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Abstract

Typically an algorithm designed for carrying data mining tasks is fed with a static

set of input. This class of algorithms remain prone to certain disadvantages in

scenarios where the input data and extracted results change temporally. The

prominent bottlenecks may include redundant computation, high response time

along with increased consumption of available resources. Given the importance of

handling dynamic data in a real time environment eg: traffic monitoring, medical

research, recommendation systems etc., this thesis focuses on developing incre-

mental mining algorithms particularly in the field of density based clustering and

outlier detection.

Density-based algorithms display robustness in extracting clusters of varying gran-

ularity or filtering outliers from variable density sub-spaces. In this thesis, we pro-

pose incremental extensions to two density based clustering algorithms: MBSCAN

(Mass-based Clustering of Spatial Data with Application of Noise) and SNN-

DBSCAN (Shared Nearest Neighbor Density Based Clustering of Large Spatial

Data with Application of Noise). While dealing with outlier detection, an incre-

mental density based approach is proposed for the K-Nearest Neighbor Outlier

Detection algorithm known as KNNOD. The incremental extensions to MBSCAN

and KNNOD are approximate in nature facilitating single point insertions. How-

ever for SNN-DBSCAN, we propose exact incremental solutions facilitating both

addition and deletion of data in batch mode.

Our first contribution known as the iMass (Incremental Mass Based Clustering)

clustering algorithm offers an approximate incremental solution to the static MB-

SCAN algorithm. The goal of this work is to identify the expensive building blocks

of MBSCAN and reconstruct them incrementally post every new insertion. Ob-

servations combining six real world and two synthetic datasets showed that the

proposed iMass algorithm outperformed the naive MBSCAN method by achiev-

ing a maximum efficiency upto an order of 2.28 (≈ 191 times). Around 60.375%

of mean clustering accuracy was observed post final insertion for three unlabeled

datasets. The cluster quality evaluation through Normalized Mutual Informa-

tion (NMI), Rand index (RI) measure and F1-score for five class labeled datasets

showed similar or improved results for iMass as compared to MBSCAN. The ef-

forts laid in our first contribution therefore motivated us to expand our research

towards proposing exact incremental solutions.
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The second contribution in form of our proposed clustering algorithm BISDBadd

(Batch Incremental Shared Nearest Neighbor Density Based Clustering Algorithm

for addition) provides an exact incremental solution to the naive SNN-DBSCAN

algorithm while adding points in batch mode. BISDBadd comprises of two pro-

posed sub-variant algorithms viz. Batch − Inc1, Batch − Inc2 and is the most

efficient comparatively. BISDBadd targets all the components of SNN-DBSCAN

incrementally unlike its sub-variant methods. BISDBadd achieved a maximum

efficiency upto an order of 3 (≈ 1000 times) over five (three real world and two

synthetic) datasets. An identical cluster similarity was also observed with that of

the SNN-DBSCAN algorithm.

Complementing addition of data, the third contribution proposes the algorithm

BISDBdel (Batch Incremental Shared Nearest Neighbor Density Based Clustering

Algorithm for deletion) thereby providing an exact incremental solution to SNN-

DBSCAN while deleting points in batch mode. Similar to BISDBadd, BISDBdel

comprises of two proposed sub-variant algorithms viz. Batch−Dec1, Batch−Dec2
and is the most efficient comparatively. BISDBdel targets all the components of

SNN-DBSCAN incrementally when points are deleted from the dataset unlike its

sub-variant methods. On comparing with SNN-DBSCAN, the maximum efficiency

achieved by BISDBdel reached upto an order of 4 (≈ 10000 times) over five (three

real world and two synthetic) datasets. The set of clusters obtained were identical

to the SNN-DBSCAN algorithm.

Moving from the paradigm of clustering, our fourth and final contribution focuses

on dynamic extraction of at most top-N global outliers against single point inser-

tions. Our proposed approximate incremental algorithm KAGO (Adaptive Grid

Based Outlier Detection Approach using Kernel Density Estimate (KDE)) uses

Gaussian kernel in a grid-partitioned space to determine the local density of a

point. The local density obtained through KDE is used to filter the local outliers

which are integrated to extract at most top-N global outliers. The KAGO algo-

rithm outperformed KNNOD by achieving a maximum efficiency upto an order

of 3.91 (≈ 8304 times) over two intrusion detection datasets and a bidding data

for market advertisement related to a search engine. Outliers’ evaluation on these

datasets using RI and F1-score showed a mean improved accuracy of around 3.3%

in case of KAGO.

The thesis therefore strives towards developing approximate and exact incremental

algorithms in the field of density-based clustering and outlier detection thereby

facilitating real time data analysis.
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Chapter 1

Introduction

1.1 Incremental Algorithms

Given a set of input sequence X on an existing dataset D, an incremental algo-

rithm Ainc produces a set of output sequence Oinc by intelligently adapting to the

changes in input. On the contrary, when the same input sequence X is processed

by a non-incremental (naive) algorithm Anaive, the efficiency, latency and resource

consumption may be compromised while producing an exact or approximate out-

put Onaive with respect to (w.r.t.,) Ainc.

Formally, let X = {i1, i2, i3, . . . , ik} [ k ∈ N (set of natural numbers), |X| = k ]

be the set of data items inserted to or deleted from an existing dataset D. The

elements of X may be fed to algorithm Ainc in a point-wise manner or batch mode.

Let an update sequence of data sets x1, x2, x3, . . . , xm be processed by Ainc. After

processing each set xr [ 1 ≤ r ≤ m, m ∈ Z+ (set of positive integers) ] where:

• xr ⊆ X ,
⋃m
r=1 xr = X.

• 1 ≤ |xr| ≤ k, 1 ≤ m ≤ k.

• For p, q ∈ Z+, p 6= q and 1 ≤ p, q ≤ m, we have xp ∩ xq = φ.

let Ainc produce a set of output sequence Oinc = {oi1, oi2, oi3, . . . , oim}. ∀oij ∈
Oinc[1 ≤ j ≤ m], oij = {y|y ∈ finc(xj ∪D)} where function finc(.) is a part of Ainc.

Let the time taken to execute Ainc be Tinc.

1
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Assuming that the algorithm Anaive is fed with an identical input sequence to

Ainc, then instead of selectively dealing with set xi, the entire updated

dataset xi ∪ D is processed. The output sequence produced by Anaive may

be represented as Onaive = {on1, on2, on3, . . . , onm}. ∀onj ∈ Onaive[1 ≤ j ≤ m],

onj = {y|y ∈ fnaive(xj ∪ D)} where function fnaive(.) is a part of Anaive. Let the

time taken towards completion of Anaive be Tnaive. Therefore, upon execution of

the presented sequence to both the algorithms Ainc and Anaive, we have

Tinc < Tnaive.

Based on the comparison between output sequence Oinc and Onaive, Ainc can be

said to produce either an approximate or an exact incremental solution to Anaive.

The following conditions categorize the incremental algorithm Ainc accordingly:

• ∃oij ∈ Oinc,∃onj ∈ Onaive where 1 ≤ j ≤ m, if oij ≈ onj, then Ainc is an

approximate incremental extension to Anaive.

• ∀oij ∈ Oinc, ∀onj ∈ Onaive where 1 ≤ j ≤ m, if oij = onj, then Ainc is an

exact incremental extension to Anaive.

1.1.1 Some examples of incremental algorithms in data

mining

We mention some of the incremental algorithms of choice which include tasks like

clustering, pattern extraction, network intrusion detection to name a few.

1. Incremental K-means clustering algorithm [6]: An incremental ex-

tension of K-means clustering algorithm involves addition of cluster centers

singularly in course of cluster formation. The scheme adopted in this work

has been designed to reduce the cluster distortion by initiating movement of

cluster centers.

2. Incremental document clustering [7]: In context of clustering web doc-

uments, an incremental approach becomes important as tasks like accessing,

browsing and searching of large repositories are involved. In this algorithm,

a pair-wise document similarity information is utilized where a similarity

histogram is used for representing the clusters.

3. Dynamic Information Retrieval [8]: In applications related to docu-

ment and image classification, the task of clustering points in a dynamic

2
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environment becomes critical. The algorithm attempts to maintain clusters

of smaller diameter while new points are being inserted.

4. Incremental Algorithm Based on FP-growth for Big Data [9]: The

rapid use of big data has led to an increase in new transactions on a steady

basis. Therefore the results of association rule mining called frequent item-

sets should be updated with change in time. This technique relies on the

concept of heap tree while addressing the issue of updating frequent item-sets

incrementally.

5. Real time network intrusion detection [10]: The work proposes a tech-

nique to detect intrusions in network on a real time basis. An approach of

incremental mining for fuzzy association rules is adopted in this case. Two

sets of rules mined from online source and training of attack-free packets

are compared. The proposed approach is able to produce a result every two

seconds. This leads to a significant improvement in efficiency as compared

to static approaches of mining.

6. On-line failure prediction [11]: An architecture has been proposed by the

said work for predicting online failures in air traffic control system. The pro-

posed architecture named as CASPER [11] exhibits a greater degree of accu-

racy in forecasting failures. The proposed scheme utilizes no prior knowledge

about internal applications, information about CPU utilization or amount

of memory consumed.

1.2 Dynamic data and its applications

Dynamic data changes over time in an asynchronous manner with the availability

of new information [12]. The rapid use of dynamic data by various applications

in domains such as online recommender systems, health care, traffic monitoring,

cyber security, web-crawling etc. have increased significantly over the years. In

this section we mention certain applications of choice to highlight the relevance of

dynamic data.

1. Recommender systems: A recommendation system involves information

filtering in order to predict the rating or preference of a user. Recommender

systems make use of either content based filtering or collaborative filtering

[13]. A user’s past choices eg: items purchased, videos watched, channels

3
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subscribed, content browsed etc. play a major role in collaborative filtering

to make future recommendations. However, content based filtering make use

of prior ratings or tagged characteristics to recommend items with similar

features.

Every choice by a user may be treated as a change in data and hence the

predictions can be made accordingly. Applications such as YouTube [14] in-

volves content based filtering for recommendations depending on the user’s

profile and the description of video content. Similarly e-commerce sites like

Amazon [15] use collaborative filtering based on customer’s interests for gen-

erating a list of recommended items. Therefore, we observe the prevalence of

dynamic data in form of ordered items or chosen contents on such platforms

for future recommendations.

2. Traffic monitoring: With growth of population in urban areas, the road

networks are expanding rapidly. The traffic congestion are a direct result of

the frequent movement of people on the road [16]. A GPS service provider

may gather data from individual users about their locations, speeds, mobility,

etc. The dynamic data such as the number of users at different regions during

each time period, can be mined for commercial interest like determining

congestion patterns on the roads.

3. Medical field: In the field of medical research, the application of dynamic

data can be mapped to individual patients. Every new addition of symp-

toms like cough, cold, fever, demographic attributes can be taken as the

features pertaining to a given patient. The information may be shared with

researchers for discovery, seasonal epidemic outbreak monitoring [17]. Any

epidemic monitoring system involved in precise discovery of infected individ-

uals ensure a proper understanding of the characteristics of epidemics. This

may help in further prevention of diseases. Moreover, physical participation

of patients can be potentially avoided. Use of social media in this regard may

also turn out to be of great help while developing a computational epidemic

model.

4. Eye movement dataset: For the task of visual action recognition, dynamic

eye movement datasets are used [18]. Large quantity of eye movement data

are collected in order to study and construct automatic, end-to-end com-

puter vision systems. These systems can be trained based on human eye

movements.

4
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5. Web-crawlers: Dynamic-content web crawlers are installed at locations

between user and the server. The task of these crawlers is to monitor contents

from points where it is placed, eg: being a proxy to the web traffic or sniffing

the web traffic as the contents go by. The parsing of web page content is

done recursively into sub-components [19]. Sub-components go through a

fingerprint check enabled by a cyclic redundancy checking code so that it is

able to determine the repeat occurrence of the sub-component in pages to

follow.

6. Cyber security: In order to detect changes in real time, the velocity of data

streams and other network characteristics, an ensemble-based approach may

be used for generating functions. These functions are utilized for combining

the classifiers and strategies to respond to data changes [20].

1.3 Data mining tasks of choice

The two data mining tasks of choice leading towards our contributions in this

thesis are:

• Density-based clustering.

• Density-based outlier detection.

Next we mention the essential characteristics of density based clustering and outlier

detection.

1.3.1 Density-based clustering

Clustering is a learning task that groups data objects or patterns based on sim-

ilarity measures. Such objects may exist as data points in a Rd (d-dimensional)

space. Entities belonging to a certain cluster have greater similarity between them

than that with an entity belonging to a different cluster [21, 22].

Out of all the clustering domains (Figure 1.1), in this thesis we particularly focus

on providing incremental extensions in approximate or exact form to density based

clustering algorithms (DBCLAs) of choice. The objective of DBCLAs is to find

clusters at different levels of granularity with appropriate noise filtering. The

5
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Figure 1.1: Representation of various clustering domains.
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notion of density used by the DBCLAs enables segregation of compact regions in

the data space from noise. With use of DBCLAs, clusters are identified as areas of

higher density than the remainder of the data space [23]. Several DBCLAs eg:SNN-

DBSCAN [24] also facilitate detecting clusters of arbitrary shapes and densities.

Over a period of last two decades, numerous density based clustering techniques

have been proposed. A majority of these methods aim to extract clusters of

relatively uniform densities lying across the data space.

The motivation behind advent of DBCLAs results from the drawbacks present

in other clustering domains viz. partitional clustering, hierarchical clustering,

fuzzy clustering, nearest neighbor based clustering or evolutionary approaches.

Depending on the properties of data and the mechanism adopted to form clusters,

we mention the flaws in other areas of clustering as compared to DBCLAs:

1. Inability to detect clusters correctly in high dimensional space:

Most of the challenges faced by clustering algorithms are particularly related

to the quality of clusters obtained in voluminous high dimensional space. The

phenomenon of “curse of dimensionality” [25] is one of the major bottlenecks

due to which quality of clusters cannot be guaranteed among data points

having numerous attributes.

2. Resource constraint: With the use of very large datasets, there also ex-

ists an issue regarding availability of computational resources. Clustering

6

TH-2363_136101011



algorithm such as CLARANS [26] is based on the assumption that its data

reside within memory, an approach that fails for very large datasets.

3. Inability to detect non-globular clusters: Existing literature have also

pointed out the inability of various methods to extract arbitrarily shaped

clusters having variable densities. Partitional method such as K-means [27]

finds convex shaped clusters. It fails to identify clusters of non-globular

shapes. The algorithm also shows its limitations while dealing with noisy

data. Agglomerative clustering techniques [28, 22, 21] are not as affected by

noise, but they have a tendency towards identifying globular clusters.

4. Overlooking clusters in areas of uniform density: For spatial data-

bases, we can often find regions of uniform density located at a remote area.

Such regions usually go undetected and the probable clusters existing in

those regions are potentially overlooked by many clustering algorithms.

Figure 1.2: Dense areas represent the clusters and subsequently the noises are
filtered out. DBCLAs aslo enable cluster detection in areas of uniform density

irrespective of the size of region.
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In order to address these challenges, the class of DBCLAs came into existence.

The following points underline the reasons for robustness of the DBCLAs.

1. DBCLAs discover clusters as dense regions separated from the areas of lower

density [23] (Figure 1.2). The density of any region is given as the number

of points within that region or in terms of its kernel density estimate [29].

2. DBCLAs enable appropriate noise filtering [23] (Figure 1.2).

3. DBCLAs aim at exploring the data space with varied levels of granularity

[30]. This enables detection clusters in regions of uniform density.
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Figure 1.3: Detecting clusters of arbitrary shapes and densities.
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Figure 1.4: Dense grid cells accumulate to form clusters.
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4. Exploring data at higher levels of granularity enables DBCLAs to reconstruct

the entire shape of the data distribution [31].

5. DBCLAs facilitate detection of arbitrary shaped clusters with varying sizes

and densities [24]. A post processing phase is considered in order to accu-

mulate the dense region into an arbitrary shape (Figure 1.3).

6. DBCLAs also use grid based methods to explore individual regions of the

data space and form clusters [30] (Figure 1.4).

1.3.1.1 Applications of density-based clustering algorithms

We mention some of the relevant applications where DBCLAs find their impor-

tance.
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1. Earth sciences: In the field of earth sciences, spectral space obtained from

satellite images is clustered. This is a task commonly used in remote sensing

image analysis. In this application, the said algorithm (GDBSCAN [32]) uses

a 5-D space gathered from the satellite imagery of a region on earth’s surface.

Clusters obtained through this procedure finds importance in analysis of

digital images in remote sensing. Algorithms such as SNN-DBSCAN [24]

also finds its application in earth sciences data. In particular, researchers

are interested in finding the areas of ocean whose behavior correlates well to

climate events on the earth’s land surface.

2. Molecular biology: Bio-molecules, proteins, DNA and other cell compo-

nents consist of millions of atoms within them. These cell components inter-

act with each other eg: protein protein interaction (PPI). PPI contains dense

regions that can be identified based on the data connectivity [33]. The spa-

tial arrangement of the molecular structures at the site of interaction holds

importance in addition to physio-chemical molecular behavior highlighting

the application of clustering.

3. Astronomy: In the field of astronomy, the data acquired from celestial ob-

jects may lead to the discovery of various patterns. Grouping of such data is

necessary for detecting the presence of any pattern or any other relevant in-

formation for mining. Surveys detecting celestial objects of interest perform

their statistical studies. Such observations may extract sporadic or irregular

objects [32]. One of the main reasons to adopt DBCLAs for such purpose

is its ability to segregate compact regions from the sparse areas in the data

space. This enables detection of clusters in the galactic survey along with

appropriate noise filtering.

4. Geography: DBCLAs can be used to retrieve two-dimensional polygons

based on the similarity measure of non-spatial attributes. In order to char-

acterize the proximity between attributes, the domain is segregated to some

distinct classes. The values lying within the same class are said to be simi-

lar. Sets that have the least or highest feature values become the influence

regions. GDBSCAN [32] algorithm extracts such regions of influence. In

the area of geospatial clustering, DBSCAN [23] also plays an important role

in GIS (Geographic Information System) spatial analysis techniques such as

polygon overlay [34].

9

TH-2363_136101011



1.3.2 Density-based outlier detection

Anomaly or outlier detection relates to the task of filtering patterns in data that

deviate from normal behavior. These non-conforming or deviating patterns are

often designated as anomalies, outliers or exceptions [35]. Figure 1.5 demonstrates

the outliers and normal patterns in a 2-D data. The points which appear in

isolation from the expected patterns are shown as outliers while the two groups of

accumulated points in close neighborhood of each other form the clusters.

Figure 1.5: Illustration of outliers in a 2-D data.
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In this thesis, we focus on density based outlier detection approach out of all the

outlier extraction domains (Figure 1.6). The K-Nearest-Neighbor (KNN) approach

is considered as one of the basic density based techniques to detect anomalies [36].

However the KNN approach shows its limitations while extracting outliers from

regions of variable densities. In order to deal with this issue, the idea of finding

local density came into existence. The local density of a point is computed based

on the relative density of its neighboring points. Any instance of data lying within

a neighborhood of lower density may be called as an anomalous object.

Evaluation of local density pertaining to any data item is accompanied by its

assigned anomaly score known as Local Outlier Factor (LOF) [37]. In case of

any normal point residing within a region of higher density, the local density of

that point is expected to be similar to its neighboring points. For any outlier, an

estimated lower local density may be obtained compared to its K nearest neighbors.

Most density based anomaly detection techniques are based on the variations of

LOF which essentially involves the KNN of a data instance.

The key advantages of density-based anomaly detection approach are:

1. No prior assumptions are made regarding the distribution of data. The

approach is data dependent.
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Figure 1.6: Representation of various outlier detection paradigms.
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2. Adapting to KNN-based approach for determining density is simpler as it

primarily involves defining a suitable measure of distance for the data item.

3. Finding local density of data points can be more meaningful and advanta-

geous in data space involving skewed distribution.

Next, we mention some of the relevant applications where the use of outlier detec-

tion has been made for the required purpose.

1.3.2.1 Some applications of outlier detection algorithms

1. Network intrusion detection: For many years, anomaly detection in net-

works have been a challenging area of research. Challenges lie in detecting

a high false alarm rate along with issues in obtaining a cleaner data for

modeling patterns that are normal. Anomaly detection approach based on

TCM-KNN (Transductive Confidence Machines for KNN) [38] enable detec-

tion of outliers with a high true positive rate.

2. Credit card transactions: The operation sequence in credit card trans-

actions is modeled using a Hidden Markov Model (HMM) [39] for fraud

detection. Initially, the HMM is trained with a normal cardholder. However

if a new transaction doesn’t comply with the acceptance level of the trained

HMM, the perception of fraud tends to happen.

Use of artificial immune system (AIS) [40] is also termed as beneficial while

detecting frauds in credit card transactions. The reason may be attributed
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to the fact that AIS can be built for flagging off dubious transactions without

any knowledge of prior examples.

3. Healthcare: Wireless sensor networks (WSN) remain susceptible to nu-

merous faults and anomalous calculations. In the domain of healthcare, any

uncalled for alarm may involve unnecessary involvement of medical profes-

sionals. As a result, enabling proper differentiation between actual health

issues and a false indication improve the task of patient monitoring [41]. Us-

ing medical sensors to collect physiological data, true alarms can be picked

out neglecting the anomalous signals.

4. Safety critical system: A behavior-rule based technique has been pro-

posed to detect intrusions (BRIDS) [42] for providing security to distribution

access points, energy meters of subscribers in modern electrical grids where

continuity in performance is important. The proposed scheme investigates

the consequence of behaviors by attackers on the strength of the BRIDS

method.

1.4 Challenges: Why do algorithms adapt?

An algorithm may adapt in order to deal with following challenges:

1. Efficiency: Increase in disproportional amount of run time by naive algo-

rithm inflicted due to continuous changes in input data.

2. Latency: Due to speedy changes in the input, producing a correct and

timely output without any delay may be a challenge.

3. Resource usage: Use of excessive computing resource due to involvement

of entire dataset is also a major bottleneck.

Next we mention the role of incremental algorithm in addressing the aforemen-

tioned challenges.
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1.4.1 Improve efficiency:

Whenever data resorts to a differential amount of change, an incremental algorithm

A (say)1 attempts to save time by reconstructing output that depends on the

changed data. Upon successful execution, algorithm A can be substantially faster

as compared to any naive approach. In order to illustrate this idea, let us consider

the following scenario:

Let I1 be the input to any naive algorithm N (say) producing output O1. When

a differential change δI is inflicted upon I1, I1 changes to I2. Let the changed

output be represented by O2. If T (.) represents the time required to process a

given input by an algorithm, then we may have the following scenario:

N(I1)→ O1

I1 ± δI → I2

N(I2)→ O2

|O2 −O1| → δO (1.1)

∵ size(δI) < size(I2);A(δI)→ O2

∴ T (A(δI)) < T (N(I2))

Since a minor change δI is made upon I1, the change towards output O2 is also

expected to be minimal and let it be δO (Equation 1.1). As a result the necessity

to involve I2 in its entirety against every update may not be a feasible approach for

algorithm N , as it may involve redundant computation. The efficiency is therefore

achieved by effectively involving only δI amount of change as input instead of I2

(Equation 1.1)∴ A(δI)→ O2.

1.4.2 Reduce latency:

Expecting frequent changes being made to input data, after every δI amount of

change, the task of finding correct output becomes critical before the next set of

changes take place. Let Ik be the current input after k − 1 number of changes on

I1. Therefore we have:

I1 + (k − 1)δI → Ik (1.2)

1The word “say” within parentheses denoted as (say) in this thesis signifies an assumption
made regarding the name of an algorithm, variable or a value assigned to any parameter required
for illustration.
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Figure 1.7: Latency scenarios due to changes in the input data.
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As demonstrated in Figure 1.7 (a (top figure)), let the input Ik be subjected to

three differential changes through δI leading towards input Ik+1, Ik+2 and Ik+3.

Let f ix be the timestamp of initiating the xth change on Ik. Let f fx be the timestamp

at which the algorithm N finishes processing the xth change while producing the

output. Correspondingly, let tix be the timestamp at which the execution of N in

processing the change δI begins and tfx be its ending timestamp.

On close observation, we notice that the input Ik has been affected by δI changing

to Ik+1. Let f ik+1, f fk+1 be the timestamps of initiation and completion of processing

the change. In this case, the starting time of execution of N(Ik + δI) i.e., tik+1

is identical to f ik+1. While the ending timestamp of execution tfk+1 coincides with

f fk+1. When the next amount of change in form of δI initiates at timestamp f ik+2,

the execution process of N(Ik + δI) is still in continuation. As a result we have

tfk+1 > f ik+2 . This leads to an unnecessary waiting time of (tik+2 − f ik+2) for

execution of N(Ik+1 + δI) to begin, which effectively delays the desired output.

Similarly, by the time N(Ik+1+δI) leads towards completion, a new change in form

of δI is already inflicted. The initiation of change takes place at timestamp f ik+3

which happens before tfk+2. Therefore an undesirable waiting time of (tik+3− f ik+3)

is consumed prior to execution of N(Ik+2 + δI).

However, on observing Figure 1.7 (b (bottom figure)), the incremental algorithm A

computes the output due to changes made upon input Ik dynamically. Therefore

instead of processing the entire data Ik + δI, a selective handling of changes being

made are taken into account. For the next element of change, we have tfk+1 <
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f ik+2. This establishes the fact that no additional waiting time is involved before

processing the next update. Similarly, tfk+2 < f ik+3 resulting in no waiting time

before dealing with the third element of change.

1.4.3 Limit resource usage:

A minimal CPU utilization can be ensured by intelligently handling the frequent

updates. Moreover, with selective processing of the data, limit to the memory

consumption may also become possible.

1.5 Motivation

The motivation behind work done in this thesis is primarily driven by two major

factors. Firstly, the inefficiency of naive algorithms in a dynamic environment and

secondly, the robustness of data mining tasks to be incrementally extended. The

following reasons may precisely depict the motivating factors:

1.5.1 Reasons inclining towards inefficiency of naive algo-

rithms

1. The inability of naive or static algorithms to process dynamic datasets may

be hazardous in terms of efficiency (Section 1.4) while dealing with real time

applications [13, 14].

2. A high response time that can be incurred by a naive method may delay

the result. Applications related to healthcare [41, 17], safety critical systems

[42] can ill afford to allow the adoption of any naive algorithm with latency

issues.

3. For any minor change in input from I → I ′ (say), a change in output from

O → O′ (say) is also expected to be minimal, ∴ O ∩O′ ≈ δ (a small entity).

To extract the changed result, execution of naive algorithm involving data in

its entirety may involve unnecessary redundant computation. This situation

can be avoided with the use of incremental algorithms (Section 1.4).
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4. Excessive consumption of computing resource eg:CPU usage, additional buffer

requirements due to non-intelligent handling of continuous updates may turn

out to be disadvantageous.

1.5.2 Reasons inclining towards robustness of data mining

tasks to be incrementally extended

1. Density based algorithms enable finding of clusters with arbitrary shapes,

sizes or filtering outliers from sub-spaces with variable densities (Section

1.3.1, Section 1.3.2). Moreover numerous real time applications related to

cyber security [38, 36], fraudulent transactions [39], astronomy, earth sciences

[24], healthcare [17] etc. fall under the area of density based clustering or

outlier detection.

2. Providing incremental extension to a robust DBCLA known as MBSCAN

[2] (Mass-based Clustering of Spatial Data with Application of Noise) may

be justified as MBSCAN has the ability to detect clusters of variable den-

sities. Moreover MBSCAN eliminates the use of any distance based density

computation. Instead, it relies on a data dependent probability measure for

evaluating the neighborhood strength of a point. This enables extraction of

clusters with arbitrary shapes lying in different regions of the data space.

3. Dynamic handling of point-wise updates by any incremental algorithm based

on SNN-DBSCAN [24] (Shared Nearest Neighbor Density Based Clustering

of Large Spatial Data with Application of Noise) is indeed more efficient.

However with increase in the size of base dataset2, re-construction of ex-

pensive algorithmic components may lead towards inefficiency with every

update. As a result, batch mode updates are facilitated in two of our con-

tributions supporting both insertion and deletion of data.

4. Upon observing the importance of detecting outliers in applications related

to intrusion detection [38], safety critical systems [42], fraud in credit card

transactions [39] or health care monitoring [41] (Refer Section 1.3.2), the

task of detecting outliers in a dynamic setup cannot be overlooked. As a

result we chose to provide a density based incremental extension to a com-

monly used outlier detection algorithm known as KNNOD [5] (K-Nearest

Neighbor outlier detection). Due to quadratic time complexity, KNNOD

2Dataset upon which updates are inflicted.
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may incur heavy cost in terms of CPU execution time against frequent up-

dates. Therefore framing an incremental extension to limit the use of KNN

in density computation may lead towards greater effectiveness.

1.6 Objectives

Let us assume the following:

• Tnaive = Time required to find output by naive method Anaive.

• Tinc = Time required to find output by incremental method Ainc.

• |Meminc − Memnaive| be the difference in percentage of average memory con-

sumed.

Here Ainc = Apoint−inc ∪ Abatch−inc, where Apoint−inc and Abatch−inc refer to incre-

mental algorithms facilitating single point and batch-mode updates respectively.

• Onaive = Output obtained by naive method Anaive.

• Oinc = Output obtained by incremental method Ainc.

For a given data mining algorithm (clustering or outlier detection), we establish

the following objectives:

• Tinc < Tnaive

• Onaive ≈ Oinc (approximate incremental solution)

• Onaive = Oinc (exact incremental solution)

• |Meminc −Memnaive| ≤ δ where δ is a small real number.

1.7 Primary Contributions

The primary contributions of this thesis are summarized as follows (in order):
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1.7.1 The iMass clustering algorithm providing an approx-

imate incremental solution supporting point-wise in-

sertion

The goal of this work is to identify the most expensive building blocks of MBSCAN

[2] and re-construct them incrementally after each new insertion. Instead of using

any geometrical model eg:distance, iMass (Incremental Mass Based Clustering)

relies on a probability measure to evaluate the neighborhood mass based density

of any data point. The term “mass” w.r.t., a pair of points refers to the weight or

strength of the smallest local region containing the concerned pair (See details in

Chapter 3).

A hierarchical structure in form of isolation-Forest (iForest) is considered while

evaluating the mass or probability mean mass [2] for any given pair of points.

An iForest is a combination of multiple isolation-trees (iT rees) with each iT ree

representing a particular hierarchical model of any region (See details in Chapter

3). The mass value gives a measure of dissimilarity score between any two points.

A dissimilarity mass matrix is constructed based on which the dense or non-dense

points are determined. The dense points group to form clusters.

Experimental observations upon six real world and two synthetic datasets showed

that the proposed iMass algorithm outperformed the naive MBSCAN method

by achieving a maximum efficiency upto an order of 2.28 (≈ 191 times). Around

60.375% of mean clustering accuracy was obtained post final insertion for three

unlabeled datasets. The cluster quality evaluation through NMI, RI and F1-score

measures for five class labeled datasets showed similar or improved results for

iMass as compared to MBSCAN.

1.7.2 The BISDBadd clustering algorithm providing an ex-

act incremental solution in batch-mode for insertion

BISDBadd (Batch Incremental Shared Nearest Neighbor Density Based Cluster-

ing Algorithm for addition) leads towards incremental addition of data points in

batch-mode extending SNN-DBSCAN [24]. BISDBadd comprises of two proposed

sub-variant algorithms viz. Batch− Inc1, Batch− Inc2 and is the most efficient

comparatively. BISDBadd builds all the components of SNN-DBSCAN [24] incre-

mentally when points are added to the dataset unlike its sub-variant algorithms.
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Contrary to point based scheme, the batch-mode insertion policy eliminates re-

peated re-construction of expensive SNN-DBSCAN components (See details in

Chapter 4).

BISDBadd outperformed SNN-DBSCAN by more than an order of 3 (≈ 1000

times) as observed across three real world and two synthetic datasets. An identical

cluster similarity was observed with the SNN-DBSCAN algorithm.

1.7.3 The BISDBdel clustering algorithm providing an ex-

act incremental solution in batch-mode for deletion

BISDBdel (Batch Incremental Shared Nearest Neighbor Density Based Cluster-

ing Algorithm for deletion) incrementally extends SNN-DBSCAN by supporting

deletion of data points in batch-mode. BISDBdel comprises of two other pro-

posed sub-variant algorithms viz. Batch −Dec1, Batch −Dec2 and is the most

efficient comparatively. BISDBdel builds all the components of SNN-DBSCAN

incrementally when points are deleted from the dataset unlike its sub-variant algo-

rithms. The efficiency obtained by BISDBdel reached upto an order of 4 (≈ 10000

times) across three real world and two synthetic datasets. BISDBdel achieved an

identical cluster similarity with SNN-DBSCAN.

1.7.4 The KAGO outlier detection algorithm providing an

approximate incremental solution supporting point

based insertion

The proposed algorithm KAGO (Adaptive Grid Based Outlier Detection Approach

using Kernel Density Estimate (KDE)) uses the Gaussian kernel in a grid parti-

tioned space to compute the local density of a point. The local density obtained

through KDE is used to find the local outliers. The local outliers are integrated

to determine at most top-N global outliers against every insertion. Upon entry

of each data point, a previously sparse region may become dense due to which a

maximum of top-N outliers or less may be identified in course of multiple point

insertions.

The KAGO algorithm outperformed KNNOD [5] by more than an order of 3.91 (≈
8304 times) across two intrusion detection datasets and a bidding data for market
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advertisement of a search engine. KAGO had a reduced memory consumption

of about 51.57% on an average. Outlier evaluation on these datasets using Rand

index and F1-score showed a mean improved accuracy of around 3.3% as compared

to KNNOD.

1.8 Summary

The thesis primarily considers two data mining tasks: density based clustering

and outlier detection for which incremental algorithms have been proposed. Out

of four contributions made in this thesis, three are related to clustering while one

contribution has been dedicated to outlier detection. A total of four incremental

algorithms have been proposed out of which two algorithms, one each for second

and third contribution comprises of two sub-variant methods. Two algorithms

provide exact while two other provide approximate incremental solutions to the

baseline algorithm. The second and third contribution deal with both insertion

and deletion of points in batch node, while the remaining contributions handle

only single point insertions.

1.9 Organization of the Thesis

1. Chapter 1: Introduces the idea of incremental algorithms and its applications

in relevant domains. The chapter also highlights the importance of selected

data mining tasks along with the motivation behind our contributions.

2. Chapter 2: Presents a study of related incremental algorithms in the field of

density based clustering and outlier detection. It also provides a background

of the methods that form the basis of our proposed incremental algorithms

in this thesis.

3. Chapter 3: Presents the first contribution in form of the iMass clustering

algorithm. The proposed algorithm is an approximate incremental extension

to the static MBSCAN [2] method supporting point-wise insertion.

4. Chapter 4: Contributes to an exact incremental extension of the SNN-

DBSCAN [24] clustering algorithm. The proposed algorithm known asBISDadd

facilitates addition of data points in batch mode. It is a combination two
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sub-variant algorithms: Batch−Inc1, Batch−Inc2 and is the most efficient

comparatively.

5. Chapter 5: In this chapter, an exact incremental solution to SNN-DBSCAN

[24] is proposed in form of the BISDdel algorithm. BISDdel facilitates dele-

tion of points in batch mode. It is a combination two sub-variant algorithms:

Batch−Dec1, Batch−Dec2 and is the most efficient comparatively.

6. Chapter 6: Presents the KAGO algorithm which leverages the idea of KDE

to find local outliers. These outliers are aggregated to find at most top-N

global outliers against every point insertion.

7. Chapter 7: Provides the concluding remarks along with the future scopes of

pertaining contributions made in this thesis.
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Chapter 2

Literature Survey

In this chapter, first we present our study of previous works on incremental density

based clustering and outlier detection. Besides we also provide a background study

of some naive algorithms that are related to the contributions made in this thesis.

2.1 Related density-based incremental cluster-

ing algorithms

1. Incremental DBSCAN: Inc-DBSCAN [43] is the incremental version of

the DBSCAN [23] clustering algorithm. Patterns in database eg:log database

alters temporally with new logs being added to and previous records are

deleted from the database. The algorithm identifies the affected parts of

existing clusters caused by an update in the database. Based on this under-

lying idea of selective handling of updated dataset, Inc-DBSCAN proves to

be more efficient than DBSCAN. Post insertion of new points, some non-core

(non-dense) objects may turn into core (dense) forming novel density con-

nections. Points which were not density reachable [23] earlier might become

density reachable. Similarly upon performing deletion, some core objects

may turn into non-core resulting in removal of existing connections.

If an object p is inserted or deleted, then NEps(p) [23] (Eps neighborhood of

p) becomes the affected region. The unaffected points retain their old cluster

membership. The number of region queries performed by Inc-DBSCAN is

determined experimentally. Let ri and rd denote the mean number of region

queries during incremental insertion and deletion respectively. Let fi and
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fd be the percentage of insertions and deletions. Then the cost incurred by

Inc-DBSCAN for making r updates to the dataset incrementally is given as

r× (fi × ri + fd × rd).

Inc-DBSCAN shows its inability in handling bulk insertion or deletion of

data objects. The algorithm is also sensitive to changes in parameter values.

2. IncSNN-DBSCAN: IncSNN-DBSCAN [1] (InSDB) is an extension of the

SNN-DBSCAN [24] clustering algorithm. InSDB detects clusters dynami-

cally while points are added to the base dataset D one at a time. InSDB

identifies each data point p ∈ D with the following properties: KNN (K-

Nearest Neighbors) list, strengths of shared links [1], number of adjacent

links, dense or non-dense status. When a new data point arrives, InSDB

identifies only those points which undergo changes in values of their proper-

ties. The algorithm targets only the affected points while rest of the points

are allowed to exist in their previous state. This selective handling of data

points ensures that the reconstruction time of the updated KNN lists and

the shared nearest neighbor (SNN) graph [1] is significantly reduced. InSDB

shows that a very small percentage of points ultimately gets affected due to

which it becomes more efficient than SNN-DBSCAN [24].

Since InSDB is a point-based insertion technique, it might slow down as the

size of base dataset increases. It is also sensitive to change in parameter

values.

3. IGDCA: The incremental grid density-based clustering algorithm (IGDCA)

[44] enables discovery of clusters having arbitrary shapes. IGDCA is an

incremental extension of the GDCA [44] algorithm. The clusters obtained

through GDCA are modified after a sequence of insertions δadd (say) and

deletions δdel (say) of data points. Let D be the base dataset and D′ be

the updated dataset where D′ = D + δadd − δdel. Since the data space is

partitioned into grid cells, a cell gets updated only when a data point is

added to or removed from it. Once the affected grids are identified, the

updated clusters are subjected to modification. New points obtain cluster

membership followed by the modification of existing clusters.

The algorithm is unable to determine the threshold parameters automati-

cally. Moreover, the task of deletion also involves efficiency issues.

4. Dynamic density based clustering: This work [45] investigates the prin-

ciples of dynamic clustering by DBSCAN [23] and the ρ-approximate version
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of DBSCAN. The work proves that the ρ-approximate version suffers from

the same computational hardness as the one when the dataset is fully dy-

namic in nature. However, it also shows that this hardness disappears when

a tiny relaxation is made. The quality of clusters obtained is same as that

while handling static data. This phenomenon is known as the ”sandwich

guarantee” of ρ − approximate DBSCAN. The algorithms guarantee near-

constant update processing. The approximate version takes O(N) (N is the

data size) time while the unit spherical emptiness checking (USEC) method

consumes o(N)4/3 time in worst case. A factor which may go against this

approach is the involvement of multiple theoretical concepts within it.

5. DBCLASD: DBCLASD (Distribution-Based Clustering of LArge Spatial

Databases) [46] assumes that the objects within a cluster are distributed

uniformly. The algorithm dynamically determines the quantity and con-

formation of clusters in a database without involving any input parameter.

DBCLASD incrementally augments an initial cluster with points in its neigh-

borhood. This procedure continues till the set of nearest neighbor distances

of the resultant cluster fits the estimated distance distribution. A point

which is not yet a part of the current cluster but needs to be examined for

possible cluster membership is a candidate point. Candidates failing the

cluster membership test in their first attempt are called unsuccessful candi-

dates. Unsuccessful candidates are not overlooked. They are considered at

a later time. Objects belonging to any cluster might shift to another cluster

later. The running time of DBCLASD is approximately twice that of the

DBSCAN.

2.2 Related density-based incremental outlier de-

tection algorithms

1. iLOF: The incremental local outlier factor (iLOF) [47] algorithm facilitates

dynamic updation of the properties of data points. The performance re-

garding outlier detection due to iLOF is equivalent to that of the LOF [37]

algorithm handling static data. The performance comparison is made against

insertion of each data record. The work also provides an evidence of the fact

that only a handful amount of data points lying within the neighborhood

of an inserted or deleted point gets affected. Therefore the overall approach

remains independent of the total number of data points involved.
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2. I-IncLOF: The Improved Incremental LOF (I-IncLOF) [48] algorithm takes

into consideration a sliding window and allows the data properties a requisite

updation within the window. The data items are then categorized as outliers

or inliers. I-IncLOF fails to clearly define a scheme for performing deletion

of data points efficiently.

3. MiLOF: The iLOF [47] algorithm limits itself to keep a check on the mem-

ory usage while storing old points. In order to address this issue, a memory

efficient incremental outlier detection algorithm MiLOF [49] has been pro-

posed. The memory efficient MiLOF has better efficiency than iLOF. Within

the bounds of limited memory, the algorithm is able to detect outliers from

data streams with high volume. However, the algorithm may be sensitive to

parameter changes.

4. DILOF: The Density summarizing Incremental LOF [50] (DILOF) algo-

rithm detects outliers within the limited bounds of memory. The algorithm

is a two step process. The first step keeps a track of the neighbors of past

data in the memory. The second step performs the summarization task by

sampling previous data and keeping a record of their density. The underlying

approach of this method is a density-based algorithm used for sampling old

data records followed by detecting the outlier sequence. The algorithm as-

sumes no previous knowledge of data distribution. DILOF may be sensitive

to parameter changes.

5. KELOS: KELOS [51] (KDE-based Local Outliers over Streams) provides a

scheme to detect the top-N KDE (Kernel Density Estimate) [51, 29] based

local outliers from streaming data. KELOS was proposed to resolve the

issues faced by algorithms having high time complexity and volatility while

dealing with data updates. The algorithm introduced the concept of abstract

kernel center (aKDE) [51] for accurately estimating the local data density.

However KELOS employs a clustering scheme for deciding the abstract kernel

which may not be a feasible option for voluminous datasets.

2.3 Other related naive algorithms

1. DBSCAN: Density-Based Algorithm for Discovering Clusters in Large Spa-

tial Databases with Application of Noise (DBSCAN) [23] was proposed in

1996 as the first DBCLA. DBSCAN detects clusters in spatial databases
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along with filtration of noise. DBSCAN takes two parameters viz. Eps and

Minpts. For a given point p, Eps signifies the radius of its surrounding re-

gion known as the Eps neighborhood of p. The literature [23] denotes Eps

neighborhood of p as NEps (p). Let D denote the dataset, then ∀p ∈ D, its

Eps neighborhood is given as NEps (p) = {q ∈ D | dist (p,q) ≤ Eps}. If

|NEps(p)| ≥ Minpts, then p is a dense or core point otherwise p is a border

(non-core) point. For a core point p w.r.t., Eps and Minpts, if there exists

a point q ∈ NEps (p), then q is directly density reachable from p. However

q is density reachable from p w.r.t., Eps and Minpts only if there exists a

chain of points q1,q2,q3,.....,qn, where q1=p,qn=q and q i+1[1 ≤ i ≤ n − 1]

is directly density reachable from q i. Density-reachability is an extension

of direct density-reachability. The relation follows transitivity but it is not

symmetric.

DBSCAN classifies each point as either core or non-core (Figure 2.1). Two

core points have the same cluster membership if they are directly density

reachable. A point in cluster C is density reachable from any other core

point belonging to C. The cluster expansion takes place by merging the

density reachable core points. The algorithm assigns the border points to

a cluster of their nearest core point. Points not belonging to any cluster

qualify as noise points.

Figure 2.1: Cluster formation scheme in DBSCAN.

Non-core 
point

Core 
point

Min Pts:10
Eps: 2 units

Eps

DBSCAN detects clusters of arbitrary shapes and sizes with appropriate

noise filtering in spatial databases. However, the preset value of the pa-

rameter Minpts does not allow the algorithm to detect clusters of variable

densities. The method also shows its limitations while dealing with high

dimensional data sets. DBSCAN consumes O(N logN) time, with N as the
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size of the dataset. In context of this thesis, DBSCAN is related to three of

our primary contributions.

2. Shared Nearest Neighbors clustering: As per the Shared Nearest Neigh-

bors (SNN) [52] clustering algorithm, two points p and q are said to be similar

if they have sufficient number of common points between their correspond-

ing KNN list. The set of shared points denotes the degree of similarity or

proximity score between the involved pair of points. As per the SNN clus-

tering algorithm, if p and q are significantly similar, then there exists a high

probability that both points have the same cluster membership. The follow-

ing illustration may explain the degree of similarity between p and q: Let

KNN (p) = {q, n1, n2, n3, n4} and KNN (q) = {p, n1, n2, n3, n5}, then KNN

(p) ∩ KNN (q) = {n1, n2, n3}. Therefore the degree of similarity between p

and q is 3. However, the similarity measure is considered to be valid if the

concerned points p, q are present in each others KNN list. Therefore, q ∈
KNN (p) and p ∈ KNN (q).

A SNN graph is constructed by considering the data points as nodes and

shared links between any pair of points as edges. The link strength provides

a measure of the edge weight between any two involved nodes. If either of

the points p or q are not present in each others’ KNN lists, an edge is not

formed between them. Post construction of the SNN graph, the connected

components are designated as clusters.

The SNN algorithm finds its usage in our second and third contributions re-

spectively where we incrementally extend the SNN-DBSCAN [24] algorithm

supporting batch mode updates.

3. LOF: Local Outlier Factor (LOF) [37] is an anomaly score associated with

an instance of data. LOF value can be computed by taking the ratio of

average local density of K nearest neighbors for any data point to the local

density of the concerned point. The local density is evaluated as follows:

first the radius of smallest hyper-sphere (distance to Kth nearest neighbor),

the center of which lies with the point itself having its own KNN list is found.

Then the value K is divided by the volume of the hyper-sphere. For a given

point, higher the LOF score, greater is its degree of outlierness. The idea

of finding local density is utilized in our final contribution where instead of

relying on KNN, a kernel function is used.
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2.4 Mixture of other related naive and incre-

mental clustering algorithms

In order to cluster binary data, Mirkin and Kramarenko [53] proposed a model and

algorithm related to bi-clustering boxes. The work was extended to tri-clustering of

binary data objects. A combination of both bi and tri-clustering was additionally

applied to real world datasets. Clustering may also be used for reducing the

number of wrongly labelled items in a dataset. The said work [54] relies on the

cluster membership criterion to assign appropriate labels of the entities within

the dataset. For other multi-modal clustering algorithms adopting density based

approaches, tri-concepts have been used for tri-clustering of binary data [55]. The

proposed scheme generalized the method that had been previously introduced for

concept based bi-clustering. It was also shown that finding an optimal tri-cluster

cover is an NP-Complete problem [56].

Further more there are contributions made towards identifying various similarity

measures involved within the cluster [57]. An efficient online tri-clustering algo-

rithm [58] involving binary data have also been proposed to deal with big data.

The algorithm runs in linear time and space complexity. A convenient paral-

lelization of the said scheme is also possible resulting in analysis of big datasets.

Algorithms generating formal concepts and graphs related to concept lattices [59]

have also been studied and compared within the domain of incremental clustering

approaches. In addition, an incremental algorithm [60] for construction of lattice

have been proposed which is related to methods [61, 62] identified previously for

building concept lattices. The constructed lattice is derived by closing the group

of sets with reference to intersection of sets.

Another relevant paradigm for dense and noise points formalism is the rough

clustering. Conventionally, the data points which are at identical distances from

multiple cluster centers are placed into a single cluster. With rough set clustering

[63], the idea of overlapping clusters is also taken into consideration.

2.5 Background

In this section we present a brief study of necessary algorithms that form the basis

of our contributions in this thesis. First, we present the MBSCAN [2] clustering
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algorithm that has been incrementally extended to support point-based insertion

(first contribution). Next we provide the details of clustering scheme followed by

SNN-DBSCAN [24]. This relates to our proposed dynamic insertion and deletion

algorithms in batch mode (second and third contribution). Finally, we highlight

the KNNOD [5] algorithm, which is compared with our proposed incremental

outlier detection approach (fourth contribution) facilitating single point insertion.

2.5.1 MBSCAN

MBSCAN [2] is the first DBCLA to introduce a generic interpretation of dissimi-

larity based on data distribution. The algorithm proves that the data dependent

dissimilarity is better than any distance based approaches used for clustering.

MBSCAN replaces the distance function with a probability measure. The dissim-

ilarity estimate depends on the probability mass of the smallest region covering

two data instances. Formally, let D be the dataset from a probability density

function F and H ∈ H(D) be a hierarchical partitioning model of the space into

non-overlapping regions. For two data instances a and b, the smallest local region

r (Equation 2.1) covering a, b w.r.t., H and D is given as:

R(a, b|H;D) = argmin
r⊂H|{a,b}∈r

n∑
z∈D

1(z ∈ r) (2.1)

where 1 (.) is an indicator function and n represents the strength of smallest local

region. The mass based dissimilarity or probability mean mass estimated from a

finite number (t ∈ Z+) of models H i ∈ H(D), i = 1, 2, 3, . . . , t is given as:

me(a, b|D) =
1

t

t∑
i=1

P (R(a, b|Hi;D)) (2.2)

where P (R(a, b|Hi;D) = 1
|D|
∑

z∈D 1 (z ∈ R) represents the probability mass

w.r.t., a given hierarchical model and |D| being the size of dataset. Instead of any

conventional distance metric to measure the proximity, the dissimilarity between

two points me (a,b) is measured by using Equation 2.2. Unlike DBSCAN, instead

of using ε-neighborhood, µ-neighborhood is used for estimating the neighborhood

strength or mass based point density. The definition of µ-neighborhood mass is

given as:
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Mµ(a) = #{b ∈ D|me(a, b) ≤ µ} (2.3)

From Equation 2.3, it is evident that only those points b are included as seed

points for a, if the mass based dissimilarity between a and b is less than a cer-

tain threshold µ. Therefore, unlike DBSCAN which involves a radius to decide

the neighborhood while finding point density, MBSCAN relies on a probability

measure. The algorithm runs to completion in O(N logN) time.

Key advantage (s) of MBSCAN: The algorithm introduces a generic data depen-

dent dissimilarity measure to find proximity between data objects. Moreover, the

use of µ- neighborhood [2] enables MBSCAN to address the hard density problem

[2, 23] and the associated challenges related to distance based clustering [2, 24].

2.5.2 SNN-DBSCAN

The SNN-DBSCAN [24] clustering algorithm is an amalgamation of two cluster-

ing techniques viz. SNN (Shared nearest neighbor) [52] (Refer Section 2.3) and

DBSCAN [23] (Refer Section 2.3). In case of SNN [52] algorithm, a SNN-graph

is constructed with data points as nodes and the shared links as edges. The con-

nected components within the SNN graph are treated as clusters.

However, the scheme adopted by SNN-DBSCAN slightly differs from that of the

SNN clustering algorithm. As per the new scheme, if for any pair of points (p, q),

their shared link strength SNN (p, q) (Refer SNN algorithm in Section 2.3) is

greater than a certain threshold δsim, the link is said to be a strong link, otherwise

a weak link. The strong links in the SNN graph are retained as edges while the

weak links are removed. The residual graph that is obtained in this process is

known as the K-Nearest Neighbor Sparsified SNN [24] or K-SNN graph. Unlike

the SNN algorithm, the connected components from the K-SNN graph are not

considered as clusters. Instead the cluster formation policy is similar to that of

the DBSCAN algorithm.

Data points which have a sufficient number of adjacent strong links are designated

as core (dense) points while rest of the points are non-core (non-dense). Two core

points connected by a shared strong link obtain the same cluster membership.

Non-core points are assigned to a cluster of their nearest core point. Points which

fail to obtain any cluster membership qualify as noise points. The algorithm runs
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to completion in O(N2) time. The construction of SNN graph in the form of a

similarity matrix results in its quadratic time complexity.

Key advantages of SNN-DBSCAN: Uses the concept of SNN to evaluate proximity

score between data objects. This removes the hazards associated with distance

based clustering in a high dimensional space. SNN-DBSCAN is also able to find

clusters of varying shapes and densities.

2.5.3 KNNOD

K-Nearest Neighbors Outlier Detection [5] (KNNOD) algorithm relies on the mea-

sure of distance to extract outliers. For each point x ∈ D (base dataset), the

algorithm identifies the distance of x with its Kth nearest neighbor dKx . If dKth
is

considered as a threshold value, then all the data points whose dKx value is greater

than dKth
are considered as outliers while rest of the points remain as inliers.

Key advantages of KNNOD: No prior assumptions about data distribution is re-

quired.
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Chapter 3

iMass: An Approximate

Incremental Clustering Algorithm

using Probability Measure

The previous chapter provided with a study of related incremental algorithms in

the field of density based clustering and outlier detection. In course of our coverage

of necessary literature, we observed that the Background (Section 2.5) comprised

of a robust clustering algorithm known as MBSCAN [2]. MBSCAN introduced

a data dependent dissimilarity measure in order to find the proximity between

data points. This tends to overcome the limitations associated with distance

based clustering [24, 64]. To the best of our observation, no incremental extension

exists for MBSCAN. Realizing the importance of MBSCAN in finding clusters

of arbitrary shapes and densities, in this chapter we propose a novel approximate

incremental extension to MBSCAN known as the iMass (Incremental Mass Based

Clustering).

3.1 Motivation

MBSCAN relies on a concept called probability mass [2] instead of any geomet-

ric model to compute the dissimilarity between any pair of data points. For any

given pair of points (x, y), instead of measuring the distance |x − y| along a di-

mension, MBSCAN measures the pairwise dissimilarity by finding the mass of

smallest local region covering x and y. The mass of a region is determined by
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the number of points within that region. The algorithm maps a region in the

form of a hierarchical partitioning model (isolation-Tree or iT ree [65]). Multiple

such hierarchical models are considered to build an isolation Forest (iForest [65]).

The expectation of probability masses obtained from each model is treated as the

dissimilarity value between x and y. Each pairwise dissimilarity is stored in a

structure called mass-based dissimilarity matrix or mass-matrix. By determining

the dissimilarity measure based on distribution of data, MBSCAN removes the

weaknesses associated with distance based clustering [24, 64, 2].

Table 3.1: Motivation behind developing the iMass clustering algorithm.

Motivation Description

Redundant
computation

Naive or non-incremental algorithms fail to address the issue of
redundant computation while handling dynamic datasets.
They involve the entire set of data points against every new update.

Small frequent
Updates

When minimal number of insertions are made to a larger
base dataset, the changes in clustering are also expected to
be small. As a result, there is a need for designing intelligent
algorithms to handle such frequent updates efficiently
without redundant computation.

MBSCAN is
unable to handle
dynamic insertion

MBSCAN is a naive clustering algorithm. Due to addition
of data points one at a time, the cluster extraction process may get
slower as the size of base dataset increases. As a result there is a
need to process updates intelligently to quicken the cluster detection
process.

However, MBSCAN fails to detect clusters dynamically upon insertion of new data

points. To the best of our observation, no incremental version of MBSCAN exists.

Therefore in order to extract clusters efficiently post new updates, we provide an

approximate incremental extension to the MBSCAN clustering algorithm known

as iMass. Through iMass, we strive to obtain a nearly accurate set of clusters

at the benefit of a highly efficient point insertion technique. Table 3.1 provides a

brief description about the motivation behind our work.

3.1.1 Chapter contributions

The key contribution(s) made in this chapter may be summarized as follows:

1. Identify the most expensive components of the MBSCAN algorithm.

2. Propose an incremental clustering algorithm iMass by targeting the expen-

sive components of MBSCAN.
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3. Mathematically deduce a relation to compute the dissimilarity score between

any old pair of points for iMass after a new insertion has been made.

4. Propose Lemmas based on the iMass clustering algorithm. The is done in

order to depict the properties of algorithmic components when updates are

made to the dataset.

3.2 Related work and background

In this section, we provide a brief description about the algorithms and concepts

that prelude iMass.

DBSCAN [23] is the pioneer density based clustering algorithm proposed by Ester

et′al. The algorithm enables clustering of spatial data with appropriate noise

filtering. DBSCAN employs ε-neighborhood density estimation to compute the

point densities. The term ε or Eps determines the neighborhood radius of a

given point x ∈ D (dataset). Let Nε(x) denote the set of points within the ε

neighborhood of x, and MinPts be the number of points belonging to Nε(x), then

according to DBSCAN we have the following interpretations:

• If |Nε(x)| > MipPts, then x is a core or dense point (x ∈ Core(D)).

• If |Nε(x)| ≤ MipPts, then x is a non-core or non-dense point (x ∈ Non −
Core(D)).

• ∀ x, y ∈ D, if x ∈ Core(D), y ∈ Core(D) and y ∈ Nε(x), x ∈ Nε(y), the

points x and y obtain the same cluster membership.

• ∀ x, y ∈ D, if x ∈ Core(D), y ∈ Non − Core(D) and y ∈ Nε(x), x ∈ Nε(y),

the points x and y obtain the same cluster membership.

• ∀ x, y ∈ D, if x ∈ Core(D), y ∈ Non − Core(D) and y 6∈ Nε(x), then if

∃z ∈ Core(D) and y ∈ Nε(z), the points z and y obtain the same cluster

membership.

• ∀ x ∈ D, if x ∈ Non− Core(D) and 6 ∃z ∈ Core(D) where z ∈ Nε(x), then

x qualifies to be a noise point.
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However, due to prior fixation of parameters MinPts and ε, it becomes improbable

for DBSCAN to find clusters of varying densities. Moreover, the algorithm man-

ages to extract only clusters of globular shapes in lower dimensions. In order to

address these limitations associated with distance based clustering technique like

DBSCAN [23], a mass-based dissimilarity oriented algorithm viz. MBSCAN was

proposed. MBSCAN acts as a building block for its incremental version iMass.

The next set of related works presents concepts that lead to the use of data de-

pendent dissimilarity measure in MBSCAN as well as the iMass algorithm.

Existing studies [66, 67] have pointed out the issues over use of geometric model

for computing dissimilarity between data points. It has been indicated that on the

basis of human perception, two instances in a dense region are less similar than

two instances of identical geometric distance in a region of lesser density [66]. The

pioneer data dependent dissimilarity measure [68] called as mp- dissimilarity pro-

vided a better match in identifying the nearest neighbors for K-nearest neighbors

classifiers. According to this measure, the dissimilarity in ith dimension for any

pair of points is computed by finding the probability mass of a region P (Ri(x, y))

instead of using the distance metric |xi − yi|. The mp-dissimilarity [68] approach

investigates about the ways of exploiting the data distribution for finding dissimi-

larity between two data items. The said scheme computes the proximity between

two objects in each dimension as a probability mass in a region enclosing the ob-

jects. The dissimilarity of a pair of data objects can be computed in O(d log n)

time where d represents the number of dimensions.

In another study related to image retreival [69], a novel dissimilarity measurement

technique was proposed which can calculate both the distance and perceptual

similarity of two images in a multi-dimensional space. It combines the properties

of both mp [68] and lp [68] dissimilarity having a O(rd) time with d being the

number of dimensions and r is the number of points in a given dimension used for

finding the mass of any pair(x, y).

MBSCAN [2] introduced the generic implementation of data dependent dissim-

ilarity in which the mp-dissimilarity is a special case. While proposing iMass

algorithm, the concept of dissimilarity laid by MBSCAN is used as a measure to

calculate the proximity score between any pair of points in the updated dataset D′

post new insertions. The algorithm replaces the density definition of DBSCAN [23]
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Table 3.2: Major notations used in this chapter (first contribution).

Notation Description
C Set of Clusters
C′ Set of Clusters after dataset is updated
D Original (Base) dataset
D′ Changed dataset after a point insertion
n size of base dataset
k number of new insertions
δcore core point formation threshold
P(.) Power set
Core (.) Set of core points of dataset
Non-Core (.) Set of non-core points of dataset
|.| Size of a set
R(.) Region of space
P (R(.)) Probability mass of the region
H(.) Set of hierarchical models for partitioning a region
H A particular hierarchical model

with a mass-based neighborhood or µ-neighborhood mass definition1 (Refer Sec-

tion 3.3) while retaining the clustering scheme of DBSCAN. The µ-neighborhood

mass of any point x viz. Mu(x) [2] relies on a certain value µ determined by MB-

SCAN in course of its execution. Similar to ε parameter in DBSCAN, µ controls

the size of a region around x. Denser regions are small while sparse regions are

large. The use of µ-neighborhood mass enables MBSCAN to extract clusters of

arbitrary densities and shapes unlike DBSCAN.

3.3 Preliminaries and Definitions

In this section, we present the definitions of different terms and concepts that are

used in this chapter (See Table 3.2 for identifying the notations henceforth).

Let D be a sample of data from probability density function F ; and let H ∈ H be

a hierarchical model that partitions the data space into non-empty regions, then

the following concepts may be defined as follows:

1See details in Section 3.5 for explanation of mass-based neighborhood or µ-neighborhood
mass as a part of the MBSCAN algorithm.
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3.3.1 Modeling a region

A recursive partitioning methodology known as iForest (isolation Forest) [65] is

used to depict regions. Existing study [70] has shown that iForest is a special case

of mass estimation technique. MBSCAN [2] uses a method based on completely

random trees to construct an iT ree (isolation Tree) (Refer Section 3.5 for details).

An iForest is a combination of multiple such iT rees. Each iT ree is a binary

tree that represents a particular hierarchical partitioning model Hi, i = 1, 2, 3..., t

where t denotes the maximum number of iT rees.

Let R represent a region, then we have the following interpretations:

• iT reei, i = 1, 2, 3, . . . , t models a sub-region rj ⊂ R, j = 1, 2, 3, . . . , t

•
⋃t
j=1 rj = R; rj 6= φ, j = 1, 2, 3, ..., t

• ∀ i, j, i 6= j, ri ∩ rj = φ where 1 ≤ i, j ≤ t.

• If the number of points within any rj, j = 1, 2, 3, . . . , t belong to a set D,

then the root node of corresponding iT reej, j = 1, 2, 3, . . . , t may contain the

elements of D and based on certain split condition (See details in Section

3.5), the internal nodes are created.

• The root node of any iT reej, j = 1, 2, 3, . . . , t effectively represents the whole

sub-region rj, j = 1, 2, 3, . . . , t and the internal nodes denote rj’s division into

smaller sub-regions.

3.3.2 Mass of a region

The mass of a region is defined as the number of data points within that region.

The following relation (Equation 3.1) defines the mass of a region containing a

and b ∀ a, b ∈ D:

Mr(a, b|H;D) =
∑

r⊆H s.t.{a,b}∈r, c∈D

1(c ∈ r) (3.1)

where 1(.) is an indicator function, r is any region, H is any hierarchical parti-

tioning model represented by an iT ree, D is set of elements involved. If any node

of iT ree modeling the region r represents a sub-region within r containing data

points a and b, then the number of elements within that node gives the mass of
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that sub-region inclusive of the pair of points. The number of elements in the root

node of the iT ree provides the mass of the whole region r.

3.3.3 Mass of smallest local region

We have the following relation (Equation 3.2) defining the mass of smallest local

region [2] containing points a and b ∀ a, b ∈ D:

R(a, b|H;D) = argminr⊂H s.t.{a,b}∈r

∑
c∈D

1(c ∈ r) (3.2)

where 1 (.) is an indicator function, r is the smallest local region, H is any

hierarchical partitioning model represented by an iT ree. The smallest local region

covering a, b is represented by the lowest leveled node of the iT ree containing the

same pair of points. The mass of smallest local region r is the number of elements

in the lowest leveled node inclusive of the pair of points a and b.

3.3.4 Mass-based dissimilarity

Mass based dissimilarity [2] or mass or probability mean mass of a and b w.r.t.,

D and F is defined as the expected probability of R (a,b | H;D) (Equation 3.3)

and is given as:

me(a, b|H;D) = EH(D)[PF (R(a, b|H;D))] (3.3)

where PF (.) is the probability w.r.t., F and EH(D) is the expectation taken over

all hierarchical models in H (D). In practice the mass based dissimilarity would

be estimated from a finite number of hierarchical models (iT rees) H i ∈ H (D),

i = 1, 2, 3...., t as follows (Equation 3.4):

me(a, b|H;D) =
1

t

t∑
i=1

P̃ (R(a, b|Hi;D)) (3.4)

where P̃ (R) = R(a,b|H;D)
|D| denotes the probability mass w.r.t., a given Hi. It is to

be noted that R (a,b | H ;D) is the mass of smallest local region covering a and

b. It is analogous to the shortest distance between a and b used in the geometric

model.
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3.3.5 Mass-based neighborhood

For a real value µ (determined by the MBSCAN algorithm), the mass-based neigh-

borhood or µ-neighborhood mass [2] for a point a ∈ D is given as:

Mu(a) = |{b ∈ D|me(a, b) ≤ µ}| (3.5)

Equation 3.5 states that the size of µ-neighborhood mass for a point a is the

number of points with which its probability mean-mass is less than or equal to µ.

3.3.6 Clustering

Given a dataset D, ∀ a, b ∈ D if there exists a mass-based dissimilarity function

me(a, b) and a mass-based neighborhood set Mµ(a), then we define clustering by

a mapping f : D → C, where C ⊆ P (D). If a 6= b and there exists a threshold

δcore, then we may have the following interpretations:

1. If |Mu(a)| > δcore and |Mu(b)| > δcore, where b ∈Mu(a) and a ∈Mu(b), then

f(a) = f(b).

2. If |Mu(a)| > δcore and |Mu(b)| <= δcore, where b ∈ Mu(a) and a ∈ Mu(b),

and ∃c ∈ D where a 6= b 6= c, b ∈ Mu(c) and |Mu(c)| > δcore . Then if

me(a, b) < me(b, c), then f(b) = f(a) else f(b) = f(c).

3. If |Mu(a)| <= δcore, and 6 ∃c ∈ D where a 6= b 6= c and |Mu(c)| > δcore, then

{a} 6∈ C.

According to the above definitions, the first point states that if two data points

a and b are dense or core2, and they both belong to each other’s mass-based

neighborhood (µ-neighborhood), then they are a part of the same cluster.

The second point states that if two data points a and b are a part of each other’s

mass based neighborhood such that a is core while b is non-core (non-dense), then

b is associated with a cluster of its nearest core point.

The third point states that if any non-core point eg: a fails to find any core point

within its mass-based neighborhood, it does not obtain any cluster membership.

2The detailed explanation of the core or non-core points is presented in Section 3.5 as part
of the MBSCAN algorithm.
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3.3.7 Approximate Incremental Clustering

Let the initial clustering defined by a mapping f : D → C represents the set

of clusters obtained from the static algorithm. Let an insertion sequence of k

points be made over a base dataset D (|D| = n, k � n). After k insertions let D′

be the updated dataset, and an incremental clustering be defined as a mapping

h : D′ → C ′, where C ′ ⊆ P (D ′) represents the clusters produced from the

incremental version. Now, if the updated dataset D′ is fed to the naive algorithm

in its entirety and the clustering is given by a mapping f : D′ → C ′′, then in case

of approximate incremental clustering we have C ′ ≈ C ′′.

3.3.8 Core and Non-core points

For any point a ∈ D, if the size of µ-neighborhood mass Mu(a) exceeds a core

point formation threshold δcore, then a is designated as a core point or else it is a

non-core point.

3.3.9 Noise points

For a non-core point a ∈ D, if it fails to obtain any cluster membership, then that

point qualifies as a noise point.

3.4 Problem formulation

For k number of insertions where k ∈ N, Rd, let Tnaive be the total time taken by

the naive algorithm, Tpoint−ins be the time taken by the point based approximate

incremental method against every insertion. Let Cnaive and Cpoint−ins be the re-

spective set of clusters obtained after k number of updates and |Mempoint−ins −
Memnaive| be the difference in percentage of average memory consumed, then we

establish the following objectives:

• Tpoint−ins < Tnaive

• Cpoint−ins ≈ Cnaive

• |Mempoint−ins −Memnaive| ≤ δ, where δ is a small real number.
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In the next section, we present a detailed description of the MBSCAN [2] clustering

algorithm and identify its most expensive components so that we can target these

components incrementally while designing the incremental iMass algorithm.

3.5 The MBSCAN Clustering Algorithm

The components of MBSCAN [2] algorithm are: base dataset (D), iForest, mass-

matrix, core and non-core points, clusters and outliers. The MBSCAN clustering

algorithm constitutes of the following steps:

1. Step 1 - Construction of iForest to model a region: Isolation Forest or

iForest is used by MBSCAN to model a region. An iForest is a combination

of multiple number of iT rees (isolation Trees). Each iT ree represents a

particular hierarchical partitioning model Hi, i = 1, 2, 3, ..., t of a sub-region,

where t is the maximum number of chosen iT rees.

Individual iT ree construction method: A random tree construction

policy is used to build a single iT ree. Individual iT ree is constructed using

the axis-parallel split [2] technique as follows:

ALGORITHM 1: iTree(D,e,h)

1 Input: D-input data; e-current height of iT ree; h-maximum height of iT ree;

2 Output: iTree;

3 if e ≥ h OR |D| ≤ 1 then

4 exNode{Size ← |D|};
5 else

6 Randomly select an attribute q ;

7 Randomly select a split point p between min and max values of attribute

q in D.;

8 Dl ← filter(D, q < p),Dr ← filter(D, q ≥ p);

9 return inNode

10 Left← iT ree(Dl, e+ 1, h),

11 Right← iT ree(Dr, e+ 1, h),

12 SplitAttr ← q, SplitV alue← p

13 end

A subset D ⊂ D where |D| = Ψ is sampled without replacement from D to

build an iT ree independently. The maximum height attained by an iT ree
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is h = dlog2 Ψe. The parameter e representing the initial height is set to 0

while the tree building process starts. Algorithm 1 presents the axis-parallel

split procedure [2] for recursively constructing an iT ree.

Description of Algorithm 1: The root node of an iT ree consists of the

data elements in D ⊂ D (whole base dataset) where each x ∈ D is a d-

dimensional point. As per the tree construction algorithm, a split attribute

(say qth attribute, where 1 ≤ q ≤ d) is randomly selected [Line 6]. Now ∀ x ∈
D, the qth attribute values are compared and subsequently the minimum

(qmin) and maximum (qmax) q
th attribute values are found [Line 7]. A random

split value p is chosen such that qmin < p < qmax [Line 7]. If the qth attribute

value for any x ∈ D (for root node) is less than p, then x becomes a part of the

left child (Dl) otherwise it goes to right child (Dr) [Line 8]. This procedure

is performed recursively for the newly created internal nodes (Dl,Dr) [Line

10,11]. The iT ree construction continues till the maximum height is reached

or each point gets isolated [Line 3].

Figure 3.1: iT ree construction procedure based on axis-parallel split algo-
rithm [2].

a,b,c,d,e,f,g,h

a,c,d,e,h e,f,g,h

a,c,d e,h

b,f,g

b g

a b,c

2.1 ....a

3.2 ....b

1.9 ....c

1.7 ....d

2.2 ....e

2.6 ....f

3.8 ....g

2.3h

Split attribute for root node q = 4th attribute (say)

qmin

qmax

For root node:
Split value p = 2.5 (say)
qmin = 1.7
qmax = 3.8  
qmin <  p <  qmax

Subsample size |D |= 8

Maximum Height h = 3

....

#Dimensions l = 10 (say)

Running example: Through Figure 3.1 we demonstrate the iT ree building

process. Let us consider that the subsample set D ⊂ D comprises of eight

elements such that D = {a, b, c, d, e, f, g, h} and hence Ψ = 8. Initially,

the elements in D represent the elements of root node of an iT ree. Let us

consider that each of the points in D are having l number of attributes (say

l = 10).
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Focusing on the root node first, we assume that the axis-parallel split algo-

rithm (Algorithm 1) for construction of an iT ree randomly selects the 4th

dimension as its split attribute. As a result, the value of random split at-

tribute q for root node is 4. From Figure 3.1, we observe that on comparing

the 4th attribute values of all the eight data points within root node, points

d and g have the minimum and maximum 4th attribute value. Therefore we

have qmin=1.7 and qmax=3.8 respectively.

The next task is to select a random split value p lying between qmin and

qmax. Assuming that p takes a value of 2.5 (say), the algorithm compares

the 4th attribute value (since q = 4) of individual data points with p. If the

corresponding 4th attribute value of a data point in D is less than 2.5, then

that point becomes a part of the left child (Dl), otherwise it goes to the right

child (Dr) of the iT ree. From Figure 3.1, it is evident that the newly created

nodes: (Dl) and (Dr) consists of a fraction of elements that were present in

the root node due to the split. Based on the split criterion, the left child Dl
contains {a, c, d, e, h} while Dr comprises of {b, f, g}. The whole procedure

is executed for splitting the nodes Dl and Dr in a recursive manner. The

split attribute (q) and split value (p) selection for bifurcating the internal

nodes are performed randomly. Two nodes of an iT ree may not have same

q and p values. The iT ree building process continues till it either reaches a

maximum height of 3 (∵ Ψ = 8, h = dlog2 Ψe) or all the elements in D are

isolated.

……………..
iTree

1
iTree

2
iTree

3
iTree

4
iTree

t

H
1

H
2

H
3

H
4

H
t

Hierarchical partitioning model H
i 
represented by iTree

i 
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Figure 3.2: iForest as a collection of t iT rees [2].

Every iT ree represents a hierarchical partitioning model Hi, i = 1, 2, 3, ..., t

of a sub-region. In a similar manner, t number of iT rees are constructed

to build the iForest for modeling a whole region. Figure 3.2 represents the

iForest as a combination of t such iT rees each of which are built by the

axis-parallel split tree construction algorithm (Algorithm 1).
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Post construction of the iForest, every data object in D is positioned into

the respective nodes of an iT ree as per the q, p values (node-split criterion).

This enables to compute the mass of a node containing any pair of points.

2. Step 2 - Construct the mass-based dissimilarity matrix: The mass-

based dissimilarity matrix or mass-matrix provides a measure of dissimilarity

between each pair of data points belonging to D. The mass-matrix is con-

structed by computing the probability mean mass between all the pair of

points. The following list is adhered to while computing the mass-matrix:

(a) Select test points x, y ∈ D (base dataset).

(b) ∀ iT reei, i = 1, 2, 3, ..., t, identify the lowest leveled node containing

x, y. The lowest leveled node represents the smallest compact region

covering the pair of points (x, y).

(c) If |R(x, y|Hi)| denotes the mass of the lowest leveled node from iT reei

representing hierarchical model Hi, then the probability mass w.r.t.,

iT reei is given as |R(x,y|Hi)|
|D| , i = 1, 2, 3, ..., t.

(d) ∀ x, y ∈ D, the probability mean mass across all iT rees is given as:

me(x, y) = 1
t

∑t
i=1

|R(x,y|Hi)|
|D| .

Figure 3.3: iForest as a collection of t number of iT rees.
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Running example: Let us consider the subsample D = {a, b, c, d, e, f, g, h}
where D ⊂ D (Figure 3.3). From the iT ree present in the figure, we observe

that the mass of smallest local region containing any pair of points is the

total count of data points present in the lowest leveled node inclusive of the

pair of points. Eg: if we consider the pair of points (c, d) (Figure 3.3), both

the points are present in four nodes (including root node) of the iT ree. Out

of four nodes, the node at (Level 3, Node 9) [Node numbering convention:

If a node is numbered as m, it’s left child is numbered as 2m while the right

child’s node number is 2m+ 1. We assume that the root node of the iT ree

in Figure 3.3 is numbered as 1 having Level 0.] also contains (c, d) beyond

which the points are not found. As a result the mass of the smallest local

region containing the pair of points (c, d) is 2. For leaf nodes containing only

a single point eg: a (Level 3, Node 8), the mass is taken to be 1. However,

for point g, the self-dissimilarity score is 2. This is because the lowest leveled

node (Level 2, Node 7) containing g has only two elements f, g within it. For

the pair of points (b, g), (a, c), the mass of lowest leveled node is 3 as there

are three data points present in that node. Similarly, the mass of lowest

leveled node for the pair (a, h) is 5 (Level 1, Node 2).

The subsample D ⊂ D for individual iT ree will be different. However, if

we position the whole dataset D in an iT ree already constructed according

to its node split-criterion, we shall obtain the probability mass w.r.t., that

iT ree for any given pair of points (x, y) ∈ D. For any iT ree, the mass of

lowest leveled node (lowest node)3 containing pair of points (x, y) divided

by the size of the whole dataset D gives a measure of its probability mass

w.r.t., that iT ree. The summation of individual probability masses obtained

∀ iT reei, i = 1, 2, 3, ..., t divided by t (the total number of iT rees) gives the

probability mean mass or dissimilarity score between x and y (Figure 3.3).

In this way the mass-matrix ∀ x, y ∈ D is constructed (Figure 3.4).

3. Step 3 - Find the µ-neighborhood mass Mu(a): The mass-based neigh-

borhood or µ-neighborhood mass (Equation 3.5) for any point a ∈ D is

equivalent to the number of other points b with which a′s probability mean

mass is less than a real value µ. The value of µ is chosen such that it is greater

than the maximum self dissimilarity score between any pair of points. The

self dissimilarity score ∀ a ∈ D or me(a, a) can be identified from the diago-

nal elements of the mass-matrix (Figure 3.4). The value of µ decides the size

3We use the terms ’lowest leveled node’ or ’lowest node’ interchangeably.
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Figure 3.4: Mass based dissimilarity matrix.
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of the mass-based neighborhood for any point. The µ-neighborhood mass

replaces the distance based definition of finding the point density.

4. Step 4 - Core and Non-core points: Let δcore be the core point formation

threshold, then for any point x if |Mu(x)| > δcore, then x is designated as a

core point, otherwise a non-core point.

5. Step 5 - Cluster formation and noise points: Two core points within

the same mass-based neighborhood aggregate to form a cluster. A non-core

point attaches itself to a cluster of its nearest4 core point. Any non-core point

which fails to obtain a cluster membership is classified as a noise point.

3.6 Experimental evaluation of MBSCAN in brief

In order to find out the cost incurred by the MBSCAN algorithm, we conducted

experiments on some real world and synthetic datasets taken from the UCI Ma-

chine Learning repository [3] and clustering benchmark datasets site [4]. A brief

description of the datasets is provided in Table 3.3. Datasets S1 and S2 are syn-

thetic in nature while rest of them are real world.

Table 3.4 shows the results that were obtained on executing the MBSCAN clus-

tering algorithm on datasets (Table 3.3) used in the experiments. We observed

that out of all the constituent components of MBSCAN, the construction of mass-

matrix consumes a greater share of the total time (Table 3.5). Noticeably, the

4For a point, its nearest object is the one with which it has lesser dissimilarity score.
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Table 3.3: Datasets used for evaluating the MBSCAN algorithm [3, 4].

Dataset Size Dimensions Description

Libras 360 91 Hand movement type
Segment 2310 19 Image segmentation data

Wine 178 14 Chemical analysis of wine
Seeds 210 7 Varieties of wheat

Aggregation 788 2 Clustering Aggregation
Iris 150 4 Iris plants database
S1 900 2 Synthetic data (Gaussian Clusters)

S2 1500 2 Synthetic data (Gaussian Clusters)

Table 3.4: Results of MBSCAN on various datasets.

Dataset
#iTrees

t
δcore µ

iForest built

time (sec)

Mass-matrix

built time (sec)

Core/Non-core,

Clusters, outliers

time (sec)

MBSCAN

time (excl.

iForest) (sec)
Libras 20 5 0.31694 15 16.751 0.004702 16.7695

Segment 20 10 0.52816 25 1130.08 0.136521 1130.26
Wine 20 5 0.370225 16 2.08052 0.001545 2.0915
Seeds 21 7 0.44195 16 3.03881 0.004456 3.05231

Aggregation 24 9 0.426301 17 145.055 0.033157 145.118
Iris 20 7 0.405 18 1.361 0.002541 1.36982
S1 20 9 0.344 18 244.346 0.080631 244.476
S2 20 10 0.23113 16 951.056 0.107407 952.131

time required to build the iForest is also significant, even though it is directly not

involved in the cluster extraction process.

Table 3.5: Percentage of total time required to construct the mass-matrix

Dataset Libras Segment Wine Seeds Aggregation Iris S1 S2
Percentage of

total time for

constructing the

mass-matrix

99.88 99.98 99.47 99.55 99.95 99.42 99.94 99.88

Table 3.6: Memory consumed on MBSCAN run.

Dataset Libras Segment Wine Seeds Aggregation Iris S1 S2
Memory 15.76 MB 508.86 MB 6.38 MB 7.53 MB 63.04 MB 5.47 MB 81.49 MB 215.91 MB

3.6.1 Inferences drawn from experiments on MBSCAN

The following inferences may be drawn from the experiments that were conducted

for evaluating MBSCAN:

1. The mass-matrix turns out to be the most expensive component of the MB-

SCAN algorithm.
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2. Apart from building mass-matrix, the construction of iForest also con-

tributes significantly to the whole process.

3. Extraction of clusters along with core and non-core points do not make a

substantial contribution to the final execution time.

While designing the iMass algorithm, we target building of mass-matrix incre-

mentally since it happens to be one of the heavier components of MBSCAN. We

also construct the updated iForest incrementally for further enhancing the effec-

tiveness of iMass.

3.7 The iMass Clustering Algorithm

3.7.1 Theoretical Model

LetD = {O1, O2, O3, . . . , On} be the set of objects clustered by the non-incremental

MBSCAN algorithm (let it be denoted by M). Each object in D is characterized

by a set of d attributes and is represented by a d-dimensional vector. Therefore

Oi = {Oi1, Oi2, . . . , Oid}, where Oim ∈ R+, 1 ≤ i ≤ n, 1 ≤ m ≤ d.

Let On+1 be the new object added upon the base dataset D. D changes to D′

where D′ = {O1, O2, O3, . . . , On, On+1} is the current set of objects to be clustered.

We intend to address the problem of recomputing clusters post dataset expansion.

The new set of clusters can be obtained by applying M on D′. However, we aim

to avoid this process by developing a less expensive method called iMass (let it

be denoted by IM).

Let CM and C ′M be the set of clusters obtained by executing algorithm M upon

dataset D and D′, then we may have the following interpretations:

• CM =M(D);

• C ′M =M(D′);

• C ′IM = IM(D′);

• C ′M ≈ C ′IM, where C ′IM is the set of clusters obtained by executing algorithm

IM upon dataset D′.
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3.7.2 Assumptions made for the iMass clustering algorithm:

For the incremental algorithm iMass, we make the following assumptions:

1. The total number of iT rees (t) used by MBSCAN is retained by the iMass

algorithm for its execution.

2. The split-attribute (q) and split-value (p) for any node belonging to iT reei, i =

1, 2, 3, . . . , t, does not change after the addition of new object On+j, 1 ≤ j ≤ k

[71]. Here k is the maximum number of insertions to be made and k � |D|.

3. While computing the nodal mass post insertion of a new object On+j by

traversing all instances in D′, the height of any iT reei, i = 1, 2, 3, ..., t ob-

tained in the prior run of MBSCAN remains unchanged.

3.7.3 Retain the components of MBSCAN algorithm

A prior execution of MBSCAN is performed in order to produce the information

related to components viz. base dataset D, iForest, mass-matrix along with a

lowest node identifier5 (lowest node id) ∀ iT reei, i = 1, 2, 3, ..., t and ∀ (x, y) ∈ D.

The values of these components are retained and utilized for an efficient design of

the iMass algorithm. Figure 3.5 shows the sequence of computation performed

while executing iMass.

3.7.4 Steps of the iMass clustering algorithm

1. Load D, iForest, mass-matrix, the lowest node id from each iT ree for every

pair of points (x, y) ∈ D produced from the MBSCAN run.

2. Insert a new point; D changes to D′.

3. Compute the mass of lowest leveled nodes ∀ (x, y) ∈ D in each iT ree within

the iForest incrementally.

4. Build the mass-matrix incrementally.

5. Compute the updated µ-neighborhood mass Mu(x) ∀ x ∈ D′.
5The lowest node identifier for any pair (x, y) in an iT ree provides the node number of the

lowest leveled node containing x and y.
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Execute 
MBSCAN

Retain iForest,
Mass-matrix,

Lowest node ids,
Base dataset D.

Insert a new point,
D changes to D’

Compute the mass of 
lowest nodes from the
iForest incrementally

Construct new Mass-matrix
incrementally

Update the 
µ-neighborhood mass

Find new Core and 
Non-core points in D’

Extract new Clusters, 
noise points

iMass clustering algorithm 

Store the iForest,
new Mass-matrix,

new Lowest node ids,
Base dataset D = D’

Figure 3.5: Sequence of execution for the iMass clustering algorithm.

6. Identify the set of core and non-core points from D′ based on the updated

µ-neighborhood mass.

7. Cluster the objects of D′ and filter out the noise points.

8. D′ becomes the new base dataset D. Repeat steps 2 to 8 till all the insertions

are made [71].

Next we describe each of the steps involved in the iMass clustering algorithm.

1. Step 1 - Load D, iForest, mass-matrix, lowest node id: In this step the

values of components obtained from the initial run of MBSCAN: base dataset

D where |D| = n(say), the iForest, mass-matrix, the lowest node id for any

pair of points (x, y) from each of the iT rees are loaded. The lowest node ids

are stored in order to quicken the mass-matrix building process incremen-

tally.

For our purpose we initialize a variable i to 1. The variable i keeps a count

of the number of new insertions made to D.

2. Step 2 - Insert a new point, D changes to D′: Upon entry of a new

point On+i, the base dataset D increases its size by one and changes to

D′(|D′| = |D|+ 1).
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3. Step 3 - Compute the mass of lowest leveled nodes in each iT ree

within the iForest incrementally: ∀ iT reej[1 ≤ j ≤ t], the newly entered

point On+i uses the splitting condition for each node as per the axis-parallel

split algorithm [2] (Section 3.5) and finds the appropriate nodes for position-

ing itself within that iT ree.

The iMass algorithm scans the presence of a newly entered point On+i in

each iT reej. Therefore for every node within an iT ree, the algorithm uses

the same split-attribute (q) and split-value (p) figures obtained from prior

MBSCAN execution to decide whether the new point On+i traces to left-child

or right-child of that concerned node. The point On+i compares the split-

attribute (q) value of the concerned node with its own qth attribute value. If

the value is less than the node’s qth attribute value, then On+i goes to the left

child of the node, otherwise it goes to the right child. The old points in any

node of an iT ree do not alter their position and therefore such points retain

their previous lowest node identifier value in any iT ree. This procedure

is repeated for each iT reej within the iForest. The algorithm therefore

efficiently scans the presence ∀ x ∈ D′ from the iForest and computes the

nodal mass (including lowest leveled node) incrementally.

O1,O2,…..,On,On+1 

O1,O2,O3,...Or e,f,g,h

O1,O2,O3 O4,…,Or

Or+1,Or+2,….,On,On+1

2.9 1.2 2.1 2.7 2.8....On+1

  (q,p) = (4,2.5)         #Dimensions l = 10
New point On+1 inserted

Or+1,Or+2,..,On+1 Or+m,Or+m+1,..,On

  (q,p) = (3,2.3)

  1         2         3        4  10

  (q,p) = (7,1.5)

On+1 ‘s  q = 4th value is  2.7
2.7 > 2.5, On+1 goes to right child

On+1 ‘s  q = 3rd  value is  2.1
2.1< 2.3, On+1 goes to left child

O1,O2 O3

……………..
iTree1 iTree2 iTree3 iTree4 iTreet

mass1(x,y) 
=| R(x,y|H1)|

mass2(x,y) 
= |R(x,y|H2)|

mass3(x,y) 
= |R(x,y|H3)|

mass4(x,y) 
= |R(x,y|H4)|

masst(x,y) 
= |R(x,y|Ht)|

me(x,y) = 1
    t Σ

    t
| R(x,y|Hi)|

    |D+1|

Figure 3.6: Compute the node mass incrementally upon new point insertion.
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Running example: Let us assume that the iT ree in Figure 3.6 has been

constructed while executing the MBSCAN algorithm. Prior to any insertion,

let there be n objects in the base datasetD. whereD = {O1, O2, O3, . . . , On}.
All the n instances of D are traversed through each of the t iT rees while

computing the mass of individual node during MBSCAN execution.

In this current example, we highlight the positioning of a newly entered point

On+1 w.r.t., the iT ree in Figure 3.6. Upon entry of point On+1, D updates

to D′ = {O1, O2, O3, ..., On, On+1} where |D′| = n + 1. Let us consider that

initially, the point On+1 places itself in the root node of the iT ree. From

prior execution of MBSCAN, let us assume that the (q, p) values of root

node are 4 and 2.5 respectively. According to the splitting criterion of a

node (Refer Algorithm 1), the point On+1 compares its q = 4th attribute

value i.e., 2.7 with the split-value (p) of the root node i.e., 2.5. Based on

this comparison, the new point On+1 traces itself to the right child of the

root node (∵ 2.7 ≥ 2.5).

Noticeably, point On+1 finds itself placed at the 3rd node lying in Level 1 of

the iT ree (Figure 3.6). The 3rd node of iT ree which currently holds On+1

has a pre-estimated (q, p) values of 3 and 2.3 respectively. Upon comparing

the q = 3rd attribute value of On+1 i.e., 2.1 with that of the 3rd node i.e.,

2.3, On+1 identifies the 6th node lying in Level 2 of the iT ree as its next

destination. If we consider the 6th node as one of the leaf nodes, then no

further split happens w.r.t., point On+1.

The updated nodal mass can be found out by simply keeping a count of

the number of elements within that node post insertion of new point. This

procedure of accommodating the new point On+1 is performed for all the t

iT rees. The updated nodal mass for all the lowest leveled nodes ∀ (x, y) ∈ D
in individual iT ree can therefore be computed incrementally.

4. Step 4 - Build the mass-matrix incrementally: In this step, the prob-

ability mean-mass or mass ∀ (x, y) ∈ D (base dataset) is updated incremen-

tally. The mass value for new point On+i ∈ D′ (updated dataset) with each

of the old points x ∈ D is computed similar to the MBSCAN method.

Mathematically deduce the updated mass computation of lowest

leveled node ∀ x, y ∈ D: ∀ (x, y) ∈ D, let mu be the mass of lowest leveled

node obtained from MBSCAN for uth iT ree [1 ≤ u ≤ t]. Given that t number

of iT rees are involved in building the iForest, then as per the MBSCAN [2]

algorithm the probability mean-mass between x and y is formulated as:
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me(x, y) =
1

t · |D|
[m1 +m2 +m3 + ....+mt]

=⇒ me(x, y) =

∑t
u=1 mu

t · |D|

=⇒
∑t

u=1mu

t
= |D| ·me(x, y)

(3.6)

When the new point On+i enters upon the base dataset D, each iT reeu, u =

1, 2, 3, ..., t will initially have On+i in its root node. As observed in the

previous step (Step 3), any newly inserted point On+i will position itself in

the appropriate nodes of an iT ree using the pre-estimated (q, p) values of

that node obtained during execution of MBSCAN. We may therefore have

the following scenario:

For any pair of points (x, y), the new point On+i on its entry may penetrate

into the lowest leveled node of an iT ree containing x and y. As a result,

the contributory mass mu, u = 1, 2, ..., t for the pair (x, y) w.r.t., the current

iT ree will increase by 1. In worst case scenario, if the lowest leveled node

containing the pair of points (x, y) in all the iT rees are affected due to entry

of On+i, then the contributory mass for x and y will increase by 1 for each

of the iT rees. Let m′e(x, y) be the updated probability mean-mass between

x and y, then we may represent the above scenario as follows:

m′e(x, y) =
1

t · (|D|+ 1)
[(m1 + 1) + (m2 + 1) + (m3 + 1) + ....+ (mt + 1)]

=⇒ m′e(x, y) =

(∑t
u=1mu

)
+ t′

t · (|D|+ 1)
[Here t′ = t]

(3.7)

Equation 3.7 enables evaluation of updated probability mean-mass between

any pair of old points in the new mass matrix when the lowest leveled node

containing the involved points gets affected by the entry of a new point.

Proceeding further, we shall generalize the updated mass computation for

any (x, y) ∈ D when a fraction (maximum t) of iT rees are affected. From

Equation 3.7, we therefore have:
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m′e(x, y) =

(∑t
u=1mu

)
+ t′

t · (|D|+ 1)

=⇒ m′e(x, y) =

∑t
u=1 mu

t · (|D|+ 1)
+

t′

t · (|D|+ 1)

=⇒ m′e(x, y) =
|D| ·me(x, y)

(|D|+ 1)
+

t′

t · (|D|+ 1)
[Using Equation 3.6]

=⇒ m′e(x, y) =
1

(|D|+ 1)
[|D| ·me(x, y) +

t′

t
] [Here 0 ≤ t′ ≤ t]

(3.8)

From Equation 3.8, we observe that in order to calculate the updated mass6

∀ (x, y) ∈ D post insertion of a data point, the following variables are in-

volved: D,me(x, y), t′, and t. Apart from t′ (number of affected iT rees),

the value of remaining variables are already estimated during execution of

MBSCAN. Therefore on finding the number of affected iT rees due to entry

of new point On+i, we can estimate the value of t′ and compute the updated

probability mean-mass ∀ (x, y) ∈ D (base dataset) in the new mass-matrix.

1 2 3 4 n…..

1 m’e(1,1) …..

2 …..

3 …..

4 …..

n …..

…
.

…
.

…
.

…
.

…
.

…
.

x
y

m’e(3,3)

m’e(1,2) m’e(1,3) m’e(1,4) m’e(1,n)

m’e(2,1) m’e(2,2) m’e(2,3) m’e(2,4) m’e(2,n)

m’e(3,1) m’e(3,2) m’e(3,4) m’e(3,n)

m’e(4,1) m’e(4,2) m’e(4,3) m’e(4,4) m’e(4,n)

m’e(n,1) m’e(n,2) m’e(n,3) m’e(n,4) m’e(n,n)

n+1

…
.

   me

(1,n+1)

  me

(n,n+1)

n+1 …..
    me

(n+1,1)
   me

(n+1,2)
   me

(n+1,3)
   me

(n+1,4)
   me

(n+1,n)
me

(n+1,n+1)

New row

   me

(2,n+1)

   me

(3,n+1)

   me

(4,n+1)

New column

m’e(x,y) =     1
(|D|+1)

[ |D|.me(x,y) + t’  ]
t

Probability mean mass 
computed similar to 

MBSCAN
Older mass-matrix

me(x,y) = 
 t.(|D|+1)
i = 1 

  t 

i = 1 
 |R(x,y|Hi )|

New 
point

New 
point

Figure 3.7: Updated mass-matrix post insertion of a new point.

6We use the terms ’probability mean-mass’ or ’mass’ interchangeably.
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However, for computing the probability mean-mass between newly inserted

point On+i and each of the older points, we adopt the methodology identical

to the MBSCAN algorithm. An additional row and a column is added to

the old mass-matrix for storing the new mass values. Figure 3.7 gives a

representation of the updated mass-matrix when a new point is added.

5. Step 5 - Compute the updated µ-neighborhood mass Mu(x)∀ x ∈ D′.

Upon entry of new point On+i, D changes to D′. Now ∀ x ∈ D′, the µ-

neighborhood mass Mu(x) is computed similar to MBSCAN using Equation

3.5.

6. Step 6 - Identify the set of core and non-core points from D′: Given

that we retain the core-point formation threshold δcore, the set of core and

non-core points from D′ is determined similar to the MBSCAN algorithm.

7. Step 7 - Extract clusters from D′ and filter out noise points: This

step is also similar to MBSCAN.

8. Step 8 - Update the base dataset and store the component values:

Set D = D′, store the new mass-matrix and new lowest node ids ∀ (x, y) ∈
D. Set i = i+ 1, repeat Steps 2 to 8 till i = k.

3.8 Time Complexity comparison between MB-

SCAN and iMass

For MBSCAN [2] algorithm, the construction of iForest takes O(tΨ log2 Ψ) time

with t being the number of iT rees and Ψ is the subsample size (Refer Section 3.5).

However while computing the mass of nodes (including lowest leveled nodes), all

the objects from base dataset D (|D| = n (say)) need to be traversed through

each iT ree. The necessary nodal mass calculation from the iForest involves a

cost of O(tn log2 Ψ). The non-incremental mass-matrix builds to completion in

O(tn2 log2 Ψ) time. The core and non-core points along with clusters and noise

points are extracted in linear time.

In case of our proposed iMass algorithm, we need not construct the iForest

post insertion of a new point. Only the lowest leveled nodal mass is computed

incrementally from each iT ree. This step invokes a running time of O(t log2 Ψ)

against every insertion. Upon comparing with MBSCAN, the construction of
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iForest along with the nodal mass computation for iMass achieves a gain factor

of O(n).

Table 3.7: Time complexity comparison between MBSCAN and iMass.

Components MBSCAN iMass Gain factor
iForest +

nodal mass

computation
O(t(n+ Ψ) log2 Ψ) O(t log2 Ψ) O(n)

Mass-matrix O(tn2 log2 Ψ) O(tn2 + t(n+ 1) log2 Ψ) O(log2Ψ)
Core and non-

core points
O(n) O(n) O(1)

Cluster and

noise points
O(n) O(n) O(1)

While executing the mass-matrix for MBSCAN, we store the lowest node ids

∀ (x, y) ∈ D. When any new point enters the base dataset, iMass refers to

the stored lowest node id to check whether the new point has penetrated into the

lowest leveled node for that concerned pair of points w.r.t., a given iT ree. In order

to find the number of affected iT rees t′ (Refer Equation 3.8) due to entry of a new

point, at most t number of scans are required in the whole iForest. Since the old

mass-matrix consists of n2 number of cells (prior to first point insertion), therefore

the updation of probability mean mass values ∀ (x, y) ∈ D (base dataset) in the

new mass-matrix consumes O(tn2) time. The calculation of lowest node masses

between the new point and each of the old points take O(t(n + 1) log2 Ψ) time.

On comparing with MBSCAN, we estimate a gain factor of O(log2 Ψ).

Given that t,Ψ � n, we present a tabular comparison (Table 3.7) of the time

complexities of both MBSCAN and the incremental iMass algorithm when a

single point is added upon base dataset.

3.9 Theoretical analysis of the iMass clustering

algorithm

In this section, we analyze the possible scenarios that may exist while updating

the old mass matrix incrementally. We also present few lemmas related to the

iMass algorithm.
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3.9.1 Cases related to updated mass-matrix:

From Equation 3.8 we have:

m′e(x, y) = 1
(|D|+1)

[|D| ·me(x, y) + t′

t
] [where 0 ≤ t′ ≤ t]

1. Case 1: t′ = 0: For any given pair of points (x, y), if the lowest leveled node

in none of the iT rees are affected due to entry of new point, then t′ = 0. In

such a case:

m′e(x, y) = 1
(|D|+1)

[|D| ·me(x, y)]

The updated mass becomes independent of the number of iT rees and is

reduced to a function of D and old mass value me(x, y).

2. Case 2: 0 < t′ < t: If the number of affected iT rees is greater than zero

but less than t, then the updated probability mean-mass is derived directly

from Equation 3.8.

3. Case 3: t′ = t: If all the iT rees are affected, then t′ = t. In such a case

Equation 3.8 reduces to m′e(x, y) = 1
(|D|+1)

[|D|∗me(x, y)+1]. Since the value

of the term me(x, y) is already known from execution of MBSCAN, similar

to Case 1, the updated mass matrix becomes independent of the number of

iT rees involved.

3.9.2 Lemmas related to the iMass clustering algorithm:

Lemma 3.1. ∀ x, y ∈ D,m′e(x, y) > 0.

Proof: The minimum value of me(x, y) happens when the lowest node contains

only x and y (x 6= y). In this case the probability mass w.r.t., a given iT ree

is 2
|D| . Therefore, the minimum probability mean-mass from MBSCAN becomes

2t
t∗|D| = 2

|D| > 0[∵ |D| > 0]. When x = y, the minimum mass turns out to be
1
|D| > 0. Since the updated mass m′e(x, y) is a function of me(x, y), D, t and t′

(Refer Equation 3.8), therefore ∀ x, y ∈ D,m′e(x, y) > 0 for all the three cases

related to updated mass matrix.

Lemma 3.2. ∀ x, y ∈ D, when no iT ree is affected, m′e(x, y) < me(x, y).

Proof: When no iT ree is affected, t′ = 0. Therefore from Equation 3.8 we have
m′

e(x,y)
me(x,y)

= |D|
|D+1| . Therefore m′e(x, y) < me(x, y) [∵ |D|

|D+1| < 1].
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Lemma 3.3. ∀ x ∈ D ∩D′, x may or may not retain its core or non-core status

obtained during previous insertion.

Proof: The µ threshold (Refer Equation 3.5) may change after a point insertion,

but in spite of the decrease in pair wise probability mean-mass values (Lemma

3.2), it cannot be guaranteed that the size of µ-neighborhood mass for any point

will continue to increase or decrease.

3.10 Experimental evaluation

We performed experiments on six real world and two synthetic datasets (Refer

Table 3.3 in Section 3.6 for datasets’ description) and simulated our proposed

iMass clustering algorithm in C++ on a Linux machine with 4GB RAM. Through

the experiments, we aim to find the following results while proving the efficiency

of iMass over MBSCAN:

1. Compare the CPU execution times of MBSCAN and iMass.

2. The percentage of affected nodes in the iForest against every point insertion

made.

3. The extent of reduction achieved while building the mass-matrix in an in-

cremental manner for iMass as compared to MBSCAN.

4. The extent of reduction achieved due to iMass while finding the lowest node

masses incrementally from the iForest post any insertion.

3.10.1 Experimental procedure

For our experimental purpose, we defined a new term called Algorithm-Components

(Algo-Comp). The Algo-Comp consists of following components:

• Base dataset D.

• iForest.

• Mass-matrix.
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• Lowest node identifier (lowest node id) in each iT ree for any pair of points.

A base dataset is one taking which MBSCAN is executed in order to set the values

of other components in Algo-Comp. Initially, the base dataset is fed as input to

the iMass algorithm. Upon entry of a new point, the base dataset alters its size.

The new set of points becomes a part of the updated dataset D′. D′, nodes with

updated masses from the iForest, new mass-matrix and lowest node ids become a

part of the updated Algo-Comp upon execution of iMass. The next arriving point

is processed based on the updated Algo-Comp values from the previous iteration.

Table 3.8: Parameters and Data division for experiments related to iMass
algorithm.

Dataset Size
Base data-

set size

#Points to

be added

#iTrees

t
δcore

Libras 360 240 120 20 5
Segment 2310 1540 770 20 10

Wine 178 118 60 20 5
Seeds 210 140 70 21 7

Aggregation 788 525 263 24 9
Iris 150 100 50 20 7
S1 900 600 300 20 9
S2 1500 1000 500 20 10

For carrying out experiments, we divided the actual dataset into a 2:1 ratio (Table

3.8) where the larger share was taken as the base dataset (D) and the smaller share

was the set of points to be added upon D one at a time. We initially executed the

MBSCAN algorithm upon D and stored the Algo-Comp values, and then allowed

the set of points within smaller share to be inserted one at a time. For each dataset,

we measured the CPU time required due to execution of iMass for detecting

clusters after inserting a single point. Correspondingly, we also executed MBSCAN

on the whole updated dataset (D′). Experimentally we compared CPUMBSCAN(D′)

and CPUiMass(D′) after every insertion to show that:

CPUiMass(D′) < CPUMBSCAN(D′) (3.9)

The next evaluation metric used was the percentage of affected nodes in the

iForest against every new insertion. Any node within an iT ree which accom-

modates a newly entered point is designated as an affected node.
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Affected nodes(%) =
#Nodes with new point

#Total Nodes in iForest
· 100 (3.10)

Along with aforementioned metrics used for evaluation of iMass viz. CPU exe-

cution times and percentage of affected nodes (Equation 3.9, Equation 3.10), we

also determined the extent of reduction achieved by iMass in time required for

mass-matrix construction and nodal-mass computation from the iForest.

3.10.2 Experimental results:

In this phase, we present the key experimental results that were obtained based

on the metrics described in previous phase (experimental procedure). We also

present certain observations and reasons pertaining to the experimental results.

Key Results: For every dataset, there are two horizontally placed plots (Figures

3.8(a), 3.8(b), 3.8(c), 3.8(d), 3.8(e), 3.8(f), 3.9(a), 3.9(b), 3.9(c), 3.9(d), 3.9(e),

3.9(f), 3.10(a), 3.10(b), 3.10(c) and 3.10(d)) viz. CPU execution times of iMass

and MBSCAN and the percentage of affected nodes from the iForest due to

execution of iMass. Both the algorithms show an upward trend in execution

times with increase in the size of base dataset due to repeated insertions. We

observed that for Iris dataset, the iMass algorithm achieved a highest speedup

upto an order of 2.28 across all datasets which is about 191 times faster than the

MBSCAN method. The average speedup obtained for Iris was upto an order of

2.11 (≈ 128.82 times) post insertion of the 50th point. For another dataset Wine,

a highest speedup of about 134 times was achieved. The mean speedup for Wine

was around 83.17 (≈ order of 1.92). Among the datasets achieving a lesser mean

speedup, it was about 23.44 times faster (≈ order of 1.37) for Aggregation dataset

while for S1 the mean speedup was about 27.54 (≈ order of 1.44).

While computing the percentage of affected nodes in the iForest, for Iris dataset

we observed that an average of 26.54% of nodes were affected after all the 50

points had been inserted. For the highest sized dataset Segment with a insertion

size of 770 points, the mean number of affected nodes were as low as 8.94%. The

datasets with lesser size viz. Wine and Seeds had a higher mean percentage of

affected nodes with 24.5% and 24.61% respectively. This is due to the fact that

iForests that were constructed with datasets of higher size had a greater number

of nodes per iT ree contrary to datasets with lesser size.
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Out of all datasets, Segment consumed the highest amount of memory space be-

cause of its greater size. The average memory consumption for iMass stood at

164.72 MB while MBSCAN took about 113.055 MB of space. The mean mem-

ory consumption due to iMass algorithm was about 66.77% more than that of

MBSCAN (See Tables 3.6, 3.9), ∴ |Mempoint−ins −Memnaive| ≈ 0.67. The higher

memory consumption for iMass can be attributed to the maintenance of the

lowest node id for every pair of points in each of the t iT rees. Moreover, certain

additional memory was also required for storing the parameters carried from the

MBSCAN algorithm for all insertions.

Table 3.9: Memory consumed due to iMass.

Dataset Libras Segment Wine Seeds Aggregation Iris S1 S2
Memory 28.67 MB 632.84 MB 9.42 MB 12.76 MB 137.33 MB 7.95 MB 158.67 MB 330.132 MB

Next we mention certain observations and reasons based on the experimental re-

sults that were obtained.

1. Efficiency comparison of iMass and MBSCAN

Key observation(s): In the first plot for every dataset (Figure 3.8(a)

through Figure 3.10(c)), we observed that against each point insertion, the

CPU execution time for MBSCAN upon D′ (updated dataset) is much higher

as compared to that of the iMass algorithm resulting in its better efficiency.

Reason(s): The iMass algorithm avoids re-building of iForest post any

new insertion. Only the nodal masses of the affected nodes are updated

incrementally. Moreover while constructing the new mass-matrix, a pairwise

dissimilarity score between any two existing points in D (base dataset) is

evaluated incrementally (Section 3.7.4).

2. Lower percentage of affected nodes

Key observation(s): In the second plot for each dataset (Figure 3.8(b)

through Figure 3.10(d)), we observe that a lesser percentage of nodes (< 28%

across datasets) were affected due to insertion of any new point.

Reason(s): The node-splitting criterion as per the MBSCAN algorithm is

used by a newly inserted point to find the appropriate nodes while positioning

itself in any iT ree. Therefore only a handful number of nodes across iT rees

belonging to a given iForest would contain the newly entered point.

3. Efficiency achieved due to iMass while building the iForest incre-

mentally
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insertion for Libras dataset.
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(c) Execution time for iMass and MBSCAN after every in-
sertion for Segment dataset.
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insertion for Segment dataset.
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(e) Execution time for iMass and MBSCAN after every in-
sertion for Wine dataset.
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Figure 3.8: Efficiency comparison between iMass and MBSCAN along with
the percentage of affected nodes due to iMass for datasets: Libras, Segment,

Wine.
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(a) Execution time for iMass and MBSCAN after every in-
sertion for Seeds dataset.
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(b) Percentage of affected nodes in the iForest after every
insertion for Seeds dataset.
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(c) Execution time for iMass and MBSCAN after every in-
sertion for Aggregation dataset.
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insertion for Aggregation dataset.
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(e) Execution time for iMass and MBSCAN after every in-
sertion for Iris dataset.
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Figure 3.9: Efficiency comparison between iMass and MBSCAN along with
the percentage of affected nodes due to iMass for datasets: Seeds, Aggregation,

Iris.
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(a) Execution time for iMass and MBSCAN after every in-
sertion for S1 dataset.
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insertion for S1 dataset.
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(c) Execution time for iMass and MBSCAN after every in-
sertion for S2 dataset.
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Figure 3.10: Efficiency comparison between iMass and MBSCAN along with
percentage of affected nodes due to iMass for datasets: S1, S2.

Key Observation(s): A significant amount of gain in terms of efficiency

(time required) is observed (Refer Table 3.10) while building the iForest for

iMass algorithm as compared to MBSCAN.

Reason(s): The iMass algorithm avoids re-construction of iForest afresh

upon insertion of any new data point. Instead once a point is inserted,

the node-split criterion is used by any priorly positioned node of an iT ree

to direct the newly entered point to its further appropriate nodes. The

points within unaffected nodes retain their prior position in an iT ree without

inflicting any changes. Moreover, no additional iT rees are added to the

iForest.

4. Efficiency achieved while building the mass-matrix incrementally

Key Observation(s): A significant amount of gain in terms of efficiency
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(time required) is observed (Refer Table 3.10) while building the mass-matrix

for iMass algorithm as compared to MBSCAN.

Reason(s): For any pair of points (x, y), the lowest node ids are stored

while determining the Algo-Comp values. Whenever a new point places itself

into the appropriate nodes of an iT ree, the iMass algorithm accesses the

lowest node id of (x, y) within that iT ree. This is done in order to check

whether the new point has penetrated into that designated lowest leveled

node. If the newly entered point is present within that lowest leveled node,

then the mass of (x, y) w.r.t., that iT ree is increased by one (Refer Section

3.7.4). In this way iMass avoids re-computation of mass values for any

pair of existing points (x, y) ∈ D post new insertion. Moreover from Figure

3.8(b) through Figure 3.10(d), we observe that the percentage of affected

nodes including the lowest leveled nodes in the iForest reaches a maximum

of 27% across all datasets. These reasons collectively ensure a reduced time

duration required for computing pair wise dissimilarity in the new mass-mass

matrix.

3.10.3 Cluster analysis

In order to perform cluster comparison between iMass and MBSCAN, we adopted

the following strategy: Given a base dataset D of size n, we obtain the intermediate

set of clusters dynamically after a point insertion had taken place. Suppose k

points were inserted upon D one at a time, then after the entry of kth point,

we extracted the final set of clusters C ′(IM)(say) due to iMass. The updated

dataset D′ with n + k points was fed at once into the MBSCAN algorithm to

produce a set of clusters C ′(M)(say).

Experimentally, we did not observe any loss of clusters for datasets: Libras, Seg-

ment and Aggregation due to iMass and MBSCAN. Based on our choice of param-

eters for Libras, a total of 11 clusters were produced (∴ |C ′(IM)| = |C ′(M)| = 11)

with a mean cluster size of around 7 points. For Segment dataset, a single cluster

was produced upon execution of both the methods, however there was an increase

in number of non-core points for the set C ′(M). Similar results were observed in

case of Aggregation dataset producing a single cluster containing 788 points.

The random split-attribute (q) and split-point (p) values involved while construct-

ing an iT ree implies that the iForest obtained due MBSCAN and iMass may

not be identical. The positioning of nodes per iT ree impacts the mass of smallest
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Table 3.10: Extent of reduction achieved for building iForest and mass-matrix
incrementally due to iMass algorithm.

Dataset |D′| iForest Mass-matrix
MBSCAN
(sec)

iMass
(sec)

Reduction %
MBSCAN
(sec)

iMass
(sec)

Reduction %

Libras

241 13 0.002580 99.98 4.4741 0.4009 91.03
270 14 0.002525 99.98 5.1014 0.4953 90.28
300 14 0.002359 99.98 6.8980 0.6208 90.99
320 14 0.003170 99.97 10.1717 0.7097 93.02
360 16 0.001829 99.98 16.5059 0.9130 94.46

Segment

1541 7 0.001960 99.97 444.1200 13.6027 96.93
1600 7 0.000650 99.99 604.4340 14.5633 97.59
2000 7 0.000670 99.99 769.4430 22.516 97.07
2200 7 0.000680 99.99 948.9450 27.3928 97.11
2310 7 0.000680 99.99 1189.2400 30.1611 97.46

Wine

119 14 0.001500 99.98 0.5356 0.0985 81.60
125 14 0.002070 99.98 0.6408 0.1079 83.15
155 13 0.001620 99.98 1.3750 0.1701 86.96
170 14 0.001500 99.98 1.6561 0.2021 87.79
178 14 0.002000 99.98 2.0570 0.2134 89.62

Seeds

141 14 0.001340 99.99 0.8938 0.1379 84.56
160 15 0.001810 99.98 1.3327 0.1758 86.80
180 16 0.001700 99.98 2.1317 0.2246 89.46
200 15 0.001800 99.98 2.6040 0.2893 88.88
210 16 0.001600 99.98 3.1947 0.3515 97.46

Aggregation

526 18 0.002480 99.98 46.4284 2.4899 94.63
550 16 0.002370 99.98 53.9519 2.7265 94.94
650 17 0.002304 99.98 90.6784 3.8187 95.78
750 17 0.002740 99.98 110.1890 5.1206 93.35
788 17 0.002360 99.98 140.8830 6.1713 95.61

Iris

101 14 0.002720 99.98 0.3806 0.0646 83.01
110 14 0.002020 99.98 0.4582 0.0795 82.64
130 16 0.002100 99.98 0.7418 0.1105 85.09
140 14 0.002200 99.98 0.0573 0.1297 86.44
150 14 0.001500 99.98 3.1947 0.1634 86.61

S1

601 14 0.002180 99.98 49.1020 2.6358 94.63
650 14 0.001820 99.98 79.1108 3.1398 96.03
700 14 0.001810 99.98 105.3700 3.69813 96.49
800 14 0.001990 99.98 134.9630 5.0534 96.25
900 14 0.003370 99.97 193.9200 6.3625 96.71

S2

1001 14 0.001800 99.98 257.5270 7.7268 96.99
1100 14 0.002930 99.98 349.6020 9.6862 97.22
1300 15 0.001890 99.98 706.4120 13.6831 98.06
1400 14 0.002200 99.98 793.8920 16.1137 97.97
1500 14 0.001900 99.98 828.3700 17.9052 97.83

local region or the lowest leveled node for any pair of points. As a result, the set

of core and non-core points may differ to produce different C ′(M) and C ′(IM).

On the basis of our chosen parameters, the synthetic datasets S1 and S2 retained

a 50% cluster exactness for iMass w.r.t., MBSCAN. S1 was reported to have a

marginal decrease in the number of core points for iMass. There was no immediate

occurrence of noise points till the entry of 300th point upon a base dataset of size

600. In case of S2, the largest cluster within C ′(M) was reported to contain 933
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points. The number of non-core points decreased from 11 to 2 while computing

C ′(IM) for S2.

We additionally provided comparisons based on three quality measures: Normal-

ized Mutual Information (NMI), Rand index (RI) and F1-score7 (Refer Table 3.11)

related to five class labeled data while for remaining three unlabeled data, a clus-

ter accuracy percentage is depicted. NMI [72] provides the reduction in entropy

of class labels given that the cluster labels are already known. Since NMI is

normalized, it enables us to measure and compare the NMI values between dif-

ferent clusterings. The following formula provides the NMI measure for a given

algorithm.

NMI =
2 · I(Y ;C)

H(Y ) +H(C)
(3.11)

where Y is the number of class labels, C represents the cluster labels and H(.) is

the entropy. I(Y ;C) is given by the following relation:

I(Y ;C) = H(Y )−H(Y |C) (3.12)

where H(Y |C) represents the entropy of class labels within each cluster.

RI measures the percentage of correct decisions. Its calculation is based on the

evaluation of TP (True Positive), FP (False Positive), True Negative (TN) and

False Negative (FN). A TP decision allocates two similar items within same clus-

ter. A TN puts two different items in different clusters. FP allocates two dis-

similar objects to same cluster while FN assigns two similar items to dissimilar

clusters. The RI is given by:

RI =
TP + TN

TP + FP + FN + TN
(3.13)

The F-measure penalizes FN more than FP contrary to the RI measure. For our

cluster evaluation purpose, we measure the F1-score as follows:

7nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
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F1-score =
2pr

p+ r

where p =
TP

TP + FP

r =
TP

TP + FN

(3.14)

Here p and r (Equation 3.14) denote Precision and Recall respectively.

Table 3.11: Clusters quality evaluation metrics using Equations 3.11, 3.12,
3.13 and 3.14.

Dataset #Classes
iMass MBSCAN

NMI RI F1-score NMI RI F1-score
Libras 15 0.272 0.80438 0.10896 0.272 0.80438 0.10896
Segment 7 1.0 0.17848 0.30290 1.0 0.17848 0.30290
Wine 3 1.0 0.38488 0.55583 0 0.52105 0.68512
Seeds 3 1.0 0.38684 0.55787 1.0 0.38743 0.55848
Iris 3 1.0 0.38743 0.55848 0.81497 0.54598 0.42210

For most of the class labeled datasets in Table 3.11, we observe that the iMass

clustering algorithm either retains or has a better NMI value than that of MB-

SCAN. However for datasets: Wine and Seeds, MBSCAN has higher RI and F1-

score as compared to iMass. For the other three unlabeled datasets: Aggregation,

S1 and S2, a mean cluster accuracy of 60.375% was achieved.

3.11 Conclusion

In this chapter we aimed at developing an approximate incremental version of

the MBSCAN clustering algorithm known as iMass. We intended to extract a

similar set of clusters through iMass while achieving a higher degree of efficiency.

Intelligent construction of the new mass-matrix and efficient design of iForest

using the prior node-split criterion information enabled iMass to achieve the much

desired efficiency. Experimentally we showed the effectiveness of iMass over the

non-incremental MBSCAN, therefore Tpoint−ins < Tnaive.

We also showed that the efficiency achieved by iMass was at the cost of an average

memory overhead of around 66.77%. One of the prime reasons for this memory

overhead was the introduction of an additional space to store the lowest node ids

for every pair of points per iT ree. With the help of lowest node ids, we were able
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to identify in constant time whether a new point has penetrated into a lowest

leveled node. Moreover by retaining the exactness of clusters for certain datasets

and maintaining an overall mean accuracy of about 60.375% for unlabeled data,

we showed that C ′(IM) ≈ C ′(M). For labeled data, we showed that the iMass

algorithm achieved similar or improved results over MBSCAN in terms of NMI,

RI and F1-score thereby proving the objectives as stated in Section 3.4.

The MBSCAN [2] clustering algorithm was built on the strength of random enti-

ties: the split-attribute (q) and split-point (p) values. As a result it proved to be

a major challenge to produce an exact incremental extension to MBSCAN. The

construction of iForest is heavily reliant on the subsample size D ⊂ D and the

number of iT rees (t). In our proposed algorithm iMass, we chose not to increase

t because increasing the number of iT rees against new insertions would tend to

mitigate the advantages that we may derive by maintaining a consistent number

of iT rees. The creation of internal nodes within an iT ree is also dependent on

the random entities used by the MBSCAN algorithm. Since a prior execution of

MBSCAN is performed before implementing iMass, at no point we can guarantee

that two independent runs of the iMass algorithm will produce an identical set of

clusters. However, we have been able to achieve a highest efficiency upto an order

of 2.28 or about 191 times across datasets due to iMass which shows its worthy

extension as an approximate incremental version of MBSCAN.
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Chapter 4

BISDBadd: Towards Exact

Incremental Clustering in

Batch-Mode for Insertion using

SNN-DBSCAN

In the previous chapter, we oversaw an intelligent tuning done to the expensive

components of the baseline algorithm. The proposed scheme however was limited

to single point insertions. Taking into consideration the repeated reconstruction of

heavier algorithmic components, the point based updates may eventually not prove

to be an efficient technique while dealing with a larger base dataset. Moreover, it

is also desirable for an incremental algorithm to produce results identical to the

naive or non-incremental approach. Therefore, the efforts laid in our first contribu-

tion motivated us to expand our research towards proposing an exact incremental

solution. We chose to incrementally extend a robust density based clustering al-

gorithm known as SNN-DBSCAN [24] (SNNDB), where updates (insertions) are

made in batches to the base dataset.

We initially proposed two sub-variant algorithms viz. Batch− Inc1 and Batch−
Inc2. While Batch−Inc1 solves only a single component of SNNDB incrementally,

Batch−Inc2 deals with two components. Both these algorithms process insertions

in batch mode leading towards the designing of most effective variant in form of

BISDBadd (Batch Incremental Shared Nearest Neighbor Density Based Clustering

Algorithm for addition). The BISDBadd algorithm targets all the components of

SNNDB incrementally.
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4.1 Motivation

Dynamic datasets undergo frequent changes in their size upon periodic insertion.

A naive method to get an exact clustering over the changed dataset requires a

redundant execution of the clustering algorithm. Moreover for minor changes in

input, the variation in output is also expected to be minimal. These changes

inflicted upon the dataset cannot be ignored as they might be significant for data

points and their neighborhood. With increase in frequency of such updates, the

problem of redundant computation may lead to efficiency and latency issues.

Table 4.1: Motivation behind developing the BISDBadd clustering algorithm.

Motivation Description

Redundant

computation

Non-incremental algorithms fail to address the issue of

redundant computation while handling dynamic datasets.

They involve the entire set of data points against every

new update made to the dataset.

Small frequent

Updates

When minimal number of insertions are made upon a larger

base dataset, the changes in clustering is also expected to be

small. As a result, there is a need for designing intelligent

algorithms to handle such frequent updates efficiently without

redundant computation.

InSDB [1] handles

pointwise addition

InSDB handles addition of points one at a time. The process

may get slower as the size of base dataset increases with new

insertions. This is because in order to find the affected points

against every insertion, a single scan of the whole dataset

is required. This scanning time is bound to rise with increase

in the size of base dataset. As a result there is a need to process

updates in batch mode for quickening the cluster detection

process against new updates.

SNNDB [24] is a robust graph-based clustering algorithm that enables finding

clusters of arbitrary shapes, sizes and densities. Existing incremental extension to

SNNDB i.e., IncSNN-DBSCAN [1] (InSDB) facilitates addition of data points one

at a time. As a result, the process involved in rebuilding the expensive components

of SNNDB against every point insertion incurs a high computational cost. To

address this issue, we propose an exact incremental solution to SNNDB processing

updates in batch mode. Entry of data points in batches enables faster processing

of updates in one attempt. This procedure was otherwise not possible with point
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based insertion scheme. Table 4.1 provides a brief description about the motivation

behind our work.

4.1.1 Chapter contributions

The key contribution(s) made in this chapter may be summarized as follows:

1. We propose three incremental variants of SNNDB each of which processes

updates made due to addition of data points in batch mode. These three

algorithms are Batch− Inc1, Batch− Inc2 and BISDBadd (See Table 4.2).

Experimentally, we observed that the third variant BISDBadd is the most

efficient as compared to the other two variants.

2. We showed the effectiveness of our fastest incremental variant BISDBadd

over SNNDB [24] while handling minimal changes made to the dataset.

3. We demonstrated the fact that when size of base dataset increases, point

wise insertion of data no longer remains an effective option to detect clusters

dynamically. The updates made to a larger base dataset in batch mode

proves to be more efficient than both the naive (SNNDB [24]) and point-

based incremental method (InSDB [1]).

4. A thorough cluster analysis is provided.

Table 4.2: Brief overview of our proposed batch incremental clustering algo-
rithms for addition (Refer Section 4.3 for definitions of related concepts).

Algorithm Brief working mechanism Advantage Improvement

Batch− Inc1

Computes the KNN lists

incrementally, detects

same clusters as SNNDB,

performs batch wise insertion.

Reduces the time taken to

compute the KNN lists

post new insertions.

Batch− Inc2

Batch− Inc2

Computes the KNN lists and

similarity matrix incrementally,

detects same clusters as SNNDB,

performs batch wise insertion.

Reduces the time taken to

compute the KNN lists

and construct similarity matrix

post new insertions.

BISDBadd.

BISDBadd

Computes the KNN lists,

similarity matrix along with

core and non-core points

incrementally, detects same

clusters as SNNDB, performs

batch wise insertion.

Reduces the time taken to

compute the KNN lists,

construct similarity matrix and

identify core and non-core points

post new insertions.
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4.2 Related work and background

Li et al. [73] proposed a robust structured non-negative matrix factorization (RSNMF)

framework leveraging the use of l2,p-norm loss function [74] to deal with noises in

clustering. The work focused on learning a robust discriminative representation

of feature sets while handling dimensionality reduction. In a Rd space, the phe-

nomenon of ‘curse of dimensionality’ [24, 64] is a major concern due to which the

proximity between data points obtained through any geometric model eg: distance

becomes unreliable.

High dimensional data such as images may involve superfluous features along with

the presence of noisy elements. In order to identify a subset of useful and re-

dundancy constrained features, a non-negative spectral clustering scheme coupled

with analysis of redundant features [75] was proposed. The non-negative spectral

analysis technique helped learning of cluster labels related to input data more ac-

curately. The simultaneous learning of cluster labels and attribute matrix enabled

selection of the most discriminating features appropriately. Another robust clus-

tering technique called MBSCAN [2] overcomes the limitations of distance based

clustering in Rd space by adopting a data dependent dissimilarity measure. MB-

SCAN utilizes the measure of probability mass [2] instead of any geometric model

for computing pairwise dissimilarity of points.

One of the building block algorithms for our proposed batch-incremental methods

in this chapter is SNNDB [24]. SNNDB [24] is an amalgamation of shared nearest

neighbors [52] (SNN) clustering scheme and DBSCAN [23]. SNNDB uses the

concept of shared nearest neighbors to determine the proximity score between

pairs of points. The similarity value between two points p and q is the number of

elements the points have in common between their corresponding KNN [76] lists

(Refer Section 4.3 for details). The use of SNN enables SNNDB in addressing the

issues related to distance based clustering in a multi-dimensional space.

There also exists a prior incremental extension to SNNDB in form of InSDB [1].

InSDB facilitates entry of data points one at a time. This leads to repetitive

construction of expensive SNNDB components against every insert. As the size of

base dataset increases, the scheme of clustering adopted by InSDB may tend to

become inefficient compared to batch mode processing of updates.

74

TH-2363_136101011



4.3 Preliminaries and Definitions

In this section, we define the key terms and concepts used in this contribution

(Refer Table 4.3 for the meaning of notations used henceforth).

Table 4.3: Major notations used in this chapter (second contribution).

Notation Description
C Set of Clusters prior to any changes in dataset
C′ Set of Clusters after dataset is updated
D Original (Base) dataset
D′ Changed dataset after insertions
B Number of batches
k No. of points per batch (inserted)
k′ Total no. of points to be inserted
K size of the K-Nearest Neighbour list
δsim Strong link formation threshold
δcore Core point formation threshold
P(.) Power set
KNN(.) KNN list of any data point.
Sim Mat (.) Similarity matrix of dataset.
Core (.) Set of core points.
Non-Core (.) Set of non-core points.
|.| Size of a set.
adj(.) Set of adjacent points to a given point.

4.3.1 K-nearest neighbor (KNN) list

We define the KNN list of a data point by identifying its top-K (K ∈ Z+) closest
1 points.

4.3.2 Shared nearest neighbors (SNN)

The concept of shared nearest neighbors was first introduced by Jarvis and Patrick

[52]. The SNN between two data points p and q is defined as number of points

they have in common between their respective KNN lists. The SNN value is also

referred to as the similarity value of p with q or vice-versa (Equation 4.1). It is

defined by the following equation:

1For our purpose, we adopt the Euclidean distance measure.
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similarity(p, q) = KNN(p) ∩KNN(q) (4.1)

where KNN (x ) is the number of elements present in the KNN list of any data

point x.

4.3.3 Similarity matrix or SNN graph

Similarity matrix represents the shared nearest neighbor (SNN) graph. The data

points are modeled as nodes and the similarity value between them is considered

to be the edge weight. An individual cell of the similarity matrix contains the

edge weight or similarity value or the degree of closeness between concerned pair

of points.

4.3.4 K-SNN graph

Here K represents the size of KNN list ∀ x ∈ D (base dataset). From the original

SNN graph, an edge is retained between a pair of points p and q, only if p and q

are present in each other’s KNN list and the edge weight between them is greater

than or equal to a certain threshold δsim (say). However, if the edge weight falls

below δsim, then the link is not formed. The remaining edges which are present in

the SNN graph are identified as strong links. This method of obtaining a residual

graph from the original SNN graph is known as K-Nearest Neighbor Sparsification

of the SNN graph [24]. We refer the SNN graph containing the nodes connected

by strong links as the K-sparsified SNN graph or K-SNN graph.

4.3.5 Core and non-core points

In the K-SNN graph, if the number of strong links adjacent to a particular point

exceeds a certain threshold value δcore (say), then it is considered to be a core

point. The remaining points are classified as non-core.
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4.3.6 Noise points

The non-core points which do not share a link with any of the core points and fail

obtain a cluster membership are classified as noise points.

4.3.7 Clustering

Given a dataset D, a similarity function sim(x,y), and a point density function

dense(x), we define clustering by a mapping f : D → C, where C = P (D). If x,y

∈ D, x 6= y and there exists two threshold values δsim, δcore, then may have the

following interpretations:

1. If sim(x,y) ≥ δsim, dense(x) > δcore and dense(y) > δcore, then f(x) = f(y).

2. If sim(x,y) ≥ δsim, dense(x) > δcore and dense(y) 6> δcore, such that ∃z ∈ D

where x 6= y 6= z, dense(z) > δcore and sim(y,z) ≥ δsim. Then if sim(y,z)

> sim(x,y), then f(y) = f(z), otherwise if sim(x,y) > sim(y,z), then f(y) =

f(x).

3. ∀ x ∈ D, if dense(x) 6> δcore and 6 ∃y ∈ D such that sim(x,y) ≥ δsim and

dense(y) > δcore, then {x} 6∈ C.

As per the first point, if the degree of closeness or similarity between points x

and y is greater than or equal to a threshold value δsim and x, y are dense or core

points, then both x and y are a part of the same cluster.

As per the second point, the similarity between points x and y is greater than

or equal to a threshold value δsim and x is core but y is non-core. There exists

another core point z and the similarity between y and z is greater than or equal

to δsim. In that case, if y is more similar to z than x, then points y and z belong

to the same cluster. However, if y is more similar to point x than z, then y and x

belong to the same cluster.

The third point states that if x is a non-core point and there exists no core point

y with which x has a similarity value greater than or equal to δsim, then x is

categorized as a noise point.
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4.3.8 Exact Batch Incremental Clustering (Addition)

Given a dataset D alongwith its initial clustering f : D → C where C ⊆ P (D),

an insertion sequence of B batches with ‘k ’ points per batch takes place. After k ′

≤ kB number of insertions where kB(mod k ′)≡0, let D ′ be the updated data set.

Then an incremental clustering given by a mapping h : D′ → C ′, with C ′ ⊆ P (D ′)

is isomorphic to the one time clustering f(D′) produced by the non-incremental

algorithm.

4.4 Problem formulation

For B number of batch insertions (B ∈ N) with k points/batch, let Tnaive be

the total time taken by the non-incremental method, Tpoint−ins be the total time

taken by the point insertion based incremental method with k′ ≤ kB inserts, and

Tbatch−ins be the total time taken by the batch incremental method. Let Cnaive,

Cpoint−ins and Cbatch−ins be the respective set of clusters obtained after k′ updates.

If |Membatch−ins −Memnaive| be the difference in percentage of average memory

consumed, then we aim to establish the following objectives:

1. (a) Tbatch−ins < Tnaive

(b) Cbatch−ins = Cnaive

2. (a) Tbatch−ins < Tpoint−ins

(b) Cbatch−ins = Cpoint−ins

3. |Membatch−ins −Memnaive| ≤ δ, where δ is a small real number.

4.5 The SNNDB and InSDB clustering algorithm

The components of SNNDB [24] algorithm are:

• K-nearest neighbors (KNN).

• Shared nearest neighbors (SNN) graph.

• Set of core and non-core points.
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KNN list consists of the top-K nearest neighbors for any data point. Please refer

to Figure 4.1 for the representation of KNN list for data point P (say). In this

figure, let the points P1, P2, P3, P4 ,P5 be at a distance of 3, 6, 4, 2 and 5 units

respectively from P. Then for K = 5, the KNN list for P is the set {P4, P1, P3,

P5 ,P2}.

Figure 4.1: KNN list for point P where K = 5

P

P4

P1

P3

P5

P2

6 units

4 units

2 units

5 units

3 units

Point in focus

Closest point within 
KNN list of P with K=5

P

P4
P1
P3
P5
P2

The K-nearest 
neighbors(KNN) list of 

P with K=5  

Farthest point within 
KNN list of P with K=5

Strong link

The concept of shared nearest neighbors or SNN is inherited from the clustering

scheme proposed by Jarvis and Patrick [52]. The SNN clustering technique does

not use any distance metric for deciding the measure of closeness between any two

data points. Instead it relies on the number of shared data points between the KNN

lists of any pair of points (p, q) to evaluate their proximity. The proximity score

obtained is treated as the similarity value between p and q. While constructing the

SNN graph, the data points are treated as nodes while the edge weight is equivalent

to the similarity value between the pairs of points. This step is followed by the

“K-Nearest Neighbor Sparsification” [24, 52] of SNN graph. While building a K-

SNN graph, an edge is formed between any two nodes p and q iff the following

two conditions are satisfied:

1. Points p and q are present in each others’ KNN list.

2. The similarity value between p and q is greater than or equal to a certain

threshold δsim (say).

Each of the edges constructed between any pair of points (p,q) satisfying the

above two conditions are considered as strong links. Figure 4.2 demonstrates the

similarity value calculation and strong link formation between two points P and
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P3. The KNN list of P contains {P4, P1, P3, P5 P2} while the KNN list of P3

consists of {P7, P8, P, P2, P4}. We observe that both P and P3 are included in

each others’ KNN list. The proximity score or the degree of closeness between P

and P3 is therefore given as 2. This is because points P and P3 share two elements:

{P2,P4} between their KNN lists. If the value of δsim is set to be 2, then an edge

between points P and P3 is considered to be a strong link since |{P2,P4}| ≥ δsim.
2

Figure 4.2: Similarity value between points P and P3 in the K-SNN graph
given that P ∈ KNN(P3) and P3 ∈ KNN(P) and K = 5.
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The graph obtained by this mechanism is known as the K-sparsified SNN (K-SNN)

graph [24, 52]. In the K-SNN graph, all the existing edges between any pair of

nodes are strong links. While constructing an edge between p and q, if any one

of the above two conditions is violated, an edge is not formed. All the connected

components contained in the K-SNN graph are now treated as the final set of

clusters by the SNN [52] algorithm.

However, the SNNDB [24] algorithm produces K-SNN graph without considering

its connected components as clusters. Instead, SNNDB adopts a clustering scheme

similar to the DBSCAN [23] algorithm. SNNDB identifies the dense(core) and

border (non-core) points to find its final set of clusters. In the K-SNN graph, for

any given point p (say), SNNDB detects the number of strong links adjacent to p

2Having a point in the KNN list does not guarantee the formation of a shared strong link
between the concerened point and its neighbor. For a shared strong link to exist, each of the
two conditions for strong link formation must be satisfied.
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(denoted as adj (p)). If adj (p) > δcore (a certain threshold) then p is designated

as a core point, otherwise p is a non-core point. The number of strong links

associated with point p provides a measure of its density.

Similar to DBSCAN [23], if p and q are two core points connected by a strong

link, then both these points obtain the same cluster membership (First point under

Clustering definition from Section 4.3). However, if one of them is a non-core

point, then that point is allocated to a cluster containing its nearest core point

(Second point under Clustering definition from Section 4.3). The nearest core

point is the one that shares a strong link with the concerned non-core point, and

has highest edge weight as compared to other adjacent core points. The set of

points which fail to obtain any cluster membership are classified as noise points

(Third point under Clustering definition from Section 4.3).

Figure 4.3: Cluster containing core points P and P3 in the K-SNN graph. If
δcore is set as 4, then adj (P) > δcore and adj (P3) > δcore
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In Figure 4.3, let us assume that the core point formation threshold (δcore) is set

to be 3. Now for point P, the number of adjacent strong links is five. Therefore

adj (P) equals 5. Similarly for point P3, adj (P3) is also determined as 5. Points

P3 and P4 share a weak link3 which is not considered as a link. It is just given

for representational purpose. Since, the density of points P and P3 exceeds the

threshold value of δcore, P and P3 are designated as core points. As per the

DBSCAN [23] clustering scheme, points P and P3 become a part of the same

cluster.

3A weak link is only a virtual link (dotted line) represented to show its difference with a
strong link (continuous line). A K-SNN graph only consists of strong links.
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IncSNN-DBSCAN [1] or InSDB is an incremental extension to the SNNDB [24]

clustering algorithm. InSDB facilitates detection of clusters dynamically while

points are added to the base dataset D one at a time. InSDB tags each data point

p ∈ D with the following properties: KNN list, strengths of shared strong links,

number of adjacent strong links, core or non-core status. When a new data point

arrives, InSDB identifies only those among old points which undergo changes in

their properties. Only the affected points are targeted by the algorithm, while the

unaffected points are allowed to exist in their previous state.

Let Npt be a new data point entering D. Upon entry of Npt, D changes to D′.

Now, for any point p ∈ D, if p exhibits changes in its properties (as stated above),

then InSDB targets p. The changes that p incurs in its properties may lead to

creation of new SNN connections or removal of existing ones. New SNN connec-

tions could merge the existing clusters and their removal could split them. The

selective handling of affected data points ensures that the reconstruction time of

the updated KNN lists, K-SNN graph is drastically reduced. InSDB shows that

a very small percentage of existing points ultimately gets affected due to which it

becomes more efficient than SNNDB. However, InSDB is a point-based insertion

technique, which might slow down as the size of D increases. This is because

when insertions are made upon a larger base dataset, the time required to find the

affected points will increase. Moreover, repetitive construction of necessary algo-

rithmic components such as KNN lists and K-SNN graph against every insertion

may slow down the overall cluster detection process.

4.6 Structure of the proposed batch incremental

SNNDB clustering algorithms for addition

The generic structure of our proposed batch incremental clustering algorithms for

addition is as follows:

1. We characterize each data point by its following properties:

(a) KNN list.

(b) SNN value or similarity value with each of the adjacent data points

connected by a strong link.

(c) Core or non-core status.
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2. New data points are added4 [71] to the base dataset in batches.

3. The updated values of properties for the batch of newly added points are

computed.

4. The affected points belonging to the base dataset may undergo changes in

values of at least one of their properties upon entry of new data points.

5. The data points which remain unaffected due to entry of new points do not

change the values of their properties.

6. Some of the old points may change their status from core to non-core while

others may change from non-core to core. The strength of shared links

between data points may alter. If the link strength falls below δsim, the link

gets broken.

7. The overall changed dataset consists of data points with updated property

values.

8. Two connected core points are grouped into the same cluster. The cluster

expansion takes place by grouping the core points accordingly. The non-core

points are put into a cluster of their nearest core point. Points which fail to

obtain any cluster membership are categorized as noise points.

9. The updated dataset becomes the new base dataset having an increase in its

size. The updated property values for each of the data points are retained.

These values are utilized for processing the next batch of arriving points.

Repeat Steps 2 to 9 until the requisite number of insertions have been made.

4.7 Batch-Incremental SNNDB Clustering Al-

gorithms for Addition

In this section, we present our proposed batch-incremental SNNDB clustering

algorithms for addition viz. Batch− Inc1, Batch− Inc2 and BISDBadd. The goal

of these algorithms is to extract clusters dynamically while points are added in

batches to a base dataset D. Prior to executing each of these batch incremental

algorithms, the naive SNNDB [24] clustering algorithm is executed upon D to

obtain the following information:

4The order of inserting data points doesn’t influence the outcome of the algorithm.
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1. KNN list ∀ p ∈ D.

2. Similarity matrix (K-SNN graph) w.r.t., D given as Sim Mat(D).

3. Set of core and non-core points w.r.t., D given as Core(D) andNon-Core(D).

4. Set of clusters C w.r.t., D.

5. Set of noise points w.r.t., D.

After the data points are added to D, the changed dataset D′ increases in size

due to insertion of points (|D′| > |D|). Therefore the set D ∩ D′ (D ∩ D′ = D)

effectively represents the old points in the base dataset.

In the following subsections, we present each of our proposed batch incremental

addition algorithms in a step-wise manner supported by graphical illustrations

wherever necessary.

4.7.1 The Batch− Inc1 clustering algorithm

The Batch−Inc1 clustering algorithm builds the updated KNN lists of individual

points in the base dataset incrementally. When new points arrive in a batch, some

of the old points may get affected as they undergo change in their property values.

By targeting only the affected points, the KNN list for each data point present in

the base dataset is constructed. The points which remain unaffected due to new

insertions retain their existing KNN lists. The new similarity matrix (updated K-

SNN graph or K-SNNupdated graph), new core and non-core points are determined

non-incrementally. The steps of Batch− Inc1 algorithm are as follows:

1. Step 1 - Set the parameters: The algorithm takes three parameters: K,

δsim and δcore. The parameters have the following meanings:

(a) K denotes the size of KNN list for each data point.

(b) Given that two data points p and q are present in each others’ KNN

list, δsim is the minimum value of SNN required for p, q to form a strong

link between them.

(c) δcore is the minimum number of strong links adjacent to a point p ex-

ceeding which p becomes a core point.

2. Step 2 - Obtain the required data from prior SNNDB execution:

84

TH-2363_136101011



(a) Get the base dataset D where |D| = n (say).

(b) Get the KNN list ∀ pi ∈ D, i = 1, 2, 3, . . . , n.

(c) Get the similarity matrix Sim Mat(D).

3. Step 3 - Insert a batch of new points: Add a batch containing k new

data points upon D. D changes to D′ where |D′| = n+k.

4. Step 4 - Compute the KNN list of newly entered points: In this

step, the KNN list of all the newly added data points is computed non-

incrementally. If k data points are added in a single batch, then ∀ pj ∈
D′, j = n+ 1, n+ 2, n+ 3, . . . , n+ k, we find KNN(pj).

5. Step 5 - Compute the updated KNN list for old data points in

D ∩ D′ incrementally: The number of existing data points in D (base

dataset) prior to any insertion is n. When k new points are added to D,

D changes to D ′ (|D′| = n + k). From the set D ∩ D′ (set of old points),

the algorithm identifies those points that can accommodate any newly added

point in their KNN list by replacing an old one. If the size of nearest neighbor

list is K, then a maximum of K old points can be replaced by the new ones

from the KNN list. The set of old points in D ∩ D′ which contain at least

one newly added point in their KNN list are categorized as KN − Sadd type

affected points.

The term KN −Sadd means that both the KNN list as well as the similarity

measures of the affected data points may be altered. KN stands for change(s)

in the KNN list while S signifies a possible change in the similarity values

(shared link strength) of the affected data point with points in its updated

KNN list (KNNupdated(.)). If the new link strength falls below δsim, the link

ceases to exist further. The new points and the unaffected old points are

not categorized as KN − Sadd type. The unaffected old points retain their

previous KNN list. Batch − Inc1 therefore focuses only on re-building the

KNNupdated(.) list for KN − Sadd type points. The KNNupdated(.) lists for

unaffected old points in D ∩D′ are not constructed separately.

Running example: Let us visit Figure 4.4 for an illustrative example of

this step (Step 5). Consider the point P, where KNN(P)= {P4, P1, P3, P5,

P2} (Assuming K=5) (top most image in Figure 4.4) prior to entry of any

new points in the dataset. Let three new points N1, N2 and N3 (yellow

color) enter the dataset. For our purpose, we consider that N1 and N3 are

at a distance of 1 and 2.5 units respectively from P while N2 is at a distance
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Figure 4.4: The formation of KN − Sadd type affected points upon entry of
new points.
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of 8 units (say). On comparing distances with other nearest neighbors of P,

it is clear that the points N1 and N3 can potentially enter into the KNN list

of P displacing points P2 and P5. This results in creation of two vacant slots

in KNN(P) (second image in Figure 4.4). As a result, the link between pairs

of points: (P,P2) and (P,P5) gets broken5. Consequently points N1 and N3

occupy the two vacant slots created in KNN(P).

Between N1, N2 and N3, we consider only N1 and N3 to share a strong link

with P. On sorting the current set of points in increasing order of distance to

point P, the updated KNN list of P (KNNupdated(P)) obtained incrementally

consists of {N1, P4, N3, P1, P3} (bottom image in Figure 4.4). Point P

(green color) is therefore a KN −Sadd type affected point since it accommo-

dates new points N1, N3 in its updated KNN list. New point N2 does not

have any influence over the KNN list of P and is therefore not a member

5The link gets broken as the points are no longer present in each others’ KNN list, a necessary
condition to construct a shared strong link (Refer Section 4.5).
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of KNNupdated(P). The newly entered points and the old unaffected points

are not classified as KN − Sadd type. The non-KN − Sadd type old points

(say P1, P3 or P4) retain their previous KNN list, therefore we have the

following:

KNNupdated(P1) = KNN(P1),

KNNupdated(P3) = KNN(P3),

KNNupdated(P4) = KNN(P4).

6. Step 6 - Construct the updated K-SNN graph: The algorithm con-

structs the updated K-SNN (K-SNNupdated) graph or the new similarity ma-

trix Sim Mat(D′) non-incrementally. The updated dataset D′ now consists

of n + k points. Therefore, ∀ pj ∈ D′, j = 1, 2, 3, . . . , n + k, Batch − Inc1
determines if a shared strong link can be constructed ∀ q ∈ KNNupdated(pj).

7. Step 7 - Identify new core and non-core points: For each point in

K-SNNupdated graph (Sim Mat(D′)), if the number of adjacent strong links

is greater than δcore, the point obtains a core status otherwise a non-core.

The new set of core and non-core points are stored in Core(D′) and Non−
Core(D′) respectively.

8. Step 8 - Form Clusters: Two connected core points are placed into the

same cluster. A non-core point is assigned to a cluster of its nearest core

point6.

9. Step 9 - Discard noise points: The non-core points which are not con-

nected to any core point become noise points. Such points do not obtain

any cluster membership.

10. Step 10 - Retain the updated values:

(a) D = D′

(b) n = n+ k

(c) ∀ pi ∈ D, i = 1, 2, 3, . . . , n+ k

KNN(pi) = KNNupdated(pi).

(d) Sim Mat(D) = Sim Mat(D′)

(e) Core(D) = Core(D′)

(f) Non-Core(D) = Non-Core(D′)

11. Repeat Steps 3 to 10 for the next batch of entering points.
6The core point with which the shared link strength is highest becomes the “nearest” core

point.
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4.7.2 The Batch− Inc2 clustering algorithm

The Batch − Inc2 clustering algorithm constructs the updated KNN list and

the new similarity matrix (K-SNNupdated graph) incrementally in order to further

improve the efficiency over Batch − Inc1. The steps of Batch − Inc2 algorithm

are as follows:

1. Step 1 - Set the parameters: The algorithm takes three parameters: K,

δsim and δcore.

2. Step 2 - Obtain the required data from prior SNNDB execution:

(a) Get the base dataset D where |D| = n (say).

(b) Get the KNN list ∀ pi ∈ D, i = 1, 2, ...., n.

(c) Get the similarity matrix Sim Mat(D).

3. Step 3 - Insert a batch of new points: Add a batch containing k new

data points upon D. D changes to D′ where |D′| = n+k.

4. Step 4 - Compute the KNN list of newly entered points: Step 4 is

similar to that of Batch− Inc1.

5. Step 5 - Compute the updated KNN list for old data points in

D ∩D′ incrementally: Step 5 is similar to that of Batch− Inc1.

6. Step 6 - Construct the updated K-SNN graph incrementally: Batch−
Inc2 introduces a new type of affected point known as the Sadd type affected

point. Sadd type points are those which do not change their old KNN list

upon entry of new data points. However they may be a part of the updated

KNN list of any KN−Sadd type point. Sadd type points may contain at least

one KN−Sadd type point in their unchanged KNN list. The non-KN−Sadd
type points displaced by newly entered points from the updated KNN list

of a KN − Sadd type point also belong to Sadd type7. The term Sadd means

that for any point p ∈ D ∩ D′ (set of old points), only the value of shared

strong link (edge weight) with p’s adjacent points may change but KNN(p)

remains the same. Therefore, for any Sadd type affected point p, we have

KNNupdated(p) = KNN(p).

Sadd type points can be determined from the updated KNN list of any KN−
Sadd type point. In the KNNupdated(.) list of any KN − Sadd type point, the

7An affected point is either KN − Sadd type or Sadd type but not both.
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old points which are non-KN − Sadd type are classified as Sadd type. The

old points which are non-KN − Sadd type and are replaced by the newly

entered points are also classified as Sadd type. New data points are neither

KN − Sadd nor Sadd type. The old unaffected points retain their original

KNN list as well as the similarity values and are neither KN −Sadd nor Sadd

type.

In order to find the new state of shared strong links in the K-SNNupdated

graph, Batch−Inc2 scans the updated KNN lists of only the KN−Sadd and

Sadd type affected points. The existing links between the unaffected points

in D ∩ D′ are allowed to retain their prior similarity value. By targeting

only the KN − Sadd and Sadd type affected points, Batch − Inc2 rebuilds

the entire K-SNNupdated graph incrementally without involving the changed

dataset in its totality.

Figure 4.5: The formation of Sadd type affected points upon entry of new
points
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Running example: Figure 4.5 illustrates the formation of Sadd type af-

fected points upon entry of new data points. Similar to Batch − Inc1, let

N1, N2 and N3 be the three new points entering the dataset. N1 and N3

find a place in KNNupdated(P) due to which P is classified as a KN − Sadd
type point (green color). KNNupdated(P) consists of {N1, P4, N3, P1, P3}
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(from Batch − Inc1). However, if we focus on the two shaded polygons in

Figure 4.5, we observe the following:

(a) Within the left polygon:

KNNupdated(P1) = KNN(P1) = {P6, P, P9, P8, P7}

(b) Within the right polygon:

KNNupdated(P2) = KNN(P2) = {P11, P13, P10, P12, P}

From the updated KNN list of P1 and P2, we observe that both the points

retain their original KNN list even after the entry of new points N1, N2

and N3. Another notable observation is that P1 ∈ KNNupdated(P) and P1 is

non-KN − Sadd type, therefore P1 can be categorized as a Sadd type point

(pink color). However, P2 /∈ KNNupdated(P) but P2 ∈ KNN(P). This means

that point P2 has been displaced from the updated KNN list of P. Therefore

P2 (a non-KN − Sadd type) also qualifies to be a Sadd type point.

As per Batch− Inc2, the Sadd type points can be determined from scanning

the updated KNN list of a KN − Sadd type point. Let us revisit Figure 4.4

where we observe that for the KN−Sadd type point P, KNNupdated(P) = {N1,

P4, N3, P1, P3}. Prior to insertion of new points KNN(P) contained {P4,

P1, P3, P5, P2}. This means that in KNNupdated(P), the retained points are

P1, P3 and P4 while the replaced points are P2 and P5. The new points are

N1 and N3. Among the retained points (Refer Figure 4.5), point P1 sustains

its original KNN list post entry of new points. In addition, the presence of

P1 in KNNupdated(P) means that P1 may continue to share a strong link with

P. Since P1 (a non-KN − Sadd type point) ∈ KNNupdated(P), P1 qualifies to

be a Sadd type point having a shared strong link with P. For the replaced

point P2 (Figure 4.5), KNNupdated(P2) = KNN(P2). However, P2 being a

non-KN − Sadd type point is also categorized as a Sadd type point without

a shared strong link since P2 /∈ KNNupdated(P).

7. Step 7 - Identify new core and non-core points: Step 7 is similar to

that of Batch− Inc1.

8. Step 8 - Form Clusters: Step 8 is similar to that of Batch− Inc1.

9. Step 9 - Discard noise points: Step 9 is similar to that of Batch− Inc1.

10. Step 10 - Retain the updated values:

(a) D = D′
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(b) n = n+ k

(c) ∀ pi ∈ D, i = 1, 2, 3, . . . , n+ k

KNN(pi) = KNNupdated(pi).

(d) Sim Mat(D) = Sim Mat(D′)

(e) Core(D) = Core(D′)

(f) Non− Core(D) = Non− Core(D′)

11. Repeat Steps 3 to 10 for the next batch of entering points.

4.7.3 The BISDBadd clustering algorithm

The BISDBadd clustering algorithm builds the updated KNN list, the updated

K-SNN graph and the new set of core and non-core points incrementally. With

each component of SNNDB being handled incrementally, BISDBadd attempts to

further reduce the computational cost involved as compared to Batch− Inc1 and

Batch− Inc2. The steps of the BISDBadd algorithm are as follows:

1. Step 1 - Set the parameters: The algorithm takes three parameters: K,

δsim and δcore.

2. Step 2 - Obtain the required data from prior SNNDB execution:

(a) Get the base dataset D where |D| = n (say).

(b) Get the KNN list ∀ pi ∈ D, i = 1, 2, 3, . . . , n.

(c) Get the similarity matrix Sim Mat(D).

3. Step 3 - Insert a batch of new points: Add a batch containing k new

data points upon D. D changes to D′ where |D′| = n+k.

4. Step 4 - Compute the KNN list of newly entered points: Step 4 is

similar to that of Batch− Inc1 and Batch− Inc2.

5. Step 5 - Compute the updated KNN list for old data points in D∩D′

incrementally: Step 5 is similar to that of Batch−Inc1 and Batch−Inc2.

6. Step 6 - Construct the updated K-SNN graph incrementally: Step

6 is similar to that of Batch− Inc2.
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7. Step 7 - Identify new core and non-core points incrementally: In

the K-SNNupdated graph, for each of the total number of KN −Sadd and Sadd

type points in D∩D′, BISDBadd checks whether the number of strong links

adjacent to the affected point exceeds δcore. If this happens, the concerned

point is treated as a core point or else it is a non-core point. The remain-

ing points retain their existing core or non-core status from the previous

iteration8.

8. Step 8 - Form Clusters: Step 8 is similar to that of Batch − Inc1 and

Batch− Inc2.

9. Step 9 - Discard noise points: Step 9 is similar to that of Batch− Inc1
and Batch− Inc2.

10. Step 10 - Retain the updated values:

(a) D = D′

(b) n = n+ k

(c) ∀ pi ∈ D, i = 1, 2, 3, . . . , n+ k

KNN(pi) = KNNupdated(pi).

(d) Sim Mat(D) = Sim Mat(D′)

(e) Core(D) = Core(D′)

(f) Non− Core(D) = Non− Core(D′)

11. Step 11 - Repeat Steps 3 to 10 for the next batch of entering points.

4.7.4 Shared link properties between affected points post

insertion

Any change in the KNN list of an affected point may lead to a deviation in the

values of associated shared strong links. We present all possible scenarios of the

state of shared strong links between KN − Sadd and Sadd type affected points.

1. KN − Sadd ←→ KN − Sadd link: With entry of new points in the updated

KNN list of KN−Sadd type points, some of the old points may get replaced.

8For the first batch of arriving points, the core or non-core status of a point in D ∩ D′ is
derived from initial SNNDB execution upon D.
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ALGORITHM 2: BISDBadd(D, K , δsim, δcore)

1 Input: D, K , δsim, δcore;
2 Output: Clusters ;
// Set nrow as the total no. of data points after increment of

nrow2 points upon nrow1

3 nrow ← nrow1 + nrow2;
// Update dataset after increment

4 for i1← 1 to nrow2 do
5 Append new data point i1 to base dataset data matrix [];
6 i← i+1;

// Find KNN list of new points

7 for i← 1 to nrow1 do
8 for i1← nrow1 to nrow do
9 Compute the distance between data points i1 and i ;

10 if i <= K then
11 Insert data point i to the KNN list of data point i1 ;
12 else
13 Insert data point i next to the KNN list of data point i1 ;
14 sort (KNN matrix[i1]);
15 KNN matrix[i1].pop();

// Find points that can be potentially affected

16 for i1← nrow1 to nrow do
17 for j1← nrow1 to nrow do
18 if distance(i1, j1|i1 6= j1) <= distance(i1, KNN matrix[i1][K]) then
19 Insert data point k to the KNN list of data point i ;
20 sort (KNN matrix[i1]);
21 KNN matrix[i1].pop();

22 else

23 for i← 1 to nrow1 do
24 for k ← nrow1 to nrow do
25 Compute distance between i and k ;
26 if distance(i, k|i 6= k) <= distance(i,KNN matrix[i][K]) then
27 Insert data point k to the KNN list of data point i ;
28 else
29 Do nothing ;

// Identify KN − Sadd and Sadd type affected points

30 for i← 1 to nrow do
31 if KNN list[i].size() > K then
32 i ∈ KN − Sadd type points;
33 else
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34 for each i ∈ KN − Sadd do
35 for each j ∈ KNN matrix[i] ∪ points displaced from KNN matrix[i]

do
36 if j /∈ KN − Sadd ∧ j is not a new point then
37 j ∈ Sadd type points;
38 else

// Construct the updated K-SNN graph and detect core, non-core

points incrementally

39 for each i ∈ KN − Sadd ∪ Sadd do
40 for each j ∈ KNN matrix[i] do
41 if similarity(i, j) > δsim then
42 An edge is formed between pints i and j ;
43 else

44 if similarity matrix[i].size() > δcore then
45 i ∈ CORE points set;
46 else
47 i ∈ Non-CORE points set;

48 Cluster formation is similar to the SNNDB algorithm;
49 Repeat entire process for the next batch of entering points ;

If the removed points contributed to the shared link strength, then the sim-

ilarity value is bound to decrease. However, if the replaced points were not

a part of the contributory set to shared link strength, then the similarity

value remains same. Moreover, if the newly added points lie in the com-

mon neighborhood of two linked data objects ensuring replacement of the

non-contributory points to their shared link strength, then in that case the

inserted points add to the similarity value of the concerned pair. Therefore,

for a KN − Sadd ←→ KN − Sadd type link, the strength of shared link either

decreases, remains same or increases.

2. KN − Sadd ←→ Sadd link: The Sadd type points do not change their KNN

list. Therefore if the removed points from the KNN list of any KN − Sadd
type point previously contributed to the shared link strength with a Sadd

type point, then the strength of shared link is bound to decrease. However,

if the replaced points were not a part of the contributory set to shared link

strength, then the similarity value remains identical for a KN−Sadd ←→ Sadd

type link.

3. Sadd ←→ Sadd link: With no change in the KNN list for Sadd type points post

new insertions, the points which originally contributed to the shared link
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strength remain unaffected. As a result no change in shared link strength is

observed for a Sadd ←→ Sadd type link.

4.7.5 Summary of the batch-incremental SNNDB cluster-

ing algorithms for addition

Table 4.4: Summary of the batch-incremental SNNDB clustering algorithms
for addition

Components-Algorithm Batch− Inc1 Batch− Inc2 BISDBadd

Updated KNN list Incrementally Incrementally Incrementally

Updated K-SNN graph Non-Incrementally Incrementally Incrementally

Updated core and non-core points Non-Incrementally Non-Incrementally Incrementally

In an attempt to improve the efficiency over SNNDB while handling dynamic inser-

tion, we initially propose the Batch−Inc1 algorithm. Batch−Inc1 computes the

updated KNN list of all the data points incrementally while rest of the components

are computed similar to SNNDB. In order improve upon Batch−Inc1, we propose

Batch − Inc2 which rebuilds both the updated KNN lists and the K-SNNupdated

graph upon entry of new data points incrementally. The third algorithm in form

of BISDBadd computes all the three components of SNNDB incrementally. This

involves detection of core and non-core points apart from constructing KNN list

and updated K-SNN graph (Refer Table 4.4).

The SNNDB method takes O(N2) time towards completion where N is the total

number of data points. This is mainly due the construction of similarity matrix

and KNN lists. Batch− Inc1 provides marginal improvement by building the up-

dated KNN lists incrementally in O(N) time. However, building the K-SNNupdated

graph non-incrementally involves quadratic time complexity. Batch − Inc2 aims

to address this issue by reconstructing the K-SNNupdated graph incrementally upon

entry of new data points. While building the K-SNNupdated graph, Batch − Inc2
only updates the shared strong link strengths of KN − Sadd and Sadd type points

leaving rest of the unaffected points. For identifying the new core and non-core

points, Batch − Inc2 involves all the data points in D′ (updated dataset). This

results in Batch− Inc2 having a linear time complexity. BISDBadd identifies the

new set of core and non-core points incrementally and therefore improves upon the

previous two sub-variant algorithms for addition. BISDBadd also runs in linear
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time (Refer Algorithm 2 for pseudo-code of BISDBadd). Next we present the time

complexity analysis of the BISDBadd algorithm.

4.8 Time complexity analysis of the BISDBadd

clustering algorithm

Let D be the base dataset where |D| = n (n ∈ Z+) be its initial size. Let D′ be

the updated dataset after new insertions. Let us assume that a total of B batches

are inserted with k points per batch (k � n). For the Bth batch arrival at any

point in time, we have |D′| = n + kB, where the current size of base dataset is

n + (B − 1)k = N (say). The size of each entering batch is significantly smaller

than the current size of base dataset, ∴ k � N .

We provide the time complexity analysis by assuming that the first batch of in-

sertions had been made (∴ B = 1). [Line 7-15]: While updating the KNN list

dynamically, the inner loop varies through total number of newly added points

in a single batch of size k. The inner loop finds the KNN list for each of the k

newly added points. The time taken to compute the distance between a new point

and an old point is O(1). Initially for each iteration a running time of O(k2) is

required. Since k � N , k2 may be treated as a constant. However, we cannot

guarantee that the current set of points which occupy the KNN window for each

of the new points are its actual top K points. This is because the top K slots in

the KNN list for new points are presently filled by the k old data points. In order

to detect the actual KNN list for a newly entered point, BISDBadd scans through

the remaining N -K old data points along with (k− 1) newly entered points. With

K being the size of KNN list and K� N , the KNN lists of the newly added points

are constructed in linear time.

[Line 16-29]: For computing the updated KNN list of the older points, BISDBadd

identifies each point p ∈ D ∩D′ (set of old points) that are affected by the entry

of new data points belonging to (D′ −D). The affected points update their new

KNN list while rest of the old points retain their previous KNN list. This particular

operation incurs a running time of O(N · k).

[Line 30-38:] The old points which alter their KNN list are the KN − Sadd type

affected points. BISDBadd identifies the Sadd affected type points from the KNN

list of the KN − Sadd type points. This operation takes 2K·O(|KN − Sadd|) '
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O(1) time, given that both K and KN − Sadd represent constant entities and are

considerably smaller than |D′| (See details of proof in Section 4.8.1).

[Line 39-48]: The shared nearest neighbor graph is constructed by targeting the

KN−Sadd and Sadd type points. This segment of BISDBadd has a running time of

O((|KN −Sadd|+|Sadd|)·2K(K+c′ log2K)) ' O(1) since |KN −Sadd|, |Sadd|, c′ and

K are small constant entities (See details of proof in Section 4.8.1). The detection

of core and non-core points happens in constant time while clusters are extracted

in linear time.

4.8.1 Comparing time complexity proofs of SNNDB and

BISDBadd

• SNNDB [24]: Let TKNN = time taken to compute the KNN lists of N data

points in base dataset D, then

TKNN = N(N − 1) (4.2)

Let TEdge = time taken to construct an edge between any pair of points in

D, then

TEdge = 2c′
(

log2K +
K

2

)
[where c′ ∈ R+, c′ � N,K � N ]

(4.3)

where K is the size of the KNN list. The term 2 · c′ log2K refers to the time

taken to search the presence of both data points in each others’ KNN list

while c′K time is needed to find the similarity measure between any pair of

data points9.

Let TK−SNN = time taken to construct the updated K-SNN graph.

∴ TK−SNN =
N2

2
· TEdge

=⇒ TK−SNN =
N2

2
· 2 · c′

(
log2K +

K

2

)
=⇒ TK−SNN = N2 · c′

(
log2K +

K

2

)
[Using Equation 4.3]

(4.4)

9The KNN list of any data point is sorted in increasing order of distances with its top-K
neighboring points.
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Let TCore+Non−Core be the time taken to identify core and non-core points,

∴ TCore+Non−Core = N (4.5)

A linear scan of the dataset is sufficient to identify points with more than

δcore number of strong links adjacent to it. Let TCluster be the time taken to

extract clusters,

∴ TCluster = N ·K (4.6)

Now if TSNNDB be the total time taken by the non-incremental SNNDB [24]

algorithm, then (using Equations 4.2, 4.4, 4.5, 4.6) we obtain the following:

TSNNDB = TKNN + TK−SNN + TCore+Non−Core

+ TCluster

= cN2 +KN [K � N ]

[where c = 1 + c′
K

2
+ c′ log2K]

[c′, K are constants,∴ c is constant]

=⇒ TSNNDB ' O(N2)

(4.7)

The term c′ log2K is used for searching the presence of a point in another

point’s KNN list. This operation is mandatory in order to validate the strong

link formation criterion.

• BISDBadd: Let n be the size of base dataset and k be the number of points

added per batch. We deduce the running time of BISDBadd when a single

batch insertion has been made. Let N be the total number of points after a

batch insertion (∴ N = n+ k).

TKNN = k(n+ k − 1) + kn

= k(N − 1) + k(N − k) [where k � N ]

= k(2N − k − 1)

= 2kN − k(k + 1)

(4.8)

The term k(n + k − 1) depicts the time required in filling the KNN list for

k newly entered points. While the term kn signifies the time required to

detect if any of the new points penetrate into the KNN list of old points.

Effectively kn amount of time is required to find the KN −Sadd type points,

∴ TKN−Sadd
= kn.
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Let TSadd
= time taken to find the Sadd type points. Since Sadd type points

are determined from the updated KNN list of the KN − Sadd type points,

we have the following equation:

TSadd
= |KN − Sadd| · 2K

[where |KN − Sadd| � N ]
(4.9)

The term 2K is used in Equation 4.9 because the displaced points from the

updated KNN list of any KN − Sadd type point are also checked for their

Sadd status. At most K number of points can be displaced from the updated

KNN list of a KN − Sadd type point.

TK−SNN = (|KN − Sadd|+ |Sadd|) · 2c′
(K

2
+ log2K

)
[where |Sadd| � N ]

(4.10)

For calculating TK−SNN , only KN − Sadd and Sadd type points are taken

into consideration, while rest of the points remain untouched. The term

2c′(K
2

+ log2K) depicts the time required to construct or break a possible

strong link for a KN − Sadd or Sadd type point with each data item in their

updated KNN list.

TCore+Non−Core = |KN − Sadd|+ |Sadd| (4.11)

For finding the core and non-core points incrementally, the algorithm checks

only the KN − Sadd and Sadd type points while the unaffected points retain

their previous core or non-core status.

TCluster = K ·N (4.12)

Now if TBISDBadd
be the total time taken by the BISDBadd algorithm, then

(using Equations 4.8, 4.10, 4.11, 4.12) we obtain the following:
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∴ TBISDBadd
= TKNN + TK−SNN + TCore+Non−Core

+ TCluster

= N(K + 2k)− c1 + c2

[Here k,K, |KN − Sadd|, |Sadd| are constants]

[∴ c1, c2 are constants]

=⇒ TBISDBadd
' O(N)

(4.13)

Here c1 = k(k + 1) and c2 = (|KN − Sadd|+ |Sadd|) ∗ (1 + 2c′(K
2

+ log2K))

On comparing Equation 4.13 with Equation 4.7, we observe that BISDBadd is

more efficient than SNNDB.

4.9 Experimental evaluation

We performed experiments on three real world and two synthetic datasets (Table

4.5) to prove the efficiency of BISDBadd over SNNDB [24] and InSDB [1].

Table 4.5: Datasets description.

Dataset Size #Attributes Description
Mopsi2012 13000 2 Search locations in Finland
5D 100000 5 Synthetic dataset
Birch3 100000 2 Gaussian clusters
KDDCup’04 60000 70 Identifying homologous proteins to native sequence
KDDCup’99 54000 41 Network intrusion detection data

The real world datasets were Mopsi2012 (or Mopsi12)10, KDDCup’9911 and KDD-

Cup’0412 while the synthetic datasets were: 5D points set (synthetically generated)

and Birch313. We simulated our algorithms in C++ on a Linux platform (Intel

(R) Xeon (R) CPU E5530 @ 2.40GHz) with 32GB RAM.

The experiments were conducted in following phases.

1. Phase-1: Finding the most effective batch incremental variant (addition).

10https://cs.joensuu.fi/sipu/datasets/
11http://archive.ics.uci.edu/ml/index.php
12http://archive.ics.uci.edu/ml/index.php
13https://cs.joensuu.fi/sipu/datasets/

100

TH-2363_136101011

https: //cs.joensuu.fi/sipu/datasets/
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https: //cs.joensuu.fi/sipu/datasets/


2. Phase-2: Prove efficiency of the most effective batch incremental variant

(addition) over InSDB [1].

3. Phase-3: Show that InSDB [1] becomes ineffective when larger updates (ad-

dition) are made to the base dataset.

4. Phase-4: Prove efficiency of the most effective batch incremental variant

(addition) over SNNDB [24].

4.9.1 Phase-1: Finding the most effective batch incremen-

tal variant (addition)

We adopted three datasets: Mopsi2012, 5D points set and Birch 3 to conduct

experiments in this phase. For our experimental purpose, we defined a new

term called Algorithm-Components (AlgoComp). AlgoComp consisted of follow-

ing components:

• Base dataset

• KNN lists

• Similarity matrix

• Core and non-core points

• Clusters

A base dataset is one taking which SNNDB [24] is executed in order to set the

values of other components in AlgoComp. Initially, the same base dataset is fed as

input to the batch incremental algorithms (addition). After processing a certain

batch of updates, the base dataset alters its size. The new set of points becomes the

updated base dataset over which the next batch of incoming points is processed.

The new KNN lists, similarity matrix (SNN graph), core and non-core points along

with clusters become a part of the updated AlgoComp.

Next we describe the experiments carried out for comparing the proposed batch

incremental clustering algorithms: Batch − Inc1, Batch − Inc2 and BISDBadd

dataset wise.
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1. Mopsi2012 (Addition): The values of parameters were set as: K = 10,

δsim = 3 and δcore = 4. Initially, the size of base dataset was taken to be

10000. We executed the SNNDB algorithm upon base dataset to initialize the

AlgoComp values. A total of 3000 points were inserted in multiple batches

with the batch size varying from 2 to 50 processing between 1500 and 60

batches.

Figure 4.6: Mopsi2012 dataset: Efficiency comparison between batch incre-
mental algorithms (addition).
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Figure 4.7: Mopsi2012 dataset: Average percentage of KN − Sadd and Sadd
type points for multiple batch insertions of varying batch size (BISDBadd).
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For processing the first batch of entering points, the AlgoComp values ob-

tained from executing SNNDB is utilized. For a batch of size 2, we executed

each of the three incremental algorithms independently 1500 times to insert
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Figure 4.8: Mopsi2012 dataset: Percentage of KN−Sadd and Sadd type points
created while adding 1500 batches (BISDBadd).

3000 points. After every two points were inserted, the algorithms computed

the new clusters incrementally using the pre-computed AlgoComp values

from previous batch insertion. The final set of clusters that were produced

after inserting 1500 batches, were identical to those of the SNNDB method

which processed 13000 points at once. The same set of clusters were also

produced by InSDB after inserting 3000 points one at a time (Refer Section

4.10 for details). Similarly, for a batch consisting 50 points, each of the three

incremental variants (addition) processed 600 batches sequentially. Out of

the three incremental algorithms, BISDBadd performed most efficiently. For

various batch sizes (varying from 2 to 50), BISDBadd maintained a better

efficiency than the other two incremental variants (Refer Figure 4.6).

The incremental algorithms targeted only theKN−Sadd and Sadd type points

while retaining the properties of remaining data points. This selective han-

dling of data is the main reason behind improving the efficiency of BISDBadd

over SNNDB (as shown in Phase-4). We experimentally observed the per-

centage of KN − Sadd and Sadd type affected points for the step where 1500

batches were inserted with a batch of size 2. A maximum of around 0.34%

KN − Sadd type and about 0.76% of Sadd type points were produced while
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processing batch number 36 and 985 respectively (Refer Figure 4.8). An

insignificant percentage of KN − Sadd and Sadd type affected points against

every batch batch insertion meant that BISDBadd would outperform the

SNNDB [24] algorithm. We additionally observed that the mean percentage

of KN −Sadd and Sadd type points per batch reached a maximum of around

2.6% and 4% respectively for a batch of size 50 while adding 600 batches

sequentially (Figure 4.7).

List of key observation(s) and reason(s) for Mopsi12 dataset (Ad-

dition):

• Key Observation: CPU execution time for batch-incremental algo-

rithms reduces with increase in batch size.

Analysis/Reason(s): With increase in batch size, the total number of

batches to be processed decreases. The overall reconstruction time for

K-SNN graph, KNN lists, detecting core and non-core points decreases.

• Key Observation: BISDBadd achieves the maximum efficiency.

Analysis/Reason(s): Constructing updated KNN lists, K-SNN graph,

finding core and non-core points incrementally.

• Key Observation: Average percentage of KN − Sadd and Sadd type

points increases with increasing batch size. However the average per-

centage of KN − Sadd type points is less than that of Sadd type points.

Analysis/Reason(s): With increase in batch size, the number of old

points affected due to any batch insertion increases. Given any batch

update, the number of points in D ∩D′ changing their previous KNN

list is less than those affected points which do not change their KNN

list. Therefore the average percentage of KN − Sadd type points is less

than that of Sadd type points.

• Key Observation: Percentage of KN−Sadd or Sadd type points while

processing 1500 batches (addition) remains less than 1%.

Analysis/Reason(s): The number of points altering their KNN list

upon new insertions or the points forming new links and breaking ex-

isting ones are less than 1% of the total number of points in updated

base dataset across all batch updates.

2. 5D (Addition): The parameters for execution were set as: K = 4, δsim = 2

and δcore = 2. The base dataset consisted of 80000 points over which 20000
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points were added. The AlgoComp values were computed by performing

SNNDB on the base dataset. Initially, we added 2 points per batch while

processing 10000 batches sequentially. Similarly, a maximum of 50 points per

batch were added to process 400 batches. Similar to Mopsi12, we observed

that with increase in batch size the time required to process the updates got

reduced. Our observation illustrates the efficiency of BISDBadd over other

two incremental methods: Batch− Inc1 and Batch− Inc2 for various batch

insertions (Figure 4.9).

Figure 4.9: 5D dataset: Efficiency comparison between batch incremental
algorithms (addition).
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Figure 4.10: 5D dataset: Average percentage of KN − Sadd and Sadd type
points for multiple batch insertions of varying batch size (BISDBadd).
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While adding 10000 batches, a maximum of around 0.0218% of KN − Sadd
type and about 0.0143% of Sadd type affected points were identified while
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Figure 4.11: 5D dataset: Percentage of KN − Sadd and Sadd type points
created while adding 1500 batches (BISDBadd).

processing batch number 1104 and 1902 respectively (Figure 4.11). The

mean percentage of KN − Sadd and Sadd type points per batch reached only

around 0.22% and 0.06% for batches of size 50 (Figure 4.10).

List of key observations and reasons (Addition) for 5D dataset:

• Key Observation: Average percentage of KN − Sadd and Sadd type

points increases with increasing batch size. However the average per-

centage of KN − Sadd points is more than that of Sadd points.

Analysis/Reason(s): With increase in batch size, the number of old

points affected due to any batch insertion increases.

Given a batch update, the number of points in D ∩D′ changing their

previous KNN list is greater than those affected points which do not

change their KNN list. Therefore the average percentage of KN −Sadd
points is more than that of Sadd type points.

• Key Observation: Percentage of KN−Sadd or Sadd type points while

processing 10000 batches (addition) remains less than 0.05%.

Analysis/Reason(s): The number of points altering their KNN list

or those forming new links and breaking existing ones due to any batch
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update are less than 0.05% of the total number of points in the updated

base dataset.

3. Birch3 (Addition): The parameters were set as: K = 5, δsim = 2 and

δcore = 2. The base dataset size was taken to be 80000. A total of 20000

points were added in multiple batches to extract the clusters dynamically.

The batch size varied from 2 to 50 as the CPU time for batch-incremental

algorithms reduced with increase in batch size. BISDBadd proved to be the

most efficient algorithm out of the three addition variants (Figure 4.12).

Figure 4.12: Birch3 dataset: Efficiency comparison between batch incremental
addition algorithms.
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Figure 4.13: Birch3 dataset: Average percentage of KN −Sadd and Sadd type
points for multiple batch insertions of varying batch size (BISDBadd)
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Figure 4.14: Birch3 dataset: Percentage of KN − Sadd and Sadd type points
created while adding 1500 batches (BISDBadd).

We computed the percentage of affected points while inserting 10000 batches

with a batch of size 2. A maximum of about 0.0173% KN − Sadd type and

about 0.0216% of Sadd type affected points were identified while processing

batch number 386 and 1599 respectively (Figure 4.14). The mean percentage

of KN −Sadd and Sadd type points per batch was found to be around 0.11%

and 0.12% respectively for a batch of size 50 involving 400 batches (Figure

4.13).

List of key observations and reasons (Addition) for Birch3 dataset:

• Key Observation: Average percentage of KN − Sadd and Sadd type

points increases with increasing batch size. However the average per-

centage of KN − Sadd points is less than that of Sadd points.

Analysis/Reason(s): With greater batch size, the number of affected

points in D ∩D′ due to any batch insertion increases.

Given any batch update, the number of old points changing their pre-

vious KNN list is less than those affected points which do not change

their KNN list. Therefore the average percentage of KN − Sadd type

points is less than that of Sadd type points.
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• Key Observation: Percentage of KN − Sadd or Sadd type affected

points while processing 10000 batches (addition) remains less than

0.05%.

Analysis/Reason(s): The number of points altering their KNN list

or forming new links and breaking existing ones are less than 0.05% of

the size of updated base dataset.

BISDadd therefore proves to be the most efficient batch incremental algorithm

(addition) out of the three proposed variants (Figure 4.15). The selective handling

of affected data points in D∩D′ while reconstructing the algorithmic components

incrementally leads to a grater efficiency of BISDBadd. The clusters are detected

dynamically with minimal interference on the base dataset.

Incremental Addition Algorithms 
Batch Incremental 

Addition Algorithms 

Batch-Inc1 Batch-Inc2 BISDB
add

 

BISDB
add

 

Most efficient variant

Figure 4.15: Summary of Phase-1 experiments for addition.

4.9.2 Phase-2: Prove efficiency of the most effective batch

incremental variant (addition) over InSDB [1]

In this phase, we aim to establish the fact that BISDBadd is more efficient than

InSDB [1] for constant and variable updates made to the base dataset.

Constant updates: In case of constant updates, a fixed number of points were

inserted to the base dataset in multiple batches of identical batch size. We com-

pared the efficiency of BISDBadd with InSDB [1] which executes the same number

of insertions in a point wise manner (Refer Table 4.6).
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Table 4.6: Performance comparison of BISDBadd and InSDB [1] for constant
updates.

Dataset Size Base dataset size Added InSDB (sec) BISDBadd 50p/b (sec) Speedup ratio
Mopsi2012 13000 10000 3000 9289.24 188.50 49.27

5D points set 100000 80000 20000 44773.57 1551.82 28.85
Birch3 100000 80000 20000 681310.62 16751.17 40.67

Key observation(s): BISDBadd inserted 50 points per batch for three datasets:

Mopsi12, 5D and Birch3 to make up for the total number of points to be added.

For each of the three datasets, the batch incremental method proved to be more

efficient than the point based InSDB algorithm.

Analysis/Reason(s): In InSDB, the data points are added one at a time. Al-

though the clusters are detected incrementally, the construction of KNN lists and

the K-SNN graph takes place after every point insertion. The detection of core,

non-core points and the clusters also become repetitive of the number of points

added. This makes the overall process slow as compared to BISDBadd, where

the reconstruction of algorithmic components is only repetitive of the number of

batches inserted.

Each time a new point is added, the affected points are determined by scanning

the base dataset. The size of base dataset increases after every insertion. As a

result, the task of finding affected points from the base dataset becomes com-

putationally more intensive with every new insertion. If TBISDBadd
and TInSDB

represent the final CPU execution times after all the points have been added, then

experimentally we showed that TBISDBadd
< TInSDB (Refer Table 4.6):

Variable updates: A variable number of insertions were made to the base dataset

in a single batch. We executed BISBadd by making insertions ranging from 1%

to 20% of the base dataset in one batch. Identical number of insertions were

carried out in a point wise manner while executing the InSDB algorithm. Each

time a batch update was inflicted, the efficiency of BISBadd was compared with

InSDB [1]. We observed a general tendency of slow increase (or near constancy)

in speedup with increasing percentage of updates (addition) being made to the

base dataset. Figure 4.16 demonstrates the speedup comparison of BISBadd with

InSDB for variable updates.

BISDadd therefore outperforms InSDB when updates are made to a larger base

dataset. Efficiency is also observed in case of updates being inflicted on the base

dataset in variable proportions, ∴ Tbatch−ins < Tpoint−ins.
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Figure 4.16: Speedup comparison of BISDBadd with InSDB for variable num-
ber of points added in a single batch
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4.9.3 Phase-3: BISDBadd and SNNDB are more effective

than InSDB when large changes are made to the base

dataset

Through experimental observations, we establish that when larger changes are

made to the base dataset, the naive method (SNNDB) and the batch incre-

mental algorithm (BISDBadd) outperform the point-based incremental technique

(InSDB). For illustration, we used the Mopsi12 dataset to demonstrate this prop-

erty (Figure 4.17).

We implemented the BISDBadd and InSDB [1] algorithm by taking a base dataset

of size 10000. While executing BISDBadd, we inserted data points in a single

batch, with batch size varying from 1% to 30% of the base dataset. Identical

number of insertions were made in a point wise manner while executing the InSDB

algorithm. Corresponding to every batch insertion, the CPU execution time of

BISDBadd was compared with the point based method InSDB. We also executed

the SNNDB [24] clustering algorithm and compared its efficiency with BISDBadd

and InSDB. The total input size for SNNDB is a combination of base dataset and

the added points in a batch.
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Figure 4.17: Execution time of SNNDB, InSDB and BISDBadd for variable
updates (addition) in a single batch.
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From Figure 4.17, we identify that both BISDBadd and InSDB [1] maintained a

better efficiency than SNNDB [24] till a certain stage. However when the extent of

insertion exceeded 25% of the base dataset, the non-incremental SNNDB started

achieving a better efficiency than the point-based InSDB method. The BISDBadd

algorithm consistently outperformed both the InSDB and SNNDB algorithm for

additions of all inducted batch sizes. Point-based incremental algorithm therefore

fails to achieve a better efficiency when larger updates are inflicted upon a base

dataset.

4.9.4 Phase-4: Prove the efficiency of BISDBadd over SNNDB

We executed the BISDadd algorithm and compared its efficiency with SNNDB

[24]. In this phase, both constant and variable updates were made to the base

dataset. For constant updates, a fixed number of points were inserted to the base

dataset in multiple batches. The variable updates were made in a single batch with

the batch size varying from 1% to 20% of the base dataset. We then measured the

speedup of BISDBadd w.r.t.,. the SNNDB algorithm.

Key observation(s): For both constant and variable updates (Figures 4.18,

4.19), the speedup of BISDBadd over SNNDB gradually decreases with increasing

size of updates being made to the base dataset.
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Figure 4.18: Speedup of BISDBadd over SNNDB for variable addition.
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Figure 4.19: Speedup of BISDBadd over SNNDB for constant addition.

113

TH-2363_136101011



Analysis/Reason(s): While processing smaller updates, BISDBadd deals with

insignificant percentage of KN − Sadd and Sadd type affected points. As the rest

of the points retain their AlgoComp values, post new insertions the time required

to reconstruct the KNN lists, K-SNN graph and extract clusters incrementally is

very less.

As observed, BISDBadd achieved the desired efficiency in terms of CPU execution

time over SNNDB, ∴ Tbatch−ins < Tnaive. However, the efficiency was obtained

at the cost of certain memory overhead. BISDBadd consumed a maximum of

about 60% more memory than SNNDB in case of 5D dataset. The mean memory

overhead due to BISDBadd over SNNDB was around 38.87%, ∴ |Membatch−ins −
Memnaive| ≈ 0.39.

4.10 Cluster analysis

In this section we present the details of clusters that were obtained after executing

the naive method (SNNDB [24]), the point-based method (InSDB [1]) and the

proposed batch incremental clustering algorithm (BISDBadd). We compared the

number of clusters, core and non-core points along with the outliers that were

obtained from executing the respective algorithms (Refer Tables 4.7 and 4.8).

Based on the tabular results, it is evident that the set of clusters obtained from

running the naive method and the incremental methods for addition are identical.

Table 4.7: Cluster details of SNNDB for all the datasets to compare with the
incremental addition algorithms.

Dataset Algorithm Input size #Clusters #Core points #Non-core points #Outliers
Mopsi12

SNNDB

13000 408 10533 1372 1095
5D 100000 2451 6332 4316 89352
Birch3 100000 11293 68653 19585 11762
KDD’99 54000 979 7086 3172 43742
KDD’04 60000 729 1486 3810 54704

Table 4.8: Cluster details of InSDB and BISDBadd for all the datasets.

Dataset Algorithm
Base dataset/
Added points

#Clusters #Core points #Non-core points #Outliers

Mopsi12

BISDBadd /
InSDB

10000 / 3000 408 10533 1372 1095
5D 80000 / 20000 2451 6332 4316 89352
Birch3 80000 / 20000 11293 68653 19585 11762
KDD’99 45000 / 9000 979 7086 3172 43742
KDD’04 50000 / 10000 729 1486 3810 54704

Next we analyze the correctness of clusters obtained from the BISDBadd algorithm

w.r.t., SNNDB [24] and InSDB [1] based on the following Lemmas.
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Lemma 4.1. Post k number of updates (insertion), the base dataset D (|D| = n)

changes to D′. KNN(D′) obtained from BISDBadd, SNNDB [24] and InSDB [1]

are identical.

Proof: After kth update, only the KN − Sadd type affected points change their

KNN lists and find the appropriate top K closest points (BISDBadd). Similarly, if

all the n+k points are taken into consideration, only the top K closest points would

occupy the appropriate positions of KNN(x) ∀ x ∈ D′ (SNNDB). InSDB adopts a

similar incremental policy of KNN list computation post any point insertion.

Lemma 4.2. ∀ (x, y) ∈ D′ (updated dataset), sim(x, y) obtained from BISDBadd,

SNNDB [24], InSDB [1] are identical.

Proof: ∵ KNN(D′) post k number of updates are identical for each class of

aforementioned algorithms (Lemma 4.1), therefore the number of shared data

points (sim(x, y)) between the KNN lists ∀ (x, y) ∈ D′ for BISDBadd, SNNDB

and InSDB are also identical.

Lemma 4.3. ∀ x ∈ D′, Core(x), Non−core(x) obtained from BISDBadd, SNNDB

[24], InSDB [1] are identical.

Proof:∵ ∀ (x, y) ∈ D′, sim(x, y) is same for each class of aforementioned algo-

rithms (Lemma 4.2). As a result, the number of strong links adjacent to a point

is also identical for these algorithms, ∴ ∀ x ∈ D′, x will retain its same core or

non-core status for BISDBadd, SNNDB and InSDB.

On the basis of Lemmas 4.1, 4.2, 4.3, it can be concluded that the set of clusters

obtained from BISDBadd, SNNDB [24] and InSDB [1] are identical. Therefore we

may have the following observation(s):

• Cbatch−ins(CBISDBadd
) = Cnaive(CSNNDB)

• Cbatch−ins(CBISDBadd
) = Cpoint−ins(CInSDB)

where CA represents the set of clusters for a given algorithm A [71].
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4.10.1 Clustering results in brief

The Mopsi12 dataset with 13000 points consisted of 408 clusters. The largest

cluster contained 1373 points while the average cluster size was 29.171. Around

81% of data were core points, as a result 91.4% of data points obtained a cluster

membership while rest were treated as noise points. For 5D synthetic dataset,

nearly 89.3% of points were outliers. This indicates the sparse distribution of the

5D dataset resulting in only a small fraction of clusters being generated. In Birch3

dataset, about 88% of points obtained a cluster membership. The maximum

cluster size was 35 while on an average a cluster contained about 7.81 data points.

In case of KDD’99 and KDD’04 dataset, a large share of data points were outliers.

For KDD’99, the maximum cluster size was 104 while for KDD’04 it was eighteen.

The clusters obtained from the algorithms are parameter sensitive. The parame-

ter values were specified while conducting experimental evaluation for individual

datasets (Refer Section 4.9.1). The results provided are based on parameter values

set prior to any execution. Any change in these values may alter the clustering

output along with the set of core, non-core and noise points.

4.11 Conclusion

In this chapter, we proposed an incremental alternative to the SNNDB [24] clus-

tering algorithm. InSDB [1], an existing incremental extension of SNNDB relies

on point-based insertion. The process becomes extremely slow when updates are

made on a larger base dataset. Also when the size of updates increases, InSDB

fails to detect clusters efficiently as compared to SNNDB. This is a major flaw on

the part of InSDB algorithm which acts as a motivation behind designing of batch

incremental clustering algorithms handling addition of data points.

The SNNDB algorithm computes the KNN list, similarity matrix, core and non-

core points while detecting clusters of arbitrary shapes, sizes and densities. In

order to produce an incremental extension to SNNDB in batch mode, each of

these components need to be computed incrementally. In our first line of proposed

batch incremental clustering algorithms for addition, Batch−Inc1 finds the KNN

list of the data points incrementally. Next, we proposed Batch − Inc2 finding

both the KNN lists and K-SNN graph (similarity matrix) incrementally. However,
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BISDBadd proved to be the most efficient of all, as it computes the KNN lists,

similarity matrix, core and non-core points incrementally.

The incremental algorithms are designed to work for smaller updates made to the

base dataset. In this chapter, we showed that for small changes the batch incre-

mental approach maintains a higher efficiency. The efficiency gradually diminishes

with increase in the size of data updates. We also observed that for variable up-

dates made to the base dataset, BISDBadd maintained a better efficiency over

SNNDB and InSDB, ∴ Tbatch−ins < Tnaive and Tbatch−ins < Tpoint−ins. However, the

efficiency of BISDBadd over naive SNNDB algorithm was achieved at a cost of

about 38.87% mean memory usage.

The set of clusters obtained by SNNDB, InSDB and BISDBadd are identical

thereby proving the objectives as stated in Section 4.4. For each of the five

datasets, we computed the clusters, core and non-core points along with the out-

liers. While Mopsi12 dataset involved a significant percentage of data points in

formation of clusters, KDD’99 and KDD’04 mostly consisted of outliers.
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Chapter 5

BISDBdel: Towards Exact

Incremental Clustering in

Batch-Mode for Deletion using

SNN-DBSCAN

In the previous chapter, we targeted the individual components of SNN-DBSCAN

[24] (SNNDB) to come up with batch incremental algorithms for addition viz.

Batch−Inc1, Batch−Inc2 and BISDBadd. In this chapter, we propose incremen-

tal alternatives for facilitating deletion of data points [71] in batch mode. For this

purpose, initially two sub-variant algorithms viz. Batch−Dec1 and Batch−Dec2
were proposed. While Batch−Dec1 targets only a single component of SNNDB

incrementally, Batch −Dec2 deals with two components. Both these algorithms

lead towards designing of the most effective batch incremental variant in form of

BISDBdel (Batch Incremental Shared Nearest Neighbor Density Based Clustering

Algorithm for deletion). The BISDBdel algorithm targets all the components of

SNNDB incrementally.

5.1 Motivation

Existing incremental extension to SNNDB [24] viz. IncSNN-DBSCAN (InSDB)

[1] facilitates addition of data points one at a time. However, InSDB fails to detect

119

TH-2363_136101011



clusters dynamically when points are deleted from the base dataset1. In order to

address this issue, we incrementally extend SNNDB supporting deletion of data

points in batches. Table 5.1 provides a brief description about the motivation

behind our work.

Table 5.1: Motivation behind developing the BISDBdel clustering algorithm.

Motivation Description

Small frequent

Updates

When minimal number of deletions are made from a larger

base dataset, the changes in clustering are also expected to be small.

Designing of incremental algorithms will ensure an efficient handling

of redundant computation while processing these minor changes.

InSDB [1] does not

handle deletion

InSDB only facilitates insertion of data points. While deletion is

also an integral part of dynamic datasets, the clustering results

may be affected when points are removed from the base dataset.

Old links may break and clusters may split. Therefore it becomes

important to develop an efficient incremental algorithm capable of

handling deletion in batch mode.

5.1.1 Chapter contributions

The key contribution(s) made in this chapter may be summarized as follows:

1. We propose three incremental variants of SNNDB, each of which processes

updates made due to deletion of data in batch mode. These three algorithms

are Batch − Dec1, Batch − Dec2 and BISDBdel (Table 5.2). Experimen-

tally, we observed that the third variant BISDBdel is the most efficient as

compared to the other two variants.

2. We showed the effectiveness of our fastest incremental variant BISDBdel

over SNNDB [24] while handling minimal changes made to the dataset.

3. We demonstrated the fact that when size of base dataset decreases, point

wise deletion (BISDBdel with a batch size of one) no longer remains an

effective option to detect clusters dynamically.

4. A thorough cluster analysis is also provided.

1Base dataset is one from which points are deleted.
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Table 5.2: Brief overview of our proposed batch incremental clustering algo-
rithms for deletion (Refer Section 5.3 for definitions of related concepts).

Algorithm Brief working mechanism Advantage Improvement

Batch-Dec1

Computes the KNN lists

incrementally, detects same

clusters as SNNDB, supports

batch wise deletion.

Reduces the time taken to

compute the KNN lists

post new point removals.

Batch-Dec2

Batch-Dec2

Computes the KNN lists and

similarity matrix incrementally,

detects same clusters as SNNDB,

supports batch wise deletion.

Reduces the time taken to

compute the KNN lists

and construct K-SNN graph

post new removals.

BISDBdel

BISDBdel

Computes the KNN list,

similarity matrix and the set of

core and non-core points

incrementally, same clusters

as SNNDB are detected,

supports batch wise deletion.

Reduces the time taken to

compute the KNN lists,

construct K-SNN graph,

identify core and non-core

points post new removals.

5.2 Related work and background

SNNDB [24] is a combination of shared nearest neighbors [52] (SNN) clustering

scheme and DBSCAN [23]. The concept of SNN is used to determine the proximity

score between any pair of data points. Two data objects are said to share a strong

link if the number of overlapping points between their KNN lists exceeds a certain

threshold provided both the points are present in each others’ KNN list. There also

exists a prior incremental extension to SNNDB in form of InSDB [1]. InSDB limits

itself to only addition of data points without focusing on deletion (See Chapter 4,

Section 4.2).

5.3 Preliminaries and Definitions

In this section, we define the key terms and concepts used in this contribution

(Refer Table 5.3 for the meaning of notations used henceforth).
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Table 5.3: Major notations used in this chapter (third contribution).

Notation Description
C Set of Clusters prior to any changes in dataset
C′ Set of Clusters after dataset is updated
D Original (Base) dataset
D′ Changed dataset after deletions
B Number of batches
k No. of points per batch (deleted)
k′ Total no. of points to be deleted
K Size of the K-Nearest Neighbour list
δsim Strong link formation threshold
δcore Core point formation threshold
P(.) Power set
KNN (.) KNN list of any data point.
e-KNN (.) Extended KNN list of any data point.
Sim Mat (.) Similarity matrix of dataset.
Core (.) Set of core points of dataset.
Non-Core (.) Set of non-core points of dataset.
|.| Size of a set.

5.3.1 K-nearest neighbor (KNN) list

We define the KNN list of a data point by identifying its top-K (K ∈ Z+) closest
2 points.

5.3.2 Shared nearest neighbors (SNN)

The SNN [52] or similarity between two data points p, q is defined as number of

points p and q have in common between their respective KNN lists. The SNN

value is given by the following equation:

similarity(p, q) = KNN(p) ∩KNN(q) (5.1)

where KNN (x ) represents the number of elements present in the KNN list of data

point x.

2For our purpose, we adopt the Euclidean distance measure.
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5.3.3 Similarity matrix or SNN graph

Similarity matrix represents the shared nearest neighbor (SNN) graph. The data

points are treated as nodes while the similarity value between any pair of points

is the considered as the edge weight.

5.3.4 K-SNN graph

K-Sparsified SNN (K-SNN) graph is the residual graph formed after “K-Nearest

Neighbor sparsification” of the original SNN graph [24, 52]. Here K represents

the size of KNN list for each data point in the dataset. The surviving links (edge

weight ≥ δsim) in the K-SNN graph are termed as the shared strong links or strong

links (See details in Chapter 4, Section 4.3).

5.3.5 Core, non-core and noise points

In the K-SNN graph, if the number of strong links associated with a particular

point is greater than a certain threshold value δcore (say), then the point obtains

a core status. The remaining points are classified as non-core.

The non-core points which do not share a link with any of the core points and fail

obtain a cluster membership are classified as noise points.

5.3.6 Clustering

Given a dataset D, a similarity function sim(x,y), and a point density function

dense(x), we define clustering by a mapping f : D → C, where C = P(D). If x,y

∈ D, x 6= y and there exists two threshold values δsim, δcore, then may have the

following interpretations:

1. If sim(x,y) ≥ δsim, dense(x) > δcore and dense(y) > δcore, then f(x) = f(y).

2. If sim(x,y) ≥ δsim, dense(x) > δcore and dense(y) 6> δcore, such that ∃z ∈ D

where x 6= y 6= z, dense(z) > δcore and sim(y,z) ≥ δsim. Then if sim(y,z)

> sim(x,y), then f(y) = f(z), otherwise if sim(x,y) > sim(y,z), then f(y) =

f(x).
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3. ∀ x ∈ D, if dense(x) 6> δcore and 6 ∃y ∈ D such that sim(x,y) ≥ δsim and

dense(y) > δcore, then {x} 6∈ C.

As per the first point, if the degree of closeness or similarity between points x

and y is greater than or equal to a threshold value δsim and x, y are dense or core

points, then both x and y are a part of the same cluster.

As per the second point, the similarity between points x and y is greater than

or equal to a threshold value δsim and x is core but y is non-core. There exists

another core point z and the similarity between y and z is greater than or equal

to δsim. In that case, if y is more similar to z than x, then points y and z belong

to the same cluster. However, if y is more similar to point x than z, then y and x

belong to the same cluster.

The third point states that if x is a non-core point and there exists no core point

y with which x has a similarity value greater than or equal to δsim, then x is

categorized as a noise point.

5.3.7 Batch Incremental Clustering (Deletion)

Given a data set D alongwith its initial clustering f : D → C where C ⊆ P (D),

a deletion sequence of B batches with ‘k ’ points per batch takes place. After k ′

≤ kB number of deletions where kB (mod k ′)≡0, let D ′ be the updated data set.

Then an incremental clustering given by a mapping h : D′ → C ′, with C ′ ⊆ P (D ′)

is isomorphic to the one time clustering f(D′) produced by the non-incremental

algorithm.

5.4 Problem formulation

For B number of batch removals (B ∈ N) with k points/batch, let Tnaive be

the total time taken by the non-incremental method, Tpoint−del be the total time

taken by the point based deletion incremental method with k′ ≤ kB removals, and

Tbatch−del be the total time taken by the batch incremental method. Let Cnaive,

Cpoint−del and Cbatch−del be the respective set of clusters obtained after k′ updates.

If |Membatch−del −Memnaive| be the difference in percentage of average memory

consumed, then we aim to establish the following objectives:
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1. (a) Tbatch−del < Tnaive

(b) Cbatch−del = Cnaive

2. (a) Tbatch−del < Tpoint−del

(b) Cbatch−del = Cpoint−del

3. |Membatch−del −Memnaive| ≤ δ, where δ is a small real number.

5.5 Structure of the proposed batch incremental

SNNDB clustering algorithms for deletion

The generic structure of our proposed batch incremental clustering algorithms for

deletion is as follows:

1. We characterize each data point by its following properties:

(a) KNN list.

(b) SNN value or similarity value with each of the adjacent data points

connected by a strong link.

(c) Core or non-core status.

2. New data points are deleted from the base dataset in batches.

3. The values of properties for the batch of deleted points are erased.

4. The affected points belonging to the base dataset may undergo changes in

values of at least one of their properties upon removal of existing data points.

5. The surviving data points which remain unaffected due to deletion of points

do not change the values of their properties.

6. Some of the existing points may change their status from core to non-core

while others may change from non-core to core. The strength of shared links

between data points may alter. If the link strength reduces below δsim, the

link gets broken resulting in possible splitting of clusters.

7. The overall changed dataset consists of data points with updated property

values.
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8. Two connected core points are contained in the same cluster. The cluster

expansion takes place by grouping the core points accordingly. The non-core

points are put into a cluster of their nearest core point. The nearest core

point is the one that shares a strong link with the concerned non-core point,

and has a higher edge weight as compared to the other adjacent core points

(See Chapter 4). Points which fail to obtain any cluster membership are

classified as noise points.

9. The reduced dataset becomes the new base dataset. The updated property

values for each of the existing data points are retained. These values are

utilized for processing the next batch of deleted points. Repeat Steps 2 to 9

until the requisite number of deletions have been made.

5.6 Batch-Incremental SNNDB Clustering Al-

gorithms for Deletion

In this section we present our proposed batch-incremental SNNDB clustering algo-

rithms for deletion viz. Batch−Dec1, Batch−Dec2 and BISDBdel. The goal of

these algorithms is to find clusters dynamically while points are deleted in batches

from a base dataset D. Prior to executing each of these batch incremental algo-

rithms, the naive SNNDB [24] clustering algorithm is executed upon D. However,

while executing SNNDB, we increase the window size of KNN list for each data

point. Each of the algorithms for deletion now maintains an additional space for

(w - 1)·K extra points in their expanded KNN (e-KNN) list, where w ∈ N, w ≥ 2

and K is the size of the original KNN list. The total size of e-KNN list for each

data point turns out to be K+ (w-1)·K or w·K. For a given point p ∈ D, each of

the points in e-KNN(p) including the additional (w − 1)·K points are placed in

increasing order of their distance from p.

Contrary to the proposed three variants for addition, no new point enters the base

dataset D. Instead, the data points are removed from D. As a result, the original

KNN list for some of the existing points may shrink in size. In order to maintain

a valid size of the original KNN list, e-KNN list becomes functional. In case of

shrinkage, points from the additional (w - 1)·K space migrate to the top K-slots

of the e-KNN list to fill the vacant positions.

The following set of information is obtained by executing the SNNDB method

w.r.t., base dataset D:
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1. e-KNN list ∀ p ∈ D.

2. Similarity matrix (K-SNN graph) w.r.t., D given as Sim Mat(D).

3. Set of core and non-core points w.r.t., D given as Core(D) and Non −
Core(D).

4. Set of clusters C w.r.t., D.

5. Set of noise points w.r.t., D.

After the data points are removed from D, the changed dataset D′ gets reduced in

size due to loss of points (|D′| < |D|). Therefore D ∩D′ (D ∩D′ = D′) represents

the surviving or existing set of points in the data space.

In the following subsections, we present each of our proposed batch incremental

deletion algorithms in a step-wise manner supported by graphical illustrations

wherever necessary.

5.6.1 The Batch−Dec1 clustering algorithm

The Batch−Dec1 algorithm builds the updated e-KNN list for each of the existing

data points incrementally. The new similarity matrix (K-SNNupdated graph) and

the set of new core and non-core points are determined non-incrementally. The

steps of the Batch−Dec1 algorithm are as follows:

1. Step 1 - Set the parameters: The algorithm takes four parameters: K,

w, δsim and δcore. The parameters have the following meanings:

(a) K denotes the size of original KNN list for each data point.

(b) w is the multiplier that decides the number of times the original KNN

list be expanded in order to build the e-KNN list.

(c) Given that two data points p and q are present in each others’ KNN

list, δsim is the minimum value of SNN required for p, q to form a strong

link between them.

(d) δcore is the minimum number of strong links adjacent to a point p ex-

ceeding which p becomes a core point.

2. Step 2 - Obtain the required data from prior SNNDB execution:
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(a) Get the base dataset D where |D| = n (say).

(b) Get the e-KNN list ∀ pi ∈ D, i = 1, 2, ...., n.

(c) Get the similarity matrix Sim Mat(D).

3. Step 3 - Delete a batch of existing points: Delete a batch containing

k data points from D. D changes to D′ where |D′| = n− k.

4. Step 4 - Remove the components associated with the deleted points:

(a) Remove the e-KNN list of the deleted points.

(b) Remove all the associated shared strong links with the deleted points

from the K-SNN graph.

(c) The deleted points lose their cluster membership (if any).

5. Step 5 - Compute the updated e-KNN list for existing data points

in D∩D′ incrementally: The number of existing points in D (base dataset)

prior to any deletion is n. When k data points are removed from D, D

changes to D′ (|D′| = n − k). Among the remaining points in D ′, the

algorithm identifies those points that have removed an already deleted point

from their e-KNN list. While investigating, Batch − Dec1 only checks the

top-K slots of the concerned point excluding the additional (w-1)·K space. If

the concerned point loses any data point from its top-K window due to prior

deletion, it is categorized as a KN −Sdel type affected point. Consequently,

the first additional point from the (w-1)·K space migrates to fill the emptied

slot in order to maintain the exact size (length K) of original KNN list.

The movement of a single point from the extra (w-1)·K space in the e-KNN

list prevents the shrinkage of top-K space in the original KNN list. In a worst

case scenario, for any given point p ∈ D′ (changed dataset), a maximum of

K points might be removed from the top-K slots of e-KNN(p) due to prior

deletion. In that case, the next set of K points placed in succession in the

additional (w-1)·K space (w ≥ 2), fills the emptied top-K slots. However, the

migration creates vacant slot(s) within the additional (w-1)·K space. These

vacant slots in e-KNNupdated (p) are filled by other surviving points in D′

which are closer to p 3. Batch−Dec1 therefore focuses only on re-building

the e-KNNupdated(.) list for KN−Sdel type points. The e-KNNupdated(.) lists

for remaining unaffected points in D ∩D′ are not computed separately.

3When no more points remain in additional (w-1)·K space to prevent the shrinkage of top-K
window, Batch−Dec1 involves entire D′ to rebuild e-KNNupdated(p).
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Figure 5.1: The formation of KN −Sdel type affected points upon deletion of
existing points

Running example: Through Figure 5.1, we illustrate this step (Step 5)

from Batch − Dec1. We present this example by assuming K = 5 and w

= 2. Consider the point P (top most image from Figure 5.1), for which we

have the following prior to any deletion:

(a) KNN(P) = {P4, P1, P3, P5, P2}

(b) e-KNN(P) = {P4, P1, P3, P5, P2, P10, P9, P7, P6, P8}

With parameters w and K assuming values 2 and 5 respectively, the total

size of e-KNN(P) is 10 (since |e-KNN(.)| = K+ (w-1)·K). The first five points

of e-KNN(P):{P4,P1,P3,P5,P2} are a part of KNN(P), while the remaining
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five points are stored in order to prevent shrinkage of KNN(P) in case of

deletion.

Let P2,P5 and P3 be the deleted points (middle image from Figure 5.1). As

a result, these points are removed from KNN(P) and consequently from e-

KNN(P). KNN(P) now shrinks in size and is reduced to points P4, P1. The

strong links that P shared with P2, P5 and P3 are broken. P is therefore

categorized as a KN − Sdel type point.

As per Batch−Dec1, the size of additional (w-1)·K space is 5 and it consists

of points:{P10,P9,P7,P6,P8} placed in increasing order of distance from P.

The removal of P2,P5 and P3 creates three vacant slots within KNN(P)

(middle image from Figure 5.1). As a result points P10, P9 and P7 from the

additional (w-1)·K space migrate towards KNN(P) to overcome the shrinkage
4. The updated KNN list and the current e-KNN list of P are given as:

(a) KNNupdated (P) = {P4, P1, P10, P9, P7}

(b) e-KNN(P) = {P4, P1, P10, P9, P7, P6, P8}

We observe that the additional (w-1)·K space in e-KNN(P) currently consists

of points P6 and P8 (bottom image from Figure 5.1) and three empty slots.

Prior to next batch of deletion, Batch-Dec1 fills these empty slots in e-

KNN(P) to produce e-KNNupdated(P). This is done to prevent the shrinkage

of KNN(P) in case of deletions from subsequent iterations.

6. Step 6 - Construct the updated K-SNN graph: The algorithm con-

structs the K-SNNupdated graph or the new similarity matrix (Sim Mat(D′))

non-incrementally based on the remaining points in D′. D′ now consists

of n − k points. Therefore, ∀ pi ∈ D′, i = 1, 2, 3, . . . , n − k, Batch − Dec1
determines if a shared strong link can be constructed ∀ q ∈ KNNupdated(pi)

where KNNupdated(pi) ⊂ e-KNNupdated(pi).

7. Step 7 - Identify new core and non-core points: For each point in

K-SNNupdated graph (Sim Mat(D′)), if the number of adjacent strong links

exceeds δcore, the point obtains a core status otherwise a non-core. The new

set of core and non-core points are stored in Core(D′) and Non−Core(D′)
respectively.

4We assume that P does not share a strong link with P10, P9 and P7 yet they can be present
in KNNupdated (P).
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8. Step 8 - Form Clusters: Two connected core points are grouped into the

same cluster. A non-core point is pulled towards the cluster of its nearest

core point5.

9. Step 9 - Discard noise points: The non-core points which are not con-

nected to any core point are classified as noise points. Such points do not

obtain any cluster membership.

10. Step 10 - Retain the updated values:

(a) D = D′

(b) n = n− k

(c) ∀ pi, i = 1, 2, ..., n− k
e-KNN(pi) = e-KNNupdated(pi).

(d) Sim Mat(D) = Sim Mat(D′)

(e) Core(D) = Core(D′)

(f) Non− Core(D) = Non− Core(D′)

11. Step 11 - Repeat Steps 3 to 10 for the next batch of deleted points.

5.6.2 The Batch−Dec2 clustering algorithm

The Batch − Dec2 algorithm constructs the updated e-KNN list and the new

similarity matrix (K-SNNupdated graph) incrementally. The new core and non-core

points are determined non-incrementally. The steps of Batch − Dec2 algorithm

are as follows:

1. Step 1 - Set the parameters: The algorithm takes four parameters: K,

w, δsim and δcore.

2. Step 2 - Obtain the required data from prior SNNDB execution:

(a) Get the base dataset D where |D| = n (say).

(b) Get the e-KNN list ∀ pi ∈ D, i = 1, 2, 3, . . . , n.

(c) Get the similarity matrix Sim Mat(D).

5The core point with which the shared link strength is highest becomes the “nearest” core
point.
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3. Step 3 - Delete a batch of existing points: Delete a batch containing

k data points from D. D changes to D′ where |D′| = n-k.

4. Step 4 - Remove the components associated with the deleted points:

(a) Remove the e-KNN list of the deleted points.

(b) Remove all the associated shared strong links with the deleted points

from the K-SNN graph.

(c) The deleted points lose their cluster membership (if any).

5. Step 5 - Compute the updated e-KNN list for existing data points

in D ∩D′ incrementally: Step 5 is similar to that of Batch−Dec1.

6. Step 6 - Construct the updated K-SNN graph incrementally: Batch−
Dec2 introduces a new type of affected point known as the Sdel type affected

point. The KNN lists of Sdel type points remain unaffected due to removal of

existing data points. The Sdel type points may contain at least one KN−Sdel
type point in their unchanged KNN list. Any surviving non-KN−Sdel point

in the updated KNN list of a KN−Sdel type point is designated as Sdel type.

The non-KN − Sdel type points which migrate from the additional (w-1)·K
space into the top-K window of a KN − Sdel type point are also categorized

as Sdel type6.

For any Sdel type point p ∈ D ∩ D′ (set of existing points), only the value

of shared strong link (edge weight) with p’s adjacent points may change but

KNN (p) remains the same. As a result we have KNNupdated(p) = KNN

(p). Since KNN(P) ⊂ e-KNN(P), ∴ e-KNNupdated (p) = e-KNN(p). The

remaining set of unaffected points in D ∩D′ retain their original KNN lists

as well as similarity values and are neither KN − Sdel nor Sdel type.

In order to find the new state of shared strong links in the K-SNNupdated

graph, Batch − Dec2 scans the updated KNN lists of only the KN − Sdel
and Sdel type points. The existing links between the unaffected points in

D ∩D′ are allowed to retain their prior similarity value. By targeting only

the KN−Sdel and Sdel type affected points, Batch−Dec2 rebuilds the entire

K-SNNupdated graph incrementally without involving the changed dataset in

its totality.

Running example: Figure 5.2 illustrates the formation of Sdel type affected

points. We present this example by assuming K = 5 and w = 2. Let us

6An affected point is either KN − Sdel type or Sdel type but not both.
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Figure 5.2: The formation of Sdel type affected points upon deletion.

consider the point P (top image of Figure 5.2) having {P4, P1, P3, P5,

P2} in its original KNN list (KNN(P)) prior to any deletion. Let P2, P3

and P5 be the deleted points from KNN(P). As a result, three empty slots

are created in KNN(P) and the strong link that P shared with each of the

deleted points gets broken. P is therefore categorized as a KN − Sdel type

point. The three vacant slots in KNN(P) are filled by points P10, P9 and P7

respectively. These three points were a part of the additional (w-1)·K space

in e-KNN(P). The updated KNN list of P (KNNupdated (P)) now comprises

of {P4,P1,P10,P9,P7} (bottom image of Figure 5.2).

For points P4 and P9 in Figure 5.2, we make the following observations:

(a) KNNupdated (P9) = KNN (P9) = {P14, P17, P15, P16,P}

(b) KNNupdated (P4) = KNN (P4) = {P, P7, P13, P12, P11}
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We observe that P4 and P9 have retained their original KNN list post dele-

tion. P4 was originally present in KNN(P) while P9 has moved into KNN(P)

from the additional (w-1)·K space. Since P is a KN−Sdel type point, there-

fore P4 and P9 qualify as Sdel type points.

7. Step 7 - Identify new core and non-core points: Step 7 is similar to

that of Batch−Dec1.

8. Step 8 - Form Clusters: Step 8 is similar to that of Batch−Dec1.

9. Step 9 - Discard noise points: Step 9 is similar to that of Batch−Dec1.

10. Step 10 - Retain the updated values:

(a) D = D′

(b) n = n− k

(c) ∀ pi, i = 1, 2, 3, . . . , n− k
e-KNN(pi) = e-KNNupdated(pi).

(d) Sim Mat(D) = Sim Mat(D′)

(e) Core(D) = Core(D′)

(f) Non− Core(D) = Non− Core(D′)

11. Step 11 - Repeat Steps 3 to 10 for the next batch of deleted points.

5.6.3 The BISDBdel clustering algorithm

The BISDBdel clustering algorithm computes the updated KNN list, the up-

dated K-SNN graph and the new set of core and non-core points incrementally.

BISDBdel attempts to improve the efficiency of dynamic cluster detection over

Batch−Dec1 and Batch−Dec2. The steps of BISDBdel algorithm are as follows:

1. Step 1 - Set the parameters: The algorithm takes four parameters: K,

w, δsim and δcore.

2. Step 2 - Obtain the required data from prior SNNDB execution:

(a) Get the base dataset D where |D| = n (say).

(b) Get the e-KNN list ∀ pi ∈ D, i = 1, 2, 3, . . . , n.

(c) Get the similarity matrix Sim Mat(D).
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3. Step 3 - Delete a batch of existing points: Delete a batch containing

k data points from D. D changes to D′ where |D′| = n-k.

4. Step 4 - Remove the components associated with the deleted points:

(a) Remove the e-KNN list of the deleted points.

(b) Remove all the associated shared strong links with the deleted points

from the K-SNN graph.

(c) The deleted points lose their cluster membership (if any).

5. Step 5 - Compute the updated e-KNN list for existing data points

in D ∩ D′ incrementally: Step 5 is similar to that of Batch − Dec1 and

Batch−Dec2.

6. Step 6 - Construct the updated K-SNN graph incrementally: Step

6 is similar to that of Batch−Dec2.

7. Step 7 - Identify new core and non-core points incrementally: In

the K-SNNupdated graph, for each of the total number of KN − Sdel and Sdel

type points in D∩D′, BISDBdel checks whether the number of strong links

adjacent to the affected point exceeds δcore. If this happens, the concerned

point is treated as a core point or else it is a non-core point. The remain-

ing points retain their existing core or non-core status from the previous

iteration7.

8. Step 8 - Form Clusters: Step 8 is similar to that of Batch − Dec1 and

Batch−Dec2.

9. Step 9 - Discard noise points: Step 9 is similar to that of Batch−Dec1
and Batch−Dec2.

10. Step 10 - Preserve the updated values:

(a) D = D′

(b) n = n− k

(c) ∀ pi, i = 1, 2, 3, . . . , n− k
e-KNN(pi) = e-KNNupdated(pi).

(d) Sim Mat(D) = Sim Mat(D′)

(e) Core(D) = Core(D′)

7For the first batch of deleted points, the core or non-core status of a point in D ∩ D′ is
derived from initial SNNDB execution upon D.
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(f) Non− Core(D) = Non− Core(D′)

11. Repeat Steps 3 to 10 for the next batch of deleted points.

5.6.4 Shared link properties between affected points post

deletion

Altering the state of KNN list may lead to a change in similarity values between

the affected points. We present all possible scenarios of the state of shared strong

links between KN − Sdel and Sdel type affected points.

1. KN − Sdel ←→ KN − Sdel link: Removal of existing data points from the

KNN list of a KN−Sdel type point creates empty slots within the list. If the

deleted points contributed to the shared link strength, then the link strength

is bound to decrease. However, if the removed points did not contribute to

the link strength, then the similarity value remains same provided the newly

migrated points from (w−1)*K space do not lie in the common neighborhood

of the involved pair of points. On contrary if the migrated points belong to

the common neighborhood, then the link strength may increase. Therefore,

for a KN − Sdel ←→ KN − Sdel type link, the strength of shared link either

decreases, remains same or increases.

2. KN − Sdel ←→ Sdel link: The Sdel type points do not change their KNN

list after deletion. Therefore the removed points from the KNN list of a

KN − Sdel type point cannot be a contributory source to the shared strong

link. As a result, the link strength continues to remain same post deletion

of data points. However, if the newly migrated points from (w− 1)*K space

lies in the common neighborhood of a (KN − Sdel, Sdel) pair, then the link

strength may go on to increase .

3. Sdel ←→ Sdel link: With no change in KNN list for Sdel type points post

deletion, the points which originally contributed to the shared link strength

remain unaffected. As a result an identical link strength is observed for a

Sdel ←→ Sdel type link.
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ALGORITHM 3: BISDBdel(D, K , δsim, δcore, w)

1 Input: D, K , δsim, δcore, w;
2 Output: Clusters ;
3 Set ’nrow’ as original no. of data points;
// Update dataset after decrement

4 for i← 1 to n do
5 Remove existing data point i from the base dataset data matrix [];
6 i← i+1;

// Update KNN list of the affected points from existing dataset

7 for i← 1 to nrow do
8 for each j ∈ KNN matrix[i] do
9 if j is a deleted point then

10 Remove j from KNN matrix[i] and shrink KNN (i);
11 else

// Identify KN − Sdel type points

12 for i← 1 to nrow do
13 if KNN matrix[i].size() < K ∧ i /∈ Deleted Set then
14 i ∈ KN − Sdel points;
15 else

// Fill the empty slots in e-KNN list of KN − Sdel type points

16 for each i ∈ KN − Sdel do
17 for each j ∈ KNN matrix[i] ∧ j is empty do
18 Select a point closest to ‘i’ from (w-1)*K space and fill the empty slot

in KNN matrix[i] ;

19 Fill the empty slots of (w-1)*K space with other points in data matrix [];
20 sort (e-KNN (i));

// Identify Sdel type points

21 for each i ∈ KN − Sdel do
22 for each j ∈ KNN matrix[i] do
23 if j /∈ KN − Sdel then
24 j ∈ Sdel points;
25 else

// Build K-SNN graph; find core, non-core points incrementally

26 for each i ∈ KN − Sdel ∪ Sdel do
27 for each j ∈ KNN matrix[i] do
28 if similarity(i, j) ≥ δsim then
29 An edge is formed between points i and j ;
30 else

31 if similarity matrix[i].size() > δcore then
32 i ∈ CORE points set;
33 else
34 i ∈ Non-CORE points set;
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35 Cluster formation is similar to the SNNDB algorithm;
36 Repeat entire process for the next batch of removed points ;

Table 5.4: Summary of the batch-incremental SNNDB clustering algorithms
for deletion

Components-Algorithm Batch−Dec1 Batch−Dec2 BISDBdel

Updated KNN list Incrementally Incrementally Incrementally

Updated K-SNN graph Non-Incrementally Incrementally Incrementally

Updated core and non-core points Non-Incrementally Non-Incrementally Incrementally

5.6.5 Summary of the Batch-Incremental SNNDB Clus-

tering Algorithms for deletion

The SNNDB method takes O(N2) time towards completion where N is the total

number of data points. In our pursuit to improve the efficiency over SNNDB, we

initially propose the Batch − Dec1 algorithm. Batch − Dec1 provides marginal

improvement by building the updated e-KNN lists incrementally in O(N) time.

However, building the K-SNNupdated graph involves quadratic time complexity.

Batch−Dec2 aims to address this issue by reconstructing the K-SNNupdated graph

incrementally upon removal of data points. While building the K-SNNupdated

graph, Batch − Dec2 only updates the shared link strengths of KN − Sdel and

Sdel type points. For identifying the new core and non-core points, Batch−Dec2
involves all the data points in D′ (updated dataset). This results in Batch−Dec2
having linear time complexity. BISDBdel finds the new set of core and non-core

points incrementally and therefore improves upon the previous two sub-variant

algorithms for deletion. BISDBdel also runs in linear time (Refer Algorithm 3 for

pseudo-code of BISDBdel).

5.7 Time complexity analysis of the BISDBdel

clustering algorithm

Let D be the base dataset where |D| = n (n ∈ Z+) be its initial size. Let D′

be the updated dataset after deletions. Let us assume that a total of B batches

are removed with k points per batch (k � n). For the Bth batch deletion at any

138

TH-2363_136101011



point in time, we have |D′| = n − kB, where the current size of base dataset is

n − (B − 1)k = N(say). The size of each deleted batch is significantly smaller

than the current size of base dataset, ∴ k � N .

We provide the time complexity analysis by assuming that the first batch of dele-

tions had been made (∴ B = 1). [Line 7-11]: This segment of BISDBdel updates

the KNN list of data points dynamically. We clearly observe that for each existing

point i ∈ D′, the algorithm checks for the presence of an already deleted point in

i’s KNN list. For a single point, the algorithm performs at most K comparisons.

Deleting a data point j from i’s KNN list and replacing by its immediate next

point or a point present in the additional (w − 1)·K space of e-KNN (i) list takes

O(1) time. As a result, the steps required to compute the updated KNN lists of

existing points has a worst case time complexity of K·O(n − k) ' O(N). [Line

12-15]: For determining the number of KN − Sdel type points, a complete scan

of the updated dataset (D′) results in K·O(n − k) ' O(N) time. [Line 26-34]:

BISDBdel identifies the set of core and non-core points incrementally along with

the dynamic reconstruction of the K-SNNupdated graph.

5.7.1 Time complexity proof BISDBdel

Let Te−KNN be the time taken to compute the updated e-KNN list of existing data

points in D′, then

Te−KNN = K ·N (5.2)

In the new e-KNN list, the top K slots are checked for the trace of any deleted

point. A removed point is replaced by its immediate next point positioned in

the KNN list. The vacant slot(s) are filled by the points present in additional

(w − 1) ·K space of the e-KNN list. Effectively KN amount of time is required

to find the KN − Sdel type points, ∴ TKN−Sdel
= KN .

Let TSdel
be the time taken to find the Sdel type points. Since Sdel type points are

determined from the updated e-KNN list of the KN − Sdel type points, we have

the following equation:

TSdel
= |KN − Sdel| ·K

[where |KN − Sdel| � N ]
(5.3)

139

TH-2363_136101011



The term K is used instead of 2K (See Equation 5.3) because the removed points

from the updated e-KNN list of any KN − Sdel type point are not taken into

consideration. Let TK−SNN = time taken to construct the updated K-SNN graph,

∴ TK−SNN = (|KN − Sdel|+ |Sdel|) · 2c′
(K

2
+ log2K

)
[where |Sdel| � N ]

(5.4)

Let TCore+Non−Core, TCluster be the time taken to find the core, non-core points and

the clusters,

∴ TCore+Non−Core = |KN − Sdel|+ |Sdel| (5.5)

TCluster = K ·N (5.6)

If TBISDBdel
be the total time taken by the BISDBdel algorithm, then (using

Equations 5.2, 5.4, 5.5, 5.6) we obtain the following:

TBISDBdel
= Te−KNN + TK−SNN + TCore+Non−Core

+ TCluster

= cKN + c1 [c is constant]

[∵ K,KN − Sdel, Sdel are constants]

[∴ c1 is constant]

=⇒ TBISDBdel
' O(N)

(5.7)

Here c1 = (|KN − Sdel|+ |Sdel|)(1 + 2c′(K
2

+ log2K))

5.8 Experimental evaluation

The experiments were carried out on three real world and two synthetic datasets

(Table 5.5) to prove the efficiency of BISDBdel over SNNDB [24] and point-based

deletion scheme [Point-based deletion signifies the execution of BISDBdel (most

effective batch incremental deletion algorithm) with batches of size one].
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Table 5.5: Datasets description.

Dataset Size #Attributes Description
Mopsi12 13000 2 Search locations in Finland
5D 100000 5 Synthetic dataset
Birch3 100000 2 Gaussian clusters
KDDCup’04 60000 70 Identifying homologous proteins to native sequence
KDDCup’99 54000 41 Network intrusion detection data

We simulated our algorithms in C++ on a Linux platform (Intel (R) Xeon (R)

CPU E5530 @ 2.40GHz) with 32GB RAM. The experiments were conducted in

following phases.

1. Phase-1: Finding the most effective batch incremental variant (deletion).

2. Phase-2: Prove efficiency of the most effective batch incremental variant

(deletion) over point-based deletion scheme.

3. Phase-3: Show that point-based deletion becomes ineffective when larger

updates (deletion) are made to the base dataset.

4. Phase-4: Prove efficiency of the most effective batch incremental variant

(deletion) over SNNDB [24].

5.8.1 Phase-1: Finding the most effective batch incremen-

tal variant (deletion)

We adopted three datasets: Mopsi2012, 5D points set and Birch 3 to conduct the

experiments in this phase. For experimental purpose, we defined a new term called

Algorithm-Components (AlgoComp). AlgoComp consisted of following compo-

nents:

• Base dataset

• KNN lists

• Similarity matrix

• Core and non-core points

• Clusters
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A base dataset is one taking which SNNDB [24] is executed in order to set the

values of other components in AlgoComp. Initially, the same base dataset is fed as

input to the batch incremental algorithms (deletion). After processing a certain

batch of updates, the base dataset reduces its size. Points are deleted from the

previous base dataset while producing clusters dynamically. The new set of points

becomes the updated base dataset over which the next batch outgoing points is

processed. The new KNN lists, similarity matrix (K-SNN graph), core and non-

core points along with clusters become a part of the updated AlgoComp.

Next we describe the experiments carried out for comparing the proposed batch

incremental clustering algorithms: Batch −Dec1, Batch −Dec2 and BISDBdel

dataset wise.

1. Mopsi2012 (Deletion): The values of parameters were set as: K = 10, δsim

= 3 and δcore = 4, while the value of w was chosen to be 2. We initialized the

AlgoComp values by running SNNDB over 13000 points, and then deleted

3000 points in multiple batches incrementally. We started by removing a

minimum of 2 points per batch, and continued the experiments upto a batch

of size 20. BISDBdel turned out to be the most effective deletion algorithm

(Figure 5.3) compared to Batch−Dec1 and Batch−Dec2.

Figure 5.3: Mopsi12 dataset: Efficiency comparison between batch incremen-
tal deletion algorithms.
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While identifying the affected points, we observed that a maximum of around

0.30% KN − Sdel type and about 0.69% of Sdel type points were produced

while processing batch number 1229 and 898 respectively out of a total of
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Figure 5.4: Mopsi12 dataset: Average percentage of KN −Sdel and Sdel type
points for multiple batch insertion of varying batch size (BISDBdel).
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Figure 5.5: Mopsi12 dataset: Percentage of KN − Sdel and Sdel type points
created while deleting 1500 batches (BISDBdel).
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1500 batches (Figure 5.5). The mean percentage of KN −Sdel and Sdel type

points per batch reached only around 0.5% and 1.6% respectively for a batch

of size 20 involving 150 batches in sequence (Figure 5.4).

List of key observation(s) and reason(s) for Mopsi12 dataset (Dele-

tion):

• Key Observation: CPU execution time for batch-incremental algo-

rithms reduces with increasing batch size.

Analysis/Reason(s): With increase in batch size, the total number

of batches to be processed decreases. The overall reconstruction time

for K-SNN graph, KNN lists, detecting core and non-core points incre-

mentally reduces.

• Key Observation: BISDBdel achieves the best efficiency.

Analysis/Reason(s): Constructing updated KNN lists, K-SNN graph,

finding core and non-core points incrementally.

• Key Observation: Average percentage of KN − Sdel and Sdel type

points increases with increasing batch size. However the average per-

centage of KN − Sdel type points is less than that of Sdel type points.

Analysis/Reason(s): With increase in batch size, the number of ex-

isting points (D ∩D′) affected due to any batch deletion increases.

Given any batch update, the number of points changing their previous

KNN list is less than those affected points which do not change their

KNN list. Therefore the average percentage of KN − Sdel type points

is less than that of Sdel type points.

• Key Observation: Percentage of KN − Sdel or Sdel type affected

points while processing 1500 batches (deletion) remains less than 1%.

Analysis/Reason(s): The number of points altering their KNN list

or those forming new links and breaking existing ones due to any batch

update are less than 1% of the size of updated base dataset.

2. 5D (Deletion): The parameters were set as: K = 4, δsim = 2, δcore = 2 and

w = 2. The size of base dataset was taken to be 100000. We deleted 20000

points from the base dataset in multiple batches. While deleting points,

we varied the batch size from 2 to 20. Experimentally we observed that

BISDBdel performed most efficiently (Figure 5.6) out of the three deletion

algorithms. When the batch size was 2, BISDBdel processed 10000 batches
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sequentially. A maximum of around 0.0207% of KN−Sdel type and 0.0149%

of Sdel type affected points were identified (Figure 5.8) while processing batch

number 9030 and 9790 respectively. The average percentage ofKN−Sdel and

Sdel type points per batch was found to be 0.017% and 0.013% respectively

for a batch of size 20 involving 1000 batches (Figure 5.7).

Figure 5.6: 5D dataset: Efficiency comparison between batch incremental
deletion algorithms.
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List of key observations and reasons (Deletion) for 5D dataset:

• Key Observation: Average percentage of KN − Sdel and Sdel type

points increases with increasing batch size. However the average per-

centage of KN − Sdel points is more than that of Sdel type points.
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Figure 5.8: 5D dataset: Percentage of KN −Sdel and Sdel type points created
while deleting 10000 batches (BISDBdel).

Analysis/Reason(s): With increase in batch size, the number of ex-

isting points affected due to any batch deletion increases.

Given any batch update, the number of points changing their previous

KNN list is greater than those affected points which do not change their

KNN list. Therefore the average percentage of KN − Sdel type points

is more than that of Sdel type points.

• Key Observation: Percentage of KN − Sdel or Sdel points while pro-

cessing 10000 batches (deletion) remains less than 0.05%.

Analysis/Reason(s): The number of points altering their KNN list

or those forming and breaking shared links due to any batch update

are less than 0.05% of the size of updated base dataset.

3. Birch3 (Deletion): The values of parameters were set as: K = 5, δsim

= 2, δcore = 2 and w = 2. We deleted 10000 points from a base dataset

of size 100000. We varied the batch size from 2 to 20. BISDBdel proved

to be the most efficient method out of the three deletion variants (Figure

5.9). For a batch of size 2, exactly 10000 points were deleted in 5000 batches
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sequentially. A maximum of around 0.0154% of KN − Sdel type points

and 0.0207% of Sdel type affected points were identified (Figure 5.11) while

processing batch number 4593 and 1707 respectively. The average percentage

of KN−Sdel and Sdel type points per batch was found to be 0.04% and 0.07%

respectively for a batch of size 20 involving 500 batches (Figure 5.10).

Figure 5.9: Birch3 dataset: Efficiency comparison between batch incremental
deletion algorithms.
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Figure 5.10: Birch3 dataset: Average percentage of KN − Sdel and Sdel type
points for multiple batch insertion of varying batch size (BISDBdel).
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List of key observations and reasons (Deletion) for Birch3 dataset:

• Key Observation: Average percentage of KN − Sdel and Sdel type

points increases with increasing batch size. However the average per-

centage of KN − Sdel points is less than that of Sdel points.

147

TH-2363_136101011



Figure 5.11: Birch3 dataset: Percentage of KN − Sdel and Sdel type points
created while deleting 5000 batches (BISDBdel).

Analysis/Reason(s): With greater batch size, the number of existing

points affected due to any batch deletion increases.

Given any batch update, the number of points changing their previous

KNN list is less than those affected points which do not change their

KNN list. Therefore the average percentage of KN −Sdel points is less

than that of Sdel type points.

• Key Observation: Percentage of KN − Sdel or Sdel points while pro-

cessing 5000 batches (deletion) remains less than 0.05%.

Analysis/Reason(s): The number of points changing their KNN list

or those forming and breaking shared links due to any batch update

are less than 0.05% of the size of updated base dataset.

BISDdel therefore proves to be the most efficient batch incremental algorithm

(deletion) out of the three proposed variants (Figure 5.12). The selective handling

of affected data points in D∩D′ while reconstructing the algorithmic components

incrementally leads to a grater efficiency of BISDBdel. The clusters are detected

dynamically with minimal interference on the base dataset.
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Figure 5.12: Summary of Phase-1 experiments for deletion.

5.8.2 Phase-2: Prove efficiency of the most effective batch

incremental variant (deletion) over point-based dele-

tion

In this phase, we establish that BISDBdel is more efficient than the point-based

deletion scheme (executing BISDBdel with 1 point/batch) for constant and vari-

able updates made to the base dataset.

Constant updates: In case of constant updates, a fixed number of points were

deleted from the base dataset in multiple batches of identical batch size. We

compared the efficiency of BISDBdel with point-based deletion scheme executing

the same number of deletions in a point wise manner (Table 5.6).

Table 5.6: Performance comparison of BISDBdel and point wise deletion for
constant updates.

Dataset Base dataset size Deleted Remaining BISDBdel 1p/b (sec) BISDBdel 20p/b (sec) Speedup ratio
Mopsi2012 13000 3000 10000 1360.02 247.88 5.48

5D points set 100000 20000 80000 19728.95 6686.86 2.95
Birch3 100000 10000 90000 12016.71 2399.10 5.01

Key observation(s): BISDBdel deleted 20 points per batch for three datasets:

Mopsi12, 5D points set and Birch3 to make up for the total number of points to

be removed. For each dataset, the batch incremental method proved to be more

efficient than the point based deletion approach.

Analysis/Reason(s): In case of point-wise deletion, the data points are removed

one at a time. The construction of KNN lists and the K-SNN graph take place
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after every deleted point. The detection of core, non-core points and the clusters

is also repetitive of the number of points removed. Although the size of base

dataset decreases, the time required to remove existing links, compute the altered

weights of retained links and split clusters after every point deleted makes the

overall process slow as compared to BISDBdel. If TBISDBdel
and Tpoint−del are the

final CPU execution times after requisite number of points have been removed,

then experimentally we showed that TBISDBdel
< Tpoint−del (Refer Table 5.6).

Variable updates: A variable number of deletions were made from the base

dataset in a single batch. We executed BISBdel by making deletions ranging from

1% to 20% of the base dataset in one batch. Each time an update was inflicted, the

efficiency of BISBdel was compared with that of the point-based deletion approach

(Figure 5.13).

Figure 5.13: Speedup comparison of BISDBdel with point-based deletion for
variable number of points deleted in a single batch
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Key Observation: On measuring the speedup of BISDBdel with point-based

deletion (Figure 5.13), we observed a tendency of increase as the percentage of

updates (deletion) made to the dataset increases.

Analysis/Reason(s): For a point-based deletion approach, the process of re-

moving old links, splitting clusters, finding new link strengths of existing ones

happen as many times as there are total number of deletions. Due to these com-

putations, BISDBdel being a batch processing algorithm, scores on efficiency over

point-based scheme as the percentage of update increases.
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The BISDBdel algorithm therefore outperforms point-based technique for con-

stant or variable updates made to the base dataset, ∴ Tbatch−del < Tpoint−del.

5.8.3 Phase-3: BISDBdel and SNNDB are more effective

than point-based deletion when large changes are

made to the base dataset

Through experimental observations, we establish that when larger changes are

made to the base dataset, the naive method (SNNDB) and the batch incremental

algorithm (BISDBdel) outperform the point-based deletion scheme. For illustra-

tion, we used the Mopsi12 dataset to demonstrate this property (Figure 5.14).

Figure 5.14: Execution time of SNNDB, point-based deletion and BISDBdel
for variable updates (deletion) in a single batch.
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We implemented the BISDBdel algorithm and point-based deletion scheme by

taking a base dataset of size 13000. While executing BISDBdel, we removed

data points in a single batch, with batch size varying from 1% to 30% of the

base dataset. Identical number of deletions were made in a point wise manner.

Corresponding to every batch deletion, the CPU execution time of BISDBdel was

compared with the point based approach.

We also executed the SNNDB [24] algorithm and compared its efficiency with

BISDBdel and the point based method. From Figure 5.14, we identify that

151

TH-2363_136101011



both BISDBdel and the point-based scheme maintained a better efficiency than

SNNDB [24] till a certain stage. However when the extent of deletion exceeded

11% of the base dataset, the non-incremental SNNDB started achieving a better

efficiency than the point-based method. The BISDBdel algorithm consistently

outperformed both the point-based technique and SNNDB for deletions of all

batch sizes. Point-based incremental approach therefore fails to achieve a better

efficiency when larger updates are inflicted upon the base dataset.

5.8.4 Phase-4: Prove the efficiency of BISDBdel over SNNDB

In this phase, both constant and variable updates were made to the base dataset

in multiple batches. For constant updates, a fixed number of points were deleted

from the base dataset in multiple batches. The variable updates were made in a

single batch with the batch size varying from 1% to 20% of the base dataset. We

then measured the speedup of BISDBdel with the SNNDB algorithm.
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Figure 5.15: Speedup of BISDBdel over SNNDB for constant deletion.

Key observation(s): BISDBdel achieves maximum speed up for smaller updates

while the speed up gradually diminishes with increase in size of batch deletions

(Figure 5.15, 5.16).

Analysis/Reason(s): While processing smaller updates, BISDBdel deals with

insignificant percentage of KN−Sdel and Sdel type points. As the rest of the points

retain their AlgoComp values, post new deletions the time required to reconstruct

KNN lists, K-SNN graph and detect clusters incrementally is very less.
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Figure 5.16: Speedup of BISDBdel over SNNDB for variable deletion.

BISDBdel therefore outperformed SNNDB for both constant and variable updates

made to the base dataset, ∴ Tbatch−del < Tnaive. However, the efficiency was

obtained at the cost of memory overhead. BISDBdel consumed a maximum of 60%

more memory than SNNDB for Mopsi12 dataset. The average memory overhead

due to BISDBdel over SNNDB is around 41.08%, ∴ |Membatch−del−Memnaive| ≈
0.41.

5.9 Cluster analysis

In this section we present the details of clusters that were obtained after executing

the naive method (SNNDB [24]), point-based deletion and the batch incremental

algorithm BISDBdel. We compared the number of clusters, core and non-core

points along with the outliers that were obtained from executing respective algo-

rithms (Tables 5.7,5.8). Based on the tabular results, it is evident that the set of

clusters obtained from running the naive method and the incremental methods for

deletion are identical.

Table 5.7: Cluster details of SNNDB for all datasets to compare with the
incremental deletion algorithms.

Dataset Algorithm Input size #Clusters #Core points #Non-core points #Outliers
Mopsi12

SNNDB

10000 815 3999 1249 4752
5D 80000 807 1339 1023 77638
Birch3 90000 10302 61491 17639 10870
KDD’99 45000 428 2312 744 41944
KDD’04 50000 108 153 224 49623
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Table 5.8: Cluster details of point-based deletion and BISDBdel for all
datasets.

Dataset Algorithm
Base dataset/
Deleted points

#Clusters #Core points #Non-core points #Outliers

Mopsi12
BISDBdel /
point-based
deletion

13000 / 3000 815 3999 1249 4752
5D 100000 / 20000 807 1339 1023 77638
Birch3 100000 / 10000 10302 61491 17639 10870
KDD’99 54000 / 9000 428 2312 744 41944
KDD’04 60000 / 10000 108 153 224 49623

Next we analyze the correctness of clusters obtained fromBISDBdel w.r.t., SNNDB

[24] and point-based deletion based on the following Lemmas.

Lemma 5.1. Post k number of updates (deletion), the base dataset D (|D| = n)

changes to D′. KNN(D′) obtained from BISDBdel, SNNDB [24], point-based

deletion are identical.

Proof: After kth update, only the KN − Sdel type affected points change their

KNN lists and find the appropriate top K closest points (BISDBdel). Similarly,

if all the n − k points are taken into consideration, only the top K closest points

would occupy the appropriate positions of KNN(x) ∀ x ∈ D′ (SNNDB). Point-

based approach adopts a similar incremental policy of KNN list computation post

any deletion.

Lemma 5.2. ∀ (x, y) ∈ D′ (updated dataset), sim(x, y) obtained from BISDBdel,

SNNDB [24], point-based deletion are identical.

Proof: KNN(D′) post k number of updates are identical for each class of afore-

mentioned algorithms (Lemma 5.1), therefore the number of shared data points

(sim(x, y)) between the KNN lists ∀ (x, y) ∈ D′ for BISDBdel, SNNDB and point-

based scheme are also identical.

Lemma 5.3. ∀ x ∈ D′, Core(x), Non−core(x) obtained from BISDBdel, SNNDB

[24], point-based deletion are identical.

Proof: ∀ (x, y) ∈ D′, sim(x, y) is identical for each class of aforementioned algo-

rithms (Lemma 5.2). As a result, the number of strong links adjacent to a point

is also identical for these algorithms, ∴ ∀ x ∈ D′, x will retain its same core or

non-core status for BISDBdel, SNNDB and point-based deletion.

On the basis of Lemmas 5.1 5.2, 5.3, it can be concluded that the set of clusters

obtained from BISDBdel, SNNDB [24] and point-based deletion are identical.

Therefore we may have the following observation(s):
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• Cbatch−del(CBISDBdel
) = Cnaive(CSNNDB)

• Cbatch−del(CBISDBdel
) = Cpoint−del

where CA represents the set of clusters for a given algorithm A.

5.9.1 Clustering results in brief

The Mopsi dataset contained about 40% core points. However post deletion in

batch mode, nearly 47.5% of points remained as outliers. This is because removal

of data points leads to splitting of clusters along with simultaneous breaking of

shared strong links. As a result most of the non-core data points fail to attach

with a core point so as to obtain a cluster membership. For 5D synthetic dataset,

around 97% of points are categorized as noise points. In case of Birch3 dataset,

about 87.9% of data points belong to a cluster with an average cluster size of 7.68.

For KDD’99 and KDD’04 dataset, a large share of data points comprised of out-

liers. In KDD’04 around 99% of points were outliers with a maximum cluster

size of eight. The clusters obtained from the algorithms are parameter dependent.

The parameter values were specified while conducting experimental evaluation for

individual datasets (Refer Section 5.8.1). The results provided are based on pa-

rameter values set prior to any execution. Any change in these values may alter

the clustering output along with the set of core, non-core and noise points.

5.10 Conclusion

InSDB [1], an existing incremental extension of SNNDB fails to handle dynamic

deletion of data points. This is a major flaw on the part of InSDB which acts as

a motivation behind designing of the BISDBdel algorithm.

The SNNDB clustering algorithm computes the KNN list, similarity matrix, core

and non-core points while detecting clusters of arbitrary shapes, sizes and densities.

In order to produce an incremental extension to SNNDB in batch mode, each

of these components needs to be computed incrementally. Batch − Dec1 and

Batch−Dec2 correspond to the first two batch incremental extensions (deletion)

while BISDBdel proved to be most effective algorithm out of three incremental

variants.
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We also showed that for smaller updates BISDBdel maintains a higher efficiency.

The efficiency gradually diminishes with increase in the size of data updates. We

also observed that for variable updates made to the base dataset, BISDBdel consis-

tently outperformed both SNNDB and point-based deletion, ∴ Tbatch−del < Tnaive

and Tbatch−del < Tpoint−del. The cost involved in average memory consumption

was about 41.08%. The set of clusters produced by SNNDB and the incremental

methods viz. BISDBdel and point-based deletion are identical thereby proving the

objectives as stated in Section 5.4. For each of the five datasets, we computed the

clusters, core and non-core points along with the outliers. While Mopsi12 dataset

involved a significant percentage of clustered points, KDD’99 and KDD’04 con-

sisted mostly of outliers.
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Chapter 6

KAGO: An Approximate

Incremental Grid-Based Outlier

Detection Approach using Kernel

Density Estimate

In the previous three chapters, we focused on incremental density based clustering

algorithms. These algorithms dealt with point-wise or batch mode updates. How-

ever, with increasing necessity of finding exceptions in many real time applications

(Refer Section 1.3.2), in this contribution we only focus on extracting outliers from

dynamic data.

A prominent non-incremental method viz. the K-Nearest Neighbor (KNN) Outlier

Detection [5] (KNNOD) algorithm relies on distance based approach to extract

outliers. Use of distance based measures for any given data mining task in a

multi-dimensional space may produce inappropriate results [24, 64]. Moreover,

the KNNOD algorithm involves a quadratic running time for its completion. As

a result, any form of redundant computation due to frequent updates may lead

towards inefficiency in detecting outliers. In order to address these challenges,

we propose an approximate incremental outlier detection algorithm viz. KAGO

(Adaptive Grid based Outlier detection using Kernel Density Estimate). KAGO

facilitates single point insertions. The proposed algorithm computes the point

density using a kernel function. KAGO prunes the inliers and filters the candidate

grid cells with local outliers upon any new insertion. The grid cells containing

potential outliers are aggregated to extract at most top-N global outliers.
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6.1 Motivation

Outlier detection finds its importance in a wide range of applications such as net-

work intrusion detection [38, 77], credit card transactions [39], healthcare [41],

detecting faults in safety critical systems [42] to name a few. In all the aforemen-

tioned applications, there exists a possibility of frequent data updates in a dynamic

environment [78, 40, 79, 11]. For example, consider the following scenario: a credit

card transaction in a place far from its usual location of use may indicate a fraud.

Similar transactions carried out in such unexpected locations in course of time

may reaffirm the involvement of fraudulent means. On the contrary, as the count

of such transactions increases from a particular new location, the prior usage of

credit card from this new place may appear legal instead of being suspicious. In

both the cases, a new transaction can be mapped to the entry of a data point upon

base dataset. As the number of transactions increases with the passage of time,

we may either have new outliers (fraudulent transactions from a new location) or

conforming patterns of data (expected transactions from a usual place).

However against every new insertion, involving all the data points in their entirety

may lead to following disadvantages:

• With every insert inflicted on the base dataset, the run time of the outlier

detection algorithm may increase disproportionately.

• Increase in updates may lead to a higher consumption of computing re-

sources.

• A delayed extraction of outliers due to processing of data in totality against

frequent changes.

The KNNOD [5] algorithm relies on distance based measure to extract outliers.

However with the size of data growing continuously, the discovery of outliers in

an automated manner becomes crucial. Against every new update made to the

base dataset, a KNN based approach may require re-computation of the K-Nearest

Neighbors for each data item. Since KNNOD has a quadratic time complexity, such

an approach may suffer from having high response time in a dynamic environment.

In our pursuit of developing an incremental solution to KNNOD [5], we aim to

extract density based outliers using a probabilistic measure. This is due to the

fact that in variable density regions, distance based methods are often rendered
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Table 6.1: Motivation behind developing the KAGO algorithm.

Motivation Description

High response
time

Non-incremental algorithms suffer from the issue of redundant computation
while handling dynamic data. They involve the entire dataset against every
new update leading to a high response time.

Small frequent
Updates

When fewer number of insertions are inflicted upon a larger base dataset,
the changes in output (anomalies) are also expected to be minimal. As a
result, there is no need to process the dataset in its totality.

KNNOD [5] fails
in efficient han-
ling of point inser-
tion dynamically

KNNOD [5] involves quadratic time in detecting outliers. Due to
addition of data points one at a time, the anomaly detection process may
get slower as the volume of base dataset increases. The time of checking
outliers is bound to increase with the size of base dataset. As a result, there
is a need to process updates intelligently to quicken the outlier detection
process against new insertions.

KNNOD [5] relies
on inefficient
distance based
technique

Distance based methods show their limitations in extracting outliers
[23, 80, 5] in regions of variable density. Therefore adopting a density
based approach by relying on statistical properties of data (eg:Kernel Density
Estimate (KDE)) may lead towards robustness.

inappropriate [5, 80] while filtering outliers. Our proposed technique therefore

revolves around the use of probability density approximation method viz. Kernel

Density Estimation (KDE) [29, 51, 81, 82, 83] while finding point densities. Table

6.1 provides a brief description about the motivation behind our work.

6.1.1 Chapter contributions

The key contribution(s) made in this chapter may be summarized as follows:

1. We propose an approximate incremental solution to KNNOD [5] in form of

the KAGO algorithm (Table 6.2).

2. Use grid structure for subspace creation instead of any expensive clustering

technique.

3. Facilitate inlier pruning by focusing on a set of candidate outlier grids

(COG). This prevents unnecessary checking of inlier points for not being

anomalous.

4. Introduce an opportunistic scheme for kernel center (representative points,

see Section 6.3) selection. This enables a cost effective design of the KAGO

algorithm.

5. A brief outlier analysis is also provided.
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Table 6.2: Brief overview of the baseline method and our proposed approach
(Refer Section 6.3 for definitions of related concepts).

Algorithm Brief working mechanism Limitations Improvement

KNNOD [5]

Finds the distance to the Kth nea-
rest neighbor of any point. On the
basis of this distance, the outlierness
status of a point is determined.

Quadratic time compl-
exity. Re-computation
of outliers may be expe-
nsive. High resource co-
nsumption with every
update. Inappropriate
for variable density sub-
spaces.

KAGO

KAGO

Divides data-space into grids. Comp-
utes point density using KDE. Prunes
inlier grids to improve efficiency. Extr-
acts local outliers to find the top-N global
outliers incrementally without much loss
of accuracy.

Possible memory
overhead. Sensitive
to size of grid cells.

6.2 Related work and background

A study regarding incremental outlier detection known as iLOF [47] provides an

insight about handling high velocity data streams. A similar work I-IncLOF [48]

considers sliding window to designate a set of points as inliers or outliers. The

concept of KDE is employed in another method involving data streams [51] for

detecting local outliers. Use of K-nearest neighbor classification is also done [84]

for detecting outliers from HTTP traffic data. The approach in this work incre-

mentally learns the new traffic anomalies with advent of more data samples. An

alternative novel incremental outlier detection approach known as GEM [85] effi-

ciently detects anomalies at a given level of significance. Moreover, for detecting

online anomalies in unmanned vehicles, another research [86] has been carried out

with encouraging results. We also studied a traditional KNN based anomaly de-

tection approach for finding outliers in a large scale traffic data [5]. Few prominent

distance based algorithms were also proposed [87, 88] to extract outliers from large

datasets and are scalable over voluminous data streams [89].

Most of these existing outlier detection techniques adopt a distance based approach

and involve streaming data. Moreover, a lot of these methods also end up detecting

only local outliers. Our grid based approach coupled with the usage of KDE

provide a global outlier detection algorithm without neglecting regional sub-spaces.
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Table 6.3: Major notations used in the chapter (fourth contribution).

Notation Description
O Set of outliers prior to any changes in dataset
O′ Set of outliers after dataset is changed
D Original (Base) dataset
D′ Changed dataset after a point insertion.
i Number of new insertions
Outlier (.) Set of outliers
Lcj jth kernel center
p No. of partitions per dimension
d No. of dimensions
S The set of points within a grid cell

6.3 Preliminaries and Definitions

In this section, we define the key terms and concepts used in this contribution

(Refer Table 6.3 for the meaning of notations used henceforth).

6.3.1 Local outlier:

A point xi is termed as a local outlier if the data density at xi is substantially

lower than the densities at xi’s neighboring points. As shown in Figure 6.1, the

density at xi appears relatively lesser than that of its neighboring points. Therefore

point xi is more likely to be a local outlier, where the neighborhood taken into

consideration is the containing grid cell.

Figure 6.1: Illustration of local outliers within a grid cell using localized
density.
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Following steps are involved in designating a point xi as local outlier:
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1. Compute the density (local density)1 at point xi along with the densities at

xi’s neighboring points.

2. Estimate xi’s local outlierness score. This is based on the deviation of density

at xi contrary to those lying in its neighborhood.

6.3.2 Neighborhood:

For any point xi ∈ D (base dataset) [1 ≤ i ≤ n, |D| = n] and a grid cell

gc, c = 1, 2, 3, . . . , pd (d being the number of dimensions), xi’s neighborhood or

local neighborhood is represented by the corresponding gc that contains xi.

6.3.3 Kernel centers:

Let S be any sample of data (S ⊆ D), then we denote a kernel center by Lcj, 1 ≤
j ≤ m, such that |S| = r and m ≤ r (j,m, r ∈ Z+). Typically S represents the set

of points within a grid cell gc and Lcj is a data point sampled from S.

For any given kernel center, there exists a kernel function Kh. The influence Lcj

on the density of a point xi ∈ S [1 ≤ i ≤ r] is estimated on the basis of distance 2

from the kernel center to the concerned point xi and is given as: Kh(|xi − Lcj|).

6.3.4 Kernel Density Estimate (KDE):

The Kernel Density Estimate (KDE) is a non-parametric method applied to com-

pute the probability density function (PDF) of any data sample S = {x1, x2, x3, . . . , xr}.
For any given point xi ∈ S [1 ≤ i ≤ r], the KDE is used to estimate the likelihood

of point xi being drawn from S. The probability estimated through the kernel

density estimator may be interpreted as the “point density” at any xi ∈ S. In

context of this work, the overall local density at xi is given as the average of indi-

vidual density contributions made by all the chosen kernel centers. The following

equation gives the measure of overall local density at xi.

fD(xi) =
1

l

l∑
j=1

Kh(|xi − Lcj|) (6.1)

1In this contribution, density refers to local density.
2We adopt the cosine similarity [90] measure for evaluating the distance between xi and Lcj .
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where l is the number of influencing kernel centers, Kh(.) represents the kernel

function, h is the kernel bandwidth or the smoothing factor and Lcj represents

the jth kernel center.

Figure 6.2: Gaussian kernel as univariate KDE with different kernel band-
widths.
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For illustrative purpose, in Figure 6.2 we have shown the effect of three kernel

centers, each of them a carrying a Gaussian kernel function (red curve). The final

density function across all kernels assumes the shape of a curve represented by

blue color.

6.3.5 Kernel functions:

A variety of kernel functions may be applied for estimating the density using KDE

[29]. The Gaussian kernel [80] is one of the most frequently used kernel functions.

In this work, we use the Gaussian kernel as our KDE function (Equation 6.2).

KGauss(v) =
1

h(
√

2π)
exp(−1

2

v2

h2
) (6.2)

where v signifies the distance from kernel center Lcj to the target point xi. The

kernel bandwidth h is also known as the smoothing factor that controls smoothness

of the curve obtained from the KDE function. A higher value of h ensures a

smoother curve of the density function fD(.). From Figure 6.2(a) (left), we observe

that the kernel bandwidth (h) takes a value of 0.1 resulting in sharper curves as

compared to Figure 6.2(b) (right) with h = 0.3 having flatter curves.
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6.3.6 Grid local outlier score (glos):

Let S = {x1, x2, x3, . . . , xr} be the set of points in a grid cell such that |S| = r.

Then ∀xi ∈ S, i = 1, 2, 3, . . . , r, the glos value is defined as follows: Given a set

of kernel centers Lc = {Lc1, Lc2, Lc3, ...., Lcm} where Lc ⊆ S and m ≤ r, the glos

value of a target point xi is measured as:

glos(xi) = z-score

(
fD(xi),

1

m

m∑
j=1

fD(Lcj)

)
(6.3)

where z-score(P,Q) = P−Q
σQ

[91] signifies that if Q is the mean of a set of values,

then how many standard deviations the value P is below or above Q. Therefore

from Equation 6.3, we observe that the variable P is equivalent to the overall local

density at point xi i.e., fD(xi) while variable Q represents the mean local density

of all the chosen kernel centers Lcj ∈ Lc where 1 ≤ j ≤ m. A smaller glos(xi)

value indicates a higher probability of point xi being an outlier.

6.3.7 Mean grid local outlier score (mglos):

Let S = {x1, x2, x3, . . . , xr} represent the set of points in any grid cell gc, c =

1, 2, 3, . . . , pd, then we define the mglos value of any gc by the following equation

(Equation 6.4):

mglos(gc) =
1

r

r∑
i=1

glos(xi) (6.4)

6.3.8 Incremental anomaly detection:

Let the initial outlier detection scheme be defined by a mapping f : D → O where

O represents the set of outliers obtained from the non-incremental algorithm. Let

an insertion sequence of k points be made over a base dataset D (|D| = n, k � n).

After k number of insertions let D′ be the new dataset, then an incremental outlier

detection is defined by a mapping h : D ′ → O ′, where O ′ represents the outliers

produced from the incremental version. The outliers obtained through h(D′) is

similar to the one time outliers f(D ′) produced by the naive algorithm.
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6.4 Problem formulation

For k number of insertions where k ∈ N, let Tnaive be the total time taken by

the non-incremental algorithm and Tpoint−ins be the time taken by the point based

approximate incremental method. Let Onaive and Opoint−ins be the respective set of

outliers obtained after k number of updates. If |Mempoint−ins −Memnaive| be the

difference in percentage of average memory consumed, then we aim to establish

the following objectives:

• Tpoint−ins < Tnaive

• Opoint−ins ≈ Onaive

• |Mempoint−ins −Memnaive| ≤ δ, where δ is a small real number.

6.5 The KNNOD algorithm in brief

The K-Nearest Neighbors outlier detection [5] (KNNOD) algorithm involves dis-

tance based approach to extract outliers. For each point x ∈ D (base dataset),

the algorithm identifies the distance of x with its Kth nearest neighbor (dKx(say)).

If dKth
is considered as a threshold value, then all the data points whose dKx value

is greater than dKth
are considered as outliers while rest of the points remain as

inliers.

6.6 Framework of the KAGO algorithm

The KAGO algorithm is built around the following framework (Refer Figure 6.3):

1. Phase-1 Build the grid structure: Initially, the whole data-space is

divided into grids. The usage of grids eliminates the requirement of any

clustering [51] approach for separating noiseless points from outliers.

2. Phase-2 Compute the glos,mglos and COG values: From the existing

grid structure containing base dataset D, the glos value for each data point

from all the non-empty grid cells are evaluated using the KDE technique.

This is followed by the computation of mglos value for individual grid cell.
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Figure 6.3: The KAGO algorithm framework.
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Grids with lower mglos values within a certain threshold (determined in

course of the algorithm) are inducted into the set of candidate outlier grids

(COG).

3. Phase-3 New point insertion: A newly inserted point occupies a single

grid cell. As a result, the glos and mglos values of that concerned grid are

updated accordingly. This may result in a change within the set COG. A

grid cell previously belonging to COG may cease to exist within it due to

an increased mglos value.

4. Phase-4 Filter top-N global outliers from the updated COG set:

From the set of updated COG, the potential outlier data points are aggre-

gated. Based on the glos value of each data point, at most top-N global

outliers are extracted from the current iteration.

5. Repeat Phases 3 and 4 until requisite number data points have been inserted.
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6.7 The KAGO algorithm

6.7.1 Theoretical model

LetO = {o1, o2, o3, . . . , om} be the set of outliers from base datasetD = {x1, x2, x3, . . . , xn}
such that O ⊆ D and m ≤ n. Each item in D is represented by a d-dimensional

vector =⇒ xi = {xi1, xi2, . . . , xid} where xiq ∈ R, 1 ≤ i ≤ n, 1 ≤ q ≤ d.

Let xn+1 be the new data point added to D, therefore D changes to D′. D′ =

{x1, x2, . . . , xn, xn+1} becomes the current set of points from which the updated

outliers are to be extracted. The new set of outliers can be obtained by applying

the KNNOD [5] algorithm on D′. However, we avoid this procedure by developing

a less expensive scheme in form of the KAGO algorithm.

Let OKNNOD and O′KNNOD be the set of outliers obtained by executing KNNOD

upon dataset D and D′. Let O′KAGO be the set of outliers obtained by execut-

ing the proposed KAGO algorithm. If OKNNOD ← KNNOD(D); O′KNNOD ←
KNNOD(D′);O′KAGO ← KAGO(D′) then we establish the following objectives:

• TimeKAGO(D′) < TimeKNNOD(D′).

• OutlierKAGO(D′) ≈ OutlierKNNOD(D′).

6.7.2 Steps of the KAGO outlier detection algorithm

Prior to insertion of any new data point, we execute the first two phases of the

framework for KAGO algorithm. This includes creation of the grid structure

GridStruct (a set of grid cells) containing base dataset D and identification of

the set COG wrt. D. We define a new term called Algorithm-Components (Algo-

Comp). The GridStruct and COG are included as a part of Algo-Comp along

with the base dataset D. Once the Algo-Comp values are determined, a new point

is inserted. The pre-determined Algo-Comp values are then used by the KAGO

algorithm for extracting new set of outliers incrementally.

Next we present the steps of our proposed KAGO algorithm. Each step is sup-

ported by necessary explanation as and when required. The only parameter in-

volved is the number of partitions per dimension (p). A grid cell is denoted as gc

where c = 1, 2, 3, . . . , pd.
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1. Step 1 - Set the Algo-Comp:

(a) Load the base dataset D.

(b) Set the no. of grid cells to pd.

(c) Create GridStruct by dividing the dataspace containing D into pd d-

dimensional grid cells.

(d) Set the variable V olGrid to 2d+1. V olGrid gives a measure of the min-

imum number of points per grid cell exceeding which the cell becomes

relatively dense.

(e) COG = φ

(f) ∀ grid cell gc ∈ GridStruct, [1 ≤ c ≤ pd],

i. If (|gc| = 0), process the next grid cell.

ii. If (|gc| > V olGrid), where |gc| = r(say), then the grid cell is consid-

ered to be relatively dense. For a dense grid cell gc, KAGO selects

m kernel centers[m = 3] from that cell such that it represents the

data distribution within gc. The chosen kernel centers are:

• xi ∈ gc[1 ≤ i ≤ r], and xi is closest to the centroid of gc.

• xi ∈ gc[1 ≤ i ≤ r], and xi is closest to the minimal point3 of gc.

• xi ∈ gc[1 ≤ i ≤ r], and xi is closest to the maximal point4 of

gc.

iii. If (|gc| ≤ V olGrid) with |gc| = r(say), then the grid cell is con-

sidered to be sparse. Under this scenario, m kernel centers[m ≤ r]

within gc influence the local density of any point in the grid cell.

iv. Calculate KDE ∀xi ∈ gc[i =, 2, 3, . . . , r](|gc| = r) (Defined in Sec-

tion 6.3).

v. ∀xi ∈ gc[i = 1, 2, 3, . . . , r], compute glos(xi) (Defined in Section

6.3).

vi. Compute mglos(gc) (Defined in Section 6.3).

(g) Sort the non-empty grid cells in GridStruct in order of their increasing

mglos(gc) value.

(h) ∀gc ∈ top 50% of non-empty grid cells from GridStruct with lowest

mglos(gc) scores (sorted in increasing order), COG← COG ∪ {gc}.
3The point within gc where each co-ordinate in a given dimension is the minimum of all the

current points ∈ gc in that dimension.
4The point within gc where each co-ordinate in a given dimension is the maximum of all the

current points ∈ gc in that dimension.
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(i) Designate at most top-N points from COG as potential outliers based

on their increasing glos value.

2. Step 2- New point insertion: A new point npt(say) is inserted upon D.

The base dataset D changes to D′ where |D′| = |D|+ 1.

3. Step 3- Identify the affected grid: Post insertion of new point npt,

KAGO identifies the affected grid cell gc[1 ≤ c ≤ pd] where npt is positioned.

As a result the strength of affected gc, where |gc| = r(say) increases by

one,∴ |gc| = r + 1.

4. Step 4- Update the variables related to Algo-Comp wrt. the af-

fected grid cell:

(a) For the affected grid cell gc ∈ GridStruct where |gc| = r + 1,

i. If (|gc| > V olGrid), then the grid cell is considered to be relatively

dense. For a dense grid cell gc, KAGO selects m kernel centers[m =

3] (Similar to Step 1 (f) (ii)) in that cell such that it represents the

data distribution within gc.

ii. If (|gc| ≤ V olGrid), then gc continues to be a sparse grid cell.

Under this scenario, m kernel centers[m ≤ |gc|] influence the local

density of any point within the grid cell.

iii. Estimate the updated KDE ∀xi ∈ gc[i = 1, 2, 3, ...., r + 1].

iv. ∀xi ∈ gc[i = 1, 2, 3, ..., r + 1], compute the updated glos(xi).

v. Find the updated value of mglos(gc).

(b) Sort the non-empty grids cells in GridStruct according to their updated

mglos(gc) value in increasing order.

(c) Update the set COG by selecting a maximum of top 50% non-empty

grid cells5 from GridStruct according to their increasing mglos(gc) val-

ues. An inlier grid cell prior to addition of npt, will not become a part

of COG after insertion, despite having a relatively lesser mglos score.

(d) If COG = φ, there are no outliers post insertion of npt. Go to Step 6.

5. Step 5- Filter a maximum of top-N global outliers: Gather all data

points from the updated set of COG. Sort the data points in increasing

order of their glos score and extract a maximum of top-N global outliers

5Post entry of a new point, any grid cell previously belonging to COG might not be a part
of it anymore.
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(with repeated insertions, the number of existing outliers may be less than

N). A point having an inlier status prior to addition of npt will not be an

outlier after its insertion in spite of having a relatively lesser glos value.

6. Set D = D′.

7. Repeat Steps 2 to 6 till k number of points have been inserted.

6.8 Time Complexity of the KAGO algorithm

The first five component steps (Step 1 (a) to 1 (e)) mainly consist of the initial-

ization tasks. These include loading of base dataset (D) and creation of the grid

structure. As a result Step 1 involves a constant running time of O(1). For Step

1(f), two scenarios may arise while processing a certain grid cell gc. If gc is dense

(|gc| > V olGrid), then the algorithm considers three kernel centers to have an

influence for determining the point wise glos values. Let Grids represent the total

number of non-empty grid cells (a constant entity). Considering that the strength

of any grid cell does not exceed n (|D| = n), a running time of O(3r+ 3r) ' O(1)

is required for Step 1 (f (ii)) [ ∵ r � n, |gc| = r, ∴ O(3r) time each is required

for kernel center selection and KDE computation ∀ xi ∈ gc, i = 1, 2, . . . , r where

r > V olGrid ]. However, for sparse grid cells (|gc| ≤ V olGrid) (Step 1 (f (iii))),

O(r2) ' O(1) time is required given that all the r points within any gc act as ker-

nel centers. For datasets with certain highly dense grid cells (r ≈ n), a combined

running time of O(n ∗Grids) is involved for evaluating glos(xi) [1 ≤ i ≤ n].

The mglos value for each grid cell takes either O(r) or O(n) time (Step 1 (f (vi)))

depending on the strength of grid cell. Step 1 (g) involves sorting of non-empty

grid cells on the basis of their increasing mglos scores, which takes O(Grids ∗
logGrids) ' O(1) running time [∵ Grids � n]. Step 1 (i) requires a running

time of O(n log n) or O(1) depending on the number of potential outliers within

COG. The following steps: Steps 2 and 3 take O(1) time where the insertion of

new point and its grid cell identification takes place. The next step (Step 4) deals

with updation of glos value for each data point within the affected cell and mglos

value for the grid cell itself. Depending on the cell strength, Step (4 (a)) involves

a total time of O(r2) (sparse grid cell) or O(r) [r ≤ n] (dense grid cell). Sorting

of grids post insertion of new point takes O(Grids ∗ logGrids) ' O(1) time. The

new list of COG is therefore rebuilt in constant time.
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Table 6.4: Datasets and their partition size used in experiments.

Dataset #Features #Points
Base dataset
size

#Added
points

NSL-KDD3 3 25000 20000 5000
NSL-KDD4 4 25000 20000 5000
A1-Yahoo!
Search

4 18000 15000 3000

In Step 5, all the potential outliers lying within COG are sorted at a cost of

O(|COG| ∗ r log(|COG| ∗ r)) ' O(1) (Taking an average grid cell strength of r)

or O(n log n)[r ≈ n] based on their increasing glos values. We assume the initial

size of top-N outliers as
√
n. Therefore checking a point of its outlier status is

done by comparing it with the previous list. This involves a running time of

O(
√
n ∗ n) ' O(n). The overall time complexity (worst case) of KAGO algorithm

is therefore O(n+ n log n) ' O(n log n) for a skewed distribution, otherwise O(n)

(given that the strength of each COG � n). However, with increase in number

of insertions, the time taken to extract outliers (�
√
n) may reduce significantly

with more dense areas in the data space. In this scenario, the final list of outliers

may be obtained in constant time.

6.9 Experimental evaluation

6.9.1 Experimental setup and datasets used

We simulated our proposed KAGO algorithm in C++ on a Linux platform (In-

tel (R) Xeon (R) CPU E5530 @ 2.40GHz) with 32GB RAM. The experiments

were performed on two network intrusion detection datasets viz. NSL-KDD (PCA

(Principal Component Analysis) [92] reduced to 3 and 4 dimensions respectively)6

and a bidding data for market advertisement: A1 for Yahoo! Search7. For ex-

perimental purpose, we used the PCA reduced NSL-KDD dataset by the name

of NSL-KDD3 and NSL-KDD4. The Yahoo! search marketing advertiser bidding

data has been named as A1-Yahoo! (Refer Table 6.4 for dataset details).

Prior to execution of KAGO, we involve the entire dataset to decide the starting

and ending point of each dimension. The minimum and the maximum end for

each dimension is determined by the following relations:

6https://www.unb.ca/cic/datasets/nsl.html
7https://webscope.sandbox.yahoo.com/catalog.php?datatype=a
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Min = min{min{D1},min{D2}, . . . ,min{Dd}} (6.5)

Max = max{max{D1},max{D2}, . . . ,max{Dd}} (6.6)

Here, min{Di},max{Di} [1 ≤ i ≤ d] represents the minimum and maximum of

all the values along ith dimension. The GridStruct (Refer Section 6.7) is therefore

constructed with its origin containing Min (Equation 6.5) and every dimension

extends to an identical length till Max (Equation 6.6). The height of a grid cell

(h) in any dimension having p(p > 0) partitions per dimension is given as:

h =
Max−Min

p
(6.7)

The purpose of building GridStruct with entire dataset is to ensure the positioning

of a newly added point within the same grid space as the base dataset.

In case of a dense grid cell, we select three kernel centers (centroid, minimal,

maximal) (∴ m = 3, Refer Section 6.7) within the cell to exert influence on each

xi ∈ gc[1 ≤ c ≤ pd, 1 ≤ i ≤ r, r > V olGrid] while evaluating x′is kernel density. In

case of a sparse grid cell, we assign each xi ∈ gc[1 ≤ c ≤ pd, 1 ≤ i ≤ r, r ≤ V olGrid]

to behave as an influential kernel center within gc(∴ m = r). Next we describe

our observations based on experiments conducted for each dataset.

6.9.2 Experimental Results and Analysis

1. Observations for NSL-KDD3: For NSL-KDD3 dataset, the value of pa-

rameter p (#partitions/dimension) was taken to be 5. As a result, the

total number of grid cells within GridStruct was 125 [∵ #Grids = pd, d =

3(#dimensions)]. After analyzing the entire dataset (25000 points), the

Min and Max values were found to be -4.09628 and 111.051 respectively.

The origin of the co-ordinate system was therefore located at (-4.09628,-

4.09628,-4.09628). The maximal point of GridStruct was positioned at

(111.051,111.051,111.051). For each of the 125 grid cells, the grid height

(h) in every dimension was identical to a value of 23.0295 (Using Equation

6.7).

Key Result(s): The base dataset size was taken to be 20000 upon which

5000 additional points were inserted one at a time. Prior to insertion of any
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Figure 6.4: NSL-KDD3 dataset: Efficiency comparison between KAGO and
KNNOD.
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Figure 6.5: NSL-KDD3 dataset: Number of COG.
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new point npt, five grid cells numbered: 1, 26, 51, 76 and 101 were filled

with data points. Grid #1 was the only dense grid cell with more than 9

(∵ V olGrid = 2d+1) points. From Figure 6.4, we observe that our proposed

KAGO algorithm (lower curve) consistently outperformed KNNOD [5] till

the entry of final point. Based on our observation, a maximum speedup of

about 6660 (≈ order of 3.8) was achieved by KAGO when the 4000th point

was inserted. However a curve dip (Figure 6.4) was observed after 615th and

3954th insertion in case of KAGO.

Reason(s): The high speedup of KAGO can be attributed to its grid based

approach of dealing with subspaces instead of the entire dataset scan. The

efficiency curve dip (Figure 6.4) for KAGO occurred because two new grid
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Figure 6.6: NSL-KDD3 dataset: Maximum of top-N outliers post every in-
sertion for NSL-KDD3 (NSL-KDD PCA reduced to 3 dimensions).
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cells (previously empty) viz. Grid# 101 and Grid# 76 were affected when

615th and 3954th point were inserted. These newly affected grid cells remain

sparse (∵ |g76| = 4, |g101| = 3). Therefore the time required to compute the

glos values of points within the affected cells are much less as compared to

the denser grid cells.

Key Result(s): The number of grid cells in COG (set of candidate outlier

grids) was consistent throughout the insertion process of all data points

(Figure 6.5).

Reason(s): A constancy in the number of grid cells in COG implies that

no new cells were affected due to point insertions and that the list of initial

COG with probable outliers remain untouched even after repeated addition

of points. It may also be the case that a single grid cell in a COG of

any iteration had been dismantled by a newly affected cell while rest of

the grid cells in erstwhile COG retain their position. No deviation in the

number of cells in COG also means that the potential outliers (at most

top-N, N=b
√
|D|c, |D| = 20000) were selected post every insertion from the

three grid cells within COG.

Key Result(s): We observed a steady decrease in the number of top-N

outliers from 141 to 131 after all the insertions were made (Figure 6.6).

Reason(s): The reason for this steady decrease in the number of outliers

may be attributed to the increase in glos values of data points. The glos

scores increase due to a dense neighborhood within the affected grid cells.
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Redundant insertions on certain cells initiate this phenomenon where a pre-

vious outlier point may gradually lose its outlier status. This results into a

sufficiently filled parent grid cell having a higher mgols value.

2. Observations for NSL-KDD4: The parameter p was set to 5 resulting

in a total of 625 grid cells (∵ d = 4). The base dataset size was taken to

be 20000 facilitating insertion of 5000 points. The Min and Max values for

GridStruct were found to be -6.28682 and 111.051 respectively. The grid

height equaled 23.4676 in each of the four dimensions. Prior to insertion of

any new data point, a total of five grids were filled, with Grid #1 being the

densest containing 19985 points.

Figure 6.7: NSL-KDD4 dataset: Efficiency comparison between KAGO and
KNNOD.
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Key Result(s): On observing the results for subsequent insertions from

Figure 6.7, we found that KAGO achieved a maximum speedup of around

6445 times (≈ order of 3.8) over KNNOD post insertion of the last point.

However a curve dip (Figure 6.7) was observed after 615th, 2991st and 3955th

insertion was made. No change was was observed in the number of COG

throughout all point insertions (Figure 6.8).

Reason(s): Similar reasons as applicable to the previous dataset. The

newly affected grid cells in this case were: Grid# 101, Grid# 126 and Grid#

76 respectively.

Key Result(s): For the set of outliers (Figure 6.9), we observed that upon

entry of first point, a total of 141 outliers were extracted which reduced to
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Figure 6.8: NSL-KDD4 dataset: Number of COG.
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Figure 6.9: NSL-KDD4 dataset: Maximum of top-N outliers post every in-
sertion for NSL-KDD4 (NSL-KDD PCA reduced to 4 dimensions).
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124 post entry of the 5000th point.

Reason(s):This is because upon entry of any new point, a sparse grid cell

may turn into a dense resulting in an overall increase in the mglos score of

that affected grid cell. This results in a significant decrease in the number

of top-N global outliers.

3. Observations for A1-Yahoo!: The parameter p was assigned a value of

5. The dataset being used consisted of four dimensions resulting in a total

of 625 grid cells. The base dataset size was fixed at 15000 with an additional

3000 points being added one at a time. The Min and Max values were

calculated to be 0 and 1133 respectively with a grid height h equaling 226.6
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per dimension. After insertion of all the data points, noticeably for A1-

Yahoo! dataset (Refer Figure 6.10), KAGO achieved a maximum speedup

of about 8403 times (≈ 3.92) over KNNOD.

Figure 6.10: A1 - Yahoo! dataset: Efficiency comparison between KAGO and
KNNOD.
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Figure 6.11: A1 - Yahoo! dataset: Number of COG.
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Key Result(s): We observed that there is a periodic dip in the efficiency

curve (Figure 6.10) for KAGO over subsequent point insertions.

Reason(s): Initially preceding any insertion, a total of 6 grid cells were filled

with data points: Grid #46 (321 points), Grid #17 (404 points), Grid #22

(227 points), Grid #47 (3928 points), Grid #16 (5779 points) and Grid #21

(4341 points). Once the new insertions were made, a previously empty grid

cell (Grid# 52) started filling up from the 37th insertion periodically. The
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Figure 6.12: A1 - Yahoo! dataset: Maximum of top-N outliers post every
insertion for A1 - Yahoo!.
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new grid cell continued to be sparse till the entry of first seventeen points

with each point behaving as kernel centers. Further insertion into the same

cell transformed Grid# 52 into a relatively denser grid cell. However, the

total number of points within Grid# 52 was still less than the other affected

cell (Grid #47) during repeated insertions. As per KAGO algorithm, a

running time of O(3r+ 3r) (Refer Section 6.8) is required for computing the

glos value of individual points within a dense grid cell. Let |g47| = r1 and

|g52| = r2, ∵ r2 < r1 across all insertions, we observe a periodic dip in the

efficiency curve of KAGO (Figure 6.10) when Grid #52 is affected.

Key Result(s): Contrary to the previous datasets, we observed that the

number of cells in COG (Figure 6.11) remained as three till the insertion of

36th point. When the 37th point was inserted, |COG| increased to 4.

Reason(s): This may be possible when new grid cells are affected (previ-

ously empty) post insertion of data points. We observed that a new cell

(Grid #52) was targeted when the 37th point was entered. Upon observing

the set of populated cells prior to any data insertion, we clearly noticed that

Grid #52 was previously empty. This triggers a re-shuffle in the new COG

list resulting in an addition of one or more grid cells as candidate outlier

grids based on the updated mglos values.

Key Result(s): The set of top-N (N=122) outliers after the entry of first

point experienced a steep decrease (Refer Figure 6.12) till the 890th point

(N=28) was inserted. During this phase, Grid #47 and #52 were repeat-

edly affected. From the insertion of 891st point onward, no more reduction
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in number of outliers was observed.

Reason(s): This may happen when the glos values of existing points are

at least as low as the value necessary for retaining the outlier status due

to previous insertion and the new points are a part of the dense grid cells.

Redundant positioning of new points in previously affected cells ensures a

higher glos value for the contained points within the cell itself. This phe-

nomenon ensures a decrease or constancy in the number of outliers.

Table 6.5: Key experimental results of the KAGO algorithm

Dataset #Grid cells
#Added
points

Time KAGO
(final point) (sec)

Time KNNOD
(all points) (sec)

Speedupmax
(#insertion)

NSL-KDD3 125 5000 0.06034 378.805
6660.12

(4000)

NSL-KDD4 625 5000 0.06064 390.89
6445.33

(5000)

A1-Yahoo! 625 3000 0.021 183.134
8403.72

(3000)

A brief summarization of experimental results comparing KAGO with KNNOD

[5] on all the datasets have been shown in Table 6.5. Next we compare both the

algorithms in terms of their memory consumption.

6.9.3 Memory usage

The high efficiency of KAGO over KNNOD [5] in terms of CPU execution time

was achieved along with a significant reduction in memory consumption (Refer

Table 6.6). For each dataset, we observed that the memory usage due to KAGO

was approximately half as that of the KNNOD algorithm. On an average, the

KAGO algorithm consumed about 51.57% less memory as compared to KNNOD,

∴ |Mempoint−ins−Memnaive| ≈ .51. Contrary to KAGO, a larger share of memory

consumption due to KNNOD results from its storage of K-nearest neighbors for

each data point in form of KNN matrix. The KAGO algorithm on the other hand

allocates space only to the filled up grid cells within GridStruct facilitating the

storage of glos value for each point. The grid cell indices and outliers occupy

additional memory space.

6.9.4 Brief outlier analysis

For KNNOD, the size of K-Nearest Neighbor (KNN) and a cutoff threshold deter-

mine the outliers for a given dataset. In our experimental procedure, we initially
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Table 6.6: Memory usage comparison between KAGO and KNNOD [5].

Dataset
KAGO memory
usage (MB)

KNNOD memory
usage (MB)

Gain
factor

NSL-KDD3 9.88 19.74 2.016

NSL-KDD4 10.42 20.13 1.93

A1-Yahoo! 6.64 15.76 2.37

identified the distance dKxi
(say) of each point xi ∈ D[1 ≤ i ≤ n] with its Kth

nearest neighbor. The mean of all such distances is treated as the threshold dKth

(say). The value of K (K=d
√
n/10e) [93] was chosen to be 15,15 and 12 for NSL-

KDD3, NSL-KDD4 and A1-Yahoo! datasets respectively. Any point whose dKxi

value is greater than dKth
, obtains an outlier status.

Table 6.7: Algorithm correctness evaluation.

Dataset #Classes
KAGO KNNOD

RI F1-score RI F1-score
NSL-KDD3 22 0.47563 0.64464 0.38091 0.55168
NSL-KDD4 22 0.40783 0.57938 0.39762 0.55168
A1-Yahoo! 2 1.0 1.0 1.0 1.0

We evaluated the RI measure and F1-score for comparing the quality of results

related to KAGO and KNNOD [5] (Refer Table 6.7). For NSL-KDD3 dataset,

KAGO differs from KNNOD with approximately 9% more correct outliers’ detec-

tion (RI). In case of NSL-KDD4, the percentage accuracy of both the algorithms

are almost identical with around 1% difference in favor of KAGO. No change in

accuracy was observed in case of A1-Yahoo! dataset. The reason for obtaining a

better accuracy for the KAGO algorithm can be attributed to its repeated inlier

pruning based on glos value instead of filtering outliers based on any predeter-

mined threshold. The exactness wrt. both the algorithms have been compromised

to a certain extent. However the usage of KAGO has ensured a more efficient and

effective outlier detection scheme as compared to KNNOD (Refer Table 6.5, 6.7)

∴ Tpoint−ins(TimeKAGO) < Tnaive(TimeKNNOD) and Opoint−ins(OutlierKAGO) ≈
Onaive(OutlierKNNOD).
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6.10 Key properties of the KAGO algorithm

In this section, we dwell on the probable reasons behind certain assumptions made

for our proposed algorithm. We also present few proofs related to some key pos-

sibilities in this work.

1. In the KAGO algorithm, any grid cell gc[1 ≤ c ≤ pd] is considered as sparse

(V olGrid ≤ 2d + 1) or relatively dense (V olGrid > 2d + 1) depending on the

number of contained points within it.

Analysis/Reason(s): If the average number of points per grid (|D|/#Grids)
were taken instead of V olGrid, then there exists a possibility that a reason-

ably filled up subspace (grid cell) might be potentially inducted into COG

in spite of being an inlier cell. In order to prevent this scenario, we incor-

porated the threshold V olGrid. Any d−dimensional grid cell contains 2d

corners and a center point. Since a combination of these points can exert

distinct influence as kernel centers on any other point within gc, we assumed

V olGrid to be the threshold between a sparse and a relatively denser grid

cell. By no means we impose the fact that for any gc (|gc| > V olGrid), the

cell is an absolute dense grid cell and hence we use term “relatively dense”

wrt. our KAGO algorithm.

2. Three kernel centers are involved in a dense grid cell while all the data points

within any sparse cell are treated as kernel centers.

Reason(s): For any sparse grid cell gc[1 ≤ c ≤ pd], we have |gc| ≤ V olGrid.

As compared to the size of base dataset D, |gc| � |D|. Therefore a selective

choice of kernel centers from gc may not represent the local data distribution

within it. Moreover due to sparse nature of the concerned grid cell, the

included points within gc might be spatially dispersed. As result, ∀xi ∈
gc (1 ≤ i ≤ r, r ≤ V olGrid), xi can potentially act as a kernel center having

a distinct impact on KDE (local density) of any other point within gc. Due

to these reasons, each data point within a sparse grid cell are treated as

kernel centers.

In case of a dense grid cell (|gc| > V olGrid), the points within gc are very

close to each other. Effectively, a similar influence of such close neighboring

points on KDE of any xi ∈ gc (1 ≤ i ≤ r, r > V olGrid) may lead to

redundant computation. In order to efficiently compute the KDE ∀xi ∈ gc,
we chose to represent the set of points in a dense grid cell with three kernel
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centers. These kernel enters include data points that are closest to minimal,

maximal and centroid points of the cell (Refer Section 6.7).

3. A relatively denser grid cell with higher number of points may belong to the

set COG.

Analysis/Reason(s): The COG is identified based on increasing mglos

value of the grid cells. However after sorting all the non-empty cells, a

certain grid cell gc (|gc| > V olGrid) may not obtain a sufficiently higher

mglos so as to be pruned like an inlier cell. As a result gc continues to be a

part of COG.

4. Selected grid cells in COG may not always produce the top-N global outliers

after point insertions.

Reason(s): This is an exceptional scenario which may arise if repeated

insertions are made to an empty or single point grid cells. Under such a

scenario, the dense grid cells will be pruned as inlier cells. However due to

increase in the number of sparse grid cells, the list of cells in COG may not

include such potential outlier cells. This may result in reduction of top-N

global outliers initially. On the contrary, if we increase the percentage of grid

cells in COG, then unnecessary computation may be involved in accessing

the inlier points having a higher glos value.

6.10.1 Lemmas related to the KAGO algorithm

Lemma 6.1. Let qmax = max{|COG|} = d#Grids
2
e produced from D. Let q (q <

qmax) be the size of COG prior to any insertion. Then for each point insertion

xi, 1 ≤ i ≤ k , we have 0 ≤ |COG| ≤ qmax.

Proof: With every insertion xi, the mglos value of the affected grid cell gc (1 ≤
c ≤ pd) gets updated. The new list of grid cells is generated to produce an updated

COG. It is possible that the cells in old COG may become sufficiently dense to

move out of new COG, but a previously inlier grid cell will not become a part of

new COG =⇒ |COG| = 0.

If the old COG retains some of its grid cells after xi’s insertion, while some cells are

removed due to increase in mglos value, then |COG| < q. If no loss in new COG

is observed due to redundant insertion on same grid cell(s), |COG| = q,∴ 0 ≤
|COG| ≤ q. However, if the previously empty cells are affected across insertions,
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then at most all the grid cells may become non-empty. In that case q = qmax ∴ 0 ≤
|COG| ≤ qmax.

Lemma 6.2. Degree of outlierness ∀x ∈ D ∝ 1/glos(p).

Proof: From the definition of glos value for any x ∈ D (Section 6.3), we have

glos(x) = f(z-score(x)) [91]. z-score(P,Q) = P−Q
σQ

, where P is the density of x

wrt. any grid cell gc[1 ≤ c ≤ pd] and Q is the mean local density of the included

kernel centers within gc. Therefore if z-score(P,Q)� 0 =⇒ P−Q
σQ
� 0 =⇒ P �

Q [σQ 6= 0], then a highly dense point x has a higher glos value. A low density

point (P � Q) has lower glos(x) value and an higher probability of becoming an

outlier. Effectively, grid cells containing points with lower glos(x) values are more

likely to become a part of COG.

6.11 Conclusion

In this contribution, we proposed an approximate point based incremental algo-

rithm known as KAGO. Our proposed approach relies on local density derived

through KDE instead of any distance measure while determining the local out-

lier status of a point. The local outliers obtained from different sub-spaces (grid

cells) combine to produce at most top-N global outliers. In a dynamic setup,

KAGO offers an efficient outlier detection scheme by selectively handling data

points within the affected grid cell instead of entire data space. Experimental

results on large network datasets and a search marketing advertiser bidding data

showed the greater efficiency of KAGO over KNNOD, ∴ Tpoint−ins < Tnaive. In

addition, the KAGO algorithm consumed about half the memory as compared to

KNNOD. We also showed that Opoint−ins ≈ Onaive thereby proving the objectives

as stated in Section 6.4.
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Chapter 7

Conclusion and Future Scopes

Real time data analysis finds its importance in various modern day applications.

Such applications may range from providing online recommendations to identifying

threats in cyber security systems (Refer Section 1.2). A majority of these applica-

tions require extraction of patterns or meaningful information from the data with

continuous updates. However, the task of extracting information from the ever

changing data rests on certain dynamic algorithms specific to a given domain such

as clustering, anomaly detection etc. These algorithms need to be curated in a

definite manner such that a higher degree of efficiency is achieved along with an

exact or near accurate output.

In this thesis, we particularly focused on the area of density based clustering and

outlier detection. In our pursuit to produce necessary contributions, we developed

four density based incremental mining algorithms. Three of these algorithms are

related to clustering and one in the field outlier detection. Out of the three cluster-

ing algorithms, two of them provide an exact incremental solution. The remaining

algorithm is an approximate incremental extension to the baseline method. The

lone outlier detection algorithm leveraged the idea of KDE [29, 51] to find global

outliers from a changing data.

While our first and the fourth contribution dealt with point-wise insertion of data

[71], the second and third contribution involved both insertion and deletion of

points in batch-mode.
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7.1 Summary of the contributions

1. In our first contribution, we aimed at developing an approximate incremental

version of the MBSCAN [2] clustering algorithm known as iMass. Intelli-

gent construction of new mass-matrix, and an efficient design of the iForest

using prior node-split criterion enabled iMass to achieve the much desired

efficiency. The iMass algorithm was about 191 times faster than MBSCAN

(order of ≈ 2.28) for Iris dataset. Moreover by retaining the exactness of

clusters for certain datasets and maintaining an overall accuracy of about

60.375% for unlabeled data, we showed the effectiveness of iMass over MB-

SCAN. We further observed that the iMass algorithm maintained a cluster

accuracy percentage of about 80.4% for Libras dataset (class labeled) in

terms of RI value. Also, for the Iris dataset (class labeled), an improved

F1-score of 0.55848 was achieved.

2. For the second contribution, we proposed an exact incremental alternative

to the SNN-DBSCAN (SNNDB) [24] algorithm. The proposed scheme sup-

ports batch-wise insertion of data points. InSDB [1], an existing incremen-

tal extension to SNNDB involves point based insertion. This makes the

process extremely slow when updates are made to a larger base dataset.

Moreover when the size of updates increases, InSDB fails to detect clusters

efficiently as compared to SNNDB. This issue was resolved by our proposed

BISDBadd algorithm which proved to be the most efficient compared to

its sub-variant methods: Batch − Inc1 and Batch − Inc2. The clusters

obtained through BISDBadd are identical to that of SNNDB. BISDBadd

outperformed SNNDB by upto an order of 3 (≈ 1000 times) over three

real world and two synthetic datasets. The mean memory overhead due to

BISDBadd was around 38.87% as compared SNNDB..

3. In our third contribution, the proposed algorithm (BISDBdel) incrementally

extended SNNDB while removing data points. BISDBdel proved to be the

most efficient as compared to its sub-variant methods: Batch − Dec1 and

Batch − Dec2. The clusters obtained through BISDBdel are identical to

that of the SNNDB algorithm. Comparisons with SNNDB revealed that

the efficiency achieved by BISDBdel reached upto an order of 4 (≈ 10000

times) over three real world and two synthetic datasets. The average memory

overhead due to BISDBdel was around 41.08% as compared to SNNDB.
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4. In our final contribution, we proposed a KDE based approach for detecting

outliers from a grid partitioned data space. Against every insertion, the local

outliers obtained from different sub-spaces combine to produce a set of at

most top-N global outliers. The KAGO algorithm outperformed KNNOD

by more than an order of 3.91 (≈ 8304 times) (maximum) over two intru-

sion detection datasets and a bidding data for market advertisement related

to a search engine. Outliers’ evaluation on these datasets showed a mean

improved accuracy of around 3.3% in case of KAGO. For each dataset, we

observed that the memory usage due to KAGO is approximately half as that

of the KNNOD algorithm. On an average, KAGO consumed about 51.57%

less memory as compared to KNNOD.

7.2 Future scopes

The clustering techniques proposed in this thesis comply with the “Impossibility

Theorem” of clustering [94]. This theorem suggests that clustering is an ill-posed

problem. As a part of our future work, the various similarity measures adopted in

the proposed algorithms may be readjusted in an attempt to disprove this theorem.

The incremental algorithms proposed in this thesis provide necessary insights for

further work in related direction. The iMass clustering algorithm only facilitates

single point insertion of data. This work may be extended to support batch mode

updates incrementally. Moreover, through either of the algorithms viz. BISDBadd

and BISDBdel, an exact incremental extension of SNNDB [24] was proposed.

Knowing the importance of SNNDB in extracting clusters of arbitrary shapes

and densities, it may be desirable to provide incremental extensions to more such

robust clustering algorithms. We also observed that in Chapters 4, 5, the batch-

incremental methods outperformed SNNDB and the point-based schemes after a

certain percentage of updates. It will be interesting to see the maximum limit

of batch size that can be allowed, beyond which we cannot sustain the efficiency

gained due to BISDBadd or BISDBdel.

The KAGO algorithm used the Gaussian kernel function for computing the local

density of any point. It will be interesting to observe the influence of other kernels

apart from the Gaussian kernel on the overall outliers’ extraction process. As

a part of future work, a comparison between KAGO and other state of the art

outlier detection algorithms may be performed to further evaluate the efficiency.

187

TH-2363_136101011



Moreover, the algorithm may support batch mode updates involving both insertion

and deletion of data.
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