fig. 2.3), the
contribution of the first 6 features in the feature vector is quite signif-
icant. The rest of the features, coefficient 7 to 12 in the transformed
feature vectors, do not contribute as greatly to the recognition perfor-
mance. The observed behaviour reaffirms our expectation from this
experiment. Such a trend could be the result of features being ranked
in order of decreasing variance, with lower order coefficients have
larger variances. Thus, it could be concluded that the lower order co-
efficients are able to capture more information than their higher order
counterparts.
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Figure 2.3: System performance as dimension is reduced with PCA for our
own recorded data
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Figure 2.4: System performance as dimension is reduced with LDA for our
own recorded data

In case of feature re-extraction with Linear Discriminant Analysis
(LDA) (Fig. 2.4), we note that first 9 MFC coefficients in the feature
vector contribute significant value to the performance of the speaker
recognition experiments. We observe pointed increases in the accu-
racy with addition of each feature. However, notable increments are
not observed when further features are added to the feature vector.
On the contrary, the performance of the recognition system deterio-
rates to some extent. Therefore, it can be argued that with further
addition of features, the system complexity seems to go up. It is also
plausible that the addition of MFC coefficients after a certain point
causes the system to confuse between speakers rather than contribut-
ing positively towards better recognition. Using the information from
observed trends, we can reduce the feature vector size by 25% while
delivering a superior performing system.
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Figure 2.5: System performance as dimension is reduced with Factor Analy-
sis for our own recorded data

Re-extracting features with Factor Analysis (Fig. 2.5), we observed
that the speaker recognition performance vacillates between 84.4% to
86.4% while the feature vector size is varied from 12 down to 7. On
further reduction of features from the feature vector, the performance
seems to deteriorate precipitously. The observations lead us to con-
clude that it is possible to obtain more than 41% reduction in feature
vector size while suffering a minute dip in performance. Table 2.3
summarizes the results of all the experiments with our recorded data
concretely.

Table 2.3: Results showing accuracy v/s different dimension of data for dif-
ferent dimensionality reduction techniques for our recorded data

Dim. Naive F-Ratio PCA LDA Factor A

2 33.8 35.4 32.0 20.8 32.4
3 47.2 51.8 57.0 28.6 48.2
4 66.2 66.2 63.8 34.8 66.2
5 76.8 70.6 73.4  45.6 69.2
6 78.2 74.2 75.6  67.8 80.2
7 76.6 81.6 79.4 70.8 84.4
8 78.0 82.4 81.6 782 84.4
9 79.6 81.4 83.2 858 83.0
10 80.2 86.2 85.6 83.0 81.2
11 83.6 82.0 83.8 838 86.4

12 83.4 83.4 85.6 818 83.4

Figure 2.6 to 2.13 depict the performance of speaker recognition
system when feature reduction was applied to a subset of the TED-
LIUM dataset. Although there are close to 1500 speakers present
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in the TED-LIUM dataset, these experiments were conducted for 20
speakers. Initially, as with the digits dataset, linear dimensionality re-
duction methods were applied to the speakers’” data. However, some
non-linear dimensionality reduction methods were also explored in
these experiments.

It can be inferred from the graphs that the curve for accuracy of
speaker recognition versus dimension of data follows a similar trend
to that of the results of the experiments conducted with digits data.
Following the same strategy for dropping coefficients, with Naive
dropping method (fig. 2.6), reducing the dimension of features from
12 to 7 causes the accuracy of system to slowly descend from 74.7% to
65.5%. Further we observe that dropping the six higher order (as per
their natural order in Naive dropping method) features from the fea-
ture vector affects the performance of system very minimally. But as
we continue to drop the features further, the speaker recognition per-
formance degrades quite rapidly. This response indicates that the 6
lower order coefficients carry more speaker related information than
the higher order coefficients. This is very similar behaviour as ob-
served with digits data.
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Figure 2.6: System performance as dimension is reduced with Naive drop-
ping for TED-LIUM data

As we can observe from fig. 2.7, in case of F-Ratio method, drop-
ping the first 6 features again degrades the performance of the system
significantly, whereas dropping the last 6 features doesn’t hamper the
performance of the system as much. This helps to further strengthen
the importance of the lower order coefficients for the task of speaker
recognition. Using the feature selection methods to reduce the size of
feature vector, it is possible to drop about 40% of the features from
the feature set and still be able to obtain reasonable performance for
speaker recognition task.

Employing PCA (fig. 2.8) for the purpose of feature reduction, we
observed that while reducing the feature vector size from 12 down
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Figure 2.7: System performance as dimension is reduced with F-Ratio for
TED-LIUM data
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Figure 2.8: System performance as dimension is reduced with PCA for TED-
LIUM data

to 6, the accuracy performance varies between 71.7% to 59.1%. We
observe a similar curve as before between accuracy of speaker recog-
nition with respect to the dimension of the feature vector.

Similar outcomes and trends of speaker recognition performance
were observed in case of feature reduction with LDA (fig. 2.9) and
Factor Analysis (fig. 2.10) on TED-LIUM speaker data of 20 speak-
ers as that of experiments conducted with digits data of 10 speakers.
These experiments indicate that first g features contribute heavily to
the system’s performance at speaker recognition task. We can see the
matching trends in the graphs for both the techniques.

Unlike the experiments with digit data, some of the non-linear fea-
ture reduction techniques also were used with the TED-LIUM speaker
data. Speaker recognition experiments after feature reduction with
KPCA (fig. 2.11 and 2.13) demonstrated overall lower accuracy as
compared to its linear counterpart PCA. In [30] it is mentioned that
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Figure 2.9: System performance as dimension is reduced with LDA for TED-
LIUM data
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Figure 2.10: System performance as dimension is reduced with Factor Anal-
ysis for TED-LIUM data

the results can be sensitive to the choice of kernel used. It can be
observed from fig. 2.11 that the accuracy of the recognition system
doesn’t vary significantly while features are reduced from 12 down
to 5. However, the recognition system’s performance deteriorate pre-
cipitously on further reduction in the feature vector size. Using KPCA
it can be inferred that only 5 features are sufficient for system to pro-
vide performance level comparable to that obtained with the whole
unaltered feature vector.

Intriguing results were obtained in case of feature reduction with
the non-linear technique called ISOMAP (fig. 2.12). The performance
of the speaker recognition system with the complete feature vector
was increased by 32% on feature re-extraction with ISOMAP. The sys-
tem demonstrated the highest accuracy of 94% at feature set size 10
and even after dropping more than 50% of the features from the fea-
ture vector the recognition system was able to perform at high ac-
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Figure 2.11: System performance as dimension is reduced with KPCA for
TED-LIUM data
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Figure 2.12: System performance as dimension is reduced with ISOMAP for
TED-LIUM data

curacy levels. As observed with other feature reduction techniques
earlier, the lower order features contribute critically toward the per-
formance of the recognition system. Sudden drop in the accuracy is
observed on further reducing the feature set size below 5. Table 2.4
lists the complete results obtained with the TED-LIUM dataset.

It can be inferred from the experimental observations that it is pos-
sible to achieve significant amounts of reduction in the size of the
feature vector for the task of speaker recognition. The high gains in
the feature vector size may require a minor sacrifice in the accuracy
of the recognition system. However, with the reductions in the fea-
ture vector size, a significant speed up of the overall recognition can
be achieved. Using a smaller feature vector can greatly reduce the
amount of computations required for performing a recognition task.
With reduced computations, we can expect the low resource devices
to be able to perform the recognition tasks on the device itself.
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Figure 2.13: System performance as dimension is reduced with KPCA-RBF
for TED-LIUM data

This approach of reducing the feature vector size can also be highly
useful for scenarios where we require a two-pass recognition system
or cases when we do not require extremely high accuracy but exe-
cution speed is critical. For such a two-pass system, this approach
with reduced feature vector can serve as the first layer of the system
for quickly pruning the search space of possible speakers. The second
layer can take then search exhaustively in the pruned spaces of speak-
ers to arrive at the final decision in the speaker recognition process.

2.5 CONCLUSION

In the preceding experiments, we investigated how the performance
of speaker recognition system varies with respect to reduction in size
of the feature set. These experiments were designed to help evalu-
ate the performance at different sizes of the feature vector. With such
trends available, it is possible to design systems that can provide simi-
lar performance levels but at a lesser cost in terms of time and compu-
tation since a smaller feature vector implies faster running times and
lower computational costs. It is also possible to design systems specif-
ically tailored for low resource devices that cannot afford to perform
complex calculations needed for state-of-the-art methods.

We first used the Naive dropping technique for reducing the fea-
ture set size. It provided promising results but there was no legiti-
mate way to determine the rank of the features with this method as
the order of the features itself is taken to be the rank of the feature in
the feature vector. Therefore, the F-ratio method was tested to system-
atically decide on the merit of each feature. This methods provides a
better approach to reduce the feature set size based on the variance
property of individual features within the complete feature vector.
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Table 2.4: Results showing accuracy v/s different dimension of data for dif-
ferent dimensionality reduction techniques for TED-LIUM data

Dim. ND FR PCA LDA FA KPCA ISOMAP RBF
2 21.1 23.1 24.8 107 183 18.0 24.4 35.2
3 35.9 33.1 32.0 15.0 20.7  20.4 51.7 61.2
4 48.4 445 426 19.9 46.1 44.6 67.2 71.4
5 58.7 522 504 24.8 413 50.8 74.4 83.2
6 62.6 574 537 326 544 51.1 86.9 86.2
7 65.5 60.3 59.1 374 528 54.8 86.5 87.4
8 67.7 710 637 492 581 517 92.7 90.8
9 70.1 71.9 66.7 552 551 523 93.9 91.6
10 72.0 715 664 59.6 553 549 94.9 91.2
11 73.1 720 69.7 653 555 420 83.8 91.8

12 7477 747 717 706 613 59.7 82.5 83.2

Next, feature re-extraction methods were tested for feature reduc-
tion on the data. Feature re-extraction methods fall in two categories:
Linear methods and Non-linear methods. Linear methods used in our
experiments include PCA, LDA, Factor Analysis. KPCA and ISOMAP
are examples of non-linear methods used.

First PCA was applied for feature reduction. PCA helps to trans-
form the data using the variance property and then feature reduc-
tion is achieved by projecting original features on to a lower sub-
space. It was observed that approximately 10% performance was sac-
rificed while achieving about 50% reduction in the size of feature vec-
tor. With LDA as the feature re-extraction technique, similar trends
of speaker recognition performance were observed. However, with
the same amount of performance deterioration, the feature set size
was reduced to a higher extent with LDA than what was achieved
with PCA. Hence, in this view, LDA would be considered as the pre-
ferred method against PCA. In case of Factor Analysis, it was ob-
served that it was possible to reduce the feature set size to more than
40% with minimal performance degradations. Nonlinear feature re-
extraction methods viz. KPCA and ISOMAP, also demonstrated simi-
lar performance trends as the linear re-extraction methods for feature
re-extraction. With KPCA, an overall lower accuracy of the speaker
recognition system was observed but the trend of curve drawn with
accuracy against dimension of features remained similar to the linear
methods. It was possible to reduce the feature set size by approxi-
mately 50% with a minimal performance sacrifice, with performance
even increasing at some lower dimensions. This can be concluded
from the graphs presented above. With ISOMAP, it was again ob-
served that it is possible to reduce the feature set by 50% while obtain-
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ing an overall higher performance by approximately 30%. The best
performance was observed with feature set of size 10 with ISOMAP
technique. However, all re-extraction methods incur an overhead when
the transformation of the test feature vector is applied during the test-
ing phase as each test vector has to multiplied by a loading matrix.

Overall it can be concluded that using either re-extraction or se-
lection techniques, it is possible to provide significant reductions in
feature vector size which can directly affect the response time of the
speaker recognition system. These reductions can lead to reduced
processing time and thus enable us to provide speaker recognition
services on low resources devices themselves. For example, let us
consider the original dimension of MFCC feature set to be 12 and
the reduced dimension to be 6. For calculation of component density
of one Gaussian, for a single frame of speech, O(n!!) time steps are
needed approximately where # is size of the feature. When original
feature size of 12 is used, it comes to approximately 7.43x10!! time
steps. For the reduced feature of size 6, the same evaluates to 6.5x10°
time steps. Hence we see a distinct reduction in the number of time
steps needed for evaluating a single Gaussian density for one frame.
As per the calculation, this will lead to a significant improvement for
32 mixture Gaussian with approximately 100 frames for a complete
test utterance. We calculate this using standard running time com-
plexity for matrix multiplication and inversion operations.
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In the last chapter, we looked at reducing the size of feature vectors
by processing the raw features. These processed features were then
used to build speaker models that were used in the recognition step
where we estimate the probability of the test utterance coming from
one of the speakers. In this chapter, we discuss the experiments with
i-vectors and the reductions obtained at the model level. The high di-
mensional speaker models are reduced to a lower dimension to make
the speaker recognition faster and cheaper in terms of computation.

Numerous approaches have been applied to tackle the problem
of automatic speaker recognition. For a long time, the GMM-UBM
model was accepted as state-of-art approach for speaker recognition
tasks. In 2005, the concept of Joint Factor Analysis (JFA) was intro-
duced [34, 36]. The idea was to model the variabilities of speaker and
channel effects separately as two distinct spaces. However, i-vector
modeling was soon proposed as an improvement to JFA modeling.

The i-vector paradigm has been an active area in speaker recogni-
tion & verification research [71]. Dehak et al. [10] proposed a channel-
blind approach for telephone as well as microphone data. In [2, 22],
the authors have presented ways to calculate i-vectors in an efficient
way. The use of PLDA for channel and speaker compensation has
been discussed in [32]. At the same time [61] demonstrated that if
training utterances are sufficiently long, shorter utterances for test-
ing can also be used with a good recognition performance. Kenny
et al. [37] showed that PLDA is useful even when the test utterances
length is variable. In [4], the authors have tried to reduce the data re-
quirement for training by using k-nearest neighbor (k-NN) algorithm.
Mandasari et al. [46] has compared robustness of different approaches
to speaker recognition. I-vectors have also been employed in language
recognition tasks [12, 49]. In [43], the authors have used an extended
feature vector, consisting of MFCCs with some other features in tan-
dem, before the calculation of i-vectors. They have discovered the dif-
ferences between features that are beneficial for speaker recognition
and those suited to language recognition tasks.

Several studies have been conducted suggesting the use of i-vector
based methods to solve the problem of speaker identification. Many
studies have also experimented with different compensation tech-
niques to be used along with the method. However, it is not explicitly
investigated why a particular configuration of the method should be
used. The motivation behind the following experiments is to deter-
mine the optimal size of the total variability matrix, T, which should
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be used for generating i-vectors so that the computations involved
can be reduced to a minimum, along with maintaining a reasonably
high accuracy. It is also worth exploring how, for a particular size
of T, the number of mixture in the UBM affect the performance of
the recognition system. Other interesting variables are the size of the
training and test utterances. Exploring these subtle but important is-
sues is also one of the motivations behind this study.

3.1 SPEAKER MODELING WITH I-VECTORS

As described in the previous chapter, Gaussian Mixture Models -
(GMMs) - were used as the standard modelling technique for speaker
recognition tasks for almost a decade [57]. GMMs have the ability
to form smooth approximations to arbitrary densities and hence, ap-
proximate complicated functions. The intuition behind the use of
GMMs as speaker models is that the components of the Gaussian
mixture may in some way represent speaker’s broad phonetic events
and therefore speaker’s individual characteristics [56]. These proper-
ties of GMMs rendered them suitable for speaker recognition tasks.
To handle data constraints and enable faster convergence, adapted
GMNMs were proposed. As per the concept of adapted GMMs, instead
of building speaker models from scratch, UBM parameters were used
to generate or ‘adapt’ speaker models from the generalized UBM pa-
rameters. The parameter estimation algorithm was correspondingly
modified. Instead of the standard Expectation Maximization (EM),
Maximum A Posteriori (MAP) algorithm was used for the adaptation
of parameters for each individual speaker. The adaptation parame-
ters control the balance of UBM characteristics and speaker utterance
characteristics. These adaptation parameters control ‘how much” of
the UBM properties are copied into speakers” models.

Kenny et al [35] proposed a joint factor analysis model to explain
most of the variance of speaker and channel through smaller number
of factors. The model’s aim was to make a decision that whether the
difference in the test and reference utterances can be accounted for
by inter-speaker variability or intra speaker variability. Intra speaker
variability may arise due to channel and speaker’s emotional and/or
physical state. For example, if a speaker is ill with some disease, his
utterances may differ from the way that he generally speaks. Simi-
larly if a person is ill at ease or not feeling mentally well, it may affect
the way she produces her utterances leading to marked differences
in the utterances themselves. These types of situations can lead to in-
tra speaker variabilities. Inter speaker variability, on the other hand,
refers to the differences between distinct speakers” utterances. It is
expected that the vocal tract configurations as well as speaking styles
and characteristics like intonation, stress and accent are different for
different speakers. This leads to differences in the utterances pro-
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duced by them. This phenomenon is called Inter speaker variability.
It was widely understood that speaker variability modeling was more
important than accounting for channel variability. However, these as-
sumptions were found to be misplaced when, in an analogous study
[66] in face recognition, it was observed that modelling intra per-
son variability, without modeling inter person variability, led to very
high performance, sometimes eclipsing the performance of the sys-
tem that modelled inter person variability. Such experiments forced
researchers to reconsider their assumptions and hence, channel vari-
ability modelling was used in the form of Joint Factor Analysis (JFA)
model.

Suppose, the number of components in the UBM are C and the
dimensionality of the acoustic feature vectors (MFCC) is F, then by
concatenating the F-dimensional speaker adapted GMM mean vec-
tors, we get a supervector of size CF. In JFA, a speaker utterance is
represented by such a supervector M. As per the JFA approach, a su-
pervector for a speaker consists of and can be decomposed into its
constituent components — speaker dependent, speaker independent,
channel dependent and residual components. Further, each compo-
nent can be represented by a low-dimensional set of factors which
act along the principal dimensions of the corresponding component.

The joint factor analysis model can be represented as follows:

M=m+Vy+Ux+ Dz (3.1)

where,

M = The speaker dependent supervector

m = A speaker independent supervector (from UBM) of dimension
CFx1

V = The eigenvoice matrix (rectangular matrix of low rank)

y = A vector representing the speaker factors

U = The eigenchannel matrix (rectangular matrix of low rank)

x = A vector representing channel factors

D = The residual matrix of dimension CFxCF

z = The speaker specific residual components

The following is the procedure to use the JFA model in practice.
First, using offline data for all the speakers, the UBM is constructed
as discussed earlier. Then, applying 1% and 2"® order Baum-Welch
statistics on the UBM mean vectors, the JFA matrices are trained in
the following order—

1. Train V assuming U and D are zero.
2. Using V, train U, assuming D is zero.

3. Using V and U, train the residual matrix D.
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Once the enrolment data is available, MFCC are extracted and su-
pervectors are created by concatenation of the adapted GMM mean
vectors. Then, the values of the factors y, x and z are computed. These
factors are stored for comparison with test values. During testing
phase, again factors y, x and z are computed in the same way for
the test utterances. Scoring is done by computing the log likelihood
of the test utterance feature vectors against speaker models. The high-
est score is obtained from the log-likelihood scores of all the speakers
and the speaker corresponding to the highest score is declared to be
the identified speaker.

Dehak et al [11] showed that even while modeling channel factors
and speaker factors separately, there was still some information about
speaker characteristics in the channel factors when modelling with
the Joint Factor Analysis approach. With this in consideration, they
proposed a single space for modelling both the speaker as well as
channel characteristics. This new space was termed Total Variability
Space since this space comprises both the sources of variabilities to-
gether. The total variability space is learned and used to extract i-
vectors. In i-vector modeling, a GMM supervector is represented as
follows:

where,

M = Speaker and channel dependent supervector

m = Speaker and channel independent supervector (UBM supervec-
tor)

T = A low rank matrix which represents the principal directions of
the speaker and channel variability (total variability space)

w = A vector representing the total factors

The components of w are called Total Factors and they are referred to
as i-vectors.

To implement the i-vector method, the following process is fol-
lowed. Note that this process is very similar to the JFA training and
testing procedure. There are some differences in key places that dif-
ferentiates this model. Firstly, using training data, the UBM is con-
structed offline as described earlier. Then, the total variability ma-
trix T is trained, the process for which is exactly similar to training
of the eigenvoice matrix V of JFA. However, there is one important
difference. On one hand, during the eigenvoice training, all record-
ings of a given speaker are considered to belong to the same speaker.
On the other hand, during total variability matrix training, we pre-
tend that the utterances from a particular speaker are also produced
by different speakers. Once the enrolment data is available, MFCC
are extracted and supervectors are created by concatenation with the
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adapted GMM mean vectors. Then, we can compute the values of
the total factors, w. These factors are stored for comparison with test
values.

During testing phase, again the total factors w are computed simi-
larly from the test utterances. For comparison of the i-vectors, cosine
scoring is used, which is calculated as follows-

wlw,y

oo Jeotios (3-3)

where, w; and w; are the vectors whose distance is to be measured.
The value can vary between -1 and 1. The highest score is obtained
and the respective speaker is declared a match.

score(wy, wr) =

3.2 EXPERIMENTAL LAYOUT
3.2.1 Data/corpus

For our experiments, we used a part of the TED-LIUM [59] dataset/
database. The TED-LIUM dataset consists of 1495 TED talks recorded
at a sample rate of 16000, 16 bit representation, with a bit rate of 256
K. The encoding used is 16-bit signed integer PCM. Out of the 1495
recordings, we used 300 of them in our experiments which amount
to more than 60 hours of speech data. For preprocessing, we removed
the initial music found in all the data files.

For our first set of experiments, 50 of the 300 speakers’ files were
taken and split into two parts: training & testing. For training, we
used approximately 15 minutes of the recording for each speaker. The
testing part was different for each of the experiments conducted. For
the first experiments, we used utterances of 5 seconds in length as test
cases. Several such tests were conducted for each speaker resulting
in at least 40 test cases for each speaker. The total test cases used
were 2819. For the second and third experiment, we used utterances
of length 10 and 15 seconds respectively. The fourth test used the
complete test files which were of length at least 3 minutes and at most
8 minutes. These tests were designed to understand how the length
of the test utterance affects the accuracy of the recognition system.

Further, to understand the role of the length of the training data
with respect to accuracy, we conducted a fourth experiment using all
300 files. The training data was split in utterances of length 2, 4, 6, 8,
10, 12, 14, 16, 18 and 20 mins respectively. The other parameters of
the system were kept as constants, which were arrived at as optimal
from the previous three experiments.
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3.2.2 Feature extraction

Feature extraction is an important step in any recognition system.
For our experiments, we used the SPro tool to extract the features. We
used the 60 dimension feature vector for each frame. Here each frame
refers to a segment of 10 ms from the utterance. The feature set used
is Mel Frequency Cepstrum Coefficients [44, 63]. The 60 dimensional
feature vectors consist of 19 static coefficients followed by log energy
value, followed by the delta & acceleration coefficients.

3.2.3 Experiments

We experimented with different sizes of the total variability matrix
for a particular mixture count in the UBM. We started with 16 mix-
tures in the UBM and increased the mixture count up to 512. We also
tested that the performance of system by keeping the i-vector size
fixed while varying the mixture count in the UBM. Further, we tested
the system with varying length of test utterances. We also evaluated
the performance of the system by varying the length of the training
data. For performing our experiments we used the ALIZE toolkit [39].
For scoring, we have used the Cosine Distance Scoring method.
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Figure 3.1: Performance with 5 sec test utterances for different T sizes

3.3 RESULTS AND DISCUSSION

In case of 5 sec length test utterances (Figures 3.1 and 3.2), we found
that when we vary the number of mixtures in the UBM for different
sizes of the total variability matrix, we see a distinct rise in accuracy
when mixture count is increased from 16 to 32. However, there is



Table 3.1:

3.3 RESULTS AND DISCUSSION

Performance evaluation with 5, 10, 15 sec and full test files.
Here T Size represents Size of T matrix, Accuracy-5 represents
Accuracy for 5 sec case, Accuracy-10 represents Accuracy for
10 sec case, Accuracy-15 represents Accuracy for 15 sec case,
Accuracy-f represents Accuracy for full file case

Mixtures T Size Accuracy-5 Accuracy-10 Accuracy-15 Accuracy-f

512 10 82.51 88.76 88.83 98
512 20 89.36 93.08 92.66 100
512 50 91.66 94.16 92.77 100
512 100 91.63 94.16 92.77 100
512 200 91.34 94.16 92.77 100
512 400 91.66 94.16 92.77 100
256 10 78.96 87.39 88.40 96
256 20 88.86 93.01 91.91 100
256 50 91.38 94.02 93.30 100
256 100 91.38 94.02 93.30 100
256 200 91.34 94.02 93.30 100
256 400 77.08 94.02 93.30 100
128 10 79.60 87.25 87.66 98
128 20 88.26 92.44 91.60 100
128 50 90.88 94.02 92.77 100
128 100 91.20 94.02 92.87 100
128 200 91.20 94.02 92.87 100
128 400 91.20 94.02 92.77 100
64 10 69.10 86.74 87.13 98
64 20 78.01 91.79 90.64 100
64 50 79-60 93-37 92.55 100
64 100 79.60 93.37 92.55 100
64 200 90.28 93.37 92.55 100
64 400 79-57 93-37 92.55 100
32 10 70.27 80.69 84.04 94
32 20 84.57 90.06 89.79 100
32 50 89.50 93.01 92.23 100
32 100 89.50 93.01 92.23 100
32 200 89.50 93.01 92.23 100
32 400 89.50 93.01 92.23 100
16 10 65.98 77.45 81.28 92
16 20 81.16 88.33 88.40 100
16 50 86.80 91.71 91.28 100
16 100 86.80 91.71 91.28 100
16 200 86.80 91.71 91.28 100
16 400 86.80 91.71 91.28 100
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Figure 3.2: Performance with 5 sec test utterances for different UBM sizes

a significant dip at 64 mixtures except when the T matrix size is 200.
This indicates that for representing the speaker characteristics, 64 may
not be a good mixture count for most of the cases. On increasing the
number of mixtures to 128, there is further increase in accuracy but
the improvement from 32 to 128 mixtures is less than the improve-
ment observed in going from 16 to 32 mixtures. Increasing the mix-
ture count to 256 and 512 components also does not yield significant
improvements. This indicates that after 128 mixtures, we are using a
large amount of computation for very small improvements. Thus it
would be useful to choose 128 mixtures for speaker representation.
However, 32 mixture count can also serve well in cases where there
are computational limitations.

We also observed that if we increase the size of the T matrix for
different number of mixtures in the UBM, there are no significant
gains after the size 50 as the accuracy curve becomes almost hori-
zontal. There is, however, a marked improvement in accuracy of one
case when the mixture count is 64. In that case, we see accuracy go-
ing from 79.60% at size 50 to 90.28% at size 200. Therefore, T size 50
may be proposed as an acceptable working configuration. Along with
this, the mixture count may be chosen as 32 or 128, depending on the
availability of computation resources.

Similar trends were seen for 10 sec, 15 sec and full length test files
(Rest of the graphs are in Appendix A). Table 3.1 lists the complete
set of results. Another interesting observation from the results is that
when we increase the length of test utterances, performance increases
going from 5 sec length to 10 sec length. However, there is either a
dip or no improvement in performance while going from 10 sec to 15
sec utterances. We also see that the performance is 100%, except for
the case of T size 10, for complete length test files. This is expected
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Figure 3.3: Performance evaluation with varying length of training files
keeping UBM (128), T size (50) and test utterance length (10 sec)
fixed

as the test utterances have sufficient amount of data for predicting
accurately.

In the next experiment, we have taken all of the 300 speakers. Tak-
ing the optimal results from the above experiment, we have fixed
the length of the testing files to be of 10 seconds each. Also, the pa-
rameters of the toolkit are similarly set from the output of the above
experiments, viz. UBM size of 128 mixtures and a T matrix size of 50.

We find that (Figure 3.3) as we keep increasing the length of the
training data from 2 minutes, the accuracy of the system keeps in-
creasing rapidly till 10 minutes. However, there is a slight dip or no
improvement in performance, when we go from 10 minutes to 12 min-
utes, where the performance dropped from 96.05% to 95.97%. Upon
further increasing the training utterance length, there is a slow im-
provement in accuracy, while still not increasing much from the accu-
racy of 10 minutes. However, the computing time increases. Hence, it
seems useful to take the training utterance length at 10 minutes. The
detailed results are presented in Table 3.2.

3.3.1 Additional Experiments: Accent recognition

While performing the above experiments, we hypothesized a two-
pass system where the geographical region or accent of a person
could be determined in the first pass and then speaker recognition
would be performed on the reduced search space of the particular
geographical region or accent only, instead of the complete set of
speakers. If there were a total of N accent groups and each accent
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Figure 3.4: Performance with different length of testing files for UBM size
128

Table 3.2: Performance with different length training utterance keeping
UBM (128), T Size (50) and Test Length (10 sec) constant

Training Data (Mins)  Accuracy

2 92.74
4 94.72
6 95.18
8 95.65
10 96.05
12 95.98
14 96.16
16 96.20
18 96.20
20 96.21

group has K speakers, then we could determine the speaker identity
with the two-pass approach using N + D models (by narrowing the
search space to a particular accent group), instead of N * D models
(complete set of speakers). To verify this intuition, we performed ex-
periments in this direction.

For the accent recognition experiments, we used a part of the TED-
LIUM dataset. Out of the 1495 recordings, we used 40 of them in
our experiments. As with the previous experiments, we manually re-
moved the claps and other such portions from the recordings.

For the first set of experiments, speech from 40 speakers were used
and split into two parts: training & testing. For training, we used 15
minutes of the recording from each speaker. For testing part for our
baseline experiment, we used utterances of 5 seconds in length as test
cases. Some of the test cases came from speakers who were not used
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Table 3.3: Speaker recognition and accent recognition results

Size of T Speaker Recognition (%) Accent Recognition (%)

10 85.97 90.77
20 87.15 92.97
50 94.13 97-26
100 95.08 96.84
200 98.16 96.90
400 99.06 99.63

in training but another similar accented speaker was used to train
the corresponding accent. Consequently, simple speaker recognition
experiments are bound to fail with these conditions. However, accent
recognition performs much better with these experimental conditions.
Specifically, out of the 40 speakers, 36 were included in training while
4 were just used for testing purposes. Splitting the test files into 5
seconds lengths resulted in 3283 total test cases. The test cases where
the corresponding speaker was included in training were 3263 and
where the corresponding speaker was not included in training were
20. Manual classification of every speaker according to his/her accent
or broad geographical region was performed. We came up with the
following broad categories: African, Canadian, Caribbean, Ethiopian,
Turkish, UK, US and Unidentified (if it was not possible to definitively
identify the accent category).

3.3.2 Tools used

All experiments were performed using the ALIZE toolkit. The ALIZE
toolkit is a free and open source toolkit that has been developed at the
Laboratoire d'Informatique d’Avignon (LIA) since February 2003. It
provides the necessary tools for development of speech and speaker
applications and supports i-vector modeling.

3.3.3 Results and discussion

We performed the accent recognition experiments for different dimen-
sions of the total variability matrix T. Table 3.3 lists the results. We
observe that increasing the dimension of T leads to increase in the
accuracy of the predicted accent.

Furthermore, as shown in Table 3.4 we observed that for some of
test cases, the predicted speaker turned out to be incorrect. However
the predicted accent was correct. This observations supports the in-
tuition that we could use a two-tier recognition system to improve
speaker recognition. The first stage could predict the accent and the
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Table 3.4: Example where accent recognition performs better than speaker
recognition

Size of T matrix True Speaker Predicted Speaker  Accent
10 Bill Davenhall Aaron Koblin US (both)
10 David Kelley Dan Ariely US (both)

Table 3.5: Example where speaker was not in training but accent determined
correctly

Size of T matrix True Speaker Predicted Speaker  Accent

10 Ellen Gustafon EdUlbrich US (both)

speaker can then be determined from the search space of only the
particular accent.

Another interesting observation was that accent recognition per-
formed exceedingly well with speakers that were not included in
training (Table 3.5). The corresponding accent was trained with one
speaker and tested with another speaker of same accent. Out of 20
such cases, 19 were predicted correctly which is very encouraging for
unseen data.

We investigated the average cosine distances, listed in Table 3.6 be-
tween the i-vectors of speakers of the same accent group. As expected
we found that the similar accent speakers have i-vectors which are
closer to each other in the total variability space. However, some of
them were separated with bigger differences than others.

The same observation was obtained when we constructed a con-
fusion matrix as shown in Table 3.7. It gives a clear idea about how
many times the accent is incorrectly interpreted. We can also observe
that i-vectors of which accents may be closer in total variability space.
Maximum accuracy of 100% is observed for Turkish accent while min-
imum accuracy of 97.83% is obtained for the UK accent. Sometimes
US and UK are observed to be getting confused with each other but
African and Canadian are much better separated. This justifies the

Table 3.6: Average cosine distance between i-vectors of accent pairs

Accent-Accent Average Cosine Distance
UK-UK 0.11
Us-us 0.03
UK-US -0.05
African-African 0.96
Canadian-Canadian 0.58

African-Canadian 0.08
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Table 3.7: Confusion matrix for accent recognition experiments. Here, Can.
represents Canadian, Carib. represents Caribbean, Eth. represents
Ethiopian, Un-id. represents Unidentified

True | /Predicted —  African Can. Carib. Eth. Turkish UK Us Un-id.

African 52 o o o o o o 1
Can. o 171 o o o 1 3 5
Carib. o o 103 o o o 1 o
Eth. 0 0 0 100 0 1 0 o
Turkish o o o o 100 o o o
UK o o o o o 315 6 1
UsS o 2 1 o o 3 2173 2
Un-id. o o o o o o o 242

difference between average cosine distances of UK-US (-0.05) and
African-Canadian (0.08) accents.

3.4 CONCLUSION

In this work, we analyzed the effect of variation of size of the total
variability matrix, T, for a given mixture count, on the accuracy of
the i-vector system. We also investigated how the mixture count of
UBM affects the accuracy while keeping the size of T matrix constant.
We found that the T matrix size 50 along with mixture count of 32
or 128 shows good performance. This also helps to reduce computa-
tional costs. While studying the effect of length of test utterances on
performance, we observed that the 10 sec length utterances produced
the best results. However, 100% accuracy can be achieved with longer
test utterances. While experimenting with the length of training utter-
ances, it was observed that using 10 minutes seems the most useful
option. Increasing the length of training utterances further does not
provide much improvement in performance.

As in the previous problem, reducing the dimension of the total
variability matrix and number of Gaussian mixtures needed for mod-
eling directly influences the system time for speaker recognition due
to involvement of numerous matrix operations. However, we mea-
sured the actual running time of experiments using state of art param-
eters (UBM size 2048, T 400) along with our own reduced parameters
(UBM size 128, T 50). We were able to reduce the running time of
i-vector extraction from 2 hours and 30 minutes to about 12 minutes
which is quite significant.

We also performed accent recognition experiments for speakers
from different geographical regions using i-vector approach. We ob-
tained 99.63% accuracy for accent prediction task on 40 speakers,
taken from the TED-LIUM database. We concluded that increasing
the size of total variability space leads to increase in the accuracy
of prediction. Further, accent recognition works better than simple
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speaker recognition task, even when the test speaker was not present
in the training data. And the i-vectors for speakers with similar ac-
cents were found closer to each other than those of speakers with
differing accents. The results support the intuition for a two-pass sys-
tem for speaker recognition using accent recognition as a first step.
This will also reduce the number of models searched to predict the
speaker identity provided that accent recognition performs correctly.



LEARNING CONTEXTUAL SPEAKER-RELATED
REPRESENTATION FROM DATA

In the previous chapters, we looked at reducing the size of features
and speaker models. After observing the outcomes of those experi-
ments, we believe that there can be improvements at the feature stage
in the speaker recognition system. As we have seen that it was pos-
sible to reduce the size of feature vectors without significantly com-
promising on the accuracy, it can be concluded that there was some
information in the original feature vector that was not helping in the
correct identification of speaker identities. Therefore, it is imperative
that the feature set be improved such that it can capture important
and discriminating information which help discern between different
speakers.

However, designing a feature set to retain relevant information
from the speech signal while discarding the unhelpful information
has several issues associated with it. Foremost, the process requires
hard work, expertise as well as domain and task-specific knowledge.
These requirements can prove to be too constraining in many situ-
ations for speech and speaker recognition systems. Furthermore, a
slight change in the task can force us to design a completely new
feature set for the new problem. An alternate approach to generate
new features automatically and attempt to learn the features from
the speech data itself. Using this methodology has a number of ad-
vantages. It could alleviate the need for human expertise while also
being comparatively better at speaker identity representation than
their traditional counterpart. A lot of research in recent years have
been focused toward achieving the goal of learning representations
automatically from data [40, 76].

In this chapter, we present a Recurrent Neural Networks (RNNs)
based Autoencoder (AE) architecture to learn features directly from
data as an alternative to the traditional features such as the Mel Fre-
quency Cepstral Coefficients (MFCCs).

Several studies in the literature have used both RNNs and AEs
separately to good effect. Some of them have used AEs to derive in-
termediate representations of input data [50]. There have also been
good results with different types of AEs in the past such as Denois-
ing AE [72] for removing noise from images. AEs enable us to obtain
a smaller representation of the input data such that we can regen-
erate the input from the smaller representation with minimal error,
effectively acting as feature detectors.
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RNNSs [24], as described later in the chapter, are a type of neural
nets that include the information from previous inputs with the cur-
rent input. It is effectively a neural network that processes inputs
through time steps and remembers what it has seen in previous time
steps. These networks are effective when there is a time relation be-
tween the inputs. Time series, speech data, consecutive frames of
videos are all such data that satisfy this property.

We use an RNN AE to leverage the benefits of both the architec-
tures and combine their effectiveness to generate contextual repre-
sentations of speaker-related data that may capture the context from
before and after a particular frame of speech. This contextual infor-
mation, from previous inputs, included with each frame provides us
a better feature set.

There are studies that have used Deep Neural Networks includ-
ing RNNSs [25] directly to perform end-to-end speech recognition. In
these cases, there is no separate calculation of features and modeling.
Instead, the inputs (speech signals/utterances) are directly mapped
to outputs (transcriptions). Our approach is different from such mod-
eling methods in that we are using the RNN AE architecture to only
generate a smaller representation of the input speech data. Without
using the complete end-to-end pipeline of state-of-the-art methods,
we can save computations involved in such speech recognition sys-
tems. Rather, we use a GMM-UBM system for modeling which is
comparatively inexpensive and can provide good results for a speaker
recognition task.

4.1 SPEAKER MODELING

Gaussian Mixture Models (GMMs) have been the mainstay of the
speaker recognition and verification tasks for several years [57]. As in-
troduced and discussed in chapter 2, the modeling approach involves
using a finite number of Gaussian components that are hypothesized
to represent speaker’s characteristice. A GMM model can be repre-
sented as a weighted sum of M component Gaussian densities as
follows:

M
p(x|A) =) wig(x|pi, Zi) (4.1)

i=1
where x is a D-dimensional vector, w;, i = 1,2,..., M represent the
mixture weights, and g(x|u;, %;),i = 1,2,..., M define the compo-
nent densities of the Gaussian mixture. Each individual component
density is a D-variate Gaussian function which is defined as follows:

1 1 o
g(x[ui %) = (@), i P {—z(x — )T (x - ]41‘)} (4-2)
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where yi; is the mean vector for component i and ; is the correspond-
ing covariance matrix. The sum of all the weights must be equal to
1.

Universal Background Models (UBMs) [56] were proposed in ef-
forts to improve the training time of models and the quality of the
speaker models obtained. A UBM is speaker independent Gaussian
mixture model which is trained from a large set of speakers to repre-
sent the general speech characteristics. The idea is to use the UBM for
the adaptation of the individual speaker models with UBM parame-
ters as priors. It was observed that this approach led to performance
improvements in recognition experiments. The models obtained us-
ing UBMs are called Adapted GMMs.

Neural Networks are a brain-inspired idea of computation that
have been used as a modeling technique for several difficult and often
otherwise intractable problems. They have also been applied for mod-
eling speech and speaker data and have had a fair amount of success.
Neural networks consist of many interconnected individual units ar-
ranged in several layers. The first layer is called the input layer, the
last layer is known as output layer and all the layers in between are
termed as hidden layers. Each node computes an activation function
and applies a non-linearity to squeeze the output into some particu-
lar range (usually -1 to 1 or o to 1) and passes the result to further
layers for computation. A common example of a neural network ar-
chitecture that has been successful in solving many problems is the
Multi-layer Perceptron (MLP) [58]. Figure 4.1 shows a basic MLP ar-
chitecture.

INPUT LAYER HIDDEN LAYER  OUTPUT LAYER

Figure 4.1: A typical Multi Layer Perceptron with 3 input nodes, 4 hidden
nodes and 2 output nodes
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Researchers then tried to extend the MLP architecture to more com-
plicated and deeper networks using more number of units. But soon,
it became infeasible to train these deeper networks quickly enough
to be useful for important tasks. To solve this problem, new ways
of training the models emerged and the field of deep learning came
to the forefront of speech and speaker recognition research. By us-
ing clever techniques, it was possible to train several layers deep net-
works.

The traditional neural net architecture treated all the inputs given
to it separately, with no relation between different inputs. This is prob-
lematic for data that is inherently time related. To resolve this issue
and treat the different inputs as a sequence of data points, RNNs
were proposed to capture time relationships among the input data.
Figure 4.2 shows a typical RNN architecture and the internal state
used to realize the time relationship between different inputs. The
vanilla RNN being quite slow in practice, several clever modifications
have now allowed researchers to practically utilize RNNs (and its
faster variations) to model and predict time series type data. One such
popular architecture is called the Long-Short Term Memory (LSTM)
[29]. LSTM effectively uses its internal states to remember important
things within the context of the input sequence. It maintains an inter-
nal state representation to understand and capture the time relation
between inputs. We have used the LSTM model variant for our exper-
iments to learn contextual features automatically from speech data.

h; (output)

w; (internal state)

> Neural
Network

X; (input)

Figure 4.2: A typical representation of RNN model

AEs are a type of neural net architecture that tries to reconstruct the
given input from its hidden layer representation. The hidden layer
representation is generally quite smaller than the input size. This
property allows them to effectively act as feature learners or detec-
tors since the hidden representation which can generate the input
back with minimal loss should be able to capture all the relevant
information from the input. These architectures are one of the ways
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that we can learn the features from the data itself without needing hu-
man expertise for explicitly devising task-specific features. This pro-
cess of generating features implicitly is termed as feature learning or
representation learning in the literature. Along similar directions, we
propose an approach to learn features or representations for speaker-
related information using RNNs (LSTMs) and AEs as an alternative
approach to the very popular MFCCs feature set and other manually
designed feature sets. Figure 4.3 shows our proposed architecture.

X'; (reconstructed input)

Hidden layer
(bottleneck)

?xt (input)

Figure 4.3: The proposed RNN (LSTM) AE model for feature learning

It is widely believed that it is vitally important to capture the spec-
tral shape of the speech signal to effectively represent speech signals
for processing to realize an accurate and robust recognition system.
MEFCCs [9] were devised in the 1980s as a way to capture and repre-
sent the spectral shape of the raw speech waveform. These represen-
tations were designed for short-term representation of the speech sig-
nal. Since their inception, they have slowly become the state-of-the-art
features for almost every speech and speaker recognition system. Re-
searchers have been trying to improve the MFCC feature set through
various approaches, including some hybrid ones, in order to obtain
features that can capture all the important aspects of speech signal
while discarding away the noise or unhelpful portion. The search for
such a feature set is still going on. Our method is another such effort
to generate features that could be competitive or superior than the
standard MFCCs for speech representation.
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4.2 EXPERIMENTAL LAYOUT
4.2.1  Data used

For our experiments, we used a part of the TED-LIUM [59] dataset.
The TED-LIUM dataset consists of 1495 TED talks recorded at a sam-
ple rate of 16000, 16 bit representation, with a bit rate of 256 K. The en-
coding used is 16-bit signed integer PCM. Out of the 1495 recordings,
we used 50 of them in our experiments which amount to more than
40 hours of speech data. All files used were first manually pruned to
remove all non-speech parts, which included music, advertisements
and claps/cheering from the audience. Also, some files were musical
performances. They were discarded and replaced with normal speech
data.

For the experiments, the 50 files were taken and split into two parts:
training & testing. For training, we used 5 minutes of the recording
from each speaker. For the testing part, we used utterances of 0.5
seconds in length. For each speaker, 50 test cases were used.

4.2.2  Feature learning

We used an RNN (LSTM) AE setup, described in previous section,
for learning features for the input speech data from each speaker. For
implementation, we used the TensorFlow [1] library in Python. We
feed the frames of speech as input. For capturing context informa-
tion from the input signal, we use a context of 7 previous and 7 next
frames. This context enables the RNN to use the neighborhood of a
particular portion of the signal to better approximate and estimate
the hidden layer. The output from the hidden layer is taken and re-
constructed at the output layer. The square of the difference between
the input and the reconstructed signal defines the loss function for
the experiment. We train the model to minimize the loss value. When
the network is trained, we obtain the hidden values such that the re-
construction of the signal leads to minimal loss. These hidden values
can then be utilized as features or representations for speaker-related
information for the input speaker data. Using the trained network,
we then compute the features for all the speakers. One of the major
advantages with this approach is better approximation of the hidden
values that serve as features through the use of context information
of neighborhood frames.

In order to determine the most appropriate size of feature set learn-
ed through the RNN (LSTM) AE system, we performed experiments
with seven (7) different configurations. We experimented with 5, 10,
15, 20, 25, 30, 35 and 40 hidden units. Equivalently, these configura-
tions represent the sizes of features or representations learned. With
these experiments, we could come up with a reasonable configuration
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for learning the most appropriate sized feature set. We list the results
of these experiments in the next section.

4.2.3 Speaker Modeling

The computed features from the previous step are then fed into the
GMM-UBM system to generate speaker models. First, a generalized
UBM is trained on all data. Next, speaker models are adapted from
the UBM to generate individual speaker models. The models consist
of the means of Gaussian components, obtained by adapting UBM
means using the speaker specific data for individual speakers. Dur-
ing the testing phase, we compute the probability of each of the ut-
terances, given the speaker models and the speaker model giving the
highest probability value is predicted to be the true speaker.

4.3 RESULTS AND DISCUSSION

100 T T T T T T T T T

90 N

80 B8 7862 ;708 7746 .

70.08 68.84

nr 65.38 66.52
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Configuration for feature generation

Figure 4.4: ASR performance with different feature sets. In the graph, 5, 10,
..., 4o represents RNN (LSTM) AE architecture with 5, 10, ..., 40
hidden units respectively. MFCC-12 represents standard MFCC
feature set of 12 dimension.

Figure 4.4 shows the results of the experiments. We have compared
the proposed method of representation or feature learning with the
traditional MFCC feature set of 12 dimension. Further, we have used
various configurations of the RNN (LSTM) AE setup to learn repre-
sentations of different sizes. The training and testing data used for all
the experiments is kept same and is described in section 4.2.1. As we
can see from the figure 4.4, the overall average accuracy of speaker
recognition system using the proposed RNN (LSTM) AE method for
feature learning outperforms the system using MFCC feature set in
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Table 4.1: ASR performance with different RNN (LSTM) AE configurations
for learning features and with standard MFCC feature set

Configuration Feat. Size Accuracy (%)

RNNAE-5 5 65.38
RNNAE-10 10 70.08
RNNAE-15 15 79.84
RNNAE-20 20 78.62
RNNAE-25 25 77.28
RNNAE-30 30 77.46
RNNAE-35 35 68.84
RNNAE-40 40 62.36
MECC-12 12 66.52

5 of the 7 configurations. The average accuracy for the best config-
uration of the RNN (LSTM) AE system is 79.84% while it is 66.52%
for the MFCC system. We also see that as we increase the size of the
learned feature set, the accuracy only increases up to size 15. After
that, it stays almost same or even deteriorates in some configurations.
This indicates that choosing a bigger set of features may end up con-
fusing the system rather than improving the accuracy proportionately.
We can therefore infer that using a feature set of size 15 seems like
a reasonable option for the given task of speaker recognition. The
complete results of all experiments are listed in Table 4.1.
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Figure 4.5: ASR performance with RNNAE-10 configuration for individual
speakers



4.4 CONCLUSION

There are a few additional observations from the experimental re-
sults, however, that merit the reader’s attention. We can observe from
figure 4.5 that the accuracy for individual speakers varies quite a bit.
On further analysis of some of the best and worst performing speak-
ers, we found that the differences may be attributable to at least the
accent of the speakers. The best performing speakers were found to
be native speakers of English language. Since the pool of speakers
used for the experiments contained a higher proportion of English
speaking population, the model seems to have captured the proper-
ties of such speakers. This may have led to a bias toward the native
English speakers and against non-native speakers as we found that
most of the worst performing speakers were not from natively En-
glish speaking regions. In order to fix this problem, we need to have
a database that has a balanced set of speakers from a wide range of re-
gions. This would ensure that all the speakers’ characteristics can be
captured correctly by the GMM-UBM model and the biasing could be
reduced to a minimum. From a technical perspective, we can imagine
another solution for this problem. We can deliberately choose a base
accent for constructing a model. From there onward, we can adapt
the base model for other specific accents using data from respective
speakers, from different regions. This work can form the extension of
the current study.

Another interesting observation is the issue of incorrect test cases
occurring in both high and low performing speakers. Since we did not
manually extract the recordings for voiced regions, it is expected that
there may be some test cases where there may not be sufficient voiced
activity to detect the speakers correctly since the test cases were de-
liberately taken to be very short (0.5 s). To alleviate this problem, we
can alter the way to construct our test cases in further experiments.
Instead of choosing for fixed length test cases, we can specifically
choose voiced regions using a robust criteria for voice activity detec-
tion (VAD). This type of use case is much more practical for usage of
speaker recognition systems in practice as we cannot expect the users
to speak at a predefined rate and for a specific amount of time. There
are several VAD techniques present in literature that can give near
perfect voiced regions.

4.4 CONCLUSION

From the results and discussions of the experiments, it is apparent
that learning features or representations of speaker-related informa-
tion directly from data instead of using human expertise to derive
features can be highly beneficial. Besides saving resources in terms of
expertise, it is indicated by experimental results for ASR task that they
outperform the traditional MFCC feature set on average. As per the
experimental results, it can be concluded that using a feature set of
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size 15 can be beneficial for ASR experiments. Also, using the GMM-
UBM architecture to model the speakers using the learned represen-
tation or features can lead to good performance without incurring
the heavy computations involved in deep architectures used in end-
to-end recognition systems.

It is further realized through the experiments that there is an ur-
gent need for balanced databases that contain speakers from a wide
range of geographical regions to ensure that sufficient variability of
accents are accounted for in the model. The availability of such data
can significantly impact the performance of ASR systems in practice.
This also presents us with a technical challenge of adapting systems
for different accent-specific conditions from a base set of speakers.
Using such an approach, we can, to a large extent, compensate for
an unbalanced database of speakers. However, such methods are not
ubiquitous in the literature and need to be experimented and refined
to suit ASR tasks.



CONCLUSIONS AND FUTURE WORK

In this chapter, we present the conclusions of the work carried out
within the scope of this thesis. Experiments aimed at reducing com-
putations involved in Automatic Speaker Recognition (ASR) systems
through reductions in size of feature vectors and speaker models were
performed. Significant improvements were observed with reductions
at both feature and model level. Further, on observing scope of im-
provement in the MFCC feature set, a new method to learn features
or representations for speaker-related information was proposed. It
was observed that learning representations from the speech data can
provide good accuracy for speaker recognition tasks. The next sec-
tions describe these experiments briefly and then list some of the
possible future directions of research.

5.1 REDUCTION AT FEATURE LEVEL

In chapter 2, we looked at reducing the size of feature vectors by
processing the raw features. These processed features were then used
to build speaker models that were used in the recognition step where
we estimate the probability of the test utterance coming from one of
the speakers.

In the experiments, we investigated how the performance of speaker
recognition system varies with respect to reduction in size of the fea-
ture set. These experiments were designed to help evaluate the perfor-
mance at different sizes of the feature vector. With such trends avail-
able, it may be possible to design systems that can provide similar
performance levels but at a lesser cost in terms of time and compu-
tation since a smaller feature vector implies faster running times and
lower computational costs. It is also possible to design systems specif-
ically tailored for low resource devices that cannot afford to perform
complex calculations needed for state-of-the-art methods.

We first used the Naive dropping technique for reducing the fea-
ture set size. It provided promising results but there was no legiti-
mate way to determine the rank of the features with this method as
the order of the features itself is taken to be the rank of the feature in
the feature vector. Therefore, the F-ratio method was tested to system-
atically decide on the merit of each feature. Next, feature re-extraction
methods were tested for feature reduction on the data.

First PCA was applied for feature reduction. It was observed that
approximately 10% performance was sacrificed while achieving about
50% reduction in the size of feature vector. Using LDA as the feature
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re-extraction technique, however, with the same amount of perfor-
mance deterioration, the feature set size was reduced to a higher ex-
tent than what was achieved with PCA. Hence, in this view, LDA
would be considered as the preferred method against PCA. In case
of Factor Analysis, it was observed that it was possible to reduce
the feature set size to more than 40% with minimal performance
degradation. Nonlinear feature re-extraction methods viz. KPCA and
ISOMAP, also demonstrated similar performance trends. With KPCA,
it was possible to reduce the feature set size by approximately 50%
with a minimal performance sacrifice, with performance even increas-
ing at some lower dimensions. This can be concluded from the graphs
presented above. With ISOMAP, it was again observed that it is possi-
ble to reduce the feature set by 50% while obtaining an overall higher
performance by approximately 30%. The best performance was ob-
served with feature set of size 10 with ISOMAP technique. However,
all re-extraction methods incurred an overhead when the transforma-
tion of the test feature vector is applied during the testing phase as
each test vector has to multiplied by a loading matrix.

Overall it can be concluded that using either re-extraction or se-
lection techniques, it is possible to provide significant reductions in
feature vector size which can directly affect the response time of the
speaker recognition system. These reductions can lead to reduced
processing time and thus enable us to provide speaker recognition
services on low resources devices themselves. For example, if we con-
sider the original dimension of MFCC feature set to be 12 and the
reduced dimension to be 6. For calculation of component density of
one Gaussian, for a single frame of speech, O(n!!) time steps are
needed approximately where 7 is size of the feature. When original
feature size of 12 is used, it comes to approximately 7.43x10! time
steps. For the reduced feature of size 6, the same evaluates to 6.5x10°
time steps. Hence we see a distinct reduction in the number of time
steps needed for evaluating a single Gaussian density for one frame.
As per the calculation, this will lead to a significant improvement for
32 mixture Gaussian with approximately 100 frames for a complete
test utterance.

5.2 REDUCTION AT MODEL LEVEL

In chapter 3, we discussed the experiments with i-vectors and the re-
ductions obtained at the model level. The high dimensional speaker
models were reduced to a lower dimension to make the speaker recog-
nition faster and cheaper in terms of computation. The configurations
for model generation were tuned using the results of the experiments
performed.

In these experiments, we analyzed the effect of variation of size of
the total variability matrix, T, for a given mixture count, on the ac-
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curacy of the i-vector system. We also investigated how the mixture
count of UBM affects the accuracy while keeping the size of T ma-
trix constant. We found that the T matrix size 50 along with mixture
count of 32 or 128 shows good performance. This also helps to reduce
computational costs. While studying the effect of length of test utter-
ances on performance, we observed that the 10 sec length utterances
produced the best results. However, 100% accuracy can be achieved
with longer test utterances. While experimenting with the length of
training utterances, it was observed that using 10 minutes seems the
most useful option. Increasing the length of training utterances fur-
ther does not provide much improvement in performance.

As in the case with reduction at feature level, reducing the dimen-
sion of the total variability matrix and number of Gaussian mixtures
needed for speaker modeling directly influences the system time for
speaker recognition due to involvement of numerous matrix opera-
tions. However, for these experiments, we measured the actual run-
ning time of experiments using state of art parameters (UBM size
2048, T 400) along with our own reduced parameters (UBM size 128,
T 50). We were able to reduce the running time of i-vector extraction
from 2 hours and 30 minutes to about 12 minutes which is quite sig-
nificant. Similar improvements were observed at every stage of the
experimental pipeline.

We also performed accent recognition experiments for speakers
from different geographical regions using i-vector approach. We ob-
tained 99.63% accuracy for accent prediction task on 40 speakers,
taken from the TED-LIUM database. We concluded that increasing
the size of total variability space leads to increase in the accuracy
of prediction. Further, accent recognition works better than speaker
recognition task, even when the test speaker was not present in the
training data. And the i-vectors for speakers with similar accents
were found closer to each other than those of speakers with differ-
ing accents. The results support the intuition for a two-pass system
for speaker recognition using accent recognition as a first step. This
will also reduce the number of models searched to predict the speaker
identity, provided that accent recognition performs correctly.

5.3 LEARNING REPRESENTATIONS FOR SPEAKER-RELATED INFOR-
MATION AUTOMATICALLY FROM DATA

After observing the outcomes of experiments in chapters 2 and 3,
we hypothesized that there can be improvements at the feature stage
in the automatic speaker recognition system. As we have seen that it
was possible to reduce the size of feature vectors without significantly
compromising on the accuracy, it can be concluded that there was
some information in the original feature vector that was not helping
in the correct identification of speaker identities. Therefore, it is im-
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perative that the feature set be improved such that it can capture im-
portant and discriminating information which help discern between
different speakers. This direction was the topic of investigation in
chapter 4.

However, designing a feature set, from scratch, to retain impor-
tant information from the speech signal while discarding the useless
data has several problems associated with it. Foremost, the process
requires hard work, expertise as well as domain and task-specific
knowledge. These requirements can prove to be too constraining in
many situations. Furthermore, a small change in the task can force us
to completely re-design a new feature set for the modified problem.
Alternatively, we can try to generate new features automatically and
attempt to learn the features from the speech data itself. Using this
methodology has a number of advantages. It could alleviate the need
for human expertise while also being comparatively better at speaker
identity representation than their traditional counterparts. A lot of
research in recent years have been focused toward achieving the goal
of learning representations automatically from data [40, 76].

In this chapter, we discussed a Recurrent Neural Networks (RNNs)
based Autoencoder (AE) architecture to learn features directly from
data as an alternative to the traditional features such as the Mel
Frequency Cepstral Coefficients (MFCCs). We have used the LSTM
model variant for our experiments to learn contextual features auto-
matically from speech data.

From the results of the experiments, it is apparent that learning fea-
tures or representations of speaker-related information directly from
data instead of using human expertise to derive features can be highly
beneficial. Besides saving resources in terms of expertise, it is indi-
cated by experimental results for ASR task that they outperform the
traditional MFCC feature set on average. It may also be concluded
that using a feature set of size 15 can be beneficial for ASR experi-
ments. Also, using the GMM-UBM architecture to model the speakers
using the learned representation or features can lead to good perfor-
mance without incurring the heavy computations involved in deep
architectures used in end-to-end recognition systems.

It is further realized through the experiments that there is an urgent
need for balanced databases that contain speakers from a wide range
of geographical regions to ensure that sufficient variability of accents
are accounted for in the model. The availability of such data can sig-
nificantly impact the performance of ASR systems in practice. This
also presents a challenge of adapting systems for different accent-
specific conditions from a base set of speakers. Using such an ap-
proach, it may be possible, to a large extent, to compensate for an
unbalanced database of speakers.
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FUTURE RESEARCH DIRECTIONS

The following avenues could be explored as part of the future work
of the thesis:

55

* Experiments performed for reducing the feature set size can be

tested thoroughly by implementing them on actual low-resource
devices for providing on-device speaker recognition services.
The study can further be extended by including the device mi-
crophone itself for capturing the test utterances.

Besides using practical configurations of the i-vector method to
obtain smaller speaker models, research may be conducted to
improve the method used to generate the model so that better
speaker models can be derived.

Other sophisticated methods may be employed for learning spe-
aker-related representations that can enable more accurate spe-
aker recognition systems.

Speech data is needed for any and every experiment. It is impor-
tant that several databases for speech are created for different
speech tasks. The databases need to be created with care so as
to be useful in their intended target experiments such as speech
recognition, speaker recognition, accent recognition, speaker di-
arization, language recognition, etc.

DESIRABLE POINTS OR QUESTIONS RAISED BY THESIS EXAM-
INER

Question: While the models for speaker identification based on
speech extraction are well discussed, the features themselves
needed to be mentioned in the automated method of feature
extraction. Are they irrelevant for the present study?

Response: While it is certainly possible to specify and emulate
the extraction of a specific type of feature set, we did not work
on this aspect intentionally. Our idea was to let the method au-
tomatically settle on to those representations that were best able
to regenerate the original data points (speech data).

Question: What are the relative advantages of the different ex-
traction techniques with regard to speaker variation and noise
variation?

Response: While MFCCs have been found to be most useful
feature extraction technique overall, different techniques may
provide better performance for different speakers. Therefore, it
may be possible to use different feature extraction techniques
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for analysis of different speakers. Furthermore, this approach
may be beneficial for speaker verification experiments where
we claim a speaker identity and verify from the system.

During the course of the present study, we made extensive use
of the TED LIUM database of speech data. This database con-
sists of 1495 Ted talks recorded in very clear environments with
minimal noise. Hence, we cannot comment about the advan-
tages of different extraction techniques in regard to noise vari-
ation at the moment. However, this is an interesting direction
that we can take up in future research. For this purpose, we can
either manually introduce noise in clean speech database or we
can work directly on existing noisy speech databases.



APPENDIX

In this appendix, we present the rest of the graphs for the results of
experiments conducted in Chapter 3.
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