Formal Verification and Security Analysis of High-
level Synthesis

Ramanuj Chouksey

Formal Verification and Security Analysis of
High-level Synthesis

Thesis submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
by
Ramanuj Chouksey

Under the supervision of

Dr. Chandan Karfa

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati 781039, India
August, 2020

Declaration

I, Ramanuj Chouksey, confirm that:

a. The work contained in this thesis is original and has been done by myself

and the general supervision of my supervisors.

b. The work has not been submitted to any other Institute for any degree or
diploma.

c. Whenever I have used materials (data, theoretical analysis, results) from
other sources, I have given due credit to them by citing them in the text of

the thesis and giving their details in the references.

d. Whenever I have quoted written materials from other sources, I have put
them under quotation marks and given due credit to the sources by citing

them and giving required details in the references.

Place: IIT Guwahati Ramanuj Chouksey
Date: 10 June 2020

Certificate

This is to certify that the thesis entitled “Formal Verification and Security
Analysis of High-level Synthesis,”, submitted by Ramanuj Chouksey to
Indian Institute of Technology Guwahati, is a record of bona fide research work
under my supervision and I consider it worthy of consideration for the award of

the degree of Doctor of Philosophy of the Institute.

Dr. Chandan Karfa
Assistant Professor
CSE, II'T Guwahati

Date: 10 June 2020

Acknowledgements

First of all, I express my deep sense of regards and indebtedness to my supervi-
sor Dr. Chandan Karfa for his valuable guidance, continuous encouragement and
wholehearted support, which are of immense help to me in completing this the-
sis. Dr. Chandan Karfa is an excellent advisor. He taught me how to choose the
problems to work on, how to write papers, and how to present them. Without
his support and encouragement, this thesis would not have been accomplished. I
would like to give the best “thank you” to Prof. Purandar Bhaduri for his valuable
insights and comments on the translation validation part of this thesis. His deep
theoretical knowledge had a great influence on my Ph.D research and future career.
I would like to thank the rest of my thesis committee members: Prof. J. K. Deka,
Prof. H. K. Kapoor, and Prof. K. V. Krishna for their insightful comments and
encouragement. Their comments and suggestions helped me to widen my research
from various perspectives.

I would like to express my heartful gratitude to the director, the deans and
other managements of I[IT Guwahati whose collective efforts has made this insti-
tute a place for world-class studies and educations. I am thankful to all faculty
and staff of Department of Computer Science and Engineering for extending their
co-operation in terms of technical and official support for the successful completion
of my research work.

[am grateful to my parents for their unending love and support. It would be
impossible to attempt to enumerate all those friends who have been supportive
throughout my tenure as a PhD student. To all of you, I offer my sincere love,
gratitude and appreciation. I would like to thank my wife Sivashankari for her
unconditional love and making me feel at all times that my education and my
dreams are as important as her own. I would like to thank my daughter Kumudini
whose contagious smile can brighten up any tiring day. This thesis is dedicated to

my loving wife Sivashankari.

Abstract

High-level synthesis (HLS) is the process of translating a behavioral description
written in C/C++ into a Register Transfer Level (RTL) desgin. HLS tools are
large and complex programs that may be incorrect in some contexts, which might
introduce bugs in the generated RTL. Translation validation is the process of
proving that the target code is a correct translation of the source program being
compiled. In this thesis, a translation validation method based on propagation of
mismatch values in a path-based equivalence checking method (PBEC) framework
is proposed to validate the various scheduling optimizations during HLS efficiently.
Specifically, this method verifies code motion involving loops, ignores the false
computations, and handles the scenarios involving path merge/split. We have
analyzed the correctness and complexity of the method. Experiments on various
HLS benchmarks demonstrate the efficiency and scalability of our method.

In the case of non-equivalence, PBEC approaches provide too little information
to debug the root cause of the non-equivalence. This thesis presents a counter-
example generation framework to demonstrate the non-equivalence between the
input behavior to HLS and the scheduled behavior generated by HLS. Equivalence
checking of programs is an undecidable problem in general. Therefore, a PBEC
method may produce a false negative results for which the counter-example will
not arise. However, this helps the verification engineer to identify the limitation
of the current translation validation tool and hence its enhancement in future.

Logic locking is an Intellectual Property (IP) protection technique against 1P
piracy, reverse engineering, hardware Trojans and counterfeiting attacks. RTL
locking during HLS seeks to prevent IP theft of a design by locking the RTL
description that functions correctly on the application of a key. This thesis intro-
duces a satisfiability modulo theories (SMT) attack to determine the secret key
of a locked RTL design. We have shown that our tool can detect keys of a locked
RTL generated by TAO, a state-of-the-art HLS locking solution.

Keywords: Translation Validation, Equivalence Checking, Code Motion Trans-
formation, Finite State Machine with Datapath (FSMD), Logic locking, RTL Lock-
ing, SMT attack.

x1

Contents

List of Figures Xviil
List of Tables xix]
1 Introduction [
1.1 Correctness of High-level Synthesis 3]
1.2 Security in High-level Synthesis
1.3 Motivations and Objectives 6]
1.4 Contributions of the Thesis B
1.4.1 Translation Validation of Code Motion Transformations In-
volving Loops during Scheduling]
1.4.2 Verification of Scheduling of Conditional Behaviors in High-
level Synthesis L 9]

1.4.3 Improving Performance of a Path-Based Equivalence Checker
using Counter-Examples 1

1.4.4 Security Analysis of Logic Locking during High-level synthesis [10

1.5 Organization of the Thesis [Tl

2 Literature Survey 13l
2.1 Verification of High-level Synthesis 13
2.1.1 HLS Tool Verification 13

2.1.2 Translation Validation [14]

2.1.3 End-to-end Verification of HLS 4

2.1.4 Phase-wise Verification of HLS 15l

2.1.5 Our Objective 201

2.2 Logic locking: Defenses and Attacks 20
2.2.1 Our Objective 271

3 Translation Validation of Code Motion Involving Loops during

Scheduling 29
3.1 Introduction 29]

xlil

3.1.1 Code Motion Techniques 29]

3.1.2 Summary of Verification of Code Motion 31
3.1.3 Contributions
3.2 The FSMD Model
3.2.1 Equivalence of FSMDs 351
3.3 Value Propagation Based Equivalence of FSMDs 31
3.4 Motivations 401
3.4.1 False Positive Case of the VP Method (4T
3.4.2 False Computation Involving Loops 431
3.4.3 Code Motion Involving Loops 44
3.5 Proposed Solutions 45
3.5.1 Showing the Non-Equivalence for False Positive Cases M3l
3.5.2 Handling False Computation Involving Loops 46}
3.5.3 Handling Loop Invariant Code Motion 41
3.6 Enhanced Value Propagation Based Equivalence Checking (EVP) . [2
3.7 Correctness and Complexity 57
3.7.1 Soundness 1S
3.7.2 Termination 60l
3.7.3 Complexity 60}
3.8 Experimental Results L. 611
3.9 Conclusion L 66!

Verification of Scheduling of Conditional Behaviors in High-level

Synthesis 67

4.1 Introduction 67

4.1.1 Scheduling of Conditional Behaviors 671
4.1.2 Summary of Verification of Scheduling of Conditional Be-

haviors 6]

4.1.3 Contributions o 69

4.2 Motivations (70l

421 Path Splito)

4.2.2 Choice of Cutpoints [72]

4.2.3 If Optimization. [74

4.3 Proposed Solution

Xiv

4.3.1 Handling Path Split

4.3.2 Cutpoint Selection Scheme 70l
4.3.3 Handling the Scenario Involving if Optimization [78
4.4 Equivalence of Pathso 78]
4.5 Overall Verification Method R7
4.6 Correctness of the Equivalence Checking Procedure 90
4.6.1 Correctness 901
4.6.2 Terminationo 93]
4.6.3 Complexity 94
4.7 Experimental Results 000 95
4.8 Conclusions 100

Improving Performance of a Path-Based Equivalence Checker us-

ing Counter-Examples 10T
5.1 Introduction 1071
5.2 Motivations 102
5.3 Counter-Trace Generation 103}
5.4 Counter-Example Generation using Counter-Trace 105
5.4.1 Modeling Counter-trace using Z3 SMT Solver
5.4.2 Modeling Counter-trace using CBMC 109
5.5 Incorporation of Results in Equivalence Checking Framework
5.6 Overall Equivalence Checking Framework 114
5.7 Counter-Trace Visualization 117
5.8 Experimental Results 1201
5.9 Conclusions
Security Analysis of Locking during High-level Synthesis 123l
6.1 Introduction 123
6.1.1 Logic Locking 123
6.1.2 Summary of Threats on Logic Locking 123
6.1.3 Contributions L 124
6.2 Backgrounds 125
6.2.1 RTL Structure
6.2.2 Attack Model 126

XV

6.3 Motivation 126

6.3.1 Constant Locking 127
6.3.2 Branch Locking 127
6.3.3 Datapath Locking 128
6.4 Attack Methodology 129
6.4.1 Problem Formulation 129
6.4.2 Rewriting Method 1311
6.4.3 Algorithm Description 133]
6.4.4 TIllustrative Examples 134
6.4.5 Attack Tool-flow 137
6.5 Experimental Results 137
6.5.1 Discussion of the Results M40
6.6 Conclusions [T41]
7 Conclusion and Future Work 143l
7.1 Summary of Contributions 143

7.1.1 Translation Validation of Code Motion Transformations In-
volving Loops during Scheduling 143]

7.1.2 Verification of Scheduling of Conditional Behaviors in High-
level Synthesis 44

7.1.3 Improving Performance of a Path-Based Equivalence Checker
using Counter-Examples
7.1.4 Security Analysis of Logic Locking during High-level synthesisI45]
7.2 Future Directions Lo o 146!
7.3 Conclusion 149
Bibliography 51

XVvi

List of Figures

1.1
1.2

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12

3.13

3.14
3.15
3.16

3.17

4.1
4.2

High-level synthesis flow,

Phase-wise verification of HLS

Various speculative code motions [15]
Three possible scenarios during code motion transformations in-

volving loops oL
An FSMD example
An example of value propagation
An example where the VP method gives false positive result.
An example where the VP method provides false negative result. . .
Nested loop structure
A case 1.1 where unmarked variable z is defined identically in both

theloops
A case 1.2 where unmarked variable x has some mismatch at the

end of theloop
An example of code motion involving scenarios S3
An example where unmarked is used before being defined.
A case 2.1 where a marked variable = has the same value at the end

oftheloop
A case 2.3 where the values of the marked variable do not update

in both theloops
An example of code motion involving scenarios S; and Sy
A overall flow of the EVP method
All possible scenarios where x has some mismatch at the end of the

loop
A bugin SPARK

An example of behavioral description
Transformations on the input description to enhance the conditional

hardware reuse

XVvil

49
49

50

4.3
4.4
4.5
4.6

4.7
4.8

5.1
5.2
5.3
5.4
5.9

5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

A cutpoint example
An example of if optimization [73]
Control flow graph of checkEquivalence(f3, a, Tgﬁs , r;?as) function. . [0

Examples to illustrate different path equivalence cases discussed in

Section A, R0
A overall flow of our verification method R7
A path equivalence scenario OT]
An example of non-equivalence
List maintained during equivalence checking 1031
cT'race generation using EQ_LIST and C_LIST 104
Counter-trace generation example

Control flow graph of counter-example generation using CBMC and

its utilization in a PBEC framework. 114
Two FSMDs before and after scheduling IBE
Logic locking techniques 1241
RTL structure generated by HLS.
An example of constant locking.
An example of branch locking. 128
An example of datapath locking. 129
An example of TAO obfuscation. 130
RTL-FSMD from RTL using rewriting approach. 31
Datapath with control signals 132
Outline of the SMT based unlocking of TAO. 138

Xviii

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1

4.2
4.3

5.1
5.2
2.3

6.1
6.2

Maximal resilience against the SAT attack can be achieved by con-

trolling the discriminating ability of input patterns 23l
Experimental results on the benchmarks presented in [42] 62
Experimental results on the benchmarks presented in [42] 62
Experimental results on test cases where the VP method fails . . . [(4]

Experimental results on the benchmarks presented in CHStone bench-
marks [55] and the benchmarks listed in Bambu HLS tool [14] . . . [65]

Comparing the effect of cutpoint selection criteria on the perfor-

mance of the PBEC approach presented in [56]
Experimental results on the benchmarks presented in [42] 96|

Experimental results on the benchmarks presented in [44}{104}|105],
CHStone benchmarks |55] and the benchmarks listed in Bambu HLS

tool |14] 07
Inverse strength reduction o
Experimental results with Z3 SMT solver 1201
Experimental results with CBMC 21
Results: Unlocking TAO-locked RTL designs. 139
Results: Unlocking a locked C code. 140

Xix

Chapter 1

Introduction

With rapid growing complexity in the modern Very Large Scale Integration (VLSI)
system, designing high-quality hardware at register transfer level (RTL) under
seeking better productivity in less time and with lower cost is challenging. To
achieve a better quality of implementations and shorter specification-to-product
times of these microelectronic systems there is precisely need to perform design
modeling, synthesis, and validation at higher levels of abstraction. The high-level
behavioral specifications are simpler to write and to comprehend (and, therefore,
update) and less error-prone. This significantly encourages the designer to design
a complex system at a higher level of abstraction and uses High-level synthesis
(HLS) [1}5] to generate RTL automatically from high-level behavioral description
written in C/C++ or SystemC. The Behavioral description defines the design
functionally at the high level of abstraction and thus allows concise, reusable,
and readable design descriptions. The objective of HLS is to address the exacting
demands to develop feature-rich, optimized, and complex hardware systems within
aggressive time-to-market schedules. As shown in Fig. HLS takes the high-
level description of an application, executes several sub-tasks, and generates the

RTL architecture. Typically the sub-tasks are:

1. Preprocessing: This task transforms the input description into an in-
termediate form more suitable for HLS, usually a control data flow graph
(CDFG) [6]. In this step, several code optimizations are applied to improve
the quality of synthesis results for designs. The common transformations
applied during preprocessing are common sub-expression elimination (CSE),
copy propagation, constant propagation, dead code elimination, loop invari-
ant code motion (LICM) as well as restructuring transformation by function
inlining and loop transformations (loop unrolling, loop fusion). These trans-
formations increase the scope of parallelizing optimization in the scheduling

phase that follows.

Chapter 1. Introduction

Behavioral specification (e.g., C, C++)

[Preprocessing]

[Scheduling]

(Allocation and Binding |

Datapath and Con-
troller generator

RTL (VHDL, Verilog)

Figure 1.1: High-level synthesis flow

2. Scheduling: For untimed C/C++ designs, this step adds time to design
and determines the time step or the clock cycle in which each operation of
the design executes. The scheduling phase also employs a set of speculative,
beyond-basic-block code motions to enhance concurrency and hence improv-
ing resource utilization [7-11]. The scheduling phase also applies additional
transformations “dynamically” during scheduling such as dynamic common
sub-expression elimination [12]. These dynamic transformations take advan-

tage of changes created by speculative code motions.

3. Allocation and Binding: Allocation determines the type and quantity of
resource storage and functional units, for each data object and operation
of the input program. Binding assigns operations onto specific functional
units. Binding assigns operations, variables that carries values across cycles,
data structures, and data transfers onto specific functional units, storage
elements (registers or memory blocks), and interconnections, respectively.
In addition, several variables with mutually exclusive lifetimes are assigned

to the same storage units.

4. Datapath and Controller Generation: This step generates a control

unit that implements the schedule. This control unit generates control sig-

1.1. Correctness of High-level Synthesis

nals that control the flow of data through the datapath (i.e., through the

multiplexers).

The latest HLS tools [13H18] are complex and use a variety of transformations
to optimize the synthesis result for metrics like area, performance, and power.
Ensuring the correctness of such transformations has become absolutely critical
for the reliability of HLS tools.

1.1 Correctness of High-level Synthesis

HLS tools are usually very large and complex piece of software. They are prone to
logical and implementation errors. In spite of rigorous testing, bugs in HLS tools
may go unnoticed. A bug in an HLS tool can in turn introduce bugs in generated
RTL. RTL designs with bugs have expensive outcomes if they go unnoticed until
after production. Hence, the correctness of HLS has always been an important
concern. Formal verification can be used to provide guarantees of HLS correctness.
There could be two approaches for formal verification of HLS:

1. HLS tool verification

2. Translation validation

HLS Tool Verification

HLS tool verification includes techniques whose goal is to prove that HLS itself is
correct. The primary advantage of this approach is that it can prove the correct-
ness of the HLS tool once and for all, before they are run even once. However,
these techniques that provide once-and-for-all guarantees require user interaction
and immense manual effort. It also requires knowledge about internal algorithms
used during HLS, which is often not available because most of the HLS tools are

closed source |16-18].

Translation Validation

In general, it is hard to prove that an HLS tool with several hundred thousand

lines of code always produces the transformed behaviors that are semantically

Chapter 1. Introduction

Controller generator

'

Behavioral specification (c, c++)
| (Preprocessing) | | Scheduling i
i i i Verification !
i (Sche(iuling) | ‘ } | |
| ‘ — [Allocation & Binding |
(Allocation & Binding) Verification i
| Datap'ath < i (Datapath & Controller i
i ’ ! | Verification l

RTL (VHDL, Verilog)

Figure 1.2: Phase-wise verification of HL.S

equivalent to their source behaviors. The Translation validation [19-21] provides
an alternative to prove semantics preservation for the transformations involved in
HLS tools. In the translation validation approach, the HLS tool is not verified.
Instead, it verifies the correctness of each run of the HLS tool. Translation val-
idation techniques try to show for each translation that the HLS tool performs,
that the transformed behavior generated by the tool is semantically equivalent to
the source behavior. Even if this approach does not guarantee that the HLS tool
is bug-free, it guarantees that any error in translation will be caught when the
tool runs, preventing such errors from propagating any further in the hardware
fabrication process.

Translation validation has previously been applied with success in the context
of optimizing compilers [19}21],22]. Translation validation technique has been
maturing via its use in verifying the correctness of the HLS. The existing works

in translation validation of HLS can be divided into two categories:
1. End-to-end verification of HLS
2. Phase-wise verification of HLS

Because of the huge semantic gap between the source behavior and the gen-
erated RTL design, end-to-end translation validation techniques [23-28| fall short
of meeting all the challenges posed by phase explicit technique. These techniques

1.2. Security in High-level Synthesis

need to make some assumptions with respect to synthesis flow. Therefore, phase-
wise translation validation, as shown in Fig. techniques that can deal with the
difficulties of synthesis sub-task independently, are preferable for HLS verification.
Specifically, the scheduling verification phase ensures that the compiler optimiza-
tions and the scheduling of operations do not change the functionality of the input
behavior. The allocation and binding verification phase verifies the correctness
of register sharing among the behavioral variables. The datapath and controller
verification phase ensures that the correct functional unit has been chosen, the
correct functionality of the functional unit has been chosen, the communication
network has been correctly generated to allow the necessary data flow for a speci-
fied operation and the control signals have been assigned for each operation of the

behavior.

1.2 Security in High-level Synthesis

The increasing cost of Integrated Circuit (IC) manufacturing has forced many
semiconductor companies to go fabless over the years [29]. Such fabless companies
design ICs and use offshore third-party foundries for manufacturing. This creates

the following security threats [30,31]:

e An attacker in the foundry or a rogue user can reverse engineer the func-

tionality to steal the Intellectual Property (IP).
e An untrustworthy foundry can overbuild ICs for illegal sale.

e A rogue element in a foundry can temper the ICs to insert malicious circuits
in the form of Hardware Trojans (HTSs).

These security threats (also known as supply chain attacks) pose a significant
economic risk to most IC design companies. One approach to thwart the afore-
mentioned supply chain attacks is logic locking [32-34]. Logic locking inserts
additional logic into a circuit, primarily in the gate-level design, to lock the func-
tionality of the circuit with a secret key. The target chip produces the correct
output only when the key inputs are correct, and such key values are not shared

with the manufacturer.

Chapter 1. Introduction

As the complexity of ICs continues to increase, designers are moving to a higher
level of abstraction to meet the growing challenges. HLS tools have made signif-
icant progress in the past few years and have been successfully used to improve
design productivity by allowing designers to design systems faster at a high-level
of abstraction. Addressing logic locking during HLS is an interesting approach
to design and integrate solutions at higher levels of abstraction. TAO [35] is an
exhaustive solution for algorithmic obfuscation during HLS. TAO extends the tra-
ditional HLS flow to produce the obfuscated RTL description and makes reverse
engineering and hence the IP theft difficult.

1.3 Motivations and Objectives

The scheduling phase in addition to preprocessing is one of the central tasks in
HLS which involves complex heuristics to ensure that the design being synthesized
can meet the timing and resource constraints. In order to improve the quality of
synthesized design in terms of timing and/or performance, the scheduling phase
performs a variety of transformations. Hence, the scheduling phase is of the most
error-prone parts of an HLS tool. Moreover, various compiler optimizations such as
constant propagation, copy propagation, common sub-expression elimination, code
motion, loop transformations, etc. are applied during preprocessing and scheduling
to improve the synthesis results. A method for the fully automatic equivalence
checking of a design before and after the scheduling step of HL'S must be considered
to ensure that the scheduling phase is correct.

The verification of the scheduling phase in HLS is an active domain of research
for the last ten years. A translation validation approach is proposed in [36] to
validate the scheduling results of the SPARK HLS tool [15] against the initial
high-level program. However, to validate the transformed code with a loop struc-
ture, the existing approaches have to iterate over the loop to find the fixed point
while such a process does not always terminate. Alternatively, many path-based
equivalence checking (PBEC) approaches [37-42] have been proposed for verifica-
tion of scheduling of HLS. These translation validation approaches are useful since
they can verify that the correct code resulted from various compiler optimization
techniques applied in each iteration of the scheduling phase of HLS without un-
rolling the loops. A PBEC approach based on value propagation [42], for example,

1.3. Motivations and Objectives

can verify the code motion across the loops. The primary focus of the existing
PBEC approaches is ensuring that the data dependencies are not violated due to
scheduling of operations and transformation of behaviors due to the application of
various compiler optimizations [15] applied during the scheduling phase of HLS.
Code motion based optimizations are used in the scheduling phase of HLS tools to
improve the quality of synthesis results. Frequently, in the source behavior, there
exist some computations within a loop body which produce the same results each
time the loop is executed. These computations can be moved outside the loop
body in order to achieve better design performance during the scheduling phase
of HLS. The existing PBEC approaches fail to handle the case of loop invariant
code motion. A computation is called a false computation if it never executes [43].
The PBEC approaches cannot identify false computations hence fails to ignore the
false computation and produce false negative results. To improve the conditional
hardware reuse in HLS, the optimization techniques such as in [44] split a path
into multiple paths in the scheduled behavior. In this case, the existing PBEC
approaches fail to handle the scenario where a path in a behavior is equivalent to

the union of the paths in another behavior.

The PBEC approaches have been successfully applied for verification of the
scheduling phase of HLS. These approaches can be sound but not complete [45].
Therefore, existing PBEC approaches may produce false negative results. The non-
equivalence cases require further investigation of the two behaviors being compared
by some human experts. In the case of non-equivalence, these approaches do
not provide sufficient information for debugging the issue. A counter-example
which will demonstrate the non-equivalence between the source behavior and the
scheduled behavior generated by HLS will add significant value to the adoption of
such PBECs. There is no work which generate a counter-example in the context

of the path-based equivalence checking.

There is increasing security concerns such as hardware Trojans, IC counterfeit-
ing, IP piracy, and unauthorized overproduction in the fabless mode of manufac-
turing. One approach to prevent from such attack is logic locking. Logic locking
techniques hide the IC’s functionality by manipulating the hardware description
language. Starting with the SAT attack [46], the past few years have witnessed
a flurry of activity on logic locking [34./47-52], both on the attack and protection

side. However, since the attack operates at the gate-level, these techniques are

Chapter 1. Introduction

not scalable to practical designs with hundreds of thousands of gates and flip-
flops. Recent work has advocated for defenses that perform logic locking during
HLS [35,53]; the resulting RTL locked netlists are large and consequently less
vulnerable to conventional gate-level SAT attacks.

With the above discussion, the following objectives were identified:

1. Translation validation of code motion transformations involving loops

2. Translation validation of code motion causing split/merged paths

3. Counter-example generation for PBEC approaches in case of non-equivalence

4. Evaluate the security of a state-of-the-art RTL locking scheme

1.4 Contributions of the Thesis

In the following, we outline in brief the contributions of this thesis on each of the

objectives identified above.

1.4.1 Translation Validation of Code Motion Transforma-

tions Involving Loops during Scheduling

The primary contribution of this work is a PBEC approach based on value prop-
agation, a translation validation approach, to verify the correctness of various
optimization techniques applied during the scheduling phase of HLS. The behav-
iors are modeled as a finite state machine with datapath (FSMD) in our approach.
Our approach breaks down an FSMD into smaller segments by introducing cut-
points so that each loop in the FSMD is cut by at least one cutpoint. This is based
on the Floyd-Hoare method of program verification |54]. The set of all paths from
a cutpoint to another cutpoint without any intermediate occurrence of a cutpoint
is a path cover of the FSMD. Our approach establishes the equivalence between
two behaviors by showing the equivalence between the paths present in the path
cover of these two behaviors. A PBEC approach based on value propagation was
proposed in [42] to verify code motion across loops but fails to show the equivalence
when a code is moved outside the loop body from inside it in the transformed be-

havior. The proposed method can show the equivalence even some loop invariant

1.4. Contributions of the Thesis

operation is moved before (after) the loop from inside it. This method is also ca-
pable of verifying the uniform code motion, non-uniform code motion techniques.
In the presence of false computations, existing PBEC approaches produce a false
negative result while this method is capable of avoiding these false computations.
The presented method in this work establishes the functional equivalence between
the result of scheduling and the behavioral specification of the design, using their
FSMD models [1]. A notion of functional equivalence between two FSMDs has

been defined, on the basis of which we verify the transformed behavior.

The correctness of the method has been proved and the complexity of the
method has also been analyzed. Experimental results show the usefulness of the
method. In particular, a bug in the HLS tool SPARK [15] involving loop invariant

code motion is detected during the experiment.

1.4.2 Verification of Scheduling of Conditional Behaviors
in High-level Synthesis

This work contributes a translation validation method to handle the scenario where
a path in the source behavior splits into multiple paths in the scheduled behav-
ior [44]. This work presents a notion of split path equivalence and introduces a new
cutpoint selection scheme to show the equivalence for path split/merge scenarios.
To identify the path split/merge scenario, the method tries to find a set of paths
whose disjunction of the conditions of execution is equivalent to the condition of

execution of a path in another behavior.

The method presented in Section has been enhanced to handle the path
split/merge scenarios. The enhanced method has been tested over the scheduled
behavior obtained using Bambu HLS tools |14]. The scalability of the method
has been checked over some larger CHStone benchmarks [55]. The formal proof of
correctness of the method has also been presented. The computational complexity

of the method is not worse than the methods proposed in [42,56].

Chapter 1. Introduction

1.4.3 Improving Performance of a Path-Based Equivalence

Checker using Counter-Examples

The contribution of this work is a counter-example generation mechanism for the
PBEC approaches. This work shows how a counter-trace (c¢Trace) can be gener-
ated in non-equivalence cases reported by a PBEC approach. Using this c¢Trace,
this work also presents a procedure to find suitable initialization values for in-
put variables which reveal the non-equivalence (i.e., counter-example) by using Z3
satisfiability modulo theories (SMT) solver [57] or CBMC tool [58]. This counter-
example generation mechanism improves the performance of a PBEC approach
in the case of non-equivalence during verification of the scheduling phase of HLS.
The counter-example generation mechanism also helps to identify some false neg-
ative cases of the PBEC approaches. The experimental results confirm that the
PBEC approach is able to make stronger equivalence decisions with the help of a

counter-example generation mechanism.

1.4.4 Security Analysis of Logic Locking during High-level

synthesis

The contribution of this work is an SMT based algorithm to recover the secret keys
of a locked RTL design. To the best of our knowledge, this is the first attack on
RTL locking. The algorithm utilizes the rewriting method [59] to model an RTL
design as a RTL finite state machine with datapath (RTL-FSMD). We abstract out
the hardware information into a behavioral program on which we perform an SMT
based attack. This SMT based attack is an oracle-guided attack. The incorrect
keys are identified and eliminated using distinguishing input patterns (DIPs) [46].

A comprehensive evaluation of our attack algorithm has been conducted on
locked RTL generated by TAO [35], a state-of-the-art RTL locking solution. Ex-
perimental evaluations show that our algorithm partially or completely break de-
signs locked by TAO. In addition, the experimental evaluations also present that
our approach is capable of attacking a locked C code. The strengths and weak-
nesses of our attack have been discussed and suggested some directions to design

a secure RTL design.

10

1.5. Organization of the Thesis

1.5 Organization of the Thesis

The organization of the rest of this thesis is as follows:

Chapter [2| provides a detailed literature survey on state-of-the-art translation
validation approaches to verify the correctness of HLS. It also presents a detailed
survey on logic locking defenses and attacks.

Chapter 3| presents a translation validation approach based on value propagation
for code motion involving loops. It also provides a solution to identify and ignore
false computations during translation validation.

Chapter (4] identifies the limitation of existing path-based equivalence checking
approaches to handle the control structure modification that occurs in the efficient
scheduling of conditional behavior. It redefines the notion of the equivalence of
paths in the context of path-based equivalence checking approach to handle the
scenarios which involve path split/merge.

Chapter [5| presents how the equivalence information of a path-based equivalence
checking method can be used to find a counter-trace in the case of non-equivalence
reported by path-based equivalence checking methods. It also shows, for a given
cTrace, how to find suitable initialization values for input variables which reveal
the non-equivalence (i.e., counter-example) by using off-the-shelf SMT solvers [57]
and CBMC tool [5§].

Chapter [6] evaluates the security of a state-of-the-art HLS generated register
RTL locking scheme using an SMT based algorithm to retrieve the secret keys. It
demonstrates the attack on locked RTL generated by TAO [35], a state-of-the-art
RTL locking solution. Empirical results show that it can partially or completely
break designs locked by TAO.

Chapter [7] concludes and discusses some future research direction of this thesis.

11

Chapter 2
Literature Survey

In this chapter, we discuss some important research contributions on the verifica-
tion of the HLS. This chapter also presents a comprehensive history of logic locking
defenses and attacks. The objective of this study is to identify the prominent gaps

in earlier literature which have been addressed in this thesis.

2.1 Verification of High-level Synthesis

In high level synthesis, a sequence of transformations is used to optimize the spec-
ifications at the behavior level into implementations at the register transfer level.
HLS tools large and complex software developed over time by various developers
on a legacy code-base. Therefore, the existence of bugs in some corner cases cannot
be ruled out completely. Verifying the correctness of the generated RTL designs
is, therefore, crucial to avoid substantial financial losses. The existing commercial
HLS tools still use RTL co-simulation to validate the correctness of the generated
RTL. However, simulation cannot guarantee the hundred percent correctness of
the HLS tools. There are some efforts in research communities to develop formal
verification of HLS. Since the semantic gap between RTL and the input C/C++
code is huge, end-to-end verification is difficult. Therefore, most of the existing
methods try to verify a particular phase of HLS. In the following, we discuss the
overall formal verification works of HLS. There may be two approaches for formal

verification of HLS:(i) HLS tool verification, and (ii) Translation validation

2.1.1 HLS Tool Verification

This approach guarantees the correctness of the translation from high-level design
to low-level design by proving the HLS tool itself correct. It proves the correctness

of an HLS tool once and for all before it is ever run. Such effort is found in

13

Chapter 2. Literature Survey

CompCert compiler [60]. However, correctness by construction cannot be expected
from a software system with several hundred thousand lines of code. Therefore, it
is very hard to prove the correctness of the HLS once and for all. In fact, there is

no such efforts reported in the literature for High-level Synthesis.

2.1.2 Translation Validation

Translation Validation [19] is a well-known way of increasing the reliability of HLS
tools. In the translation validation approach, the HLS tool is not verified. Instead,
a validator is associated with the HLS tool to verify the correctness of each run
of the HLS tool. Translation validations aimed to check that each translation
performed by the HLS tool preserves the semantics of the input behavior. The

current works in translation validation of HLS can be separated into two classes.
1. End-to-end verification of HLS

2. Phase-wise verification of HLS

2.1.3 End-to-end Verification of HLS

An end-to-end verification approach finds equivalence between the behavioral de-
scription given as input (usually in C, C++, or SystemC) to any HLS tool and the
RTL output of that HLS tool. The research reported in [24-28] tried to formally
establish end-to-end equivalence between these two representations.
Radhakrishnan et al. [24] proposed a verification method using a witness gen-
erator. The method generates a sequence of elementary transformations that leads
to the same effect as the applied HLS algorithm. If every transformation, identical
in the derived sequence, is applied in the presence of a set of preconditions (which
are proved to lead to a correct design), then the resulting RTL design is correct.
The authors in [26] proposed early cut-point insertion for checking the equiva-
lence of high level software against RTL of combinational components. The basic
idea is to derive an expression for both the C program and the RTL program,
describing the input-output transition relation of the program and use symbolic
execution and satisfiability solving to check equivalence between the two expres-
sions. This paper only focused on combinational equivalence checking and did not

address how to extend the proposed method for sequential equivalence checking.

14

2.1. Verification of High-level Synthesis

Fujita [25] proposed a method based on virtual datapaths and controllers to
verify equivalence between behavior level and RTL descriptions. First, a behavioral
design is mapped to a virtual controller and virtual datapath, then equivalence of
datapaths and the controller is established separately. However, in this work it has
not been discussed how the equivalence checking works when the two descriptions
are very different and cannot be mapped to the same datapath.

Leung et al. [27] proposed a translation validation technique for C to Verilog
that establishes the equivalence between a C program and its Verilog counterpart
without requiring any intermediate results from the HLS tool. They first convert
both the C program and the Verilog program into a common intermediate rep-
resentation (IR), then use bisimulation techniques to prove the two resulting IR
programs equivalent. They invoke Daikon [61] to detect the likely invariants at
cutpoints. However, in some cases, the likely invariants are not sufficient to prove
post-conditions, and the algorithm will produce false negative results.

R. Mukherjee et al. [28] developed v2¢, a tool that translates Verilog to C. The
v2c¢ accepts synthesizable Verilog as input and generates a word-level C program
as an output. Equivalence checking is then achievable on C level with the help of
either static analyzing tools or dynamic execution tools. They tried to apply v2c
to generate equivalent C code from the RTL generated by a commercial HLS tool.
However, they found that it cannot correctly map the co-ordination between the
controller FSM and operations in blocks. Therefore, a formal equivalence proof
is needed between the RTL and v2c¢ generated C code. Thus, applying v2c based
framework is not a natural solution for HLS functional verification.

Due to the optimizations performed at various stages of the synthesis process,
the resulting RTL design bears little similarity to its specification. An end-to-end
verification method for HLS is very tough and also inadequate for locating the
exact sources of errors. Therefore, an end-to-end equivalence checker that can

handle the complexities of modern day HLS tools is still not available.

2.1.4 Phase-wise Verification of HLS

The large difference in abstraction between the input behavior and RTL design
makes end-to-end verification approach non-trivial. Therefore, the phase-wise ver-

ification technique which can handle the difficulties of each synthesis sub-task

15

Chapter 2. Literature Survey

separately is desirable for HLS verification. In the following, the verification of
different subtasks of HLS is discussed.

Scheduling Verification

One of the most error-prone parts of an HLS tool is its scheduling phase since it
performs aggressive optimizations to meet timing and resource constraints. Hence,
it is necessary to validate the functional equivalence between the input behavior
to HLS and the scheduled behavior generated by HLS.

Anderson [62] reported an early effort on the verification of as soon as possible
(ASAP) scheduling transformation using theorem proving. The paper [63] identi-
fied a set of assertions and invariants that should be held at various steps of HLS.
These invariants were inserted inside the implementation of the force-directed list
scheduling (FDLS) algorithm to detect and isolate the errors in a specific run of
the tool. The correctness of the FDLS algorithm is proved using the prototype
verification system (PVS) theorem prover. In [64] scheduling results are verified
based on precondition-based correctness and completeness of register transfer split.

Eveking et al. [65] represented the pre-scheduled and post-scheduled behaviors
in the language of labeled segments (LLS) and developed the basic transformations
to prove the computational equivalence of LLS. However, none of these techniques
can verify code motion applied during the scheduling phase of HLS.

A formal verification of the scheduling phase of HLS using the FSMD model
is reported in [66]. In this paper, cutpoints are introduced to construct the path
cover for each FSMD. Each path of one path cover is then shown to be equivalent
to some path of the other path cover. However, the technique presented in [66]
assumes that during the synthesis process, the path structure of the input behav-
ior is not modified and operations are not moved from one synthesis basic block
to another. The authors extended their work in [37] to verify speculative code
motions by concatenating critical paths. In this paper, the equivalence conditions
are formulated in high-order logic, and used PVS theorem prover to verify their
correctness. The method presented in this paper fails if the scheduler applies the
non-uniform code motion transformations.

Karfa et al. proposed an equivalence checking method for verification of

scheduling in [38]. In this work, an initial path cover is obtained by introduc-

16

2.1. Verification of High-level Synthesis

ing cutpoints in the FSMD. The paper proposed a bisimulation based symbolic
equivalence of the path covers of two FSMDs. During equivalence checking, a
novel path extension method is proposed to dynamically remove some cutpoints
to prove the equivalence. The work presented in this work takes care of both
run time of the equivalence checker and the wider range of optimizations applied
during scheduling. The method is applicable even when the scheduler changes
the basic structure. This method works only for uniform code motion techniques.
The paper [40] improved the equivalence checking method presented in 38| to deal
with code transformations employing speculation and global common subexpres-

sion extraction.

The paper |39] improved the equivalence checking method presented in [38] to
handle both uniform and nonuniform code motions applied during the scheduling
phase of HLS. This work identified certain data-flow properties that must hold
on the initial and the scheduled behaviors for valid nonuniform code motions.
These properties are based on the definition-use chain [67] of the variables in
the behavior. These properties are encoded as simple CTL (Computational Tree
Logic) [68] formulae and invoke the model checking tool NuSMV [69] to verify
them. The paper [41] uses machine learning (ML) techniques to recognize the
corresponding path-pairs of FSMDs and reduces the complexity of the path-based
FSMD equivalence checking problem.

The methods proposed in [37-41,/66] decompose each behavior into a finite
set of finite paths. Equivalence of the behaviors is established by showing path
level equivalence between two behaviors modeled as FSMDs. The transformation
which modifies the control structure of the input behavior are handled through
path extension. However, a path cannot be extended across a loop by definition of
path cover. Therefore, all these methods fail to handle the transformations that
result in code motion across loops, i.e., some code segment before a loop body is

placed after the loop body, or vice-versa

The technique presented in [70] handles code motion across loops but it requires
additional information from the synthesis tool that is difficult to obtain in general.
The paper [42] introduced a notion of value propagation and widen the scope of
the path-based mechanism [38| to handle code motion across loops. The paper [42]
proposed a value propagation based equivalence checking (VP) method which also

handles code motion across loops. This VP method is also capable of handling

17

Chapter 2. Literature Survey

control structure modification of input behavior and uniform and non-uniform
code motion. Unlike the technique presented in [70], the VP method does not

require additional information from the synthesis tool.

A translation validation approach is proposed in [36,|71] to validate the result
of HLS against the initial high-level program. The method presented in these
papers uses a bisimulation relation approach to prove the equivalence of two de-
scriptions before and after the optimization carried out by the SPARK tool [15].
An improved translation validation of HLS proposed in [72] reduces the number
of queries to an automatic theorem prover, such as Z3 [57], when compared with
the method presented in [36}[71]. All these methods [36,(71,72] are suitable for
handling structure preserving transformations, while in HLS the structure may
not be preserved in the case of path-based scheduling. The translation validation
method proposed in 73] can deal with structure preserving and non-structure pre-
serving optimization due to path-based scheduler [74]. However, to validate the
transformed code with loop structure, the existing approaches have to iterate over
the loop to find the fixed point while such a process does not always terminate.
The paper [75] proposed an equivalence checking approach which combines trans-
lation validation with methods based on the cut-points, and shared value graphs
(SVG) to handle various scheduling optimizations. The proposed method [75] uses
the SVG technique to validate a predicate in one-pass and avoids the “may not

terminate” problem of existing methods.

The paper [76] presented a method based on symbolic simulation together
with identification and inductive verification of loop structures to verify com-
piler transformation commonly applied during the scheduling of HLS. It uses a
symbolic execution technique to explore the paths of the input and transformed
behaviors. It handles the path explosion and path explosion and non-termination
in symbolic simulation issues through compositionality and cut-loop optimization.
The paper [77] presented a scalable equivalence checking algorithm for validating
scheduling transformations. The paper [77] validates various I/O timing modes
such as cycle-fixed mode, superstate-fixed mode and free-floating mode. However,
the algorithms presented in [76,77] can only compare two intermediate representa-
tions (IRS) that are structurally close. If a transformation significantly transforms
the structure of an IR then the heuristics for detecting corresponding variables be-

tween the two IRs will not succeed, causing equivalence checking to fail.

18

2.1. Verification of High-level Synthesis

Allocation and Binding Verification

The verification of allocation and binding phase verifies the functional unit al-
location and binding and also verifies the register sharing among the behavioral
variables.

Ashar et al. [7§] proposed a complete procedure for verifying register-transfer
logic against its scheduled behavior in a high-level synthesis environment. In Ashar
et al., the verification task is partitioning into two subtasks, verifying the validity
of register sharing and verifying correct synthesis of the RTL interconnection and
control. The paper performs equivalence checking between behavioral specification
and RTL implementation of designs by model checking.

The paper [79] reported a post-synthesis methodology based on theorem prov-
ing for formally verifying the various register allocation schemes. In this work, the
scheduled and the RTL description are encoded as extended finite state machines
(EFSMs). The method consists of determining the equivalence of critical states,
critical variables, and critical paths of two EFSMs. However, in the presence of
loops in the behavior, one may encounter an infinite number of execution paths
from the initial state while showing the equivalence between two critical states.

The work proposed in [80] handles the high-level verification in two steps: ver-
ification of scheduling and verification of allocation and final architecture genera-
tion. The paper mainly proves that the final architecture consisting of a controller
and a datapath is correctly generated from the abstract FSM obtained after the
scheduling step. The approach, however, ignores register sharing verification. The
prototype tool presented in this paper has no general inference rule to prove two
algebraic expressions equal.

Karfa et al. [81] proposed a formal methodology for verifying the correctness of
register sharing. The method models the behavior before and after the datapath
synthesis as FSMDs and checks the equivalence of both FSMDs. The method is
independent of the schemes used for register optimization. The method also works

for both data intensive and control intensive input specification.

Datapath and controller verification

The datapath and controller verification ensures the correctness of the data-path

interconnections and the controller. The paper [59] proposed a formal verification

19

Chapter 2. Literature Survey

method of the datapath and controller generation phase of a high-level synthesis
process. This paper presents a rewriting method to obtain the register transfer
operations executed in the datapath for a given control assertion pattern in each
control step. It uses a state-based equivalence checking methodology to verify the
correctness of the controller behavior. Some of the allocation and binding verifica-
tion methods [78,80] treat the allocation, binding and the data-path and controller
generation steps into one by verifying the final RTL against the scheduled behav-

10r.

2.1.5 Our Objective

As discussed above, most of the existing works target the verification of the
scheduling in HLS since the verification of this phase is the most challenging
among all phases of HLS. In this thesis, we are also interested in verifying the
pre-synthesis and the scheduling phases of High-level Synthesis. Code motion
based optimizations are used in the scheduling phase of HLS tools to improve
the quality of synthesis results in terms of timing performance. All of the above
mentioned techniques fail to handle the scenario where some loop invariant op-
eration is moved before (after) the loop from inside it. In the presence of false
computations, these methods produce false negative results. These methods also
fail to handle the scenario where a path in the source behavior splits into multiple
paths in the scheduled behavior. In this thesis, we propose an equivalence checking
method that verifies code motion involving loops, ignores the false computations,
and handles the scenarios involving path merge/split along with uniform and non-
uniform code motions and transformations which alter the control structure of a

given behavior.

2.2 Logic locking: Defenses and Attacks

Logic locking is a technique that protects a hardware design netlist against the
untrustworthy IC supply chain. Logic locking hides the functionality of a design
by adding additional gates into the original design. Many logic locking techniques
as well as attacks have been widely investigated for a decade. In this section, we

discuss the existing works on logic locking both on attack and defense sides in

20

2.2. Logic locking: Defenses and Attacks

chronologically.

RLL [82] and FLL [83]84]

Logic locking was first introduced in EPIC, which abbreviates “Ending Piracy of
Integrated Circuits”, [82]. EPIC used a random XOR/XNOR key gates insertion
policy referred to as random logic locking (RLL). It obfuscates the design by in-
serting XOR/XNOR key gates at a random location in a netlist; only a correct
key makes the design to produce correct outputs. The drawback of RLL is that it
does not necessarily ensure that the wrong keys corrupt the output. Consequently,
an RLL netlist may produce correct output even for incorrect key values. Aims
at overcoming the shortcoming of RLL, Rajendran et al. used fault simulation
techniques in [83,84] to guide XOR/XNOR key gates insertion. The proposed
fault analysis based logic locking (FLL) uses a new insertion criterion called the
fault tmpact. FLL inserts the key gates at the locations that exhibit the highest

fault impact.

Sensitization Attack [85]

After introducing EPIC, Rajendran et al. |85] proposed a sensitization attack.
Sensitization attack, which is an oracle-guided attack, tries to propagate a single
key value to the output. The attacker analyzes the locked netlist and computes
attack patterns that can sensitize individual key bit values to primary outputs.
By applying these patterns to functional IC, the attacker observes and records this
output as the value of the sensitized key-bit. The effectiveness of the sensitization
attack depends on the location of the key gates. The sensitization attack is highly

effective when key gates do not interfere with each other.

Strong Logic Locking 86|

Both RLL and FLL remain vulnerable to the sensitization attack. To prevent
the sensitization attack, strong logic locking (SLL) was introduced. SLL inserts
key-gates in a way that key-gates protect one another [86]. SLL inserts pairwise
secure key gates that protect one another in a netlist. In SLL, it is not possible

to sensitize the key-bit values to a primary output.

21

Chapter 2. Literature Survey

Hill-climbing Attack 87|

Plaza and Markov proposed the hill-climbing attack [87]. The hill climbing attack
exploits test data to determine the secret key. The attack relies on a hill-climbing
search algorithm which uses Hamming distance as a guiding metric. At first,
the attack makes a random initial guess for key K,.,s. The initial Hamming
distance HD,,,q is then computed between the test response and the locked circuit
outputs corresponding to test stimuli. A randomly selected key bit in K,,,q is then
inverted and Hamming distance HD;,, is computed. The HD,,,q and HD;,, are
then compared. If HD;,, < HD,.,q then toggle is retained in K,,,s. The inversion
process is repeated until a key value K4, is found that leads to a Hamming
distance of zero. The attack is successful when HD,,,; = 0. The hill climbing
attack can successfully break RLL and FLL but it loses its effectiveness against
SLL. The complexity of this attack quickly increases with an increasing number

of key gates.

LUT based [88] and Weighted logic locking [89]

Apart from RLL, FLL and SLL, important research efforts on logic locking include
a look-up table (LUT) based locking |88] and weighted logic locking [89] to find
suitable key gate locations. The main objective of all these logic locking techniques
is to increase the output corruptibility (i.e., produce more incorrect outputs for
more input patterns) given an incorrect key. In 2015, Pramod et al. [46] developed
a powerful attack that broke all logic locking techniques that existed at that time.
The attack employs a Boolean satisfiability (SAT) formulation to encode of finding
the logic locking key and commonly refer to it as the SAT attack. All the logic
locking methods discussed above also remain vulnerable to Boolean Satisfiability
based attack called SAT attack [46]. The SAT attack can easily break these logic

locking techniques within a few hours even for a reasonably large number of keys.

SAT Attack [46)]

The SAT attack is an oracle-guided attack. The SAT attack employs a SAT solver
to find distinguishing input patterns that refine key search space iteratively. A
DIP is an input value x4 for which at least two different key values, k; and ko,

produce differing outputs, o; and o0s, respectively. Since o; and o, are different,

22

2.2. Logic locking: Defenses and Attacks

Output Y for different key values
a|b|lcl|Y k’o k’l k’g k’g]{34]{35]{56 k’7
ojofjojo0}1 0 O O O O 0O O
ojof1j0{0 O 1T 0O 0O O 0 O
ojryj0j0{0 1T O O O O 0O O
o(rf1}j1}{1 1 1 0 1 1 1 1
110j0f06,0 O O O 1T O 0 O
i1/j0(1f1;1 1 1 1 1 1 1 1
i1/j1jof1;1 1 1 1 1 0 1 1
ry1}j1f1r,1 1 1 1 1 1 1 O

Table 2.1: Maximal resilience against the SAT attack can be achieved by control-
ling the discriminating ability of input patterns

at least one of the key values is incorrect. A single DIP may rule out multiple
incorrect key values. The SAT attack terminates when no more DIPs can be
found, which means that the remaining key is guaranteed to be the correct key.
The computational effort of the SAT attack depends on the order of choosing the
DIP. However, the SAT attack selects the DIPs on a random basis. The larger the
number of incorrect key values ruled out per DIP, the less the DIP required for
the attack, which suggests a littler execution time of the attack.

Note that the worst case scenario for the SAT attack arises when it can elimi-
nate at most one key for every DIP. In Table[2.1] a, b, ¢ are the primary inputs, and
Y is the corresponding primary output. It can be observed that the correct key
value is k6. It also evident from Table that in each row, there is at most one
key value that generates an incorrect output. In such a scenario, the SAT attack
with &k key bits would require at least 2/*l — 1 DIPs. To prevent SAT attack, the
first attempted approach was to reduce the number of wrong keys that each DIP
can rule out. SARLock [|34], Anti-SAT [50,90|, and AND-tree insertion [91,/92]

can accomplish this.

SARLock [34]

SARLock, which abbreviates, “SAT Attack Resistant Logic Locking,” thwarts
SAT-based attacks by minimizing the number of keys that are ruled out by a single
DIP. To accomplish this effect, SARLock integrates a comparator and a mask block
with the original circuit. The comparator circuit which mimics Table flips the

23

Chapter 2. Literature Survey

circuit output for only one input pattern for a given (wrong) key. The resulting
locked circuit achieves the desired resistance against the SAT attack at minimal
overhead. A small mask logic is inserted to prevent the assertion of the flip signal
when a correct key is given. For each incorrect key value, an error is injected
into the circuit for only one input pattern, leading to an incorrect output for the
specific pattern. Assuming that F'(I) denotes the original circuit, the output O
of the circuit locked using SARLock can be presented as O = F(I) @ ((I ==
K)® (I == k;)), where K denotes the key inputs, and ks is the correct key
value. For a key size k, the SARLock protection circuit consists of k + 1 2-input
XOR/XNOR gates and 2k + 1 2-input AND gates.

Anti-SAT Logic Locking [50,90]

In Anti-SAT [50,90], an Anti-SAT block comprises two blocks By = g(X, K1)
and B, = g(X, K5). Both blocks share the same inputs X and are locked with
different keys Kj; andKi5. The one-bit output Y is the AND operation of the
outputs of B; and By blocks. The output Y is connected to the original circuit
using an XOR gate. The functionality of the two blocks is complementary. When
the correct key value is applied, for all inputs, Y = 0, leading to a correct output.
If the incorrect key is applied, the output of By and By is 1 for a specific input
pattern; for that pattern, Y = 1, and thus produce a fault in the original circuit.
With Anti-SAT, only 1 key value among all wrong key values could be ruled out
at each iteration of the SAT attack.

AND-tree Insertion (ATI) Logic Locking [91,92]

While SAR-Lock and Anti-SAT add an external circuit to the original netlist
AND-tree insertion (ATI) finds an AND-tree inside the original netlist and thus
decrease the implementation overhead. The inputs of the identified AND-tree are
camouflaged by inserting INV/BUF camouflaged gates. The INV/BUF gates can
be replaced with the XOR/XNOR counterparts to obtain a logic locked AND-tree.
An existing AND/OR tree can be identified by running a breadth-first search on
the netlist. The SAT attack resilience of ATI grows exponentially with increasing
key size, similar to that for SARLock and Anti-SAT. The major drawback of ATI
is that it can only protect the parts of a circuit where the desired AND/OR trees

24

2.2. Logic locking: Defenses and Attacks

are present inherently. It does not offer a designer the flexibility to choose the

logic to be protected.

Compound Logic Locking

The main drawback of the SARLock, AntiSAT, and ATT logic locking techniques
is their low output corruptibility. Compound logic locking technique combines a
low output corruptibility technique (e.g., SARLock, AntiSAT or ATI) with a high
output corruptibility technique (e.g., RLL, FLL or SLL). For example, Compound
techniques that improve the output corruptibility remain vulnerable to the ap-
proximate attacks. In [34] SARLock is combined with SLL, and in [90] AntiSAT
is integrated with FLL.

Signal Probability Skew (SPS) Attack [48]

SPS breaks Anti-SAT. SPS exploits structural traces in the netlist to identify and
remove the basic (unobfuscated) Anti-SAT and retrieve the original circuit within
minutes. The attack uses the notion of signal probability to identify the output
gate of Anti-SAT. The signal probability skew(SPS) is given as,

SPS(x) = Prjz =1] — 0.5 (2.1)

where, Pr[z = 1] denotes the probability of signal = being 1. For a signal y that
is rarely 1, e.g. the output of a large AND tree, SPS(y) = —0.5. The absolute
difference of the probability skew (ADS) of all gate outputs in the netlist are
calculated and gate with the maximum ADS value is suspected to be the output Y
of the Anti-SAT block. The signal Y is set to the value it is most skewed towards,
thus defeating the protection offered by the SAT resilient block. SPS attack is
scalable to large circuits and it becomes more effective with increasing key size.
However, the attack becomes less effective in the presence of structural/functional

obfuscation.

AppSAT Attack [93]

Shamsi et al. proposed an approximate attack based on the SAT attack and ran-

dom testing (AppSAT) [93]. AppSAT aims at reducing a multi-layered defense

25

Chapter 2. Literature Survey

to single-layer (e.g., Anti-SAT+FLL to Anti- SAT). The SAT attack terminates
when there is no DIP and reports the correct key but the AppSAT attack termi-
nates when the Hamming distance between the correct output from the functional
IC and the locked netlist is very low. Otherwise, random testing that resulted
in a disagreement will be added to an SAT formula as a new constraint. Upon
termination, the attack returns approximate correct key values, which results in

an approximate netlist.

Double-DIP [94]

Shen et al. proposed in [94] the Double DIP SAT-based attack to reduce a com-
pound logic locking technique to its low-corruptibility component. Similar to
AppSAT, Double-DIP is an approximate attack. Double-DIP used 2-DIPs, which
can eliminate at least two incorrect key values in a single iteration. Double-DIP

attack terminates when 2-DIPs can no longer be found.

AppSAT-Guided Removal (AGR) Attack [48]

The AGR attack targets compound logic locking, particularly Anti-SAT + tradi-
tional logic locking. Unlike AppSAT, the AGR attack recovers the correct key.
This attack integrates AppSAT with a simple structural analysis of the locked
netlist. Firstly AppSAT is used to find the key of dedicated to the traditional
locking technique. Then, a structural analysis of the Anti-SAT block allows dis-
covering the last gate of the block.

Bypass Attack [47]

The Bypass attack uses a bypass circuitry around a locked netlist to nullify the
error introduced by the locked circuit, thus restore its correct functionality. This
attack is efficient against Anti-SAT and SARLock, even coupled with a traditional

logic locking technique.

Tenacious and Traceless Logic Locking (TTLock) [51]

Both SARLock and Anti-SAT are vulnerable to removal attacks because they

implement the original function. TTLock is an improvement of SARLock that

26

2.2. Logic locking: Defenses and Attacks

prevents a removal attack. TTLock modifies the original logic cone for exactly
one input pattern. For this input pattern, the modified netlist and the original
netlist differ in their outputs for all wrong keys. TTLock adds a comparator block
to restore the correct functionality only for the correct key. Upon removal attack,
the attacker still gets netlist which is different than the original one. However,
in TTLock output differs from the original circuit for exactly one cube which

results in low output corruptibility and is vulnerable to approximate attacks such
as AppSAT.

Stripped-Functionality Logic Locking [52]

Stripped-functionality logic locking (SFLL), a logic locking technique that provides
provable security against SAT, removal, and approximate attacks. SFLL has three
variants: SFLL-HD, SFLL-flex, and SFLL-fault. SFLL-HD creates a functionality-
stripped circuit (FSC) by inverting the output of the original circuit for (:) input
patterns that are of Hamming distance h from the k-bit secret key. With increasing
h, the number of protected patterns increases binomially. For h = 0, SFLL-HD is
equivalent to TTLock. In SFLIL-flex, the designer choose the protected patterns
freely irrespective of any key and hamming distance. SFLL-fault subtracts the
logic by inserting fault injection. SFLL-fault, thus, does not leave any structural

traces any traces for an attacker to exploit.

Functional analysis attack on logic locking (FALL) [49]

FALL attack uses structural and functional analyses of circuit nodes to first iden-
tify the gates that are the output of the cube stripping module to determine the
locking key. The Functional analysis attack on logic locking (FALL) breaks SFLL-
HD and SFLL-flex as well. However, the FALL attack cannot break SFLL-fault.

2.2.1 Our Objective

These attacks and defenses focus on the gate-level abstraction and have been
demonstrated on small circuits like the ISCAS benchmarks. Recently, there has
been an attempt to perform logic lock at the RTL [35,95] and the C level [96].

TAO [35] is an example of such a scheme. However, to the best of our knowledge,

27

Chapter 2. Literature Survey

hardware security during HLS has not been studied. The SMT attack proposed
in Chapter [0]is the first one on locking during HLS. While SMT has been used to
unlock gate-level netlists [97], these methods do not apply to RTL unlocking.

28

Chapter 3

Verification of Code Motion
Transformations Involving Loops

during Scheduling

3.1 Introduction

3.1.1 Code Motion Techniques

In the scheduling phase, HLS tools enhance concurrency and hence improving
resource utilization by moving operations across basic block boundaries, which is
called code motion. In the next subsection we explore a set of speculative code
motions that are useful for HLS. These code motions have been proposed for

improving synthesis results in designs with complex control flow.

Speculative Code Motions

The speculative code motions enable movement of operations through, beyond,
and into conditionals with the objective of extracting the inherent parallelism in
design. Effectively, these code motions reorder operations to reduce the impact
of choice of control flow in the input behavior. The speculation comes into four
forms: (1) speculation, (2) reverse speculation, (3) conditional speculation, and

(4) early condition execution. An overview of the various speculative code motions
is shown in Fig. 3.1]

Speculation

Speculation refers to the unconditional execution of operations that were origi-

nally supposed to have executed conditionally. In this approach, the result of a

29

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Across
Hierarchical
Blocks

Figure 3.1: Various speculative code motions |15]

speculated operation is stored in a new variable.

Reverse Speculation

In reverse speculation operations before conditional block are moved into subse-
quent conditional block and executed conditionally. Reverse speculation has been
variously referred to as lazy code motion or execution and duplicating down in

past literature [7,98].

Conditional Speculation

In conditional speculation an operation from after the conditional block may be du-
plicated up into preceding conditional branches and executed conditionally. This
is similar to the duplication-up code motion used in compilers and the node du-

plication transformation discussed in [99).

Early Condition Execution

Early condition execution evaluates conditional checks as soon as possible. Reverse
speculation can be coupled with early condition execution i.e., conditional check
is moved up and all operations before the conditional block are reverse speculated

into the conditional block.

30

3.1. Introduction

| ® ®
LELS

@
@ | =
@ @

a) Sl (b) SQ (C) Sg

2@
Sandl

’?ﬁ

PN

—~

Figure 3.2: Three possible scenarios during code motion transformations involving
loops

Loop Invariant Code Motion

Loop invariant code inside a loop body consists of statements or expressions which
produce the same result each time the loop is executed. In other words, these
statements are not dependent on loop iterations. This code can be moved outside
the loop body without changing the program semantics. Loop invariant code
motion improves overall program execution time by reducing the number of times
loop invariant expressions are executed by a factor equal to the loop size.

As shown in Fig. [3.2] there are three possible scenarios during code motion

transformations involving loops:

St : Some code segment before a loop body is placed after the loop body or vice

versa (i.e., code motion across loops).
Sy 1 Some code segment is moved before the loop from inside the loop body.

S3 : Some code segment is moved after the loop from inside the loop body.

Code motion based optimizations are used in scheduling phase of HLS tools to
improve the quality of synthesis results. Code motion techniques change the data-
flow of a behavior considerably. Therefore, it is necessary to verify the semantic

equivalence between the original and the transformed behaviors.

3.1.2 Summary of Verification of Code Motion

Verification of code motion transformations has been an active research area for the
last ten years [36-40,42,/70,75]. The methods [36-40, 75| fail to handle the case of

31

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

code motion across loops and loop invariant code motion. The technique presented
in |70] handles code motion across loops but it requires additional information
from the synthesis tool which is difficult to obtain in general. The VP method was
proposed in [42] which also handles code motion across loops. Unlike the technique
presented in [70], the VP method does not require additional information from the
HLS tool.

The VP method handles scenario S; but it cannot handle scenarios S, and
Ss. In addition, Example [3] given in Section shows a case where the VP
method [42] provides a false positive result for a scenario involving code motion
across loops. Moreover, the VP method does not check whether a computation
is a false computation i.e., it never executes. As a result, it gives false negative

results in the case of loop invariant code motion involving false computations.

3.1.3 Contributions

In this chapter, we present an equivalence checking method based on value prop-
agation for code motion involving loops to overcome all the above limitations of
existing works. Our method is capable of handling all the three scenarios, i.e.,
S1,55 and S3, mentioned above. Moreover, our method is able to prove non-
equivalence for the case given in Example [3| Also, if the loop is executed at least
once, then our method will ignore the false computation during equivalence check-
ing. In particular, a bug in the HLS tool SPARK [15] involving loop invariant

code motion is detected by our method.

The rest of this Chapter is organized as follows. The FSMD model and the VP
method are explained in Sections [3.2] and [3.3] respectively. Motivating examples
highlighting the limitations of the VP method are given in Section [3.4] A solu-
tion to handle all the above scenarios and to identify a false computation of an
FSMD during equivalence checking is presented in Section [3.5] The enhanced VP
method is presented in Section [3.6] Experimental results are given in Section
Section concludes the chapter.

32

3.2. The FSMD Model

3.2 The FSMD Model

In the translation validation approach, the input behavior to HLS (i.e., source
behavior) and the scheduled behavior generated at the scheduling phase of HLS
(i.e., transformed behavior) are represented using the FSMD model. FSMDs [1]
are an extension of the finite state machine (FSM) model with data/variables used
to model behaviors. Unlike FSMs that model the control flow, FSMDs capture
the data-flow aspect of the behavior as well. Each transition of an FSMD includes
a condition over the data variables and a set of operations that transform the

variable values.

Definition 1 (FSMD). An FSMD M is defined as a 7-tuple (Q,qo, 1,0,V f,h),

where
e () is the finite set of states,

e ¢y € Q is the reset (initial) state,

I is the finite set of input variables,

O is the finite set of output variables,

V' is the finite set of storage variables,
o :Q x2° = Q is the state transition function,
o h:Q x 2% = U is the update function.

Here S = {LUEY} is the set of status expressions where L is the set of Boolean
literals of the form b or —b, b € B C V is a Boolean variable and E s the set of
arithmetic predicates over I U (V — B). Any arithmetic predicate is of the form
eR0, where e is an arithmetic expression and R € {==,#,>,>,<,<}. U is a
set of storage or output assignments of the form {x = elx € O UV} and e is an
arithmetic predicate or expression over I U (V — B); it represents a set of storage

or output assignments. An FSMD is an inherently deterministic model.

A walk from ¢; to g; is a sequence of state transitions of the form (g; =2 g SAEX
Ci+n—1

oo == (itn = ;) Where g € Q V k, i < k < i+n, and the state transitions
flqe,cr) = quyy for all k, i < k < i+mn — 1, where ¢, € 27 is the condition of

33

© 0 N S Otk W NN

— = = =
W N = O

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

sum=1;
i=2;
while (i<n){
temp=n%i;
if (temp==0){
sum=sum+i;

i=i+1;3}

i<n/
temp = n%i

else

i=i+1;}

temp == 0/
sum = sum + 1

if (sum==n)
out=1;

else
out=0;

(a) Input behavior (b) FSMD M,

Figure 3.3: An FSMD example: @ finds whether a number n is a perfect number
or not; @ an FSMD M, corresponding to input behavior @

the transition from g to gry1. A (finite) path [is a walk where all the states
are different, except the end state ¢; may be the same as the start state ¢;. The
condition of execution Rg of a path [is a logical expression over I UV, which
must be satisfied by the initial data state in order to traverse the path 5. The data
transformation (sz) represents the updated variables vector sz = (eq, e9,. .., €x),
where & = |V|] and e; is an algebraic expressions over the variables in V' and
the inputs in I. The expression e; represents the symbolic value obtained by the
variable v; € V' at the end state of when the initial symbolic value of the variable
v is denoted as ‘v’. For a path 3, Rz and sz are computed by forward or backward
substitution based on symbolic execution [100].

It may be noted that there would be an ordered list of outputs in any path
as discussed in [38]. For equivalence of two paths, the outputs of them also must
match. When some variable is output, its counterpart in the other FSMD must
attain the same value. Therefore, the equivalence of outputs hinges upon the
equivalence of data transformations of variables (i.e., sg). Hence, in this work, we
focus only on equivalence of sg. The paper |39] discusses in detail how the FSMD

models can be constructed from the high-level representations of the input and

34

3.2. The FSMD Model

the transformed behaviors.

Example 1. Let us consider the input behavior in Fig. and its corresponding
FSMDs in Fig. . The behavior checks whether a number n is perfect number
or not. If n is a perfect number then it sets the value of the variable out to 1
otherwise (. Let consider the path = qoo = qo1 G qos S Gos = qoo
in the FSMD My in Fig. [3.3(b). The computation of [Rg,sg] for this path (3 by

forward substitution method is as follows:

[
At qo1 : [True, (1,2, n, temp, out)].
At qo5 - [[(2 < n), (1,2, n, temp, out)].
At qos : [/(2 <n) A (2 ==n),(1,2,n, temp, 1)].
At qoo : [/(2 <n) A (2 ==n),(1,2,n, temp, 1)].

3.2.1 Equivalence of FSMDs

Let My = (Qo, qoo, I, O, Vo, fo, ho) and My = (Q1, q10, I, O, V1, f1, h1) be two FS-
MDs having the same input(s)/output(s). A computation of an FSMD is a finite
walk from the reset state qq to itself, and ¢g should not occur in between. The M;
is derived from M, through HLS scheduling. Our main goal is to verify whether
My behaves exactly as M;. This means that for all possible input sequences, M,
and M; produce the same sequences of output values and eventually, when the
respective reset states are revisited, they are visited with the same storage element
values. In other words, for every computation from the reset state back to itself
of one FSMD, there exists an equivalent computation from the reset state back to
itself in the other FSMD and vice versa.

Definition 2 (Computation Equivalence). Two computations pg and jy are equiv-
alent, denoted as poy ~ w1 iff Ry, = Ry, and s,, = s,,, where R, and R,, are
the condition of execution of py and ji1, respectively and s,, and s,, are the data

transformation of po and iy, respectively.

Definition 3 (FSMD Containment). An FSMD My is contained in another FSMD
My (My & M) if for any computation py of My on some inputs, there ezists a

computation py of My on the same inputs such that po =~ p.

35

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Definition 4 (Equivalence of FSMDs). Two FSMDs M, and M, are computa-
tionally equivalent, if My T My and My, T M,.

An FSMD may consist of an infinite number of computations because of loops.
However, for an FSMD M, any computation p is the concatenation 315 - - (]
of paths of M where for all k, 1 < k < n, By terminates in the start state of the
path (5. 1; the reset state is the start state of ; and the end state of 3,; §;’s may

not all be distinct. Hence, we have the following definition.

Definition 5 (Path cover of an FSMD). A finite set of paths P = {50, b1, - -, Bk}
1s said to be a path cover of an FSMD M if any computation p of M can be looked

upon as a concatenation of paths from P.

To obtain a path cover for an FSMD model each loop is cut at at least one
cutpoint. The set of all paths from a cutpoint to another cutpoint without any
intermediary occurrence of a cutpoint is a path cover of the FSMD. This is based

on the Floyd-Hoare method of program verification [54].

Definition 6 (Path Equivalence). Two paths 5 and « are equivalent denoted by
B~aif Rg =R, and sg = 5,.

The correspondence of states between M, and M; are defined as follow.
Definition 7 (Corresponding States).
1. The reset states qoo and qio are corresponding states.

2. The states qop € Qo and qy; € Q1 are corresponding states if the state qo; € Qo
and qi; € Q1 are corresponding states and there exists paths 3 from qo; to

qor and o from qij to qu, such that B ~ o
The following theorem can be concluded from the above discussion.

Theorem 1. An FSMD M, is contained in another FSMD M, (Mo C M), if there
exists a path cover Py = { B, Bor, - Por} of My and P1 = {aig, 0u1,- - ,awc} of
My such that By; ~ ay; for all i, 0 <1 < k.

Proof. My € M, if, for any computation g of My, there exists a computation uy

of My such that po and py are computationally equivalent. [by Definition

36

3.3. Value Propagation Based Equivalence of FSMDs

Now, let there exists a path cover Py = {Soo, fo1, " , Por } of My. Correspond-
ing to Py, let a set Py = {aqo, 11, -+ , a1} of My exists such that Sy ~ «ay; for
all i, 0 < ¢ < k. Since Py covers M,, any computation ug of My can be looked
upon as a concatenated path [Boi,, Boiys - - - » Boi,] from Py starting from the reset
state (goo) and ending again at the reset state of M. From above it follows that
there exists a sequence II; of paths [aq;,, o ,, - - ., ou;,] of Pr, where fy;, >~ ayj, for
all [, 0 < [< n. Therefore, in order that II; represents a computation of M, it
is required to prove that II; is a concatenated path of M; from its reset state gy
back to itself.

Now, let Boi, : [goo = Gog,]- Since Boi, =~ @y, from the definition of correspond-
ing states, ay;, must be of the form [g10 = ¢11,], where (goo, ¢10) and (gof,, ¢17,) are
corresponding states. Thus, by repetitive application of the above argument, it
follows that if Boi, : [goo = op], Bois * (@05, = gl Boin * [@0fa_s = Qof, = o0l
then auj, : [0 = qiplscug, @ lay = qupl, o aag, t @y, . = @iy = quo], where
(Q0fs @1fm)s 1 < m < m, are pairs of corresponding states. Hence, II; is a concate-

nated path representing a computation py of M;, where pg >~ ;. |

Two FSMDs M, and M, are equivalent, denoted as My, = M, if M,
and M; C M,. Since FSMDs are deterministic, it can be shown that M,
implies My C M.

M,
M,

3.3 Value Propagation Based Equivalence of FS-
MDs

The value propagation method consists in propagating values of variables over
the corresponding paths of two FSMDs on discovery of mismatch in the values of
some variables. Propagation of values from a path (§; to the subsequent path s
is carried out by associating a propagated vector at the end state of the path 3,
(or equivalently, the start state of the path (). A propagated vector g, at the
end state gg, E|of a path 8 is an ordered pair <R23f, s’ﬂf), where the first element is
the condition of execution (Rz) and the second element is the vector of values of
the variables of both FSMDs when the path g is compared with another path « in

!The start state and the final state of a path 3 is denoted as gg., gs ;> respectively.

37

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

the other FSMD. Let say that © denotes (v, vy - - vg) and € denotes (ey, ey - - ex)
where e; is the symbolic expression involving variables in v. The propagated
vector associated with the reset state is (T, (vy, va ... vx)), also denoted as p, where
T stands for True and e; = v;,1 < ¢ < k indicates that the variables are yet to
define.

Let there is a path 3 : gs, = g, in an FSMD M, with a propagated vector g,
associated with gg, and a path a : go, = ¢a, in an FSMD M, with a propagated
vector U, associated with ¢q,,. The characteristic formula for the path [is Tgﬁs =
(RZB S,sgﬁ *), where RZB * is the condition of execution of § and sgﬁs is the data
transformation of 3 considering the data state of the variables at g, is 95, (instead
of ©). Similarly, the characteristic formula for the path « is 7o = (Ra®, so®*).

In the VP method a path cover is obtained by setting the reset state and the
branching states (i.e., states with more than one outward transition) of the FSMD
as cutpoints. To check the equivalence between two paths say S of FSMD M, and

a of My, the characteristic formula associated with these path are compared.

Definition 8 (Unconditionally and Conditionally Equivalent Paths). A path f3 :
qs. = qp, with a characteristic formula Tgﬂs = (Zﬂs,sgﬁs> is said to be uncon-
ditionally equivalent (U-equivalent in short, denoted by B ~, «) if RZBS = RUes
and sgﬁs = gles Otherwise, the path [is said to be conditionally equivalent (C-

equivalent in short, denoted by B ~. «) if

® dpy # qoo and o # qio-

e V' emanating from the state qg, with propagated vector (’ﬁf, s%f} there ex-

ists a path o/ emanating from q., with the propagated vector (R, ,s,.), such

Cl{f’ ar
that ' ~, o or B ~.d .

Once a C-equivalent path is identified, the VP method tries to find a U-
equivalent path in a depth-first search (DFS) manner. Example [2| illustrates the
method of value propagation.

Example 2. Let us consider the input FSMD in Fig. and the transformed
FSMD in Fig. . Let the variable ordering be (u,v,w,x,y, z). The propagated
vector at the reset state qoo (q10) s Yoo(tho) = (T, (u,v,w,x,y,2)). The charac-
teristic formula for the path [y is Tgoo = (T, (u,v,w, fi(u,v),y,2)) and for the

38

3.3. Value Propagation Based Equivalence of FSMDs

p1 Qa1

-/x = fi(u,v) -y = fa(u)
B2 B3 Qg as
p(x)/ =p(x)/ —p(f1(u,v))
y:fQ(u>v y:f4(uav)v]Zj(il.(fu,(;};)/ x:f6<uvv7w)7
z= [f3(v) z= f5(w) RN z = fs5(w)
x = fi(u,v)
(a) Mo (b) My

Figure 3.4: An example of value propagation

path o is 7910 = (T, (u, v, w, z, f>(u), 2)). In Tgoo and 721 there is a mismatch in

the values of x and y. Therefore, the propagated vector at qo; and qi1 are ¥y, =
(T, (u,v,w, f1(u,v),y, 2)) and Y11 = (T, (u,v,w,x,fa(n), 2)) respectively. In Vy
and Y11 the values of x andy are in boldface to denote that they mismatch and other
variables whose value matches are in the normal face. The characteristic formula
for By with respect to Yo is T4 = (T A p(f1(u,v)), (u, v, w, fi(u,v), fa(w), fs(v)))
and for oy with respect to V11 is 75 = (TAP(f1(u, v)), (u, v, w, fi(u,v), f2(u), f3(v))).

2

The characteristic formulas Tgfl and 7‘;9211 are equal therefore the propagated vec-

tor at qo2 and qo are p. The characteristic formula for B3 with respect to Vo
is Tgfl = (T A =p(f1(u,v)), (u,v,w, fi(u,v), fa(u,v), fs(w))) and for as with re-
spect to U1y is TN = (T A =p(fiu,v), (u, v, w, fo(u,v,w), fo(u), fs(w))). There
is a mismatch in therefore the propagated vector at (via 53) qo2 and (via as)
q12 are Yoo = (T A =p(f1(u,v)), (u,v,w, f1(a,v),f4(u, v), fs(w))) and 912 = (T A
—p(f1(u,v), (u,v,w, fg(u,v,w), fa(u), fs(w))). It may be noted the variable z is
not reverted to its symbolic value even though it matches in both of the propagated

vectors.

An abstract version of the VP method is given in Algorithm (I} The details can
be found in [42]. The function containmentChecker (Algorithm [1)) identifies the

cutpoints and a path cover in an FSMD. It invokes correspondenceChecker (Al-

39

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Algorithm 1: containmentChecker(FSMD M,, FSMD M,)

1 My and M; and compute their path cover Py and Pp; W), is a set of
corresponding state pairs and initially contains (qoo, q10);
2 foreach (qoi, q1;) € Wesp do

3 if correspondenceChecker (qo;, q1j, Po, P1, Wesp) returns “failure” then
4 ‘ Report “unable to decide My C M;” and exit;
5 end if

6 end foreach
7 Report “My C M;y”;

Algorithm 2: correspondenceChecker(qo;, q1;, Fo, P, Wesp)

1 foreach path 3 : (qo;i = qom) in Fy do

2 if path o : (¢1; = qin) can be found in P; such that 5 ~, o then
3 ‘ Wcsp = Wcsp U {(q0m7 q1n)};
4 else if path o : (q1; = ¢in) can be found in P; such that 8 ~. o then
5 if qom or g1, is the reset state then
6 ‘ return failure;
7 else
8 ‘ correspondenceChecker(qom, qin, Fo, P1, Wesp);
9 end if
10 else
11 ‘ return failure;
12 end if

end foreach
return success;

-
W

gorithm for each corresponding state pairs, one by one. The correspondenceChecker
function checks whether for every path emanating from a state in the pair, there is

a U- or C-equivalent path from the other member of the pair. Based on the output
returned by correspondenceChecker, containmentChecker reports whether the
source FSMD is contained in the transformed FSMD or not.

3.4 Motivations

In this section, we present a case where the VP method provides a false positive
result. We also present a case where the VP method reports a possible non-

equivalence of FSMDs which are actually equivalent due to the presence of a false

40

3.4. Motivations

computation.

3.4.1 False Positive Case of the VP Method

To detect valid code motion across a loop, the VP method marks the variables
which exhibit a mismatch in the propagated vector. Those variables on which
these marked variables depend are also marked in the propagated vector. The rest
of the variables are denoted as unmarked variables. A code motion across a loop
is determined to be valid by the VP method iff

1. the values of marked variables are exactly the same after exiting the loop as

before entering the loop in both behaviors and

2. the data transformations of unmarked variables, with respect to the propa-
gated vector (stored before entering the loop) are exactly the same within

the loop in each behavior.

In other words, the marked variables should not be updated within the loop in
each behavior, and the unmarked variables should be updated in exactly the same
manner in both behaviors. It may be noted that after traversing the loop once, the
VP method compares the unmarked variable values of each behavior. If the values
are the same, then it declares that all the variables are identically defined. But
this may not always be true as shown in Example |3 Therefore, the VP method
produces false positive results. In a propagated vector, we use bold face to denote
the marked variables. Example [3|illustrates a scenario where two behaviors are

not equivalent but this method declares them equivalent.

Example 3. In Fig. the operation t = a+5 is moved across the loop as shown
in FSMDs My and M;. Let the variable ordering be {(a,i, out,x,ty. The operation
x = x + 5 s intentionally replaced by x =5 in My ; clearly these two behaviors are
not equivalent.

The propagated vector at the reset state qoo (q10) s Yoo(V10) = (T, (a, i, out, ., t)).
For the path qoo = qo1 of My, the VP method finds the candidate C-equivalent
path g0 = qu1 of My. So the propagated vectors at qoy and g1 are Yo =
(T,(a,0, out,0,a+ 5)) and ¥1; = (T, (a,0, out, 0, t)), respectively. The VP method

checks all the paths emanating from the state qo; and its corresponding state qi;

41

Chapter 3. Translation Validation of Code Motion Involving Loops during

Scheduling
fi=as) Tz
7/ =) J—
i <5/ - i <5/ T
i=i+ 1, =it 1, s
ey i <
out— 41 [t=a+5]
out =x +1
(a) Mo (b) My

Figure 3.5: An example where the VP method gives false positive result.

with respect to propagated vector Vg, and 911, respectively. It may be noted that be-
fore entering the loop the propagated vectors at qy; and q11 are not the same because
of the mismatch in the value of variable t. In this case t and a are marked variables
because the values of t do not match and t depends on a. After traversing the loop
once, the propagated vectors at qo1 and q11 will be ¥y, = (T, (a, 1, out,5,a+5))
and ¥y, = (T, (a,1, out,5,t)) respectively. Here the marked variables t and a are
not updated in either of the loops (i.e., condition 1 is satisfied) and the unmarked
variables x and i have the same transformation (the value of x is 5 and the value
of i is 1) in both the loops (i.e., thus satisfy the condition 2) with respect to prop-
agated vectors ¥y, and ¥11. Therefore, the VP method says it is a valid case of
code motion across a loop. Since it cannot be determined statically how many
times a loop will execute, all the unmarked variable are reverted to their symbolic
value at the exit of the loop in the VP method. Therefore, the propagated vec-
tor at qo1 and q1 at the end of the loop will be ¥4, = (T, (a,i, out,z,a+ 5)) and
W, = (T, (a,i, out, x, t)) respectively. For the path qo1 = qo2 of Mo and for the path
(11 = q12, the propagated vector at qoy and qio will be Vo = (T, {(a,i,x+t, x,t+5))
and V13 = (T, {a, i,z + t,x,t + b)) respectively. The propagated vector Jga and V19
are the same at qu2 and qi12. Finally, qo1 = qo2 and q11 = qi2 are designated as
a U-equivalent, and the previously declared candidate C-equivalent path pairs are
asserted to be C-equivalent. Hence, the VP method declares My = M;.

It may be noted that after exiting the loop the value of x at qo1 will be 30 in

My ; while, it will be the value 5 at q11 in M. Clearly, these two behaviors are not

42

3.4. Motivations

-liei+1
Jisi+1

Figure 3.6: An example where the VP method provides false negative result.

equivalent. Hence, the VP method gives a false positive result in this case.

In the case of mismatch at the loop header (i.e., entry point of the loop), the
VP method does not revert all the unmarked variables to their symbolic values
and propagates their values along with the marked variables. It may cause the
VP method to produce a false positive result in some scenario. In Example |3| the
VP method not able to detect the mismatch for unmarked variable x at the of
the loop. To avoid the false positive result the VP method should propagate only
the marked variable values and all the unmarked variables should be reverted to
their symbolic values. In the Subsection [3.5.1| we propose a solution to show the
non-equivalence for false positive cases.

3.4.2 False Computation Involving Loops

Example {| illustrates a case where the VP method provides false negative results

due to the presence of a false computation.

Example 4. Let us consider the FSMDs in Fig.[3.6. In this example, the operation
x =5 1s a loop invariant for FSMD My in Fig. . It is placed before the loop
in the transformed FSMD M in Fig. .

43

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

There are three possible computations, p; = (qoo - qo1 E do3 = qoo),
a2 = {qoo 228 (qo1 =1 qo1) " = Qo3 = qoo) and i3 = {qoo == Qo3 = qoo) for
the FSMD in Fig. . The computation py executes if the loop condition i < n
is False for n > 0. The computation ps executes if the loop condition i < n is
True for the input n > 0. The computation us executes if n < 0 holds. In this
example, when the state qo is reached for the first time, n is always greater than
or equal to 0, and v is equal to 0. Therefore, the computation p, will never execute.
In other words, the loop will execute at least once for all possible n > 0 and i = 0.

The computation iy is, therefore, a false computation.

The VP method explores all possible computations of a given FSMD M. It
does not check whether a computation is a false computation or not. It finds
that the computatzon Lo and s of FSMD My are equwalent to the computation
(q10 = (g1 = qu)* = Q13 = qu0), (quo == 13 $ q10) Of FSMD My,
respectively. However, the VP method fails to find {(qo e qi1 S 13 = qio)
as an equivalent computation of py i FSMD My, since they differ in the final
value of the variable x. It may be noted that the final Ualue of:c would be 0 after
execution of puy in My and 5 after the execution of {qio :> q11 :> 13 = quo) in
M. In this example, as described above, the computation py will never execute.
The non-equivalence of FSMDs reported by the VP method is due to this false

computation.

If we can ignore this false computation during equivalence checking, we can
establish the equivalence between these two behaviors. In Subsection [3.5.2] we

show how to ignore a false computation with the help of SMT solver Z3 [57].

3.4.3 Code Motion Involving Loops

The VP method is presented for validating code motion across the loop i.e., S}
during translation. However, the VP Method cannot handle the scenario where
some code segment is moved before (after) the loop from inside the loop body
i.e., S5 and S3. In Subsection [3.5.3| we propose an enhancement to overcome this

issue.

44

3.5. Proposed Solutions

3.5 Proposed Solutions

In this section, we propose a solution to prove the non-equivalence for the case
given in Example [3] We also propose a solution to identify a false computation in
an FSMD during equivalence checking. We also propose a solution to handle all

the scenarios S, So and S3 during equivalence checking.

3.5.1 Showing the Non-Equivalence for False Positive Cases

The VP method propagates the values (as a propagated vector) of live variables

over the corresponding paths of the two behaviors as follows.

e [f there is a mismatch in the propagated vector in a corresponding state
pair, then it propagates not only the mismatched values (corresponding to
marked variables), but also the matched values (corresponding to unmarked

variables) as well. This is shown in Example [2]

e [f there is no mismatch in the propagated vector in a corresponding state

pair then all variables are reverted back to their symbolic values.

Our equivalence checking method is based on propagating the mismatch values
of the variables through all the subsequent path segments until the values match or
the final path segment ending in the reset state is reached. Howewver, in case of a
mismatch at the loop header, we propagate only the marked variable values and all
the unmarked variables will be reverted to their symbolic values. This will help us
to identify whether an unmarked variable is defined identically in both the loops.
To ensure the validity of code motion like the VP method, we must ensure that
marked variable should not be modified inside the loop body. The VP method
fails to do this since in case of mismatch it propagates the actual value of variables
and thus gives false positive results as shown in Example 3, Using our rule, the
propagated vector at o1 (via goo = go1 path) will be ¥o; = (T, (a, i, out,x,a + 5))
and the propagated vector ¢;; will be 91 = (T, (a, 7, out, x,t)) (via g10 = ¢11 path)
before entering the loop in Example[3] At the end of the loop the propagated vector
at go1 will be ¥, = (1 < 5,(a, i, out,z + 5,a+ 5)), and the propagated vector at
q11 will be ¥}, = (i <5,(a,i, out,5,t)). The value for x (unmarked variable) is
not the same in 9, and ¥};. Hence, it is not a valid code motion and the two

behaviors shown in Fig. [3.5] are not equivalent.

45

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

for (iy = Ly;ip < Hyjig+ =11)
for (’LQ = LQ;iQ S Hg,lg—i- = 7”2)

for (i, = Ly;t, < Hyjip+=1y,)
Sy

Figure 3.7: Nested loop structure

3.5.2 Handling False Computation Involving Loops

Let us consider the generalized nested loop structure of depth n as shown in Fig.
for this purpose. Each iterator i,, 1 < x < n, is initialized to L,. Each iterator i,

reaches its upper limit H, by incrementing a step constant r,.

The terms L, and H,, * = 1,...,n, are assumed to be linear expressions
over the input variables, constants or previous loop iterators ¢;---i,_1. These
requirement on L;, H;,r; and increment statement restrict the kind of loop to
which our method will apply. Let us assume that C, is a propagated condition
at the start of the nested loop structure. Conceptually, the propagated condition
in a state s is the condition of a path from the reset state of the behavior to the
state s. In Fig. , for example, the C), is n > 0 at state go;. Under the condition
C,, the initial value of the loop iterator (iy = L;) must satisfy the initial loop
condition (i.e., Ly < Hy) to execute a nested loop structure at least once. We can
specify this condition by the following formula If formula |3.1] is valid then a

nested loop structure with nesting depth one will always execute at least once.
Op = [< H (31)

The formula [3.2]is the generalized form of the formula 3.1 If formula [3.2] is valid

then the statement S,, at the generalized loop structure of nesting depth n, will

46

3.5. Proposed Solutions

always execute at least once.

Cp — (31'1, E]7;27 U 7E|in—17 ElCLl, EICLZ? U 7E|an—1

((Ln < H,) A (:Aj;;))) (3.2)

where f, = ((Lx <y < Hy) A (ip = agry + L) A (g > 0)> The C, is the
propagated condition before entering the nested loop of depth n. We use these
formulas to identify a false computation during equivalence checking. For checking
the validity of these formulas, we use the SMT solver Z3 [57] in the theory of linear
integer arithmetic. These formulas are dynamically generated in our equivalence
checking framework.

For example, in Fig. there is a loop qo1 = qo1 of nesting depth 1. At
state go1 of FSMD M, the propagation condition C), is n > 0. To verify whether
the loop qo1 = qo1 will execute at least once, we should check the validity of
the formula n > 0 = 0 < n. This formula is valid. Thus, the loop will
always execute at least once for all possible values of n > 0. We can say that
the computation (goo — qo1 Y do3 = qoo) is a false computation. During
equivalence checking, our method will ignore this false computation. By ignoring

this false computation, we can show the equivalence between the two behaviors

shown in Fig. 3.6

3.5.3 Handling Loop Invariant Code Motion

We handle marked and unmarked variables separately at the loop header to handle
the scenarios Sy and S3. Let go; be the entry /exit state of a loop body in Mj and its
corresponding state ¢, be the entry/exit state of a loop body in M;. The state g,
has the propagated vector 9y; before entering the loop and the propagated vector
v, after traversal of one of the path inside loop leading to go;. Similarly, state ¢i;
has the propagated vector ¥;; before entering the loop and the propagated vector
U}, after traversal of one the path inside loop leading to ¢;;. During code motion
involving loops following cases will arise:

Case 1 Unmarked Variable: There are two possibilities for an unmarked variable,

47

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Doi (corime-) vy (o)

/Oi; <@x> 19’1j2 (ex>

Figure 3.8: A case 1.1 where unmarked variable x is defined identically in both
the loops

Do; - (coomee) 0y, oz

| |

Oh 0 (eeny) Ot (e)

Figure 3.9: A case 1.2 where unmarked variable has some mismatch at the end
of the loop

say . It may be noted that = has symbolic values in both 9Jy; and ¥,;.

Case 1.1: If x has the same value in ¥J;; and 97, then it indicates that x is defined
identically in both the loops as shown in Fig. [3.8 Since it is not possi-
ble to determine statically how many times a loop will execute before
exiting in this case, after exiting the loop x is reverted to its symbolic

value.

Case 1.2: If there is a mismatch for z in ¥, and ; then there is a possibility of
the scenario S3. Let e,,, and e,,, represent the mismatched values in
0; and U7, respectively as shown in Fig. 3.9 To check the validity of

the code motion, we do the following test.

(a) The expressions e, and e,,; should be invariant in their corre-

sponding loops.

(b) The variable z is not used before being defined in both the loops.
Examples [f] and [f] illustrate these cases.

Example 5. Consider the input behavior My and its transformed behavior M,
in Fig. [3.10 The operation y < 5, a loop invariant for input behavior My, is
placed after the loop body in the transformed behavior M. The input behavior

48

3.5. Proposed Solutions

~/i=0

1 <5/
. +1,5/
y=>5 out =y
(1)
(a) Mo

Figure 3.10: An example of code motion involving scenarios S

ST
I IA
S. Ot

(a) Mo (b) M

Figure 3.11: An example where unmarked is used before being defined.

My and the transformed behavior My, shown in Fig. are equivalent. In both
behaviors, Yoo and V19 are (T, (i, out,y)) when entering the loop. After executing
the loop once the propagated vector at qo is ¥y, = (i < 5,(i + 1, out,5)) and the
propagated vector at g1 is V), = (i < 5,(i + 1, out,y)). The propagated vectors

01 and 9y, differ in the value of y. Since, y <=5 is a loop invariant for loop body
(g1 = qo1) and y is not used before defining it, it is a valid code motion. With
the propagated vector ¥y, and 9, the paths qo1 = qo2 and ¢11 = q12 can be shown

to be equivalent.

Example 6. Consider the input behavior My and its transformed behavior M,
in Fig. |3.11. These two behaviors shown in Fig. are not actually equivalent

since the values of x do not match after exiting the loop when the loop executes at

49

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Yoi : <:13> 191j3 <...6m1j...>

| |

1961 <-.-€$1]_-..> 19/1] <-..@$1j...>

Figure 3.12: A case 2.1 where a marked variable x has the same value at the end
of the loop

Do (orewy o) gt (e,)

| |

1961 <e$01> 19/1].; <"'61‘1j"'>

Figure 3.13: A case 2.3 where the values of the marked variable x do not update
in both the loops

least two times. It may be noted that before entering the loop the variable x and
y are unmarked variables at qo; and q11. The variable x is defined identically in
both the loops. The definition of y is a loop invariant in both the loops. However,
the variable y is used in the definition of x before being defined. This will result
in different values of x in the two behaviors after exiting the loop. Therefore, it
is clear that we need to check both (1) if there is a mismatch for an unmarked
variable then the mismatch should remain the same over multiple iterations and
(2) for such a variable it has not been used before its definition in the loop in both

the behaviors.

Case 2 Marked Variable: Marked variables arise in the case of S; and S;. Here
some definition before a loop is moved into the loop or is moved across the loop.
Therefore, the marked variables may have some mismatch in the corresponding

propagated vectors ¥o; and v,;.

Case 2.1: Suppose a marked variable, say z, has its symbolic value at ¥y; and e,
at ¥1;. If after executing the loop once the value of matches in both
the loops (i.e. = has the same value (e,,;) in ¥, and 9};) as shown in
Fig. [3.12] then scenario Sy is possible. To check the validity of the code

motion, we do the following test.

(a) The expression e, should be invariant in both the loops.

20

3.5. Proposed Solutions

—[t=a+s]

7 =

= (T
y=>5

out =y +1

(a) Mo (b) M,

Figure 3.14: An example of code motion involving scenarios S; and Sy

(b) The variable x is not used before being defined in the loop at q;,

and it has no definition in the loop at ¢;.

Case 2.2: Suppose z has its symbolic value at ¢,; and e, at ¥y; and after execut-
ing the loop once the value of x matches in both the loops. This case
can be handled in a manner similar to case 2.1. However, this scenario

unlikely to occurs in synthesis tools in practice.

Case 2.3: In the remaining case, if before executing the loop and after exiting
the loop the value of x remains the same in both the loops as shown
in Fig. then scenario S is possible. To check the validity of code

motion, we do the following test.

(a) Variable x is not updated within the loop.

(b) All those variables on which the variable x depends should not be
updated within the loop.

If a variable (z or any of the variables on which = depends) is updated within the
loop (even identically for both FSMDs), then it is not a valid case of code motion.

Example [7] illustrates this case.

Example 7. Consider the input behavior My and its transformed behavior M,
in Fig. [3.1] The operation y < 5, a loop invariant for input behavior My, is
placed out of the loop in the transformed behavior My. The operation t <= a+5 is

o1

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

containmentChecker
(Algorithm

[enhancedCorrespondenceChecker (ECC)]

Algorithm .
findEquivalentPath T \ :
[(Algorithm] (Algorithm [checkFalseComputatlon]

Figure 3.15: A overall flow of the EVP method

moved after the loop body. The input behavior My and the transformed behavior
My shown in Fig. are equivalent. It may be noted that before entering the loop
the variables y,t and a are marked variables at states gy, and qi11. After exiting
the loop the variable y has the same value at qo1 and gi11. This is an instance of
scenario Sy. The operation y <= 5 is a loop invariant for both the loops and y is
not defined within the loop at q11 hence this is valid code motion. After exiting the
loop t and a remain the same as before entering the loop. This is an instance of
scenario S1. All the variables on which t and a depend are not updated in both the

loops. Therefore this is also a valid code motion.

It may be noted that for the FSMDs M, shown in Figs.[3.10[[3.11] and [3.14]the
loop will execute at least once. We can say that the computation (goo = qo1 ==2

Jo2) is a false computation in each FSMD. So during equivalence checking our

method will ignore this false computation.

3.6 Enhanced Value Propagation Based Equiva-
lence Checking (EVP)

In this section, we present our enhanced VP method (EVP). We use the same
containmentChecker fucntion of the VP method. We have enhanced the corre-
spondence checker so that our method can handle all the issues address in Sec-
tion [3.4f The loopInvariant function is also enhanced to handle all the cases
discussed in Section [3.5.3

52

3.6. Enhanced Value Propagation Based Equivalence Checking (EVP)

Algorithm 3: findEquivalentPath(3, V3., ¢1;, Vg, Po, 1)

Input : A path 8 € B, the propagated vector ¥, a state q1; € M, the
propagated vector U, ; associated with q1;, and the path covers Fy
and P; of My and M, respectively.

Output: An ordered tuple <’}/1,’)/2,’l9-ylf,1972f> s.t. y1 =4 Y2 or 71 >~ Y2, the
propagated vectors U, , and ¥, ,

q1j5°

95, Vs, s,

1 Tﬁﬂé = (Rﬁﬁ ,sﬁﬁ)

2 foreach path o : (qa, = qa,) € P1 emanating from qi; /* Ga, = qij */
3 do

19[19 19&5 19045

4 Ta T= <Ra 7805 >

5 | if Ry = Ri* then

6 if 5,7 = 50" then

8 else

9 ‘ return (3, a,9g,,Ya,);

10 end if
11 else if RV — Rzﬁs then

12 ‘ return (3, 1na,,9s;,Ja,);
13 else if RZB — RY". then

14 ‘ return (73,, «, ﬁﬂs,ﬁa.f);
15 else

16 ‘ continue; /* Case 6 —— B2« */
17 end if

18 end foreach
/* All the paths emanating from ¢i; are not equivalent to the path
B */
19 return (8, NULL,p, p);

The overall flow of our verification method is given in Fig[3.15] The behavior
of the enhanced correspondence checker ECC function (Algorithm {4 is as follows.
It takes as input a corresponding state pair (go;, ¢1,), a path covers P (of My) and
Py (of My), a corresponding state pair set W, a set of U-equivalent path pairs
E,, a set C-equivalent path pairs E., and a LIST which maintains a candidate
C-equivalent pairs of paths. It returns “success” if for every path emanating from

qo; an equivalent path originating from ¢,; is found; otherwise, it returns “failure”.

The function checkFalseComputation returns True if the loop at ¢y un-

der the propagated condition will execute at least once, over all possible in-

23

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Algorithm 4: ECC(qo;, ¢15, Po, P1, Wesp, Eu, Ee, LIST)

1

© W N O N W N

T R S I S G S STy S St
N B O © o9 o A W HE O

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

if qo; is a loop header and doLoopTest[qo;] is TRUE then
doLoopTest[qo;|=FALSE;
if checkFalseComputation(qp;) returns True then
avmdLoopEthath[qOZ}:TRUE, /* Ignore False Computation
end if
nd if
oreach path 3 : (qoi = qom) in Py do
if qo; is a loop header and avoidLoopExitPath[qo;] is TRUE then
avoidLoopExitPath[go;]=FALSE;
continue;
end if
if Path 3 is already present in the LIST then
‘ continue; /* prevent recursions which lead to an infinite loop
end if
(B, a, 94,0y,) + findEquivalentPath(5, o;, q15, V15, Po, P1);
if path a : (¢1; = q1n) can be found in P; such that § ~, a then
Eu = Eu U {(B, Oé)}, /* U-equivalence
Wcsp == Wcsp U {(q0m7 q1n)};
Ise if path « : (q1; = qin) can be found in P; such that § ~. o then
if qom or g1, is reset state then
‘ return failure; /* Reset state is reached with mismatch
else if qq,, or g1, appears as the final state of some path already in
LIST A loopInvariant(f, a, v i) then

=0

0]

Om>»
‘ return failure; /* Propagated values are not loop invariant
else
/. /.

Append (B,a) to LIST
ECC<q0m;q1n; P07 P17 WCSp7 Eu; Em LIST);
end if
else
‘ return failure; /* Equivalent Path of § may not be present in P
end if
end foreach
E. = E. U {Last member of LIST};
LIST «+ LIST\{Last member of LIST};
if qo; is a loop header then
‘ doLoopTest[qo;|=TRUE;
end if
return success;

*/

*/

*/

*/

*/

o4

3.6. Enhanced Value Propagation Based Equivalence Checking (EVP)

Algorithm 5: loopInvariant (S, o, 9,,, V},)

0m>

Input : A path € Py, the propagated vector v, at the end state o, of 53,
path a € P; which is the C-equivalent of 5, the propagated vector
¥, at the end state g, of «

Output: A Boolean value

1 foreach variable z in ¥, and ¥}, do

2 if x is an unmarked variable (Case 1) then
/* Fig. and depict the case 1 (scenario S3) */

3 if Case 1.1 then

4 ‘ Set each unmarked variable to its symbolic value “z”;

5 end if

6 if Case 1.2 then

7 ‘ one of the tests in Case 1.2 (a) and (b) fails then return False;

8 end if

9 end if
10 if x is a marked variable (Case 2) then

/* Fig. |3. 12| and |3. 13| depict this case (scenario Sj,S2) */
11 if before entery to the loop x has its symbolic value in one of the loops
and has the value e, in other loop then

12 if Case 2.1 or Case 2.2 then

13 ‘ one of the tests in Case 2.1 (a) and (b) fails then return False;
14 end if

15 end if

16 if Case 2.3 then

17 ‘ one of the tests in Case 2.3 (a) and (b) fails then return False;

18 end if
19 end if

20 end foreach
21 return True;

puts in My. It returns False otherwise. The function checkFalseComputation
should be invoked once for all paths that terminate in the state qy;. Moreover,
a call to checkFalseComputation should be avoided if the state qq; is reached
through some back edge. To guarantee this, each loop header is associated with
a flag doLoopTest. At each loop header state ¢q;, we also associated a flag
avoidLoopFxitPath. This flag is used to ensure that after avoiding the loop exit
path once the loop exit path must be checked for subsequent calls of the function
ECC for the state q;.

The function ECC invokes the function findEquivalentPath to find a U-

25

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

or C-equivalent path o : (¢;; = ¢i,,) in the transformed FSMD M, for each
path 5 : (go; = qom) starting from state gy; of the original FSMD M,. The
findEquivalentPath function of the EVP method is given in Algorithm [3] The
function findEquivalentPath returns a 4-tuple (8, «,dy,,,v},) where 8 and «
are corresponding paths as described above, 9, is the propagated vector at the
end state gon,, of § and ¥}, is the propagated vector at the end state qi, of . If

om = V), then the path a is U-equivalent to path . Consequently, the data
structure Wi, gets updated (line . If findEquivalentPath does not find any
path « in M; whose condition of execution R, satisfies either RZBS = Rz%‘, or
RZ’BS = R or Rb =— RZ’BS, then it returns o = NULL (i.e., My and M;
may not be equivalent, handled in line [30). If a@ # NULL and ¥}, # ¥}, then
the path « is candidate C-equivalent to the path g and hence further value prop-
agation is required. However, the following checks are carried out first and ECC

reports “failure” in the following scenarios:
1. if one of the state qo,, and ¢y, is a reset state (line it returns “failure”;

2. if a loop has been crossed over then the function ECC invokes the function
loopInvariant. The loopInvariant function of the EVP method is given
in Algorithm [5} The function loopInvariant checks for the loop invariance
of the propagated vector 9, and ¥},,. The function loopInvariant returns
True if each marked and unmarked variables satisfy their respective cases as
mentioned in Section [3.5.3 If it returns False then the function ECC returns
“failure”. Note that the function loopInvariant trivially returns True if
case 1.1 in Section [3.5.3] holds for each variable, i.e., the variable is defied

identically in both the loops.

If ¥, # ¥, and the above two cases do not occur, then (5, «) is appended to
LIST and the propagated vector at qq,, and ¢y, are updated and ECC calls itself
recursively (line . It may be noted that while updating the propagated vector
(line , we update only mismatched variable values and reset the other variable
to their symbolic values if the state is the loop header; otherwise, we update all
the variable values. When ECC reaches line |38] it implies that for every chain of
paths emanating from the state qg;, there exists a corresponding chain of paths

emanating from ¢;; such that their final paths are U-equivalent.

o6

3.7. Correctness and Complexity

Vo (x) Vot (T) Voi : (x) Vo 3<6x1j>

| L
Vo; (€eoi) Vo :<€331j> i ¢<ezu> Vi 3<€x1j>
(a) (b)

1901 :<e$0i> 190@' : <$> ﬁOi :<6moi> 19073 :<el‘1j>
61’ :<e-'E()i> 61 :<6270¢> 1%2 :<€/$0i> 1961 :<€;IJ‘>
(c) (d)

Figure 3.16: All possible scenarios where x has some mismatch at the end of the
loop

3.7 Correctness and Complexity

Lemma 1. If there is a mismatch in the propagated vectors after executing the
loop once and Algom'thm@ terminates successfully (at step then x 1s invariant
in the loop.

Proof. Let qo; be the entry/exit state of a loop body in Mj and its corresponding
state ¢; be the entry/exit state of a loop body in M;. The state g has the
propagated vector ¥y; before entering the loop and the propagated vector v, after
traversal of the path leading to qq,. Similarly, state ¢;; has the propagated vector
15 before entering the loop and the propagated vector ¥}; after traversal of the
path leading to ¢;;. The lemma is proved by case analysis as follow. Let us

consider all the possibilities for the variable z as shown in Fig. [3.16

1. The variable = has its symbolic value in Jy; and 9y, (i.e., the variable x
has the same value in both the loops). After exiting the loop, there is a
mismatch for o in), (say e,,,) and ¥y (say e,,;) as shown in Fig. |3.16(a)|
If e, or eg,; is not invariant in its corresponding loop then Algorithm

returns False in step [7]

2. The variable z has its symbolic value at Jy; and e,,; at Uy;. After executing

the loop, the values of z match in both the loops (i.e., = has the same value

57

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

(€zy;) as shown in Fig. [3.16(b)l If the expression e, ; is not an invariant in
both the loops then Algorithm [5| returns False in step

3. The variable x has the value e,, at ¥Jy; and its symbolic value at J;; and
after executing the loop the value of x matches in both the loops (i.e., z has
the same value (e,,,) as shown in Fig. . If the expression e, is not
an invariant in both the loops then Algorithm [5| returns False in step [L3|

4. The variable x has the value e, at ¥o; and e,,; at vy;. After exiting the

loop the value of x is not the same as before entering the loop as shown in

Fig.|3.16(d)} Then Algorithm [5 returns False in step

From the above it is clear that if there is a mismatch in the propagated vectors
after executing the loop once and Algorithm |5/ terminates successfully (at step
then z is invariant in the loop.]

Lemma 2. If Algorithm (1| terminates successfully (at step @ and some code seg-
ment in the original behavior My is moved before (after) the loop from inside the
loop body in the transformed behavior My then the loop exit path must be a false

computation under all propagated conditions at the loop header.

Proof. Let qo; be the entry/exit state of a loop body in My and its corresponding
state ¢1; be the entry/exit state of a loop body in M;. Let the definition of
the variable z be an invariant in the loop at qy;. It is moved from inside the
loop body at ¢;; to all the paths leading to ¢;;. Let 8 be one such path in M,
which is C-equivalent to the path a (8 ~¢ «) in M (i.e., there is a mismatch for
the variable x). Before entering the loop, let the propagated condition at gy; be
CPgs through the path 8 in M. If the function checkFalseComputation returns
Flase under the CPjg then the loop exit path at qo; is not a false computation.
In this case the function enhancedCorrespondenceChecker does not ignore the
loop exit path and finds the C-equivalent path in the transformed M; (i.e., there
is a mismatch for the variable x). Since the mismatch for x persists till the reset
state, enhancedCorrespondenceChecker calls itself recursively until the reset state
is reached and returns failure (i.e., My is not equivalent to M) in step .

Let the definition of be moved from inside the loop body at ¢;; to the loop
exit path emanating from ¢;;. Let the loop exit path at go; be not a false com-

putation under some propagated condition at ¢g;. In this case also the function

o8

3.7. Correctness and Complexity

enhancedCorrespondenceChecker does not ignore the loop exit path and finds
the C-equivalent path in the transformed M; (i.e., there is a mismatch for the
variable x) and calls itself recursively until the reset state is reached and returns
failure (i.e., My is not equivalent to M) in step 21] [|

3.7.1 Soundness

The paper [42] shows the correctness of the VP method assuming that the pair of
paths declared as U-equivalent or C-equivalent by the function findEquivallentPath,
are indeed U-equivalent or C-equivalent. But this may not always be true as shown
in Example 3] Example [3]shows a case where the VP method provides a false pos-
itive result. Section proposed a solution to show the non-equivalence in the

case given in Example

Theorem 2 (Partial correctness). If the verification method terminates at step @
of Algorithm[1], then My C M.

Proof. If the verification method terminates at step[7|of the function containmentChecker

then we need to prove the following claims.

1. The set F = E, U E,. contains a member for each path in the path cover F.

2. All paths of the path cover M, leading the reset state of M, will have a
U-equivalent path in the path cover in P; leading to the reset state of M;.

3. If there is a loop invariant code motion from inside the loop then it is a valid

code motion.

The set E, contains the pair of U-equivalent paths, and the set E. contains the
pair of C-equivalent paths. A pair of paths is added to the set E, and FE. at step
and respectively, of enhancedCorrespondenceChecker. Now the pair of paths
declared by findEquivallentPath is actually U-equivalent and C-equivalent and
added to the set F, and E,. respectively. The fact that £ = F, U E. contains a
member for each path in the path cover I can be proved in a way similar to the
method in [42].

Claim 2 can be proved by contradiction. Let the paths g € F, and o € P; lead
to the reset states of My and M, respectively and 8 ~,. «. In this case, the func-

tion enhancedCorrespondenceChecker returns failure to containmentChecker

29

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

as shown at step consequently, containmentChecker terminates at step |3, not
at step[7] is a contradiction.
If there is a loop invariant code motion from inside the loop then Lemma

and [2| ensure the validity of code motion. |

3.7.2 Termination

Theorem 3 (Termination). Algorithm[1] always terminates.

Proof. The function loopInvariant terminates since it involves just a comparison
of two propagated vectors. The function findEquivalentPath(/3,qy;,- -) tries to
find a path a starting from ¢,; € M, such that 8 ~, a or 8 ~, a. It checks all the
transitions from ¢;; in the worst case. Hence it terminates as well. In Algorithm
the outermost loop of the function enhancedCorrespondenceChecker is ex-
ecuted only |FPy| (number of elements in P,) time which is finite. In Algorithm
enhancedCorrespondenceChecker can invoke itself recursively. The enhanced—
CorrespondenceChecker(qy;, ¢1;) invokes itself with the end state of some path
emanating from qo; and some path o emanating from ¢;;. If the end state of path /8
or path « is a reset state then enhancedCorrespondenceChecker(qy;, ¢i;) returns
failure (at step. Since the recursive call of the function enhancedCorrespondence—
Checker does not extend beyond the reset state and the function enhanced—
CorrespondenceChecker avoids traversing the loop twice (at step the function

invokes itself recursively only a finite number of times.]

3.7.3 Complexity

The condition of execution and data transformations of a path is represented in
normalized sum form [101]. The complexity of normalization of a formula F' is
O(2/F1), where | F| denotes the length of the formula. It may be noted that if the
number of states in the original FSMD M is n, then the number of states in the
transformed FSMD is in O(n). Let n be the number of states in the FSMD and K
be the maximum number of parallel edges between any two states. The complexity
of the overall verification method is of order of the product of the following two

terms:

60

3.8. Experimental Results

1. The first term is the complexity of findEquivalentPath(3,q;,---). In
worst case, the function checks all transitions from ¢;; to find a path «
starting from ¢;; € M; such that § ~, a or § ~, a. The complexity of
finding the path « is O(2/¥!- k- n). On finding a C-equivalent path, value
propagation is carried out in O(2/¥! . |V5 U Vi]) time. Hence the overall
complexity of findEquivalentPath(3, qi ,) is O (k-n+ [VouWy|)) .

2. The second term is of order of the product of the following two terms:

(a) The number of times enhancedCorrespondenceChecker is called from
containmentChecker. For every element of Wscp, the corresponding
state set, containmentChecker calls enhancedCorrespondenceChecker.

The maximum number of elements in Wy, is O(n).

(b) The number of times enhancedCorrespondenceChecker calls itself re-
cursively. In the worst case, all the states of My can be cut-points. In
this case enhancedCorrespondenceChecker can recursively call itself
k-tn—1)+k*> (n=1)-n=2)+-+k"1(n=-1)-(n—-2)...2- 1~

k=1 (n— 1) times.

Therefore the complexity of the overall method is O(2/F1 - (k-n + Vo UW|) -
n- k" 1. (n —1)""1). If we ignore the time taken by the SMT solver Z3

then the worst case complexity of the presented method is the same as that
of [42].

3.8 Experimental Results

Our equivalence checking algorithm has been implemented in C, and all experi-
ments have been conducted on a laptop with Intel Core 2 Duo processor with 2
GHz and 3GB of RAM. In our experimental setup, loop information i.e., nesting
depth and loop header are extracted during construction of the FSMD from the
input behavior using dominator tree analysis [102]. All the benchmarks listed in
Table|3.1|are taken from |42]. The benchmarks selected such as TLC and GCD are
control-intensive design; DCT, DIFFEQ and EWF are data-intensive and LRU is
both data and control intensive. The transformed FSMD is obtained from the

original one in two steps. First we obtained the intermediate transformed FSMD

61

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Table 3.1: Experimental results on the benchmarks presented in [42]

My M,y VP EVP
Benchmarks #Loop - -
#State|#Path|#State|#Path Equi|T (ms)|Equi|T (ms)

TLC 13 20 7 16 0 |Yes| 52 |Yes| 52
DCT 16 1 8 1 0 |Yes| 116 | Yes| 120
EWF 34 1 36 1 0 [Yes| 40 |Yes| 44
PERFECT 6 7 4 6 1 |Yes| 24 |Yes| 40
GCD 8 11 14 8 1 |Yes| 56 |Yes| 116
MODN 8 9 1 |Yes| 92 |Yes| 176
DIFFEQ 15 3 9 3 1 |{Yes| 28 |Yes| 32
LRU 33 39 32 39 8 |Yes| 364 |Yes| 1204
IEEE-754 55 59 44 50 7 | Yes| 482 | Yes| 2080
BARCODE| 32 55 24 57 15 | Yes| 540 | Yes| 4130

Table 3.2: Experimental results on the benchmarks presented in [42]

Benchmarks VP EVP
Equivalent| Time (ms)|Equivalent| Time (ms)

TLC No 60 No 64
DCT No 124 No 128
EWF No 40 No 44
PERFECT No 28 No 40
GCD No 44 No 36
MODN No 92 No 72
DIFFEQ No 16 No 16
LRU No 202 No 840

by running the SPARK tool on these benchmarks. We forced SPARK to apply the
code transformation like copy and constant propagation, common sub-expression
elimination, and dead code elimination (DCE) to the original behavior to produce
the corresponding optimized transformed behavior. The intermediate transformed
FSMD obtained by SPARK is converted into the final transformed FSMD accord-
ing to path-based scheduler. This help us to confirm that our method shows

equivalence correctly when control structure has been modified as well as code

62

3.8. Experimental Results

motions have arisen.

In our first experiment, we compare our EVP method with the VP method
to verify the benchmarks listed in Table |3.1} The objective is to show that our
EVP method can prove the equivalence for these benchmarks. Also, we want to
compare the execution time (in milliseconds (ms)) with the VP method. The
results of these experiments are tabulated in Table Our method is able to
establish the equivalence in all the benchmarks. Note that in Table 3.1} if a
benchmark has no loop then the execution time obtained by our EVP method is
almost the same as the VP method. However, when a benchmark has some loop
then our method needs more time since at each loop header we invoke the SMT
solver Z3 to check whether the loop will execute at least once. For example, LRU
benchmark has 8 loops. Therefore our method takes more time as compared to the
VP method. This extra check is required to overcome some of the limitations of
the VP method as discussed in Section Our next experiment will justify this.
Table confirms that our method is capable of handling all code transformation
techniques mentioned here. Since our objective is to compare the run time of our
method with the VP method in all the scenarios which the VP method can handle,
we prevent SPARK from applying loop invariant code motion transformation to
obtain the optimized transformed behavior. It has been shown in experiment 3
that the VP method cannot handle LICM transformation.

In our second experiment, we manually introduce some changes in the bench-
marks listed in Table so that their original and transformed FSMDs become
inequivalent. These modified benchmarks are listed in Table The objective of
this experiment is to show that our method does not produce false positive results
in non-equivalence cases. As shown in Table both the methods reported non-
equivalence in all these scenarios. Also, the run time of both the method is almost
the same except LRU. The experiments 1 and 2 confirms that both the methods

are able to show the equivalence correctly.

In our third experiment, we take some of the test-suite distributed with LLVM
[103]. These benchmarks contain some loop invariant operations. We forced
SPARK to apply LICM transformation to obtain the transformed behavior so
that it can hoist loop invariant code before the loop in the transformed behavior.
These test cases represent the scenarios S; and S3. The results of these experi-
ments are tabulated in row 1-4 of Table |3.3 From Table |3.3] it is evident that

63

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

Table 3.3: Experimental results on test cases where the VP method fails

VP EVP

Benchmarks - - - -
Equivalent | Time (ms)|Equivalent| Time (ms)

imple_ -
SHIP 'e tyPeS No 4 Yes 12
loop_invariant
mandel No 4 Yes 16
mandel2 No 4 Yes 16
himenobmtxpa No 4 Yes 20
Test 1 Yes 8 No 8
Test 2 Yes 8 No
Test 3 Yes 12 No 12
Test 4 Yes 16 No 16

our proposed method can correctly identify the equivalence even when some loop
invariant operation op is moved before (after) the loop from inside it. However,
the VP method reports may not equivalent in these cases. The VP method takes
only 4ms for the benchmarks listed in rows 1-4 Table because at the loop
header it select loop exit path first and shows the non-equivalence immediately.
The experimental evaluation shows that our method outperforms the VP method

in handling the LICM transformation.

In our fourth experiment, we have created some test cases where the VP
method provides a false positive results, but our EVP method can prove the non-
equivalence. Since we are not able to generate our desired transformed behavior
using SPARK, the benchmarks tabulated in row 5-8 of Table [3.3] are manually
scheduled. The result of this experiment confirms that the VP method incorrectly
reports equivalence for these test cases while our EVP method correctly proves

the non-equivalence for these test cases.

In our fifth experiment, some larger benchmarks from CHStone [55] and Bambu
HLS tool [14] are selected to evaluate the scalability of our EVP method. The
synthesizer used in our experiments is Bambu. The FSMDs are extracted from the
behaviors at the input and the output of the scheduling phase of Bambu. We use
the function BF_cfb64_encrypt in BLOWFISH, the function Gsm_ LPC_Analysis in
GSM, and the function encrypt in AES as a source behavior. The results of this

64

3.8. Experimental Results

Table 3.4: Experimental results on the benchmarks presented in CHStone
benchmarks [55] and the benchmarks listed in Bambu HLS tool [14]

EVP
Benchmarks #c #Path
Equivalent ~ Time(ms)
MO M1

_ | WAKA 35 | 4 3 Eq 75
:% ARF 43 5 D Eq 400
“lmoroN | w11 o 70

BLOWFISH | 151 21 21 Eq 1519
é GSM 240 96 86 Eq 7152
Oé MIPS 259 77 o1 MNEq 123

AES 330 132 96 MNEq 857

MNEq: My and M; “May Not be Equivalent”.
#c: # of lines in ¢ program.
T: Time in milliseconds(ms).

experiment are tabulated in Table It is evident from this experiment that the
EVP approach can handle the larger benchmarks but fails to show the equivalence
for the benchmarks AES and MIPS. We observe that Bambu modifies the con-
trol structure significantly. For the benchmarks AES and MIPS, the transformed
behaviors represent the scenario where a path in original behavior has been split
into more than one path to improve the conditional hardware reuse. The EVP
method fails to handle the path split/merge scenario. In the next chapter, we have
presented a PBEC approach that can handle the path split/merge scenario.
During our experimentation, we found a bug in the SPARK tool. The bug is
in the implementation of the LICM algorithm in the SPARK scheduler. A simple
instance of the bug is reported in Fig. [3.17 It may be noted that the transformed
behavior is obtained by applying only LICM technique with SPARK. Here the
operation z = 5 is moved before the loop body in the transformed behavior since
the operation x = 5 is invariant within the loop in the input behavior. However,
the output will not be the same for any input n < 4. For example when n = 3, the

value of out is zero in the input behavior and its value is five in the transformed

65

Chapter 3. Translation Validation of Code Motion Involving Loops during
Scheduling

int main(void){

int x,i,n,z,out,sTO_5;
int returnVar_main;

z = 0;x = 0;

i =4;x = b5;

do{

int main (){

int x,i,n,z=0,out;

x=0;
sTO_5 = (i < n);
for(i=4;i<n;i++){)
if (sTO_5){
x = b5;
z = (z + x);
z=z+x;}
i= (1 + 1);}
out=z+x;
else break;
return out;}
}while (1);
a) Input Behavior
(2) Inp out = (z + x);
returnVar_main = out;

return returnVar_main; }

(b) Transformed Behavior

Figure 3.17: A bug in SPARK

behavior. This behavior is proved to be non-equivalent by our EVP method. Our
method finds a previously unknown bug in a widely used HLS framework indicates

the usefulness of our method.

3.9 Conclusion

In this chatper, we have presented an enhanced VP method for code motion in-
volving loops. Like the VP method, our method is also capable of handling control
structure modification of input behavior and uniform and non-uniform code mo-
tion and code motion across loops. In addition, our method can also handle the
scenario where some code segment is moved before (after) the loop from inside the
loop body. In addition, our method is capable of automatically identifying false
computations and prove non-equivalence of FSMDs for the cases where the VP
method provides false positive results. Our method discovered a bug in SPARK

that long-term use did not uncover.

66

Chapter 4

Verification of Scheduling of
Conditional Behaviors in

High-level Synthesis

4.1 Introduction

4.1.1 Scheduling of Conditional Behaviors

In general, the major tasks of HLS includes scheduling operations from the given
behavioral description into control steps under the required timing and hardware
resources constraints. High-level synthesis schedulers can take advantage mutual
exclusivity of operations and schedule two mutually exclusive operations in the
same cycle on the same resource. Two operations in a behavioral description are
mutually exclusive if the results of the two operations are never needed together in
the execution of the system. Mutually exclusive operations can be implemented
with the same hardware component and scheduled in the same cycle. Conse-
quently, total delay of the schedule and the resource usage is reduced. Consider
the following Fig. description written in C language. Suppose that we want
to implement this system using only one adder and one comparator and suppose
that these functional units (FUs) take one control step to execute the operation.
Assuming we can not identify any mutually exclusive operators, then six cycles are
needed at least to complete the behavioral description as show in Fig[4.1(b)] How-
ever if we can identify that the pairs (42, +3), (+4, +5), (+4, +6), and (+5, +¢) are
all possible mutually exclusive operations in the example Fig. . Now three
cycle are need with the same number of FUs to complete the algorithm as shown
in Fig. The information about the mutually exclusive pairs of operation is

very useful to decrease an amount of hardware required to implement specification

67

© 00 N O U = W N

—_ = =
N = O

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

without increasing the latency that is, the conditional reuse of resources. In liter-
ature several approaches have been reported to identify the largest set of mutually
exclusive operation pairs. However, the possibility of conditional reuse depends
not only on the number of mutex operations pairs detected by an algorithm, but
also on the way in which specifications are written by designers. The optimization
techniques such as in [44] transforms the input description to improve the possibil-
ity of conditional reuse of resources depends on the number of mutually exclusive
pairs of operations. Therefore, it is necessary to verify the semantic equivalence

between the original and the transformed behaviors.

4.1.2 Summary of Verification of Scheduling of Conditional

Behaviors

Path-based equivalence checking approaches [37-42,56] have made significant progress

in the verification of the scheduling phase of HLS. These translation validation ap-
proaches are useful since they can verify that the correct code resulted from various
compiler optimization techniques applied in each iteration of the scheduling phase
of HLS without unrolling the loops. However, they (including this work) cannot
verify the correctness of the scheduling phase. A PBEC approach based on value

tl = ((a + b)<c); (+71)

t2 = d 4+ e; (+2)

t3 = ¢ + 1; (+3)

if (t1){ @

y=t3 + d; (44 ONO) ©

} @ @ @

else if ('x){ @ @

y=t2 + d; (+45)

} m.e. operations:

i ((1T1)8E %)L () (2, +3)
(+47+5)7

z= T2 4+ e; (+¢) (4, +6)

+ m.e. operations: none (+5,+6)

(a) Input description (b) (c)

Figure 4.1: An example of behavioral description

68

4.1. Introduction

propagation [42], for example, can verify the code motion involving loops. The
behaviors are modeled as an FSMD in PBEC approach. These approaches break
down an FSMD into smaller segments by introducing cutpoints so that each loop
in the FSMD is cut by at least one cutpoint. This is based on the Floyd-Hoare
method of program verification [54]. The set of all paths from a cutpoint to an-
other cutpoint without any intermediate occurrence of a cutpoint is a path cover of
the FSMD. PBEC approaches establish the equivalence between two behaviors by
showing the equivalence between the paths present in the path cover of these two
behaviors. The primary focus of the existing PBEC approaches is on ensuring that
the data dependencies are not violated due to scheduling of operations and trans-
formation of behaviors due to application of various compiler optimizations |15
applied during the scheduling phase of HLS. Equivalence of two programs over
Integers is inherently undecidable [45]. Therefore, existing PBEC approaches may

produce false negative results.

4.1.3 Contributions

In this work, we identify some limitations of the existing PBEC approaches. Specif-
ically, we identify the optimization techniques such as in [44] which split a paths
into multiple paths in the scheduled behavior. In this case, existing PBEC ap-
proaches [37-42 56| fail to show the equivalence. In addition, PBEC approaches
based on value propagation also fail to show the equivalence for some scenarios
where conditional blocks having an equivalent conditional expression are com-
bined into one conditional block. Moreover, we identify that the cutpoint selection
scheme in PBEC approaches are too restricted to handle control structure related
transformations.

In this work, we present a PBEC approach based on value propagation to
overcome these limitations without affecting the power of existing approaches.

Specifically, the contributions of this work are as follows:

1. We redefine the notion of the equivalence of paths in PBEC approach to
handle path split/merge.

2. We also present a new cutpoint selection scheme to handle control structure

related transformations in PBEC without much performance overhead.

69

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

3. We present a PBEC method to verify the scheduling of conditional behaviors
without affecting the power of the state-of-the-art existing approach [56].

This method is also capable of handling merging of conditional blocks.

4. We implement our proposed method and demonstrate its usefulness with

experimental results.

The rest of this chapter is organized as follows. Motivating examples high-
lighting the limitations of the state-of-the-art PBEC approaches are given in Sec-
tion [4.2] A solution to overcome the current limitations of PBEC approaches are
presented in Section [1.3] The notion of equivalence of two paths is introduced
in Section 4.4, The overall verification process is presented in Section 4.5, The
correctness and complexity of the proposed method are discussed in Section 4.6

Experimental results are given in Section [4.7] Section [4.§8 concludes the chapter.

4.2 Motivations

In this Section, we represent the scenarios where the state-of-the-art PBEC
approaches fail to show the equivalence even though behaviors are equivalent. We

then propose the solutions in the next section.

4.2.1 Path Split

To improve the conditional hardware reuse in HLS, the approach presented in [44]
transforms the original behavior in Fig. [4.2(a)| (and its corresponding FSMD in
Fig. into the equivalent one in Fig. 4.2(c), where the condition (c1 A ¢2)
has been spli. As a result, the path £; = (goo ffey go1) in My is equivalent to
path alagﬂ in My, and the path 35 in M, is equivalent to the union of the pathsﬂ
ajayg and ay in M e, Rg, = Raja, V Ra, and sg, = S4,0, = Sa,- Let us consider
that we have only one adder and one multiplier, and these function units take one

control step to execute the corresponding operation. In this case, there is at least

IThis example is taken from [44]

201 1 {qio = q11), a3 : (q11 = q12), aqa3 reports the concatenated paths a; and as.

3union of paths, say f3;, 3, emanating from the state ¢; and ending at ¢; and have the same
data transformation, represents a path where condition of execution is Rp, V Rg, and data
transformation is the same as path ;.

70

4.2. Motivations

if (g Ac2)
ti=axb
else

=c+d (+1)
if (ep)
ta=e+ f (+2)
if (c2)

=g+h (+3)

0 N O U e W N

(a) Input description

@
t3—g+h —\CQ/—

(¢) Mi: Scheduled behavior obtained

by [44]

cl /\CQ/ 51 6—2|(61 /\62)/
t1i=axb ti1=c+d

ci/to=e+ f —c1/—

CQ/t3 =g+h . —\02/—

(b) Mpy: Original behavior

e
c1/
(213

—C —
t2:€+f 1/
CQ/

—C —
ts=g+h 2/

(d) My: Transformed behavior

Figure 4.2: Transformations on the input description to enhance the conditional

hardware reuse

three cycles needed to complete all the operations in M. It may be noted that the
operation pair (+1,+2) in Fig. |4.2(a)| cannot share the functional unit because if

71

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

32 paths

(b)

Figure 4.3: A cutpoint example [(a)] An FSMD M, with all the states as cutpoints;
@ An FSMD M, with minimal cutpoint

¢y is true and ¢y is false, both operations are needed. Similarly, an operation pair
(+1,+3) in Fig. is not mutually exclusive and cannot share the functional
unit because if ¢; is false and ¢y is true both operations are needed. To achieve
two cycles, the paths in the original behavior have been split in the transformed
behavior shown in Fig. With this conditional transformation, the operation
pair {414, +2} can share a functional unit. Similarly, the operation pair {+15, +3}
can also share a functional unit. Therefore, the behavior can be scheduled in two
cycles.

During equivalence checking the PBEC approaches fail to handle the scenario
where a path in an FSMD is equivalent to the union of the paths in another FSMD.
Therefore, all existing PBEC approaches fail to find the equivalent paths in the
FSMD M; for the path g5 in FSMD M,. As a result, they report that behaviors
“May Not be Equivalent”. In Subsection we propose a solution to handle

this type of scenario.

4.2.2 Choice of Cutpoints

A PBEC approach obtains the path cover by introducing the cutpoints. The

minimum number of cutpoints are those who cut each loop in an FSMD by at

72

4.2. Motivations

Figure 4.4: An example of if optimization

least one cutpoint. Other cutpoints are redundant one, introduced to improve the
runtime of the PBEC approach. Most of the PBEC approaches [37-42,56] find
a path cover by setting the reset state and the branching states, i.e., states with
more than one outgoing transition, of the FSMD as cutpoint. These approaches
select all the branching states as cutpoint for the FSMD in Fig. therefore
there will be 10 paths (i.e., a1, as, - ,a19) in the path cover. Instead, if we
choose minimal cutpoint, then only the reset state goo will be the cutpoint and
there would be 32 paths in the path cover as shown in Fig. . The selection
of additional cutpoints helps these approaches to reduce the size of the path cover

exponentially and improve their runtime.

However, choosing all branching states as cutpoint poses problem in finding the
path-based equivalence where the transformed behavior is obtained by splitting
the paths in original behavior as shown in Fig. [4.2 The PBEC approaches select
the states qoo, qo1, qo2, and go3 in My in Fig. and qio0, q11, G12, @13, and qu4
in M; shown in Fig. as cutpoints. The selection of the state ¢;; in M; as a
cutpoint makes the if-else block unbalanced and makes difficult to show the path
level equivalence for a PBEC approach. If we do not select ¢;; as cutpoint then
resulting transformed behavior Ms is shown in Fig. . Now from the state ¢,
there will be three paths ayas, ajay and as. The path 81 in M,y will be equivalent

73

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

to the path ajaz in Ms. The path [y in My will be equivalent to the union of as
and ajay. Thus, avoiding ¢1; as cutpoint simplifies the control structure of M; and
would help the PBEC approach to show the equivalence. However, as discussed
previously, the PBEC approach cannot handle the scenario where a path in an
FSMD is equivalent to the set of the paths in another FSMD. Therefore, they fail
to show the equivalence between M, and M, as well. In the Subsection [4.3.2] we
propose a new cutpoint selection scheme to simplify the if-else block. We then
use the solution presented in Subsection to handle path split.

4.2.3 If Optimization

Conditional blocks, not necessary to be adjacent, (generally represented as if-
else) having an equivalent conditional expression can be combined into one condi-
tional block. This reduces the number of condition checking and the total number
of states in transformed behavior. Thus, it reduces the number of paths in the
path cover. For example, consider the behaviors in Fig. |4.4. Here two conditional
blocks (CB) denoted as CB1 and CB2, in M, in Fig. are merged into one
conditional block CB in M; shown in Fig. |4.4(b)|

The path extension based approaches in [38,39] fail to verify code motion
across loops. Therefore, these methods cannot not handle the scenarios where
conditional blocks are merged across the loop. The VP [42] and the EVP [56]
can handle code motion across the loops. Therefore, they can show equivalence
when conditional blocks are merged across the loops. However, we identify that
they fail when conditional merge leads to the reset state as shown in Fig. [£.4] It
may be noted that the VP and the EVP method fail whenever they reach the
reset state of one FSMD and do not reach the reset state of the other FSMD
during the course of equivalence checking. These approach find that the path
qo1 ==y Qo2 is not equivalent to the path ¢, ==y ¢10 and needs to propagate
the mismatched value in the subsequent paths in g and q;9. However, the state ¢
is the reset state. Hence, the method reports behaviors “May Not be Equivalent”.
In Subsection 4.3.3| we present a method to handle this type of scenarios involving

if optimization.

74

4.3. Proposed Solution

Table 4.1: Comparing the effect of cutpoint selection criteria on the performance
of the PBEC approach presented in [50]

Benchmarks | #C-line | #State #Cutpoint | _#Paths Time(ms)

Sy Sy S |S1 Sy S3 |S1 Sy S5
EX1 33 21 7 1 3 13 34 20 |16 57 22
EX2 41 30 131 4 |25 125 16 |13 160 19
EX3 80 51 191 3 |37 192 29 |18 215 26
EX4 73 56 241 3 |47 260 58 |24 355 51
EX5 60 33 121 7 |23 486 18 [17 711 15
EX6 358 240 86 19 54 |171 584 139|73 1938 68
EXT7 204 134 49 5 30 |97 981 84 |33 6745 43

4.3 Proposed Solution

4.3.1 Handling Path Split

Consider the input behavior My and its transformed behavior M, in Fig. 4.2 Tt
may be noted that the path as and the path ajay consist of the same operation
list and the disjunction of the conditions of execution R,, = ¢; A —cy and the
condition of execution R,,,, = —c; is equivalent to the condition of execution
R, = —(c1 A cg) of the path s, ie., (Ra, V Raja,) = Rp,. In the search for the
corresponding equivalent path of f;, if we compare it with ay then R, # R,,,
but it may be observed that R,, == Rp,. This shows that R,, is a stronger
condition than R, and also indicates that 5 has been split into more than one
path in M5 where ay is one path among these paths. We find the remaining paths
in M, with the updated condition —¢; (where —¢; = Rg, A " R,,) for ;. We find
that ajay is equivalent to B with the updated condition. Hence, the (5, has been
split into two paths as and ajay and it is equivalent to the union of these two
paths. In general, for two paths 8 in My and « in M; it R, = Rp then first
we check whether the path 3 of My has been split into multiple paths in M;. The
path « is one path and we search the remaining paths in M; with the updated
condition Rz A R, of the path 3. However, if we fail to find the path, then it is
not the case of path splitting. This scenario still can be handled with usual value

propagation, as discussed in Section

75

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

4.3.2 Cutpoint Selection Scheme

The choice of cutpoints is not unique and it is not guaranteed that path covers
obtained from any choice of cutpoints in both the FSMDs result in equivalence of
FSMDs. The same situation arises for the behaviors My and M; in Fig. when
the PBEC approaches select all the branching states as cutpoint. If we remove the
end state of the path a; as cutpoint then it simplifies an if-else block. However,
any loop node (i.e., entry point of the loop) must be kept as cutpoint even inside
an if-else block. Thus, within an if-else block, we should not designate all
the internal branching nodes as cutpoints except the loop nodes. Another option
of simplifying an if-else block is by selecting only loop nodes as cutpoints but
this increases the number of paths in the path cover exponentially. Therefore, we

can find the cutpoints for a given FSMD by using one of the selection criteria:

e S;: Select the reset state and all branching states as cutpoint.
e S, Select the reset state and only loop states as cutpoint.

e S3: Select the reset state and all branching states as cutpoint except the

internal nodes of an if-else block which are not a loop node.

The PBEC approaches [37-42./56] use cutpoint selection criteria S;. The scheme Sy
is the minimum number of cutpoints based on the Floyd-Hoare method of program
verification [54]. In this work, we proposed a new cutpoint selection scheme Ss.
We design some test cases which contains several unbalanced if-else blocks. We
modify the EVP method presented in previous chapter so that it works on each
cutpoint selection criteria mentioned above. We want to compare the runtime
effects of cutpoint selection criteria. Therefore, we run the value propagation
based PBEC approach, where the input and transformed behavior are the same
for each criterion. The result of this experiment is tabulated in Table The
second column represents the number of lines in the corresponding C code for each
test case. The third column represents the number of states in the corresponding
FSMD for each C code. The number of cutpoints, the number of paths in the path
cover and the runtime in milliseconds (ms) of the EVP method for each case is
listed in the columns 4 — 6, 7—9 and 10 — 12, respectively. Note that in rows 1 —5
of Table the number of cutpoints for S; denotes the total number of if-else

blocks for a given test case and the number of cutpoints for S5 denotes the number

76

4.3. Proposed Solution

of if-else blocks which is not defined inside of any if-else blocks for a given
test case. The same for S gives the number of loops in the test cases. It is evident
from the results in Table that for the selection criteria Sy the number of paths
in the path cover is on average almost 7 times higher then paths for S;. Hence,
it needs more time to show the equivalence as compared to others. However, the
number of paths and hence the runtime for the S; and S3 are comparable. Note
that the time reported here is the minimum since there is no value propagation
is required. However, this study gives a trend of the runtime for all the selection

criteria.

As expected, for the selection criteria S; the number of paths in the path
cover is least as compared to other criteria. Therefore, it needs less time to show
equivalence. If we use the selection criteria Sy, then the number of paths in the
path cover is more. Hence, it needs more time to show the equivalence as compare
to the other two approaches. If we apply selection criteria S3 then the number of
paths in the path cover also marginally increases as compared to selection criteria
S1. Hence, it needs extra time to show the equivalence as compare to selection
criteria S7. From the runtime shown in Table [4.1] it is clear that the criteria S5
simplifies the control structure of a given FSMD in the cost of marginal additional
time. The EVP method may consider a path multiple times (by the concept of
value propagation) when the transformed behavior is obtained by applying the
code motion techniques on the input behavior. Thus, the runtime to show the
equivalence increase for the EVP method and the time shown in Table. for the
EVP method is the minimum. However, this study gives a trend of runtime for

all the selection criteria.

The cutpoint selection scheme S5 is not feasible in practice since this increase
the size of the path cover exponentially as shown in the Fig. [4.3(b)] The internal
structure of a nested if-else block are merged due to control structure related
transformation as shown in Fig. 1.2l The cutpoint selection scheme S} selects all
branching points as cutpoints. The paths this scheme identifies inside such nested
if-else block in both the behaviors, cannot be co-related by the equivalence
checking method. With Sy, therefore, the EVP cannot show equivalence of such
split/merged paths. Our proposed scheme S3 does not consider internal branching
states inside a nested if-else block as cutpoints. Therefore, paths identified

by S3 inside such nested if-else block in both the behaviors can be co-related.

7

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

On top of that, we need the path split equivalence as discussed in previous sub-
section. Therefore, the cutpoint selection scheme S3 and the path split equivalence
are necessary for the handling of split/merged paths for our approach presented
in[4.5] In our experimental section we have also discussed the runtime performance
of the EVP method with S; and S3 on benchmarks without path split/merge.

4.3.3 Handling the Scenario Involving if Optimization

The value propagation method [42,[56] uses the concept of null path to handle the
conditional merge scenario. A null path (of length 0) from a state ¢ to the same
state ¢ has the condition of execution T and a null (identity) data transformation.
We denote a null path emanating from a state ¢ as 7,. As discussed in Subsec-
tion the value propagation method [42,/56] cannot handle the condition merge
lead to the reset state as shown in Fig. [4.4] In the course of equivalence checking if
these methods reach at the reset state in one of the behavior (say M) and do not

reach the reset state in other behavior (say M;) then they should do the following;:
1. They should consider the null path at the reset state of M.

2. They must proceed the equivalence checking until condition at null paths
matches with the path in FSMD M, or the reset state of M; have reached.

This strategy helps to find the equivalence between the behaviors shown in Fig.
The function findEquivalentPathAtReset is used to handle this scenario in our

proposed method.

4.4 Equivalence of Paths

Our equivalence checking method is based on propagating the mismatch values
of the variables through all the subsequent path segments until the values match
or the final path segment ending in the reset state is reached. Propagation of
mismatch values from a path [, to the subsequent path [y is carried out by
associating a propagated vector at the end state of the path 51 (or equivalently,
the start state of the path (,). In Fig. [£.2(b)] for example, the propagated vector
at the reset state qoo is (T, (c1, c2,t1,t2,t3,a,b,¢,d, e, f, g, h)).

78

4.4. Equivalence of Paths

InplIt: B qp, = qﬁf € PO, Qi Qo = Q(vf S Pla

I3, Uy Vg, Vo, Jas Vo
Ty = (Ry7,s57) T = (R, 80™)

False
(Case 1.1) (Case 1.2)
ref‘urn return
Case 1.1, NULL); Case 1.2,NULL);
(SList = checkSplitPath(f3, a, P, P1))
False

(SList = checkSplitPath(w, [, P, F))

(Case 3)

N return
((3;15(‘,‘23 Case 3, NULL);

return
Case 6, NULL);

(Case 5)
Ca;:) BI,IEII;LL ; I(\I((?)asc 4) e
Yes
Yes No
(Case 2.1) (Case 2.2)

return return
Case 2.1,8List); Case 2.2,8List);
(Case 4.2)

return (Case 4.2,SList);)

(Case 4.1)
(return (Case 4.1,SList);

) (

Figure 4.5: Control flow graph of checkEquivalence(S, «, Tgﬂs , 7‘2"5) function.

The propagated vectors ¥s, and J,, are obtained as follow. R’ﬂf = RZB * and

R’af = R, The characteristic formulas Tgfs and r;?;“ associated with path (8

and «, respectively are compared. If values of the variable v matches then value

of v is reverted back to symbolic value v in both s (of ¥g,) and s, (of Us,). If

Vg,

the values of v mismatches, then the actual expression of v in s 5 " 1s copied to s/’Bf

Qs

Doy - .
and the same of s,™* is copied to s/,

e

Example 8. Let us consider the path 1 = {(qoo ATAC Y qo1) in My (Fig.
and the path a1 = {(qio Sl q1) in My (Fig. . Here, Y99 = p and
Y91 = p and the characteristic formula for [y is Tgfo = {1 AN, (c1,c9,a X bye +

fits,a,b,c,d e, f,g,h)) and for aq is Tgfl = (c1/\ca, (c1, Ca,axb, ta, t3,a,b, ¢, d e, f, g, h)).

79

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

c1 Aeaf 51?.a %Bz(cl/\@)/ o
ti=axb ti=c+d tc—liz\ff{)
t2e+f:t26+f L
Cl/
C]/ —\Cl/
—er/— ta=e+f
t3 = h to =
3=9g+ ts=g+h 2=e+f
(a) Mp: Original behavior (b) M;: Transformed behavior
B 3
Cl/ 1 —‘Cl/
ti=axb ti=c+d
B2 H c1/ a1 —c1/
CI/ ﬁ01/ ti=axb ti=c+d
et @ =gEh ty=c+f @ ty=g+h
B3 @2
CQ/ . 62/ - .
ts=g+h c2/ t3:g+h e/
(c¢) Ms: Original behavior (d) My: Transformed behavior

Figure 4.6: Examples to illustrate different path equivalence cases discussed in

Section [4.4]

The propagated vector at qoy s Vo1 = {(c1 Ao, (c1,¢a,t1,€ + £ t3,a,b,¢,d, e, f,g,h))
and at qo1 18 7911 = <Cl A Ca, <Cla 027t17t27t3aa’7 ba ¢, d7€7 f’g’ h>>

The detailed formulation of the equivalence of paths are discussed next. We
have the following cases while comparing these two paths # in My and « in M:
Case 1 (One-to-one Equivalence) Condition of execution matches, i.e., Rzﬁs =
RY*s: The following subcases may occur.

Case 1.1 Data transformation matches, i.e., sgﬂs = sU%: The path [is said to
be unconditionally equivalent to the path « (U-equivalent in short, denoted by
B ~, «). In this case the propagated vector at the end state of the paths § and «

will be p.

80

4.4. Equivalence of Paths

Algorithm 6: findEquivalentPath(3, V3., ¢1;, Vg, Po, 1)

Input : A path 8 € B, the propagated vector ¥, a state q1; € M, the
propagated vector U, ; associated with q1;, and the path covers Fy
and P; of My and M, respectively.

Output: An ordered tuple (71,72,197”,1972” type, SList) s.t. y1 >, 72 or
Y1 e Y2 OF Y1 s Y2 OF Y1 ~es 72, the propagated vectors 9, ; and

q1j5°

Uy, ;> type and SList contains a set of paths.

1 Tgﬁs _ (RZBS,SZBS)

2 foreach path a : (ga, = ¢a,) € P1 emanating from g, /* Qo, = q1j */
3 do

4 | T = (Ra sa)

5 (type,SList) < checkEquivalence(f, «, Tgﬂs , rﬁ“s)
6 if type = Case 1.1 then

7 ‘ return (3, «, p, p, type, NULL);

8 else if type = Case 1.2 then

9 ‘ return (3, a,9g,,Va,, type, NULL);
10 else if type = Case 2.1 then

11 ‘ return (53, «, p, p, type, SList);
12 else if type = Case 2.2 then

13 Va; = (Rj, 50

14 return (3, a,9g,,Va,, type, SList);
15 else if type = Case 3 then

16 ‘ return (53, 7a,,Ys;, Ya,, type, NULL);
17 else if type = Case 4.1 then

18 ‘ return (5, a, p, p, type, SList);
19 else if type = Case 4.2 then

20 Vg, = (R, s.)

21 return (B,a,ﬁgf,ﬁaf, type, SList);
22 else if type = Case 5 then

23 ‘ return (1s,, @, Us,,Va,, type, NULL);
24 else

25 ‘ continue; /* Case 6 —— B2« */
26 end if

27 end foreach
/* All the paths emanating from ¢;; are not equivalent to the path
B */

28 return (3,2, p, p, type, NULL); /* () denotes a non-existent path */

Example 9. Let us consider the FSMDs My and My shown in Fig[4.4 The path
B1 = {qoo S qo1) in My is U-equivalent to the path anas = (qio a5 G12) in My

81

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

, e, 1 >, aqas. Since, there is no mismatch in the values of the variables. In

this case, the propagated vector at qo1 and qio will be p.

Case 1.2 Data transformation does not match, i.e., szﬁs =+ soes: These two paths

are said to be conditionally equivalent (C-equivalent in short, denoted by f ~, «)
if
Condition 1 [either gs, = qoo Or Ga; = qio but not both]: One of the following

condition is true:

® g3, = qoo and there exists a concatenated path from ¢., to qio (say, a') such

that characteristic formula for the null path at gy is equal to the character-

.. . Vo
istic formula for o, i.e., 790 =7 '
Mago o
_ M I
° q%f = qio and there exists a concatenated path from g, to goo (say, (')
by — 2o
TB/ — anm .

Condition 2 [gs, # qoo and qa, # qio]: V/3' emanating from the state gg, with
propagated vector (R’ﬂf, S/Bf> there exists a path o' emanating from q,, with the
propagated vector <R’af,s’af>, such that ' ~, o or B ~,, o or ' ~. o or
p' ~. ' (~ys and >~ are defined in case 2).

The condition 1 handles the scenario where merging of conditional blocks lead
to the reset state as discussed in Subsection £.2.3] As discussed in Section 1.5
the function findEquivalentPathAtReset in our proposed method handles the

condition 1 and the function ECC invokes itself recursively to handle the condition 2.

Example 10. In continuation to Example @ the path B1 = {qoo o Jo1) in
M, (Fig. is declared as C-equivalent to the path oy = {(qo aley Q1) in
M, (Fig. €., B1 ~. ay, since there is a mismatch in the values of the
variable ty and for all the paths emanating from qo1 there exists a U-equivalent

path emanating from q1 with respect to propagated vectors.

Case 2 (Split Equivalence) Ry — RZBS and there exists a set of paths
say A = {ai,...,a,} in M; emanating from ¢,, and ending at g,, such that
Rg = (Ra V Ry, VoV Rak): This situation arises when the path 8 in M, has
been split into more than one path in M; and the condition of execution of the
path (3 is equivalent to the disjunction of the conditions of execution of the paths

in the set {a} U A. In this case, we have the following subcases.

82

4.4. Equivalence of Paths

. .) 19& 19(15 190‘5
Case 2.1 Data transformation matches, i.e., sﬁﬁs = 50" =584} = -+ = Sq,°: The

path S is said to be unconditionally split equivalent to the path a (US-equivalent
in short, denoted by 5 ~,s «). Note that, the path § is also US-equivalent to the
other paths in the set A ie., 0~ a1,..., 0 ~us Q.

=(c1Mea

Example 11. Consider Fig. the path By = {qoo qo1) in My is US-
equivalent to the paths aioy = {quo ahter q12) and oz = (q10 => qr2) in Ms i.e.,
B2 s a1y and P 2y aa.

Case 2.2 Data transformation does not match, i.e., shes = sg‘fs =... = sizs but
sgﬁs #* shes: The path (3 is said to be conditionally split equivalent (CS-equivalent

in short, denoted by 5 ~. «) to the path in « if
e This condition is the same as condition 1 of Case 1.2.

e V3’ emanating from the state gg, with the propagated vector (55 523> there
exists a path o/ emanating from ¢,, with the propagated vector (Rj, s,,),

such that 8" ~, o or ' ~,s & or B’ ~., o or B’ ~.d .

Once the paths § and « is declared as 8 ~., a, then the path 3 is also declared
as CS-equivalent to each paths in the set A.

—|(Cl Aca

Example 12. The condition of execution of the path By = {(qoo Go1) in
M, (Fig. s equivalent to the disjunction of condition of execution of the
paths as = (qio o qu1) and oz = {qio = qi3) in M, (Fig. . The data
transformations of the paths as and ag are the same but have mismatch in the
values of the variable ty with data transformations of the path Bs. The path (o is

CS-equivalent to the paths as and g i.€., By ~es o and o .5 Q3.

Case 3 Ry — RZ‘“ and path split scenario does not arise: In this case, we
introduce the null path at ¢,, (1,,) and the path is declared as conditionally
equivalent to 1., (8 ~¢ 1, if

e This condition is the same as condition 1 of Case 1.2.

e V' emanating from the state gs, with the propagated vector (R}, sj) there
exists a path o/ emanating from ¢,, with the propagated vector 9,,, such

that 8 ~, o’ or ' ~,s o or ' ~. o or ' ~, .

83

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Example 13. The path 31 = {(qo0 = qo1) of Mz in Fig. 4.6(c) is a candidate
of C-equivalent to the path oy = {quo = qu1) of My in Fig. 4.6((1} since there is
mismatch in the values of the variable ty (Case 1.2). Therefore, the propagated

vector at qo1 is Vo1 = {1, {c1, o, 11,2, t3,a,b,¢c,d e, f,g,h)) and at q1 is V11 =
(c1,(c1,co,t, e+ £ t5,a,b,c,d,e, f,g,h)). The paths By = {qo1 = qo2) and ag =
(q11 =4 ¢12) are compared next. The RZ;“ 18 ¢1 with respect to Yo, and RZ;l 1S c1 \Ca
with respect to ¥11. Since, Rzgl = Rg;”, we should check for the path merge/split
scenario (i.e., Case 2). However, Case 2 does not matches here. Therefore the path
B is compared with the null path 0y, and declared as 52 ~. 14, (Case 8). Now the
propagated vector at qo 1S Voo = (c1, (c1,co,t1, € + £, t3,a,b,¢c,d e, f,g,h)). The
path Bs = (qo2 = qos) and the path ay are compared next. The path 3 is declared
as U-equivalent to the path s with respect to propagated vector associated with their
respective start state (Case 1.1). In the similar way other paths are compared and
at the end of the execution of equivalence checking both the behaviors are declared

equivalent.

In the following, cases 4 and 5 are the reverse situation of the cases 2 and 3,
respectively.
Case 4 RZBS = Rz‘“, and there exists a set of paths say B = {f1,..., 0k} in
My emanating from gs, and ending at gg, such that (RsV Rg, V-V Rg,) = Ry:
The condition of execution of the path a in M is equivalent to the disjunction of
the conditions of execution of each path in the set {8} U B in M. In this case we

have the following subcases.

Case 4.1 sgﬁs = sgfs == stS — sb: The each path in the set {3} U B is
US-equivalent to the path «a i.e., 8~ o, B ~us @, ..., B s
Case 4.2 sgﬁs = sgfs e sZﬁS but soes # SZBS: The path 3 is conditionally

split equivalent to the path « if
e This condition is the same as condition 1 of Case 1.2.

e V3 emanating from the state qs, with the propagated vector (R, sj) there
exists a path o/ emanating from ¢,, with the propagated vector (R, s,),

) T

such that g ~, o' or ' ~,s o’ or or f’ ~., o or p' ~. /.

Case 5 RZBS — Rz‘“, but path split scenario does not arise: The null path at

qp, is declared as conditionally equivalent to the path «, i.e., 75, ~. a if

84

4.4. Equivalence of Paths

e This condition is the same as condition 1 of Case 1.2.

e for the V3 emanating from the state gz, with the propagated vector ¥g, there
exists a path o’ emanating from ¢,, with propagated vector (R;,, s,), such

) T

that f' ~, o’ or ' ~,, o’ or or ' ~. o or ' ~, .

Case 6 The path f and « is not equivalent if one of the condition among the

following conditions is true:
19 s 19(15 19 s 19(15 ’ﬂas 19 s

e In the case 2 or case 4, data transformation of the paths in the set A or B

are not the same.

To check the equivalence, we use the function findEquivalentPath (Algorithm|))
which invokes the function checkEquivalence (Fig. to find an applicable
case. The control flow of the function checkEquivalence is given in Fig. [4.5]
This function takes as input two paths (5 and «) and the characteristics formula
associated with these paths. It finds the equivalence relationship between the
paths 8 and « and returns the one of the type of the case defined above under
which these two paths have an equivalence relationship. It invokes the function
checkSplitPath(f, «r, Py, P1) which checks whether the path 5 € Py has been split
more than one path presents in P;. The a € P, is one path among the split paths.
If a path has been split then the function checkSplitPath returns a list SList
which contains a set of paths which satisfy the condition mentioned in Case 2 or
Case 4.

Algorithm 7: containmentChecker (M, M)

1 Compute the path cover Py and P; of My, My, respectively; Wesp, = (g0, ¢10);
Set F,, E. and LIST as empty set;

2 foreach (qoi, q1;) € Wesp do

3 if ECC (Mo, M1, qos, q15, Po, P1, Wesp, Eu, Ec, LIST) returns “failure” then

4 ‘ Report “unable to decide My E M;” and exit;

5 end if

6 end foreach
7 Report “My C M,”;

85

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Algorithm 8: ECC(M(), M17 qoi, qu, Po, Pl; Wcsp7 Eu; Ec, L[ST)

1 foreach path 3 : (qo; = qom) in Py do
2 if R, A RZOi # False then
3 if go; is a loop header and checkFalseComputation(go;) returns True then
4 ‘ continue;
5 end if
6 if Path [is already present in the LIST then
7 ‘ continue; /* prevent recursions */
8 end if
9 (B, a, ﬁﬁ} , ﬁaf, type,SList) < findEquivalentPath(3, Jos, q15, V15, Po, P1);/* o : (q15 = qin)
*/
10 if type is Case 1.1 or Case 2.1 or Case 4.1 then
1 Eu = B, U{(8,a)};
12 if SList is not empty then
13 E, = E,U{(B,7)}, Vv € SList; for Case 2.1
14 Ey = EyU{(vi,a)}, Vv; € SList; for Case 4.1
15 end if
16 Wesp = Wesp U {(qom,q1n)};
17 else if type is Case 1.2 or Case 2.2 or Case 3 or Case 4.2 or Case 5 then
18 if ‘15} and Qo are the reset state then
19 return failure;
20 else if qﬁ} Or gay Is the reset state then
21 if !fin‘dE'.quivalen‘cPathAtReset(M()7 My, 8«
22 780, 70", Py, P1, By, Ec) then
23 ‘ return failure;
24 else
25 E.=E. U{(B,a)};
26 if SList is not empty then
27 E.=E.U{(8,v)}, Vvi € SList; for Case 2.2
28 E.=E.U{(yi,a)}, Vv; € SList; for Case 4.2
29 end if
30 continue ;
31 end if
32 else if qﬁ} or ga, appears as the end state of some path already in
LIST A loopInvariant(8/, a,ﬁﬁ},ﬁaf) then
33 return failure; /* not loop invariant */
34 else
35 796} <—1§B};190,f <—1§af;
36 Append (8, a) to LIST
37 if SList is not empty then
38 LIST = LIST U{(B’,v:)}, Vi € SList; for Case 2.2
39 LIST = LIST U{(vs,)}, Vv; € SList; for Case 4.2
40 ECC(Mo, M1, ‘16} yqays Py, P1,Wesp, Eu, Ec, L[ST);
41 end if
42 else
43 return failure; /* Fail to find the path «a */
44 end if
45 end if

46 end foreach

a7 E. = E. U {Last member of LIST};

48 If the LIST contains some other path pairs whose start(end) state is the same as last member
start(end) state then append these path pairs in the set E. and remove them from the LIST

49 LIST < LIST\{Last member of LIST};

50 return success;

op
D

4.5. Overall Verification Method

containmentChecker
(Algorithm

enhancedCorrespondenceChecker (ECC)
(Algorithm .
. Dl
\
findEquivalentPath AtReset findEquivalentPath
(Algorithm [9) Algorlthm [6)

[checkFalseComputation]

L

checquulvalence [loopInvariant]
(Fig. [4.5)

Figure 4.7: A overall flow of our verification method

4.5 Overall Verification Method

The overall flow of our verification method is given in Fig. [£.7 We begin the
procedure of equivalence checking by invoking the function containmentChecker
(Algorithm [7). This function first identifies the cutpoints based on scheme S3 as
discussed in Subsection in each FSMD, followed by computing their path
covers. It also initializes Wy,, a set of corresponding state pairs by inserting the
reset state pair (qoo,q10). The sets F, and E. contain the U(S)-equivalent and
C(S)-equivalent path pairs, respectively. The function containmentChecker in-
vokes an enhanced correspondence checker (ECC) function (Algorithm [8) for each
corresponding state pairs (in step ﬁ Depending on the output returned by ECC,
containmentChecker outputs the decision whether the original FSMD is con-
tained in the transformed FSMD or not. The LIST is used to store the candidate

of C(S)-equivalent path pairs visited along the chain of recursive invocation of ECC

4Tt may be noted that the ECC function presented in this Chapter is an enhanced version of
the ECC function presented in Chapter|3] We keep the name of this function same as of Chapter
to keep the consistency among two equivalence checkers presented in two Chapters. Similarly,
the function findEquivalentPath of this Chapter is an enhanced version of the same function
of Chapter Further, we are using the same checkFalseComputation and loopInvariant
functions of Chapter [3| here.

87

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Algorithm 9: findEquivalentPathAtReset(M,, My, B, «, 75, T, Po, P1, Eu, E.)
1 if gg, is the reset state in Mo then

2 if go, is the reset state in M; then
3 if 73 = 7, then
4 Eu:EuU{(nﬁfaa)}E
5 return success;
6 else
7 ‘ return failure;
8 end if
9 else if There exists a path v in Py emanating from g, , such that
Rg = Rgaf then
10 EC:ECU{(”ﬁf?V)};
11 findEquivalentPathAtReset(My, M1, 3,7,
12 TB,Tf“f , Py, Py, Ey, E.);
13 else
14 return failure;
15 end if
16 else
17 if gg, is the reset state in My then
18 if 73 = 7, then
19 EU:EUU{(B?WCW)};
20 return success;
21 else
22 return failure;
23 end if
24 else if There exists a path v in Fy emanating from gg, such that
R, = Riﬁf then
25 E.=E.U{(v:ma,)};
26 findEquivalentPathAtReset(My, M1,7, a,
27 7 10, Py, Pt Eu, E.);
28 else
29 return failure;
30 end if
31 end if

invoked by containmentChecker.

The function ECC (Algorithm [8]) is the key function of our verification method.
The function takes as input two FSMDs M, and M, a corresponding state pair

38

4.5. Overall Verification Method

(qoi, q15), path covers Py (of My) and Py (of M), a corresponding state pair set
Wesp, LIST which maintains a candidate of C(S)-equivalent pairs of paths and
E, and E. for storing the U(S)-equivalent and C(S)-equivalent path pairs, re-
spectively. The function ECC returns “success” if for every path emanating from
qo; an equivalent path originating from ¢y; is found (in step [50] of Algorithm [g));
otherwise, it returns “failure”. To avoid the false computation [56] at a loop
header ECC invokes the function checkFalseComputation (in Step. The function
checkFalseComputation returns False if the loop at gyp; under the propagated
condition will execute at least once over all possible inputs in M;. It returns True
otherwise. The function ECC invokes the function findEquivalentPath (Algo-
rithm|[6]) to find a U(S)- or C(S)-equivalent path « : (q;; = ¢i,) in the transformed
FSMD M, for each path 8 : (go; = qom) starting from state go; of the original
FSMD M. The function findEquivalentPath returns (4, «, 5,3}, ﬁaf, type, SList),
where 8/ = (8 for all values of the variable type except when the variable type is
Case 3. When value of the variable type is Case 3 then ' is defined as a null path
at the starting state of 5. When the variable type is Case 6 then a does not exist
and findEquivalentPath returns a non-existent path in place of « (i.e., My
and M; may not be equivalent, handled in step , otherwise, « is an equivalent
path to . 55} and ﬁaf are to be propagated to end state of 5 and «, respectively.
An equivalence relationship between the path § and « is defined by the variable
type. The list SList contains a set of path pairs when type is Case 2 or Case 4.

If the function findEquivalentPath fails to find a path « such that g ~, «
or f ~ys aor ff~.aorf~;«a (ie., a does not exists), then this cause ECC to
return “failure” as shown in step [43] If the function findEquivalentPath finds
a path « such that g ~, a or § ~, «, then the function ECC inserts the path
pair (§,«) into E, (in step and if the SList is not empty then updates the
FE, as shown in steps and [14} ECC also declares the end state of § and « as a
corresponding state pair and insert this state pair into W, (in step . If the
function findEquivalentPath finds a path « such that g’ ~, « or ' ~., « then
further value propagation is required. However, we need to check the following
scenarios first:

1. Since the computation cannot extend beyond the reset state; therefore, if the

end states of 3’ and « are the reset states then ECC returns “failure” as shown in

step [19}

89

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

2. If the end state of 3’ is the reset state and the end state of « is not the reset
state then it may possible that from the end state to the reset state of «, there
exists an unique set of concatenated paths which is unconditionally equivalent to
null path at the reset state of § (vice versa). To find such path, ECC invokes
the function findEquivalentPathAtReset (in step this function returns True
if such a concatenated path exists; otherwise, returns False. It may be noted
that these steps is required to handle the scenario presented in Subsection [4.3.3]
If the function findEquivalentPathAtReset returns True then ECC inserts the
path pair (5, «) into E, (in step and if the SList is not empty then updates
the E, as shown in steps 27] and 28 The function ECC moves back to step 1 to
find an equivalence of other paths emanating from the state gy; as shown in step
3. If aloop has been crossed over then the ECC invokes the function loopInvariant.
The function loopInvariant checks for the loop invariance of the propagated vec-
tor 195} and 1, ;- 1f loopInvariant returns False then the ECC returns “failure”
(in step . Note that this function is required to check the validity of code
motion involving loops. The details of this function can be found in [56].

If both the checks at step |18 and step [32| resolve success then the propagated
vector of the final state of the paths 8’ and « are updated (in step and ECC calls
itself recursively (in step . When ECC reaches step , it implies that for every
paths emanating from the state qq;, there exists a corresponding paths emanating

from ¢y; such that their final paths are U(S)-equivalent.

4.6 Correctness of the Equivalence Checking Pro

cedure

4.6.1 Correctness

Lemma 3. If the Algorithm[7 terminates successfully at step[7 then each path py;
in path cover Py of My is either unconditionally equivalent or unconditionally split
equivalent or conditionally equivalent or conditionally split equivalent to null path

or some path in path cover Py of M.

Proof. The steps [11], [12], [25], [26], [47] of ECC function and the steps of

findEquivalentPathAtReset function ensure that for each path in M, there is

90

4.6. Correctness of the Equivalence Checking Procedure

Poiy |[——2, P1jy
400 q10 S 5
Poiy |— =« Pijy — =
Y Y
O O Q @
— Do | —— Dijy,
Y Y
O O M,
Poij, | — =« P1jy Doig 14 \N —c~|P1q
o Ty
POigyq |[—— s Py (')\ N ~__ P1jriq
O O —u O
o~ Poin |~ ~
O O ~y O
qoo
Poi, | —— P1j, M ~ Pij,
Ho OL Mo
1o of My Sequence S in M Sequence S’ in M;

(a) (b)

Figure 4.8: A scenario @ where each path in path cover of M, has an
U(S)equivalent or C(S) equivalent path in M; (=, is o2, or o2, Or o, Or ~);
where a null path in M, has an C-equivalent path in M

an U(S)-equivalent or C(S)-equivalent path exists in another FSMD M. [|

Lemma 4. If the Algorithm[7 terminates successfully at step[7 then each path po;

leading to the reset state in path cover Py of My will satisfy one of the condition:

1. Path py; is unconditionally (split) equivalent to a path py; in the path cover
Py of My. Path py; also leads to the reset state of M.

2. Path po; ts conditionally equivalent the path p.; in the path coverP; of M.
Path py; does no lead to reset state. The null path at the reset state of My
will have unconditionally equivalent path in Py leading to the reset state of
M.

Proof. The steps (invoking the function findEquivalentPathAtReset) and
23 of the function ECC ensures that condition 1 and 2 must be satisfied. [|

Theorem 4 (Correctness of the approach). If the Algorithm @ terminates suc-
cessfully at step[7 then for each computation of My there exist an equivalent com-

putation in M.

91

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Proof. Let us consider a computation pg of My is pg = [Poiy, Poiys - - - Poi,, |, Where
poi, € Fo,1 < k < n, where py;, ; = Doin; = qoo- From Lemma , there exists a
sequence S of paths py = [p1j,, P14, -, P15,) Where pyj, € Pi,1 < k < n, such
that poi, ~u P1j, O Poiy us P1j, O Poi, e P1j, OF Poij, es Plj, -

The sequence S represents a computation if it is the concatenation of consec-
utive paths in M; starting and ending back to the reset state. The sequence S
represents a computation of M; if g does not involve any null path. This sce-
nario is depicted in Fig. [4.8(a)] If y involves null path, then the sequence of
paths in S will not be consecutive. This situation is depicted in Fig. . In
this case, the path p;,, which is not the part of S, starting from the end state
of pyj, ; and ending to the start state of p1j,,,, 1s conditionally equivalent to null
path at the state ooy, in My. Hence, the sequence S is not consecutive. Let

1o = [Poirs Poigs - - - Mapgs, 2+ Poi,] be a computation obtained from pg by intro-
ke

ducing null paths at oo, which have (un)conditionally equivalent path py, in M;.

The Lemma implies that whatever mismatches present in any path in pf, must
get resolved when the last paths are traversed or by introducing the null path at
the reset state. In this case sequence S’ of paths p1 = [p1j,,D1jsy- -+ Digs - - - s Diji]
corresponding to f represents a concatenated path that starts and ends at the
reset state ¢io. Let the sequence S’ represents the computation py of M;. Thus
computations p; and gy are equivalent. Since introducing the null path does not
alter the computation py hence computations 1 and pg are also equivalent.

Note that, if a path pg;, is (un)conditionally split equivalent to a set of the
paths in M; then the computation pg will be equivalent to each computation
corresponding to each path in the set. It may be noted that for a given input,
the computation o will be equivalent to exactly one of the computation since the
condition of execution of the paths present in the set are mutually exclusive and

the data transformation of these paths are the same. |

Theorem 5 (Partial correctness). If the Algorithm @ terminates successfully at
step [7 then My = M;.

Proof. 1f the verification method terminates at step 7 of the function containmentChecker

then we need to prove the following claims.

1. The set F = E, U E.. contains a member for each path in the path cover Fj.

92

4.6. Correctness of the Equivalence Checking Procedure

2. All the paths of P, leading to the reset state will have unconditionally (split)
equivalent path in P; leading to the reset state of M; or in the case of con-
ditionally equivalent path, the null path at the reset state will have uncon-

ditionally equivalent path in P; leading to the reset state of Mj.

The set E, contains the pair of U(S)-equivalent paths, and the set E. contains

the pair of C(S)-equivalent paths. A pair of paths is added to the set E, and

E. at steps [11] [12] [25] [26] of ECC function and at steps [, [10} [I9] of
findEquivalentPathAtReset function. The pair of paths declared by findEquivallentPath
is actually U(S)-equivalent or C(S)-equivalent. The fact that £ = E,UFE. contains

a member for each path in the path cover Py can be proved in a way similar to

presented in [42].

Claim 2 can be proved by contradiction. Let the paths g € Fy or a« € P,
lead to the reset states of My and M;, respectively and $ ~,. «. In this case,
the function ECC returns failure to containmentChecker as shown at step [19] or
step consequently, containmentChecker terminates at step 4, not at step 7,

is a contradiction. []

4.6.2 Termination

Theorem 6 (Termination). Our verification method always terminates.

Proof. The Fig. represents the overall flow of our verification method. In the
following, we show that each of the function involved in Fig. terminates. In
checkFalseComputation, we check certain property therefore it always termi-
nates. The function loopInvariant always terminates since it involves a com-
parison of two propagated vectors. The function findEquivalentPath (Algo-
rithm @ tries to find a path « starting from ¢;; € M; by invoking the function
checkEquivalence. In worst case, it checks all the paths of P starting from g
which is finite. Hence it terminates as well. The function findEquivalentPathAtReset
(Algorithm @ finds a concatenated path from a state (say ¢;;) to the reset state of
one FSMD such that it is U-equivalent to null path at reset state in other FSMD.
If the function fails to find such a concatenated path then it terminates at step [7|or
22| The function findEquivalentPathAtReset invokes itself recursively with the

end state of path a (or) until reset state has not been reached. This function can

93

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

only be in infinite recursion if there is a loop in the path for ¢;; to the reset state.
However, the condition at steps[J]and [24] ensure that this function can not traverse
a loop twice. Therefore, the function invokes findEquivalentPathAtReset itself
recursively only a finite number of times and always terminates.

In Algorithm [§] the outermost loop (step [1}-step of the function ECC is
executed only |Fy| (number of elements in) time which is finite. In Algorithm
ECC can invoke itself recursively. The ECC(qq;, ¢1,) invokes itself with the end state
of some path 3 emanating from gy; and some path a emanating from ¢;;. If the
end state of § and « is a reset state or the function findEquivalentPathAtReset
return Flase then ECC(qq;,q1;) returns failure. Since the recursive call of the
function ECC does not extend beyond the reset state and the function ECC avoids
traversing the loop twice (at step @; therefore, the function ECC invokes itself
recursively only a finite number of times. Hence, the Algorithm [§] also terminates.

Finally let us consider the Algorithm [/, The loop in containmentChecker
depends upon the size of W, (a set of corresponding state pairs). Since the
number of states in both the FSMDs is finite, the number of elements in W,
has to be finite. So, the Algorithm [7] will also terminates. Hence our verification

method always terminates.]

4.6.3 Complexity

Let assume that there are n states in the FSMDs, and £ is the maximum number of
parallel edges between any two states and x is time taken to check the equivalence
of the two formulas. The complexity of our method is in the product of the

following three terms:
1. The first term is the complexity of findEquivalentPath(f, ¢,).
2. The second term is the number of times ECC' is called from containmentChecker.
3. The third term is the number of times ECC calls itself recursively.

There are two cases where the worst case may arise in our method. In first case
the worst case scenario arises when the cutpoint selection scheme S3 selects all
the states as cutpoint and the mismatch of paths resolves at the last recursion
of ECC. The function findEquivalentPath(f3,¢qi;,---) checks all the paths from

94

4.7. Experimental Results

¢1; in worst case. In our method, findEquivalentPath also checks that whether
a path has been split or not. Note that to check the path merge/split scenario,
it is sufficient to visit all the paths emanating from a state once. Thus, the
overall the complexity of findEquivalentPath is O(k - n - x). The number of
times ECC is called from containmentChecker is the same as the size of the set of
corresponding states pairs which is O(n). In this worst case ECC can recursively
call itself k- (n — 1)+ k* - (n—1)- (n—2)+---+k" - (n—1)-(n—2)...2- 1~
k"=t (n — 1)""! times. Therefore, the complexity of overall verification method
isO((x-k-n)-(n)- (k" (n—1)""1)) ~O(z- k™ - n") in this worst case.

The second worst case scenario arises when all the states except the reset state
belongs the internal states of an if-else block. So, S3 selects only reset state
as a cutpoint. Therefore, the number of paths emanating from the reset state is
(k- n)™. Therefore the complexity of the findEquivalentPath is O((k - n)" - x).
The complexity of the other two terms is O(1) since containmentChecker calls
ECC only one time and there will be no recursive call of ECC. Hence, the overall
complexity of our method is O((k - n)™ -) in this worst case.

From the above discussion it is clear that the complexity of our method is
O(x - k™ - n"™1). If we ignore the time taken by the SMT solver Z3 then the worst
case complexity of the our method is the same as that of the VP and the EVP
method.

4.7 Experimental Results

Our verification method discussed in Section has been implemented in C. All
the experiments have been conducted on a laptop with 1.8 GHz Intel i5 processor
with 8 GB of RAM. We take the codebase of the EVP method and implement
our method on the top of this codebase. To check the equivalence of the condi-
tion of executions, we replace the normalization technique [101] by the SMT-based
technique in our equivalence checking framework P} Specifically, we use Z3 SMT
solver [57] for this purpose. This is done to avoid the limitations of the normal-

ization technique. Specifically, the checking the path merge/split scenario is not

5We use the EVP with this modification for experimentation here. Therefore, the run time of
the EVP reported in Chapter 3 for a benchmark will not be the same here. However, this change
removes the limitation of normalization technique from our equivalence checking framework.

95

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

Table 4.2: Experimental results on the benchmarks presented in [42]

(1) (2) 3)](4) ()| (6) |(7) |(8)

EVP Our Runtime (ms)
Benchmark t |[#Path Equi|Exp. t Path Equi|Exp.
enchmarks| #Cut |#Pa FEP quilExp.| #Cut | #Pa JFEP qui|Exp EVP Our
My My | My M, Moy My |My M,y

) (10)](11) (12)|(13) |(14) |(15) |(16) (17)

(9
TLC 10 20 16 |20 |[Eq |75 |6
DIFFEQ 3 3 3 |13 |Eq |29 |3
4
4
6

6 16 16 |16 |Eq |65 |143
3
GCD 7 4 |11 8 |13 |Eq [125
4
6

3 3 3 |Bq [29 28
8 8 8 |Eq |73 121

W = W O

PERFECT |5 7 6 |7 |Eq |73 5 6 |[Eq |73 |34
MODN |6 9 9 |9 [Eq |29 6 9 9 (9 [Eq |29 |40
LRU 21 20139 38 139 |Eq |73 |11 10 [32 31 |27 |Eq [139 [199
DHRC 15 13 (27 24 |14 [Eq |135 |13 12 |26 24 |14 |Eq |177 |281
BARCODE |28 24 |55 57 |75 |Eq |189 |13 13 |54 54 |46 |Eq |213 [657

107
28
48
37
40
247
241
200

#cut: Number of cutpoints in an FSMD.
#Path: Number of paths in an FSMD.
#FEP: Number of times findEquivalentPath function is called.

Exp.: Maximum length of a formula in terms of variables along with that of operations.

Eq: My and M, are equivalent.

feasible with the normalization technique. We run both the EVP and our method
with Z3 for checking condition of execution for fair evaluation of runtime. How-
ever, we still use the normalization technique to check the equivalence of data

transformations.

In our first experiment, all the benchmarks listed in Table are taken
from [42]. The benchmarks TLC and GCD are control-intensive, the benchmarks
DIFFEQ, PERFECT, and MODN are data-intensive, and the benchmarks LRU,
DHRC and BARCODE are both control and data-intensive. The transformed
FSMD is obtained from the original one in two steps. First, we obtained the inter-
mediate transformed FSMD by running the SPARK tool [15] on these benchmarks.
We forced SPARK to apply the code transformation like copy and constant prop-
agation, common sub-expression elimination, dead code elimination (DCE) and
loop invariant code motion to the original behavior to produce the corresponding
optimized transformed behavior. The intermediate transformed FSMD obtained
by SPARK is converted into the final transformed FSMD according to path-based

96

4.7. Experimental Results

Table 4.3: Experimental results on the benchmarks presented in [44}|104},105], CHStone
benchmarks [55] and the benchmarks listed in Bambu HLS tool [14]

EVP Our

Benchmarks |#C|#Path| Equi- T #Path | Equi- 4PSE #Exp LSMT SMT_Time T
MO M1|valent (ms)|MO M1 Valent (ms ms)

(1) (2)|3) 4)] () (6)|(7) 8)] (9 (10) (1) (@12) (13) (14)
Fig. |4.4 125 3 |MNEq 6 |5 3| Eq 0 34 7 2 16
Fig.[44] 186 8 MNEq 9 |6 7| Eq 1 74 27 7 25
Penalba [44] |34 |14 15|MNEq 26 |13 14| Eq 1 89 55 18 65
Juan |104] 2008 9 |MNEq 12 | 7 8| Eq 1 86 34 10 36
Jian [105] 16 {10 11 |MNEq 15 |8 9| Eq 1 90 38 12 56
BWAKA 3514 3| Eq 774 3| Eq 0 83 14 6 7
%ARF 4315 5| Eq 3575 5| Eq 0 96 51 76 357
AMOTION |44|1 1| Eq 72|1 1| Eq 0 0 0 0 72
oBLOWFISH|151| 21 21| Eq 159 |19 19| Eq 0 50 66 28 114
EGSM 240/96 86| Eq 1651|76 76| Eq 0 154 348 956 1413
Ei-:)l\/[IPS 259 77 51 |[MNEq 105 |45 45| Eq 2 491 779 4378 5894
QAES 330(132 96 [MNEq 499 {105 105 Eq 3 192 497 1392 2087

MNEq: My and M; “May Not be Equivalent”.
#c: # of lines in ¢ program.

T: Time in milliseconds(ms).

PSE: Number of split-equivalent paths.
#SMT: Number of times SMT solver is called.
SMT _TIME: the time spent on SMT solver.

scheduler. In this experiment, we compare our method with the EVP method [56]
to verify the benchmarks listed in Table[4.2] The objectives are (i) to confirm that
power of the EVP method is not affected due to new cutpoint selection scheme Sj;
(ii) to compare the execution time (in milliseconds (ms)) with the EVP method
since our method uses cutpoint selection criteria S3 while the EVP method uses
selection criteria S;. The result of this experiment is tabulated in Table [4.2] For
each benchmark, we record the number of cutpoints (#cutpoint), the number of
paths (#path) in both the behaviors (M, and M;) by executing these bench-
marks in both the methods (EVP and Our). The 6th and 13th columns, “FEP”
(i.e.,#4findEquivalentPath) represent the number of times findEquivalentPath

97

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

function is called by the EVP and by our method, respectively. In addition, the
maximum length of the formula (in terms of the number of variables along with
that of the operations) sent to Z3 SMT solver is tabulated in 8th and 15th columns
of Table for the EVP and our method, respectively. This formula captures the
equivalence formulation of condition of execution of two paths. Our method can
establish the equivalence in all these benchmarks. This is reported as ‘Eq’ in Ta-
ble This result confirms that our cutpoint selection scheme S3 can also show
the equivalence correctly when the control structure has been modified as well as

code motions have been applied.

The runtime comparison of our method and the EVP method is shown in 16th
and 17th columns for the benchmarks listed in Table In general, S3 simplifies
the control structure of the given FSMD hence reduce the number of calls of
the function findEquivalentPath. The less number of calls for the function
findEquivalentPath results in less runtime for our method as compared to the
EVP method for the benchmarks listed in Table except LRU. The benchmarks
DIFFEQ and MODN do not have any nested if-else block; therefore, both
the methods take the same time to show the equivalence. For the benchmarks
GCD, TLC, DHRC and BARCODE our method takes less time as compared to
the EVP method because our method calls findEquivalentPath less or equal
number of times. Note that, it is not always true that reduction in the number
of the calls for the function findEquivalentPath provides the better runtime.
For LRU, our method calls findEquivalentPath less number of times but takes
more time to show the equivalence. As shown in the 8th and 15th columns of
Table [4.2] the number of cutpoints reduces from 21 in the EVP method to 11 in
our method. As a result, the length of formula at a given state is almost double
in our method as compared to the EVP method for LRU. Therefore, our method
spends more time in SMT calls for LRU. The experimental result confirms that
cutpoint selection criteria S3 does not increase the runtime exponentially. In fact,

the runtime improves in most of the cases.

In our second experiment, all the control dominated benchmarks listed in rows
2-5 of Table |4.3|are taken from [44,/104,/105]. These benchmarks are used in [44] to
show the efficient scheduling of conditional behaviors. The transformed behavior
of the benchmark listed in row 1 is obtained by merging the adjacent if-else
blocks as discussed in Subsection 2.3 We obtain the transformed behavior of

98

4.7. Experimental Results

the benchmarks listed in rows 2-5 by running Bambu HLS tool [14]. These trans-
formed behaviors represent the scenario where a path in original behavior has
been split into more than one path to improve the conditional hardware reuse.
For each benchmark, we have reported the number of paths in the path cover,
the equivalence decision taken by the EVP method and our method, the run time
in milliseconds (ms) of the EVP method and our method, and the number of
lines in the C program represents the original behavior. In Table we have
also reported the number of path split scenario (PSE) has been occurred (col-
umn 10), the maximum length of the formula for SMT solver (column 11), #time
SMT solver is called (column 12), and the time spent on SMT solver (column 13)
by our method. The results of second experiment is tabulated in rows 1—5 of
Table [4.3] From these results, it is evident that our proposed method can cor-
rectly identify the equivalence even when transformations involve path merging
/splitting and merging of states. However, the EVP method fails to prove the
equivalence of original and transformed behaviors for these benchmarks, i.e., the
EVP method gives false negative results. This is reported as ‘MNEq’ in Table [4.3]
In this case, we do not compare the runtime between the EVP and our method
since the EVP method terminates in the middle of its execution by identifying
a possible non-equivalence, whereas, our method executes completely and shows
the equivalence. The experimental evaluation shows that our method outperforms
the EVP method when the paths are merged/split or adjacent conditional blocks

having an equivalent conditional expression are merged into one conditional block.

In our third experiment, we take some larger benchmarks from CHStone [55]
and Bambu HLS tool [14] to show the scalability of our tool. We obtain a scheduled
behavior using Bambu HLS tool for these test cases. We observe that the control
structure is modified significantly by Bambu for most of the benchmarks. We have
considered a subset of CHStone benchmarks since others contain similar control
structure and have similar size for our verification experiment. Specifically, we use
the function BF_cfb64_encrypt in BLOWFISH, the function Gsm-LPC_Analysis
in GSM and the function encrypt in AES as a source behavior. The results of
this experiment is tabulated in rows 6-12 of Table[4.3] The entries related to SMT
solver is NULL for MOTION benchmarks since it does not contain any conditional
statement. Note that relatively larger benchmark AES takes less time as compared
to MIPS because the length of the SMT formula for MIPS is almost 2.5 times of

99

Chapter 4. Verification of Scheduling of Conditional Behaviors in High-level
Synthesis

the same for AES. It may be noted that even for a single path (say) in one
FSMD, we may need to call SMT solver multiple times to check equivalence of
condition of execution for each path emanating from the corresponding state of gg,
in other FSMD. In addition, we also use the SMT Solver to find path split/merger
scenario and false computation. Therefore, our approach spends on average 43%
of total time on checking the equivalence of SMT formulas. It may be noted that
the EVP method fails to show equivalence for the benchmarks AES and MIPS
since path split/merge scenario arises as shown in column 10 of Table Our
approach can show the equivalence in less than 6 seconds for all the benchmarks
listed in Table [£.3] This experiment shows the scalability of our approach to

handle realistic design.

4.8 Conclusions

In this work, a PBEC approach based on value propagation is presented for ver-
ification of scheduling of conditional behaviors in HLS. Like the existing value
propagation based PBEC approaches [42,[56], our method is capable of handling
the control structure modification of input behavior and code motion involving
loops. In addition, our method capable of handling the scenario involving path
merge/split. Our method can also handle the scenario where adjacent conditional
blocks having an equivalent conditional expression are combined into one condi-
tional block. We have also presented a new cutpoint selection scheme to simplify
the control structure of the given behavior. The experiments show that our method

outperformed the state-of-the-art PBEC approach.

100

Chapter 5

Improving Performance of a
Path-Based Equivalence Checker

using Counter-Examples

5.1 Introduction

In general, PBEC approaches decompose each FSMD into a finite set of finite paths
and the equivalence of FSMDs is established by showing path level equivalence
between two FSMDs. In the case of non-equivalence, these approaches do not
provide information sufficient for debugging the issue. A counter-example which
will demonstrate the non-equivalence between the input behavior to HLS (i.e.,
source behavior) and the scheduled behavior generated by HLS (i.e., transformed
behavior) will add significant value to the adoption of such PBECs. In this case,
PBEC approaches can report “Not equivalent” instead of “May Not be equivalent”.
Equivalence checking of programs is an undecidable problem in general. Therefore
it is possible that a PBEC may produce a false negative result, i.e., a PBEC
may report that two behaviors “May Not be equivalent” but these two behaviors
are actually equivalent. The process of generating a counter-example helps to
identify some false negative cases of a PBEC approach. Thus, a counter-example
generation procedure helps to improve the performance of a PBEC approach.

Specifically, the contributions of this chapter are as follows:

1. We show how the equivalence information of the value propagation based
PBEC approach presemted in Chapter 4 can be used to find a c¢Trace in the

case of non-equivalence.

2. We show how the Z3 SMT solver [57] and CBMC [58] tool can be used to

find a suitable counter-example for a given cTrace .

101

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

* ¥
(a) Source behavior My (b) Transformed behavior M;

Figure 5.1: An example of non-equivalence

3. We show how to improve the performance of the PBEC approach using this

counter-example generation framework.

4. An enhanced version of PBEC approach after incorporating our counter-

example generation scheme is also presented.

To the best of our knowledge, this is the first work which reports a c¢Trace in the
case of non-equivalence and uses it to produce a counter-example and improve the
performance of PBECs approaches during verification of the scheduling phase of
HLS.

The rest of chapter is organized as follows. A motivating examples highlighting
the limitations of a PBEC approach is given in Section 5.2} Section [5.3] focuses on
cTrace generation. Section [5.4] presents how that c¢Trace can be used to produce a
counter-examples. Section|5.5|and [5.6/finally delve into how current PBECs can be
enhanced by incorporating our counter-example generation technique. Visualiza-
tion of cT'races generated by our method is explained in Section 5.7, Experimental
results are given in Section [5.8 Section [5.9] concludes the chapter.

5.2 Motivations

Consider the input behavior M, and its transformed behavior M; shown in Fig.|5.1

The operation x < 5, a loop invariant for input behavior My, is placed after the

102

5.3. Counter-Trace Generation

EQ_LIST = | (Pyo, Pio)

(P01, P11) *4’&

C_LIST = | (Po2, Pr2) | ++—X

Figure 5.2: List maintained during equivalence checking

loop body in the transformed behavior M;. Note that the input behavior M,
and the transformed behavior M;j, shown in Fig. [5.1], are not equivalent since
there is mismatch in values of the out variable. The PBEC method presented
in Chapter [4] reports that behaviors “May Not be equivalent”. This method also
reports (see Fig. that the path pairs (poo, p10) and (po1, p11) are U-equivalent,
the path pair (pog, p12) is a candidate for C-equivalence and the path pair (pgs, p13)
is not equivalent. However, this information is not enough to find the proper
reason of non-equivalence. It is desirable the method should produce an input
sequence for which both behaviors generate different output values in the case of

non-equivalence.

5.3 Counter-Trace Generation

Suppose the source behavior and the transformed behavior are represented as
FSMDs M, and M, respectively. Let us assume that the PBEC approach pre-
sented in Chapter [4 fails to find the equivalence of the path 8. We now dis-
cuss how to generate a unique computation starting from the reset state that
leads to the path 5. It may be recalled that the PBEC method maintains two
lists: EQ_LIST contains equivalent path pairs explored so far and C_LIST con-
tains candidates for conditionally equivalent path pairs. C_LIST is obtained in
a DFS manner. So, if we traverse backward from the start state of £, we will
obtain a sequence of paths from the set C_LIST. This trace would always be a
unique trace. Let the sequence be (po;, poj+1, --» Dok, B) in FSMD M, shown in
Fig. . The segment of the FSMD M, from the reset state gy to the start
state of py;, (say pgj,) is already proved to be equivalent to its corresponding part
in FSMD M;. However, as shown in Fig. , there might be many paths from

qoo to pg;. For our purpose, we can choose one of the paths from this segment.
Let us choose the sequence (pgo, po1, ..., Poi) shown in Fig. |5.3(a), where pgo

103

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

EQ_LIST @ EQ_LIST @

Po o~ P1i
Y
C_LIST C_LIST Pl
Poj o P1j
P0j+1<f ~, Dij+1
')
Pof? ~e <Pp1k
Y Y
] Te
O O
(a) c¢T'race of My (b) cT'race of M,

Figure 5.3: c¢T'race generation using EQ_LIST and C_LIST

starts from the state goo and the path po; ends at pg;. Therefore, the sequence
cTrace = (Poo, Po1s ---s DPois Pojs Poj+1s ---» Dok, @) is the c¢Trace in the FSMD
M, shown in Fig. that we are interested in. From EQ_LIST, we will obtain
the paths corresponding to pog, po1, .-, Po; in FSMD M. Let the corresponding
paths be pig, p11, ..., P, respectively, as shown in Fig. . Similarly, the
corresponding paths of pg;, poj+1, ..., Pox in the FSMD M; can be found using
C_LIST. Let the corresponding paths be p1j, pij4+1, ..., Pk, respectively, as shown
in Fig. The potential corresponding path of a can also be obtained in the
FSMD Mj; let it be a. The PBEC method identifies the potential candidate for
equivalence, «, in M7 in most of the cases. It fails to find « only if there does not
exist any path from the corresponding state in M; whose condition of execution
matches even partially with that of 5. In this case, we can take any path from the

corresponding state in M;. Therefore, the corresponding c¢Trace in FSMD M; is
(P10, P11, -y Pris Pijs Pij+is - Pk, @) shown in Fig. -

104

5.4. Counter-Example Generation using Counter-Trace

n>0/ n>0/

1 <=0, | Po1 1<=0, | P

r <=0, z <=0,

y<=0 y<=0
1 Doz N
_U i<n —i <n/ 4
< <
! ‘x¢5‘, 0ut¢x+y‘ !

y<=y+5 \pog
(a) c¢Trace of My (b) cTrace of M,

Figure 5.4: Counter-trace generation example

Example 14. Let us consider the input behavior My and its transformed behavior
M, shown in Fig.[5.4] During the course of equivalence checking the PBEC method
presented in Chapter [f] reports that My and My, shown in Fig. may not be
equivalent. The method stores the U-equivalent and candidate for C-equivalent path
pairs in the EQ_.LIST and C_LIST list, respectively shown in Fig[5.9. As explained
in Section using these lists the generated cTrace of My and My is shown in

Fig. and Fig. respectively.

5.4 Counter-Example Generation using Counter-
Trace

In this section we explain how a cTrace used to produce a counter-examples using

73 and CBMC tool.

5.4.1 Modeling Counter-trace using Z3 SMT Solver

In the case of non-equivalence reported by the PBEC approach, we generate two
cTraces as discussed in Subsection [5.3] We then model the equivalence of these
cTraces as a satisfiability problem. We then apply Z3 to check the satisfiability.

If these two cTraces are equivalent then Z3 reports unsat; otherwise it reports

105

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

sat and produces a counter-example. The counter-example generation procedure
is discussed in detail here.

Let us examine the example of a ¢Trace shown in Fig. [5.4(a)] The correspond-
ing c¢Trace in the FSMD M is shown in Fig.[5.4(b)] The input to Z3 in SMT-Lib2

language generated for this case is given below.

(declare-const n Int) ; TO
(declare-const i_0O_s Int) ;T1
(declare-const x_0_s Int) ;T2
(declare-const y_O_s Int) ;T3
(declare-const i_1_s Int) ; T4
(declare-const x_1_s Int) ;TS
(declare-const y_1_s Int) ; T6
(declare-const iter_s Int) 3 T7
(declare-const out_s Int) ; T8
(declare-const i1i_0_t Int) ; T9
(declare-const x_0_t Int) ; T10
(declare-const y_O_t Int) ; T11
(declare-const i_1_t Int) ;T12
(declare-const x_1_t Int) ;T13
(declare-const y_1_t Int) ; T14
(declare-const iter_t Int) ; T156
(declare-const out_t Int) ; T16
(assert(>=n 0)) ; T17
(assert(= i_0_s 0)) ;T18
(assert(= x_0_s 0)) ;T19
(assert(= y_O_s 0)) ; T20
(assert(<= i_0_s n)) ;T21
(assert (> iter_s 0)) ; T22
(assert(= x_1_s 5)) ; T23
(assert (= i_1_s (+ i_0_s (x iter_s 1)))) ; T24
(assert (= y_1_s (+ y_O_s (% iter_s 5)))) ; T25
(assert(not(<= i_1_s n))) ; T26
(assert (= out_s (+ x_1_s y_1_s))) s T27
(assert(= i_0_t 0)) ; T28

106

5.4. Counter-Example Generation using Counter-Trace

Table 5.1: Inverse strength reduction

Init | Op | Incr | Loop | Final

1 + c n 1+nx*xc

7 — c n I—nx*xc

7 * c n 1% c"

i / c n i/
(assert(= x_0_t 0)) ; T29
(assert(= y_0_t 0)) ; T30
(assert (> iter_t 0)) ; T31
(assert (<= i_0_t n)) ; T32
(assert(= x_1_t 5)) ; T33
(assert (= i_1_t (+ i_0_t (*x iter_t 1)))) ; T34
(assert (= y_1_t (+ y_0_t (*x iter_t 5)))) ; T35
(assert(not(<= i_1_t n))) ; T36
(assert (= out_t (+ (+ x_1_t y_1_t) 1))) ; T37
(assert (= iter_s iter_t)) ; T38
(assert (not (= out_s out_t))) ; T39
(check-sat) ; T40
(get-model) ; T4l

We have added statement numbers (having prefix T) to aid in our explanation. The
variables appearing in the source behavior (Fig. are suffixed with _s, though
the variables appearing in the transformed behavior (Fig. are suffixed with
_i. Since program verification entails checking the equality of output(s) generated
by two programs when fed with the same input(s), the variable n is not suffixed
with either _s or _i.

The statements T1-T8 and T9-T16 declare the variables appearing in the source
and the transformed behaviors, respectively, along with their data type, which is
integer for all the variables. The statements T17-T27 and T28-T37 capture the
data transformations and the conditions of execution of the paths appearing in the
cTrace of the two FSMDs. A crucial point to note is that we have considered the
loop in the source and in the transformed behaviors to have executed iter_s and
iter_i times, respectively, whose value can be one or more; furthermore, since

the conditions of execution and the data transformations of the loops in the two

107

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

FSMDs have been found to be equivalent, the two loops must have been executed
an identical number of times in the two FSMDs, a fact captured in statement
T38. Now to generate the counter-example, we replace the execution of the loop
for “iter” times by a single path which captures the equivalent data transformation
i each FSMD. This strategy is adopted because SM'T solvers are oblivious to the
notion of iterating over loops as done in programs. Moreover, the inputs to an
SMT solver must be in single assignment (SA) form (because there is no notion
of variable update in SMT languages). Therefore, we have two variables 1_0 and
i_1 in the inputs generated for each FSMD; while the former variable i_0 is used
to store the initial value of variable i, the latter variable i_1 stores the value of
i after the execution of the loop. Strength reduction [106] is a popular technique
for compiler transformation whereby an expression in a loop is replaced by a less
expensive operator. Here we are doing reverse of strength reduction to represent
a loop in terms of a path in SMT solver. For example the final expression for
i =i+ 1 listed in the loop body of c¢Trace of FSMD M, (in Fig. will be
1 = 1 + iter * 1. This final expression is captured in Z3 by the statement T34.
Intuitively, we apply an inverse strength reduction type technique to obtain the
final value of a variable given its initial value, increment operator, increment value
and loop count as shown in Table 5.1} Accordingly, we get the values for i_1_s
and i_1_t as shown in statements T24 and T34. Similarly, we get the values for
y-1_s and y_1_t as shown in statements T25 and T35.

Finally, we check the equivalence of the output variables out_s and out_i; note
that executing the above code in Z3 reports sat for statement T39 signifying that
the values of the variable out differs in the source and the transformed behaviors.
The statement get-model generates the following counter-example for the given
pair of ¢Trace shown in Fig. [5.4]

sat

(model
(define-fun iter_t () Int 1)
(define-fun n () Int 0)
(define-fun out_t () Int 11)
(define-fun y_1_t () Int 5)
(define-fun i_1_t () Int 1)
(define-fun x_1_t () Int 5)

108

5.4. Counter-Example Generation using Counter-Trace

(define-fun y_0_t () Int 0)
(define-fun x_0_t () Int 0)
(define-fun i_0_t () Int 0)
(define-fun out_s () Int 10)
(define-fun y_1_s () Int 5)
(define-fun i_1_s () Int 1)
(define-fun iter_s () Int 1)
(define-fun x_1_s () Int 5)
(define-fun y_0O_s () Int 0)
(define-fun x_0_s () Int 0)
(define-fun i_0O_s () Int 0)
)

From the above counter-example it is clear that if we initialize the value of n by
0 then the values of out differs in the source and the transformed behaviors.
Note that in case of nested loop, if the outer loop is iterated n; times and inner
loop is iterated ny times then a variable with its initial value ¢, increment operator
+, increment value c is replaced by a final expression ¢ + nq % ny % c. However, it is
always not possible to find a final expression to encode a loop. In general, CBMC
is better to model nested loop programs for counter example generation. In the

following we discuss the how CBMC can be used to model a counter-trace.

5.4.2 Modeling Counter-trace using CBMC

As discussed in Subsection for modeling cTraces using Z3 SMT Solver an
expression in a loop is replaced by a more expensive operator using an inverse
strength reduction technique. However, it is not always possible to replace an
expression using this technique. Consider the sequence of expressions x = x +
y+t1+5and y =z + y+ ¢+ 5 inside the loop body in the behavior shown in
Fig. . In these expressions the value of x and y are dependent on each other
hence the strength reduction is not suitable to replace them by less expressive
expression. Therefore, in this section we explain that how to model ¢Traces using
CBMC instead of Z3. We use CBMC because it symbolically unrolls the loops
either completely if possible or to a user-specified depth.

To obtain the counter-example, i.e., assigning suitable value to the inputs, we

109

1
2
3

© 00 J O Ot =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

rely on CBMC [58]. Specifically, for a given upper bound, CBMC verifies the

specified assertions. If any violation of an assertion is detected, a counter-example

is generated. Let us consider the c¢Traces as shown in Fig. and Fig.
The input to the CBMC in C for this case is shown below.

#include<assert .h>

void main ()

{

int i_s,x_s,y_s,n,out_s;
int i_t,x_t,y_t,out_t;
__CPROVER_assume (n>=0) ;
assert (! (n>=0));

// cTrace for MO

if (n>=0)

{

i_s=0;x_8=0;y_s=0;

__CPROVER_assume (i_s<=n);
assert (! (i_s<=mn));
while (i_s<=n)
{
Xx_s8=5;
y_s=y_s+5;
i_s=i_s+1;
}
out_s=x_s+y_s;
}
//cTrace for M1
if (n>=0)
{

i_t=0;x_t=0;y_t=0;
__CPROVER_assume (i_t<=n);
assert (! (i_t<=n));
while (i_t<=n)
{

y_t=y_t+5;

110

31
32
33
34
35
36
37
38
39

5.4. Counter-Example Generation using Counter-Trace

i_t=i_t+1;
i
Xx_t=5;
out_t=x_t+y_t+1;
+

assert (x_s

x_t);// Live Variable
y_t);// Live Variable

assert (out_s = out_t);// Output Variable
+

The variables appearing in the c¢Trace of My (Fig. p.4(a)) are suffixed with
_s,whereas the variables appearing in the c¢Trace of M; (Fig. [5.4(b)) are suffixed

with _t. Since program equivalence entails identical output(s) generated by the

assert(y_s

two programs when fed with the same input(s), the input variable n is not suffixed
with either _s or _t. Lines 3 and 4 declare the variables appearing in the ¢Trace of
My and the cTrace of My, respectively, along with their data type which is integer
for all the variables. The lines 816 and 18-26 capture the data transformations
and the conditions of execution of the paths appearing in the c¢Trace of the M,
and M, respectively. We use __CPROVER_assume statements to allow only those
computation that satisfy a given condition. For example CBMC first picks the
value for n non-deterministically from the domain of integers. The statement
__CPROVER_assume (n > 0) at line 5 further restricts the range of n for all program
computations to be greater than or equal to 0. Note that if there is no computation
satisfying the condition, say P, mentioned in __CPROVER_assume statement, then
all the assertions hold vacuously. We check this by adding assert (! P) statement
after each __CPROVER_assume statement so that if one of the assert (! P) statement
is true then we declare that all the possible computations represented by cTrace
are false computations i.e., they never execute. Finally, we check the equivalence
of the live variables (z_s,y_s,z_t,y_t) and output variables (out_s, out_t) using
the assert statements (lines 27-29).

CBMC is able to automatically determine an upper bound on the number of
loop iterations in many cases. It may fail if the number of loop iterations is highly
data-dependent. Therefore, to verify the assertions with CBMC we use the follow-
ing command: cbmc fileName.c -unwind k --no-unwinding-assertions where

fileName.c is the name of the target program, k is the bound on the number of

111

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

iterations of the loop in the program called as Unwinding Loop Bound (ULB)
and --no-unwinding-assertions disables the unwinding assertion check and
changes the unwinding assertion to an unwinding assumption. We use the option
--no-unwinding-assertions so that a counter-example might be found within
the small state space generated with the small ULB. If the target program con-
tains a loop then CBMC unwinds the loop % times and check the properties. Note
that if there are multiple loops in the program, the bound k& applies to all loops.
A violation of the property is reported if it is found within £ ULB and CBMC
will give a counter-example. Otherwise, we iteratively run CBMC with increasing
ULBs for the loops until an assertion violation is found or a given time limit is
reached.

Note that if the program consists of multiple and possibly nested loops, we
simply set the number of loop unwindings globally, that is, for all loops in the

program. For every unwinding of an outer loop CBMC unwind each inner loop.

5.5 Incorporation of Results in Equivalence Check-

ing Framework

The PBEC approaches are sound but not complete. Therefore, all the PBECs
approaches report that the behaviors “May Not be equivalent” once they fail to
prove the equivalence of source and transformed behaviors. Using the output
of CBMC, we can actually make the PBEC approach more powerful. In some
scenarios, the PBEC approach can report that the behaviors are “Not equivalent”
(instead of “May Not”) along with a counter-example. Also, in some scenarios,
the non-equivalence result reported by the PBEC approach can be proved to be
a false negative and equivalence checking will proceed further. In the following,
we discuss how we can incorporate the CMBC result to improve the equivalence

checking framework.

e Case 1: One of the conditions mentioned in __CPROVER_assume statement
is mot satisfiable: In this case, we report to PBEC tool that all the possible
computations represented by cTrace are false computations. Consequently,

we need to proceed further in the equivalence checking process.

112

5.6. Overall Equivalence Checking Framework

e Case 2: The unwinding assertions are valid and CBMC does not find any
counter-example: This means the values of all the live variables and output
variables are the same for both cTraces . So the non-equivalence reported
by the PBEC approach may be a false negative. In this case, we need to
proceed further in equivalence checking by declaring the corresponding path
pair (a, 8) as an equivalent path. This actually helps the PBEC approach

to avoid false negative results during the course of equivalence checking.

e Case 3: CBMC reports counter-example for some variables: This means

the data transformation of some variables is not equivalent in the c¢Traces .

Case 3.1: A mismatch is found for an output variable: This is surely a
non-equivalence case. So the equivalence checker correctly found the non-
equivalence of the behaviors. In this case, the PBEC approach reports that

the behaviors are “Not equivalent” along with the counter-example.

If a mismatch is found only for live variables (which are not output vari-
ables), then we cannot conclude definitely that the final outputs of both the
behaviors will not be the same. There may be some other operations in the
subsequent execution of the FSMDs which will make the behaviors equiv-
alent. Therefore, we need to execute the two programs with the counter-
example produced by CBMC and check if the outputs of the two programs

are the same or not.

Case 3.2: The outputs are the same: This is not a non-equivalent case.

Consequently, we need to proceed further in the equivalence checking process.

Case 3.3: The outputs of the two programs are not the same: This is surely
a non-equivalence scenario; in this case, the PBEC approach will report the

behaviors are “Not equivalent” along with the counter-example.

e Case 4: CBMC hits the time limit: In this case, CBMC has failed to gen-
erate a counter-example because of time out. So no counter-example will be
provided to the user. The PBEC approach reports the behaviors “May Not

be equivalent”.

113

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using

Counter-Examples

No, k+ k+1

Generate c¢Trace for
both My and M,

v

(k1)

[cbmc input.c -unwind k

Verify un-

winding

assertion

Yes
(Case 2)

"| -—no-unwinding-assertions

(Case 4)"

behaviors May
Not be equivalent

__CPROVER

Mark both path
as equivalent and
proceed further

Yes _assume
statement

SAT

(Case 1)

A4
behaviors May
Not be equivalent

User
defined
Assertion
violated?

s (Counter-example (CE) exits)

(Case 3)

mismatch

ino/p
values?

i
(Case 3.1) Run two pro-

grams over CE

v

Report Not equiv-

alent and provide
CE as a proof

mismatch
ino/p
values?

Yes

(Case 3.3) (Case 3.2)
A4 A4
Report Not equiv- Mark both path
alent and provide as equivalent and
CE as a proof proceed further

Figure 5.5: Control flow graph of counter-example generation using CBMC and
its utilization in a PBEC framework.

5.6 Overall Equivalence Checking Framework

The abstract version of our counter-example generation represented by the func-

tion counterExmapleGenerator is presented in Algorithm [I0] The control flow

of Algorithm is given in Fig. [5.5. The function counterExmapleGenerator
takes as input two FSMDs M, and M;, a path « from the path cover of M,
a path g from the path cover of M;, EQ LIST contains equivalent path pairs

114

5.6. Overall Equivalence Checking Framework

Algorithm 10: counterExmapleGenerator(M,, My, «, 5, EQ_LIST, C_LIST)
1 DFS from the start state of o in C_LIST to obtain the sequence

(Poj, POj+15 -+ POk, Q).

2 DFS from the start state of pg; in EQ_LIST to obtain the sequence
(Poo, Po1s --r P0)-

3 Encode the c¢Trace = (poo, pot, - - - Pois P0js P0j+1, - - - s Dok, ¢¢) and its
corresponding cTrace in M; as C, say “input.c”.

4 Initialize the unwinding loop bound (ULB) & to 1.

5 Use cbmc input.c -unwind k --no-unwinding-assertions command to
invoke CBMC.

6 if The condition mentioned in __CPROVER_assume is not satisfiable then

‘ return (NULL, False, True); /* Case 1 x/
8 else if All the unwinding assertions along with the user defined assertions are
valid then
9 ‘ return (NULL, True, False); /* Case 2 */

10 else if CBMC produces a counter-example for the assertion belongs to an
output variable then

11 ‘ return (0,False,False); /* Case 3.1 */

12 else if CBMC produces a counter-example for the assertion belongs to live
variable then

13 Execute both My and M; with the values obtained from CBMC as inputs.
14 if outputs are the same then

15 ‘ return (NULL, False,False); /* Case 3.2 */
16 else

17 ‘ return (v,False,False); /* Case 3.3 x/
18 end if

19 else if CBMC hits the time limit then

20 ‘ return (NULL, False,False); /* Case 4 */
21 else

22 ‘ Increase ULB by one (i.e., k=k+1) and go to step 5

23 end if

and C_LIST contains candidates for conditionally equivalent path pairs. The
function counterExmapleGenerator returns (v, Equiv, falseComp), where v =
(v1,v9,...,0,) is the input variable list such that v; represents the value of the
input variable v;, Fquiv is True if a ~ f and False otherwise and falseComp
is True if all the computations represented by c¢Trace are false computations and
False otherwise. In lines of Algorithm [I0| a ¢Trace is constructed from the
EQ_LIST and C_LIST as discussed in Section The cTrace is encoded as input to
CBMC at line[3] The output generated by CBMC may result in various scenarios

115

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

Algorithm 11: correspondenceChecker(My, My, qoi, q15, Po, Pi, Wesp)

1 foreach path 3 : (¢go; = qom) in Py do

2 if path a: (¢q1; = qin) can be found in P; such that § ~ a then

3 Wcsp = Wcsp U {(q0m7 q1n)};

4 Insert (3, «) in EQ_LIST.

5 else if path o : (q1; = ¢in) can be found in P; such that 8 ~. o then

6 if qom or g1, is reset state then

7 ‘ return failure;

8 else

9 Insert (8, «) in C_LIST.

10 correspondenceChecker (Mo, M1, Gom, qin, Po, P1, Wesp);
11 end if
12 else
13 (v, Equiv, falseComp)<— counterExmapleGenerator(My, M, 3, a,

EQ_LIST,C_LIST);

14 if falseComp == True then

15 ‘ Proceed Further /* Case 1 */
16 else if v # NULL then

17 ‘ return Not equivalent; /* Case 3.1 x/
18 else if ¥ == NULL and Equiv == True then

19 ‘ Proceed Further /* Case 2 */
20 else if ¥ == NULL and Fquiv == False then

21 ‘ Proceed Further /* Case 3.2 x/
22 else

23 ‘ return May Not be Equivalent; /* Case 4 x/
24 end if
25 end if

26 end foreach

27 EQ_LIST = EQ_LISTU {Last member of C,LIST}
28 C_LIST = C_LIST \ {Last member of C_LIST}
29 return success;

as discussed in Section Lines [0H19] of Algorithm [10] handle these cases.

The enhanced version of correspondenceChecker function of the PBEC method
presented in Chapter [4] after incorporating the result of the function
counterExmapleGenerator is presented in Algorithm [1I} In case of failure, Al-
gorithm invokes the function counterExmapleGenerator (Algorithm at
line[13] It may be noted that the PBEC method reports failure under this scenario.

If counterExmapleGenerator returns a counter-example (i.e., ¥ # NULL) then the

116

5.7. Counter-Trace Visualization

function correspondenceChecker returns “Not equivalent” i.e., the two FSMDs
are not equivalent (line 17). If CBMC hits the time limit then we cannot decide
whether M, is equivalent to M;. Hence the function correspondenceChecker
returns “May Not be Equivalent” (line 23). If CBMC reports that all the possi-
ble computations represented by c¢Trace are false computations (i.e., the variable
falseComp is True) then the function correspondenceChecker needs to be modi-
fied to handle this scenario (line 15). If CBMC finds the mismatch in the values of
a live variable but outputs of the two programs are the same then we do not report
the counter-example (line 21). To handle this case also correspondenceChecker
needs to be modified. If CBMC declares that the path pair («,) are equiv-
alent (i.e., the variable Fquiv is True) then it is a false negative result of the
correspondenceChecker function (line 19). The correspondenceChecker func-

tion must take some decision to avoid the false negative case in the future.

5.7 Counter-Trace Visualization

Visualization of the c¢Trace can be a great help in case of a mismatch. In this work,
we display the trace starting from the reset state till the mismatched path in both
the FSMDs using Graphviz [107]. Graphviz is a graph visualization software which
can be used to represent graphs and networks as diagrams. For visualization, the
internal data structure of an FSMD is stored in a file with dot extension — a format
which is supported by Graphviz. While visualizing the FSMD using Graphviz,
different colors can be used to differentiate between the U-equivalent, candidate
C-equivalent and mismatched paths. The following color coding is used to mark
a cTrace in the FSMD.

1. Green is used to show U-equivalent paths.
2. Yellow is used to color paths which are candidate C-equivalent.

3. Red is used to color a path in the original FSMD for which equivalence is
not found and its most likely corresponding path in the transformed FSMD

(based on the similarity of the conditions of execution).

A cTrace typically consists of a green trace, followed by a yellow trace and

finally ends in a red trace. The convention is that equivalence of the green trace

117

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

(b0)
a0 | S
T i=0
1i=0 v
(o)
IST6_12=i+1,
‘(i<=n2)l- i<=n2I- ST7_L1=al[i]

Y

. . (i<=n-2)I- i<=n-2I-
-lmin=ali] ()

ad
j_star=i
a5
-lj=j+1
. IsT8_12=j+1,
Hi=i+ 1 ST9_13=a[j]
(j<=n-1)I- HsT6_12=i+1,
sT7_1l=a[i]

I(j<=n-1)I-

fljl<minl- ltemp=ali]

Hla[i]l=sT7_11

-la[i]=a[j_star]

Imin=al[j]

Ha[j_star]=sT7_11,
i=sT6_12

-la[j_star]=temp

(a) Original FSMD (b) Transformed FSMD

Figure 5.6: Two FSMDs before and after scheduling

is found in the other FSMD. So, the correspondence between the green traces
is shown in both the FSMDs. The yellow part of the cTrace says these are the

118

5.7. Counter-Trace Visualization

candidate C-equivalent paths. This means there is some mismatch of values along
this trace. The tool propagates the mismatched value along this yellow trace
hoping to identify some compensating transformation which will render the current
mismatches into matches in future. Again, candidate C-equivalent paths have a
unique correspondence in the other FSMD. So, the correspondence between the
yellow traces is shown in both the FSMDs. Then the red path, say (3, in the
original FSMD M, is the path whose equivalent path in the transformed FSMD
M, is not found. As discussed in Subsection [5.3] the corresponding path, say «,
of 8 can also be obtained. So the correspondence between red paths is also shown
in both the FSMDs.

An example is shown in Fig. [5.6] where paths of both the FSMDs are colored
with green, yellow and red. In this example, the original FSMD depicts the behav-
ior of selection sort and the transformed FSMD is obtained by running the SPARK
tool on the selection sort algorithm. This is an example which reveals a bug in the
implementation of copy propagation for array variables in the SPARK tool that
was first reported in [71]. As shown in Fig. the inner loop (a6 =l a6) of the
original FSMD and the inner loop (b5 EE N b5) of the transformed FSMD find
the minimum element in the array A[j - --n—1] and stored its index in the variable
j_star. The inner loop exit path (a6 m) al) of the original FSMD shown in
Fig. swaps the values of ali] and a[j_star]. But in the inner loop exit path
(b5 RN b2) SPARK tool fails to swap the values of a[i] and a[j_star] as shown
in Fig. . In addition, the operation j =i+ 1 is replaced by j = j 4+ 1 in the
original FSMD, shown in Fig. [5.6(a)] by us so that there will be some C-equivalent
path in the course of equivalence checking. In Fig. the path (a0 — al) is equiv-
alent to the path (b0 — b2) since the values of all the variables match except the
variables that are not common to the two FSMDs, hence colored green. The path
(al IR 03 S oad S ab o a6) and (b2 N = Y b5) are yellow
as they have a mismatch in the values of the variable j. In Fig. the path
(ab W=D 11 S al2 S al3 S ald = al) does not have an equivalent path
in corresponding transformed FSMD, hence it is colored red.

The visualization information can be interpreted as “if you follow the green
trace followed by the yellow trace in both the FSMDs, then the equivalent path
cannot be found for the red path of the original FSMD in the other FSMD.”

Moreover, as shown in Section [5.4], we are also generating a counter-example which

119

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

Table 5.2: Experimental results with Z3 SMT solver

Benchmarks Decision Time (ms) | Lines
PBEC Method Our Method
DIFFEQ Eq Eq 184 28
LRU Eq Eq 92 247
DCT MNEq NEq 107 318
PERFECT MNEq NEq 60 63
MODN MNEq NEq 96 85
GCD MNEq NEq 52 80

will follow the trace shown graphically. With both the information, the user should

easily pinpoint the root cause of an error.

5.8 Experimental Results

We have taken the source code of the our PBEC method presented in Chapter
and have implemented our counter-example generation procedure on top of it.
Once the PBEC method fails to prove the equivalence, a c¢Trace is automatically
generated using EQ_LIST and C_LIST by our method as discussed in Section
The benchmarks are taken from [42]. The benchmarks are run on a 1.8 GHz Intel i5
processor with 8 GB of RAM with a timeout limit of 60 seconds. We have manually
introduced few changes like addition, multiplication or subtraction of a constant
to some of the variables in the benchmarks tabulated in rows 3-6 of Tables [5.2]
and so that source and transformed behaviors become non-equivalent.

In our first experiment, we translate the two corresponding c¢Traces as an input
to Z3 SMT solver. The results of our experimentation are tabulated in Table
For each benchmark, we have reported the equivalence decision taken by the PBEC
method presented in Chapter [4] and our method i.e., PBEC with counter-example
framework, the number of lines of SMT-Lib2 code generated as input to Z3 SMT
solver and the run time in milliseconds (ms) of the PBEC method presented in
Chapter 4] and the runtime of our method. For the benchmarks DIFFEQ and
LRU, both methods report equivalence which is denoted as ‘Eq’ in Table The

objective is to make sure that our implementation does not have any side effect on

120

5.8. Experimental Results

Table 5.3: Experimental results with CBMC

Benchmarks Decision Time (ms) | Lines
PBEC Method Our Method
DIFFEQ Eq Eq 184 28
LRU Eq Eq 92 247
DCT MNEq NEq 766 185
PERFECT MNEq NEq 227 74
MODN MNEq NEq 890 137
GCD MNEq NEq 100 97
Test Case [108] MNEq MNEq 26 32

the existing method. In the benchmarks reported in rows 3-6, our method is able
to prove the non-equivalence and denoted as 'NEq’. However, the PBEC method
fails to prove the equivalence of source and transformed behaviors. It reports that
the behaviors “May Not be equivalent”. This is reported as ‘MNEq’ in Table [5.2]

In our second experiment, we translate the two corresponding cTraces as an
input to CBMC. The results of our experimentation are tabulated in Table [5.3]
In this table column 4 denotes the number of lines in the C program given as
an input to CBMC. It is evident form the result that CBMC finds the mismatch
in the values of output variable and generates a suitable counter-example with k
= 2 loop unwindings. Hence, our method concludes that the behaviors are “Not

equivalent”.

In our both experiments, we do not compare the runtime between the PBEC
method and our method since the PBEC method terminates in by identifying
a possible non-equivalence and reports “May not be Equivalent”. Whereas, our
method uses counter-example generation mechanism to generate a counter-example
and reports the “Not equivalent”. Both experiments show that with the help of
our counter-example generation scheme a PBEC can take strong decisions about

the non-equivalence of behaviors.

In our third experiment, we try to explore the false negative scenario of the
PBEC method presented in Chapter For this purpose, we have taken the
example given in [108] and the result is tabulated in row 7 of Table[5.3] This test

case involves the inverse operation [108]. For this test case, the PBEC method

121

Chapter 5. Improving Performance of a Path-Based Equivalence Checker using
Counter-Examples

reports that the behaviors “May Not be equivalent”. However CBMC does not
generate any counter-example and case 2 as discussed in Section arises here.
CBMC reports that c¢Trace corresponding to these behaviors are equivalent. Our
method still reports “May Not be equivalent” since we have not implemented
proceed further scenarios. This experiment exposes a false negative case of the
PBEC method. It would be an interesting future work to enhance the PBEC

method to handle the test cases which involves inverse operations.

5.9 Conclusions

In this chapter, we have presented a counter-example generation mechanism for
the PBEC reported in Chapter 4l A similar counter-example generation mecha-
nism can also be developed for other PBEC methods as well. The idea is to reuse
the equivalence information of a PBEC method to generate a counter-trace effi-
ciently and then use it to generate a counter-example. We have also shown that a
PBEC method can be further strengthened with the counter-example generation
mechanism. As shown in the experiments, the PBEC method can take stronger
equivalence decision with help of counter-examples. Our counter-example gener-
ation mechanism identifies a false negative result of the PBEC method. In the
future, we plan to enhance the our method to handle the ‘proceed further’ (i.e.,
false negative cases) scenarios identified by our counter-example generation mech-

anism.

122

Chapter 6

Security Analysis of Locking
during High-level Synthesis

6.1 Introduction

6.1.1 Logic Locking

Many semiconductor companies are fabless, i.e., they use offshore third-party
foundries to manufacture their chips [29]. While cost effective, the fabless model
introduces security concerns. Since the foundry has access to the chip layout, it
can reverse engineer the chip’s functionality and steal the designer’s IP. IP theft
of this nature is a serious concern. One approach to preventing IP piracy is logic
locking [32-34]. In this approach, the circuit functionality is locked using an ad-
ditional input, called the key. Various internal signals of the IC are gated with
bits of the key. The IC only functions correctly for a secret key value, known
only to the designer, and otherwise produces corrupted outputs. When fabricated
chips are received from the foundry (note, the foundry does not know the secret
key), the designer activates the chip by loading the correct key in a tamper-proof

memory.

Example 15. Fig. shows an original netlist of a circuit, and Fig.

shows its functionally locked version through two XOR key-gates. On applying the
correct values of the keys (K1=0 and K2=0), the design will produce a correct

output; otherwise, it will produce a wrong output.

6.1.2 Summary of Threats on Logic Locking

Beginning with the SAT attack [46], the past few years have seen a flurry of actions
on logic locking, both on the attack and defense side. We note that a provably

123

Chapter 6. Security Analysis of Locking during High-level Synthesis

o B >

TR T
e T

(a) Original netlist (b) XOR-based logic locking

Figure 6.1: Logic locking techniques

secure defense against the original SAT attack is still missing. In the SAT attack,
the foundry has access to the locked netlist (at the gate-level) and a functioning
chip purchased from the market. The attacker then uses the input/output behav-
ior of the functioning chip along with a SAT solver to infer the correct key. First
published for breaking combinational circuits, the SAT attack has since been ap-
plied to sequential circuits as well [L09-111]. However, since the attack operates at
the gate-level, these techniques are not scalable to practical designs with hundreds

of thousands of gates and flip-flops.

Recent work in [35] has advocated for defenses that perform logic locking during
HLS; the resulting RTL locked netlists are large and consequently less vulnerable
to conventional gate-level SAT attacks. To defeat such RTL locking mechanisms,
an attack that works at higher levels of abstraction is desirable. The research

question that we attempt to answer is: “Can one scale the SAT attack to locked

RTL?”

6.1.3 Contributions

We propose an SMT based algorithm to determine the secret key of a locked
RTL design obtained through High-level Synthesis |35]. The algorithm models
an RTL design as a RTL-FSMD by applying the rewriting approach in [59]. We
abstract out the details of the hardware into a behavioral program on which we
launch an SMT based attack. Our attack finds distinguishing input patterns

iteratively (similar to [46]) to rule out equivalence classes of incorrect keys and

124

6.2. Backgrounds

control signals

Controller

Datapath
FSM

status signals

Figure 6.2: RTL structure generated by HLS.

stops when no DIPs are found. For linear arithmetic with m component keyf],
our algorithm is guaranteed to stop within m iterations. Our method works even
for non-linear arithmetic since this is supported by the state-of-the-art Z3 SMT
solver [57|. Further, our algorithm works on sequential circuits since the analysis is
performed on an algorithmic abstraction of the design. We show that the locking
keys inserted by TAO [35] can be recovered on HLS benchmarks. To the best of
our knowledge, this is the first attack on RTL locking.

The chapter is organized as follows. Preliminary concepts, including the attack
model, are given in Section [6.2l The TAO approach is discussed in Section [6.3}
Our attack/unlocking algorithm is given in Section [6.4} Section [6.5] presents the

experimental methodology, results and limitations.

6.2 Backgrounds

This section presents the background required to understand the SMT-based at-
tack.

6.2.1 RTL Structure

The RTL generated by HLS consists of a datapath and a controller finite state
machine (FSM) as shown in Fig. The datapath consists of registers, memories,
functional units (FUs) and their interconnection network. The controller FSM,
on the other hand, is a FSM. The RTL operations performed in the datapath
are controlled by the controller FSM. In each state, controller assigns 0/1 values
to each control signals. As a result a set of RTL operations are performed in

the datapath. The datapath sends some status signals (i.e., results of of some

IThe actual key size is proportional to m.

125

Chapter 6. Security Analysis of Locking during High-level Synthesis

conditional checks) to the controller. The FSM state transitions depend on those
status signals. The RTL is generated by HLS is of this kind of structure.

6.2.2 Attack Model

We assume a malicious foundry that wishes to steal the RTL IP. To protect against
this threat, we assume that the designer uses an RTL locking tool like TAO to
produce locked RTIE], performs synthesis and physical design and sends the layout
of the locked design to the foundry. As in prior work, we assume the foundry is able
to extract the gate-level netlist of the locked chip from its layout. Further, using
techniques proposed in [112], we assume the foundry extracts RTL descriptions
of the datapath and controller from the gate-level description of the locked chip.
Finally, the foundry purchases a functioning (unlocked) copy of the chip from the
market and can apply inputs to the chip and observe corresponding outputs (this
is the oracle chip). Using this setup, the foundry attempts to recover the secret
key to obtain the correct RTL. Note that it is not possible to observe the output
of a specific block of a locked RTL design in this setup. Therefore, our attack
methodology cannot be used to recover the key of specific block of locked RTL
design. Rather, we have to consider the complete locked RTL design in our attack

even if a particular block is locked RTL design.

6.3 Motivation

TAO [35] is an algorithm-level locking technique that applies during high-level
synthesis. TAO hides selected constants, control branches and datapath operations
based on an input locking key K. The key K is provided by the designer through
an additional port to the design and partitioned into sub-keys used for each element
to lock. The circuit will work correctly only when the correct locking key is given.
After applying TAO HLS generates the RTL locked netlist. This locked RTL
netlist are large in size and less vulnerable to conventional gate-level SAT attacks.

In the following, the TAO locking techniques are briefly presented.

2Note that TAO performs locking during high-level synthesis and outputs locked RTL with
separate datapath and controller.

126

6.3. Motivation

ENC(CONST_1)

¢ CONST-1
bt
d=c*CONST_1 d

(a) (b)

Figure 6.3: An example of constant locking.

6.3.1 Constant Locking

TAO identifies all the constants in the input behavior. It assumes a predefined-
number of bits x to implement all constants. Each constant ¢/ of the behavior
is locked as ¢§ = ¢ @ k;, where ¢f is the locked value stored in hardware and k;

is a x-bit key. The correct constant can be obtained by reversing the operation
C‘f == Cf D kz

Example 16. Consider the constant locking shown in Fig. [0.3. Let say constant
c? =5 to be stored using 4 bits (0101). This constant can be obfuscated as ¢§ =
0110 using locking key k; = 0011. The correct value s obtained by combing the
obfuscated value with input key bits i.e., 0101 = 0110 & 0011. If a wrong key is
provided then the resulting value will be incorrect, but an attacker cannot determine
this.

6.3.2 Branch Locking

Each branch in the input behavior (and hence in the controller FSM) is locked
with a one bit key. If the condition ¢, == 1 is checked in a control state, the
condition is modified as ¢, ® k; == 1, where k; is a one bit key. k; is part of the
locking key K and locks this condition checking. The right branch is taken by the

controller with the correct k;.

Consider the if-then statement shown in Fig. . When cond is lesser n, the
control transfers to BB2, otherwise it transfers to BB3. Similarly, in Fig.

127

Chapter 6. Security Analysis of Locking during High-level Synthesis

Example 17.
cond N
if (cond < N){ l
//go to BB2 test
} |

else{ test

//go to BB3
F T F T(%ﬁl‘)
(c)

(a) (b)
Figure 6.4: An example of branch locking.

based on the results of the test, control is transferred to BB2 or BB3. In this case
an attacker can determine the next block by looking at the result of the test. In
Fig. the control is transferred to the correct block only with correct key bit.
For instance, blocks are swapped when key bit is 1. Hence, the attacker cannot

determine the actual true (false) block without knowing the value of the key bit.

6.3.3 Datapath Locking

TAO adds decoy multiplexer-based interconnections between registers and the
functional units. Each MUX is controlled by a key bit k;. The correct output is
connected to 0 or 1 input of this MUX based on the correct value of k;. This MUX
multiplexes the correct and the spurious data flow in each control state. Only with

the correct key, the correct operations are performed.

Example 18. Consider the datapath locking shown in Fig.[6.5. Here the operation
c = a+ b s the actual operation. In Fig. a MUX 1is added to lock the actual
operation and is controlled by key bit. The actual operation is executed if the key
value is 0. Otherwise, fake operation ¢ = a — b will be executed. So, the attacker

cannot execute the actual operation without knowledge of the key value.

In our attack implementation, we represent the FSMD model of the RTL de-
sign, referred to as an RTL-FSMD model. In RTL-FSMD, V' has all the registers
and the memories in the design. TAO generated locked RTL is converted into an
RTL-FSMD using a rewriting (explained in Section [6.4.2). It also embeds the key

values and describes how the behavior evolves with different key values.

128

6.4. Attack Methodology

Example 19. Consider the design in Fig. [0.6, The operations r = a + ¢ and
ro = b+d are performed in the datapth in states 11 and qo, respectively. The MUX
in the yellow box is added to lock the first operation and is controlled by the key bit
k;. The correct key value is kj = 0. Therefore, if kj = 1 is supplied, r1 = d+c will
be executed producing a wrong result. The locked RTL behavior is shown in the
locked FSM with an additional transition between q, and qs. The key is implicit to
the controller FSM. However, when the RTL-FSMD 1is reverse engineered from the
layout, the key k; in unknown and creates additional transitions in the RTL-FSMD.

6.4 Attack Methodology

6.4.1 Problem Formulation

The objective is to find the locking key K using an SMT solver and by querying
an activated IC (the Oracle).

The RTL-FSMD P(I,0,K) € ZM+*N*E has M primary inputs, N primary
outputs and K unknown keys. It represents the input/output relation of the
locked RTL design based on the key. Co = (I, 0) is the input/output relation of
the activated IC. The attacker can apply inputs to Cp € ZM*N and observe the
correct output. However, the attacker cannot model the internal behavior of Cop,
a black-box function eval(X;) =Y;. For an input X;, eval(X;) =Y; iff Co(X,,Y;).

While we assume that all inputs/outputs are Integer, this formulation works for

L
a b | i_'_'_'_'f""
Niad

(a) (b) (c)
Figure 6.5: An example of datapath locking.

129

Chapter 6. Security Analysis of Locking during High-level Synthesis

@ kj b c d
r=a+c \ J l
o
1 My
ry=b+d kifri=d+c|)lkj/r=a+c
() ﬁ@
controller FSM r2=b+d
Y 4

C3 —»| T'1 T |e+— C4q

obfuscated FSM

datapath
Figure 6.6: An example of TAO obfuscation.

Real numbers.

As shown in Fig. the RTL-FSMD consists of a set of states and transitions
among the states which represent the control flow. Each transition is associated
with a condition and a set of operations that execute in parallel. The data depen-
dencies among the operations represent the data flow. We unroll each loop and the
RTL-FSMD is thus a directed acyclic graph. The RTL-FSMD has a start/reset
state from which any execution starts and terminates. We assume the behavior
is deterministic. A trace in an RTL-FSMD represents a path from the reset state
back to the reset state. For a trace 7, the condition of execution C; over [UC UK,
where I is the set of inputs, C' is set of integer constants and K is the set of un-
known keys, represents the symbolic condition that must be satisfied by the initial
data state to execute the trace. The C is the weakest precondition of the the
trace 7 [45]. The data transformation D, of 7 is an ordered tuple of algebraic
expressions (e;) over I U C' U K such that e; represents the value of the output
oj € O after execution of the trace. C; and D, can be obtained by the symbolic

execution of the trace |38].

The RTL-FSMD consists of a finite set of traces {71, 7s,...,7x}. The output
of an RTL-FSMD will be obtained by the execution of one trace depending on

the input values. Each trace has a non-overlapping condition of execution since

130

6.4. Attack Methodology

v

c/r3=rl—12,
r2=rlxr4

r2=rlx*xrd
le/r3 = r4,

Rewrite Method

RTL-FSMD

Figure 6.7: RTL-FSMD from RTL using rewriting approach.

the behavior is deterministic. Therefore, the outputs O in the RTL-FSMD can be
represented as

P(I,O0,K): O = (ite C;, Dy, (ite C.,D,, (ite ...(ite C;,_,D.._,D.))...))

where (ite C' Dy D) (aka if-then-else) indicates if the condition C' is True return
the value D, else Ds. For a given input I; and a key K; and corresponding output
Oj;, the execution of the P is P(I;,0;, K;). The trace 7, is executed for this input
and key combination, i.e., C, is evaluated to True for I; and K;. Therefore,

x

P(1;,0;, K;) represents the transformation D, of 7., i.e., P(;,0;, K;) = D,,.

6.4.2 Rewriting Method

The HLS-generated RTL consists of a datapath and a controller FSM [53]. In each
transition in the FSM, control signals are assigned with value 0/1. Our objective
is to identify the corresponding RTL operations performed in the datapath. The
control signal assignments in each controller FSM are replaced with corresponding
RTL operations. This way, the datapath and the controller details are abstracted
out and we have a RTL-level behaviour. The concept is explained in Fig. [6.7 To

obtain the RTL operations in each state, we extend the rewriting method presented

131

Chapter 6. Security Analysis of Locking during High-level Synthesis

Y A

y
csaep e[] [72 | [73]2 csap

ri_out r3_out

o 1 L 2 \ 4 \4
CS_-M1y —» 1
CSM1, —— MM \MM— CS_M2

fLin fRin
CS_FU h\\%—//

fOut

Figure 6.8: Datapath with control signals

in [59] as discussed below.

In the datapath, signal flow is controlled by the control signals. For each
datapath module, input — output assignments are termed as micro-operations.
For example, for a multiplexer out = MU X (iny,ing, sel), there are two possible
micro-operations, i.e., out <— tn, and out < ins and the associated control signal
assertions are sel = 0 and sel = 1, respectively. Given a control signal assignment,
we can identify the active micro-operations due this control signal assignment.
A micro-operation not associated with any control signal is always active. The
rewriting method identifies the spatial sequence of data flow needed for an RTL
operation in a reverse order. The method consists in rewriting terms one after
another in an expression. The micro-operations of the form r < r;, in which a
register occurs in the left-hand side (LHS) are found first. Next, the right-hand
side (RHS) expression 7, is rewritten by looking for an active micro-operation
Tin 4= S O Ty <— S1 < Op > So. Next, s (s1 or sp in the latter case) are rewritten
provided they are not registers. The rewriting takes place from left to right in a
breadth-first manner and terminates when all signals in the RHS expression are

registers.

Example 20. Consider the datapath shown in Fig.[0.8. In this figure, ri, ro and

132

6.4. Attack Methodology

Algorithm 12: Algorithm to recover the keys.

Input : P, eval

Output: The values of K

i=1;

Fy = P(I,01,K1) AN P(1,09, Ks);

while sat[F; A (Y1 # Y32)| do
I¢ = a DIP value that satisfy [F; A (Y1 # Y2)];
0¢ = eval(1%);
Fiy1=F, A P(IE,04, K1) A P(IE,04, K»);
t=14+1;

end while

K = the value of K in the sat assignment of F; A (Y1 = Y3);

© 0 g o ok W N =

r3 are registers, M1 and M2 are multiplexers, and ri_out, ro_out, r3_out, fLin,
fRin, and fOut are interconnection wires. The control signal names start with CS.
The sequence of rewriting steps for the micro-operation r1 = fOut is as follows:
r1 = fOut

= fLin — fRin

= rg_out — fRin

=r3 — fRin

=713 —Tr9_out

=T3—T2

6.4.3 Algorithm Description

The problem of finding the distinguishing input pattern can be modelled as follows:
Given two key values K1 and Ky and an input 1%, the output obtained is O, and O,
respectively. The input I1¢ is DIP for K, and K, iff P(I%, 0y, K1) AP (1%, Oy, K3) A
(O1 # O3). Once a DIP is found, the output is obtained from the activated IC.
The DIP formulation is strengthened by adding this input/output relation for
both K; and K5. This process repeats in an iterative manner until no DIP found.
In this time, we will check the SAT of the DIP formula with (O; = O). Any
assignment of K, or Ky for this formula is the correct key. One can recover K
using Algorithm [12]

Theorem 7. Algorithm |12 always terminates.

Proof. The formula P(I{, O¢, K;) is an equation linking the unknown keys. So,

133

Chapter 6. Security Analysis of Locking during High-level Synthesis

we add an equation relating the unknown keys in each iteration. Each iteration
gets a DIP that rules out one incorrect equivalence classes of keys. Therefore,
the equation from each iteration results in an independent equation. If P involves
linear arithmetic, one can obtain the values of the K unknown variables by solving
the K independent equations connecting them. So, Algorithm |12 finishes in || K|
steps for linear arithmetic. For non-linear arithmetic, the algorithm resolves when
sufficient equations are set up. The search space reduces in each iteration. There-
fore, the algorithm completes in a finite number of iterations. The key recovered
is consistent with all the observed input/output patterns and thus represents the

correct key.]

6.4.4 Illustrative Examples

In the locked RTL code in Listing [6.1] two constants are locked with k; and
ko. Moreover, the condition is locked with a Boolean variable ¢;. Assume that
ki = 5,k = 3,¢; = False in the original program. Our objective is to recover
these values from the locked RTL with the help of an oracle.

Listing 6.1: if-else block

c=a>b

if(c xor cy)

out = a—+ k4
else
out = b x ko

Consider the SMT code in Listing [6.2l The function A in this SMT code
models the functionality of the behavior in Listing [6.1, The SMT code to obtain
DIP is given by the next three assert statements. “Does there exist an assignment
of a and b such that for two different values of ki (i.e., k11 and ki2) and ko (i.e.,
ko1 and ko), we have two different outputs?”. 73 returns a = 1,b = 1 and the
corresponding output is 3.

The assertions added in iteration 2 are shown in the first part of the Listing
[6.3] The process continues for three more iterations and the assertions added
into the DIP model are shown in the rest of Listing [6.3] In the 4th iteration,
Z3 returns UNSAT. We obtain k; = 5,ky = 3,¢; = False by reversing SAT (i.e.,

134

6.4. Attack Methodology

(assert (= outy outs))) as correct keys.

Listing 6.2: SMT code to obtain the DIP for Listing

(declare-const a Int)

(declare-const b Int)

(declare-const ky; Int)

(declare-const ky; Int)

(declare-const kyiy Int)

(declare-const kg Int)

(declare-const out; Int)

(declare-const outy, Int)

(declare-const ¢y Bool)

(declare-const cy Bool)

(define-fun G ((a Int) (b Int)) Bool (> a b))

(define-fun A ((a Int) (b Int) (x; Int) (x, Int)
(x3 Bool) (c Bool)) Int (ite
(xor c x3) (+ a x1) (* b x3)))

(assert (= out; (A a b ky; koy ¢4 (G ab))))

(assert (= outy (A a b kig ko co (G a b))))

(assert (not (= outy outy)))

(check-sat)

(get-model)

Listing 6.3: Assertion refinements in successive iterations

;Iteration 2: a=0,b=0—out=0

;added assertions

(assert (= 0 (A O O ki1 ko; c1 (G00))))

(assert (= 0 (A O O kyg koo c2 (G 0 0))))

Iteration 3: a=-5,b=—-1—out=-3

;added assertions

(assert (= -3 (A —5 —1 kq1 ko; ¢c1 (G —5 —1))))
(assert (= -3 (A —5 —1 kyg koo co (G =5 —1))))
Iteration 4:a=—-3,b=—4 — out =2

;added assertions

135

Chapter 6. Security Analysis of Locking during High-level Synthesis

(assert (= 2 (A —3 —4 kyq ko1 ¢4 (G —3 —4))))
(assert (= 2 (A —3 —4 ki koy co (G —3 —4))))

Listing 6.4: Loop

s=0;
for(i=0;i<4;i++)
s = s +h[i] + k;

Listing 6.5: SMT code to obtain DIP

(declare-const h (Array Int Int))

(declare-const sg Int)

(declare-const k; Int)

(declare-const k, Int)

(declare-const sg; Int)

(declare-const out; Int)

(declare-const outy, Int)

(define-fun A ((a Int) (b Int) (c Int)) Int

(+ (+ ab) c))

(assert (= s 0))

(assert (= outy (A (A (A (A s9 (select h 0) ki)
(select h 1) ky) (select h 2) k)
(select h 3) ky)))

(assert (= so1 0))

(assert (= outy (A (A (A (A sop (select h 0) ky)
(select h 1) ky) (select h 2) kj)
(select h 3) ky)))

(assert (not (= outy outy)))

(check-sat)

(get-model)

Assertion added in Iteration 2:

;h[1=8365, 1796, 8365, 2282 --> out = 20832

(assert (= 20832 (A (A (A (A so 8365 ky) 1796 ky)

8365 ki) 2282 ky)))
(assert (= 20832 (A (A (A (A sp 8365 ky) 1796 ky)
8365 ky) 2282 kjy)))

136

6.5. Experimental Results

Loops: Consider the loop in Listing[6.4] In this code, the constant k is locked.
In the actual code £ = 6. Our objective is to obtain the value of k. The SMT
code is given in Listing Here, the loop is unrolled. After first iteration, Z3
returns the value of h[] = {8365, 1796, 8365, 2282}, For this input, corresponding
assertions are added as shown in the last part of Listing [6.5] In the next iteration,
73 returns UNSAT. The correct value of k is obtained by reversing the SAT problem.

6.4.5 Attack Tool-flow

Fig. is our implementation flow. The tool parses the locked RTL generated by
TAO using Pyverilog [113] (RTL— FSMD module). It uses a rewriting method
yielding an RTL-FSMD [59] and transforms the RTL-FSMD to feed into the KLEE
tool [114] to get the symbolic representation of the outputs as discussed in section
[6.4.1] This symbolic representation of the program creates the SAT formulation for
DIP. It invokes the SMT tool Z3 [57]. If Z3 cannot prove the SAT/UNSAT of the
formula in any iteration, our algorithm fails. If Z3 returns SAT, the corresponding
inputs are used to get the correct output using the functional IP. It strengthens the
DIP formula with this input/output relation and it calls Z3 again. The algorithm
unlocks the keys once Z3 returns UNSAT. The tool flow is automated. RTL —
FSMD module is in Python and we write the rest of the tool flow in C++.

We invoke SMT solver Z3 [57] to check for Satisfiability on line 3 of Algo-
rithm [I2 SMT solvers require the programs to be in static single assignment
(SSA) |115] form. In the SSA form, each variable is assigned exactly once. We
model the RTL-FSMD as a formula consisting of the condition of executions and
the data transformations of all the traces. This formula represents the one time
assignment of each output. So, it is already in the SSA form. This formula is
computed using KLEE [114] even if it is symbolic technique that does not require
the program to be in SSA form.

6.5 Experimental Results

To evaluate our methodology, we emulated a red team-blue team activity in our
experiments. The two teams are in separate institutions. We use three HLS bench-

marks - WAKA, ARF and Motion for our experiments. A blue team designer (not

137

Chapter 6. Security Analysis of Locking during High-level Synthesis

RTL

| RTL-FSMD |
SRTL-FSMD
KLEE
VP, 0, K)
Generate
DP Formula

lSMT formula

SMT formula >[73 Solver time out

lUNSAT

Get key Unable to unlock

[
Generate

Formula

4

Figure 6.9: Outline of the SMT based unlocking of TAO.

in the red team institution) synthesized these benchmarks with TAO to generate
the locked RTL in Verilog [35]. For each test scenario, the number of lines in
the Verilog code, the number of multiplications, additions and subtractions in the
locked RTL are reported in the columns 2, 3, 4 and 5, respectively, in Table [6.1]
As discussed in the section [6.3] TAO applies operation, control and constant lock-
ing. The amount of each type of locking is controlled by input parameters. Using
these parameters, For each benchmark, the blue team generated several locked de-
signs with differing operations, control-flow statements and constants obfuscated,
as shown in columns 6, 7, 8 of Table [6.1] resulting in different key sizes of up to
155 bits, as shown in column 9 of the same table. To check the size of the gate-
level circuits targeted by our approach, we synthesized the RTL using Synopsys
Design Compiler targeting the SAED 32nm technology. We note that the designs
are large with up to 14K combinational cells and 3K sequential cells, as reported
in columns 10 and 11, respectively, of Table [6.1}

The red team uses the methodology in this chapter to unlock the designs. The
red team unlocking results are tabulated in columns 12-15 of Table [6.1] This
includes the number of iterations (Ite) of Algorithm to unlock the key, the

138

6.5. Experimental Results

Table 6.1: Results: Unlocking TAO-locked RTL designs.

IR 2l g = |2
§> Q N 2|28 > = = | 2| o =)
X RN o | =
g S S| 2| S |2 |5l & £ |=
558 S| 20 F |2
753 | - 13| 7| - |-|3]65 4| 524 | 516 | 28
S| - {2311 1141 5| 653 | 3546 | 43
™ 1255 | 917
= 773 - 231111 9 4| 617 | 92.39 | 40
828 | - |21 9|9 4|3/ 73 45| 672 | 1157.13 | 138
1431 21| 27| 10| - |6 |- | 3 2 | 6185 | 517.80 | 661
=
2 1654|2127 10| - | - | 1] 32 | 19715| 3381 | 2 | 6863 | 406.97 | 576
1647 | 21| 65 | 34 | 65 32 5 | 6718 | >10hrs | -
Z| 114019 |11)0 | - |- 2] 64 51931 | 7.01 |16
£11289] 15|29 10 37| - | - | 27 | 13938 | 2024 2 | 885 | >10hrs | -
= 11250 |15 32|10 |37 | - | 4 | 155 5| 924 | >10hrs | -

LOC: # of lines in obfuscated Verilog RTL. x: # of multiplications in Verilog
RTL. +: # of adds in Verilog RTL. -: # of subtracts in Verilog RTL. Operations:
of operations obfuscated. Conditions: # of conditions obfuscated. Constants:
of constants obfuscated. Key: # of key bits. Comb: # of combinational
cells. Seq: # of sequential cells. Iterations: # of iterations. Instructions: # of
instructions executed by KLEE.

number of instructions (Ins) processed by KLEE and the CPU time (Time) and
the memory usage (RAM) for each test case. For these experiments, we use Z3
SMT solver version 4.8.5 - 64 bit, with a time out of 10 hours. As shown in Table
6.1 our unlocking algorithm recovers the keys in a few iterations. For successful
cases, the time to unlock is under 30 minutes. For three cases, Z3 solver times out
after a few iterations. We discuss these scenarios in the next section. None of the
previously reported combinational unlocking techniques [34}46./50-52] apply in our
setting since our locked netlists are sequential. On the other hand, the gate-level
SAT attacks on sequential circuits [109-111] reported results for ISCAS’89 and

ITC99 benchmarks, while we scale to much larger benchmarks.

139

Chapter 6. Security Analysis of Locking during High-level Synthesis

Table 6.2: Results: Unlocking a locked C code.

2] \ n n g M
= g .S E o = = %
g < = A7 O = = @

m) = = 4 5 = % =

o, S) Q = 7 — <

o |0 | ¢ = = =
<! 1|5 | 162 | 6 306 | 2888.91 | 92
g ol o7 224 | 8 | 208 | 265856 | 120

2 1|6 | 19 | 6 345 | 349551 | 98

2 1|1 35 3 | 1060 | 1579.77 | 861
S
g - | 4 | 128 | 2 | 1068 | 400.77 | 718

)) 67 3 | 1142 | >10hrs -
%) -2 66 4 326 11.74 18
=
g 6 . 6 | 198 | 8 421 >10hrs .

Our approach is not limited to HLS-generated designs. It can work on locked
C code. For example, in [96], a locked C code is given to a cloud HLS tool to
avoid stealing the algorithm IP. To show that we can attack a locked C code, we
created several C variants with a large number of key bits and report the results
in Table [6.2] For WAKA, we can unlock all cases in one hour. The biggest key
that we unlocked is 224 bits. For ARF and Motion, we can unlock up to 128 and
66 bits keys, respectively. For larger key sizes, Z3 times out necessitating scalable

approaches.

6.5.1 Discussion of the Results

Handling Time-outs: Solving SMT for arbitrary, non-linear arithmetic over the
reals is undecidable |[116]. Thus, the SMT solver may not prove the satisfiability
of an formula comprising non-linear arithmetic. The SMT solver stops with an
unknown result or times out. Although we did not come across the unknown
case, we encountered time outs for five instances (see Table [6.1] and Table [6.2)).

We suspect that a time-out implies that no more DIPs exist, i.e., the attack has

140

6.6. Conclusions

terminated although Z3 is unable to prove this formally. To substantiate this, we
negate the formula (see step 9 of Algorithm and Z3 returns the correct key in
all five instances. Thus, even in the few cases that the attack times out, it yields
a correct key.

Limitations: We did not implement extraction of arrays from Block RAM in
RTL in the RTL — FSMD module yet. Also, functions in the input C code of
TAO are in-lined before RTL generation. We will enhance our implementation to

support these two features. This will help experiment on larger test cases.

6.6 Conclusions

This work presents an SMT attack to recover the secret key from a locked RTL
netlist generated using the TAO RTL locking tool. Compared to gate-level attacks
on sequential logic locking, the SMT attack abstracts all hardware details into
a behavioral program, scaling to large designs. The behavioral program is an
untimed behavior. Therefore, if key is transferred to the registers at some arbitrary
time then also our attack can discover the keys. In our attack methodology all the
key inputs are initially known. If the key cannot be identified in some scenario,
our method is not applicable. The attack is evaluated using a blue team- red
team approach, wherein the blue team uses the TAO RTL locking tool to generate
locked Verilog RTL along with the executable generated from input C code as
an oracle to the red team. The red team unlocked large designs with up to 3K

sequential cells and 195 key bits demonstrating the effectiveness of the attack.

141

Chapter 7

Conclusion and Future Work

Equivalence checking support is critical to the wide adaptation of HLS tools. In
this thesis, we designed and developed a path-based equivalence checking frame-
work to verify the correctness of scheduling transformation in HLS. We pre-
sented a counter-example generation mechanism to improve debugging the errors
in scheduling and to improve the performance of a PBEC approach. We proposed
an SMT attack on logic locking during HLS. In this chapter, we conclude the thesis

by summarizing our contributions and presenting future work.

7.1 Summary of Contributions

The contributions of this thesis are summarized below:

7.1.1 Translation Validation of Code Motion Transforma-

tions Involving Loops during Scheduling

Code motion transformations [7HL1] are used in the scheduling phase of HLS tools
to improve the quality of synthesis results. Consequently, many research works
have been devoted to verifying the semantic equivalence between the original
and the scheduled behaviors. Translation validation of behaviors using a path-
based equivalence checking method has received attention over the years. The VP
method presented in [42] proposed a value propagation based equivalence checking
method that can handle the code motion across loop bodies. However, we identi-
fied that the VP fails to handles the scenario where some code segment is moved
before (after) the loop from inside the loop bodies. We also identified that the
state-of-the-art PBEC approaches do not ignore false computation during equiv-
alence checking and produce false negative results. In Chapter 3, we presented

an automated formal verification methodology that proves the correctness of HLS

143

Chapter 7. Conclusion and Future Work

processes involving sophisticated scheduling transformations through value prop-
agation based equivalence checking. The input behavior and the behavior after
scheduling have been modeled as FSMDs. The verification problem is treated as
the equivalence checking problem of two FSMDs. The method is strong enough
to handle the code motion involving loops. The method identifies false compu-
tation using the Z3 SMT solver and ignores it during equivalence checking. The
algorithm loopInvariant is presented which ensures the validity of loop invariant
code motion. We also have implemented the method and validated the trans-
lations performed by the HLS tool SPARK, and it also uncovered a bug. The
experimental outcomes exhibit that the worst-case complexity is not really hit for

practical use. In fact, none of the examples hit the worst-case bound.

7.1.2 Verification of Scheduling of Conditional Behaviors
in High-level Synthesis

The conditional optimization techniques split a path into multiple paths during
scheduling to improve the conditional hardware reuse in HLS. In this case, a path
in a behavior is equivalent to the union of the paths in another behavior. In
order to handle the path merge/split scenario, a PBEC approach must search
the equivalent path in a breadth-first manner. However, the existing PBEC ap-
proaches either extend a path or propagate the values in a depth-first manner
only to find an equivalent path. Therefore no PBEC approach has been able
to deal with path merge/split. In Chapter 4, we presented a PBEC approach
for verification of scheduling conditional behavior in HLS. The presented PBEC
approach searches for a path in a breadth-first manner as well as a depth-first
manner. We introduced path split equivalence, a new notion of equivalence, that
is strong enough for verifying the optimization techniques which split a path into
multiple paths in the scheduled behavior. A new cutpoint selection scheme is pre-
sented which simplifies the control structure of the given behavior. The algorithm
findEquivalentPathAtReset presented to handle the scenario where conditional
merge leads to reset state. The presented method has been proven to be sound
but its completeness is being ruled out by the fact that the equivalence of two pro-
grams over Integers is inherently undecidable. Experimental results showed that

the proposed method could verify designs having complicated control flows. The

144

7.1. Summary of Contributions

scalability of the proposed methods has been shown by running larger benchmark
examples. The experimental results also showed that our approach is efficient, and
can validate the scheduling transformations on designs in the CHStone benchmarks

under 10 seconds.

7.1.3 Improving Performance of a Path-Based Equivalence

Checker using Counter-Examples

Many path-based approaches have been proposed for verification of HLS. In the
case of non-equivalence these approaches provide only limited feedback to the user.
In the case of non-equivalence figuring out the cause of the non-equivalence from
the information provided by these approaches is not straightforward and requires
human expertise. We presented a counter-example generation mechanism that
reports a counter-example in the case of non-equivalence reported by a PBEC
approach. The intention is to generate a cTrace with the help of the informa-
tion provided by a PBEC approach and model the c¢Trace to produce a counter-
examples using the Z3 or CBMC tool. We also presented a framework to visualize
the cTrace in the source and the transformed behaviors using the Graphviz tool.
This visualization framework helps the user to pinpoint the root cause of an error
quickly. We have embedded the counter-example generation mechanism with the
PBEC approach presented in Chapter [f] Experimental results also confirm that
the counter-example generation mechanism have strengthened the PBEC approach

by producing a suitable counter-example in case of non-equivalence.

7.1.4 Security Analysis of Logic Locking during High-level

synthesis

In order to overcome the increasing cost of semiconductor fabrication, most of
the semiconductor companies are becoming fabless. Fabless IC companies cre-
ate the project of an IC and outsource the fabrication to a third-party foundry.
However, the introduction of third-party manufacturers into the IC supply chain
raised concerns over security and trust-related challenges, including overproduc-
tion, counterfeiting, IP piracy, and Hardware Trojans. So, the fabless companies

are willing to protect the intellectual property of their ICs. Logic locking is a

145

Chapter 7. Conclusion and Future Work

well-known technique that protects the design against the untrustworthy IC sup-
ply chain. Logic locking protects the design by adding some key gates into the
original design, so the circuit will not work without a correct key and hides the
original design functionality. Most common approaches apply logic locking on the
gate-level netlist. However, with the help of this functioning chip, it is often pos-
sible to successfully recover the locking key by formulating the attacks as Boolean
satisfiability problems (SAT). Pilato et al. proposed a TAO mechanism [35] to lock
the IC functionality at a higher level of abstraction. In this approach algorithm-
level obfuscation is applied during high-level synthesis and a locked RTL netlist is
produced. However, the resiliency of algorithm-level obfuscation has never been
investigated. In Chapter 6, we proposed an SMT based algorithm that can deter-
mine the key of a locked RTL design inserted by TAO during HLS. The rewriting
method has been extended to model an RTL design as an RTL-FSMD. We used
KLEE to model the RTL-FSMD as a formula consisting of the condition of execu-
tions and the data transformations of all the traces. We execute the SMT attack
on the formula generated by KLEE. We implemented the algorithm and the exper-
imental results demonstrated the effectiveness of the attack in unlocking a locked
RTL netlist. The results show that our algorithm can unlock large designs with
up to 3K sequential cells and 195 key bits within 30 minutes. The SMT attack
can also be launched on a locked C code. Finally, we highlighted the challenges

and future work required to make SMT attack more practical.

7.2 Future Directions

In this section, possible future works for further improvement of the proposed
methods and possibilities of application of our method in other domains are dis-

cussed.

o Enhancement of PBEC framework to handle advanced optimizations: The
loop pipeline, unrolling are the most common optimizations applied by the
commercial HLS tools like VIVADO HLS [16], Mentor Graphics Catapult
[18] for efficient hardware implementation of image processing applications.
Moreover, other loop transformations such as loop merging, loop shifting,

and loop vectorization, etc are also applied by the HLS tool. Our current

146

7.2. Future Directions

PBEC approach cannot handle such loop optimizations and give false neg-
ative results. A key reason for our inability to handle the loop transforma-
tions is that PBEC checks only one iteration of the loop to make decisions.
However, it is not sufficient in most of cases to show the equivalence of loop
transformations such as loop unrolling, loop merging, etc. We need to loosen
the such restrictions without compromising the soundness of the method so

that loop transformations can be verified in our PBEC approach.

The arrays are mapped to Random Access Memories (RAMs) by the HLS
tool. The numbers of RAMs are limited in the target Field Programmable
Gate Array (FPGA) board. Also, their access is restricted. A RAM can be
accessed using through the single or dual port during execution. Therefore,
multiple small arrays can be merged into one bigger array so that single RAM
can be inferred. On the other hand, to accommodate more than one/two
reads from an array in a clock cycle, a big array can be split into multiple
arrays and then mapped into multiple RAMs. This merging/splitting of
arrays can be vertically or horizontally [16]. Our PBEC method cannot
handle such merging or splitting of arrays during the scheduling phase of
HLS. We would like to enhance our method to handle such optimizations as

well.

Data-driven approach: The primary difficulty in the verification of two pro-
grams is the loop related transformations. In most of the cases, identifying
loop invariant and correspondence of paths in the presence of loop transfor-
mations are the key challenges faced by the path-based equivalence checking
method. In a recent work [117], the authors used the test cases to guess
the loop invariant and also the correspondence of variables of two programs
at each loop point. They have also identified likely equivalent paths/cor-
responding paths between two programs using test cases/data. The for-
mal equivalence of corresponding paths is then proved/disproved using SMT
solvers. Another recent work [118] proposes strategies to make the SMT
based equivalence checking of two arithmetic expressions scalable. Both of
these works are promising since they address the real challenges of program
equivalence. We also want to adopt such techniques for our verification of

the scheduling problem.

147

Chapter 7. Conclusion and Future Work

o [End-to-End verification of HLS: Because of the huge semantic gap between
the source behavior in C/C++ and the generated RTL design in Verilog/VHDL,
the end-to-end translation validation of HLS is not explored much in the
literature. Instead phase-wise verification of HLS, such as scheduling ver-
ification [38-42,/66] allocation and binding verification [119] and datapath
and controller verification [59|, is mostly explored by the researchers. In
this thesis also, we have explored the verification of the scheduling phase.
However, the primary limitation of the phase-wise verification of HLS is that
they need the intermediate synthesis results after each phase from the HLS
tool. However, such intermediate synthesis results may not always available
or industrial tool may not want to make it public as well. Therefore, an
end-to-end translation validation of HLS is the need of the hour for a wide
adaptation of HLS tools. We have abstracted a C-like behavior (RTL-C)
from the HLS generated RTL in our SMT based attack on HLS obfuscation
in Chapter [6] It would be an interesting future work to adapt our PBEC
based approach to the equivalence between the input C and the RTL-C for

end-to-end verification of HLS.

o SMT attack on generic RTL designs: The SMT attack proposed in Chapter [
unlocks an RTL with an FSMD structure generated by the HLS tool. As
discussed in Chapter [0 the HLS generated RTL has a special structure. We
have exploited that structure to extracted a C-like high-level behavior from
the RTL. However, the abstraction won’t work for generic RTL designs. To
enhance our attack to handle generic RTL, we can use v2c tool [28] to extract
a high-level behavior from the generic RTL and then launch the SMT attack

to recover the keys.

o SMT-resilient obfuscation techniques during HLS: In general, multipliers cre-
ate difficulties for any SMT solvers since multiplication operations create
instances of non-linear arithmetic. In fact, we found our SMT attack in the
Chapter [6] fails to recover the keys for some instances which obfuscates the
inputs of a multiplication operation. These results provide some insights on
extending the algorithm-level obfuscation techniques to make it SMT attack
resistant. Specifically, we aim to identify the hard instances of the SMT
solvers and then develop obfuscated RTL by exploiting those instances.

148

7.3. Conclusion

e Scope of application to other research areas:
FEvolving Programs: The development of any large scale software system is
a gradual process. Validation of such evolving programs is an important
problem since any software system moves from one version to another An
interesting study would be to check the applicability of the formal methods

developed in this thesis to establish the equivalence of evolving programs.

Automatic Code Generation: Automatic code generation is a standard tech-
nique in the area of Software Engineering. Several tools are developed by
the research community for generating source code but they do not offer any
verification guarantees for the generated code. Testing based approaches
for verifying auto-code generators exist [120}/121]. Identifying the scope of
applications of the equivalence checking methods developed in this thesis in
the verification of code generation process can have a significant impact on

the reliability of software.

Automatic Program FEwvaluation: Manual assessment of student programs
is often slow and inconsistent. Assessment speed can be improved along
with consistency by automating the process of evaluation. A survey on
automated assessment of programs can be found in [122]. It would be an
interesting study to check how our FSMD based equivalence checking method
can be enhanced to provide a platform for the automated assessment of

programming assignments.

7.3 Conclusion

This dissertation presented a scalable equivalence checking framework for the
scheduling transformation in High-level Synthesis. We believe that the proposed
framework can greatly contribute to the further improvement of HLS verification.
We also introduced an SMT attack to recover the secret keys from a locked RTL
netlist generated using the TAO HLS tool. The SMT attack provides some in-
sights how to extend algorithm-level obfuscation techniques to make such attacks
difficult.

149

Bibliography

[1]

D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level Synthe-
sis: Introduction to Chip and System Design. Norwell, MA, USA: Kluwer
Academic Publishers, 1992.

G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education, 1994.

J. P. Elliott, Understanding behavioral synthesis: a practical guide to high-level
design. Springer Science & Business Media, 1999.

R. Camposano and W. Wolf, High-level VLSI synthesis. Springer Science &
Business Media, 2012, vol. 136.

D. C. Ku and G. DeMicheli, High level synthesis of ASICs under timing and
synchronization constraints. Springer Science & Business Media, 2013, vol.

177.

A. Orailoglu and D. Gajski, “Flow graph representation,” in Proceedings of the
23rd ACM/IEEE Design Automation Conference, D. Thomas, Ed., Jun 1986,
pp. 503-509.

Minjoong Rim, Yaw Fann, and Rajiv Jain, “Global scheduling with code-
motions for high-level synthesis applications,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 3, no. 3, pp. 379-392, Sep 1995.

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamically increasing the
scope of code motions during the high-level synthesis of digital circuits,” IFE
Proceedings: Computer and Digital Technique, vol. 150, no. 5, pp. 330-337,
Sep 2003.

S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Conditional spec-
ulation and its effects on performance and area for high-level synthesis,” in

International Symposium on System Synthesis, 2001, pp. 171-176.

151

Bibliography

[10] S. Gupta, N. Savoiu, S. Kim, N. Dutt, R. Gupta, and A. Nicolau, “Speculation

Y

techniques for high level synthesis of control intensive designs,” in Proceedings

of the 38th Design Automation Conference, 2001, pp. 269-272.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Using global code motions
to improve the quality of results for high-level synthesis,” IEEE Transactions
on CAD of ICS, vol. 23, no. 2, pp. 302-312, Feb 2004.

[12] S. Gupta, M. Reshadi, N. Savoiu, N. Duff, R. Gupta, and A. Nicolau, “Dy-
namic common sub-expression elimination during scheduling in high-level syn-

thesis,” in 15th International Symposium on System Synthesis, Oct 2002, pp.
261-266.

[13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for fpga-based
processor /accelerator systems,” in Proceedings of the 19th ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays, ser. FPGA’11,
2011, pp. 33-36.

[14] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high level

Y

synthesis of memory-intensive applications,” in 23rd International Conference

on Field programmable Logic and Applications, Sep 2013, pp. 1-4.

[15] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A high-level syn-
thesis framework for applying parallelizing compiler transformations,” in 16th
International Conference on VLSI Design, Jan 2003, pp. 461-466.

[16] X. Inc. Vivado Design Suite - VivadoHLS. [Online]. Available: https:

/ /www.xilinx.com /products/design-tools/vivado/integration /esl-design.html

[17] Cadence. C-to-Silicon Compiler. [Online]. Available: http://www.cadence.

com /pr:oducts/sd/siliconcompiler /pages /default.aspx

[18] Mentor Graphics. Catapult C synthesis. [Online]. Available: |http:
/ /www.mentor.com/products/esl/high_level synthesis/

[19] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in Tools and
Algorithms for the Construction and Analysis of Systems, 1998, pp. 151-166.

152

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.cadence.com/pr:oducts/sd/silicon compiler/pages/default.aspx
http://www.cadence.com/pr:oducts/sd/silicon compiler/pages/default.aspx
http://www.mentor.com/products/esl/high_level_synthesis/
http://www.mentor.com/products/esl/high_level_synthesis/

Bibliography

[20] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg, “VOC: A methodology for the
translation validation of optimizing compilers,” Journal of Universal Computer
Science, vol. 9, no. 3, pp. 223-247, 2003.

[21] G. C. Necula, “Translation validation for an optimizing compiler,” in Pro-
ceedings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation, ser. PLDI’00, 2000, pp. 83-94.

[22] B. Goldberg, L. Zuck, and C. Barrett, “Into the loops: Practical issues in
translation validation for optimizing compilers,” Electronic Notes in Theoreti-
cal Computer Science, vol. 132, no. 1, pp. 53-71, 2005.

[23] N. Mansouri and R. Vemuri, “A methodology for automated verification of
synthesized RTL designs and its integration with a high-level synthesis tool,”
in Formal Methods in Computer-Aided Design, 1998, pp. 204-221.

[24] R. Radhakrishnan, E. Teica, and R. Vermuri, “An approach to high-level
synthesis system validation using formally verified transformations,” in Pro-
ceedings of the IEEE International High-Level Validation and Test Workshop,
ser. HLDV'T’00, 2000, p. 80.

[25] M. Fujita, “Equivalence checking between behavioral and RTL descriptions
with virtual controllers and datapaths,” ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 10, no. 4, pp. 610-626, Oct 2005.

[26] Xiushan Feng and A. J. Hu, “Early cutpoint insertion for high-level soft-
ware vs. RTL formal combinational equivalence verification,” in 2006 43rd
ACM/IEEE Design Automation Conference, Jul 2006, pp. 1063-1068.

[27] A. Leung, D. Bounov, and S. Lerner, “C-to-Verilog translation validation,”
in 2015 ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE), 2015, pp. 42-47.

[28] R. Mukherjee, M. Tautschnig, and D. Kroening, “v2c—a verilog to C transla-

7

tor,” in Proceedings of the 22nd International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, 2016, pp. 580-586.

153

Bibliography

[29] S. Heck, S. Kaza, and D. Pinner, “Creating value in
the semiconductor industry,” accessed May 27, 2019. [Online].
Available: http://www.edn.com/design/integrated-circuit-design /4375454 /

Is-high-level-synthesis-ready-for-prime-time

[30] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of inte-
grated circuits,” in 2008 Design, Automation and Test in Furope, Mar 2008,
pp- 1069-1074.

[31] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:
Models, methods, and metrics,” Proceedings of the IEEFE, vol. 102, no. 8, pp.
1283-1295, Aug 2014.

[32] P. Tuyls, G.-J. Schrijen, B. Skori¢, J. van Geloven, N. Verhaegh, and
R. Wolters, “Read-proof hardware from protective coatings,” in Cryptographic
Hardware and Embedded Systems - CHES 2006, ser. Lecture Notes in Com-

puter Science, vol. 4249, 2006, pp. 369-383.

[33] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and
R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions on Com-
puters, vol. 64, no. 2, pp. 410-424, Feb 2015.

[34] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” in 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), May 2016, pp. 236-241.

[35] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for
algorithm-level obfuscation during high-level synthesis,” in IEEE/ACM De-
sign Automation Conference, Jun 2018, pp. 1-6.

[36] S. Kundu, S. Lerner, and R. K. Gupta, “Translation validation of high-level
synthesis,” IEEE Trans. on CAD of Integrated Clircuits and Systems, vol. 29,
no. 4, pp. 566-579, Mar 2010.

[37] Y. Kim and N. Mansouri, “Automated formal verification of scheduling with
speculative code motions,” in Proceedings of the 18th ACM Great Lakes Sym-
posium on VLSI 2008, May 2008, pp. 95-100.

154

http://www.edn.com/design/integrated-circuit-design/4375454/Is-high-level-synthesis-ready-for-prime-time
http://www.edn.com/design/integrated-circuit-design/4375454/Is-high-level-synthesis-ready-for-prime-time

Bibliography

[38] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-checking
method for scheduling verification in high-level synthesis,” IEEFE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 3,
pp. 556-569, Mar 2008.

[39] C. Karfa, C. A. Mandal, and D. Sarkar, “Formal verification of code motion
techniques using data-flow-driven equivalence checking,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 17, no. 3, p. 30,
Jul 2012.

[40] C. Lee, C. Shih, J. Huang, and J. Jou, “Equivalence checking of schedul-
ing with speculative code transformations in high-level synthesis,” in Proceed-
ings of the 16th Asia South Pacific Design Automation Conference, ASP-DAC

2011, Jan 2011, pp. 497-502.

[41] J. Hu, T. Li, and S. Li, “Equivalence checking between SLM and RTL using
machine learning techniques,” in International Symposium on Quality Elec-
tronic Design, ISQED, Mar 2016, pp. 129-134.

[42] K. Banerjee, C. Karfa, D. Sarkar, and C. A. Mandal, “Verification of code
motion techniques using value propagation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 8, pp. 1180-1193,
Aug 2014.

[43] R. Chouksey, C. Karfa, and P. Bhaduri, “Translation validation of loop in-
variant code optimizations involving false computations,” in VLSI Design and
Test, 2017, pp. 767-778.

[44] O. Penalba, J. Mendias, and R. Hermida, “A global approach to improve
conditional hardware reuse in high-level synthesis,” Journal of systems archi-
tecture, vol. 47, no. 12, pp. 959-975, 2002.

[45] Z. Manna, Mathematical Theory of Computation. Tokyo: McGraw-Hill Ko-
gakusha, 1974.

[46] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), May 2015, pp. 137-143.

155

Bibliography

[47] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel bypass attack
and bdd-based tradeoff analysis against all known logic locking attacks,” in

International conference on cryptographic hardware and embedded systems, vol.
10529, 2017, pp. 189-210.

[48] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal attacks
on logic locking and camouflaging techniques,” IFEE Transactions on Emerg-

ing Topics in Computing, pp. 1-1, Aug 2017.

[49] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic locking,”
in 2019 Design, Automation Test in Europe Conference Ezhibition (DATE),
Mar 2019, pp. 936-939.

[50] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic lock-
ing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 2, pp. 199-207, Feb 2019.

[51] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and J. J.
Rajendran, “What to lock? functional and parametric locking,” in Proceedings
of the on Great Lakes Symposium on VLSI 2017, ser. GLSVLSI "17, 2017, pp.
351-356.

[52] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, ser. CCS’17, 2017, pp. 1601-1618.

[53] C. Pilato, S. Garg, K. Wu, R. Karri, and F. Regazzoni, “Securing hardware
accelerators: A new challenge for high-level synthesis,” IEEFE Embedded Sys-
tems Letters, vol. 10, no. 3, pp. 77-80, Sep. 2018.

2

[54] R. W. Floyd, “Assigning meanings to programs,” Mathematical aspects of

computer science, vol. 19, no. 1, pp. 19-32, 1967.

[55] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quantitative
analysis of the chstone benchmark program suite for practical C-based high-

level synthesis,” Journal of Information Processing, vol. 17, pp. 242-254, 20009.

156

Bibliography

[56] R. Chouksey, C. Karfa, and P. Bhaduri, “Translation validation of code mo-
tion transformations involving loops,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1378-1382, Jul
2019.

[57] L. M. de Moura and N. Bjgrner, “Z3: an efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2008, ser.
Lecture Notes in Computer Science, vol. 4963, Mar 2008, pp. 337-340.

[58] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-C programs,”
in Tools and Algorithms for the Construction and Analysis of Systems, 2004,
pp. 168-176.

[59] C. Karfa, D. Sarkar, and C. Mandal, “Verification of datapath and controller
generation phase in high-level synthesis of digital circuits,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 3,
pp- 479-492, Mar 2010.

[60] X. Leroy, et al. The CompCert C compiler. [Online]. Available:
http://compcert.inria.fr /compcert-C.html

[61] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of likely

invariants,” Science of computer programming, vol. 69, no. 1-3, pp. 35-45,

2007.

[62] D.P. Anderson and J. Ainscough, “The verification of scheduling algorithms,”
in IEE Colloquium on Structured Methods for Hardware Systems Design, 1994,

pp. 1-7.

[63] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Ve-
muri, “Theorem proving guided development of formal assertions in a resource-
constrained scheduler for high-level synthesis,” Formal Methods in System De-
sign, vol. 19, no. 3, pp. 237-273, 2001.

[64] R. Radhakrishnan, E. Teica, and R. Vemuri, “Verification of basic block

I

in Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methods, 2001, pp. 173-178.

schedules using RTL transformations,’

157

http://compcert.inria.fr/compcert-C.html

Bibliography

[65] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic verification of schedul-
ing results in high-level synthesis,” in Proceedings of the Conference on Design,

Automation and Test in Furope, ser. DATE’99, 1999, pp. 260-265.

[66] Y. Kim, S. Kopuri, and N. Mansouri, “Automated formal verification of

scheduling process using finite state machines with datapath (FSMD),” in In-
ternational Symposium on Quality of Electronic Design (ISQED 2004), Mar

2004, pp. 110-115.

[67) A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers: Principles, techniques
and tools,” 1986.

[68] E. M. Clarke Jr, O. Grumberg, , and D. Peled, Model checking. MIT press,
2002.

[69] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new sym-
bolic model verifier,” in International conference on computer aided verifica-
tion, 1999, pp. 495—499.

[70] J.-B. Tristan and X. Leroy, “Verified validation of lazy code motion,” in
Proceedings, PLDI’09, 2009, pp. 316-326.

[71] S. Kundu, S. Lerner, and R. Gupta, “Validating high-level synthesis,” in
Computer Aided Verification, 2008, pp. 459-472.

[72] T. Li, Y. Guo, W. Liu, and C. Ma, “Efficient translation validation of high-
level synthesis,” in International Symposium on Quality FElectronic Design,
ISQED, Mar 2013, pp. 516-523.

(73] T. Li, Y. Guo, W. Liu, and M. Tang, “Translation validation of scheduling in
high level synthesis,” in Proceedings of the 23rd ACM International Conference
on Great Lakes Symposium on VLSI, ser. GLSVLSI’13, May 2013, pp. 101-106.

[74] R. Camposano, “Path-based scheduling for synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 1, pp.
85-93, Mar 1991.

158

Bibliography

[75] T. Li, J. Hu, Y. Guo, S. Li, and Q. Tan, “Equivalence checking of schedul-
ing in high-level synthesis,” in Sizteenth International Symposium on Quality
Electronic Design, 2015, pp. 257-262.

[76] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie, “Scalable certifica-
tion framework for behavioral synthesis front-end,” in Proceedings of the 51st
Annual Design Automation Conference, ser. DAC’14, 2014, pp. 1—-6.

[77] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie, “Validating scheduling

Y

transformation for behavioral synthesis,” in 2016 Design, Automation Test in
Europe Conference Exhibition (DATE), 2016, pp. 1652-1657.

[78] P. Ashar, S. Bhattacharya, A. Raghunathan, and A. Mukaiyama, “Verifica-
tion of rtl generated from scheduled behavior in a high-level synthesis flow,” in
1998 IEEE/ACM International Conference on Computer-Aided Design. Digest
of Technical Papers (IEEE Cat. No.98CB36287), 1998, pp. 517-524.

[79] N. Mansouri and R. Vemuri, “Accounting for various register allocation
schemes during post-synthesis verification of RTL designs,” in Design, Au-

tomation and Test in Furope Conference and Exhibition, 1999, pp. 223-230.

[80] J. Dushina, D. Borrione, and A. A. Jerraya, “Formal verification of the allo-
cation step in high level synthesis,” in Forum on Design Languages (FDL’98),
1998, pp. 1-10.

[81] C. Karfa, C. Mandal, D. Sarkar, and C. Reade, “Register sharing verification
during data-path synthesis,” in 2007 International Conference on Computing:

Theory and Applications (ICCTA’07), 2007, pp. 135-140.

[82] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of inte-

2

grated circuits,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE’08, 2008, pp. 1069-1074.

[83] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic encryption: A fault
analysis perspective,” in 2012 Design, Automation Test in Furope Conference
Ezhibition (DATE), 2012, pp. 953-958.

159

Bibliography

[84] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and
R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions on Com-
puters, vol. 64, no. 2, pp. 410-424, 2015.

[85] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic
obfuscation,” in Proceedings of the 49th Annual Design Automation Confer-
ence, ser. DAC’12, 2012, pp. 83-809.

[86] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the
security of logic locking,” IEEFE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411-1424, 2016.

[87] S. M. Plaza and I. L. Markov, “Solving the third-shift problem in IC piracy
with test-aware logic locking,” IEEFE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, no. 6, pp. 961-971, 2015.

[88] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 66-75, 2010.

[89] N. Karousos, K. Pexaras, I. G. Karybali, and E. Kalligeros, “Weighted logic
locking: a new approach for IC piracy protection,” in 2017 IEEE 23rd Inter-
national Symposium on On-Line Testing and Robust System Design (IOLTS),
2017, pp. 221-226.

[90] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” in Cryp-
tographic Hardware and Embedded Systems—CHES 2016, ser. Lecture Notes in
Computer Science, vol. 9813, 2016, pp. 127-146.

[91] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Prov-
ably secure camouflaging strategy for ic protection,” in Proceedings of the 35th
International Conference on Computer-Aided Design, ser. ICCAD’16, vol. 28,
2016.

[92] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Prov-
ably secure camouflaging strategy for ic protection,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 8, pp.
1399-1412, 2019.

160

Bibliography

93] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Appsat:
Approximately deobfuscating integrated circuits,” in 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2017, pp. 95—
100.

[94] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic encryption
algorithms,” in Proceedings of the on Great Lakes Symposium on VLSI 2017,
ser. GLSVLSI'17, 2017, p. 179-184.

[95] Y. Lao and K. K. Parhi, “Obfuscating dsp circuits via high-level transfor-
mations,” IEEE transactions on very large scale integration (VLSI) systems,
vol. 23, no. 5, pp. 819-830, 2014.

[96] H. Badier, J. L. Lann, P. Coussy, and G. Gogniat, “Transient key-based obfus-
cation for HLS in an untrusted cloud environment,” in 2019 Design, Automa-
tion Test in FEurope Conference Exhibition (DATE), Mar 2019, pp. 1118-1123.

[97] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT attack: Next
generation attack on obfuscated circuits with capabilities and performance
beyond the SAT attacks,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 97-122, 2019.

[98] S. S. Muchnick, Advanced Compiler Design and Implementation. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[99] K. Wakabayashi and H. Tanaka, “Global scheduling independent of control
dependencies based on condition vectors,” in Proceedings 29th ACM/IEEE
Design Automation Conference, Jun 1992, pp. 112-115.

[100] J. C. King, “Symbolic execution and program testing,” Communications of
the ACM, vol. 19, no. 7, pp. 385-394, Jul 1976.

[101] D. Sarkar and S. C. D. Sarkar, “A theorem prover for verifying iterative
programs over integers,” IEFEFE Transactions on Software Engineering, vol. 15,
no. 12, pp. 1550-1566, Dec 1989.

[102] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 1, no. 1, pp. 121-141, Jan 1979.

161

Bibliography

[103] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization, ser. CGO’04, Mar 2004, pp. 129-142.

-P. Juan, V. Chaiyakul, and D. D. Gajski, “Condition graphs for high-

104] H.-P. J V. Chaiyakul, and D. D. Gajski, “Conditi hs for high
quality behavioral synthesis,” in Proceedings of the 1994 IEEE/ACM Interna-
tional Conference on Computer-aided Design, ser. ICCAD’94, 1994, pp. 170—
174.

[105] J. Li and R. K. Gupta, “An algorithm to determine mutually exclusive

9

operations in behavioral descriptions,” in Proceedings Design, Automation and

Test in Furope, Feb 1998, pp. 457-463.

[106] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations for
high-performance computing,” ACM Computing Surveys, vol. 26, pp. 345-420,
1994.

[107] “Graphviz — Graph Visualization Software,” online; accessed 05-Jun-2015.

[108] K. Banerjee, R. Chouksey, C. Karfa, and P. K. Kalita, “Poster: Automatic
detection of inverse operations while avoiding loop unrolling,” in Proceedings

of the 40th International Conference on Software Engineering: Companion
Proceeedings, May 2018, pp. 175-176.

[109] M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineering camou-
flaged sequential circuits without scan access,” in Proceedings of the 36th In-
ternational Conference on Computer-Aided Design, ser. ICCAD’17, Nov 2017,
pp- 33-40.

[110] T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, “Revisit sequential logic
obfuscation: Attacks and defenses,” in 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2017, pp. 1-4.

[111] Y. Kasarabada, S. Chen, and R. Vemuri, “On SAT-based attacks on en-

crypted sequential logic circuits,” in International Symposium on Quality Elec-
tronic Design (ISQED, Mar 2019, pp. 204-211.

162

Bibliography

[112] J. Rajendran, A. Ali, O. Sinanoglu, and R. Karri, “Belling the CAD: Toward
security-centric electronic system design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1756-1769,
Nov 2015.

[113] Shinya, “Pyverilog: A python-based hardware design processing toolkit for
verilog HDL,” in Applied Reconfigurable Computing, ser. Lecture Notes in Com-
puter Science, vol. 9040, 2015, pp. 451-460.

[114] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in OSDI,
vol. 8, 2008, pp. 209-224.

[115] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Ef-
ficiently computing static single assignment form and the control dependence
graph,” ACM Transactions on Programming Languages and Systems, vol. 13,
no. 4, pp. 451-490, Oct 1991.

[116] P. Nuzzo, A. Puggelli, S. A. Seshia, and A. Sangiovanni-Vincentelli, “Calcs:
SMT solving for non-linear convex constraints,” in Formal Methods in Com-
puter Aided Design, Oct 2010, pp. 71-79.

[117] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Data-driven equiv-
alence checking,” in Proceedings of the 2013 ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages € Applica-
tions, ser. OOPSLA’13, 2013, pp. 391-406.

[118] M. Dahiya and S. Bansal, “Black-box equivalence checking across compiler
optimizations,” in Asian Symposium on Programming Languages and Systems,
ser. Lecture Notes in Computer Science, vol. 10695, 2017, pp. 127-147.

[119] C. Karfa, D. Sarkar, C. Mandal, and C. Reade, “Hand-in-hand verification of
high-level synthesis,” in Proceedings of the 17th ACM Great Lakes Symposium
on VLSI, ser. GLSVLSI'07, 2007, pp. 429-434.

[120] R. Majumdar and R.-G. Xu, “Directed test generation using symbolic gram-
mars,” in Proceedings of the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, 2007, pp. 134-143.

163

Bibliography

[121] P. Sampath, A. Rajeev, S. Ramesh, and K. Shashidhar, “Behaviour directed
testing of auto-code generators,” in 2008 Siath IEEE International Conference
on Software Engineering and Formal Methods. TEEE, 2008, pp. 191-200.

[122] K. M. Ala-Mutka, “A survey of automated assessment approaches for pro-
gramming assignments,” Computer science education, vol. 15, no. 2, pp. 83—
102, 2005.

164

Publications Related to Thesis

1. Ramanuj Chouksey and Chandan Karfa. Verification of scheduling of con-
ditional behaviors in high-level synthesis. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, pages 1-14, 2020.

2. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Translation val-
idation of code motion transformations involving loops. IEFE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1378—
1382, July 2019.

3. Ramanuj Chouksey, Chandan Karfa, Kunal Banerjee, Pankaj Kumar Kalita,
and Purandar Bhaduri. Counter-example generation procedure for path-
based equivalence checkers. IET Software, 13(4):280-285, Aug 2019.

4. Chandan Karfa, Ramanuj Chouksey, Christian Pilato, Siddharth Garg, and
Ramesh Karri. Is register transfer level locking secure? In 2020 Design,
Automation Test in Europe Conference Ezhibition (DATE), pages 550-555,
2020.

5. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Improving per-
formance of a path-based equivalence checker using counter-examples. In
International Conference on VLSI Design, pages 377-382, Jan 2019.

6. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Formal verifica-
tion of optimizing transformations during high-level synthesis. In Innovations
on Software Engineering Conference, ISEC’19, pages 27:1-27:5, Feb 2019.

7. Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. Translation
validation of loop invariant code optimizations involving false computations.

In VLSI Design and Test, pages 767-778, Dec 2017.

165

	List of Figures
	List of Tables
	Introduction
	Correctness of High-level Synthesis
	Security in High-level Synthesis
	Motivations and Objectives
	Contributions of the Thesis
	Translation Validation of Code Motion Transformations Involving Loops during Scheduling
	Verification of Scheduling of Conditional Behaviors in High-level Synthesis
	Improving Performance of a Path-Based Equivalence Checker using Counter-Examples
	Security Analysis of Logic Locking during High-level synthesis

	Organization of the Thesis

	Literature Survey
	Verification of High-level Synthesis
	HLS Tool Verification
	Translation Validation
	End-to-end Verification of HLS
	Phase-wise Verification of HLS
	Our Objective

	Logic locking: Defenses and Attacks
	Our Objective

	Translation Validation of Code Motion Involving Loops during Scheduling
	Introduction
	Code Motion Techniques
	Summary of Verification of Code Motion
	Contributions

	The FSMD Model
	Equivalence of FSMDs

	Value Propagation Based Equivalence of FSMDs
	Motivations
	False Positive Case of the VP Method
	False Computation Involving Loops
	Code Motion Involving Loops

	Proposed Solutions
	Showing the Non-Equivalence for False Positive Cases
	Handling False Computation Involving Loops
	Handling Loop Invariant Code Motion

	Enhanced Value Propagation Based Equivalence Checking (EVP)
	Correctness and Complexity
	Soundness
	Termination
	Complexity

	Experimental Results
	Conclusion

	Verification of Scheduling of Conditional Behaviors in High-level Synthesis
	Introduction
	Scheduling of Conditional Behaviors
	Summary of Verification of Scheduling of Conditional Behaviors
	Contributions

	Motivations
	Path Split
	Choice of Cutpoints
	If Optimization

	Proposed Solution
	Handling Path Split
	Cutpoint Selection Scheme
	Handling the Scenario Involving if Optimization

	Equivalence of Paths
	Overall Verification Method
	Correctness of the Equivalence Checking Procedure
	Correctness
	Termination
	Complexity

	Experimental Results
	Conclusions

	Improving Performance of a Path-Based Equivalence Checker using Counter-Examples
	Introduction
	Motivations
	Counter-Trace Generation
	Counter-Example Generation using Counter-Trace
	Modeling Counter-trace using Z3 SMT Solver
	Modeling Counter-trace using CBMC

	Incorporation of Results in Equivalence Checking Framework
	Overall Equivalence Checking Framework
	Counter-Trace Visualization
	Experimental Results
	Conclusions

	Security Analysis of Locking during High-level Synthesis
	Introduction
	Logic Locking
	Summary of Threats on Logic Locking
	Contributions

	Backgrounds
	RTL Structure
	Attack Model

	Motivation
	Constant Locking
	Branch Locking
	Datapath Locking

	Attack Methodology
	Problem Formulation
	Rewriting Method
	Algorithm Description
	Illustrative Examples
	Attack Tool-flow

	Experimental Results
	Discussion of the Results

	Conclusions

	Conclusion and Future Work
	Summary of Contributions
	Translation Validation of Code Motion Transformations Involving Loops during Scheduling
	Verification of Scheduling of Conditional Behaviors in High-level Synthesis
	Improving Performance of a Path-Based Equivalence Checker using Counter-Examples
	Security Analysis of Logic Locking during High-level synthesis

	Future Directions
	Conclusion

	Bibliography

