
Enhancement of SBST Techniques
for Detection of Processor Faults

Thesis submitted in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

in

Computer Science and Engineering

Submitted by

Vasudevan.M.S

Under the guidance of

Dr. Santosh Biswas and Dr. Aryabartta Sahu

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
June, 2020

mailto:vasudevan@iitg.ac.in
http://www.iitg.ac.in/santosh_biswas/
http://www.iitg.ac.in/asahu/
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in

Abstract

At-speed testing of processors is extremely difficult with any external testing

technique, therefore, Software-based self-testing (SBST) is introduced for ef-

ficient at-speed testing of processors. Evolutionary approaches are used for

the automated synthesis of SBST codes. However, SBST development has

been exceedingly difficult due to the sophisticated circuits of the modern pro-

cessor hardware. In addition, the momentary nature of faults necessitates a

careful and extensive test application. This thesis comprises four major con-

tributions which address the challenges in SBST code synthesis, application,

and optimization phases.

In the first contribution, we present a greedy cover-based strategy for au-

tomated SBST code synthesis, where the instruction sequences that detect

the freshly identified faults are preserved throughout the evolutionary pro-

cess to identify the hard-to-test faults of the processor. This preservation

of test programs that detect hard-to-test faults in the evolutionary process

increases the fault coverage. Also, a selection probability is estimated from

the testability properties of the processor components and assigned to every

instruction to accelerate the test synthesis. In addition, we have used high-

level behavioral fault models for modeling processor hardware faults without

using gate-level details of the processor. In this contribution, we synthesize

high-quality SBST programs with 96.32% fault coverage for a MIPS proces-

sor and 95.8% fault coverage for a Leon3 processor with the detection of 40%

of the hard faults.

However, the test synthesis time required for automated SBST synthesis is

high for the existing evolutionary approaches. So, an advanced SBST tech-

nique, termed as Rapid SBST (RSBST), is proposed in the second contri-

bution that reduces the overall test synthesis time by reusing the simulation

responses of existing test programs of identical observability. The fault diag-

nostic characteristics of test programs are reused for the test quality evalua-

tion if these test programs produce similar values in the observable locations

of the processor. We exploit this reusability to enhance the speed of the test

synthesis process. In a nutshell, this contribution develops a faster technique

for synthesizing high-quality SBST programs. This strategy develops test

solutions with 96.1% fault coverage for the MIPS processor in 90 hours and

test solutions with 95.5% coverage for the Leon3 processor in 98 hours. To

achieve this, we have exploited the reusability of 82.1% of test solutions for

the MIPS processor and the reusability of 80.8% of test solutions for the

Leon3 processor during the evolutionary test synthesis.

In the third contribution, the test codes are optimized with the help of en-

hanced assembly code compaction techniques. The tradeoff between test

compaction and computational effort required for the test compaction is

dealt with two compression stages. In the first stage, the test program is

preprocessed using a novel instruction removal technique that makes use of

data dependence graphs to identify and eliminate independent and redundant

instruction groups. In the second stage, an instruction restoration technique

delivers a high compaction rate with the help of low-cost, high-level logic

simulations for test quality evaluation. In this contribution, SBST programs

are efficiently compacted after test synthesis phase by identifying and re-

moving 19% of the redundant instructions of the SBST program consuming

72.24% of the computational cost of instruction-by-instruction redundancy

check.

In the online test application mode, SBST schemes provide high fault cover-

age but incur long detection latencies in case of intermittent faults, due to

large size and longer execution time of the test codes. In the last contribu-

tion, a fragmented SBST method is developed which develops a reliable set

of SBST code fragments of minimal fault detection latency to detect the in-

termittent faults and enhance the reliability of the system. Also, these code

fragments suffer inconsiderable overall fault coverage drop, compared to the

coverage of the complete SBST test code. In this contribution, test pro-

grams with a better trade-off between execution time and fault coverage are

selected during the test synthesis phase and are applied for the online testing

of the processor. In our experiment, a group of 20 smaller test programs of

80% fault coverage and adequate overall coverage of 96% is observed to have

maximum reliability to replace the optimal test program with 96.3% for the

online testing of MIPS processor for our input data set.

Declaration

I certify that:

a. The work contained in this thesis is original and has been
done by me under the guidance of my supervisors.

b. The work has not been submitted to any other Institute for
any degree or diploma.

c. I have followed the guidelines provided by the Institute in
preparing the thesis.

d. I have conformed to the norms and guidelines given in the
Ethical Code of Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis,
figures, and text) from other sources, I have given due credit
to them by citing them in the text of the thesis and giving
their details in the references. Further, I have taken per-
mission from the copyright owners of the sources, whenever
necessary.

Vasudevan.M.S

mailto:vasudevan@iitg.ac.in

Copyright

Attention is drawn to the fact that copyright of this thesis rests with its

author. This copy of the thesis has been supplied on the condition that

anyone who consults it is understood to recognise that its copyright rests

with its author and that no quotation from the thesis and no information

derived from it may be published without the prior written consent of the

author.

This thesis may be made available for consultation within the Indian Institute

of Technology Library and may be photocopied or lent to other libraries for

the purposes of consultation.

Signature of Author..

Vasudevan.M.S

mailto:vasudevan@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “Enhancement of
SBST Techniques for Detection of Processor Faults”, be-
ing submitted by Vasudevan.M.S, to the Department of Com-
puter Science and Engineering, Indian Institute of Technology
Guwahati, for partial fulfillment of the award of the degree of
Doctor of Philosophy, is a bonafide work carried out by him un-
der our supervision and guidance. The thesis, in our opinion, is
worthy of consideration for award of the degree of Doctor of Phi-
losophy in accordance with the regulation of the institute. To
the best of our knowledge, it has not been submitted elsewhere
for the award of the degree.

........................

Dr. Santosh Biswas

Associate Professor

Department of Computer Science and Engineering

IIT Guwahati

........................

Dr. Aryabartta Sahu

Associate Professor

Department of Computer Science and Engineering

IIT Guwahati

mailto:vasudevan@iitg.ac.in
http://www.iitg.ac.in
http://www.iitg.ac.in
http://www.iitg.ac.in/santosh_biswas/
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in/asahu/
http://www.iitg.ac.in/cse/

Dedicated to

my wife and my mother

Acknowledgments

I wish to express my deepest gratitude to my supervisors, Prof. Santosh

Biswas and Prof. Aryabartta Sahu for their valuable guidance, inspiration,

and advice. I feel very privileged to have had the opportunity to learn

from, and work with them. Their constant guidance and support not only

paved the way for my development as a research scholar but also changed

my personality, ability, and nature in many ways. I have been fortunate to

have such advisors who gave me the freedom to explore on my own and at

the same time the guidance to recover when my steps faltered. Besides my

advisors, I would like to thank the rest of my thesis committee members:

Prof. J. K. Deka, Prof. H. K. Kapoor, and Prof. Arnab Sarkar for their

insightful comments and encouragement. Their comments and suggestions

helped me to widen my research from various perspectives.

I would like to express my heartful gratitude to the administration of IIT

Guwahati and all faculty and staff of Dept. of Computer Science and En-

gineering for extending their co-operation in terms of technical and official

support for the successful completion of my research work.

I am thankful to my friends Jiss J Nallikuzhy, Hrishikeshan, Vivek Lukose,

Vijith, Sandeep, Haris, Sonu, Anoop, Sajith, Arun Mathew, Vishnu, Piy-

oosh, Dileep, Uma Narayan, Malu, Thomas, Mathew, Fahad, Suresh Babu,

Ranjith, Anuj Budhkar, Vikavi, Arjun P, Naveen, Abhijith K V, Sooraj

Chacko, Jith, Freddy, Hijas, Tom, Jorge, George Moses, Sudhi, Rezeem,

Ansel Jose, Vivek Francis, Kiran Mukhathala, Priyadarshan, Sreejith, Akhil

GV, Nikhil, Salama, Suvin, Christy, Abhjith, Faizal, Kiran, Nikhil V, Akhil,

Shahabaz, Subhash, Manu, Rafi, Rishi shreedhar, Gokul, Aneez, Vyzakh,

Burhan, Ashmil, Ranchal, Amarjith, Aswani, Arun, Albert, Adarsh, Riya,

Gadha, Sreejith Muarlidharan, Sachin, Thahir, Adil, Hrishi, Shibili, Merlin,

Caraline for sharing beautiful moments during my life in IIT Guwahati. I

am grateful to all friends in the department especially Achyut mani tripathi,

Pradeep sharma, Panthadeep, Dhantu, Nayantara, Ashish Mishra, Rakesh

pandey, Aakansha for their unconditional help and support. You made my

life at IIT Guwahati a memorable experience.

I am also grateful to the professors of malayali community Dr. A. Rajesh,

Dr. Benny George K, Dr. Ganesh Natarajan, Dr. Ravi K, Dr. Vibin

Ramakrishnan, Dr. Suresh Kartha, Dr. Tony Jacob, Dr. John Jose, Dr.

John Thomas and their families. I cherished my moments with the football

and swimming clubs of IIT Guwahati.

Most importantly, I thank for the love and patience of my family. I want

to thank my parents, in-laws, brother Padmanabhan, sister-in-law Parvathy,

brother-in-law Aswin for being a constant source of love, concern, support,

and strength all these years.

Last but not least, to Aswathy, whose seamless encouragement, cheerful pres-

ence, and absolute love made my days bright and jubilant.

Contents

1 Introduction 1

1.1 Complexity of Modern Digital Circuits 1

1.2 Digital Testing Principles . 2

1.3 Processor Testing and its Challenges . 3

1.4 External Testing to Self-testing: A Paradigm Shift 4

1.4.1 SBST of Processors . 6

1.4.1.1 Phases of SBST Procedure 6

1.5 Principal Scheme of SBST Automation 8

1.5.1 Test Code Preparation in MicroGP Methods 10

1.6 Test Quality Evaluation . 11

1.6.1 Gate-level Fault Models . 11

1.6.2 Behavioral Fault Models . 12

1.6.3 External Fault Simulation . 12

1.7 Motivation and Objectives . 14

1.8 Contributions . 18

1.9 Organization of the Thesis . 20

2 Literature Survey 23

2.1 Chronology of Processor Testing Methods 23

2.2 Advanced SBST Techniques . 25

2.2.1 SBST Code Synthesis . 27

2.2.2 Faster SBST Code Synthesis . 30

2.2.3 SBST Code Optimization . 30

2.2.4 SBST Code Application . 33

2.3 Summary . 36

xiii

CONTENTS

3 Greedy Cover-based Evolutionary SBST Synthesis 39

3.1 Preliminaries and Working Principle . 40

3.2 Evolutionary Approach for Test Program Synthesis 44

3.2.1 Testability of Processor Components 48

3.2.2 Self Adaptation of Evolutionary Strategies 50

3.3 Experimental Study for MIPS Processor 53

3.3.1 Testability and Coverage Evaluation 53

3.3.2 A Study on the Effectiveness of Behavioral Fault Models 60

3.4 Experimental Study for Leon3 Processor 64

3.5 Comparison and Discussions . 68

3.6 Summary . 69

4 Rapid SBST (RSBST) Program Synthesis 71

4.1 Overall Approach of RSBST Program Synthesis 71

4.2 Observability-based Reusability of Test Programs 73

4.2.1 Repository of Simulation Responses 75

4.2.2 High-level Simulation . 76

4.2.3 Observability Comparator . 78

4.3 Design of RSBST Scheme . 80

4.4 Experimental Results . 81

4.4.1 Observability Analysis of Test Programs 83

4.4.2 Case Studies for MIPS Processor and Leon3 Processor 83

4.4.3 Chromosome Reusability of RSBST 87

4.5 Summary . 87

5 Automated Low-cost Compaction of SBST Programs 89

5.1 Basics of SBST Compaction . 89

5.2 Redundant Instruction Group Removal Using Data Dependency Graphs . 90

5.3 Enhanced Instruction Restoration Method 94

5.3.1 Top to Bottom Compaction Policy 94

5.3.2 Restoration Using High-level Logic Simulation 95

5.4 Experimental Results . 99

5.5 Summary . 103

6 Application of Fragments of SBST Programs for Online Testing 105

6.1 Preliminaries . 108

xiv

CONTENTS

6.1.1 Utilization Factor of Real-time Applications 109

6.1.2 Least Upper Bound . 109

6.1.3 Reliability Analysis . 110

6.1.4 Recovery Scenarios . 110

6.1.5 Worst Case Response Time . 111

6.2 SBST Programs for Intermittent Fault Detection 112

6.3 Fragmented SBST for Testing Intermittent Faults 113

6.3.1 Synthesis of Smaller Latency Self-test Programs with Adequate

Coverage . 113

6.3.2 Calculation of Test Periods for FTPs 115

6.3.3 Scheduling of FTPs . 116

6.3.4 Reliability Enhancement Analysis of FTPs 117

6.3.5 Overall Synthesis of Self-test Fragments 118

6.4 Experimental Results . 120

6.4.1 A Case Study of Reliable Synthesis of FTPs 121

6.5 Summary . 125

7 Conclusions and Future Perspectives 127

7.1 Summary . 127

7.2 Future Works . 128

Appendix A: Summary of Publications 133

References 135

xv

CONTENTS

xvi

List of Figures

1.1 Digital Testing Principle . 2

1.2 SBST Procedure . 5

1.3 Phases of SBST Procedure . 7

1.4 Principal SBST Automation Scheme . 9

1.5 Representation of an Intermediate Test Program of µGP Test Synthesis . 10

1.6 A DAG Node with a Pointer to Instruction Library and a Pointer to Set

of Parameters . 11

1.7 Test Program Evaluation Overview . 13

3.1 Principal SBST Automation Scheme . 40

3.2 A Sample Macro . 40

3.3 Input Stuck-at-0 Fault in VHDL . 41

3.4 Test Program That Detects the Input Stuck-at-0 shown in Fig. 3.3 . . . 42

3.5 A Simple RISC Processor Architecture [1] 42

3.6 MIPS Branch Instruction Execution [1] 43

3.7 Instruction Sequence to Detect Branch Signal Corner Case 44

3.8 Proposed Automation Method for Test Pattern Generation 45

3.9 A DAG Node . 47

3.10 A DAG Representation of Test Program 47

3.11 A General Instruction Template . 49

3.12 Fault Coverage of Modules Using Traditional µGP [2] on MIPS Processor 54

3.13 Fault Coverage of Different µ and λ Using the Traditional µGP [2] on

MIPS Processor . 55

3.14 Selection Probabilities of Instructions for Different Modules of MIPS Pro-

cessor . 57

xvii

LIST OF FIGURES

3.15 Improved Fault Coverage of Modules Using the Proposed Greedy Based

Approach for MIPS processor . 58

3.16 Average Coverage over 400 Generations Using the Proposed Greedy Based

Approach for MIPS Processor . 60

3.17 A Block Diagram of 32-bit ALU of MIPS Processor 61

3.18 If Stuck Else Behavioral Fault . 61

3.19 SBST Test Code for ALU for MIPS Processor 62

3.20 A 32 bit ALU of MIPS Processor . 63

3.21 A 1-bit ALU of MIPS Processor . 63

3.22 Basic Architecture Block Diagram of Leon3 Processor [3] 64

3.23 Integer Pipeline Unit of Leon3 Processor [3] 65

3.24 Comparison of Existing µGP and Proposed Greedy Based Method over

400 Generations for Leon3 Processor . 67

4.1 RSBST Automation Scheme . 72

4.2 Test Program Evaluation in RSBST . 74

4.3 Representation of an Intermediate Test Program of µGP Test Synthesis . 78

4.4 Equally-Observable Test Programs . 80

4.5 Average Fault Coverage for MIPS Processor and for Leon3 Processor over

400 Generations using 1) µGP [2] with Behavioral Fault Model 2) Greedy-

based GA proposed in the last chapter 3) Proposed RSBST 84

5.1 Data Dependency Graph with Single Connected Component 91

5.2 Data Dependancy graph with Multiple Connected Components 92

5.3 Example of Reducing Test Program Using Logic Simulation 96

5.4 Blocks of SBST Test Program in the Admissible Region 97

5.5 Amount of Compaction for Different Test Programs 100

5.6 Block-wise Simulation Cost for Proposed Restoration and Existing Restora-

tion [4] techniques on a Test Code with 294 Instructions 101

6.1 Avg. Execution Time for Different Groups of Fragments on 100 MHz

MIPS Processor Model . 106

6.2 Maximum Fault Detection Latency for Self-test Task τt 112

6.3 Time Diagram of Traditional Testing over Period Ti 114

6.4 Fragmented Testing over Period Ti . 114

6.5 Overall Self-test Code Fragment Synthesis 118

xviii

LIST OF FIGURES

6.6 Replacement of a Test Program of Group G95 by 4 Smaller Test Programs

(FTPs) of Group G85 for testing the Branch Functionality of a MIPS

Processor . 122

6.7 Utilization of Different Test Execution Windows on 100 MHz MIPS Pro-

cessor Model . 122

6.8 Failure Probability of the Workloads on 100 MHz MIPS Processor Model

with No Testing . 124

6.9 Failure Probability of Workloads along with Self-test Sub-tasks on 100

MHz MIPS Processor Model . 124

xix

LIST OF FIGURES

xx

List of Algorithms

1 Greedy Coverage Method . 48

2 Selection Probability Calculation . 51

3 Reusability of Greedy Coverage Method in RSBST Approach 80

4 Stage 1: Independent Instruction Removal 93

5 Stage 2: Enhanced Test Program Restoration 98

6 Reliable Self-test Fragment Synthesis . 119

xxi

LIST OF ALGORITHMS

xxii

List of Tables

3.1 Behavioral Fault Models [5] . 41

3.2 Parameters Used for the Proposed Test Generation Scheme 56

3.3 Observability Values of MIPS Processor 56

3.4 Controllability Values of MIPS Processor 56

3.5 Testability Values of MIPS Processor . 57

3.6 Observability Values for Leon3 Processor 66

3.7 Controllability Values for Leon3 Processor 66

3.8 Testability Values for Leon3 Processor 67

4.1 Repository of Simulation Responses for the Test Program Solutions of ith

Generation . 76

4.2 Specifications for the Proposed Automated Test Synthesis 82

4.3 Achieved Coverage and Synthesis Time of MIPS Processor Modules . . . 85

4.4 MIPS Processor - Achieved Coverage and Time of the 1) µGP [2] with

Behavioral Fault Model 2) Greedy-based GA proposed in the last chapter

3) Proposed RSBST Method . 86

4.5 Leon3 Processor - Achieved coverage and Time of the 1) µGP [2] with

Behavioral Fault Model 2) Greedy-based GA proposed in the last chapter

3) Proposed RSBST Method . 86

5.1 Results of Compaction for Restoration Methods 100

5.2 Results of Compaction for Existing and Proposed Methods on a Test Code

with 294 Instructions . 101

6.1 Mission Task Workloads on 100 MHz MIPS Processor Model 120

6.2 Test Program Characteristics on 100 MHz MIPS Processor Model 123

xxiii

xxiv

List of Acronyms

IC Integrated Circuit

SoC System-on-Chip

ATE Automatic Test Equipment

CUT Circuit Under Test

ATPG Automatic Test Pattern Generation

DFT Design For Testability

BIST Built-in Self-test

EDA Electronic Design Automation

SBST Software-based Self-testing

ISA Instruction Set Architecture

RTL Register Transfer Level

ALU Arithmetic Logic Unit

MUT Module Under Test

CPU Central Processing Unit

HDL Hardware Description Language

VHDL Very-High-Speed-IC HDL

DAG Directed Acyclic Graph

xxv

GA Genetic Algorithm

ES Evolutionary Strategies

LFSR Linear-feedback Shift Register

PC Program Counter

RF Register File

FC Fault Coverage

OBS Observability

TP Test Program

FTP Fragment of Test Program

DM Deadline Monotonic

FDL Fault Detection Latency

xxvi

List of Symbols

µ Size of initial population in a generation

λ Number of newly created individuals in a generation

τ Tournament size

P j
i jth individual test solution of ith generation

FCj
i Set of covered faults by P j

i

FN j
i Set of newly covered faults by P j

i

FCCi Set of all covered faults until the generation i.

t Instruction template

ti Instance of instruction template t

c Component of processor

Oi ith output value of a processor module

Ii ith input value of a processor module

Z A genetic operator

ΦZ The activation probability of Z

ΘZ The number of activations of Z

ΨZ The number of successful activations of Z

α The coefficient of activation probability

xxvii

ρ Mutation strength for a generation

HΩ number of successful mutations for last Ω generations

EM The number of consecutive elementary modifications for a mutation

mi A memory update after the execution of P j
i

M j
i Set of all memory updates after the execution of P j

i

p Number of memory updates

Rj
i Register contents after the execution of P j

i

q Number of register locations

Oj
i Primary outputs after the execution of P j

i

r Number of primary outputs

OBSji Overall observability {M j
i , R

j
i , O

j
i } of P j

i

P A test program solution

P
′

The test program after compacting P

G A data dependency graph corresponding to the instructions of P

Gi A connected component of G

u Number of instructions in P

v Number of connected components in G

FCGi Set of faults covered by instructions of Gi

σ Number of instructions in P after first stage of compaction

δ Number of blocks in P

Bi A block of instructions of P

FRi Set of reliant faults of Bi

IBi Initial state of Bi

xxviii

s A random instruction

CRT Ratio between execution times of optimized and original test codes

CRS Ratio between sizes of optimized and original test codes

cost Computation cost for compaction

τi ith task

Γ Γ = {τ1, τ2, τ3, . . . , τn}; Set of n periodic real-time mission tasks

Ti Periodic length of task τi

Ei Execution time of task τi

Di Relative deadline of task τi (with respect to its arrival)

Ui Utilization factor of task τi

U Overall utilization of n tasks

Rel(t) Reliability of system during a time interval [0, t]

β Failure rate of system

k Maximum number of faults in each task instance

Cs Time consumed for saving a checkpoint

Cr Time consumed for retrieving a checkpoint

WCRTi The worst-case response time of task τi

H Instance of task τi

τt A self-test task

S Instance of self-test task τt

τtj jth self-test sub-task

wj Execution window of τtj

rj Pseudo-release time of τtj

dj Pseudo-deadline of τtj

xxix

LIST OF TABLES

xxx

Chapter 1
Introduction

1.1 Complexity of Modern Digital Circuits

The integrated circuits (ICs) manufactured today consists of millions of logic gates and

memory cells. Very deep sub-micron technologies are used to implement these ICs [6].

System-on-Chip (SoC) design techniques [7,8] integrates every computer component and

associated electronic systems into a single chip which encompasses many pre-designed

and reusable units, called Intellectual Property (IP) cores. Today it is possible to in-

tegrate more than one billion transistors onto a single chip. This has enabled the im-

plementation of complex functionalities in handheld gadgets and personal computers.

However, handling such complexity is intensively burdensome. As the electronic chip

technology is fast-growing and complex, the quality and reliability of the manufactured

chips have become hugely challenging.

The challenges of handling this complexity are mostly related to the design and

testing of the digital components of these chips [9]. Test cost holds a significant part in

the total development cost of modern complex chips. Several well-researched disciplines

have been employed for the efficient testing of large and complex chips. These include the

utilization of various abstraction levels of circuit implementation, test methodologies for

appropriate architectures, different test optimization methods, testing techniques with

high reliability, etc. This research contributes mainly to the areas of high-quality testing

methods and their optimization.

A post-silicon validation process [10] aims to validate the manufactured chips stage-

by-stage so that no bugs may be left undetected. Manufacturing testing [11] and on-line

testing [12] are two such stages of testing after the chip fabrication. Manufacturing test

1

1. INTRODUCTION

������

������

������

������

�������	
��
�
�
��

������

������

������

����������

������
������
������

������

�
��	����
���	
����	���	

������	
�
�����
	

����
�	
�
�����
	

Figure 1.1: Digital Testing Principle

is performed after the chip is manufactured. If any fault is identified anywhere in the

circuit after the manufacturing process, the whole chip is discarded and thrown away.

Even after the chip is released into the market, the testing process has to be continued to

make sure that the chip performs properly during its normal operation for safety-critical

and industrial applications. This is called online testing or in-field testing.

However, the existing post-silicon validation techniques cannot cope with the com-

plexity of modern ICs. Manufacturing testing of complex chips uses automatic test

equipment (ATE) [9, 11, 13], which externally generates the test inputs, applies them

on the circuit under test (CUT) and evaluates the test responses. For a high-frequency

operating chip, a high-frequency test capability of ATE is required and the size of the

physical memory of ATE should be large enough to store a large number of test patterns

and responses. So, the external testing method which makes use of a high-frequency

test capability of external ATE has become more expensive and less feasible because of

the high test data volume and the longer test application time.

1.2 Digital Testing Principles

In traditional digital testing, ATE generates the binary patterns as input and applies

those patterns to the CUT, as shown in Fig. 1.1. Following the application of test

patterns, the output responses are collected and compared with a golden response, which

is the expected output response. If the collected output is matching with the expected

response, the final status of the comparison is recorded as true and the chip is declared

to be non-faulty. Otherwise, the final status of the comparison is recorded as false and

the chip is declared to be faulty. If the chip is found to be faulty, it is discarded and

thrown away.

2

1.3 Processor Testing and its Challenges

In the digital testing of ICs, processor testing has higher significance as compared

with the testing of other SoC components. If any processor functionality is damaged,

every active application will be affected by that fault. But if other components, such

as memory, has some defect on any of its cell, it may not affect the execution of all

programs since every program may not use that specific memory cell. So, processor

core defects are more important and crucial and this factor motivates us to focus on the

domain of test generation for the processor cores.

1.3 Processor Testing and its Challenges

Effective post-silicon validation has been highly challenging for complex embedded pro-

cessors. Several structural and functional testing approaches, such as automatic test

pattern generation (ATPG), design for testability (DFT), built-in self-test (BIST), etc.,

have been diversely used in the processor testing domain based on the characteristics of

the processor to be tested. Fundamentally, post-silicon validation methods apply either

1) structural testing or 2) functional testing techniques.

Structural test development methods cultivate the test patterns using the gate-level

descriptions of the processor. Automatic test pattern generation (ATPG) techniques

[14,15] exploit the structural details of the processor to apply high-coverage test patterns

using an ATE. In structural testing, a comprehensive fault model like gate-level stuck-at

fault model is used for synthesizing a smaller set of high-coverage input test patterns.

Although test execution is shorter, the development cost of structural test patterns is

higher as compared with the high-level functional test synthesis.

Functional testing approaches attempt to validate the correctness of every function-

ality of the CUT. In the case of processors, functional testing refers to the development

of test patterns that checks only the functions of the processor instruction set architec-

ture (ISA). In most of the traditional functional testing approaches, pseudorandom test

patterns, which require long test sequences, were used as operands leading to excessively

large test application time. However, the development cost of functional testing is lesser.

In deterministic test generation methods [16], pre-developed test patterns that func-

tionally test the processor components are cultivated using ATPG tools. Scan-based

design for testability (DFT) approaches [17, 18] reduce the test generation complexity

of ATPG methods by accessing the internal memory elements of the processor circuit.

3

1. INTRODUCTION

Structural testing methods could use electronic design automation (EDA) tool for gen-

erating ATPG test sequences with the help of structured DFT techniques like scan chain

method.

As purely random test pattern generation is burdensome, pseudorandom test meth-

ods [19, 20] are used to generate repeated test input sequence that yields an accept-

able fault coverage only with the help of a large number of test patterns. To vali-

date smaller processor circuits, test engineer could manually develop effective test pat-

terns [21, 22]. But in the case of complex circuits, automated methods like formal

verification, evolutionary approaches, etc, are popularly used for test generation. In

formal methods [23–25], test solutions are generated using powerful formal tools, such

as bounded model checking (BMC) or satisfiability-based (SAT) methods whereas evo-

lutionary technique [26, 27] makes use of genetic operators to generate diversified test

routines with high coverage.

Identification of all physical faults (delay faults, transition faults, etc.) has been ever-

challenging because the test patterns must be applied at the operational frequencies of

processors, which are extremely high. This at-speed testing feature is very difficult to

achieve with external tester technologies as the ATE frequencies could not reach up

to the processor frequencies [28]. Later, the concept of self-testing [16, 22, 29–32] was

introduced which reduces yield loss with the help of actual at-speed testing while the

overall test cost of the processor is lesser. The concept of processor self-testing will be

discussed in the next section.

1.4 External Testing to Self-testing: A Paradigm
Shift

Self-testing could be hardware-based self-testing [29, 30] or software-based self-testing

(SBST) [16,22,31,32]. In hardware-based self-testing, also termed as built-in self-testing

(BIST), a dedicated hardware module is attached to the processor for testing. This

module generates the test patterns and applies them to the module under test (MUT).

Eventually, the responses are collected and delivered to another circuit, which does the

response analysis. Deterministic testing or pseudorandom testing could be used for the

test generation in BIST approach. However, the on-chip test generation is easier with the

help of pseudorandom testing as it produces the test patterns using smaller additional

4

1.4 External Testing to Self-testing: A Paradigm Shift

���������

���	�
�	���
��
���

��	��
��
���

��������
����
���

���	���	�

���	������������	�����

�������

Figure 1.2: SBST Procedure

hardware circuits.

Apart from the at-speed testing feature, the transfer of the processor testing approach

from external ATE-based approach to an internal BIST mechanism provided significant

advantages. One of them is the reduction of test cost earned by the use of self-test

methodologies for processor testing. Self-testing reduces yield loss with the help of actual

at-speed testing while the overall test cost of the processor is lesser. Also, the use of self-

testing drives down the design cycle and therefore, a better time-to-market is achieved.

The Intellectual Property (IP) protection is also improved when compared with that of

the scan-based external testing techniques. An apparent drawback of hardware-based

self-testing approach is the hardware overhead spent for the additional testing circuit.

Also, during the hardware-based self-testing, power consumption is more than that of the

normal operational mode of the chip. To solve this, SBST methodologies [16, 22, 31, 32]

were introduced.

SBST methodologies have cultivated software-based test codes that were applied on

the processors as test routines. These test codes are sequences of instructions with se-

lected operands that could validate the processor functionality. The SBST approaches

are non-intrusive because the chip design or hardware does not necessitate any modifi-

cation for testing. These light-weight test codes are uploaded into the memory locations

and the responses are downloaded and compared for the fault identification. Further-

more, SBST does not require any extra hardware which leads to a reduced test cost and

zero chip area penalty [33]. For these reasons, SBST is exceedingly used for embedded

processor testing.

5

1. INTRODUCTION

The advantages of SBST [28] are:

• At-speed testing : The test program application is performed at the speed of the

actual frequency of the processor. Therefore, all physical faults can be detected

and the test quality is improved.

• Non-intrusive: SBST does not add any extra hardware or DFT modification over-

head to the existing circuitry. It executes normally like all other programs and

consumes the same average power during the testing phase.

1.4.1 SBST of Processors

SBST procedure for a processor is as illustrated in Fig. 1.2. The self-test program, which

is a sequence of assembly code instructions, is generated using a test pattern synthesis

technique [28] and is downloaded into the instruction memory of the chip for testing.

The self-test data and its corresponding responses are stored in the data memory. The

test program is executed to generate a test response, which is compacted and stored in

the data memory. The response collection and response compaction of SBST require

negligible hardware intrusion. Now, the response is analyzed to produce a pass or fail

indication, based on which we proceed for further actions on the system. In SBST, the

self-test programs are downloaded to the tester memory from a low-cost, low-speed ATE

and the test responses uploaded back to the ATE for the response analysis [34].

Recently, several advanced manual SBST approaches [33, 35–37] have been intro-

duced for SBST code generation. To automate SBST synthesis, test engineers exploited

hierarchical structural testing methods like formal verification [25, 38, 39] which discov-

ers input sequences that violate user specifications for the fault detection of each pro-

cessor module. Also, functional feedback-based methods like evolutionary approaches

are prevalently used in the domain of SBST automation. As structural methods are

computationally prohibitive for SBST automation, genetic algorithm-based evolution-

ary strategies for SBST automation are used.

1.4.1.1 Phases of SBST Procedure

The overall SBST procedure, as shown in Fig. 1.3, includes the following five phases: A)

Information extraction, B) Processor component classification and test prioritization, C)

6

1.4 External Testing to Self-testing: A Paradigm Shift

��������	��
�����
�	����������	��
�����
�	��

���
�����
���������

�����	�	
��	��
�
��	��	�	���	��

���
�����
���������

�����	�	
��	��
�
��	��	�	���	��

���������
�������	�
���

���
�����
����������

���������
�������	�
���

���
�����
����������

���������
���	�	���	�����������
���	�	���	��

���
��	��
��
���������
��������

���������	��
���
���
��	��
��

������
����	
��	���

 !�����
���	��

"���	��
�
���	��
"���	��#

���
��	��
��
���������
��������

���������	��
���
���
��	��
��

������
����	
��	���

 !�����
���	��

"���	��
�
���	��
"���	��#

�������

�������

������	

������

�������

Figure 1.3: Phases of SBST Procedure

Test program synthesis, D) Test program optimization, and E) Test program application.

In phase A, the ISA information and Register Transfer Level (RTL) information of the

processor are used to identify the components of the processor and the operations of

the components, etc. With the help of the information from phase A, the processor

components are classified in phase B as functional, control, and hidden components.

Functional components could be either computational functional modules, such as

Arithmetic Logic Unit (ALU), adder, multiplier, etc. or storage functional modules,

such as accumulator, register file, etc. Major control components, such as control unit,

generate the control signals for the functional components of the processor, thereby con-

trolling the data flow and instruction flow. The hidden components, such as pipelining,

increase the throughput of instruction execution but are functionally invisible.

These components are prioritized based on accessibility and testability to enhance

the test development phase (Phase C). The computational functional components have

higher testability than any other components because their operations are directly as-

sociated with instruction execution, i.e., they are functionally more visible. So, these

components are assigned a higher priority for test development. In phase C, self-test

codes are synthesized for each component as a module under test (MUT), based on

7

1. INTRODUCTION

the priority. The self-test synthesis is initially conducted for high-priority components

because adequate fault coverage has to be achieved as quickly as possible.

For the self-test synthesis in phase C, we gather the ISA information and component

information from phase A and the test priority information of components from phase

B. However, it is apparent that the test software is an additional process that competes

with user processes for system resources, such as central processing unit (CPU) cycles

and memory. Therefore, on-line test program execution is considered to be an overhead

to overall system performance regarding memory area, power consumption and execu-

tion cycles. Also, large size and longer execution time of SBST programs for complex

processors make manufacturing test difficult. So, in phase D, the self-test codes (syn-

thesized in phase C) are subjected to an optimization procedure in terms of memory

footprint, execution time, power consumption, test size, test execution time, etc. In the

last phase (phase E), we apply the optimized self-test codes from phase D during the

processor manufacturing stage and/or operational stage. The optimized test code with

the highest fault coverage is used to test every instance of the same processor chip.

1.5 Principal Scheme of SBST Automation

The principal scheme for automatic self-test synthesis, where an evolutionary core de-

velops a test solution of optimum fault coverage given a processor model, fault models,

an instruction library, and an external fault simulator, is shown in Fig. 1.4. Here, an

individual test solution refers to a self-test code, which is a valid sequence of instructions.

The processor model describes the RTL model of the processor to be tested in any

hardware description language (HDL) like Very-High-Speed-IC HDL (VHDL) [40], either

in synthesizable or simulatable form. Here, the RTL model is subjected to module

partitioning which is realized by breaking down the RTL design into several functional

units and testing them separately. So, each processor module corresponds to a single

hardware block and therefore, there are as many modules as the number of valid digital

blocks in the processor model.

The instruction library is created using the ISA information with every instruction of

the ISA having their entries in it. Each entry is called a macro, which is an instruction

with randomly selected operands. In this approach, an individual solution, which is a

test program, is generated using the evolutionary process and is represented by a directed

8

1.5 Principal Scheme of SBST Automation

���������
�	
�

����
����	��
���
�
������

����������������
�	
���

����
����
��������	��	��
�����������	
�

�������
�	������	�
� !"��

������

#�����	
���
$������	
��

% ��
 ���
����	���
	���
	����	

$���������
�	
�

������ &	�
�
	'
���(

)��

Figure 1.4: Principal SBST Automation Scheme

acyclic graph (DAG). In the initial population of test solutions, a group of empty DAGs

is collected. The evolutionary core synthesizes the fragments of assembly code (macros)

taken from the instruction library to generate a new population of DAGs.

An external evaluator measures the quality of these self-test program solutions with

the help of several faulty processor models. The contents of the observable locations of

the processor, such as memory locations, register locations, and primary outputs, are

extracted as test responses for fault evaluation.

With the help of these necessary inputs, the evolutionary core develops a genetic

algorithm (GA) based test code synthesis. In this method, a parent population of test

program solutions is modified in each generation using mutation, crossover, and selection

operators. Mutation operator explores the search space for diverse test solutions and

crossover operator mixes the genetic data of two parent solutions to develop the offspring

solutions. The selection operator selects the fittest of them in order to generate the

next generation of population. This process goes on until there is no progress in the

generations of test solutions.

MicroGP (µGP) [41], i.e., genetic programming for microprocessors, is an evolution-

ary approach generally designed for automatically developing assembly code programs

for microprocessors. In [2], G. Squillero exploits µGP for the fine-tuned automated

synthesis of self-test assembly programs for processors. Unlike the earlier evolutionary

approaches, G. Squillero [2] focuses on self-adaptation techniques, such as activation

probability and mutation strength of the genetic operators, which tune the search pro-

cess internally.

9

1. INTRODUCTION

��������

�	
�����

���
��������

��

�

�

�

�

�

main:

 ori $r1, $r1, 2

 addi $r2, $r2, 4

 bne $r1, $r3, comp

 andi $r3, $r1, $r2

comp:

 addi $r3, $zero, 10

 addi $r4, $zero, 10

 ori $r3, $r3, $r4

 sw $r3, 3($r2)

��

�

	

.text

.globl main

li $v0, 10

syscall

Figure 1.5: Representation of an Intermediate Test Program of µGP Test Synthesis

1.5.1 Test Code Preparation in MicroGP Methods

Evolutionary strategies (ES) are employed to automate the test synthesis using a DAG

method. A test solution comprises a sequence of macros and is represented by a DAG, as

shown in the example in Fig. 1.5. A DAG node has pointers to a macro element in the

instruction library and the set of parameters as shown in Fig. 1.6. Epilogue and prologue

nodes (I0 and IF) are the initial and final empty nodes. A (µ + λ) strategy of ES with

an initial generation of µ DAG test solutions is carried out to develop efficient assembly

programs that could validate the processor components. In every generation, new λ

offsprings are created using a 1-point crossover and the following mutation operators:

• Add node: A node is added to the DAG. The new node could be inserted anywhere

after the prologue node and before the epilogue node in the DAG. If a new macro

is inserted between a branch and its target instruction, the target address in the

branch instruction must be updated.

10

1.6 Test Quality Evaluation

Figure 1.6: A DAG Node with a Pointer to Instruction Library and a Pointer to Set of
Parameters

• Remove node: A node is removed from the DAG. Any node could be removed from

the DAG except the prologue and epilogue nodes. If the removed instruction is in

the region between a branch and its target instructions, the target address in the

branch instruction must be updated.

• Modify node: A node is modified in the DAG. If the modified node is a branch

instruction, its new target instruction must be within the DAG.

Among the µ+ λ individuals of a generation, µ fittest offsprings are selected by the

tournament selection operator of tournament size τ . If this tournament size τ is very

large, fittest individuals will be selected always which would reduce the diversity of the

offspring population. In each generation, these individual test programs are evaluated

using behavioral fault model to select the fittest population. An efficient selection of

the objective function would help in carrying out the progressive development of the

genetic population in consecutive generations and the test solutions evolve through the

generations until an optimal solution is achieved.

1.6 Test Quality Evaluation

1.6.1 Gate-level Fault Models

Gate-level fault models [42–46] like stuck-at fault models, bridging fault models, path

delay fault models, or transistor fault models are used for test quality evaluation in

structural testing approaches. Combinational faults, such as stuck-at faults could easily

be detected using smaller test sets. So, a low-cost, low-speed ATE would be enough for

detecting the combinational faults. On the other side, the testing of sequential faults,

11

1. INTRODUCTION

such as delay faults, must be conducted at the operational speed of the processor because

these faults occur due to timing malfunctions.

The EDA tools [47] for combinational fault models are mature enough to develop

smaller test sets with shorter test application time and shorter fault simulation time.

As the EDA tools for sequential fault models cannot develop efficient test sets, fault

simulation time and test generation time are high for the test sets that detect the

sequential faults. However, the performance of EDA tools for sequential fault models is

improving gradually [28].

1.6.2 Behavioral Fault Models

Recently, it has been difficult to test large complex processors using the gate-level fault

models like stuck-at fault models, bridging fault models, delay fault models, or transistor

fault models. A huge number of gate-level faults will have to be modeled for evaluating

the test programs for the processors with a complex gate-level netlist, which is pro-

hibitively expensive. So, it is necessary to adopt behavioral fault models. In most of the

IC designs, gate-level structural descriptions are not available to generate the conven-

tional fault models. So, various high-level fault models are generated using behavioral

level fault modeling, where different faults such as the stuck-at-0 and stuck-at-1 faults

are injected into the RTL descriptions. For example, in the input stuck-at fault model,

the input is stuck to 0 or 1 for a bit or bit vector type signal and stuck to false or true

for a Boolean type signal in the RTL statements.

This approach has a higher level of abstraction compared to the gate-level fault

modeling because the fault models are associated with the behavioral level descriptions

[5,48]. However, most of the hardware faults are covered if the behavioral fault coverage

is good enough because of the robust correlation (above 95%) between the behavioral

faults and the physical faults as demonstrated in [49–51].

1.6.3 External Fault Simulation

The external evaluator of the principal SBST automation scheme, shown in Fig. 1.4,

receives the new offspring test solutions from the evolutionary core and returns the fault

coverage using the behavioral fault models illustrated in Subsection 1.6.2. Also, the

progress of the evolutionary process is updated with the help of the external evaluator

12

1.6 Test Quality Evaluation

��������	�
�

���
�
���������

���
��

�
�����
����������
��
����

�
�����
����������
��
����

�
����
����������
��
����

����������������

�������������
�
���

�
���������
	�

���
��
��������

���������� ����������
����������������

����������

Figure 1.7: Test Program Evaluation Overview

to terminate the test synthesis judiciously.

As suggested in traditional SBST code synthesis [2,41,52,53], the automation of test

programs for processors is performed with the help of an evolutionary approach that

select the fittest test solutions using genetic operators. Each test solution is evaluated in

terms of fault coverage for the selection of fittest programs. Faulty and non-faulty pro-

cessor models are simulated for measuring the fault coverage of each test program. The

responses of these simulations would comprise the contents of the observable locations

(registers, memory updates, primary output, etc.). Further, the contents of the observ-

able destinations of faulty processor models are compared with the expected response

generated by the good processor model to realize hardware fault detection. In the SBST

approach, the test quality is evaluated by the fault coverage and fault list extracted from

the simulation responses, i.e., the contents of the observable locations. Intuitively, the

fault coverage and fault list of an SBST test program are completely associated with the

observability of the processor modules.

As shown in Fig. 1.7, the processor is simulated for a good reference model and

N faulty models. Each faulty processor model is inserted with a single fault which

logically represents the physical faults. All of these faulty models must be simulated

independently to collect the test responses. Later, these responses are compared with

the golden responses of the good processor model to assess the fault coverage. For

example, if the responses of 75% of faulty processor models are observed to be different

13

1. INTRODUCTION

from the golden response upon the execution of a test program, the fault coverage of the

test program is 75%. As each single fault simulation is time-consuming, fault simulation

of all the faulty processor models would consume an enormous amount of time. Also,

the response collection of test programs, where every observable point must be recorded

in each cycle, is computationally intensive.

1.7 Motivation and Objectives

The test code synthesis (Phase C), test code optimization (Phase D), and test code

application (Phase E) procedures are the most significant phases, in terms of compu-

tational cost and time consumption, of SBST procedure shown in Fig. 1.3. In the

test synthesis phase, assembly-level test programs are automatically generated using an

evolutionary method. However, due to the intrinsic randomness of the evolutionary pro-

cess, the test synthesizer would not be able to search for the test solutions in the desired

manner. Even though the synthesized test solutions detect the easily traceable faults,

some of the hard-to-detect faults might go undetected. This leads to low coverage of

faults, thereby delivering insufficient test quality, which may lead to system crash. So,

to guarantee detection of hard-to-detect faults, the evolutionary test synthesizer must

conduct a comprehensive search for exceptional test solutions.

Modern complex processors would need large test programs to test them. A large test

program would lead to undesirably large test download time, and a longer test program

would lead to longer test execution time. Existing test compaction methods attempt to

compress the test programs, but are computationally intensive. To reduce the overall

cost of SBST execution, a low-cost automated optimization method that yields high test

compaction must be developed.

During online testing, the test codes are applied on the processor in a regular interval

during its operational stage along with the normal applications. A high-reliability, low-

cost fault detection and recovery technique is necessary for the processor with safety-

critical applications executed in extreme operating conditions. Several works [16,31,32,

34,54–62] have been proposed for the enhancement of online reliability enhancement of

processors. During self-test execution, the intermittent faults, which are momentary in

nature, could not be detected by large test programs with large test periods. These faults

could be identified by smaller test programs with smaller test period. But smaller test

14

1.7 Motivation and Objectives

programs would likely to have lesser test quality in terms of fault coverage. To deal with

the challenges in the detection and recovery for the temporary faults, a fault-tolerant

schedule with optimal test program size must be developed.

To summarize, the motivation for this thesis is “to develop a low-cost, high quality,

and faster SBST process for modern processors with the help of improved performance

in the execution of SBST code synthesis, optimization, and application phases.”

Now, we explain four major challenges in the SBST code synthesis, application, and

optimization phases (Phases C, D, and E of the SBST procedure shown in Fig. 1.3).

1. Detection of Hard-to-test Faults and its Preservation

Genetic algorithm-based approaches are widely accepted methods to search for

high-quality self-test programs for processors. But the overall coverage of these

test solutions was insufficient because the corner cases, which are the hard-to-detect

faults, were never taken care of. During the automatic test program generation, the

intermediate test programs comprising instructions which detect the hard faults

must be sustained to constitute a final test solution of improved coverage. Further,

these approaches could not guarantee the test quality because the fault evaluation

metrics, such as the statement coverage, were not well-correlated with the physical

faults. Generally, gate-level fault models are closely correlated with physical faults.

So, we must adopt a high-level fault model which is closely correlated with the gate-

level fault models and therefore, would be closely correlated with the real physical

faults.

When sequences of instructions which could possibly detect the corner cases are se-

lected, a higher preference must be assigned to them to help them survive through

the future generations. As these sequences may never get reproduced, it is neces-

sary to conserve these test programs, which could contribute to the final optimal

solution with higher coverage. So, our objective is to enhance the GA-based self-

test synthesis by preserving the instruction sequences which detect the hard-to-

detect faults. Also, the adopted fault models must have a high correlation with the

gate-level fault models. Otherwise, a test program that detects every fault mod-

eled by the adopted fault model may not be able to detect sufficient real physical

faults.

15

1. INTRODUCTION

2. A Faster Test Program Synthesis

The overall test synthesis time consumed by the previous µGP approaches was in-

considerably huge. Further, if the evolutionary module comprehensively searches

for the hard-to-detect faults, the test synthesis would be further delayed. This

could be avoided by reducing the number of costly external fault evaluations for

redundant test programs. So, our objective is to accelerate the test synthesis pro-

cedure along with the detection of hard-to-detect faults by reusing the existing test

programs of identical characteristics. The test codes, developed using the evolu-

tionary process, that produce similar fault simulation responses must be identified

and reused for a faster fault evaluation.

3. Effective Test Program Compaction and Test Execution Time Reduc-

tion

The automated SBST synthesis [2, 41] could be employed for developing either a

monolithic test code for the whole processor circuit or a set of test codes for the

processor modules. In both cases, the test code must have a huge number of se-

lected instructions to sensitize all the testable processor functionalities. However,

a larger SBST code leads to performance overhead due to higher test code down-

load time [63], and a longer execution time escalates the test application time.

Also, in the online testing of safety-critical embedded processors, smaller test code

execution is an extremely crucial requirement. So, test code optimization, in terms

of execution time and size, has been crucial for the effectiveness of SBST testing

of processors [64].

Some of the recent techniques in test code optimization [4,65] have demonstrated

redundant instruction elimination methods to maximize the test compaction. How-

ever, the number of fault simulations required to identify the redundant instruc-

tions of test code is proportional to the test code size. So, a huge number of fault

simulations have to be conducted for the optimization of larger test code. As the

number of fault simulation required for test compaction increases, the time con-

sumed for test compaction, which is the overall computational cost, also increases.

Instruction restoration and instruction removal techniques [4, 65] guarantee the

16

1.7 Motivation and Objectives

elimination of redundant instructions in terms of coverage with a reasonable com-

paction rate. But the computational cost (CC) is huge for these techniques since

efficient test compaction needs large number of fault simulations. So, our objec-

tive is to develop a test optimization technique with adequate compaction rate and

reasonable computational cost.

4. Online Detection of Intermittent Faults

During the operational stage of the processor, many temporary faults occur due to

extreme operating conditions. These faults, called intermittent faults, appear mo-

mentarily, lasts for some time, and may turn into permanent faults. Generally, the

intermittent faults are activated by processor wear out and excessive fluctuations

in temperature and voltage. The fault detection latency is the time gap between

the fault occurrence and its detection. If the fault detection latency is higher, the

reliability, which is the probability that a system does not deteriorate during a

specific time interval, would be lesser. A self-test task must provide an optimal

fault detection latency to detect the intermittent faults and must be schedulable

along with a set of periodic real-time tasks.

Larger SBST codes would detect most of the faults but reliability will be lesser

due to high fault detection latency. If an intermittent fault occurs just after a

large test period, fault detection latency will be higher, which may cause system

errors. Smaller SBST self-test codes with smaller fault detection latency realize

rapid detection and recovery of intermittent faults. As the intermittent faults

occur irregularly at the same location, smaller self-test codes must be regularly

executed with a short test period to efficiently trace them. But these minimal test

programs could have less reliability due to low fault coverage.

To deal with this trade-off, optimal and reliable set of fragments must be discovered

with significant self-test quality (coverage) and minimal fault detection latency. So,

our objective is to design a high-reliability online fault detection model that could

test low-cost, real-time embedded processors for the intermittent faults.

17

1. INTRODUCTION

1.8 Contributions

The major contributions of the thesis are described below. These works address the

challenges to meet the objectives explained in Subsection 1.6.3.

1. Greedy-based Evolutionary Test Synthesis to Detect the Hard-to-detect

Faults

We have proposed a greedy component integrated into the traditional evolutionary

framework to develop test solutions that detect the hard-to-detect faults of proces-

sors and achieve improved fault coverage. Using this approach, we have synthesized

the test programs that could detect the hard-to-detect exceptional faults besides

the easily excitable ordinary faults. Although this approach yielded improved fault

coverage, the convergence rate of the test synthesis was low. A faster convergence

was achieved when the test programs were synthesized using the instructions with

selection priorities, which is a testability-based ranking feature.

2. An Accelerated Software-based Self-test Synthesis (Rapid SBST) for

Processor Testing

While the evolutionary process of test synthesis progresses, it is highly likely that

the evolutionary core develops individual solutions with similarities in fault simu-

lation results. If the instruction sequences of two test individuals have similar func-

tionalities, the fault simulation results could be reused to reduce the test synthesis

time. So, this reusability enables a rapid convergence towards the development of

high-quality test solutions.

Following the test program execution, the processor faults are identified by com-

paring the contents of the observable locations on the processor. If the values

stored in these observable locations following the simulation of an offspring solu-

tion are same as that of one of its parent solutions, the set of faults that they could

identify will almost be same; i.e., equally-observable test solutions will probably

have equal fault coverage. In that case, a re-simulation of the offspring solution

could be avoided by reusing the identified fault list and the fault coverage of the

parent solution. In this work, a faster SBST synthesis of processor cores is em-

ployed using an accelerated greedy-based evolutionary method (RSBST), where

18

1.8 Contributions

the test programs that could detect the hard-to-test faults are developed rapidly.

3. SBST Compaction Techniques using Data Dependency Graphs and In-

struction Restoration Techniques

The challenges of test optimization for SBST codes has become critical because

large processors demand test codes with a large number of instructions to com-

pletely test their functionalities. In this approach, we have introduced an enhanced

test compaction approach that works in two stages. In the first preprocessing stage,

we remove the independent instructions using a data dependency graph representa-

tion of the test program. The approach used in the second stage is an enhancement

of state of art A1xx algorithm [4]. In this stage, we reduce the computational

complexity by avoiding the fault simulation of previously restored instructions.

To evaluate these restored instructions, high-level logic simulations are conducted,

which reduces the computational cost considerably.

4. SBST Fragments for Intermittent Fault Detection of Processors

In this study, we address a major challenge for the online self-test execution in

a real-time scenario. The tradeoff between test quality and fault detection la-

tency has been crucial in online periodic self-testing, where the self-test tasks are

executed interleaving the execution of real-time mission tasks. To address this

challenge, we have developed an online self-testing approach, where the proces-

sor is subjected to fragmented testing for tracing the intermittent faults. So, the

test code, synthesized for manufacturing testing, is replaced with many small and

efficient test codes with adequate fault coverage. These test code fragments are

examined and are periodically applied in small execution windows during a test

period between the normal tasks of the processor. We design a methodology to

generate the set of smaller test codes with adequate coverage for this purpose dur-

ing the evolutionary test program synthesis itself. Also, we evaluate all the test

programs suitably.

From a testing point of view, these small but adequately efficient fragments, devel-

oped with the help of enhanced reliability analysis, replace the bigger test code to

reduce the fault detection latency. In particular, we must set the shortest possible

test execution window so that all intermittent faults could be detected. If any

19

1. INTRODUCTION

erroneous behavior of the processor is diagnosed, the mission task is rolled back to

the previous checkpoint and re-executed. However, our method incurs inconsider-

able overall fault coverage drop, compared to the coverage of the complete SBST

test code.

1.9 Organization of the Thesis

• Chapter 2: Literature Survey

Existing Processor Testing Techniques, SBST synthesis, optimization, and appli-

cation techniques are elaborated in this chapter.

• Chapter 3: Greedy Cover-based Evolutionary SBST Synthesis

This chapter presents a greedy-based evolutionary SBST synthesis approach for

the detection of hard-to-detect faults. Besides, we make use of the testability of

each instruction to evaluate the selection probabilities of instructions. The major

objective of this work is to enhance the test quality by synthesizing high-coverage

test programs.

• Chapter 4: Rapid SBST (RSBST) Program Synthesis

This chapter deals with a test program reusability-based approach to speed up

the traditional test synthesis while maintaining adequate fault coverage. This

technique gets rid of the computational cost consumed by redundant test quality

evaluations during the evolutionary test synthesis. This accelerated test develop-

ment is useful when it comes to the synthesis of large test programs for modern

processors.

• Chapter 5: Automated Low-cost Compaction of SBST Programs

This chapter discusses a two-stage test program compaction technique which are

enhancements of existing instruction removal and restoration techniques. The

primary objective of this work was to optimize SBST test programs with less

effort. We have validated the effectiveness of our approach using a comparison

study with the existing compaction techniques on a large number of test program

samples.

• Chapter 6: Application of Fragments of SBST Programs for Online Testing

20

1.9 Organization of the Thesis

In this chapter, we present an online periodic testing approach that maximizes

the reliability of real-time systems by detecting the intermittent faults. To realize

this, we apply smaller but high-quality test programs periodically so that the

intermittent faults could be traced. These smaller test programs are selected during

the evolutionary test synthesis to increase the operational reliability of processors.

In this study, we have methodically dealt with the objective of identifying the

optimal test periods for the execution of these efficient test code fragments during

the processor operational stage.

• Chapter 7: Conclusion and Future Perspectives

This chapter concludes the thesis with the discussions on future perspectives on

SBST testing techniques.

21

1. INTRODUCTION

22

Chapter 2
Literature Survey

In this chapter, we discuss the existing pioneering works related to processor testing in

chronological order. Further, we elaborate the recent advancements in the three most

significant phases of the SBST procedure, which are SBST code synthesis, optimiza-

tion, and application (phases C, D, and E), as shown in Fig. 1.3 of previous chapter.

The section 2.2.1 and section 2.2.2 of this chapter describe the background for the im-

provements in the functionalities of SBST code synthesis, section 2.2.3 describes the

background of SBST code optimization, and section 2.2.4 describes the background of

SBST code application.

2.1 Chronology of Processor Testing Methods

As the processor technology is complex and expanding, the reliability of embedded

processors is highly critical during the phases of chip manufacturing, and operational

stages. Before the design is committed for fabrication, hardware/software co-Verification

[66,67] verifies system software or firmware runs correctly on the hardware design. This

process conducts early integration of software or firmware with hardware, before any

chips or boards are physically available. In co-verification, firmware validation relies

on the interacting hardware components which are usually not available until the late

design stages. This co-validation is generally addressed through co-simulating C/C++

based firmware code and HDL hardware models (including SystemC). The co-verification

tools like aglei from Eagle Design Automation and Seamless CVE from Mentor Graphics

specifically target at solving the hardware/software integration problem for embedded

systems.

23

2. LITERATURE SURVEY

In system-level verification [66, 68–70], the manufactured design (chip) is tested for

all functional correctness in a lab setup. This process is conducted using the real chip as-

sembled on a test board or a reference board along with every other system components.

In system-level verification, several test cases are run on netlists to check whether the de-

sign behaves functionally correct or not. Test cases are run for various corner cases with

random with constrained inputs to achieve maximum test/fault coverage. This verifica-

tion process is generally considered very critical as part of design life cycle as any serious

design, which are not discovered before tape-out, can eventually increase the overall cost

of design process. Presently, SBST programs are developed and used only in BIST and

online/concurrent testing of processors. These methods can be used to develop effective

SBST soultions for both hardware/software co-validation and system-level verification.

Production/manufacturing testing screens manufactured chips for physical faults or

defects before the chip is released into the market. This testing procedure must be

conducted in the actual speed of the processor hardware which is in GHz. Traditionally,

ATPG methods [14, 15] were used to generate test patterns using fault sensitization

techniques that were applied on the processor using an ATE. In this approach, a sequence

of test vectors is selected from every possible test inputs so that these test vectors

can detect most of the processor faults. However, the selection of efficient test vectors

remains a challenging task for large sequential circuits.

Some of the previous random testing techniques makes use of random test inputs

where a huge volume of test inputs are applied for fault detection [9]. The storage and

application of these purely random sequences would consume a huge amount of time

and achieve lesser coverage. In deterministic testing approach [16], functional modules

of the processor like ALU, Shifter, Multiplier, etc., can be tested using pre-computed

test vectors developed by ATPG tools. These test vectors are applied as processor

instructions to these modules to yield high fault coverage. Although this method attains

high coverage with smaller test sets, gate-level details are necessary for test generation.

Later, several DFT techniques [17, 18] were introduced which exploit design-level

alterations to achieve high quality test patterns. Scan-based DFT approaches make use

of scan-in and scan-out operations. During the scan-in process, logic values are applied

on the memory elements, such as latches, flip-flops and during the scan-out process, the

content of each memory element is extracted out of the scan chain. Although scan-based

24

2.2 Advanced SBST Techniques

DFT makes the circuit nodes easily accessible, this method experiences an excessive test

application time and hardware overhead.

In pseudorandom testing [19, 20], random patterns are generated repeatedly based

on an efficient seed value and these patterns are applied as instruction sequences. A

standard linear-feedback shift register (LFSR) can be used to generate the pseudorandom

patterns for BIST of processors. The benefit of pseudorandom testing is that gate-level

details are not required for test generation. In BIST, the golden responses are stored

in a read-only memory (ROM) as a signature. The fault coverage is evaluated using

an output response comparator which compares the compacted CUT response with the

golden signature stored in ROM. However, this method needs exceedingly long test

pattern sequences to achieve a level of acceptable fault coverage.

Manual test generation techniques [21, 22] select and use the processor instructions

corresponding to the operations of every processor module to validate its functionality.

The operands of each selected instruction are chosen randomly. But the manual selection

of instructions and operands that test functionally large processors is laborious for the

test engineers. So, automated test generation techniques like formal verification meth-

ods, evolutionary techniques, etc., were introduced. The functional ATPG patterns are

automatically cultivated using formal verification methods [23–25]. Evolutionary tech-

niques [26, 27] applies genetic operators, such as mutation, crossover, selection, etc., on

a population of test solutions to develop better and diverse offspring test solutions. In

this method, test solutions with highest fault coverage have more probability to get se-

lected to the next generation which heuristically leads to the development of optimal

test patterns.

2.2 Advanced SBST Techniques

The advancements in manual test program generation approaches [33, 35–37] have sub-

stantially contributed in developing effective SBST programs. In these works, complex

functional test patterns are developed for testing pipelined processors with multithread-

ing, dynamic instruction execution, and multicores. Nonetheless, the cost of test pattern

development is a tradeoff because the assembly programmer has to devise complicated,

high-coverage test programs for larger processors manually.

Psarakis et al. [36] discuss the taxonomy of various structural and functional ap-

25

2. LITERATURE SURVEY

proaches for SBST program development. Structural testing approaches use structural

information, such as RTL descriptions, for test generation and functional approaches

use functional information, such as ISA, for test generation.

The hierarchical structural approaches, where test programs are generated module-

by-module, can be automated using powerful formal verification engines, such as BMC

or SAT methods [25, 38, 39]. Zhang et al. [25] leverage on existing BMC tools in order

to generate software-based self-testing programs from a global extended finite state ma-

chine (EFSM) model of the processor under test. Riefert et al. [38], describe an ATPG

framework targeting stuck-at faults based on BMC. This framework allows the user

to flexibly specify the requirements of SBST test programs in the considered scenario.

Finally, they demonstrate how a set of properly chosen requirements can be used to

generate test programs matching these constraints. However, formal methods would be

computationally prohibitive for processors with complex sequential circuits.

Other prevalent structural SBST program generation approaches are ATPG, pseudo-

random test generation, and deterministic testing approaches. ATPG techniques [14,15]

develop the test stimuli with the help of the gate-level netlist of the processor. Pseu-

dorandom pattern generators [19, 20] could be used to generate random but efficient

patterns with a low area overhead. Deterministic testing approaches [16,33,35] generate

test set corresponding to the operations and functionalities of each processor module.

Constraint-based structural test generation methods [31, 71] consider the gate-level

or the structural details of the MUT whereas the remaining processor modules are con-

sidered at a higher level. Now, these methods extract the constraints imposed by the

execution of the instructions on the MUT and develop efficient test patterns for the

MUT based on these extracted constraints. Finally, these module-level patterns are

translated into SBST programs.

There are two types of functional testing techniques: 1) Randomizer and 2) feedback-

based techniques. Code randomizer techniques [72–74] target the functional faults using

a random sequence generator. Evolutionary technique [26, 27, 75] is a feedback-based

functional testing approach, where test programs are evolved automatically using genetic

algorithmic strategies. This population-based optimizer refines a set of test program

solutions iteratively to develop high-quality test programs. In our research works, we

have chosen evolutionary techniques [26,27,75] to develop SBST programs because this

26

2.2 Advanced SBST Techniques

approach naturally develops smaller but efficient test programs with lesser computation

cost.

2.2.1 SBST Code Synthesis

To realize at-speed testing of embedded processors, SBST methodologies [16,22,31,32,76]

have cultivated software-based test codes to be applied on the processors as test routines.

The SBST test codes are sequences of instructions with selected operands that could

validate the processor functionality. The SBST approaches are non-intrusive because the

chip design does not necessitate any modification for testing. These light-weight test

codes are uploaded from a low-frequency ATE into the instruction memory, executed to

collect the responses in data memory, and the responses are downloaded into the ATE

and compared for the fault identification. Furthermore, SBST does not require any extra

hardware which leads to a reduced test cost and zero chip area penalty [33]. For these

reasons, SBST is exceedingly used for processor testing.

A different diagnosis-oriented method was proposed by Bernardi et al. in [77]. A set

of existing SBST test sets are optimized using a sifting procedure and subsequently, the

diagnostic ability of these programs are improved using an evolutionary tool. The faults

are grouped into equivalence classes based on the diagnostic equivalences and 75.6% of

gate-level faults are identified.

There has been several techniques to automate the synthesis of SBST programs

[25,27,38,39,41,75,78–90]. One of the initial efforts in the automation of test synthesis

is the microGP (µGP) approach by Corno et al. [41], which is an evolutionary technique

to automatically generate assembly code test programs for target microprocessors. In

this approach, the fault coverage is improved with the help of the feedback from the test

evaluation framework. In µGP evolutionary strategy, new individual assembly program

solutions are synthesized in each generation which could be used as SBST test programs.

These new test programs are combined with existing parent test program solutions for

breeding a new generation of the population of test program solutions.

Later, G. Squillero improved the µGP technique [2] towards a flexible, modular, and

adaptive architecture which helps the microprocessor engineers to conduct an enhanced

search for the test solutions. These earlier µGP approaches [2, 41] employ statement

coverage of HDL descriptions as the code coverage metric for the test program evalua-

27

2. LITERATURE SURVEY

tion. But statement coverage is a high-level evaluation metric which does not yield the

accuracy of the gate-level fault models because a majority of the gate-level faults are

not detected by a test program with high statement coverage.

To enhance the accuracy of test evaluation, the µGP approach has been extended

with a composite and intricate code coverage metric in [52, 53]. Along with state-

ment coverage, toggle, branch, expression, and condition coverages are also calculated.

Sanchez et al. [53] assimilates and reuses the existing test programs to simplify the test

generation process and has integrated the aspects of the identification of clone codes. In

this method, the statement and branch coverages are high whereas the toggle, condition,

and expression coverages are inadequate (less than 80% on the average).

D. Gizopoulos et al. developed an SBST automation method [35] which focused

on the testing of pipeline components which also enhanced the testing of functional

components. This method identifies the blocks of the pipeline unit which have good

testability and improves the coverage of the pipeline logic. With the help of a transition

delay fault model, 89% fault coverage is achieved for pipelined RISC processors. The

applicability of this method is shown only for the pipeline unit and not generalized for

all components of the processor.

To further improve the test quality, J. Hudec and E. Gramatova introduced a test

evaluation framework with an objective function that could evaluate the test solutions ef-

fectively [91]. A weighted average of statement, branch, toggle, and conditional coverages

is used to evaluate the test quality. Here, the test patterns are generated competently

with lesser test generation time and good fault coverage. But this method cannot assure

the test quality because the correlation between these code coverage metrics (of HDL

descriptions) and the gate-level faults is low.

To evaluate the synthesized test programs, we have adopted behavioral fault models

[5, 48]. This approach is designed with the models of failures on the HDL constructs to

achieve almost reliable fault representations. A fault model is reliable if there exists a

close correlation with the physical defects of the circuit. The gate-level fault models are

well-correlated with the physical defects and thus, are reliable.

Several studies have been conducted [49–51] on the correlation between the behavioral

fault models and gate-level fault models on general circuits. In [49], Anton Karputkin

and Jaan Raik analyzed the experimental results on ITC’99 benchmarks and concluded

28

2.2 Advanced SBST Techniques

that the test programs that are developed based on a set of behavioral fault models could

detect an average of 86% of the gate-level faults. According to Karunaratne et al., the

test benches for behavioral faults could approximately cover 90% of the gate-level faults

of the sequential cores of an SoC [51]. These studies asserted that for general circuits,

the behavioral fault models are well-correlated with the gate-level fault models. So, we

can say behavioral fault models are almost reliable for generic benchmark circuits.

Previous µGP techniques, proposed in [2, 41, 52, 53], could not guarantee the test

quality because the hard-to-test faults were left undetected and the code coverage-based

fault evaluation metrics do not hold strict correlation with gate-level fault models. These

methods could not realize adequate gate-level fault coverage of more than 90% for the

synthesized test programs.

So, in general, SBST code synthesis procedure should include the following aspects:

• The synthesized test programs of existing µGP approaches could not uncover the

hard-to-test faults because the intermediate test programs that detect the excep-

tional faults may get dropped during the evolutionary process. So, the test quality

is not ensured by these approaches. Although some of the intermediate test pro-

grams detect faults which are extreme corner cases, they may not survive to the

subsequent generations of test program population. It is observed that these solu-

tions are preserved only if the objective function of the evolutionary approach deals

with the coverage of the freshly and exceptionally identified faults. So, we must

choose a modified objective function to greedily preserve the test solutions with in-

struction sequences that could detect the uncovered faults during the evolutionary

test synthesis.

• High-level behavioral fault models, which have a close correlation with the physical

faults, could be adopted to evaluate the test solutions of each generation. The

previous studies [49–51] have shown that a test code, which has high behavioral

fault coverage, could detect most of the gate-level faults in the case of generic

benchmark circuits. Regarding processor circuits, the correlation between gate-

level fault models and behavioral-level fault models could be analyzed and verified

with the help of a comparison study between the effectiveness of these two fault

models.

29

2. LITERATURE SURVEY

2.2.2 Faster SBST Code Synthesis

The experiments conducted for the previous µGP techniques [2,41,52,53] converge in tens

of hours. Although these test synthesis approaches are reasonably fast, an acceptable

level of fault coverage is not attained. It has been a challenge for test engineers to

cultivate high coverage test programs within a limited amount of time.

In [92], Kranitis et al. introduced a hybrid SBST (H-SBST) methodology for low-cost

development of high-quality test programs. H-SBST has three phases. In the first phase,

the MUTs are identified. During the second phase, MUTs are classified as functional

and control components and are ranked based on their testability. Later, a combined

test development strategy of structural SBST methodologies and random test program

generation (RTPG) is discussed in the third phase. After applying the structural testing

for the MUTs, RTPG is applied as the supplementary step to improve the fault coverage.

In a case study of test development for OpenRISC 1200 processor, incompetent code

coverage of 92.5% is achieved although consuming a low test execution time.

On the other hand, the recent SBST automation approaches [90, 91] have improved

in terms of coverage but rely on time-consuming test generation techniques. Lu et

al. [90] have developed a hybrid test program that combines deterministic test programs

for each module and randomly developed instruction sequences for a high-performance

self-testing of pipeline cores. The experiments on ARMv4 and miniMIPS processors

demonstrate an improved gate-level fault coverage of more than 98% for this hybrid test

generation method, which is close to the coverage achieved for a full scan chain-based

technique. But the consideration of exhaustive gate-level fault models leads to a longer

test synthesis for real-world, complex, pipelined processors.

Although test evaluation using behavioral fault models is simpler than that using

gate-level fault models (as mentioned in Subsection 1.6.2 of Chapter 1), many of the

behavioral-level fault simulations could be avoided exploiting the similarities between the

test solutions. So, towards achieving a faster SBST synthesis, a smarter test evaluation

method which may reuse the responses of identical test solutions could be proposed.

2.2.3 SBST Code Optimization

Modern processors comprising large and complex circuitries necessitate the development

of test codes with a huge number of instructions. However, a larger SBST code leads

30

2.2 Advanced SBST Techniques

to performance overhead due to higher test code download time [63]. Also, a longer

execution time escalates the test application time. So, test code optimization, in terms

of execution time and size, has been crucial for the effectiveness of SBST testing of pro-

cessors [64]. Some of the recent techniques in test code optimization [4,65] have demon-

strated redundant instruction elimination methods to maximize the test compaction.

However, in these methods, the number of fault simulations required to identify the

redundant instructions of test code is proportional to the test code size. So, the op-

timization of a larger test code would consume a larger number of fault simulations,

thereby increasing the computational cost.

The test development technique proposed in [63] demonstrates how low-cost test

codes are developed for RISC processor cores. Initially, this method classifies the pro-

cessor components into functional, control, and hidden components to prioritize them

for test development. Thereafter, compact loops of test instructions that excite the com-

ponent operations are developed for each component. In [64], D.Gizopoulos proposes

four low-cost, online test development approaches which aim at small memory footprint,

small execution time, and low power consumption. To reduce the CPU execution time

of test codes, these techniques minimize the instruction and data memory interaction.

In the above methods [63, 64], the test compaction was carried out as one of the

steps during the test development phase, i.e., the dedicated effort for test compaction

was insignificant. As a consequence, the amount of shortened test code size or reduced

test execution time due to the compaction procedure was low. However, the state of the

art techniques of SBST compaction, such as [4,65,93,94], employ a dedicated test com-

paction module to conduct a comprehensive, instruction-by-instruction test compaction

procedure.

In [4], two test code compaction methods were introduced. The first method makes

use of a random instruction removal algorithm, called as A0 test compaction algorithm,

where redundant instructions are greedily searched and removed from the original test

code. In A0, random instruction is selected in each step. If any instruction does not

contribute towards the overall fault coverage, it is permanently removed from the orig-

inal test code. However, the remaining test code must execute and terminate properly

without exceptions.

In the second test code compaction method proposed in [4], a restoration-based

31

2. LITERATURE SURVEY

algorithm, called as A1xx test compaction algorithm, is employed. In A1xx, the authors

construct the optimized test code by removing blocks of instructions of the original test

code and subsequently, restoring them to identify the redundant instructions of these

blocks. Initially, the test code is split into blocks of instructions with equal size. Now,

each block is selected and removed from the test program one at a time. Following the

removal of a block, its instructions are restored one by one until all the faults that may

get undetected due to the block removal are detected. So, the redundant instructions of

each group are not restored, thereby constructing a compacted self-test code.

One of the critical issue of A0 and A1xx compaction techniques [4] is the occurrences

of Length Dependent Faults (LDF). An LDF fault could be detected only if the test code

has at least a specific number (n) instructions. If LDFs are present, test code length

and execution time cannot be reduced beyond n using the conventional compaction

techniques. So, the technique proposed by [94] extends the A0 compaction algorithm

[4] by inserting a NOP instruction on the removal of a redundant instruction. This

placement of NOP instructions allows the test code to maintain the fault coverage by

detecting the LDF faults, which eventually helps in the progress of test compaction

process.

An advanced test compaction technique is introduced by Touati et al. [93] which

discovers the smallest set of functional SBST codes that yield high fault coverage with

reduced test time. To realize this, the redundant test codes are identified and removed

from the set of test codes by comparing the list of covered faults. Also, different sequences

of test code executions are investigated to find out the minimal test execution time for

the optimized set of test codes.

The ARES (Automated Reordering for Efficient SBST) approach in [65] attempts

to reduce the test execution time with maintaining the fault coverage. This method

operates in two stages. In the first stage, the self-test code is partitioned into non-

overlapping groups in all possible sequences, for a target number of groups. Among all

grouping arrangements, the best grouping solution is selected with the help of a test

length based quality metric evaluated using high-level logic simulations. In the second

stage, these groups are reordered and fault simulated to discover the group ordering with

minimum test execution time.

The required computational cost for a thorough, instruction by instruction test

32

2.2 Advanced SBST Techniques

compaction would be very high. Instruction restoration and instruction removal tech-

niques [4] guarantee the elimination of redundant instructions in terms of coverage with

a reasonable compaction rate. Since efficient test compaction needs a large number

of fault simulations and single fault simulation takes a significant amount of time, the

overall computation cost of these test compaction techniques is large.

A low-cost, instruction-wise test optimization technique that yields adequate test

compaction could be introduced by enhancing the existing A1xx technique [4]. In

this possible modification, a high-level logic simulation could be used to replace the

preceding blocks of a restoring block of instructions with a smaller set of instructions

that yields similar fault coverage. Also, every group of independent instructions could

be investigated to identify and remove the redundant groups which do not contribute

towards the overall fault coverage.

2.2.4 SBST Code Application

SBST codes are applied on the processor for i) manufacturing testing and ii) online

testing. In manufacturing testing, the test codes are applied after the processor chip is

manufactured and before it is shipped into the market. In online testing, the test codes

are applied periodically on the processor during its operational stage, interleaving the

normal applications. Online operational reliability of processors in an extreme operating

environment with safety-critical applications necessitates the incorporation of low-cost

fault detection and recovery techniques. Recent advancements [16, 31, 32, 34, 54–62] in

the reliability enhancement of online testing has proposed several techniques for efficient

fault diagnosis.

During the operational phase, the erroneous behavior of the processor hardware is

largely attributed to the existence of intermittent faults [95] in an extreme operating

environment. These faults are temporary in nature, appear in irregular intervals at the

same location, cause errors in bursts, and may eventually turn into permanent faults.

Intermittent faults occur due to the processor wear out and may also get activated by

excessive fluctuations in temperature, frequency, or voltage.

In online testing, also termed as in-field testing, processor circuitry, while it is op-

erational, is tested for temporary and permanent hardware faults. Online processor

testing methods could be categorized into concurrent and non-concurrent approaches.

33

2. LITERATURE SURVEY

Concurrent testing [96] detects the operational faults with the help of various methods

for hardware redundancy, software redundancy, and time redundancy. In these meth-

ods, additional instances of a normal application, which is also termed as mission task,

concurrently execute using extra hardware, software, or time. Non-concurrent testing

employs test patterns periodically between the task execution [97]. To reduce redun-

dancy cost and power consumption of online testing, concurrent testing techniques were

replaced with non-concurrent, periodic testing methods.

The test patterns must be executed in the processor frequency in order to trace the

intermittent faults, which are instantaneous in nature. If not, some of them might go

undetected. To carry out a dynamic at-speed processor testing [28], where the test pat-

terns are applied in the actual operating speed of the processor, SBST methodologies

have been proposed [16,31,32,34,54] and are widely applied in the online testing domain.

SBST approaches are non-intrusive as the circuit design does not require any modifi-

cation for testing purpose. Besides, test execution has no hardware overhead which

reduces the test cost and leads to zero chip area penalty [33]. For the above reasons,

SBST methods are used for the detection of intermittent faults in online periodic testing.

The advances on online testing [97–100] discuss the periodic testing techniques with

SBST programs being periodically executed to identify the faults in the processor com-

ponents. Further, the recent progress in the fault-tolerance domain of the intermittent

faults demonstrate efficient detection, diagnosis, and recovery approaches [95,101].

A probabilistic cost function for SBST programs is introduced in [97] using the

reliability analysis of intermittent faults in pipelined processors. This cost function

helps in reducing the SBST execution cost during the online periodic testing. Also, this

technique enhances the methodology proposed in [99] with the addition of advanced

SBST programs for the pipeline and exception logic components to increase the fault

coverage up to 96.67%.

Xenoulis et al. [100] proposes an SBST program development scheme for processors

with single and double-precision floating point units. The test pattern generation (TPG)

schemes for floating point units are selected corresponding to the target requirements [64]

to develop low-cost self-test programs. However, the above cost-prohibitive self-test

generation schemes [97, 99, 100] could not guarantee efficient test program utilization

and schedulability.

34

2.2 Advanced SBST Techniques

D. Gizopoulos [98] has formulated a method for the effective utilization of self-test

codes for the online periodic testing of medium cost, real-time embedded processors.

With the help of rate-monotonic scheduling (RMS) mechanism, this technique could

achieve an improved self-test utilization or self-test quality in addition to the schedula-

bility realized for the real-time mission tasks. However, D. Gizopoulos [98] have focused

on the enhancement of the self-test quality disregarding the instruction set characteris-

tics of the self-test programs. Also, the schedulability of self-test programs and a larger

set of mission tasks on multi-core processors would necessitate advanced scheduling ap-

proaches.

A Stochastic Activity Networks (SAN)-based recovery, proposed in [95], deals with

the fault tolerance of multicore processors against intermittent faults. Based on the

failure rate and the defective processor location, SAN devises a recovery action for the

performance enhancement of an intermittent fault-sensitive processor.

Rashid et al. [101] evaluate the impact of intermittent faults on processors using a

SPEC2006 benchmark and Alpha Sim, which is a microarchitectural fault injection tool.

In their work, they injected 3000 faults to the considered microarchitectural components

and subsequently observed that the majority of the intermittent faults lead to system

crash. In other words, 67% of the intermittent faults were non-benign and 79% of

these non-benign faults caused a system crash (i.e., a hardware trap). The goal of their

work was to study the effectiveness of software-based techniques in the intermittent

fault diagnosis and recovery. Although the software-based technique takes away the

performance overhead of a separate test process, huge memory overhead is incurred as

the processor state is to be logged continuously.

As the intermittent faults could occur irregularly at the same location, the self-test

codes must be regularly executed with a short test period to efficiently trace them. D.

Gizopoulos [98] suggested that the self-test quality could be improved when the self-test

tasks are executed with larger execution time and enhanced self-test utilization. But

the proposed techniques in [98] will increase the self-test period to achieve maximum

utilization. If the self-test period is increased, fault detection latency also would increase,

and subsequently, some of the instantaneous intermittent faults may be left undetected.

If an intermittent fault occurs just after a large test period, fault detection latency will

be higher, which may cause system errors. The tradeoff between test utilization and

35

2. LITERATURE SURVEY

fault detection latency in [98] could be dealt only if efficient, small chunks of SBST

codes are executed frequently between the mission tasks, i.e., smaller, coverage-efficient

test programs are intermittently executed during a self-test period to reduce the fault

detection latency.

Shorter, reliable SBST test code fragments must be discovered and executed inter-

mittently in a self-test period to immediately detect the intermittent faults with minimal

fault detection latency. But smaller test codes might have lesser fault coverage, which

could leave some of the intermittent faults undetected. So, the test fragment synthesis

must consider both fault detection latency and test quality (fault coverage) in devel-

oping reliable fragments to be applied in appropriate execution windows between the

execution of the mission tasks.

The tradeoff between test quality and fault detection latency could be improved

using the application of test program fragments with high reliability. Test programs

with smaller execution time and adequate fault coverage could be selected in order to

detect the intermittent faults. These test codes must be identified with the help of

reliability evaluations to get executed periodically during the operational stage of the

processor with shorter time periods.

2.3 Summary

In this chapter, we have discussed the existing techniques on the synthesis, optimiza-

tion, and application of SBST programs. Following the component classification, these

techniques attempt to synthesize, optimize, and apply SBST programs efficiently. But

the complexity and large size of modern processor circuits necessitate the enhancement

of following aspects regarding the existing SBST technique.

• Evolutionary synthesis of high-coverage SBST codes by preserving test solutions

with instruction sequences that could detect the hard-to-test faults.

• Rapid evolutionary synthesis of SBST codes with adequate test quality reusing the

simulation responses of equally-observable test solutions.

• Compaction of the SBST codes with a reasonable tradeoff between the amount of

compaction and the computational cost for compaction.

36

2.3 Summary

• Reliability enhancement of online testing by executing optimally-sized test code

fragments that has adequate coverage and also detect intermittent faults.

In the next chapter, we discuss a greedy cover-based evolutionary method for SBST

synthesis of high-quality test programs.

37

2. LITERATURE SURVEY

38

Chapter 3
Greedy Cover-based Evolutionary SBST
Synthesis

In this approach, the effectiveness of automation of self-test program synthesis (Phase

C of the overall SBST procedure shown in Fig. 1.3 in Chapter 1) using evolutionary

approach is improved by identifying the difficult-to-test faults with the help of greedy

coverage and testability based ranking techniques. The self-adaptive µGP approach [2]

could not develop test solutions that detect these exceptional faults. Further, the test

quality was also not ensured by this approach as the test evaluation using code coverage

metric of HDL descriptions is not well-correlated with the gate-level faults. So, we

improve the test quality by uncovering the difficult-to-test faults of the processor using

an effective test evaluation method. Further, the behavioral fault models are used in

this study which are well-correlated with the gate-level faults.

The principal scheme for automatic self-test synthesis is shown in Fig. 3.1. The

processor model describes the processor to be tested in any hardware description lan-

guage like VHDL. The instruction library is created with the entries of every instruction.

High-level fault models are generated using behavioral level fault modeling [5,48], where

various failures of VHDL constructs are considered as faults. The greedy based evolu-

tionary test generator develops test programs using a greedy cover method integrated

into the GA-based code synthesis. This is the main component of the proposed scheme

and will be discussed in Section 3.2. In the next subsection, we discuss the preliminaries

and the working principle of the proposed greedy based approach.

39

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

�����
���	�
�

�
�������
���
����������
���

�
����
�����
���

����������
�����

������������
����
��

��
�

Figure 3.1: Principal SBST Automation Scheme

lw $1, $2($3)

� �����������	
���
�����
���
� �����������
�����������
���
��
� �����������	
���
�����
���

Figure 3.2: A Sample Macro

3.1 Preliminaries and Working Principle

The fragments of assembly code (macros) are taken from the instruction library to

generate SBST test programs for the processor specified by the processor model in Fig.

3.1. A sample macro for the load instruction is shown in Fig. 3.2. Here, the load

instruction is encoded between two registers and a 16-bit constant. The first and third

parameters ($1 and $3) denote the two registers, each of them chosen from R1 and R2,

respectively. The second parameter ($2) is the 16-bit constant, which may have a value

between -128 and 127.

Due to the reliability of the gate-level fault models, the behavioral fault models

are also guaranteed to be reasonably reliable [49–51]. But the correlation studies have

been performed only for general benchmark circuits. This motivated us to adopt the

behavioral fault models for our scheme and in Section 3.3.2, we demonstrate the close

correlation between the behavioral faults and gate-level faults for the general instruction

set processors. The behavioral fault representations proposed by Chen [5] are shown in

Table 3.1. They listed the most common 10 behavioral fault models.

40

3.1 Preliminaries and Working Principle

Table 3.1: Behavioral Fault Models [5]

Fault model Failure Type
Input stuck-at fault Primary input signal
Output stuck-at fault Primary output signal
If stuck then fault Else portion of

an if construct
If stuck else fault If then portion of

an if construct
Elsif stuck then fault Subsequent else portion of

an if construct
Elsif stuck else fault Elsif portion of

an if construct
Assignment statement fault Assignment of

new values to signals
Dead clause fault A Selected WHEN

clause in case statement
Micro-operation fault Micro-operations
Local stuck data fault A signal object

in a local expression

Input = alu_a, alu_b, alu_op;

Output = alu_out;

if(alu_op = "100100") then

alu_out:=alu_a and alu_b;

Input = alu_a, alu_b, alu_op;

Output = alu_out;

if(alu_op = "100100") then

alu_out:=”000...000” and alu_b;

��������	�
����
��
��������	��
�
����
����������
����
��������������������
����
����

Figure 3.3: Input Stuck-at-0 Fault in VHDL

An example of a behavioral input stuck-at fault in the logical and operation statement

of an ALU module is shown in Fig. 3.3. In these descriptions, an and operation is

performed between two input 32-bit operands, which are alu a and alu b, to achieve

the output alu out. A stuck-at-0 fault in the 32-bit alu a input signal transforms the

and operation to: “alu out := “0000 . . . 0000” and alu b”. As a result, an all-zero value

is assigned to the output alu out, regardless of the value of alu b. This fault could be

detected by the test program in Fig. 3.4 because in a non-faulty design, the operands

R1 and R2 hold non-zero values which lead to an expected non-zero output value for

the alu out signal. If the stuck-at-0 fault in the alu a signal exists, the output value for

the alu out signal becomes zero. In a normal case, the expected output is non-zero and

thus, the fault is detected. Likewise, a stuck-at-1 fault in alu a also could be detected

41

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

li R1,1

li R2,1

and R3,R1,R2

sw R3,offset3(R4)

����������	
����������

�����
����������
��������������������

Figure 3.4: Test Program That Detects the Input Stuck-at-0 shown in Fig. 3.3

��
������	�
��
�
����

�
�
��
��
�
�

�����

����������
�

����
�
����

����

��	
�	�

����

������	��
 �������

����
��

�

��

�

�
�
�

Figure 3.5: A Simple RISC Processor Architecture [1]

with the selected instructions and operand values.

Now we discuss the severity of the diagnosis of these behavioral faults. For this,

the faults are classified into easy-to-detect and hard-to-detect faults. In Fig. 3.5, a

MIPS processor model with a program counter, registers, control unit, and functional

components/modules such as ALU are shown. Generally, the faults in the functional

components which are directly associated with the instructions in the ISA are easily de-

tectable by the majority of the instruction sequences. For example, the input stuck-at-0

fault shown in Fig. 3.3 is an easy-to-detect fault because this fault could be detected by

many combinations of instruction sequences with and operation, such as the sequence

shown in Fig. 3.4. The µGP [2] technique could uncover these easy-to-detect faults com-

prehensively whereas the hard-to-detect faults or the corner case faults were completely

unidentified.

It is relatively challenging to identify the faults in the control unit and other non-

functional components that belong to the control path of the processor. The failures in

generating certain control signals could not be identified effectively because these signals

are not regularly observable. If the collected test response, comprising the contents of

response locations such as general purpose registers and memory, infrequently recognizes

42

3.1 Preliminaries and Working Principle

�

�

������
���	

����
�

���	
�

�����
��
�
�
�

��

����

�����

�����

Figure 3.6: MIPS Branch Instruction Execution [1]

any deviations due to the existence of signal faults, dedicated test programs would have

to be developed to take care of those faults.

Some of the controller faults are hard-to-detect, such as an assignment statement

fault, where a signal is stuck to zero or one in a single VHDL statement in the control sig-

nal “branch”. The propagation of branch signal towards any of the destination registers

depends on the activation of the status signal alu zero as shown in Fig. 3.6. The control

unit activates the branch signal when a branch instruction, e.g., “beq R1, R2, Target”,

executes. The operands R1 and R2 are subjected to comparison by ALU, and if the

result of the comparison is true, alu zero also gets activated. If both the branch and

alu zero signals are triggered, the control goes to the instruction in the target address.

Otherwise, the PC is incremented (PCinc) to select the next instruction in the instruc-

tion memory. Here, any assignment statement fault in the branch signal is propagated

ahead only if the value of the alu zero signal is 1, which is carried out when R1 and R2

have equal values. In this case, the fault detection turns out to be difficult because of

the dependence of branch signal on the alu zero signal.

It may be noted that these operands (R1 and R2), most likely, would hold different

values due to the randomness in the selection of operand values in optimization algo-

rithms. To load these operands with equal values, appropriate load instructions must

be executed before the branch instruction as shown in Fig. 3.7. Here, the operands

R1 and R2 hold equal values imm1. So, the comparison result of the beq instruction

becomes true, and the faults on the branch signal would propagate towards the observ-

able locations. But the evolutionary core of the traditional µGP approach [2] may not

generate test programs with such desired sequences of instructions frequently. So, these

sequential dependencies of instructions and the operand constraints make the statement

43

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

 lui R1,imm1

 lui R2,imm1

 beq R1,R2,Target

 addi R1,R1,1

 Target : sw R1,offset(R4)

Figure 3.7: Instruction Sequence to Detect Branch Signal Corner Case

assignment faults on branch signals undetectable.

Only a few sequences or combinations of opcode and operands could identify those

faults which are less likely to get propagated to any of the response locations. During

the test optimization process, such sequences hardly occur in the final test solutions

achieved. Even if these sequences occur in any of the intermediate test programs, they

may not survive to the future generations as the evolutionary process tends to preserve

those with the sequences of instructions that can identify a large number of functional

faults.

To summarize, the problem being addressed in this work is “during the automatic

test program generation, the intermediate test programs comprising instructions which

detect the hard faults must be sustained to constitute a final test solution of improved

coverage”. In the next section, we discuss how our proposed greedy approach would

synthesize the test program solutions that detect the hard-to-test faults.

3.2 Evolutionary Approach for Test Program Syn-
thesis

In this approach, a greedy fault coverage method is used to develop the test program

solutions which reside in the uncovered and unexplored search spaces and also encom-

passes the instruction sequences which could cover the exceptional faults. Although

these test programs cover a diverse set of faults, in some cases, they may hold a low

fault coverage and therefore, do not get selected for the later generations.

When sequences of instructions which could possibly detect the corner cases, as

illustrated in Fig. 3.7, are selected to generate the test program in our evolutionary

approach, higher preference is assigned to them to help them survive through the future

generations. As these sequences may never get reproduced, it is necessary to conserve

44

3.2 Evolutionary Approach for Test Program Synthesis

���������	
���
������	�
����
����

���	��������
��	
��	�����
���	�����
���
����	
��	���������	�
��
����

���������
	
��
����

							���		 									���	

���������	
						���	�

�����	����
	�����������	

�������

������	���	������	�	��	�

	�����
���	����	

�����	�����
����	

������	�
���	���������	��	���
					��������
��	��	�
��	�����
�����			

	

���	�������	
��������	���������	
������	��	��
��������

	

	�������	
���

���

�

�

 ��

 ��

 ��

 �!

Figure 3.8: Proposed Automation Method for Test Pattern Generation

these test programs, which could contribute to the final optimal solution with higher

coverage. So, in order to preserve these instruction sequences, a greedy mechanism is

established and adjoined to the GA-based self-test synthesis.

As shown in Fig. 3.8, the proposed automation is performed in 3 steps. Initially, an

instruction library, a component list, and a fault list are developed in the preprocessing

phase. Using the instruction library, we generate a set of instruction templates for each

of the macros as a preprocessing stage for the automated test synthesis. In the first step,

the component with the highest number of faults is selected. Based on the testability

values of each template for the module under test (MUT), the selection probabilities of

each instruction are calculated (Step 2); it will be discussed in Section 3.2.1. Step 3

discusses the automated generation of test programs for the MUT using the proposed

greedy technique.

To automate the test generation, evolutionary strategies (ES), which apply genetic

operators to a population of individual solutions that iteratively search for better solu-

tions, are employed using a directed acyclic graph (DAG) method. Here, a DAG is used

to represent an individual solution, which is an assembly program, where the nodes of

45

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

the DAG, as shown in Fig. 3.9, has pointers towards macro in the instruction library

and its parameters. The node can be a sequential instruction or branch instruction as

shown in Fig. 3.10. Epilogue and prologue nodes are the initial and last nodes, which

are the empty default nodes of the DAG.

With the help of this graph representation, optimized assembly programs are gener-

ated and evolved through generations using the genetic operators, which are mutation

and selection. As shown in Steps 3a-b (Fig. 3.8), ES carries out a µ+ λ strategy, where

the initial parent population includes µ empty programs that contain only the epilogue

and prologue nodes. The internal nodes of the µ DAGs are inserted and modified with

the random mutation operators with self-adaptive characteristics (will be discussed in

Section 3.2.2), and non-random tournament selection operators.

In each generation, the algorithm makes use of the mutation operators and a 1-point

crossover operator to create λ new individuals. After including these new λ individuals,

the size of the parent population is escalated to µ + λ, out of which µ offsprings are

selected for the next generation. Each individual has to be loopless and syntactically

correct. The mutation operators used in this strategy are:

• Add node: A new node is inserted to the DAG.

• Remove node: An existing node is removed from the DAG.

• Modify node: All parameters are modified or changed in a node in the DAG.

A tournament selection operator with size τ selects the µ fittest offsprings from the

µ + λ individuals of the parent population. In the earlier methods, the fault coverage

obtained for each individual was considered as the objective function. So, after selecting

the fittest individuals, the new parent population would consist of test solutions with

improved fault coverages than the previous generation. This evolutionary process goes

until there is no more improvement in the generations. But this progression is insuf-

ficient to find out and preserve the instruction sequences that detect the hard faults.

To accomplish this, the objective function is revised so that the search process grows

towards a set of test solutions which could discover these faults (Step 3c-d of Fig. 3.8).

The Steps 3a-d will be reiterated until improved test programs are not generated for

a predetermined number of generations. Afterward, if there are more components for

46

3.2 Evolutionary Approach for Test Program Synthesis

���������	
���	��
��
�
�
������

����� ����

���

���

ADD X,Y

SUB P,Q

�����

����� �����

�����

�

�

�

�

��

��

��

��

Figure 3.9: A DAG Node

��������

�	
�����

��
�����
����
�����

�

�

�

�

�

�

add

and

andi

or

sw

lw

beq

bnz

sub

xor

xori

lui

bne

ori

slti

Figure 3.10: A DAG Representation of Test Program

which the test programs are to be generated, the next component which has the highest

number of faults is selected, and Steps 2 and 3 are repeated.

The greedy coverage method is described in Algorithm 1. Let fbranch, which is the

statement assignment fault on branch signal, be a corner case fault and FCCi be the

set of all faults detected by at least one of the test solutions selected from their parent

population until ith generation. FCCi is updated in each generation with the newly

detected faults. For example, a fault fbranch is added into FCCi when detected for the

first time by a selected individual, as shown in Step 3 of Algorithm 1.

As illustrated in Step 1 (Algorithm 1), the objective function is defined as F = |FN |,
where FN is the set of newly detected faults by an individual test solution apart from the

faults in the FCCi of the previous generation. The cardinality of the FN is considered

as the objective function in order to generate offsprings which cover a wide range of

faults. So, if the corner case faults are detected by an individual, it would possibly

47

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

ALGORITHM 1: Greedy Coverage Method

Input: A new generation of individuals P 1
i , P

2
i , . . . , P

µ+λ
i with set of covered

faults FC1
i , FC

2
i , . . . , FC

µ+λ
i .

FCCi, which is a set of all covered faults until the generation i.

Output: Modified FCCi+1 in the (i+ 1)th generation.

1 Select new population P 1
i+1, P

2
i+1, . . . , P

µ
i+1 of the (i+ 1)th generation with fitness

function of jth individual as the cardinality of the set of newly covered faults

FN j
i = FCj

i − FCCi ;

2 If |FN j
i | is same for all individuals in the tournament, then the fitness function is

|FCj
i |;

3 If an individual j is selected, update FCC with its newly detected faults:

FCCi+1 = FCCi ∪ FN j
i ;

be selected for the next generation as it is likely to have a higher |FN |. In this case,

an individual that has detected all the previously covered, easily detectable functional

faults, such as stuck-at-0 or stuck-at-1 fault in the alu out signal, may not survive to

the later generations.

If all the individuals that take part in the selection process have the same cardinal-

ity for FN , then the offsprings are selected with the usual fault coverage |FC| as the

objective function (Step 2 of Algorithm 1). In step 3 of Algorithm 1, FCC is updated

with the elements of FN of each selected individual. When we consider |FN | as the

objective function the fault coverage will surely reach up to the optimal value because,

in this method, the test sequences which cover the corner cases are given higher prefer-

ence in selection. On the other hand, as a result of this modification, the overall test

generation time may increase because individual solutions with highest fault coverages

are not necessarily selected every time. To remediate this time consumption issue of

the test generation, a testability based instruction selection method is introduced in the

next subsection.

3.2.1 Testability of Processor Components

The testability implies the potential of a processor component to be tested by an instruc-

tion in the ISA. It is calculated from the observability and controllability characteristics,

which are evaluated using a simulation-based template ranking method. To calculate the

48

3.2 Evolutionary Approach for Test Program Synthesis

load x<a>, <temp1>

load x, <temp2>

add x<a>, x, x<c>

store x<c>, <dest>

Figure 3.11: A General Instruction Template

testability of a processor component corresponding to an instruction, a set of templates

is created for that instruction. An instruction template is built around a key instruction

which synthesizes the test patterns and captures the response.

Fig. 3.11 shows a single instruction test program template t, which is built around

add macro. Here, add is the key instruction and the other 3 are supporting instructions.

The output of the add operation is stored into an observable memory location dest.

The terms x 〈a〉, x 〈b〉 and x 〈c〉 in the template t depict 3 general purpose registers and

the values in angled brackets are the settable fields. For each macro in the instruction

library, similar test templates are developed.

As shown in Algorithm 2, the selection probability for an instruction is evaluated

using the testability values. Observability and controllability values are two testability

parameters calculated using output and input matrices, Obs and Cont, respectively

as shown in Algorithm 2. Each cell of these matrices refers to the observability (or

controllability) of a component when a template instance is applied as the test program

on the processor (Steps 3 and 4 of Algorithm 2). A template instance is an instruction

template with random values assigned to the settable fields.

Definition 1. (Observability) Let O1, O2, O3, . . . , Op be the output values of compo-

nent c and t1, t2, t3, . . . , tr be the instances of the instruction template t. The observability

matrix element Obs(i, j) is 1, only if a random value which is injected in the output Oi

is propagated to any of the observable destinations of the processor when the template

instance tj is applied on the processor. The overall observability of the template t for the

component c is defined as:

OBSERV =

∑p
i=1

∑r
j=1Obs(i, j)

p× r
(3.1)

Definition 2. (Controllability) Let I1, I2, I3, . . . , Iq be the input values of c and

t1, t2, t3, . . . , tr be the instances of the template t. The controllability matrix element

Cont(i, j) is 1, only if a random value which is assigned to any of the settable fields in

49

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

the template instance tj is propagated to the input Ii of the component, when the template

instance tj is applied on the processor. The overall controllability of the template t for

the component c is defined as:

CONTROL =

∑q
i=1

∑r
j=1Cont(i, j)

q × r
(3.2)

Definition 3. (Testability) The Product of OBSERV and CONTROL gives the final

testability value of the template t for the component c as follows:

TEST = OBSERV × CONTROL (3.3)

The above testability definitions are used to derive the selection probability of the

instructions as shown in Steps 5-8 of Algorithm 2, which are to be included in the

assembly code test program, corresponding to each processor component, during the

evolutionary process for test program synthesis.

The testability of each component corresponding to the macros is calculated using

Equations (3.1), (3.2), and (3.3). Using these testability characteristics, the selection

probability of instruction i is derived as:

SELi =
TESTi∑n
k=1 TESTk

(3.4)

Where TEST1, TEST2, TEST3, . . . , TESTn are the testability values of the n

instructions for component c.

The mutation operator exploits the testability properties of instructions to make the

test synthesis faster and adequately directs towards the best optimum solution. The

add node mutation operator selects a new macro from the instruction library with the

selection probability of its instruction (Step 9 of Algorithm 2). Essentially, selection

probability defines the probability for a macro to be in the test program, i.e., a macro

with a larger SEL value for its instruction has a higher probability to get included in

the test program.

3.2.2 Self Adaptation of Evolutionary Strategies

For fine-tuning the progress of the genetic population during the evolutionary process,

the self-adaptive evolution strategies are employed. The self-adaption parameters, which

50

3.2 Evolutionary Approach for Test Program Synthesis

ALGORITHM 2: Selection Probability Calculation

Input: Template instances t1, t2, t3, . . . , tr of a template t

Output: Selection probability of t for component c

1 Let O1, O2, O3, . . . , Op be the output values of c;

2 Let I1, I2, I3, . . . , Iq be the input values of c;

3 Obs(i, j) = 1, if output Oi of c is observable when tj is applied;

4 Cont(i, j) = 1, if input Ii of c is controllable when tj is applied;

5 The Observability of t for c is calculated using Equation 3.1;

6 The controllability of t for c is calculated using Equation 3.2;

7 The Testability of t for c is calculated using Equation 3.3;

8 Out of n instructions, the selection probability of instruction i for c is calculated

using Equation 3.4;

9 The add node mutation operator selects the instruction i from the instruction

library with SELi ;

are activation probability and mutation strength, are modified after each generation for

an improved selection and application of the genetic operators used in the evolutionary

process. Activation probability of a genetic operator is the probability of its activation

in a generation. Initially, each genetic operator is assigned with an equal activation

probability.

Definition 4. The activation probability of the genetic operator Z for the next generation

is:

Φnew
Z = α.ΦZ + (1− α).

ΨZ

ΘZ

, (3.5)

Where ΘZ is the number of activations of a genetic operator Z and ΨZ is the number

of successful activations of a genetic operator Z in the current generation. The coefficient

α is selected sensibly so that abrupt deviations are avoided.

Let Φadd node, Φrem node and Φmod node be the activation probabilities of the add node,

rem node, and mod node mutation operators, respectively. Initially, the activation prob-

abilities are set to three equal values: Φadd node = 1/3,Φrem node = 1/3,Φmod node = 1/3.

In the later generations, the activation probability of each mutation operator is calcu-

lated using Equation (3.5).

51

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

Definition 5. The mutation strength for each generation is calculated as:

ρnew = α.ρ+ (1− α).
HΩ

Ω.λ
, (3.6)

where HΩ is the number of successful mutations for the last Ω generations. In each

generation, λ new solutions are created from a population of µ individuals. When a

mutation, which is a genetic operator, is invoked, the number of consecutive elementary

modifications expected is EM , where EM = 1
1−ρ .

The mutation strength ρ, which indicates the depth of a mutation operation in terms

of the elementary modifications realized on the parent, is defined in Equation (3.6). If

ρ is large, the parent is subjected to a large number of modifications to produce an

extremely dissimilar offspring. If most of the mutations are successful, probabilistically,

the best optimal solution lies in some other region in the solution search space. Then

we increase the mutation strength to find out the optimum solution. Generally, the

mutation strength holds a large value during the initial stages of the search process.

After exploring the search space exhaustively, mutation strength is reduced gradually

in the later generations. So, self-adaptive approaches build up an improved population

exploiting the attributes of the population in the previous generations.

Now, an assembly program is generated with an optimized fault coverage and we

check whether the attained coverage is sufficient enough as per the fault coverage criteria.

If not, we select the next component with the highest number of faults, rank the macros,

and apply evolutionary strategies on the test programs. This process goes on until

sufficient fault coverage is obtained. In each generation, the offsprings are created and

are subjected to a syntactical analysis. But the instructions may impose some temporal

and spatial constraints also. So, the semantic analysis of instruction sequences will allow

us to generate better test programs.

Once the evolutionary process is over, the majority of the faults, which are sensitive

to any of the possible test sequences, are identified. Even though our test program

tries to cover all the faults, including the faults which are difficult to identify, some of

the faults will never come across any test path. They remain undetected for any test

program sequences either because those faults are injected on non-executable VHDL

statements or because none of the observable locations are susceptible to those faults.

In the next section, we discuss the implementation details and analyze the experimental

52

3.3 Experimental Study for MIPS Processor

results.

3.3 Experimental Study for MIPS Processor

3.3.1 Testability and Coverage Evaluation

In our approach, using the 10 behavioral fault representations shown in Table 3.1, 270

faults have been modeled and tested on the 7 components of a 32-bit configurable MIPS

processor. The testability analysis was performed on a Xilinx ISE platform and the

GHDL simulator was used for the coverage evaluation of the test program individuals

during the automation. The observable locations, which are the memory locations and

the 32 general purpose registers, are tracked and compared with an expected response

for fault identification using scripts written in Python language.

This evaluation framework is associated with the test generation process to develop

the proposed greedy based scheme as follows: Initially, a group of macros corresponding

to 8 sequential and one branch instructions is ranked based on their selection probability

using a simulation-based technique and these instructions are stored in the instruction

library. Further, the (µ+λ) evolutionary core module is developed using ANSI C for the

test program synthesis.

The µGP algorithm [2] is the baseline approach of the modern evolutionary tech-

niques in SBST automation. The self-adaptative characteristic of this evolutionary ap-

proach internally improves the genetic operators to achieve the required test patterns.

Initially, we investigate the coverage statistics of the traditional µGP technique [2].

To compare the µGP approach [2] and the proposed greedy based approach, a com-

mon fault model is required. We adopt the behavioral fault models because these models

are highly correlated to the gate-level and the physical defects of the processor, as dis-

cussed in Section 3.1. However, the statement coverage calculation employed in the µGP

approach could not accurately measure the quality of the test program because of the

low correlation between statement coverage and gate-level faults [49]. So, we associate

the evolutionary core of µGP [2] with the test quality evaluation of behavioral fault

models [5] and compare the results with that of the proposed greedy based approach.

Fault coverage of each component obtained using µGP [2] is depicted in Fig. 3.12.

For the computational functional component ALU, a consistent fault coverage of 99%

is achieved after 140 generations of the population and more than 96% of faults of the

53

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

F
au

lt
 C

o
v

er
ag

e(
%

)

Generations

ALU

PC

Register file

ALU control

Control unit

Figure 3.12: Fault Coverage of Modules Using Traditional µGP [2] on MIPS Processor

register file, which is a storage functional component, are also covered by the population

of test programs after 50 generations. So, a high fault coverage is obtained for the func-

tional components with the help of the test programs synthesized using the conventional

µGP approach [2] on behavioral fault models [5].

On the other hand, certain control components, such as control unit, have a lesser

coverage when compared with the functional components as illustrated in Fig. 3.12. The

control components which have a very small number of possible faults and high fault

coverage, such as program counter logic with 99% fault coverage, hardly enhances the

overall coverage because the majority of the controller faults either belong to control unit

or to ALU control unit. But after 150 generations, the fault coverage of the control unit

is saturated at 83% and after 300 generations, the fault coverage of the ALU control

unit is saturated at 89%. So, more than 10% of the overall controller faults remain

undetected which altogether constitutes an undesirable coverage.

In the µGP platform, different sets of µ and λ values are applied, and the coverage

distributions obtained after a definitive time period of execution are shown in Fig. 3.13.

Each of these simulations consumed an equal execution period of 170 hours. A fault

coverage of 88.5% was achieved by the test program developed using the ES with µ = 10

54

3.3 Experimental Study for MIPS Processor

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

C
o
v
er

ag
e

Generations

a) µ = 10 and λ = 20

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

C
o
v
er

ag
e

Generations

b) µ = 20 and λ = 10

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

C
o
v
er

ag
e

Generations

c) µ = 30 and λ = 20

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

C
o
v
er

ag
e

Generations

d) µ = 20 and λ = 30

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

C
o
v
er

ag
e

Generations

e) µ = 40 and λ = 5

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

C
o
v
er

ag
e

Generations

f) µ = 10 and λ = 5

Figure 3.13: Fault Coverage of Different µ and λ Using the Traditional µGP [2] on MIPS
Processor

and λ = 20, and 91.6% faults were detected when the µ = 20 and λ = 10. In the latter

case, the number of offsprings produced in each generation is less due to a smaller λ,

which carries out a faster convergence. Likewise, a fault coverage of 86.6% is obtained

for µ = 20 and λ = 30, whereas 87.4% of the faults were detected with µ = 30 and

λ = 20, where λ is smaller. When µ = 40 and λ = 5, the fault coverage is 87.2%,

which demonstrates that a higher variation in µ and λ do not necessarily constitute a

better coverage. But an adequately superior fault coverage of 95.6% is observed when

the evolutionary parameters are µ = 10, λ = 5.

Now we study the testability analysis on the same MIPS processor for the proposed

greedy method. As the values, µ = 10 and λ = 5 are concluded as efficient and the most

appropriate µ and λ values for the test synthesis, these values are thereafter consistently

used for the experiments of the proposed greedy based approach. The proposed greedy

based (µ + λ) ES executes for 400 generations or until there is no improvement for 40

generations, which is observed as the minimum threshold for a steady-state to occur.

The parameters and their specifications used for the proposed self-test synthesis are

shown in Table 3.2. The selection method adopted here is tournament selection with

tournament size τ = 2.

To calculate the selection probability, the testability statistics are estimated with the

55

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

Table 3.2: Parameters Used for the Proposed Test Generation Scheme

Parameter Specification
Population size (µ) 10
No.of offsprings (λ) 5
Selection Method Tournament selection
Tournament size(τ) 2
No. of Generations 400
Steady-state threshold 40
Evolutionary approach ES(µ+ λ)
Coverage evaluation method Behavioral fault simulation

Table 3.3: Observability Values of MIPS Processor

Module Instruction
store load addi beq add sub and or nor

ALU control 10.0 10.0 10.0 5.0 1.0 4.0 3.0 5.0 4.0
ALU 8.5 9.0 4.0 4.0 9.0 9.5 9.5 9.5 7.5

Control unit 6.0 14.3 15.4 22.4 31.3 39.0 45.3 54.3 61.3
MUX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
PC 10.0 10.0 10.0 1.0 7.0 8.0 8.0 9.0 8.0

Register File 3.5 4.5 3.5 6.0 5.0 6.0 5.0 6.0 2.0
Sign Extend 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.4: Controllability Values of MIPS Processor

Module
Instruction

store load addi beq add sub and or nor
ALU control 10 10 10 10 10 10 9 10 10

ALU 14 13 12 11 20 20 18 20 20
Control unit 1 2 1 8 1 1 1 1 1

MUX 11 12 9 18 19 19 19 19 19
PC 4 4 1 1 1 1 1 1 1

Register file 41 35 38 40 39 39 38 39 38
Sign extend 10 10 10 10 10 10 10 10 10

help of 10 different template instances of each instruction applied as a test routine. If an

input (or an output) of a processor component is controllable (or observable) using any

of these routines, the controllability (or observability) value of that template instruction

would be incremented by 1. Likewise, the average observability and controllability values

of each instruction are evaluated as shown in Table 3.3 and 3.4, and their product would

finally determine the average testability of each instruction as shown in Table 3.5.

Using the testability statistics, the selection probabilities of the instructions for dif-

56

3.3 Experimental Study for MIPS Processor

Table 3.5: Testability Values of MIPS Processor

Module
Instruction

store load addi beq add sub and or nor
ALU control 100.0 100.0 100.0 50.0 10.0 40.0 27.0 50.0 40.0

ALU 119.0 117.0 48.0 44.0 180.0 190.0 171.0 190.0 150.0
Control unit 6.0 28.6 15.4 179.5 31.3 39.0 45.3 54.3 61.3

MUX 11.0 12.0 9.0 18.0 19.0 19.0 19.0 19.0 19.0
PC 40.0 40.0 10.0 1.0 7.0 8.0 8.0 9.0 8.0

Register file 143.5 157.5 133.0 240.0 195.0 234.0 190.0 234.0 76.0
Sign extend 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

store load addi beq add sub and or nor

S
el

ec
ti

o
n
 P

ro
b
ab

il
it

y

Instruction

alu_control
alu

control unit
mux

register file
sign extend

pc

Figure 3.14: Selection Probabilities of Instructions for Different Modules of MIPS Processor

ferent processor components are calculated as shown in Fig. 3.14. For a processor

component, an instruction is assigned with a larger selection probability if it holds a

higher value for the testability metric. It illustrates that the control unit could be tested

efficiently if the branch instruction is selected with a higher probability because of its

substantially higher testability for the control unit. For the control unit, a higher selec-

tion probability of 0.29 is calculated with the branch instruction, whereas the load and

store instruction have lesser probabilities of 0.062 and 0.013 respectively, to get selected.

For ALU, add, sub, and, or and nor instructions have larger probabilities of 0.14, 0.15,

0.14, 0.15, and 0.12 respectively, but load, store and branch instructions hold values

which are less than 0.1. This points out that the selection probabilities of the arithmetic

and logical instructions are higher compared to the other instructions for ALU.

Apart from the greedy coverage buffers, a global buffer is also declared to identify

57

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

F
au

lt
 C

o
v

er
ag

e(
%

)

Generations

ALU

PC

Register file

ALU control

Control unit

Figure 3.15: Improved Fault Coverage of Modules Using the Proposed Greedy Based Approach
for MIPS processor

the untestable faults. For example, for the considered MIPS processor shown in Fig.

3.5, a behavioral assignment statement faults on register dest signal, which selects the

destination register for a write operation in the register file, and mem to reg signal,

which selects the data to be written in the destination register from the output of memory

and the output of ALU, are untestable during the execution of a store instruction. The

global buffer is updated with the new faults whenever an offspring detects an uncovered

fault regardless of its selection for the next generation. After 400 generations, 25 faults

have remained uncovered in the global buffer and they were declared to be untestable.

Now, we conduct a comparison of the proposed greedy method and the µGP tech-

nique [2]. In Fig. 3.15, we have shown the improvement in the coverage of the con-

troller component faults using the proposed greedy based method comparing with the

traditional method [2] shown in Fig. 3.12. The test programs developed using the

conventional evolutionary strategies [2] could not extensively test the main controller

components. So, we have focused on the improvement of the coverage of those controller

components when the test programs developed using our proposed ES greedy based

approach are applied.

58

3.3 Experimental Study for MIPS Processor

In an average based study of the coverage statistics, improved coverages of 93.5%

for the ALU control component and 89.2% for the control unit component are observed.

Eventually, these optimal test programs developed for each component are collected

and sequentially combined to analyze the overall coverage advancement. In Fig. 3.16,

we compare the traditional µGP algorithm with the proposed greedy approach for the

overall coverage. It could be observed that until 100 generations, the convergence rate

of the proposed greedy method is lesser when compared with the µGP technique [2].

But as the test program synthesis is carried out in a single run of the ES, a marginal

difference in the test generation time is insignificant. For the proposed approach, after

350 generations, the combined coverage of all components gradually progresses towards

coverage of 96.32% whereas the µGP approach achieves a maximum coverage of 93.9%

and arrives at a steady-state after 300 generations.

For MIPS processor, nearly 80% of the faults are easy-to-detect faults and the re-

maining are hard-to-detect faults. The traditional µGP technique always selects the

test programs with highest coverage whereas the proposed greedy method selects the

test programs that detects hard-to-detect faults. In the initial 100 generations, the

traditional method searches for instruction sequences that detect a majority of the easy-

to-detect faults and the coverage easily reaches upto 80%. But later, the search process

stagnates because the instruction sequences that detect the hard-to-detect faults are

given no preference.

In the proposed greedy approach, a higher preference is given for the hard-to-detect

faults. So, in the initial generations, the coverage grows gradually because the instruction

sequences that detect easy-to-detect faults may not be selected. In the initial generations,

the test programs developed by proposed method may detect hard-to-detect faults only

but may not detect every easy-to-detect faults. So, the coverage would be lesser because

80% of the faults are easy-to-detect faults. This indicate that the convergence rate of the

proposed greedy method is lesser when compared with the traditional µGP technique

until 100 generations. But in the later generations, larger test programs are evolved

which can detect every easy-to-detect faults along with a majority of the hard-to-detect

faults.

The proposed greedy approach uses behavioral fault models to evaluate the test pro-

grams. But Gate-level defect has the highest correlation with the physical defects. The

59

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

F
au

lt
 C

o
v
er

ag
e(

%
)

Generations

Existing muGP
Greedy cover GA

Figure 3.16: Average Coverage over 400 Generations Using the Proposed Greedy Based Ap-
proach for MIPS Processor

equivalence between the behavioral faults and the gate-level faults for general circuits

has already been experimentally analyzed and verified [49–51]. Now, we study the cor-

relation between the behavioral faults and the gate-level faults on MIPS processor which

will establish the test quality of the proposed greedy approach.

3.3.2 A Study on the Effectiveness of Behavioral Fault Models

Nowadays, the gate-level processor testing has been an extraordinarily tedious task

due to the high complexity of circuits. This difficulty persuaded the test programmers

to develop high-level behavioral fault models for circuits. Due to the complexity of

processors, we also adopt these behavioral fault models for processors. However, these

behavioral fault models must be reliable and highly correlated with physical defects

in terms of effectiveness. This correlation is measured by testing the processor with

the behavioral fault models and comparing the achieved fault coverage with that of

the gate level fault models. All the previous studies [49–51] have achieved the results

that demonstrate the close correlation of gate-level and behavior faults for the general

benchmark circuits. No such study has been reported for instruction set processors.

So, we study the correlation between gate-level and behavioral fault models of the

MIPS processor for our test generation scheme. In Fig. 3.17, a block diagram of an ALU

of MIPS processor is shown. This ALU has two 32-bit operands as input lines, a 2-bit

opcode as select line and a status bit. The 2-bit opcode selects a function from the AND,

60

3.3 Experimental Study for MIPS Processor

��������
	

�

��������

�����

������

������

��

��

��

�

Figure 3.17: A Block Diagram of 32-bit ALU of MIPS Processor

if(alu_op = "00") then

 alu_out:=alu_a or alu_b;

if(FALSE) then

 alu_out:=alu_a or alu_b;

����������	
�	����
�

alu_a, alu_b: IN;

alu_out: OUT;

Figure 3.18: If Stuck Else Behavioral Fault

OR and ADD operations to produce a 32-bit result. In Fig. 3.18, an if − stuck − else
behavioral fault of ALU block is shown. This behavioral fault occurs due to the failure

in executing the IF block. To test the behavioral faults of a MIPS processor, a test

program is generated as shown in Fig. 3.19. The highlighted part of the test program

loads values on two registers R1 and R2 from memory, does OR operation on them, and

stores the result back into memory. When this code snippet is executed, operand1 and

operand2 of the ALU get values from R1 and R2, respectively. The opcode selects the

OR operation and the values of operand1 and operand2 are ORed to produce the result.

In the example shown in Fig. 3.18, the input signals alu a and alu b would be

assigned to the values of R1 and R2, respectively. Let the initial value of the alu out

signal be 0. If R1 (or R2) is loaded with a non-zero value from memory, alu a (or alu b)

also becomes non-zero. Then the signal alu out, the output of OR operation on alu a

and alu b, becomes non-zero and eventually, alu out and the expected primary output

of ALU also becomes non-zero. But if the behavioral if−stuck−else occurs in the ALU

block, as shown in Fig. 3.18, it hinders the execution of the OR statement and therefore,

the alu out signal and the primary output of ALU remains zero. The expected output

61

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

lw R1,offset1(R4)

lw R2,offset2(R4)

or R3,R1,R2

sw R3,offset3(R4)

Figure 3.19: SBST Test Code for ALU for MIPS Processor

in a normal case is non-zero and thus, the fault is detected. Similarly, the behavioral

faults of the other functionalities of ALU are also detected using the entire test program,

synthesized using the proposed greedy scheme, of which a short code segment is shown

in Fig. 3.19.

Now, consider the possible stuck-at-0 and stuck-at-1 gate-level faults in the structural

descriptions of the ALU. A 32-bit ALU is built using 32 1-bit ALUs as shown in Fig.

3.20. In Fig. 3.21, the gate-level description of a 1-bit ALU is also shown. Let us

consider a stuck-at-0 fault on the output net of the OR gate as shown in Fig. 3.21. Let

the registers R1 or R2 of the test program shown in Fig. 3.19, has all-zero (000 . . . 000)

and all-one (111 . . . 111) signal values, respectively. Therefore, the inputs, a and b, of

each 1-bit ALU will have the values 1 and 0, respectively. Thus, the stuck-at-0 fault of

the OR gate gets sensitized as shown in Fig. 3.21. When the OR instruction of the test

program is executed, the opcode selects the output of the OR gate towards the output

of the ALU. So, the value ‘0’ will be propagated to the output result instead of a value

‘1’. The expected output result (1) of the 1-bit ALU is compared with the actual result

(0) to identify the fault.

The outputs of the 32 1-bit ALUs altogether form the output of the 32-bit ALU.

If a stuck-at-0 fault existed in one of these individual ALUs could be detected by the

test program developed using the proposed greedy scheme, it could detect the fault for

the 32-bit ALU also. There are 2,368 possible gate-level stuck-at faults in the 32-bit

ALU of MIPS processor. We conducted a gate-level fault simulation using ModelSim

and observed that 98% of the gate-level faults of ALU are detected by the test program

developed using the proposed scheme.

This correlation is measured for the other MIPS processor components also. A cor-

62

3.3 Experimental Study for MIPS Processor

��
�

���
�

��
�

��
�

���
�

��
�

��
	�

���
	�

��
	�

�

	�

	�

	�

�����

�����
�

�����
�

�����
	�

�

�
�

�

�
�

	�

�
	�

����
����

����������

����������

���

���

���

���

���

���

�
��

�
���

Figure 3.20: A 32 bit ALU of MIPS Processor

�������

�������	

�

�����	
��

�

�����	

�����

�

����
�

� ��������
������	����

����
�

�����

Figure 3.21: A 1-bit ALU of MIPS Processor

relation coefficient of 94% for RF, 96% for PC, 100% for MUX, 85% for the control unit,

100% for the sign extend unit and 88% for ALU control unit are achieved. Eventually,

an overall correlation of 94% is observed between gate-level faults and behavioral faults

of the MIPS processor.

So, the proposed greedy approach is certainly more coverage-efficient when compared

with the functional test program synthesis method [2] because a higher fault coverage

63

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

��������	
���	��
��	

�����
	�
���	
	�����	���	

������	 ������	

�������	����	

���������������	������ ��!

���� ����

��	"��#�����
	"	����$���

%���	��&��	�

�	 &
�����

���	��&�������

���'(

��)��

�$*��

�������

��������

������
�������
$���

������	����

Figure 3.22: Basic Architecture Block Diagram of Leon3 Processor [3]

(96.32%) is achieved using a fault model (behavioral) of better correlation (94%) with

the gate-level defects.

3.4 Experimental Study for Leon3 Processor

Now, we study the efficacy of the proposed greedy based test generation scheme on a

Leon3 processor, which has a larger, and more complicated hardware implementation

than a MIPS processor. This could demonstrate the scalability of our proposed greedy

approach. The Leon3 processor model is a 32-bit configurable processor of SPARC V8

architecture. It has a 7-stage pipeline and exploits the IP cores of GRLIB IP library.

The 10 behavioral fault representations that are used for MIPS processor, as shown in

Table 3.1, are used for Leon3 Processor also. The command-line options of ModelSim

simulator are used for the response calculation when the synthesized test programs are

applied on the processor. From these responses, the contents of the observable locations

are extracted and are matched with the golden responses to uncover the defects using a

set of scripts written in Python language.

A block diagram of the basic architecture of the Leon3 processor is illustrated in

Fig. 3.22, where the minimal components are shown in a magenta background and the

optional components are shown on a grey background. In Leon3 processor, a 7-stage

64

3.4 Experimental Study for Leon3 Processor

Figure 3.23: Integer Pipeline Unit of Leon3 Processor [3]

integer pipeline controls the processor execution. The 7 stages of this pipelining are inde-

pendent and achieve high performance by using forwarding paths and delayed branches.

For the test synthesis of the considered Leon3 processor, the main computational blocks

are selected for testing. The main computational components include the minimal com-

ponents, such as the integer pipeline, register file and some of the optional components,

such as the hardware divide, multiply and MAC components. The non-computational

blocks and memory blocks are not considered. These main computational blocks to be

tested are shown in a dashed rectangle in Fig. 3.22.

In Fig. 3.23, the integer pipeline of the Leon3 processor is illustrated [3]. It has an

ALU/Shift unit, 5-to-1 multiplexers, 2-to-1 multiplexers, and several control registers

and special registers. The memory and other non-computational components are high-

lighted in the blue background and the processor components, which are to be tested,

are shown in the white background.

The register file consists of 40 to 520 general-purpose 32-bit registers among which 8

registers are global and a window of 2-to-32 16-register sets. The 32-bit integer multiplier

and divider, and the 16-bit MAC unit could be tested using the instruction set that

carries out their functionality.

The controllability and observability values estimated using 10 template instances

65

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

Table 3.6: Observability Values for Leon3 Processor

Module
Instruction

add sub umul smul udiv sdiv umac smac and sll bne ldd std
3-port Register file 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.5 4.0 2.0 2.5

ALU/Shift 9.5 9.0 4.0 4.0 3.0 3.5 4.5 3.5 8.5 9.0 4.0 8.5 8.0
Control registers 2.6 3.0 2.4 2.4 4.0 4.0 2.3 2.3 3.0 3.0 5.5 2.0 4.3
Status registers 2.0 4.3 3.0 3.0 3.0 3.0 3.0 3.0 2.5 3.5 3.5 2.0 2.5

5-to-1 MUX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2-to-1 MUX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

PC 8.5 7.5 8.0 7.5 7.0 7.5 8.5 8.0 7.5 8.0 2.0 10.0 10.0
H/W Multiplier 2.3 2.0 9.0 9.0 2.0 2.3 1.0 1.0 3.0 3.0 3.0 3.0 3.0

H/W Divider 3.4 2.0 5.0 4.5 8.0 7.5 3.0 3.0 2.3 2.4 3.0 3.0 3.0
H/W MAC 3.0 3.0 2.5 3.5 2.3 3.3 7.0 7.5 1.0 3.0 3.5 2.3 2.3

Table 3.7: Controllability Values for Leon3 Processor

Module Instruction
add sub umul smul udiv sdiv umac smac and sll bne ldd std

3-port Register file 37 37 35 35 34 35 34 34 32 34 34 35 35
ALU/Shift 13 13 8 7 7 7 8 8 12 12 6 8 7

Control registers 1 2 1 1 1 1 1 1 1 1 4 1 1
Status registers 3 3 2 3 3 3 3 3 2 3 4 3 3

5-to-1 MUX 10 10 10 10 10 10 10 10 10 10 9 6 5
2-to-1 MUX 10 10 10 10 10 10 10 10 10 10 10 10 10

PC 3 3 3 3 3 3 3 3 3 3 1 5 4
H/W Multiplier 3 2 9 9 3 3 3 3 3 3 3 5 5

H/W Divider 3 3 2 2 7 7 4 4 3 3 3 6 5
H/W MAC 1 1 3 3 2 3 7 6 3 3 2 5 4

for each instruction are computed as shown in Table 3.6 and Table 3.7. The testability

values, which is their product, is shown in Table 3.8. The selection probability of each

instruction is calculated from these testability values and are observed to be similar to

that of the MIPS processor because of the equivalences in the architecture and similar

RISC instruction sets of both MIPS processor and Leon3 processor. For the control reg-

isters, a higher testability value of 22 is observed with the bne branch instruction. For

ALU/Shift component, evidently, arithmetic and logical instructions have higher testa-

bility values of above 100. Likewise, Hardware multiplier, divider, and MAC units have

the highest selection probability values for mul, div and mac instructions, respectively.

A smaller µ and λ values (µ = 10, λ = 5), and a tournament size of tau = 2 are

chosen for the proposed greedy based ES strategy. These µ and λ values were chosen

because they were observed to have an efficient fault coverage for MIPS processor as

shown in Fig. 3.13. Our greedy-cover based algorithm runs for 400 generations with a

steady-state threshold of 40 generations.

A comparison of results of the existing µGP techniques and the proposed greedy

66

3.4 Experimental Study for Leon3 Processor

Table 3.8: Testability Values for Leon3 Processor

Module Instruction
add sub umul smul udiv sdiv umac smac and sll bne ldd std

3-port Register file 129.5 129.5 105.0 105.0 102.0 105.0 102.0 102.0 128.0 153.0 136.0 70.0 87.5
ALU/Shift 123.5 117.0 32.0 28.0 21.0 24.5 36.0 28.0 102.0 108.0 24.0 68.0 56.0

Control registers 2.6 6.0 2.4 2.4 4.0 4.0 2.3 2.3 3.0 3.0 22.0 2.0 4.3
Status registers 6.0 11.9 6.0 9.0 9.0 9.0 9.0 9.0 5.0 10.5 14.0 6.0 7.5

5-to-1 MUX 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 6.0 5.0
2-to-1 MUX 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

PC 25.5 22.5 81.0 67.5 21.0 22.5 25.5 24.0 22.5 24.0 2.0 50.0 40.0
H/W Multiplier 6.9 4.0 81.0 81.0 6.0 6.9 3.0 3.0 9.0 9.0 9.0 15.0 15.0

H/W Divider 10.2 6.0 10.0 9.0 56.0 52.5 12.0 12.0 6.9 7.2 9.0 18.0 15.0
H/W MAC 3.0 3.0 7.5 10.5 4.6 9.9 49.0 45.0 3.0 9.0 7.0 11.5 9.2

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

F
au

lt
 C

o
v
er

ag
e(

%
)

Generations

Existing muGP
Greedy cover GA

Figure 3.24: Comparison of Existing µGP and Proposed Greedy Based Method over 400
Generations for Leon3 Processor

method is shown in Fig. 3.24. An adequate coverage improvement is visible in Leon3

processor also. In the initial stages, the convergence is slower for the greedy based

algorithm than the conventional µGP techniques. After the execution of 300 generations,

both approaches achieve coverage of 90% and subsequently, the µGP process stagnates

with coverage of 92.9% and the proposed greedy based method progresses towards a

better coverage of 95.8%.

Although the gate-level implementation of a Leon3 processor is exceedingly larger

and complicated than MIPS, the number of behavioral faults varies marginally. For

example, let us consider the ALUs of MIPS and Leon3 processors. In accordance with

the behavioral fault models in Table 3.1, the ALU block of a MIPS processor has 49

behavioral faults whereas the ALU block of a Leon3 processor has 55 behavioral faults.

67

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

There are 5 arithmetic/logical instructions for a MIPS processor and 8 arithmetic/logical

instructions for a Leon3 processor. ALU has to select an operation from the arithmetic

or logical operations performed by these instructions, and the result is propagated to

the output of ALU.

An alu select signal is assigned to select the operation from the arithmetic or log-

ical operations by checking the op code of each operation using ELSE IF conditional

blocks. For each ELSE IF conditional block, 2 behavioral faults (elsif stuck then and

elsif stuck else) are possible. If the number of arithmetic or logical instructions is large

in the ISA of a processor, the number of ELSE IF blocks will be high and eventually,

the number of behavioral faults related to ELSE IF blocks will also be high. As the

instruction sets of MIPS processor and Leon3 processor are equivalent, the number of

behavioral faults associated with the ELSE IF blocks are also nearly equal. This con-

cept of a nearly equal number of behavioral faults in Leon3 and MIPS processors leads

to the scalability of the scheme.

In the next section, we discuss the contributions of our proposed approach com-

pared with the previous evolutionary approaches in the automation of test generation

for processors.

3.5 Comparison and Discussions

The fault evaluation methods used by the previous evolutionary test development meth-

ods [2, 41, 52, 53] are not extensive enough because the code coverage metrics of HDL

descriptions are not well correlated with the gate level faults and physical defects. The

important experimental contributions of our paper are enlisted below:

• Scalablility of the proposed greedy based approach: The proposed greedy

based approach is scalable because our evaluation framework makes use of behav-

ioral level fault models. For large processors like Leon3, the number of possible

behavioral faults is not considerably larger than that of the small processors like

MIPS as discussed in Section 3.4. This is due to the high level of abstraction of

behavioral fault models.

The MIPS processor has 32k nets and the Leon3 has a total of 336k nets. For gate-

level ATPG testing, the number of possible stuck-at faults would be 64k (32k × 2)

68

3.6 Summary

for a MIPS processor and 672k (336k × 2) for a Leon3 processor, which is nearly 10

times that of a MIPS processor. But the number of possible behavioral faults to be

tested is 270 for the MIPS processor and only 364 for the Leon3 processor. Here,

the number of behavioral defects does not drastically increase with the processor

size. So, the overall test generation time for the behavioral faults varies marginally

only, which demonstrates the scalability of our method.

• Assurance of good test quality for the proposed greedy based approach:

The previous evolutionary approaches for processor test generation [2, 41, 52, 53,

91] have used fault models which are not well-correlated with the gate-level fault

models. So, these approaches could not assure good test quality. The proposed

greedy based technique achieves a fault coverage of 96.32% for a MIPS processor

and 95.8% for a Leon3 processor for behavioral fault models. Furthermore, we have

shown that our behavioral faults have 94% correlation with the gate-level faults.

This assures the test quality of our approach as more than 90% of the gate-level

faults is detected according to our correlation study described in Section 3.3.2.

3.6 Summary

Genetic algorithm-based approaches are widely accepted methods to search for the high-

quality self-test programs for processors [2, 41]. But the overall coverage of these test

solutions was insufficient because the corner cases, which are the hard-to-detect faults,

were never taken care of. Further, these approaches could not guarantee the test quality

because the fault evaluation metrics, such as the statement coverage, were not well-

correlated with the gate-level fault models. In this study, an enhanced SBST synthesis

for the processor cores is employed by integrating the greedy coverage and the testability

features into the traditional evolutionary core module of µGP for the detection of the

hard faults. A comprehensive behavioral fault model is used to capture the possible faults

in the processors. From the experimental results, we could conclude that our strategy

synthesizes test solutions that could detect 96.32% of the testable behavioral faults of

a MIPS processor and 95.8% that of a Leon3 processor which affirms the detection of

40% of the hard faults.

The scalability of the proposed scheme is demonstrated by analyzing and comparing

69

3. GREEDY COVER-BASED EVOLUTIONARY SBST SYNTHESIS

the effort in testing the behavioral faults for a MIPS processor and a Leon3 processor.

As the number of behavioral faults does not change considerably with the processor size,

the test program generation time is nearly equivalent for both processors, which explains

the scalability of our scheme. Finally, the close correlation (94%) between the gate-level

faults and the behavioral faults establishes a high test quality (gate-level coverage of

90% or above), for our scheme. In the next chapter, we discuss a faster greedy cover-

based automated test synthesis technique to yield test solutions quicker than the existing

evolutionary techniques, maintaining the fault coverage.

70

Chapter 4
Rapid SBST (RSBST) Program Synthesis

4.1 Overall Approach of RSBST Program Synthesis

This work discusses a rapid software self-test technique termed as, rapid SBST (RSBST),

where the test synthesis is faster compared to that of the conventional µGP approaches

[2, 41, 52, 53] and the greedy-based µGP approaches described in the previous chapter

(Chapter 3), at the same time does not drop the fault coverage. This faster test synthesis

is realized by efficiently integrating the reusability of fault simulation results in the

greedy-based µGP framework. In RSBST, redundant test solutions are identified and

their simulation results are efficiently reused for a faster fault coverage evaluation. This

reusability scheme would expedite the greedy-based µGP evolutionary test synthesis

which covers many hard-to-test faults.

As discussed in section 1.6, the simulation of faulty processor models and the succes-

sive response collection and comparison are exceedingly time-consuming. In the proposed

RSBST technique, we reuse the simulation responses (fault coverage and fault list) for

equally-observable test programs to reduce the overall test generation time. The overall

approach of RSBST automation scheme for a processor is shown in Fig. 4.1. In this

scheme, an evolutionary test generator rapidly develops test solutions of optimal fault

coverage exploiting an initial population of test programs, represented as DAGs, and an

instruction library.

Formerly, all test programs were evaluated using an external evaluator as shown in

Fig. 1.7. To reduce the cost of this external fault evaluation, we have introduced an

observability comparator, which compares and identifies the test programs with simi-

lar observability. This would effectively reduce the number of fault simulations as the

71

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

�����
���	�
�

�
��������
�
����
��

�
�
�
������
�����
���

�����
���
��
���������
�����
	��

 �������

���
�����!�
��
���

 "���

��
 �
��
���
����
��������	�
�

�
���
�
�����
���

��#!��

$�����
�������
����
�
���

������

�
�
	

��

��	��������
��
����

%�&
����
��
'�(������
���������

)����*�	&+�����
����������
�����
����������,���#

���
���(�*��
����������
��
������������

�
�
�
��

�
-

-

.
.

Figure 4.1: RSBST Automation Scheme

simulation responses of the parent test programs, stored in a repository of simulation

responses, could be reused for the offspring test programs with equal observability. The

repository of simulation responses stores the observability values, fault coverage, and

the fault list of the parent chromosomes. This repository is updated with the simulation

responses after each external simulation.

The observability comparator calculates the contents of the observable destinations

of a test program. To conduct this calculation, the observability comparator makes use

of a high-level logic simulation technique which could rapidly evaluate test programs.

The contents of the observable locations, which are the simulation responses obtained

using the high-level logic simulation, are contrasted with the observability values of the

parent chromosomes to check for the scope of reusability of the test program. If an

offspring test solution and one of its parent test solutions have identical observability

values, the fault simulation could be avoided for the offspring test solution.

The fault coverage of a test program, synthesized by the evolutionary core, is evalu-

ated using either of path 1© with dashed lines or path 2© with bold lines, as shown in

Fig. 4.1. Path 1© denotes the reuse of simulation responses using a rapid test evaluation

method with a high-level response collection and comparison whereas path 2© denotes

the regular, external evaluation of the test program. If the simulation responses of a

parent chromosome could be reused, external evaluation (path 2©) is avoided for the test

programs.

Initially, when a test program is synthesized by the evolutionary core, path 1© is

selected for the rapid test evaluation. In path 1©, the observability comparator conducts

72

4.2 Observability-based Reusability of Test Programs

a rapid high-level logic simulation for the test program and collects the contents of the

observable locations. If these observability values of the test program and one of its

parent test programs are identical, the simulation responses (fault coverage, fault list,

etc.) of that parent test program are reused for the offspring test program. Later, these

responses are delivered to the evolutionary test generator.

If the observability values of the test program and any of its parent test programs

are not identical, path 2© is chosen. In path 2©, the external evaluator conducts a

time-consuming, detailed fault simulation, as shown in Fig. 1.7, for the test program

and delivers the simulation responses to the evolutionary test generator. Later, the

repository of the simulation responses is updated with these simulation responses. So,

in RSBST, high-level processor descriptions and high-level simulations are used for rapid

test evaluation (path 1©) whereas detailed HDL descriptions of the processor and time-

consuming HDL simulations are used for the external evaluation of test programs (path

2©). In the next section, the conventional framework for building SBST programs with

the help of a high-level fault modeling approach is discussed.

The test synthesis time is high for the greedy-cover based test synthesis, discussed in

Chapter 3, because the test solutions with high fault coverage are not selected always.

In fact, the test solutions with considerably lesser fault coverage could even be selected

for the future generations if it detects few hard-to-test faults. So, the convergence of

the traditional SBST will require more generations of chromosomes and thus, is slower.

So, we introduce a reusability technique, which could avoid the fault simulation of test

programs of similar influence on the observable locations of the processor, for a faster

test synthesis.

4.2 Observability-based Reusability of Test Programs

While the evolutionary process progresses, it is highly likely that the evolutionary core

develops individual solutions with similarities in fault simulation results. If the instruc-

tion sequences of two test individuals have similar functionalities, the fault simulation

results could be reused to reduce the test synthesis time. As the initial µ chromo-

somes of a generation are replicated from the population of the previous generation,

their responses could be naturally reused, thereby avoiding re-simulation. But the new

λ chromosomes, which are cultivated using the µ individuals of the current generation,

73

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

���������
�	
�	�
��

������
����	��������

�

������������
����	���������
�	
�	�
�
���

���������
��
��
�����
�
���
�����

��
�����
��
���
����

�!����	��������"�
#
��	����

$�����
��
�����
��
���

��

%��

&��'������
��
�����
�

�(�!��"
�(�!��	���)!���
�(�!��	���*!���

����	���������
#

 �	��
	
����	���������
#

 �	��
	

$����������+
�$�����#
��	����

�����

*

*

*

)

������	�����
����	���������
�	
�	�
�
���

Figure 4.2: Test Program Evaluation in RSBST

has to be dealt with a faster and high-level comparison of the states of the observable

destinations.

Processor faults are identified by comparing the contents of the observable locations

on the processor. If the values stored in these observable locations following the simu-

lation of an offspring solution are same as that of one of its parent solutions, the set of

faults that they could identify are likely to be same; i.e., equally-observable test solu-

tions will likely to have equal fault coverage. In that case, a re-simulation of the offspring

solution could be avoided by reusing the identified fault list and the fault coverage of

the parent solution.

In Fig. 4.2, the framework for the rapid test evaluation is elaborated. Here, a high-

level test program simulation, which has low timing requirement, is used to get the

contents of all observable locations. Further, the observability of a newly generated test

program and its parents are compared to identify the scope of reusability. As crossover

operator is one of the genetic operators employed for the SBST synthesis, each offspring

solution P would be composed of the genetic information of two parent solutions. If any

of these parents holds the same observability as that of P , the simulation responses of

that parent solution could be taken from the repository of simulation responses, where

the simulation responses of the test solutions of the previous generations are stored. If

no parent holds the same observability as that of P , it is to be fault simulated for the

74

4.2 Observability-based Reusability of Test Programs

responses, which is a time-consuming process.

In Fig. 4.2, the path 1© with dashed lines denotes the rapid test evaluation method

and path 2© with bold lines denotes the external evaluation of the test program. After

the external fault simulation, the repository of simulation responses is updated with the

achieved responses. Finally, the contents of the observable locations, the fault list, and

the fault coverage are achieved from the responses, stored in the simulation repository. In

the next subsection, we discuss how the repository of simulation responses is developed

and updated with respect to the fault simulation of each test program solution.

4.2.1 Repository of Simulation Responses

The repository of simulation responses, as shown in Table 4.1, stores these observability

values along with the fault coverage and the fault list of each test program solution. Let

P j
i be the jth individual of the population in the ith generation and OBSji be the values

of the observable locations after the execution of the test program solution P j
i on the

processor. The content of these observable locations are the simulation responses using

which the fault coverage, fault list, etc. are evaluated. The set OBSji is a combination

of:

• M j
i : Memory updates after the execution of the test program solution P j

i .

• Rj
i : Contents of the register locations after the execution of the test program

solution P j
i .

• Oj
i : Primary output values after the execution of the test program solution P j

i .

So, OBSji = {M j
i , R

j
i , O

j
i }, is the overall test response based on which the quality of

the test program solution P j
i is evaluated. The test quality is dependent on the fault

detection parameters, such as fault covered list, fault coverage, etc., which are evaluated

using the observability values OBSji .

This repository has a record for each test program solution P j
i , as shown in Table

4.1. Following the execution of P j
i , the contents of observable locations OBSji are stored

in the record corresponds to P j
i in the repository. Let F j

i be the fault coverage achieved

by the test program solution P j
i and FCj

i be the set of faults covered by P j
i . Now,

F j
i and FCj

i , obtained using OBSji values, are also stored in the record correpsonds

75

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

Table 4.1: Repository of Simulation Responses for the Test Program Solutions of ith Gener-
ation

Test solutions
of ith generation

Values of
Observable locations

Faut
Coverage

Faut
List

P 1
i OBS1

i = {M1
i , R

1
i , O

1
i } F 1

i FC1
i

P 2
i OBS2

i = {M2
i , R

2
i , O

2
i } F 2

i FC2
i

...

...

P µ+λ
i OBSµ+λ

i = {Mµ+λ
i , Rµ+λ

i , Oµ+λ
i } F µ+λ

i FCµ+λ
i

to P j
i in the repository shown in Table 4.1. As the fault simulation that produces the

simulation responses, i.e., OBSji , is time-consuming, we adopt a dynamic, high-level

logic simulation as discussed in the next subsection.

4.2.2 High-level Simulation

To conduct a high-level logic simulation of test programs, the encoding and syntax of

each instruction are modeled and the instruction operations are simulated using the func-

tionalities of high-level C programming language. Initially, this high-level component

allots limited memory for the observable locations of updated memory, registers, and

primary outputs. The memory updates are observed with the help of the occurrences of

store instructions in the test program. The contents of all registers and primary outputs

are observed for logic simulation. Later, each instruction is selected and is logic simu-

lated. After the logic simulation, the contents of these observable locations are collected

as the test program responses.

Let p denote the updated memory locations, q denote the register locations, and r

denote the primary outputs which are the observable locations of the processor. During

the fault simulation of the test program solution P j
i , developed during the evolutionary

test synthesis, the data and control signals are dumped into a simulation log file in each

clock cycle. Further, this simulation log file is parsed to observe the memory updates

M j
i = {m1,m2,m3,. . . ,mp}, contents of register locations Rj

i = {r1,r2,r3,. . . ,rq}, and

the primary outputs Oj
i = {o1,o2,. . . ,or}. Finally, the overall observability OBSji =

{m1,m2,m3,. . . ,mp, r1,r2,r3,. . . ,rq, o1,o2,o3,. . . ,or} is stored in the record corresponds to

P j
i in the simulation repository.

Each instruction is subjected to logic simulation using the information of its opcode

76

4.2 Observability-based Reusability of Test Programs

and operands. To realize the operations of instructions, a high-level procedure is devel-

oped for each opcode which could be reused for the logic simulation of every instruction

composed of the same opcode. The opcode of each instruction is parsed to learn the

operation to be performed on the observable locations. These operations are executed

on the source operands and simultaneously, the observable locations corresponding to

the destination operands are modified. Finally, the contents of observable locations are

compiled to form the test program response, based on which the reusability is deter-

mined.

A memory update value of set M j
i is represented using a 〈address, value〉 pair where

address is the updated memory location and value is the updated value at address

following the logic simulation of each store instruction. In this set, each value is repre-

sented using an 〈address, value〉 pair which corresponds to each store instruction. For

example, a MIPS store word instruction sw R1,offset(R2) has 〈(R2 + offset), R1〉
as the 〈address, value〉 pair, i.e., the memory location (R2 + offset) is updated with

the value in R1. So, if the test program has n store instructions, n 〈address, value〉
pairs are observed. These values are extracted using logic simulation to constitute the

set of memory updates M j
i . However, the test synthesis do not allow more than p store

instructions in the test program, which is much less than the overall number of memory

locations, to reduce the cost of observability comparison procedure.

In Fig. 4.3, an imaginary example of an intermediate test program solution of the

evolutionary test synthesis is shown. This test program has 8 internal nodes that repre-

sent 8 instructions, and a subgraph, with 2 internal nodes, that represents multiplication

operation. Suitable procedures are defined corresponding to the opcode of each instruc-

tion in the ISA. Also, in the state before the test program execution, every observable

location is initialized to zero. Each procedure passes the values of source operands as

the input arguments, conducts the operation defined by the opcode, and returns the

value of the updated destination operand.

Initially, we select the first instruction ori of the test program shown in Fig. 4.3,

with register r2 and an immediate value 2 as operands. To conduct logic simulation of

this instruction, the ori procedure is activated and modifies the value of r2 as 2 in the

set of register values Rj
i . Likewise, procedures of each opcode in the ISA is activated for

the logic execution of each instruction. For the logic simulation of all the 13 instructions

77

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

��������

�	
�����

���
��������

��

�

�

�

�

�

 main:

 ori $r2,$r2,2

 addi $r1,$r2,4

 bne $r1,$r5,mult

 andi $r1,$r2,$r3

mult:

 addi $r3,$zero,10

 addi $r4,$zero,10

 jal mult_proc

 sw $r1,3($r2)

mult_proc:

 mul $r5, $r3, $r4

 sw $r5,4($r2)

 jr $ra

��

�

	

.text

.globl main

li $v0,10

syscall

��

�

�

��

���
�	���

Figure 4.3: Representation of an Intermediate Test Program of µGP Test Synthesis

of the test program shown in Fig. 4.3, 9 procedures (ori, addi, bne, jal, sw, li, syscall,

mul, jr) must be activated. In this simulation, addi procedure is activated 3 times and

sw procedure is activated 2 times.

After the execution of every instruction in the test program shown in Fig. 4.3, the

values in the register locations r1, r2, r3, r4, r5 of Rj
i becomes 6, 2, 10, 10, 100, respec-

tively. Also, the memory locations m1 and m2 of M j
i are updated with 〈address, value〉

pairs 〈5, 6〉 and 〈6, 100〉, respectively, and they correspond to two store word instructions.

Primary outputs remain unchanged. So, OBSji , which is the compilation of contents of

Rj
i , M

j
i , and Oj

i after the execution of P j
i , are evaluated using the procedures of logic

simulation, and are stored in the record corresponds to P j
i in the simulation repository.

In the next subsection, we demonstrate how the observability values of two test programs

are compared for the discovery of equally-observable test programs.

4.2.3 Observability Comparator

In a generation of test individuals, µ offsprings are selected and replicated directly from

their parents. So, the fault simulation results of the candidate test solutions of a specific

generation could be reused for the selected µ offsprings of the next generation. Therefore,

78

4.2 Observability-based Reusability of Test Programs

the fault evaluation of µ test solutions out of the µ+ λ test solutions of any generation

becomes effortless. If the test synthesis undergoes a huge number of generations, time

consumed for the fault evaluation of the remaining λ test solutions would be enormous.

Therefore, while cultivating the remaining λ individuals using the genetic operators, an

observability-based reusability method of RSBST could be used to further reduce the

test synthesis time.

The observability comparator analyzes the contents of the observable locations of a

test program and its parent test programs. Based on the analysis results, the method of

test program evaluation is chosen. For example, the test program 1 shown in Fig. 4.4(a)

has equal observability as that of the test program 2 shown in Fig. Fig. 4.4(b). Let us

assume that the contents of all the registers are the same before the execution of these

test programs. In these programs, identical functionalities are executed on the same

registers and the eventual memory updates are same; i.e., following the execution of

both test programs, the registers r0 and r1 are assigned with X and X+ 1, respectively.

Also, the memory update corresponds to the store instruction of test program 1 is

〈(r4+offset), (r2)〉 and the memory update corresponds to the store instruction of test

program 2 is 〈(r4 + offset), (r3)〉. As the contents of r2 and r3 were initially the same

and remain unchanged, these memory updates are also identical. So, when these two

test programs are executed independently on equivalent initial processor states, all the

updated memory values, register values, and primary output values are observed to be

identical.

Now, consider the actual, computationally intensive fault simulation of these two test

programs, as discussed in Section 1.6.3 and Fig. 1.7. The processor is simulated with

each of these test programs for N faulty models and a good reference model. Initially, the

test program 1 is executed on these models and the simulation responses are collected for

every cycle of execution. The fault coverage is evaluated by comparing these simulation

responses, which are the contents of the observable locations. However, test program

1 and 2 would have identical contents of observable locations for all N + 1 processor

models since both of them realize the same functionality on each observable location.

So, test program 1 and 2 would have equal coverages too.

As equally-observable test programs are likely to have equal fault coverage, the sim-

ulation responses of test program 1 could be reused for test program 2 and vice versa.

79

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

 addi $r0,$zero,X

 addi $r1,$zero,X+1

 sw $r2,offset($r4)

a) Test Program 1

 ori $r0,$zero,X

 ori $r1,$zero,X+1

 sw $r3,offset($r4)

b) Test Program 2

Figure 4.4: Equally-Observable Test Programs

ALGORITHM 3: Reusability of Greedy Coverage Method in RSBST Approach

Input: ith generation of solutions P 1
i , P

2
i , . . . , P

µ+λ
i .

FCCi be the set of all covered faults until the generation i.

OBSji be the values of observable destinations when P j
i is executed.

Output: Set of covered faults FCCi+1 of the (i+ 1)th generation.

1 if OBSji = OBS
parent1(j)
i−1 then

2 Faut list FCj
i of P j

i = fault list of P
parent1(j)
i−1 ;

3 Coverage F j
i of P j

i = coverage of P
parent1(j)
i−1 ;

4 else if OBSji = OBS
parent2(j)
i−1 then

5 Faut list FCj
i of P j

i = fault list of P
parent2(j)
i−1 ;

6 Coverage F j
i of P j

i = coverage of P
parent2(j)
i−1 ;

7 else

8 Evaluate fault list FCj
i and coverage F j

i of P j
i using fault simulation. ;

9 Update the simulation repository of P j
i with the fault list FCj

i and coverage

F j
i achieved using fault simulation ;

10 The fitness function of P j
i is |FN j

i |, which is the cardinality of the set of its newly

covered faults, where FN j
i = FCj

i - FCCi;

11 If the individual P j
i is selected, update FCCi+1 with FCCi and the set of newly

detected faults FN j
i , i.e., FCCi+1 = FCCi ∪ FN j

i ;

The next subsection illustrates the algorithm of Rapid SBST technique which has two

significant aspects: 1) observability-based reusability of fault simulation results of test

programs, and 2) greedy-based test synthesis for the detection of hard-to-test faults.

4.3 Design of RSBST Scheme

The proposed method of reusability of the fault simulation responses are described in the

Step 1-9 of Algorithm 3. Let P
parent1(j)
i−1 and P

parent2(j)
i−1 be the two parent test program

solutions of P j
i . Let OBSji , OBS

parent1(j)
i−1 , and OBS

parent2(j)
i−1 are the observability con-

80

4.4 Experimental Results

tents of P j
i , P

parent1(j)
i−1 , and P

parent2(j)
i−1 , respectively. These two test solutions of (i− 1)th

generation are subjected to crossover and mutation operators to synthesize P j
i in the

ith generation. After the test program solution P j
i is synthesized, a high-level internal

logic simulation is conducted for the test quality evaluation of P j
i . Now, we extract

the contents of the observable locations of P j
i from the simulation responses and of its

parents P
parent1(j)
i−1 and P

parent2(j)
i−1 from the repository shown in Table 4.1. If OBSji is

equivalent to either OBS
parent1(j)
i−1 or OBS

parent2(j)
i−1 , the fault coverage and the fault list

of the equally-observable parent are selected from the repository in Table 4.1 and are

reused for P j
i , as illustrated in Step 1-6 of Algorithm 3.

If the observabilities of the offspring solution and none of its parent solution are not

identical (Step 7-9 of Algorithm 3), the fault coverage and fault list of P j
i are evaluated

using behavioral fault simulation (Step 8 of Algorithm 3). After the test evaluation, the

repository record for P j
i is updated with the fault coverage F j

i and fault list values FCj
i ,

achieved using the fault simulation (Step 9 of Algorithm 3). These simulation responses

could be reused for the further generations, i.e., if OBS
offspring(j)
i+1 of the test program

solution P
offspring(j)
i+1 in the i + 1th generation matches with OBSji of P j

i , the fault list

and coverage of P j
i are reused for P

offspring(j)
i+1 .

In this approach, a set FCCi refers to the list of all covered faults until the generation

i, and FN j
i is the set of newly detected faults by P j

i . In Step 10, the objective function

is defined as |FN j
i |, which is the cardinality of the set of the newly covered faults. This

greedy approach tends to protect the chromosomes that detect the hard-to-test faults

through the generations. Finally, FCCi+1 is created by merging FCCi and the set of

fresh faults FN j
i that are detected by the selected chromosomes in the ith generation,

as described in Step 11 of Algorithm 3. The experimental results that validate a faster

test synthesis with the help of RSBST technique are demonstrated in the next section.

4.4 Experimental Results

For the experimental evaluation of our RSBST code synthesis, we have used a similar

kind of setup, benchmark processors, and fault models considered in the last chapter.

We have also used a 32-bit MIPS processor and a Leon3 processor model of SPARC V8

architecture with a 7-stage pipeline to be tested with the help of 10 behavioral fault

representations shown in Table 3.1 of Chapter 3. The MIPS processor is synthesized

81

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

Table 4.2: Specifications for the Proposed Automated Test Synthesis

Specification Value
Number of generations 400
Selection methodology Tournament selection
Size (τ) of the tournament 2
Steady-state threshold 40
Evolutionary methodology ES(µ+ λ) approach
Fault coverage evaluation method Behavioral fault evaluation

using 810 lines of VHDL code and the Leon3 processor has 5017 lines of VHDL code. The

command-line options of ModelSim 10.5b simulator are used to execute the synthesized

test programs on the faulty and non-faulty models of the processor. The fault simulation

responses are extracted to evaluate the test programs and thereafter, the fittest solutions

are selected. Generally, the synthesized test programs are of 250-300 lines of assembly

code.

The functional and control components of the MIPS processor are tested in a soft-

ware simulation environment of 270 fault models. To evaluate the test program, memory

updates, contents of general purpose registers, and the primary outputs are extracted

from the simulation responses using Python scripts and compared with the golden re-

sponses. The (µ+ λ) evolutionary-based test synthesizer is developed using an ANSI C

implementation of 934 lines with three mutation and 1-point crossover operators.

The parameter values used for the proposed automated synthesis are shown in Ta-

ble 4.2. The chromosomes of each generation are selected using a tournament selection

operator where the tournament size (τ) is 2. The evolutionary core executes the test syn-

thesis for 400 generations and terminates if there is no improvement for 40 generations,

which is the steady-state threshold. For the conventional µGP and the greedy-based

µGP, the size of the initial population (µ) is taken as 10 and the number of offsprings to

be generated in each generation (λ) is taken as 5. But the faster convergence of RSBST

could be exploited for achieving adequate coverage using a larger population size of test

solutions. So, for RSBST code synthesis, we expand the search space by adopting µ as

20 and λ as 10. In the next subsection, we discuss how the observability comparator

makes use of test program observability for faster test synthesis.

82

4.4 Experimental Results

4.4.1 Observability Analysis of Test Programs

To identify the equally-observable test programs, the observability comparator is devel-

oped using ANSI C on the greedy-based evolutionary test synthesizer with 1309 lines of

code for the MIPS processor. This module stores the contents of the observable destina-

tions to identify the redundant test programs which could be internally evaluated. We

observe 64 memory updates (each corresponds to a store instruction), contents of all 32

registers, and 2 primary outputs for the high-level logic simulation of test programs.

Let the set of memory updates be M j
i = {m1,m2,m3,. . . ,m64}, contents of register

locations be Rj
i = {r1,r2,r3,. . . ,r32}, and the primary outputs be Oj

i = {o1,o2} after the

execution of the test program solution P j
i , which is the jth individual of the population

in the ith generation. So ,the overall observability OBSji for test program solution

P j
i becomes {m1,m2,m3,. . . ,m64, r1,r2,r3,. . . ,r32, o1,o2}, i.e., contents of 98 observable

locations.

Now, the simulation repository is loaded with the contents of the observable loca-

tions (OBS
parent1(j)
i−1) of P

parent1(j)
i−1 and (OBS

parent2(j)
i−1) of P

parent2(j)
i−1 , which are the the

parent test programs of P j
i . Let OBS

parent1(j)
i−1 be the set of values {m′

1,m
′
2,m

′
3,. . . , m

′
64,

r
′
1,r

′
2,r

′
3,. . . ,r

′
32, o

′
1,o

′
2} andOBS

parent2(j)
i−1 be the values {m′′

1 ,m
′′
2 ,m

′′
3 ,. . . , m

′′
64, r

′′
1 ,r

′′
2 ,r

′′
3 ,. . . ,r

′′
32,

o
′′
1 ,o

′′
2}. If the observability OBSji of test program P j

i is equivalent to either the observ-

ability OBS
parent1(j)
i−1 of one of its parent P

parent1(j)
i−1 or the observability OBS

parent2(j)
i−1 of

the other parent P
parent2(j)
i−1 , the fault lists and fault coverages of the parent solution can

be reused for the evaluation of P j
i . We have applied and validated these equivalences

on a MIPS processor and a Leon3 processor and the results are illustrated in the next

subsection.

4.4.2 Case Studies for MIPS Processor and Leon3 Processor

A set of macros corresponding to the instructions of the MIPS processor are used for

developing the constituents of the instruction library. For the MIPS processor, the

enhancement in the development of the test synthesis using the proposed RSBST scheme

is shown in Fig. 4.5(a). The average fault coverage of the conventional µGP scheme [2]

with behavioral fault model achieves an adequate coverage (80-85%) after 50 generations,

whereas the greedy-based GA proposed in the last chapter could only cover 85% of the

faults after 75 generations. Eventually, 93.9% of the behavioral faults are detected by the

83

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

F
au

lt
 C

o
v
er

ag
e(

%
)

Generations

Existing microGP
Greedy-based GA
Proposed RSBST

a) Average Coverage for MIPS Processor

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

F
au

lt
 C

o
v
er

ag
e(

%
)

Generations

Existing microGP
Greedy-based GA
Proposed RSBST

b) Average Coverage for Leon3 Processor

Figure 4.5: Average Fault Coverage for MIPS Processor and for Leon3 Processor over 400
Generations using 1) µGP [2] with Behavioral Fault Model 2) Greedy-based GA proposed in
the last chapter 3) Proposed RSBST

µGP approach [2] and 96.3% of faults are detected by the greedy-based GA. However,

our RSBST code synthesis yields more than 85% of fault coverage before 50 generations

and conclusively, carries out an adequate coverage of 96.1%.

For the Leon3 processor, the progress in the achieved fault coverage using the RSBST

scheme is shown in Fig. 4.5(b). The conventional µGP approach [2] with the behavioral

fault model, yields a fault coverage of 80-85% before 150 generations whereas the greedy-

based GA accomplishes above 80% coverage only after 200 generations. Finally, µGP

approach [2] could detect 92.9% of the faults and the greedy-based GA comes up with a

fault coverage of 95.8%. However, the proposed RSBST code synthesis covers more than

85% of the possible faults before 100 generations and ends with a final fault coverage of

95.5%.

The test synthesis for MIPS processor was conducted module-by-module whereas

monolithic test programs were generated for the Leon3 processor. The processor model

describes the RTL model of the processor to be tested in the hardware description

language VHDL, either in synthesizable or simulatable form. Here, the RTL model is

subjected to module partitioning which is realized by breaking down the RTL design

into several functional units and testing them separately. So, each processor module

corresponds to a single hardware block and therefore, there are as many modules as the

number of valid digital blocks in the processor model.

The coverage and test synthesis time for the five major modules of the MIPS processor

84

4.4 Experimental Results

Table 4.3: Achieved Coverage and Synthesis Time of MIPS Processor Modules

MIPS
Processor
Module

Conventional µGP by
G.Squillero [2]

Greedy GA proposed
in the last chapter

Proposed RSBST

Coverage
(%))

Synthesis
Time

(Hours)

Coverage
(%))

Synthesis
Time

(Hours)

Coverage
(%))

Synthesis
Time

(Hours)

ALU 100.00 24.50 100.00 33.73 100.00 18.07

PC 100.00 11.50 100.00 15.83 100.00 8.48

RF 96.67 15.00 96.67 20.65 96.67 11.06

ALU Control 90.24 21.50 94.87 29.63 94.27 15.86

Control Unit 83.83 49.50 90.32 68.16 90.12 36.53

Total 93.90 122.00 Hrs 96.30 168.00 Hrs 96.10 90 Hrs

is shown in Table 4.3. The overall test set constitute the test programs synthesized for

the validation of each module. In the conventional µGP [2], achieved coverage (83.83%)

was inefficient for the control unit module but the synthesis was reasonably fast (49.5

hours). So, the coverage of the control unit was improved towards 90.32% for the greedy

coverage method, which encounters a longer test synthesis of 68.16 hours.

Some of the behavioral faults of the control unit could only be tested using rare se-

quences of instructions only. So, we make use of a larger solution space for the population

of test individuals. Since the RSBST code synthesis is faster, this larger population of

test individuals helps in developing instruction sequences that could detect harder be-

havioral faults for the control unit. As a result, test programs with coverage above 90%

is synthesized for the control unit within 36.53 hrs using the proposed RSBST technique.

For the remaining modules, minimum coverage of 94% is guaranteed with the overall

evolutionary test synthesis terminates in 90 hours. Now, the amount of simulation re-

sponses reused for the chromosomes, bypassing the fault simulation, is discussed in the

next subsection.

However, the fault coverage for ALU control and control unit achieved by RSBST

technique is slightly smaller than that of Greedy GA method. This reduction is due

to the high-level logic simulation of test programs in RSBST approach. In RSBST

approach, we conduct a high-level logic simulation for a new offspring test program to

check its reusability. If its logic simulation results are matching with that of any of its

parents, the actual simulation results of parent test program are reused for the offspring

test program. In those cases, actual fault simulation of the offspring is not conducted.

85

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

Table 4.4: MIPS Processor - Achieved Coverage and Time of the 1) µGP [2] with Behavioral
Fault Model 2) Greedy-based GA proposed in the last chapter 3) Proposed RSBST Method

Framework
Simulation
Environment

Behavioral
Fault
Coverage

Test
Synthesis
Time

Chromosome
Reuse

Remarks

Conventional
µGP by
G.Squillero [2]

Modelsim
Version 5.7a

93.9% 122 Hours 66.6%

Lesser fault
coverage but
test synthesis
is faster.

Greedy GA
proposed in
the last chapter

GHDL 96.3% 168 Hours 66.6%

Improved fault
coverage but
test synthesis
consumes huge time

Proposed
RSBST

Modelsim
Version 10.5b

96.1% 90 Hours 82.1%

Adequate fault
coverage and
faster test
synthesis

Table 4.5: Leon3 Processor - Achieved coverage and Time of the 1) µGP [2] with Behavioral
Fault Model 2) Greedy-based GA proposed in the last chapter 3) Proposed RSBST Method

Framework
Simulation
Environment

Behavioral
Fault
Coverage

Test
Synthesis
Time

Chromosome
Reuse

Remarks

Conventional
µGP by
G.Squillero [2]

Modelsim
Version 5.7a

92.9% 142 Hours 66.6%

Lesser fault
coverage but
reasonable test
synthesis time.

Greedy GA
proposed in
the last chapter

GHDL 95.8% 172 Hours 66.6%

Improved fault
coverage but
longer test
synthesis

Proposed
RSBST

Modelsim
Version 10.5b

95.5% 98 Hours 80.8%

Adequate fault
coverage and
faster test
synthesis

It may also happen that the offspring test program detects new faults but its logic

simulation results may match with that of its parents. In these cases, new faults may

get discarded. As most of the hard-to-detect faults are in the control components, it is

quite likely that the faults in control unit and ALU control may left undetected in the

RSBST scheme.

86

4.5 Summary

4.4.3 Chromosome Reusability of RSBST

In Table 4.4, the fault coverage, test synthesis time, and the amount of chromosome

reuse are shown. The chromosome reuse refers to the percentage of chromosomes (test

program solutions) reused throughout the test synthesis except for the first generation.

For the first generation of test program solutions, µ + λ fault simulations must be

performed to load the simulation results into an empty simulation repository. From the

second generation, we investigate the scope of reusability and thereby reduce the test

development time.

For the MIPS processor, the µGP approach [2] consumes 122 hours for the test

synthesis and the greedy-based GA proposed in the last chapter takes 168 hours. The

RSBST approach consumes only 90 hours, which is 46.4% faster than the greedy-based

GA, and with adequate coverage of 96.1% as shown in Table 4.4. To synthesize mono-

lithic test programs for the Leon3 processor, the µGP approach [2] takes 142 hours and

the greedy-based GA consumes 172 hours. The proposed RSBST approach consumes

only 98 hours, which is 43% faster than the greedy-based GA, with coverage of 95.5%

as shown in Table 4.5.

The chromosome reusability is exploited to accelerate the convergence of the greedy-

based GA. For the µGP and the greedy-based GA (proposed in the last chapter), the sim-

ulation responses of the selected chromosomes (µ = 10) of each generation are adopted

and reused directly from the parent chromosomes, which saves 66.6% of test synthesis

time. For our proposed RSBST approach, the offspring chromosomes (λ = 5) are substi-

tuted by the equally-observable parent chromosomes along with the reuse of the selected

chromosomes (µ = 10). Eventually, the overall reusable chromosomes would mount up

to 82.1% for the MIPS processor and 80.8% for the Leon3 processor.

4.5 Summary

In this work, a faster SBST synthesis of processor cores is employed using an accelerated

greedy-based evolutionary method (RSBST), where the test programs that could detect

the hard-to-test faults are developed. From the results, we could conclude that using a

more comprehensive fault model, our strategy develops test solutions that could detect

96.1% of the testable behavioral faults of the MIPS processor in 90 hours and 95.5% that

87

4. RAPID SBST (RSBST) PROGRAM SYNTHESIS

of the Leon3 processor in 98 hours. This affirms a chromosome (test program) reuse of

82.1% for the MIPS processor and 80.8% for the Leon3 processor.

A faster and profound test synthesis could be developed using the fragment-wise

reusability of test programs. Even if the observability of 2 test programs are different,

the identical, and data-independent code fragments (chunks) could be extracted from

these test programs and reused. Also, the fault equivalence techniques could be used for

reducing the volume of simulations and the test generation time.

88

Chapter 5
Automated Low-cost Compaction of SBST
Programs

5.1 Basics of SBST Compaction

The self-test code employed for validating complicated processor functionalities would

require a huge number of instructions. A large self-test code increases the test download

time and test application time, which scales down the test performance [63]. In addition,

smaller and efficient self-test codes are required for the online testing of safety-critical

processors. To realize this, an effective self-test code optimization process (Phase D of

the SBST procedure shown in Fig. 1.3 of Chapter 1) is conducted after the self-test

synthesis phase (Phase C of the SBST procedure shown in Fig. 1.3 of Chapter 1).

The recent advancements in the domain of test code optimization [4, 65] focus on

the reduction of test execution time and test code compression. These techniques aim

to remove the instructions which do not contribute towards the overall fault coverage.

To efficiently remove these redundant instructions, the test code must be subjected to

a large number of fault simulations, which is the overall computational cost of test

optimization. So, the primary objective of any test code optimization technique is to

figure out an alternate redundant instruction elimination method which can bypass as

many number of fault simulations as possible. However, these techniques must guarantee

that the fault coverage of the original test program would be preserved after the test

code compaction.

The most significant execution time reduction techniques [4] are of two types: 1) re-

dundant instruction removal techniques, which are computationally intensive but yields a

high amount of compaction, and 2) instruction block restoration techniques, which yield

89

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

lesser compaction with lesser computational effort. So, for a better tradeoff between

computation cost and the amount of compaction, we propose an enhanced two-stage

compaction method. In the first stage, the test program is preprocessed using a de-

pendency graph-based independent instruction removal technique. In this technique,

the connected components of a data dependency graph are discovered for the SBST test

program instructions. These connected components are used to identify the independent

instruction sequences that do not cover any fault exclusively. Eventually, these indepen-

dent instruction sets are removed from the original test program yielding an adequate

amount of compaction.

Following the elimination of independent instructions, we employ a faster, top to

bottom instruction restoration technique using logic simulation of the test programs

in the second stage of test compaction. In this technique, test programs are divided

into equally sized blocks and the contribution of each block towards fault coverage is

evaluated. The instruction blocks are removed and restored from top to bottom for

better compaction. When a block is restored, its upper blocks are replaced with few

instructions that reinstate the initial state for that block. The initial state of a block

is calculated using logic simulation of the blocks above it. So, this could reduce the

cost of fault simulations, enabling faster and high test compaction. In the next section,

we discuss the first stage of our proposed work where redundant groups of independent

instructions are identified and removed.

5.2 Redundant Instruction Group Removal Using
Data Dependency Graphs

In this approach, we break down the test program into groups and eliminate the re-

dundant groups which do not contribute to the overall fault coverage. To achieve this,

the read-write dependencies between the test code instructions are analyzed. If instruc-

tions of the test program are tightly coupled to each other in terms of dependencies,

the grouping would be difficult. This is because some of the processor faults could be

detected only with the help of multiple dependent instructions. So, if dependent instruc-

tions are classified into separate groups for compaction, these faults may go undetected,

which would reduce the overall fault coverage. But for the compaction of test programs

with loose coupling between instructions, several independent groups can be identified,

90

5.2 Redundant Instruction Group Removal Using Data Dependency Graphs

main:

 addi $s1, $zero, 0

 addi $s2, $zero, 0

 addi $s4, $zero, 0

 addi $s5, $zero, signature

test:

 mult $s1, $s2 #I1

 mflo $s3 #I2

 add $s4, $s4, $s3 #I3

 addi $s2, $s2, 1 #I4

 bne $s2, #limit1, test #I5

 and $s2, $s2, $zero #I6

 addi $s1, $s1, 1 #I7

 bne $s1, #limit2, test #I8

 bne $s4, $s5, failure_routine #I9

 li $v0, 10

 syscall

��

��

��

��

��
��

��

�	

�

Figure 5.1: Data Dependency Graph with Single Connected Component

maintaining the fault coverage. Further, these groups can be evaluated to eliminate

the instructions of redundant groups among them. However, the effectiveness of our

approach lies in the fact that the dependencies between instructions of test solutions

developed using evolutionary test synthesis would be loose due to the random nature of

the evolutionary approach.

A data dependency graph representation of instruction sequences depicts flow depen-

dence, anti dependence, and output dependence between the operands of instructions.

In Fig. 5.1, an undirected data dependency graph corresponds to a test program for

the multiplier module of a 32-bit MIPS processor is shown. In this test program, ev-

ery consecutive integer value of a set, 0 to limit1, is multiplied with the consecutive

integer values of another set, 0 to limit2, and the sum of these product values is com-

pared with the expected response signature. The admissible region of a test program

is the middle section where the instructions can be reordered or removed. In the test

program shown in Fig. 5.1, 9 instructions (I1 to I9) lies in the admissible region and

its undirected data dependency graph is a connected component, i.e., each instruction

in the admissible region holds dependencies with at least one of the other instructions.

These inter-instruction dependencies restrict the extraction and removal of redundant

dead codes, which do not contribute fault coverage.

In the example shown in Fig. 5.2, the data dependencies between the instructions of

a test program developed using automated test synthesis is shown. An adaptive evolu-

91

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

main:

 nor $s26,$s22,$s4 #I1

 addi $s27,$s18,29 #I2

 sw $s3,$s16,21 #I3

 sub $s20,$s7,$s28 #I4

 and $s30,$s16,$s29 #I5

 bne $s17,$s10,10 #I6

 sub $s11, $s27, $s30 #I7

 lw $s8,$s31,27 #I8

 or $s0,$s19,$s11 #I9

 or $s10,$s13,$s27 #I10

 add $s4,$s20,$s15 #I11

 and $s6,$s11,$s23 #I12

 sw $s1,$s29,26 #I13

 bne $s8,$s27,19 #I14

 li $v0, 10

 syscall

����

���

��

��

���

���

��

��

���

�	 �

�� ��

��

��

��

���

Figure 5.2: Data Dependancy graph with Multiple Connected Components

tionary method µGP is used for the automation of self-test development. Although the

fault coverage is optimized, the size and execution time of evolutionary test program

solutions could be large due to random instruction selection. During the evolutionary

self-test generation, the instructions and operands are selected randomly. So, the de-

pendencies between instructions would be loose and thus, more redundant instructions

could be observed. These instructions could be removed to minimize the SBST code

size and to reduce the self-test execution time.

The dependencies of the test program shown in Fig. 5.2, which has 14 instructions

(I1 to I14) in the admissible region, are represented using four connected components

G1 to G4. Each subgraph represents a group of instructions which are independent of

any of the instructions in the other subgraphs. The subgraph G1 has 9 instructions,

subgraph G2 has 3 instructions, subgraph G3 has one instruction, and subgraph G4 has

one instruction. The 9 instructions of subgraph G1 are independent of the instructions

of subgraph G2, subgraph G3, and subgraph G4. The fault coverage of subgraph G1 is

evaluated by simulating the instruction sequence of subgraph G1 separately. Likewise,

the instruction sequences of subgraphs G2, G3, and G4 are simulated to obtain their

individual coverages.

To remove the redundant instructions from the actual test program T, we heuristi-

cally discover the largest dependency subgraphs with completely redundant fault lists.

Thereafter, all the instruction sequences of these redundant subgraphs are removed from

92

5.2 Redundant Instruction Group Removal Using Data Dependency Graphs

ALGORITHM 4: Stage 1: Independent Instruction Removal

Input: Test Program P with u instructions represented by a dependency graph

G with v connected components G1, G2, G3, · · · , Gv;

Output: Compacted test program P
′
;

1 for i← 1 to v do

2 Evaluate the set of faults covered FCGi by the instructions of Gi using fault

simulation;

3 for largest connected component Gi in G do

4 if FCGi is a subset of
v⋃
i=1

FCGj , where j 6= i then

5 Remove the instructions of Gi from T to form P
′
, i.e., P

′
= P −Gi ;

6 Remove Gi from G and decrement v by one;

T. The stepwise illustration of dependency subgraph removal technique is shown in Al-

gorithm 4. Initially, the dependencies between instructions of the input test program P

are identified to construct a dependency graph G. Now, we evaluate the list of covered

faults of the connected components G1, G2, G3, · · · , Gv of graph G (Step 2). Among this

set of connected components, the largest subgraph Gi is selected and its redundancy, in

terms of fault coverage, is checked in Step 4. If the subgraph is redundant, its instruc-

tions are removed from the original test program, as shown in Step 5. Further, the next

largest connected component is selected and this process (Steps 3-6) goes on until the

redundancy of the smallest connected component is analyzed.

For the example of the test program shown in Fig. 5.2, the instructions of the largest

graph G1 could be removed from T if the fault list FCG1 of graph G1 is a subset of

the set union of FCG2 , FCG3 , and FCG4 . If not, the next largest connected component

(G2) is selected for redundancy check and so on. Let us say, the self-test code has

u instructions which could be represented using v (<< u) different data dependency

subgraphs. As every instruction of each subgraph is simulated only for a single time,

the computational effort for the removal of redundant instructions using this method

would be insignificant. But the amount of compaction would not be consistently large as

instruction-wise redundancy is not evaluated. Towards achieving a low-cost, instruction-

wise redundancy checking technique, we introduce the second stage of our proposed work,

which is an enhanced top to bottom instruction restoration policy using high-level logic

93

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

simulations. This technique deals with the compaction versus cost tradeoff efficiently

and is discussed in the next section.

5.3 Enhanced Instruction Restoration Method

5.3.1 Top to Bottom Compaction Policy

In this method, the test program left after the first stage of compaction is divided into

equally sized blocks. Initially, a set of reliant faults, which are the faults detected by an

instruction in the test program for the first time, is recorded for each instruction. Now, an

instruction block is selected and removed from the test program. Thereafter, we conduct

the fault simulation of the remaining test program for the faults that may get undetected

due to the block removal. In other words, the fault simulation is conducted only for the

reliant faults of the instructions in the currently restoring block and the following blocks.

If these faults are detected by the remaining test program, we permanently eliminate the

instruction block from the test program. Otherwise, instructions of the removed block

are restored one at a time and the test program is fault simulated again until it detects

all the reliant faults of that block and the blocks below. Each block of the test program

is compacted using this restoration method.

Block-wise restoration could be either in 1) bottom to top or 2) top to bottom order.

In the existing bottom to top restoration policy [4], the blocks are selected for restoration

from the last block of the test code, i.e., after the compaction (using restoration) of a

block, its preceding block will be selected. For this policy, the restoration of the top

blocks of the program would have lesser cost for fault simulations because the blocks

below would already be compacted. Thus, if the blocks are selected from the last one,

the cost of compaction could be reduced.

However, a few critical instructions in the lower blocks may get eliminated when

bottom to top restoration policy is employed. Instruction is critical if it could replace

multiple instructions of its upper blocks in the test program. During bottom to top

restoration, a critical instruction may get removed when all the reliant faults of its block

and the blocks below are covered by the instructions of the lower blocks, thereby reducing

the spectrum of compaction.

When top to bottom instruction removal policy is employed, blocks of instructions

are removed and restored starting from the first block of the program. In this approach,

94

5.3 Enhanced Instruction Restoration Method

the redundancy of block instructions is evaluated by selecting and inserting instructions

of each block one by one, which is similar to the bottom to top method. After the

elimination of this redundant instruction, each of its reliant faults is added to the set

of reliant faults of the instruction in the lower blocks that detect it. In other words, a

critical instruction in the lower blocks would be updated with multiple reliant faults of

the instructions in the upper blocks and thus, the number of reliant faults of a critical

instruction will be very high. So, it would be difficult for the lower blocks of instruc-

tions to replace a preceding critical instruction which detects many reliant faults. To

summarize, the top to bottom instruction removal policy helps in conserving the crit-

ical instructions, and eventually leads to better compaction but have a higher cost as

compared with bottom to top policy.

5.3.2 Restoration Using High-level Logic Simulation

To reduce the computational cost of top to bottom restoration policy, we replace com-

putationally intensive fault simulations with faster and effortless high-level logic simu-

lations. In each step of block restoration, the existing A1xx compaction technique [4]

evaluates the test program using high-cost fault simulations for the faults that could

become undetected due to the removal of that block. A high-level logic simulation of

previous instructions would help in reducing the computational effort required for the

fault simulations of the whole test program during the restoration of every instruction.

In our high-level logic simulation, we model the syntax and encoding of every instruc-

tion of ISA using high-level ANSI C programming language. Each instruction operation

is logically simulated using high-level functionalities. Also, the observable locations, such

as updated memory locations and updated register locations, are allotted with a definite

amount of memory. Only those memory locations, which are updated by the execution

of the store instructions in the test program, are observed, whereas every updated regis-

ter value is observed. The instruction operations are realized using high-level procedures

developed for each opcode. The operations are performed on the source operands that

modify the observable locations correspond to the destination operands.

In this method, the initial state of a restoring block is evaluated using the high-level

logic simulation of the previous instructions. This initial state comprises the contents of

the observable locations, which are modified after the execution of all previous instruc-

95

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

�������

�������

������	

������

�������

�
�������������

�� ������������
�� ������������
�� ������������
����������������
����������������

���	
�
�	�
���	��

����������
����������

������

�������

�
���
���
����������

������������
���
������
��������

�� ����������
�� ����������
�� ����������
����������������
����������������

Figure 5.3: Example of Reducing Test Program Using Logic Simulation

tions above the restoring block. These updated observable locations are evaluated using

logic simulations and are compiled to form the initial state for the block restoration.

Now, the blocks of instructions above the currently restoring block is replaced with the

contents of the initial state. These contents are retrieved with the help of a few load and

store instructions added before the restoring block. These added instructions change

the contents of the observable locations in a similar manner the logic simulations would

modify. If possible, these initial states can be restored from previous simulations, which

would be less costly.

An example of reducing the test program using logic simulation is shown in Fig. 5.3.

In this example, the original test program is divided into 5 blocks of instructions. During

the restoration of the 4th block, the top 3 blocks are subjected to logic simulation to

develop the initial state of the 4th block. Finally, this initial state replaces the top 3

blocks of the original test program to yield the reduced test program.

Let m be the number of updated registers and n be the number of modified memory

locations of the processor. Following the logic simulation of previous instructions of the

restoring block, the contents of the observable locations, which are the set of updated

register values Reg = {Reg1,Reg2,Reg3,. . . ,Regm} and the set of updated memory values

Mem = {Mem1,Mem2,Mem3,. . . ,Memn} are logged. Eventually, the observability

OBS = {Reg,Mem} is evaluated to learn the initial state of the restoring block.

During logic simulation, the modified memory values correspond to each store in-

struction is recorded. An updated memory value ofMemi is depicted using an 〈addr, val〉
representation, which indicates that the store instruction modifies the memory address

96

5.3 Enhanced Instruction Restoration Method

main:

 addi $r0,$zero,3

 addi $r1,$zero,6

 bne $r0,$r1,mult

 and $r2,$r0,$r1

 sw $r1,0($r2)

mult:

 addi $r2,$r2,10

 addi $r3,$r3,10

 jal mult_proc

 bne $r3,$r2,targ

 ori $r2,$zero,2

targ:

 andi $r2,$r2,3

 sw $r1,3($r2)

 li $v0,10

 syscall

�������

�������

������	

������

mult_proc:

mul$r2,$r2,$r3

sw $r3,2($r0)

jr $ra

Figure 5.4: Blocks of SBST Test Program in the Admissible Region

location addr with a value val. For example, the test program shown in Fig. 5.4 has 3

store instructions with memory update values 〈$r2, $r1〉, 〈$r2+3, $r1〉, and 〈$r0+2, $r3〉.

This test solution has 12 instructions, divided into four blocks of size 3, in its admis-

sible region, which excludes the macro definitions and procedure definitions. Now, the

initial state for each block is calculated using the memory and register values updated

after the logic simulation of previous instructions. For example, the initial state for block

3 would be OBS = {〈 2,6 〉, r0, r1, r2}, i.e., the value of memory update 〈$r2, $r1〉 due

to the store instruction in block 2 becomes 〈 2,6 〉, and the registers r0, r1, r2 are updated

since these registers are the destination registers in at least one of the instructions of

block1 and block 2.

To reinstate the initial state of a block, its upper blocks are replaced with few load

and store instructions. For the restoration of the fourth block, every instruction of first,

second, and third blocks are logically simulated and the updates of observable locations

are recorded as OBS = {〈 2,6 〉, r0, r1, r2, r3}. Now, we place one store instruction

for the memory update 〈 2,6 〉 and four load instructions for the updates in registers

r0, r1, r2, r3 before block 4. So, we replace all the 9 instructions preceding the fourth

block with these 5 instructions that produce the initial state for the 4th block.

The steps of the enhanced restoration method are described in Algorithm 5. Initially,

the test program P is divided into blocks B1, B2, B3, · · · , Bδ, which are subjected to

elimination and restoration. From the analysis in Section 5.3.1, we have observed that

97

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

ALGORITHM 5: Stage 2: Enhanced Test Program Restoration

Input: Test Program P with the remaining σ instructions after the first stage of

compaction divided into δ blocks B1, B2, B3, · · · , Bδ;

Set of reliant faults FR1, FR2, FR3, · · · , FRδ of each block;

Initial states IB1 , IB2 , IB3 , · · · , IBδ for each bock;

Output: Compacted test program P
′
;

1 for i← 1 to δ do

2 P
′

= P - Bi ;

3 P
′′

= P
′

- {all the blocks from start till Bi−1};
4 Logic simulate the upper blocks of P

′
till Bi−1 to yield the initial state IBi for

block Bi ;

5 Reinstate the initial state IBi with corresponding load and store instructions

in the beginning of P
′′
;

6 Fault simulate P
′′

for the faults in FRi,FRi+1,. . . ,FRδ;

7 if all the faults in FRi,FRi+1,. . . ,FRδ are covered by P
′′

then

8 Remove the faults in FRi that are detected first by the eliminated

instructions;

9 Update sets from FRi+1 till FRδ correspond to the instructions that

detect the faults removed from FRi;

10 P = P
′
;

11 else

12 Select an unrestored instruction s randomly from Bi;

13 Restore s in P
′
, i.e., P

′
= P

′ ⋃
s;

14 go to step 3;

the top to bottom restoration policy gives better compaction than the bottom to top

policy. So, the top blocks are selected first for restoration as shown in Step 1. In Step

2, we construct another test program P
′

by writing all the blocks of P , except B1, into

P
′
. Further, a test program P

′′
is constructed by writing all the blocks of P

′
from the

top block until the block Bi−1 (Step 3).

In Step 4, the top (i− 1) blocks of test program P
′

is logically simulated to yield the

initial state IBi for block Bi. This initial state is applied to the test program P
′′

with a

set of load and store instructions correspond to each modified observable location (Step

5). Now, In Step 6, the test program P
′′

is subjected to fault simulation only for the

98

5.4 Experimental Results

sets of reliant faults FRi,FRi+1,. . . ,FRδ, which comprises the faults that could become

undetected when the block Bi is removed.

If every fault of FRi,FRi+1,. . . ,FRδ is covered by the test program P
′′
, the remaining

instructions of the block Bi are removed. In this case, we also remove the faults from

the set FRi that are detected by the eliminated instructions (Step 8) for the first time.

Subsequently, in Step 9, the sets from FRi+1 till FRδ are updated with respect to

the instructions that detect the faults removed from FRi. Later, the test program

P
′
, using which the test program P

′′
is constructed, becomes the new original test

program P , as shown in Step 10. If the test program P
′′

does not detect all the faults in

FRi,FRi+1,. . . ,FRδ, an instruction is selected randomly from the instructions in block

Bi and is restored into the test program P
′

(Steps 12-13). In Step 14, the algorithm

jumps back to Step 3, where the test program P
′′

is created from the test program P
′

with a newly restored instruction, and this process continues until the last block Bδ is

selected and compacted.

Finally, this enhanced top to bottom restoration optimize the test codes with higher

compaction and faster logic simulations. In the next section, we analyze the efficacy of

the proposed method and compare the results with that of the existing compaction tech-

niques using the experiments on a group of test programs synthesized using evolutionary

techniques.

5.4 Experimental Results

The effectiveness of these two compaction methods (subsections 5.2 and 5.3) are cor-

roborated with the results in comparison with the results of existing A0 and A1xx

algorithms [4]. We have automated the SBST synthesis using µGP evolutionary tech-

niques [2, 41, 53] and developed a monolithic code of 294 instructions that yield 96.3%

fault coverage for a 32-bit MIPS processor model. The test programs are evaluated on

a ModelSim 10.5b simulator platform, and the proposed 2-stage compression module is

developed with the help of 1216 lines of ANSI C program.

In our experiments, the performance of compaction is measured in terms of com-

paction ratio of time (CRT), compaction ratio of size (CRS), and Cost, where

• CRT is the ratio between execution times of the optimized test code and the

99

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 50 100 150 200 250 300

R
ed

u
n

d
an

t
in

st
ru

ct
io

n
s(

%
)

Test Program Size(No. of Instructions)

Figure 5.5: Amount of Compaction for Different Test Programs

Table 5.1: Results of Compaction for Restoration Methods

Method CRS CRT Cost
Bottom to top Restoration [4] 0.85 0.855 159

Top to bottom Restoration 0.84 0.84 164

original test code, and

• CRS is the ratio between sizes of the optimized test code and the original test

code, and

• Cost is the ratio between the time consumed for compaction and the time con-

sumed for a single full simulation of the original test code.

If the amount of compaction is high, CRS and CRT would be lesser.

In Fig. 5.5, we depict the first stage of optimization with respect to test programs

with various sizes. The amount of dependency graph-based optimization is estimated in

terms of the percentage of redundant instructions identified in the test program. This di-

agram shows that the scope of this low-cost compaction reduces as the test size increases.

For example, the smaller test programs with less than 50 instructions have more than

9% of redundant instructions, i.e., CRS is less than 0.91. But larger test programs with

size more than 310 instructions have less than 4% of redundant instructions, i.e., CRS

is more than 0.96. This decline in compaction is due to the increased dependencies be-

tween the randomly constructed instructions of larger test programs. The dependencies

100

5.4 Experimental Results

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50

S
im

u
la

ti
o
n

 C
o
st

Block to be Restored

Proposed Restoration

Exisiting restoration

Figure 5.6: Block-wise Simulation Cost for Proposed Restoration and Existing Restoration [4]
techniques on a Test Code with 294 Instructions

Table 5.2: Results of Compaction for Existing and Proposed Methods on a Test Code with
294 Instructions

Method
Size compaction

(No. of Instructions)
CRS

Reduced Time
(Clock Cycles)

CRT Cost

Instruction Removal
(A0) [4]

294 to 229 0.778 2820 to 2200 0.780 197.00

Instruction Restoration
(A1xx) [4]

294 to 250 0.850 2820 to 2411 0.855 159.00

Proposed Method
Stage 1

294 to 283 0.965 2820 to 2723 0.965 1.33

Proposed Method
Stage 2

283 to 238 0.840 2723 to 2290 0.840 141.00

Overall
Stage 1 + Stage 2

294 to 238 0.810 2820 to 2290 0.812 142.33

increase for randomly generated larger test programs because the number of registers

and memory locations are limited.

An enhanced compaction technique is discussed in the second stage of our proposed

technique. In the initial phase of this approach, we study the pros and cons of the

existing bottom to top instruction restoration technique [4] and compare them with

that of the proposed top to bottom instruction restoration technique (section 5.3.1), as

shown in Table 5.1. In bottom to top restoration, the compaction ratios are equal to or

above 0.85 with a cost of 159, whereas top to bottom technique yields more compaction

(< 0.85) with high computational cost of 164.

As higher compaction is achieved by top to bottom restoration, we adopt this tech-

101

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

nique and further, seek to reduce its cost using logic simulations of preceding blocks

proposed in section 5.3.2. The costs of existing A1xx restoration technique [4] and pro-

posed restoration technique are shown in Fig. 5.6. Both techniques consume equivalent

cost for the restoration of the top 5 blocks and further, the costs of both techniques

reduce in restoring the lower blocks. However, the logic simulation of preceding blocks

reduces the cost of the proposed technique more rapidly than that of the existing tech-

nique [4]. Finally, the cost of existing technique remains above 0.8, whereas the cost of

proposed technique goes below 0.5 for the last 4 blocks. Thus, the introduction of logic

simulations leads to significant cost reduction of top to bottom restoration techniques.

The elaborated results pertaining to the cost and the compaction rate of existing

removal-restoration techniques [4] and the proposed 2-stage techniques are shown in Ta-

ble 5.2. The cost of A0 is, however, optimally minimal (CRT = 0.778, CRS = 0.78)

because thorough instruction-wise redundancy check is conducted. But the cost for com-

paction is undesirably larger (197). The A1xx technique [4] carries out a less-intensive

block-wise compaction and realizes cost reduction (159) with adequate compaction rate

(CRT = 0.85, CRS = 0.855). The 2 stage of our proposed technique further reduce the

cost to 142.33, besides achieving better compaction (CRT = 0.81, CRS = 0.812).

Following the first preprocessing stage, the test program is compressed with CRS

and CRT values as 0.965. This minimization eliminates the redundant and independent

groups of test codes. For a larger test code with 294 instructions, the instruction depen-

dencies would be stronger, which restricts the grouping and elimination of instructions

in terms of dependencies. So, the degree of compaction yielded by this method is lesser

(CRS = CRT = 0.965). However, the computational cost is insignificant (1.33) in this

stage, where a single fault simulation is consumed for the compaction, in addition to the

cost of computing the redundant subgraphs (0.33).

The execution of the second stage requires a cost of 141 with CRS and CRT values

as 0.84. Altogether, the overall CRS is reduced to 0.81 and the overall CRT is reduced

to 0.812 with a reduced overall computation cost of 142.33. So, this approach earns us

a good amount of compaction with reduced computational complexity compared with

the existing A0 and A1xx techniques [4].

102

5.5 Summary

5.5 Summary

To compress larger SBST programs developed for complex processors, a two-stage al-

gorithm is proposed and validated in this method. These stages are enhancements of

existing instruction removal and instruction restoration techniques. In the first stage,

the programs are preprocessed by removing the groups of independent instructions which

are redundant in terms of fault coverage. In the second stage, high-cost top to bottom

restoration technique is employed for better compaction than bottom to top restoration.

Further, the cost of top to bottom restoration is reduced by high-level logic simulations

of the preceding blocks of the currently restoring block. So, the large SBST programs

are compacted using dedicated, low-cost optimization techniques which also grants a

good amount of compaction.

In fact, we have considered the development of self-test codes with a reasonable

tradeoff between test execution time and cost for compaction in this chapter. This self-

test quality enhancement phase is carried out after the test synthesis phase. In the next

chapter, we propose a high-reliability online testing method, where smaller and efficient

self-test codes are searched and identified during the test synthesis phase itself. The

selected self-test codes guarantee a better tradeoff between test execution time and fault

coverage.

103

5. AUTOMATED LOW-COST COMPACTION OF SBST PROGRAMS

104

Chapter 6
Application of Fragments of SBST Programs
for Online Testing

In extreme online operating conditions of the processor, intermittent faults, which are

temporary in nature, may momentarily appear and disappear. These intermittent faults

could damage the gate-level logic of the processor and may eventually turn into perma-

nent faults. To achieve high self-test quality, i.e., high fault coverage, the self-test codes

detect these intermittent faults too. If fault detection latency, which is the time gap

between fault occurrence and its detection, is large for the self-test code, intermittent

faults not get detected efficiently and as a result, the fault coverage will be lesser.

Along with the real-time, periodic mission tasks, a self-test task is also executed

in regular intervals for the online testing of the processor. If the execution interval

between these self-test tasks is large, the fault detection latency also would be longer.

Generally, large self-test codes are executed on the processor to test the complicated

functionalities processor. But the execution intervals between such large test codes will

be large, resulting in undesirably high fault detection latency. In other words, even if

the fault coverage of large self-test codes are high, due to large intervals between their

executions, many intermittent faults incur large detection latency (e.g., faults that occur

just after the completion of execution of the test code).

If smaller test codes are applied, individual fault coverage would be less for these

fragments. But as these code fragments are executed with smaller test periods, they ef-

fectively validate the processor for intermittent faults with lesser fault detection latency.

Also, multiple efficient small test code fragments, whose overall coverage is almost simi-

lar to that of the larger test code, can replace the larger test code for the online testing

105

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 40 50 60 70 80 90

A
v
g
.
T

es
t

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Fault Coverage (%)

Figure 6.1: Avg. Execution Time for Different Groups of Fragments on 100 MHz MIPS
Processor Model

of the processor. In the previous chapter, we have reduced the test program with the

help of compaction techniques. But this amount of compaction or reduction would not

be enough in order to generate test programs that can effectively test processor for

intermittent faults.

The average execution times of synthesized test codes during evolutionary test syn-

thesis with equal fault coverage is shown in Fig. 6.1. This behavior can be observed

for every set of test codes which are developed during the evolutionary test synthesis.

These test codes, which are developed during the evolutionary test synthesis, are stored

exclusively for our online testing technique. The execution times of test codes with

coverage between 35% and 80% are in the range (0.01, 0.014), whereas the execution

times of FTPs with coverage between 81% and 95% are in the range (0.016, 0.285). The

execution time increases gradually from the test codes with 35% coverage to the test

codes with 80% coverage. But the change in execution time is significant from the test

codes with 80% coverage to the test codes with 95% coverage.

The test codes with coverage between 75% and 85% have considerably lesser exe-

cution time and thus, lesser fault detection latency, compared with the test codes with

coverage above 85%. Also, these test codes maintain adequate test quality (75% to

85%). So, a reliability analysis of the test codes in this range must be conducted to

identify the optimal test codes that provide the best tradeoff between fault detection

latency and coverage.

106

In our approach, efficient, reliable fragments of a self-test code are discovered by

means of selection of test code fragments that maintains the online test quality (fault

coverage) and minimizes the fault detection latency. To identify the optimal fragments,

we evaluate the reliability of self-test fragments of different sizes. However, these frag-

ments can be executed as self-test sub-tasks only if they satisfy certain scheduling crite-

ria; the modified response time of each mission task and the modified overall utilization

following the inclusion of these self-test sub-tasks must not exceed their corresponding

limit. If these conditions are satisfied, the self-test fragments are executed as sub-tasks,

scheduled with appropriate execution windows between the execution of mission tasks.

Also, the overall coverage of these fragments must be nearly equivalent to the coverage

of the unfragmented full test program.

As the intermittent faults occur irregularly at the same location, the self-test codes

must be regularly executed with a short test period to efficiently trace them. D. Gi-

zopoulos [98] suggested that the self-test quality could be improved when the self-test

tasks are executed with larger execution time and enhanced self-test utilization. But the

proposed techniques in [98] will increase the self-test period to achieve maximum uti-

lization. If the self-test period is increased, fault detection latency also would increase,

and subsequently, some of the instantaneous intermittent faults may be left undetected.

If an intermittent fault occurs just after a large test period, fault detection latency will

be higher, which may cause system errors. The tradeoff between test utilization and

fault detection latency in [98] could be dealt only if efficient, small chunks of SBST

codes are executed frequently between the mission tasks, i.e., smaller, coverage-efficient

test programs are intermittently executed during a self-test period to reduce the fault

detection latency.

In our approach, shorter, reliable SBST test code fragments are discovered and ex-

ecuted intermittently in a self-test period to immediately detect the intermittent faults

with minimal fault detection latency. But smaller test codes might have lesser fault

coverage, which could leave some of the intermittent faults undetected. So, the test

fragment synthesis must consider both fault detection latency and test quality (fault

coverage) in developing reliable fragments. These minimal code fragments are applied

in appropriate execution windows between the execution of the mission tasks.

We summarize the problem as follows: smaller SBST self-test codes with smaller

107

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

fault detection latency realize rapid detection and recovery of intermittent faults. But

these minimal test programs could have less reliability due to low fault coverage. Larger

test programs would detect most of the faults but reliability will be lesser due to high

fault detection latency. To deal with this trade-off, optimal and reliable set of fragments

must be discovered with significant self-test quality (coverage) and minimal fault detection

latency.

So, in this chapter, a high-reliable online fault detection model to test a low-cost, real-

time embedded processor for the intermittent faults is demonstrated. The contributions

of this fragmented testing approach are:

• The instruction sequences of a larger SBST code is prudently replaced with smaller,

coverage-efficient, online Fragment of Test Programs (FTPs) to be executed inter-

mittently during a test period to detect the intermittent faults with minimal fault

detection latency and good test quality (fault coverage). To meet this, we evalu-

ate the reliability of the system with respect to different fragment sizes. From the

maximum permissible fragment size, minimum permissible test execution window

size is also assessed.

• We demonstrate the reliability-based FTP selection using a set of 12 mission task

workloads on a 100 MHz MIPS processor model.

• A fault tolerant self-test schedule is proposed to deal with the challenges in the

detection and recovery for the intermittent faults.

In the next section, the basic definitions of schedulability, system reliability, and

recovery models are discussed for the demonstration of the proposed synthesis of online

SBST program fragments.

6.1 Preliminaries

Given a set of periodic, online, real-time mission tasks to be executed on processors in

extreme working environment, the overall reliability of the system must be maximized.

In this section, we discuss the existing parameters and their specifications required to

model our proposed system. These parameters include utilization factor, least upper

108

6.1 Preliminaries

bound of utilization, schedulability, reliability, fault recovery, and worst-case response

time.

In this approach, we use static deadline monotonic (DM) approach for scheduling the

set of periodic mission tasks of the processor. DM scheduling is a pre-emptive scheduling

approach where tasks are assigned with fixed-priority; the highest priority is assigned

to the task with the shortest deadline. In rate-monotonic scheduling (RM), and earliest

deadline first (EDF) scheduling approaches, the relative deadline are assumed to be equal

to the task period, whereas the deadline could be less than or equal to the task period in

DM scheduling [102]. So, we have adopted DM scheduling as smaller self-test tasks will

have an individual deadline which is lesser than the overall test period of the self-test

task. Buttazzo and Giorgio [102] have demonstrated that the schedulability of these

tasks is assured only if the least upper bound condition defined for the DM algorithm

is satisfied. Also, the worst-case response time should not exceed the corresponding

deadline of each task. So, to embed a self-test task into the set of mission tasks, the

schedulability must be validated, i.e., the utilization and response time conditions must

be satisfied for all the tasks.

6.1.1 Utilization Factor of Real-time Applications

Let Γ = {τ1, τ2, τ3, . . . , τn}, be a set of n periodic real-time mission tasks, with each

periodic task τi is represented by a tuple (Ti, Di, Ei), where Ti represents the period

length, Di represents the deadline, and Ei represents the execution time of the periodic

task τi. In a non-faulty processor system, deadline of each mission task in the DM

schedule would always be less than or equal to its period of execution (Di ≤ Ti). The

utilization factor Ui of a mission task τi is Ei/Di, and the overall utilization of CPU is:

U =
n∑
i=1

Ui =
n∑
i=1

Ei
Di

, (6.1)

which is in the range [0,1). To evaluate the schedulability of static DM scheduling

for periodic tasks, a least upper bound (ULUB) could be used [102].

6.1.2 Least Upper Bound

The least upper bound is the fundamental criteria for the verification of schedulability

and depends solely on the number of mission tasks. The set of n periodic tasks Γ, with

109

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

overall utilization U , could be scheduled with DM algorithm if

U =
n∑
i=1

Ui ≤ n(21/n − 1) (6.2)

So, the least upper bound of processor utilization for DM algorithm is ULUB =

n(21/n − 1).

6.1.3 Reliability Analysis

Reliability is the probability that a system does not deteriorate during a time interval

[0,t]. Stanisavljevi et al. [103] defines reliability Rel(t) as follows:

Rel(t) = e−βt, (6.3)

where β is the failure rate. Reliability decreases as time interval and failure rate

increase.

Let F be the percentage of faults that can be detected and recovered using a set

of test routines. This recovery mechanism leads to the minimization of effective failure

rate from β to β(1− F
100

). Therefore, the reliability (Equation 6.3) of a system executing

along with a set of test routines of coverage F during a time interval [0,t] is modified as:

Rel(t) = e−β(1− F
100

)t (6.4)

So, the system reliability increases with efficient fault detection which is followed by

the recovery of the mission task execution.

6.1.4 Recovery Scenarios

The three different intermittent error recovery models discussed in [95] are

• Rollback-only recovery: In this conventional model, upon fault detection, the ex-

ecution is rolled back to the previous checkpoint and re-execute.

• Core-level reconfiguration: To identify the fault type and the fault-prone core, an

error discrimination mechanism is applied to each core of multicore systems. The

recovery action is to shut down the core temporarily.

110

6.1 Preliminaries

• Unit-level reconfiguration: A defective microarchitectural unit of a core could be

disabled for a specific duration only if the activities of the unit do not affect the

core operations. Otherwise, the core continues its operation without disabling the

unit.

Rollback-only recovery is a time-redundant, process recovery mechanism. In this

technique, equidistant checkpoints are assigned and upon fault detection, the recovery

is conducted using the inputs of last stored checkpoint. To accomplish fault tolerance

in low-cost, real-time embedded processors, rollback-only recovery mechanism would be

simpler, cheaper, and efficient as fault discrimination, diagnosis, and hardware reconfig-

uration are not required for this model.

6.1.5 Worst Case Response Time

Zhang et al. [104] discuss an optimal checkpointing approach with the minimized worst-

case response time. During the execution of task τi(Ti, Di, Ei), pi checkpoints are inserted

equidistantly to handle utmost k faults in each task instance. Let Cs be the time con-

sumed for saving a checkpoint and Cr be the time consumed for retrieving a checkpoint.

The worst-case response time of τi is minimum for pi =
√
kEi/Cs − 1 [104].

For a real-time periodic task τi, the worst-case response time should incorporate

checkpointing overhead of pi number of store and restore operations for tolerating k

faults, to be calculated in [104] as:

WCRT j+1
i =

[
Ei + k(Cs + Cr) + piCs +

kEi
pi + 1

]
+

i−1∑
h=1

⌈WCRT ji
Th

⌉[
Eh + k(Cs + Cr) + phCs +

kEh
ph + 1

]
,

(6.5)

where WCRT j+1
i , the worst-case response time of τi, is computed recursively until

• WCRT j+1
i = WCRT ji and WCRT ji < Di for some j or

• WCRT j+1
i > Di

If the first condition is satisfied, τi is schedulable. In the second case, τi is not

schedulable [104]. The first expression in Equation 6.5 represents the response time of

τi, whereas the second expression represents the sum of response times of higher priority

111

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

��

��������

��

��
��������

�

��	
��

Figure 6.2: Maximum Fault Detection Latency for Self-test Task τt

tasks than that of τi, in accordance with DM scheduling. These two terms constitute

the worst-case response time of real-time periodic tasks.

In the proposed framework described in the next section (Section 4.4), the conven-

tional model of SBST synthesis and its reliability issues in the detection of intermittent

faults are discussed.

6.2 SBST Programs for Intermittent Fault Detec-
tion

To comprehensively test all the processor functionalities, large self-test codes are applied

periodically between the execution of mission tasks. In fact, the scheduler considers self-

testing as a real-time task and includes it in the set of mission tasks to be scheduled.

So, larger test codes will lead to larger test periods, which could be inefficient in the

detection of intermittent faults.

The fault detection latency will be higher for a process schedule with infrequent

self-test executions with longer test periods. If the intermittent faults occur just after

the self-test execution, a larger self-test period will lead to an undesirable, higher fault

detection latency, i.e., the fault detection latency will be maximum (FDLmax) when

the fault occurs at the end of the execution of test process τt, and is detected only

during the execution of next instance of τt as shown in Fig. 6.2. An intermittent fault

might instantaneously disappear after its occurrence. So, if the time interval between

two consecutive self-test executions is large, these faults would barely get detected. If

self-testing frequently fails to detect and recover from these faults, subsequently, it could

lead to system crash.

To reduce fault detection latency of intermittent faults, efficient, small chunks of

SBST codes could be executed frequently between the mission tasks. So, the synthe-

sized self-test program could be replaced with smaller FTPs. These FTPs must be

coverage-efficient and are executed intermittently during a self-test period to detect the

112

6.3 Fragmented SBST for Testing Intermittent Faults

intermittent faults quickly following the fault occurrence. To tolerate every testable fault

and reduce fault detection latency, we discuss a reliable, fragmented testing approach

for processors in the next section.

6.3 Fragmented SBST for Testing Intermittent Faults

In this self-testing approach, the processor is subjected to fragmented testing for tracing

the intermittent faults. In this approach (Subsection 6.3.1), the test code, synthesized

for manufacturing testing, is replaced with a number of small and efficient test codes

with adequate fault coverage. These test code fragments are examined and periodically

applied between the normal tasks of the processor. From a testing point of view, these

small but adequately efficient fragments replace the bigger parent test code to reduce the

fault detection latency maintaining the system reliability. During a test period, these

FTPs are applied on the processor periodically in small execution windows between

the execution of the mission task. In particular, we must set the shortest possible test

execution window so that all intermittent faults could be detected. If any erroneous

behavior of the processor is diagnosed, the mission task is rolled back to the previous

checkpoint and re-executed.

6.3.1 Synthesis of Smaller Latency Self-test Programs with Ad-
equate Coverage

In the traditional self-test task methods, self-test code is synthesized using evolutionary

automation techniques based on genetic programming of microprocessors (µGP). Vari-

ous self-test solutions are generated in each generation of the µGP test development, and

finally, self-test solutions with maximum fault coverage are selected for online testing.

These high-coverage test programs are executed between the mission tasks periodically.

Fig. 6.3 shows the traditional online self-test scheduling of processors. Let H be

an instance of a mission task τi. Let τt = (Tt, Dt, Et) be the self-test task and S be

an instance of τt. Between the execution of the mission task τi, the self-test task τt,

corresponding to the high-coverage self-test program, is executed and the responses are

observed for the detection of every testable hardware fault. To tolerate the occurrence

of processor faults, we use checkpoints with rollback recovery mechanism. This time

redundancy technique helps to recover from any irregularities in the processor circuit

113

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

��

�

�

�� ����

Figure 6.3: Time Diagram of Traditional Testing over Period Ti

���

���� �� ���� ���	��� ��	 ���	
�
�
�
�

�����

Figure 6.4: Fragmented Testing over Period Ti

by assigning equidistant checkpoints and storing (Cs) the non-faulty processor state. If

the self-test code could identify any processor fault, the execution is rolled back to the

latest checkpoint, process inputs are restored, and the mission task H is re-executed

completely.

However, these self-test codes, with high fault coverage, might not trace the intermit-

tent faults discreetly as the gap between two consecutive self-test executions would be

very large. This gap could increase the maximum fault detection delay and eventually,

intermittent faults could not be detected and recovered. To solve this, a reliable set of

smaller self-test codes must be executed periodically.

So, we extract smaller FTPs from the test solutions synthesized during different

generations of the µGP test synthesis. Each self-test solution, which is a sequence

of instructions, and its coverage are logged during the evolutionary test development.

Further, these self-test codes are extracted and applied as test fragments with smaller

test periods, replacing the actual self-test code.

In the example shown in Fig. 6.4, the self-test task S is replaced with 3 sub-tasks S1,

S2, and S3. When the self-test sub-task S3 identifies a fault in the third segment (H3)

of the mission task, every input of the system from the previous checkpoint are restored

(Cr). This would reduce the maximum fault detection latency from the execution time

of H to that of H3 as the majority of the testable processor faults could be detected by

S3.

114

6.3 Fragmented SBST for Testing Intermittent Faults

6.3.2 Calculation of Test Periods for FTPs

Let us assume self-test task S is replaced with m shorter self-test task instances S1, S2,

S3, . . . , Sm. Each of these shorter self-test task instances, termed as self-test sub-tasks,

would comprehensively test those processor functionalities which are highly susceptible

to irregularities, in a single test period of execution. These code fragments are catego-

rized into different sets of self-test codes for convenient reliability analysis. Each set of

FTPs corresponds to a group of self-test codes with the same coverage. For example, the

actual self-test program is split into groups, say, G75, G76, G77, . . . , G95, of FTPs with

coverage F = 75%, F = 76%, F = 77%, . . . , F = 95%, respectively. Every FTP with

coverage F = 80% are included in group G80, and every FTPs with coverage F = 81%

are included in group G81, and so on. However, the test execution times of self-test codes

in a group are observed to be approximately equal. For example, a set of FTPs of the

group G85, which have an average execution time of 0.032 milliseconds, could replace

the actual self-test code with 96.3% coverage, to be executed as the self-test sub-tasks

during Tt. But the fragmentation should be lossless such that the selected set of FTPs

must cover the faults which could be detected by the unfragmented, actual self-test code.

In this approach, conditions for the synthesis of FTPs are:

1. Let F (Sj) be the fault coverage of the FTP Sj. We select m FTPs such that the

union of coverages of these m FTPs would be approximately equal to the coverage

of the actual self-test code S, i.e.,

F (S) ≈ F (S1) ∪ F (S2) ∪ · · · ∪ F (Sm) (6.6)

2. Let τtf be the self-test sub-task executing the largest FTP of a group. Then,

U =
n∑
i=1

Ui + U(τtf) ≤ (n+ 1)(21/(n+1) − 1), (6.7)

i.e., the sum of the utilization values of n mission tasks and the largest sub-task

should be less than the least upper bound for n + 1 tasks (n mission tasks and a

self-test sub-task) to achieve a valid DM schedule. If this inequality holds true for

the largest FTP of a group, for which the largest or worst-case utilization needed,

the smaller FTPs of that group would also satisfy this condition. The remaining

self-test sub-tasks in the group of τtf are executed with equal test period as that

115

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

of τtf . So, these sub-tasks are treated as repeated executions of τtf .

3. Also, the worst-case response time of each of the mission tasks and test sub-tasks

calculated using Equation 6.5 must be less than the task deadline, i.e., τi and τtf

are schedulable only if WCRTi < Di and WCRTtf < Dtf .

Using Equation 6.7, an optimal permissible execution window size for the self-test

sub-tasks in each group is evaluated. The window size of each group is determined from

the utilization U(τtf) of the sub-task corresponding to the largest FTP in that group.

The execution window of a self-test sub-task is equivalent to the sub-task period. As the

window size of τtf reduces, the utilization will increase. Eventually, the minimum window

size for τtf which satisfies the least upper bound condition of utilization is calculated

for each group using Equation 6.7. From the optimal or minimum execution window

size of each group, the optimal or maximum number (m) of FTPs in each group (with

equal coverage F), that can be executed during Tt, is calculated such that the overall

utilization is maximized.

Let us say, the deadline of τtf is same as its time period. So, from Equation 6.1, the

utilization of τtf is understood as:

U(τtf) = Eτtf /Tτtf , (6.8)

The minimum value of the time period (Tτtf) of τtf is equivalent to the execution

window w of τtf . So, the value of w for each group could be evaluated from the maximum

possible value of U(τtf) and the execution time (Eτtf) of τtf as:

w = min(Tτtf) = Eτtf /max(U(τtf)), (6.9)

where the maximum possible value of U(τtf) is determined from Equation 6.7 and the

execution time (Eτtf) of the sub-task τtf is evaluated experimentally.

6.3.3 Scheduling of FTPs

To schedule the FTPs, self-test period is split into equal execution windows. In each

execution window, a self-test sub-task is selected and executed with a pseudo-release

time and a psuedo-deadline. Suppose m self-test sub-tasks {τt1 ,τt2 ,. . . ,τtm} could be

executed during test period Tt. The value of m could be evaluated from the optimal

116

6.3 Fragmented SBST for Testing Intermittent Faults

execution window size w. So, the optimal number m of FTPs in the group of self-test

sub-task τtj with permissible execution window size wj is:

m =
Tt
wj

(6.10)

The psuedo-release time rj of the self-test sub-task τtj is:

rj =
(j − 1).Tt

m
, (6.11)

where Tt is the period of the self-test task τt. The psuedo-deadline dj of each τtj is:

dj =
j.Tt
m

(6.12)

Using Equation 6.10, the optimal number of FTPs for each group is calculated using

the test period Tt and the execution window size wj calculated in Equation 6.9 discussed

in Subsection 6.3.2. In a test period, each of these sub-tasks is executed exactly once,

where the DM scheduler assigns the highest priority for the sub-task with the shortest

pseudo-deadline. Finally, the testable intermittent faults of the processor are considered

to be completely tested only after the execution of all FTPs are carried out.

Although smaller self-test codes have lesser fault detection latency, such tiny code

snippets are barely reliable due to lower coverage. Using a reliability analysis, we could

identify the FTPs with optimal fault coverages. In the next subsection, we analyze the

optimality of FTPs with respect to the fault coverage and fault detection latency.

6.3.4 Reliability Enhancement Analysis of FTPs

After applying any of the proposed self-adjustment schemes suggested in [98] for an

increased CPU utilization, a self-test task τt is executed periodically between the mission

tasks. To reduce the fault detection latency, the self-test task τt is replaced with m

smaller but coverage-efficient self-test tasks τt1, τt2, τt3, . . . , τtm with an equal execution

window size w.

To evaluate the reliability of self-test sub-tasks, we assume a self-test sub-task with

adequate coverage F executing with a test execution window size w along with the set of

mission tasks. For a system integrated with rollback-only recovery technique, if a fault

is detected during the self-test sub-task execution, the mission tasks would be rolled

back to the previous checkpoint and re-executed. This recovery mechanism leads to

117

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

�
��lw R1,2(R0)

 add R3,R1,R2�

����������������

sw R0,2(R0)

lw R0,15(R0)

����������������
����������������

sw R0,15(R0)

lui R2,1

���������������
������

addi R2,R2,1

sw R1,15(R0)

����������������

��������	�
��
������

���������������������

������������
������������
���
���	�

�������������������
���� ����	�!�����

lw R1,3(R0)

sw R2,15(R0)

����������������
����������������

sw R2,2(R1)

add R1,R2,R3

����������������
����������������

and R0,R1,R3

sw R0,12(R0)

����������������
����������������
����������������
����������������
����������������

��
lui R0,2

addi R0,R0,15

����������������
����������������
����������������
����������������
����������������

��
lw R0,2(R1)

add R2,R0,R1

����������������
����������������
����������������
����������������
����������������

�����
�"#

�$%

�&#

�����

�����

�����

�����

����� �����

����������

����� �����
�����

'������������
(���
����

����� ����� ����������
�����

����� ����� �����

Figure 6.5: Overall Self-test Code Fragment Synthesis

the minimization of effective system failure rate from β to β(1 − F
100

). Therefore, the

reliability of mission tasks executing along with a set of self-test sub-tasks of coverage

F with a test execution window would be e−β(1− F
100

)w as defined in Equation 6.4.

The reliability of the actual, synthesized, self-test code S, with 96.3% coverage, is

evaluated using Equation 6.4. If S is executed periodically during a time period w, which

is the test execution window, the effective failure rate is reduced from β to β(1− 96.3
100

).

So, the system reliability would be increased from e−βw to e−0.037βw. However, due to a

large test execution window w of the self-test code S, the reliability would still be very

small.

The reliability value in Equation 6.4 is dependant on two parameters; Fault coverage

(F) of an FTP and its execution window w, which is proportional to the maximum fault

detection delay. For the self-test codes that have adequate coverage and small execution

window, reliability will be higher. Further, the failure probability FP (w) = 1−Rel(w)

for each group of FTPs is evaluated from the reliability parameter (Rel(w)) in Equation

6.4. We select the group of FTPs with least failure probability as the self-test codes for

online processor testing.

6.3.5 Overall Synthesis of Self-test Fragments

The proposed FTP synthesis is shown in Algorithm 6. In Steps 2 to 6 of Algorithm 6,

each group is subjected to reliability evaluation to select the group with minimum failure

probability. In Step 2, we select the FTP of a group GF with the longest execution time.

118

6.3 Fragmented SBST for Testing Intermittent Faults

ALGORITHM 6: Reliable Self-test Fragment Synthesis

Input: A self-test task τt executing self-test program S with period Tt;

Groups G75, G76, G77, · · · , G95 of FTPs, where GF is a set of all FTPs

with fault coverage F ;

Output: Group G with maximum system reliability;

1 for each group GF do

2 Select the FTP Si in GF with longest execution time;

3 Calculate optimal test period w for the execution of Si with the help of

Equation 6.7, Equation 6.8, and Equation 6.9;

4 Apply the same test period w as the execution window for all FTPs in GF ;

5 Calculate the optimal number (m) of FTPs of GF with execution window w

that can be executed in a test period Tt using Equation 6.10;

6 Calculate Reliability value Rel(w) of group GF , where β is the failure rate for

a time interval w, as shown in Equation 6.4;

7 end

8 Select group G with minimum failure probability FP (w), where

FP (w) = 1−Rel(w);

9 Schedule m FTPs of the selected group G as the self-test sub-tasks with

pseudo-release time and pseudo-deadline discussed in Equation 6.11 and

Equation 6.12, respectively.

Now, the optimal test period (execution window) w of this FTP is determined using the

least upper bound inequality of overall utilization as discussed in Step 3. In Step 4,

every FTP of group GF is assigned with the same execution window w to execute in

the same test period. Finally, the optimal number of FTPs m of group GF (Step 5) and

the reliability value Rel(w) of group GF (Step 6) are evaluated using the optimal size

of execution window (w) and the failure rate (β) for the intermittent faults. In Step 8,

we select the group G that yields maximum reliability and subsequently, schedule the

FTPs of the group G with a pseudo-release time and pseudo-deadline (Step 9).

As shown in Fig. 6.5, the SBST programs are developed and stored with the help

of a µGP test synthesis procedure. Now, each of these FTPs is grouped based on the

fault coverage. In these conditions, the schedulability and the response time constraints

are investigated for each group of FTPs. Later, these groups of FTPs are subjected to

system reliability analysis to identify the group GF with minimal failure probability. In

119

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

Table 6.1: Mission Task Workloads on 100 MHz MIPS Processor Model

Task
Exec.
Time EiEiEi
(Cycles)

Deadline
DiDiDi

(Cycles)

Period
TiTiTi

(Cycles)
T1 29,000 400,000 500,000
T2 80,000 1,100,000 1,400,000
T3 200,000 1,300,000 1,500,000
T4 87,000 1,600,000 2,000,000
T5 13,500 1,700,000 2,100,000
T6 130,000 1,700,000 2,200,000
T7 21,000 2,500,000 3,200,000
T8 135,000 2,850,000 3,000,000
T9 450,000 3,200,000 3,500,000
T10 30,000 3,500,000 4,000,000
T11 80,000 3,600,000 4,000,000
T12 30,000 3,700,000 4,200,000

the next section, self-test experiments are performed on a 32-bit MIPS processor model

and the schedulability and reliability are analyzed to corroborate the proposed fragment

synthesis strategy.

6.4 Experimental Results

In our approach, we model the intermittent faults as stuck-at faults in the behavioral

level and our self-test programs are simulated for identifying these high-level faults. For

the self-test generation, we have used references of MIPS instruction set for a 32-bit

MIPS processor model. The self-test codes are evaluated using the behavioral fault

model shown in Table 3.1 in Chapter 3 with 10 different HDL fault representations. The

synthesized test programs are simulated on a ModelSim 10.5b simulator platform for the

MIPS processor. Later, the responses are extracted and compared for the fault-injected

and non-faulty processor models and subsequently, the self-test codes with low memory

footprint and maximum coverage are selected.

In Fig. 6.6, an example of fragment synthesis is shown for the self-test programs of

the branch functionality of a MIPS processor. The self-test code belongs to the group G95

covers 95% of similar testable behavioral faults of branch instruction execution. However,

120

6.4 Experimental Results

the detection of intermittent faults is barely ensured by such larger self-test codes as the

maximum fault detection latency is very high. To reduce the fault detection latency,

G95 is replaced by FTPs with lesser coverages (e.g., 85%) that are executed frequently.

Each FTP, shown in Fig. 6.6, consists of at least one beq instruction and therefore, could

detect 85% of the behavioral faults modeled for the branch instruction execution. So,

the maximum fault detection latency of branch functionality could be reduced nearly

4 times by replacing the optimal self-test code of group G95 with 4 FTPs of the group

G85, as shown in Fig. 6.6. Also, the overall coverage of these 4 FTPs should be nearly

equal to 95%, i.e., the fragmentation must not be lossy. However, these FTPs could

replace the larger self-test code, only if the modified overall utilization is lesser than the

least upper bound of utilization and the modified response times of each FTP meet their

corresponding deadline. Likewise, each group of FTPs is selected from the population of

the µGP evolutionary test synthesis and is subjected to reliability analysis. Thereupon,

the most reliable group of FTPs is selected for the self-testing, and these FTPs are

employed as self-test sub-tasks, which are scheduled with equal execution windows.

6.4.1 A Case Study of Reliable Synthesis of FTPs

The operational frequency of synthesized versions of the MIPS processor model is 100

MHz. A set Γ of 12 mission task workloads is shown in Table 6.1. The normal overall

utilization for U is 0.673155, whereas the schedulability for 12 tasks has the upper bound

of 0.713557. If a self-test task is integrated with the mission task set, the upper bound for

13 tasks would reduce to 0.711959, i.e., the maximum utilization (0.711959 - 0.673155)

permissible for the new self-test task would be 0.038804. So, we introduce a self-test

task τt with Et = 25000 cycles, Tt = 800000 cycles (8 ms), and 96.3% coverage. The

utilization Ut = 0.035714 and the overall utilization becomes U = 0.708870 ≤ 0.711959.

So, the schedulability of the workloads along with τt is assured. So, the sub-tasks of τt are

restricted to an overall utilization bound Ut(= 0.035714). Using this overall utilization,

we extract the minimum permissible execution window and the maximum number of

FTPs possible for every group GF of fault coverage F .

The relation between the maximum number of sub-tasks and execution window size

of a single sub-task is depicted in Equation 6.10. As the number of FTPs in a test

period increases, the execution window size will reduce. In Fig. 6.7, the utilization of

121

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

��������	
���

����

����������

����

main:

 lw $r0,2($r0)

 sw $r0,15($r0)

 addi $r4,$r0,2

 beq $r4,$r2,L1

 addi $r5,$r0,4

 lw $r6,2($r0)

 lui $r7,1

 add $r3,$r1,$r2

 beq $r1,$r4,L2

 add $r6,$r3,$r6

 addi $r2,$r2,1

 lui $r6,1

L1:

 and $r2,$r0,$r2

 addi $r1,$r1,1

 and $r2,$r1,$r2

 sw $r7,15($r0)

L2:

 sw $r6,1($r7)

 sw $r2,1($r1)

.text

.globl main

li $v0,10

syscall

 main:

 lw $r6,2($r0)

 beq $r1,$r4,L1

 add $r3,$r1,$r2

 lui $r7,1

 L1:

 and $r2,$r0,$r2

 sw $r7,15($r0)

.text

.globl main

li $v0,10

syscall

 main:

 sw $r0,15($r0)

 addi $r5,$r0,4

 beq $r4,$r2,L2

 lw $r6,2($r0)

 lui $r7,1

 L2:

 sw $r6,1($r7)

.text

.globl main

li $v0,10

syscall

 main:

 beq $r4,$r2,L2

 lui $r7,1

 addi $r2,$r2,1

 L2:

 and $r2,$r0,$r2

 sw $r7,15($r0)

 addi $r5,$r0,4

li $v0,10

syscall

.text

.globl main

 main:

 lw $r0,2($r0)

 sw $r0,15($r0)

 beq $r1,$r4,L1

 lui $r7,1

 L1:

 add $r3,$r1,$r2

 addi $r1,$r1,1

 sw $r6,1($r7)

li $v0,10

syscall

.text

.globl main

���������

������������������

���������
����
�������
�����������

Figure 6.6: Replacement of a Test Program of Group G95 by 4 Smaller Test Programs (FTPs)
of Group G85 for testing the Branch Functionality of a MIPS Processor

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1

U
ti

li
za

ti
o
n

Test Fragment Execution Window (ms)

Threshold=0.038804

Coverage=80%
Coverage=81%
Coverage=82%
Coverage=83%
Coverage=84%
Coverage=85%

Figure 6.7: Utilization of Different Test Execution Windows on 100 MHz MIPS Processor
Model

each group of FTPs is depicted for different execution windows, i.e., for different number

of FTPs. In this case study, the maximum possible utilization for a set of sub-tasks in a

group GF is 0.038804. So, if the number of sub-tasks is high, the execution window will

122

6.4 Experimental Results

Table 6.2: Test Program Characteristics on 100 MHz MIPS Processor Model

Fault
Coverage
(%)

Avg. Test
Execution
Time (ms)

Avg. FTP
Size (KB)

Lower Bound w
for Test Execution
Window (ms)

Optimal
Number of
FTPs m

Overall
Coverage of
FTPs (%)

80 0.014 1.72 0.40 20 96.0
81 0.016 1.87 0.45 17 95.8
82 0.018 1.92 0.52 15 95.5
83 0.021 1.98 0.61 13 95.9
84 0.026 2.10 0.75 10 96.0
85 0.032 2.31 0.90 8 95.6

be small and the overall utilization increases and may cross the schedulability bound. If

the number of sub-tasks is lesser, the execution window will be expanded to satisfy the

schedulability threshold.

As shown in Table 6.2, the FTPs in the group G80 has maximum utilization when

the execution window size is 0.4 ms, the group G81 has execution window size of 0.45

ms, and so on. Using Equation 6.10, the minimum execution window size of FTPs

is deduced from the number of schedulable FTPs for each group. Also, the execution

window size increases as the coverage of the FTP increases and vice versa. For example,

10 FTPs of the group G84 could be executed during a test period Tt with an execution

window size 0.75 ms whereas for the group G85, only 8 FTPs could be executed during

Tt bearing a longer execution window of 0.9 ms. However, the overall coverage of each

set of fragments is near to 96%, which results in a lossless fragmentation as the coverage

of the actual self-test task τt is 96.3%.

From Table 6.2, it may be noted that for the low-coverage FTPs, fault detection

latency is lesser. However, if the fault coverage decreases beyond a limit, intermittent

faults might go undetected and reliability would be less. The failure probability of mis-

sion tasks (with no self-testing) calculated using the reliability Equation 6.4 for different

durations of time intervals is shown in Fig. 6.8. In this case, the failure probability

increases as the time interval and failure rate (β) increase.

Now, we consider the inclusion of self-test sub-tasks and observe the variation in the

failure probability for different groups of FTPs as shown in Fig. 6.9. For the group

G80, the failure probability seems to be the lowest of all groups. When the coverage

increases or decreases from 80%, the probability of failure is observed to be increasing

123

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1 2 3 4 5 6 7 8

F
ai

lu
re

 P
ro

b
ab

il
it

y

Time Interval (ms)

β=1 fps
β=2 fps
β=5 fps

β=10 fps

Figure 6.8: Failure Probability of the Workloads on 100 MHz MIPS Processor Model with No
Testing

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 40 50 60 70 80 90

F
ai

lu
re

 P
ro

b
ab

il
it

y

Fault Coverage (%)

β=1 fps
β=2 fps
β=5 fps

β=10 fps

Figure 6.9: Failure Probability of Workloads along with Self-test Sub-tasks on 100 MHz MIPS
Processor Model

for different failure rates (β = 1, 2, 5, 10 faults per second (fps)). So, to achieve efficient

fault detection latency and test quality, we adopt the optimal number of FTPs from G80

estimated using Equation 6.7. These FTPs are executed with the pseudo-release time

and pseudo-deadline as defined in Equation 6.11 and Equation 6.12, respectively.

Following the reliability evaluation of each group, FTPs of groups with minimum

failure probability is selected for online self-testing. To accomplish fault tolerance in

online self-testing, FTPs of G80 is chosen due to the lowest failure probability of all

groups. Finally, 20 FTPs of G80 are executed with an execution window of 0.4 ms

124

6.5 Summary

in a single test period, where the pseudo-release time and pseudo-deadline (r(i), d(i))

are (0 ms, 0.4 ms) for the first self-test sub-task, (0.4 ms, 0.8 ms) for the second self-

test sub-task, (0.8 ms, 1.2 ms) for the third self-test sub-task, and so on. These 20

FTPs, altogether, ensures coverage of 96%, which is nearly equal to the coverage of the

unfragmented self-test task (96.3%). This distributed self-testing approach could realize

the development of high coverage self-test codes with minimal fault detection latency

for the tolerance of intermittent faults.

6.5 Summary

In this work, a reliable set of shorter SBST code fragments were discovered to replace

the large SBST codes in online processor testing. These set of fragments, developed with

the help of enhanced reliability analysis, would have adequate test quality and minimal

fault detection delay. The schedulability and the overall coverage efficiency of these

self-test sub-tasks, executed along with a set of 12 mission tasks, are verified on a 32-bit

MIPS processor model. To effectively trace the intermittent faults on a MIPS processor

circuitry, the actual self-test code with 96.3% coverage and a test period of 8 ms could

be replaced with a set of 20 fragments of test tasks with 80% coverage and a test period

of 0.4 ms. To ensure high-quality fragmentation, adequate overall coverage of 96% is

achieved by these 20 code fragments. Currently, we are working on the development

of a neural network-based fault estimation model using test signatures of power and

temperature consumptions, to predict the occurrence of intermittent faults.

125

6. APPLICATION OF FRAGMENTS OF SBST PROGRAMS FOR
ONLINE TESTING

126

Chapter 7
Conclusions and Future Perspectives

7.1 Summary

As the sophistication of processor circuits are increasing exponentially every year, test

performance has also become crucial. In this thesis, we have addressed four major

challenges of SBST test procedure for processors. Each of these challenges leads to

performance degradation in the execution of different phases of SBST testing. Our

proposals attempt to deal with the critical challenges in SBST testing domain towards

a high-performance, high-quality SBST test procedure. These proposed techniques are

validated on a configurable 32-bit MIPS processor and a full-fledged 7-stage pipeline

SPARC V8 Leon3 soft processor and can be extended towards potentially developing a

meaningful fault discovering technique for more complex multicore NoCs and SoCs.

In the first contribution, an enhanced SBST synthesis for the processor cores is em-

ployed by integrating the greedy coverage and the testability features into the traditional

evolutionary core module of µGP for the detection of the hard faults. From the experi-

mental results, we could conclude that our strategy synthesizes test solutions that could

detect 40% of the hard faults which affirms the development of high-quality test pro-

grams. A comprehensive behavioral fault model is used to capture the possible faults in

the processors. Also, the scalability of the proposed scheme is demonstrated by analyz-

ing and comparing the effort in testing the behavioral faults for a MIPS processor and

a Leon3 processor. As the number of behavioral faults does not change considerably

with the processor size, the test program generation time is nearly equivalent for both

processors, which explains the scalability of our scheme.

The second contribution extends the existing SBST automation techniques and also,

127

7. CONCLUSIONS AND FUTURE PERSPECTIVES

the technique proposed in our first contribution with a faster SBST synthesis called

RSBST for processors. In this work, an accelerated greedy-based evolutionary method

is employed to detect the hard-to-test faults. To realize this, we search for identical test

programs in terms of observability and reuse their simulation responses. This affirms

more than 80% reuse of intermediate test programs (chromosomes in terms of the genetic

algorithm) for both MIPS processor and Leon3 processor.

To compress larger test programs developed for complex processors, a two-stage

algorithm is proposed and validated in our third contribution. These stages are en-

hancements of existing instruction removal and instruction restoration techniques. The

large test programs are compacted effectively and effortlessly using our proposed tech-

nique. The first stage of compaction easily eliminates the loosely coupled independent

instruction groups. In the second stage, we have used a top to bottom restoration-

based compaction for the remaining instructions that reduce the test code size by 19%,

consuming 142.33 fault simulations, thereby allowing low-cost compaction.

In our fourth contribution, a set of shorter SBST code fragments with enhanced

reliability were discovered to replace the large SBST codes in online processor testing.

These set of fragments, synthesized during the evolutionary process and discovered with

the help of enhanced reliability analysis, have adequate test quality and minimal fault

detection delay in the detection of temporary faults. The schedulability and the overall

coverage efficiency of these self-test sub-tasks, executed along with a set of real-time

mission tasks, are verified on a 32-bit MIPS processor model. It is observed that the

intermittent faults on a MIPS processor circuitry could be effectively traced if the actual

self-test code of 96.3% could be replaced with a set of 20 fragments of test tasks with

80% coverage.

In all our works, we have demonstrated the validation of algorithms with the help of

elaborate experimental results and further analysis. Altogether, we conclude our thesis

works, comprising different techniques and corresponding results for the development of

a high-quality, accelerated, and low-cost SBST test process with enhanced reliability.

7.2 Future Works

The work presented in this thesis leaves several open directions and there is ample scope

for future research in the domain of SBST for processors. In this section, we present

128

7.2 Future Works

four such future perspectives.

• Advanced fault discovery using greedy SBST synthesis: The evolution-

ary and greedy concepts of automated SBST synthesis can be extended towards

potentially developing a meaningful and profound fault discovering technique for

more complex multicore NoCs and SoCs. The computational components of com-

plex SoCs can be functionally tested using SBST programs. In Leon3 processor,

the floating point components and the coprocessor could also be tested for the

completeness of the test process.

• Fragment-wise reusability and fault equivalence techniques: A faster and

profound test synthesis could be developed using the fragment-wise reusability of

test programs. Even if the observability of two test programs are different, the

identical, and data-independent code fragments (chunks) could be extracted from

these test programs and reused. Also, the fault equivalence techniques could be

used for reducing the volume of simulations and the test generation time. Two

faults are equivalent if the output function of a processor module is the same for

both of them. So, we classify the equivalent faults into the same group. Also, if a

test program could detect one of these faults, it can detect all its equivalent faults.

So, all faults in a group of equivalent faults could be tested using a single fault

simulation, which will accelerate the test synthesis.

• Instruction reordering technique could be integrated for further opti-

mization: Our work on removal-restoration techniques could be extended by in-

tegrating instruction reordering techniques for further optimization of the test pro-

gram. We could heuristically search for the optimal ordering of instruction groups

with minimum execution time while maintaining the fault coverage. However, this

search process must be conducted keeping a threshold on the computational cost.

• Test code optimization by removing common instruction in test sets:

The module-by-module test programs could have instructions that cover common

faults. The instructions of a test program for a module may also cover some of the

faults of other modules. So, we can extend our test program compaction work by

identifying and removing instructions which cover faults that are already covered

129

7. CONCLUSIONS AND FUTURE PERSPECTIVES

by test programs of other modules. To realize this, test programs with the largest

excess fault coverage are to be considered first and redundant instructions are to

be removed from other test programs. Also, a comparison study for the monolithic

test programs and module-by-module test programs, in terms of execution time

and size, can be conducted to determine the most efficient online testing approach.

• Scheduling of FTP execution to enhance intermittent fault coverage:

FTP execution time is significantly smaller (< 10%) when compared with the mis-

sion critical task execution. So, it may generate less heat as compared to mission

critical applications but it can detect intermittent faults and raise a flag for fault

tolerance. However, differnet execution sequences of FTPs executed in a test pe-

riod lead to different power consumption and heat generation, i.e., the execution

ordering of FTPs have direct impact on power consumption and temperature of

the processor. So, each FTP must be assigned a priority and based on this pri-

ority, they must be scheduled during test period interleaving mission application.

Therefore, a study of FTP execution scheduling can be conducted to maximize the

intermittent fault coverage.

• SBST techniques for memory consistency testing and validation: Memory

consistency models significantly impact the ease of programming a multi-processor

system, as well as the set of hardware and compiler optimizations. Commer-

cial architectures support a variety of memory models, such as Sequential Con-

sistency(SC), Total Store Order(TSO) and Release Consistency(RC). As several

complex elements are involved in the memory hierarchy design, memory model

testing is a major challenge for memory architects today. There are several ap-

proaches for checking the correctness of shared-memory multiprocessor implemen-

tations focusing on the memory subsystem. SBST approaches for multiprocessors

are able to test the designs with programs whose results can be reasoned about a

priori or are precomputable. So, a study on the memory consistency testing can

be conducted using various SBST approaches.

• SBST techniques for post-silicon validation and manufacturing testing:

After the processor chip design passes from the pre-silicon verification stage, few

chip prototypes are fabricated and these prototypes are used as test objects in the

130

7.2 Future Works

post-silicon validation stage. Post-silicon validation is in the orders of magnitude

faster than simulation-based pre-silicon verification tests. SBST programs may be

utilized to enhance the controllability and observability of functional verification

tests to develop an effective the post-silicon validation. Production/manufacturing

testing screens manufactured chips for physical faults or defects before the chip is

released into the market. This testing procedure must be conducted in the actual

speed of the processor hardware which is in GHz. As SBST ensures at-speed test-

ing of circuits, it is an emerging solution for production test/manufacturing test.

Currently, SBST is used for the at-speed testing of processors in BIST and on-

line/concurrent testing methods. So, effective SBST soultions for both production

test/manufacturing test and post-silicon validation can also be developed.

• SBST techniques to test unencrypted firmware or software of a com-

plex SoC design: Firmware is low-level software which can directly access the

physical memory space of its interacting hardware devices. This hardware-specific

nature distinguishes it from higher-level software such as the operating system

(OS) or application code which is device independent. This higher-level software

communicates with the hardware via firmware. The firmware address space is ker-

nel accessible but not user accessible and the software address space is assigned

separately for each user. Correct functionality of firmware is critical and its mal-

function while accessing critical physical memory can crash the OS or even the

entire system. For example, bugs in device drivers were considered to be the cause

of 85% of the failures of the Windows XP Operating System. This component of

the system is increasing in scale and importance, and thus firmware validation is

a critical part of system validation. SBST techniques can be developed to validate

the firmware and software by testing their concurrency with the interacting SoC

hardware modules.

• SBST techniques to test encrypted firmware of a complex SoC design:

The encrypted firmware of complex SoC designs can be validated by developing

SBST programs for the encryption hardware for the firmware. When SoC com-

ponets are accessed, all memory addresses that are issued by software are virtual.

These memory addresses can be passed to the Memory Management Unit (MMU),

131

7. CONCLUSIONS AND FUTURE PERSPECTIVES

which can check the TLBs for a recently used cached translation. If the MMU does

not find a recently cached translation, the table walk unit reads the appropriate ta-

ble entry from memory. As MMU ensures authorized access to firmware or software

in memory, the integrity of the circuit could be compromised if any faults/defect

occur in MMU hardware. To validate encrypted firmware, both encryption hard-

ware and MMU hardware can be tested using dedicated SBST programs.

• SBST techniques for validation of trust zones: Trust Zones are embedded

security technology that starts at the hardware level by creating two environments

that can run simultaneously on a single core: a secure world and a not-as-secure

world (non-secure world). ARM TrustZone Trust Execution Environment (TEE)

is an implementation of the TEE standard, which offers a execution space of high-

level application security. To validate these trust zones, SBST programs can be

developed separately based on the level of testability of secure and non-secure

environments.

132

Publications

• Vasudevan Madampu Suryasarman, Santosh Biswas and Aryabartta Sahu,

Automation of Test Program Synthesis for Processor Post-silicon Vali-

dation, Journal of Electronic Testing, vol.34, no.1, pp.83-103, Feb 2018.

• Vasudevan Madampu Suryasarman, Santosh Biswas and Aryabartta Sahu,

RSBST: An Accelerated Automated Software-based Self-test Synthesis

for Processor Testing, Journal of Electronic Testing. vol. 35, 695714 (2019).

• Vasudevan M S, Santosh Biswas and Aryabartta Sahu, RSBST: A Rapid

Software-based Self-test Methodology for Processor Testing, The 32nd

International Conference on VLSI Design 2019.

• Vasudevan Madampu Suryasarman, Santosh Biswas and Aryabartta Sahu,

”Fragmented SBST Technique for Online Intermittent Fault Detection

in Processors”. (Provisionally accepted with major revisions in IET Computers

& Digital Techniques)

133

7. CONCLUSIONS AND FUTURE PERSPECTIVES

134

References

[1] David A Patterson and John L Hennessy. Computer organization and design MIPS

edition: the hardware/software interface. Newnes, 2013. [Pg.xvii], [Pg.42], [Pg.43]

[2] Giovanni Squillero. Microgpan evolutionary assembly program generator. Genetic

Programming and Evolvable Machines, 6(3):247–263, 2005. [Pg.xvii], [Pg.xviii],

[Pg.xxiii], [Pg.9], [Pg.13], [Pg.16], [Pg.27], [Pg.29], [Pg.30], [Pg.39], [Pg.42], [Pg.43],

[Pg.53], [Pg.54], [Pg.55], [Pg.58], [Pg.59], [Pg.63], [Pg.68], [Pg.69], [Pg.71], [Pg.83],

[Pg.84], [Pg.85], [Pg.86], [Pg.87], [Pg.99]

[3] Martin Danek, Leos Kafka, Luks Kohout, Jaroslav Skora, and Roman Bartosinski.

Utleon3: Exploring fine-grain multi-threading in fpgas. 2014. ISBN: 978-1-4614-

2410-9. [Pg.xviii], [Pg.64], [Pg.65]

[4] Marco Gaudesi, Irith Pomeranz, Matteo Sonza Reorda, and Giovanni Squillero.

New techniques to reduce the execution time of functional test programs. IEEE

Transactions on Computers, 66(7):1268–1273, 2016. [Pg.xviii], [Pg.16], [Pg.19],

[Pg.31], [Pg.32], [Pg.33], [Pg.89], [Pg.94], [Pg.95], [Pg.99], [Pg.100], [Pg.101],

[Pg.102]

[5] Chien-In Henry Chen. Behavioral test generation/fault simulation. IEEE Po-

tentials, 22(1):27–32, 2003. [Pg.xxiii], [Pg.12], [Pg.28], [Pg.39], [Pg.40], [Pg.41],

[Pg.53], [Pg.54]

[6] Bernd Hoefflinger. ITRS: The International Technology Roadmap for Semiconduc-

tors, pages 161–174. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. [Pg.1]

[7] Peter J Ashenden, Jean Mermet, and Ralf Seepold. System-on-Chip Methodologies

& Design Languages. Springer Science & Business Media, 2013. [Pg.1]

135

REFERENCES

[8] Steve B Furber. ARM system Architecture. Addison-Wesley Longman Publishing

Co., Inc., 1996. [Pg.1]

[9] Santosh Biswas and Jatindra Kumar Deka. Vlsi design verification and test. [on-

line]. Available:http://www.nptel.courses.in/106103016. [Pg.1], [Pg.2], [Pg.24]

[10] Valeria Bertacco. Post-silicon debugging for multi-core designs. In Proceedings of

the 2010 Asia and South Pacific Design Automation Conference, pages 255–258.

IEEE Press, 2010. [Pg.1]

[11] Brian T Murray and John P Hayes. Testing ics: Getting to the core of the problem.

Computer, (11):32–38, 1996. [Pg.1], [Pg.2]

[12] Michele Favalli and Cecilia Metra. Online testing approach for very deep-

submicron ics. IEEE Design & Test of Computers, 19(2):16–23, 2002. [Pg.1]

[13] Paul KK Yeung, Alan D Howard, James W Hoo, and James L Pennock. Automatic

test equipment for integrated circuits, August 9 1988. US Patent 4,763,066. [Pg.2]

[14] Raghuram S Tupuri and Jacob A Abraham. A novel functional test generation

method for processors using commercial atpg. In Proceedings International Test

Conference 1997, pages 743–752. IEEE, 1997. [Pg.3], [Pg.24], [Pg.26]

[15] Paolo Prinetto, Maurizio Rebaudengo, and M Sonza Reorda. An automatic test

pattern generator for large sequential circuits based on genetic algorithms. In

Proceedings., International Test Conference, pages 240–249. IEEE, 1994. [Pg.3],

[Pg.24], [Pg.26]

[16] Antonis Paschalis, Dimitris Gizopoulos, Nektarios Kranitis, Mihalis Psarakis, and

Yervant Zorian. Deterministic software-based self-testing of embedded processor

cores. In Proceedings of the conference on Design, automation and test in Europe,

pages 92–96. IEEE Press, 2001. [Pg.3], [Pg.4], [Pg.5], [Pg.14], [Pg.24], [Pg.26],

[Pg.27], [Pg.33], [Pg.34]

[17] Adrian Carbine and Derek Feltham. Pentium (r) pro processor design for test and

debug. In Proceedings International Test Conference 1997, pages 294–303. IEEE,

1997. [Pg.3], [Pg.24]

[18] Indradeep Ghosh, Anand Raghunathan, and Niraj K Jha. Hierarchical test gen-

eration and design for testability methods for aspps and asips. IEEE transactions

136

REFERENCES

on computer-aided design of integrated circuits and systems, 18(3):357–370, 1999.

[Pg.3], [Pg.24]

[19] Kwanghyun Kim, Dong Sam Ha, and Joseph G Tront. On using signature registers

as pseudorandom pattern generators in built-in self-testing. IEEE transactions

on computer-aided design of integrated circuits and systems, 7(8):919–928, 1988.

[Pg.4], [Pg.25], [Pg.26]

[20] Kenneth D. Wagner, Cary K. Chin, and Edward J. McCluskey. Pseudorandom

testing. IEEE transactions on computers, (3):332–343, 1987. [Pg.4], [Pg.25],

[Pg.26]

[21] F. Corno, M. Sonza Reorda, G. Squillero, and M. Violante. On the test of mi-

croprocessor ip cores. In Proceedings Design, Automation and Test in Europe.

Conference and Exhibition 2001, pages 209–213, 2001. [Pg.4], [Pg.25]

[22] Nektarios Kranitis, Antonis Paschalis, Dimitris Gizopoulos, and Yervant Zorian.

Instruction-based self-testing of processor cores. Journal of Electronic Testing,

19(2):103–112, 2003. [Pg.4], [Pg.5], [Pg.25], [Pg.27]

[23] S. Gurumurthy, S. Vasudevan, and J. A. Abraham. Automatic generation of

instruction sequences targeting hard-to-detect structural faults in a processor. In

2006 IEEE International Test Conference, pages 1–9, 2006. [Pg.4], [Pg.25]

[24] Loganathan Lingappan and Niraj K Jha. Satisfiability-based automatic test pro-

gram generation and design for testability for microprocessors. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 15(5):518–530, 2007. [Pg.4],

[Pg.25]

[25] Ying Zhang, Ahmed Rezine, Petru Eles, and Zebo Peng. Automatic test program

generation for out-of-order superscalar processors. In 2012 IEEE 21st Asian Test

Symposium, pages 338–343. IEEE, 2012. [Pg.4], [Pg.6], [Pg.25], [Pg.26], [Pg.27]

[26] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms, vol-

ume 16. John Wiley & Sons, 2001. [Pg.4], [Pg.25], [Pg.26]

[27] F Corno, G Cumani, M Sonza Reorda, and Giovanni Squillero. Efficient machine-

code test-program induction. In Proceedings of the 2002 Congress on Evolutionary

Computation. CEC’02 (Cat. No. 02TH8600), volume 2, pages 1486–1491. IEEE,

2002. [Pg.4], [Pg.25], [Pg.26], [Pg.27]

137

REFERENCES

[28] Dimitris Gizopoulos, Antonis Paschalis, and Yervant Zorian. Embedded processor-

based self-test, volume 28. Springer Science & Business Media, 2013. ISBN: 978-

1-4020-2801-4. [Pg.4], [Pg.6], [Pg.12], [Pg.34]

[29] Edward J McCluskey. Built-in self-test techniques. IEEE Design & Test of Com-

puters, 2(2):21–28, 1985. [Pg.4]

[30] Charles E Stroud. A designers guide to built-in self-test, volume 19. Springer

Science & Business Media, 2006. [Pg.4]

[31] Li Chen, Srivaths Ravi, Anand Raghunathan, and Sujit Dey. A scalable software-

based self-test methodology for programmable processors. In Proceedings of the

40th annual Design Automation Conference, pages 548–553. ACM, 2003. [Pg.4],

[Pg.5], [Pg.14], [Pg.26], [Pg.27], [Pg.33], [Pg.34]

[32] Li Chen and Sujit Dey. Software-based self-testing methodology for processor

cores. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 20(3):369–380, 2001. [Pg.4], [Pg.5], [Pg.14], [Pg.27], [Pg.33], [Pg.34]

[33] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis. Software-based self-

testing of embedded processors. IEEE Transactions on Computers, 54(4):461–475,

April 2005. [Pg.5], [Pg.6], [Pg.25], [Pg.26], [Pg.27], [Pg.34]

[34] Nektarios Kranitis, George Xenoulis, A Paschalis, Dimitris Gizopoulos, and Yer-

vant Zorian. Application and analysis of rt-level software-based self-testing for

embedded processor cores. In Test Conference, 2003. Proceedings. ITC 2003. In-

ternational, volume 1, pages 431–440. IEEE. [Pg.6], [Pg.14], [Pg.33], [Pg.34]

[35] Dimitris Gizopoulos, Mihalis Psarakis, Miltiadis Hatzimihail, Michail Maniatakos,

Antonis Paschalis, Anand Raghunathan, and Srivaths Ravi. Systematic software-

based self-test for pipelined processors. IEEE Transactions on Very Large Scale

Integration Systems, 16(11):1441–1453, 2008. [Pg.6], [Pg.25], [Pg.26], [Pg.28]

[36] Mihalis Psarakis, Dimitris Gizopoulos, Ernesto Sanchez, and Matteo Sonza Re-

orda. Microprocessor software-based self-testing. IEEE Design & Test of Comput-

ers, 27(3):4–19, 2010. [Pg.6], [Pg.25]

[37] Mauricio De Carvalho, Paolo Bernardi, Ernesto Sánchez, M Sonza Reorda, and

Oscar Ballan. Increasing the fault coverage of processor devices during the oper-

138

REFERENCES

ational phase functional test. Journal of Electronic Testing, 30(3):317–328, 2014.

[Pg.6], [Pg.25]

[38] Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Matteo Sonza Reorda, and

Bernd Becker. On the automatic generation of sbst test programs for in-field test.

In Proceedings of the 2015 Design, Automation & Test in Europe Conference &

Exhibition, pages 1186–1191. EDA Consortium, 2015. [Pg.6], [Pg.26], [Pg.27]

[39] Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Matteo Sonza Reorda, and

Bernd Becker. A flexible framework for the automatic generation of sbst programs.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(10):3055–

3066, 2016. [Pg.6], [Pg.26], [Pg.27]

[40] Ieee standard vhdl language reference manual. IEEE Std 1076-2008 (Revision of

IEEE Std 1076-2002), pages c1–626, Jan 2009. [Pg.8]

[41] Fulvio Corno, Ernesto Sánchez, Matteo Sonza Reorda, and Giovanni Squillero. Au-

tomatic test program generation: A case study. IEEE Design & Test of Comput-

ers, 21(2):102–109, 2004. [Pg.9], [Pg.13], [Pg.16], [Pg.27], [Pg.29], [Pg.30], [Pg.68],

[Pg.69], [Pg.71], [Pg.99]

[42] Kenyon CY Mei. Bridging and stuck-at faults. IEEE Transactions on Computers,

100(7):720–727, 1974. [Pg.11]

[43] Kyoung Youn Cho, Subhasish Mitra, and Edward J McCluskey. Gate exhaustive

testing. In IEEE International Conference on Test, 2005., pages 7–pp. IEEE, 2005.

[Pg.11]

[44] Xinyue Fan, Will Moore, Camelia Hora, Mario Konijnenburg, and Guido Gron-

thoud. A gate-level method for transistor-level bridging fault diagnosis. In 24th

IEEE VLSI Test Symposium, pages 6–pp. IEEE, 2006. [Pg.11]

[45] Irith Pomeranz and Sudhakar M Reddy. Functional test generation for delay faults

in combinational circuits. In Proceedings of the 1995 IEEE/ACM international

conference on Computer-aided design, pages 687–694. IEEE Computer Society,

1995. [Pg.11]

[46] Juergen Alt and Udo Mahlstedt. Simulation of non-classical faults on the gate

level-fault modeling. In Digest of Papers Eleventh Annual 1993 IEEE VLSI Test

Symposium, pages 351–354. IEEE, 1993. [Pg.11]

139

REFERENCES

[47] Kazutoshi Wakabayashi and Takumi Okamoto. C-based soc design flow and eda

tools: An asic and system vendor perspective. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 19(12):1507–1522, 2000. [Pg.12]

[48] R. Leveugle and K. Hadjiat. Multi-level fault injections in vhdl descriptions: Alter-

native approaches and experiments. Journal of Electronic Testing, 19(5):559–575,

Oct 2003. [Pg.12], [Pg.28], [Pg.39]

[49] Anton Karputkin and Jaan Raik. A synthesis-agnostic behavioral fault model for

high gate-level fault coverage. In Design, Automation & Test in Europe Confer-

ence & Exhibition (DATE), 2016, pages 1124–1127. IEEE, 2016. [Pg.12], [Pg.28],

[Pg.29], [Pg.40], [Pg.53], [Pg.60]

[50] Fulvio Corno, Gianluca Cumani, M Sonza Reorda, and Giovanni Squillero. An rt-

level fault model with high gate level correlation. In High-Level Design Validation

and Test Workshop, 2000. Proceedings. IEEE International, pages 3–8. IEEE,

2000. [Pg.12], [Pg.28], [Pg.29], [Pg.40], [Pg.60]

[51] M Karunaratne, A Sagahayroon, and S Prodhuturi. Rtl fault modeling. In Circuits

and Systems, 2005. 48th Midwest Symposium on, pages 1717–1720. IEEE, 2005.

[Pg.12], [Pg.28], [Pg.29], [Pg.40], [Pg.60]

[52] Fulvio Corno, Ernesto Sánchez, and Giovanni Squillero. Evolving assembly pro-

grams: how games help microprocessor validation. IEEE Transactions on Evo-

lutionary Computation, 9(6):695–706, 2005. [Pg.13], [Pg.28], [Pg.29], [Pg.30],

[Pg.68], [Pg.69], [Pg.71]

[53] Ernesto Sánchez, Matteo Sonza Reorda, and Giovanni Squillero. Efficient tech-

niques for automatic verification-oriented test set optimization. International Jour-

nal of Parallel Programming, 34(1):93–109, 2006. [Pg.13], [Pg.28], [Pg.29], [Pg.30],

[Pg.68], [Pg.69], [Pg.71], [Pg.99]

[54] Andreas Apostolakis, Mihalis Psarakis, Dimitris Gizopoulos, and Antonis

Paschalis. Functional processor-based testing of communication peripherals in

systems-on-chip. IEEE transactions on very large scale integration (VLSI) sys-

tems, 15(8):971–975, 2007. [Pg.14], [Pg.33], [Pg.34]

[55] Ying Zhang and Krishnendu Chakrabarty. Fault recovery based on checkpointing

for hard real-time embedded systems. In Proceedings 18th IEEE Symposium on

140

REFERENCES

Defect and Fault Tolerance in VLSI Systems, pages 320–327, Nov 2003. [Pg.14],

[Pg.33]

[56] Ying Zhang and Krishnendu Chakrabarty. A unified approach for fault tolerance

and dynamic power management in fixed-priority real-time embedded systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

25(1):111–125, 2005. [Pg.14], [Pg.33]

[57] George Xenoulis, Dimitris Gizopoulos, Mihalis Psarakis, and Antonis Paschalis.

Instruction-based online periodic self-testing of microprocessors with floating-point

units. IEEE Transactions on Dependable and Secure Computing, 6(2):124–134,

2008. [Pg.14], [Pg.33]

[58] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization of time- and cost-

constrained fault-tolerant embedded systems with checkpointing and replication.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(3):389–

402, March 2009. [Pg.14], [Pg.33]

[59] O. Heron, J. Guilhemsang, N. Ventroux, and A. Giulieri. Analysis of on-line

self-testing policies for real-time embedded multiprocessors in dsm technologies.

In 2010 IEEE 16th International On-Line Testing Symposium, pages 49–55, July

2010. [Pg.14], [Pg.33]

[60] Paolo Bernardi, Riccardo Cantoro, L Ciganda, Ernesto Sánchez, M Sonza Reorda,

Sergio De Luca, Renato Meregalli, and Alessandro Sansonetti. On the in-field

functional testing of decode units in pipelined risc processors. In 2014 IEEE In-

ternational Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), pages 299–304. IEEE, 2014. [Pg.14], [Pg.33]

[61] Boyang Du, Ernesto Sánchez, M Sonza Reorda, J Perez Acle, and Anton Tser-

tov. Fpga-controlled pcba power-on self-test using processor’s debug features. In

2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic

Circuits & Systems (DDECS), pages 1–6. IEEE, 2016. [Pg.14], [Pg.33]

[62] Riccardo Cantoro, Davide Piumatti, Paolo Bernardi, Sergio De Luca, and Alessan-

dro Sansonetti. In-field functional test programs development flow for embedded

fpus. In 2016 IEEE International Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT), pages 107–110. IEEE, 2016. [Pg.14],

[Pg.33]

141

REFERENCES

[63] Nektarios Kranitis, George Xenoulis, Dimitris Gizopoulos, A Paschalis, and Yer-

vant Zorian. Low-cost software-based self-testing of risc processor cores. IEE

Proceedings-Computers and Digital Techniques, 150(5):355–360, 2003. [Pg.16],

[Pg.31], [Pg.89]

[64] Dimitris Gizopoulos. Low-cost, on-line self-testing of processor cores based on em-

bedded software routines. Microelectronics journal, 35(5):443–449, 2004. [Pg.16],

[Pg.31], [Pg.34]

[65] R Cantoro, E Cetrulo, E Sanchez, M Sonza Reorda, and A Voza. Automated

test program reordering for efficient sbst. In 2017 32nd Conference on Design of

Circuits and Integrated Systems (DCIS), pages 1–6. IEEE, 2017. [Pg.16], [Pg.31],

[Pg.32], [Pg.89]

[66] Prakash Rashinkar, Peter Paterson, and Leena Singh. System-on-a-chip verifi-

cation: methodology and techniques. Springer Science & Business Media, 2007.

[Pg.23], [Pg.24]

[67] Luc Séméria and Abhijit Ghosh. Methodology for hardware/software co-

verification in c/c++. In Proceedings 2000. Design Automation Conference.(IEEE

Cat. No. 00CH37106), pages 405–408. IEEE, 2000. [Pg.23]

[68] Prakash Rashinkar, Peter Paterson, and Leena Singh. System-level verification.

System-on-a-Chip Verification: Methodology and Techniques, pages 45–66, 2002.

[Pg.24]

[69] Vishnu A Patankar, Alok Jain, and Randal E Bryant. Formal verification of an arm

processor. In Proceedings Twelfth International Conference on VLSI Design.(Cat.

No. PR00013), pages 282–287. IEEE, 1999. [Pg.24]

[70] Subhasish Mitra, Sanjit A Seshia, and Nicola Nicolici. Post-silicon validation

opportunities, challenges and recent advances. In Proceedings of the 47th Design

Automation Conference, pages 12–17. ACM, 2010. [Pg.24]

[71] CH-P Wen, Li-C Wang, and Kwang-Ting Cheng. Simulation-based functional

test generation for embedded processors. IEEE Transactions on Computers,

55(11):1335–1343, 2006. [Pg.26]

[72] Jian Shen and Jacob A Abraham. Native mode functional test generation for

processors with applications to self test and design validation. In Proceedings

142

REFERENCES

International Test Conference 1998 (IEEE Cat. No. 98CH36270), pages 990–999.

IEEE, 1998. [Pg.26]

[73] Ismet Bayraktaroglu, Jim Hunt, and Daniel Watkins. Cache resident functional

microprocessor testing: Avoiding high speed io issues. In 2006 IEEE International

Test Conference, pages 1–7. IEEE, 2006. [Pg.26]

[74] Praveen Parvathala, Kaila Maneparambil, and William Lindsay. Frits-a micro-

processor functional bist method. In Proceedings. International Test Conference,

pages 590–598. IEEE, 2002. [Pg.26]

[75] Fulvio Corno, Gianluca Cumani, M Sonza Reorda, and Giovanni Squillero. Evolu-

tionary test program induction for microprocessor design verification. In Proceed-

ings of the 11th Asian Test Symposium, 2002.(ATS’02)., pages 368–373. IEEE,

2002. [Pg.26], [Pg.27]

[76] N. Kranitis, G. Xenoulis, A. Paschalis, D. Gizopoulos, and Y. Zorian. Application

and analysis of rt-level software-based self-testing for embedded processor cores.

In International Test Conference, 2003. Proceedings. ITC 2003., volume 1, pages

431–440, Sep. 2003. [Pg.27]

[77] Paolo Bernardi, Edgar Ernesto SÁnchez Sanchez, Massimiliano Schillaci, Giovanni

Squillero, and Matteo Sonza Reorda. An effective technique for the automatic gen-

eration of diagnosis-oriented programs for processor cores. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 27(3):570–574, 2008.

[Pg.27]

[78] Sankaranarayanan Gurumurthy. Automatic generation of instruction sequences

for software-based self-test of processors and systems-on-a-chip. The University of

Texas at Austin, 2008. [Pg.27]

[79] V Mani and Nikil Sathish. A new approach for generation of test program for

detection of hardware fault in vliw processor. 2016. [Pg.27]

[80] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. Fully automatic test

program generation for microprocessor cores. In 2003 Design, Automation and

Test in Europe Conference and Exhibition, pages 1006–1011, March 2003. [Pg.27]

[81] Fawnizu Azmadi Hussin, Nor Hisham Hamid, Noohul Basheer Zain Ali, et al.

Automatic generation of test instructions for structural faults in processor cores

143

REFERENCES

using satisfiability. In 2013 International SoC Design Conference (ISOCC), pages

388–391. IEEE, 2013. [Pg.27]

[82] F Corno, E Sanchez, M Sonza Reorda, and G Squillero. Automatic test generation

for verifying microprocessors. IEEE Potentials, 24(1):34–37, 2005. [Pg.27]

[83] Paolo Bernardi, Ernesto Sánchez, Massimiliano Schillaci, Giovanni Squillero,

and Matteo Sonza Reorda. An evolutionary methodology to enhance processor

software-based diagnosis. In 2006 IEEE International Conference on Evolutionary

Computation, pages 859–864. IEEE, 2006. [Pg.27]

[84] Ying Zhang, Huawei Li, and Xiaowei Li. Software-based self-testing of processors

using expanded instructions. In 2010 19th IEEE Asian Test Symposium, pages

415–420. IEEE, 2010. [Pg.27]

[85] Artjom Jasnetski, Raimund Ubar, and Anton Tsertov. On automatic software-

based self-test program generation based on high-level decision diagrams. In 2016

17th Latin-American Test Symposium (LATS), pages 177–177. IEEE, 2016. [Pg.27]

[86] Fulvio Corno, M Sonza Reorda, Giovanni Squillero, and Massimo Violante. On

the test of microprocessor ip cores. In Proceedings Design, Automation and Test

in Europe. Conference and Exhibition 2001, pages 209–213. IEEE, 2001. [Pg.27]

[87] Ernesto Sánchez, M Reorda Reorda, Giovanni Squillero, and Massimo Violante.

Automatic generation of test sets for sbst of microprocessor ip cores. In Proceedings

of the 18th annual symposium on Integrated circuits and system design, pages 74–

79. ACM, 2005. [Pg.27]

[88] Davide Sabena, Luca Sterpone, and Matteo Sonza Reorda. On the automatic

generation of software-based self-test programs for functional test and diagnosis

of vliw processors. In IFIP/IEEE International Conference on Very Large Scale

Integration-System on a Chip, pages 162–180. Springer, 2012. [Pg.27]

[89] M. Schlzel, T. Koal, S. Rder, and H. T. Vierhaus. Towards an automatic generation

of diagnostic in-field sbst for processor components. In 2013 14th Latin American

Test Workshop - LATW, pages 1–6, April 2013. [Pg.27]

[90] Tai-Hua Lu, Chung-Ho Chen, and Kuen-Jong Lee. Effective hybrid test pro-

gram development for software-based self-testing of pipeline processor cores. IEEE

144

REFERENCES

Transactions on Very Large Scale Integration (VLSI) Systems, 19(3):516–520,

2011. [Pg.27], [Pg.30]

[91] Ján Hudec and Elena Gramatová. An efficient functional test generation method

for processors using genetic algorithms. Journal of Electrical Engineering,

66(4):185–193, 2015. [Pg.28], [Pg.30], [Pg.69]

[92] Nektarios Kranitis, Andreas Merentitis, George Theodorou, Antonis Paschalis, and

Dimitris Gizopoulos. Hybrid-sbst methodology for efficient testing of processor

cores. IEEE Design & Test of Computers, 25(1):64–75, 2008. [Pg.30]

[93] Aymen Touati, Alberto Bosio, Patrick Girard, Arnaud Virazel, Paolo Bernardi,

and M Sonza Reorda. An effective approach for functional test programs com-

paction. In 2016 IEEE 19th International Symposium on Design and Diagnostics

of Electronic Circuits & Systems (DDECS), pages 1–6. IEEE, 2016. [Pg.31], [Pg.32]

[94] R Cantora, E Sanchez, M Sonza Reorda, Giovanni Squillero, and E Valea. On

the optimization of sbst test program compaction. In 2017 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT), pages 1–4. IEEE, 2017. [Pg.31], [Pg.32]

[95] Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan. Intermittent

hardware errors recovery: Modeling and evaluation. In 2012 Ninth International

Conference on Quantitative Evaluation of Systems, pages 220–229. IEEE, 2012.

[Pg.33], [Pg.34], [Pg.35], [Pg.110]

[96] Michael Nicolaidis and Yervant Zorian. On-line testing for vlsia compendium of

approaches. Journal of Electronic Testing, 12(1-2):7–20, 1998. [Pg.34]

[97] Nektarios Kranitis, Andreas Merentitis, N Laoutaris, George Theodorou,

A Paschalis, Dimitris Gizopoulos, and Constantin Halatsis. Optimal periodic

testing of intermittent faults in embedded pipelined processor applications. In

Proceedings of the conference on Design, automation and test in Europe: Proceed-

ings, pages 65–70. European Design and Automation Association, 2006. [Pg.34]

[98] Dimitris Gizopoulos. Online periodic self-test scheduling for real-time processor-

based systems dependability enhancement. IEEE Transactions on Dependable and

Secure Computing, (2):152–158, 2009. [Pg.34], [Pg.35], [Pg.36], [Pg.107], [Pg.117]

145

REFERENCES

[99] Antonis Paschalis and Dimitris Gizopoulos. Effective software-based self-test

strategies for on-line periodic testing of embedded processors. IEEE Transac-

tions on Computer-aided design of integrated circuits and systems, 24(1):88–99,

2005. [Pg.34]

[100] George Xenoulis, Dimitris Gizopoulos, Mihalis Psarakis, and Antonis Paschalis.

Instruction-based online periodic self-testing of microprocessors with floating-point

units. IEEE Transactions on Dependable and Secure Computing, 6(2):124–134,

2009. [Pg.34]

[101] Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan. Characteriz-

ing the impact of intermittent hardware faults on programs. IEEE Transactions

on Reliability, 64(1):297–310, 2015. [Pg.34], [Pg.35]

[102] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling

algorithms and applications, volume 24. Springer Science & Business Media, 2011.

[Pg.109]

[103] Miloš Stanisavljević, Alexandre Schmid, and Yusuf Leblebici. Reliability of

nanoscale circuits and systems: methodologies and circuit architectures. Springer

Science & Business Media, 2010. [Pg.110]

[104] Ying Zhang and Krishnendu Chakrabarty. A unified approach for fault tolerance

and dynamic power management in fixed-priority real-time embedded systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

25(1):111–125, 2006. [Pg.111]

146

	1 Introduction
	1.1 Complexity of Modern Digital Circuits
	1.2 Digital Testing Principles
	1.3 Processor Testing and its Challenges
	1.4 External Testing to Self-testing: A Paradigm Shift
	1.4.1 SBST of Processors
	1.4.1.1 Phases of SBST Procedure

	1.5 Principal Scheme of SBST Automation
	1.5.1 Test Code Preparation in MicroGP Methods

	1.6 Test Quality Evaluation
	1.6.1 Gate-level Fault Models
	1.6.2 Behavioral Fault Models
	1.6.3 External Fault Simulation

	1.7 Motivation and Objectives
	1.8 Contributions
	1.9 Organization of the Thesis

	2 Literature Survey
	2.1 Chronology of Processor Testing Methods
	2.2 Advanced SBST Techniques
	2.2.1 SBST Code Synthesis
	2.2.2 Faster SBST Code Synthesis
	2.2.3 SBST Code Optimization
	2.2.4 SBST Code Application

	2.3 Summary

	3 Greedy Cover-based Evolutionary SBST Synthesis
	3.1 Preliminaries and Working Principle
	3.2 Evolutionary Approach for Test Program Synthesis
	3.2.1 Testability of Processor Components
	3.2.2 Self Adaptation of Evolutionary Strategies

	3.3 Experimental Study for MIPS Processor
	3.3.1 Testability and Coverage Evaluation
	3.3.2 A Study on the Effectiveness of Behavioral Fault Models

	3.4 Experimental Study for Leon3 Processor
	3.5 Comparison and Discussions
	3.6 Summary

	4 Rapid SBST (RSBST) Program Synthesis
	4.1 Overall Approach of RSBST Program Synthesis
	4.2 Observability-based Reusability of Test Programs
	4.2.1 Repository of Simulation Responses
	4.2.2 High-level Simulation
	4.2.3 Observability Comparator

	4.3 Design of RSBST Scheme
	4.4 Experimental Results
	4.4.1 Observability Analysis of Test Programs
	4.4.2 Case Studies for MIPS Processor and Leon3 Processor
	4.4.3 Chromosome Reusability of RSBST

	4.5 Summary

	5 Automated Low-cost Compaction of SBST Programs
	5.1 Basics of SBST Compaction
	5.2 Redundant Instruction Group Removal Using Data Dependency Graphs
	5.3 Enhanced Instruction Restoration Method
	5.3.1 Top to Bottom Compaction Policy
	5.3.2 Restoration Using High-level Logic Simulation

	5.4 Experimental Results
	5.5 Summary

	6 Application of Fragments of SBST Programs for Online Testing
	6.1 Preliminaries
	6.1.1 Utilization Factor of Real-time Applications
	6.1.2 Least Upper Bound
	6.1.3 Reliability Analysis
	6.1.4 Recovery Scenarios
	6.1.5 Worst Case Response Time

	6.2 SBST Programs for Intermittent Fault Detection
	6.3 Fragmented SBST for Testing Intermittent Faults
	6.3.1 Synthesis of Smaller Latency Self-test Programs with Adequate Coverage
	6.3.2 Calculation of Test Periods for FTPs
	6.3.3 Scheduling of FTPs
	6.3.4 Reliability Enhancement Analysis of FTPs
	6.3.5 Overall Synthesis of Self-test Fragments

	6.4 Experimental Results
	6.4.1 A Case Study of Reliable Synthesis of FTPs

	6.5 Summary

	7 Conclusions and Future Perspectives
	7.1 Summary
	7.2 Future Works

	Appendix A: Summary of Publications
	References

