
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Energy Efficient Scheduling of

Real Time Tasks on Large

Systems and Cloud

by

Manojit Ghose

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science and Engineering

Under the supervision of

Aryabartta Sahu and Sushanta Karmakar

December 2018

cseoff@iitg.ac.in
g.manojit@iitg.ac.in
cseoff@iitg.ac.in
asahu@iitg.ac.in
sushantak@iitg.ac.in

Declaration of Authorship

I, Manojit Ghose, do hereby confirm that:

� The work contained in this thesis is original and has been carried out by

myself under the guidance and supervision of my supervisors.

� This work has not been submitted to any other institute or university for

any degree or diploma.

� I have conformed to the norms and guidelines given in the ethical code of

conduct of the institute.

� Whenever I have used materials (data, theoretical analysis, results) from

other sources, I have given due credit to them by citing them in the text of

the thesis and giving their details in the reference.

Manojit Ghose

Research Scholar,

Department of CSE,

Indian institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

g.manojit@iitg.ac.in, manojitghose24@gmail.com

Date: July 27, 2018

Place: IIT Guwahati

iii

Certificate

This is to certify that the thesis entitled “Energy Efficient Scheduling of Real

Time Tasks on Large Systems and Cloud” being submitted by Mr. Mano-

jit Ghose to the department of Computer science and Engineering, Indian In-

stitute of Technology Guwahati, is a record of bonafide research work under my

supervision and is worthy of consideration for the award of the degree of Doctor

of Philosophy of the institute.

Aryabartta Sahu

Department of CSE,

Indian Institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

asahu@iitg.ac.in

Sushanta Karmakar

Department of CSE,

Indian Institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

sushantak@iitg.ac.in

Date: July 27, 2018

Place: IIT Guwahati

v

Dedicated to

Late Prafulla Bala Ghose (my grandmother)

vii

Acknowledgements

I feel extremely humble and blessed when I look back and feel the amount of

kindness, encouragement, help, and support that everyone has offered during the

journey of my Ph. D. Our success is not only determined by our own effort

and dedication, but it is actually a collective outcome of the efforts, sacrifices,

contributions, help, and support of others. I take this platform to thank each one

of them who has directly or indirectly helped me to reach this stage.

I start by expressing my deep and sincere gratitude to my thesis supervisor Dr.

Aryabartta Sahu for his valuable guidance, constant support, persistent encour-

agement. I wouldn’t have been completed this work without his expertise, valuable

inputs, and suggestions. His friendly nature always helped in healthy debates and

discussions. I specially thank him for his tireless efforts and countless numbers

of revisions of the thesis and publications. He is indeed a helpful person and a

great human being. I couldn’t have attended the conferences abroad without his

generous help and support. I am indeed ever grateful to him.

Next, I would like to thank my thesis co-supervisor Dr. Sushanta Karmakar for

his invaluable guidance and the advice throughout my Ph. D. tenure. I would

like to express my gratitude and gratefulness to all the members of my Doctoral

Committee, Prof. Diganta Goswami, Dr. Santosh Biswas, and Dr. Partha Sarathi

Mandal for their constructive criticism and corrective feedback. Their valuable

suggestions and inputs helped me a lot to improve the quality of my work.

Further, I would like to sincerely thank Prof. S. V. Rao, the Head of the De-

partment of Computer Science and Engineering and other faculty members for

their constant supports and helps, and encouragements. I specially thank Prof.

Hemangee K. Kapoor, Prof. Pradip K. Das for their generosity. Furthermore, I

express my thanks and regards to all the technical and administrative staff mem-

bers of the department for their help whenever I asked for. I would also like to take

the opportunity to thank my Government for providing such a high-class facility

which stands far beyond the life of an average Indian citizen.

I am ever grateful to Prof. Sukumar Nandi and Prof. Ratnajit Bhattacharjee for

their encouragement, help, and support whenever I needed. They remain a source

of inspiration for me. I would also to express my sincere thanks and gratitude

to Mrs. Nandini Bhattacharya for her constant love and care. Also, I would

like to express my appreciation and thanks to some of my teachers whose words

of encouragement still motivate me to work. They are Prof. Manoj Das, Mr.

Sushanta Saha, Mr. Subhendu Saha, Dr. Rupam Baruah, and others.

ix

I had a wonderful time at IIT Guwahati, met many beautiful minds, spent qual-

ity time, and finally made good friends. All of them have directly or indirectly

helped me to achieve my dream. To name a few of them, they are Nilakshi, Parik-

shit, Chinmaya, Shirsendu, Binita, Debanjan, Roshan, Shounak, Satish, Pradip,

Shibaji, Sathisa, Himangshu, Rakesh, Hema, Sourav, Ferdausa, Needhi, Mayank,

Pranab, Barasa, Vasudevan, Sanjit, Sanjay, Diptesh, Rahul, Sayan, Rajashree,

Udeshna, Rana, Biplab, Arunabha, and others. I also worked with a couple

of masters students during my Ph. D. They are Pratyush, Sawinder, Anoop,

Sandeep, and Hardik. It was indeed a wonderful experience to work and share

ideas with them. I also thank all my well-wishers, friends inside and outside the

IIT Guwahati. I sincerely thank my colleagues at DUIET for extending their help

and support during the last phase of my Ph. D.

During the course of my study, I had the opportunity to know some amazing

human beings: Dr. Devanand Pathak, Mr. Vishnu Prakash, Mr. Avinash Tiku,

Mr. Ram Bahadur Gurung, Dr. Azd Zayoud, and others. It was indeed a matter

of joy and fun to learn various skills from them.

Finally, I express my thanks and regards toward all the family members for their

constant support. It was a tough time for them to accept my decision of joining

the Ph. D. leaving my job. But finally, they are happy and I could bring a smile

to their faces. I also express my thanks to the anonymous reviewers of my papers

and thesis for their constructive comments and feedbacks.

Abstract

Large systems and cloud computing paradigm have emerged as a promising com-

puting platform of recent time. These systems attracted users from various do-

mains, and their applications are getting deployed for several benefits, such as

reliability, scalability, elasticity, pay-as-you-go pricing model, etc. These applica-

tions are often of real-time nature and require a significant amount of computing

resources. With the usages of the computing resources, the energy consumption

also increases, and the high energy consumption of the large systems has become

a serious concern. A reduction in the energy consumption for the large systems

yields not only monetary benefits to the service providers, but also yields perfor-

mance and environmental benefits as a whole. Hence, designing energy-efficient

scheduling strategies for the real-time applications on the large systems becomes

essential.

Considering power consumption construct at a finer granularity with only DVFS

technique may not be sufficient for the large systems. The first work of the thesis

devises a coarse-grained thread-based power consumption model which exploits

the power consumption pattern of the recent multi-threaded processors. Based on

this power consumption model, an energy-efficient scheduling policy, called Smart

scheduling policy, is proposed for efficiently executing a set of online aperiodic real-

time tasks on a large multi-threaded multiprocessor system. This policy shows an

average energy consumption reduction of around 47% for the synthetic data set and

approximately 30% for the real-world trace data set as compared to the baseline

policies. Thereafter, three improvements of the basic Smart scheduling policy are

proposed to handle different types of workloads efficiently.

The second work of the thesis considers a utilization-based power consumption

model for a virtualized cloud system where the utilization of a host can be divided

in three ranges (low : utilization is below 40%, medium: utilization is from 40%

to 70%, and high: utilization is above 70%) based on the power consumption of

the host. Then two energy-efficient scheduling policies, namely, UPS and UPS-ES

are designed addressing this range based utilization of the hosts. These schedul-

ing policies are designed based on the urgent points of the real-time tasks for a

heterogeneous computing environment. Experiments are conducted on CloudSim

toolkit with a wide variety of synthetic data set and real-world trace data including

the Google cloud tracelog and Metacentrum trace data. Results show an average

energy improvement of almost 24% for the synthetic data set and almost 11% for

the real-world trace as compared to the state-of-art scheduling policy.

As the cloud providers often offer VMs with discrete compute capacities and sizes,

which leads to discrete host utilization, the third work of the thesis considers

scheduling a set of real-time tasks on a virtualized cloud system which offers VMs

with discrete compute capacities. This work calculates a utilization value for the

hosts, called critical utilization where the energy consumption is minimum and

the host utilization is maintained at this value. The problem is divided into four

sub-problems based on the characteristics of the tasks and solutions are proposed

for each sub-problem. For the sub-problem with arbitrary execution time and

arbitrary deadline, different clustering techniques are used to divide the entire

task set into clusters of tasks. Results show that the clustering technique can be

decided based on the value of the critical utilization.

The fourth work of the thesis considers scheduling of online scientific workflows

on the virtualized cloud system where a scientific workflow is taken as a chain

of multi-VM tasks. As the tasks may require multiple VMs for their execution,

two different VM allocation methodologies are tried: non-splittable (all the VMs

executing a task must be allocated on the same host) and splittable (VMs executing

a task may be allocated to different hosts). In addition, this work discusses several

options and restrictions considering migration and slack distribution. A series of

scheduling approaches are proposed considering these options and restrictions.

Experiments are conducted on the CloudSim toolkit and the comparison is done

with a state-of-art scheduling policy. Results show that the proposed scheduling

policy under non-splittable VM allocation category consumes a similar amount of

energy as the baseline policy but with a much lesser number of migrations. For the

splittable VM allocation category, the proposed policies achieve energy reduction

of almost 60% as compared to the state-of-art policy.

Contents

Declaration of Authorship iii

Certificate v

Acknowledgements ix

Abstract xi

List of Figures xvii

List of Tables xix

Abbreviations xxi

Notations xxiii

1 Introduction 1

1.1 Multiprocessor Scheduling . 1

1.2 Classification of Multiprocessor Scheduling Algorithms 3

1.3 Real Time Scheduling . 4

1.3.1 Scheduling of periodic real-time task scheduling 4

1.3.2 Scheduling of aperiodic real-time task scheduling 5

1.4 Aperiodic Real-Time Task Scheduling on Multiprocessor Environment 6

1.5 Large Systems and Cloud . 7

1.5.1 Cloud computing and virtualization 7

1.6 Real-Time Scheduling for Large Systems and Cloud 8

1.6.1 Workflow Scheduling for Large Systems and Cloud 9

1.7 Energy Consumption in Large Systems 9

1.7.1 Power consumption models 9

1.7.2 Impact of high power consumption 12

1.8 Motivation of the Thesis . 13

1.9 Contributions of the Thesis . 15

1.9.1 Scheduling online real-time tasks on LMTMPS 15

1.9.2 Scheduling online real-time tasks on virtualized cloud system 15

xiii

1.9.3 Scheduling real-time tasks on VMs with discrete utilization . 16

1.9.4 Scheduling scientific workflows on virtualized cloud system . 16

1.10 Summary . 17

1.11 Organization of the Thesis . 18

2 Energy Efficient Scheduling in Large Systems: Background 19

2.1 Fine Grained Approaches . 19

2.1.1 Non-virtualized system . 20

2.1.2 Virtualized system . 21

2.2 Coarse Grained Approaches . 22

2.2.1 Non-virtualized system . 23

2.2.2 Virtualized system . 24

2.3 Energy Efficient Workflow Scheduling 26

2.3.1 Workflow scheduling on large systems 26

2.3.2 Energy-efficient scheduling of workflows 27

3 Scheduling Online Real-Time Tasks on LMTMPS 31

3.1 Introduction . 31

3.2 System Model . 34

3.3 Power Consumption Model . 36

3.4 Task Model: Synthetic Data Sets and Real-World Traces 37

3.4.1 Synthetic tasks . 37

3.4.1.1 Execution time variation 38

3.4.1.2 Deadline variation 39

3.4.2 Real-world traces . 40

3.5 Objective in the Chapter . 41

3.6 Standard Task Scheduling Policies 41

3.6.1 Utilization based allocation policy (UBA) 41

3.6.2 Front work consolidation (FWC) 43

3.6.3 Rear work consolidation (RWC) 45

3.6.4 Utilization based work consolidation (UBWC) 46

3.6.5 Earliest deadline first scheduling policy (EDF) 47

3.7 Proposed Task Scheduling Policies 47

3.7.1 Smart scheduling policy (Smart) 48

3.7.2 Smart scheduling policy with early dispatch (Smart-ED) . . 50

3.7.3 Smart scheduling policy with reserve slots (Smart-R) 52

3.7.4 Smart scheduling policy with handling immediate urgency
(Smart-HIU) . 52

3.8 Experiment and Results . 53

3.8.1 Experimental setup . 53

3.8.2 Parameter setup . 53

3.8.2.1 Machine parameters 53

3.8.2.2 Task parameters 53

3.8.2.3 Migration overhead 54

3.8.3 Instantaneous power consumption 55

3.8.4 Results and discussions . 56

3.8.5 Experiments with real workload traces 60

3.8.6 Migration count . 62

3.9 Summary . 62

4 Scheduling Online Real-Time Tasks on Virtualized Cloud 63

4.1 Introduction . 63

4.2 System Model . 66

4.3 Task Model . 67

4.4 Energy Consumption Model . 69

4.5 Objective in the Chapter . 70

4.6 Scheduling Strategies . 71

4.6.1 Urgent point aware scheduling (UPS) 73

4.6.1.1 Scheduling at urgent critical point (SCUP) 74

4.6.1.2 Scheduling at task completion (STC) 75

4.6.1.3 Scheduling with consolidation (SWC) 77

4.6.2 UPS - early scheduling (UPS − ES) 77

4.7 Performance Evaluation . 79

4.7.1 Simulation environment and parameter setup 80

4.7.2 Experiments with synthetic data 80

4.7.3 Experiments with real-world data: Metacentrum 81

4.7.4 Experiments with real-world data: Google tracelog 83

4.8 Summary . 83

5 Scheduling Real-Time Tasks on VMs with Discrete Utilization 85

5.1 Introduction . 85

5.2 System Model . 87

5.3 Energy Consumption Model . 90

5.4 Objective in the Chapter . 92

5.5 Classification of cloud systems . 93

5.5.1 Calculation of hot thresholds for the hosts 94

5.5.2 Hosts with negligible static power consumption (uc = 0) . . 96

5.5.3 Hosts with significantly high static power consumption (uc >
1) . 97

5.6 Scheduling Methodology for the Systems with General Specifica-
tions (0 < uc ≤ 1) . 98

5.6.1 Scheduling n tasks of same type (Case 1: (e, d)) 98

5.6.2 Scheduling approach for two types of tasks having same
deadline (Case 2: (e1, d) and (e2, d)) 103

5.6.3 Scheduling approach for the requests with multiple number
of task types having same deadline (Case 3: (ei, d)) 105

5.6.4 Scheduling approach for general synced real-time tasks (Case
4: (ei, di)) . 107

5.7 Performance Evaluation . 110

5.8 Summary . 111

6 Scheduling Scientific Workflows on Virtualized Cloud System 113

6.1 Introduction . 113

6.2 System Model . 115

6.3 Application Model . 117

6.4 Energy Consumption Model . 118

6.5 Objective in the Chapter . 120

6.6 Scheduling Options and Restrictions in Workflow Scheduling 121

6.6.1 VM placement . 121

6.6.2 Migration . 123

6.6.3 Slack distribution . 124

6.7 Scheduling Policies . 126

6.8 Scheduling with Non-splittable VM Allocation (NSVM) 127

6.8.1 Non-splittable VMs without migration (NSVMNM) 127

6.8.1.1 Slack to first task (SFT NSVMNM) 128

6.8.1.2 Slack forwarding (SFW NSVMNM) 129

6.8.1.3 Slack division and forwarding (SDF NSVMNM) . 130

6.8.2 Non-splittable VMs with limited migration (NSVMLM) . . 131

6.8.3 Non-splittable VMs with full migration (NSVMFM) 132

6.9 Scheduling with Splittable VM Allocation (SVM) 133

6.9.1 Splittable VMs without migration (SVMNM) 133

6.9.1.1 Slack to first task (SFT SVMNM) 134

6.9.1.2 Slack forwarding (SFW SVMNM) 134

6.9.1.3 Slack division and forwarding (SDF SVMNM) . . 135

6.9.2 Splittable VMs with limited migration (SVMLM) 136

6.9.3 Splittable VMs with full migration (SVMFM) 136

6.10 Performance Evaluation . 139

6.10.1 Simulation platform and parameter setup 139

6.10.2 Real scientific work-flow . 140

6.10.3 Impact of slack distribution 141

6.10.4 Trade-off between energy consumption, migration count and
split count . 142

6.10.5 Different mixes of scientific workflows 143

6.11 Summary . 144

7 Conclusion and Future Work 145

7.1 Summary of Contributions . 145

7.2 Scope for Future Work . 147

Bibliography 149

Bio-data and Publications 163

List of Figures

1.1 Cloud computing architecture . 8

1.2 Component wise power consumption values for a Xeon based server
[1] . 11

1.3 An approximate power breakdown of a server in Google data center
[1] . 11

3.1 Power consumption plot of a few recent commercial processors with
number of active threads [2, 3] . 32

3.2 Online scheduling of real-time tasks on LMTMPS 34

3.3 Power consumption of LMTMPS (when values of PBase = 100, δ =
10 and r = 8) . 36

3.4 Different deadline schemes with µ = 10 and σ = 5 38

3.5 Illustration of front work consolidation of real-time tasks 43

3.6 With extra annotated information to Figure 3.3 to explain the smart
scheduling policy (C = 100, δ = 10 and r = 8) 49

3.7 Instantaneous power consumption for common deadline scheme with
µ = 20, σ = 10 . 51

3.8 Smart scheduling policy with early dispatch (Smart-ED) 51

3.9 Instantaneous power consumption verses time under Scheme2 (Gaus-
sian) deadline scheme (µ = 40 and σ = 20, and execution scheme
is random) . 55

3.10 Instantaneous power consumption verses time for different schedul-
ing policies under random execution time scheme (µ = 30 and
σ = 15), and deadline scheme is random 56

3.11 Energy consumption for different scheduling policies under different
execution time schemes with random deadline distribution 57

3.12 Energy consumption in case of deadline centric synthetic data and
real data sets . 58

3.13 Average energy reduction of smart policy compared to baseline poli-
cies for synthetic data . 59

3.14 Energy reduction of proposed policy as compared to baseline poli-
cies for real-world trace data . 59

4.1 Power consumption of a server versus the utilization of the host as
reported in [4] . 64

4.2 Urgent points of a task with deadline 24 71

xvii

4.3 Schematic representation of the cloud system for the proposed schedul-
ing polices . 73

4.4 Normalized energy consumption of various scheduling policies for
synthetic dataset . 81

4.5 Task and VM information for λ = 10 82

4.6 Energy reduction of the proposed policies for real-trace data 82

5.1 System model . 88

5.2 Energy consumption versus total utilization of the host 91

5.3 Options for scheduling the new task 94

5.4 Hot threshold (uc + ut) versus uc 95

5.5 Energy consumption versus utilization of extreme cases 96

5.6 Scheduling approach for case 3: SC3(ei, d, n) 106

5.7 Description for clustering techniques 108

5.8 Energy consumption of cloud system 110

6.1 System architecture . 116

6.2 Application model . 116

6.3 System state with different VM allocation type 122

6.4 WorkFlow (WFp(ap = 10, dp = 33)) to be scheduled on the system . 128

6.5 System state at different time (t) instant under SFT NSVMNM

scheduling policy . 130

6.6 System state after scheduling second task (t = 20) in SFW NSVMNM

scheduling policy . 131

6.7 System state at different time (t) instant under SFT SVMNM schedul-
ing policy . 134

6.8 System state at different time (t) instant under SDF SVMNM

scheduling policy . 135

6.9 WorkFlow (WFq(ap = 10, dq = 30)) to be scheduled on the system . 135

6.10 Power consumption of hosts and VMs 139

6.11 Examples of scientific workflows . 140

6.12 Impact of slack distribution on energy consumption 142

6.13 Normalized values of energy consumption, migration and split count 143

6.14 Energy consumption of the system (normalized) for different bench-
mark mixes . 144

List of Tables

2.1 Some major works in the area of energy-efficient scheduling in cloud
computing environment . 29

3.1 Power consumption behaviour of commercial processors [2, 3] 32

3.2 Different experimental parameter values for execution time schemes 54

3.3 Different experimental parameter values for deadline schemes 54

3.4 Number of migrations occurred in different scheduling policies for
different data sets (ES: Execution time Scheme, DS: Deadline Scheme,
RWDTD: Real-World Trace Data) 61

4.1 Different experimental parameter values 80

6.1 Parameters determining scheduling policies 126

xix

Abbreviations

HT Hardware Thread

DVFS Dynamic Voltage and Frequency Scaling

LMTMPS Large Multi-Threaded Multiprocessor Systems

FWC Front Work Consolidation

RWC Rear Work Consolidation

UBWC Utilization Based Work Consolidation

ED Early Dispatch

HIU Handling Immediate Urgency

BPC Base Power Consumption

TPC Total Power Consumption

TEC Total Energy Consumption

UBA Utilization Based Allocation

IPC Instantaneous Power Consumption

UPS Urgent Point aware Scheduling

UPS-ES Urgent Point aware Scheduling - Early Scheduling

FUP Future Urgent Point

CUP Critical Urgent Point

GWQ Global Waiting Queue

EARH Energy Aware Rolling Horizon

SCUP Scheduling at Critical Urgent Point

STC Scheduling at Task Completion

SWC Scheduling With Consolidation

NSVM Non-Splittable VM allocation

SVM Splittable VM allocation

SFT Slack To First task

SFW Slack Forward

SDF Slack Forwarding and Distribution

xxi

Notations

PBase Base power consumption of a processor

δ Power consumption of a thread in a processor

ai Arrival time of a task

ei Execution time of a task

di Deadline of a task

si Start time of a task

fi Finish time of a task

vjk jth VM on kth host

CP (vjk) Compute capacity of VM vjk

eijk Execution time of task ti when executed by VM vjk

rt(vjk) Ready time of VM vjk

st(vjk) Start time of VM vjk

slk(ti) Slack time of task ti

uc Critical utilization of a host

ti,p ith task of a workflow WFp

ap Arrival time of a workflow

dp Deadline of a workflow

ni,p VM requirement of the task ti,p

li,p Length of the task ti,p

eipjk Execution time of the task ti,p when executed by the VM vjk

xxiii

Chapter 1

Introduction

1.1 Multiprocessor Scheduling

In general, multiprocessor scheduling is defined as executing a set of tasks T ={t1,

t2, t3, · · · , tn} on a set of processors P = {P1, P2, · · · , Pm} to meet some predefined

objective functions [5, 6, 7]. A scheduling problem is represented by a triple α|β|γ
where α indicates processor environment, β indicates task environment and γ

indicates objective function.

Processor environment (α): The processor environment is characterized by

a string α = α1α2 where α1 indicates machine type and α2 is an integer which

indicates number of machines. α1 can have values P , Q, R, etc. P indicates

identical parallel machine, that is, the processing time of a task is same for all the

machines. Q indicates uniform parallel machine, that is, the processing time of a

task depends on the speed of the machine. R indicates unrelated parallel machine,

that is, the processing time of the tasks are not related at all.

Task environment (β): The task environment in a multiprocessor scheduling

specifies the properties of the task set. This is represented using a string β =

β1β2β3β4β5β6. These parameters are described below.

• β1 indicates whether preemption is allowed or not. A value pmtn means

preemption is allowed and an empty field indicates preemption is not allowed.

• β2 indicates the precedence constraints among the tasks in the task set. An

empty value indicates that the tasks are independent.

1

Chapter 1. Introduction 2

• β3 indicates the release time or the arrival time of the tasks.

• β4 indicates some additional specifications like the processing time of the

tasks.

• β5 specifies the deadline of the tasks if any. A task with a specified deadline

is called a real-time task.

• β6 indicates whether the task set is to be processed in a batch processing

mode.

Objective function (γ): The objective function of a scheduling problem is also

termed as the optimality criteria for the problem. The objective functions can

be the bottleneck objectives or the sum objectives. One of the most common

optimality criteria in multiprocessor scheduling is the total schedule length. This is

also called as makespan time in literature. Makespan time indicates the completion

time of the task which finishes at last. This is expressed as Cmax = max{Ci}, where

Ci is the completion time of task ti and i varies from 1 to n (n is total number of

tasks). Other common objective functions of multiprocessor scheduling problem

are total flow time
∑n

i=1Ci, total weighted flow time
∑n

i=1wiCi, etc. In case of

real-time tasks, the optimality criteria are normally expressed using the deadline

of the tasks. One common objective function in this case is Lmax = max{Ci− di},
where di is the deadline of a task ti, and Li is termed as lateness. Other objective

functions can be the number of tasks missing their deadline constraints, number

of tasks failing service level agreements, etc. Moreover, the objective function of a

scheduling problem can also be expressed as a combination of two or more different

functions.

Example of some scheduling problems:

• P |pmtn|Cmax denotes the scheduling problem with M identical machines

where a set of tasks is to be executed to minimize the total schedule length,

and the preemption of the tasks is allowed. This can be solved in O(n) time

where the tasks are assigned to the processors in any order with a uniform

share of processing time. A task is split into parts in case it requires more

time than the share [8].

• P ||Cmax denotes the scheduling problem with M identical machines where

a set of tasks is to be executed to minimize the total schedule length, and

Chapter 1. Introduction 3

the preemption of the tasks is not allowed. When preemption is not allowed,

the problem becomes difficult and this problem is proved to be NP-hard

[8]. For the two processor case (represented as P2||Cmax), the problem gets

mapped to the subset sum problem where n numbers (i.e. tasks) needs to

be partitioned into two subsets with almost equal sum and the problem is a

known to be a NP-complete problem [9].

• R|pmtn; ri|Lmax denotes the problem of scheduling a set of tasks on a mul-

tiprocessor system of unrelated machines to minimize the maximum late-

ness. The tasks can have arbitrary arrival time. This problem can be solved

polynomially by formulating linear programs considering the tasks in non-

decreasing order of their deadlines [8].

1.2 Classification of Multiprocessor Scheduling

Algorithms

Scheduling algorithms can be classified based on various parameters [6]. Here we

mention a few classifications which are based on some important parameters.

Preemption: If the execution of a task is interrupted at any time to assign

the processor to some other task, it is called preemptive scheduling. When the

task execution cannot be interrupted at all, it is called non-preemptive scheduling.

However, if the tasks can be preempted at certain points only, the scheduling is

termed as co-operative scheduling.

Priority: If the priority of a task changes in the course of execution, it is termed

as dynamic priority scheduling. If the priority of the tasks does not change during

execution, it is termed as static priority scheduling. Priority of a task may be

assigned based on parameters, such as deadline, laxity, execution time, etc.

Migration: When a task can migrate from one processor to any other processor,

it is termed as global scheduling. When a task cannot migrate from one processor

to another, it is termed as partitioned scheduling. But when a task can migrate

from one processor to a set of processors, it is termed as semi-partitioned schedul-

ing.

Online or offline: An online task is the one whose information becomes avail-

able only after its arrival. Scheduling algorithm decides dynamically whenever

the tasks arrive at the system. These scheduling algorithms are termed as on-

line scheduling. On the other hand, offline scheduling deals with the tasks whose

information is available beforehand.

Chapter 1. Introduction 4

1.3 Real Time Scheduling

Real-time systems are the ones which must confront to both the functional cor-

rectness as well as temporal correctness [6, 10]. The systems must show logically

correct behavior on correct time. A task in a real-time system possesses a tem-

poral parameter, which is called the deadline of the task. These deadlines can be

categorized into two types: hard and soft. A task with a hard deadline must finish

its execution before the deadline. However, in the case of a soft deadline, the task

execution may exceed its deadline. In that case, some penalty is imposed [11].

On the basis of the arrival time, the task set in a real-time system can be mainly

categorized as periodic, and aperiodic. A periodic task is one which is activated at

a regular time interval or period. That is the arrival time of the tasks are known

beforehand. An aperiodic task is one which is activated or released irregularly.

Thus the arrival time of the tasks become known after they actually arrive at the

system.

1.3.1 Scheduling of periodic real-time task scheduling

There is a wide variety of scheduling algorithms available for the periodic real-time

tasks [6, 7]. Here, we briefly discuss some of the popular scheduling techniques in

the context of real-time task scheduling.

Rate monotonic: Rate monotonic (RM) is a fixed priority preemptive scheduling

technique for periodic tasks. This scheduling technique assigns priority to the

tasks based on their periods. A task with a shorter period (i.e., higher request

rate) gets higher priority. Priority is assigned before the execution and it is not

changed during the course of execution. RM is an optimal scheduling algorithm

in case of uniprocessor system in the sense that if some fixed priority scheduling

technique can schedule a task set, then the task set can also be scheduled by RM

[12]. Joseph and Pandya [13] showed that a real-time system under RM scheduling

technique is schedulable if and only for all ti, (ri) ≤ pi, where ri is the the release

time and (pi) is the period of task ti.

Deadline monotonic: An immediate extension of RM scheduling technique is

deadline monotonic (DM) which was proposed by Leung and Whitehead [14]. This

is a fixed priority, preemptive scheduling technique for periodic tasks. Priority of

the tasks is assigned based on their relative deadline values. The task with the

shortest relative deadline is executed first. The DM scheduling algorithm is also

Chapter 1. Introduction 5

an optimal scheduling algorithm in case of uniprocessor system in the sense that

if some fixed priority scheduling technique can schedule a task set, then the task

set can also be scheduled by DM [12].

Earliest deadline first: Earliest deadline first (EDF) is implicitly a preemptive

scheduling technique where priority is assigned based on the deadline of a task. A

task with earlier deadline indicates higher priority and it preempts the execution of

a task with a later deadline. EDF is found to be an optimal scheduling technique

for uniprocessor systems in the sense that if any task set is schedulable by an

algorithm, then EDF can also schedule the task set.

1.3.2 Scheduling of aperiodic real-time task scheduling

In this section, we present some of the popular scheduling algorithms for the

aperiodic tasks.

Jackson’s algorithm: This is another popular algorithm for scheduling a set of

aperiodic tasks. This algorithm considers scheduling a set of synchronous tasks

on a single processor to minimize the maximum lateness. This algorithm is a non-

preemptive version of EDF and commonly termed as the earliest due date (EDD)

first scheduling. EDD algorithm guarantees that if any feasible schedule exists for

a task set, then the algorithm finds it. The algorithm runs by sorting the tasks

based on their due date. Thus for a task set with n tasks, the algorithm takes

O(nlogn) time.

Earliest deadline first: As the EDF scheduling policy does not assume anything

about the periodicity of the tasks while scheduling, it works for both periodic and

aperiodic tasks in the same way (EDF is already defined for periodic tasks in the

previous section). This is also known as Horn’s algorithm [15]. The complexity

of this algorithm depends on the implementation of the ready queue. If the ready

queue is implemented as a list, then the complexity becomes O(n2). If the ready

queue is implemented as a heap, then the complexity becomes O(nlogn).

Least laxity first: This is an immediate derivation of EDF scheduling technique

where the priority of a task changes during the course of execution. Priority of

task ti at time instant t is calculated as di − t; which is the laxity value at that

time instant. This is a dynamic priority-based preemptive scheduling technique.

The complexity of this algorithm is O(n1 + n2
2), where n1 is the total number of

Chapter 1. Introduction 6

requests in a hyper-period of periodic tasks in the system if any, and n2 is the

total number of aperiodic tasks in the system [16].

Bratley’s algorithm: This algorithm tries to find a feasible schedule for a set of

non-preemptive independent tasks for a single processor system. The algorithm

does an exhaustive search in order to get a solution. While doing so, the algo-

rithm constructs a partial schedule by adding a new task in each step. A path

is discarded whenever the algorithm encounters a task which misses its deadline.

This algorithm is a tree-based search algorithm and for each task, the algorithm

might need to explore all the partial paths originating at that node. Thus the

time complexity of this algorithm becomes O(n · n!).

1.4 Aperiodic Real-Time Task Scheduling on Mul-

tiprocessor Environment

The above-mentioned algorithms were initially designed for a single processor sys-

tem. But as we move into the multiprocessor systems, a new dimension is added to

the scheduling problems, that is, the number of processors is increased from 1 to m.

Choosing a processor from a pull of free processors is termed as allocation problem

and is popularly known as mapping [17]. The allocation problem is often viewed

as a bin packing problem and several popular bin-packing heuristics, such as First

Fit, Next Fit, Best Fit, Worst Fit, etc. are clubbed with the uniprocessor schedul-

ing algorithms. In addition, the multiprocessor scheduling algorithms make use of

another factor for designing efficient scheduling policies. This is called migration

of tasks from one processor to another. In case of migration, the execution of one

task on a processor is preempted and the task is assigned to another processor.

Thus the task needs to shift (i.e. migrate) from one processor to another.

Majority of the scheduling problems for the aperiodic task set on multiprocessor

environment are non-polynomial except for task sets with restricted execution time

and the deadline [5]. Thus various heuristics are proposed to solve these problems.

When these algorithms are clubbed with the bin packing algorithms [18] to fit into

the multiprocessor environment, they are named as Earliest Deadline First - First

Fit (EDFFF), Earliest Deadline First - Best Fit (EDFBF), Earliest Due Date First

- Best Fit (EDDBF), etc. [19, 20, 21, 22].

Chapter 1. Introduction 7

1.5 Large Systems and Cloud

Large systems refer to the computing platform where a number of computing nodes

(or systems) are connected via a high-speed network to form a single computing

hub. These computing hubs are also known as data centers. The basic objective

of these systems is to meet the computation requirement of the recent high-end

scientific applications of various domains. These systems include Cluster, Grid,

and Cloud. In Cluster computing, the physical distance between the participating

nodes is not much, and they are often connected using LAN (local area network).

The computing nodes in a cluster are typically of homogeneous nature. In the

case of Grid computing, the computing nodes are geographically distributed and

belong to multiple administrative domains. The grid is a decentralized distributed

computing paradigm where the users rent the computing facility on an hourly

basis. On the other hand, Cloud comes under a centralized model where a single

service provider usually owns the resources.

1.5.1 Cloud computing and virtualization

Cloud computing is an emerging resource sharing computing platform which offers

a large amount of space and computing capability to its users via the Internet.

The users are charged as “pay-as-go” model based on their resource usages. There

exist various definitions of the cloud computing paradigm. One of the commonly

accepted definitions proposed by the National Institute of Standards and Technol-

ogy (NIST) is

“cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction” [23].

Figure 1.1 shows the three-layered architecture of a typical cloud computing paradigm.

The system consists of an application layer, a virtualization layer, and a hardware

layer. The user requests arrive in the form of applications or tasks. These tasks are

accumulated in a single place for its processing based on the underlying scheduling

policy. The next layer is the virtualization layer. This layer plays the most vital

role and makes the cloud computing paradigm the popular, efficient and attrac-

tive. This layer accepts the requests from the application layer. The user tasks

may require any specific application software or operating system (OS), etc. for

Chapter 1. Introduction 8

User

Task

Task

User

Task

Task

User

Task

Task

User

Task

Task

Virtualizer

VM VM VM

Virtualizer

VM VM VM

Virtualizer

VM VM VM

VM Selector and Manager

VM to Host Scheduler

Task to VM Scheduler

Task Accumulator and Manager
Application

Layer

Virtualization
Layer

Hardware

Layer

VM OS Images
Library of

Figure 1.1: Cloud computing architecture

their execution. The job of the VM scheduler and manager is to facilitate an

appropriate virtual machine (VM) which meets the requirement of the task. If re-

quired, a VM with the requirement is created with the help of the VM OS library.

The bottom-most layer is the hardware layer which consists of the physical hosts

where the VMs are placed with the help of the virtualizer. The main benefit of

this architecture is that it can cater the user requests with any specific OS and

platform requirements irrespective of the host OS and underlying hardware. In

addition, various OSes can run together in the form of VMs sharing the resources

of the same hardware. This reduces the hardware requirement and thereby the

cost.

1.6 Real-Time Scheduling for Large Systems and

Cloud

Large computing systems such as the cloud provide some important features to

its users, such as dynamic pricing model, reliability, scalability, elasticity, dynamic

and seamless addition and removal of resources, etc. These features have attracted

applications from several domains for their deployment [24, 25, 11]. These applica-

tions are often of real-time nature. Thus the real-time scheduling for large systems

becomes crucial.

Chapter 1. Introduction 9

The traditional real-time scheduling algorithms try to improve utilization bound,

reduce approximation ratio and resource augmentation, and to improve some em-

pirical factors like the total schedule length, total laxity, number of deadline misses,

etc. On the other hand, the deployed applications typically consist of hundreds

of compute-intensive, data-intensive and communication intensive tasks. Thus a

significant amount of computing resource is required to execute these applications.

Hence, the traditional scheduling algorithms are not adequate. For efficient exe-

cution of these applications on the large systems, they should be scheduled in an

energy-efficient way. The energy-efficient execution of these real-time applications

(or tasks) benefits both the users and the service providers. In the next section,

we discuss the energy consumption scenario for the large systems.

1.6.1 Workflow Scheduling for Large Systems and Cloud

Several scientific applications of different domains such as astronomy, astrophysics,

bioinformatics, high energy physics, etc. are modeled as scientific workflows or

tasks graphs [26, 25]. These workflows typically consist of hundreds of compute-

intensive, data-intensive and communication intensive tasks. Thus a significant

amount of resource is required to execute them. Another characteristic of scientific

workflow is the variation in their resource requirement.

The traditional computing platforms, such as grid and clusters are not adequate to

handle such high resource intensive applications and the variation in their resource

requirement. On the other hand, the emerging cloud computing platform is found

to be a better choice [27, 28]. As the scientific workflows require a large number of

computing resources for execution, it is imperative to schedule them on the cloud

not only in a performance-efficient way but also in an energy-efficient way.

1.7 Energy Consumption in Large Systems

1.7.1 Power consumption models

Modern day’s computer systems are built using the complementary metal-oxide

semiconductors (CMOS) technology. There are mainly two components in the

power consumption of a CMOS circuit: static and dynamic. The static component

is dependent on the system parameters, such as number and type of transistors,

Chapter 1. Introduction 10

process technology, etc. On the other hand, the dynamic power consumption is

basically driven by the circuit activities and traditionally it was believed to be the

major contributor [29]. A wide volume of research on scheduling is done which

considers only the dynamic power consumption [30, 31, 32, 33, 34].

Mathematically, we write

Ptotal = Pbase + Pdyn (1.1)

where, Pbase is the static power consumption, and Pdyn is the dynamic power

consumption.

The dynamic power consumption is expressed as a function of voltage (V) and

operating frequency (f). Mathematically, it can be written as follows.

Pdyn =
1

2
CV 2f (1.2)

Again, there are various power consuming components present in a large system

(such as cloud). The total energy (or power) consumption of such a system com-

prises of their individual power consumptions. These components include CPU,

memory, disk, storage, and network. Various studies [35, 36, 37] have been done

to express the total power consumption as a combination of these components.

For instance, Ge et al. [35] have used energy consumption of CPU, memory, disk,

and NIC (network interface card) to model the energy consumption of the system.

Song et al. [36] expands this model where they expressed the energy consumption

as a product of the power consumption of the components with the operation time

of the corresponding component.

Though there are many power consuming components in a typical server, the

CPU is the major contributor [38, 39] and a wide range of scheduling algorithms

are proposed considering the energy consumption of the processor only [30, 40,

41, 42]. As reported in [1], the CPU consumes almost 60% of the total power

consumption for a Xeon based server and Figure 1.2 shows the component-wise

power consumption for that server. We see that the processor consumes 60% of

the total power, and memory is the second highest contributor with 19%. We also

present the power breakdown of a server placed at the Google data center using

Figure 1.3. Though memory consumes a significant chunk of power, CPU remains

to be the major contributor.

Chapter 1. Introduction 11

Figure 1.2: Component wise power consumption values for a Xeon based
server [1]

Figure 1.3: An approximate power breakdown of a server in Google data
center [1]

Now the power consumption of a processor is expressed as a function of its uti-

lization, processor frequency, etc. Fan et al. [37] made a significant contribution

by proposing a power model where the CPU power consumption is expressed as a

linear function of its utilization. This can be written using the Equation 1.3.

P (u) = PBase + (Pbusy − PBase)× u (1.3)

where, P (u) is the estimated power consumption at utilization u, PBase is the

power consumption when it does not execute any workload (utilization is zero).

This is the static component of the power consumption and for the large systems,

it is often considered as 60% to 70% of the total power consumption [43, 44, 45].

Pbusy is the power consumed when the server is fully utilized. A significant amount

of research on energy-aware scheduling policies considered this power consumption

model in their work [45, 46, 47].

Chapter 1. Introduction 12

In case of a virtualized environment, the total power consumption can also be

expressed as the summation of the individual power consumptions of the VMs

and the base power consumption [48], and this can be written as

Ptotal = Pbase +
ν∑
i=1

Pvm(i) (1.4)

where, Pbase indicates the static component, Pvm(i) indicates the power consump-

tion of the ith VM, and ν indicates the total number of VMs placed on the server.

Scheduling policies which target the dynamic power consumption of the hosts

(or processors) primarily uses the DVFS (dynamic voltage and frequency scaling)

technique by reducing the frequency and voltage to reduce the power consumption.

In DVFS technique, the operating voltage and frequency of the processors are

adjusted dynamically to adjust the speed of the processor. This in tern, effects

the power consumption of the processor [33, 49, 50, 51, 52]. On the other hand,

scheduling policies for the large systems, in general, try to reduce the static power

consumption by reducing the number of active components of the system [53, 54,

55, 56].

In addition to the computation energy consumption discussed above, a significant

chunk of the total energy consumption of a data center is contributed by the cooling

devices, AC/DC transformation devices, etc. We consider the total computation

energy as the total energy of the system and use this throughout the thesis.

1.7.2 Impact of high power consumption

High energy consumption in the servers and data centers has many demerits, and

this can be categorized in three directions: (i) economic, (ii) performance, (iii)

environmental. The energy consumption of a data center is almost equal to that of

25,000 households and it is around 2.2% of total electrical usages [48]. In addition,

the energy consumption cost of a data center is increasing significantly. This yields

a high operating electricity cost. Furthermore, high energy consumption imposes

a higher cooling cost. Data center owners need to spend a significant portion of

their budget for powering and cooling their servers. For instance, it is reported

that Amazon spends almost 50% of their management budget for powering and

cooling the data centers [57]. In [58], Koomey presented that the total power

Chapter 1. Introduction 13

drawn by the servers is increasing every year and if the rate continues, then the

server’s energy consumption will exceed its hardware cost [59].

The second factor is the performance. High energy consumption increases the

system temperature and it is reported in [60] that with an increase in every 10◦C

in temperature, the failure rate of an electronic device doubles. The last factor is

the adverse impact on the environment due to the emission of CO2. In addition

to the monetary and performance issues, high energy consumption increases the

CO2 emissions and contributes to the global warming [61]. In the year 2007, it

is reported that the ICT (Information and Communication Technology) industry

contributed about 2% of the global CO2 emissions [62] and it is expected to increase

by 180% till 2020.

1.8 Motivation of the Thesis

Nowadays, the number of processors and number of threads per processor have in-

creased to a significant number in compute systems. Thus the processing capability

of these systems is sufficient enough to handle most of the recent applications. But

the primary concern for these computing systems is the growing energy consump-

tion. High energy consumption in the large systems has various demerits. Thus

a reduction in the energy consumption not only reduces the operating electricity

cost for the service providers, but it also reduces the other maintenance costs and

CO2 emission. In spite of resulting high energy consumption, large systems (e.g.,

cloud) are gaining popularity for various attractive features. Numerous real-time

tasks (i.e., applications) are also being executed in these systems. To support

the high demand of these applications at times, the systems are over-provisioned

with resources (deploy more than the actual requirement). It is observed that one

of the major reason for high energy consumption is the poor utilization of the

computing hosts. Thus in order to reduce the energy consumption, the system

utilization need to be improved. Moreover, scheduling can potentially improve

the overall utilization and performance of the system. As a result, the energy

consumption has become one of the major optimality criteria for scheduling and

the energy-efficient scheduling for large systems has gained the attention of the

research community in the recent time.

As the processor is the major source of power consumption, the energy-efficient

scheduling approaches mainly consider the power consumption of the processors.

Chapter 1. Introduction 14

The scheduling policies try to reduce the power (or energy) consumption of the

processor in different ways. Out of these, a majority of the research exploits the

DVFS technique, and they focus only on the dynamic energy consumption of the

processor. It is still a challenge to design an energy-efficient scheduling technique

for the real-time tasks considering both static and dynamic energy consumption

of the processors and satisfying other criteria, such as meeting the deadline con-

straints of the tasks.

Another promising way to increase the utilization of the system resources is by vir-

tualization [63, 48]. Here, a set of virtual machines (VMs) is created on the top of

physical hardware. User tasks are assigned to the VMs and the VMs are placed on

the physical machines (also called as hosts). Cloud is the most popular virtualized

system of the recent time and it is considered to be the future for energy-efficient

computing paradigm. Energy-efficient scheduling for the cloud system adjusts the

compute capacity of a VM as per the requirement and assigns the user tasks on

them. A majority of these scheduling policies assumes a continuous domain for

the compute capacity of the VMs. But in practice, the service providers often

offer VMs with discrete compute capacity. Our third work considers a virtualized

cloud system which deals with the VMs with discrete compute capacities.

With the increase in the popularity of the cloud computing paradigm, several

applications from different domains are getting deployed. These applications are

often of real-time in nature and they have huge resource requirements. Thus their

efficient execution is very much crucial. These applications are modeled as sci-

entific applications and various scheduling algorithms are developed for efficiently

executing the scientific applications in the cloud environment. But the majority

of the work mainly focuses on (i) reducing the overall execution time, (ii) meet-

ing the deadline constraint, (iii) ensuring the quality of services, etc. It is still a

challenging and promising research area to schedule these scientific applications

(which are represented as scientific workflows) on the cloud in an energy-efficient

way while satisfying other essential criteria such as the deadline. Moreover, the

amount of research on real-time scheduling tasks with multiple VM requirement is

thin. Hence our fourth work is about scheduling a set of online scientific workflows

on the cloud environment.

Chapter 1. Introduction 15

1.9 Contributions of the Thesis

The thesis proposes a number of energy-efficient scheduling policies for efficiently

executing real-time tasks on the large multi-threaded systems and the cloud. While

doing so, the thesis considers different machine and task environments. The con-

tributions can be summarized as follows.

1.9.1 Scheduling online real-time tasks on LMTMPS

In our first contribution, we consider scheduling a set of online independent aperi-

odic real-time tasks on a large compute systems where the processors are equipped

with the multi-threaded feature. We name such systems as large multi-threaded

multiprocessor systems (LMTMPS). Based on the power consumption pattern of

some of the recent multi-threaded processors, we devise a simple power model

where the total power consumption of a processor depends on the number of

active threads of that processor. Then we propose an energy-efficient real-time

scheduling policy, named smart scheduling policy which is designed based on the

urgent point of the tasks. This policy works on two fundamentals, (i) all the

switched-on processors are always tried to use fully, and (ii) new processors are

not switched-on as long as possible. The proposed policy shows an average energy

reduction of around 47% for the synthetic dataset and around 30% for the real

trace dataset. Furthermore, we have proposed three variations of the basic smart

policy to improve the energy consumption further and to handle special kinds of

workloads. These are (a) smart - early dispatch scheduling policy, (b) smart -

reserve scheduling policy and (c) smart - handling immediate urgency scheduling

policy.

1.9.2 Scheduling online real-time tasks on virtualized cloud

system

The second contribution of the thesis deals with scheduling the same task set for

a virtualized cloud computing environment. Here the hosts are heterogeneous,

and each host can accommodate a number of virtual machines (VM). VMs are

also heterogeneous with respect to their compute capacities and energy consump-

tions. Under this setup, we consider a region based non-linear power consumption

model for the hosts which is derived from the power consumption pattern of a

Chapter 1. Introduction 16

typical server. Accordingly, we set two thresholds for the utilization of the hosts

and depending on the urgency of the tasks, the scheduler dynamically uses the

threshold value. In this work, we first introduce the concept of urgent point for

a real-time task in case of a heterogeneous cloud environment and then propose

two energy-efficient scheduling policies, (i) urgent point aware scheduling (UPS),

and (ii) urgent point aware scheduling - early scheduling (UPS-ES), for efficiently

executing a set of online real-time tasks. As compared to a state-of-art policy

energy-efficient policy, the proposed policies achieve an average energy reduction

of around 24% for the synthetic data and approximately 11% for the real-trace

data.

1.9.3 Scheduling real-time tasks on VMs with discrete uti-

lization

The third contribution of the thesis considers a cloud system where the VMs are of

discrete compute capacity. The discrete compute capacity contributes a discrete

utilization to the hosts. We introduce the concept of critical utilization where the

energy consumption of the host is minimum. The scheduler tries to maintain the

utilization of all the running hosts close to the critical utilization. In order to

propose solutions to this problem, we first divide the task set into four different

cases. Case 1 handles tasks with the same length and same deadline. Case 2

deals with tasks of two different lengths but the same deadline. In case 3, we

consider tasks with arbitrary lengths but the same deadline. Finally, the task set

with arbitrary length and the arbitrary deadline is considered under case 4. The

solution method starts by proposing a solution of case 1, then the solution of case

1 is used to solve case 2 and so on. For case 4, we apply four different techniques to

cluster the tasks and to bring it under case 3. The experimental results show that

depending on the value of the system parameter, we can decide the task clustering

technique.

1.9.4 Scheduling scientific workflows on virtualized cloud

system

All the above problems consider real-time tasks which are independent but in this

contribution, we consider a set of online dependent real-time tasks for efficiently

executing in the cloud environment. The dependent task set is represented by

Chapter 1. Introduction 17

scientific workflows. Each workflow contains a chain of multi-VM tasks and it

arrives at the cloud system with a predefined deadline. We use three different

approaches by efficiently utilizing the slack time of each workflow to decide the

best scheduling time for a task of a workflow. We have exploited two different

possibilities for allocating the VMs of a task, (i) non-splittable, (ii) splittable.

We propose a series of energy-efficient scheduling policies considering different

allocation policies, different migration strategies, and different slack distribution

techniques. Along with the energy consumption of the system, we analyze the

migration count and split count for each policy. As far as energy consumption

is concerned, proposed policies under the non-splittable VM allocation category

performs at par with the state-of-art policy. But they perform much better than

the state-of-art policy terms of the number of migrations. But proposed policies

under splittable VM allocation category performs significantly better than the

state-of-art policy both in terms of energy consumption and migration count.

1.10 Summary

Nowadays, the number of processors and the number of threads per processor

have increased to a significant number in compute systems. Thus the processing

capability of these systems is sufficient enough to handle most of the recent appli-

cations. As the processing capability increases, the power (or energy) consumption

also increases by a significant margin. The high power consumption for the large

systems has many demerits and thus reducing power consumption will benefit

both the users and the service providers in several ways. Though there are many

power consuming components present in a computing system, the processor alone

consumes a significant portion of that. Thus the research community mainly fo-

cuses on the power consumption of the processors while designing energy-efficient

scheduling techniques.

There are three components of any scheduling problem: machine environment, task

environment, and optimality criteria. Different work on scheduling considers dif-

ferent values for these components and present solutions accordingly. In our work,

for the machine environment, we consider both virtualized and non-virtualized

system with a large number of processors. For the task environment, we con-

sider both independent and dependent real-time task set. We set the optimality

criteria as the minimization of energy consumption without missing the deadline

constraints of the tasks. Hence the focus of this thesis work is to design scheduling

Chapter 1. Introduction 18

approaches for executing real-time applications (expressed as real-time tasks) on

large systems to minimize the energy consumption of the system while meeting

the deadline constraints of the tasks. The first work considers a non-virtualized

large multi-threaded multiprocessor system (LMTMPS) and the other three works

consider a virtualized cloud system. The power (or energy) consumption of the

system is taken as a function of the utilization of the hosts, or the number of active

threads in a processor, or the summation of the power consumption of the running

VMs of a host.

1.11 Organization of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 presents brief literature summarizing the seminal works in the

area of the energy-efficient scheduling of large systems.

• Chapter 3 presents the first contribution, where the scheduling of aperiodic

online real-time tasks is considered for LMTMPS.

• Chapter 4 describes our second contribution, which deals with the scheduling

of aperiodic online real-time tasks for the heterogeneous virtualized cloud

system.

• Chapter 5 considers scheduling for a virtualized cloud system where the

utilization values of the VMs are discrete. We put forward a mathematical

analysis regarding the energy consumption and the utilization of the hosts.

• Chapter 6 presents a series of scheduling heuristics for a set of multi-VM

dependent tasks, represented by scientific workflows.

• Chapter 7 finally concludes the thesis with some possible future research

directions.

Chapter 2

Energy Efficient Scheduling in

Large Systems: Background

The scheduling algorithms whose optimality criteria is the reduction of the power

consumption or the energy consumption is commonly known as energy-efficient

(or energy-aware) scheduling. In this Chapter, we present a brief overview of

literature in the context of the energy-efficient scheduling techniques, specially

for the large systems. The work can be broadly studied in two approaches: (i)

fine-grained, (ii) coarse-grained. Fine-grained approach basically deals with the

dynamic power consumption of the hosts. Scheduling approaches under this cat-

egory extensively use the DVFS technique in various ways. On the other hand,

scheduling approaches under coarse-grained category primarily deal with the static

power consumption of the hosts whose aim is to minimize the number of active

hosts.

2.1 Fine Grained Approaches

A reduction in the operating frequency of the processor ideally results in a cu-

bic reduction in the dynamic power consumption of the processor. But with a

reduction in the operating frequency, the execution time of the task running on

that processor increases. Thus the primary idea of the DVFS technique in the

context of real-time task execution is to adjust the operating frequency such that

the power consumption can be reduced without missing the deadline of the task.

Here we present a few seminal works for non-virtualized and virtualized systems

which uses the fine-grained approach to reduce the energy consumption.

19

Chapter 2. Background 20

2.1.1 Non-virtualized system

Weiser et al. [31] was the pioneer to start the research in this direction by as-

sociating power consumption with scheduling and used DVFS technique to study

the power consumption of some scheduling techniques. They took advantage of

CPU idle time and reduced the operating frequency of CPU so that the tasks were

finished without violating any deadline. Aydin et al. [32, 64] ported this idea for

real-time systems where they initially designed a static algorithm for computing

the optimal frequency for a periodic task set assuming their worst-case behavior.

After that, they devised an online speed adjustment algorithm for dynamically

claiming the energy not used by the tasks finishing earlier than the worst case

time and achieved up to 50% power saving as compared to the worst-case sce-

nario. Zhu et al. [33] has extended the technique proposed by Aydin et al. [32] for

the multiprocessor environment. In their policy, they mention about teo different

approaches for utilizing the slack created by a task to reduce the energy consump-

tion. In first approach, slack created by a task in one processor was utilized by

another task in the same processor, and in the second approach, the slack was

shared among the tasks in different processors.

Isci et al. [65] has proposed a global power management policy for chip multi-

processors where every processor can operate in three different modes: turbo (no

reduction), eff1 (5% voltage and frequency reduction), eff2 (15% voltage and fre-

quency reduction). They studied the relationship between the operating modes

of the processors and the corresponding performances. Lee and Zomaya [66, 67]

have proposed makespan-conservative energy reduction along with simple energy

conscious scheduling to find a trade-off between the makespan time and energy

consumption, where they reduced both makespan time and energy consumption of

precedence constraint graph on heterogeneous multiprocessor systems supporting

DVFS technique. Recently, Li and Wu [49, 68, 69] have considered the execu-

tion of various task models by further exploiting the DVFS technique for both

homogeneous and heterogeneous processor environments.

The above studies mainly consider the small systems. DVFS technique is equally

used for the high-performance computing (HPC) systems and clusters. For in-

stance, Hotta et al. [70] used the DVFS technique to design a scheme for the high-

performance computing (HPC) clusters where the program execution is split into

multiple regions, and the optimal frequency is chosen for the individual region.

Ge et al. [50] has designed an application-level power management framework

and proposed scheduling strategies for scientific applications in case of distributed

Chapter 2. Background 21

DVFS enabled clusters. Kim et al. [71] considered scheduling of bag-of-tasks

applications, and presented scheduling approaches considering space shared and

time shared resource sharing strategies. The applications were scheduled in an

energy-efficient manner and the quality of service (QoS) is measured as meeting

the deadline constraints of the applications. In [51], Chetsa et al. presented a

partial phase recognition based dynamic power management architecture for the

HPC systems. They have designed two setups. In first setups, they consider

optimization of the processor power consumption only and in the second setup,

processor, disk, and network power consumptions are considered. Chen et al. [72]

considered energy-efficient matrix multiplication in a DVFS enabled cluster where

they divide the matrices and the computation is distributed among different cores.

In case of computation phase, the CPU frequency is set to the highest level and

in case of idle and communication phase, the frequency is set to the lowest level.

2.1.2 Virtualized system

In the context of a virtualized system, the user tasks are assigned to the VMs and

the VMs execute on the CPU cores. The speed (or the compute capacity) of a VM

is determined by the operating frequency of the underlying processor. The speed is

typically expressed in terms of million instructions per second (MIPS). Whenever

the speed (i.e. the compute capacity) of a VM increases, the power consumption

increases but the execution time of the task assigned to that VM decreases. The

DVFS based energy-efficient scheduling algorithms in the virtualized environment

adjust the speed of the VMs as per the requirement. In this section, we present a

few important works in this direction.

In [73], Calheiros and Buyya considered scheduling of urgent bag-of-tasks using

DVFS where they assume that one CPU core is exclusively available to one VM.

Changing the frequency of the core directly reflects the speed of the VM running

on it. The algorithm specified four different operating conditions and they are

ranked accordingly. The conditions are: (i) task is executed by a running VM

without increasing its frequency, (ii) task is executed by a running VM but an

increase in frequency is needed, (iii) task is executed by an idle VM placed on an

active host, (iv) task is executed by an idle VM and the host is brought to an

active state from a sleep or low power consuming state. The algorithm categorizes

the first condition as the best and the last condition as the worst.

Chapter 2. Background 22

In [74], Elnozahy et al. have proposed five different energy-efficient scheduling

policies which considered both DVFS and node on-off technique to reduce the

power consumption of the server clusters. The first policy is termed as independent

voltage scaling (IVS) which employs different voltage levels to the individual server.

The second policy is termed as the coordinated voltage scaling (CVS) where the

scaling is applied to different processors in a coordinated way. The third one is

termed as VOVO (Vary On and Vary Off) where the entire server is turned on

or off. The last two policies are the combination of IVS and CVS with VOVO

(VOVO-IVS and VOVO-CVS).

Recently, Zhu et al. [30] has considered scheduling of aperiodic real-time tasks on

the cloud. They proposed an energy-efficient scheduling algorithm, named EARH

which is based on a rolling horizon optimization technique. The primary idea

here is to consider the previously scheduled (but not started execution) tasks from

local queues of the VMs while scheduling new tasks. But in their approach, they

have considered only the dynamic energy consumption of the hosts; and the target

utilization of hosts is 100%.

Wu et al. [52] considered scheduling of real-time tasks in the cloud environment

where each task is specified with a minimum and a maximum frequency. Simi-

larly, each server is specified with a minimum and a maximum working frequency.

To execute a task on a specified server, it must satisfy both the minimum and

maximum frequency conditions. The policy uses the DFVS technique to set the

working frequency of a task on an appropriate server.

2.2 Coarse Grained Approaches

The primary idea of the coarse-grained scheduling policies is to reduce the number

of active hosts in the large system or data center. Whenever a host becomes active,

it consumes a significant amount of power even if it does not execute any task.

This is the base power consumption of the host. A reduction in the number of

active hosts reduces the overall power consumption of the system. The dynamic

power management (DPM) technique uses this coarse-grained approach to reduce

the power consumption of the system. DPM uses different power consumption

states for the components and dynamically switches between the states as per the

requirement [75]. In the following subsections, we present a few seminal works for

Chapter 2. Background 23

non-virtualized and virtualized systems which uses the coarse-grained approach to

reduce the energy consumption.

2.2.1 Non-virtualized system

Chase et al. [53] proposed a coarse-grained power management techniques for

Internet server clusters where an energy conscious switch is placed on top of the

servers that maintain a list of active servers. Depending on the traffic behavior and

a predetermined threshold value of utilization of the servers, the switch dynami-

cally adjusts the list by keeping them either in active mode or low power mode.

In [76], Chase et al. have extended this idea to develop an economic model based

architecture, called Muse to find the trade-off between the service quality and the

cost in terms of energy. The policy avoids static over-provisioning of resources by

dynamically allocating sufficient resources to meet certain quality requirements.

Choi et al. [77] studied the characteristics of the applications running in data

centers in order to impose appropriate bounds on power consumption. They pre-

sented consolidation techniques which are based on two kinds of power budgets:

average and sustained. Costa et al. [78] designed a three-level energy aware frame-

work, named GREEN-NET which was based on the distributed automatic energy

sensors. They developed an adapted resource and job management system (OAR)

unit to facilitate automatic shut-down of the nodes in under-utilized periods.

In [54], Pinheiro et al. have proposed strategies for inspecting the system sta-

tus periodically and then to dynamically add or remove computing nodes to the

cluster based on the requirements. After addition or removal of the nodes, a load

re-distribution policy runs to decide the placement and migrations of the load

from one node to another to ensure system performance. The authors have also

imposed several restrictions to limit the number of migrations. Zikos et al. [55]

proposed three scheduling policies for a set of heterogeneous servers with differ-

ent power consumption and performance. One policy reduces energy consumption

with average response time. Another policy is customized for performance but

consumes high energy consumption. The last one performs best for medium load

scenario. The author considered compute-intensive tasks where the service time

is not known. Research is also done considering the energy consumption cost of

the data centers. For instance, Jonardi et al. [79] proposed two heuristics for

geographically distributed data centers where they studied the co-location (CL)

interference effect of workloads. They claimed that the heuristic FDLD-CL (Force

Directed Load Distribution) performs better when the workload profile does not

Chapter 2. Background 24

change rapidly and GALD-CL (Genetic Algorithm Load Distribution) performs

better otherwise.

As the cooling energy is a significant chunk of the total energy in data centers, a

good number of works [80, 81, 82, 83, 84] is done to reduce the thermal energy

consumption. For instance, Oxley et al. [81] considered a noble framework for

heterogeneous computing systems where they used offline analysis to find optimal

mapping of workload to the cores. In [84], Oxley et al. considered scheduling tasks

on a heterogeneous compute systems with given thermal and deadline constraints.

They studied the effect of the co-location on the execution time of the tasks and

proposed greedy heuristics for the same.

2.2.2 Virtualized system

All the above studies presented some exciting results, but none of them considered

the virtualization technique in the system. Virtualization technology is known

to be a promising technique to improve the resource usages in the cloud. In a

virtualized system, tasks are assigned to the VMs and the VMs are placed on

the hosts. Energy efficient scheduling in virtualized environment mainly deals

with two parameters to reduce the energy consumption [85, 86, 56]. The first

parameter is the consolidation of the VMs into a fewer number of hosts and the

second parameter is the efficient placement of VMs on the hosts of the cloud

resource. Here we present a few seminal works in the context of the energy-efficient

scheduling in a virtualized environment.

Consolidation operation mainly targets to reduce the number of active hosts in

the system. To reduce the number of active hosts, the hosts should be utilized

to their maximum capacity [30, 44, 45]. For instance, Lee and Zomaya in [45],

developed two energy-efficient scheduling policies: ECTC and maxUtil ; both the

policies try to utilize the switched-on processors fully (i.e. 100%). MaxUtil takes

the task placement decision based on the host utilization while ECTC takes the

decision based on the energy consumption of the task only. On the other hand, a

wide range of research [46, 86, 87, 88] is done where the host is not utilized fully,

rather they are used to a threshold value. The idea behind using threshold-based

utilization approaches is that the system performance degrades when the host

utilization crosses a limit. In addition to reduce the energy consumption, these

policies also aim to meet the performance or the service level agreement (SLA) of

the user tasks.

Chapter 2. Background 25

Verma et al. [89] has done a nice study regarding the power consumption pattern of

various HPC applications and the typical workload behavior of a virtualized server

and in [90] they developed a framework called pMapper where the applications

are placed onto different servers for execution based on the utilization values of

the server. Srikantaiah et al. [56] studied the relationship between the energy

consumption and the performance of the system which was determined by the

CPU (or processor) utilization and disk utilization. The problem was viewed as

a bin packing problem where applications are mapped into servers optimally.

Lee et al. [45] proposed two energy-efficient scheduling algorithms for a virtu-

alized cluster where they expressed the power consumption of a processor as a

linear function of utilization and the servers are utilized to their full capacities.

Beloglazov et al. [46] proposed a series of heuristics to dynamically allocate VMs

and manage resources at runtime depending on the overall utilization of the sys-

tem. In [91], authors presented two ant colony optimization based approaches for

VM placement and VM consolidation. They studied the trade-off between the

energy consumption and the SLA requirements.

Chen et al. [44] considered the execution of independent real-time tasks on a vir-

tualized cloud environment where the task execution time of the tasks comes with

some uncertainties. They reduce the overall energy consumption of the system

while meeting the task’s guarantee ratio. Hosseinimotlagh et al. [92] proposed a

two-tier task scheduling approach for the cloud environment where the benefits of

both the users and the service providers are taken into consideration. The global

scheduler efficiently maps the tasks to the VMs while the local scheduler tries to

utilize the hosts with an optimum CPU utilization. The task scheduler initially

assigns the minimum average computing power to each and the remaining com-

puting power is distributed among the tasks in a proportionate way. In [93], Shi

et al. presented a series of approaches for scheduling embarrassingly parallel tasks

in the cloud where they initially provide an analytical solution to the resource al-

location problem. Then they formulate a single job scheduling problem as a linear

program where they aim to schedule only one job which contained multiple tasks

within it. Furthermore, they design an online scheduler for periodically scheduling

the tasks by applying shortest job first policy.

Majority of the VM consolidation problem considers only the CPU utilization

while allocating the VMs on the hosts. But a few research has been conducted

where the other parameters such as memory, disk, etc. are also considered in

addition to the CPU. For instance, Mastroianni et al. [85] considered memory

Chapter 2. Background 26

in addition to the CPU utilization. They claim that the deterministic approach

of VM consolidation is not suitable for large data centers and they proposed a

probabilistic approach to tackle the problem. The effectiveness of their approach

is measured using five different parameters: resource utilization, number of active

servers, power consumption, migration frequency, and SLA violation. SLA viola-

tion is expressed as an overload of the CPU utilization. They have validated their

claim by conducting experiments for both CPU intensive and memory intensive

applications. In [94], authors have used a bi-directional bin packing approach to

placing the VMs on the hosts. They have used linear regression and K-nearest

neighbor regression prediction models to estimate the future resource utilization.

Research has also been done to predict the future resource requirement. For in-

stance, in [86], authors use an exponentially weighted moving average (EWMA)

load prediction method to estimate the future resource requirement. They intro-

duce the concept of skewness among the hosts to maintain a uniform resource

utilization of the hosts. They reduce the energy consumption of the system by re-

ducing the number of active hosts and maintain the performance by avoiding host

over-utilization. Authors used four different threshold values to balance between

the energy consumption and the system performance. CPU intensive, memory

intensive, and network intensive workloads are clubbed to together as a mix to

improve the resource utilization. In [88], authors have presented a profiling-based

framework for server consolidation where they studied the co-location effect of

different types of workloads. They further design a way to transform the current

VM allocation scenario into a target VM allocation scenario with the minimum

migration count.

2.3 Energy Efficient Workflow Scheduling

2.3.1 Workflow scheduling on large systems

Workflow scheduling on large systems such as grid and cloud system has been

extensively studied from a few years. As the problem is known to be an NP-hard

[95], numerous heuristic and meta-heuristic approaches [96, 97, 27, 98, 26, 95,

99] are proposed which mainly aim to reduce makespan time, the overall cost of

execution, energy consumption, etc. Studies have also been done which considered

deadline centric and budget constrained execution of scientific workflows in the

cloud. For instance, Abrishami et al. [96] has initially proposed a partial critical

Chapter 2. Background 27

path (PCP) algorithm to minimize the execution cost of workflows in grid and

then they extended the idea for cloud environment and proposed two algorithms,

namely, IaaS Cloud partial critical paths (IC-PCP) and IaaS Cloud partial critical

paths with deadline distribution (IC-PCPD2).

Topcuoglu et al. [97] has proposed two popular scheduling algorithms, heteroge-

neous earliest finish time (HEFT) and critical path on a processor (CPOP) for

a set of bounded heterogeneous processors. These algorithms are based on list

scheduling where the tasks are ordered based on their upward rank value in case

of HEFT and summation of upward and downward rank in case of CPOP. Lin and

Lu [100] has extended HEFT and proposed an algorithm called, scalable heteroge-

neous earliest finish time SHEFT for a dynamically changing cloud environment.

Calheiros and Buyya [27] has addressed the challenges of performance variations

of resources in public clouds while meeting deadline constraints of scientific work-

flows. They have proposed an algorithm called, enhanced IC-PCP with replication

(EIPR) which facilitates the replication of tasks and reduces total execution time.

In meta-heuristic approach, for instance, Rahman et al. [26] initially proposed

a critical path based adaptive scheduling techniques, namely, DCP-G (dynamic

critical path for the grid) for the grid and cloud computing environment. Then

they proposed a genetic algorithm based adaptive hybrid heuristic algorithm for

the hybrid cloud system. In [95], Rodriguez and Buyya proposed a particle swarm

optimization based scheduling technique to minimize the workflow execution cost

where they additionally considered the performance variation and VM boot time

in the cloud on top of typical cloud properties. Zhou et al. [98] proposed an ant

colony optimization based algorithm to find the best computing resource for a task

by dividing the ants into two sets: forward-ants and back-ants.

2.3.2 Energy-efficient scheduling of workflows

Now we present a few seminal works where minimization of energy consumption

is considered as the main or one of the co-objectives. For instance, Pietri et al.

[101] proposed two energy-efficient algorithms for executing a set of workflows on a

virtualized cloud environment where they aimed at reducing energy consumption

while maintaining the cost budget and deadline constraint.

Durillo et al. [102] has developed a multi-objective energy-efficient list-based work-

flow scheduling algorithm, called MOHEFT (Multi-Objective HEFT) where they

Chapter 2. Background 28

present a trade-off between the energy consumption and the makespan time. They

performed extensive experiments with different workflow characteristics. The pro-

posed algorithm achieved shorter or same makespan time as compared to HEFT

algorithm but with lesser energy consumption. Cao et al. [103] proposed energy-

efficient scheduling technique for executing a set of scientific workflows in a col-

lection of data centers. Depending on the amount of energy consumption, they

considered four different modes for servers: active, idle, sleep and transition in

their work. Authors used the DVFS technique and tasks were run at optimal

frequencies to reduce the energy consumption. In [28], Bousselmi et al. initially

partitioned the workflow to reduce network energy consumption by reducing the

amount of data communication among them. Then in the next step, they used the

cat swarm optimization based heuristic to schedule each partition on a set of VMs

in an energy-efficient manner. Chen et al. [104] designed an online scheduling

algorithm, called, energy-efficient online scheduling, EONS to schedule tasks from

different workflows. System resources are dynamically adjusted to maintain the

weighted square frequencies of the hosts.

Recently, Li et al. [61] addressed both energy consumption and the execution cost

while guaranteeing the deadline constraints of the tasks. The authors considered

an hourly based pricing model for the VMs and a task is mapped to an optimal

VM. They developed strategies to merge sequence tasks and parallel tasks for

meeting performance constraints by reducing execution cost and energy consump-

tion. They have also used the DVFS technique to use the slack time efficiently.

Xu et al. [41] considered the execution of online scientific workflows to minimize

the energy consumption of cloud resources. The authors transformed the workflow

into a set of sequential tasks. They applied a static time partitioning to calculate

the arrival time of the individual task of the workflow. The authors considered

homogeneous VMs with heterogeneous hosts. At the time of scheduling, the sched-

uler considers all the running tasks as new tasks with possibly lesser length and

schedules them along with the current tasks. We consider a similar setup in our

last contribution where we deal with scheduling real-time dependent tasks.

Table 2.1 lists some seminal work in the area of energy-efficient scheduling policies

for the cloud environment. The table also contains the key considerations of each

of the work and some lacunae in their work.

Chapter 2. Background 29

Research work Key considerations Major lacunae

Hotta et al. [70]
DFVS; Split program

execution
Manual program
instrumentation

Calheiros and Buyya
[73]

DVFS; Four different
operating conditions

Only one VM per core

Zhu et al. [30]
Rolling horizon

optimization

Considers only dynamic
energy; host utilization

100%

Wu et al. [52]
Minimum and maximum
frequency for tasks and

servers

No proper construct for
energy consumption;
Number of VMs in a

host determines the SLA

Lee and Zomaya in [45]
Maximizes resource

utilization to save energy

No task order; Schedules
immediately as a task

arrives

Xiao et al. [86]
Threshold on utilization;

load prediction

No justification on
Threshold values;

Difficult if application
dependent

Farahnakian et al. [94]
Bi-directional bin

packing using CPU and
memory

Migration cost is
calculated based on VM
memory only; No clear
mapping for tasks to

VM

Ye et al. [88]

Co-location effect of
different types of

workloads; Migration
count

Studied only four types
of applications;

Performance depends on
target conslidation

scenario

Mastroianni et al. [85]
VM consolidation

considering CPU and
RAM

Only VM to host
allocation; No task

characteristics

Cao et al. [103]
DVFS with four different

modes for servers

Do not consider the
deadline constraints of
the tasks or workflow

Pietri et al. [101]

Two approaches for
scientific workflow:

budget-constrained and
deadline-constrained

Homogeneous hosts;
Migration is not

considered

Bousselmi et al. [28]
Network energy

consumption

No deadline is
considered; Not suitable

for online data

Xu et al. [41]
Homogeneous VMs on
heterogeneous hosts

Static partitioning of
tasks; Migration not

considered

Table 2.1: Some major works in the area of energy-efficient scheduling in cloud
computing environment

Chapter 3

Scheduling Online Real-Time

Tasks on LMTMPS

This chapter first presents an energy-efficient scheduling policy for executing a

set of online independent real-time tasks on a large computing system where the

processors are empowered with the multi-threaded facility. We term this kind of

computing systems as Large Multi-threaded Multiprocessor Systems (LMTMPS).

Further, the chapter presents three variations of the basic scheduling policy to

efficiently handle some special cases. The proposed scheduling policies consider

a thread-based power consumption model which is devised based on the power

consumption pattern of some of the recent commercial processors.

3.1 Introduction

Nowadays, various scientific and real-time applications of different domains such

as avionics, bioinformatics, signal processing, image processing, etc. are being

deployed in the large systems, for their efficient execution [24, 27]. These ap-

plications typically consist of hundreds of compute-intensive, data-intensive and

communication intensive tasks. Thus a significant amount of resource is required

to execute these applications. On the other hand, the compute systems of today’s

world is equipped with a large number of processors and these processors are em-

powered with the multi-threaded feature. Thus the processing capability of these

systems is sufficient enough to handle these high-end applications. But with an

increase in the processing capability, the energy consumption of these large sys-

tems is also increasing. This growing energy consumption has sought the attention

31

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 32

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

in
 W

at
ts

)

Number of active threads

Phenom II X6
Intel i7-860

Qualcom HexaV3
Phenom 9900

Core 2 Quad Q9450
Core 2 Quad Q6600

Figure 3.1: Power consumption plot of a few recent commercial processors
with number of active threads [2, 3]

Power Consumption (in Watts)

#Active-threads→ 1 2 3 4 5 6 8
Processor ↓

Phenom-II-X6 40 58 73 88 103 115 -

Intel i7-860 165 174 186 193 204 212 228

Qualcom Hexa V3 40 55 60 72 82 90 -

AMD-Phenom-9900 76 95 114 131 - - -

Core-2-Quad Q9450 28 41 53 58 - - -

Core-2-Quad Q6600 48 62 72 79 - - -

Table 3.1: Power consumption behaviour of commercial processors [2, 3]

of the research community of to a great extent. As a result, a good number of

scheduling algorithms for reducing the energy consumption of such large systems

are proposed [53, 76, 50, 70, 71, 55]. Majority of these research consider power

consumption at a finer granularity and use the DFVS technique to reduce the en-

ergy consumption. For instance, Hotta et al. [70] split the program execution into

multiple regions and each region is executed using an optimal frequency for that

region. Ge et al. [50] considered a distributed DVFS environment to reduce the

energy consumption of the cluster. But none of these energy-efficient scheduling

approaches for the large systems sufficiently consider scheduling of the real-time

tasks in their work. In this chapter, we consider scheduling of online real-time

tasks for a large multi-threaded multiprocessor system and consider the power

construct at a coarser granularity.

Figure 3.1 shows a plot of the power consumption of a few recent multiproces-

sors (multi-threaded processors) versus the number of running hardware threads

(HTs) in them. We see that the power consumption values follow an interesting

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 33

pattern. Whenever a processor gets switched on and executes a task using one

HT (processor with one active thread), it consumes a significant amount of power.

After that addition of subsequent active thread, the additional power consump-

tion of processor due to the additional thread is small. So power consumption

of already switched on processor due to the addition of an active thread is incre-

mental. For example, Qualcom Hexa V3 consumes 40 watts with 1 active thread

(power consumption values are also listed in Table 3.1). When it runs its 2nd

thread, it consumes 55 watts. The difference 15 watts (= 55 − 40) is the power

consumption for the 2nd thread. Similarly, on activation of subsequent threads, the

processor consumes additional 5 watts (= 60−55), 12 watts (= 72−60), 10 watts

(= 82 − 72) and 8 watts (= 90 − 82) respectively. A similar power consumption

pattern is observed in case of Intel Xeon Gold processors [105]. For instance, for a

given workload, Xeon Gold 6138 processor with 20 cores consumes 60 watt when

it starts execution with 1 core. Then the power consumption increases linearly

with active core count until it reaches 107 watt for 10 cores. Further, the power

consumption increases and reaches 127 for active core count of 20. Following this

interesting power consumption characteristics of a few commercial multiprocessors

(multi-threaded processors), we devise a simple but elegant power consumption

model both for the single processor and for the whole compute system. The exist-

ing scheduling algorithms for the real-time tasks do not consider this interesting

power consumption behavior of the processors.

The contributions of this chapter can be summarized as follows.

• We derive a simple but elegant power consumption model for the proces-

sors following the power consumption characteristics of some of the recent

multiprocessors (multi-threaded processors) and used this model to measure

the processor power consumption while scheduling a set of online real-time

tasks.

• We propose four energy-efficient real-time scheduling policies, named (a)

smart scheduling policy, (b) smart - early dispatch scheduling policy, (c)

smart - reserve scheduling policy and (d) smart - handling immediate ur-

gency scheduling policy to reduce the total energy consumption of the system

without missing deadline of any task.

• As the execution time and deadline of tasks play a significant role in schedul-

ing, we consider six different execution time schemes and five different dead-

line schemes for the tasks in our work.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 34

HT

HT

HT

.....

.....

.....

.....

.....

0

1

r

HT

HT

HT

.....

.....

.....

.....

.....

0

1

r

P0

HT

HT

HT

.....

.....

.....

.....

.....

0

1

r

P1 P2

Scheduler

Task
Incoming

Tasks

HT

HT

HT

.....

.....

.....

.....

.....

0

1

r

.....

P
M

Figure 3.2: Online scheduling of real-time tasks on LMTMPS

• We examine the instantaneous power consumption for different scheduling

policies and then compare the overall energy consumption of our proposed

policies with five different baseline scheduling policies for both real-world

trace data and synthetic data covering a wide range of variations.

3.2 System Model

Our considered system can be represented by Figure 3.2. The system mainly

has two parts: the task scheduler and the processing block. Task scheduler ac-

cepts a set of aperiodic real-time tasks which are to be scheduled on the chunk

of processors in an energy-efficient manner. The processing block consists of M

homogeneous processors (P0, P1, ..., PM) where M is sufficiently large. All the

processors are multi-threaded processors, and each processor can support r hard-

ware threads (HTs). Considering such large number of processors is justified be-

cause the modern day’s systems (e.g., cloud system) can provide virtually infinite

computing resources to their users [106, 107]. In this work, we assume power con-

sumption model at higher granularity level and ignore the DVFS capability of the

processors even if the DVFS facility is available to all the processors because the

DVFS approach alone may not be suitable to handle the energy-efficiency of the

large systems. We use HT and virtual processor interchangeably throughout this

chapter.

We assume that all the tasks are uni-processor tasks that is, they require only

one HT for their execution. We also assume that one virtual processor (HT) of

a processor executes only one task at a time and utilizes 100% of the compute

power of that virtual processor throughout the task execution. Once all the HTs

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 35

of a processor is filled with tasks, a new processor is switched on if required. If an

HT of any processor becomes free in between, a new task is allocated to that HT

or an existing task may be migrated to this processor based on the situation.

As already mentioned in Section 3.1 of the chapter, we have analyzed the power

consumption pattern of a few commercial multi-threaded processors and found

that the total power consumption (TPC) of the processors increases with the

increase in the number of active threads. Furthermore, all the processors consume

a large amount of power whenever they start operation. This large amount of

power consumption is referred as base power consumption (BPC) of the processor

in our model. Then with an increase in one active HT, the power consumption also

increases by some margin. This is termed per thread power consumption and the

value of the same is much smaller as compared to BPC. Thus the processor power

consumption of such large multi-threaded multiprocessor systems (LMTMPS) can

be expressed using Equations 3.1 and 3.2.

Power consumption of a single multi-threaded processor can be expressed as:

Ps = PBase + i.δ (3.1)

where Ps is power consumption of the processor, PBase is base (or idle) power

consumption of that processor, i is number of HTs which are in running state

(active) and δ = per thread power consumption. In general value of δ is much

smaller as compared to PBase. Typically PBase is 5 to 10 times greater than δ [2, 3].

And, the power consumption for the complete system can be modeled as:

PLMTMPS = L.(PBase + r.δ) + (PBase + i.δ) (3.2)

where PLMTMPS is the total power consumption of the system, L is the number

of fully utilized active processors, and r is the number of HTs in a processor.

A fully utilized processor consumes (PBase + rδ) amount of power as all the r HTs

remains active there. Thus L.(PBase+rδ) is the power consumption of all the fully

utilized active processors and PBase + iδ represents the power consumption of one

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 36

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

in
 W

at
ts

)

Number of active HTs in the system

Figure 3.3: Power consumption of LMTMPS (when values of PBase = 100, δ =
10 and r = 8)

partially filled processor where i number of HTs are active in that. In case there is

no processor is partially filled in the system, the value of PBase + iδ is 0. Here, we

assume that the scheduler has a task consolidation agent which regularly migrates

tasks from an active host to another so as to consolidate tasks into a fewer number

of processors (hosts); and this is done such that at the end of the consolidation

process, at most one processor remains partially filled. All other remaining active

processors become fully utilized. Processors without an active HTs are switched

off. In this process, neighboring processors are chosen so as to reduce the power

wastage due to distribution.

3.3 Power Consumption Model

Figure 3.3 shows an example cased for the power consumption behavior of our

considered system. In this example case, the processor BPC is taken as 100 Watts.

That is whenever a processor is started, it consumes 100 Watts of power. On

activation of each thread, additional 10 Watts of power is consumed by the system;

which is the thread power consumption δ. We have considered every processor

can accommodate a maximum of 8 HTs. We observe from the graph that power

consumption value increases significantly with a sharp jump when active thread

number (also called virtual processor) reaches 1, 9 and 17. When the system runs

8 threads, the power consumption of the processor becomes 180 (=100 + 8 × 10)

Watts. When the active thread count reaches 9, the power consumption value

increases by 110 Watts and the total system power consumption becomes 290

(= 180 + 110) Watts.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 37

Thus in our considered system, the total processor power consumption value is

not proportional to the number of active HTs (or utilization) of the processor.

But most of the earlier research considers them to be proportional specially, in

case of scheduling real-time tasks. A similar type of power consumption model

was used by Gao et al. [108] where they considered the power consumption of a

virtualized data center as a function of the server utilization. Lee et al. [45] also

used another similar energy model where the energy consumption of a processor

was expressed as a function of its utilization. But in our case, we consider the

power consumption of a processor with respect to its number of active HTs. In

addition, we consider the BPC of processors, which is the static component of the

processor power consumption.

3.4 Task Model: Synthetic Data Sets and Real-

World Traces

In this work, we consider scheduling of a set of online aperiodic independent real-

time tasks, T = {t1, t2, t3 . . . } onto a large multi-threaded multiprocessor system.

Each task ti is represented by three-tuple ti(ai, ei, di) where ai is the arrival time,

ei is the execution time (or computation time) and di is the deadline of the task.

For all ti, di ≥ (ai + ei). All the tasks are assumed to be sequential and uni-

processor that is, a task is executed by only one HT (virtual processor) and utilize

100% of the compute power of the virtual processors throughout their execution.

We consider scheduling of both synthetic real-time tasks and real-world trace data

which are described in the following subsections.

3.4.1 Synthetic tasks

As already explained in the previous subsection, we consider three parameters

of a task: arrival time, execution time, and deadline. In the synthetic data set,

we assume that aperiodic independent real-time tasks are entering to the system

following Gaussian distribution. That is, the inter-arrival pattern of the tasks

follow the Gaussian distribution. For the execution time and deadline, we consider

various schemes. We describe these in the following subsections.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 38

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

R
e

la
ti

v
e

 D
e

a
d

li
n

e
 o

f
T

a
s

k
s

Task Number

(a) Gaussianly distributed (µ = 10 and σ = 5)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 100 200 300 400 500 600 700 800 900 1000

R
e

la
ti

v
e

 D
e

a
d

li
n

e
 o

f
T

a
s

k
s

Task Number

(b) Increasing (k = 3)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 100 200 300 400 500 600 700 800 900 1000

R
e

la
ti

v
e

 D
e

a
d

li
n

e
 o

f
T

a
s

k
s

Task Number

(c) Decreasing (k = 3)

 10100

 10150

 10200

 10250

 10300

 10350

 0 100 200 300 400 500 600 700 800 900 1000

A
b

s
o

lu
te

 D
e

a
d

li
n

e
 o

f
T

a
s

k
s

Task Number

(d) Common

Figure 3.4: Different deadline schemes with µ = 10 and σ = 5

3.4.1.1 Execution time variation

As the execution (or computation) time of tasks is a key factor in scheduling and

it has a significant impact on the performance of the system [109, 110], we have

considered a wide variety of task execution time with different distributions in

order to establish the effectiveness of our work. Here we have considered four

different distributions: Random, Gaussian, Poisson and Gamma. In random

distribution, the execution time ei of a task ti is randomly distributed between

1 to Rmax, where Rmax is a user-defined value. In addition, we consider two

simple distributions where execution time of tasks is expresses as a function of

task sequence number or time: INC(i) and DEC(i). In INC(i), execution time

of tasks increases with task number. INC(i) is taken as k.i, i ∈ {1, 2, . . . , N}.
Similarly, inDEC(i), execution time of tasks decreases with task number. DEC(i)

is taken as k.(N + 1− i), i ∈ {1, 2, . . . , N}.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 39

3.4.1.2 Deadline variation

Performance of various real-time applications also depends on their deadline val-

ues. Thus in addition to the variations of execution time, we have considered five

different variations in the deadline of tasks. The slack of a task mainly determines

the variation in deadline scheme. For a task ti (ai, ei, di), the value of di− (ai + ei)

is called slack time (SLK) of the task. This slack time can be a function of time,

a function of task sequence number, a function of some external parameters or

a constant. Different deadline schemes considered based on the variation of the

slack time of tasks are stated below.

1. Deadline Scheme 1 (Deadlines are assigned based on the randomly

distributed slack)

In this scheme, the slack time for the tasks is randomly distributed. Deadline

of a task ti arriving at time ai is di = ai + ei + z; where z is slack time and

the value of z is random number varies in the range 0 to Zmax. Tasks under

this deadline scheme have similar relative deadlines. Relative deadline of a

task is the absolute deadline of the task minus its arrival time.

2. Deadline Scheme 2 (Deadlines are assigned based on the Gaussian

distribution of slack)

Under this scheme, the slack time of tasks varies as per Gaussian distribution.

The deadline of a task is expressed as: di = ai + ei + g(µ, σ); where the

function g(µ, σ) is follows discretized Gaussian distribution with parameter

µ and σ as mean and variance respectively. Figure 3.4(a) shows an example

plot of relatives deadline of tasks verses task number with µ = 10 and σ = 5.

3. Deadline Scheme 3 (Deadlines are assigned based on increasing

slack)

This scheme says that the relative deadline of tasks is tight initially and

with an increase in time (or task sequence number of tasks), the deadline

becomes relaxed. The tight deadline means that the slack time of a task

is comparatively less and relaxed deadline means that the slack time of a

task is comparatively more. In this Scheme 3, deadline of the task di is

represented as di = ai + ei + INC(i); where i is sequence of task and the

value of function INC(i) is increase as i increase, i ∈ {1, 2, . . . , N}, and N

is number of tasks. Figure 3.4(b) represents an example plot of the relative

deadline of tasks versus task number. We have taken INC(i) = k · i with

k = 3 for the example.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 40

4. Deadline Scheme 4 (Deadlines are assigned based on decreasing

slack)

This is the opposite to last scheme. Here the relative deadline of tasks

are relaxed initially and with increase in time (or task sequence number of

tasks), the deadline becomes tight. Mathematically, it can be represented as

di = ai + ei + DEC(i); where i is sequence of task ti, the value of function

DEC(i) decreases as i increase, i ∈ {1, 2, . . . , N}, and N is number of tasks.

Figure 3.4(c) demonstrates this scheme. We have taken DEC(i) = k ·(N−i)
with k = 3 for the example.

5. Deadline Scheme 5 (Common deadline for all the tasks)

This a special kind of scheme which is popular as common due date problems

in literature [8]. Here the absolute deadlines of all the tasks are the same.

Mathematically, this can be expressed as di = D; where D is the common

deadline for all the tasks and D ≥ max{ai + ei}. Figure 3.4(d) represents

an example plot of the absolute deadline of tasks versus task number to

represent this scheme where the deadlines for all the tasks are taken as

10205 time unit.

3.4.2 Real-world traces

In addition to synthetic real-time tasks with many variations (as described in

the previous subsection), we have also considered four different real workload

traces: MetaCentrum-1, CERIT-SC, Zewura and MetaCentrum-2 in our work

[111]. These traces contain the job attributes of a few clusters which were gen-

erated from PBSpro and TORQUE traces at various times. CERIT-SC workload

trace consists of 17, 900 jobs collected during the first 3 months of the year 2013.

MetaCentrum-1 workload trace has job descriptions of 495, 299 jobs which are col-

lected during the months of January to June of the year 2013. Zewura workload

trace contains 17, 256 jobs of 80 CPU clusters which are collected during the first

five months of the year 2012. MetaCentrum-2 workload trace consists of 103, 656

jobs descriptions of 14 clusters containing 806 CPUs which are collected during

the first five months of the year 2009. The logs also contain several other useful

information such as node descriptions, queue descriptions, machine descriptions,

etc.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 41

3.5 Objective in the Chapter

In this chapter, we wish to design energy-efficient scheduling policies for online ape-

riodic independent tasks onto large multiprocessor systems (with multi-threaded

processors) such that all the tasks meet their deadline constraints. Here we assume

the system with a sufficiently large number of processors i.e. that the computing

capability of the system is very high. In general, the large systems consume a

considerable amount of power. There is a static component in the power con-

sumption of the large system, and the total power consumption (TPC) of such

systems depends hugely on the number of active processors. Furthermore, in a

multi-threaded processor, the power consumption is depended on the number of

the active threads of the processor and static power consumption (i.e., BPC).

Thus the power consumption in such multi-threaded multiprocessor systems un-

der the considered model is non-proportional to resource utilization of the system

(resource utilization of the system can also be expressed as the total number of

active threads). In this work, we have used this power consumption behavior to

minimize the total energy consumption (TEC) of the system.

3.6 Standard Task Scheduling Policies

In this section, we present three standard task scheduling policies, namely, utiliza-

tion based scheduling policy, front work consolidation and rear work consolidation.

We also state the standard earliest deadline first policy and describe the state of

art task scheduling policy, namely, utilization based work consolidation policy in

details.

3.6.1 Utilization based allocation policy (UBA)

In this policy, the utilization value of a task is used as a determining parameter

for its allocation. Utilization of a task is the required amount of processor’s share

to execute the task such that the task is finished exactly at its deadline (in a

uni-processor environment). Utilization ui of task ti can be defined as.

ui =
ei

di − ai
(3.3)

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 42

where, ei is the execution time, di is deadline and ai is the arrival time of the task

ti.

As the tasks enter the system, they are assigned the required (ui) portions of the

processor’s share for their executions. For a task in LMTMPS, it requires the ui

amount of processor’s share throughout its execution time from ai to d− 1. This

policy assumes that an infinite number of migrations and preemptions are allowed

for the tasks. Virtually, a task ti start execution in the system from its arrival

time ai to its deadline di but with the least processor share ui. The start time

(si) and finish time (fi) of a task ti is given by Equation 3.4.

si = ai; fi = di (3.4)

At any instant of time t, the total number of virtual processors required to execute

all the tasks and to meet their deadlines can be defined as the summation of

utilization values of all the tasks present in the system. It can be written as

PNt =

⌈
Nactive tasks∑

i= 0

ui

⌉
(3.5)

where, PNt is number of virtual processors required andNactive tasks is total number

of tasks currently running in the system (or the number of tasks for which ai ≤
t ≤ di).

This policy provides the minimum processor share (i.e. utilization) required for a

task for all the time instants from the arrival time till the deadline of that task.

Thus the execution of a task ti spreads for the whole duration with minimum

processor requirement ui at every time instant between ai and di. It aims to

reduce the instantaneous power consumption of the processor by allocating the

minimum amount of processor share. This policy is mainly of theoretical interest

as the premise in this scheduling policy is that the value of PNt gets calculated

continuously and the way PNt is calculated, the system requires virtually huge

number of migrations to perform scheduling in an actual scenario.

Theorem 3.1. Total energy consumption of the system with UBA is minimum if

the followings hold

• Processor (system) instantaneous power consumption PCt is proportional to

instantaneous processor (system) utilization, and that is PCt ∝ PNt.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 43

time0 1 2 3 4 5 6 7 8 9 10 11 12

a1 a3a2

T1(0,4,8) T2(1,2,4) T3(4,6,12)

time0 1 2 3 4 5 6 7 8 9 10 11 12

.66 .66 .66u2

u3 .75 .75.75 .75 .75 .75 .75 .75

T1

T2

T3 X X

u 1 12 2 1 1 1 1 1 1 0 0
time0 1 2 3 4 5 6 7 9 10 11 128

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5u1

u1

u3
u2

d2 d1 d3

Figure 3.5: Illustration of front work consolidation of real-time tasks

• All the processors are single threaded and all tasks are sequential.

• Unrestricted number of migrations and preemptions are allowed for all the

tasks without any cost.

• Number of processors in the system is sufficiently large (we can assume it to

be ∞)

Proof. Total energy consumption of the system can be represented as

E =

∫ ∞
t=0

PCt.dt = K.

∞∑
t=0

PNt (3.6)

where K is proportionality constant.

The total amount of utilizations (from all the tasks) at the time instant t is PNt

and thus
∑∞

t=0 PNt is the total amount of utilizations in the system for the entire

duration of the tasks execution. This total amount of utilizations does not depend

on the tasks execution order. Thus any scheduler yields minimum this amount of

utilizations. Hence, the energy consumption happens to be minimum.

3.6.2 Front work consolidation (FWC)

In this policy, the execution of tasks is brought towards the front of the time

axis. As soon as a task arrives, it is allocated to an HT of a processor so that

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 44

the execution of the task starts immediately. Here, start time (si) and finish time

(fi) of a task ti is given by Equation 3.7. Since the execution of a task begins as

soon as it reaches the system, the policy can also be called as as-soon-as-possible

(ASAP) policy. This kind of immediate allocation is feasible because we con-

sidered the system with sufficiently large number compute resource (processors).

This scheduling policy turns out to be non-preemptive and non-migrative (do not

require migration of tasks).

si = ai; fi = ai + ei (3.7)

To describe the front work consolidation (FWC) policy, let us consider an example

with three tasks t1(a1 = 0, c1 = 4, d1 = 8), t2(1, 2, 4) and t3(4, 6, 12) as shown in

Figure 3.5. We can calculate utilization of task t1 (u1=0.5) between time 0 and 8,

utilization of task t2 (u2 =0.667) between time 1 and 4, and utilization of task t3

(u3=0.75) between time 4 and 12. If we schedule these tasks based on utilization

then at least one task will be in execution between time 0 to 12 and it is shown

in the middle part of Figure 3.5. In front consolidation, we try to consolidate

(i.e. summing up) all the utilization values towards the beginning of time axis and

thus for all the tasks, utilization values get consolidated towards the arrival time

of tasks. As we assume that the tasks are sequential and they can be executed

on one processor at a time, consolidated utilization of one task ti in any time slot

cannot exceed ui · di − aiei
. Consolidated utilization indicates the total amount of

work to be done for a task with a particular utilization value. If the consolidated

utilization exceeds this limit then it needs to be put into next time slot and the

process is continued until there is no work left. In the above case, for task t1, the

total consolidated utilization becomes u1 · (di − ai)=0.5 · 8=4, so it needs to be

spread into four slots with consolidated utilizations u1 · d1 − a1ei
=0.5 · (8 − 0)/4=1

in all the time slots from 1 to 4. Executing the example tasks set using this FWC

policy, there will be no work in time slot 11 and 12. If there is no work, there is no

power consumption (static power). This reduces the overall energy of the system.

Lemma 3.2. If all the conditions of Theorem 3.1 hold then the total energy con-

sumption of the system with front consolidation scheduling is minimum

Proof. In front consolidation scheduling policy, the policy consolidates the task

execution or utilization to the front and it does not increase the total system

utilization. As the amount of work needed to execute in both cases is the same

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 45

and instantaneous power consumption of the system is proportional to utilization,

this policy also consumes minimum energy.

If the instantaneous power consumption of the system is not-proportional to

instantaneous system utilization then the above lemma is not true and in case

of the multi-threaded processor, they are not proportional. Thus the Lemma 3.2

does not hold for the multi-threaded multiprocessor system.

3.6.3 Rear work consolidation (RWC)

This task scheduling policy is similar to the previous but here the tasks are con-

solidated towards their deadlines. All the tasks get accumulated and added to the

waiting queue as soon as they arrive. A task lies in the waiting queue as long as its

deadline constraint allow it to wait. Then the execution begins at their respective

urgent points only. Urgent point is the time at which if the task starts its execution

and runs without any interruption, it will be completed exactly at its deadline.

This policy can be called as Delayed Scheduling Policy. since the execution of a

task is delayed until the system time reaches its urgent points. This is also known

as as-late- as-possible (ALAP) [112, 113]. Since the considered system is assumed

to have sufficiently large number compute capacity, tasks can be scheduled under

this policy without missing their deadlines. Start time (si) and finish time (fi) of

a task ti is given by Equation 3.8.

si = di − ei; fi = di (3.8)

Lemma 3.3. If all the conditions of Theorem 3.1 hold then the overall system

energy consumption with rear work consolidation scheduling is minimum.

Proof. In rear consolidation scheduling, the policy consolidates the task execution

or utilization to the rear end of the task deadline and it does not increase the total

system utilization. As the amount of work needed to execute in both UBA and

RWC are same and instantaneous power consumption of the system is proportional

to utilization, this also consumes minimum energy.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 46

3.6.4 Utilization based work consolidation (UBWC)

Here the scheduler intends to keep the active processor count minimum. The

execution time of the tasks are divided into unit length and they are distributed

across the time axis such that no task miss their deadlines and the total number of

active processors remain minimum [114, 56, 115, 116]. Processor count increases

when the total utilization exceeds a whole number. For a processor with r HT,

we can safely assume that when a unit execution time of a task get scheduled at

any time slot, the utilization of that slot increases by 1
r
. For a processor with

single HT, UBWC policy will consume an equal amount of energy as previously

discussed policies: UBA, FWC, and RWC. But multi-threaded processor systems,

the policy reduces the energy consumption significantly. This is because the task

execution is serial and in every time instant the policy aims to keep the processor

count minimum and minimum processor count implies the minimum amount of

static energy consumption which is a significant portion.

Every incoming task to the system has arrival time ai, deadline di and execu-

tion time ei. When a task ti arrives at system at ai, there may be some tasks

already present in the system and their remaining part of execution must have

been scheduled between ai and max{dj}, where dj is the deadline of the task tj

currently present in the system except ti. For systems with enough number of

multi-threaded processors having r threads per processor, the UBWC scheduler

inserts ei · 1
r

units of computation between ai and di with preference to early slots,

so that it minimizes the number of running processors in every time slot between

ai and dj. This minimization criteria for UBWC can be written as

min

{
dj∑
t=ai

⌈
number of task scheduled at time t

r

⌉}
(3.9)

where r is the number of HTs per processor. In general, if we switch-on a new

processor it consumes a significantly high amount of energy as compared to ex-

ecuting on an HT (virtual processor) of an already switched-on processor. This

scheduling policy requires preemption and migration of the tasks; but the number

of preemptions and number of migrations for a task ti is bounded by ei − 1 if we

assume the time axis is discretized in the unit time slot.

Lemma 3.4. For systems with an infinite single-threaded processor (r = 1), if

all the conditions of Theorem 3.1 hold then the total energy consumption of the

system with utilization based consolidation scheduling is minimum.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 47

Proof. The amount of work in UBWC remains same as that of UBA. When the

instantaneous power consumption of the system is proportional to the processor

utilization, it consumes the same amount of energy as UBA and thus the energy

consumption is minimum.

3.6.5 Earliest deadline first scheduling policy (EDF)

Earliest deadline first (EDF) is a well-known scheduling policy where tasks are

considered depending on their deadlines. The task with the earliest (i.e., closest)

deadline value is selected for execution first [117]. The scheduling policy considers

all the waiting tasks and the one with minimum deadline value is taken for exe-

cution. EDF policy requires a fixed number of processors for its execution. In our

work, we consider the non-preemptive version of EDF with a minimum processor

count so that no task misses its deadline. The start time of task ti and finish time

of the same task follow the inequalities 3.10 and 3.11.

ai <= si <= (di − ei) (3.10)

(ai + ei) <= fi <= di (3.11)

3.7 Proposed Task Scheduling Policies

Here we present four energy-efficient task scheduling policies to run a set of online

aperiodic independent real-time tasks on the large multi-threaded multiprocessor

system. The system follows the power consumption model which was described in

Section 3.2. The power model assumes non-proportionality between the instanta-

neous power consumption and instantaneous system utilization. Execution of the

tasks in all the policies is almost continuous (ignoring time for migration), that is

ei = (fi − si), where ei, si, and fi are the execution time, start time and finish

time of a task ti respectively. Based on our experimental evidence, task execu-

tion with our designed scheduling policies consume less amount of overall energy

on LMTMPS as compared to UBWC and other policies (experimental validation

is given in Section 3.8), even if all the tasks execute continuously. These task

scheduling policies are described in the following subsections.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 48

3.7.1 Smart scheduling policy (Smart)

We have designed a task scheduling policy for online real-time tasks called smart

scheduling policy for the large multi-threaded multiprocessor system. This schedul-

ing policy focuses an important parameter that is time. Typically scheduling poli-

cies focus on selecting a task from a set of tasks (which factor) for execution to a

machine from a set of machines (where factor) whenever the machine is available

for execution. But our proposed scheduling policy also considers the instant of

time when a task to be dispatched (when factor) for execution even if machines

are available for execution. Depending on the system state, the policy handles this

when factor in a smart way such that the overall energy consumption is minimized.

The policy is based on two main ideas: (i) to keep the number of active hosts as

low as possible, (ii) to maximize the utilization of all the active hosts.

The proposed smart scheduling policy can be explained using the Algorithm 1.

This is an online scheduling policy and the policy runs in case of the occurrence

of an event. The events can be (i) the arrival of a task, (ii) the completion of a

task, (iii) occurrence of the urgent point of any task. The policy first runs through

the waiting queue and finds if there are any urgent tasks (line number 5 in the

pseudo code). An urgent task is a task whose execution must start immediately

to avoid deadline miss. Whenever the execution time (ei) of a task ti is equal

to the difference between the deadline (di) and current time, it becomes urgent

(line number 3 of Procedure find UrgentTask()). The policy then schedules all

the urgent tasks either to the free threads of the running processor (if available)

or to threads of the newly switched-on processor. After scheduling the urgent

tasks of the system, the policy considers if there are any free HTs available in the

active processor list. These processors are termed as partially filled processors. If

available, then the policy selects waiting tasks from the queue and schedules on

them. For simplicity, in this scheduling technique, tasks were selected in first come

first serve (FCFS) basis. This policy was then improved and tasks were selected

based on their deadline values which is described in Subsection 3.7.4.

The smart scheduling policy can be described using Figure 3.6. The Figure shows

the power consumption versus the number of active threads (active threads is

also called active virtual processor) similar to Figure 3.3. As already explained in

Section 3.3, the system power consumption value makes a sharp jump whenever

the number of active HTs reaches a certain value. This observation motivated us

to introduce two points: (i) wait and (ii) go. The focus of the scheduling policy

to hold the system in wait state. But the deadline for the tasks might not permit

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 49

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 (

in
 W

a
tt

s
)

Number of virtual processor running

Power consumption vs virtual processor

Filling Fast Region

go
wait

Figure 3.6: With extra annotated information to Figure 3.3 to explain the
smart scheduling policy (C = 100, δ = 10 and r = 8)

Algorithm 1 Smart scheduling policy
1: t ← currentT ime;
2: while an event occurs do
3: if a task arrives, add the new task to WaitingQueue.
4: while ti = find UrgentTask() is not NULL do
5: if free HT exists in any one of the active processor then
6: allocate ti to a free HT
7: else
8: Switch on a new processor and initiate a HT on it.
9: Allocate ti to the HT.

10: si ← t; fj ← t+ ei
11: Remove ti from the WaitingQueue

12: while there is free HTs in any processor do
13: Choose a task tj from WaitingQueue based on the some policy
14: Assign the tj to a free HT of that processor.
15: sj ← t; fj ← t+ ej;
16: Remove tj from the WaitingQueue

1: procedure find UrgentTask()
2: for each task ti in Waiting Queue do
3: if di = ei + currentT ime then
4: return ti
5: end for
6: return NULL
7: end procedure

the system to wait at this point for a long time. Once the system is required to

move to go point, the scheduling policy enters into a hurry mode. Here the policy

looks for the tasks in the waiting queue. If tasks are available, they are scheduled.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 50

This task dispatch process is continued until the system reaches the next wait

point. This is indicated by Filling Fast region in the Figure. The significance

of the wait point is that all the active processors are utilized fully. Smart is an

online scheduling policy and it takes scheduling decision dynamically at runtime.

Even if the actual execution time of a task is not known beforehand and the actual

execution time of a task is mostly lesser than the specified worst-case execution

time (ei), the smart policy can handle this dynamic situation because the mapping

of tasks to the HTs of a processor is done irrespective to the execution time of the

tasks.

3.7.2 Smart scheduling policy with early dispatch (Smart-

ED)

In smart scheduling policy, initially, all the arrived tasks wait in the waiting queue

until the time instant when further waiting will result in a deadline miss. At this

time instant, at least one task becomes urgent. We name this time instant as

urgent point. If the urgent points for many tasks (>> r) get accumulated to one

time instant, then we need to switch on many processors and it will create a high

jump in the instantaneous power consumption value. To handle such situation

we have modified our proposed smart scheduling policy and the modified policy

includes early dispatch along with the smart scheduling.

In smart scheduling with early dispatch policy, at any time instant, a new processor

is switched on if the number of waiting tasks ≥ r. After switching on the processor,

r number of tasks from the waiting queue is selected and are allocated to all the

threads of the newly switched-on processor. The selection can be done using any

policy. We have used EDF in our case. Using EDF, the schedule provides the

further advantage of delaying the occurrence of the next urgent point. It might

also avoid the occurrence of the urgent point itself. Here the tasks are dispatched

earlier than the urgent point.

Figure 3.8 shows an example of task scheduling system, where 10 tasks (with

ei = 4) arrived at the system on or before time 3 and the earliest deadline of the

tasks is at time 9. So the scheduler switches on a new processor (assuming each

processor has r = 8 HTs) and schedules execution of 8 tasks (based on EDF) on

to the system at time 3. Based on EDF, the selected and scheduled tasks at time

3 are t4, t1, t2, t3, t5, t10, t6, and t9 of HTs hwt0 to hwt7 of processor P0. In this

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 51

 0

 2000

 4000

 6000

 8000

 10000

 0 5000 10000 15000 20000 25000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(a) Smart Policy

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000 25000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(b) Smart-ED Policy

Figure 3.7: Instantaneous power consumption for common deadline scheme
with µ = 20, σ = 10

0 1 2 3 4 5 6 9 13 14

time

7 8 10 11 12

a1
a2
a3

a8
a4
a5
a6
a7

a9
a10

d2 d3 d9

d1 d5
d10
d6

d8

d7

d4

P0

T4 to hwt0
T1 to hwt1
T2 to hwt2
T3 to hwt3
T5 to hwt4
T10 to hwt5
T6 to hwt6
T9 to hwt7

Arriavals

Deadlines

EDF Selection

Early Dispatch at time=3

Figure 3.8: Smart scheduling policy with early dispatch (Smart-ED)

policy, at all the time instants, the scheduler selects the earliest deadline task and

schedules onto an already switched-on processor if any HT is free.

This policy also reduces the power consumption by fully utilizing the switched on

processors. This policy efficiently handles the common deadline scheme where the

sharp jump in the instantaneous power value near the urgent point is avoided.

Instead, the policy tries to distribute the power consumption value across the

timeline equally. Figure 3.7 shows the instantaneous power consumption for both

smart and smart-ED policy for the common deadline scheme. This figure clearly

depicts the difference between these two policies. Smart policy shows a huge jump

in the power consumption value from 0 to 12570 units at time 20155. On the other

hand, Smart-ED policy equally distributes the power consumption value across the

time slots. This policy is preferred over the smart policy when the system is not

capable of handling such high value of power consumption or a huge jump in the

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 52

value. Another benefit of this policy is that it reduces the waiting time for the

tasks.

3.7.3 Smart scheduling policy with reserve slots (Smart-

R)

This is a variation of the smart scheduling policy where a fraction of the processor

capacity is reserved for future urgent use. In the filling fast region (as described

in Figure 3.6), all the free HTs of the processor is not filled; rather a few threads

(called Reserve Factor) are kept free such that they can execute suddenly arriving

urgent tasks (for these tasks slack time (di − (ei + ai)) is almost zero). This

reduces the number of processors to be switched on (by compulsion) for servicing

the suddenly arriving urgent tasks. This, in turn, reduces the power consumption.

This policy will be highly beneficial for the applications where some critical tasks

(having a tight deadline) arrive in between regular tasks.

3.7.4 Smart scheduling policy with handling immediate

urgency (Smart-HIU)

In the baseline smart scheduling policy, when there is free HTs (represented by fast

filling region in Figure 3.6), the policy selects some tasks from the waiting queue

using FCFS in order to utilize the free HTs. But it might so happen that FCFS

method selects tasks whose deadlines are relatively far. The near deadline tasks

will eventually become urgent in near future. This urgency may force the system

to start a new processor. Again it is already discussed earlier that switching on a

processor by compulsion generally increases energy consumption and it is always

beneficial to avoid the compulsion scenario.

So in this modified smart scheduling policy (Smart- handling immediate urgency

scheduling policy), we select and execute the tasks whose deadlines are near. That

is tasks with the earliest deadline (immediate urgent) from the waiting queue is

selected to utilize the free HTs. This, in turn, results in forming a long time gap

between the current time and time of occurrence of the next urgent point. This

longtime gap allows the scheduler to avoid switching on a new processor and this

eventually reduces the instantaneous power consumption of the system.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 53

3.8 Experiment and Results

3.8.1 Experimental setup

A simulation environment is created to simulate large multi-threaded multiproces-

sor system for carrying out the experiments where maximum processor number,

the maximum number of threads for each processor, the base power consumption

of the processor, thread power consumption, etc. can be varied. The simulation

environment has an embedded task generator, which is capable of generating tasks

with different deadline schemes, different execution time schemes as discussed in

Section 3.4.1. Also, the simulation environment can take real-world trace datasets

as input. The created simulation environment produces a large variety of statis-

tics which includes the instantaneous power consumption of the system for all the

time slots (or instants) and the overall system power consumption. These output

parameters are captured for all the scheduling policies for different input parame-

ters. To the best our knowledge, the existing energy-efficient scheduling techniques

of real-time tasks in case of large compute systems are not directly comparable

to our work and thus we performed all the comparisons with the standard task

scheduling policies which were discussed in Section 3.6.

3.8.2 Parameter setup

3.8.2.1 Machine parameters

Research says that idle (or static) power consumption of a processor (or host)

is around 60% to 70% of the total power consumption (TPC) [45, 43]. In this

work, we have taken TPC of all the processors as 100 Watt and thus base power

consumption (BPC) becomes 70 Watt for each processor (i.e. 70% of 100). Each

processor can run at most r = 8 HTs and thread power consumption is taken as

δ = 3.75 Watt (= (100− 70)/8).

3.8.2.2 Task parameters

The task sets consists of both synthetic data and real-world trace which are de-

scribed in Section 3.4. The inter-arrival time between consecutive tasks in the

synthetic data follows a discrete Gaussian distribution. We used four pairs of (µ,

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 54

Computation scheme Parameter values

Random Rmax = 100

Gaussian µ = 100, σ = 20

Poisson µ = 100

Gamma α = 50, β = 10

Increasing k = 2

Decreasing k = 2

Table 3.2: Different experimental parameter values for execution time schemes

Deadline scheme Parameter values

Random Zmax = 1000

Gaussian µ = 10, σ = 5

Increasing k = 3

Decreasing k = 3

Common D = 10205

Table 3.3: Different experimental parameter values for deadline schemes

σ) values e.g. (10, 5), (20, 10), (30, 15) and (40, 20) for generating this arrival pat-

tern. Each experiment is conducted with 1000 number of tasks and results are

averaged over 10 such sets. As stated in Section 3.4.1, we have used four different

distributions and two functions for modeling the execution time of tasks. Values

of different parameters for these schemes are listed in Table 3.2. We have also used

five types of deadline schemes and parameter values for these schemes are listed

in Table 3.3.

3.8.2.3 Migration overhead

In a compute system, total migration overhead is determined by many factors,

which includes i) working set size, (ii) path of migration, (iii) migration frequency,

(iv) migration count etc. And the overhead is typically expressed in terms of i)

an increase in overall execution time, (ii) a degradation in overall performance of

the system (measured using loss in instructions per cycle or millions instructions

per second). Literature reported these overheads an average of 2 to 3 % per

migration and an average of 0.1% per context switch [90, 118, 119, 120]. Since

we are dealing with the energy consumption of the system, we have considered it

to be 2.5% and 0.1% of the per-thread power consumption for one migration and

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 55

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(a) FWC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(b) RWC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(c) UBA

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(d) Smart

Figure 3.9: Instantaneous power consumption verses time under Scheme2
(Gaussian) deadline scheme (µ = 40 and σ = 20, and execution scheme is

random)

one preemption respectively. Thus the total overhead increases with their count.

But these overhead were not included for the utilization based scheduling policy

as the policy is mainly of theoretical interest and suffers from an infinitely large

number of preemption and migration (already discussed in Section 3.6).

3.8.3 Instantaneous power consumption

The instantaneous power consumption of the system for different scheduling poli-

cies under deadline scheme 2 (execution scheme is random) is shown in Figure 3.9.

Similarly, Figure 3.10 shows the same for the random execution time scheme with

random deadline scheme. We observe that our proposed policy (Smart) shows an

attractive power consumption behavior as compared to others and we see many

gaps in the power consumption graph (Figures 3.9(d) and 3.10(d)). These gaps

indicate zero instantaneous power consumption value for that time instant. The

Figures also established the fact system does not consume any power until the

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 56

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000 25000 30000 35000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(a) FWC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000 25000 30000 35000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(b) RWC

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000 35000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(c) UBA

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000 30000 35000

In
s

ta
n

ta
n

e
o

u
s

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Time

(d) Smart

Figure 3.10: Instantaneous power consumption verses time for different
scheduling policies under random execution time scheme (µ = 30 and σ = 15),

and deadline scheme is random

first task becomes urgent and this is true for both smart scheduling policy and

rear workload consolidation policy. Thus they behave same for the initial period.

3.8.4 Results and discussions

Figure 3.11(a), 3.11(b), 3.11(c), 3.11(d), 3.11(e) and 3.11(f) show the overall en-

ergy consumption of 1000 aperiodic tasks (averaged over 10 such sets) which are ex-

ecuted on LMTMPS using various scheduling techniques for synthetic data under

(i) random distribution, (ii) Gaussian distribution, (iii) Poisson distribution, (iv)

Gamma distribution, (v) increasing, and (vi) decreasing execution time schemes

respectively. We observe that the proposed policies (smart, smart-ED, smart-R

and smart-HIU) perform better than all other baseline policies for all the execu-

tion time schemes. The results are reported considering deadline scheme 1 and

we observe similar behavior for the other four schemes. Similarly, Figure 3.12(a),

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 57

 0

 10

 20

 30

 40

 50

 60

 70

 80

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

FWC
RWC
UBA
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(a) Random distribution (Rmax = 100)

 0

 10

 20

 30

 40

 50

 60

 70

 80

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

FWC
RWC
UBA
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(b) Gaussian distribution (µ = 100, σ = 20)

 0

 10

 20

 30

 40

 50

 60

 70

 80

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

FWC
RWC
UBA
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(c) Poisson distribution (µ = 100)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
6
 u

n
it
s
)

Gaussian Parameters

FWC
RWC
UBA
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(d) Gamma distribution (α = 50, β = 10)

 10

 12

 14

 16

 18

 20

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
6
 u

n
it
s
)

Gaussian Parameters

FWC
RWC
UBA
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(e) Increasing (k = 2)

 10

 12

 14

 16

 18

 20

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
6
 u

n
it
s
)

Gaussian Parameters

FWC
RWC
UBA
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(f) Decreasing (k = 2)

Figure 3.11: Energy consumption for different scheduling policies under dif-
ferent execution time schemes with random deadline distribution

3.12(b), 3.12(c), 3.12(d) and 3.12(e) show the overall energy consumption of the

system under five different deadline schemes (considering random execution time

scheme). We can clearly observe that the energy consumption under our proposed

policies is significantly lesser than all other baseline policies for all kinds of task

models.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 58

 0

 10

 20

 30

 40

 50

 60

 70

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

UBA
FWC
RWC
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(a) Randomly distributed deadline

 0

 10

 20

 30

 40

 50

 60

 70

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

UBA
FWC
RWC
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(b) Gaussianly distributed deadline

 0

 10

 20

 30

 40

 50

 60

 70

 80

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

UBA
FWC
RWC
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(c) Increasing deadline

 0

 10

 20

 30

 40

 50

 60

 70

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

UBA
FWC
RWC
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(d) Decreasing deadline

 0

 10

 20

 30

 40

 50

 60

 70

 80

(10,5) (20,10) (30,15) (40,20)

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
5
 u

n
it
s
)

Gaussian Parameters

UBA
FWC
RWC
EDF

UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(e) Common deadline

 0

 5

 10

 15

 20

 25

 30

 35

 40

MetaCentrum-1 CERIT MetaCentrum-2 Zerua

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 (

in
 1

0
6
 u

n
it
s
)

Workload Traces

UBA
FWC
RWC

EDF
UBWC
Smart

Smart-R
Smart-ED

Smart-HIU

(f) Real data sets

Figure 3.12: Energy consumption in case of deadline centric synthetic data
and real data sets

The tasks arrive at the system in an online fashion and the inter-arrival time

between two consecutive tasks follows a Gaussian distribution. When the Gaussian

parameter (µ and σ) values are less, inter-arrival time of consecutive tasks is also

less. In such case, our proposed scheduling policy cannot fully utilize the idea

for saving energy. Thus the energy reduction with respect to other scheduling

policies is comparatively lesser. But with an increase in µ and σ values, the

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 59

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Random Gaussian Poisson Gamma Inc Dec

A
v

e
ra

g
e

 R
e

d
u

c
ti

o
n

 i
n

 E
C

 (
in

 %
)

Execution Time Schemes

UBA
FWC
RWC
EDF

UBWC

(a) Execution time schemes

 40

 50

 60

 70

 80

 90

Random Gaussian Increasing Decreasing Common

A
v
e

ra
g

e
 R

e
d

u
c
ti

o
n

 i
n

 E
C

 (
in

 %
)

Deadline Schemes

UBA
FWC
RWC
EDF

UBWC

(b) Deadline schemes

Figure 3.13: Average energy reduction of smart policy compared to baseline
policies for synthetic data

 25

 30

 35

 40

 45

 50

 55

 60

Smart Smart-R Smart-ED Smart-HIU

M
a

x
im

u
m

 R
e

d
u

c
ti

o
n

 i
n

 E
C

 (
in

 %
)

Allocation Schemes

UBA
FWC
RWC
EDF

UBCA

(a) Maximum

 20

 25

 30

 35

 40

 45

Smart Smart-R Smart-ED Smart-HIU

A
v
e

ra
g

e
 R

e
d

u
c
ti

o
n

 i
n

 E
C

 (
in

 %
)

Allocation Schemes

UBA
FWC
RWC
EDF

UBCA

(b) Average

Figure 3.14: Energy reduction of proposed policy as compared to baseline
policies for real-world trace data

time difference also increases. In such case, smart can take full benefit of it. As

the tasks become sparser, energy reduction in smart policy becomes more. The

experimental results also establish our claim that Smart-R and Smart-HIU can

further reduce the energy consumption of the system almost in all the cases. But

the total energy consumption for Smart-ED is same or little higher than Smart.

The motivation behind introducing Smart-ED policy was to avoid the sharp jump

in the power consumption value. As already explained in Section 3.7.2 with an

example, this policy distributes the power consumption value across the time axis.

Figure 3.13(a) shows the average (across Gaussian parameters) energy reduction

of our proposed scheduling technique with respect to the baseline policies for

different execution time schemes. The proposed technique achieves an energy

reduction of 37% (average) as compared to others. Similarly, Figure 3.13(b) shows

the average energy reduction of our proposed scheduling technique with respect

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 60

to the baseline policies for different deadline schemes. The proposed technique

achieves an energy reduction of 55% (average) as compared to others. Based

on this experimental result, we can firmly say that our proposed policies reduce

system energy consumption by a significant margin for the synthetic workload

with all the considered variations in execution time and the deadline of tasks.

3.8.5 Experiments with real workload traces

To establish the importance and effectiveness of our work, the experiments were

performed for real-world trace data. The experiments were performed for four

different workloads: MetaCentrum-1, CERIT-SC, MetaCentrum-2 and Zewura

data sets. CERIT-SC and Zewura contain job descriptions of 17900 jobs (same

as tasks) and 17256 jobs respectively. We have considered the execution of all the

jobs for both the CERIT-SC and Zewura workload traces. On the other hand,

MetaCentrum-1 and MetaCentrum-2 workload traces contains job descriptions of

495299 jobs and 103656 job respectively. Since it is relatively difficult to conduct

experiments with such large numbers, we have taken first 15000 jobs in our exper-

iments. Each record contains the job id (represented as task number in our work),

arrival time, execution time along with other information. Deadline of a task is

taken as arrival time + execution time + Rand Int; where Rand Int is a random

integer, varies in the range 0 to 1000.

Energy consumption for real-world trace data under different scheduling policies

is shown in Figure 3.12(f). It is seen that our proposed policies perform signifi-

cantly better than all other policies. Figures 3.14(a) shows the maximum energy

reduction of our proposed smart scheduling policies Smart, Smart-ED, Smart-R

and Smart-HIU with respect to the baseline policies for real workload traces. Our

proposed policies achieve maximum energy reduction up to 44% as compared to

all baseline policies. Similarly 3.14(b) shows the average energy reduction of our

proposed smart scheduling policies as compared others for real workload traces.

The proposed policies achieve energy reduction of 30% (average) as compared to

the baseline policies. Experimental results show that the energy reduction in case

of real workload trace is lesser (compared to synthetic data). This is because the

inter-arrival time among consecutive tasks in case of real-world trace data is lesser

(similar to the case with low µ and σ values) and the smart policy cannot take

the benefit by switching the processors off for a longer time.

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 61

Scheduling policies → UBA FWC RWC UBWC EDF Smart Smart-ED Smart-R Smart-HIU

Data sets ↓ (µ, σ)

Random ES

(10,5) ∞ 0 0 442 0 0 0 0 0

(20,10) ∞ 0 0 810 0 0 2 2 4

(30,15) ∞ 0 0 1065 0 7 5 0 9

(40,20) ∞ 0 0 571 0 1 9 5 0

Gaussian ES

(10,5) ∞ 0 0 4331 0 11 0 0 0

(20,10) ∞ 0 0 2463 0 42 9 2 0

(30,15) ∞ 0 0 2216 0 15 1 0 1

(40,20) ∞ 0 0 1825 0 15 9 2 3

Poisson ES

(10,5) ∞ 0 0 2152 0 7 2 2 0

(20,10) ∞ 0 0 1348 0 5 1 1 0

(30,15) ∞ 0 0 1350 0 0 2 0 0

(40,20) ∞ 0 0 1388 0 0 2 0 0

Gamma ES

(10,5) ∞ 0 0 31575 0 132 48 26 19

(20,10) ∞ 0 0 28019 0 7 28 22 12

(30,15) ∞ 0 0 22141 0 8 12 20 7

(40,20) ∞ 0 0 17994 0 12 9 2 7

Increasing ES

(10,5) ∞ 0 0 27708 0 9 28 22 14

(20,10) ∞ 0 0 26213 0 10 19 12 10

(30,15) ∞ 0 0 24965 0 40 17 11 13

(40,20) ∞ 0 0 24757 0 24 19 12 14

Decreasing ES

(10,5) ∞ 0 0 27066 0 15 9 13 9

(20,10) ∞ 0 0 25587 0 24 5 7 9

(30,15) ∞ 0 0 25004 0 24 20 4 9

(40,20) ∞ 0 0 24141 0 24 17 15 17

Random DS

(10,5) ∞ 0 0 524 0 2 0 7 5

(20,10) ∞ 0 0 602 0 7 9 2 4

(30,15) ∞ 0 0 577 0 3 2 0 0

(40,20) ∞ 0 0 599 0 12 9 7 4

Gaussian DS

(10,5) ∞ 0 0 539 0 7 9 2 0

(20,10) ∞ 0 0 677 0 12 9 2 0

(30,15) ∞ 0 0 527 0 9 9 2 1

(40,20) ∞ 0 0 424 0 15 9 2 3

Increasing DS

(10,5) ∞ 0 0 501 0 0 0 0 0

(20,10) ∞ 0 0 497 0 0 0 0 0

(30,15) ∞ 0 0 627 0 0 0 0 0

(40,20) ∞ 0 0 599 0 0 0 0 0

Decreasing DS

(10,5) ∞ 0 0 587 0 17 7 5 9

(20,10) ∞ 0 0 594 0 7 9 2 2

(30,15) ∞ 0 0 498 0 5 9 2 7

(40,20) ∞ 0 0 425 0 0 9 2 5

Common DS

(10,5) ∞ 0 0 505 0 9 9 2 4

(20,10) ∞ 0 0 621 0 7 9 2 1

(30,15) ∞ 0 0 701 0 7 9 2 3

(40,20) ∞ 0 0 657 0 7 9 2 4

RWDTD

CERIT-SC ∞ 0 0 19505 0 74 39 73 29

MetaCentrum-1 ∞ 0 0 26214 0 24 55 67 49

Zewura ∞ 0 0 17201 0 52 20 24 49

MetaCentrum-2 ∞ 0 0 24257 0 29 52 55 37

Table 3.4: Number of migrations occurred in different scheduling policies for
different data sets (ES: Execution time Scheme, DS: Deadline Scheme, RWDTD:

Real-World Trace Data)

Chapter 3. Scheduling Online Real-Time Tasks on LMTMPS 62

3.8.6 Migration count

Table 3.4 shows the number of migrations with different scheduling policies both

for the synthetic dataset and real-world trace data. As already explained earlier,

UBA is of theoretical interest and has an unlimited number of migrations. FWC

and RWC are of non-preemptive nature and do not require any migration but they

lack in the overall energy consumption with respect to the proposed policies. We

have considered a non-preemptive implementation of EDF and thus the number

of migrations, in this case, is also 0. Energy consumption in case of UBWC is

in general lesser than that of UBA, FWC, and RWC but this policy incurs a

significant number of migrations. It can be lucidly seen from the experimental

data that our proposed policies not only reduce overall energy consumption by a

substantial margin, but also the number of migrations in these policies is within

a reasonable range. Thus it can be concluded that even in case of high migration

overhead system, the proposed policies will achieve a significant energy reduction.

3.9 Summary

Recent compute systems comprise of multiple processors and each processor con-

sists of multiple threads within it. Thus the processing capabilities of these systems

are adequate to handle high-end real-time applications. With the increase in the

processing capability of the systems, the energy consumption also increases. As

the real-time applications consume a significant amount of resources, it yields a

significant amount energy consumption and the existing energy-efficient schedul-

ing considering power construct at a lower granularity is not sufficient. Thus the

energy-aware scheduling at a coarser granularity level has become essential for

the large multi-threaded multiprocessor systems. In this work, we have devised

an elegant power consumption model for such large systems with multi-threaded

features in processors and proposed an online energy-efficient task scheduling tech-

nique, namely, smart scheduling policy for executing a set of online independent

aperiodic real-time tasks. We have then proposed three variations of this policy

to reduce the energy consumption further and to efficiently handle different sit-

uations which might occur at runtime. The experimental result shows that our

proposed policies perform significantly better than all other five baseline policies

for both synthetic data sets and real workload traces.

Chapter 4

Scheduling Online Real-Time

Tasks on Virtualized Cloud

This chapter first presents a power consumption model for the cloud system con-

sidering both the static and the dynamic components of it. The model assumes a

nonlinear relationship between the power consumption and the utilization of the

hosts. Then the concept of urgent points of real-time tasks in the context of a

heterogeneous cloud computing environment are introduced. Then the chapter

presents two proposed energy-efficient scheduling approaches, named UPS and

UPS-ES for executing a set of online aperiodic real-time tasks in the virtualized

cloud environment.

4.1 Introduction

In the previous chapter, we considered scheduling a set of real-time tasks in a

non-virtualized computing environment. In this chapter, we consider a virtualized

cloud environment. Virtualization is a popular technique where multiple VMs

of different types and specifications are placed on a physical machine with the

help of virtualizer to improve the resource utilization of the system and thereby

reduces the overall hardware cost. Cloud has emerged as a promising virtualized

computing environment of recent time [121]. Cloud has attracted the users from

various domains by providing exciting features such as the pay-as-you-go pricing

model, scalability, reliability, etc. As the demand for the cloud system increase,

several companies have also started to render the service. Cloud system not only

provides exciting features to its user, it also offers similar features to the service

63

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 64

 70

 80

 90

 100

 110

 120

 130

 140

 0 20 40 60 80 100

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

W
a

tt
s

)

CPU utilization

Range IIIRange IIRange I

Figure 4.1: Power consumption of a server versus the utilization of the host
as reported in [4]

providers. Elasticity is one of the feature where VM can be added to and removed

from the hosts seamlessly as and when required by the service providers to meet

the user’s need [121, 63].

Cloud has proved itself as a perfect platform for various high-end scientific ap-

plications [27, 30]. These applications exhibit a unique characteristic, that is the

variation of their resource requirements. However, traditional computing plat-

forms, such as grid and clusters are not adequate to handle such high resource

intensive applications and the variation in their resource requirement. Thus the

cloud is proved to be a promising computing platform to meet the demand of these

applications [27, 24].

To support the high demand at times, the cloud systems are over-provisioned with

resources. It is observed that one of the major reason for high energy consumption

is the poor utilization of the hosts. As the scheduling deals with the utilization of

the host and it impacts the overall performance of the system, energy consumption

has become one of the major optimality criteria of scheduling. These are termed

as energy-efficient scheduling or power-aware scheduling [75, 122]. Each physical

machine hosts a number of virtual machines (VM) and the VMs executes user

tasks. These VMs are of different types, sizes, and capacities. Thus the execution

time of a task depends on the VM which runs it. In this work, we consider

scheduling of real-time tasks and completing their execution before the deadline

is essential.

We address two conflicting parameters regarding the energy consumption of a

host in the cloud system. The first parameter is the utilization of the hosts, and

the second parameter is the number of active hosts. With an increase in the

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 65

utilization, the temperature of the system increases. It is reported in [60] that

with an increase in every 10◦C in temperature, the failure rate of an electronic

device doubles. Thus the first parameter puts a restriction on the utilization of

the hosts. As the utilization of the hosts moves above some threshold value, the

performance of the VMs starts getting deteriorated [108, 88]. Thus to maintain

the performance of the system, hosts should not be overloaded, and that implies

that their utilization should be kept below some threshold value. On the contrary,

to save the energy consumption, we should use the minimum number of hosts in

the system. In order to minimize the active host count, the utilization of the hosts

should be kept high.

Now, if we observe the power consumption pattern of the servers, we see an inter-

esting pattern. Dayarathna et al. [48] presented a survey paper which contains the

description of several power models. The power consumption of a host is typically

expressed as a function of host utilization, frequency, VM power consumption, etc.

Lien et al. [4] presented a nice study and measured the power consumption of the

server for six different workloads. As per their study, the power consumption varies

non-linearly with utilization. Figure 4.1 shows the power consumption of a server

versus the host utilization as reported in [4]. We can roughly divide the graph

in three ranges, where utilization varies: (i) 0% to 40% (denoted as Range-I), (ii)

40% to 70% (denoted as Range-II), and (iii) 70% to 100% (denoted as Range-III).

We can observe that when the host is switched on, it consumes 70W of power.

Then the power consumption increase rate is less with respect to the utilization of

Range-I. In case of Range-II, the increase rate is more than Range-I but not too

high. The increase is significantly high in case of Range-III. To the best of our

knowledge, the existing energy-efficient scheduling algorithms of real-time tasks

for the cloud computing domain do not sufficiently consider this interesting power

consumption behavior of the hosts.

We can now interestingly link the “restriction on the utilization of hosts” and “the

power consumption behavior of the servers” together in scheduling. We define a

threshold on the utilization of the host when the power consumption takes a sharp

jump from Range-II to Range-III. The target of the scheduler is to usually keep

the host at this utilization (in between Range-I and Range-II). This will prevent

the system from performance degradation as we are not utilizing 100% of the

computing resources of the hosts. On the other hand, we are dealing with real-

time tasks and meeting the deadline of the tasks is a must. Thus we allow the

hosts to accommodate more tasks (i.e. VMs) and to exceed the threshold when it

becomes necessary to meet task deadline.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 66

Here we summarize the contribution of this chapter as follows.

• First, an energy consumption model for the cloud system is presented which

considers both static and dynamic energy consumption of the cloud hosts

and assumes a nonlinear relationship between the power consumption and

the utilization of the processor.

• Next, we propose two energy-efficient scheduling policies, (i) urgent point

aware scheduling (UPS), and (ii) urgent point aware scheduling - early

scheduling (UPS-ES), for executing online aperiodic real-time tasks on the

cloud system.

• Next, we present the idea of urgent points for the real-time tasks in the

context of heterogeneous compute systems and design strategies for the pro-

posed scheduling policies UPS and UPS-ES to (i) enable scheduling of criti-

cal tasks, (ii) activate VM consolidation to reduce the number of active hosts,

(iii) efficiently use live VMs for executing tasks to reduce the overhead for

VM creation and deletion.

• At last, we evaluate the effectiveness of UPS and UPS-ES policies by com-

paring them with a state of the art scheduling policy EARH [41] and two

simple scheduling approaches: immediate and delayed. The comparison is

done for the real-world trace data (Google tracelog and Metacentrum) and

a synthetic data sets comprising of three variations in deadline schemes for

the tasks.

4.2 System Model

The logical view of the considered cloud computing system comprises of three lay-

ers: a physical layer, a VM layer, and an application layer. The physical layer con-

sists of an infinite set of heterogeneous machines (or hosts) H = {h1, h2, h3, h4, · · · }.
These hosts are typically characterized by their compute capacity, amount of RAM,

and storage capacity, base power consumption, etc. Compute capacity of a host is

defined in terms of MIPS (million instructions per second). We define a set of ac-

tive hosts as Hactive ⊆ H . These are the hosts which are switched on. They might

be idle (does not contain any active VM) or busy (contains some active VMs).

Each host hk can accommodate a set of VMs, VMk = {v1k, v2k, . . . , v|Vk|k}. Each

VM consumes a portion of its host’s compute capacity, RAM, and storage. The

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 67

portion of the resources assigned to a VM does not get changed during its lifetime.

Moreover, we consider a fully elastic cloud where VMs can be dynamically added

and removed from the hosts based on the requirement.

When a VM executes a task, it consumes a portion of the resources of the physical

machine it is hosted on. Each VM vjk (jth VM on kth host) has some compute

capacity (expressed in MIPS) and it represented as CP (vjk). Thus the VMs are

of heterogeneous nature (specially, in their compute capacity and power consump-

tion). For simplicity, we assume that the compute capacity of the VMs lie within a

range:
[
minCP,maxCP

]
. The minCP and maxCP indicates the minimum and

maximum compute capacity of the VMs respectively. Without any loss of gener-

ality, we assume that the utilization associated with an active VM (running some

task) is proportional to its compute capacity. For, a VM vjk, the corresponding

utilization ujk can be expressed as

ujk =
CP (vjk)

CP (hk)
× 100 % (4.1)

where CP (hk) is the compute capacity of the host hk.

As the VM finishes the task assigned to it, it becomes idle and the corresponding

utilization of the VM becomes negligible and we ignore this in our work. We

further assume that a VM hosted on one host can be migrated to another host if

required.

4.3 Task Model

In our work, we consider a set of online aperiodic independent real-time tasks,

T = {t1, t2, t3, · · · }. Each task ti is characterized by three-tuple (ai, li, di) where

ai is the arrival time, li is the length, and di is the deadline of the task. The length

of the tasks is expressed in million instructions (MI). All the tasks are assumed to

be sequential and uni-VM, that is, a task is executed by only one VM. We assume

that the inter-arrival time of the tasks follows the Poisson distribution.

Suppose a task ti is executed by a VM vjk. Then, the task requires li/CP (vjk)

amount time for its completion. This becomes the execution time of task ti on

VM vjk and it is represented by eijk. Mathematically, it can be written as:

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 68

eijk =
li

CP (vjk)
(4.2)

We define the ready time of a VM, rt(vj,k) as:

rt(vjk) = st(vjk) + eijk (4.3)

where, st(vjk) is the start time of the VM which indicates the time instant when

the VM vjk has started executing the task ti.

We define a VM vjk as a candidate VM for executing a task ti if the following

condition is satisfied.

rt(vjk) ≤ di − eijk (4.4)

Now we introduce maximum execution time (etmax(ti)) and minimum execution

time (etmin(ti)) of a task ti as follows.

etmax(ti) =
li

minCP
; etmin(ti) =

li

maxCP
(4.5)

Then slack of a task can be defined as slk(ti) = di − etmax(ti)− ai.

We assume the task sets with three different types of deadline schemes: Random,

Tight, and Relax. In Random deadline scheme, the slack of the tasks are

generated from a random distribution; where slk(ti) varies in the range from Rmin

to Rmax. In case of Tight deadline scheme, the time difference between the

deadline and execution time of the task is short. This can be written as: slk(ti) ≤
Dmax. In Relax deadline scheme, the time difference between the deadline and

execution time of task is long; where slk(ti) ≥ Dmin. Here, Rmin, Rmax, Dmin, and

Dmax are user defined deadline threshold values.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 69

4.4 Energy Consumption Model

A cloud computing system comprises various components, such as the computation

nodes, storage, network equipment, etc. Out of these components, the major

portion of the power is drowned by the computation node, i.e., the host. Thus, in

this work, we consider the energy consumption model of the host only. The power

consumption of a host has two parts: static power consumption and dynamic

power consumption. A significant amount of research in the area of real-time task

scheduling considered only the dynamic power consumption [33, 30, 52, 67]. But

static power consumption plays the vital role, and it contributes almost 60% to

70% of the total power consumption [45, 43]. Thus in our work, we consider both

static and dynamic power consumption of the hosts of the cloud system. The

summation of the power consumption over the total time interval produces the

energy consumption of the system. Thus, it can be written as, E =
∫∞
t=0

PCt.dt,

where PCt is the total instantaneous power consumption of the system at time t.

Now, the power consumption of a host is expressed as a function of its total

utilization. For a host hk, at any time instant, the total utilization Uk is defined

as

Uk =

VMk∑
j=1

ujk (4.6)

where, ujk is the resource utilization of the VM vjk.

As mentioned in the Section 4.1 and reported in Figure 4.1, we have considered

three different ranges for the power consumption of a host and this can be written

as

Ptotal = Pstatic + α1 × Uk, if Uk ≤ 40% (in Range-I)

= Pstatic + α2 × Uk, if 40% < Uk ≤ 70% (in Range-II)

= Pstatic + α3 × Uk, if Uk > 70% (in Range-III)

(4.7)

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 70

where, α3 > α2 > α1 and α3 > (α1 + α2)

Now, the energy consumption of a host can be expressed as

Ehk =

∫ ∞
t=0

Ptotal · dt (4.8)

Thus the energy consumption of the cloud system can be expressed as

Etotal =

|Hactive|∑
k=1

Ehk (4.9)

As demonstrated in the Figure 4.1 and formulated in the Equation 4.7, the slope

of the power function is much higher when the utilization of the host moves above

70%. Keeping this into consideration, we have used two threshold values THU1 and

THU2 in our work. THU1 indicates the boundary of the second region (i.e., when

the utilization of the host moves above 70%) and THU2 indicates the maximum

permissible utilization for a host which is taken as 100%. Usages of these thresholds

are described in the Section 4.6.

The power consumption model indicated by Equation 4.7 used in our work assumes

that there is a local power optimization module (DVFS or DPM) at each host.

The local optimization module at a host controls the frequency and the sleep slate

the compute system which may have more then one compute components. As a

whole, the power consumption is depended on the utilization of the host. We can

safely assume that whenever the host runs at the highest utilization, it is running

at its highest capable frequency of operation, and the frequency of operation of a

host is proportional to the utilization of the host.

4.5 Objective in the Chapter

In this chapter, we wish to design energy-efficient scheduling policies for online ape-

riodic independent real-time tasks for the virtualized cloud system (as described

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 71

FU
P

CU
P

t = 0 t = 8 t = 20 t = 24

time −→

Figure 4.2: Urgent points of a task with deadline 24

in Section 4.2) under the considered energy consumption model (as described in

Section 4.4) such that all the tasks meet their deadline constraints and the overall

energy consumption of the cloud system is minimized.

4.6 Scheduling Strategies

In this section, we first introduce the concept of the urgent point for a real-time

task in the context of a virtualized cloud system. As already stated in the Section

4.3 that a task ti is characterized by its arrival time (ai), length (li) and deadline

(di). Now, to meet the real-time constraint of the task ti, it must be finished on

or before di. For a task ti with execution time ei, urgent point can be defined as

UP (i) = di − ei (4.10)

However, in our considered model, the actual execution time of the task depends on

the compute capacity of the VM it is executed by. Whenever the task is executed

by a VM of minimum compute capacity, its execution time becomes longest. On

the other hand, if the task is executed by a VM of maximum compute capacity,

its execution time becomes shortest. Figure 4.2 shows an example to demonstrate

this. The arrival time and the deadline of the shown task are 0, and 20 seconds.

The length of the task is 80 MI (million instructions). The minimum compute

capacity and the maximum compute capacity of the VMs of the example cloud

system is assumed to be 5 MIPS and 20 MIPS. If the task is executed by a VM

of compute capacity of 5 MIPS, then the execution time of the task becomes

16 (= 80/5) second. In this case, the task must start its execution latest by 8

(= 24−16) second. We name this time instant as first urgent point (FUP). Again

if the task is executed by a VM of compute capacity of 20 MIPS, then the execution

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 72

time of the task becomes 4 (= 80/20) second. In this case, the task execution must

begin latest by 20 (= 24− 4) second. We name this time instant as critical urgent

point (CUP). Now we present a series of approaches, which together perform the

scheduling operation by efficiently utilizing the FUP and CUP of tasks.

Figure 4.3 depicts the schematic view of the cloud system for the proposed schedul-

ing approaches. The scheduler consists of the main scheduling agent (UPS or UPS-

ES) and three supporting agents: SCUP (Scheduling at Critical Urgent Point),

STC (Scheduling at Task Completion), and SWC (Scheduling With Consolida-

tion). The system maintains a common waiting queue for the tasks, called global

waiting queue (GWQ). The tasks in this queue are kept in the sorted order of their

CUP values. In addition to this waiting queue, each VM maintains its individual

local waiting queue. The scheduling process is invoked upon the arrival of a task

to the cloud system. The basic steps of the scheduling operation can be explained

as below.

Main scheduling agent: The scheduling agent always maintains updated infor-

mation about the cloud resources. Upon arrival of a task, the scheduling agent

checks whether the incoming task can be placed on any of the local queues of

the running VMs so that the deadline constraint of the task can be met. If so,

the task is added to the local queue of the VM. If multiple VMs can execute the

task, then the task is placed in the local queue of the VM with the lowest power

consumption.

Supporting scheduling agent: If the placement of the task to the local queue

of the VMs remains unsuccessful, then it is added to the GWQ. GWQ is accessed

by the agents SCUP (Scheduling at Critical Urgent Point), STC (Scheduling at

Task Completion), and SWC (Scheduling at Workload Consolidation). When a

task waiting in GWQ reaches its CUP value, SCUP scheduling agent immediately

schedules the task. The agent STC runs to re-use the VM whenever a task fin-

ishes its execution and releases the VM. It also consults the GWQ to select an

appropriate task for execution. When the total required compute capacities of the

workload in the system is significantly lesser than the total compute capacities of

the active hosts, we say that the system resources are poorly utilized. Then the

SWC performs its operation. In the first phase, the agent tries to re-use the idle

VMs by assigning tasks from GWQ. In the next phase, unused VMs are switched

off and de-allocated from hosts. And then the running VMs are consolidated into

a fewer number of hosts, and idle hosts are switched off.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 73

Scheduling Agent

.....

h

h

h

1

3

2

Status Info.

Global Queue

SWCSTCSCUP

User tasks (UPS / UPS−ES)

Figure 4.3: Schematic representation of the cloud system for the proposed
scheduling polices

4.6.1 Urgent point aware scheduling (UPS)

Algorithm 2 shows the pseudocode of the UPS policy. This algorithm acts as a

scheduling agent which runs on the arrival of a task to the cloud system. Once a

task arrives at the system, the scheduling policy first checks whether the running

VMs on the system can execute the task. A set of eligible VMs (candidateVMSet

in the pseudocode) are listed which can meet the deadline constraint of the task

maintaining the utilization threshold of the corresponding host below THU1. The

target of the policy is to keep the utilization of the hosts close to THU1. If an

existing VM can execute the task satisfying its deadline constraint, then the task

is placed in the local queue of the VM. In case, multiple VMs can execute the

task, the policy selects the VM with the least energy consumption. Line numbers

4 to 9 of the Algorithm 2 represents these steps. If the attempt fails, then the

task is added to the global waiting queue (GWQ). The scheduling window of the

task is set as: [FUP (ti), CUP (ti)]; where FUP (ti) is the first urgent point of

the task, and CUP (ti) is the critical urgent point of the task. This means that

the task can be scheduled at any time instant from FUP (ti) to CUP (ti). Once

the tasks are added to GWQ (if current system state cannot handle) under this

scheduling policy, they can be further handled by policies which scan the queue.

These policies are described in the Sections 4.6.1.1, 4.6.1.2 and 4.6.1.3. The target

of UPS scheduling policy is to delay the execution of an incoming task if the

current system state cannot execute the task energy-efficiently.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 74

Algorithm 2 Urgent Point aware Scheduling (UPS)

On arrival of a task ti(ai, li, di)

1: Calculate the FUP (ti) and CUP (ti)
2: findVMFlag ← FALSE
3: Find the candidateVMset for the task maintaining host utilization threshold
THU1

4: if candidateVMset is not NULL then
5: Select the VM such that host utilization remains closest to THU1

(best fit policy)
6: if Multiple VM exists then Select the VM with least power consumption

7: Schedule the task ti at current ready time of the VM
8: Update ready time of the VM
9: findVMFlag ← TRUE

10: if findVMFlag = FALSE then
11: Add the task to GWQ
12: Set the scheduling window for the task: [FUP (ti), CUP (ti)]

4.6.1.1 Scheduling at urgent critical point (SCUP)

Algorithm 3 shows the pseudocode for scanning the GWQ looking for the tasks

whose CUP is reached. The tasks in GWQ are sorted based on their deadline.

If such a task is found. the scheduler first checks whether there is any idle VM

in the system and whether the VM is a candidate for the task. If such VM

exists, the scheduler selects the VM with the least energy consumption. If no

such VM exists, then a new VM with the minimum required compute capacity is

created and the VM is tried to place on an active host. As the task is critically

urgent, we allow the host utilization to go up to THU2. If multiple active hosts can

accommodate the VM, the scheduler selects the VM such that the utilization of the

host after addition of the VM remains close to threshold THU1. If an active host

can accommodate the VM, then it is placed on the host, and the task is assigned

to the VM. If the scheduler fails to find a host, then a consolidation operation is

performed on the active set of hosts to create sufficient space (i.e., utilization) for

the new VM. The algorithm achieves this via a procedure call to createSpace().

The pseudocode for createSpace() is shown using the Procedure creatSpace(). The

procedure migrates VMs from lowly utilized hosts to the highly utilized hosts. The

procedure returns the host once it gets a host which can accommodate the VM.

Until this point, the scheduler tried to get a host from the active set only. If it

fails, then a new host is switched on and then it is added to the list of the active

set of hosts. After the task is assigned to the VM and the VM is placed on the

host, the scheduler then fills the remaining utilization of the newly switched-on

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 75

Algorithm 3 Scheduling at Critical Urgent Point (SCUP)

1: for each task ti in GWQ do
2: if currentT ime = CUP (ti) then
3: findVMFlag ← FALSE
4: if any idle VM in the system can execute the task then
5: Assign the task to the VM
6: Update the ready time of the VM
7: findVMFlag ← TRUE

8: if findVMFlag = FALSE then
9: Create a VM, v with minimum required compute capacity so that

the deadline constraint of the task is met
10: Choose the host from Ha such that after the addition of the VM

its utilization is close to threshold THU1

(if multiple hosts exist)
11: if Success then
12: Assign the task to the VM and place the VM on the host
13: Update the ready time of the VM
14: findVMFlag ← TRUE

15: if findVMFlag = FALSE then
16: hk ← createSpace(v)
17: if hk is not NULL then
18: Assign the task to the VM and place the VM on the host
19: Update the ready time of the VM
20: findVMFlag ← TRUE

21: if findVMFlag = FALSE then
22: Start a new host hk
23: Place the VM on the host and assign the task to the VM
24: Set ready time of the VM
25: Call procedure fillHost(hk)

26: end for

processor by placing new VMs on it. Procedure fillHost() shows the pseudocode

for this. The process of VM placement is repeated until the utilization of the host

reaches the target utilization threshold THU1.

4.6.1.2 Scheduling at task completion (STC)

As the tasks are assigned to the VMs and the executions start, the mapping

remains the same and eventually, the tasks finish their executions and the corre-

sponding VMs become idle. Now the motivation of the scheduler is to re-use the

VMs for executing the other tasks. Algorithm 4 shows the pseudocode for this

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 76

1: procedure createSpace(v)
2: Sort the active host set Ha in increasing order of their utilization
3: migrationF lag ← FALSE;
4: sourceHost← NULL
5: for each host hk in Ha do
6: Find the VM vj with least utilization in hk s.t. it can accommodate

v after removal of vj
7: for each host hi in Ha (considered in descending order) do
8: if hi can accommodate vj then
9: Perform the migration of VM vj from host hk to hi

10: return hk
11: end for
12: end for
13: return NULL
14: end procedure

1: procedure fillHost(hk)
2: Set the utilization threshold of the host hk as THU1

3: while Uk < THU1 do
4: Calculate the maximum possible MIPS for the remaining host

utilization
5: Scan GWQ and find the feasible set of tasks for this
6: Choose the task with closest CUP value
7: Create a VM with required compute capacity for executing the task
8: Set the ready time of the VM

9: end procedure

Algorithm 4 Scheduling at Task Completion (STC)

On completion of a task ti

1: Get the corresponding VM v and its compute capacity CP (v)
2: Scan through the GWQ and find a task tj so that currentT ime lies in the

scheduling window and v is a candidate VM for the task and the required
compute capacity is close to CP (v)

3: if Successful then
4: Assign the task tj to the VM
5: Update the ready time of the VM

operation. This algorithm runs whenever a task finishes its execution. The algo-

rithm runs through GWQ and finds the task which best fits the compute capacity

of the VM released by the completed task.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 77

Algorithm 5 Scheduling With Consolidation (SWC)

1: Sort the tasks in the global waiting queue GWQ in increasing order of their
CUP value

2: for each host hk in Ha do
3: for each idle VM vjk in hk do
4: Scan through GWQ to find a candidate task for the VM vjk
5: if Success then
6: Assign the task to the VM vjk
7: Update the ready time of vjk

8: end for
9: if Uk ≥ THU1 then Set fullF lag(hk)← TRUE

10: end for
11: Destroy all the idle VMs of the system.
12: Sort the hosts in ascending order of their utilization
13: for each host hk in Ha do
14: for each VM vjk in hk do
15: for each host hi in Ha do
16: if hi can host vjk and fullF lag(hi) = FALSE and hi 6= hj then
17: Migrate vjk from host hk to host hi

18: end for
19: end for
20: end for
21: Hosts without any active VMs are switched off and removed from set Ha

4.6.1.3 Scheduling with consolidation (SWC)

The target of the scheduling policies is to keep the host utilization at THU1. This

threshold is revoked in case a task has reached its CUP. Here we present a modified

version of the basic consolidation operation of literature. A basic consolidation

operation first simply removes the idle VMs from the host, then migrates the VMs

from one host to another to reduce the number of active hosts. In addition, they

switch off the idle hosts. But in this modified consolidation procedure, we first

give an opportunity to the waiting tasks in the system to re-use the idle VM. We

scan through GWQ and find if there is any feasible task in the queue for an idle

VM. Once the tasks are given opportunity, then the migration of VMs takes place.

4.6.2 UPS - early scheduling (UPS − ES)

We present a variation of the UPS. In UPS, an incoming task is added to the GWQ

if the currently running VMs in the system cannot execute the task meeting its

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 78

Algorithm 6 Urgent Point aware Scheduling - Early Scheduling (UPS−
ES)

On arrival of a task ti(ai, li, di)

1: Find the candidateVMset-I for the task maintaining host utilization
threshold THU1

2: if candidateVMset-I is not NULL then
3: Select the VM such that host utilization remains closest to THU1

(best fit policy)
4: if Multiple VM exists then Select the VM with least power consumption

5: Schedule the task ti at current ready time of the VM
6: Update ready time of the VM
7: findVMFlag ← TRUE

8: if (FUP (ti)− currentT ime) < THVMCDT then
9: Find the candidateVMset-II for the task considering host utilization

THU2

10: if candidateVMset-II is not NULL then
11: Select the VM with minimal power consumption
12: Schedule the task ti at current ready time of the VM
13: Update ready time of the VM
14: findVMFlag ← TRUE
15: else
16: Start a new host hk
17: create a new VM vjk on hk with minimal compute capacity such that

the task deadline can be met
18: Place the VM on the host and assign the task to the VM
19: Set ready time of the VM
20: Call procedure fillHost(hk)

21: else
22: Add the task to the Global Waiting Queue Q
23: Set the scheduling window for the task: [FUP (ti), CUP (ti)]

deadline constraint. But in this policy, we first check whether the deadline of the

incoming task is close. The policy first tries to put an incoming task to the local

queue of an existing VM if the VM can execute satisfying the deadline constraint

of the task. This step is similar to that of policy UPS. If this step fails, then

the scheduling policy checks whether the deadline of the task is near. If yes, then

the policy tries to schedule the task by allowing the host utilization to go up

to the next threshold level THU2. We determine the nearness by comparing the

difference between the FUP and the current time with a pre-defined threshold

THVMCDT . We take the value of the threshold THVMCDT as the summation of

the creation time and the deletion time of a VM. If the occurrence of the FUP is

not near, then the scheduler puts the task to GWQ with the scheduling window

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 79

from the FUP to CUP. In case the task is having a tight deadline, the scheduler

lists a set of eligible VMs for the task (candidateVMSet-II as mentioned in the

pseudocode of Algorithm 6) and selects the VM with least power consumption. If

the scheduler fails to find any such VM, then a new host is switched on. A new

VM is created with the minimum required MIPS. And then the task is assigned to

the VM and the execution starts immediately. To fill up the remaining utilization,

the procedure fillHost() is called for the newly created host. Algorithm 6 shows

the pseudocode for this scheduling policy. The policy also acts as a scheduling

agent that runs on the arrival of a task in the cloud system.

Once the tasks are added to GWQ with the appropriate scheduling window, the

rest of the processing happens similar to that of UPS scheduling policy.

4.7 Performance Evaluation

In this section, we present the performance indices of the two proposed scheduling

policies, named UPS and UPS − ES, for different task characteristics. To show

the effectiveness of our work, we have implemented state of the art energy-efficient

policies, namely, EARH [30]. In addition, we implement two simple approaches,

called immediate scheduling, and delayed scheduling.

Immediate scheduling: Under this approach, a task starts its execution imme-

diately after its arrival at the cloud system; thus the name. If no idle VM exists in

the system, a new VM is created with the minimum required MIPS. If any active

host can accommodate the VM, then the VM is placed on that host. Otherwise,

a new host is switched on, and the VM is placed on it. If multiple resources are

available (VM or host), the selection is made using a random policy.

Delayed scheduling: Under this approach, the execution of all the tasks are

delayed as long as possible. All the tasks start their execution at their CUP even

if sufficient resource is available. If idle VM with required MIPS is available at the

CUP of a task, the task is assigned to the VM. Otherwise, a new VM is created

for the task. If required, a new host is created to run the task.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 80

Parameter Values
Task count 10, 000
Task length (MI) Randomly distributed from 10, 000 to 100, 000
Task arrival λ = 10, 20, 50
Deadline parameters Rmin = 100, Rmax = 1000, Dmax = 200, Dmin = 1000
Thresholds THU1 = 70%, THU2 = 100%
Compute capacities:Host 1000, 1500, 2000 (MIPS)
Compute capacities:VM minCP = 100, maxCP = 500 (MIPS)

Table 4.1: Different experimental parameter values

4.7.1 Simulation environment and parameter setup

To evaluate the performance of our scheduling policies, a set of comprehensive

simulations and experiments are conducted using cloudSim toolkit [123]. We have

made necessary changes in the simulator to include different parameters. Table

4.1 lists the important parameters along with their considered value for our ex-

periments. We have performed the experiments for 10, 000 tasks and considered

three different deadline schemes. Length of the tasks is expressed in million in-

structions (MI). The experiments are performed for 10 such sets to minimize the

system error, and the average result is reported in the following section.

4.7.2 Experiments with synthetic data

Figure 4.4 shows the overall energy consumption (normalized) of 10, 000 aperiodic

real-time tasks (averaged over 10 such sets) when executed in the simulated cloud

environment. The results were produced for two different values of arrival param-

eter, λ = 10, λ = 20, and λ = 50. Figures show the energy consumption for three

different types of deadline schemes: Random, Tight, and Relax. We observe that

the proposed scheduling policies (UPS and UPS-ES) perform significantly better

than all other baseline policies for all the deadline schemes and the energy con-

sumption pattern remains similar for different values of λ. In case of the random

deadline scheme, the proposed policies consume around 15% lesser energy than

EARH. In case of the tight deadline, the reduction is around 10%. And in case of

the relax deadline, the reduction is around 24%. The reduction in energy increases

with an increase in the arrival parameter value. For λ = 20, the corresponding

reduction in energy consumption are around 18%, 11%, and 29% and for λ = 50,

the corresponding reduction in energy consumption are around 22%, 15%, and

37%.

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 81

 50

 60

 70

 80

 90

 100

 110

Random Tight Relax

N
o

r
m

a
li

z
e

d
 E

n
e

r
g

y
 C

o
n

s
u

m
p

ti
o

n

Deadline schemes

Immediate
Delayed

EARH
UPS

UPS-R

(a) λ = 10

 50

 60

 70

 80

 90

 100

 110

Random Tight Relax

N
o

r
m

a
li

z
e

d
 E

n
e

r
g

y
 C

o
n

s
u

m
p

ti
o

n

Deadline schemes

Immediate
Delayed

EARH
UPS

UPS-R

(b) λ = 20

 40

 50

 60

 70

 80

 90

 100

 110

Random Tight Relax

N
o

r
m

a
li

z
e

d
 E

n
e

r
g

y
 C

o
n

s
u

m
p

ti
o

n

Deadline schemes

Immediate
Delayed

EARH
UPS

UPS-R

(c) λ = 50

Figure 4.4: Normalized energy consumption of various scheduling policies for
synthetic dataset

In addition to measuring the energy consumption, we have also reported the length

of the global waiting queue, the average length of the local queues of the VMs,

and the total number of active VMs present in the cloud system for different time

instants. Figure 4.5(a) shows the instantaneous length of the global waiting queue

versus time. Similarly, Figure 4.5(b) shows the average length of the local queues

of the VMs. Figure 4.5(c) show the total number of active VMs of the considered

cloud system. As most of the time GWQ contains a smaller number of tasks (10 to

55), they are efficiently handled by the SCUP, STC and SWC agents to schedule

in an energy-efficient way.

4.7.3 Experiments with real-world data: Metacentrum

In addition to the synthetic real-time tasks with many variations in their arrival

pattern and deadline, we consider four variations of MetaCentrum trace data [111].

The detailed description of these trace files is already given in Chapter 3. Energy

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 82

 0

 10

 20

 30

 40

 50

 60

 0 20000 40000 60000 80000 100000 120000

G
lo

b
a

l
q

u
e
u

e
 l

e
n

g
th

Time

(a) Global waiting queue

 0

 1

 2

 3

 4

 5

 6

 0 20000 40000 60000 80000 100000 120000

A
v

e
ra

g
e

 l
o

c
a

l
q

u
e

u
e

 l
e
n

g
th

Time

(b) Local waiting queue of VMs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20000 40000 60000 80000 100000 120000

A
c

ti
v

e
 V

M
 c

o
u

n
t

Time

(c) Active VM count

Figure 4.5: Task and VM information for λ = 10

 50

 60

 70

 80

 90

 100

 110

CERIT MetaCentrum1 Zerua MetaCentrum2

N
o

r
m

a
li
z
e
d

 E
n

e
r
g

y
 C

o
n

s
u

m
p

ti
o

n

Real trace data

Immediate
Delayed

EARH
UPS

UPS-ES

(a) Metacentrum

 0

 5

 10

 15

 20

 25

 30

 35

 40

UPS UPS-ES

E
n

e
r
g

y
 r

e
d

u
c
ti

o
n

Proposed scheduling policies

Immediate
Delayed

EARH

(b) Google trace

Figure 4.6: Energy reduction of the proposed policies for real-trace data

consumption (normalized) for these trace data set when executed on the considered

cloud system is represented using Figure 4.6(a). We observe that the proposed

policies UPS and UPS-ES perform better than the baseline policies for all the

trace data. In case of CERIT, the energy reduction is around 30% with respect

to Immediate and around 15% with respect to EARH. In case of MetaCentrum-1,

these reductions are around 25% and 9%. In case of Zerua, the reductions are

around 30% and 17% and for MetaCentrum-2, these are around 24% and 6%. We

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 83

further see that the energy reduction in case of CERIT and Zerua is comparatively

more than MataCentrum-1 and MataCentrum-2. We believe that this is because

the inter-arrival time in case of CERIT and Zerua is comparatively more than that

of MataCentrum-1 and MataCentrum-2.

4.7.4 Experiments with real-world data: Google tracelog

We also perform our experiments for Google cloud tracelog [124]. The tracelog

contains over 25 million tasks and 925 users span a period of 1 month. It is difficult

to perform experiments in a simulated environment with such an enormous task

count. Thus we have decided to consider first 10, 000 tasks of the day 18 as day 18

is reported as a sample day in [125]. We have also made the trivial assumptions

regarding the task execution and failure as reported in [30, 125]. Length of a task

is not directly reported in the trace and it is calculated from the start and end

time of the task. Deadline of the tasks are assigned similar to the synthetic tasks

and we have assumed Random distribution only. In Figure 4.6, we have plotted

the reduction in energy consumption of the two proposed policies with respect to

all three baseline policies. We see that UPS scheduling policy achieves an energy

reduction of 24%, 22%, and 11% with respect to Immediate, Delayed, and EARH

respectively. On the other hand, UPS-ES achieves an energy reduction of 27%,

25%, and 10% with respect to Immediate, Delayed, and EARH respectively.

4.8 Summary

Cloud computing environment has evolved as a popular and promising utility-

based computing paradigm of the recent time. As a result, applications from

various domains are getting deployed in the cloud system. But these applica-

tions consume an enormous amount of resources and hence the energy-efficient

scheduling has become crucial. The scheduling operation becomes more challeng-

ing when both static and dynamic power consumption of the hosts are considered

in the power consumption model. In this work, we have devised a power consump-

tion model for the cloud system based on the utilization of the hosts. We have

then introduced the concept of an urgent point in the context of a heterogeneous

computing environment. Then two scheduling techniques, UPS, and UPS-ES are

proposed based on the urgent point of the tasks. We have also designed three

other supporting procedures as complementary policies to the primary scheduling

Chapter 4. Scheduling Online Real-Time Tasks on Virtualized Cloud 84

policies. We have performed an extensive simulation work to validate our work

with different task parameters. Results show that the proposed scheduling poli-

cies reduce energy consumption by an average of almost 24% for synthetic data

as compared to the baselines. For MetaCentrum trace data, the average energy

reduction is almost 12% and for Google tracelogs, it is around 10%.

Chapter 5

Scheduling Real-Time Tasks on

VMs with Discrete Utilization

This chapter presents scheduling strategies for efficiently executing a set of offline

real-time tasks on a virtualized cloud system where the hosts of the system offer

VMs with discrete utilization values. Generally, time triggered activities generate

offline tasks. Examples include tasks in air-traffic control system, digital signal

processing, etc. Here we first calculate a utilization value for which the energy

consumption of the hosts of the cloud system is minimum. We term it as critical

utilization. The target of the scheduling policies is to keep the utilization of the

hosts close to the critical utilization. The problem is divided into four different

subproblems and a solution is proposed for each subproblem.

5.1 Introduction

In the last chapter, we discussed scheduling online real-time tasks for a virtual-

ized cloud system where the compute capacities of the VMs are considered to be

continuous. As a VM with certain compute capacity is created on a host, the VM

starts utilizing a proportionate amount of resources of that host. This results in a

certain increase in the utilization of the host. Because the compute capacities of

the VMs are considered to be continuous, the corresponding utilization values are

also continuous. Accordingly, several studies [126, 30, 45] on the energy-efficient

scheduling have been done in the context of cloud computing environment and

these studies also consider a continuous compute capacity of the VMs.

85

Chapter 5. VMs with Discrete Utilization 86

When the cloud service providers offer Infrastructure as a service (IaaS) [127,

128], they provide virtualized resources in the form of VMs to the users. Each

VM has different CPU, memory, storage and bandwidth capacities. Users select

the VM instance based on the requirement. For instance, Amazon EC2 [129]

offers configurations, such as small, medium, large, extra-large, etc. The compute

capacities of these configurations are discrete. As the compute capacity of a VM

corresponds to the resource utilization, the resource utilization of the VMs for the

hosts becomes discrete. In this chapter, we consider that the VMs are specified

with utilization values. Bigger VMs have higher host utilization requirement and

smaller VMs are having smaller host utilization requirement. The purpose of

this work is to propose approaches to select a suitable type of VM for each user

requested real-time task and to allocate the selected VMs to hosts. The tasks are

scheduled on their respective VMs. Bigger VM (i.e., VM having higher utilization)

executes the task faster then the smaller VMs and the execution time of task on

a VM is inversely proportional to the utilization of VM. We consider the cloud

system provides k discrete types of VMs and each VM type is specified with

host utilization requirement, where the cloud system consists of an infinitely large

number of homogeneous hosts.

The main aim of this work is to schedule a set of real-time aperiodic tasks on

the cloud environment. The scheduler chooses VM for each task. Resulting VM

allocation must consume the minimum amount of energy, and all the tasks must

complete before their respective deadlines. Such a scheduling approach comes with

following complementary challenges.

1. Meeting deadlines - each task comes with a deadline and its execution time

at maximum utilization. Using these two values, we need to find a minimum

value of utilization at which a task must be executed so that it meets its

deadline.

2. Minimizing energy consumption- whenever a physical machine is active, it

consumes some amount of energy. Energy consumption depends on the time

for which the host is active and utilization of host during its active period.

These two factors are contradicting because when a task executes at higher uti-

lization, although it completes earlier, but consumes more power. On the other

hand, at lower utilization, power consumption is lower but the task takes more

time to complete and in the worst case it may miss its deadline. Our objective is

to find an optimal or near-optimal solution to this problem.

Chapter 5. VMs with Discrete Utilization 87

The UPS and UPS-ES scheduling policies discussed in the last chapter makes

use of two threshold values of host utilization. One threshold was used while

scheduling the non-urgent tasks, and the other one was used when scheduling an

urgent task. But in this work, we have formally computed an optimum value

of host utilization at which the host consumes the minimum amount of energy

known as critical utilization (described later in Section 5.3 in detail). Depending

on the specification of the task and the value of critical utilization, we allocate a

VM of suitable type to each task, so that, no deadline is missed and minimum

amount of energy is consumed. For scheduling the selected VMs to the available

physical hosts, we have divided our problem into several cases and solved each

case separately. We thus summarize the contribution of this chapter as follows.

• First, we calculate the critical utilization value for the cloud host where the

energy consumption is minimum.

• Next, we put forward an analysis regarding two choices while allocating a

task. These are (i) to increase the utilization of a running host, and (ii)

switching on a new host.

• Then, we divide the problem of scheduling into four different subproblems

based on the task characteristics and propose a solution for each subproblem.

5.2 System Model

In most of the cloud systems, the user tasks get executed on virtual machines and

the virtual machines get allocated to physical hosts. So the natural way to model

the cloud system is a three-layer system and these layers are the task layer, virtual

resource layer, and physical layer. Cloud consists of physical machines which host

the virtual resources to satisfy the needs of user requested tasks.

These layers can be described as follows:

• Physical Layer: The cloud system that we are considering consists of a set

of m homogeneous physical machines (or hosts) PM = {h1, h2, h3, · · · , hm}.
We specially consider that the compute capacities and the hardware spec-

ification of the hosts are same. Several virtual machines can be placed on

a single host and the resource utilization of a host gets shared among the

hosted virtual machines depending on their types. The utilization of a host

Chapter 5. VMs with Discrete Utilization 88

vt1

vt2

vt
k

PM

PM

PM

PMm

2

1

3

t2

t1

t n

Cloud System

k VM types m PMs

n Tasks

Figure 5.1: System model

is the maximum when it is utilized to its maximum compute capacity. For

a host hk, its utilization U(hk) ranges in between 0 and 1. These hosts con-

sume energy which depends on the total utilization of the host. All the hosts

possess one more property that is critical utilization, uc. It is the utilization

at which energy consumption is minimum (this is defined formally in next

section).

• Virtual Resource Layer: This layer constitutes virtual machines which

need to be hosted on physical machines for task execution. The utilization

of a VM is proportional to its compute capacity and it expressed in MIPS

(million instructions per second). We have taken k types of VMs based

on the values of utilization they provide to a task. The set of VM types

is denoted by V T = {vt1, vt2, · · · , vtk}. The compute capacity offered to

the tasks by these VM types is not continuous. For each VM type, there

is no limit on the number of VMs. These VM types are characterized by

the amount of CPU utilization (proportional to the compute capacity) they

provide to a task when hosted to a physical machine, also when the VM with

utilization u runs on top a host, it consumes u fraction of compute (CPU)

resource of the host. For a VM type vtj, there is a constant uj, which is the

amount of utilization that vtj will provide for the task. The value of uj is

between 0 and 1 that is 0 < uj ≤ 1. When VMs are allocated to a host at a

particular time, the sum of their total utilization must be less than or equal

to 1, which is
ν∑
j=1

uj ≤ 1, where ν is the number of VMs allocated to that

host and uj is the utilization of vmj.

For the sake of simplicity, we have considered five types of VMs (k = 5) :

tiny (T), small (S), medium (M), large (L) and extra large (XL) with discrete

utilization values uT = 0.2, uS = 0.4, uM = 0.6, uL = 0.8, and uXL = 1.0

Chapter 5. VMs with Discrete Utilization 89

respectively. But the work can be easily extended for any value of k. For

instance, the compute capacity of a tiny type VM placed on a host with

compute capacity of 1000 MIPS will be CP (VMT) = 1000 · uT = 1000 · 0.2
= 200 MIPS. Similarly, the compute capacities of S, M, L and XL type VMs

will be 400, 600, 800, and 1000 MIPS respectively.

• Task Layer : The users send requests to the cloud system in form of tasks.

The set or bag of n tasks is denoted by T = {t1, t2, · · · , tn}. The tasks in user

requests are independent. Each task is an indivisible unit which needs to be

executed on one VM (and one host) only. Any such task ti can be described

using 3-tuple: ti = (ai, ei, di), where ai is arrival time, ei is the execution

time when run at maximum utilization (umax = 1) and di is the deadline

for the task. We are considering synced tasks to be scheduled (ai = 0 for

all the tasks). Therefore, tasks can be represented using 2-tuple in our case

ti = (ei, di).

The execution time of a task is expressed in seconds and this can be calcu-

lated from the length of the task. For a task ti with length li, the execution

time ei can be expressed as

ei =
li

CP (VMXL)
(5.1)

where CP (VMXL) is the compute capacity of the VMs of type XL. When

the task is executed by a VM of other type, its execution time will increase;

but it is dependent on its length li.

The minimum value of utilization required by ti is ui = ei
di

. Therefore, if we

execute the task at utilization ui, it finishes exactly at di. But the utilizations

of the VMs available in the system are discrete (equi-spaced on utilization

line). Let uLF (ti) be the utilization of the least feasible VM type among the

available k VM types for a task ti(ei, di). Then this can be written as

uLF (ti) = 1
k
d ei
di
· ke (5.2)

where k is the number of VM types available in the system. This formula

works for the cases when utilizations provided by VM types is equally dis-

tributed over the range (0, 1.0]. All the VM types with utilization value

greater than or equal to uLF (as computed by Equation 5.2) are suitable

for the task ti. We do not allow a task with utilization requirement more

than 1 in our system. We assume that the VM creation and deletion time is

Chapter 5. VMs with Discrete Utilization 90

negligible in our work. Thus as soon as a task gets scheduled for execution to

a VM of a particular type, the execution of the task can immediately start.

Moreover we assume that the tasks are specified with the

5.3 Energy Consumption Model

A user task is allocated to a suitable VM type, and the selected VM is then

hosted on the physical machine of the cloud system. When the tasks execute,

physical machines consume some energy. Energy consumption E is the amount

of total power consumption during the active period of the physical machine.

Which can be written as E =
ttotal∫

0

P (t)dt, where P (t) is the power consumed by

the host at time t and ttotal is the total time for which that host is active. P (t)

has two components: static power consumption and dynamic power consumption.

Static power consumption Pmin (same as Pstatic or Pbase in earlier chapters) is

the minimum amount of power consumed when a host is switched on. Static

power consumption depends on the host’s internal activities and maintenance of

tasks. Dynamic power consumption (Pdyn(t)) varies with the current frequency

of the host machine. So the total power consumption can be written as P (t) =

Pmin + Pdyn(t) and as stated in [48], dynamic power consumption be formulated

as Pdyn(t) ∝ f(t)3, where f(t) is the frequency of the host at time t. For single

processor systems, we may safely assume that frequency is directly proportional

to the utilization u of the host. So, f(t) ∝ u(t), where u(t) is the utilization of

the host at time t as stated in [48]. Therefore, we can say

P (t) = Pmin + αu(t)3, (5.3)

where α is a constant.

e
u

is the actual execution time of a task when running on VM with utilization u.

Therefore, if we assume that utilization does not vary throughout the execution

of the task, then, energy consumed by the host can be computed as

E =
(
Pmin + αu3

)
· e
u

= e ·
(Pmin

u
+ αu2

)
(5.4)

Figure 5.2 shows energy consumption of tasks executed at different utilization

values of a host with Pmin = 100 and α = 70. The resultant plot is an inverted

Chapter 5. VMs with Discrete Utilization 91

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2

uc

E
n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n

Utilization of the host

For Pmin = 100 and = 70

Figure 5.2: Energy consumption versus total utilization of the host

bell curve. The lowermost point shows the minimum energy consumed by the host

and the corresponding utilization is called critical utilization, uc.

At critical utilization uc,
dE
du

= 0, from Equation 5.4

dE

du
= e.

(Pmin
u

+ αu2
)

= 0,⇒ e.
(
− Pmin

u2
+ 2αu

)
= 0

⇒ uc =
3

√
Pmin
2α

(5.5)

So, we can see that the value of the critical utilization is independent of the

execution time (i.e. the length) of task executed the system. It only depends on

the values of Pmin and α.

From Equation 5.5, we get

Pmin = 2αu3
c (5.6)

Substituting the value of Pmin in Equation 5.3, we get

E =
(

2αu3
c + αu3

)
· e
u

Thus the total energy consumption of a host can be expressed as

E = α(2uc
3 + u3) · e

u
(5.7)

Chapter 5. VMs with Discrete Utilization 92

As mentioned in the previous chapter, the power model used in this chapter also

assumes that there is a local power optimization module (DVFS or DPM) at each

host. The local optimization module at a host controls the frequency and sleep

state of the compute system which may have more then one compute components.

As the power consumption is dependent on the utilization of the host, we can

safely assume when the host is running at highest utilization, it is running at the

highest capable frequency of operation and the frequency of operation of the host

is proportional to the utilization of the host.

5.4 Objective in the Chapter

Given a set of user tasks T = {t1, t2, ..., tn}, of size n, this chapter aims to find a

set of suitable VM type for each task and allocate all the resulting VMs to physical

machines. The objective of the resulting schedule is to minimize the amount of

energy consumed without missing the deadline of any task.

As uc is the critical utilization for each host, we try to maintain the utilization for

each active host closest to uc. If ν is the number of VMs allocated to a host, then

the sum of values of utilization of these VMs is maintained to be approximately

equal to uc for every instant of time.

ν∑
j=1

uj ≈ uc, (5.8)

The tasks that need utilization above uc, are exceptions to this because if they are

executed at lower utilization, they won’t meet their deadlines. Hence, they should

be scheduled on separate hosts individually using a suitable VM type. Now, the

problem gets reduced to finding a combination of VMs with ui ≈ uc, which can be

allocated to the same host while minimizing the amount of energy consumption.

The scheduling policies discussed in this chapter tries to minimize the number of

active hosts along with maintaining the host utilization close to uc such that no

task misses its deadline.

Chapter 5. VMs with Discrete Utilization 93

5.5 Classification of cloud systems

We have analyzed the energy consumption characteristics of the hosts of the cloud

system which are based on the value of critical utilization, uc (as calculated in

Equation 5.5). The value of uc depends on the values of Pmin and α. Since

we are considering a homogeneous cloud system, these values are same for all

the hosts. Based on this, we have categorized our problem into three types of

systems, out of which two fall in the category of systems with extreme static power

consumption and the third type refers to the systems with general specifications.

In general systems, we classify the cloud system based on host or physical machine

characteristics into three categories and these categories or types are:

• Type 1: Host with negligible static power consumption and in this type of

cloud, the Pmin of the host is negligible with respect to αu3 and the critical

utilization of the hosts is 0 (i.e. uc = 0).

• Type 2: Host with significantly high static power consumption, and critical

utilization of the host is above 1 (i.e. uc > 1).

• Type 3: This is the most common type of cloud, where the host critical

utilization uc lies between 0 and 1.

Scheduling approaches for type 1 and type 2 systems are described in Subsections

5.5.2 and 5.5.3, respectively and for type 3 systems, the scheduling approach is

described in Section 5.6.

For the case when 0 < uc ≤ 1, both static and dynamic power consumption play

significant roles. The value of critical utilization lies in the range (0, 1.0]. But the

VMs available within the system can provide only discrete values of utilization i.e.,

uT = 0.2, uS = 0.4, uM = 0.6, uL = 0.8, and uXL = 1.0 for T, S, M, L, and XL

types of VM respectively. So when more than one task run in parallel on a host,

the total value of utilization may not be exactly equal to uc. Hence, we calculate

a value of utilization ut by which the utilization can be increased when the exact

value of uc cannot be reached.

As seen in Section 5.3, for a single physical machine, when only one task is exe-

cuting, energy consumption is minimum at its critical utilization, uc. If more than

one task gets scheduled to a machine, they should execute for approximately same

time, so that, total utilization of the host remains same throughout the time for

Chapter 5. VMs with Discrete Utilization 94

Running

at ��

Running

at �t

Running

at �� � �t
Inactive

Host1 Host2 Host1 Host2

Figure 5.3: Options for scheduling the new task

which it is active (basic assumption while computing the value of uc). Moreover,

if this is not the case, CPU cycle wastage will be there.

As mentioned earlier that the utilization of the active hosts should be approxi-

mately equal to the critical utilization to minimize the total energy consumption

of the system. But the overall energy consumption of the system also depends

on the number of active hosts. Reducing the number of active hosts may help in

decreasing the total energy consumption of the system. So, instead of switching

on a new host, we may prefer an active host to schedule the available tasks. This

may result in increasing the utilization of that host by a small amount but the

total energy consumption can get lesser as compared to energy consumption in

case of more number of active physical hosts.

Let ut be the value of utilization which serves as an upper limit on the amount

of utilization by which utilization of a host can exceed uc. So, uc + ut can be

referred to as the hot threshold of a host. The hot threshold of a host is the value

of utilization above which the host becomes over-utilized and we do not get any

benefits in term of energy reduction by scheduling more tasks on it.

5.5.1 Calculation of hot thresholds for the hosts

As we define uc + ut as the hot threshold for the hosts, in this section, we are

interested in calculating the value of ut in terms of uc. Suppose one host is running

at utilization uc and a new task needs to be scheduled with utilization requirements

ut. To choose whether (a) to switch on a new host and schedule the task on it or

(b) to schedule the task on the already active host, we need to compare the energy

consumption in both the cases and chooses the one with least amount of energy

consumption. Figure 5.3 depicts the two choices for scheduling the new task.

Let E1 and Enew be the energy consumption of an already active PM and the

new PM switched on for the incoming task, when the task is scheduled on new

Chapter 5. VMs with Discrete Utilization 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

u
c
 +

 u
t

Critical Utilization

Graph for uc + ut vs uc

Figure 5.4: Hot threshold (uc + ut) versus uc

PM (as shown in left side of Figure 5.3). Also E ′1 be the energy consumption

of the already active host when the incoming task gets scheduled to the active

host instead of a new host (as shown in right side of Figure 5.3). Also, ut ∈
(0, 1.0]. Let t be the execution time of the tasks. Then the energy consumption

E1, Enew and E ′1 can be written as E1 = t(Pmin+αuc
3), Enew = t(Pmin+αut

3) and

E ′1 = t(Pmin + α(uc + ut)
3) respectively. The incoming task will be scheduled on

already active hosts, if it is beneficial in term of energy consumption as compared

to switching on a new host (even if it makes total utilization of the host, u > uc),

which is E ′1 < E1 + Enew. So

t(Pmin + α(uc + ut)
3) < t(Pmin + αuc

3 + Pmin + αut
3)

⇒ 3αucut(uc + ut) < Pmin

⇒ ucut
2 + uc

2ut <
2
3
uc

3 [Pmin = 2αuc
3, Eqn 5.5]

This is a quadratic Equation in ut. Thus, ut <
(
√

33−3)uc
6

and this can be simplified

to

ut < 0.4574uc (5.9)

Figure 5.4 shows a graph for variation of the value of hot threshold (uc + ut) with

respect to uc. Since ut is the value of utilization by which we can exceed the total

utilization above uc, therefore, while allocating VMs we should target for uc + ut

as total utilization. Whenever uc + ut > 1, we round off its value to 1.

Chapter 5. VMs with Discrete Utilization 96

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 0.2 0.4 0.6 0.8 1

uc = 0

E
n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n

Utilization of the host

For Pmin = 0 and α = 70

(a) Energy consumption versus utilization for negligi-
ble Pmin (uc = 0)

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2

uc = 1.26

E
n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n

Utilization of the host

For Pmin = 100 and α = 20

(b) Energy consumption versus utilization with uc >
1

Figure 5.5: Energy consumption versus utilization of extreme cases

Algorithm 7 Scheduler for system with uc = 0

Require: Schedule for real-time tasks
Ensure: All the tasks meet their deadline and minimum energy gets consumed

1: for Each task ti in task set T = {t1, t2, ..., tn} do
2: Take the VM type with utilization just above or equal to ui = ei

di
3: Host the resulting VM on a new host and execute the tasks on their selected

VM.
4: end for

5.5.2 Hosts with negligible static power consumption (uc =

0)

Figure 5.5(a) shows the variation of energy consumption of a host with respect to

its total utilization. The host has negligible static power consumption. When Pmin

is negligible as compared to αu3, we can take its value to be 0 for all the hosts.

As a result, we get uc = 0 from Equation 5.5. To maintain total utilization values

as close as possible to uc, that is 0 in this case, we should allocate a suitable VM

type with least utilization value to a task and schedule them on separate hosts.

A suitable VM type for task ti is the one which completes the task before the

deadline when the task is allocated to it, that is, the VM type with utilization

greater than ei
di

, which is the least feasible VM type and this can be calculated using

Equation 5.2. The total energy spent will only depend on the squares of utilization

of the hosts. Beloglazov et al. [130] have considered only the current utilization

as the deciding factor for scheduling the user requests. But such systems fall in

the category of systems with extreme specifications which can be solved trivially.

The pseudocode of the scheduler is shown in Algorithm 7. The scheduler simply

chooses the least feasible VM type for each task in the task set T = {t1, t2, ..., tn},

Chapter 5. VMs with Discrete Utilization 97

which can complete the task before its deadline. After that, it allocates all the

selected VMs to separate physical machines and execute the tasks on their respec-

tive allocated VMs. This schedule is based on the fact that the value of uc is 0 for

each physical machine and we want its total utilization to be as close as possible

to uc. Thus, using the least feasible VM will give us the schedule with minimum

energy consumption. Also, energy consumption of a host is directly proportional

to the square of total utilization in this case (Equation 5.4 with Pmin = 0). As we

know, given a set of n positive utilization values, say {u1, u2, ..., un}, the sum of

squares of these values will be less than the square of summation of these values.

u1
2 + u2

2 + ...+ un
2 ≤ (u1 + u2 + ...+ un)2

So, we should schedule the selected VMs on separate hosts. Let the value of

utilization of the least feasible VM be ui for task ti, then, the energy consumption

in executing all the tasks can be computed as follows:

E =
n∑
i=1

(Pmin + αu3
i) ·

ei
ui
⇒ E =

n∑
i=1

(0 + αu3
i) ·

ei
ui

⇒ E = α
n∑
i=1

(ei · ui2) (5.10)

where ei is the execution time of task ti, when run at maximum utilization. The

value of ei is given as input with each task.

5.5.3 Hosts with significantly high static power consump-

tion (uc > 1)

Figure 5.5(b) shows the energy consumption versus utilization curve of a host with

the value of the critical utilization more than one. But for any system, the total

value of utilization can never exceed one, so we should take uc = 1 and schedule

the tasks on separate host taking uc = 1. The reason behind choosing uc = 1 is

that the value of energy consumption strictly decreases with an increase in the

value of utilization until the value of u reaches uc. As the minimum value of

the energy consumption can be obtained at the utilization value 1 among all the

possible utilization values, choosing uc = 1 gives the best possible result.

Chapter 5. VMs with Discrete Utilization 98

5.6 Scheduling Methodology for the Systems with

General Specifications (0 < uc ≤ 1)

Scheduling and analysis of the tasks for the general specifications are tricky and

difficult. Thus, we divide the problem into four sub-problems and solved sepa-

rately. Based on the type of tasks in the request, the energy-efficient scheduling

of real-time tasks can be done by dividing them into four sub-problems (e and d

refer to the execution time of the task at maximum utilization and the deadline

of the task, respectively). The considered cases of sub-problems are:

1. Case 1: All the n tasks are of same type i.e. ti(ei = e, di = d).

2. Case 2: Two type of tasks with different execution times but same deadline

i.e. ti(ei ∈ {e1, e2}, di = d).

3. Case 3: Tasks with different execution times but same deadline i.e. ti(ei, di =

d).

4. Case 4: All the n tasks having their own ei and di, i.e. ti(ei, di).

The reason behind choosing this set of cases is that, the scheduling approach of

every case is dependent on the scheduling approach for the previous one (except

for the first case, which depends on the scheduling approach for base case). And

we can apply the solution approach of one case to generate the solution approach

of the next case. This will be clear from the detailed discussion of scheduling

approaches for these cases described in next subsections.

5.6.1 Scheduling n tasks of same type (Case 1: (e, d))

This case refers to the requests with n tasks having same specifications ti(e, d).

An iterative approach has been followed to solve this problem. We start with a

suitable VM type with least utilization value that complete the task within the

deadline. Then we check whether the VM type with the next higher utilization

performs better. If uc is the critical utilization of the hosts and tasks require a

VM with utilization u, the number of VMs that can be scheduled per host are

β = duc
u
e or γ = buc

u
c. For example, when uc = 0.7 and uT = 0.2, the values of β

and γ are 4 and 3 respectively. Suppose β gets chosen out of these two, then, we

have these two following cases for the number of tasks getting scheduled:

Chapter 5. VMs with Discrete Utilization 99

1. If n is a perfect multiple of β then all the tasks are scheduled according to

our method and the number of hosts required to execute all the tasks will

be m = n
β
, where n is the number of tasks in the request.

2. If n is not multiple of β then m = bn
β
c − 1 number of hosts will execute mβ

tasks and the remaining tasks (n−mβ) are scheduled according to the base

case. The remaining number of tasks are guaranteed to be less than 2β.

For scheduling the tasks in the base case, we have used a first fit method. For

this, we have sorted the tasks in decreasing order of their utilization requirements

and the VMs are allocated to hosts using the first-fit approach for bin packing.

Instead of taking bin capacities as 1, we take these as uc + ut. Moreover, in this

case, the tasks have the same specifications, so, we do not need to sort them. Also,

the maximum value of β can be 5 (when the least feasible VM type is tiny with

uT = 0.2), the maximum number of tasks that will be in the base case is 10.

Energy consumption in this case is given by,

E = m.
e

u
.α(2uc

3 + (uβ)3) + Ebase (5.11)

where m is the number of active hosts, e
u

is the execution time of a task (or we can

say the time for which the hosts are active), α(2uc
3+(uβ)3) is the amount of power

consumption of each host and Ebase is the energy consumption for scheduling of

the tasks that are in base case.

We have a set of suitable VM types for a task which can complete the task before

its deadline. For choosing the best VM type among the suitable VM types, we

have computed certain relation through which we can make the decision based on

the value of uc of the hosts.

1. Relation between β and γ for same VM type: Let u be the utilization

provided by current VM type and n1 and n2 be the total number of hosts

needed with β and γ number of VMs per host, respectively. Schedule with

γ number of VMs per host consumes lesser energy than the schedule with

β number of VMs per host when total energy consumption in former case

is lesser as compared to total energy consumption in the latter case (can

be derived from Equation 5.11). The high number (γ) of VMs per host is

preferable if The high number (γ) of VMs per host is preferable if

Chapter 5. VMs with Discrete Utilization 100

n2.
e

u
.α(2uc

3 + (uγ)3) < n1.
e

u
.α(2uc

3 + (uβ)3)

2n2uc
3 − 2n1uc

3 < n1(uβ)3 − n2(uγ)3

uc < u 3

√
n1β3 − n2γ3

2(n2 − n1)
(5.12)

For example, when the least feasible VM type is S (uS = 0.4) and uc ∈
(0.40, 0.49], the resulting values of β and γ are 2 and 1, respectively. And in

this case, schedule with one VM per host consumes lesser energy as compared

to the schedule with two VMs per host.

2. Relation between two different VM types: Let u1 and u2 be the values

of utilizations provided by the two VM types which we need to compare.

The corresponding number of tasks per host be β1 and β2, as a result of

above relation. Let m1 and m2 be the corresponding number of hosts and

u1 < u2. Choosing the VM with higher utilization will give lesser energy

consumption when

m1.
e

u1

.α(2uc
3 + (β1u1)3) > m2.

e

u2

.α(2uc
3 + (β2u2)3)

m1u2(2uc
3 + (β1u1)3) > m2u1(2uc

3 + (β2u2)3)

2uc
3(u1m2 − u2m1) < m1u2(β1u1)3 −m2u1(β2u2)3 (5.13)

For example, when the least feasible VM type is S and uc ∈ (0.50, 0.69],

schedule using L type of VMs consumes lesser energy as compared to the

schedule using S type of VMs.

Pseudo-code for scheduling the single type of tasks is shown in Algorithm 8. We

start with finding the minimum utilization required by the tasks. Based on the

minimum utilization required, we select the VM type with the least utilization

among the set of suitable VM types. We call the utilization of this VM type u1.

This can also be calculated as u =
⌈
e
d
· 5
⌉
/5. Then, we check the satisfiability

of the relation given in Equation 5.12 to choose the number of tasks per host to

execute. If it gets satisfied then schedule with γ VMs per host performs better

than the schedule with β VMs per host. The chosen number of VMs per host

is set as β1 and the corresponding number of hosts is assigned to m1. Similarly,

for the next VM type with utilization u2, find the values of β2 and m2. Now,

we check which of the two VM types gives us better results. For this, we check

Chapter 5. VMs with Discrete Utilization 101

Algorithm 8 Scheduling single type of tasks S(e, d, n)

1: Allocate the VM with minimum utilization required by the task from T, S, M,
L and XL. Let it be u.

2: Number of tasks per host when total utilization is more than uc, β ← ducu e
3: Number of tasks per host when total utilization is less than uc, γ ← bucu c
4: Find the number of hosts in each case. Let they be n1 and n2, respectively

5: if uc < u · 3

√
n1β3−n2γ3

2(n2−n1)
then

6: β1 ← γ . γ VMs per host consumes less energy
7: Number of hosts, m1 ← n2

8: else
9: β1 ← β . β VMs per host consumes less energy

10: Number of hosts, m1 ← n1

11: u1 ← u
12: Similarly choose β2 and m2 for u2 = u1 + 0.2 if u1 ≤ 0.8
13: if 2uc

3(u1m2 − u2m1) < n1u2(β1u1)3 − n2u1(β2u2)3 then
14: uf ← u2, βf ← β2 and mf ← m2

15: u← u2 goto step 2
16: else
17: uf ← u1, βf ← β1 and mf ← m1

18: Allocate VMs with utilization uf to the tasks.
19: Schedule βf number of VMs on each host.
20: Schedule the remaining number of tasks i.e. n−mfβf according to base case.

whether the relation given in Equation 5.13 gets satisfied. If yes, the higher VM

type with utilization u2 gives better result than the VM type with utilization u1

and continue with u2 as u. Otherwise, u1 performs better than u2. Store the final

utilization values as uf , βf and mf , where uf is the utilization provided by the

selected VM type, βf is the number of VMs to be scheduled on one host and mf

is the total number of hosts required (without considering the tasks that fall into

base case). Then we allocate the tasks to VMs with utilization uf and schedule βf

VMs on a host and the remaining tasks are scheduled according to the base case.

Algorithm 8 gives the schedule with the lowest energy consumption, but, we have

some special cases, where the two relations in Equation 5.12 and 5.13, can be

simplified further. They would not make any change to the decision made by the

algorithm, so, whenever the task set of user request falls in one these cases, we

can safely replace the relations with the resulting ones. These special cases are:

• Relation between energy consumption with β and γ number of

tasks per host when total number of tasks is a multiple of both:

Let n be the number of tasks in user request which satisfies n%β = 0 and

Chapter 5. VMs with Discrete Utilization 102

n%γ = 0. Let n1 and n2 be the number of hosts in case of β and γ number of

VMs per host, respectively. Then n1 = n
β

and n2 = n
γ
. Energy consumption

is lower with γ number of VMs per host when a VM with utilization u is

used if the following condition is satisfied

n

γ
.
e

u
.α(2uc

3 + (uγ)3) <
n

β
.
e

u
.α(2uc

3 + (uβ)3)

⇒2uc
3 + (uγ)3

γ
<

2uc
3 + (u(γ + 1))3

γ + 1
[as β = γ + 1]

⇒(γ + 1)(2uc
3 + (uγ)3) < γ(2uc

3 + (u(γ + 1))3)

⇒2uc
3 + (uγ)3 < γu3(3γ2 + 3γ + 1)

⇒ uc <
3

√
γu3(2γ2 + 3γ + 1)

2
. (5.14)

So if the above Equation is satisfied then the γ number of VMs per host

is allocated to have minimum energy consumption, otherwise β number of

VMs per host have lesser energy consumption.

• Comparing energy consumption by two different VM types when

number of tasks is a multiple of both β1 and β2: Let n is the number

of tasks and u1 and u2 (u1 < u2) be the values of utilization provided by the

two VM types that need to be compared. If β1 and β2 are the respective

number of tasks per host and n satisfies n%β1 = 0 and n%β2 = 0 , then

energy consumption is lower at u2 if:

n

β2

.
e

u2

.α(2uc
3 + (u2β2)3) <

n

β1

.
e

u1

.α(2uc
3 + (u1β1)3)

u1β1(2uc
3 + (u2β2)3) < u2β2(2uc

3 + (u1β1)3)

2uc
3(u1β1 − u2β2) < u2β2(u1β1)3 − u1β1(u2β2)3

2uc
3(u1β1 − u2β2) < u1u2β1β2

((u1β1)2 − (u2β2)2)

2uc
3(u1β1 − u2β2) < u1u2β1β2(u1β1 − u2β2)

(u1β1 + u2β2)

The final relation depends on the value of (u1β1 − u2β2).2uc
3 > u1u2β1β2(u1β1 + u2β2) (u1β1 − u2β2) < 0

2uc
3 < u1u2β1β2(u1β1 + u2β2) else

Chapter 5. VMs with Discrete Utilization 103

⇒

uc >
3

√
u1u2β1β2(u1β1+u2β2)

2
(u1β1 − u2β2) < 0

uc <
3

√
u1u2β1β2(u1β1+u2β2)

2
else

(5.15)

• When β1 and β2 are equal in the above case: This case refers to a

situation where both values of utilization result in same β values. Since

u2 > u1 and β1 = β2 , say β, the value of u1β1−u2β2 will always be less than

0. Therefore, 3

√
1
2
u1u2ββ(u1β + u2β) can be written as β 3

√
1
2
u1u2(u1 + u2).

So if the following condition

uc > β
3

√
1

2
u1u2(u1 + u2) (5.16)

is satisfied then, the VM type with higher utilization will consume lesser

amount of energy as compared to the VM type with lesser utilization value.

5.6.2 Scheduling approach for two types of tasks having

same deadline (Case 2: (e1, d) and (e2, d))

This case refers to the requests where there are only 2 types of tasks. They may

have any one of the two available execution times but they ought to have the

same deadline. Let n1 and n2 be the number of tasks with specification (e1, d) and

(e2, d), respectively. These tasks may run independently on separate hosts or may

run in together on the same host. When the tasks run individually, the problem

gets reduced to case 1, but when they run together, total energy consumption will

have two components:

1. Energy consumption of the hosts where both types of tasks reside.

2. Energy consumption of the hosts where a single type of tasks resides.

The second component occurs when one type of task is much higher in number

than the other type of tasks, and all the former type of tasks could not be combined

with the latter type.

As discussed in the previous case, the tasks running on the same host must have

approximately the same execution time so that the total utilization of the host

remains the same throughout its active period. For achieving this, we allocate the

least feasible VM type to all the tasks and to approximate their execution time

Chapter 5. VMs with Discrete Utilization 104

Algorithm 9 Scheduling two types of tasks with same deadline
(D(e1, e2, d, n1, n2))

1: Let u1 and u2 be the utilization of VM types which satisfies the minimum
requirements of tasks with specification (e1, d) and (e2, d), respectively

2: Compute (β1, β2) such that total utilization is approximately equal to uc and
should not be more than uc + ut.

3: for each combination c of (β1, β2) do
4: if bn1

β1
c > bn2

β2
c then

5: swap the two types of tasks.

6: number of hosts with both type of tasks, numHostsc ← bn1

β1
c

7: Remaining second type task NRc ← n2 − bn1

β1
cβ2

8: Ec ← bn1

β1
cd(2uc

3 + (u1β1 + u2β2)3) + Epart + S(e2, d,NRc)
9: end for

10: Esingle ← S(e1, d, n1) + S(e2, d, n2) + Epart
11: Compare energy consumption in all the cases and choose least one.

to deadline d. The reason behind choosing the least feasible VM type is that it

completes the task just before its deadline. All the tasks have the same deadline

in this case, so, if we allocate them to their least feasible VM type, the execution

time of all the tasks will be approximately equal to deadline d.

Now, let u1 and u2 be the utilization of the VM types allocated to the two types

of tasks and β1 and β2 be the non-zero number of tasks of each type on a host.

When either of the two is zero, the tasks run individually. Also, based on the

values of uc, u1 and u2, the pair (β1, β2) may assume several values. The decision

on whether to run the tasks individually or in one of the combinations need to be

made. For this, we compare the total energy consumption in each case and choose

the one with the least value.

The pseudo-code for scheduling two type of tasks with the same deadline is given

in Algorithm 9. We first find the least feasible VM that can be allocated to both

the task types. Let u1 and u2 be the utilization of selected VM types. To obtain

total utilization of the hosts approximately equal to uc (preferably higher), these

VM types can be scheduled together. Let β1 and β2 be the corresponding number

of VMs on one host when they are scheduled together. Also, there is an option

for scheduling both the type of tasks individually (S(e1, d, n1) and S(e2, d, n2)

scheduled described in Algorithm 8). So, for all the available options, we compute

the energy consumption and choose the best one out of these options. As we are

comparing all the cases exhaustively and choose the best one, we always get the

result with the minimum energy consumption.

Chapter 5. VMs with Discrete Utilization 105

5.6.3 Scheduling approach for the requests with multiple

number of task types having same deadline (Case 3:

(ei, d))

This case refers to the requests where tasks may take different execution times

at utilization 1 but have the same deadline. For each task, we initially allocate

the least feasible VM type as done in the previous case. This way the tasks get

classified into 5 categories based on the category of the VM type allocated to

them. These categories contain tasks that need T, S, M, L and XL VM types

respectively.

One important observation for solving this problem is that there cannot be VMs

from more than two categories on the same host as the number of discrete VM

types is 5 where all VM types are equi-spaced in terms of utilization. This can be

seen from the following example, that even with uc = 1.0, which is the highest

among all the possible values of uc, not more than two types of VMs can be

combined. There are at most five possible combinations of VM types for any

value of uc (sum of utilization values of three least powerful VMs T, S and M is

0.2 + 0.4 + 0.6 = 1.2 > 1.0). These permissible combinations are: (a) one VM of

type T with one VM of type L (uT + uL ≤ 1.0), (b) two VMs of type T with one

VM of type M (2uT + uM ≤ 1.0), (c) one VM of type S with one VM of type M

(uS+uM ≤ 1.0), (d) three VMs of type T with one VM of type S (3uT +uS ≤ 1.0),

and (e) one VM of type T and two VMs of type S (uT + 2uS ≤ 1.0). Even if we

execute them separately, the total utilization will never be 1.0 except for u = 0.2.

As we can see, even with the highest value of utilization only five combinations

are possible, so the number of combinations will be even lesser with smaller values

of utilization. So, we can exhaustively check each of the possible cases and choose

the best option. For each of the possible combinations, we use the approach used

for solving case 2, as both the problems are same, i.e., two types of tasks having

the same deadline.

Scheduling approach for case 3 is given in Figure 5.6. We start with all the

five categories of tasks which have been allocated to VMs of types T, S, M, L,

and XL, respectively. Since the XL VMs cannot be scheduled with any other

VMs, therefore, tasks of that category get scheduled individually on separate hosts

(which is shown in Figure 5.6 as Schdind XL VMs). The combination of VM

types depends on the value of critical utilization, so, depending on the values of

uc, there are several possible flows and we choose the one which consumes the

Chapter 5. VMs with Discrete Utilization 106

�chdin� X� VMs

�ei; d); u�

u� < 0�8

u� < 0�6

u� < 0�4

�chdin� � VMs

Schedule 3
-M with S
-L with T
-S with T

Schedule 4
-M with T
-L with T
-S with T

�chdin� T VMs

yes no

yes no

yes no

Schedule 1
-L with T
-M with S
-S with T

Schedule 2
-L withT
-M with T
-S with T

�chdin� M VMs

Schedule 1
-M with S
-S with T

Schedule 2
-M with T
-S with T�chdin� S VMs

Choose the best schedule

Schdule S
with T VMs

Choose the best schedule

Allocate least feasible VM to each task

Figure 5.6: Scheduling approach for case 3: SC3(ei, d, n)

least amount of energy. The tasks with VM types L and XL were given preference

in scheduling order because they can only be combined with tasks allocated to T

and S types of VMs. And if we schedule the latter ones first, we would not have

any tasks to combine with tasks having higher utilization requirements.

As shown in the flowchart, we consider these four conditions and based on that

we decide about scheduling of VMs and these cases are

• Case (0.8 ≤ uc < 1): We select one the four schedules (a) L type VM

combined with T type VM, followed by M type VM combined with S type

VM and followed by S type VM combined with T type VMs, (b) L type VM

combined with T type VM, followed by M type VM combined with T type

VM and followed by S type VM combined with T type VMs, (c) M type

VM combined with S type VM, followed by L type VM combined with T

type VM and followed by S type VM combined with T type VMs and (d)

M type VM combined with T type VM, followed by S type VM combined

with S type VM and followed by S type VM combined with T type VMs.

The combination schedule are specified in the flowchart (shown in Figure

5.6), among all these schedules which has the least value of total energy

consumption (ties are broken arbitrarily) gets selected. While proceeding in

one schedule, only the tasks left in one step goes to the next. Also, we aim

Chapter 5. VMs with Discrete Utilization 107

to schedule all the tasks with higher VM type in one step and the remaining

tasks with lower VM types, if any, goes to the next steps.

• Case (0.6 ≤ uc < 0.8): In this case, we schedule L type VMs individually on

separate hosts and further check whether the value of uc ≤ 0.6. For uc > 0,

we have two possible schedules (a) M type VM combined with S type VM,

followed by S type VM combined with T type VM, and (b) M type VM

combined with T type VM, followed by S type VM combined with T type

VMs. We compare the total energy consumption in both cases and choose

the schedule with the least energy consumption.

• case (0.4 ≤ uc < 0.6): In this case, the M type VMs get scheduled individu-

ally in separate hosts and check for running the two types of VMs in parallel,

with respect to the schedule for case 2 (using D(e1, e2, d, n1, n2) as described

in Algorithm 8) and scheduled accordingly.

• Case (uc < 0.4): In this case, we schedule T and S type of VMs on separate

hosts, and this minimized the energy consumption of the hosts of the cloud

system.

5.6.4 Scheduling approach for general synced real-time tasks

(Case 4: (ei, di))

This is the general case where there is no restriction on the values of execution

time and the deadline of the tasks. For solving this, we want to divide the tasks

in several task sets having same deadlines, so that, we can schedule all the sets

according to the schedule for case 3 (SC(ei, d, n) as given in flowchart of Figure

5.6), separately. For this, we first sort the task set in increasing order of their

deadlines and then select the VM with the least utilization value from the set of

suitable VM types. To divide the task set into clusters, we have applied one of the

methodologies described below to the task set such that tasks belonging to same

cluster map to the same value of deadline which may not be the actual deadline

of the tasks. Each cluster is then executed according to case 3 ((SC(ei, d, n) as

given in flowchart of Figure 5.6)) where the tasks may have different execution

times but the same deadline. We have designed and used four methodologies for

clustering the tasks according to their deadline are described as follows:

1. Clustering method 1 (CLT1): No change in utilization require-

ments of the tasks: Figure 5.7(a) describes this clustering technique. The

Chapter 5. VMs with Discrete Utilization 108

(eC1, dC1) (eC2, dC2) (eC3, dC3)

deidie = d ei
dC1

e deidie = d ei
dC2

e

deC2
dC2

e 6= deC2
dC1

e deC3
dC3

e 6= deC3
dC2

e

deidie = d ei
dC3

e

C1 C2 C3

(a) CLT1

(eC1, dC1) (eC3, dC3)(eC2, dC2)

C1 C2
C3

d ei
dC1
e ≤ deidie + 0.2 d ei

dC2
e ≤ deidie + 0.2 d ei

dC3
e ≤ deidie + 0.2

(b) CLT2

(eC1, dC1) (eC2, dC2)

d ei
dC1
e ≤ 1 d ei

dC2
e ≤ 1

C1 C2

task goes to the nearest cluster

(c) CLT3

(eC1, dC1) (eC2, dC2)

d ei
dC1
e ≤ 1 d ei

dC2
e ≤ 1

C1 C2

task goes to the lowest ID cluster

(d) CLT4

Figure 5.7: Description for clustering techniques

horizontal axis represents the time axis and tasks are plotted at their re-

spective deadlines. Vertical lines in the time axis (x-axis) represent the task

deadlines. We initialize the first cluster with the first task. Let the deadline

of the cluster be the same as the deadline of this task. We keep on adding

tasks to the cluster until they need a higher VM type than their initial allo-

cated one (their actual deadline of the added task is changed to the deadline

of the cluster, by shifting deadline of the task towards left in the time axis).

Chapter 5. VMs with Discrete Utilization 109

We start a new cluster whenever such a task is found. This process is re-

peated until all the tasks are mapped to some cluster or the other. When

the deadline of a task is shifted toward the left side of the time axis, the ab-

solute deadline time of a task is decreased, so the utilization requirement of

the task is increased. Suppose a task requires utilization 0.12 (T type VM).

Then the deadline can be shifted left of the time axis until the utilization

requirement the task is equal to less than the 0.2 (same T type VM). Thus

the deadline for all the tasks belonging to a cluster is same, which is taken

as the deadline of the cluster. We write d ei
di
e = d ei

dC1
e. Again the deadlines

of two different clusters are different.

2. Clustering method 2 (CLT2): Utilization requirement of the task

changes by at most 1 level: The process is same as above with a small

change that tasks may be allocated the next higher VM type if required,

that is up-gradation of VM types is allowed but only by one step. Figure

5.7(b) describes this clustering technique. For a task ti(ei, di), we can write

d ei
dC1
e ≤ d ei

di
e+ 0.2.

3. Clustering method 3 ((CLT3)): Utilization requirement may change

up to ui = 1 and task is allocated to the nearest cluster: In this tech-

nique, VM up-gradation to the best type is allowed. The remaining process

is same as in the above two clustering techniques. Figure 5.7(c) describes

this clustering technique. The marked task is eligible for both clusters C1

(marked with dotted line) and C2, but this clustering technique chooses C2

for the task as it is the cluster with the closest deadline.

4. Clustering method 4 (CLT4): Utilization requirement may change

up to ui = 1 and task is allocated to the cluster with lowest ID:

Initialize the first cluster with the first task. Let the deadline of the cluster

be same as the deadline of this task. Iterate over all the tasks and check

if they can be allocated to the current cluster. Start the new cluster from

the first task which could not be allocated to the previous cluster. Repeat

until all the tasks are covered in one cluster or the other by considering only

uncovered tasks in each iteration. Proceeding this way, the tasks cannot go

into a cluster of higher ID even if it satisfies the requirements. Figure 5.7(d)

describes this clustering technique. The marked task is eligible for both

clusters C1 and C2 (marked with dotted line), but this clustering technique

chooses C1 for the task as it is the cluster with lowest ID.

Chapter 5. VMs with Discrete Utilization 110

 70

 80

 90

 100

 110

 120

TaskMix1 TaskMix2 TaskMix3 TaskMix4

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Task mixes

CLT1 CLT2 CLT3 CLT4

(a) Different task mixes

 70

 75

 80

 85

 90

 95

 100

 105

 110

1000 5000 10000 20000

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Number of tasks

CLT1 CLT2 CLT3 CLT4

(b) Different number of tasks

 70

 80

 90

 100

 110

 120

 130

0.400000 0.500000 0.600000 0.800000 0.900000

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Critical utilization values

CLT1 CLT2 CLT3 CLT4

(c) Different uc

Figure 5.8: Energy consumption of cloud system

5.7 Performance Evaluation

In the previous section, we described four clustering techniques for dividing the

task set into clusters with the same deadline. In this section, we compare the total

energy consumed by the task set when clustered according to these techniques. The

task set is generated by randomly computing their execution time at utilization 1

and deadline. The tasks are then sorted according to their deadline. This sorted

task set is given as input to each of the clustering techniques, which schedules the

resulting clusters according to case 3 (SC(ei, d, n) as given in flowchart of Figure

5.6).

Since we are using a homogeneous cloud system, all the hosts have the same

specifications. These hosts are characterized by the value of critical utilization,

uc. Therefore, the cloud system itself can also be characterized by this value. We

have performed our experiments with different variations which are stated below.

1. Keeping the number of tasks fixed, we have computed the energy consump-

tion for different set of tasks. Figure 5.8(a) shows a comparison of energy

Chapter 5. VMs with Discrete Utilization 111

consumption values between all the four clustering techniques for the same

cloud system. We have taken uc = 0.73 in this case. As we can see, cluster-

ing techniques CLT4 gives us the least energy consumption for all the task

mixes.

2. Figure 5.8(b) shows a comparison of energy consumption values between

all the four clustering techniques when the requests have different number

of tasks. We have normalized the energy consumption of all the clustering

techniques with respect to CLT1 for same task set. This comparison is done

for same cloud system with uc = 0.73. As we can see, a similar pattern is

being followed for all the task sets. Here CLT4 is giving the least energy

consumption in all the cases.

3. Keeping the task set same, Figure 5.8(c) shows a comparison of energy con-

sumption values between all the four clustering techniques on a different

cloud system. Here also, we have compared the normalized values of energy

consumption with respect to CLT1 for the same cloud system. Clustering

techniques CLT1, CLT2, and CLT3 produced better results than CLT4 when

the value of the critical utilization (uc) is less than 0.6, whereas, for the value

of uc > 0.6, CLT4 produced a better result.

From the above results, we can say that choosing the clustering techniques does

not depend on the user request but on the specification of the cloud system.

As the value of uc is known for a cloud system, we can choose the clustering

technique, without looking at the task mix. For cloud systems with lower critical

utilization values, that is uc ≤ 0.6, choose any one of CLT1, CLT2 or CLT3, as

they all produce comparable results. For systems with a higher uc, it is better to

choose CLT4 as the clustering technique to minimize the energy consumption of

the system.

5.8 Summary

In this chapter, we investigate the problem of energy-efficient scheduling of a set

of offline real-time tasks in a virtualized cloud environment. The virtual resource

layer of the cloud system consists of a set of different type of VMs, where each VM

type is specified by its utilization. We assume that the bigger VMs (having higher

compute capacity and thus requires lesser time to execute a task) provide higher

Chapter 5. VMs with Discrete Utilization 112

utilization and smaller VMs (having lesser compute capacity and thus requires

more time to execute a task) provide lower utilization to the host. In this chapter,

we have carefully used the energy consumption versus the utilization characteris-

tics of the hosts of the cloud system to minimize the overall energy consumption

of the system. We first calculate critical utilization value when the host energy

is minimum and the target of the scheduling policy is to keep the host utiliza-

tion close to the critical utilization. We categorize the problem of energy-efficient

scheduling of a set of real-time tasks into four subproblems and then solve them

individually.

Chapter 6

Scheduling Scientific Workflows

on Virtualized Cloud System

This chapter presents a series of energy-efficient scheduling techniques for exe-

cuting a set of online dependent tasks, represented as scientific workflows. Each

task in a workflow requires multiple VMs to execute and we use two different VM

allocation approaches for this. We consider three different migration policies: no

migration, limited migration, and full migration in designing our scheduling ap-

proaches. Extensive simulation experiments are conducted on Cloudsim toolkit

to establish the superiority of the proposed work as compared to a state-of-art

energy-efficient scheduling policy.

6.1 Introduction

The overwhelming popularity of the cloud system has attracted the users from

different domains to host their applications at an affordable cost. The availability

of high-end resources in the cloud has made itself a better choice for the scientific

applications [95]. The elasticity feature added advantage to the cloud domain to

efficiently handle the variation in the resource requirement of these scientific ap-

plications. These scientific applications often come from fields, such as astronomy,

astrophysics, bioinformatics, high energy physics, etc., and they are modeled as

scientific workflows [24, 25, 41].

Because of the significant cost of the compute servers of the cloud system, most

of the cloud system provider does not procure all the servers (or hosts) of their

113

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 114

cloud system in one go; instead, they purchase servers in phases and add them

to their existing cloud system. In fact, a data center might contain multiple

generations of hardware [86]. Thus, in most of the cases, cloud systems are bound

to be heterogeneous. But for the cloud user, this heterogeneity gets hidden by

the virtualization layer and user’s requests require machines in terms of VMs and

most of the cases the requests are for homogeneous VM. So to cater this particular

behavior of cloud system, in this work, we have considered scheduling of workflows

to be run on top of a set of homogeneous virtual machines while the cloud system

essentially consists of heterogeneous servers (hosts).

Scientific workflows are typically expressed as a precedence constraint graph. But

the graphs are structured in such a way that most of them can also be represented

as a chain of tasks [131, 132]. Each task in the chain represents a collection of

sub-tasks. Each task has also its individual execution time or length. A collection

of VMs (in case of a virtualized system) or a set of threads (in case of a non-

virtualized system) together execute a task where each VM or thread executes a

sub-task. Thus in case of a virtualized cloud system, a task of a scientific workflow

requires multiple VMs for its execution. In this chapter, we consider the scheduling

of this structured scientific workflows for the cloud system. Now there may be two

different types of VM allocations for a task of a workflow: (i) non-splittable VM

allocation (NSVM), and (ii) splittable VM allocation (SVM). In case of NSVM, all

the required VMs of a task must be placed on one host. And in case of SVM, the

VMs can be placed on different hosts. In our work, we have considered scheduling

of a set of online scientific workflows so as to reduce the energy consumption where

each workflow has a deadline and the schedule must satisfy the deadline constraint.

A substantial amount of research has already been done to schedule scientific work-

flows in the cloud system in an energy-efficient manner [102, 103, 61, 41, 95, 99].

For instance, Durillo et al. [102] has developed a multi-objective energy-efficient

list-based workflow scheduling algorithm, called MOHEFT (Multi-Objective HEFT)

where they present a trade-off between the energy consumption and the makespan

time. In [28], Bousselmi et al. partitioned the workflow to reduce the data com-

munication among them, thereby reduced the network energy consumption. Then

they used the cat swarm optimization based heuristic to schedule each partition

on a set of VMs in an energy-efficient manner. Chen et al. [104] designed an online

scheduling algorithm, called, energy-efficient online scheduling EONS to schedule

tasks from different workflows. In this approach, system resources are dynamically

adjusted to maintain the weighted square frequencies of the hosts.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 115

Recently, Li et al. [61] has considered reducing both the energy consumption

and the execution cost of workflow while guaranteeing deadline constraints. They

considered only the dynamic energy consumption of the hosts and used DVFS

technology to utilize the slack time of a task. Xu et al. [41] considered the

execution of scientific workflows to minimize the energy consumption of cloud

resources. They transformed a workflow into a set of sequential tasks and each

task arrives at the system with a predefined start time. Their considered cloud

system consists of heterogeneous hosts and a set of homogeneous VMs placed on

those hosts execute the tasks.

In this chapter, we consider similar kinds of environment (homogeneous VMs on

heterogeneous hosts) as considered in [41] to schedule a set of online scientific

workflows in the cloud system. But we do not consider the static partition of the

tasks; instead, the start time of each task of a workflow is calculated dynami-

cally based on the usages of the slack time of the workflow. We summarize the

contributions of this chapter as follows.

• An energy consumption model for the cloud is presented catering to both

static and dynamic energy consumption.

• Two different VM allocation techniques (splittable and non-splittable) is

presented

• Three different slack distribution and utilization technique is presented.

• A series of energy-efficient online scheduling techniques are presented for

executing a set of online scientific workflows in the cloud environment.

• Trade-off between the energy consumption, the number of migrations and

number of splits is addressed.

6.2 System Model

The considered virtualized cloud system accepts a set of online workflows. Each

workflow is represented by a chain of tasks. These tasks are to be executed on

some virtual machines (VMs) which are hosted on a set of physical machines. The

physical layer of the cloud system consists of a sufficiently large number (can be

considered as infinite) of physical machines (or hosts), H = {h1, h2, h3, h4, · · · }.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 116

Workflows

Incoming

Consolidation
Agent

Workflow
SchedulerEngine

Slack Distribution

Cloud Resources

h 2 h3 4 h51 h h

......

Figure 6.1: System architecture

n1,1 l1,1 n2,1 l2,1 n3,1 l3,1WF1

n1,2 l1,2 n2,2 l2,2WF2

n1,3 l1,3 n2,3 l2,3 n3,3 l3,3WF3

VM requirement Task length

t1,1 t2,1 t3,1

Figure 6.2: Application model

These hosts are heterogeneous in nature and they are mainly characterized by

their compute capacity, amount of RAM, and storage capacity. Compute capacity

of a host is defined in terms of MIPS (million instructions per second). We define

a set Hactive ⊆ H as the active hosts that are switched on. Each physical machine

(i.e. host) hk accommodates a set of VMs, VMk = {v1k, v2k, . . . , v|Vk|k}. Each

VM consumes a portion of its host’s compute capacity, RAM, and storage. VMs

can be added and removed from the physical machines (PMs) dynamically as and

when required. They can also be migrated from one PM to another to facilitate

consolidation. The compute capacity of a VM vjk (jth VM on kth host) is written

as CP (vjk)

The system model can be illustrated using Figure 6.1. The example cloud system

has five hosts: h1, h2, h3, h4, and h5 where hosts h1, h2, and h3 are active hosts.

The VM capacity of host h1 is 4 that is, it can accommodate maximum 4 VMs.

Similarly, VM capacity of h2, h3, h4 and h5 are 8, 16, 16 and 32 respectively. All

the VMs in h1 and h2 are executing some tasks of some workflows while only 10

VMs in h3 are busy executing some tasks; and h3 can host another 6 VMs. As

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 117

the workflows enter the cloud system, they pass through the slack distribution

engine. The job of the slack distribution engine is to distribute the whole slack

of a workflow among different tasks of that workflow. The next phase is the

workflow scheduling phase. The job of the workflow scheduler is to efficiently

schedule the tasks of an incoming workflow on the existing state of the cloud

resources such that the overall energy of the cloud system is minimized (considering

the energy consumption model described in Section 6.4). The system consists of

a consolidation agent and the job of the agent is to consolidate the VMs to a

minimum number of hosts to reduce the total number of active hosts in the system.

6.3 Application Model

The application model consists of a set of online workflows WF = {WF1,WF2, · · · }.
Each workflow WFp is represented by a sequence of tasks {t1,p, t2,p, · · · , t|WFp|,p}
with a chain constraint among them [131, 132]. Each workflow WFp has its arrival

time ap. Each task ti,p of a workflow WFp is characterized by two parameters: (a)

VM requirement of the task ni,p, and (b) the length of the task (li,p); where i is

the task sequence number in the workflow and p is the workflow number. VM re-

quirement of a task means total number of parallel VMs needed at the same time

to execute the task. The length of the task is expressed as million instructions

(MI).

Figure 6.2 shows an example of such workflow system consisting of 3 different

workflows or chains WF1, WF2, and WF3 having 3, 2, and 3 tasks respectively.

A task of a workflow can not start execution before complete execution of its

predecessor tasks of the same workflow. We assume that there is no dependency

among different workflows and thus execution of one workflow can overlap with

others.

Suppose a task ti,p requires only one VM for its execution and it is executed by a

VM vjk. Then it will require li,p/CP (vjk) amount time for its completion. This

becomes the execution time of task ti,p on VM vjk and is represented by eipjk.

Mathematically, it can be written as:

eipjk =
li,p

CP (vjk)
(6.1)

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 118

We also define the ready time of a VM, r(vj,k) as:

rt(vjk) = st(vjk) + eipjk (6.2)

where, st(vjk) is the start time of the VM which indicates the time instant when

the VM vjk has started executing the task tip.

Every workflow has a user-defined deadline dp; that is execution of all the tasks in

the workflow must finish their execution by time dp. Deadline of a workflow WFp

satisfies the relation dp ≥
∑|WFp|

i=1 eipjk + ap.

The time difference between the deadline and the summation of execution time

for all the tasks of a workflow WFp is called the slack time slkp and this can be

represented as

slkp = dp − ap −
(|WFp|∑

i=1

eipjk

)
(6.3)

where slkp is the total amount of slack time for the workflow WFp, |WFp| indicates

the length of the workflow (or chain) that is the total number of tasks for the

workflow WFp. In case of homogeneous VMs, slkp can be calculated beforehand.

6.4 Energy Consumption Model

Cloud system consists of many power consuming components but a major portion

of the power in a cloud data center is consumed by the host (or compute node)

itself. Again the host power consumption is mainly driven by that of the processor

(CPU), memory, network interface and disk storage. Power consumption of a host

has two components: static and dynamic. A large volume of research has already

been done considering only the dynamic power consumption of the host, specially

when scheduling of real-time tasks was considered [33, 30, 52, 67]. But research

also reveals the fact that static power consumption of a host is nearly 60% to 70%

of the total power consumption [45, 43] which is significant and should not be

ignored.

Thus in our work, we have considered both the static and dynamic power con-

sumption of the host to schedule a set of scientific workflows in the cloud where

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 119

each workflow consists of a chain of real-time tasks. The summation of these power

consumption values over the total time interval gives the energy consumption of

the system. Mathematically, it can be written as E =
∫∞
t=0

PCt.dt, where PCt is

the total power consumption of the system at time t. Total energy consumption

of an active host hk can be expressed as follows.

Ehk = Ehk s + Ehk d (6.4)

where, Ehk is the total energy consumption of a host hk, Ehk s is the static energy

consumption of the host, and Ehk d is the dynamic energy consumption of the host.

Thus total energy consumption of the cloud system can be expressed as

Etotal =

|Hactive|∑
k=1

Ehk (6.5)

We assume that all non-active hosts are switched off and they do not consume any

energy.

In this work, we considered that the hosts in the cloud system are heterogeneous

and their base power (or energy) consumptions are different, similar to the energy

consumption model considered in [41]. Base (or static) energy consumption of a

host hk can be written as

Ehk s = ECRbasek .t (6.6)

where, ECRbasek is the base energy consumption rate of host hk and t is the total

active time for host hk.

The base energy consumption rate of the hosts can be taken as the function of

their VM capacity which is explained in details with example in Section 6.10. Ac-

cordingly, the base energy consumption rate of hosts in the system model (Figure

6.1) can be expressed as follows.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 120

ECRbase1 ≤ ECRbase2 ≤ ECRbase3 ≤ ECRbase4 ≤ · · · (6.7)

which means the base energy consumption rate of host h1 is less than or equal

to the base energy consumption rate of host h2, which is tern less or equal to

the base energy consumption rate of host h3 and so on. This is because the VM

capabilities of host h1 is less than VM capabilities of host h2, which is less than

VM capabilities of host h3, and so on.

Again the dynamic energy consumption of a host is basically contributed by the

active VMs when they execute some tasks. In our work, we considered the dynamic

energy consumption model similar to [30]. Suppose VM vjk executes task ti,p. Then

the energy consumption of the VM, Evipjk can be written as follows.

Evipjk = ECRvjk .eipjk (6.8)

where, ECRvjk is the energy consumption rate of VM vjk, eipjk is the time taken

by VM vjk to execute task ti,p .

Now the total dynamic energy consumption of a host can be represented as

Ehk d =

|VMk|∑
j=1

|WFp|∑
i=1

Evipjk (6.9)

In order to achieve energy efficiency, the workflow scheduler always try to put the

tasks of workflows in the hosts with lower energy consumption.

6.5 Objective in the Chapter

The chapter aims to schedule a set on online workflows, represented by WF =

{WF1,WF2,WF3, · · · } onto a virtualized cloud system, represented by an infinite

set of physical machines (or hosts), H = {h1, h2, h3, h4, · · · } such that the overall

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 121

energy consumption of the cloud data center is minimized and the deadline con-

straints of all the workflows are met. Each workflow consists of a chain of tasks

where each task has its own VM requirement and length (described in details in

Section 6.3). We assumed that all the hosts reside in a single data center and

they are heterogeneous in their compute capacity and energy consumption. In

this chapter, we have considered all the VMs are homogeneous by their computing

capabilities. Thus the execution time of two tasks with the same length happens

to be the same even if different VMs execute them on different hosts.

6.6 Scheduling Options and Restrictions in Work-

flow Scheduling

Any scheduling policy primarily addresses three parameters: “which” task to exe-

cute, “where” to execute the task and “when” to execute the task. In our work, we

are considering a set of online scientific workflows for scheduling in a cloud system

and the scheduling procudure is invoked upon arrival of a workflow to the system.

In case of arrival of multiple workflows at the same time, they are considered in

any arbitrary order. Again, a workflow consists of a chain of tasks and these tasks

are executed sequentially. This is how the “which” parameter is addressed. The

“where” parameter of scheduling deals with two things: (i) selecting a proper host

(or a set of hosts because we have considered multi-VM tasks) and (ii) placing

VMs on the selected host (or a set of hosts). The scheduler selects the host or a

set of hosts in an energy-efficient way which is explained in Section 6.7. The VM

placement is described in Subsection 6.6.1. The third parameter when specifies

the time at which the selected task is sent for execution to the selected host. We

have exploited this parameter by efficiently utilizing the slack time of a workflow

and is explained in the following Subsection.

6.6.1 VM placement

VM placement refers to mapping virtual machines to physical machines (or hosts)

of the cloud system. In this work, we consider online mapping of VMs to hosts

and this problem is proved to be NP-complete [133]. Various approaches such

as constraint programming, linear programming, genetic algorithm, bin packing,

etc. have been applied for efficiently placing the VMs on the hosts [134, 135, 136,

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 122

t1
h1 h2 h3

t2 t2

t2 t2

t2 t3

t3

t3 t3 t3 t3

t3t3t3

t3

t1

(a) Allocation under non-splittable VM category

t1
h1 h2 h3

t3

t3

t1 t3 t3 t3

t3t3t3

t3 t3 t2

t2 t2 t2 t2t2

(b) Allocation under splittable VM category

Figure 6.3: System state with different VM allocation type

137, 56, 138]. Best fit decreasing order (BFD) and first fit decreasing order (FFD)

are two effective heuristics when the problem is mapped to bin packing problem

[41, 43]. In our work, we have used a variation of BFD and combination of BFD

and FFD depending on the VM allocation type and migration planning.

A task ti in the system is specified with its length li and VM requirement ni. Thus

a task may require more than one VM for its execution and a host might fail to

accommodate the task. Keeping this scenario into consideration, we have used

two types of VM allocation in our work.

(1) Non-splittable VMs (NSVM): In this category, the VM allocation for a

single task cannot be split; thus the name. All the required VMs of a task must be

hosted on the same physical machine of the cloud system for the entire duration of

the task execution. A task can be scheduled on a host only if it can accommodate

the task completely, i.e. the idle number of VMs of a host must be greater than

or equal to the number of VMs required by the task for its execution.

(2) Splittable VMs (SVM): In the second category, the VM allocation for a

task can be split. That is the required VMs of a task can be hosted on more than

one physical machines of the cloud system. A task can be scheduled when a set of

hosts in the system can collectively satisfy the VM requirement of the task.

In case of the non-splittable VM allocation category, the system might experience a

poor utilization of the resources. This is illustrated using Figure 6.3. For instance,

let there be 3 types of hosts with VM capacities 4, 8 and 16 respectively. Let

us assume that base power consumptions of the hosts are 50W, 75W and 100W

respectively. Now we suppose that there are 3 tasks with VM requirements 2, 5,

and 7 which are to be placed on the hosts. In this case, the system will remain

underutilized and there will be a wastage of 39% of the VM capacity. Figure 6.3(a)

represents the system state after scheduling these tasks. The power consumption

will be 50 + 75 + 100 + 17x10 = 395W (assuming per VM power consumption is

10W).

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 123

On the other hand, relaxation on VM placement condition in case of splittable

type provides an opportunity to the scheduler to utilize the system resources more

effectively. Now the scheduler searches for a collection of hosts which can collec-

tively satisfy the VM requirement of a task. We see that for the given example,

the total VM requirement of the tasks is 17(= 2 + 5 + 10) and this can be met

only by only two hosts (h1 and h3). Host h2 can be put in switched-off mode and

this will not consume any power. Figure 6.3(b) represents the system status after

this schedule. This reduces the number of active hosts; which in turn reduces the

overall energy (or power) consumption of the system. Power consumption of the

system under this allocation type is 50 + 100 + 17x10 = 320W. But whenever, the

VMs of a single task reside in different hosts, they need to communicate among

themselves. The energy consumption due to this communication can be modeled

as shown below which is considered similar to [41].

ECcomm =

|Hactive|∑
i=1

|Hactive|∑
j=1

Di,j

bwi,j
ECRcomm (6.10)

where Di,j represents the total data transferred from host hi to hj, bwi,j is the

network bandwidth between hi and hj, and ECRcomm is energy consumption rate

for communication between two different hosts.

This extra energy will be added to the total energy consumption of Equation 6.5

in order to find the overall energy consumption of the system.

6.6.2 Migration

The workflow scheduler described in Section 6.1 has a consolidation agent. The

job of the consolidation agent is to run through the active hosts and to migrate

VMs from the hosts with lower utilization value to the hosts with higher utilization

value. For this operation, we define a threshold called MigThreshold. Consolida-

tion operation can be performed on a host if its utilization value falls below the

MigThreshold. Under this setups, we outline three approaches as described below.

• No migration (NM): Under this approach, the consolidation operation

is not performed. Thus the existing mappings between a task to VM and

VM to host do not get changed during the course of execution. Whenever a

new task of a workflow arrives at the cloud system, the scheduler performs

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 124

scheduling of this task only and finds the best mapping for the task. The

scheduler does not consider already scheduled tasks while scheduling the

current task. Hence the number of migrations in this approach is zero; thus

the name no migration.

• Limited migration (LM): Whenever a workflow arrives, it is scheduled

on the cloud system without changing the mapping of the already scheduled

tasks. Under this setup, the utilization of a host changes only when a task fin-

ishes its execution, thus releases the corresponding VM. Then consolidation

agent checks whether the host utilization falls below the MigThreshold value.

The agent performs the consolidation operation only if the host utilization

falls below the threshold. After the consolidation operation is performed,

the agent marks the active hosts without any active VMs on them and then

it puts such hosts in switched off mode.

• Full migration (FM): Under this approach, the consolidation operation is

performed along with the scheduling operation. Thus the existing mapping

of tasks to VMs and VMs to hosts might get changed. The newly arrived

tasks and the existing tasks in the system (both running and waiting) are

considered to be fresh tasks and energy-efficient scheduling policies are ap-

plied to get new mappings. As per the new mapping, if the associated VMs

of a task are mapped to their previous hosts, then no migration is required.

Otherwise, the system needs to migrate VMs from the current host to the

newly mapped hosts.

6.6.3 Slack distribution

Here the slack time of the task (or workflow) plays an important role. Suppose a

workflow consists of m number of tasks and slack time for the workflow is z. If

we consider discrete scheduling time, then the first task in the workflow can have

m.z choices to utilize the slack. Suppose, the task fails to utilize the slack. Then

in the worst case, the second task in the workflow will have m.z choices and this

continued till the last task of the workflow. Thus in case of brute force approach,

the total number of choice for utilizing the slack time will be exponential. In our

work, we have used three simple but effective heuristics to utilize this slack time

efficiently in our proposed scheduling techniques.

(1) Slack to first task (SFT): Only the first task of every workflow enjoys

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 125

the advantage of using the slack time of that workflow. This is the simplest of all

three.

(2) Slack forwarding (SFW): The first task of a workflow gets the highest pref-

erence to use the slack time. If the task does not use the slack completely, then

the remaining slack is forwarded to the next task of the same workflow, and this

is continued until the last task of the workflow.

(3) Slack division and forwarding (SDF): In this case, the total slack time

of a workflow gets distributed among all the tasks of the workflow. If a task does

not utilize the assigned slack time completely, then the remaining amount will be

forwarded to the next task of the same workflow as in the former category. Here

the tasks in a workflow are ranked based on their length and VM requirement and

the slack time is distributed accordingly. A task with a greater value of length and

VM requirement gets a greater portion of the slack time. For this, we calculate a

factor called total length-VM (TLV) as

TLVWFp =

|WFp|∑
i=1

(li,p × ni,p) (6.11)

where, TLVWFp is the total length-VM factor of workflow WFp, li,p and ni,p are

the length and VM requirement of the tasks of that workflow respectively.

Then we calculate individual portion of the slack time for each tasks in the work-

flow as follows.

slki,p =
(li,p × ni,p)
TLVWFp

× slkp (6.12)

where slki,p is the individual slack time to be assigned for the ith task of workflow

WFp. slkp is the total slack time for the workflow WFp as calculated by Equation

6.3.

These slacks are initially assigned to every task of the workflow. Whenever a task

do not utilize its share of slack completely, it is forwarded to the following task.

Thus the effective slack time of an task ti,p will be as follows which is calculated

dynamically.
slki,p = slki,p + remainingSlacki−1,p (6.13)

where, remainingSlacki−1,p is the unused slack of the predecessor task ti−1,p.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 126

Vm allocation Migration Slack distribution
Non splittable (NSVM) No migration (NM) Slack to first task (SFT)

Splittable (SVM) Limited migration (LM) Slack forwarding (SFW)
Full migration (FM) Slack division and forwarding (SDF)

Table 6.1: Parameters determining scheduling policies

Algorithm 10 Scheduling workflow in a cloud system

On arrival of a workflow WFp(ap, dp)

1: for each task ti,p of WFp do
2: Calculate its permissible slack time slki,p based on the policies

described in Section 6.6.3
3: Schedule task ti,p in an energy-efficient manner
4: Update the remaining slack if any
5: Update system information
6: end for

Table 6.1 listed the above stated scheduling options and restrictions which are

combined to produce a series of scheduling policies. In the next section, we present

these energy-efficient scheduling policies.

6.7 Scheduling Policies

In the previous section, we have discussed three different parameters which deter-

mine the overall working and performance of scheduling policy. In this section,

we have proposed a series of scheduling policies where these parameters are com-

bined in different ways. Algorithm 10 depicts the common steps involved in our

proposed scheduling policies. A workflow WFp enters the cloud system with an

arrival time ap and a deadline dp. Then the slack slkp can be calculated using

equation 6.3. As explained in the previous section, this slack will be utilized by

the tasks in the workflow. As mentioned in Section 6.1, tasks of a workflow pass

through the slack distribution engine before they reach the workflow scheduler.

The slack distribution engine determines the amount of slack individual task of

a workflow gets. In the following subsections, we first present scheduling policies

under the non-splittable VM allocation category and then we discuss scheduling

policies under splittable VM allocation category. With each VM allocation cate-

gory, we have associated the migration policy and the slack distribution approach

to make it complete.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 127

6.8 Scheduling with Non-splittable VM Alloca-

tion (NSVM)

In this section, we present scheduling approaches with the restriction that all the

VMs executing a task of a workflow must reside on the same host. A variation of

best fit decreasing order policy is used to put the VMs on the hosts. The scheduler

maintains the host list in non-decreasing order of their base power consumption

and the job of the scheduler is to find the host with lowest base power consumption

such that the host can hold all the VMs required by the task. In the following

subsections, we present different scheduling policies considering non-splittable VM

allocation.

6.8.1 Non-splittable VMs without migration (NSVMNM)

This scheduling technique is described using Algorithm 11. For each task of the

workflow, the algorithm first calculates its individual slack time. Then it inspects

the current system state and finds the best time to schedule the task in the system.

For this, the algorithm calls a Procedure findBestSlack(). This procedure inspects

all the active hosts in sorted order to find a host which can satisfy the VM require-

ment of the task. As soon as such a host is found, the procedure returns the host

with the best slack time when the host becomes available for executing the task

with minimum energy consumption. If no active host can hold the task within

the slack range, the procedure returns a NULL value. These steps are stated in

Procedure findBestSlack().

Then the Algorithm 11 schedules the task using another Procedure schedule().

If any active host can hold the task, the task gets scheduled on the VMs of that

host whenever it can hold (line number 4). If no active host can hold the task,

then a new host with minimum base power consumption is switched on such that

it can hold the task completely. Then the task is scheduled immediately without

wasting any slack time. This scheduling policy does not change the mapping of

the already scheduled tasks. Thus the execution of tasks are continuous and there

is no migration of tasks (or VMs). Now depending on the slack distribution logic,

the individual slack assigned to a task varies. For SFT slack distribution logic,

slki,p happens to be 0 for i ≥ 2.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 128

5 4 4 8WFp:

Figure 6.4: WorkFlow (WFp(ap = 10, dp = 33)) to be scheduled on the system

6.8.1.1 Slack to first task (SFT NSVMNM)

Figure 6.5 describes an example of the working of the scheduling policy when

applied with SFT slack distribution logic. 6.5(a) shows the system state with

three active hosts having VM capacity of 4, 8 and 16 respectively. Each filled cell

of a host indicates a VM and the values inside represents the running task and the

ready time for that VM. A blank cell indicates free slot for new VM. We assume

that the hosts are in sorted in increasing order of their base power consumption.

All the VMs of host h1 is busy in executing task t1,1 and their ready time is 20.

VMs in host h2 is executing two tasks t1,2 and t2,4 and their ready times are 15

and 12 respectively. Host h2 can instantiate two more VMs on it. And in host h3,

ready time for eight VMs are 22 and it can instantiate another 8 VMs on it.

Now let us consider a workflow with two tasks as shown in Figure 6.4 with arrival

time 10 and deadline 33. As all the VMs in our cloud system is assumed to be

homogeneous, the length of a task can easily be taken as the execution time for the

task. Thus slack is calculated by Equation 6.3 as 33 − 10 − (4 + 8) = 11. The

first task of the workflow requires 5 VMs to execute and currently host h3 can

easily hold the task. But the scheduler does not schedule the task in h3. As the

slack value is 11, the scheduler can schedule the task any time from time 10 to

21 (= 10 + 11). Scheduler checks that the VMs of the host can hold the task h2

also and it prefers to schedule on h2 only because the base power consumption

of h2 is lesser than that of h3. But h2 can hold 5 VMs only at time 15. As it

lies in the slack range, the scheduler schedules the task on host h2 to schedule at

time instant 15, rather than immediate scheduling it on h3 (though enough active

resource is available). Figure 6.5(b) shows the system state after scheduling the

first task of the workflow. Now scheduling of remaining tasks of the workflow will

immediately start from time 19 because the finish time of the first task becomes

19(= 15 + 4). There is only one task remaining to be scheduled in the workflow

and it is to be scheduled at time 19. VM requirement of this task is 4. Thus it

has only one choice and the scheduler accordingly schedules the task on host h2.

Figure 6.5(c) shows the system state after this schedule.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 129

Algorithm 11 NSVM without migration (NSVMNM)

On arrival of a workflow WFp(ap, dp)

1: Calculate the slack time slkp by Equation 6.3
2: leftSlack ← 0
3: schdT ime← ap
4: for each task ti,p in WFp do
5: Calculate its permissible slack time slki,p based on the policies

described in Section 6.6.3
6: slki,p ← slki,p + leftSlack
7: < hk, bestSlk >← findBestSlack(ti,p, schdT ime, slki,p)
8: schedule(ti,p, hk, schdT ime, bestSlk)
9: schdT ime← schdT ime+ eipjk

10: leftSlack ← slki,p − bestSlk
11: end for

1: procedure findBestSlack(ti,p, startT ime, slack)
2: Sort the hosts in ascending order of their base power consumption
3: for each host hk in Hactive do
4: for t = 0 to slack do
5: idleV m← 0
6: for each VM vjk of hk do
7: if r(vjk) ≤ (t+ startT ime) then
8: idleV m← idleV m+ 1

9: end for
10: if idleV m ≥ ni,p then
11: return < hk, t >
12: end for
13: end for
14: return < NULL, 0 >
15: end procedure

6.8.1.2 Slack forwarding (SFW NSVMNM)

From the stated example of the previous case, we see that the first task did not

utilize the slack completely and 6 units of slack time were left after scheduling the

first task. We also see that the VMs in host h1 becomes ready at time 20 whose

base power consumption is lesser than that of h2. But as the second task was

to be scheduled immediately, the scheduler was bound to schedule it on higher

power consuming host h2. This issue is addressed in this scheduling technique

with slack forwarding (SFW NSVMNM). Under this approach, the remaining

slack of a task is forwarded to its successor task for utilization. If we execute the

same workflow as shown in Figure 6.4 with the same system state as of 6.5(a),

scheduling of the first task remains same and is represented by Figure 6.5(b).

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 130

1: procedure schedule(ti,p, hk, schdT ime, bestSlk)
2: effSchdT ime← schdT ime+ bestSlk
3: if hk is not NULL then
4: Schedule ti,p on host hk at time effSchdT ime
5: Set ready time of the selected VMs of hk as

effSchdT ime+ eipjk
6: else
7: Get the first host hm from the sorted order s.t. |Vm| ≥ ni,p
8: Switch-on the host and initiate ni,p number of VMs
9: Add hm to the active host list

10: Schedule ti,p on hm at time schdT ime
11: Set ready time for VMs of hm as schdT ime+ eipjm

12: end procedure

t1,1(20) t1,1(20)

t1,1(20) t1,1(20) t1,2(15)

t2,4(12) t2,4(12)

t1,2(15) t1,2(15)

t1,2(15) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t2,7(22) t2,7(22)

t2,7(22)

(a) Initial state (t = 10)

t1,1(20) t1,1(20)

t1,1(20) t1,1(20) t1,p(19) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t1,p(19)

t1,p(19) t1,p(19)

t1,p(19) t2,7(22) t2,7(22)

t2,7(22)

(b) After scheduling first task (t =
15)

t1,1(20) t1,1(20)

t1,1(20) t1,1(20) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t1,p(27) t1,p(27)

t1,p(27) t1,p(27)

t2,7(22) t2,7(22)

t2,7(22)

(c) After scheduling second
task (t = 19)

Figure 6.5: System state at different time (t) instant under SFT NSVMNM

scheduling policy

But for the second task, the scheduler will not schedule it on host h2 at time 19.

Rather it will look for better option from time 19 to time 25(= 19 + 6). On the

other hand, host h1 becomes available at time 20 and its base power consumption

is lesser. Moreover, it has sufficient VM capacity to execute the task. Thus the

scheduler will schedule the task on host h1 only at time 20. Figure 6.6 shows the

system state after scheduling the task t2,p of the workflow WFp.

6.8.1.3 Slack division and forwarding (SDF NSVMNM)

Here we present another variation of our algorithm. We can observe from the

previous algorithm that the order of the tasks in workflow was the only parameter

which was used in slack sharing. The first task of a workflow gets the complete

liberty of using the whole slack of the workflow. And in general initial tasks get

more priority of using the slack than later tasks in the workflow. But this might

not be beneficial for few workflows, specially with a longer chain and with variety

in VM requirement of tasks in a workflow. Thus we present an approach where

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 131

t2,p(28) t2,p(28)

t2,p(28) t2,p(28) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t1,p(27) t1,p(27)

t1,p(27) t1,p(27)

t2,7(22) t2,7(22)

t2,7(22)

Figure 6.6: System state after scheduling second task (t = 20) in
SFW NSVMNM scheduling policy

the length and the VM requirement of a task together decide the percentage of

slack it gets. Initially, the whole slack of a workflow is distributed among the tasks

of that workflow using Equation 6.12. However, if the assigned slack time to a

given task is not used completely, then the remaining amount is forwarded to the

next task of the same workflow and this process continues till the last task of the

workflow.

Under the non-splittable VMs category without migration (NSVMNM), for all the

stated scheduling policies (SFT NSVMNM , SFW NSVMNM , SDF NSVMNM),

whenever a host remains idle for more than a preset threshold time, the scheduler

puts the host in switched off mode.

6.8.2 Non-splittable VMs with limited migration (NSVMLM)

This scheduling policy is similar to the already discussed policy NSVMNM . But

in case of NSVMNM , the consolidation operation is not performed and thus there

is no migration of VMs from one host to another. However, in case of NSVMLM ,

consolidation operation is performed separately. As mentioned in the Section 6.6,

whenever the utilization of a host falls below MigThreshold, the host is selected

and the consolidation operation is fired for that host. The consolidation agent

checks whether all the VMs of a task (of the selected host) can be accommodated

to a host with higher utilization. If multiple hosts can accommodate, then the

host with the lowest base energy consumption rate is chosen as the target host.

Then the migration operation from the selected host to the target host. This

process is repeated for all the hosts whose utilization falls below MigThreshold.

Then the hosts with no active VMs are switched off. The consolidation operation

reduces the number of active hosts in the cloud system. Thus the total energy

consumption of the system is also reduced as compared to NSVMNM .

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 132

Algorithm 12 SVM without migration (SVMNM)

On arrival of a workflow WFp(ap, dp)

1: Sort the hosts in ascending order of their base power consumption
2: Calculate the slack time slkp by Equation 6.3
3: nextSchdT ime← ap
4: for each task ti,p in WFp do
5: flag ← FALSE
6:

7: Calculate its permissible slack time slki,p based on the
policies described in Section 6.6.3

8: slack ← slki,p + remainingSlacki−1,p

9: EminMap ←∞
10: while slack > 0 do
11: Hselect = findMapping(nextSchdT ime, ni,p)
12: Emap ← 0
13: for each host hk in Hselect do
14: Calculate Ehk by Equation 6.4
15: Emap ← Emap + Ehk
16: end for
17: if Emap < EminMap then
18: EminMap ← Emap
19: HminEnergy ← Hselect

20: nextSchdT ime← t
21: flag ← TRUE

22: if flag = FALSE then
23: HminEnergy = findMapping(nextSchdT ime, ni,p)

24: Schedule the task ti,p on HminEnergy at nextSchdT ime
25: Set the ready time for the VMs in HminEnergy

26: Update nextSchdT ime
27: Update remaining slack for task ti,p
28: end for

6.8.3 Non-splittable VMs with full migration (NSVMFM)

This scheduling policy is similar to EnReal [41] which is taken as a baseline policy

in our work. Here every time, a fresh task set is generated comprising of newly

arrived tasks and the currently running tasks. Then the scheduler finds an energy-

efficient mapping for the entire task set. This policy differs from EnReal in the

slack distribution logic. EnReal uses a static time partition among the tasks of a

workflow and NSVMFM uses a dynamic partition in the form of slack distribution.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 133

1: procedure findMapping(t, ni,p)
2: Hselect ← NULL
3: for each host hk in host list do
4: for each VM vjK in host hk do
5: if r(vjk ≤ t) then
6: idleV mCount← idleV mCount+ 1
7: Add hk in Hselect

8: end for
9: if idleV mCount ≥ ni,p then

10: return set of hosts Hselect

11: end for
12: end procedure

6.9 Scheduling with Splittable VM Allocation

(SVM)

In the last section, we described scheduling policies considering that all the re-

quired number of VMs of a task must reside in the same physical machine. But

that restriction does not hold good here. Introducing this relaxation to the schedul-

ing policy might reduce the energy consumption of the system significantly. This

was already explained using an example in Subsection 6.6.1. In the following

subsections, we present different scheduling policies considering splittable VM al-

location.

6.9.1 Splittable VMs without migration (SVMNM)

Algorithm 12 shows the pseudocode for the SVMNM policy. The policy basically

aims to find a set of minimum energy consuming hosts such that the VM require-

ment of a task is satisfied. To achieve this, the hosts are initially sorted based on

their base (or static) power consumption value. To get a mapping of the minimum

energy consumption, the scheduler performs this checking for the entire permis-

sible slack time for a task. Then the scheduler runs through the sorted hosts to

select a set such that the total idle VM count in the set reaches the VM require-

ment. A VM becomes idle whenever its ready time is less than or equal to the

scheduling time. Procedure findMapping() encloses the steps to search for such

collection of hosts. Then the scheduler selects the set with the minimum energy

consumption and schedules the task to that set of hosts. In this case, also, we

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 134

t1,1(20) t1,1(20)

t1,1(20) t1,1(20) t1,2(15)

t2,4(12) t2,4(12)

t1,2(15) t1,2(15)

t1,2(15) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t2,7(22)

t2,7(22)t2,7(22)

(a) Initial state (t = 10)

t1,q(24)

t1,q(24)

t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t2,7(22)t2,7(22)

t1,q(24) t1,q(24)

t1,q(24) t1,q(24)

t1,q(24)

t1,q(24)

t1,q(24)

(b) After scheduling first task (t =
20)

h1 h2 h3

t2,q(29) t2,q(29)

t2,q(29) t2,q(29)

t2,q(29) t2,q(29)

t2,q(29) t2,q(29)

(c) After scheduling second task
(t = 24)

Figure 6.7: System state at different time (t) instant under SFT SVMNM

scheduling policy

have considered three different ways to handle the slack time among the tasks of

the workflow. This is similar to the approach as described in the previous section.

6.9.1.1 Slack to first task (SFT SVMNM)

To understand the working of this scheduling policy, let us take an example system

state as represented by Figure 6.7(a) and suppose a workflow (represented by

Figure 6.9) is to be scheduled using SFT SVMNM scheduling approach. The

first task in the workflow requires 9 VMs. Now we see that host h2 contains 2

free VMs and host h3 contains 5 free VMs. Hence currently the task cannot be

scheduled in any active host. But at time 12, another two VMs will become free

in host h2. At this point, the task can be scheduled combining both host h2 and

h3. But the scheduler does not schedule this way. Rather it checks whether low

power consuming hosts become available within the slack range and it finds that

h2 becomes free at time 15 and h1 becomes free at time 20. Thus it can schedule

the task at time 20 on hosts h1 and h2. Figure 6.7(b) reflects the system state

after this schedule. As slack is given only to the first task, the next task must be

scheduled at time 24. This task requires 8 VMs and the scheduler schedules this

task on host h2 at time 24. Figure 6.7(c) represents the system state at time 24.

6.9.1.2 Slack forwarding (SFW SVMNM)

The slack handling technique for this scheduling policy is same as SFW NSVMNM .

The unused slack for one task gets forwarded to the successor task of the same

workflow. But this policy differs from SFW NSVMNM in the sense that a task

need not be scheduled on the VMs of the same host; rather it can be scheduled

on the VMs which are placed on different hosts.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 135

t1,1(20) t1,1(20)

t1,1(20) t1,1(20) t1,2(15)

t2,4(12) t2,4(12)

t1,2(15) t1,2(15)

t1,2(15) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t2,7(22)

t2,7(22)t2,7(22)

(a) Initial state (t = 10)

t1,1(20) t1,1(20)

t1,1(20) t1,1(20) t1,q(19) t2,7(22) t2,7(22) t2,7(22) t2,7(22)

t2,7(22) t2,7(22) t2,7(22) t2,7(22)

h1 h2 h3

t2,7(22)

t1,q(19)

t1,q(19) t1,q(19)

t1,q(19) t1,q(19) t1,q(19) t1,q(19) t1,q(19)

t2,7(22) t2,7(22)

(b) After scheduling first task (t =
15)

t2,q(27)

h1 h2 h3

t2,q(27)

t2,q(27) t2,q(27)

t2,q(27) t2,q(27)

t2,q(27) t2,q(27)

(c) After scheduling second task
(t = 22)

Figure 6.8: System state at different time (t) instant under SDF SVMNM

scheduling policy

9 4 8 5WFq:

Figure 6.9: WorkFlow (WFq(ap = 10, dq = 30)) to be scheduled on the system

6.9.1.3 Slack division and forwarding (SDF SVMNM)

This approach is similar to that of SDF NSVMNM , i.e., the total slack of a work-

flow is initially distributed among all the tasks of that workflow using Equation

6.12. Then upon scheduling of one task, the remaining slack is forwarded to suc-

cessor task of the same workflow. The effective slack of a task is dynamically

calculated using Equation 6.13.

Let us consider the same workflow as shown in Figure 6.9 to be scheduled using

SDF SVMNM policy where the current system state is shown in Figure 6.8(a).

Slack of the whole workflow is calculated as 11 (by Equation 6.3). Then the initial

individual slack times for all the tasks in that workflow are calculated by Equations

6.11 and 6.12. So, TLV becomes 76 (= 9× 4 + 8× 5 = 76). The first task of the

workflow will get only 5 units of slack (9×4
76
× 11 = 5). Thus it is to be scheduled

from time 10 to 15 (arrival time of the workflow is 10). The task requires 9 VMs

to execute and the current set of active hosts cannot execute this task. But the

scheduler checks that two VMs will be ready on h2 at time 12 and another four

at time 15. Thus at time 15, the task can be scheduled where h2 will hold 6 VMs

and another 3 VMs will be hosted on h3. Figure 6.8(b) represents the system state

at time 15. Then for the second task, its individual slack time is 6 and since its

predecessor forwards no slack, its effective slack remains 6 only. This task can be

scheduled at any time instant from 19 to 25. The scheduler checks that if the task

can be scheduled on h2 and h3 at time 19 but it can be on h1 and h2 at time 20.

Further at time 22, the task can be scheduled only on host h2. Now, the energy

consumption for all the options are compared (h2 and h3 combined, h1 and h2

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 136

combined, and only h2) and the scheduler chooses the lowest energy consumption

set and in this case, it is h2 alone. Accordingly, the task is scheduled on host h2

at time 22. Figure 6.8(c) represents the system state after scheduling the second

task of the workflow.

6.9.2 Splittable VMs with limited migration (SVMLM)

All three scheduling policies discussed in the previous subsection are of non-

migratory nature, that is once a task is scheduled to a host, it executes in the

same for the entire duration. But in SVMLM scheduling, the scheduler occasion-

ally performs a consolidation operation whenever the utilization of a host falls

below MigThreshold. Whenever a task finishes its execution, the VMs associated

with the task becomes free. These VMs might reside in different hosts. Thus the

completion of one task might create spaces for VMs in different hosts. The con-

solidation agent migrates the VMs of the host to the hosts with higher utilization

(target hosts are considered as decreasing order of their utilization). Then the con-

solidation agent finds all the idle hosts in the system and puts them in switched

off mode. Rest of the scheduling operation is same as that of the SVMNM .

6.9.3 Splittable VMs with full migration (SVMFM)

In the previous section, we have discussed scheduling policies where the VM alloca-

tion was splittable and the consolidation agent performs occasional consolidation

operations to migrate the VMs from the lower utilized hosts to the higher utilized

host. Scheduling policies also did not interfere the already running tasks of the

system while scheduling a new task. All the existing mapping of tasks to the

VMs and VMs to the hosts remained unchanged. This can not ensure that all

the VMs will be running in lower power consuming hosts. But in this scheduling

policy, a fresh task set is formed consisting of all the existing running tasks and the

newly arrived task. Then the VMs are placed to the hosts with minimum energy

consumption. We have used a combination of best fit decreasing order and first

fit decreasing order heuristics for allocating VMs to hosts. As a workflow enters

the cloud system, the slack distribution engine calculates the permissible slack for

each task in that workflow. Then the scheduler finds the best time for the new

task to schedule and accordingly creates a scheduling event at that time. This

time is referred as the best scheduling point for the task. There can be various

ways to find the best scheduling point of a task. We have used the time when

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 137

Algorithm 13 SVM with full migration (SVMFM)

On arrival of a workflow WFp(ap, dp)

1: Calculate the slack time slkp by Equation 6.3
2: for each task ti,p in WFp do
3: Calculate the best slack for the task bestSlki,p
4: Schedule the task at scheduleT ime = currentT ime+ bestSlki,p
5: if currentT ime = scheduleT ime then
6: Form the task set Q with the new tasks and the existing running tasks
7: Calculate total number of VMs requirement vmNo
8: Hselect = selectHost(vmNo)
9: Sort the hosts in Hselect in ascending order of their VM capacity

10: Sort the tasks in Q in descending order of their VM requirement
11: for each task ti in Q do
12: Allocate ti to the first host hj which can hold the task
13: Update the VM information of hj
14: Delete ti from Q
15: if idle VM count of hj becomes zero then
16: delete hj from Hselect

17: end for
18: if Q is not NULL then
19: Sort the hosts in Hselect in descending order of their remaining VM

capacity
20: Sort the tasks in Q in descending order of their VM requirement
21: for each task ti in Q do
22: Split the task ti into two sub tasks tj and tk
23: Set VM requirement of tj is as the remaining VM capacity of

first host hj
24: Set VM requirement of tk is as the difference of VM requirements

of ti and tj
25: Allocate task tj to host hj
26: Update the VM information of hj
27: Delete ti and tj from Q
28: Add tk to Q
29: if idle VM count of hj becomes zero then
30: delete hj from Hselect

31: end for
32: end for

the system will execute minimum number of VMs on the hosts. Once the best

scheduling point is selected, the scheduler forms a task set with the newly arrived

tasks and the already running tasks where the running tasks are also treated as

fresh tasks but possibly with lesser length. For example, suppose a task with ac-

tual execution time (indicates length) of 79 minutes have executed for 5 minutes

and a rescheduling happens. Then it will be treated as a fresh task with execution

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 138

1: procedure selectHost (vmNo)
2: remVmNo← vmNo
3: while remVmNo ≥ 0 do
4: remVmNo = remVmNo− vmCapacity(hmax)
5: Add one new host to Hselect with maximum VM capacity

6: while remVmNo ≥ 0 do
7: hi ← findCandidateHostType(remVmNo)
8: option1← getPower(hi, remVmNo)
9: V mReq = remVmNo− vmCapacity(hi−1)

10: option2← getPower(hi−1, vmCapacity(hi−1))
+getPower(findCandidateHostType(V mReq), V mReq)

11: Choose the option with minimum power consumption
And add the corresponding host in Hselect

12: Update remVmNo

13: return Hselect

14: end procedure

time 74 = (79− 5) minutes.

Algorithm 13 captures the important steps for this scheduling policy. Once the

task set is formed (in step 7 of the Algorithm), the scheduler calculates the total

number of VM requirement for the tasks in the task set. And then it calls a

Procedure selectHost(). This procedure selects a set of hosts such that the total

power consumption of the hosts is minimum and the summation of their VM

capacity is at least equal to the total VM requirement. When the total VM

requirement is sufficiently high (more than the maximum VM capacity of hosts),

the scheduler selects hosts with maximum VM capacity only. This is because

effective power consumption per VM decreases with increase in VM capacity of

hosts. And this is minimum in case of a host with maximum VM capacity. Then

for the remaining VM requirement, the scheduler checks all possible options to

find out the hosts with minimum power consumption. Line number 6 to 12 of

Procedure selectHost() captures the same.

Once the hosts are selected, scheduler places the VMs on the hosts in two steps. In

the first step, it tries to put the VMs without any split. Best fit decreasing order

heuristic is applied for the same. Line number 9 to 17 of the Algorithm 13 reflects

the same. Then in the second step, the hosts are sorted in descending order of

their remaining VM capacity and tasks are also sorted in descending order of their

VM requirements. In this step, no task can directly be placed on the hosts and

thus a split is required. For a task, the scheduler goes through the host list and

places VMs as per the idle VM slots for the host. If a task requires n VMs and

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 139

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

4 8 16 32 64 80B
a

s
e

 p
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

W
a

tt
s

)

Host type with no. of maximum supported VMs

(a) Base power consumption of different host types

 20

 40

 60

 80

 100

 120

4 8 16 32 64 80

E
ff

e
c

ti
v

e
 P

C
 p

e
r

V
M

 (
in

 W
a

tt
s

)

Host type with no. of maximum supported VMs

(b) Effective power consumption per VM in different
host types

Figure 6.10: Power consumption of hosts and VMs

the first host has m free VMs (m ≤ n), then a new task is created with m VM

requirement and it is placed on the host. For the remaining VM requirement, the

next host is tried and the process goes on.

6.10 Performance Evaluation

In this work, we have evaluated the performance of six scheduling policiesNSVMNM ,

NSVMLM , NSVMFM , SVMNM , SVMLM , and SVMFM . We have also combined

these policies with three different slack distribution approaches and analyzed their

performances. To show the effectiveness of our work, we have also implemented

a state of art energy-efficient scheduling policy for scientific workflow, namely,

EnReal [41] and compared performances of the proposed policies.

6.10.1 Simulation platform and parameter setup

To evaluate the performance of our proposed approaches, a set of comprehensive

simulations and experiments are conducted. We have used CloudSim toolkit [123]

as the simulation platform and we did necessary changes to support multi-VM

tasks. Observing the power consumption pattern of some real systems, we set the

parameter values for our simulation. For instance, blade or rack server systems

with 4, 8, 16, 32, 64, 80 hardware threads need to be installed with approximately

400W, 800W, 1200W, 1800W, 2800W and 3200W power supply respectively. A

hardware thread can host one VM and in a rack, i.e. a host with 16 hardware

threads can host 16 homogeneous VMs seamlessly.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 140

mProjectPP

mDiffFit

mBackground

mImgTbl

mAdd

mShrink

mJPEG

mConcatFit

mBgModel

(a) Montage

fastQSplit

filterContams

sol2Sanger

fastQ2Bf

map

mapMerge

maqIndex

pileUp

(b) Epigenomics

extractSGT

sismogramSynthesis

zipSeis

peakValCalOkaya

zipPSA

(c) CyberShake

tmpitBank

inspiral

thinka

triBank

inspiral

thinka

(d) Inspiral

Figure 6.11: Examples of scientific workflows

In our experiment, we have considered six different types of hosts which can sup-

port 4, 8, 16, 32, 64, 80 number of VMs respectively. Figure 6.10(a) shows the base

power consumption (BPC) of different host types considered in our work. BPC

is taken as 60% of the total power consumption. BPC increases with an increase

in the number of maximum supported VMs in the hosts. But the effective power

consumption per VM decreases with an increase in the number of maximum sup-

ported VMs in the hosts. Effective power consumption for a VM is more in case

of a smaller host and it is less in case of a bigger host. Figure 6.10(b) shows the

relationship between the effective power consumption per VM with the host type.

6.10.2 Real scientific work-flow

We have used many scientific workflows such as CyberShake, Epigenomics, Mon-

tage, Inspiral, Sipht and many others to carry out our experiments [25]. Montage

workflow was created by NASA/IPAC. It was used to create custom mosaics of the

sky by stitching together multiple input images taken by satellite. CyberShake

workflow was used to characterize earthquake hazards by the Southern Calfornia

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 141

Earthquake Centre. Epigenomics workflow was used in genome sequence pro-

cessing by automating various operations. It is created by USC Epigenome Centre

and the Pegasus team. In the LIGO Inspiral workflow model, data collection

has been done by combining the compact binary systems to generate and ana-

lyze gravitational waveform. The SIPHT workflow was developed at Havard for

bio-informatics project which helps to check for bacterial replications in the NCBI

database by automating the search for untranslated RNAs (sRNAs). Descriptions

of these scientific workflows can be found in [25].

Directed acyclic graph (DAG) is generally used to represent the scientific work-

flows. But most of the workflows have the structure that can be represented as

chain of multi-processor (or multi-VM) tasks. Figure 6.11 shows the Montage,

Epigenomic, CyberShake and Inspiral workflows. We can see from the Montage

workflow that it has nine tasks: mProjectPP, mDiffFit, mConcatFit, mBgModel,

mBackground, mImgTbl, mAdd, mShrink, and mJPEG. These tasks have 4, 6,

1, 1, 4, 1, 1, 1 and 1 number parallel subtasks within them respectively. These

tasks can be run in parallel on multiple VMs. Execution time for these tasks are

14, 11, 1, 2, 11, 2, 3, 4, and 1 respectively. These values are obtained by reading

and parsing the XML descriptions of Montage−25.xml file available in the web-

site mentioned in [139]. Similarly, attributes for other workflows are obtained by

processing the respective XML files for the workflows.

To perform our experiments, we have generated our benchmark with a mix of

these scientific workflows. Each benchmark mix contains a random combination

of 10 workflows which are of different sizes. We have two additional parameters

for each workflow: arrival time and deadline. As we are considering online arrival,

the arrival time of a workflow is known after they actually arrive at the system.

Deadline of a workflow is taken as the summation of the execution time of all the

tasks of the workflow plus the slack time where the slack time is a random number

varies from 1 to 100.

6.10.3 Impact of slack distribution

In our work, we have used three different slack distribution approaches for the

tasks of a workflow. Figure 6.12 shows the normalized energy consumption of

the cloud system under proposed scheduling policies when it executes a mix of

scientific workflows. The figure describes the impact of different slack distribution

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 142

 0

 20

 40

 60

 80

 100

NSVMNM NSVMLM NSVMFM SVMNM SVMLM SVMFM

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 i

n
 W

a
tt

 (
n

o
rm

a
li

z
e

d
)

Scheduling policies

SFT
SFW
SDF

Figure 6.12: Impact of slack distribution on energy consumption

approaches when they are merged with scheduling policies. The energy consump-

tion of the system for slack to first task (SFT) approach is more compared to the

other two approaches. But SFT approach is the simplest one and incurs lesser

overhead on the online scheduler. On the other hand, SFW and SDF approaches

perform almost similar. This pattern remains the same for all the policies. The

figure also reveals that the energy consumption of the system is comparatively

lesser in case of splittable VM allocation compared to non-splittable allocation.

6.10.4 Trade-off between energy consumption, migration

count and split count

Here we present three different output parameters, that is energy consumption,

migration count and split count together under the same graph. The split count

in case of scheduling with non-splittable VM allocation is zero because all the

required VMs of a task is allocated on one host and thus the task is not split. But

the energy consumption under these approaches is relatively higher. When all the

VMs of a task t cannot be placed on one host, we need to divide the task into

subtasks; and we treat the subtasks as new tasks with lesser VM requirement. The

number of split increases with each such division. On the other hand, whenever

the VMs executing a task need to migrate from one host to another, the migration

count is increased by one.

Figure 6.13 shows the normalized values for energy consumption, migration count

and split count for different scheduling policies when a mix of scientific workflows

is executed in the cloud system. All the proposed policies applied SDF slack

distribution approach. We make the following observations from the graph.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 143

 0

 20

 40

 60

 80

 100

E
nR

ea
l

N
S
V
M

N
M

N
S
V
M

L
M

N
S
V
M

F
M

S
V
M

N
M

S
V
M

L
M

S
V
M

F
M

N
o

rm
a
li
z
e
d

 v
a
lu

e
s

Scheduling policies

Energy MigrationCount SplitCount

Figure 6.13: Normalized values of energy consumption, migration and split
count

• Scheduling policies under non-splittable VM allocation policy perform sim-

ilarly to the state-of-art policy, EnReal; but the proposed policies beat En-

Real in terms of the number of migrations. NSVMLM and NSVMFM incur

approximately 90% and 80% lesser number of migrations respectively than

EnReal.

• Scheduling policies under splittable VM allocation policy perform signifi-

cantly better than splittable VM allocation policies regarding energy con-

sumption. Reduction in energy consumption in case of SVMNM , SVMLM ,

and SVMFM are approximately 50%, 60%, and 64% respectively as com-

pared to EnReal.

• In case of splittable policies, tasks are split, and we observe a significant split

count as compared to non-splittable policies and EnReal. Systems need to

incur additional overhead for a split.

6.10.5 Different mixes of scientific workflows

To ascertain the performances of the proposed policies, we have performed our

experiments with 5 different benchmark mixes (MIX1, MIX2, MIX3, MIX4,

MIX5) which were generated from the scientific workflows as described in 6.10.2.

Figure 6.14 shows the energy consumption of the cloud system for 5 different

mixes under different scheduling policies along with EnReal. Slack distribution

and forwarding (SDF) technique are applied to distribute the slack time among

the tasks of a workflow. We observe similar energy consumption pattern for all the

benchmark mixes. Splittable policies reduce energy consumption by approximately

60% as compared to EnReal.

Chapter 6. Scheduling Scientific Workflows on Virtualized Cloud System 144

 0

 20

 40

 60

 80

 100

MIX1 MIX2 MIX3 MIX4 MIX5

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 c
o

n
s

u
m

p
ti

o
n

Scheduling policies

EnReal
NSVMNM

NSVMLM
NSVMFM

SVMNM
SVMLM

SVMFM

Figure 6.14: Energy consumption of the system (normalized) for different
benchmark mixes

6.11 Summary

The high availability of high-end computing resources has made the cloud system a

popular choice for hosting the scientific applications. Another inherent character-

istic of these applications is the sharp variation in their resource requirement and

the elasticity feature of the cloud system can efficiently handle this. As these ap-

plications consume a significant amount of resources, energy-efficient execution of

these applications in the cloud becomes essential. These applications are modeled

as scientific workflows where there is a dependency between the tasks.

We describe the scheduling of a set of online dependent tasks, represented as sci-

entific workflows in the cloud environment and proposes a series of energy-efficient

scheduling techniques considering both the static and dynamic energy consump-

tion. The chapter describes several approaches regarding three important factors:

VM allocation, migration, and slack distribution which affects the performance

of scheduling. Extensive simulation is carried out in Cloudsim toolkit and perfor-

mance is compared with a state of art energy-efficient scheduling technique EnReal

[41] and found that the energy consumption of the proposed policies under split-

table VM category is significantly lesser than EnReal. The proposed policies under

non-splittable VM allocation performs at par with the state-of-art policy, but with

a smaller number of migrations. All the proposed policies meet the deadline con-

straints of the workflows.

Chapter 7

Conclusion and Future Work

In recent time, the growing energy consumption of the large computing systems

has gained the attention of the scientific community. At the same time, these

computing platforms become a perfect choice for the high-end scientific applica-

tions which are often of real-time nature. The energy-efficient execution of these

applications is essential because these applications consume a significant amount

of computing resources for a substantial amount of time. It is observed that a

major portion of the energy gets wasted due to poor utilization of the system. As

scheduling can potentially improve the utilization of a system, designing energy-

efficient scheduling techniques for the large system becomes important where these

applications will be executed both energy and performance efficient way.

Any scheduling problem is typically represented by the machine environment, the

task environment and the objective function. In our work, machine environment

consists both virtualized and non-virtualized system with a large number of pro-

cessors. For the task environment, we consider both independent and dependent

real-time task set. We set the optimality criteria as the minimization of energy

consumption without missing the deadline of any task. We summarize the contri-

butions of the thesis as follows.

7.1 Summary of Contributions

We solved four different scheduling problems in our thesis. This section contains

the summary of our work.

145

Chapter 8. Conclusion 146

• At first, we have considered a non-virtualized system having a large number

of processors and each processor is equipped with the multi-threaded fea-

ture. The task set consists of online independent aperiodic real-time tasks.

We exploit the power consumption pattern of some recent multi-threaded

processors and derive a simple but elegant power consumption model where

the total power consumption of a processor is expressed as a function of the

number of active threads of that processor. We then design four energy-

efficient scheduling policies to reduce the energy consumption of the system

maintaining the deadline constraints of all the tasks. Experiments are con-

ducted for a wide range of synthetic data and real-world trace. We consider

a variety of deadline and execution time schemes in the synthetic workload.

Experimental results show that the proposed policies show an average energy

reduction of around 47% for the synthetic workload and around 30% for the

real-world traces.

• In the second contribution of the thesis, we have considered a heterogeneous

virtualized cloud system where a host accommodates a number of VMs. A

user task is assigned to a VM and the VM is placed on a host. Heterogeneity

is mainly determined by the compute capacity and the energy consumption.

Under this setup, we have considered a region based non-linear power con-

sumption model for the hosts derived from the power consumption pattern

of a typical server. We have designed two energy-efficient scheduling ap-

proaches, (i) Urgent Point aware Scheduling (UPS), and (ii) Urgent Point

aware Scheduling - Early Scheduling (UPS-ES). These approaches are based

on the urgent points of a task, and dynamically used two threshold val-

ues. We have performed our experiments in the CloudSim toolkit by making

necessary changes. Experimental results show that the proposed policies

achieve an average energy reduction of around 24% for the synthetic data,

and around 11% for the real-trace data.

• We have considered scheduling a set of real-time tasks on the VMs having

discrete utilization. For a host, we have first calculated the critical utiliza-

tion value where the energy consumption happens to be the minimum. We

have designed scheduling approaches by dividing the problem into four sub-

problems. At first, we put forward the solution of the task set where all the

tasks have the same length and same deadline. Then we target the problem

of scheduling task set with two different lengths but the same deadline. To

solve this sub-problem, we have used the solution of the previous solution.

The third sub-problem deals with tasks having arbitrary lengths but same

Chapter 8. Conclusion 147

deadline, which is solved using the solution method of second sub-problem.

Finally, we have designed the solution approach for arbitrary lengths and

arbitrary deadlines of tasks. For the last sub-problem, we classified the task

set into different classes and we concluded that this classification technique

can be determined from the system parameters.

• In the last contribution of the thesis, we have considered scheduling a set

of dependent real-time tasks on a cloud system. The task set is taken as

scientific workflows, where each workflow has an end-to-end deadline. The

tasks in the workflow are multi-VM tasks; thus they need multiple VMs

simultaneously for their execution. We have designed a series of scheduling

policies to execute an incoming workflow efficiently. We have considered

several options and restrictions in the context of VM allocation, migration,

and slack distribution. In addition to the energy consumption, we have also

considered migration count and split count. Experiments are conducted on

CloudSim toolkit by adding necessary functionalities to it. The proposed

policies under non-splittable VM allocation category reduces the migration

count significantly (forNSVMNM , it is 0) compared to the state-of-art policy

with almost same amount energy consumption. In case of splittable VM

allocation category, we have achieved an energy reduction up to 64% as

compared to the state-of-art policy with reasonable migration count and

split count.

7.2 Scope for Future Work

The contributions of this thesis can be extended in a number of ways. Some of

these possible future research directions are listed below:

• Hierarchical organization of hosts: In our work, we have considered the

energy consumption for the processors assuming that all the processors are

connected in one level. But in practice, they are often connected in a hierar-

chical order. A server contains multiple chassis, a chassis contains multiple

racks, a rack contains different containers, and cores are placed on contain-

ers. Considering power consumption at each level while designing scheduling

policies for real-time tasks will be an interesting research direction. This will

Chapter 8. Conclusion 148

make the setup more realistic. Furthermore, instead of reporting the migra-

tion count, a location-based cost matrix can be used to measure the impact

of migration for such a hierarchical arrangement.

• Resource provisioning based on the application behavior and ar-

rival pattern: Another future research of the thesis can be toward usages

of some machine learning based techniques to predict the future the resource

requirement and to prepare the system accordingly. Idle VMs and idle hosts

are generally switched off to reduce the energy consumption. But deletion

and creation of VMs, waking up a host from the sleep state has some inherent

penalties. Making a trade-off between the overheads and the energy saving

based on the application behavior and arrival pattern can be an interesting

problem to solve.

• Study as multi-objective function: In our last contribution of scheduling

workflows, we have observed that different policies perform better in differ-

ent directions: energy consumption, number of migrations, and number of

splits. Migration count and split count have overheads associated with them.

Designing scheduling policies combining all these three factors can be a chal-

lenging research direction, where the objective function will be expressed as

a combination of energy consumption, migration count, and split count.

• Imrovement on VM splitting: When a task requires multiple VMs to

execute and the VMs are placed on different hosts (splittable VM allocation),

the VMs need to communicate among them. This results in some extra

energy consumption. Based on the placement location of the VMs (belonging

to the same task), energy consumption will vary. We see a promising research

direction to study the splitting criteria and the placement of the VMs while

designing scheduling techniques for multi-VM tasks.

• Trade-off between energy consumption and SLA violation: All the

scheduling policies designed in the thesis considered hard real-time tasks and

thus the deadline constraints of all the tasks are met. But in case of soft

real-time tasks, violation of the deadline constraints of a few tasks may be

allowed. But this imposes some additional penalty. It will be an interesting

research direction where some penalty can be associated with the violation of

SLA of the tasks (or applications) while minimizing the energy consumption

or the overall cost of execution.

Bibliography

[1] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,

and M. Horowitz, “Towards Energy-proportional Datacenter Memory with

Mobile DRAM,” SIGARCH Comput. Archit. News, vol. 40, no. 3, pp. 37–48,

Jun. 2012.

[2] “Power Consumption Tests.” [Online]. Available: http://www.xbitlabs.

com/

[3] “Power Consumption Qualcom Hexagon V3.” [Online]. Available: http:

//www.bdti.com/

[4] C. H. Lien, M. F. Liu, Y. W. Bai, C. H. Lin, and M. B. Lin, “Measurement

by the Software Design for the Power Consumption of Streaming Media

Servers,” in IEEE Instrumentation and Measurement Technology Conference

Proceedings, April 2006, pp. 1597–1602.

[5] P. Brucker, Scheduling Algorithms, 3rd ed. Secaucus, NJ, USA: Springer-

Verlag New York, Inc., 2001.

[6] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications, ser. Real-Time Systems Series. Springer, 2011.

[7] J. W. S. W. Liu, Real-Time Systems, 1st ed. Prentice Hall PTR, 2000.

[8] P. Brucker, Scheduling Algorithms, 5th ed. Springer, 2010.

[9] J. Lenstra, A. Rinnooy Kan, and P. Brucker, “Complexity of Machine

Scheduling Problems,” Annals of Discrete Mathematics, vol. 1, pp. 343–362,

1977.

[10] R. I. Davis and A. Burns, “A Survey of Hard Real-time Scheduling for

Multiprocessor Systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–

35:44, Oct. 2011.

149

http://www.xbitlabs.com/
http://www.xbitlabs.com/
http://www.bdti.com/
http://www.bdti.com/

Bibliography 150

[11] Y. Du and G. D. Veciana, “Scheduling for Cloud-Based Computing Systems

to Support Soft Real-Time Applications,” ACM Trans. Model. Perform.

Eval. Comput. Syst., vol. 2, no. 3, pp. 13:1–13:30, Jun. 2017.

[12] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming

in a Hard-Real-Time Environment,” J. ACM, Jan. 1973.

[13] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time Sys-

tem,” The Computer Journal, pp. 390–395, 1986.

[14] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority

scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,

no. 4, pp. 237 – 250, 1982.

[15] W. Horn, “Some simple scheduling algorithms,” Quarterly, vol. 21, no. 1,

pp. 177 – 185, 1974.

[16] A. Mohammadi and S. G. Akl, “Scheduling Algorithms for Real-Time Sys-

tems,” School of Computing, Queens University, Tech. Rep., July 2005.

[17] A. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-

core systems: Survey of current and emerging trends,” in 50th ACM / EDAC

/ IEEE Design Automation Conference (DAC), May 2013, pp. 1–10.

[18] R. Lewis, “A General-purpose Hill-climbing Method for Order Independent

Minimum Grouping Problems: A Case Study in Graph Colouring and Bin

Packing,” Comput. Oper. Res., pp. 2295–2310, Jul 2009.

[19] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,” Operations

Research, vol. 26, no. 1, 1978.

[20] Y. Oh, Y. Oh, S. H. Son, and S. H. Son, “Tight Performance Bounds of

Heuristics for a Real-Time Scheduling Problem,” University of Virginia,

Charlottesville, VA 22903, Tech. Rep., 1993.

[21] Y. Oh and S. Son, “Allocating fixed-priority periodic tasks on multiprocessor

systems,” Real-Time Systems, pp. 207–239, 1995.

[22] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for assigning

real-time tasks to multiprocessor systems,” IEEE Transactions on Comput-

ers, pp. 1429–1442, Dec 1995.

[23] P. Mell and T. Grance, “The NIST definition of cloud computing,” National

Institute of Standards and Technology, vol. 53, no. 6, 2009.

Bibliography 151

[24] X. Liu, Y. Yang, Y. Jiang, and J. Chen, “Preventing Temporal Violations in

Scientific Workflows: Where and How,” IEEE Trans. on Sof. Engg., vol. 37,

no. 6, pp. 805–825, Nov 2011.

[25] G. Juve, A. Chervenak, E. Deelman et al., “Characterizing and profiling

scientific workflows,” Futu. Gen. Comp. Sys., vol. 29, no. 3, pp. 682 – 692,

2013.

[26] M. Rahman, R. Hassan, R. Ranjan, and R. Buyya, “Adaptive workflow

scheduling for dynamic grid and cloud computing environment,” Concu.

and Compu.: Prac. and Exp., vol. 25, no. 13, pp. 1816–1842, 2013.

[27] R. N. Calheiros and R. Buyya, “Meeting deadlines of scientific workflows in

public clouds with tasks replication,” IEEE Tran. on Para. and Dist. Sys.,

vol. 25, no. 7, pp. 1787–1796, July 2014.

[28] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Energy Efficient Parti-

tioning and Scheduling Approach for Scientific Workflows in the Cloud,” in

IEEE Int. Conf. on Serv. Compu., June 2016, pp. 146–154.

[29] G.-Y. Wei, M. Horowitz, and J. Kim, Energy-Efficient Design of High-Speed

Links. Boston, MA: Springer US, 2002, pp. 201–239.

[30] X. Zhu, L. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real-Time Tasks

Oriented Energy-Aware Scheduling in Virtualized Clouds,” Cloud Comput-

ing, IEEE Transactions on, vol. 2, no. 2, pp. 168–180, April 2014.

[31] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for Reduced

CPU Energy,” in Proc. of USENIX Conf. on OS Design and Impl., ser.

OSDI ’94, 1994.

[32] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Dynamic and Ag-

gressive Scheduling Techniques for Power Aware Real Time Systems,” in

IEEE Proc. Real-Time Systems Symp., Dec 2001, pp. 95–105.

[33] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic volt-

age/speed adjustment using slack reclamation in multiprocessor real-time

systems,” Parallel and Distributed Systems, IEEE Transactions on, vol. 14,

no. 7, pp. 686–700, July 2003.

Bibliography 152

[34] C. Isci, A. Buyuktosunoglu, C.-Y. Chen, P. Bose et al., “An Analysis of Ef-

ficient Multi-Core Global Power Management Policies: Maximizing Perfor-

mance for a Given Power Budget,” in 39th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO, Dec 2006, pp. 347–358.

[35] R. Ge, X. Feng, and K. W. Cameron, “Modeling and evaluating energy-

performance efficiency of parallel processing on multicore based power aware

systems,” in 2009 IEEE International Symposium on Parallel Distributed

Processing, May 2009, pp. 1–8.

[36] S. L. Song, K. Barker, and D. Kerbyson, “Unified Performance and Power

Modeling of Scientific Workloads,” in Proceedings of the 1st International

Workshop on Energy Efficient Supercomputing, ser. E2SC ’13. New York,

NY, USA: ACM, 2013, pp. 4:1–4:8.

[37] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a

Warehouse-sized Computer,” SIGARCH Comput. Archit. News, vol. 35,

no. 2, pp. 13–23, Jun. 2007.

[38] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell,

and R. Rajamony, “Power Aware Computing,” R. Graybill and R. Melhem,

Eds. Norwell, MA, USA: Kluwer Academic Publishers, 2002, ch. The Case

for Power Management in Web Servers, pp. 261–289.

[39] Y. Gao, H. Guan, Z. Qi, B. Wang, and L. Liu, “Quality of service aware

power management for virtualized data centers,” Journal of Systems Archi-

tecture, vol. 59, no. 4, pp. 245 – 259, 2013.

[40] Y. C. Lee and A. Zomaya, “Energy-Conscious Scheduling for Distributed

Computing Systems under Different Operating Conditions,” IEEE Trans.

on Parallel and Distributed Systems, pp. 1374–1381, Aug 2011.

[41] X. Xu, W. Dou, X. Zhang, and J. Chen, “EnReal: An Energy-Aware Re-

source Allocation Method for Scientific Workflow Executions in Cloud Envi-

ronment,” IEEE Transactions on Cloud Computing, vol. 4, no. 2, pp. 166–

179, April 2016.

[42] H. Chen, X. Zhu, H. Guo, and et al., “Towards Energy-Efficient Schedul-

ing for Real-Time Tasks under Uncertain Cloud Computing Environment,”

Journal of Systems and Software, vol. 99, pp. 20 – 35, 2015.

Bibliography 153

[43] Y. Maa, B. Gonga, R. Sugihara, and R. Gupta, “Energy Efficient Deadline

Scheduling for Heterogeneous Systems,” Journal of Parallel and Distributed

Computing, vol. 72, no. 12, pp. 1725 – 1740, 2012.

[44] H. Chen et al., “Towards Energy-Efficient Scheduling for Real-Time Tasks

under Uncertain Cloud Computing Environment,” Journal of Systems and

Software, vol. 99, pp. 20 – 35, 2015.

[45] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources in

cloud computing systems,” The Journal of Supercomputing, vol. 60, no. 2,

pp. 268–280, 2012.

[46] “Energy-Aware Resource Allocation Heuristics for Efficient Management of

Data Centers for Cloud Computing ,” Future Generation Computer Systems,

vol. 28, no. 5, pp. 755 – 768, 2012.

[47] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony

system algorithm for virtual machine placement in cloud computing,” Jour-

nal of Computer and System Sciences, vol. 79, no. 8, pp. 1230 – 1242, 2013.

[48] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption

Modeling: A Survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp.

732–794, 2016.

[49] D. Li and J. Wu, “Energy-Aware Scheduling for Aperiodic Tasks on Multi-

core Processors,” in 43rd International Conference on Parallel Processing

(ICPP), 2014, pp. 361–370.

[50] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained Distributed

DVS Scheduling for Scientific Applications on Power-aware Clusters,” in

Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference,

Nov 2005, pp. 34–34.

[51] G. L. T. Chetsa, L. Lefevre, J. M. Pierson, P. Stolf, and G. D. Costa, “Be-

yond CPU Frequency Scaling for a Fine-grained Energy Control of HPC

Systems,” in 2012 IEEE 24th International Symposium on Computer Archi-

tecture and High Performance Computing, Oct 2012, pp. 132–138.

[52] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, “A green energy-efficient schedul-

ing algorithm using the DVFS technique for cloud datacenters,” Future Gen-

eration Computer Systems, vol. 37, pp. 141 – 147, 2014.

Bibliography 154

[53] J. S. Chase and R. P. Doyle, “Balance of Power: Energy Management for

Server Clusters,” in In Proceedings of the Eighth Workshop on Hot Topics

in Operating Systems (HotOS’01), 2001.

[54] E. V. C. E. Pinheiro, R. Bianchini and T. Heath, “Load balancing and unbal-

ancing for power and performance in cluster-based systems,” in Workshop

on Compilers and Operating Systems for Low Power, 2001, pp. 182–195.

[55] S. Zikos and H. D. Karatza, “Performance and energy aware cluster-level

scheduling of compute-intensive jobs with unknowdynan service times,” Sim-

ulation Modelling Practice and Theory, vol. 19, no. 1, pp. 239 – 250, 2011.

[56] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy Aware Consolidation for

Cloud Computing,” in Proceedings of Conference on Power Aware Comput-

ing and Systems, ser. HotPower, 2008.

[57] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective Workflow Schedul-

ing: An Analysis of the Energy Efficiency and Makespan Tradeoff,” in 13th

IEEE/ACM Int. Sympo. on CCGrid Comp., May 2013, pp. 203–210.

[58] J. G. Koomey, “Estimating Total Power Consumption by Servers in the U.S.

and the World,” Analytics Press, 2007.

[59] L. A. Barroso, “The Price of Performance,” Queue, vol. 3, no. 7, pp. 48–53,

Sep. 2005.

[60] W.-c. Feng, “Making a Case for Efficient Supercomputing,” Queue, vol. 1,

no. 7, pp. 54–64, Oct. 2003.

[61] Z. Li, J. Ge, H. Hu et al., “Cost and Energy Aware Scheduling Algorithm

for Scientific Workflows with Deadline Constraint in Clouds,” IEEE Tran.

on Serv. Compu., vol. PP, no. 99, pp. 1–1, 2017.

[62] “Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2

Emissions.” [Online]. Available: https://www.gartner.com/newsroom/id/

503867

[63] R. Buyya, C. S. Yeo, S. Venugopal et al., “Cloud computing and emerging

it platforms: Vision, hype, and reality for delivering computing as the 5th

utility,” Futu. Gen. Com. Sys., vol. 25, no. 6, pp. 599 – 616, 2009.

[64] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal Reward-

Based Scheduling for Periodic Real-Time Tasks,” Computers, IEEE Trans-

actions on, vol. 50, no. 2, pp. 111–130, Feb 2001.

https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867

Bibliography 155

[65] C. Isci, A. Buyuktosunoglu, C.-Y. Chen, P. Bose et al., “An Analysis of

Efficient Multi-Core Global Power Management Policies: Maximizing Per-

formance for a Given Power Budget,” in 39th International Symposium on

Microarchitetcure (MICRO)., 2006.

[66] Y. C. Lee and A. Y. Zomaya, “Minimizing Energy Consumption for

Precedence-Constrained Applications Using Dynamic Voltage Scaling,” in

Proceedings of the 9th IEEE/ACM International Symposium on CCGrid,

2009.

[67] Y. C. Lee and A. Zomaya, “Energy Conscious Scheduling for Distributed

Computing Systems under Different Operating Conditions,” IEEE Transac-

tion on Para. and Distr. Sys., 2011.

[68] D. Li and J. Wu, “Minimizing Energy Consumption for Frame-Based Tasks

on Heterogeneous Multiprocessor Platforms,” IEEE Tranactions on Parallel

and Distributed Systems, vol. 26, no. 3, pp. 810–823, 2015.

[69] ——, “Energy-Aware Scheduling for Frame-Based Tasks on Heterogeneous

Multiprocessor Platforms,” in 41st International Conference on Parallel Pro-

cessing (ICPP), 2012, pp. 430–439.

[70] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi,

“Profile based Optimization of Power-Performance by using Dynamic Volt-

age Scaling on a PC Cluster,” in Int. Symp. on Parallel and Distributed

Processing, April 2006.

[71] K. H. Kim, R. Buyya, and J. Kim, “Power Aware Scheduling of Bag-of-

Tasks Applications with Deadline Constraints on DVS-enabled Clusters,” in

Seventh IEEE International Symposium on Cluster Computing and the Grid

(CCGrid ’07), May 2007, pp. 541–548.

[72] L. Chen, P. Wu, Z. Chen, R. Ge, and Z. Zong, “Energy Efficient Paral-

lel Matrix-Matrix Multiplication for DVFS-enabled Clusters,” in 2012 41st

International Conference on Parallel Processing Workshops, Sept 2012, pp.

239–245.

[73] R. N. Calheiros and R. Buyya, “Energy-Efficient Scheduling of Urgent Bag-

of-Tasks Applications in Clouds through DVFS,” in 2014 IEEE 6th Interna-

tional Conference on Cloud Computing Technology and Science, Dec 2014,

pp. 342–349.

Bibliography 156

[74] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient Server Clus-

ters,” in Proceedings of the 2nd International Conference on Power-aware

Computer Systems, ser. PACS’02. Berlin, Heidelberg: Springer-Verlag,

2003, pp. 179–197.

[75] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey

of Energy Cognizant Scheduling Techniques,” IEEE Transaction on Parallel

and Distributed Systems, pp. 1447–1464, July 2013.

[76] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,

“Managing Energy and Server Resources in Hosting Centers,” SIGOPS Op-

erating System Reviews, vol. 35, no. 5, 2001.

[77] J. Choi, S. Govindan, J. Jeong, B. Urgaonkar, and A. S., “Power Consump-

tion Prediction and Power Aware Packing in Consolidated Environments,”

IEEE Trans. on Computers, vol. 59, no. 12, pp. 1640–1654, 2010.

[78] G. Da Costa, M. D. de Assunção, J.-P. Gelas, Y. Georgiou, L. Lefèvre, A.-C.

Orgerie, J.-M. Pierson, O. Richard, and A. Sayah, “Multi-facet Approach

to Reduce Energy Consumption in Clouds and Grids: The GREEN-NET

Framework,” in Proceedings of the 1st International Conference on Energy-

Efficient Computing and Networking. ACM, 2010, pp. 95–104.

[79] E. Jonardi, M. A. Oxley, S. Pasricha, A. A. Maciejewski, and H. J. Siegel,

“Energy cost optimization for geographically distributed heterogeneous data

centers,” in 2015 Sixth International Green and Sustainable Computing Con-

ference (IGSC), Dec 2015, pp. 1–6.

[80] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel,

“Power and Thermal-Aware Workload Allocation in Heterogeneous Data

Centers,” IEEE Transactions on Computers, vol. 64, no. 2, pp. 477–491,

Feb 2015.

[81] M. A. Oxley, S. Pasricha, A. A. Maciejewski, H. J. Siegel, and P. J.

Burns, “Online Resource Management in Thermal and Energy Con-

strained Heterogeneous High Performance Computing,” in 2016 IEEE

14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th

Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on

Big Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), Aug 2016, pp. 604–611.

Bibliography 157

[82] E. K. Lee, H. Viswanathan, and D. Pompili, “Proactive thermal-aware re-

source management in virtualized hpc cloud datacenters,” IEEE Transac-

tions on Cloud Computing, vol. 5, no. 2, pp. 234–248, April 2017.

[83] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, “Holistic virtual machine

scheduling in cloud datacenters towards minimizing total energy,” IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1317–

1331, June 2018.

[84] M. A. Oxley, E. Jonardi, S. Pasricha, A. A. Maciejewski, H. J. Siegel, P. J.

Burns, and G. A. Koenig, “Rate-based Thermal, Power, and Co-location

Aware Resource Management for Heterogeneous Data Centers,” J. Parallel

Distrib. Comput., vol. 112, no. P2, pp. 126–139, Feb. 2018.

[85] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic Consolidation of

Virtual Machines in Self-Organizing Cloud Data Centers,” IEEE Transac-

tions on Cloud Computing, vol. 1, no. 2, pp. 215–228, July 2013.

[86] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual

machines for cloud computing environment,” IEEE Transactions on Parallel

and Distributed Systems, vol. 24, no. 6, pp. 1107–1117, June 2013.

[87] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu, “Pacer: A Progress

Management System for Live Virtual Machine Migration in Cloud Com-

puting,” IEEE Transactions on Network and Service Management, vol. 10,

no. 4, pp. 369–382, December 2013.

[88] K. Ye, Z. Wu, C. Wang et al., “Profiling-Based Workload Consolidation and

Migration in Virtualized Data Centers,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 3, pp. 878–890, March 2015.

[89] A. Verma, P. Ahuja, and A. Neogi, “Power-aware Dynamic Placement of

HPC Applications,” in Proceedings of the 22nd Annual International Con-

ference on Supercomputing, ser. ICS, 2008, pp. 175–184.

[90] ——, “pMapper: Power and Migration Cost Aware Application Placement

in Virtualized Systems,” in Proceedings of the 9th ACM/IFIP/USENIX In-

ternational Conference on Middleware, ser. Middleware ’08, 2008, pp. 243–

264.

Bibliography 158

[91] M.-H. Malekloo, N. Kara, and M. E. Barachi, “An energy efficient and sla

compliant approach for resource allocation and consolidation in cloud com-

puting environments,” Sustainable Computing: Informatics and Systems,

vol. 17, pp. 9 – 24, 2018.

[92] S. Hosseinimotlagh, F. Khunjush, and S. Hosseinimotlagh, “A Coopera-

tive Two-Tier Energy-Aware Scheduling for Real-Time Tasks in Comput-

ing Clouds,” in 2014 22nd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, Feb 2014, pp. 178–182.

[93] L. Shi, Z. Zhang, and T. Robertazzi, “Energy-Aware Scheduling of Em-

barrassingly Parallel Jobs and Resource Allocation in Cloud,” IEEE Trans.

Parallel Distrib. Syst., vol. 28, no. 6, pp. 1607–1620, Jun. 2017.

[94] F. Farahnakian, T. Pahikkala, P. Liljeberg, and et al., “Energy-aware VM

Consolidation in Cloud Data Centers Using Utilization Prediction Model,”

IEEE Trans. on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[95] M. A. Rodriguez and R. Buyya, “Deadline Based Resource Provisioning and

Scheduling Algorithm for Scientific Workflows on Clouds,” IEEE Trans. on

Cloud Comp., vol. 2, no. 2, pp. 222–235, April 2014.

[96] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained

Workflow Scheduling Algorithms for Infrastructure As a Service Clouds,”

Futu. Gen. Comp. Sys., vol. 29, no. 1, pp. 158–169, Jan. 2013.

[97] H. Topcuouglu, S. Hariri, and M. Wu, “Performance-Effective and Low-

Complexity Task Scheduling for Heterogeneous Computing,” IEEE Trans.

on Para. and Dist. Sys., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[98] Y. Zhou and X. Huang, “Scheduling Workflow in Cloud Computing Based

on Ant Colony Optimization Algorithm,” in 6th Int. Conf. on Business In-

telligence and Financial Engg., Nov 2013, pp. 57–61.

[99] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A Revised Discrete PARTICLE Swarm

Optimization for Cloud Workflow Scheduling,” in Proceed. of the Int. Conf.

on Compu. Intell. and Secu. IEEE Computer Society, 2010, pp. 184–188.

[100] C. Lin and S. Lu, “Scheduling Scientific Workflows Elastically for Cloud

Computing,” in 4th IEEE Int. Conf. on Cloud Compu., July 2011, pp. 746–

747.

Bibliography 159

[101] I. Pietri, M. Malawski, G. Juve et al., “Energy-Constrained Provisioning for

Scientific Workflow Ensembles,” in Int. Conf. on Cloud and Green Compu.,

Sept 2013, pp. 34–41.

[102] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective energy-efficient work-

flow scheduling using list-based heuristics,” Futu. Gen. Comp. Sys., vol. 36,

pp. 221 – 236, 2014.

[103] F. Cao, M. M. Zhu, and C. Q. Wu, “Energy-Efficient Resource Management

for Scientific Workflows in Clouds,” in IEEE World Congress on Services,

June 2014, pp. 402–409.

[104] H. Chen, X. Zhu, D. Qiu, H. Guo, L. T. Yang, and P. Lu, “EONS: Minimiz-

ing Energy Consumption for Executing Real-Time Workflows in Virtualized

Cloud Data Centers,” in 45th ICPPW, Aug 2016, pp. 385–392.

[105] “Power Consumption pattern of Xeon Gold Processors.”

[Online]. Available: https://software.intel.com/en-us/forums/

software-tuning-performance-optimization-platform-monitoring/topic/

779810

[106] S. Srirama, V. Ivanistsev, P. Jakovits, and C. Willmore, “Direct Migration

of Scientific Computing Experiments to the Cloud,” in International Confer-

ence on High Performance Computing and Simulation (HPCS), July 2013,

pp. 27–34.

[107] Z. Mahmood, Cloud Computing: Methods and Practical Approaches.

Springer Publishing Company, Incorporated, 2013.

[108] Y. Gao, H. Guan, Z. Qi, B. Wang, and L. Liu, “Quality of service aware

power management for virtualized data centers,” Journal of Systems Archi-

tecture, vol. 59, no. 45, pp. 245 – 259, 2013.

[109] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Task ex-

ecution time modeling for heterogeneous computing systems,” in Proc. of

Heterogeneous Computing Workshop, 2000, pp. 185–199.

[110] J. Kim and K. G. Shin, “Execution time analysis of communicating tasks in

distributed systems,” IEEE Trans. on Comput., vol. 45, no. 5, pp. 572–579,

May 1996.

[111] “MetaCentrum data sets,” https://www.fi.muni.cz/ xklusac/in-

dex.php?page=meta2009.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/779810
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/779810
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/779810

Bibliography 160

[112] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay Scheduling : A Simple Technique for Achieving Locality and

Fairness in Cluster Scheduling,” in Proc. of European Conf. on Computer

Systems, ser. EuroSys’10, 2010, pp. 265–278.

[113] Y. Guo, H. Su, D. Zhu, and H. Aydin, “Preference Oriented Real-time

Scheduling and Its Application in Fault-tolerant Systems,” J. of System

Architecture, vol. 61, no. 2, pp. 127–139, Feb. 2015.

[114] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy Aware Resource Allo-

cation Heuristics for Efficient Management of Data-Centers for Cloud Com-

puting,” Future Generation Computer Systems, vol. 28, no. 5, pp. 755 – 768,

2012.

[115] J. Choi, S. Govindan, J. Jeong, B. Urgaonkar, and A. Sivasubramaniam,

“Power Consumption Prediction and Power-Aware Packing in Consolidated

Environments,” IEEE Transactions on Computers, vol. 59, no. 12, pp. 1640–

1654, 2010.

[116] N. Fisher, J. Goossens, and S. Baruah, “Optimal Online Multiprocessor

Scheduling of Sporadic Real-time Tasks is Impossible,” Real-Time Systems,

vol. 45, no. 1-2, pp. 26–71, Jun. 2010.

[117] G. C. Buttazzo, Hard Real Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Springer, 2011.

[118] S. Holmbacka, W. Lund, S. Lafond, and J. Lilius, “Task Migration for Dy-

namic Power and Performance Characteristics on Many-Core Distributed

Operating Systems,” in 2013 21st Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, Feb 2013, pp. 310–317.

[119] Q. Teng, P. F. Sweeney, and E. Duesterwald, “Understanding the Cost of

thread migration for multi threaded Java applications running on a multicore

platform,” in Performance Analysis of Systems and Software, IEEE Int.

Symp. on, April 2009, pp. 123–132.

[120] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and A. Seznec, “Per-

formance Implications of Single Thread Migration on a Chip Multi-core,”

SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 80–91, Nov. 2005.

[121] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the

Clouds: A Berkeley View of Cloud Computing,” Feb 2009.

Bibliography 161

[122] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-Aware

Scheduling for Real-Time Systems: A Survey,” ACM Trans. Embed. Com-

put. Syst., vol. 15, no. 1, pp. 7:1–7:34, Jan. 2016.

[123] R. N. Calheiros, R. Ranjan, A. Beloglazov et al., “CloudSim: A Toolkit for

Modeling and Simulation of Cloud Computing Environments and Evaluation

of Resource Provisioning Algorithms,” Softw. Pract. Exper., vol. 41, no. 1,

pp. 23–50, Jan. 2011.

[124] “Google cluster data v2,” http://code.google.com/p/googlecluster-

data/wiki/ClusterData2011 1, 2011.

[125] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An Approach for Char-

acterizing Workloads in Google Cloud to Derive Realistic Resource Utiliza-

tion Models,” in 2013 IEEE Seventh International Symposium on Service-

Oriented System Engineering, March 2013, pp. 49–60.

[126] L. Wang, G. von Laszewski, J. Dayal, and F. Wang, “Towards Energy

Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster

with DVFS,” in Proceedings of the 2010 10th IEEE/ACM International Con-

ference on Cluster, Cloud and Grid Computing, ser. CCGRID ’10. IEEE

Computer Society, 2010, pp. 368–377.

[127] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-End Delay Minimization

for Scientific Workflows in Clouds under Budget Constraint,” IEEE Trans.

on Cloud Computing, vol. 3, no. 2, pp. 169–181, April 2015.

[128] N. Sharma and R. M. Guddeti, “Multi-Objective Energy Efficient Virtual

Machines Allocation at the Cloud Data Center,” IEEE Transactions on Ser-

vices Computing, pp. 1–1, 2016.

[129] “https://aws.amazon.com/ec2/.”

[130] A. Beloglazov and R. Buyya, “Energy Efficient Resource Management in Vir-

tualized Cloud Data Centers,” in IEEE/ACM Int. Conf. on Cluster, Cloud

and Grid Computing, May 2010, pp. 826–831.

[131] J. Bawicz and Z. Liu, “Scheduling multiprocessor tasks with chain con-

straints,” Euro. J. of Op. Research, vol. 94, no. 2, pp. 231 – 241, 1996.

[132] T. K. Agrawal, A. Sahu, M. Ghose, and R. Sharma, “Scheduling chained

multiprocessor tasks onto large multiprocessor system,” Computing, pp. 1–

22, 2017.

Bibliography 162

[133] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine placement

algorithm with balanced and improved resource utilization in a data center,”

Mathematical and Computer Modelling, vol. 58, no. 5, pp. 1222 – 1235, 2013.

[134] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine placement

across multiple cloud providers,” in IEEE Asia-Pacific Services Computing

Conference (APSCC), Dec 2009, pp. 103–110.

[135] B. Speitkamp and M. Bichler, “A Mathematical Programming Approach for

Server Consolidation Problems in Virtualized Data Centers,” IEEE Trans.

on Services Computing, vol. 3, no. 4, pp. 266–278, Oct 2010.

[136] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online Self-

Reconfiguration with Performance Guarantee for Energy-Efficient Large-

Scale Cloud Computing Data Centers,” in IEEE Int. Conf. on Serv. Comp.,

July 2010, pp. 514–521.

[137] H. N. Van, F. D. Tran, and J. M. Menaud, “Performance and Power Man-

agement for Cloud Infrastructures,” in IEEE 3rd International Conference

on Cloud Computing, July 2010, pp. 329–336.

[138] E. Feller, L. Rilling, and C. Morin, “Energy-Aware Ant Colony Based Work-

load Placement in Clouds,” in 2011 IEEE/ACM 12th International Confer-

ence on Grid Computing, Sept 2011, pp. 26–33.

[139] “Scientific workflow xml files,” https://confluence.pegasus.isi.edu/.

Bio-data and Publications

Brief Bio-data of Manojit Ghose Manojit Ghose has com-

pleted his B. E. degree from Jorhat Engineering College (Dibrugarh University,

Govt. of Assam, India) in 2007 in Computer Science and Engineering. He has

completed his M. Tech. degree from IIT Guwahati in 2013. He joined his Ph.D.

in 2013 at IIT Guwahati in the Department of Computer Science and Engineering

under the scholarship of MHRD, Govt. of India. His research area of interests

is multiprocessor scheduling, cloud computing, and computer architecture. One

of his research paper has received the “Best Paper Award” in Computer Science

track in IEEE INDICON 2016. Recently, he has joined Dibrugarh Institute of En-

gineering and Technology (DUIET) as an Assistant Professor under NPIU, Govt.

of India.

Publications: published

• M. Ghose, A. Sahu, S. Karmakar, “Energy Efficient Online Scheduling of

Real Time Tasks onto Large Multi-threaded Multiprocessor Systems,” in The

Journal of Information Science and Engineering, 34(6) : 1599− 1615, 2018.

• T. K. Agrawal, A. Sahu, M. Ghose, and R. Sharma, “Scheduling chained

multiprocessor tasks onto large multiprocessor system”. Computing, 99(10) :

1007− 1028, 2017.

• M. Ghose, P. Verma, S. Karmakar, A. Sahu, “Energy Efficient Scheduling of

Scientific Workflows in Cloud Environment,” in The 19th IEEE International

Conference on High Performance Computing and Communications (HPCC

2017), pages 170− 177, Bangkok, Dec 2017.

• S. Kaur, M. Ghose, A. Sahu, “Energy Efficient Scheduling of Real-Time

Tasks in Cloud Environment,” in The 19th IEEE International Conference

on High Performance Computing and Communications (HPCC 2017), pages

178− 185, Bangkok, Dec 2017.

• M. Ghose, A. Sahu, S. Karmakar, “Energy Efficient Scheduling of Real

Time Tasks on Large Systems,” in The 17th IEEE International Confer-

ence on Parallel and Distributed Computing, Applications and Technologies

(PDCAT-16), pages 99− 104, Dec 2016.

• M. Ghose, A. Sahu, S. Karmakar, “Energy Efficient Online Scheduling

of Aperiodic Real Time Task on Large Multi-threaded Multiprocessor Sys-

tems,” in The 13th International IEEE Annual India Conference (INDI-

CON), pages 1− 6, Dec 2016.

Publications: under review

• M. Ghose, A. Sahu, S. Karmakar, “Urgent Point Aware Energy Efficient

Online Scheduling of Real Time Tasks on Cloud System,” Sustainable Com-

puting: Informatics and Systems, Elsevier.

• M. Ghose, S. Kaur, A. Sahu, “Scheduling Real-Time Tasks in an Energy-

Efficient Way with VMs having Discrete Utilization,” Computing, Springer.

• M. Ghose, P. Verma, S. Karmakar, A. Sahu, “Energy Efficient Online

Scheduling of Scientific Workflows in Cloud Domain,” IEEE Transactions

on Cloud Computing.

	Declaration of Authorship
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Notations
	1 Introduction
	1.1 Multiprocessor Scheduling
	1.2 Classification of Multiprocessor Scheduling Algorithms
	1.3 Real Time Scheduling
	1.3.1 Scheduling of periodic real-time task scheduling
	1.3.2 Scheduling of aperiodic real-time task scheduling

	1.4 Aperiodic Real-Time Task Scheduling on Multiprocessor Environment
	1.5 Large Systems and Cloud
	1.5.1 Cloud computing and virtualization

	1.6 Real-Time Scheduling for Large Systems and Cloud
	1.6.1 Workflow Scheduling for Large Systems and Cloud

	1.7 Energy Consumption in Large Systems
	1.7.1 Power consumption models
	1.7.2 Impact of high power consumption

	1.8 Motivation of the Thesis
	1.9 Contributions of the Thesis
	1.9.1 Scheduling online real-time tasks on LMTMPS
	1.9.2 Scheduling online real-time tasks on virtualized cloud system
	1.9.3 Scheduling real-time tasks on VMs with discrete utilization
	1.9.4 Scheduling scientific workflows on virtualized cloud system

	1.10 Summary
	1.11 Organization of the Thesis

	2 Energy Efficient Scheduling in Large Systems: Background
	2.1 Fine Grained Approaches
	2.1.1 Non-virtualized system
	2.1.2 Virtualized system

	2.2 Coarse Grained Approaches
	2.2.1 Non-virtualized system
	2.2.2 Virtualized system

	2.3 Energy Efficient Workflow Scheduling
	2.3.1 Workflow scheduling on large systems
	2.3.2 Energy-efficient scheduling of workflows

	3 Scheduling Online Real-Time Tasks on LMTMPS
	3.1 Introduction
	3.2 System Model
	3.3 Power Consumption Model
	3.4 Task Model: Synthetic Data Sets and Real-World Traces
	3.4.1 Synthetic tasks
	3.4.1.1 Execution time variation
	3.4.1.2 Deadline variation

	3.4.2 Real-world traces

	3.5 Objective in the Chapter
	3.6 Standard Task Scheduling Policies
	3.6.1 Utilization based allocation policy (UBA)
	3.6.2 Front work consolidation (FWC)
	3.6.3 Rear work consolidation (RWC)
	3.6.4 Utilization based work consolidation (UBWC)
	3.6.5 Earliest deadline first scheduling policy (EDF)

	3.7 Proposed Task Scheduling Policies
	3.7.1 Smart scheduling policy (Smart)
	3.7.2 Smart scheduling policy with early dispatch (Smart-ED)
	3.7.3 Smart scheduling policy with reserve slots (Smart-R)
	3.7.4 Smart scheduling policy with handling immediate urgency (Smart-HIU)

	3.8 Experiment and Results
	3.8.1 Experimental setup
	3.8.2 Parameter setup
	3.8.2.1 Machine parameters
	3.8.2.2 Task parameters
	3.8.2.3 Migration overhead

	3.8.3 Instantaneous power consumption
	3.8.4 Results and discussions
	3.8.5 Experiments with real workload traces
	3.8.6 Migration count

	3.9 Summary

	4 Scheduling Online Real-Time Tasks on Virtualized Cloud
	4.1 Introduction
	4.2 System Model
	4.3 Task Model
	4.4 Energy Consumption Model
	4.5 Objective in the Chapter
	4.6 Scheduling Strategies
	4.6.1 Urgent point aware scheduling (UPS)
	4.6.1.1 Scheduling at urgent critical point (SCUP)
	4.6.1.2 Scheduling at task completion (STC)
	4.6.1.3 Scheduling with consolidation (SWC)

	4.6.2 UPS - early scheduling (UPS-ES)

	4.7 Performance Evaluation
	4.7.1 Simulation environment and parameter setup
	4.7.2 Experiments with synthetic data
	4.7.3 Experiments with real-world data: Metacentrum
	4.7.4 Experiments with real-world data: Google tracelog

	4.8 Summary

	5 Scheduling Real-Time Tasks on VMs with Discrete Utilization
	5.1 Introduction
	5.2 System Model
	5.3 Energy Consumption Model
	5.4 Objective in the Chapter
	5.5 Classification of cloud systems
	5.5.1 Calculation of hot thresholds for the hosts
	5.5.2 Hosts with negligible static power consumption (uc = 0)
	5.5.3 Hosts with significantly high static power consumption (uc > 1)

	5.6 Scheduling Methodology for the Systems with General Specifications (0<uc1)
	5.6.1 Scheduling n tasks of same type (Case 1: (e,d))
	5.6.2 Scheduling approach for two types of tasks having same deadline (Case 2: (e1,d) and (e2,d))
	5.6.3 Scheduling approach for the requests with multiple number of task types having same deadline (Case 3: (ei,d))
	5.6.4 Scheduling approach for general synced real-time tasks (Case 4: (ei,di))

	5.7 Performance Evaluation
	5.8 Summary

	6 Scheduling Scientific Workflows on Virtualized Cloud System
	6.1 Introduction
	6.2 System Model
	6.3 Application Model
	6.4 Energy Consumption Model
	6.5 Objective in the Chapter
	6.6 Scheduling Options and Restrictions in Workflow Scheduling
	6.6.1 VM placement
	6.6.2 Migration
	6.6.3 Slack distribution

	6.7 Scheduling Policies
	6.8 Scheduling with Non-splittable VM Allocation (NSVM)
	6.8.1 Non-splittable VMs without migration (NSVMNM)
	6.8.1.1 Slack to first task (SFT_NSVMNM)
	6.8.1.2 Slack forwarding (SFW_NSVMNM)
	6.8.1.3 Slack division and forwarding (SDF_NSVMNM)

	6.8.2 Non-splittable VMs with limited migration (NSVMLM)
	6.8.3 Non-splittable VMs with full migration (NSVMFM)

	6.9 Scheduling with Splittable VM Allocation (SVM)
	6.9.1 Splittable VMs without migration (SVMNM)
	6.9.1.1 Slack to first task (SFT_SVMNM)
	6.9.1.2 Slack forwarding (SFW_SVMNM)
	6.9.1.3 Slack division and forwarding (SDF_SVMNM)

	6.9.2 Splittable VMs with limited migration (SVMLM)
	6.9.3 Splittable VMs with full migration (SVMFM)

	6.10 Performance Evaluation
	6.10.1 Simulation platform and parameter setup
	6.10.2 Real scientific work-flow
	6.10.3 Impact of slack distribution
	6.10.4 Trade-off between energy consumption, migration count and split count
	6.10.5 Different mixes of scientific workflows

	6.11 Summary

	7 Conclusion and Future Work
	7.1 Summary of Contributions
	7.2 Scope for Future Work

	Bibliography
	Bio-data and Publications

