
Formal Verification and Security Analysis of High-
level Synthesis

Ramanuj Chouksey

Formal Verification and Security Analysis of
High-level Synthesis

Thesis submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

by

Ramanuj Chouksey

Under the supervision of

Dr. Chandan Karfa

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati 781039, India

August, 2020

Declaration

I, Ramanuj Chouksey, confirm that:

a. The work contained in this thesis is original and has been done by myself

and the general supervision of my supervisors.

b. The work has not been submitted to any other Institute for any degree or

diploma.

c. Whenever I have used materials (data, theoretical analysis, results) from

other sources, I have given due credit to them by citing them in the text of

the thesis and giving their details in the references.

d. Whenever I have quoted written materials from other sources, I have put

them under quotation marks and given due credit to the sources by citing

them and giving required details in the references.

Place: IIT Guwahati Ramanuj Chouksey

Date: 10 June 2020

Certificate

This is to certify that the thesis entitled “Formal Verification and Security

Analysis of High-level Synthesis,”, submitted by Ramanuj Chouksey to

Indian Institute of Technology Guwahati, is a record of bona fide research work

under my supervision and I consider it worthy of consideration for the award of

the degree of Doctor of Philosophy of the Institute.

Dr. Chandan Karfa

Assistant Professor

CSE, IIT Guwahati

Date: 10 June 2020

Acknowledgements

First of all, I express my deep sense of regards and indebtedness to my supervi-

sor Dr. Chandan Karfa for his valuable guidance, continuous encouragement and

wholehearted support, which are of immense help to me in completing this the-

sis. Dr. Chandan Karfa is an excellent advisor. He taught me how to choose the

problems to work on, how to write papers, and how to present them. Without

his support and encouragement, this thesis would not have been accomplished. I

would like to give the best “thank you” to Prof. Purandar Bhaduri for his valuable

insights and comments on the translation validation part of this thesis. His deep

theoretical knowledge had a great influence on my Ph.D research and future career.

I would like to thank the rest of my thesis committee members: Prof. J. K. Deka,

Prof. H. K. Kapoor, and Prof. K. V. Krishna for their insightful comments and

encouragement. Their comments and suggestions helped me to widen my research

from various perspectives.

I would like to express my heartful gratitude to the director, the deans and

other managements of IIT Guwahati whose collective efforts has made this insti-

tute a place for world-class studies and educations. I am thankful to all faculty

and staff of Department of Computer Science and Engineering for extending their

co-operation in terms of technical and official support for the successful completion

of my research work.

I am grateful to my parents for their unending love and support. It would be

impossible to attempt to enumerate all those friends who have been supportive

throughout my tenure as a PhD student. To all of you, I offer my sincere love,

gratitude and appreciation. I would like to thank my wife Sivashankari for her

unconditional love and making me feel at all times that my education and my

dreams are as important as her own. I would like to thank my daughter Kumudini

whose contagious smile can brighten up any tiring day. This thesis is dedicated to

my loving wife Sivashankari.

Abstract

High-level synthesis (HLS) is the process of translating a behavioral description

written in C/C++ into a Register Transfer Level (RTL) desgin. HLS tools are

large and complex programs that may be incorrect in some contexts, which might

introduce bugs in the generated RTL. Translation validation is the process of

proving that the target code is a correct translation of the source program being

compiled. In this thesis, a translation validation method based on propagation of

mismatch values in a path-based equivalence checking method (PBEC) framework

is proposed to validate the various scheduling optimizations during HLS efficiently.

Specifically, this method verifies code motion involving loops, ignores the false

computations, and handles the scenarios involving path merge/split. We have

analyzed the correctness and complexity of the method. Experiments on various

HLS benchmarks demonstrate the efficiency and scalability of our method.

In the case of non-equivalence, PBEC approaches provide too little information

to debug the root cause of the non-equivalence. This thesis presents a counter-

example generation framework to demonstrate the non-equivalence between the

input behavior to HLS and the scheduled behavior generated by HLS. Equivalence

checking of programs is an undecidable problem in general. Therefore, a PBEC

method may produce a false negative results for which the counter-example will

not arise. However, this helps the verification engineer to identify the limitation

of the current translation validation tool and hence its enhancement in future.

Logic locking is an Intellectual Property (IP) protection technique against IP

piracy, reverse engineering, hardware Trojans and counterfeiting attacks. RTL

locking during HLS seeks to prevent IP theft of a design by locking the RTL

description that functions correctly on the application of a key. This thesis intro-

duces a satisfiability modulo theories (SMT) attack to determine the secret key

of a locked RTL design. We have shown that our tool can detect keys of a locked

RTL generated by TAO, a state-of-the-art HLS locking solution.

Keywords: Translation Validation, Equivalence Checking, Code Motion Trans-

formation, Finite State Machine with Datapath (FSMD), Logic locking, RTL Lock-

ing, SMT attack.

xi

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Correctness of High-level Synthesis 3

1.2 Security in High-level Synthesis . 5

1.3 Motivations and Objectives . 6

1.4 Contributions of the Thesis . 8

1.4.1 Translation Validation of Code Motion Transformations In-

volving Loops during Scheduling 8

1.4.2 Verification of Scheduling of Conditional Behaviors in High-

level Synthesis . 9

1.4.3 Improving Performance of a Path-Based Equivalence Checker

using Counter-Examples . 10

1.4.4 Security Analysis of Logic Locking during High-level synthesis 10

1.5 Organization of the Thesis . 11

2 Literature Survey 13

2.1 Verification of High-level Synthesis 13

2.1.1 HLS Tool Verification . 13

2.1.2 Translation Validation . 14

2.1.3 End-to-end Verification of HLS 14

2.1.4 Phase-wise Verification of HLS 15

2.1.5 Our Objective . 20

2.2 Logic locking: Defenses and Attacks 20

2.2.1 Our Objective . 27

3 Translation Validation of Code Motion Involving Loops during

Scheduling 29

3.1 Introduction . 29

xiii

3.1.1 Code Motion Techniques . 29

3.1.2 Summary of Verification of Code Motion 31

3.1.3 Contributions . 32

3.2 The FSMD Model . 33

3.2.1 Equivalence of FSMDs . 35

3.3 Value Propagation Based Equivalence of FSMDs 37

3.4 Motivations . 40

3.4.1 False Positive Case of the VP Method 41

3.4.2 False Computation Involving Loops 43

3.4.3 Code Motion Involving Loops 44

3.5 Proposed Solutions . 45

3.5.1 Showing the Non-Equivalence for False Positive Cases 45

3.5.2 Handling False Computation Involving Loops 46

3.5.3 Handling Loop Invariant Code Motion 47

3.6 Enhanced Value Propagation Based Equivalence Checking (EVP) . 52

3.7 Correctness and Complexity . 57

3.7.1 Soundness . 59

3.7.2 Termination . 60

3.7.3 Complexity . 60

3.8 Experimental Results . 61

3.9 Conclusion . 66

4 Verification of Scheduling of Conditional Behaviors in High-level

Synthesis 67

4.1 Introduction . 67

4.1.1 Scheduling of Conditional Behaviors 67

4.1.2 Summary of Verification of Scheduling of Conditional Be-

haviors . 68

4.1.3 Contributions . 69

4.2 Motivations . 70

4.2.1 Path Split . 70

4.2.2 Choice of Cutpoints . 72

4.2.3 If Optimization . 74

4.3 Proposed Solution . 75

xiv

4.3.1 Handling Path Split . 75

4.3.2 Cutpoint Selection Scheme 76

4.3.3 Handling the Scenario Involving if Optimization 78

4.4 Equivalence of Paths . 78

4.5 Overall Verification Method . 87

4.6 Correctness of the Equivalence Checking Procedure 90

4.6.1 Correctness . 90

4.6.2 Termination . 93

4.6.3 Complexity . 94

4.7 Experimental Results . 95

4.8 Conclusions . 100

5 Improving Performance of a Path-Based Equivalence Checker us-

ing Counter-Examples 101

5.1 Introduction . 101

5.2 Motivations . 102

5.3 Counter-Trace Generation . 103

5.4 Counter-Example Generation using Counter-Trace 105

5.4.1 Modeling Counter-trace using Z3 SMT Solver 105

5.4.2 Modeling Counter-trace using CBMC 109

5.5 Incorporation of Results in Equivalence Checking Framework 112

5.6 Overall Equivalence Checking Framework 114

5.7 Counter-Trace Visualization . 117

5.8 Experimental Results . 120

5.9 Conclusions . 122

6 Security Analysis of Locking during High-level Synthesis 123

6.1 Introduction . 123

6.1.1 Logic Locking . 123

6.1.2 Summary of Threats on Logic Locking 123

6.1.3 Contributions . 124

6.2 Backgrounds . 125

6.2.1 RTL Structure . 125

6.2.2 Attack Model . 126

xv

6.3 Motivation . 126

6.3.1 Constant Locking . 127

6.3.2 Branch Locking . 127

6.3.3 Datapath Locking . 128

6.4 Attack Methodology . 129

6.4.1 Problem Formulation . 129

6.4.2 Rewriting Method . 131

6.4.3 Algorithm Description . 133

6.4.4 Illustrative Examples . 134

6.4.5 Attack Tool-flow . 137

6.5 Experimental Results . 137

6.5.1 Discussion of the Results . 140

6.6 Conclusions . 141

7 Conclusion and Future Work 143

7.1 Summary of Contributions . 143

7.1.1 Translation Validation of Code Motion Transformations In-

volving Loops during Scheduling 143

7.1.2 Verification of Scheduling of Conditional Behaviors in High-

level Synthesis . 144

7.1.3 Improving Performance of a Path-Based Equivalence Checker

using Counter-Examples . 145

7.1.4 Security Analysis of Logic Locking during High-level synthesis145

7.2 Future Directions . 146

7.3 Conclusion . 149

Bibliography 151

xvi

List of Figures

1.1 High-level synthesis flow . 2

1.2 Phase-wise verification of HLS . 4

3.1 Various speculative code motions [15] 30

3.2 Three possible scenarios during code motion transformations in-

volving loops . 31

3.3 An FSMD example . 34

3.4 An example of value propagation 39

3.5 An example where the VP method gives false positive result. 42

3.6 An example where the VP method provides false negative result. . . 43

3.7 Nested loop structure . 46

3.8 A case 1.1 where unmarked variable x is defined identically in both

the loops . 48

3.9 A case 1.2 where unmarked variable x has some mismatch at the

end of the loop . 48

3.10 An example of code motion involving scenarios S3 49

3.11 An example where unmarked is used before being defined. 49

3.12 A case 2.1 where a marked variable x has the same value at the end

of the loop . 50

3.13 A case 2.3 where the values of the marked variable x do not update

in both the loops . 50

3.14 An example of code motion involving scenarios S1 and S2 51

3.15 A overall flow of the EVP method 52

3.16 All possible scenarios where x has some mismatch at the end of the

loop . 57

3.17 A bug in SPARK . 66

4.1 An example of behavioral description 68

4.2 Transformations on the input description to enhance the conditional

hardware reuse . 71

xvii

4.3 A cutpoint example . 72

4.4 An example of if optimization . 73

4.5 Control flow graph of checkEquivalence(β, α, τ
ϑβs
β , τ

ϑαs
α) function. . 79

4.6 Examples to illustrate different path equivalence cases discussed in

Section 4.4 . 80

4.7 A overall flow of our verification method 87

4.8 A path equivalence scenario . 91

5.1 An example of non-equivalence . 102

5.2 List maintained during equivalence checking 103

5.3 cTrace generation using EQ LIST and C LIST 104

5.4 Counter-trace generation example 105

5.5 Control flow graph of counter-example generation using CBMC and

its utilization in a PBEC framework. 114

5.6 Two FSMDs before and after scheduling 118

6.1 Logic locking techniques . 124

6.2 RTL structure generated by HLS. 125

6.3 An example of constant locking. 127

6.4 An example of branch locking. 128

6.5 An example of datapath locking. 129

6.6 An example of TAO obfuscation. 130

6.7 RTL-FSMD from RTL using rewriting approach. 131

6.8 Datapath with control signals . 132

6.9 Outline of the SMT based unlocking of TAO. 138

xviii

List of Tables

2.1 Maximal resilience against the SAT attack can be achieved by con-

trolling the discriminating ability of input patterns 23

3.1 Experimental results on the benchmarks presented in [42] 62

3.2 Experimental results on the benchmarks presented in [42] 62

3.3 Experimental results on test cases where the VP method fails . . . 64

3.4 Experimental results on the benchmarks presented in CHStone bench-

marks [55] and the benchmarks listed in Bambu HLS tool [14] . . . 65

4.1 Comparing the effect of cutpoint selection criteria on the perfor-

mance of the PBEC approach presented in [56] 75

4.2 Experimental results on the benchmarks presented in [42] 96

4.3 Experimental results on the benchmarks presented in [44,104,105],

CHStone benchmarks [55] and the benchmarks listed in Bambu HLS

tool [14] . 97

5.1 Inverse strength reduction . 107

5.2 Experimental results with Z3 SMT solver 120

5.3 Experimental results with CBMC 121

6.1 Results: Unlocking TAO-locked RTL designs. 139

6.2 Results: Unlocking a locked C code. 140

xix

Chapter 1

Introduction

With rapid growing complexity in the modern Very Large Scale Integration (VLSI)

system, designing high-quality hardware at register transfer level (RTL) under

seeking better productivity in less time and with lower cost is challenging. To

achieve a better quality of implementations and shorter specification-to-product

times of these microelectronic systems there is precisely need to perform design

modeling, synthesis, and validation at higher levels of abstraction. The high-level

behavioral specifications are simpler to write and to comprehend (and, therefore,

update) and less error-prone. This significantly encourages the designer to design

a complex system at a higher level of abstraction and uses High-level synthesis

(HLS) [1–5] to generate RTL automatically from high-level behavioral description

written in C/C++ or SystemC. The Behavioral description defines the design

functionally at the high level of abstraction and thus allows concise, reusable,

and readable design descriptions. The objective of HLS is to address the exacting

demands to develop feature-rich, optimized, and complex hardware systems within

aggressive time-to-market schedules. As shown in Fig. 1.1, HLS takes the high-

level description of an application, executes several sub-tasks, and generates the

RTL architecture. Typically the sub-tasks are:

1. Preprocessing: This task transforms the input description into an in-

termediate form more suitable for HLS, usually a control data flow graph

(CDFG) [6]. In this step, several code optimizations are applied to improve

the quality of synthesis results for designs. The common transformations

applied during preprocessing are common sub-expression elimination (CSE),

copy propagation, constant propagation, dead code elimination, loop invari-

ant code motion (LICM) as well as restructuring transformation by function

inlining and loop transformations (loop unrolling, loop fusion). These trans-

formations increase the scope of parallelizing optimization in the scheduling

phase that follows.

1

Chapter 1. Introduction

Behavioral specification (e.g., C, C++)

Preprocessing

Scheduling

Allocation and Binding

Datapath and Con-
troller generator

RTL (VHDL, Verilog)

Figure 1.1: High-level synthesis flow

2. Scheduling: For untimed C/C++ designs, this step adds time to design

and determines the time step or the clock cycle in which each operation of

the design executes. The scheduling phase also employs a set of speculative,

beyond-basic-block code motions to enhance concurrency and hence improv-

ing resource utilization [7–11]. The scheduling phase also applies additional

transformations “dynamically” during scheduling such as dynamic common

sub-expression elimination [12]. These dynamic transformations take advan-

tage of changes created by speculative code motions.

3. Allocation and Binding: Allocation determines the type and quantity of

resource storage and functional units, for each data object and operation

of the input program. Binding assigns operations onto specific functional

units. Binding assigns operations, variables that carries values across cycles,

data structures, and data transfers onto specific functional units, storage

elements (registers or memory blocks), and interconnections, respectively.

In addition, several variables with mutually exclusive lifetimes are assigned

to the same storage units.

4. Datapath and Controller Generation: This step generates a control

unit that implements the schedule. This control unit generates control sig-

2

1.1. Correctness of High-level Synthesis

nals that control the flow of data through the datapath (i.e., through the

multiplexers).

The latest HLS tools [13–18] are complex and use a variety of transformations

to optimize the synthesis result for metrics like area, performance, and power.

Ensuring the correctness of such transformations has become absolutely critical

for the reliability of HLS tools.

1.1 Correctness of High-level Synthesis

HLS tools are usually very large and complex piece of software. They are prone to

logical and implementation errors. In spite of rigorous testing, bugs in HLS tools

may go unnoticed. A bug in an HLS tool can in turn introduce bugs in generated

RTL. RTL designs with bugs have expensive outcomes if they go unnoticed until

after production. Hence, the correctness of HLS has always been an important

concern. Formal verification can be used to provide guarantees of HLS correctness.

There could be two approaches for formal verification of HLS:

1. HLS tool verification

2. Translation validation

HLS Tool Verification

HLS tool verification includes techniques whose goal is to prove that HLS itself is

correct. The primary advantage of this approach is that it can prove the correct-

ness of the HLS tool once and for all, before they are run even once. However,

these techniques that provide once-and-for-all guarantees require user interaction

and immense manual effort. It also requires knowledge about internal algorithms

used during HLS, which is often not available because most of the HLS tools are

closed source [16–18].

Translation Validation

In general, it is hard to prove that an HLS tool with several hundred thousand

lines of code always produces the transformed behaviors that are semantically

3

Chapter 1. Introduction

Behavioral specification (c, c++)

Preprocessing

Scheduling

Allocation & Binding

Datapath &
Controller generator

RTL (VHDL, Verilog)

Scheduling
Verification

Allocation & Binding
Verification

Datapath & Controller
Verification

Figure 1.2: Phase-wise verification of HLS

equivalent to their source behaviors. The Translation validation [19–21] provides

an alternative to prove semantics preservation for the transformations involved in

HLS tools. In the translation validation approach, the HLS tool is not verified.

Instead, it verifies the correctness of each run of the HLS tool. Translation val-

idation techniques try to show for each translation that the HLS tool performs,

that the transformed behavior generated by the tool is semantically equivalent to

the source behavior. Even if this approach does not guarantee that the HLS tool

is bug-free, it guarantees that any error in translation will be caught when the

tool runs, preventing such errors from propagating any further in the hardware

fabrication process.

Translation validation has previously been applied with success in the context

of optimizing compilers [19, 21, 22]. Translation validation technique has been

maturing via its use in verifying the correctness of the HLS. The existing works

in translation validation of HLS can be divided into two categories:

1. End-to-end verification of HLS

2. Phase-wise verification of HLS

Because of the huge semantic gap between the source behavior and the gen-

erated RTL design, end-to-end translation validation techniques [23–28] fall short

of meeting all the challenges posed by phase explicit technique. These techniques

4

1.2. Security in High-level Synthesis

need to make some assumptions with respect to synthesis flow. Therefore, phase-

wise translation validation, as shown in Fig. 1.2 techniques that can deal with the

difficulties of synthesis sub-task independently, are preferable for HLS verification.

Specifically, the scheduling verification phase ensures that the compiler optimiza-

tions and the scheduling of operations do not change the functionality of the input

behavior. The allocation and binding verification phase verifies the correctness

of register sharing among the behavioral variables. The datapath and controller

verification phase ensures that the correct functional unit has been chosen, the

correct functionality of the functional unit has been chosen, the communication

network has been correctly generated to allow the necessary data flow for a speci-

fied operation and the control signals have been assigned for each operation of the

behavior.

1.2 Security in High-level Synthesis

The increasing cost of Integrated Circuit (IC) manufacturing has forced many

semiconductor companies to go fabless over the years [29]. Such fabless companies

design ICs and use offshore third-party foundries for manufacturing. This creates

the following security threats [30,31]:

• An attacker in the foundry or a rogue user can reverse engineer the func-

tionality to steal the Intellectual Property (IP).

• An untrustworthy foundry can overbuild ICs for illegal sale.

• A rogue element in a foundry can temper the ICs to insert malicious circuits

in the form of Hardware Trojans (HTs).

These security threats (also known as supply chain attacks) pose a significant

economic risk to most IC design companies. One approach to thwart the afore-

mentioned supply chain attacks is logic locking [32–34]. Logic locking inserts

additional logic into a circuit, primarily in the gate-level design, to lock the func-

tionality of the circuit with a secret key. The target chip produces the correct

output only when the key inputs are correct, and such key values are not shared

with the manufacturer.

5

Chapter 1. Introduction

As the complexity of ICs continues to increase, designers are moving to a higher

level of abstraction to meet the growing challenges. HLS tools have made signif-

icant progress in the past few years and have been successfully used to improve

design productivity by allowing designers to design systems faster at a high-level

of abstraction. Addressing logic locking during HLS is an interesting approach

to design and integrate solutions at higher levels of abstraction. TAO [35] is an

exhaustive solution for algorithmic obfuscation during HLS. TAO extends the tra-

ditional HLS flow to produce the obfuscated RTL description and makes reverse

engineering and hence the IP theft difficult.

1.3 Motivations and Objectives

The scheduling phase in addition to preprocessing is one of the central tasks in

HLS which involves complex heuristics to ensure that the design being synthesized

can meet the timing and resource constraints. In order to improve the quality of

synthesized design in terms of timing and/or performance, the scheduling phase

performs a variety of transformations. Hence, the scheduling phase is of the most

error-prone parts of an HLS tool. Moreover, various compiler optimizations such as

constant propagation, copy propagation, common sub-expression elimination, code

motion, loop transformations, etc. are applied during preprocessing and scheduling

to improve the synthesis results. A method for the fully automatic equivalence

checking of a design before and after the scheduling step of HLS must be considered

to ensure that the scheduling phase is correct.

The verification of the scheduling phase in HLS is an active domain of research

for the last ten years. A translation validation approach is proposed in [36] to

validate the scheduling results of the SPARK HLS tool [15] against the initial

high-level program. However, to validate the transformed code with a loop struc-

ture, the existing approaches have to iterate over the loop to find the fixed point

while such a process does not always terminate. Alternatively, many path-based

equivalence checking (PBEC) approaches [37–42] have been proposed for verifica-

tion of scheduling of HLS. These translation validation approaches are useful since

they can verify that the correct code resulted from various compiler optimization

techniques applied in each iteration of the scheduling phase of HLS without un-

rolling the loops. A PBEC approach based on value propagation [42], for example,

6

1.3. Motivations and Objectives

can verify the code motion across the loops. The primary focus of the existing

PBEC approaches is ensuring that the data dependencies are not violated due to

scheduling of operations and transformation of behaviors due to the application of

various compiler optimizations [15] applied during the scheduling phase of HLS.

Code motion based optimizations are used in the scheduling phase of HLS tools to

improve the quality of synthesis results. Frequently, in the source behavior, there

exist some computations within a loop body which produce the same results each

time the loop is executed. These computations can be moved outside the loop

body in order to achieve better design performance during the scheduling phase

of HLS. The existing PBEC approaches fail to handle the case of loop invariant

code motion. A computation is called a false computation if it never executes [43].

The PBEC approaches cannot identify false computations hence fails to ignore the

false computation and produce false negative results. To improve the conditional

hardware reuse in HLS, the optimization techniques such as in [44] split a path

into multiple paths in the scheduled behavior. In this case, the existing PBEC

approaches fail to handle the scenario where a path in a behavior is equivalent to

the union of the paths in another behavior.

The PBEC approaches have been successfully applied for verification of the

scheduling phase of HLS. These approaches can be sound but not complete [45].

Therefore, existing PBEC approaches may produce false negative results. The non-

equivalence cases require further investigation of the two behaviors being compared

by some human experts. In the case of non-equivalence, these approaches do

not provide sufficient information for debugging the issue. A counter-example

which will demonstrate the non-equivalence between the source behavior and the

scheduled behavior generated by HLS will add significant value to the adoption of

such PBECs. There is no work which generate a counter-example in the context

of the path-based equivalence checking.

There is increasing security concerns such as hardware Trojans, IC counterfeit-

ing, IP piracy, and unauthorized overproduction in the fabless mode of manufac-

turing. One approach to prevent from such attack is logic locking. Logic locking

techniques hide the IC’s functionality by manipulating the hardware description

language. Starting with the SAT attack [46], the past few years have witnessed

a flurry of activity on logic locking [34, 47–52], both on the attack and protection

side. However, since the attack operates at the gate-level, these techniques are

7

Chapter 1. Introduction

not scalable to practical designs with hundreds of thousands of gates and flip-

flops. Recent work has advocated for defenses that perform logic locking during

HLS [35, 53]; the resulting RTL locked netlists are large and consequently less

vulnerable to conventional gate-level SAT attacks.

With the above discussion, the following objectives were identified:

1. Translation validation of code motion transformations involving loops

2. Translation validation of code motion causing split/merged paths

3. Counter-example generation for PBEC approaches in case of non-equivalence

4. Evaluate the security of a state-of-the-art RTL locking scheme

1.4 Contributions of the Thesis

In the following, we outline in brief the contributions of this thesis on each of the

objectives identified above.

1.4.1 Translation Validation of Code Motion Transforma-

tions Involving Loops during Scheduling

The primary contribution of this work is a PBEC approach based on value prop-

agation, a translation validation approach, to verify the correctness of various

optimization techniques applied during the scheduling phase of HLS. The behav-

iors are modeled as a finite state machine with datapath (FSMD) in our approach.

Our approach breaks down an FSMD into smaller segments by introducing cut-

points so that each loop in the FSMD is cut by at least one cutpoint. This is based

on the Floyd-Hoare method of program verification [54]. The set of all paths from

a cutpoint to another cutpoint without any intermediate occurrence of a cutpoint

is a path cover of the FSMD. Our approach establishes the equivalence between

two behaviors by showing the equivalence between the paths present in the path

cover of these two behaviors. A PBEC approach based on value propagation was

proposed in [42] to verify code motion across loops but fails to show the equivalence

when a code is moved outside the loop body from inside it in the transformed be-

havior. The proposed method can show the equivalence even some loop invariant

8

1.4. Contributions of the Thesis

operation is moved before (after) the loop from inside it. This method is also ca-

pable of verifying the uniform code motion, non-uniform code motion techniques.

In the presence of false computations, existing PBEC approaches produce a false

negative result while this method is capable of avoiding these false computations.

The presented method in this work establishes the functional equivalence between

the result of scheduling and the behavioral specification of the design, using their

FSMD models [1]. A notion of functional equivalence between two FSMDs has

been defined, on the basis of which we verify the transformed behavior.

The correctness of the method has been proved and the complexity of the

method has also been analyzed. Experimental results show the usefulness of the

method. In particular, a bug in the HLS tool SPARK [15] involving loop invariant

code motion is detected during the experiment.

1.4.2 Verification of Scheduling of Conditional Behaviors

in High-level Synthesis

This work contributes a translation validation method to handle the scenario where

a path in the source behavior splits into multiple paths in the scheduled behav-

ior [44]. This work presents a notion of split path equivalence and introduces a new

cutpoint selection scheme to show the equivalence for path split/merge scenarios.

To identify the path split/merge scenario, the method tries to find a set of paths

whose disjunction of the conditions of execution is equivalent to the condition of

execution of a path in another behavior.

The method presented in Section 1.4.1 has been enhanced to handle the path

split/merge scenarios. The enhanced method has been tested over the scheduled

behavior obtained using Bambu HLS tools [14]. The scalability of the method

has been checked over some larger CHStone benchmarks [55]. The formal proof of

correctness of the method has also been presented. The computational complexity

of the method is not worse than the methods proposed in [42,56].

9

Chapter 1. Introduction

1.4.3 Improving Performance of a Path-Based Equivalence

Checker using Counter-Examples

The contribution of this work is a counter-example generation mechanism for the

PBEC approaches. This work shows how a counter-trace (cTrace) can be gener-

ated in non-equivalence cases reported by a PBEC approach. Using this cTrace,

this work also presents a procedure to find suitable initialization values for in-

put variables which reveal the non-equivalence (i.e., counter-example) by using Z3

satisfiability modulo theories (SMT) solver [57] or CBMC tool [58]. This counter-

example generation mechanism improves the performance of a PBEC approach

in the case of non-equivalence during verification of the scheduling phase of HLS.

The counter-example generation mechanism also helps to identify some false neg-

ative cases of the PBEC approaches. The experimental results confirm that the

PBEC approach is able to make stronger equivalence decisions with the help of a

counter-example generation mechanism.

1.4.4 Security Analysis of Logic Locking during High-level

synthesis

The contribution of this work is an SMT based algorithm to recover the secret keys

of a locked RTL design. To the best of our knowledge, this is the first attack on

RTL locking. The algorithm utilizes the rewriting method [59] to model an RTL

design as a RTL finite state machine with datapath (RTL-FSMD). We abstract out

the hardware information into a behavioral program on which we perform an SMT

based attack. This SMT based attack is an oracle-guided attack. The incorrect

keys are identified and eliminated using distinguishing input patterns (DIPs) [46].

A comprehensive evaluation of our attack algorithm has been conducted on

locked RTL generated by TAO [35], a state-of-the-art RTL locking solution. Ex-

perimental evaluations show that our algorithm partially or completely break de-

signs locked by TAO. In addition, the experimental evaluations also present that

our approach is capable of attacking a locked C code. The strengths and weak-

nesses of our attack have been discussed and suggested some directions to design

a secure RTL design.

10

1.5. Organization of the Thesis

1.5 Organization of the Thesis

The organization of the rest of this thesis is as follows:

Chapter 2 provides a detailed literature survey on state-of-the-art translation

validation approaches to verify the correctness of HLS. It also presents a detailed

survey on logic locking defenses and attacks.

Chapter 3 presents a translation validation approach based on value propagation

for code motion involving loops. It also provides a solution to identify and ignore

false computations during translation validation.

Chapter 4 identifies the limitation of existing path-based equivalence checking

approaches to handle the control structure modification that occurs in the efficient

scheduling of conditional behavior. It redefines the notion of the equivalence of

paths in the context of path-based equivalence checking approach to handle the

scenarios which involve path split/merge.

Chapter 5 presents how the equivalence information of a path-based equivalence

checking method can be used to find a counter-trace in the case of non-equivalence

reported by path-based equivalence checking methods. It also shows, for a given

cTrace, how to find suitable initialization values for input variables which reveal

the non-equivalence (i.e., counter-example) by using off-the-shelf SMT solvers [57]

and CBMC tool [58].

Chapter 6 evaluates the security of a state-of-the-art HLS generated register

RTL locking scheme using an SMT based algorithm to retrieve the secret keys. It

demonstrates the attack on locked RTL generated by TAO [35], a state-of-the-art

RTL locking solution. Empirical results show that it can partially or completely

break designs locked by TAO.

Chapter 7 concludes and discusses some future research direction of this thesis.

11

Chapter 2

Literature Survey

In this chapter, we discuss some important research contributions on the verifica-

tion of the HLS. This chapter also presents a comprehensive history of logic locking

defenses and attacks. The objective of this study is to identify the prominent gaps

in earlier literature which have been addressed in this thesis.

2.1 Verification of High-level Synthesis

In high level synthesis, a sequence of transformations is used to optimize the spec-

ifications at the behavior level into implementations at the register transfer level.

HLS tools large and complex software developed over time by various developers

on a legacy code-base. Therefore, the existence of bugs in some corner cases cannot

be ruled out completely. Verifying the correctness of the generated RTL designs

is, therefore, crucial to avoid substantial financial losses. The existing commercial

HLS tools still use RTL co-simulation to validate the correctness of the generated

RTL. However, simulation cannot guarantee the hundred percent correctness of

the HLS tools. There are some efforts in research communities to develop formal

verification of HLS. Since the semantic gap between RTL and the input C/C++

code is huge, end-to-end verification is difficult. Therefore, most of the existing

methods try to verify a particular phase of HLS. In the following, we discuss the

overall formal verification works of HLS. There may be two approaches for formal

verification of HLS:(i) HLS tool verification, and (ii) Translation validation

2.1.1 HLS Tool Verification

This approach guarantees the correctness of the translation from high-level design

to low-level design by proving the HLS tool itself correct. It proves the correctness

of an HLS tool once and for all before it is ever run. Such effort is found in

13

Chapter 2. Literature Survey

CompCert compiler [60]. However, correctness by construction cannot be expected

from a software system with several hundred thousand lines of code. Therefore, it

is very hard to prove the correctness of the HLS once and for all. In fact, there is

no such efforts reported in the literature for High-level Synthesis.

2.1.2 Translation Validation

Translation Validation [19] is a well-known way of increasing the reliability of HLS

tools. In the translation validation approach, the HLS tool is not verified. Instead,

a validator is associated with the HLS tool to verify the correctness of each run

of the HLS tool. Translation validations aimed to check that each translation

performed by the HLS tool preserves the semantics of the input behavior. The

current works in translation validation of HLS can be separated into two classes.

1. End-to-end verification of HLS

2. Phase-wise verification of HLS

2.1.3 End-to-end Verification of HLS

An end-to-end verification approach finds equivalence between the behavioral de-

scription given as input (usually in C, C++, or SystemC) to any HLS tool and the

RTL output of that HLS tool. The research reported in [24–28] tried to formally

establish end-to-end equivalence between these two representations.

Radhakrishnan et al. [24] proposed a verification method using a witness gen-

erator. The method generates a sequence of elementary transformations that leads

to the same effect as the applied HLS algorithm. If every transformation, identical

in the derived sequence, is applied in the presence of a set of preconditions (which

are proved to lead to a correct design), then the resulting RTL design is correct.

The authors in [26] proposed early cut-point insertion for checking the equiva-

lence of high level software against RTL of combinational components. The basic

idea is to derive an expression for both the C program and the RTL program,

describing the input-output transition relation of the program and use symbolic

execution and satisfiability solving to check equivalence between the two expres-

sions. This paper only focused on combinational equivalence checking and did not

address how to extend the proposed method for sequential equivalence checking.

14

2.1. Verification of High-level Synthesis

Fujita [25] proposed a method based on virtual datapaths and controllers to

verify equivalence between behavior level and RTL descriptions. First, a behavioral

design is mapped to a virtual controller and virtual datapath, then equivalence of

datapaths and the controller is established separately. However, in this work it has

not been discussed how the equivalence checking works when the two descriptions

are very different and cannot be mapped to the same datapath.

Leung et al. [27] proposed a translation validation technique for C to Verilog

that establishes the equivalence between a C program and its Verilog counterpart

without requiring any intermediate results from the HLS tool. They first convert

both the C program and the Verilog program into a common intermediate rep-

resentation (IR), then use bisimulation techniques to prove the two resulting IR

programs equivalent. They invoke Daikon [61] to detect the likely invariants at

cutpoints. However, in some cases, the likely invariants are not sufficient to prove

post-conditions, and the algorithm will produce false negative results.

R. Mukherjee et al. [28] developed v2c, a tool that translates Verilog to C. The

v2c accepts synthesizable Verilog as input and generates a word-level C program

as an output. Equivalence checking is then achievable on C level with the help of

either static analyzing tools or dynamic execution tools. They tried to apply v2c

to generate equivalent C code from the RTL generated by a commercial HLS tool.

However, they found that it cannot correctly map the co-ordination between the

controller FSM and operations in blocks. Therefore, a formal equivalence proof

is needed between the RTL and v2c generated C code. Thus, applying v2c based

framework is not a natural solution for HLS functional verification.

Due to the optimizations performed at various stages of the synthesis process,

the resulting RTL design bears little similarity to its specification. An end-to-end

verification method for HLS is very tough and also inadequate for locating the

exact sources of errors. Therefore, an end-to-end equivalence checker that can

handle the complexities of modern day HLS tools is still not available.

2.1.4 Phase-wise Verification of HLS

The large difference in abstraction between the input behavior and RTL design

makes end-to-end verification approach non-trivial. Therefore, the phase-wise ver-

ification technique which can handle the difficulties of each synthesis sub-task

15

Chapter 2. Literature Survey

separately is desirable for HLS verification. In the following, the verification of

different subtasks of HLS is discussed.

Scheduling Verification

One of the most error-prone parts of an HLS tool is its scheduling phase since it

performs aggressive optimizations to meet timing and resource constraints. Hence,

it is necessary to validate the functional equivalence between the input behavior

to HLS and the scheduled behavior generated by HLS.

Anderson [62] reported an early effort on the verification of as soon as possible

(ASAP) scheduling transformation using theorem proving. The paper [63] identi-

fied a set of assertions and invariants that should be held at various steps of HLS.

These invariants were inserted inside the implementation of the force-directed list

scheduling (FDLS) algorithm to detect and isolate the errors in a specific run of

the tool. The correctness of the FDLS algorithm is proved using the prototype

verification system (PVS) theorem prover. In [64] scheduling results are verified

based on precondition-based correctness and completeness of register transfer split.

Eveking et al. [65] represented the pre-scheduled and post-scheduled behaviors

in the language of labeled segments (LLS) and developed the basic transformations

to prove the computational equivalence of LLS. However, none of these techniques

can verify code motion applied during the scheduling phase of HLS.

A formal verification of the scheduling phase of HLS using the FSMD model

is reported in [66]. In this paper, cutpoints are introduced to construct the path

cover for each FSMD. Each path of one path cover is then shown to be equivalent

to some path of the other path cover. However, the technique presented in [66]

assumes that during the synthesis process, the path structure of the input behav-

ior is not modified and operations are not moved from one synthesis basic block

to another. The authors extended their work in [37] to verify speculative code

motions by concatenating critical paths. In this paper, the equivalence conditions

are formulated in high-order logic, and used PVS theorem prover to verify their

correctness. The method presented in this paper fails if the scheduler applies the

non-uniform code motion transformations.

Karfa et al. proposed an equivalence checking method for verification of

scheduling in [38]. In this work, an initial path cover is obtained by introduc-

16

2.1. Verification of High-level Synthesis

ing cutpoints in the FSMD. The paper proposed a bisimulation based symbolic

equivalence of the path covers of two FSMDs. During equivalence checking, a

novel path extension method is proposed to dynamically remove some cutpoints

to prove the equivalence. The work presented in this work takes care of both

run time of the equivalence checker and the wider range of optimizations applied

during scheduling. The method is applicable even when the scheduler changes

the basic structure. This method works only for uniform code motion techniques.

The paper [40] improved the equivalence checking method presented in [38] to deal

with code transformations employing speculation and global common subexpres-

sion extraction.

The paper [39] improved the equivalence checking method presented in [38] to

handle both uniform and nonuniform code motions applied during the scheduling

phase of HLS. This work identified certain data-flow properties that must hold

on the initial and the scheduled behaviors for valid nonuniform code motions.

These properties are based on the definition-use chain [67] of the variables in

the behavior. These properties are encoded as simple CTL (Computational Tree

Logic) [68] formulae and invoke the model checking tool NuSMV [69] to verify

them. The paper [41] uses machine learning (ML) techniques to recognize the

corresponding path-pairs of FSMDs and reduces the complexity of the path-based

FSMD equivalence checking problem.

The methods proposed in [37–41, 66] decompose each behavior into a finite

set of finite paths. Equivalence of the behaviors is established by showing path

level equivalence between two behaviors modeled as FSMDs. The transformation

which modifies the control structure of the input behavior are handled through

path extension. However, a path cannot be extended across a loop by definition of

path cover. Therefore, all these methods fail to handle the transformations that

result in code motion across loops, i.e., some code segment before a loop body is

placed after the loop body, or vice-versa

The technique presented in [70] handles code motion across loops but it requires

additional information from the synthesis tool that is difficult to obtain in general.

The paper [42] introduced a notion of value propagation and widen the scope of

the path-based mechanism [38] to handle code motion across loops. The paper [42]

proposed a value propagation based equivalence checking (VP) method which also

handles code motion across loops. This VP method is also capable of handling

17

Chapter 2. Literature Survey

control structure modification of input behavior and uniform and non-uniform

code motion. Unlike the technique presented in [70], the VP method does not

require additional information from the synthesis tool.

A translation validation approach is proposed in [36, 71] to validate the result

of HLS against the initial high-level program. The method presented in these

papers uses a bisimulation relation approach to prove the equivalence of two de-

scriptions before and after the optimization carried out by the SPARK tool [15].

An improved translation validation of HLS proposed in [72] reduces the number

of queries to an automatic theorem prover, such as Z3 [57], when compared with

the method presented in [36, 71]. All these methods [36, 71, 72] are suitable for

handling structure preserving transformations, while in HLS the structure may

not be preserved in the case of path-based scheduling. The translation validation

method proposed in [73] can deal with structure preserving and non-structure pre-

serving optimization due to path-based scheduler [74]. However, to validate the

transformed code with loop structure, the existing approaches have to iterate over

the loop to find the fixed point while such a process does not always terminate.

The paper [75] proposed an equivalence checking approach which combines trans-

lation validation with methods based on the cut-points, and shared value graphs

(SVG) to handle various scheduling optimizations. The proposed method [75] uses

the SVG technique to validate a predicate in one-pass and avoids the “may not

terminate” problem of existing methods.

The paper [76] presented a method based on symbolic simulation together

with identification and inductive verification of loop structures to verify com-

piler transformation commonly applied during the scheduling of HLS. It uses a

symbolic execution technique to explore the paths of the input and transformed

behaviors. It handles the path explosion and path explosion and non-termination

in symbolic simulation issues through compositionality and cut-loop optimization.

The paper [77] presented a scalable equivalence checking algorithm for validating

scheduling transformations. The paper [77] validates various I/O timing modes

such as cycle-fixed mode, superstate-fixed mode and free-floating mode. However,

the algorithms presented in [76,77] can only compare two intermediate representa-

tions (IRS) that are structurally close. If a transformation significantly transforms

the structure of an IR then the heuristics for detecting corresponding variables be-

tween the two IRs will not succeed, causing equivalence checking to fail.

18

2.1. Verification of High-level Synthesis

Allocation and Binding Verification

The verification of allocation and binding phase verifies the functional unit al-

location and binding and also verifies the register sharing among the behavioral

variables.

Ashar et al. [78] proposed a complete procedure for verifying register-transfer

logic against its scheduled behavior in a high-level synthesis environment. In Ashar

et al., the verification task is partitioning into two subtasks, verifying the validity

of register sharing and verifying correct synthesis of the RTL interconnection and

control. The paper performs equivalence checking between behavioral specification

and RTL implementation of designs by model checking.

The paper [79] reported a post-synthesis methodology based on theorem prov-

ing for formally verifying the various register allocation schemes. In this work, the

scheduled and the RTL description are encoded as extended finite state machines

(EFSMs). The method consists of determining the equivalence of critical states,

critical variables, and critical paths of two EFSMs. However, in the presence of

loops in the behavior, one may encounter an infinite number of execution paths

from the initial state while showing the equivalence between two critical states.

The work proposed in [80] handles the high-level verification in two steps: ver-

ification of scheduling and verification of allocation and final architecture genera-

tion. The paper mainly proves that the final architecture consisting of a controller

and a datapath is correctly generated from the abstract FSM obtained after the

scheduling step. The approach, however, ignores register sharing verification. The

prototype tool presented in this paper has no general inference rule to prove two

algebraic expressions equal.

Karfa et al. [81] proposed a formal methodology for verifying the correctness of

register sharing. The method models the behavior before and after the datapath

synthesis as FSMDs and checks the equivalence of both FSMDs. The method is

independent of the schemes used for register optimization. The method also works

for both data intensive and control intensive input specification.

Datapath and controller verification

The datapath and controller verification ensures the correctness of the data-path

interconnections and the controller. The paper [59] proposed a formal verification

19

Chapter 2. Literature Survey

method of the datapath and controller generation phase of a high-level synthesis

process. This paper presents a rewriting method to obtain the register transfer

operations executed in the datapath for a given control assertion pattern in each

control step. It uses a state-based equivalence checking methodology to verify the

correctness of the controller behavior. Some of the allocation and binding verifica-

tion methods [78,80] treat the allocation, binding and the data-path and controller

generation steps into one by verifying the final RTL against the scheduled behav-

ior.

2.1.5 Our Objective

As discussed above, most of the existing works target the verification of the

scheduling in HLS since the verification of this phase is the most challenging

among all phases of HLS. In this thesis, we are also interested in verifying the

pre-synthesis and the scheduling phases of High-level Synthesis. Code motion

based optimizations are used in the scheduling phase of HLS tools to improve

the quality of synthesis results in terms of timing performance. All of the above

mentioned techniques fail to handle the scenario where some loop invariant op-

eration is moved before (after) the loop from inside it. In the presence of false

computations, these methods produce false negative results. These methods also

fail to handle the scenario where a path in the source behavior splits into multiple

paths in the scheduled behavior. In this thesis, we propose an equivalence checking

method that verifies code motion involving loops, ignores the false computations,

and handles the scenarios involving path merge/split along with uniform and non-

uniform code motions and transformations which alter the control structure of a

given behavior.

2.2 Logic locking: Defenses and Attacks

Logic locking is a technique that protects a hardware design netlist against the

untrustworthy IC supply chain. Logic locking hides the functionality of a design

by adding additional gates into the original design. Many logic locking techniques

as well as attacks have been widely investigated for a decade. In this section, we

discuss the existing works on logic locking both on attack and defense sides in

20

2.2. Logic locking: Defenses and Attacks

chronologically.

RLL [82] and FLL [83,84]

Logic locking was first introduced in EPIC, which abbreviates “Ending Piracy of

Integrated Circuits”, [82]. EPIC used a random XOR/XNOR key gates insertion

policy referred to as random logic locking (RLL). It obfuscates the design by in-

serting XOR/XNOR key gates at a random location in a netlist; only a correct

key makes the design to produce correct outputs. The drawback of RLL is that it

does not necessarily ensure that the wrong keys corrupt the output. Consequently,

an RLL netlist may produce correct output even for incorrect key values. Aims

at overcoming the shortcoming of RLL, Rajendran et al. used fault simulation

techniques in [83, 84] to guide XOR/XNOR key gates insertion. The proposed

fault analysis based logic locking (FLL) uses a new insertion criterion called the

fault impact. FLL inserts the key gates at the locations that exhibit the highest

fault impact.

Sensitization Attack [85]

After introducing EPIC, Rajendran et al. [85] proposed a sensitization attack.

Sensitization attack, which is an oracle-guided attack, tries to propagate a single

key value to the output. The attacker analyzes the locked netlist and computes

attack patterns that can sensitize individual key bit values to primary outputs.

By applying these patterns to functional IC, the attacker observes and records this

output as the value of the sensitized key-bit. The effectiveness of the sensitization

attack depends on the location of the key gates. The sensitization attack is highly

effective when key gates do not interfere with each other.

Strong Logic Locking [86]

Both RLL and FLL remain vulnerable to the sensitization attack. To prevent

the sensitization attack, strong logic locking (SLL) was introduced. SLL inserts

key-gates in a way that key-gates protect one another [86]. SLL inserts pairwise

secure key gates that protect one another in a netlist. In SLL, it is not possible

to sensitize the key-bit values to a primary output.

21

Chapter 2. Literature Survey

Hill-climbing Attack [87]

Plaza and Markov proposed the hill-climbing attack [87]. The hill climbing attack

exploits test data to determine the secret key. The attack relies on a hill-climbing

search algorithm which uses Hamming distance as a guiding metric. At first,

the attack makes a random initial guess for key Krand . The initial Hamming

distance HDrand is then computed between the test response and the locked circuit

outputs corresponding to test stimuli. A randomly selected key bit in Krand is then

inverted and Hamming distance HDinv is computed. The HDrand and HDinv are

then compared. If HDinv < HDrand then toggle is retained in Krand . The inversion

process is repeated until a key value Krand is found that leads to a Hamming

distance of zero. The attack is successful when HDrand = 0. The hill climbing

attack can successfully break RLL and FLL but it loses its effectiveness against

SLL. The complexity of this attack quickly increases with an increasing number

of key gates.

LUT based [88] and Weighted logic locking [89]

Apart from RLL, FLL and SLL, important research efforts on logic locking include

a look-up table (LUT) based locking [88] and weighted logic locking [89] to find

suitable key gate locations. The main objective of all these logic locking techniques

is to increase the output corruptibility (i.e., produce more incorrect outputs for

more input patterns) given an incorrect key. In 2015, Pramod et al. [46] developed

a powerful attack that broke all logic locking techniques that existed at that time.

The attack employs a Boolean satisfiability (SAT) formulation to encode of finding

the logic locking key and commonly refer to it as the SAT attack. All the logic

locking methods discussed above also remain vulnerable to Boolean Satisfiability

based attack called SAT attack [46]. The SAT attack can easily break these logic

locking techniques within a few hours even for a reasonably large number of keys.

SAT Attack [46]

The SAT attack is an oracle-guided attack. The SAT attack employs a SAT solver

to find distinguishing input patterns that refine key search space iteratively. A

DIP is an input value xd for which at least two different key values, k1 and k2,

produce differing outputs, o1 and o2, respectively. Since o1 and o2 are different,

22

2.2. Logic locking: Defenses and Attacks

Output Y for different key values
a b c Y k0 k1 k2 k3 k4 k5 k6 k7

0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0

Table 2.1: Maximal resilience against the SAT attack can be achieved by control-
ling the discriminating ability of input patterns

at least one of the key values is incorrect. A single DIP may rule out multiple

incorrect key values. The SAT attack terminates when no more DIPs can be

found, which means that the remaining key is guaranteed to be the correct key.

The computational effort of the SAT attack depends on the order of choosing the

DIP. However, the SAT attack selects the DIPs on a random basis. The larger the

number of incorrect key values ruled out per DIP, the less the DIP required for

the attack, which suggests a littler execution time of the attack.

Note that the worst case scenario for the SAT attack arises when it can elimi-

nate at most one key for every DIP. In Table 2.1, a, b, c are the primary inputs, and

Y is the corresponding primary output. It can be observed that the correct key

value is k6. It also evident from Table 2.1 that in each row, there is at most one

key value that generates an incorrect output. In such a scenario, the SAT attack

with k key bits would require at least 2|k| − 1 DIPs. To prevent SAT attack, the

first attempted approach was to reduce the number of wrong keys that each DIP

can rule out. SARLock [34], Anti-SAT [50, 90], and AND-tree insertion [91, 92]

can accomplish this.

SARLock [34]

SARLock, which abbreviates, “SAT Attack Resistant Logic Locking,” thwarts

SAT-based attacks by minimizing the number of keys that are ruled out by a single

DIP. To accomplish this effect, SARLock integrates a comparator and a mask block

with the original circuit. The comparator circuit which mimics Table 2.1 flips the

23

Chapter 2. Literature Survey

circuit output for only one input pattern for a given (wrong) key. The resulting

locked circuit achieves the desired resistance against the SAT attack at minimal

overhead. A small mask logic is inserted to prevent the assertion of the flip signal

when a correct key is given. For each incorrect key value, an error is injected

into the circuit for only one input pattern, leading to an incorrect output for the

specific pattern. Assuming that F (I) denotes the original circuit, the output O

of the circuit locked using SARLock can be presented as O = F (I) ⊕ ((I ==

K) ⊕ (I == ks)), where K denotes the key inputs, and ks is the correct key

value. For a key size k, the SARLock protection circuit consists of k + 1 2-input

XOR/XNOR gates and 2k + 1 2-input AND gates.

Anti-SAT Logic Locking [50,90]

In Anti-SAT [50, 90], an Anti-SAT block comprises two blocks B1 = g(X,K11)

and B2 = g(X,K12). Both blocks share the same inputs X and are locked with

different keys K11 andK12. The one-bit output Y is the AND operation of the

outputs of B1 and B2 blocks. The output Y is connected to the original circuit

using an XOR gate. The functionality of the two blocks is complementary. When

the correct key value is applied, for all inputs, Y = 0, leading to a correct output.

If the incorrect key is applied, the output of B1 and B2 is 1 for a specific input

pattern; for that pattern, Y = 1, and thus produce a fault in the original circuit.

With Anti-SAT, only 1 key value among all wrong key values could be ruled out

at each iteration of the SAT attack.

AND-tree Insertion (ATI) Logic Locking [91,92]

While SAR-Lock and Anti-SAT add an external circuit to the original netlist

AND-tree insertion (ATI) finds an AND-tree inside the original netlist and thus

decrease the implementation overhead. The inputs of the identified AND-tree are

camouflaged by inserting INV/BUF camouflaged gates. The INV/BUF gates can

be replaced with the XOR/XNOR counterparts to obtain a logic locked AND-tree.

An existing AND/OR tree can be identified by running a breadth-first search on

the netlist. The SAT attack resilience of ATI grows exponentially with increasing

key size, similar to that for SARLock and Anti-SAT. The major drawback of ATI

is that it can only protect the parts of a circuit where the desired AND/OR trees

24

2.2. Logic locking: Defenses and Attacks

are present inherently. It does not offer a designer the flexibility to choose the

logic to be protected.

Compound Logic Locking

The main drawback of the SARLock, AntiSAT, and ATI logic locking techniques

is their low output corruptibility. Compound logic locking technique combines a

low output corruptibility technique (e.g., SARLock, AntiSAT or ATI) with a high

output corruptibility technique (e.g., RLL, FLL or SLL). For example, Compound

techniques that improve the output corruptibility remain vulnerable to the ap-

proximate attacks. In [34] SARLock is combined with SLL, and in [90] AntiSAT

is integrated with FLL.

Signal Probability Skew (SPS) Attack [48]

SPS breaks Anti-SAT. SPS exploits structural traces in the netlist to identify and

remove the basic (unobfuscated) Anti-SAT and retrieve the original circuit within

minutes. The attack uses the notion of signal probability to identify the output

gate of Anti-SAT. The signal probability skew(SPS) is given as,

SPS (x) = Pr [x = 1]− 0.5 (2.1)

where, Pr[x = 1] denotes the probability of signal x being 1. For a signal y that

is rarely 1, e.g. the output of a large AND tree, SPS(y) = −0.5. The absolute

difference of the probability skew (ADS) of all gate outputs in the netlist are

calculated and gate with the maximum ADS value is suspected to be the output Y

of the Anti-SAT block. The signal Y is set to the value it is most skewed towards,

thus defeating the protection offered by the SAT resilient block. SPS attack is

scalable to large circuits and it becomes more effective with increasing key size.

However, the attack becomes less effective in the presence of structural/functional

obfuscation.

AppSAT Attack [93]

Shamsi et al. proposed an approximate attack based on the SAT attack and ran-

dom testing (AppSAT) [93]. AppSAT aims at reducing a multi-layered defense

25

Chapter 2. Literature Survey

to single-layer (e.g., Anti-SAT+FLL to Anti- SAT). The SAT attack terminates

when there is no DIP and reports the correct key but the AppSAT attack termi-

nates when the Hamming distance between the correct output from the functional

IC and the locked netlist is very low. Otherwise, random testing that resulted

in a disagreement will be added to an SAT formula as a new constraint. Upon

termination, the attack returns approximate correct key values, which results in

an approximate netlist.

Double-DIP [94]

Shen et al. proposed in [94] the Double DIP SAT-based attack to reduce a com-

pound logic locking technique to its low-corruptibility component. Similar to

AppSAT, Double-DIP is an approximate attack. Double-DIP used 2-DIPs, which

can eliminate at least two incorrect key values in a single iteration. Double-DIP

attack terminates when 2-DIPs can no longer be found.

AppSAT-Guided Removal (AGR) Attack [48]

The AGR attack targets compound logic locking, particularly Anti-SAT + tradi-

tional logic locking. Unlike AppSAT, the AGR attack recovers the correct key.

This attack integrates AppSAT with a simple structural analysis of the locked

netlist. Firstly AppSAT is used to find the key of dedicated to the traditional

locking technique. Then, a structural analysis of the Anti-SAT block allows dis-

covering the last gate of the block.

Bypass Attack [47]

The Bypass attack uses a bypass circuitry around a locked netlist to nullify the

error introduced by the locked circuit, thus restore its correct functionality. This

attack is efficient against Anti-SAT and SARLock, even coupled with a traditional

logic locking technique.

Tenacious and Traceless Logic Locking (TTLock) [51]

Both SARLock and Anti-SAT are vulnerable to removal attacks because they

implement the original function. TTLock is an improvement of SARLock that

26

2.2. Logic locking: Defenses and Attacks

prevents a removal attack. TTLock modifies the original logic cone for exactly

one input pattern. For this input pattern, the modified netlist and the original

netlist differ in their outputs for all wrong keys. TTLock adds a comparator block

to restore the correct functionality only for the correct key. Upon removal attack,

the attacker still gets netlist which is different than the original one. However,

in TTLock output differs from the original circuit for exactly one cube which

results in low output corruptibility and is vulnerable to approximate attacks such

as AppSAT.

Stripped-Functionality Logic Locking [52]

Stripped-functionality logic locking (SFLL), a logic locking technique that provides

provable security against SAT, removal, and approximate attacks. SFLL has three

variants: SFLL-HD, SFLL-flex, and SFLL-fault. SFLL-HD creates a functionality-

stripped circuit (FSC) by inverting the output of the original circuit for
(
k
h

)
input

patterns that are of Hamming distance h from the k-bit secret key. With increasing

h, the number of protected patterns increases binomially. For h = 0, SFLL-HD is

equivalent to TTLock. In SFLL-flex, the designer choose the protected patterns

freely irrespective of any key and hamming distance. SFLL-fault subtracts the

logic by inserting fault injection. SFLL-fault, thus, does not leave any structural

traces any traces for an attacker to exploit.

Functional analysis attack on logic locking (FALL) [49]

FALL attack uses structural and functional analyses of circuit nodes to first iden-

tify the gates that are the output of the cube stripping module to determine the

locking key. The Functional analysis attack on logic locking (FALL) breaks SFLL-

HD and SFLL-flex as well. However, the FALL attack cannot break SFLL-fault.

2.2.1 Our Objective

These attacks and defenses focus on the gate-level abstraction and have been

demonstrated on small circuits like the ISCAS benchmarks. Recently, there has

been an attempt to perform logic lock at the RTL [35, 95] and the C level [96].

TAO [35] is an example of such a scheme. However, to the best of our knowledge,

27

Chapter 2. Literature Survey

hardware security during HLS has not been studied. The SMT attack proposed

in Chapter 6 is the first one on locking during HLS. While SMT has been used to

unlock gate-level netlists [97], these methods do not apply to RTL unlocking.

28

Chapter 3

Verification of Code Motion

Transformations Involving Loops

during Scheduling

3.1 Introduction

3.1.1 Code Motion Techniques

In the scheduling phase, HLS tools enhance concurrency and hence improving

resource utilization by moving operations across basic block boundaries, which is

called code motion. In the next subsection we explore a set of speculative code

motions that are useful for HLS. These code motions have been proposed for

improving synthesis results in designs with complex control flow.

Speculative Code Motions

The speculative code motions enable movement of operations through, beyond,

and into conditionals with the objective of extracting the inherent parallelism in

design. Effectively, these code motions reorder operations to reduce the impact

of choice of control flow in the input behavior. The speculation comes into four

forms: (1) speculation, (2) reverse speculation, (3) conditional speculation, and

(4) early condition execution. An overview of the various speculative code motions

is shown in Fig. 3.1.

Speculation

Speculation refers to the unconditional execution of operations that were origi-

nally supposed to have executed conditionally. In this approach, the result of a

29

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Figure 3.1: Various speculative code motions [15]

speculated operation is stored in a new variable.

Reverse Speculation

In reverse speculation operations before conditional block are moved into subse-

quent conditional block and executed conditionally. Reverse speculation has been

variously referred to as lazy code motion or execution and duplicating down in

past literature [7, 98].

Conditional Speculation

In conditional speculation an operation from after the conditional block may be du-

plicated up into preceding conditional branches and executed conditionally. This

is similar to the duplication-up code motion used in compilers and the node du-

plication transformation discussed in [99].

Early Condition Execution

Early condition execution evaluates conditional checks as soon as possible. Reverse

speculation can be coupled with early condition execution i.e., conditional check

is moved up and all operations before the conditional block are reverse speculated

into the conditional block.

30

3.1. Introduction

q00

q01

q02

q00

q01

q02

(a) S1

q00

q01

q02

q00

q01

q02

(b) S2

q00

q01

q02

q00

q01

q02

(c) S3

Figure 3.2: Three possible scenarios during code motion transformations involving
loops

Loop Invariant Code Motion

Loop invariant code inside a loop body consists of statements or expressions which

produce the same result each time the loop is executed. In other words, these

statements are not dependent on loop iterations. This code can be moved outside

the loop body without changing the program semantics. Loop invariant code

motion improves overall program execution time by reducing the number of times

loop invariant expressions are executed by a factor equal to the loop size.

As shown in Fig. 3.2, there are three possible scenarios during code motion

transformations involving loops:

S1 : Some code segment before a loop body is placed after the loop body or vice

versa (i.e., code motion across loops).

S2 : Some code segment is moved before the loop from inside the loop body.

S3 : Some code segment is moved after the loop from inside the loop body.

Code motion based optimizations are used in scheduling phase of HLS tools to

improve the quality of synthesis results. Code motion techniques change the data-

flow of a behavior considerably. Therefore, it is necessary to verify the semantic

equivalence between the original and the transformed behaviors.

3.1.2 Summary of Verification of Code Motion

Verification of code motion transformations has been an active research area for the

last ten years [36–40,42,70,75]. The methods [36–40,75] fail to handle the case of

31

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

code motion across loops and loop invariant code motion. The technique presented

in [70] handles code motion across loops but it requires additional information

from the synthesis tool which is difficult to obtain in general. The VP method was

proposed in [42] which also handles code motion across loops. Unlike the technique

presented in [70], the VP method does not require additional information from the

HLS tool.

The VP method handles scenario S1 but it cannot handle scenarios S2 and

S3. In addition, Example 3 given in Section 3.4 shows a case where the VP

method [42] provides a false positive result for a scenario involving code motion

across loops. Moreover, the VP method does not check whether a computation

is a false computation i.e., it never executes. As a result, it gives false negative

results in the case of loop invariant code motion involving false computations.

3.1.3 Contributions

In this chapter, we present an equivalence checking method based on value prop-

agation for code motion involving loops to overcome all the above limitations of

existing works. Our method is capable of handling all the three scenarios, i.e.,

S1, S2 and S3, mentioned above. Moreover, our method is able to prove non-

equivalence for the case given in Example 3. Also, if the loop is executed at least

once, then our method will ignore the false computation during equivalence check-

ing. In particular, a bug in the HLS tool SPARK [15] involving loop invariant

code motion is detected by our method.

The rest of this Chapter is organized as follows. The FSMD model and the VP

method are explained in Sections 3.2 and 3.3, respectively. Motivating examples

highlighting the limitations of the VP method are given in Section 3.4. A solu-

tion to handle all the above scenarios and to identify a false computation of an

FSMD during equivalence checking is presented in Section 3.5. The enhanced VP

method is presented in Section 3.6. Experimental results are given in Section 3.8.

Section 3.9 concludes the chapter.

32

3.2. The FSMD Model

3.2 The FSMD Model

In the translation validation approach, the input behavior to HLS (i.e., source

behavior) and the scheduled behavior generated at the scheduling phase of HLS

(i.e., transformed behavior) are represented using the FSMD model. FSMDs [1]

are an extension of the finite state machine (FSM) model with data/variables used

to model behaviors. Unlike FSMs that model the control flow, FSMDs capture

the data-flow aspect of the behavior as well. Each transition of an FSMD includes

a condition over the data variables and a set of operations that transform the

variable values.

Definition 1 (FSMD). An FSMD M is defined as a 7-tuple 〈Q, q0, I, O, V, f, h〉,
where

• Q is the finite set of states,

• q0 ∈ Q is the reset (initial) state,

• I is the finite set of input variables,

• O is the finite set of output variables,

• V is the finite set of storage variables,

• f : Q× 2S → Q is the state transition function,

• h : Q× 2S → U is the update function.

Here S = {L∪E} is the set of status expressions where L is the set of Boolean

literals of the form b or ¬b, b ∈ B ⊆ V is a Boolean variable and E is the set of

arithmetic predicates over I ∪ (V − B). Any arithmetic predicate is of the form

eR0, where e is an arithmetic expression and R ∈ {==, 6=, >,≥, <,≤}. U is a

set of storage or output assignments of the form {x = e|x ∈ O ∪ V } and e is an

arithmetic predicate or expression over I ∪ (V −B); it represents a set of storage

or output assignments. An FSMD is an inherently deterministic model.

A walk from qi to qj is a sequence of state transitions of the form 〈qi
ci=⇒ qi+1

ci+1
==⇒

· · · ci+n−1
====⇒ qi+n = qj〉 where qk ∈ Q ∀ k, i ≤ k ≤ i+ n, and the state transitions

f(qk, ck) = qk+1 for all k, i ≤ k ≤ i+ n− 1, where ck ∈ 2S is the condition of

33

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

1 sum =1;

2 i=2;

3 while(i<n){

4 temp=n%i;

5 if(temp ==0){

6 sum=sum+i;

7 i=i+1;}

8 else

9 i=i+1;}

10 if(sum==n)

11 out=1;

12 else

13 out=0;

(a) Input behavior

q00

q01

q02

q03

q04

q05

q06

sum = 1
i = 2

i < n/
temp = n%i

temp == 0/
sum = sum+ i

i = i+ i !(
te
m
p

=
=

0
)/

i
=
i

+
1

i < n/
temp = n%i

su
m

=
=
n
/

o
u
t

=
1

!(
su
m

=
=
n

)/
o
u
t

=
0

−/−
−/−

(b) FSMD M0

Figure 3.3: An FSMD example: (a) finds whether a number n is a perfect number
or not; (b) an FSMD M0 corresponding to input behavior (a)

the transition from qk to qk+1. A (finite) path β is a walk where all the states

are different, except the end state qj may be the same as the start state qi. The

condition of execution Rβ of a path β is a logical expression over I ∪ V , which

must be satisfied by the initial data state in order to traverse the path β. The data

transformation (sβ) represents the updated variables vector sβ = 〈e1, e2, . . . , ek〉,
where k = |V | and ei is an algebraic expressions over the variables in V and

the inputs in I. The expression ei represents the symbolic value obtained by the

variable vi ∈ V at the end state of β when the initial symbolic value of the variable

v is denoted as ‘v’. For a path β, Rβ and sβ are computed by forward or backward

substitution based on symbolic execution [100].

It may be noted that there would be an ordered list of outputs in any path

as discussed in [38]. For equivalence of two paths, the outputs of them also must

match. When some variable is output, its counterpart in the other FSMD must

attain the same value. Therefore, the equivalence of outputs hinges upon the

equivalence of data transformations of variables (i.e., sβ). Hence, in this work, we

focus only on equivalence of sβ. The paper [39] discusses in detail how the FSMD

models can be constructed from the high-level representations of the input and

34

3.2. The FSMD Model

the transformed behaviors.

Example 1. Let us consider the input behavior in Fig. 3.3(a) and its corresponding

FSMDs in Fig. 3.3(b). The behavior checks whether a number n is perfect number

or not. If n is a perfect number then it sets the value of the variable out to 1

otherwise 0. Let consider the path β = q00 =⇒ q01
!(i<n)
===⇒ q05

sum==n
=====⇒ q06 =⇒ q00

in the FSMD M0 in Fig. 3.3(b). The computation of [Rβ, sβ] for this path β by

forward substitution method is as follows:

At q00 : [True, 〈sum, i, n, temp, out〉].
At q01 : [True, 〈1, 2, n, temp, out〉].
At q05 : [!(2 < n), 〈1, 2, n, temp, out〉].
At q06 : [!(2 < n) ∧ (2 == n), 〈1, 2, n, temp, 1 〉].
At q00 : [!(2 < n) ∧ (2 == n), 〈1, 2, n, temp, 1 〉].

3.2.1 Equivalence of FSMDs

Let M0 = 〈Q0, q00, I, O, V0, f0, h0〉 and M1 = 〈Q1, q10, I, O, V1, f1, h1〉 be two FS-

MDs having the same input(s)/output(s). A computation of an FSMD is a finite

walk from the reset state q0 to itself, and q0 should not occur in between. The M1

is derived from M0 through HLS scheduling. Our main goal is to verify whether

M0 behaves exactly as M1. This means that for all possible input sequences, M0

and M1 produce the same sequences of output values and eventually, when the

respective reset states are revisited, they are visited with the same storage element

values. In other words, for every computation from the reset state back to itself

of one FSMD, there exists an equivalent computation from the reset state back to

itself in the other FSMD and vice versa.

Definition 2 (Computation Equivalence). Two computations µ0 and µ1 are equiv-

alent, denoted as µ0 ' µ1 iff Rµ0 ≡ Rµ1 and sµ0 = sµ1, where Rµ0 and Rµ1 are

the condition of execution of µ0 and µ1, respectively and sµ0 and sµ1 are the data

transformation of µ0 and µ1, respectively.

Definition 3 (FSMD Containment). An FSMD M0 is contained in another FSMD

M1 (M0 v M1) if for any computation µ0 of M0 on some inputs, there exists a

computation µ1 of M1 on the same inputs such that µ0 ' µ1.

35

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Definition 4 (Equivalence of FSMDs). Two FSMDs M0 and M1 are computa-

tionally equivalent, if M0 vM1 and M1 vM0.

An FSMD may consist of an infinite number of computations because of loops.

However, for an FSMD M , any computation µ is the concatenation [β1β2 · · · βn]

of paths of M where for all k, 1 ≤ k < n, βk terminates in the start state of the

path βk+1; the reset state is the start state of β1 and the end state of βn; βi’s may

not all be distinct. Hence, we have the following definition.

Definition 5 (Path cover of an FSMD). A finite set of paths P = {β0, β1, . . . , βk}
is said to be a path cover of an FSMD M if any computation µ of M can be looked

upon as a concatenation of paths from P .

To obtain a path cover for an FSMD model each loop is cut at at least one

cutpoint. The set of all paths from a cutpoint to another cutpoint without any

intermediary occurrence of a cutpoint is a path cover of the FSMD. This is based

on the Floyd–Hoare method of program verification [54].

Definition 6 (Path Equivalence). Two paths β and α are equivalent denoted by

β ' α if Rβ ≡ Rα and sβ = sα.

The correspondence of states between M0 and M1 are defined as follow.

Definition 7 (Corresponding States).

1. The reset states q00 and q10 are corresponding states.

2. The states q0k ∈ Q0 and q1l ∈ Q1 are corresponding states if the state q0i ∈ Q0

and q1j ∈ Q1 are corresponding states and there exists paths β from q0i to

q0k and α from q1j to q1l, such that β ' α.

The following theorem can be concluded from the above discussion.

Theorem 1. An FSMD M0 is contained in another FSMD M1 (M0 vM1), if there

exists a path cover P0 = {β00, β01, · · · , β0k} of M0 and P1 = {α10, α11, · · · , α1k} of

M1 such that β0i ' α1i for all i, 0 ≤ i ≤ k.

Proof. M0 vM1 if, for any computation µ0 of M0, there exists a computation µ1

of M1 such that µ0 and µ1 are computationally equivalent. [by Definition 2]

36

3.3. Value Propagation Based Equivalence of FSMDs

Now, let there exists a path cover P0 = {β00, β01, · · · , β0k} of M0. Correspond-

ing to P0, let a set P1 = {α10, α11, · · · , α1k} of M1 exists such that β0i ' α1i for

all i, 0 ≤ i ≤ k. Since P0 covers M0, any computation µ0 of M0 can be looked

upon as a concatenated path [β0i1 , β0i2 , . . . , β0in] from P0 starting from the reset

state (q00) and ending again at the reset state of M0. From above it follows that

there exists a sequence Π1 of paths [α1j1 , α1j2 , . . . , α1jn] of P1, where β0il ' α1jl for

all l, 0 ≤ l ≤ n. Therefore, in order that Π1 represents a computation of M1, it

is required to prove that Π1 is a concatenated path of M1 from its reset state q10

back to itself.

Now, let β0i1 : [q00 ⇒ q0f1]. Since β0i1 ' α1j1 , from the definition of correspond-

ing states, α1j1 must be of the form [q10 ⇒ q1f1], where 〈q00, q10〉 and 〈q0f1 , q1f1〉 are

corresponding states. Thus, by repetitive application of the above argument, it

follows that if β0i1 : [q00 ⇒ q0f1], β0i2 : [q0f1 ⇒ q0f2], · · · , β0in : [q0fn−1 ⇒ q0fn = q00],

then α1j1 : [q10 ⇒ q1f1], α1j2 : [q1f1 ⇒ q1f2], · · · , α1jn : [q1fn−1 ⇒ q1fn = q10], where

〈q0fm , q1fm〉, 1 ≤ m ≤ n, are pairs of corresponding states. Hence, Π1 is a concate-

nated path representing a computation µ1 of M1, where µ0 ' µ1. �

Two FSMDs M0 and M1 are equivalent, denoted as M0 ≡ M1, if M0 v M1

and M1 v M0. Since FSMDs are deterministic, it can be shown that M0 v M1

implies M1 vM0.

3.3 Value Propagation Based Equivalence of FS-

MDs

The value propagation method consists in propagating values of variables over

the corresponding paths of two FSMDs on discovery of mismatch in the values of

some variables. Propagation of values from a path β1 to the subsequent path β2

is carried out by associating a propagated vector at the end state of the path β1

(or equivalently, the start state of the path β2). A propagated vector ϑβf at the

end state qβf
1 of a path β is an ordered pair 〈R′βf , s

′
βf
〉, where the first element is

the condition of execution (Rβ) and the second element is the vector of values of

the variables of both FSMDs when the path β is compared with another path α in

1The start state and the final state of a path β is denoted as qβs
, qβf

, respectively.

37

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

the other FSMD. Let say that v̄ denotes 〈v1, v2 · · · vk〉 and ē denotes 〈e1, e2 · · · ek〉
where ei is the symbolic expression involving variables in v̄. The propagated

vector associated with the reset state is 〈T, 〈v1, v2 . . . vk〉〉, also denoted as ρ̄, where

T stands for True and ei = vi, 1 ≤ i ≤ k indicates that the variables are yet to

define.

Let there is a path β : qβs ⇒ qβf in an FSMD M0 with a propagated vector ϑβs
associated with qβs and a path α : qαs ⇒ qαf in an FSMD M1 with a propagated

vector ϑαs associated with qαs . The characteristic formula for the path β is τ
ϑβs
β =

〈Rϑβs
β , s

ϑβs
β 〉, where R

ϑβs
β is the condition of execution of β and s

ϑβs
β is the data

transformation of β considering the data state of the variables at qβs is ϑβs (instead

of v̄). Similarly, the characteristic formula for the path α is τ
ϑαs
α = 〈Rϑαs

α , s
ϑαs
α 〉.

In the VP method a path cover is obtained by setting the reset state and the

branching states (i.e., states with more than one outward transition) of the FSMD

as cutpoints. To check the equivalence between two paths say β of FSMD M0 and

α of M1, the characteristic formula associated with these path are compared.

Definition 8 (Unconditionally and Conditionally Equivalent Paths). A path β :

qβs ⇒ qβf with a characteristic formula τ
ϑβs
β = 〈Rϑβs

β , s
ϑβs
β 〉 is said to be uncon-

ditionally equivalent (U-equivalent in short, denoted by β 'u α) if R
ϑβs
β ≡ R

ϑαs
α

and s
ϑβs
β = s

ϑαs
α . Otherwise, the path β is said to be conditionally equivalent (C-

equivalent in short, denoted by β 'c α) if

• qβf 6= q00 and qα 6= q10.

• ∀β′ emanating from the state qβf with propagated vector 〈R′βf , s
′
βf
〉 there ex-

ists a path α′ emanating from qαf with the propagated vector 〈R′αf , s
′
αf
〉, such

that β′ 'u α′ or β′ 'c α′.

Once a C-equivalent path is identified, the VP method tries to find a U-

equivalent path in a depth-first search (DFS) manner. Example 2 illustrates the

method of value propagation.

Example 2. Let us consider the input FSMD in Fig. 3.4(a) and the transformed

FSMD in Fig. 3.4(b). Let the variable ordering be 〈u, v, w, x, y, z〉. The propagated

vector at the reset state q00 (q10) is ϑ00(ϑ10) = 〈T, 〈u, v, w, x, y, z〉〉. The charac-

teristic formula for the path β1 is τϑ00β = 〈T, 〈u, v, w, f1(u, v), y, z〉〉 and for the

38

3.3. Value Propagation Based Equivalence of FSMDs

q00

q01

q02

β1
-/x = f1(u, v)

β3¬p(x)/
y = f4(u, v),
z = f5(w)

β2
p(x)/
y = f2(u),
z = f3(v)

(a) M0

q10

q11

q12

α1

-/y = f2(u)

α3¬p(f1(u, v))
x = f6(u, v, w),
z = f5(w)

α2

p(f1(u, v))/
z = f3(v),
x = f1(u, v)

(b) M1

Figure 3.4: An example of value propagation

path α is τϑ10α = 〈T, 〈u, v, w, x, f2(u), z〉〉. In τϑ00β and τϑ10α , there is a mismatch in

the values of x and y. Therefore, the propagated vector at q01 and q11 are ϑ01 =

〈T, 〈u, v, w, f1(u,v),y, z〉〉 and ϑ11 = 〈T, 〈u, v, w,x, f2(u), z〉〉 respectively. In ϑ01

and ϑ11 the values of x and y are in boldface to denote that they mismatch and other

variables whose value matches are in the normal face. The characteristic formula

for β2 with respect to ϑ01 is τϑ01β2
= 〈T ∧ p(f1(u, v)), 〈u, v, w, f1(u, v), f2(u), f3(v)〉〉

and for α2 with respect to ϑ11 is τϑ11β2
= 〈T∧p(f1(u, v)), 〈u, v, w, f1(u, v), f2(u), f3(v)〉〉.

The characteristic formulas τϑ01β2
and τϑ11α2

are equal therefore the propagated vec-

tor at q02 and q12 are ρ̄. The characteristic formula for β3 with respect to ϑ01

is τϑ01β3
= 〈T ∧ ¬p(f1(u, v)), 〈u, v, w, f1(u, v), f4(u, v), f5(w)〉〉 and for α3 with re-

spect to ϑ11 is τϑ11α3
= 〈T ∧ ¬p(f1(u, v), 〈u, v, w, f6(u, v, w), f2(u), f5(w)〉〉. There

is a mismatch in therefore the propagated vector at (via β3) q02 and (via α3)

q12 are ϑ02 = 〈T ∧ ¬p(f1(u, v)), 〈u, v, w, f1(u,v), f4(u,v), f5(w)〉〉 and ϑ12 = 〈T ∧
¬p(f1(u, v), 〈u, v, w, f6(u,v,w), f2(u), f5(w)〉〉. It may be noted the variable z is

not reverted to its symbolic value even though it matches in both of the propagated

vectors.

An abstract version of the VP method is given in Algorithm 1. The details can

be found in [42]. The function containmentChecker (Algorithm 1) identifies the

cutpoints and a path cover in an FSMD. It invokes correspondenceChecker (Al-

39

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Algorithm 1: containmentChecker(FSMD M0, FSMD M1)

1 M0 and M1 and compute their path cover P0 and P1; Wcsp is a set of
corresponding state pairs and initially contains (q00, q10);

2 foreach (q0i, q1j) ∈Wcsp do
3 if correspondenceChecker (q0i, q1j , P0, P1,Wcsp) returns “failure” then
4 Report “unable to decide M0 vM1” and exit;
5 end if

6 end foreach
7 Report “M0 vM1”;

Algorithm 2: correspondenceChecker(q0i, q1j, P0, P1,Wcsp)

1 foreach path β : (q0i ⇒ q0m) in P0 do
2 if path α : (q1j ⇒ q1n) can be found in P1 such that β 'u α then
3 Wcsp = Wcsp ∪ {(q0m, q1n)};
4 else if path α : (q1j ⇒ q1n) can be found in P1 such that β 'c α then
5 if q0m or q1n is the reset state then
6 return failure;
7 else
8 correspondenceChecker(q0m, q1n, P0, P1,Wcsp);
9 end if

10 else
11 return failure;
12 end if

13 end foreach
14 return success;

gorithm 2) for each corresponding state pairs, one by one. The correspondenceChecker

function checks whether for every path emanating from a state in the pair, there is

a U- or C-equivalent path from the other member of the pair. Based on the output

returned by correspondenceChecker, containmentChecker reports whether the

source FSMD is contained in the transformed FSMD or not.

3.4 Motivations

In this section, we present a case where the VP method provides a false positive

result. We also present a case where the VP method reports a possible non-

equivalence of FSMDs which are actually equivalent due to the presence of a false

40

3.4. Motivations

computation.

3.4.1 False Positive Case of the VP Method

To detect valid code motion across a loop, the VP method marks the variables

which exhibit a mismatch in the propagated vector. Those variables on which

these marked variables depend are also marked in the propagated vector. The rest

of the variables are denoted as unmarked variables. A code motion across a loop

is determined to be valid by the VP method iff

1. the values of marked variables are exactly the same after exiting the loop as

before entering the loop in both behaviors and

2. the data transformations of unmarked variables, with respect to the propa-

gated vector (stored before entering the loop) are exactly the same within

the loop in each behavior.

In other words, the marked variables should not be updated within the loop in

each behavior, and the unmarked variables should be updated in exactly the same

manner in both behaviors. It may be noted that after traversing the loop once, the

VP method compares the unmarked variable values of each behavior. If the values

are the same, then it declares that all the variables are identically defined. But

this may not always be true as shown in Example 3. Therefore, the VP method

produces false positive results. In a propagated vector, we use bold face to denote

the marked variables. Example 3 illustrates a scenario where two behaviors are

not equivalent but this method declares them equivalent.

Example 3. In Fig. 3.5, the operation t = a+5 is moved across the loop as shown

in FSMDs M0 and M1. Let the variable ordering be 〈a, i, out , x, t〉. The operation

x = x+ 5 is intentionally replaced by x = 5 in M1; clearly these two behaviors are

not equivalent.

The propagated vector at the reset state q00 (q10) is ϑ00(ϑ10) = 〈T, 〈a, i, out , x, t〉〉.
For the path q00 ⇒ q01 of M0, the VP method finds the candidate C-equivalent

path q10 ⇒ q11 of M1. So the propagated vectors at q01 and q11 are ϑ01 =

〈T, 〈a, 0, out , 0, a + 5〉〉 and ϑ11 = 〈T, 〈a, 0, out , 0, t〉〉, respectively. The VP method

checks all the paths emanating from the state q01 and its corresponding state q11

41

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

q00

q01

q02

−/ t = a + 5 ,
i = 0,
x = 0

¬i ≤ 5/
out = x+ t

i ≤ 5/
i = i+ 1,
x = x + 5

(a) M0

q10

q11

q12

−/i = 0,
x = 0

¬i ≤ 5/
t = a + 5 ,
out = x+ t

i ≤ 5/
i = i+ 1,
x = 5

(b) M1

Figure 3.5: An example where the VP method gives false positive result.

with respect to propagated vector ϑ01 and ϑ11, respectively. It may be noted that be-

fore entering the loop the propagated vectors at q01 and q11 are not the same because

of the mismatch in the value of variable t. In this case t and a are marked variables

because the values of t do not match and t depends on a. After traversing the loop

once, the propagated vectors at q01 and q11 will be ϑ′01 = 〈T, 〈a, 1, out , 5, a + 5〉〉
and ϑ′11 = 〈T, 〈a, 1, out , 5, t〉〉 respectively. Here the marked variables t and a are

not updated in either of the loops (i.e., condition 1 is satisfied) and the unmarked

variables x and i have the same transformation (the value of x is 5 and the value

of i is 1) in both the loops (i.e., thus satisfy the condition 2) with respect to prop-

agated vectors ϑ01 and ϑ11. Therefore, the VP method says it is a valid case of

code motion across a loop. Since it cannot be determined statically how many

times a loop will execute, all the unmarked variable are reverted to their symbolic

value at the exit of the loop in the VP method. Therefore, the propagated vec-

tor at q01 and q11 at the end of the loop will be ϑ′01 = 〈T, 〈a, i, out , x, a + 5〉〉 and

ϑ′11 = 〈T, 〈a, i, out , x, t〉〉 respectively. For the path q01 ⇒ q02 of M0 and for the path

q11 ⇒ q12, the propagated vector at q02 and q12 will be ϑ02 = 〈T, 〈a, i, x+ t, x, t+5〉〉
and ϑ12 = 〈T, 〈a, i, x+ t, x, t+ 5〉〉 respectively. The propagated vector ϑ02 and ϑ12

are the same at q02 and q12. Finally, q01 ⇒ q02 and q11 ⇒ q12 are designated as

a U-equivalent, and the previously declared candidate C-equivalent path pairs are

asserted to be C-equivalent. Hence, the VP method declares M0 ≡M1.

It may be noted that after exiting the loop the value of x at q01 will be 30 in

M0; while, it will be the value 5 at q11 in M1. Clearly, these two behaviors are not

42

3.4. Motivations

q00

q01

q02 q03

n ≥ 0/
i = 0,
x = 0,
y = 0

i ≤ n/
x = 5 ,
y = y + i

-/
i
⇐
i

+
1

¬i ≤ n/
out = x+ y

¬n ≥ 0/
out = −1

−/−

µ2

µ1

µ3

(a) M0

q10

q11

q12 q13

n ≥ 0/
i = 0,
x = 5 ,
y = 0

i ≤ n/
y = y + i

-/
i
⇐
i

+
1

¬i ≤ n/
out = x+ y

¬n ≥ 0/
out = −1

−/−

(b) M1

Figure 3.6: An example where the VP method provides false negative result.

equivalent. Hence, the VP method gives a false positive result in this case.

In the case of mismatch at the loop header (i.e., entry point of the loop), the

VP method does not revert all the unmarked variables to their symbolic values

and propagates their values along with the marked variables. It may cause the

VP method to produce a false positive result in some scenario. In Example 3 the

VP method not able to detect the mismatch for unmarked variable x at the of

the loop. To avoid the false positive result the VP method should propagate only

the marked variable values and all the unmarked variables should be reverted to

their symbolic values. In the Subsection 3.5.1 we propose a solution to show the

non-equivalence for false positive cases.

3.4.2 False Computation Involving Loops

Example 4 illustrates a case where the VP method provides false negative results

due to the presence of a false computation.

Example 4. Let us consider the FSMDs in Fig. 3.6. In this example, the operation

x = 5 is a loop invariant for FSMD M0 in Fig. 3.6(a). It is placed before the loop

in the transformed FSMD M1 in Fig. 3.6(b).

43

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

There are three possible computations, µ1 = 〈q00
n≥0
==⇒ q01

¬i≤n
===⇒ q03 =⇒ q00〉,

µ2 = 〈q00
n≥0
==⇒ (q01

i≤n
==⇒ q01)+ ¬i≤n

===⇒ q03 =⇒ q00〉 and µ3 = 〈q00
¬n≥0
===⇒ q03 =⇒ q00〉 for

the FSMD in Fig. 3.6(a). The computation µ1 executes if the loop condition i ≤ n

is False for n ≥ 0. The computation µ2 executes if the loop condition i ≤ n is

True for the input n ≥ 0. The computation µ3 executes if n < 0 holds. In this

example, when the state q01 is reached for the first time, n is always greater than

or equal to 0, and i is equal to 0. Therefore, the computation µ1 will never execute.

In other words, the loop will execute at least once for all possible n ≥ 0 and i = 0.

The computation µ1 is, therefore, a false computation.

The VP method explores all possible computations of a given FSMD M0. It

does not check whether a computation is a false computation or not. It finds

that the computation µ2 and µ3 of FSMD M0 are equivalent to the computation

〈q10
n≥0
==⇒ (q11

i≤n
==⇒ q11)+ ¬i≤n

===⇒ q13 =⇒ q10〉, 〈q10
¬n≥0
===⇒ q13 =⇒ q10〉 of FSMD M1,

respectively. However, the VP method fails to find 〈q10
n≥0
==⇒ q11

¬i≤n
===⇒ q13 =⇒ q10〉

as an equivalent computation of µ1 in FSMD M0, since they differ in the final

value of the variable x. It may be noted that the final value of x would be 0 after

execution of µ1 in M0 and 5 after the execution of 〈q10
n≥0
==⇒ q11

¬i≤n
===⇒ q13 =⇒ q10〉 in

M1. In this example, as described above, the computation µ1 will never execute.

The non-equivalence of FSMDs reported by the VP method is due to this false

computation.

If we can ignore this false computation during equivalence checking, we can

establish the equivalence between these two behaviors. In Subsection 3.5.2 we

show how to ignore a false computation with the help of SMT solver Z3 [57].

3.4.3 Code Motion Involving Loops

The VP method is presented for validating code motion across the loop i.e., S1

during translation. However, the VP Method cannot handle the scenario where

some code segment is moved before (after) the loop from inside the loop body

i.e., S2 and S3. In Subsection 3.5.3 we propose an enhancement to overcome this

issue.

44

3.5. Proposed Solutions

3.5 Proposed Solutions

In this section, we propose a solution to prove the non-equivalence for the case

given in Example 3. We also propose a solution to identify a false computation in

an FSMD during equivalence checking. We also propose a solution to handle all

the scenarios S1, S2 and S3 during equivalence checking.

3.5.1 Showing the Non-Equivalence for False Positive Cases

The VP method propagates the values (as a propagated vector) of live variables

over the corresponding paths of the two behaviors as follows.

• If there is a mismatch in the propagated vector in a corresponding state

pair, then it propagates not only the mismatched values (corresponding to

marked variables), but also the matched values (corresponding to unmarked

variables) as well. This is shown in Example 2.

• If there is no mismatch in the propagated vector in a corresponding state

pair then all variables are reverted back to their symbolic values.

Our equivalence checking method is based on propagating the mismatch values

of the variables through all the subsequent path segments until the values match or

the final path segment ending in the reset state is reached. However, in case of a

mismatch at the loop header, we propagate only the marked variable values and all

the unmarked variables will be reverted to their symbolic values. This will help us

to identify whether an unmarked variable is defined identically in both the loops.

To ensure the validity of code motion like the VP method, we must ensure that

marked variable should not be modified inside the loop body. The VP method

fails to do this since in case of mismatch it propagates the actual value of variables

and thus gives false positive results as shown in Example 3. Using our rule, the

propagated vector at q01 (via q00 ⇒ q01 path) will be ϑ01 = 〈T, 〈a, i, out , x, a + 5〉〉
and the propagated vector q11 will be ϑ01 = 〈T, 〈a, i, out , x, t〉〉 (via q10 ⇒ q11 path)

before entering the loop in Example 3. At the end of the loop the propagated vector

at q01 will be ϑ′01 = 〈i ≤ 5, 〈a, i, out , x + 5, a + 5〉〉, and the propagated vector at

q11 will be ϑ′11 = 〈i ≤ 5, 〈a, i, out , 5, t〉〉. The value for x (unmarked variable) is

not the same in ϑ′01 and ϑ′11. Hence, it is not a valid code motion and the two

behaviors shown in Fig. 3.5 are not equivalent.

45

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

for(i1 = L1; i1 ≤ H1; i1+ = r1)

for(i2 = L2; i2 ≤ H2; i2+ = r2)
...

for(in = Ln; in ≤ Hn; in+ = rn)

Sn : . . .

Figure 3.7: Nested loop structure

3.5.2 Handling False Computation Involving Loops

Let us consider the generalized nested loop structure of depth n as shown in Fig. 3.7

for this purpose. Each iterator ix, 1 ≤ x ≤ n, is initialized to Lx. Each iterator ix

reaches its upper limit Hx by incrementing a step constant rx.

The terms Lx and Hx, x = 1, . . . , n, are assumed to be linear expressions

over the input variables, constants or previous loop iterators i1 · · · ix−1. These

requirement on Li, Hi, ri and increment statement restrict the kind of loop to

which our method will apply. Let us assume that Cp is a propagated condition

at the start of the nested loop structure. Conceptually, the propagated condition

in a state s is the condition of a path from the reset state of the behavior to the

state s. In Fig. 3.6, for example, the Cp is n ≥ 0 at state q01. Under the condition

Cp, the initial value of the loop iterator (i1 = L1) must satisfy the initial loop

condition (i.e., L1 ≤ H1) to execute a nested loop structure at least once. We can

specify this condition by the following formula 3.1. If formula 3.1 is valid then a

nested loop structure with nesting depth one will always execute at least once.

Cp =⇒ L1 ≤ H1 (3.1)

The formula 3.2 is the generalized form of the formula 3.1. If formula 3.2 is valid

then the statement Sn at the generalized loop structure of nesting depth n, will

46

3.5. Proposed Solutions

always execute at least once.

Cp =⇒

(
∃i1,∃i2, · · · ,∃in−1,∃a1,∃a2, · · · ,∃an−1

((
Ln ≤ Hn

)
∧
(n−1∧
x=1

fx

)))
(3.2)

where fx =
(

(Lx ≤ ix ≤ Hx) ∧ (ix = axrx + Lx) ∧ (ax ≥ 0
))

. The Cp is the

propagated condition before entering the nested loop of depth n. We use these

formulas to identify a false computation during equivalence checking. For checking

the validity of these formulas, we use the SMT solver Z3 [57] in the theory of linear

integer arithmetic. These formulas are dynamically generated in our equivalence

checking framework.

For example, in Fig. 3.6 there is a loop q01
i≤n
==⇒ q01 of nesting depth 1. At

state q01 of FSMD M0, the propagation condition Cp is n ≥ 0. To verify whether

the loop q01
i≤n
==⇒ q01 will execute at least once, we should check the validity of

the formula n ≥ 0 =⇒ 0 ≤ n. This formula is valid. Thus, the loop will

always execute at least once for all possible values of n ≥ 0. We can say that

the computation 〈q00
n≥0
==⇒ q01

¬i≤n
===⇒ q03 =⇒ q00〉 is a false computation. During

equivalence checking, our method will ignore this false computation. By ignoring

this false computation, we can show the equivalence between the two behaviors

shown in Fig. 3.6.

3.5.3 Handling Loop Invariant Code Motion

We handle marked and unmarked variables separately at the loop header to handle

the scenarios S2 and S3. Let q0i be the entry/exit state of a loop body in M0 and its

corresponding state q1j be the entry/exit state of a loop body in M1. The state q0i

has the propagated vector ϑ0i before entering the loop and the propagated vector

ϑ′0i after traversal of one of the path inside loop leading to q0i. Similarly, state q1j

has the propagated vector ϑ1j before entering the loop and the propagated vector

ϑ′1j after traversal of one the path inside loop leading to q1j. During code motion

involving loops following cases will arise:

Case 1 Unmarked Variable: There are two possibilities for an unmarked variable,

47

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

ϑ0i :

ϑ′0i :

〈· · ·x · · · 〉

〈· · · ex · · · 〉

ϑ1j :

ϑ′1j :

〈· · ·x · · · 〉

〈· · · ex · · · 〉

Figure 3.8: A case 1.1 where unmarked variable x is defined identically in both
the loops

ϑ0i :

ϑ′0i :

〈· · · x · · · 〉

〈· · · ex0i · · · 〉

ϑ1j :

ϑ′1j :

〈· · ·x · · · 〉

〈· · · ex1j · · · 〉

Figure 3.9: A case 1.2 where unmarked variable x has some mismatch at the end
of the loop

say x. It may be noted that x has symbolic values in both ϑ0i and ϑ1j.

Case 1.1: If x has the same value in ϑ′0i and ϑ′1j then it indicates that x is defined

identically in both the loops as shown in Fig. 3.8. Since it is not possi-

ble to determine statically how many times a loop will execute before

exiting in this case, after exiting the loop x is reverted to its symbolic

value.

Case 1.2: If there is a mismatch for x in ϑ′0i and ϑ′0j then there is a possibility of

the scenario S3. Let ex0i and ex1j represent the mismatched values in

ϑ′0i and ϑ′1j respectively as shown in Fig. 3.9. To check the validity of

the code motion, we do the following test.

(a) The expressions ex0i and ex1j should be invariant in their corre-

sponding loops.

(b) The variable x is not used before being defined in both the loops.

Examples 5 and 6 illustrate these cases.

Example 5. Consider the input behavior M0 and its transformed behavior M1

in Fig. 3.10. The operation y ⇐ 5, a loop invariant for input behavior M0, is

placed after the loop body in the transformed behavior M1. The input behavior

48

3.5. Proposed Solutions

q00

q01

q02

−/i = 0

¬i ≤ 5/
out = y

i ≤ 5/
i = i+ 1,
y = 5

(a) M0

q10

q11

q12

−/i = 0

¬i ≤ 5/
y = 5 ,
out = y

i ≤ 5/
i = i+ 1

(b) M1

Figure 3.10: An example of code motion involving scenarios S3

q00

q01

q02

−/i = 0,
x = 0,
y = 0

¬i ≤ 5/
y = 3,
out = x

i ≤ 5/
i = i+ 1,
x = y + 5,
y = 5

(a) M0

q10

q11

q12

−/i = 0,
x = 0,
y = 0

¬i ≤ 5/
y = 3,
out = x

i ≤ 5/
i = i+ 1,
x = y + 5,
y = 3

(b) M1

Figure 3.11: An example where unmarked is used before being defined.

M0 and the transformed behavior M1, shown in Fig. 3.10, are equivalent. In both

behaviors, ϑ00 and ϑ10 are 〈T, 〈i, out , y〉〉 when entering the loop. After executing

the loop once the propagated vector at q01 is ϑ′01 = 〈i ≤ 5, 〈i + 1, out ,5〉〉 and the

propagated vector at q11 is ϑ′11 = 〈i ≤ 5, 〈i + 1, out ,y〉〉. The propagated vectors

ϑ′01 and ϑ′11 differ in the value of y. Since, y ⇐ 5 is a loop invariant for loop body

(q01 ⇒ q01) and y is not used before defining it, it is a valid code motion. With

the propagated vector ϑ′01 and ϑ′11, the paths q01 ⇒ q02 and q11 ⇒ q12 can be shown

to be equivalent.

Example 6. Consider the input behavior M0 and its transformed behavior M1

in Fig. 3.11. These two behaviors shown in Fig. 3.11 are not actually equivalent

since the values of x do not match after exiting the loop when the loop executes at

49

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

ϑ0i :

ϑ′0i :

〈· · · x · · · 〉

〈· · · ex1j · · · 〉

ϑ1j :

ϑ′1j :

〈· · · ex1j · · · 〉

〈· · · ex1j · · · 〉

Figure 3.12: A case 2.1 where a marked variable x has the same value at the end
of the loop

ϑ0i :

ϑ′0i :

〈· · · ex0i · · · 〉

〈· · · ex0i · · · 〉

ϑ1j :

ϑ′1j :

〈· · · ex1j · · · 〉

〈· · · ex1j · · · 〉

Figure 3.13: A case 2.3 where the values of the marked variable x do not update
in both the loops

least two times. It may be noted that before entering the loop the variable x and

y are unmarked variables at q01 and q11. The variable x is defined identically in

both the loops. The definition of y is a loop invariant in both the loops. However,

the variable y is used in the definition of x before being defined. This will result

in different values of x in the two behaviors after exiting the loop. Therefore, it

is clear that we need to check both (1) if there is a mismatch for an unmarked

variable then the mismatch should remain the same over multiple iterations and

(2) for such a variable it has not been used before its definition in the loop in both

the behaviors.

Case 2 Marked Variable: Marked variables arise in the case of S1 and S2. Here

some definition before a loop is moved into the loop or is moved across the loop.

Therefore, the marked variables may have some mismatch in the corresponding

propagated vectors ϑ0i and ϑ1j.

Case 2.1: Suppose a marked variable, say x, has its symbolic value at ϑ0i and ex1j
at ϑ1j. If after executing the loop once the value of x matches in both

the loops (i.e. x has the same value (ex1j) in ϑ′0i and ϑ′1j) as shown in

Fig. 3.12, then scenario S2 is possible. To check the validity of the code

motion, we do the following test.

(a) The expression ex1j should be invariant in both the loops.

50

3.5. Proposed Solutions

q00

q01

q02

−/ t = a + 5 ,
i = 0

¬i ≤ 5/
out = y + t

i ≤ 5/
i = i+ 1,
y = 5

(a) M0

q10

q11

q12

−/i = 0,
y = 5

¬i ≤ 5/
t = a + 5 ,
out = y + t

i ≤ 5/
i = i+ 1

(b) M1

Figure 3.14: An example of code motion involving scenarios S1 and S2

(b) The variable x is not used before being defined in the loop at q0i,

and it has no definition in the loop at q1j.

Case 2.2: Suppose x has its symbolic value at ϑ1j and ex0i at ϑ0i and after execut-

ing the loop once the value of x matches in both the loops. This case

can be handled in a manner similar to case 2.1. However, this scenario

unlikely to occurs in synthesis tools in practice.

Case 2.3: In the remaining case, if before executing the loop and after exiting

the loop the value of x remains the same in both the loops as shown

in Fig. 3.13 then scenario S1 is possible. To check the validity of code

motion, we do the following test.

(a) Variable x is not updated within the loop.

(b) All those variables on which the variable x depends should not be

updated within the loop.

If a variable (x or any of the variables on which x depends) is updated within the

loop (even identically for both FSMDs), then it is not a valid case of code motion.

Example 7 illustrates this case.

Example 7. Consider the input behavior M0 and its transformed behavior M0

in Fig. 3.14. The operation y ⇐ 5, a loop invariant for input behavior M0, is

placed out of the loop in the transformed behavior M1. The operation t⇐ a+ 5 is

51

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

containmentChecker
(Algorithm 1)

enhancedCorrespondenceChecker (ECC)
(Algorithm 2)

findEquivalentPath
(Algorithm 3)

loopInvariant
(Algorithm 5)

checkFalseComputation

Figure 3.15: A overall flow of the EVP method

moved after the loop body. The input behavior M0 and the transformed behavior

M1 shown in Fig. 3.14 are equivalent. It may be noted that before entering the loop

the variables y, t and a are marked variables at states q01 and q11. After exiting

the loop the variable y has the same value at q01 and q11. This is an instance of

scenario S2. The operation y ⇐ 5 is a loop invariant for both the loops and y is

not defined within the loop at q11 hence this is valid code motion. After exiting the

loop t and a remain the same as before entering the loop. This is an instance of

scenario S1. All the variables on which t and a depend are not updated in both the

loops. Therefore this is also a valid code motion.

It may be noted that for the FSMDs M0 shown in Figs. 3.10, 3.11, and 3.14 the

loop will execute at least once. We can say that the computation 〈q00 ⇒ q01
¬i≤5
==⇒

q02〉 is a false computation in each FSMD. So during equivalence checking our

method will ignore this false computation.

3.6 Enhanced Value Propagation Based Equiva-

lence Checking (EVP)

In this section, we present our enhanced VP method (EVP). We use the same

containmentChecker fucntion of the VP method. We have enhanced the corre-

spondence checker so that our method can handle all the issues address in Sec-

tion 3.4. The loopInvariant function is also enhanced to handle all the cases

discussed in Section 3.5.3.

52

3.6. Enhanced Value Propagation Based Equivalence Checking (EVP)

Algorithm 3: findEquivalentPath(β, ϑβs , q1j, ϑq1j , P0, P1)

Input : A path β ∈ P0, the propagated vector ϑβs , a state q1j ∈M1, the
propagated vector ϑq1j associated with q1j , and the path covers P0

and P1 of M0 and M1, respectively.
Output: An ordered tuple 〈γ1, γ2, ϑγ1f , ϑγ2f 〉 s.t. γ1 'u γ2 or γ1 'c γ2, the

propagated vectors ϑγ1f and ϑγ2f

1 τ
ϑβs
β = 〈Rϑβsβ , s

ϑβs
β 〉

2 foreach path α : (qαs ⇒ qαf) ∈ P1 emanating from q1j /* qαs = q1j */

3 do

4 τ
ϑαs
α = 〈Rϑαsα , s

ϑαs
α 〉

5 if R
ϑβs
β ≡ Rϑαsα then

6 if s
ϑβs
β = s

ϑαs
α then

7 return (β, α, ρ̄, ρ̄);
8 else
9 return (β, α, ϑβf , ϑαf);

10 end if

11 else if R
ϑαs
α =⇒ R

ϑβs
β then

12 return (β, ηαs , ϑβf , ϑαs);

13 else if R
ϑβ
β =⇒ R

ϑαs
α ; then

14 return (ηβs , α, ϑβs , ϑαf);

15 else
16 continue; /* Case 6 -- β 6' α */

17 end if

18 end foreach
/* All the paths emanating from q1j are not equivalent to the path

β */

19 return (β,NULL, ρ̄, ρ̄);

The overall flow of our verification method is given in Fig.3.15. The behavior

of the enhanced correspondence checker ECC function (Algorithm 4) is as follows.

It takes as input a corresponding state pair 〈q0i, q1j〉, a path covers P0 (of M0) and

P1 (of M1), a corresponding state pair set Wcsp , a set of U-equivalent path pairs

Eu, a set C-equivalent path pairs Ec, and a LIST which maintains a candidate

C-equivalent pairs of paths. It returns “success” if for every path emanating from

q0i an equivalent path originating from q1j is found; otherwise, it returns “failure”.

The function checkFalseComputation returns True if the loop at q0i un-

der the propagated condition will execute at least once, over all possible in-

53

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Algorithm 4: ECC(q0i, q1j, P0, P1,Wcsp, Eu, Ec,LIST)

1 if q0i is a loop header and doLoopTest[q0i] is TRUE then
2 doLoopTest[q0i]=FALSE;
3 if checkFalseComputation(q0i) returns True then
4 avoidLoopExitPath[q0i]=TRUE; /* Ignore False Computation */

5 end if

6 end if
7 foreach path β : (q0i ⇒ q0m) in P0 do
8 if q0i is a loop header and avoidLoopExitPath[q0i] is TRUE then
9 avoidLoopExitPath[q0i]=FALSE;

10 continue;

11 end if
12 if Path β is already present in the LIST then
13 continue; /* prevent recursions which lead to an infinite loop */

14 end if
15 (β, α, ϑ′0m, ϑ

′
ϑ1n

)← findEquivalentPath(β, ϑ0i, q1j , ϑ1j , P0, P1);

16 if path α : (q1j ⇒ q1n) can be found in P1 such that β 'u α then
17 Eu = Eu ∪ {(β, α)}; /* U-equivalence */

18 Wcsp = Wcsp ∪ {(q0m, q1n)};
19 else if path α : (q1j ⇒ q1n) can be found in P1 such that β 'c α then
20 if q0m or q1n is reset state then
21 return failure; /* Reset state is reached with mismatch */

22 else if q0m or q1n appears as the final state of some path already in
LIST ∧ loopInvariant(β, α, ϑ′0m, ϑ

′
1n) then

23 return failure; /* Propagated values are not loop invariant */

24 else
25 ϑ0m ← ϑ′0m; ϑ1n ← ϑ′1n;
26 Append 〈β, α〉 to LIST
27 ECC(q0m,q1n, P0, P1,Wcsp, Eu, Ec,LIST);

28 end if

29 else
30 return failure; /* Equivalent Path of β may not be present in P1 */

31 end if

32 end foreach
33 Ec = Ec ∪ {Last member of LIST};
34 LIST ← LIST\{Last member of LIST};
35 if q0i is a loop header then
36 doLoopTest[q0i]=TRUE;
37 end if
38 return success;

54

3.6. Enhanced Value Propagation Based Equivalence Checking (EVP)

Algorithm 5: loopInvariant(β, α, ϑ′0m, ϑ
′
1n)

Input : A path β ∈ P0, the propagated vector ϑ′0m at the end state q0m of β,
path α ∈ P1 which is the C-equivalent of β, the propagated vector
ϑ′1n at the end state q1n of α

Output: A Boolean value
1 foreach variable x in ϑ′0m and ϑ′1n do
2 if x is an unmarked variable (Case 1) then

/* Fig. 3.8 and 3.9 depict the case 1 (scenario S3) */

3 if Case 1.1 then
4 Set each unmarked variable to its symbolic value “x”;
5 end if
6 if Case 1.2 then
7 one of the tests in Case 1.2 (a) and (b) fails then return False;
8 end if

9 end if
10 if x is a marked variable (Case 2) then

/* Fig. 3.12 and 3.13 depict this case (scenario S1, S2) */

11 if before entery to the loop x has its symbolic value in one of the loops
and has the value ex in other loop then

12 if Case 2.1 or Case 2.2 then
13 one of the tests in Case 2.1 (a) and (b) fails then return False;
14 end if

15 end if
16 if Case 2.3 then
17 one of the tests in Case 2.3 (a) and (b) fails then return False;
18 end if

19 end if

20 end foreach
21 return True;

puts in M0. It returns False otherwise. The function checkFalseComputation

should be invoked once for all paths that terminate in the state q0i. Moreover,

a call to checkFalseComputation should be avoided if the state q0i is reached

through some back edge. To guarantee this, each loop header is associated with

a flag doLoopTest . At each loop header state q0i, we also associated a flag

avoidLoopExitPath. This flag is used to ensure that after avoiding the loop exit

path once the loop exit path must be checked for subsequent calls of the function

ECC for the state q0i.

The function ECC invokes the function findEquivalentPath to find a U-

55

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

or C-equivalent path α : (q1j ⇒ q1n) in the transformed FSMD M1 for each

path β : (q0i ⇒ q0m) starting from state q0i of the original FSMD M0. The

findEquivalentPath function of the EVP method is given in Algorithm 3. The

function findEquivalentPath returns a 4-tuple 〈β, α, ϑ′0m, ϑ′1n〉 where β and α

are corresponding paths as described above, ϑ′0m is the propagated vector at the

end state q0m of β and ϑ′1n is the propagated vector at the end state q1n of α. If

ϑ′0m ≡ ϑ′1n then the path α is U-equivalent to path β. Consequently, the data

structure Wscp gets updated (line 18). If findEquivalentPath does not find any

path α in M1 whose condition of execution Rα satisfies either R
ϑβs
β ≡ R

ϑαs
α , or

R
ϑβs
β =⇒ R

ϑαs
α or R

ϑαs
α =⇒ R

ϑβs
β , then it returns α = NULL (i.e., M0 and M1

may not be equivalent, handled in line 30). If α 6= NULL and ϑ′0m 6≡ ϑ′1n, then

the path α is candidate C-equivalent to the path β and hence further value prop-

agation is required. However, the following checks are carried out first and ECC

reports “failure” in the following scenarios:

1. if one of the state q0m and q1n is a reset state (line 21) it returns “failure”;

2. if a loop has been crossed over then the function ECC invokes the function

loopInvariant. The loopInvariant function of the EVP method is given

in Algorithm 5. The function loopInvariant checks for the loop invariance

of the propagated vector ϑ′0m and ϑ′1m. The function loopInvariant returns

True if each marked and unmarked variables satisfy their respective cases as

mentioned in Section 3.5.3. If it returns False then the function ECC returns

“failure”. Note that the function loopInvariant trivially returns True if

case 1.1 in Section 3.5.3 holds for each variable, i.e., the variable is defied

identically in both the loops.

If ϑ′0m 6≡ ϑ′1n and the above two cases do not occur, then 〈β, α〉 is appended to

LIST and the propagated vector at q0m and q1n, are updated and ECC calls itself

recursively (line 27). It may be noted that while updating the propagated vector

(line 25), we update only mismatched variable values and reset the other variable

to their symbolic values if the state is the loop header; otherwise, we update all

the variable values. When ECC reaches line 38, it implies that for every chain of

paths emanating from the state q0i, there exists a corresponding chain of paths

emanating from q1j such that their final paths are U-equivalent.

56

3.7. Correctness and Complexity

ϑ0i :

ϑ′0i :

〈x〉

〈ex0i〉

ϑ0i :

ϑ′0i :

〈x〉

〈ex1j〉

(a)

ϑ0i :

ϑ′0i :

〈x〉

〈ex1j〉

ϑ0i :

ϑ′0i :

〈ex1j〉

〈ex1j〉

(b)

ϑ0i :

ϑ′0i :

〈ex0i〉

〈ex0i〉

ϑ0i :

ϑ′0i :

〈x〉

〈ex0i〉
(c)

ϑ0i :

ϑ′0i :

〈ex0i〉

〈e′x0i〉

ϑ0i :

ϑ′0i :

〈ex1j〉

〈e′x1j〉

(d)

Figure 3.16: All possible scenarios where x has some mismatch at the end of the
loop

3.7 Correctness and Complexity

Lemma 1. If there is a mismatch in the propagated vectors after executing the

loop once and Algorithm 5 terminates successfully (at step 21) then x is invariant

in the loop.

Proof. Let q0i be the entry/exit state of a loop body in M0 and its corresponding

state q1j be the entry/exit state of a loop body in M1. The state q0i has the

propagated vector ϑ0i before entering the loop and the propagated vector ϑ′0i after

traversal of the path leading to q0i. Similarly, state q1j has the propagated vector

ϑ1j before entering the loop and the propagated vector ϑ′1j after traversal of the

path leading to q1j. The lemma is proved by case analysis as follow. Let us

consider all the possibilities for the variable x as shown in Fig. 3.16.

1. The variable x has its symbolic value in ϑ0i and ϑ1j (i.e., the variable x

has the same value in both the loops). After exiting the loop, there is a

mismatch for x in ϑ′0i (say ex0i) and ϑ1j′ (say ex1j) as shown in Fig. 3.16(a).

If ex0i or ex1j is not invariant in its corresponding loop then Algorithm 5

returns False in step 7.

2. The variable x has its symbolic value at ϑ0i and ex1j at ϑ1j. After executing

the loop, the values of x match in both the loops (i.e., x has the same value

57

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

(ex1j) as shown in Fig. 3.16(b). If the expression ex1j is not an invariant in

both the loops then Algorithm 5 returns False in step 13.

3. The variable x has the value ex0i at ϑ0i and its symbolic value at ϑ1j and

after executing the loop the value of x matches in both the loops (i.e., x has

the same value (ex0j) as shown in Fig. 3.16(c). If the expression ex1j is not

an invariant in both the loops then Algorithm 5 returns False in step 13.

4. The variable x has the value ex0j at ϑ0i and ex1j at ϑ1j. After exiting the

loop the value of x is not the same as before entering the loop as shown in

Fig. 3.16(d). Then Algorithm 5 returns False in step 17

From the above it is clear that if there is a mismatch in the propagated vectors

after executing the loop once and Algorithm 5 terminates successfully (at step 21)

then x is invariant in the loop. �

Lemma 2. If Algorithm 1 terminates successfully (at step 7) and some code seg-

ment in the original behavior M0 is moved before (after) the loop from inside the

loop body in the transformed behavior M1 then the loop exit path must be a false

computation under all propagated conditions at the loop header.

Proof. Let q0i be the entry/exit state of a loop body in M0 and its corresponding

state q1j be the entry/exit state of a loop body in M1. Let the definition of

the variable x be an invariant in the loop at q0i. It is moved from inside the

loop body at q1j to all the paths leading to q1j. Let β be one such path in M0

which is C-equivalent to the path α (β 'C α) in M1 (i.e., there is a mismatch for

the variable x). Before entering the loop, let the propagated condition at q0i be

CPβ through the path β in M0. If the function checkFalseComputation returns

Flase under the CPβ then the loop exit path at q0i is not a false computation.

In this case the function enhancedCorrespondenceChecker does not ignore the

loop exit path and finds the C-equivalent path in the transformed M1 (i.e., there

is a mismatch for the variable x). Since the mismatch for x persists till the reset

state, enhancedCorrespondenceChecker calls itself recursively until the reset state

is reached and returns failure (i.e., M0 is not equivalent to M1) in step 21.

Let the definition of x be moved from inside the loop body at q1j to the loop

exit path emanating from q1j. Let the loop exit path at q0i be not a false com-

putation under some propagated condition at q0i. In this case also the function

58

3.7. Correctness and Complexity

enhancedCorrespondenceChecker does not ignore the loop exit path and finds

the C-equivalent path in the transformed M1 (i.e., there is a mismatch for the

variable x) and calls itself recursively until the reset state is reached and returns

failure (i.e., M0 is not equivalent to M1) in step 21. �

3.7.1 Soundness

The paper [42] shows the correctness of the VP method assuming that the pair of

paths declared as U-equivalent or C-equivalent by the function findEquivallentPath,

are indeed U-equivalent or C-equivalent. But this may not always be true as shown

in Example 3. Example 3 shows a case where the VP method provides a false pos-

itive result. Section 3.5 proposed a solution to show the non-equivalence in the

case given in Example 3.

Theorem 2 (Partial correctness). If the verification method terminates at step 7

of Algorithm 1, then M0 vM1.

Proof. If the verification method terminates at step 7 of the function containmentChecker

then we need to prove the following claims.

1. The set E = Eu ∪Ec contains a member for each path in the path cover P0.

2. All paths of the path cover M0 leading the reset state of M0 will have a

U-equivalent path in the path cover in P1 leading to the reset state of M1.

3. If there is a loop invariant code motion from inside the loop then it is a valid

code motion.

The set Eu contains the pair of U-equivalent paths, and the set Ec contains the

pair of C-equivalent paths. A pair of paths is added to the set Eu and Ec at step 17

and 33, respectively, of enhancedCorrespondenceChecker. Now the pair of paths

declared by findEquivallentPath is actually U-equivalent and C-equivalent and

added to the set Eu and Ec respectively. The fact that E = Eu ∪ Ec contains a

member for each path in the path cover P0 can be proved in a way similar to the

method in [42].

Claim 2 can be proved by contradiction. Let the paths β ∈ P0 and α ∈ P1 lead

to the reset states of M0 and M1, respectively and β 'c α. In this case, the func-

tion enhancedCorrespondenceChecker returns failure to containmentChecker

59

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

as shown at step 21; consequently, containmentChecker terminates at step 3, not

at step 7, is a contradiction.

If there is a loop invariant code motion from inside the loop then Lemma 1

and 2 ensure the validity of code motion. �

3.7.2 Termination

Theorem 3 (Termination). Algorithm 1 always terminates.

Proof. The function loopInvariant terminates since it involves just a comparison

of two propagated vectors. The function findEquivalentPath(β, q1j, · · ·) tries to

find a path α starting from q1j ∈M1 such that β 'u α or β 'c α. It checks all the

transitions from q1j in the worst case. Hence it terminates as well. In Algorithm 8,

the outermost loop (7–32) of the function enhancedCorrespondenceChecker is ex-

ecuted only |P0| (number of elements in P0) time which is finite. In Algorithm 8

enhancedCorrespondenceChecker can invoke itself recursively. The enhanced−
CorrespondenceChecker(q0i, q1j) invokes itself with the end state of some path β

emanating from q0i and some path α emanating from q1j. If the end state of path β

or path α is a reset state then enhancedCorrespondenceChecker(q0i, q1j) returns

failure (at step 21). Since the recursive call of the function enhancedCorrespondence−
Checker does not extend beyond the reset state and the function enhanced−
CorrespondenceChecker avoids traversing the loop twice (at step 12) the function

invokes itself recursively only a finite number of times. �

3.7.3 Complexity

The condition of execution and data transformations of a path is represented in

normalized sum form [101]. The complexity of normalization of a formula F is

O(2|F |), where |F | denotes the length of the formula. It may be noted that if the

number of states in the original FSMD M0 is n, then the number of states in the

transformed FSMD is in O(n). Let n be the number of states in the FSMD and K

be the maximum number of parallel edges between any two states. The complexity

of the overall verification method is of order of the product of the following two

terms:

60

3.8. Experimental Results

1. The first term is the complexity of findEquivalentPath(β, q1j, · · ·). In

worst case, the function checks all transitions from q1j to find a path α

starting from q1j ∈ M1 such that β 'u α or β 'c α. The complexity of

finding the path α is O(2|F | · k · n). On finding a C-equivalent path, value

propagation is carried out in O(2|F | · |V0 ∪ V1|) time. Hence the overall

complexity of findEquivalentPath(β, q1j, · · ·) is O(2|F | · (k ·n+ |V0∪V1|)) .

2. The second term is of order of the product of the following two terms:

(a) The number of times enhancedCorrespondenceChecker is called from

containmentChecker. For every element of W scp, the corresponding

state set, containmentChecker calls enhancedCorrespondenceChecker.

The maximum number of elements in Wcsp is O(n).

(b) The number of times enhancedCorrespondenceChecker calls itself re-

cursively. In the worst case, all the states of M0 can be cut-points. In

this case enhancedCorrespondenceChecker can recursively call itself

k · (n− 1) + k2 · (n− 1) · (n− 2) + · · ·+ kn−1 · (n− 1) · (n− 2) . . . 2 · 1 '
kn−1 · (n− 1)n−1 times.

Therefore the complexity of the overall method is O(2|F | · (k · n+ |V0 ∪ V1|) ·
n · kn−1 · (n − 1)n−1). If we ignore the time taken by the SMT solver Z3

then the worst case complexity of the presented method is the same as that

of [42].

3.8 Experimental Results

Our equivalence checking algorithm has been implemented in C, and all experi-

ments have been conducted on a laptop with Intel Core 2 Duo processor with 2

GHz and 3GB of RAM. In our experimental setup, loop information i.e., nesting

depth and loop header are extracted during construction of the FSMD from the

input behavior using dominator tree analysis [102]. All the benchmarks listed in

Table 3.1 are taken from [42]. The benchmarks selected such as TLC and GCD are

control-intensive design; DCT, DIFFEQ and EWF are data-intensive and LRU is

both data and control intensive. The transformed FSMD is obtained from the

original one in two steps. First we obtained the intermediate transformed FSMD

61

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Table 3.1: Experimental results on the benchmarks presented in [42]

Benchmarks
M0 M1

#Loop
VP EVP

#State #Path #State #Path Equi T (ms) Equi T (ms)

TLC 13 20 7 16 0 Yes 52 Yes 52

DCT 16 1 8 1 0 Yes 116 Yes 120

EWF 34 1 36 1 0 Yes 40 Yes 44

PERFECT 6 7 4 6 1 Yes 24 Yes 40

GCD 8 11 14 8 1 Yes 56 Yes 116

MODN 8 9 9 9 1 Yes 92 Yes 176

DIFFEQ 15 3 9 3 1 Yes 28 Yes 32

LRU 33 39 32 39 8 Yes 364 Yes 1204

IEEE-754 55 59 44 50 7 Yes 482 Yes 2080

BARCODE 32 55 24 57 15 Yes 540 Yes 4130

Table 3.2: Experimental results on the benchmarks presented in [42]

Benchmarks
VP EVP

Equivalent Time (ms) Equivalent Time (ms)

TLC No 60 No 64

DCT No 124 No 128

EWF No 40 No 44

PERFECT No 28 No 40

GCD No 44 No 36

MODN No 92 No 72

DIFFEQ No 16 No 16

LRU No 202 No 840

by running the SPARK tool on these benchmarks. We forced SPARK to apply the

code transformation like copy and constant propagation, common sub-expression

elimination, and dead code elimination (DCE) to the original behavior to produce

the corresponding optimized transformed behavior. The intermediate transformed

FSMD obtained by SPARK is converted into the final transformed FSMD accord-

ing to path-based scheduler. This help us to confirm that our method shows

equivalence correctly when control structure has been modified as well as code

62

3.8. Experimental Results

motions have arisen.

In our first experiment, we compare our EVP method with the VP method

to verify the benchmarks listed in Table 3.1. The objective is to show that our

EVP method can prove the equivalence for these benchmarks. Also, we want to

compare the execution time (in milliseconds (ms)) with the VP method. The

results of these experiments are tabulated in Table 3.1. Our method is able to

establish the equivalence in all the benchmarks. Note that in Table 3.1, if a

benchmark has no loop then the execution time obtained by our EVP method is

almost the same as the VP method. However, when a benchmark has some loop

then our method needs more time since at each loop header we invoke the SMT

solver Z3 to check whether the loop will execute at least once. For example, LRU

benchmark has 8 loops. Therefore our method takes more time as compared to the

VP method. This extra check is required to overcome some of the limitations of

the VP method as discussed in Section 3.4. Our next experiment will justify this.

Table 3.1 confirms that our method is capable of handling all code transformation

techniques mentioned here. Since our objective is to compare the run time of our

method with the VP method in all the scenarios which the VP method can handle,

we prevent SPARK from applying loop invariant code motion transformation to

obtain the optimized transformed behavior. It has been shown in experiment 3

that the VP method cannot handle LICM transformation.

In our second experiment, we manually introduce some changes in the bench-

marks listed in Table 3.1 so that their original and transformed FSMDs become

inequivalent. These modified benchmarks are listed in Table 3.2. The objective of

this experiment is to show that our method does not produce false positive results

in non-equivalence cases. As shown in Table 3.2 both the methods reported non-

equivalence in all these scenarios. Also, the run time of both the method is almost

the same except LRU. The experiments 1 and 2 confirms that both the methods

are able to show the equivalence correctly.

In our third experiment, we take some of the test-suite distributed with LLVM

[103]. These benchmarks contain some loop invariant operations. We forced

SPARK to apply LICM transformation to obtain the transformed behavior so

that it can hoist loop invariant code before the loop in the transformed behavior.

These test cases represent the scenarios S2 and S3. The results of these experi-

ments are tabulated in row 1–4 of Table 3.3. From Table 3.3, it is evident that

63

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Table 3.3: Experimental results on test cases where the VP method fails

Benchmarks
VP EVP

Equivalent Time (ms) Equivalent Time (ms)

simple types

loop invariant
No 4 Yes 12

mandel No 4 Yes 16

mandel2 No 4 Yes 16

himenobmtxpa No 4 Yes 20

Test 1 Yes 8 No 8

Test 2 Yes 8 No 8

Test 3 Yes 12 No 12

Test 4 Yes 16 No 16

our proposed method can correctly identify the equivalence even when some loop

invariant operation op is moved before (after) the loop from inside it. However,

the VP method reports may not equivalent in these cases. The VP method takes

only 4ms for the benchmarks listed in rows 1–4 Table 3.3 because at the loop

header it select loop exit path first and shows the non-equivalence immediately.

The experimental evaluation shows that our method outperforms the VP method

in handling the LICM transformation.

In our fourth experiment, we have created some test cases where the VP

method provides a false positive results, but our EVP method can prove the non-

equivalence. Since we are not able to generate our desired transformed behavior

using SPARK, the benchmarks tabulated in row 5–8 of Table 3.3 are manually

scheduled. The result of this experiment confirms that the VP method incorrectly

reports equivalence for these test cases while our EVP method correctly proves

the non-equivalence for these test cases.

In our fifth experiment, some larger benchmarks from CHStone [55] and Bambu

HLS tool [14] are selected to evaluate the scalability of our EVP method. The

synthesizer used in our experiments is Bambu. The FSMDs are extracted from the

behaviors at the input and the output of the scheduling phase of Bambu. We use

the function BF cfb64 encrypt in BLOWFISH, the function Gsm LPC Analysis in

GSM, and the function encrypt in AES as a source behavior. The results of this

64

3.8. Experimental Results

Table 3.4: Experimental results on the benchmarks presented in CHStone
benchmarks [55] and the benchmarks listed in Bambu HLS tool [14]

Benchmarks #c

EVP

#Path
Equivalent Time(ms)

M0 M1

B
am

b
u WAKA 35 4 3 Eq 75

ARF 43 5 5 Eq 400

MOTION 44 1 1 Eq 70

C
H

S
to

n
e

BLOWFISH 151 21 21 Eq 1519

GSM 240 96 86 Eq 7152

MIPS 259 77 51 MNEq 123

AES 330 132 96 MNEq 857

MNEq: M0 and M1 “May Not be Equivalent”.
#c: # of lines in c program.
T: Time in milliseconds(ms).

experiment are tabulated in Table 3.4. It is evident from this experiment that the

EVP approach can handle the larger benchmarks but fails to show the equivalence

for the benchmarks AES and MIPS. We observe that Bambu modifies the con-

trol structure significantly. For the benchmarks AES and MIPS, the transformed

behaviors represent the scenario where a path in original behavior has been split

into more than one path to improve the conditional hardware reuse. The EVP

method fails to handle the path split/merge scenario. In the next chapter, we have

presented a PBEC approach that can handle the path split/merge scenario.

During our experimentation, we found a bug in the SPARK tool. The bug is

in the implementation of the LICM algorithm in the SPARK scheduler. A simple

instance of the bug is reported in Fig. 3.17. It may be noted that the transformed

behavior is obtained by applying only LICM technique with SPARK. Here the

operation x = 5 is moved before the loop body in the transformed behavior since

the operation x = 5 is invariant within the loop in the input behavior. However,

the output will not be the same for any input n ≤ 4. For example when n = 3, the

value of out is zero in the input behavior and its value is five in the transformed

65

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

int main (){

int x,i,n,z=0,out;

x=0;

for(i=4;i<n;i++){

x = 5;

z=z+x;}

out=z+x;

return out;}

(a) Input Behavior

int main(void){

int x,i,n,z,out ,sT0_5;

int returnVar_main;

z = 0;x = 0;

i = 4;x = 5;

do{

sT0_5 = (i < n);

if (sT0_5){

z = (z + x);

i = (i + 1);}

else break;

}while (1);

out = (z + x);

returnVar_main = out;

return returnVar_main ;}

(b) Transformed Behavior

Figure 3.17: A bug in SPARK

behavior. This behavior is proved to be non-equivalent by our EVP method. Our

method finds a previously unknown bug in a widely used HLS framework indicates

the usefulness of our method.

3.9 Conclusion

In this chatper, we have presented an enhanced VP method for code motion in-

volving loops. Like the VP method, our method is also capable of handling control

structure modification of input behavior and uniform and non-uniform code mo-

tion and code motion across loops. In addition, our method can also handle the

scenario where some code segment is moved before (after) the loop from inside the

loop body. In addition, our method is capable of automatically identifying false

computations and prove non-equivalence of FSMDs for the cases where the VP

method provides false positive results. Our method discovered a bug in SPARK

that long-term use did not uncover.

66

Chapter 4

Verification of Scheduling of

Conditional Behaviors in

High-level Synthesis

4.1 Introduction

4.1.1 Scheduling of Conditional Behaviors

In general, the major tasks of HLS includes scheduling operations from the given

behavioral description into control steps under the required timing and hardware

resources constraints. High-level synthesis schedulers can take advantage mutual

exclusivity of operations and schedule two mutually exclusive operations in the

same cycle on the same resource. Two operations in a behavioral description are

mutually exclusive if the results of the two operations are never needed together in

the execution of the system. Mutually exclusive operations can be implemented

with the same hardware component and scheduled in the same cycle. Conse-

quently, total delay of the schedule and the resource usage is reduced. Consider

the following Fig. 4.1(a) description written in C language. Suppose that we want

to implement this system using only one adder and one comparator and suppose

that these functional units (FUs) take one control step to execute the operation.

Assuming we can not identify any mutually exclusive operators, then six cycles are

needed at least to complete the behavioral description as show in Fig 4.1(b). How-

ever if we can identify that the pairs (+2,+3), (+4,+5), (+4,+6), and (+5,+6) are

all possible mutually exclusive operations in the example Fig. 4.1(a). Now three

cycle are need with the same number of FUs to complete the algorithm as shown

in Fig. 4.1(c). The information about the mutually exclusive pairs of operation is

very useful to decrease an amount of hardware required to implement specification

67

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

without increasing the latency that is, the conditional reuse of resources. In liter-

ature several approaches have been reported to identify the largest set of mutually

exclusive operation pairs. However, the possibility of conditional reuse depends

not only on the number of mutex operations pairs detected by an algorithm, but

also on the way in which specifications are written by designers. The optimization

techniques such as in [44] transforms the input description to improve the possibil-

ity of conditional reuse of resources depends on the number of mutually exclusive

pairs of operations. Therefore, it is necessary to verify the semantic equivalence

between the original and the transformed behaviors.

4.1.2 Summary of Verification of Scheduling of Conditional

Behaviors

Path-based equivalence checking approaches [37–42,56] have made significant progress

in the verification of the scheduling phase of HLS. These translation validation ap-

proaches are useful since they can verify that the correct code resulted from various

compiler optimization techniques applied in each iteration of the scheduling phase

of HLS without unrolling the loops. However, they (including this work) cannot

verify the correctness of the scheduling phase. A PBEC approach based on value

1 t1 = ((a + b)<c); (+1)

2 t2 = d + e; (+2)

3 t3 = c + 1; (+3)

4 if(t1){

5 y=t3 + d; (+4)

6 }

7 else if(!x){

8 y=t2 + d; (+5)

9 }

10 if((!T1)&& x){

11 z= T2 + e; (+6)

12 }

(a) Input description

+1 >

+2

+3

+4

+5

+6

m.e. operations: none

(b)

+1 >

+2 +3

+4 +5 +6

m.e. operations:
(+2,+3)
(+4,+5),
(+4,+6)
(+5,+6)

(c)

Figure 4.1: An example of behavioral description

68

4.1. Introduction

propagation [42], for example, can verify the code motion involving loops. The

behaviors are modeled as an FSMD in PBEC approach. These approaches break

down an FSMD into smaller segments by introducing cutpoints so that each loop

in the FSMD is cut by at least one cutpoint. This is based on the Floyd-Hoare

method of program verification [54]. The set of all paths from a cutpoint to an-

other cutpoint without any intermediate occurrence of a cutpoint is a path cover of

the FSMD. PBEC approaches establish the equivalence between two behaviors by

showing the equivalence between the paths present in the path cover of these two

behaviors. The primary focus of the existing PBEC approaches is on ensuring that

the data dependencies are not violated due to scheduling of operations and trans-

formation of behaviors due to application of various compiler optimizations [15]

applied during the scheduling phase of HLS. Equivalence of two programs over

Integers is inherently undecidable [45]. Therefore, existing PBEC approaches may

produce false negative results.

4.1.3 Contributions

In this work, we identify some limitations of the existing PBEC approaches. Specif-

ically, we identify the optimization techniques such as in [44] which split a paths

into multiple paths in the scheduled behavior. In this case, existing PBEC ap-

proaches [37–42, 56] fail to show the equivalence. In addition, PBEC approaches

based on value propagation also fail to show the equivalence for some scenarios

where conditional blocks having an equivalent conditional expression are com-

bined into one conditional block. Moreover, we identify that the cutpoint selection

scheme in PBEC approaches are too restricted to handle control structure related

transformations.

In this work, we present a PBEC approach based on value propagation to

overcome these limitations without affecting the power of existing approaches.

Specifically, the contributions of this work are as follows:

1. We redefine the notion of the equivalence of paths in PBEC approach to

handle path split/merge.

2. We also present a new cutpoint selection scheme to handle control structure

related transformations in PBEC without much performance overhead.

69

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

3. We present a PBEC method to verify the scheduling of conditional behaviors

without affecting the power of the state-of-the-art existing approach [56].

This method is also capable of handling merging of conditional blocks.

4. We implement our proposed method and demonstrate its usefulness with

experimental results.

The rest of this chapter is organized as follows. Motivating examples high-

lighting the limitations of the state-of-the-art PBEC approaches are given in Sec-

tion 4.2. A solution to overcome the current limitations of PBEC approaches are

presented in Section 4.3. The notion of equivalence of two paths is introduced

in Section 4.4. The overall verification process is presented in Section 4.5. The

correctness and complexity of the proposed method are discussed in Section 4.6.

Experimental results are given in Section 4.7. Section 4.8 concludes the chapter.

4.2 Motivations

In this Section, we represent the scenarios where the state-of-the-art PBEC

approaches fail to show the equivalence even though behaviors are equivalent. We

then propose the solutions in the next section.

4.2.1 Path Split

To improve the conditional hardware reuse in HLS, the approach presented in [44]

transforms the original behavior in Fig. 4.2(a) (and its corresponding FSMD in

Fig. 4.2(b)) into the equivalent one in Fig. 4.2(c), where the condition (c1 ∧ c2)

has been split1. As a result, the path β1 = 〈q00
c1∧c2===⇒ q01〉 in M0 is equivalent to

path α1α3
2 in M1, and the path β2 in M0 is equivalent to the union of the paths3

α1α4 and α2 in M1 i.e, Rβ2 ≡ Rα1α4 ∨ Rα2 and sβ2 = sα1α4 = sα2 . Let us consider

that we have only one adder and one multiplier, and these function units take one

control step to execute the corresponding operation. In this case, there is at least

1This example is taken from [44]
2α1 : 〈q10

c1=⇒ q11〉, α3 : 〈q11
c2=⇒ q12〉, α1α3 reports the concatenated paths α1 and α3.

3union of paths, say βi, βj , emanating from the state qi and ending at qj and have the same
data transformation, represents a path where condition of execution is Rβi ∨ Rβj and data
transformation is the same as path βi.

70

4.2. Motivations

1 if(c1 ∧ c2)

2 t1 = a× b
3 else

4 t1 = c+ d (+1)

5 if(c1)

6 t2 = e+ f (+2)

7 if(c2)

8 t2 = g + h (+3)

(a) Input description

q00

q01

q02

q03

β1
c1 ∧ c2/
t1 = a× b

β2¬(c1 ∧ c2)/
t1 = c+ d

c1/t2 = e+ f ¬c1/−

c2/t3 = g + h ¬c2/−

(b) M0: Original behavior

q10

q11

q12

q13

q14

α1

c1/−

α2

¬c1/
t1 = c+ d
(+1a)

α3
c2/
t1 = a× b

α4¬(c2)/
t1 = c+ d (+1b)

c1/
t2 = e+ f
(+2)

¬c1/−

c2/
t3 = g + h
(+3)

¬c2/−

(c) M1: Scheduled behavior obtained
by [44]

q10

q12

q13

q14

α2

¬c1/
t1 = c+ d

α1α3
c1 ∧ c2/
t1 = a× b

α1α4
c1 ∧ ¬c2/
t1 = c+ d

c1/
t2 = e+ f

¬c1/−

c2/
t3 = g + h

¬c2/−

(d) M2: Transformed behavior

Figure 4.2: Transformations on the input description to enhance the conditional
hardware reuse

three cycles needed to complete all the operations in M0. It may be noted that the

operation pair (+1,+2) in Fig. 4.2(a) cannot share the functional unit because if

71

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

q00

q01

q02

q03

q04

q05

α1 α2

α3 α4

α5 α6

α7 α8

α9 α10

(a)

q00

32 paths

q05

(b)

Figure 4.3: A cutpoint example (a) An FSMD M0 with all the states as cutpoints;
(b) An FSMD M0 with minimal cutpoint

c1 is true and c2 is false, both operations are needed. Similarly, an operation pair

(+1,+3) in Fig. 4.2(a) is not mutually exclusive and cannot share the functional

unit because if c1 is false and c2 is true both operations are needed. To achieve

two cycles, the paths in the original behavior have been split in the transformed

behavior shown in Fig. 4.2(c). With this conditional transformation, the operation

pair {+1a,+2} can share a functional unit. Similarly, the operation pair {+1b,+3}
can also share a functional unit. Therefore, the behavior can be scheduled in two

cycles.

During equivalence checking the PBEC approaches fail to handle the scenario

where a path in an FSMD is equivalent to the union of the paths in another FSMD.

Therefore, all existing PBEC approaches fail to find the equivalent paths in the

FSMD M1 for the path β2 in FSMD M0. As a result, they report that behaviors

“May Not be Equivalent”. In Subsection 4.3.1, we propose a solution to handle

this type of scenario.

4.2.2 Choice of Cutpoints

A PBEC approach obtains the path cover by introducing the cutpoints. The

minimum number of cutpoints are those who cut each loop in an FSMD by at

72

4.2. Motivations

q00

q01

q02

q03

CB1

CB2

-/i = x+ y

i%2 == 0/
x = x+ 1

¬i%2 == 0/
x = x+ 2

i%2 == 0/
y = y + 1

¬i%2 == 0/
y = y + 2

-/-

(a) M0

q10

q11

q12

CB

-/i = x+ y

i%2 == 0/
x = x+ 1,
y = y + 1

¬i%2 == 0/
x = x+ 2,
y = y + 2

-/-

(b) M1

Figure 4.4: An example of if optimization

least one cutpoint. Other cutpoints are redundant one, introduced to improve the

runtime of the PBEC approach. Most of the PBEC approaches [37–42, 56] find

a path cover by setting the reset state and the branching states, i.e., states with

more than one outgoing transition, of the FSMD as cutpoint. These approaches

select all the branching states as cutpoint for the FSMD in Fig. 4.3(a) therefore

there will be 10 paths (i.e., α1, α2, · · · , α10) in the path cover. Instead, if we

choose minimal cutpoint, then only the reset state q00 will be the cutpoint and

there would be 32 paths in the path cover as shown in Fig. 4.3(b). The selection

of additional cutpoints helps these approaches to reduce the size of the path cover

exponentially and improve their runtime.

However, choosing all branching states as cutpoint poses problem in finding the

path-based equivalence where the transformed behavior is obtained by splitting

the paths in original behavior as shown in Fig. 4.2. The PBEC approaches select

the states q00, q01, q02, and q03 in M0 in Fig. 4.2(b) and q10, q11, q12, q13, and q14

in M1 shown in Fig. 4.2(c) as cutpoints. The selection of the state q11 in M1 as a

cutpoint makes the if-else block unbalanced and makes difficult to show the path

level equivalence for a PBEC approach. If we do not select q11 as cutpoint then

resulting transformed behavior M2 is shown in Fig. 4.2(d). Now from the state q10,

there will be three paths α1α3, α1α4 and α2. The path β1 in M0 will be equivalent

73

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

to the path α1α3 in M2. The path β2 in M0 will be equivalent to the union of α2

and α1α4. Thus, avoiding q11 as cutpoint simplifies the control structure of M1 and

would help the PBEC approach to show the equivalence. However, as discussed

previously, the PBEC approach cannot handle the scenario where a path in an

FSMD is equivalent to the set of the paths in another FSMD. Therefore, they fail

to show the equivalence between M0 and M2 as well. In the Subsection 4.3.2, we

propose a new cutpoint selection scheme to simplify the if-else block. We then

use the solution presented in Subsection 4.3.1 to handle path split.

4.2.3 If Optimization

Conditional blocks, not necessary to be adjacent, (generally represented as if-

else) having an equivalent conditional expression can be combined into one condi-

tional block. This reduces the number of condition checking and the total number

of states in transformed behavior. Thus, it reduces the number of paths in the

path cover. For example, consider the behaviors in Fig. 4.4. Here two conditional

blocks (CB) denoted as CB1 and CB2, in M0 in Fig. 4.4(a) are merged into one

conditional block CB in M1 shown in Fig. 4.4(b).

The path extension based approaches in [38, 39] fail to verify code motion

across loops. Therefore, these methods cannot not handle the scenarios where

conditional blocks are merged across the loop. The VP [42] and the EVP [56]

can handle code motion across the loops. Therefore, they can show equivalence

when conditional blocks are merged across the loops. However, we identify that

they fail when conditional merge leads to the reset state as shown in Fig. 4.4. It

may be noted that the VP and the EVP method fail whenever they reach the

reset state of one FSMD and do not reach the reset state of the other FSMD

during the course of equivalence checking. These approach find that the path

q01
i%2==0
====⇒ q02 is not equivalent to the path q11

i%2==0
====⇒ q10 and needs to propagate

the mismatched value in the subsequent paths in q02 and q10. However, the state q10

is the reset state. Hence, the method reports behaviors “May Not be Equivalent”.

In Subsection 4.3.3 we present a method to handle this type of scenarios involving

if optimization.

74

4.3. Proposed Solution

Table 4.1: Comparing the effect of cutpoint selection criteria on the performance
of the PBEC approach presented in [56]

Benchmarks #C-line #State
#Cutpoint #Paths Time(ms)

S1 S2 S3 S1 S2 S3 S1 S2 S3

EX1 33 21 7 1 3 13 34 20 16 57 22

EX2 41 30 13 1 4 25 125 16 13 160 19

EX3 80 51 19 1 3 37 192 29 18 215 26

EX4 73 56 24 1 3 47 260 58 24 355 51

EX5 60 33 12 1 7 23 486 18 17 711 15

EX6 358 240 86 19 54 171 584 139 73 1938 68

EX7 204 134 49 5 30 97 981 84 33 6745 43

4.3 Proposed Solution

4.3.1 Handling Path Split

Consider the input behavior M0 and its transformed behavior M2 in Fig. 4.2. It

may be noted that the path α2 and the path α1α4 consist of the same operation

list and the disjunction of the conditions of execution Rα2 = c1 ∧ ¬c2 and the

condition of execution Rα1α4 = ¬c1 is equivalent to the condition of execution

Rβ2 = ¬(c1 ∧ c2) of the path β2, i.e., (Rα2 ∨ Rα1α4) ≡ Rβ2 . In the search for the

corresponding equivalent path of β2, if we compare it with α2 then Rβ2 6≡ Rα2 ,

but it may be observed that Rα2 =⇒ Rβ2 . This shows that Rα2 is a stronger

condition than Rβ2 and also indicates that β2 has been split into more than one

path in M2 where α2 is one path among these paths. We find the remaining paths

in M2 with the updated condition ¬c1 (where ¬c1 ≡ Rβ2 ∧ ¬Rα2) for β2. We find

that α1α4 is equivalent to β2 with the updated condition. Hence, the β2 has been

split into two paths α2 and α1α4 and it is equivalent to the union of these two

paths. In general, for two paths β in M0 and α in M1 if Rα =⇒ Rβ then first

we check whether the path β of M0 has been split into multiple paths in M1. The

path α is one path and we search the remaining paths in M1 with the updated

condition Rβ ∧ ¬Rα of the path β. However, if we fail to find the path, then it is

not the case of path splitting. This scenario still can be handled with usual value

propagation, as discussed in Section 4.4.

75

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

4.3.2 Cutpoint Selection Scheme

The choice of cutpoints is not unique and it is not guaranteed that path covers

obtained from any choice of cutpoints in both the FSMDs result in equivalence of

FSMDs. The same situation arises for the behaviors M0 and M1 in Fig. 4.2 when

the PBEC approaches select all the branching states as cutpoint. If we remove the

end state of the path α1 as cutpoint then it simplifies an if-else block. However,

any loop node (i.e., entry point of the loop) must be kept as cutpoint even inside

an if-else block. Thus, within an if-else block, we should not designate all

the internal branching nodes as cutpoints except the loop nodes. Another option

of simplifying an if-else block is by selecting only loop nodes as cutpoints but

this increases the number of paths in the path cover exponentially. Therefore, we

can find the cutpoints for a given FSMD by using one of the selection criteria:

• S1: Select the reset state and all branching states as cutpoint.

• S2: Select the reset state and only loop states as cutpoint.

• S3: Select the reset state and all branching states as cutpoint except the

internal nodes of an if-else block which are not a loop node.

The PBEC approaches [37–42,56] use cutpoint selection criteria S1. The scheme S2

is the minimum number of cutpoints based on the Floyd-Hoare method of program

verification [54]. In this work, we proposed a new cutpoint selection scheme S3.

We design some test cases which contains several unbalanced if-else blocks. We

modify the EVP method presented in previous chapter so that it works on each

cutpoint selection criteria mentioned above. We want to compare the runtime

effects of cutpoint selection criteria. Therefore, we run the value propagation

based PBEC approach, where the input and transformed behavior are the same

for each criterion. The result of this experiment is tabulated in Table 4.1. The

second column represents the number of lines in the corresponding C code for each

test case. The third column represents the number of states in the corresponding

FSMD for each C code. The number of cutpoints, the number of paths in the path

cover and the runtime in milliseconds (ms) of the EVP method for each case is

listed in the columns 4−6, 7−9 and 10−12, respectively. Note that in rows 1−5

of Table 4.1, the number of cutpoints for S1 denotes the total number of if-else

blocks for a given test case and the number of cutpoints for S3 denotes the number

76

4.3. Proposed Solution

of if-else blocks which is not defined inside of any if-else blocks for a given

test case. The same for S2 gives the number of loops in the test cases. It is evident

from the results in Table 4.1 that for the selection criteria S2 the number of paths

in the path cover is on average almost 7 times higher then paths for S1. Hence,

it needs more time to show the equivalence as compared to others. However, the

number of paths and hence the runtime for the S1 and S3 are comparable. Note

that the time reported here is the minimum since there is no value propagation

is required. However, this study gives a trend of the runtime for all the selection

criteria.

As expected, for the selection criteria S1 the number of paths in the path

cover is least as compared to other criteria. Therefore, it needs less time to show

equivalence. If we use the selection criteria S2, then the number of paths in the

path cover is more. Hence, it needs more time to show the equivalence as compare

to the other two approaches. If we apply selection criteria S3 then the number of

paths in the path cover also marginally increases as compared to selection criteria

S1. Hence, it needs extra time to show the equivalence as compare to selection

criteria S1. From the runtime shown in Table 4.1, it is clear that the criteria S3

simplifies the control structure of a given FSMD in the cost of marginal additional

time. The EVP method may consider a path multiple times (by the concept of

value propagation) when the transformed behavior is obtained by applying the

code motion techniques on the input behavior. Thus, the runtime to show the

equivalence increase for the EVP method and the time shown in Table. 4.1 for the

EVP method is the minimum. However, this study gives a trend of runtime for

all the selection criteria.

The cutpoint selection scheme S2 is not feasible in practice since this increase

the size of the path cover exponentially as shown in the Fig. 4.3(b). The internal

structure of a nested if-else block are merged due to control structure related

transformation as shown in Fig. 4.2. The cutpoint selection scheme S1 selects all

branching points as cutpoints. The paths this scheme identifies inside such nested

if-else block in both the behaviors, cannot be co-related by the equivalence

checking method. With S1, therefore, the EVP cannot show equivalence of such

split/merged paths. Our proposed scheme S3 does not consider internal branching

states inside a nested if-else block as cutpoints. Therefore, paths identified

by S3 inside such nested if-else block in both the behaviors can be co-related.

77

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

On top of that, we need the path split equivalence as discussed in previous sub-

section. Therefore, the cutpoint selection scheme S3 and the path split equivalence

are necessary for the handling of split/merged paths for our approach presented

in 4.5. In our experimental section we have also discussed the runtime performance

of the EVP method with S1 and S3 on benchmarks without path split/merge.

4.3.3 Handling the Scenario Involving if Optimization

The value propagation method [42,56] uses the concept of null path to handle the

conditional merge scenario. A null path (of length 0) from a state q to the same

state q has the condition of execution T and a null (identity) data transformation.

We denote a null path emanating from a state q as ηq. As discussed in Subsec-

tion 4.2.3 the value propagation method [42,56] cannot handle the condition merge

lead to the reset state as shown in Fig. 4.4. In the course of equivalence checking if

these methods reach at the reset state in one of the behavior (say M0) and do not

reach the reset state in other behavior (say M1) then they should do the following:

1. They should consider the null path at the reset state of M0.

2. They must proceed the equivalence checking until condition at null paths

matches with the path in FSMD M1, or the reset state of M1 have reached.

This strategy helps to find the equivalence between the behaviors shown in Fig. 4.4.

The function findEquivalentPathAtReset is used to handle this scenario in our

proposed method.

4.4 Equivalence of Paths

Our equivalence checking method is based on propagating the mismatch values

of the variables through all the subsequent path segments until the values match

or the final path segment ending in the reset state is reached. Propagation of

mismatch values from a path β1 to the subsequent path β2 is carried out by

associating a propagated vector at the end state of the path β1 (or equivalently,

the start state of the path β2). In Fig. 4.2(b), for example, the propagated vector

at the reset state q00 is 〈T, 〈c1, c2, t1, t2, t3, a, b, c, d, e, f, g, h〉〉.

78

4.4. Equivalence of Paths

Input: β : qβs ⇒ qβf ∈ P0, α : qαs ⇒ qαf ∈ P1,

τ
ϑβs
β = 〈Rϑβs

β , s
ϑβs
β 〉, τ

ϑαs
α = 〈Rϑαs

α , s
ϑαs
α 〉

R
ϑβs
β ≡ R

ϑαs
α

s
ϑβs
β = s

ϑαs
α

return

(Case 1.1, NULL);

return

(Case 1.2, NULL);
R
ϑαs
α =⇒ R

ϑβs
β

SList = checkSplitPath(β, α, P0, P1)

Is SList

empty?

return

(Case 3, NULL);

s
ϑαs
α = s

ϑαs
α1 =

· · · = s
ϑαs
αk

s
ϑβs
β = s

ϑαs
α

return

(Case 2.1, SList);

return

(Case 2.2, SList);

R
ϑβ
β =⇒ R

ϑαs
α

return

(Case 6, NULL);

SList = checkSplitPath(α, β, P1, P0)

Is SList

empty?

return

(Case 5, NULL);

s
ϑβs
β = s

ϑβs
β1

=

· · · = s
ϑβs
βk

s
ϑβs
β = s

ϑαs
α

return (Case 4.1, SList); return (Case 4.2, SList);

True
(Case 1)

Yes

(Case 1.1)

No

(Case 1.2)

False

False

True

Yes

(Case 3)

No
(Case 2)

Yes

Yes

(Case 2.1)

No

(Case 2.2)

True

Yes

(Case 5)

No
(Case 4)

Yes

Yes

(Case 4.1)

No

(Case 4.2)

False

No

No

Figure 4.5: Control flow graph of checkEquivalence(β, α, τ
ϑβs
β , τ

ϑαs
α) function.

The propagated vectors ϑβf and ϑαf are obtained as follow. R′βf = R
ϑβs
β and

R′αf = R
ϑαs
α . The characteristic formulas τ

ϑβs
βf

and τ
ϑαs
αf associated with path β

and α, respectively are compared. If values of the variable v matches then value

of v is reverted back to symbolic value v in both s′βf (of ϑβf) and s′αf (of ϑαf). If

the values of v mismatches, then the actual expression of v in s
ϑβs
β is copied to s′βf

and the same of s
ϑαs
α is copied to s′αf .

Example 8. Let us consider the path β1 = 〈q00
c1∧c2===⇒ q01〉 in M0 (Fig. 4.6(a))

and the path α1 = 〈q10
c1∧c2===⇒ q11〉 in M1 (Fig. 4.6(b)). Here, ϑ00 = ρ̄ and

ϑ01 = ρ̄ and the characteristic formula for β1 is τϑ00β1
= 〈c1 ∧ c2, 〈c1, c2, a × b, e +

f, t3, a, b, c, d, e, f, g, h〉〉 and for α1 is τϑ01α1
= 〈c1∧c2, 〈c1, c2, a×b, t2, t3, a, b, c, d, e, f, g, h〉〉.

79

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

q00

q01

q02

β1c1 ∧ c2/
t1 = a× b
t2 = e+ f

β2¬(c1 ∧ c2)/
t1 = c+ d
t2 = e+ f

c1/
t3 = g + h

¬c1/−

(a) M0: Original behavior

q10

q11

q12

α3

¬c1/
t1 = c+ d

α1
c1 ∧ c2/

t1 = a× b

α2
c1 ∧ ¬c2/
t1 = c+ d

c1/
t2 = e+ f
t3 = g + h

¬c1/
t2 = e+ f

(b) M1: Transformed behavior

q00

q01

q02

q03

β1
c1/
t1 = a× b

¬c1/
t1 = c+ d

β2
c1/
t2 = e+ f

¬c1/
t2 = g + h

β3
c2/
t3 = g + h

¬c2/−

(c) M3: Original behavior

q10

q11

q12

α1c1/
t1 = a× b
t2 = e+ f

¬c1/
t1 = c+ d
t2 = g + h

α2
c2/
t3 = g + h

¬c2/−

(d) M4: Transformed behavior

Figure 4.6: Examples to illustrate different path equivalence cases discussed in
Section 4.4

The propagated vector at q01 is ϑ01 = 〈c1∧c2, 〈c1, c2, t1, e + f , t3, a, b, c, d, e, f, g, h〉〉
and at q01 is ϑ11 = 〈c1 ∧ c2, 〈c1, c2, t1, t2, t3, a, b, c, d, e, f, g, h〉〉.

The detailed formulation of the equivalence of paths are discussed next. We

have the following cases while comparing these two paths β in M0 and α in M1:

Case 1 (One-to-one Equivalence) Condition of execution matches, i.e., R
ϑβs
β ≡

R
ϑαs
α : The following subcases may occur.

Case 1.1 Data transformation matches, i.e., s
ϑβs
β = s

ϑαs
α : The path β is said to

be unconditionally equivalent to the path α (U-equivalent in short, denoted by

β 'u α). In this case the propagated vector at the end state of the paths β and α

will be ρ̄.

80

4.4. Equivalence of Paths

Algorithm 6: findEquivalentPath(β, ϑβs , q1j, ϑq1j , P0, P1)

Input : A path β ∈ P0, the propagated vector ϑβs , a state q1j ∈M1, the
propagated vector ϑq1j associated with q1j , and the path covers P0

and P1 of M0 and M1, respectively.
Output: An ordered tuple 〈γ1, γ2, ϑγ1f , ϑγ2f , type, SList〉 s.t. γ1 'u γ2 or

γ1 'c γ2 or γ1 'us γ2 or γ1 'cs γ2, the propagated vectors ϑγ1f and
ϑγ2f , type and SList contains a set of paths.

1 τ
ϑβs
β = 〈Rϑβsβ , s

ϑβs
β 〉

2 foreach path α : (qαs ⇒ qαf) ∈ P1 emanating from q1j /* qαs = q1j */

3 do

4 τ
ϑαs
α = 〈Rϑαsα , s

ϑαs
α 〉

5 (type, SList)← checkEquivalence(β, α, τ
ϑβs
β , τ

ϑαs
α)

6 if type = Case 1.1 then
7 return (β, α, ρ̄, ρ̄, type, NULL);
8 else if type = Case 1.2 then
9 return (β, α, ϑβf , ϑαf , type, NULL);

10 else if type = Case 2.1 then
11 return (β, α, ρ̄, ρ̄, type, SList);
12 else if type = Case 2.2 then
13 ϑαf = 〈R′β, s′α〉
14 return (β, α, ϑβf , ϑαf , type, SList);

15 else if type = Case 3 then
16 return (β, ηαs , ϑβf , ϑαs , type, NULL);

17 else if type = Case 4.1 then
18 return (β, α, ρ̄, ρ̄, type, SList);
19 else if type = Case 4.2 then
20 ϑβf = 〈R′α, s′α〉
21 return (β, α, ϑβf , ϑαf , type, SList);

22 else if type = Case 5 then
23 return (ηβs , α, ϑβs , ϑαf , type, NULL);

24 else
25 continue; /* Case 6 -- β 6' α */

26 end if

27 end foreach
/* All the paths emanating from q1j are not equivalent to the path

β */

28 return (β,Ω, ρ̄, ρ̄, type, NULL); /* Ω denotes a non-existent path */

Example 9. Let us consider the FSMDs M0 and M2 shown in Fig 4.2. The path

β1 = 〈q00
c1∧c2===⇒ q01〉 in M0 is U-equivalent to the path α1α3 = 〈q10

c1∧c2===⇒ q12〉 in M2

81

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

, i.e., β1 'u α1α3. Since, there is no mismatch in the values of the variables. In

this case, the propagated vector at q01 and q12 will be ρ̄.

Case 1.2 Data transformation does not match, i.e., s
ϑβs
β 6= s

ϑαs
α : These two paths

are said to be conditionally equivalent (C-equivalent in short, denoted by β 'c α)

if

Condition 1 [either qβf = q00 or qαf = q10 but not both]: One of the following

condition is true:

• qβf = q00 and there exists a concatenated path from qαf to q10 (say, α′) such

that characteristic formula for the null path at q00 is equal to the character-

istic formula for α′, i.e., τϑ00ηq00
= τ

ϑαf
α′ .

• qαf = q10 and there exists a concatenated path from qβf to q00 (say, β′)

τ
ϑβf
β′ = τϑ10ηq10

.

Condition 2 [qβf 6= q00 and qαf 6= q10]: ∀β′ emanating from the state qβf with

propagated vector 〈R′βf , s
′
βf
〉 there exists a path α′ emanating from qαf with the

propagated vector 〈R′αf , s
′
αf
〉, such that β′ 'u α′ or β′ 'us α′ or β′ 'cs α′ or

β′ 'c α′ ('us and 'cs are defined in case 2).

The condition 1 handles the scenario where merging of conditional blocks lead

to the reset state as discussed in Subsection 4.2.3. As discussed in Section 4.5,

the function findEquivalentPathAtReset in our proposed method handles the

condition 1 and the function ECC invokes itself recursively to handle the condition 2.

Example 10. In continuation to Example 8, the path β1 = 〈q00
c1∧c2===⇒ q01〉 in

M0 (Fig. 4.6(a)) is declared as C-equivalent to the path α1 = 〈q10
c1∧c2===⇒ q11〉 in

M1 (Fig. 4.6(b)) i.e., β1 'c α1, since there is a mismatch in the values of the

variable t2 and for all the paths emanating from q01 there exists a U-equivalent

path emanating from q11 with respect to propagated vectors.

Case 2 (Split Equivalence) R
ϑαs
α =⇒ R

ϑβs
β and there exists a set of paths

say A = {α1, . . . , αk} in M1 emanating from qαs and ending at qαf such that

Rβ ≡
(
Rα ∨ Rα1 ∨ · · · ∨ Rαk

)
: This situation arises when the path β in M0 has

been split into more than one path in M1 and the condition of execution of the

path β is equivalent to the disjunction of the conditions of execution of the paths

in the set {α} ∪ A. In this case, we have the following subcases.

82

4.4. Equivalence of Paths

Case 2.1 Data transformation matches, i.e., s
ϑβs
β = s

ϑαs
α = s

ϑαs
α1 = · · · = s

ϑαs
αk : The

path β is said to be unconditionally split equivalent to the path α (US-equivalent

in short, denoted by β 'us α). Note that, the path β is also US-equivalent to the

other paths in the set A i.e., β 'us α1, . . . , β 'us αk.

Example 11. Consider Fig. 4.2, the path β2 = 〈q00
¬(c1∧c2)
=====⇒ q01〉 in M0 is US-

equivalent to the paths α1α4 = 〈q10
c1∧¬c2====⇒ q12〉 and α2 = 〈q10

¬c1=⇒ q12〉 in M2 i.e.,

β2 'us α1α4 and β2 'us α2.

Case 2.2 Data transformation does not match, i.e., s
ϑαs
α = s

ϑαs
α1 = · · · = s

ϑαs
αk but

s
ϑβs
β 6= s

ϑαs
α : The path β is said to be conditionally split equivalent (CS-equivalent

in short, denoted by β 'cs α) to the path in α if

• This condition is the same as condition 1 of Case 1.2.

• ∀β′ emanating from the state qβf with the propagated vector 〈R′β, s′β〉 there

exists a path α′ emanating from qαf with the propagated vector 〈R′β, s′α〉,
such that β′ 'u α′ or β′ 'us α′ or β′ 'cs α′ or β′ 'c α′.

Once the paths β and α is declared as β 'cs α, then the path β is also declared

as CS-equivalent to each paths in the set A.

Example 12. The condition of execution of the path β2 = 〈q00
¬(c1∧c2)
=====⇒ q01〉 in

M0 (Fig. 4.6(a)) is equivalent to the disjunction of condition of execution of the

paths α2 = 〈q10
c1∧¬c2====⇒ q11〉 and α3 = 〈q10

¬c1=⇒ q13〉 in M1 (Fig. 4.6(b)). The data

transformations of the paths α2 and α3 are the same but have mismatch in the

values of the variable t2 with data transformations of the path β2. The path β2 is

CS-equivalent to the paths α2 and α3 i.e., β2 'cs α2 and β2 'cs α3.

Case 3 R
ϑαs
α =⇒ R

ϑβs
β and path split scenario does not arise: In this case, we

introduce the null path at qαs (ηαs) and the path β is declared as conditionally

equivalent to ηαs (β 'c ηαs) if

• This condition is the same as condition 1 of Case 1.2.

• ∀β′ emanating from the state qβf with the propagated vector 〈R′β, s′β〉 there

exists a path α′ emanating from qαs with the propagated vector ϑαs , such

that β′ 'u α′ or β′ 'us α′ or β′ 'cs α′ or β′ 'c α′.

83

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Example 13. The path β1 = 〈q00
c1=⇒ q01〉 of M3 in Fig. 4.6(c) is a candidate

of C-equivalent to the path α1 = 〈q10
c1=⇒ q11〉 of M4 in Fig. 4.6(d) since there is

mismatch in the values of the variable t2 (Case 1.2). Therefore, the propagated

vector at q01 is ϑ01 = 〈c1, 〈c1, c2, t1, t2, t3, a, b, c, d, e, f, g, h〉〉 and at q11 is ϑ11 =

〈c1, 〈c1, c2, t1, e + f , t3, a, b, c, d, e, f, g, h〉〉. The paths β2 = 〈q01
c1=⇒ q02〉 and α2 =

〈q11
c2=⇒ q12〉 are compared next. The Rϑ01

β2
is c1 with respect to ϑ01 and Rϑ11

α2
is c1∧c2

with respect to ϑ11. Since, Rϑ11
α2

=⇒ Rϑ01
β2

, we should check for the path merge/split

scenario (i.e., Case 2). However, Case 2 does not matches here. Therefore the path

β2 is compared with the null path ηq11 and declared as β2 'c ηq11 (Case 3). Now the

propagated vector at q02 is ϑ02 = 〈c1, 〈c1, c2, t1, e + f , t3, a, b, c, d, e, f, g, h〉〉. The

path β3 = 〈q02
c2=⇒ q03〉 and the path α2 are compared next. The path β3 is declared

as U-equivalent to the path α2 with respect to propagated vector associated with their

respective start state (Case 1.1). In the similar way other paths are compared and

at the end of the execution of equivalence checking both the behaviors are declared

equivalent.

In the following, cases 4 and 5 are the reverse situation of the cases 2 and 3,

respectively.

Case 4 R
ϑβs
β =⇒ R

ϑαs
α , and there exists a set of paths say B = {β1, . . . , βk} in

M0 emanating from qβs and ending at qβf such that
(
Rβ ∨Rβ1 ∨ · · · ∨Rβk

)
≡ Rα:

The condition of execution of the path α in M1 is equivalent to the disjunction of

the conditions of execution of each path in the set {β} ∪B in M0. In this case we

have the following subcases.

Case 4.1 s
ϑβs
β = s

ϑβs
β1

= · · · = s
ϑβs
βk

= s
ϑαs
α : The each path in the set {β} ∪ B is

US-equivalent to the path α i.e., β 'us α, β1 'us α, . . . , βk 'us α.

Case 4.2 s
ϑβs
β = s

ϑβs
β1

= · · · = s
ϑβs
βk

but s
ϑαs
α 6= s

ϑβs
β : The path β is conditionally

split equivalent to the path α if

• This condition is the same as condition 1 of Case 1.2.

• ∀β′ emanating from the state qβf with the propagated vector 〈R′α, s′β〉 there

exists a path α′ emanating from qαf with the propagated vector 〈R′α, s′α〉,
such that β′ 'u α′ or β′ 'us α′ or or β′ 'cs α′ or β′ 'c α′.

Case 5 R
ϑβs
β =⇒ R

ϑαs
α , but path split scenario does not arise: The null path at

qβs is declared as conditionally equivalent to the path α, i.e., ηβs 'c α if

84

4.4. Equivalence of Paths

• This condition is the same as condition 1 of Case 1.2.

• for the ∀β emanating from the state qβs with the propagated vector ϑβs there

exists a path α′ emanating from qαf with propagated vector 〈R′α, s′α〉, such

that β′ 'u α′ or β′ 'us α′ or or β′ 'cs α′ or β′ 'c α′.

Case 6 The path β and α is not equivalent if one of the condition among the

following conditions is true:

• Rϑβs
β 6≡ R

ϑαs
α and R

ϑβs
β 6=⇒ R

ϑαs
α and R

ϑαs
α 6=⇒ R

ϑβs
β .

• In the case 2 or case 4, data transformation of the paths in the set A or B

are not the same.

To check the equivalence, we use the function findEquivalentPath (Algorithm 6)

which invokes the function checkEquivalence (Fig. 4.5) to find an applicable

case. The control flow of the function checkEquivalence is given in Fig. 4.5.

This function takes as input two paths (β and α) and the characteristics formula

associated with these paths. It finds the equivalence relationship between the

paths β and α and returns the one of the type of the case defined above under

which these two paths have an equivalence relationship. It invokes the function

checkSplitPath(β, α, P0, P1) which checks whether the path β ∈ P0 has been split

more than one path presents in P1. The α ∈ P1 is one path among the split paths.

If a path has been split then the function checkSplitPath returns a list SList

which contains a set of paths which satisfy the condition mentioned in Case 2 or

Case 4.

Algorithm 7: containmentChecker(M0,M1)

1 Compute the path cover P0 and P1 of M0, M1, respectively; Wcsp = (q00, q10);
Set Eu, Ec and LIST as empty set;

2 foreach (q0i, q1j) ∈Wcsp do
3 if ECC (M0,M1, q0i, q1j , P0, P1,Wcsp , Eu, Ec,LIST) returns “failure” then
4 Report “unable to decide M0 vM1” and exit;
5 end if

6 end foreach
7 Report “M0 vM1”;

85

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Algorithm 8: ECC(M0,M1, q0i, q1j, P0, P1,Wcsp, Eu, Ec,LIST)

1 foreach path β : (q0i ⇒ q0m) in P0 do

2 if R′0i ∧R
ϑ0i
β 6≡ False then

3 if q0i is a loop header and checkFalseComputation(q0i) returns True then

4 continue;

5 end if

6 if Path β is already present in the LIST then

7 continue; /* prevent recursions */

8 end if

9 (β′, α, ϑ̄β′
f
, ϑ̄αf , type, SList)← findEquivalentPath(β, ϑ0i, q1j , ϑ1j , P0, P1);/* α : (q1j ⇒ q1n)

*/

10 if type is Case 1.1 or Case 2.1 or Case 4.1 then

11 Eu = Eu ∪ {(β′, α)};
12 if SList is not empty then

13 Eu = Eu ∪ {(β′, γi)}, ∀γi ∈ SList; for Case 2.1

14 Eu = Eu ∪ {(γi, α)}, ∀γi ∈ SList; for Case 4.1

15 end if

16 Wcsp = Wcsp ∪ {(q0m, q1n)};
17 else if type is Case 1.2 or Case 2.2 or Case 3 or Case 4.2 or Case 5 then

18 if qβ′
f

and qαf are the reset state then

19 return failure;

20 else if qβ′
f

or qαf is the reset state then

21 if !findEquivalentPathAtReset(M0,M1, β′, α,

22 τ
ϑ0i
β′ , τ

ϑ1j
α , P0, P1, Eu, Ec) then

23 return failure;

24 else

25 Ec = Ec ∪ {(β′, α)};
26 if SList is not empty then

27 Ec = Ec ∪ {(β′, γi)}, ∀γi ∈ SList; for Case 2.2

28 Ec = Ec ∪ {(γi, α)}, ∀γi ∈ SList; for Case 4.2

29 end if

30 continue ;

31 end if

32 else if qβ′
f

or qαf appears as the end state of some path already in

LIST ∧ loopInvariant(β′, α, ϑ̄β′
f
, ϑ̄αf) then

33 return failure; /* not loop invariant */

34 else

35 ϑβ′
f
← ϑ̄β′

f
; ϑαf ← ϑ̄αf ;

36 Append 〈β′, α〉 to LIST

37 if SList is not empty then

38 LIST = LIST ∪ {(β′, γi)}, ∀γi ∈ SList; for Case 2.2

39 LIST = LIST ∪ {(γi, α)}, ∀γi ∈ SList; for Case 4.2

40 ECC(M0,M1, qβ′
f
, qαf , P0, P1,Wcsp, Eu, Ec,LIST);

41 end if

42 else

43 return failure; /* Fail to find the path α */

44 end if

45 end if

46 end foreach

47 Ec = Ec ∪ {Last member of LIST};
48 If the LIST contains some other path pairs whose start(end) state is the same as last member

start(end) state then append these path pairs in the set Ec and remove them from the LIST

49 LIST ← LIST\{Last member of LIST};
50 return success;

86

4.5. Overall Verification Method

containmentChecker
(Algorithm 7)

enhancedCorrespondenceChecker (ECC)
(Algorithm 8)

findEquivalentPathAtReset
(Algorithm 9)

findEquivalentPath
(Algorithm 6)

loopInvariant

checkFalseComputation

checkEquivalence
(Fig. 4.5)

Figure 4.7: A overall flow of our verification method

4.5 Overall Verification Method

The overall flow of our verification method is given in Fig. 4.7. We begin the

procedure of equivalence checking by invoking the function containmentChecker

(Algorithm 7). This function first identifies the cutpoints based on scheme S3 as

discussed in Subsection 4.3.2 in each FSMD, followed by computing their path

covers. It also initializes Wcsp , a set of corresponding state pairs by inserting the

reset state pair (q00, q10). The sets Eu and Ec contain the U(S)-equivalent and

C(S)-equivalent path pairs, respectively. The function containmentChecker in-

vokes an enhanced correspondence checker (ECC) function (Algorithm 8) for each

corresponding state pairs (in step 3) 4. Depending on the output returned by ECC,

containmentChecker outputs the decision whether the original FSMD is con-

tained in the transformed FSMD or not. The LIST is used to store the candidate

of C(S)-equivalent path pairs visited along the chain of recursive invocation of ECC

4It may be noted that the ECC function presented in this Chapter is an enhanced version of
the ECC function presented in Chapter 3. We keep the name of this function same as of Chapter 3
to keep the consistency among two equivalence checkers presented in two Chapters. Similarly,
the function findEquivalentPath of this Chapter is an enhanced version of the same function
of Chapter 3. Further, we are using the same checkFalseComputation and loopInvariant

functions of Chapter 3 here.

87

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Algorithm 9: findEquivalentPathAtReset(M0,M1, β, α, τβ, τα, P0, P1, Eu, Ec)

1 if qβf is the reset state in M0 then

2 if qαf is the reset state in M1 then

3 if τβ = τα then
4 Eu = Eu ∪ {(ηβf , α)};
5 return success;

6 else
7 return failure;
8 end if

9 else if There exists a path γ in P1 emanating from qαf such that

Rβ ≡ R
ϑαf
γ then

10 Ec = Ec ∪ {(ηβf , γ)};
11 findEquivalentPathAtReset(M0,M1, β, γ,

12 τβ, τ
ϑαf
γ , P0, P1, Eu, Ec);

13 else
14 return failure;
15 end if

16 else
17 if qβf is the reset state in M0 then

18 if τβ = τα then
19 Eu = Eu ∪ {(β, ηαf)};
20 return success;

21 else
22 return failure;
23 end if

24 else if There exists a path γ in P0 emanating from qβf such that

Rα ≡ R
ϑβf
γ then

25 Ec = Ec ∪ {(γ, ηαf)};
26 findEquivalentPathAtReset(M0,M1, γ, α,

27 τ
ϑβf
γ , τα, P0, P1, , Eu, Ec);

28 else
29 return failure;
30 end if

31 end if

invoked by containmentChecker.

The function ECC (Algorithm 8) is the key function of our verification method.

The function takes as input two FSMDs M0 and M1, a corresponding state pair

88

4.5. Overall Verification Method

(q0i, q1j), path covers P0 (of M0) and P1 (of M1), a corresponding state pair set

Wcsp , LIST which maintains a candidate of C(S)-equivalent pairs of paths and

Eu and Ec for storing the U(S)-equivalent and C(S)-equivalent path pairs, re-

spectively. The function ECC returns “success” if for every path emanating from

q0i an equivalent path originating from q1j is found (in step 50 of Algorithm 8);

otherwise, it returns “failure”. To avoid the false computation [56] at a loop

header ECC invokes the function checkFalseComputation (in step 3). The function

checkFalseComputation returns False if the loop at q0i under the propagated

condition will execute at least once over all possible inputs in M0. It returns True

otherwise. The function ECC invokes the function findEquivalentPath (Algo-

rithm 6) to find a U(S)- or C(S)-equivalent path α : (q1j ⇒ q1n) in the transformed

FSMD M1 for each path β : (q0i ⇒ q0m) starting from state q0i of the original

FSMDM0. The function findEquivalentPath returns (β′, α, ϑ̄β′f , ϑ̄αf , type, SList),

where β′ = β for all values of the variable type except when the variable type is

Case 3. When value of the variable type is Case 3 then β′ is defined as a null path

at the starting state of β. When the variable type is Case 6 then α does not exist

and findEquivalentPath returns a non-existent path Ω in place of α (i.e., M0

and M1 may not be equivalent, handled in step 43) , otherwise, α is an equivalent

path to β. ϑ̄β′f and ϑ̄αf are to be propagated to end state of β′ and α, respectively.

An equivalence relationship between the path β and α is defined by the variable

type. The list SList contains a set of path pairs when type is Case 2 or Case 4.

If the function findEquivalentPath fails to find a path α such that β 'u α
or β 'us α or β 'c α or β 'cs α (i.e., α does not exists), then this cause ECC to

return “failure” as shown in step 43. If the function findEquivalentPath finds

a path α such that β 'u α or β 'us α, then the function ECC inserts the path

pair (β, α) into Eu (in step 11) and if the SList is not empty then updates the

Eu as shown in steps 12 and 14; ECC also declares the end state of β and α as a

corresponding state pair and insert this state pair into Wcsp (in step 16). If the

function findEquivalentPath finds a path α such that β′ 'c α or β′ 'cs α then

further value propagation is required. However, we need to check the following

scenarios first:

1. Since the computation cannot extend beyond the reset state; therefore, if the

end states of β′ and α are the reset states then ECC returns “failure” as shown in

step 19;

89

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

2. If the end state of β′ is the reset state and the end state of α is not the reset

state then it may possible that from the end state to the reset state of α, there

exists an unique set of concatenated paths which is unconditionally equivalent to

null path at the reset state of β (vice versa). To find such path, ECC invokes

the function findEquivalentPathAtReset (in step 21) this function returns True

if such a concatenated path exists; otherwise, returns False. It may be noted

that these steps is required to handle the scenario presented in Subsection 4.3.3.

If the function findEquivalentPathAtReset returns True then ECC inserts the

path pair (β, α) into Ec (in step 25) and if the SList is not empty then updates

the Ec as shown in steps 27 and 28. The function ECC moves back to step 1 to

find an equivalence of other paths emanating from the state q0i as shown in step 30.

3. If a loop has been crossed over then the ECC invokes the function loopInvariant.

The function loopInvariant checks for the loop invariance of the propagated vec-

tor ϑ̄β′f and ϑ̄αf . If loopInvariant returns False then the ECC returns “failure”

(in step 33). Note that this function is required to check the validity of code

motion involving loops. The details of this function can be found in [56].

If both the checks at step 18 and step 32 resolve success then the propagated

vector of the final state of the paths β′ and α are updated (in step 35) and ECC calls

itself recursively (in step 40). When ECC reaches step 47, it implies that for every

paths emanating from the state q0i, there exists a corresponding paths emanating

from q1j such that their final paths are U(S)-equivalent.

4.6 Correctness of the Equivalence Checking Pro-

cedure

4.6.1 Correctness

Lemma 3. If the Algorithm 7 terminates successfully at step 7 then each path p0i

in path cover P0 of M0 is either unconditionally equivalent or unconditionally split

equivalent or conditionally equivalent or conditionally split equivalent to null path

or some path in path cover P1 of M1.

Proof. The steps 11, 12, 25, 26, 47 of ECC function and the steps 4, 10, 19, 25 of

findEquivalentPathAtReset function ensure that for each path in M0 there is

90

4.6. Correctness of the Equivalence Checking Procedure

q00

q00

µ0 of M0

q10

q10

Sequence S in M1

p0i1

p0ik

p0ik+1

p0in

p1j1

p1jk

p1jk+1

p1jn

'∗

'∗

'∗

'∗

'∗

'∗

(a)

q00

q00

µ′0 of M0

q10

q10

Sequence S ′ in M1

ηqp0ikf

p0i1

p0ik

p0ik+1

p0in

p1j1

p1jk

p1q

p1jk+1

p1jn

'u

'u

'u

'u

'u

'u

'c

(b)

Figure 4.8: A scenario (a) where each path in path cover of M0 has an
U(S)equivalent or C(S) equivalent path in M1 ('∗ is 'u or 'us or 'c or 'cs);
(b) where a null path in M0 has an C-equivalent path in M1

an U(S)-equivalent or C(S)-equivalent path exists in another FSMD M1. �

Lemma 4. If the Algorithm 7 terminates successfully at step 7 then each path p0i

leading to the reset state in path cover P0 of M0 will satisfy one of the condition:

1. Path p0i is unconditionally (split) equivalent to a path p1j in the path cover

P1 of M1. Path p1j also leads to the reset state of M1.

2. Path p0i is conditionally equivalent the path p1j in the path coverP1 of M1.

Path p1j does no lead to reset state. The null path at the reset state of M0

will have unconditionally equivalent path in P1 leading to the reset state of

M1.

Proof. The steps 18, 21 (invoking the function findEquivalentPathAtReset) and

23 of the function ECC ensures that condition 1 and 2 must be satisfied. �

Theorem 4 (Correctness of the approach). If the Algorithm 7 terminates suc-

cessfully at step 7 then for each computation of M0 there exist an equivalent com-

putation in M1.

91

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Proof. Let us consider a computation µ0 of M0 is µ0 = [p0i1 , p0i2 , . . . , p0in], where

p0ik ∈ P0, 1 ≤ k ≤ n, where p0i1f = p0inf = q00. From Lemma 3, there exists a

sequence S of paths µ1 = [p1j1 , p1j2 , . . . , p1jn] where p1jk ∈ P1, 1 ≤ k ≤ n, such

that p0ik 'u p1jk or p0ik 'us p1jk or p0ik 'c p1jk or p0ik 'cs p1jk .

The sequence S represents a computation if it is the concatenation of consec-

utive paths in M1 starting and ending back to the reset state. The sequence S

represents a computation of M1 if µ0 does not involve any null path. This sce-

nario is depicted in Fig. 4.8(a). If µ0 involves null path, then the sequence of

paths in S will not be consecutive. This situation is depicted in Fig. 4.8(b). In

this case, the path p1q, which is not the part of S, starting from the end state

of p1jkf and ending to the start state of p1jk+1s
is conditionally equivalent to null

path at the state qp0ikf in M0. Hence, the sequence S is not consecutive. Let

µ′0 = [p0i1 , p0i2 , . . . , ηqp0ikf
, . . . , p0in] be a computation obtained from µ0 by intro-

ducing null paths at qp0ikf which have (un)conditionally equivalent path p1q in M1.

The Lemma 4 implies that whatever mismatches present in any path in µ′0 must

get resolved when the last paths are traversed or by introducing the null path at

the reset state. In this case sequence S ′ of paths µ1 = [p1j1 , p1j2 , . . . , p1q, . . . , p1jn]

corresponding to µ′0 represents a concatenated path that starts and ends at the

reset state q10. Let the sequence S ′ represents the computation µ1 of M1. Thus

computations µ1 and µ′0 are equivalent. Since introducing the null path does not

alter the computation µ0 hence computations µ1 and µ0 are also equivalent.

Note that, if a path p0ik is (un)conditionally split equivalent to a set of the

paths in M1 then the computation µ0 will be equivalent to each computation

corresponding to each path in the set. It may be noted that for a given input,

the computation µ0 will be equivalent to exactly one of the computation since the

condition of execution of the paths present in the set are mutually exclusive and

the data transformation of these paths are the same. �

Theorem 5 (Partial correctness). If the Algorithm 7 terminates successfully at

step 7 then M0 vM1.

Proof. If the verification method terminates at step 7 of the function containmentChecker

then we need to prove the following claims.

1. The set E = Eu ∪Ec contains a member for each path in the path cover P0.

92

4.6. Correctness of the Equivalence Checking Procedure

2. All the paths of P0 leading to the reset state will have unconditionally (split)

equivalent path in P1 leading to the reset state of M1 or in the case of con-

ditionally equivalent path, the null path at the reset state will have uncon-

ditionally equivalent path in P1 leading to the reset state of M1.

The set Eu contains the pair of U(S)-equivalent paths, and the set Ec contains

the pair of C(S)-equivalent paths. A pair of paths is added to the set Eu and

Ec at steps 11, 12, 25, 26, 47 of ECC function and at steps 4, 10, 19, 25 of

findEquivalentPathAtReset function. The pair of paths declared by findEquivallentPath

is actually U(S)-equivalent or C(S)-equivalent. The fact that E = Eu∪Ec contains

a member for each path in the path cover P0 can be proved in a way similar to

presented in [42].

Claim 2 can be proved by contradiction. Let the paths β ∈ P0 or α ∈ P1

lead to the reset states of M0 and M1, respectively and β 'c α. In this case,

the function ECC returns failure to containmentChecker as shown at step 19 or

step 23; consequently, containmentChecker terminates at step 4, not at step 7,

is a contradiction. �

4.6.2 Termination

Theorem 6 (Termination). Our verification method always terminates.

Proof. The Fig. 4.7 represents the overall flow of our verification method. In the

following, we show that each of the function involved in Fig. 4.7 terminates. In

checkFalseComputation, we check certain property therefore it always termi-

nates. The function loopInvariant always terminates since it involves a com-

parison of two propagated vectors. The function findEquivalentPath (Algo-

rithm 6) tries to find a path α starting from q1j ∈ M1 by invoking the function

checkEquivalence. In worst case, it checks all the paths of P1 starting from q1j

which is finite. Hence it terminates as well. The function findEquivalentPathAtReset

(Algorithm 9) finds a concatenated path from a state (say qij) to the reset state of

one FSMD such that it is U-equivalent to null path at reset state in other FSMD.

If the function fails to find such a concatenated path then it terminates at step 7 or

22. The function findEquivalentPathAtReset invokes itself recursively with the

end state of path α (or β) until reset state has not been reached. This function can

93

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

only be in infinite recursion if there is a loop in the path for qij to the reset state.

However, the condition at steps 9 and 24 ensure that this function can not traverse

a loop twice. Therefore, the function invokes findEquivalentPathAtReset itself

recursively only a finite number of times and always terminates.

In Algorithm 8, the outermost loop (step 1–step 46) of the function ECC is

executed only |P0| (number of elements in P0) time which is finite. In Algorithm 8

ECC can invoke itself recursively. The ECC(q0i, q1j) invokes itself with the end state

of some path β emanating from q0i and some path α emanating from q1j. If the

end state of β and α is a reset state or the function findEquivalentPathAtReset

return Flase then ECC(q0i, q1j) returns failure. Since the recursive call of the

function ECC does not extend beyond the reset state and the function ECC avoids

traversing the loop twice (at step 6); therefore, the function ECC invokes itself

recursively only a finite number of times. Hence, the Algorithm 8 also terminates.

Finally let us consider the Algorithm 7. The loop in containmentChecker

depends upon the size of Wcsp (a set of corresponding state pairs). Since the

number of states in both the FSMDs is finite, the number of elements in Wcsp

has to be finite. So, the Algorithm 7 will also terminates. Hence our verification

method always terminates. �

4.6.3 Complexity

Let assume that there are n states in the FSMDs, and k is the maximum number of

parallel edges between any two states and x is time taken to check the equivalence

of the two formulas. The complexity of our method is in the product of the

following three terms:

1. The first term is the complexity of findEquivalentPath(β, q1j, · · ·).

2. The second term is the number of times ECC is called from containmentChecker.

3. The third term is the number of times ECC calls itself recursively.

There are two cases where the worst case may arise in our method. In first case

the worst case scenario arises when the cutpoint selection scheme S3 selects all

the states as cutpoint and the mismatch of paths resolves at the last recursion

of ECC. The function findEquivalentPath(β, q1j, · · ·) checks all the paths from

94

4.7. Experimental Results

q1j in worst case. In our method, findEquivalentPath also checks that whether

a path has been split or not. Note that to check the path merge/split scenario,

it is sufficient to visit all the paths emanating from a state once. Thus, the

overall the complexity of findEquivalentPath is O(k · n · x). The number of

times ECC is called from containmentChecker is the same as the size of the set of

corresponding states pairs which is O(n). In this worst case ECC can recursively

call itself k · (n− 1) + k2 · (n− 1) · (n− 2) + · · ·+ kn−1 · (n− 1) · (n− 2) . . . 2 · 1 '
kn−1 · (n − 1)n−1 times. Therefore, the complexity of overall verification method

is O((x · k · n) · (n) · (kn−1 · (n− 1)n−1)) ' O(x · kn · nn+1) in this worst case.

The second worst case scenario arises when all the states except the reset state

belongs the internal states of an if-else block. So, S3 selects only reset state

as a cutpoint. Therefore, the number of paths emanating from the reset state is

(k · n)n. Therefore the complexity of the findEquivalentPath is O((k · n)n · x).

The complexity of the other two terms is O(1) since containmentChecker calls

ECC only one time and there will be no recursive call of ECC. Hence, the overall

complexity of our method is O((k · n)n · x) in this worst case.

From the above discussion it is clear that the complexity of our method is

O(x · kn · nn+1). If we ignore the time taken by the SMT solver Z3 then the worst

case complexity of the our method is the same as that of the VP and the EVP

method.

4.7 Experimental Results

Our verification method discussed in Section 4.5 has been implemented in C. All

the experiments have been conducted on a laptop with 1.8 GHz Intel i5 processor

with 8 GB of RAM. We take the codebase of the EVP method and implement

our method on the top of this codebase. To check the equivalence of the condi-

tion of executions, we replace the normalization technique [101] by the SMT-based

technique in our equivalence checking framework 5. Specifically, we use Z3 SMT

solver [57] for this purpose. This is done to avoid the limitations of the normal-

ization technique. Specifically, the checking the path merge/split scenario is not

5We use the EVP with this modification for experimentation here. Therefore, the run time of
the EVP reported in Chapter 3 for a benchmark will not be the same here. However, this change
removes the limitation of normalization technique from our equivalence checking framework.

95

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Table 4.2: Experimental results on the benchmarks presented in [42]

Benchmarks

EVP Our Runtime (ms)

#Cut #Path
FEP

Equi Exp. #Cut #Path
#FEP

Equi Exp.
EVP Our

M0 M1 M0 M1 M0 M1 M0 M1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

TLC 10 6 20 16 20 Eq 75 6 6 16 16 16 Eq 65 143 107

DIFFEQ 3 3 3 3 3 Eq 29 3 3 3 3 3 Eq 29 28 28

GCD 7 4 11 8 13 Eq 125 4 4 8 8 8 Eq 73 121 48

PERFECT 5 4 7 6 7 Eq 73 4 3 6 5 6 Eq 73 34 37

MODN 6 6 9 9 9 Eq 29 6 6 9 9 9 Eq 29 40 40

LRU 21 20 39 38 39 Eq 73 11 10 32 31 27 Eq 139 199 247

DHRC 15 13 27 24 14 Eq 135 13 12 26 24 14 Eq 177 281 241

BARCODE 28 24 55 57 75 Eq 189 13 13 54 54 46 Eq 213 657 500

#cut: Number of cutpoints in an FSMD.
#Path: Number of paths in an FSMD.
#FEP: Number of times findEquivalentPath function is called.
Exp.: Maximum length of a formula in terms of variables along with that of operations.
Eq: M0 and M1 are equivalent.

feasible with the normalization technique. We run both the EVP and our method

with Z3 for checking condition of execution for fair evaluation of runtime. How-

ever, we still use the normalization technique to check the equivalence of data

transformations.

In our first experiment, all the benchmarks listed in Table 4.2 are taken

from [42]. The benchmarks TLC and GCD are control-intensive, the benchmarks

DIFFEQ, PERFECT, and MODN are data-intensive, and the benchmarks LRU,

DHRC and BARCODE are both control and data-intensive. The transformed

FSMD is obtained from the original one in two steps. First, we obtained the inter-

mediate transformed FSMD by running the SPARK tool [15] on these benchmarks.

We forced SPARK to apply the code transformation like copy and constant prop-

agation, common sub-expression elimination, dead code elimination (DCE) and

loop invariant code motion to the original behavior to produce the corresponding

optimized transformed behavior. The intermediate transformed FSMD obtained

by SPARK is converted into the final transformed FSMD according to path-based

96

4.7. Experimental Results

Table 4.3: Experimental results on the benchmarks presented in [44, 104, 105], CHStone
benchmarks [55] and the benchmarks listed in Bambu HLS tool [14]

Benchmarks #C

EVP Our

#Path Equi-
T

#Path Equi-
#PSE #Exp. #SMT SMT Time T

M0 M1 valent (ms) M0 M1 valent length (ms) (ms)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Fig. 4.4 12 5 3 MNEq 6 5 3 Eq 0 34 7 2 16

Fig. 4.2 [44] 18 6 8 MNEq 9 6 7 Eq 1 74 27 7 25

Peñalba [44] 34 14 15 MNEq 26 13 14 Eq 1 89 55 18 65

Juan [104] 20 8 9 MNEq 12 7 8 Eq 1 86 34 10 36

Jian [105] 16 10 11 MNEq 15 8 9 Eq 1 90 38 12 56

B
am

b
u WAKA 35 4 3 Eq 77 4 3 Eq 0 83 14 6 77

ARF 43 5 5 Eq 357 5 5 Eq 0 96 51 76 357

MOTION 44 1 1 Eq 72 1 1 Eq 0 0 0 0 72

C
H

S
to

n
e BLOWFISH 151 21 21 Eq 159 19 19 Eq 0 50 66 28 114

GSM 240 96 86 Eq 1651 76 76 Eq 0 154 348 956 1413

MIPS 259 77 51 MNEq 105 45 45 Eq 2 491 779 4378 5894

AES 330 132 96 MNEq 499 105 105 Eq 3 192 497 1392 2087

MNEq: M0 and M1 “May Not be Equivalent”.
#c: # of lines in c program.
T: Time in milliseconds(ms).
PSE: Number of split-equivalent paths.
#SMT: Number of times SMT solver is called.
SMT TIME: the time spent on SMT solver.

scheduler. In this experiment, we compare our method with the EVP method [56]

to verify the benchmarks listed in Table 4.2. The objectives are (i) to confirm that

power of the EVP method is not affected due to new cutpoint selection scheme S3;

(ii) to compare the execution time (in milliseconds (ms)) with the EVP method

since our method uses cutpoint selection criteria S3 while the EVP method uses

selection criteria S1. The result of this experiment is tabulated in Table 4.2. For

each benchmark, we record the number of cutpoints (#cutpoint), the number of

paths (#path) in both the behaviors (M0 and M1) by executing these bench-

marks in both the methods (EVP and Our). The 6th and 13th columns, “FEP”

(i.e.,#findEquivalentPath) represent the number of times findEquivalentPath

97

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

function is called by the EVP and by our method, respectively. In addition, the

maximum length of the formula (in terms of the number of variables along with

that of the operations) sent to Z3 SMT solver is tabulated in 8th and 15th columns

of Table 4.2 for the EVP and our method, respectively. This formula captures the

equivalence formulation of condition of execution of two paths. Our method can

establish the equivalence in all these benchmarks. This is reported as ‘Eq’ in Ta-

ble 4.2. This result confirms that our cutpoint selection scheme S3 can also show

the equivalence correctly when the control structure has been modified as well as

code motions have been applied.

The runtime comparison of our method and the EVP method is shown in 16th

and 17th columns for the benchmarks listed in Table 4.2. In general, S3 simplifies

the control structure of the given FSMD hence reduce the number of calls of

the function findEquivalentPath. The less number of calls for the function

findEquivalentPath results in less runtime for our method as compared to the

EVP method for the benchmarks listed in Table 4.2 except LRU. The benchmarks

DIFFEQ and MODN do not have any nested if-else block; therefore, both

the methods take the same time to show the equivalence. For the benchmarks

GCD, TLC, DHRC and BARCODE our method takes less time as compared to

the EVP method because our method calls findEquivalentPath less or equal

number of times. Note that, it is not always true that reduction in the number

of the calls for the function findEquivalentPath provides the better runtime.

For LRU, our method calls findEquivalentPath less number of times but takes

more time to show the equivalence. As shown in the 8th and 15th columns of

Table 4.2, the number of cutpoints reduces from 21 in the EVP method to 11 in

our method. As a result, the length of formula at a given state is almost double

in our method as compared to the EVP method for LRU. Therefore, our method

spends more time in SMT calls for LRU. The experimental result confirms that

cutpoint selection criteria S3 does not increase the runtime exponentially. In fact,

the runtime improves in most of the cases.

In our second experiment, all the control dominated benchmarks listed in rows

2–5 of Table 4.3 are taken from [44,104,105]. These benchmarks are used in [44] to

show the efficient scheduling of conditional behaviors. The transformed behavior

of the benchmark listed in row 1 is obtained by merging the adjacent if-else

blocks as discussed in Subsection 4.2.3. We obtain the transformed behavior of

98

4.7. Experimental Results

the benchmarks listed in rows 2–5 by running Bambu HLS tool [14]. These trans-

formed behaviors represent the scenario where a path in original behavior has

been split into more than one path to improve the conditional hardware reuse.

For each benchmark, we have reported the number of paths in the path cover,

the equivalence decision taken by the EVP method and our method, the run time

in milliseconds (ms) of the EVP method and our method, and the number of

lines in the C program represents the original behavior. In Table 4.3, we have

also reported the number of path split scenario (PSE) has been occurred (col-

umn 10), the maximum length of the formula for SMT solver (column 11), #time

SMT solver is called (column 12), and the time spent on SMT solver (column 13)

by our method. The results of second experiment is tabulated in rows 1—5 of

Table 4.3. From these results, it is evident that our proposed method can cor-

rectly identify the equivalence even when transformations involve path merging

/splitting and merging of states. However, the EVP method fails to prove the

equivalence of original and transformed behaviors for these benchmarks, i.e., the

EVP method gives false negative results. This is reported as ‘MNEq’ in Table 4.3.

In this case, we do not compare the runtime between the EVP and our method

since the EVP method terminates in the middle of its execution by identifying

a possible non-equivalence, whereas, our method executes completely and shows

the equivalence. The experimental evaluation shows that our method outperforms

the EVP method when the paths are merged/split or adjacent conditional blocks

having an equivalent conditional expression are merged into one conditional block.

In our third experiment, we take some larger benchmarks from CHStone [55]

and Bambu HLS tool [14] to show the scalability of our tool. We obtain a scheduled

behavior using Bambu HLS tool for these test cases. We observe that the control

structure is modified significantly by Bambu for most of the benchmarks. We have

considered a subset of CHStone benchmarks since others contain similar control

structure and have similar size for our verification experiment. Specifically, we use

the function BF cfb64 encrypt in BLOWFISH, the function Gsm LPC Analysis

in GSM and the function encrypt in AES as a source behavior. The results of

this experiment is tabulated in rows 6–12 of Table 4.3. The entries related to SMT

solver is NULL for MOTION benchmarks since it does not contain any conditional

statement. Note that relatively larger benchmark AES takes less time as compared

to MIPS because the length of the SMT formula for MIPS is almost 2.5 times of

99

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

the same for AES. It may be noted that even for a single path (say β) in one

FSMD, we may need to call SMT solver multiple times to check equivalence of

condition of execution for each path emanating from the corresponding state of qβs
in other FSMD. In addition, we also use the SMT Solver to find path split/merger

scenario and false computation. Therefore, our approach spends on average 43%

of total time on checking the equivalence of SMT formulas. It may be noted that

the EVP method fails to show equivalence for the benchmarks AES and MIPS

since path split/merge scenario arises as shown in column 10 of Table 4.3. Our

approach can show the equivalence in less than 6 seconds for all the benchmarks

listed in Table 4.3. This experiment shows the scalability of our approach to

handle realistic design.

4.8 Conclusions

In this work, a PBEC approach based on value propagation is presented for ver-

ification of scheduling of conditional behaviors in HLS. Like the existing value

propagation based PBEC approaches [42, 56], our method is capable of handling

the control structure modification of input behavior and code motion involving

loops. In addition, our method capable of handling the scenario involving path

merge/split. Our method can also handle the scenario where adjacent conditional

blocks having an equivalent conditional expression are combined into one condi-

tional block. We have also presented a new cutpoint selection scheme to simplify

the control structure of the given behavior. The experiments show that our method

outperformed the state-of-the-art PBEC approach.

100

Chapter 5

Improving Performance of a

Path-Based Equivalence Checker

using Counter-Examples

5.1 Introduction

In general, PBEC approaches decompose each FSMD into a finite set of finite paths

and the equivalence of FSMDs is established by showing path level equivalence

between two FSMDs. In the case of non-equivalence, these approaches do not

provide information sufficient for debugging the issue. A counter-example which

will demonstrate the non-equivalence between the input behavior to HLS (i.e.,

source behavior) and the scheduled behavior generated by HLS (i.e., transformed

behavior) will add significant value to the adoption of such PBECs. In this case,

PBEC approaches can report “Not equivalent” instead of “May Not be equivalent”.

Equivalence checking of programs is an undecidable problem in general. Therefore

it is possible that a PBEC may produce a false negative result, i.e., a PBEC

may report that two behaviors “May Not be equivalent” but these two behaviors

are actually equivalent. The process of generating a counter-example helps to

identify some false negative cases of a PBEC approach. Thus, a counter-example

generation procedure helps to improve the performance of a PBEC approach.

Specifically, the contributions of this chapter are as follows:

1. We show how the equivalence information of the value propagation based

PBEC approach presemted in Chapter 4 can be used to find a cTrace in the

case of non-equivalence.

2. We show how the Z3 SMT solver [57] and CBMC [58] tool can be used to

find a suitable counter-example for a given cTrace .

101

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

q00

q01

q02 q03

n ≥ 0/

i⇐ 0,

x⇐ 0,

y ⇐ 0

p01

i ≤ n/
x⇐ 5 ,

y ⇐ y + 5

-/
i
⇐
i

+
1

p02
¬i ≤ n/

out⇐ x + y
p03

¬n ≥ 0/

out⇐ −1
p00

(a) Source behavior M0

q10

q11

q12 q13

n ≥ 0/

i⇐ 0,

x⇐ 0,

y ⇐ 0

p11

i ≤ n/
y ⇐ y + 5

-/
i
⇐
i

+
1

p12

¬i ≤ n/
x⇐ 5 ,

out⇐ x + y + 1

p13

¬n ≥ 0/

out⇐ −1
p10

(b) Transformed behavior M1

Figure 5.1: An example of non-equivalence

3. We show how to improve the performance of the PBEC approach using this

counter-example generation framework.

4. An enhanced version of PBEC approach after incorporating our counter-

example generation scheme is also presented.

To the best of our knowledge, this is the first work which reports a cTrace in the

case of non-equivalence and uses it to produce a counter-example and improve the

performance of PBECs approaches during verification of the scheduling phase of

HLS.

The rest of chapter is organized as follows. A motivating examples highlighting

the limitations of a PBEC approach is given in Section 5.2. Section 5.3 focuses on

cTrace generation. Section 5.4 presents how that cTrace can be used to produce a

counter-examples. Section 5.5 and 5.6 finally delve into how current PBECs can be

enhanced by incorporating our counter-example generation technique. Visualiza-

tion of cTraces generated by our method is explained in Section 5.7. Experimental

results are given in Section 5.8. Section 5.9 concludes the chapter.

5.2 Motivations

Consider the input behaviorM0 and its transformed behaviorM1 shown in Fig. 5.1.

The operation x ⇐ 5, a loop invariant for input behavior M0, is placed after the

102

5.3. Counter-Trace Generation

EQ LIST = (P00, P10) (P01, P11)

C LIST = (P02, P12)

Figure 5.2: List maintained during equivalence checking

loop body in the transformed behavior M1. Note that the input behavior M0

and the transformed behavior M1, shown in Fig. 5.1, are not equivalent since

there is mismatch in values of the out variable. The PBEC method presented

in Chapter 4 reports that behaviors “May Not be equivalent”. This method also

reports (see Fig. 5.2) that the path pairs (p00, p10) and (p01, p11) are U-equivalent,

the path pair (p02, p12) is a candidate for C-equivalence and the path pair (p03, p13)

is not equivalent. However, this information is not enough to find the proper

reason of non-equivalence. It is desirable the method should produce an input

sequence for which both behaviors generate different output values in the case of

non-equivalence.

5.3 Counter-Trace Generation

Suppose the source behavior and the transformed behavior are represented as

FSMDs M0 and M1, respectively. Let us assume that the PBEC approach pre-

sented in Chapter 4 fails to find the equivalence of the path β. We now dis-

cuss how to generate a unique computation starting from the reset state that

leads to the path β. It may be recalled that the PBEC method maintains two

lists: EQ LIST contains equivalent path pairs explored so far and C LIST con-

tains candidates for conditionally equivalent path pairs. C LIST is obtained in

a DFS manner. So, if we traverse backward from the start state of β, we will

obtain a sequence of paths from the set C LIST. This trace would always be a

unique trace. Let the sequence be 〈p0j, p0j+1, ..., p0k, β〉 in FSMD M0 shown in

Fig. 5.3(a). The segment of the FSMD M0 from the reset state q00 to the start

state of p0j, (say ps0j,) is already proved to be equivalent to its corresponding part

in FSMD M1. However, as shown in Fig. 5.3(a), there might be many paths from

q00 to ps0j. For our purpose, we can choose one of the paths from this segment.

Let us choose the sequence 〈p00, p01, ..., p0i〉 shown in Fig. 5.3(a), where p00

103

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

q00

...

ps0j

...

p00

p01

p0i

p0j

p0j+1

p0k

β

EQ LIST

C LIST

(a) cTrace of M0

q10

...

ps1j

...

p10

p11

p1i

p1j

p1j+1

p1k

α

EQ LIST

C LIST

'

'

'

'c

'c

'c

(b) cTrace of M1

Figure 5.3: cTrace generation using EQ LIST and C LIST

starts from the state q00 and the path p0i ends at ps0j. Therefore, the sequence

cTrace = 〈p00, p01, ..., p0i, p0j, p0j+1, ..., p0k, α〉 is the cTrace in the FSMD

M0 shown in Fig. 5.3(a) that we are interested in. From EQ LIST, we will obtain

the paths corresponding to p00, p01, ..., p0i in FSMD M1. Let the corresponding

paths be p10, p11, ..., p1i, respectively, as shown in Fig. 5.3(b). Similarly, the

corresponding paths of p0j, p0j+1, ..., p0k in the FSMD M1 can be found using

C LIST. Let the corresponding paths be p1j, p1j+1, ..., p1k, respectively, as shown

in Fig. 5.3(b). The potential corresponding path of α can also be obtained in the

FSMD M1; let it be α. The PBEC method identifies the potential candidate for

equivalence, α, in M1 in most of the cases. It fails to find α only if there does not

exist any path from the corresponding state in M1 whose condition of execution

matches even partially with that of β. In this case, we can take any path from the

corresponding state in M1. Therefore, the corresponding cTrace in FSMD M1 is

〈p10, p11, ..., p1i, p1j, p1j+1, ..., p1k, α〉 shown in Fig. 5.3(b).

104

5.4. Counter-Example Generation using Counter-Trace

q00

q01

q02 q03

n ≥ 0/

i⇐ 0,

x⇐ 0,

y ⇐ 0

p01

i ≤ n/
x⇐ 5 ,

y ⇐ y + 5

-/
i
⇐
i

+
1

p02
¬i ≤ n/

out⇐ x + y
p03

(a) cTrace of M0

q10

q11

q12 q13

n ≥ 0/

i⇐ 0,

x⇐ 0,

y ⇐ 0

p11

i ≤ n/
y ⇐ y + 5

-/
i
⇐
i

+
1

p12

¬i ≤ n/
x⇐ 5 ,

out⇐ x + y + 1

p13

(b) cTrace of M1

Figure 5.4: Counter-trace generation example

Example 14. Let us consider the input behavior M0 and its transformed behavior

M1 shown in Fig. 5.4. During the course of equivalence checking the PBEC method

presented in Chapter 4 reports that M0 and M1, shown in Fig. 5.4 may not be

equivalent. The method stores the U-equivalent and candidate for C-equivalent path

pairs in the EQ LIST and C LIST list, respectively shown in Fig 5.2. As explained

in Section 5.3, using these lists the generated cTrace of M0 and M1 is shown in

Fig. 5.4(a) and Fig. 5.4(b), respectively.

5.4 Counter-Example Generation using Counter-

Trace

In this section we explain how a cTrace used to produce a counter-examples using

Z3 and CBMC tool.

5.4.1 Modeling Counter-trace using Z3 SMT Solver

In the case of non-equivalence reported by the PBEC approach, we generate two

cTraces as discussed in Subsection 5.3. We then model the equivalence of these

cTraces as a satisfiability problem. We then apply Z3 to check the satisfiability.

If these two cTraces are equivalent then Z3 reports unsat; otherwise it reports

105

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

sat and produces a counter-example. The counter-example generation procedure

is discussed in detail here.

Let us examine the example of a cTrace shown in Fig. 5.4(a). The correspond-

ing cTrace in the FSMD M1 is shown in Fig. 5.4(b). The input to Z3 in SMT-Lib2

language generated for this case is given below.

(declare -const n Int) ;T0

(declare -const i_0_s Int) ;T1

(declare -const x_0_s Int) ;T2

(declare -const y_0_s Int) ;T3

(declare -const i_1_s Int) ;T4

(declare -const x_1_s Int) ;T5

(declare -const y_1_s Int) ;T6

(declare -const iter_s Int) ;T7

(declare -const out_s Int) ;T8

(declare -const i_0_t Int) ;T9

(declare -const x_0_t Int) ;T10

(declare -const y_0_t Int) ;T11

(declare -const i_1_t Int) ;T12

(declare -const x_1_t Int) ;T13

(declare -const y_1_t Int) ;T14

(declare -const iter_t Int) ;T15

(declare -const out_t Int) ;T16

(assert(>= n 0)) ;T17

(assert (= i_0_s 0)) ;T18

(assert (= x_0_s 0)) ;T19

(assert (= y_0_s 0)) ;T20

(assert(<= i_0_s n)) ;T21

(assert (> iter_s 0)) ;T22

(assert (= x_1_s 5)) ;T23

(assert (= i_1_s (+ i_0_s (* iter_s 1)))) ;T24

(assert (= y_1_s (+ y_0_s (* iter_s 5)))) ;T25

(assert(not(<= i_1_s n))) ;T26

(assert (= out_s (+ x_1_s y_1_s))) ;T27

(assert (= i_0_t 0)) ;T28

106

5.4. Counter-Example Generation using Counter-Trace

Table 5.1: Inverse strength reduction
Init Op Incr Loop Final
i + c n i+ n ∗ c
i − c n i− n ∗ c
i ∗ c n i ∗ cn
i / c n i/cn

(assert (= x_0_t 0)) ;T29

(assert (= y_0_t 0)) ;T30

(assert (> iter_t 0)) ;T31

(assert(<= i_0_t n)) ;T32

(assert (= x_1_t 5)) ;T33

(assert (= i_1_t (+ i_0_t (* iter_t 1)))) ;T34

(assert (= y_1_t (+ y_0_t (* iter_t 5)))) ;T35

(assert(not(<= i_1_t n))) ;T36

(assert (= out_t (+ (+ x_1_t y_1_t) 1))) ;T37

(assert (= iter_s iter_t)) ;T38

(assert (not (= out_s out_t))) ;T39

(check -sat) ;T40

(get -model) ;T41

We have added statement numbers (having prefix T) to aid in our explanation. The

variables appearing in the source behavior (Fig. 5.4(a)) are suffixed with s, though

the variables appearing in the transformed behavior (Fig. 5.4(b)) are suffixed with

i. Since program verification entails checking the equality of output(s) generated

by two programs when fed with the same input(s), the variable n is not suffixed

with either s or i.

The statements T1–T8 and T9–T16 declare the variables appearing in the source

and the transformed behaviors, respectively, along with their data type, which is

integer for all the variables. The statements T17–T27 and T28–T37 capture the

data transformations and the conditions of execution of the paths appearing in the

cTrace of the two FSMDs. A crucial point to note is that we have considered the

loop in the source and in the transformed behaviors to have executed iter s and

iter i times, respectively, whose value can be one or more; furthermore, since

the conditions of execution and the data transformations of the loops in the two

107

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

FSMDs have been found to be equivalent, the two loops must have been executed

an identical number of times in the two FSMDs, a fact captured in statement

T38. Now to generate the counter-example, we replace the execution of the loop

for “iter” times by a single path which captures the equivalent data transformation

in each FSMD. This strategy is adopted because SMT solvers are oblivious to the

notion of iterating over loops as done in programs. Moreover, the inputs to an

SMT solver must be in single assignment (SA) form (because there is no notion

of variable update in SMT languages). Therefore, we have two variables i 0 and

i 1 in the inputs generated for each FSMD; while the former variable i 0 is used

to store the initial value of variable i, the latter variable i 1 stores the value of

i after the execution of the loop. Strength reduction [106] is a popular technique

for compiler transformation whereby an expression in a loop is replaced by a less

expensive operator. Here we are doing reverse of strength reduction to represent

a loop in terms of a path in SMT solver. For example the final expression for

i = i + 1 listed in the loop body of cTrace of FSMD M0 (in Fig. 5.4(a)) will be

i = i + iter ∗ 1. This final expression is captured in Z3 by the statement T34.

Intuitively, we apply an inverse strength reduction type technique to obtain the

final value of a variable given its initial value, increment operator, increment value

and loop count as shown in Table 5.1. Accordingly, we get the values for i 1 s

and i 1 t as shown in statements T24 and T34. Similarly, we get the values for

y 1 s and y 1 t as shown in statements T25 and T35.

Finally, we check the equivalence of the output variables out s and out i; note

that executing the above code in Z3 reports sat for statement T39 signifying that

the values of the variable out differs in the source and the transformed behaviors.

The statement get-model generates the following counter-example for the given

pair of cTrace shown in Fig. 5.4.

sat

(model

(define -fun iter_t () Int 1)

(define -fun n () Int 0)

(define -fun out_t () Int 11)

(define -fun y_1_t () Int 5)

(define -fun i_1_t () Int 1)

(define -fun x_1_t () Int 5)

108

5.4. Counter-Example Generation using Counter-Trace

(define -fun y_0_t () Int 0)

(define -fun x_0_t () Int 0)

(define -fun i_0_t () Int 0)

(define -fun out_s () Int 10)

(define -fun y_1_s () Int 5)

(define -fun i_1_s () Int 1)

(define -fun iter_s () Int 1)

(define -fun x_1_s () Int 5)

(define -fun y_0_s () Int 0)

(define -fun x_0_s () Int 0)

(define -fun i_0_s () Int 0)

)

From the above counter-example it is clear that if we initialize the value of n by

0 then the values of out differs in the source and the transformed behaviors.

Note that in case of nested loop, if the outer loop is iterated n1 times and inner

loop is iterated n2 times then a variable with its initial value i, increment operator

+, increment value c is replaced by a final expression i+n1 ∗n2 ∗ c. However, it is

always not possible to find a final expression to encode a loop. In general, CBMC

is better to model nested loop programs for counter example generation. In the

following we discuss the how CBMC can be used to model a counter-trace.

5.4.2 Modeling Counter-trace using CBMC

As discussed in Subsection 5.4.1 for modeling cTraces using Z3 SMT Solver an

expression in a loop is replaced by a more expensive operator using an inverse

strength reduction technique. However, it is not always possible to replace an

expression using this technique. Consider the sequence of expressions x = x +

y + i + 5 and y = x + y + i + 5 inside the loop body in the behavior shown in

Fig. 5.1(a). In these expressions the value of x and y are dependent on each other

hence the strength reduction is not suitable to replace them by less expressive

expression. Therefore, in this section we explain that how to model cTraces using

CBMC instead of Z3. We use CBMC because it symbolically unrolls the loops

either completely if possible or to a user-specified depth.

To obtain the counter-example, i.e., assigning suitable value to the inputs, we

109

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

rely on CBMC [58]. Specifically, for a given upper bound, CBMC verifies the

specified assertions. If any violation of an assertion is detected, a counter-example

is generated. Let us consider the cTraces as shown in Fig. 5.4(a) and Fig. 5.4(b).

The input to the CBMC in C for this case is shown below.

1 #include <assert.h>

2 void main()

3 {

4 int i_s ,x_s ,y_s ,n,out_s;

5 int i_t ,x_t ,y_t ,out_t;

6 __CPROVER_assume(n>=0);

7 assert (!(n >=0));

8 // cTrace for M0

9 if(n>=0)

10 {

11 i_s =0;x_s=0; y_s =0;

12 __CPROVER_assume(i_s <=n);

13 assert (!(i_s <=n));

14 while(i_s <=n)

15 {

16 x_s =5;

17 y_s=y_s+5;

18 i_s=i_s+1;

19 }

20 out_s=x_s+y_s;

21 }

22 // cTrace for M1

23 if(n>=0)

24 {

25 i_t =0;x_t=0; y_t =0;

26 __CPROVER_assume(i_t <=n);

27 assert (!(i_t <=n));

28 while(i_t <=n)

29 {

30 y_t=y_t+5;

110

5.4. Counter-Example Generation using Counter-Trace

31 i_t=i_t+1;

32 }

33 x_t =5;

34 out_t=x_t+y_t+1;

35 }

36 assert(x_s = x_t);// Live Variable

37 assert(y_s = y_t);// Live Variable

38 assert(out_s = out_t);// Output Variable

39 }

The variables appearing in the cTrace of M0 (Fig. 5.4(a)) are suffixed with

s,whereas the variables appearing in the cTrace of M1 (Fig. 5.4(b)) are suffixed

with t. Since program equivalence entails identical output(s) generated by the

two programs when fed with the same input(s), the input variable n is not suffixed

with either s or t. Lines 3 and 4 declare the variables appearing in the cTrace of

M0 and the cTrace of M1, respectively, along with their data type which is integer

for all the variables. The lines 8–16 and 18–26 capture the data transformations

and the conditions of execution of the paths appearing in the cTrace of the M0

and M1, respectively. We use CPROVER assume statements to allow only those

computation that satisfy a given condition. For example CBMC first picks the

value for n non-deterministically from the domain of integers. The statement

CPROVER assume(n ≥ 0) at line 5 further restricts the range of n for all program

computations to be greater than or equal to 0. Note that if there is no computation

satisfying the condition, say P , mentioned in CPROVER assume statement, then

all the assertions hold vacuously. We check this by adding assert(!P) statement

after each CPROVER assume statement so that if one of the assert(!P) statement

is true then we declare that all the possible computations represented by cTrace

are false computations i.e., they never execute. Finally, we check the equivalence

of the live variables (x s, y s, x t, y t) and output variables (out s , out t) using

the assert statements (lines 27–29).

CBMC is able to automatically determine an upper bound on the number of

loop iterations in many cases. It may fail if the number of loop iterations is highly

data-dependent. Therefore, to verify the assertions with CBMC we use the follow-

ing command: cbmc fileName.c -unwind k --no-unwinding-assertions where

fileName.c is the name of the target program, k is the bound on the number of

111

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

iterations of the loop in the program called as Unwinding Loop Bound (ULB)

and --no-unwinding-assertions disables the unwinding assertion check and

changes the unwinding assertion to an unwinding assumption. We use the option

--no-unwinding-assertions so that a counter-example might be found within

the small state space generated with the small ULB. If the target program con-

tains a loop then CBMC unwinds the loop k times and check the properties. Note

that if there are multiple loops in the program, the bound k applies to all loops.

A violation of the property is reported if it is found within k ULB and CBMC

will give a counter-example. Otherwise, we iteratively run CBMC with increasing

ULBs for the loops until an assertion violation is found or a given time limit is

reached.

Note that if the program consists of multiple and possibly nested loops, we

simply set the number of loop unwindings globally, that is, for all loops in the

program. For every unwinding of an outer loop CBMC unwind each inner loop.

5.5 Incorporation of Results in Equivalence Check-

ing Framework

The PBEC approaches are sound but not complete. Therefore, all the PBECs

approaches report that the behaviors “May Not be equivalent” once they fail to

prove the equivalence of source and transformed behaviors. Using the output

of CBMC, we can actually make the PBEC approach more powerful. In some

scenarios, the PBEC approach can report that the behaviors are “Not equivalent”

(instead of “May Not”) along with a counter-example. Also, in some scenarios,

the non-equivalence result reported by the PBEC approach can be proved to be

a false negative and equivalence checking will proceed further. In the following,

we discuss how we can incorporate the CMBC result to improve the equivalence

checking framework.

• Case 1: One of the conditions mentioned in CPROVER assume statement

is not satisfiable: In this case, we report to PBEC tool that all the possible

computations represented by cTrace are false computations. Consequently,

we need to proceed further in the equivalence checking process.

112

5.6. Overall Equivalence Checking Framework

• Case 2: The unwinding assertions are valid and CBMC does not find any

counter-example: This means the values of all the live variables and output

variables are the same for both cTraces . So the non-equivalence reported

by the PBEC approach may be a false negative. In this case, we need to

proceed further in equivalence checking by declaring the corresponding path

pair (α, β) as an equivalent path. This actually helps the PBEC approach

to avoid false negative results during the course of equivalence checking.

• Case 3: CBMC reports counter-example for some variables: This means

the data transformation of some variables is not equivalent in the cTraces .

Case 3.1: A mismatch is found for an output variable: This is surely a

non-equivalence case. So the equivalence checker correctly found the non-

equivalence of the behaviors. In this case, the PBEC approach reports that

the behaviors are “Not equivalent” along with the counter-example.

If a mismatch is found only for live variables (which are not output vari-

ables), then we cannot conclude definitely that the final outputs of both the

behaviors will not be the same. There may be some other operations in the

subsequent execution of the FSMDs which will make the behaviors equiv-

alent. Therefore, we need to execute the two programs with the counter-

example produced by CBMC and check if the outputs of the two programs

are the same or not.

Case 3.2: The outputs are the same: This is not a non-equivalent case.

Consequently, we need to proceed further in the equivalence checking process.

Case 3.3: The outputs of the two programs are not the same: This is surely

a non-equivalence scenario; in this case, the PBEC approach will report the

behaviors are “Not equivalent” along with the counter-example.

• Case 4: CBMC hits the time limit: In this case, CBMC has failed to gen-

erate a counter-example because of time out. So no counter-example will be

provided to the user. The PBEC approach reports the behaviors “May Not

be equivalent”.

113

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

Generate cTrace for

both M0 and M1

k←1

cbmc input.c -unwind k

--no-unwinding-assertions

timeout?

behaviors May

Not be equivalent CPROVER

assume

statement

SAT

User

defined

Assertion

violated?

behaviors May

Not be equivalent

Verify un-

winding

assertion

Mark both path

as equivalent and

proceed further

mismatch

in o/p

values?

Report Not equiv-

alent and provide

CE as a proof

Run two pro-

grams over CE

mismatch

in o/p

values?

Mark both path

as equivalent and

proceed further

Report Not equiv-

alent and provide

CE as a proof

Yes

(Case 4)

No

No

(Case 1)

Yes

Yes

(Case 2)

N
o,
k
←

k
+

1

Yes (Counter-example (CE) exits)

(Case 3)

No

Yes

(Case 3.1)

No

Yes

(Case 3.3)

No

(Case 3.2)

Figure 5.5: Control flow graph of counter-example generation using CBMC and
its utilization in a PBEC framework.

5.6 Overall Equivalence Checking Framework

The abstract version of our counter-example generation represented by the func-

tion counterExmapleGenerator is presented in Algorithm 10. The control flow

of Algorithm 10 is given in Fig. 5.5. The function counterExmapleGenerator

takes as input two FSMDs M0 and M1, a path α from the path cover of M0,

a path β from the path cover of M1, EQ LIST contains equivalent path pairs

114

5.6. Overall Equivalence Checking Framework

Algorithm 10: counterExmapleGenerator(M0,M1, α, β, EQ LIST, C LIST)

1 DFS from the start state of α in C LIST to obtain the sequence
〈p0j , p0j+1, ..., p0k, α〉.

2 DFS from the start state of p0j in EQ LIST to obtain the sequence
〈p00, p01, ..., p0i〉.

3 Encode the cTrace = 〈p00, p01, . . . , p0i, p0j , p0j+1, . . . , p0k, α〉 and its
corresponding cTrace in M1 as C, say “input.c”.

4 Initialize the unwinding loop bound (ULB) k to 1.
5 Use cbmc input.c -unwind k --no-unwinding-assertions command to

invoke CBMC.
6 if The condition mentioned in CPROVER assume is not satisfiable then
7 return 〈NULL, False, True〉; /* Case 1 */

8 else if All the unwinding assertions along with the user defined assertions are
valid then

9 return 〈NULL, True, False〉; /* Case 2 */

10 else if CBMC produces a counter-example for the assertion belongs to an
output variable then

11 return 〈v̄, False, False〉; /* Case 3.1 */

12 else if CBMC produces a counter-example for the assertion belongs to live
variable then

13 Execute both M0 and M1 with the values obtained from CBMC as inputs.
14 if outputs are the same then
15 return 〈NULL, False, False〉; /* Case 3.2 */

16 else
17 return 〈v̄, False, False〉; /* Case 3.3 */

18 end if

19 else if CBMC hits the time limit then
20 return 〈NULL, False, False〉; /* Case 4 */

21 else
22 Increase ULB by one (i.e., k=k+1) and go to step 5
23 end if

and C LIST contains candidates for conditionally equivalent path pairs. The

function counterExmapleGenerator returns 〈v̄,Equiv , falseComp〉, where v̄ =

〈v1, v2, . . . , vn〉 is the input variable list such that vi represents the value of the

input variable vi, Equiv is True if α ' β and False otherwise and falseComp

is True if all the computations represented by cTrace are false computations and

False otherwise. In lines 1–2 of Algorithm 10, a cTrace is constructed from the

EQ LIST and C LIST as discussed in Section 5.3. The cTrace is encoded as input to

CBMC at line 3. The output generated by CBMC may result in various scenarios

115

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

Algorithm 11: correspondenceChecker(M0,M1, q0i, q1j, P0, P1,Wcsp)

1 foreach path β : (q0i ⇒ q0m) in P0 do
2 if path α : (q1j ⇒ q1n) can be found in P1 such that β ' α then
3 Wcsp = Wcsp ∪ {(q0m, q1n)};
4 Insert (β, α) in EQ LIST.

5 else if path α : (q1j ⇒ q1n) can be found in P1 such that β 'c α then
6 if q0m or q1n is reset state then
7 return failure;
8 else
9 Insert (β, α) in C LIST.

10 correspondenceChecker(M0,M1, q0m, q1n, P0, P1,Wcsp);

11 end if

12 else
13 〈v̄, Equiv, falseComp〉← counterExmapleGenerator(M0, M1, β, α,

EQ LIST, C LIST);
14 if falseComp == True then
15 Proceed Further /* Case 1 */

16 else if v̄ 6= NULL then
17 return Not equivalent ; /* Case 3.1 */

18 else if v̄ == NULL and Equiv == True then
19 Proceed Further /* Case 2 */

20 else if v̄ == NULL and Equiv == False then
21 Proceed Further /* Case 3.2 */

22 else
23 return May Not be Equivalent ; /* Case 4 */

24 end if

25 end if

26 end foreach
27 EQ LIST = EQ LIST ∪ {Last member of C LIST}
28 C LIST = C LIST \ {Last member of C LIST}
29 return success;

as discussed in Section 5.5. Lines 6–19 of Algorithm 10 handle these cases.

The enhanced version of correspondenceChecker function of the PBEC method

presented in Chapter 4 after incorporating the result of the function

counterExmapleGenerator is presented in Algorithm 11. In case of failure, Al-

gorithm 11 invokes the function counterExmapleGenerator (Algorithm 10) at

line 13. It may be noted that the PBEC method reports failure under this scenario.

If counterExmapleGenerator returns a counter-example (i.e., v̄ 6= NULL) then the

116

5.7. Counter-Trace Visualization

function correspondenceChecker returns “Not equivalent” i.e., the two FSMDs

are not equivalent (line 17). If CBMC hits the time limit then we cannot decide

whether M0 is equivalent to M1. Hence the function correspondenceChecker

returns “May Not be Equivalent” (line 23). If CBMC reports that all the possi-

ble computations represented by cTrace are false computations (i.e., the variable

falseComp is True) then the function correspondenceChecker needs to be modi-

fied to handle this scenario (line 15). If CBMC finds the mismatch in the values of

a live variable but outputs of the two programs are the same then we do not report

the counter-example (line 21). To handle this case also correspondenceChecker

needs to be modified. If CBMC declares that the path pair (α, β) are equiv-

alent (i.e., the variable Equiv is True) then it is a false negative result of the

correspondenceChecker function (line 19). The correspondenceChecker func-

tion must take some decision to avoid the false negative case in the future.

5.7 Counter-Trace Visualization

Visualization of the cTrace can be a great help in case of a mismatch. In this work,

we display the trace starting from the reset state till the mismatched path in both

the FSMDs using Graphviz [107]. Graphviz is a graph visualization software which

can be used to represent graphs and networks as diagrams. For visualization, the

internal data structure of an FSMD is stored in a file with dot extension – a format

which is supported by Graphviz. While visualizing the FSMD using Graphviz,

different colors can be used to differentiate between the U-equivalent, candidate

C-equivalent and mismatched paths. The following color coding is used to mark

a cTrace in the FSMD.

1. Green is used to show U-equivalent paths.

2. Yellow is used to color paths which are candidate C-equivalent.

3. Red is used to color a path in the original FSMD for which equivalence is

not found and its most likely corresponding path in the transformed FSMD

(based on the similarity of the conditions of execution).

A cTrace typically consists of a green trace, followed by a yellow trace and

finally ends in a red trace. The convention is that equivalence of the green trace

117

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

(a) Original FSMD (b) Transformed FSMD

Figure 5.6: Two FSMDs before and after scheduling

is found in the other FSMD. So, the correspondence between the green traces

is shown in both the FSMDs. The yellow part of the cTrace says these are the

118

5.7. Counter-Trace Visualization

candidate C-equivalent paths. This means there is some mismatch of values along

this trace. The tool propagates the mismatched value along this yellow trace

hoping to identify some compensating transformation which will render the current

mismatches into matches in future. Again, candidate C-equivalent paths have a

unique correspondence in the other FSMD. So, the correspondence between the

yellow traces is shown in both the FSMDs. Then the red path, say β, in the

original FSMD M0 is the path whose equivalent path in the transformed FSMD

M1 is not found. As discussed in Subsection 5.3, the corresponding path, say α,

of β can also be obtained. So the correspondence between red paths is also shown

in both the FSMDs.

An example is shown in Fig. 5.6 where paths of both the FSMDs are colored

with green, yellow and red. In this example, the original FSMD depicts the behav-

ior of selection sort and the transformed FSMD is obtained by running the SPARK

tool on the selection sort algorithm. This is an example which reveals a bug in the

implementation of copy propagation for array variables in the SPARK tool that

was first reported in [71]. As shown in Fig. 5.6, the inner loop 〈a6
j≤n−1−−−−→ a6〉 of the

original FSMD and the inner loop 〈b5 j≤n−1−−−−→ b5〉 of the transformed FSMD find

the minimum element in the array A[j · · ·n−1] and stored its index in the variable

j star. The inner loop exit path 〈a6
!(j≤n−1)−−−−−→ a1〉 of the original FSMD shown in

Fig. 5.6(a) swaps the values of a[i] and a[j star]. But in the inner loop exit path

〈b5 !(j≤n−1)−−−−−→ b2〉 SPARK tool fails to swap the values of a[i] and a[j star] as shown

in Fig. 5.6(b). In addition, the operation j = i+ 1 is replaced by j = j + 1 in the

original FSMD, shown in Fig. 5.6(a), by us so that there will be some C-equivalent

path in the course of equivalence checking. In Fig. 5.6 the path 〈a0
−−→ a1〉 is equiv-

alent to the path 〈b0 −−→ b2〉 since the values of all the variables match except the

variables that are not common to the two FSMDs, hence colored green. The path

〈a1
i<=n−2−−−−−→ a3

−−→ a4
−−→ a5

−−→ a6〉 and 〈b2 i<=n−2−−−−−→ b3
−−→ b4

−−→ b5〉 are yellow

as they have a mismatch in the values of the variable j. In Fig. 5.6(a) the path

〈a6
!(j<=n−1)−−−−−−→ a11

−−→ a12
−−→ a13

−−→ a14
−−→ a1〉 does not have an equivalent path

in corresponding transformed FSMD, hence it is colored red.

The visualization information can be interpreted as “if you follow the green

trace followed by the yellow trace in both the FSMDs, then the equivalent path

cannot be found for the red path of the original FSMD in the other FSMD.”

Moreover, as shown in Section 5.4, we are also generating a counter-example which

119

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

Table 5.2: Experimental results with Z3 SMT solver

Benchmarks
Decision

Time (ms) Lines
PBEC Method Our Method

DIFFEQ Eq Eq 184 28

LRU Eq Eq 92 247

DCT MNEq NEq 107 318

PERFECT MNEq NEq 60 63

MODN MNEq NEq 96 85

GCD MNEq NEq 52 80

will follow the trace shown graphically. With both the information, the user should

easily pinpoint the root cause of an error.

5.8 Experimental Results

We have taken the source code of the our PBEC method presented in Chapter 4

and have implemented our counter-example generation procedure on top of it.

Once the PBEC method fails to prove the equivalence, a cTrace is automatically

generated using EQ LIST and C LIST by our method as discussed in Section 5.3.

The benchmarks are taken from [42]. The benchmarks are run on a 1.8 GHz Intel i5

processor with 8 GB of RAM with a timeout limit of 60 seconds. We have manually

introduced few changes like addition, multiplication or subtraction of a constant

to some of the variables in the benchmarks tabulated in rows 3–6 of Tables 5.2

and 5.3 so that source and transformed behaviors become non-equivalent.

In our first experiment, we translate the two corresponding cTraces as an input

to Z3 SMT solver. The results of our experimentation are tabulated in Table 5.2.

For each benchmark, we have reported the equivalence decision taken by the PBEC

method presented in Chapter 4 and our method i.e., PBEC with counter-example

framework, the number of lines of SMT-Lib2 code generated as input to Z3 SMT

solver and the run time in milliseconds (ms) of the PBEC method presented in

Chapter 4 and the runtime of our method. For the benchmarks DIFFEQ and

LRU, both methods report equivalence which is denoted as ‘Eq’ in Table 5.2. The

objective is to make sure that our implementation does not have any side effect on

120

5.8. Experimental Results

Table 5.3: Experimental results with CBMC

Benchmarks
Decision

Time (ms) Lines
PBEC Method Our Method

DIFFEQ Eq Eq 184 28

LRU Eq Eq 92 247

DCT MNEq NEq 766 185

PERFECT MNEq NEq 227 74

MODN MNEq NEq 890 137

GCD MNEq NEq 100 97

Test Case [108] MNEq MNEq 26 32

the existing method. In the benchmarks reported in rows 3–6, our method is able

to prove the non-equivalence and denoted as ’NEq’. However, the PBEC method

fails to prove the equivalence of source and transformed behaviors. It reports that

the behaviors “May Not be equivalent”. This is reported as ‘MNEq’ in Table 5.2.

In our second experiment, we translate the two corresponding cTraces as an

input to CBMC. The results of our experimentation are tabulated in Table 5.3.

In this table column 4 denotes the number of lines in the C program given as

an input to CBMC. It is evident form the result that CBMC finds the mismatch

in the values of output variable and generates a suitable counter-example with k

= 2 loop unwindings. Hence, our method concludes that the behaviors are “Not

equivalent”.

In our both experiments, we do not compare the runtime between the PBEC

method and our method since the PBEC method terminates in by identifying

a possible non-equivalence and reports “May not be Equivalent”. Whereas, our

method uses counter-example generation mechanism to generate a counter-example

and reports the “Not equivalent”. Both experiments show that with the help of

our counter-example generation scheme a PBEC can take strong decisions about

the non-equivalence of behaviors.

In our third experiment, we try to explore the false negative scenario of the

PBEC method presented in Chapter 4. For this purpose, we have taken the

example given in [108] and the result is tabulated in row 7 of Table 5.3. This test

case involves the inverse operation [108]. For this test case, the PBEC method

121

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

reports that the behaviors “May Not be equivalent”. However CBMC does not

generate any counter-example and case 2 as discussed in Section 5.6 arises here.

CBMC reports that cTrace corresponding to these behaviors are equivalent. Our

method still reports “May Not be equivalent” since we have not implemented

proceed further scenarios. This experiment exposes a false negative case of the

PBEC method. It would be an interesting future work to enhance the PBEC

method to handle the test cases which involves inverse operations.

5.9 Conclusions

In this chapter, we have presented a counter-example generation mechanism for

the PBEC reported in Chapter 4. A similar counter-example generation mecha-

nism can also be developed for other PBEC methods as well. The idea is to reuse

the equivalence information of a PBEC method to generate a counter-trace effi-

ciently and then use it to generate a counter-example. We have also shown that a

PBEC method can be further strengthened with the counter-example generation

mechanism. As shown in the experiments, the PBEC method can take stronger

equivalence decision with help of counter-examples. Our counter-example gener-

ation mechanism identifies a false negative result of the PBEC method. In the

future, we plan to enhance the our method to handle the ‘proceed further’ (i.e.,

false negative cases) scenarios identified by our counter-example generation mech-

anism.

122

Chapter 6

Security Analysis of Locking

during High-level Synthesis

6.1 Introduction

6.1.1 Logic Locking

Many semiconductor companies are fabless, i.e., they use offshore third-party

foundries to manufacture their chips [29]. While cost effective, the fabless model

introduces security concerns. Since the foundry has access to the chip layout, it

can reverse engineer the chip’s functionality and steal the designer’s IP. IP theft

of this nature is a serious concern. One approach to preventing IP piracy is logic

locking [32–34]. In this approach, the circuit functionality is locked using an ad-

ditional input, called the key. Various internal signals of the IC are gated with

bits of the key. The IC only functions correctly for a secret key value, known

only to the designer, and otherwise produces corrupted outputs. When fabricated

chips are received from the foundry (note, the foundry does not know the secret

key), the designer activates the chip by loading the correct key in a tamper-proof

memory.

Example 15. Fig. 6.1(a) shows an original netlist of a circuit, and Fig. 6.1(b)

shows its functionally locked version through two XOR key-gates. On applying the

correct values of the keys (K1=0 and K2=0), the design will produce a correct

output; otherwise, it will produce a wrong output.

6.1.2 Summary of Threats on Logic Locking

Beginning with the SAT attack [46], the past few years have seen a flurry of actions

on logic locking, both on the attack and defense side. We note that a provably

123

Chapter 6. Security Analysis of Locking during High-level Synthesis

Y

A

B

C

(a) Original netlist

Y

A

B

C

K2

K1

(b) XOR-based logic locking

Figure 6.1: Logic locking techniques

secure defense against the original SAT attack is still missing. In the SAT attack,

the foundry has access to the locked netlist (at the gate-level) and a functioning

chip purchased from the market. The attacker then uses the input/output behav-

ior of the functioning chip along with a SAT solver to infer the correct key. First

published for breaking combinational circuits, the SAT attack has since been ap-

plied to sequential circuits as well [109–111]. However, since the attack operates at

the gate-level, these techniques are not scalable to practical designs with hundreds

of thousands of gates and flip-flops.

Recent work in [35] has advocated for defenses that perform logic locking during

HLS; the resulting RTL locked netlists are large and consequently less vulnerable

to conventional gate-level SAT attacks. To defeat such RTL locking mechanisms,

an attack that works at higher levels of abstraction is desirable. The research

question that we attempt to answer is: “Can one scale the SAT attack to locked

RTL?”

6.1.3 Contributions

We propose an SMT based algorithm to determine the secret key of a locked

RTL design obtained through High-level Synthesis [35]. The algorithm models

an RTL design as a RTL-FSMD by applying the rewriting approach in [59]. We

abstract out the details of the hardware into a behavioral program on which we

launch an SMT based attack. Our attack finds distinguishing input patterns

iteratively (similar to [46]) to rule out equivalence classes of incorrect keys and

124

6.2. Backgrounds

Controller

FSM
Datapath

control signals

status signals

Figure 6.2: RTL structure generated by HLS.

stops when no DIPs are found. For linear arithmetic with m component keys1,

our algorithm is guaranteed to stop within m iterations. Our method works even

for non-linear arithmetic since this is supported by the state-of-the-art Z3 SMT

solver [57]. Further, our algorithm works on sequential circuits since the analysis is

performed on an algorithmic abstraction of the design. We show that the locking

keys inserted by TAO [35] can be recovered on HLS benchmarks. To the best of

our knowledge, this is the first attack on RTL locking.

The chapter is organized as follows. Preliminary concepts, including the attack

model, are given in Section 6.2. The TAO approach is discussed in Section 6.3.

Our attack/unlocking algorithm is given in Section 6.4. Section 6.5 presents the

experimental methodology, results and limitations.

6.2 Backgrounds

This section presents the background required to understand the SMT-based at-

tack.

6.2.1 RTL Structure

The RTL generated by HLS consists of a datapath and a controller finite state

machine (FSM) as shown in Fig. 6.2. The datapath consists of registers, memories,

functional units (FUs) and their interconnection network. The controller FSM,

on the other hand, is a FSM. The RTL operations performed in the datapath

are controlled by the controller FSM. In each state, controller assigns 0/1 values

to each control signals. As a result a set of RTL operations are performed in

the datapath. The datapath sends some status signals (i.e., results of of some

1The actual key size is proportional to m.

125

Chapter 6. Security Analysis of Locking during High-level Synthesis

conditional checks) to the controller. The FSM state transitions depend on those

status signals. The RTL is generated by HLS is of this kind of structure.

6.2.2 Attack Model

We assume a malicious foundry that wishes to steal the RTL IP. To protect against

this threat, we assume that the designer uses an RTL locking tool like TAO to

produce locked RTL2, performs synthesis and physical design and sends the layout

of the locked design to the foundry. As in prior work, we assume the foundry is able

to extract the gate-level netlist of the locked chip from its layout. Further, using

techniques proposed in [112], we assume the foundry extracts RTL descriptions

of the datapath and controller from the gate-level description of the locked chip.

Finally, the foundry purchases a functioning (unlocked) copy of the chip from the

market and can apply inputs to the chip and observe corresponding outputs (this

is the oracle chip). Using this setup, the foundry attempts to recover the secret

key to obtain the correct RTL. Note that it is not possible to observe the output

of a specific block of a locked RTL design in this setup. Therefore, our attack

methodology cannot be used to recover the key of specific block of locked RTL

design. Rather, we have to consider the complete locked RTL design in our attack

even if a particular block is locked RTL design.

6.3 Motivation

TAO [35] is an algorithm-level locking technique that applies during high-level

synthesis. TAO hides selected constants, control branches and datapath operations

based on an input locking key K. The key K is provided by the designer through

an additional port to the design and partitioned into sub-keys used for each element

to lock. The circuit will work correctly only when the correct locking key is given.

After applying TAO HLS generates the RTL locked netlist. This locked RTL

netlist are large in size and less vulnerable to conventional gate-level SAT attacks.

In the following, the TAO locking techniques are briefly presented.

2Note that TAO performs locking during high-level synthesis and outputs locked RTL with
separate datapath and controller.

126

6.3. Motivation

d=c*CONST 1

(a)

*

cpi

CONST 1c

d

(b)

xor

ENC(CONST 1)

*

ceic

d

(c)

Figure 6.3: An example of constant locking.

6.3.1 Constant Locking

TAO identifies all the constants in the input behavior. It assumes a predefined-

number of bits x to implement all constants. Each constant cpi of the behavior

is locked as cei = cpi ⊕ ki, where cei is the locked value stored in hardware and ki

is a x-bit key. The correct constant can be obtained by reversing the operation

cpi = cei ⊕ ki.

Example 16. Consider the constant locking shown in Fig. 6.3. Let say constant

cpi = 5 to be stored using 4 bits (0101). This constant can be obfuscated as cei =

0110 using locking key ki = 0011. The correct value is obtained by combing the

obfuscated value with input key bits i.e., 0101 = 0110 ⊕ 0011. If a wrong key is

provided then the resulting value will be incorrect, but an attacker cannot determine

this.

6.3.2 Branch Locking

Each branch in the input behavior (and hence in the controller FSM) is locked

with a one bit key. If the condition cp == 1 is checked in a control state, the

condition is modified as cp ⊕ kj == 1, where kj is a one bit key. kj is part of the

locking key K and locks this condition checking. The right branch is taken by the

controller with the correct kj.

Consider the if-then statement shown in Fig. 6.4(a). When cond is lesser n, the

control transfers to BB2, otherwise it transfers to BB3. Similarly, in Fig. 6.4(b)

127

Chapter 6. Security Analysis of Locking during High-level Synthesis

Example 17.

if(cond < N){

//go to BB2

}

else{

//go to BB3

}

(a)

<

Ncond

test

T F

(b)

xor

test

T(F) F(T)

(c)

Figure 6.4: An example of branch locking.

based on the results of the test, control is transferred to BB2 or BB3. In this case

an attacker can determine the next block by looking at the result of the test. In

Fig. 6.4(c) the control is transferred to the correct block only with correct key bit.

For instance, blocks are swapped when key bit is 1. Hence, the attacker cannot

determine the actual true (false) block without knowing the value of the key bit.

6.3.3 Datapath Locking

TAO adds decoy multiplexer-based interconnections between registers and the

functional units. Each MUX is controlled by a key bit kl. The correct output is

connected to 0 or 1 input of this MUX based on the correct value of kl. This MUX

multiplexes the correct and the spurious data flow in each control state. Only with

the correct key, the correct operations are performed.

Example 18. Consider the datapath locking shown in Fig. 6.5. Here the operation

c = a + b is the actual operation. In Fig. 6.5c a MUX is added to lock the actual

operation and is controlled by key bit. The actual operation is executed if the key

value is 0. Otherwise, fake operation c = a − b will be executed. So, the attacker

cannot execute the actual operation without knowledge of the key value.

In our attack implementation, we represent the FSMD model of the RTL de-

sign, referred to as an RTL-FSMD model. In RTL-FSMD, V has all the registers

and the memories in the design. TAO generated locked RTL is converted into an

RTL-FSMD using a rewriting (explained in Section 6.4.2). It also embeds the key

values and describes how the behavior evolves with different key values.

128

6.4. Attack Methodology

Example 19. Consider the design in Fig. 6.6. The operations r1 = a + c and

r2 = b+d are performed in the datapth in states q11 and q2, respectively. The MUX

in the yellow box is added to lock the first operation and is controlled by the key bit

kj. The correct key value is kj = 0. Therefore, if kj = 1 is supplied, r1 = d+c will

be executed producing a wrong result. The locked RTL behavior is shown in the

locked FSM with an additional transition between q1 and q2. The key is implicit to

the controller FSM. However, when the RTL-FSMD is reverse engineered from the

layout, the key kl in unknown and creates additional transitions in the RTL-FSMD.

6.4 Attack Methodology

6.4.1 Problem Formulation

The objective is to find the locking key K using an SMT solver and by querying

an activated IC (the Oracle).

The RTL-FSMD P (I, O,K) ∈ ZM+N+K has M primary inputs, N primary

outputs and K unknown keys. It represents the input/output relation of the

locked RTL design based on the key. CO = (I, O) is the input/output relation of

the activated IC. The attacker can apply inputs to CO ∈ ZM+N and observe the

correct output. However, the attacker cannot model the internal behavior of CO,

a black-box function eval(Xi) = Yi. For an input Xi, eval(Xi) = Yi iff CO(Xi, Yi).

While we assume that all inputs/outputs are Integer, this formulation works for

c=a+b

(a)

+

ba

c

(b)

+ -

10

b
a

c

(c)

Figure 6.5: An example of datapath locking.

129

Chapter 6. Security Analysis of Locking during High-level Synthesis

obfuscated MUX
10

10
M1

10
M2

+

datapath

r2r1

da

b dckj

c1 c2

c3 c4

q1

q2

q3

controller FSM

r1 = a+ c

r2 = b+ d

q1

q2

q3

obfuscated FSM

!kj/r1 = a+ ckj/r1 = d+ c

r2=b+d

Figure 6.6: An example of TAO obfuscation.

Real numbers.

As shown in Fig. 6.7, the RTL-FSMD consists of a set of states and transitions

among the states which represent the control flow. Each transition is associated

with a condition and a set of operations that execute in parallel. The data depen-

dencies among the operations represent the data flow. We unroll each loop and the

RTL-FSMD is thus a directed acyclic graph. The RTL-FSMD has a start/reset

state from which any execution starts and terminates. We assume the behavior

is deterministic. A trace in an RTL-FSMD represents a path from the reset state

back to the reset state. For a trace τ , the condition of execution Cτ over I∪C∪K,

where I is the set of inputs, C is set of integer constants and K is the set of un-

known keys, represents the symbolic condition that must be satisfied by the initial

data state to execute the trace. The Cτ is the weakest precondition of the the

trace τ [45]. The data transformation Dτ of τ is an ordered tuple of algebraic

expressions 〈ej〉 over I ∪ C ∪ K such that ej represents the value of the output

oj ∈ O after execution of the trace. Cτ and Dτ can be obtained by the symbolic

execution of the trace [38].

The RTL-FSMD consists of a finite set of traces {τ1, τ2, . . . , τk}. The output

of an RTL-FSMD will be obtained by the execution of one trace depending on

the input values. Each trace has a non-overlapping condition of execution since

130

6.4. Attack Methodology

r1 · · · rk

MUX cloud

· · ·

MUX cloud

datapath

FU1 FU4

cs cs

cs

cs cs

q1

q2

q3

controller FSM

〈1110011〉

c/
〈1

00
11

01
〉

!c
/
〈0

11
0
11

0
〉

R
ew

ri
te

M
et

h
od

q1

q2

q3

RTL-FSMD

r1 = r2 + 4

c/
r3

=
r1
−
r2

,
r2

=
r1
∗
r4

!c
/r

3
=
r4

,
r2

=
r1
∗
r4

Figure 6.7: RTL-FSMD from RTL using rewriting approach.

the behavior is deterministic. Therefore, the outputs O in the RTL-FSMD can be

represented as

P (I, O,K) : O = (ite Cτ1Dτ1 (ite Cτ2Dτ2 (ite . . . (ite Cτk−1
Dτk−1

Dτk)) . . .))

where (ite C D1 D2) (aka if-then-else) indicates if the condition C is True return

the value D1 else D2. For a given input Ii and a key Kl and corresponding output

Oj, the execution of the P is P (Ii, Oj, Kl). The trace τx is executed for this input

and key combination, i.e., Cτx is evaluated to True for Ii and Kl. Therefore,

P (Ii, Oj, Kl) represents the transformation Dτx of τx, i.e., P (Ii, Oj, Kl) = Dτx .

6.4.2 Rewriting Method

The HLS-generated RTL consists of a datapath and a controller FSM [53]. In each

transition in the FSM, control signals are assigned with value 0/1. Our objective

is to identify the corresponding RTL operations performed in the datapath. The

control signal assignments in each controller FSM are replaced with corresponding

RTL operations. This way, the datapath and the controller details are abstracted

out and we have a RTL-level behaviour. The concept is explained in Fig. 6.7. To

obtain the RTL operations in each state, we extend the rewriting method presented

131

Chapter 6. Security Analysis of Locking during High-level Synthesis

r1 r2 r3

M1 M2

+/–

fLin fRin

r1 out r2 out r3 out

fOut

0CS M10

1
CS M11

1
CS M2

1
CS FU

1
CS r1LD

0
CS r1LD

Figure 6.8: Datapath with control signals

in [59] as discussed below.

In the datapath, signal flow is controlled by the control signals. For each

datapath module, input → output assignments are termed as micro-operations.

For example, for a multiplexer out = MUX(in1, in2, sel), there are two possible

micro-operations, i.e., out← in1 and out← in2 and the associated control signal

assertions are sel = 0 and sel = 1, respectively. Given a control signal assignment,

we can identify the active micro-operations due this control signal assignment.

A micro-operation not associated with any control signal is always active. The

rewriting method identifies the spatial sequence of data flow needed for an RTL

operation in a reverse order. The method consists in rewriting terms one after

another in an expression. The micro-operations of the form r ← rin in which a

register occurs in the left-hand side (LHS) are found first. Next, the right-hand

side (RHS) expression rin is rewritten by looking for an active micro-operation

rin ← s or rin ← s1 < op > s2. Next, s (s1 or s2 in the latter case) are rewritten

provided they are not registers. The rewriting takes place from left to right in a

breadth-first manner and terminates when all signals in the RHS expression are

registers.

Example 20. Consider the datapath shown in Fig. 6.8. In this figure, r1, r2 and

132

6.4. Attack Methodology

Algorithm 12: Algorithm to recover the keys.
Input : P, eval
Output: The values of K

1 i = 1 ;
2 F1 = P (I,O1,K1) ∧ P (I,O2,K2);
3 while sat[Fi ∧ (Y1 6= Y2)] do
4 Idi = a DIP value that satisfy [Fi ∧ (Y1 6= Y2)];

5 Odi = eval(Id);

6 Fi+1 = Fi ∧ P (Idi , O
d
i ,K1) ∧ P (Idi , O

d
i ,K2);

7 i = i+ 1;

8 end while
9 K = the value of K in the sat assignment of Fi ∧ (Y1 ≡ Y2);

r3 are registers, M1 and M2 are multiplexers, and r1 out, r2 out, r3 out, fLin,

fRin, and fOut are interconnection wires. The control signal names start with CS.

The sequence of rewriting steps for the micro-operation r1 = fOut is as follows:

r1 = fOut

= fLin − fRin

= r3 out − fRin

= r3 − fRin

= r3 − r2 out

= r3 − r2

6.4.3 Algorithm Description

The problem of finding the distinguishing input pattern can be modelled as follows:

Given two key values K1 and K2 and an input Id, the output obtained is O1 and O2,

respectively. The input Id is DIP for K1 and K2 iff P (Id, O1, K1)∧P (Id, O2, K2)∧
(O1 6= O2). Once a DIP is found, the output is obtained from the activated IC.

The DIP formulation is strengthened by adding this input/output relation for

both K1 and K2. This process repeats in an iterative manner until no DIP found.

In this time, we will check the SAT of the DIP formula with (O1 ≡ O2). Any

assignment of K1 or K2 for this formula is the correct key. One can recover K

using Algorithm 12.

Theorem 7. Algorithm 12 always terminates.

Proof. The formula P (Idi , O
d
i , K1) is an equation linking the unknown keys. So,

133

Chapter 6. Security Analysis of Locking during High-level Synthesis

we add an equation relating the unknown keys in each iteration. Each iteration

gets a DIP that rules out one incorrect equivalence classes of keys. Therefore,

the equation from each iteration results in an independent equation. If P involves

linear arithmetic, one can obtain the values of the K unknown variables by solving

the K independent equations connecting them. So, Algorithm 12 finishes in ‖K‖
steps for linear arithmetic. For non-linear arithmetic, the algorithm resolves when

sufficient equations are set up. The search space reduces in each iteration. There-

fore, the algorithm completes in a finite number of iterations. The key recovered

is consistent with all the observed input/output patterns and thus represents the

correct key. �

6.4.4 Illustrative Examples

In the locked RTL code in Listing 6.1, two constants are locked with k1 and

k2. Moreover, the condition is locked with a Boolean variable c1. Assume that

k1 = 5, k2 = 3, c1 = False in the original program. Our objective is to recover

these values from the locked RTL with the help of an oracle.

Listing 6.1: if-else block

c = a > b

if(c xor c1)

out = a + k1

else

out = b ∗ k2

Consider the SMT code in Listing 6.2. The function A in this SMT code

models the functionality of the behavior in Listing 6.1. The SMT code to obtain

DIP is given by the next three assert statements. “Does there exist an assignment

of a and b such that for two different values of k1 (i.e., k11 and k12) and k2 (i.e.,

k21 and k22), we have two different outputs?”. Z3 returns a = 1, b = 1 and the

corresponding output is 3.

The assertions added in iteration 2 are shown in the first part of the Listing

6.3. The process continues for three more iterations and the assertions added

into the DIP model are shown in the rest of Listing 6.3. In the 4th iteration,

Z3 returns UNSAT. We obtain k1 = 5, k2 = 3, c1 = False by reversing SAT (i.e.,

134

6.4. Attack Methodology

(assert (= out1 out2))) as correct keys.

Listing 6.2: SMT code to obtain the DIP for Listing 6.1

(declare -const a Int)

(declare -const b Int)

(declare -const k11 Int)

(declare -const k21 Int)

(declare -const k12 Int)

(declare -const k22 Int)

(declare -const out1 Int)

(declare -const out2 Int)

(declare -const c1 Bool)

(declare -const c2 Bool)

(define -fun G ((a Int) (b Int)) Bool (> a b))

(define -fun A ((a Int) (b Int) (x1 Int) (x2 Int)

(x3 Bool) (c Bool)) Int (ite

(xor c x3) (+ a x1) (* b x2)))

(assert (= out1 (A a b k11 k21 c1 (G a b))))

(assert (= out2 (A a b k12 k22 c2 (G a b))))

(assert (not (= out1 out2)))

(check -sat)

(get -model)

Listing 6.3: Assertion refinements in successive iterations

;Iteration 2: a = 0, b = 0→ out = 0

;added assertions

(assert (= 0 (A 0 0 k11 k21 c1 (G00))))

(assert (= 0 (A 0 0 k12 k22 c2 (G 0 0))))

Iteration 3: a = −5, b = −1→ out = −3
;added assertions

(assert (= -3 (A − 5 − 1 k11 k21 c1 (G − 5 − 1))))

(assert (= -3 (A − 5 − 1 k12 k22 c2 (G − 5 − 1))))

Iteration 4:a = −3, b = −4→ out = 2

;added assertions

135

Chapter 6. Security Analysis of Locking during High-level Synthesis

(assert (= 2 (A − 3 − 4 k11 k21 c1 (G − 3 − 4))))

(assert (= 2 (A − 3 − 4 k12 k22 c2 (G − 3 − 4))))

Listing 6.4: Loop

s = 0;

for(i = 0; i < 4; i + +)

s = s + h[i] + k;

Listing 6.5: SMT code to obtain DIP

(declare -const h (Array Int Int))

(declare -const s0 Int)

(declare -const k1 Int)

(declare -const k2 Int)

(declare -const s01 Int)

(declare -const out1 Int)

(declare -const out2 Int)

(define -fun A ((a Int) (b Int) (c Int)) Int

(+ (+ a b) c))

(assert (= s0 0))

(assert (= out1 (A (A (A (A s0 (select h 0) k1)

(select h 1) k1) (select h 2) k1)

(select h 3) k1)))

(assert (= s01 0))

(assert (= out2 (A (A (A (A s01 (select h 0) k2)

(select h 1) k2) (select h 2) k2)

(select h 3) k2)))

(assert (not (= out1 out2)))

(check -sat)

(get -model)

Assertion added in Iteration 2:

;h[]=8365, 1796, 8365, 2282 --> out = 20832

(assert (= 20832 (A (A (A (A s0 8365 k1) 1796 k1)

8365 k1) 2282 k1)))

(assert (= 20832 (A (A (A (A s0 8365 k2) 1796 k2)

8365 k2) 2282 k2)))

136

6.5. Experimental Results

Loops: Consider the loop in Listing 6.4. In this code, the constant k is locked.

In the actual code k = 6. Our objective is to obtain the value of k. The SMT

code is given in Listing 6.5. Here, the loop is unrolled. After first iteration, Z3

returns the value of h[] = {8365, 1796, 8365, 2282}, For this input, corresponding

assertions are added as shown in the last part of Listing 6.5. In the next iteration,

Z3 returns UNSAT. The correct value of k is obtained by reversing the SAT problem.

6.4.5 Attack Tool-flow

Fig. 6.9 is our implementation flow. The tool parses the locked RTL generated by

TAO using Pyverilog [113] (RTL→ FSMD module). It uses a rewriting method

yielding an RTL-FSMD [59] and transforms the RTL-FSMD to feed into the KLEE

tool [114] to get the symbolic representation of the outputs as discussed in section

6.4.1. This symbolic representation of the program creates the SAT formulation for

DIP. It invokes the SMT tool Z3 [57]. If Z3 cannot prove the SAT/UNSAT of the

formula in any iteration, our algorithm fails. If Z3 returns SAT, the corresponding

inputs are used to get the correct output using the functional IP. It strengthens the

DIP formula with this input/output relation and it calls Z3 again. The algorithm

unlocks the keys once Z3 returns UNSAT. The tool flow is automated. RTL →
FSMD module is in Python and we write the rest of the tool flow in C++.

We invoke SMT solver Z3 [57] to check for Satisfiability on line 3 of Algo-

rithm 12. SMT solvers require the programs to be in static single assignment

(SSA) [115] form. In the SSA form, each variable is assigned exactly once. We

model the RTL-FSMD as a formula consisting of the condition of executions and

the data transformations of all the traces. This formula represents the one time

assignment of each output. So, it is already in the SSA form. This formula is

computed using KLEE [114] even if it is symbolic technique that does not require

the program to be in SSA form.

6.5 Experimental Results

To evaluate our methodology, we emulated a red team-blue team activity in our

experiments. The two teams are in separate institutions. We use three HLS bench-

marks - WAKA, ARF and Motion for our experiments. A blue team designer (not

137

Chapter 6. Security Analysis of Locking during High-level Synthesis

RTL

RTL→FSMD

KLEE

Generate

DP Formula

Z3 Solver

Get key
Functional

IP

Generate

Formula

Unable to unlock

RTL-FSMD

P (I, O,K)

SMT formula

SAT UNSAT

time outSMT formula

Figure 6.9: Outline of the SMT based unlocking of TAO.

in the red team institution) synthesized these benchmarks with TAO to generate

the locked RTL in Verilog [35]. For each test scenario, the number of lines in

the Verilog code, the number of multiplications, additions and subtractions in the

locked RTL are reported in the columns 2, 3, 4 and 5, respectively, in Table 6.1.

As discussed in the section 6.3, TAO applies operation, control and constant lock-

ing. The amount of each type of locking is controlled by input parameters. Using

these parameters, For each benchmark, the blue team generated several locked de-

signs with differing operations, control-flow statements and constants obfuscated,

as shown in columns 6, 7, 8 of Table 6.1, resulting in different key sizes of up to

155 bits, as shown in column 9 of the same table. To check the size of the gate-

level circuits targeted by our approach, we synthesized the RTL using Synopsys

Design Compiler targeting the SAED 32nm technology. We note that the designs

are large with up to 14K combinational cells and 3K sequential cells, as reported

in columns 10 and 11, respectively, of Table 6.1.

The red team uses the methodology in this chapter to unlock the designs. The

red team unlocking results are tabulated in columns 12-15 of Table 6.1. This

includes the number of iterations (Ite) of Algorithm 12 to unlock the key, the

138

6.5. Experimental Results

Table 6.1: Results: Unlocking TAO-locked RTL designs.
B

en
ch

L
O

C × + -

O
p

er
at

io
n
s

C
on

d
it

io
n
s

C
on

st
an

ts

K
ey

C
om

b

S
eq

It
er

at
io

n
s

In
st

ru
ct

io
n
s

T
im

e
(s

)

R
A

M
(M

B
)

W
A

K
A

753 - 13 7 - - 3 65

1255 917

4 524 5.16 28

779 - 23 11 11 4 - 11 5 653 35.46 43

773 - 23 11 11 9 4 617 92.39 40

828 - 21 9 9 4 3 73 45 672 1157.13 138

A
R

F

1431 21 27 10 - 6 - 3

19715 3381

2 6185 517.80 661

1654 21 27 10 - - 1 32 2 6863 406.97 576

1647 21 65 34 65 32 5 6718 >10hrs -

M
O

T
IO

N 1140 19 11 0 - - 2 64

13938 2924

5 931 7.01 16

1239 15 29 10 37 - - 27 2 885 >10hrs -

1250 15 32 10 37 - 4 155 5 924 >10hrs -

LOC: # of lines in obfuscated Verilog RTL. ×: # of multiplications in Verilog
RTL. +: # of adds in Verilog RTL. -: # of subtracts in Verilog RTL. Operations:
of operations obfuscated. Conditions: # of conditions obfuscated. Constants:
of constants obfuscated. Key: # of key bits. Comb: # of combinational
cells. Seq: # of sequential cells. Iterations: # of iterations. Instructions: # of
instructions executed by KLEE.

number of instructions (Ins) processed by KLEE and the CPU time (Time) and

the memory usage (RAM) for each test case. For these experiments, we use Z3

SMT solver version 4.8.5 - 64 bit, with a time out of 10 hours. As shown in Table

6.1, our unlocking algorithm recovers the keys in a few iterations. For successful

cases, the time to unlock is under 30 minutes. For three cases, Z3 solver times out

after a few iterations. We discuss these scenarios in the next section. None of the

previously reported combinational unlocking techniques [34,46,50–52] apply in our

setting since our locked netlists are sequential. On the other hand, the gate-level

SAT attacks on sequential circuits [109–111] reported results for ISCAS’89 and

ITC’99 benchmarks, while we scale to much larger benchmarks.

139

Chapter 6. Security Analysis of Locking during High-level Synthesis

Table 6.2: Results: Unlocking a locked C code.
B

en
ch

O
p

er
at

io
n
s

C
on

d
it

io
n
s

C
on

st
an

ts

ke
y

It
er

at
io

n
s

In
st

ru
ct

io
n
s

T
im

e
(s

)

R
A

M
(M

B
)

W
A

K
A

1 1 5 162 6 306 2888.91 92

- - 7 224 8 298 2658.56 120

2 1 6 195 6 345 3495.51 98

A
R

F

2 1 1 35 3 1060 1579.77 861

- - 4 128 2 1068 400.77 718

2 1 2 67 3 1142 >10hrs -

M
O

T
IO

N

2 - 2 66 4 326 11.74 18

6 - 6 198 8 421 >10hrs -

Our approach is not limited to HLS-generated designs. It can work on locked

C code. For example, in [96], a locked C code is given to a cloud HLS tool to

avoid stealing the algorithm IP. To show that we can attack a locked C code, we

created several C variants with a large number of key bits and report the results

in Table 6.2. For WAKA, we can unlock all cases in one hour. The biggest key

that we unlocked is 224 bits. For ARF and Motion, we can unlock up to 128 and

66 bits keys, respectively. For larger key sizes, Z3 times out necessitating scalable

approaches.

6.5.1 Discussion of the Results

Handling Time-outs: Solving SMT for arbitrary, non-linear arithmetic over the

reals is undecidable [116]. Thus, the SMT solver may not prove the satisfiability

of an formula comprising non-linear arithmetic. The SMT solver stops with an

unknown result or times out. Although we did not come across the unknown

case, we encountered time outs for five instances (see Table 6.1 and Table 6.2).

We suspect that a time-out implies that no more DIPs exist, i.e., the attack has

140

6.6. Conclusions

terminated although Z3 is unable to prove this formally. To substantiate this, we

negate the formula (see step 9 of Algorithm 12) and Z3 returns the correct key in

all five instances. Thus, even in the few cases that the attack times out, it yields

a correct key.

Limitations: We did not implement extraction of arrays from Block RAM in

RTL in the RTL → FSMD module yet. Also, functions in the input C code of

TAO are in-lined before RTL generation. We will enhance our implementation to

support these two features. This will help experiment on larger test cases.

6.6 Conclusions

This work presents an SMT attack to recover the secret key from a locked RTL

netlist generated using the TAO RTL locking tool. Compared to gate-level attacks

on sequential logic locking, the SMT attack abstracts all hardware details into

a behavioral program, scaling to large designs. The behavioral program is an

untimed behavior. Therefore, if key is transferred to the registers at some arbitrary

time then also our attack can discover the keys. In our attack methodology all the

key inputs are initially known. If the key cannot be identified in some scenario,

our method is not applicable. The attack is evaluated using a blue team- red

team approach, wherein the blue team uses the TAO RTL locking tool to generate

locked Verilog RTL along with the executable generated from input C code as

an oracle to the red team. The red team unlocked large designs with up to 3K

sequential cells and 195 key bits demonstrating the effectiveness of the attack.

141

Chapter 7

Conclusion and Future Work

Equivalence checking support is critical to the wide adaptation of HLS tools. In

this thesis, we designed and developed a path-based equivalence checking frame-

work to verify the correctness of scheduling transformation in HLS. We pre-

sented a counter-example generation mechanism to improve debugging the errors

in scheduling and to improve the performance of a PBEC approach. We proposed

an SMT attack on logic locking during HLS. In this chapter, we conclude the thesis

by summarizing our contributions and presenting future work.

7.1 Summary of Contributions

The contributions of this thesis are summarized below:

7.1.1 Translation Validation of Code Motion Transforma-

tions Involving Loops during Scheduling

Code motion transformations [7–11] are used in the scheduling phase of HLS tools

to improve the quality of synthesis results. Consequently, many research works

have been devoted to verifying the semantic equivalence between the original

and the scheduled behaviors. Translation validation of behaviors using a path-

based equivalence checking method has received attention over the years. The VP

method presented in [42] proposed a value propagation based equivalence checking

method that can handle the code motion across loop bodies. However, we identi-

fied that the VP fails to handles the scenario where some code segment is moved

before (after) the loop from inside the loop bodies. We also identified that the

state-of-the-art PBEC approaches do not ignore false computation during equiv-

alence checking and produce false negative results. In Chapter 3, we presented

an automated formal verification methodology that proves the correctness of HLS

143

Chapter 7. Conclusion and Future Work

processes involving sophisticated scheduling transformations through value prop-

agation based equivalence checking. The input behavior and the behavior after

scheduling have been modeled as FSMDs. The verification problem is treated as

the equivalence checking problem of two FSMDs. The method is strong enough

to handle the code motion involving loops. The method identifies false compu-

tation using the Z3 SMT solver and ignores it during equivalence checking. The

algorithm loopInvariant is presented which ensures the validity of loop invariant

code motion. We also have implemented the method and validated the trans-

lations performed by the HLS tool SPARK, and it also uncovered a bug. The

experimental outcomes exhibit that the worst-case complexity is not really hit for

practical use. In fact, none of the examples hit the worst-case bound.

7.1.2 Verification of Scheduling of Conditional Behaviors

in High-level Synthesis

The conditional optimization techniques split a path into multiple paths during

scheduling to improve the conditional hardware reuse in HLS. In this case, a path

in a behavior is equivalent to the union of the paths in another behavior. In

order to handle the path merge/split scenario, a PBEC approach must search

the equivalent path in a breadth-first manner. However, the existing PBEC ap-

proaches either extend a path or propagate the values in a depth-first manner

only to find an equivalent path. Therefore no PBEC approach has been able

to deal with path merge/split. In Chapter 4, we presented a PBEC approach

for verification of scheduling conditional behavior in HLS. The presented PBEC

approach searches for a path in a breadth-first manner as well as a depth-first

manner. We introduced path split equivalence, a new notion of equivalence, that

is strong enough for verifying the optimization techniques which split a path into

multiple paths in the scheduled behavior. A new cutpoint selection scheme is pre-

sented which simplifies the control structure of the given behavior. The algorithm

findEquivalentPathAtReset presented to handle the scenario where conditional

merge leads to reset state. The presented method has been proven to be sound

but its completeness is being ruled out by the fact that the equivalence of two pro-

grams over Integers is inherently undecidable. Experimental results showed that

the proposed method could verify designs having complicated control flows. The

144

7.1. Summary of Contributions

scalability of the proposed methods has been shown by running larger benchmark

examples. The experimental results also showed that our approach is efficient, and

can validate the scheduling transformations on designs in the CHStone benchmarks

under 10 seconds.

7.1.3 Improving Performance of a Path-Based Equivalence

Checker using Counter-Examples

Many path-based approaches have been proposed for verification of HLS. In the

case of non-equivalence these approaches provide only limited feedback to the user.

In the case of non-equivalence figuring out the cause of the non-equivalence from

the information provided by these approaches is not straightforward and requires

human expertise. We presented a counter-example generation mechanism that

reports a counter-example in the case of non-equivalence reported by a PBEC

approach. The intention is to generate a cTrace with the help of the informa-

tion provided by a PBEC approach and model the cTrace to produce a counter-

examples using the Z3 or CBMC tool. We also presented a framework to visualize

the cTrace in the source and the transformed behaviors using the Graphviz tool.

This visualization framework helps the user to pinpoint the root cause of an error

quickly. We have embedded the counter-example generation mechanism with the

PBEC approach presented in Chapter 5. Experimental results also confirm that

the counter-example generation mechanism have strengthened the PBEC approach

by producing a suitable counter-example in case of non-equivalence.

7.1.4 Security Analysis of Logic Locking during High-level

synthesis

In order to overcome the increasing cost of semiconductor fabrication, most of

the semiconductor companies are becoming fabless. Fabless IC companies cre-

ate the project of an IC and outsource the fabrication to a third-party foundry.

However, the introduction of third-party manufacturers into the IC supply chain

raised concerns over security and trust-related challenges, including overproduc-

tion, counterfeiting, IP piracy, and Hardware Trojans. So, the fabless companies

are willing to protect the intellectual property of their ICs. Logic locking is a

145

Chapter 7. Conclusion and Future Work

well-known technique that protects the design against the untrustworthy IC sup-

ply chain. Logic locking protects the design by adding some key gates into the

original design, so the circuit will not work without a correct key and hides the

original design functionality. Most common approaches apply logic locking on the

gate-level netlist. However, with the help of this functioning chip, it is often pos-

sible to successfully recover the locking key by formulating the attacks as Boolean

satisfiability problems (SAT). Pilato et al. proposed a TAO mechanism [35] to lock

the IC functionality at a higher level of abstraction. In this approach algorithm-

level obfuscation is applied during high-level synthesis and a locked RTL netlist is

produced. However, the resiliency of algorithm-level obfuscation has never been

investigated. In Chapter 6, we proposed an SMT based algorithm that can deter-

mine the key of a locked RTL design inserted by TAO during HLS. The rewriting

method has been extended to model an RTL design as an RTL-FSMD. We used

KLEE to model the RTL-FSMD as a formula consisting of the condition of execu-

tions and the data transformations of all the traces. We execute the SMT attack

on the formula generated by KLEE. We implemented the algorithm and the exper-

imental results demonstrated the effectiveness of the attack in unlocking a locked

RTL netlist. The results show that our algorithm can unlock large designs with

up to 3K sequential cells and 195 key bits within 30 minutes. The SMT attack

can also be launched on a locked C code. Finally, we highlighted the challenges

and future work required to make SMT attack more practical.

7.2 Future Directions

In this section, possible future works for further improvement of the proposed

methods and possibilities of application of our method in other domains are dis-

cussed.

• Enhancement of PBEC framework to handle advanced optimizations: The

loop pipeline, unrolling are the most common optimizations applied by the

commercial HLS tools like VIVADO HLS [16], Mentor Graphics Catapult

[18] for efficient hardware implementation of image processing applications.

Moreover, other loop transformations such as loop merging, loop shifting,

and loop vectorization, etc are also applied by the HLS tool. Our current

146

7.2. Future Directions

PBEC approach cannot handle such loop optimizations and give false neg-

ative results. A key reason for our inability to handle the loop transforma-

tions is that PBEC checks only one iteration of the loop to make decisions.

However, it is not sufficient in most of cases to show the equivalence of loop

transformations such as loop unrolling, loop merging, etc. We need to loosen

the such restrictions without compromising the soundness of the method so

that loop transformations can be verified in our PBEC approach.

The arrays are mapped to Random Access Memories (RAMs) by the HLS

tool. The numbers of RAMs are limited in the target Field Programmable

Gate Array (FPGA) board. Also, their access is restricted. A RAM can be

accessed using through the single or dual port during execution. Therefore,

multiple small arrays can be merged into one bigger array so that single RAM

can be inferred. On the other hand, to accommodate more than one/two

reads from an array in a clock cycle, a big array can be split into multiple

arrays and then mapped into multiple RAMs. This merging/splitting of

arrays can be vertically or horizontally [16]. Our PBEC method cannot

handle such merging or splitting of arrays during the scheduling phase of

HLS. We would like to enhance our method to handle such optimizations as

well.

• Data-driven approach: The primary difficulty in the verification of two pro-

grams is the loop related transformations. In most of the cases, identifying

loop invariant and correspondence of paths in the presence of loop transfor-

mations are the key challenges faced by the path-based equivalence checking

method. In a recent work [117], the authors used the test cases to guess

the loop invariant and also the correspondence of variables of two programs

at each loop point. They have also identified likely equivalent paths/cor-

responding paths between two programs using test cases/data. The for-

mal equivalence of corresponding paths is then proved/disproved using SMT

solvers. Another recent work [118] proposes strategies to make the SMT

based equivalence checking of two arithmetic expressions scalable. Both of

these works are promising since they address the real challenges of program

equivalence. We also want to adopt such techniques for our verification of

the scheduling problem.

147

Chapter 7. Conclusion and Future Work

• End-to-End verification of HLS: Because of the huge semantic gap between

the source behavior in C/C++ and the generated RTL design in Verilog/VHDL,

the end-to-end translation validation of HLS is not explored much in the

literature. Instead phase-wise verification of HLS, such as scheduling ver-

ification [38–42, 66] allocation and binding verification [119] and datapath

and controller verification [59], is mostly explored by the researchers. In

this thesis also, we have explored the verification of the scheduling phase.

However, the primary limitation of the phase-wise verification of HLS is that

they need the intermediate synthesis results after each phase from the HLS

tool. However, such intermediate synthesis results may not always available

or industrial tool may not want to make it public as well. Therefore, an

end-to-end translation validation of HLS is the need of the hour for a wide

adaptation of HLS tools. We have abstracted a C-like behavior (RTL-C)

from the HLS generated RTL in our SMT based attack on HLS obfuscation

in Chapter 6. It would be an interesting future work to adapt our PBEC

based approach to the equivalence between the input C and the RTL-C for

end-to-end verification of HLS.

• SMT attack on generic RTL designs: The SMT attack proposed in Chapter 6

unlocks an RTL with an FSMD structure generated by the HLS tool. As

discussed in Chapter 6, the HLS generated RTL has a special structure. We

have exploited that structure to extracted a C-like high-level behavior from

the RTL. However, the abstraction won’t work for generic RTL designs. To

enhance our attack to handle generic RTL, we can use v2c tool [28] to extract

a high-level behavior from the generic RTL and then launch the SMT attack

to recover the keys.

• SMT-resilient obfuscation techniques during HLS: In general, multipliers cre-

ate difficulties for any SMT solvers since multiplication operations create

instances of non-linear arithmetic. In fact, we found our SMT attack in the

Chapter 6 fails to recover the keys for some instances which obfuscates the

inputs of a multiplication operation. These results provide some insights on

extending the algorithm-level obfuscation techniques to make it SMT attack

resistant. Specifically, we aim to identify the hard instances of the SMT

solvers and then develop obfuscated RTL by exploiting those instances.

148

7.3. Conclusion

• Scope of application to other research areas:

Evolving Programs: The development of any large scale software system is

a gradual process. Validation of such evolving programs is an important

problem since any software system moves from one version to another An

interesting study would be to check the applicability of the formal methods

developed in this thesis to establish the equivalence of evolving programs.

Automatic Code Generation: Automatic code generation is a standard tech-

nique in the area of Software Engineering. Several tools are developed by

the research community for generating source code but they do not offer any

verification guarantees for the generated code. Testing based approaches

for verifying auto-code generators exist [120, 121]. Identifying the scope of

applications of the equivalence checking methods developed in this thesis in

the verification of code generation process can have a significant impact on

the reliability of software.

Automatic Program Evaluation: Manual assessment of student programs

is often slow and inconsistent. Assessment speed can be improved along

with consistency by automating the process of evaluation. A survey on

automated assessment of programs can be found in [122]. It would be an

interesting study to check how our FSMD based equivalence checking method

can be enhanced to provide a platform for the automated assessment of

programming assignments.

7.3 Conclusion

This dissertation presented a scalable equivalence checking framework for the

scheduling transformation in High-level Synthesis. We believe that the proposed

framework can greatly contribute to the further improvement of HLS verification.

We also introduced an SMT attack to recover the secret keys from a locked RTL

netlist generated using the TAO HLS tool. The SMT attack provides some in-

sights how to extend algorithm-level obfuscation techniques to make such attacks

difficult.

149

Bibliography

[1] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level Synthe-

sis: Introduction to Chip and System Design. Norwell, MA, USA: Kluwer

Academic Publishers, 1992.

[2] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-Hill

Higher Education, 1994.

[3] J. P. Elliott, Understanding behavioral synthesis: a practical guide to high-level

design. Springer Science & Business Media, 1999.

[4] R. Camposano and W. Wolf, High-level VLSI synthesis. Springer Science &

Business Media, 2012, vol. 136.

[5] D. C. Ku and G. DeMicheli, High level synthesis of ASICs under timing and

synchronization constraints. Springer Science & Business Media, 2013, vol.

177.

[6] A. Orailoglu and D. Gajski, “Flow graph representation,” in Proceedings of the

23rd ACM/IEEE Design Automation Conference, D. Thomas, Ed., Jun 1986,

pp. 503–509.

[7] Minjoong Rim, Yaw Fann, and Rajiv Jain, “Global scheduling with code-

motions for high-level synthesis applications,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 3, no. 3, pp. 379–392, Sep 1995.

[8] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamically increasing the

scope of code motions during the high-level synthesis of digital circuits,” IEE

Proceedings: Computer and Digital Technique, vol. 150, no. 5, pp. 330–337,

Sep 2003.

[9] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Conditional spec-

ulation and its effects on performance and area for high-level synthesis,” in

International Symposium on System Synthesis, 2001, pp. 171–176.

151

Bibliography

[10] S. Gupta, N. Savoiu, S. Kim, N. Dutt, R. Gupta, and A. Nicolau, “Speculation

techniques for high level synthesis of control intensive designs,” in Proceedings

of the 38th Design Automation Conference, 2001, pp. 269–272.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau , “Using global code motions

to improve the quality of results for high-level synthesis,” IEEE Transactions

on CAD of ICS, vol. 23, no. 2, pp. 302–312, Feb 2004.

[12] S. Gupta, M. Reshadi, N. Savoiu, N. Duff, R. Gupta, and A. Nicolau, “Dy-

namic common sub-expression elimination during scheduling in high-level syn-

thesis,” in 15th International Symposium on System Synthesis, Oct 2002, pp.

261–266.

[13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,

S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for fpga-based

processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays, ser. FPGA’11,

2011, pp. 33–36.

[14] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high level

synthesis of memory-intensive applications,” in 23rd International Conference

on Field programmable Logic and Applications, Sep 2013, pp. 1–4.

[15] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A high-level syn-

thesis framework for applying parallelizing compiler transformations,” in 16th

International Conference on VLSI Design, Jan 2003, pp. 461–466.

[16] X. Inc. Vivado Design Suite - VivadoHLS. [Online]. Available: https:

//www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[17] Cadence. C-to-Silicon Compiler. [Online]. Available: http://www.cadence.

com/pr:oducts/sd/siliconcompiler/pages/default.aspx

[18] Mentor Graphics. Catapult C synthesis. [Online]. Available: http:

//www.mentor.com/products/esl/high level synthesis/

[19] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in Tools and

Algorithms for the Construction and Analysis of Systems, 1998, pp. 151–166.

152

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.cadence.com/pr:oducts/sd/silicon compiler/pages/default.aspx
http://www.cadence.com/pr:oducts/sd/silicon compiler/pages/default.aspx
http://www.mentor.com/products/esl/high_level_synthesis/
http://www.mentor.com/products/esl/high_level_synthesis/

Bibliography

[20] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg, “VOC: A methodology for the

translation validation of optimizing compilers,” Journal of Universal Computer

Science, vol. 9, no. 3, pp. 223–247, 2003.

[21] G. C. Necula, “Translation validation for an optimizing compiler,” in Pro-

ceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, ser. PLDI’00, 2000, pp. 83–94.

[22] B. Goldberg, L. Zuck, and C. Barrett, “Into the loops: Practical issues in

translation validation for optimizing compilers,” Electronic Notes in Theoreti-

cal Computer Science, vol. 132, no. 1, pp. 53–71, 2005.

[23] N. Mansouri and R. Vemuri, “A methodology for automated verification of

synthesized RTL designs and its integration with a high-level synthesis tool,”

in Formal Methods in Computer-Aided Design, 1998, pp. 204–221.

[24] R. Radhakrishnan, E. Teica, and R. Vermuri, “An approach to high-level

synthesis system validation using formally verified transformations,” in Pro-

ceedings of the IEEE International High-Level Validation and Test Workshop,

ser. HLDVT’00, 2000, p. 80.

[25] M. Fujita, “Equivalence checking between behavioral and RTL descriptions

with virtual controllers and datapaths,” ACM Transactions on Design Au-

tomation of Electronic Systems, vol. 10, no. 4, pp. 610–626, Oct 2005.

[26] Xiushan Feng and A. J. Hu, “Early cutpoint insertion for high-level soft-

ware vs. RTL formal combinational equivalence verification,” in 2006 43rd

ACM/IEEE Design Automation Conference, Jul 2006, pp. 1063–1068.

[27] A. Leung, D. Bounov, and S. Lerner, “C-to-Verilog translation validation,”

in 2015 ACM/IEEE International Conference on Formal Methods and Models

for Codesign (MEMOCODE), 2015, pp. 42–47.

[28] R. Mukherjee, M. Tautschnig, and D. Kroening, “v2c–a verilog to C transla-

tor,” in Proceedings of the 22nd International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, 2016, pp. 580–586.

153

Bibliography

[29] S. Heck, S. Kaza, and D. Pinner, “Creating value in

the semiconductor industry,” accessed May 27, 2019. [Online].

Available: http://www.edn.com/design/integrated-circuit-design/4375454/

Is-high-level-synthesis-ready-for-prime-time

[30] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of inte-

grated circuits,” in 2008 Design, Automation and Test in Europe, Mar 2008,

pp. 1069–1074.

[31] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:

Models, methods, and metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp.

1283–1295, Aug 2014.

[32] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and

R. Wolters, “Read-proof hardware from protective coatings,” in Cryptographic

Hardware and Embedded Systems - CHES 2006, ser. Lecture Notes in Com-

puter Science, vol. 4249, 2006, pp. 369–383.

[33] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and

R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions on Com-

puters, vol. 64, no. 2, pp. 410–424, Feb 2015.

[34] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SARLock:

SAT attack resistant logic locking,” in 2016 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), May 2016, pp. 236–241.

[35] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for

algorithm-level obfuscation during high-level synthesis,” in IEEE/ACM De-

sign Automation Conference, Jun 2018, pp. 1–6.

[36] S. Kundu, S. Lerner, and R. K. Gupta, “Translation validation of high-level

synthesis,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 29,

no. 4, pp. 566–579, Mar 2010.

[37] Y. Kim and N. Mansouri, “Automated formal verification of scheduling with

speculative code motions,” in Proceedings of the 18th ACM Great Lakes Sym-

posium on VLSI 2008, May 2008, pp. 95–100.

154

http://www.edn.com/design/integrated-circuit-design/4375454/Is-high-level-synthesis-ready-for-prime-time
http://www.edn.com/design/integrated-circuit-design/4375454/Is-high-level-synthesis-ready-for-prime-time

Bibliography

[38] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-checking

method for scheduling verification in high-level synthesis,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 3,

pp. 556–569, Mar 2008.

[39] C. Karfa, C. A. Mandal, and D. Sarkar, “Formal verification of code motion

techniques using data-flow-driven equivalence checking,” ACM Transactions

on Design Automation of Electronic Systems (TODAES), vol. 17, no. 3, p. 30,

Jul 2012.

[40] C. Lee, C. Shih, J. Huang, and J. Jou, “Equivalence checking of schedul-

ing with speculative code transformations in high-level synthesis,” in Proceed-

ings of the 16th Asia South Pacific Design Automation Conference, ASP-DAC

2011, Jan 2011, pp. 497–502.

[41] J. Hu, T. Li, and S. Li, “Equivalence checking between SLM and RTL using

machine learning techniques,” in International Symposium on Quality Elec-

tronic Design, ISQED, Mar 2016, pp. 129–134.

[42] K. Banerjee, C. Karfa, D. Sarkar, and C. A. Mandal, “Verification of code

motion techniques using value propagation,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 33, no. 8, pp. 1180–1193,

Aug 2014.

[43] R. Chouksey, C. Karfa, and P. Bhaduri, “Translation validation of loop in-

variant code optimizations involving false computations,” in VLSI Design and

Test, 2017, pp. 767–778.

[44] O. Peñalba, J. Mendıas, and R. Hermida, “A global approach to improve

conditional hardware reuse in high-level synthesis,” Journal of systems archi-

tecture, vol. 47, no. 12, pp. 959–975, 2002.

[45] Z. Manna, Mathematical Theory of Computation. Tokyo: McGraw-Hill Ko-

gakusha, 1974.

[46] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic

encryption algorithms,” in 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), May 2015, pp. 137–143.

155

Bibliography

[47] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel bypass attack

and bdd-based tradeoff analysis against all known logic locking attacks,” in

International conference on cryptographic hardware and embedded systems, vol.

10529, 2017, pp. 189–210.

[48] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal attacks

on logic locking and camouflaging techniques,” IEEE Transactions on Emerg-

ing Topics in Computing, pp. 1–1, Aug 2017.

[49] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic locking,”

in 2019 Design, Automation Test in Europe Conference Exhibition (DATE),

Mar 2019, pp. 936–939.

[50] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic lock-

ing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 38, no. 2, pp. 199–207, Feb 2019.

[51] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and J. J.

Rajendran, “What to lock? functional and parametric locking,” in Proceedings

of the on Great Lakes Symposium on VLSI 2017, ser. GLSVLSI ’17, 2017, pp.

351–356.

[52] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and

O. Sinanoglu, “Provably-secure logic locking: From theory to practice,” in

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, ser. CCS’17, 2017, pp. 1601–1618.

[53] C. Pilato, S. Garg, K. Wu, R. Karri, and F. Regazzoni, “Securing hardware

accelerators: A new challenge for high-level synthesis,” IEEE Embedded Sys-

tems Letters, vol. 10, no. 3, pp. 77–80, Sep. 2018.

[54] R. W. Floyd, “Assigning meanings to programs,” Mathematical aspects of

computer science, vol. 19, no. 1, pp. 19–32, 1967.

[55] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quantitative

analysis of the chstone benchmark program suite for practical C-based high-

level synthesis,” Journal of Information Processing, vol. 17, pp. 242–254, 2009.

156

Bibliography

[56] R. Chouksey, C. Karfa, and P. Bhaduri, “Translation validation of code mo-

tion transformations involving loops,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1378–1382, Jul

2019.

[57] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools and

Algorithms for the Construction and Analysis of Systems, TACAS 2008, ser.

Lecture Notes in Computer Science, vol. 4963, Mar 2008, pp. 337–340.

[58] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-C programs,”

in Tools and Algorithms for the Construction and Analysis of Systems, 2004,

pp. 168–176.

[59] C. Karfa, D. Sarkar, and C. Mandal, “Verification of datapath and controller

generation phase in high-level synthesis of digital circuits,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 3,

pp. 479–492, Mar 2010.

[60] X. Leroy, et al. The CompCert C compiler. [Online]. Available:

http://compcert.inria.fr/compcert-C.html

[61] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, “The daikon system for dynamic detection of likely

invariants,” Science of computer programming, vol. 69, no. 1-3, pp. 35–45,

2007.

[62] D. P. Anderson and J. Ainscough, “The verification of scheduling algorithms,”

in IEE Colloquium on Structured Methods for Hardware Systems Design, 1994,

pp. 1–7.

[63] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Ve-

muri, “Theorem proving guided development of formal assertions in a resource-

constrained scheduler for high-level synthesis,” Formal Methods in System De-

sign, vol. 19, no. 3, pp. 237–273, 2001.

[64] R. Radhakrishnan, E. Teica, and R. Vemuri, “Verification of basic block

schedules using RTL transformations,” in Advanced Research Working Confer-

ence on Correct Hardware Design and Verification Methods, 2001, pp. 173–178.

157

http://compcert.inria.fr/compcert-C.html

Bibliography

[65] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic verification of schedul-

ing results in high-level synthesis,” in Proceedings of the Conference on Design,

Automation and Test in Europe, ser. DATE’99, 1999, pp. 260–265.

[66] Y. Kim, S. Kopuri, and N. Mansouri, “Automated formal verification of

scheduling process using finite state machines with datapath (FSMD),” in In-

ternational Symposium on Quality of Electronic Design (ISQED 2004), Mar

2004, pp. 110–115.

[67] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers: Principles, techniques

and tools,” 1986.

[68] E. M. Clarke Jr, O. Grumberg, , and D. Peled, Model checking. MIT press,

2002.

[69] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new sym-

bolic model verifier,” in International conference on computer aided verifica-

tion, 1999, pp. 495–499.

[70] J.-B. Tristan and X. Leroy, “Verified validation of lazy code motion,” in

Proceedings, PLDI’09, 2009, pp. 316–326.

[71] S. Kundu, S. Lerner, and R. Gupta, “Validating high-level synthesis,” in

Computer Aided Verification, 2008, pp. 459–472.

[72] T. Li, Y. Guo, W. Liu, and C. Ma, “Efficient translation validation of high-

level synthesis,” in International Symposium on Quality Electronic Design,

ISQED, Mar 2013, pp. 516–523.

[73] T. Li, Y. Guo, W. Liu, and M. Tang, “Translation validation of scheduling in

high level synthesis,” in Proceedings of the 23rd ACM International Conference

on Great Lakes Symposium on VLSI, ser. GLSVLSI’13, May 2013, pp. 101–106.

[74] R. Camposano, “Path-based scheduling for synthesis,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 1, pp.

85–93, Mar 1991.

158

Bibliography

[75] T. Li, J. Hu, Y. Guo, S. Li, and Q. Tan, “Equivalence checking of schedul-

ing in high-level synthesis,” in Sixteenth International Symposium on Quality

Electronic Design, 2015, pp. 257–262.

[76] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie, “Scalable certifica-

tion framework for behavioral synthesis front-end,” in Proceedings of the 51st

Annual Design Automation Conference, ser. DAC’14, 2014, pp. 1—-6.

[77] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie, “Validating scheduling

transformation for behavioral synthesis,” in 2016 Design, Automation Test in

Europe Conference Exhibition (DATE), 2016, pp. 1652–1657.

[78] P. Ashar, S. Bhattacharya, A. Raghunathan, and A. Mukaiyama, “Verifica-

tion of rtl generated from scheduled behavior in a high-level synthesis flow,” in

1998 IEEE/ACM International Conference on Computer-Aided Design. Digest

of Technical Papers (IEEE Cat. No.98CB36287), 1998, pp. 517–524.

[79] N. Mansouri and R. Vemuri, “Accounting for various register allocation

schemes during post-synthesis verification of RTL designs,” in Design, Au-

tomation and Test in Europe Conference and Exhibition, 1999, pp. 223–230.

[80] J. Dushina, D. Borrione, and A. A. Jerraya, “Formal verification of the allo-

cation step in high level synthesis,” in Forum on Design Languages (FDL’98),

1998, pp. 1–10.

[81] C. Karfa, C. Mandal, D. Sarkar, and C. Reade, “Register sharing verification

during data-path synthesis,” in 2007 International Conference on Computing:

Theory and Applications (ICCTA’07), 2007, pp. 135–140.

[82] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of inte-

grated circuits,” in Proceedings of the Conference on Design, Automation and

Test in Europe, ser. DATE’08, 2008, pp. 1069–1074.

[83] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic encryption: A fault

analysis perspective,” in 2012 Design, Automation Test in Europe Conference

Exhibition (DATE), 2012, pp. 953–958.

159

Bibliography

[84] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and

R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions on Com-

puters, vol. 64, no. 2, pp. 410–424, 2015.

[85] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic

obfuscation,” in Proceedings of the 49th Annual Design Automation Confer-

ence, ser. DAC’12, 2012, pp. 83–89.

[86] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the

security of logic locking,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411–1424, 2016.

[87] S. M. Plaza and I. L. Markov, “Solving the third-shift problem in IC piracy

with test-aware logic locking,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 34, no. 6, pp. 961–971, 2015.

[88] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using

reconfigurable logic barriers,” IEEE Design Test of Computers, vol. 27, no. 1,

pp. 66–75, 2010.

[89] N. Karousos, K. Pexaras, I. G. Karybali, and E. Kalligeros, “Weighted logic

locking: a new approach for IC piracy protection,” in 2017 IEEE 23rd Inter-

national Symposium on On-Line Testing and Robust System Design (IOLTS),

2017, pp. 221–226.

[90] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” in Cryp-

tographic Hardware and Embedded Systems–CHES 2016, ser. Lecture Notes in

Computer Science, vol. 9813, 2016, pp. 127–146.

[91] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Prov-

ably secure camouflaging strategy for ic protection,” in Proceedings of the 35th

International Conference on Computer-Aided Design, ser. ICCAD’16, vol. 28,

2016.

[92] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Prov-

ably secure camouflaging strategy for ic protection,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 8, pp.

1399–1412, 2019.

160

Bibliography

[93] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Appsat:

Approximately deobfuscating integrated circuits,” in 2017 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), 2017, pp. 95–

100.

[94] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic encryption

algorithms,” in Proceedings of the on Great Lakes Symposium on VLSI 2017,

ser. GLSVLSI’17, 2017, p. 179–184.

[95] Y. Lao and K. K. Parhi, “Obfuscating dsp circuits via high-level transfor-

mations,” IEEE transactions on very large scale integration (VLSI) systems,

vol. 23, no. 5, pp. 819–830, 2014.

[96] H. Badier, J. L. Lann, P. Coussy, and G. Gogniat, “Transient key-based obfus-

cation for HLS in an untrusted cloud environment,” in 2019 Design, Automa-

tion Test in Europe Conference Exhibition (DATE), Mar 2019, pp. 1118–1123.

[97] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT attack: Next

generation attack on obfuscated circuits with capabilities and performance

beyond the SAT attacks,” IACR Transactions on Cryptographic Hardware and

Embedded Systems, pp. 97–122, 2019.

[98] S. S. Muchnick, Advanced Compiler Design and Implementation. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[99] K. Wakabayashi and H. Tanaka, “Global scheduling independent of control

dependencies based on condition vectors,” in Proceedings 29th ACM/IEEE

Design Automation Conference, Jun 1992, pp. 112–115.

[100] J. C. King, “Symbolic execution and program testing,” Communications of

the ACM, vol. 19, no. 7, pp. 385–394, Jul 1976.

[101] D. Sarkar and S. C. D. Sarkar, “A theorem prover for verifying iterative

programs over integers,” IEEE Transactions on Software Engineering, vol. 15,

no. 12, pp. 1550–1566, Dec 1989.

[102] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators

in a flowgraph,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 1, no. 1, pp. 121–141, Jan 1979.

161

Bibliography

[103] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-

gram analysis & transformation,” in Proceedings of the International Sympo-

sium on Code Generation and Optimization: Feedback-Directed and Runtime

Optimization, ser. CGO’04, Mar 2004, pp. 129–142.

[104] H.-P. Juan, V. Chaiyakul, and D. D. Gajski, “Condition graphs for high-

quality behavioral synthesis,” in Proceedings of the 1994 IEEE/ACM Interna-

tional Conference on Computer-aided Design, ser. ICCAD’94, 1994, pp. 170–

174.

[105] J. Li and R. K. Gupta, “An algorithm to determine mutually exclusive

operations in behavioral descriptions,” in Proceedings Design, Automation and

Test in Europe, Feb 1998, pp. 457–463.

[106] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations for

high-performance computing,” ACM Computing Surveys, vol. 26, pp. 345–420,

1994.

[107] “Graphviz – Graph Visualization Software,” online; accessed 05-Jun-2015.

[108] K. Banerjee, R. Chouksey, C. Karfa, and P. K. Kalita, “Poster: Automatic

detection of inverse operations while avoiding loop unrolling,” in Proceedings

of the 40th International Conference on Software Engineering: Companion

Proceeedings, May 2018, pp. 175–176.

[109] M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineering camou-

flaged sequential circuits without scan access,” in Proceedings of the 36th In-

ternational Conference on Computer-Aided Design, ser. ICCAD’17, Nov 2017,

pp. 33–40.

[110] T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, “Revisit sequential logic

obfuscation: Attacks and defenses,” in 2017 IEEE International Symposium

on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

[111] Y. Kasarabada, S. Chen, and R. Vemuri, “On SAT-based attacks on en-

crypted sequential logic circuits,” in International Symposium on Quality Elec-

tronic Design (ISQED, Mar 2019, pp. 204–211.

162

Bibliography

[112] J. Rajendran, A. Ali, O. Sinanoglu, and R. Karri, “Belling the CAD: Toward

security-centric electronic system design,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1756–1769,

Nov 2015.

[113] Shinya, “Pyverilog: A python-based hardware design processing toolkit for

verilog HDL,” in Applied Reconfigurable Computing, ser. Lecture Notes in Com-

puter Science, vol. 9040, 2015, pp. 451–460.

[114] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs,” in OSDI,

vol. 8, 2008, pp. 209–224.

[115] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Ef-

ficiently computing static single assignment form and the control dependence

graph,” ACM Transactions on Programming Languages and Systems, vol. 13,

no. 4, pp. 451–490, Oct 1991.

[116] P. Nuzzo, A. Puggelli, S. A. Seshia, and A. Sangiovanni-Vincentelli, “Calcs:

SMT solving for non-linear convex constraints,” in Formal Methods in Com-

puter Aided Design, Oct 2010, pp. 71–79.

[117] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Data-driven equiv-

alence checking,” in Proceedings of the 2013 ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages & Applica-

tions, ser. OOPSLA’13, 2013, pp. 391–406.

[118] M. Dahiya and S. Bansal, “Black-box equivalence checking across compiler

optimizations,” in Asian Symposium on Programming Languages and Systems,

ser. Lecture Notes in Computer Science, vol. 10695, 2017, pp. 127–147.

[119] C. Karfa, D. Sarkar, C. Mandal, and C. Reade, “Hand-in-hand verification of

high-level synthesis,” in Proceedings of the 17th ACM Great Lakes Symposium

on VLSI, ser. GLSVLSI’07, 2007, pp. 429–434.

[120] R. Majumdar and R.-G. Xu, “Directed test generation using symbolic gram-

mars,” in Proceedings of the twenty-second IEEE/ACM international confer-

ence on Automated software engineering, 2007, pp. 134–143.

163

Bibliography

[121] P. Sampath, A. Rajeev, S. Ramesh, and K. Shashidhar, “Behaviour directed

testing of auto-code generators,” in 2008 Sixth IEEE International Conference

on Software Engineering and Formal Methods. IEEE, 2008, pp. 191–200.

[122] K. M. Ala-Mutka, “A survey of automated assessment approaches for pro-

gramming assignments,” Computer science education, vol. 15, no. 2, pp. 83–

102, 2005.

164

Publications Related to Thesis

1. Ramanuj Chouksey and Chandan Karfa. Verification of scheduling of con-

ditional behaviors in high-level synthesis. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, pages 1–14, 2020.

2. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Translation val-

idation of code motion transformations involving loops. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1378–

1382, July 2019.

3. Ramanuj Chouksey, Chandan Karfa, Kunal Banerjee, Pankaj Kumar Kalita,

and Purandar Bhaduri. Counter-example generation procedure for path-

based equivalence checkers. IET Software, 13(4):280–285, Aug 2019.

4. Chandan Karfa, Ramanuj Chouksey, Christian Pilato, Siddharth Garg, and

Ramesh Karri. Is register transfer level locking secure? In 2020 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 550–555,

2020.

5. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Improving per-

formance of a path-based equivalence checker using counter-examples. In

International Conference on VLSI Design, pages 377–382, Jan 2019.

6. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Formal verifica-

tion of optimizing transformations during high-level synthesis. In Innovations

on Software Engineering Conference, ISEC’19, pages 27:1–27:5, Feb 2019.

7. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Translation

validation of loop invariant code optimizations involving false computations.

In VLSI Design and Test, pages 767–778, Dec 2017.

165

	List of Figures
	List of Tables
	Introduction
	Correctness of High-level Synthesis
	Security in High-level Synthesis
	Motivations and Objectives
	Contributions of the Thesis
	Translation Validation of Code Motion Transformations Involving Loops during Scheduling
	Verification of Scheduling of Conditional Behaviors in High-level Synthesis
	Improving Performance of a Path-Based Equivalence Checker using Counter-Examples
	Security Analysis of Logic Locking during High-level synthesis

	Organization of the Thesis

	Literature Survey
	Verification of High-level Synthesis
	HLS Tool Verification
	Translation Validation
	End-to-end Verification of HLS
	Phase-wise Verification of HLS
	Our Objective

	Logic locking: Defenses and Attacks
	Our Objective

	Translation Validation of Code Motion Involving Loops during Scheduling
	Introduction
	Code Motion Techniques
	Summary of Verification of Code Motion
	Contributions

	The FSMD Model
	Equivalence of FSMDs

	Value Propagation Based Equivalence of FSMDs
	Motivations
	False Positive Case of the VP Method
	False Computation Involving Loops
	Code Motion Involving Loops

	Proposed Solutions
	Showing the Non-Equivalence for False Positive Cases
	Handling False Computation Involving Loops
	Handling Loop Invariant Code Motion

	Enhanced Value Propagation Based Equivalence Checking (EVP)
	Correctness and Complexity
	Soundness
	Termination
	Complexity

	Experimental Results
	Conclusion

	Verification of Scheduling of Conditional Behaviors in High-level Synthesis
	Introduction
	Scheduling of Conditional Behaviors
	Summary of Verification of Scheduling of Conditional Behaviors
	Contributions

	Motivations
	Path Split
	Choice of Cutpoints
	If Optimization

	Proposed Solution
	Handling Path Split
	Cutpoint Selection Scheme
	Handling the Scenario Involving if Optimization

	Equivalence of Paths
	Overall Verification Method
	Correctness of the Equivalence Checking Procedure
	Correctness
	Termination
	Complexity

	Experimental Results
	Conclusions

	Improving Performance of a Path-Based Equivalence Checker using Counter-Examples
	Introduction
	Motivations
	Counter-Trace Generation
	Counter-Example Generation using Counter-Trace
	Modeling Counter-trace using Z3 SMT Solver
	Modeling Counter-trace using CBMC

	Incorporation of Results in Equivalence Checking Framework
	Overall Equivalence Checking Framework
	Counter-Trace Visualization
	Experimental Results
	Conclusions

	Security Analysis of Locking during High-level Synthesis
	Introduction
	Logic Locking
	Summary of Threats on Logic Locking
	Contributions

	Backgrounds
	RTL Structure
	Attack Model

	Motivation
	Constant Locking
	Branch Locking
	Datapath Locking

	Attack Methodology
	Problem Formulation
	Rewriting Method
	Algorithm Description
	Illustrative Examples
	Attack Tool-flow

	Experimental Results
	Discussion of the Results

	Conclusions

	Conclusion and Future Work
	Summary of Contributions
	Translation Validation of Code Motion Transformations Involving Loops during Scheduling
	Verification of Scheduling of Conditional Behaviors in High-level Synthesis
	Improving Performance of a Path-Based Equivalence Checker using Counter-Examples
	Security Analysis of Logic Locking during High-level synthesis

	Future Directions
	Conclusion

	Bibliography

