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Abstract

Advancements in the low-cost computing and communication technologies have led

to the mass proliferation of devices connected over a network. The networked de-

vices have engendered a new era wherein they sense, compute and share information

thereby forming loosely coupled Cyber-Physical Systems (CPS). Managing data and

making intelligent decisions form the major domain of research in a CPS. Cloud-

based centralized computation has always been the mainstream architecture due to

its ease of implementation and enhanced control. However, data explosion, scala-

bility and privacy issues, are certainly pointing toward the limits of such centralized

systems. Decentralizing control and distributing the computing among the devices

could be a better alternative for sharing intelligence. Investigating new decentral-

ization mechanisms, thus, forms the major crux of this thesis. Realizing such decen-

tralized Cyber-Physical Systems (dCPS) is fraught with challenges such as choosing

the appropriate communication method, incorporating the right learning and knowl-

edge sharing schemes, ensuring robustness and adaptivity, and the need for a proper

middleware to cater to its functioning.

This thesis takes a bottom-up approach and presents its first contribution on

extending the functionalities of the Tartarus, a multi-agent platform, in order to

realize complex dCPSs. This section begins with the motivation behind Tartarus

and discusses features which makes it a disparate environment for developing and

deploying dCPS. A real-world CPS application comprising robots, a Raspberry Pi

with a camera and a human administrator in-the-loop, described herein validates the

feasibility of Tartarus for developing mechanisms to embed decentralized intelligence

in CPSs.

The second contribution discusses an approach to transform a centralized sys-

tem into a fairly distributed system with partial or no centralized control. The

technique uses mobile agents to provide local sharing and in-network processing

of data. A Location-Aware and Tracking Service (LATS) as a real-world dCPS

xi



based application is used to portray the viability of the proposed approach. The

technique allows users to embed queries, such as where and when about a specific

person, into a mobile agent and get the results back to the user. A comparison of

the proposed approach with its centralized version proved the former to be more

efficient in terms of bandwidth utilization and energy efficiency thus, proving its

applicability in practical scenarios.

Cooperative tasks involving autonomous entities such as robots are prone to

the classical problem of Mutual Exclusion of shared Resources (MER). The next

contribution presents a novel mechanism for ordering the task execution to mitigate

the issue of MER in a dCPS of multiple robots. While the mobile agents achieve

the computation, communication, and control, the physical execution of the tasks

is performed by the robots in an asynchronous and pipelined manner without the

use of a global clock. Unlike atomic commands which are bound to finish in a

fixed period, the pipeline formed using robots as processing units is adaptive to the

varying execution times experienced in real world robotic tasks. This makes the

system flexible and versatile to the dynamics of the environment of the dCPS. The

proposed mechanism provides unique features such as addition and deletion of both

tasks and robots, on-the-fly. Mobile agents carrying the code or solution deliver the

same to a robot to make it execute a task. Experiments conducted in an emulation

environment validate the presented characteristics of the proposed mechanism. In

addition, an application comprising ordering of jobs in a Warehouse Management

System using real robots substantiates the feasibility of the approach in real-world

decentralized and distributed systems.

The previous contribution assumed that the solutions carried by the mobile

agents are optimal. However, in real systems, there could be several solutions to

the same problem. The problem of selecting the best solutions, in a decentralized

manner, for a given set of problems distributed across a network of nodes, motivates

the next contribution. The proposed mechanism takes a non-conventional route and

is inspired by the computational models derived from three immunological theories

viz. clonal selection, danger theory, and the immune network theory. Whenever a

problem occurs at a node, it releases danger signals to attract the concerned mo-

bile agents carrying mappings for potential solutions. The agents that meet at the



distressed node stimulate and suppress each other thereby forming an immune net-

work. The mobile agents carrying mappings of solutions with superior performance

are rewarded and thus clone and grow in population while the remaining ones are

penalized and thus diminish. The challenge is to find a generic mapping which can

cater to the maximum number of similar problems. Extensive experiments con-

ducted in the emulation environment created using the Tartarus platform validates

the efficacy of the proposed approach. Besides, the results obtained by embodying

the mechanisms in robots that discover the best path-following algorithm, substan-

tiate their working in real-world scenarios.

With a selection mechanism in place, the next obvious step is to evolve the

solutions to meet the demands of a varying stream of problems. The previous

contribution assumed an infinite supply of solutions which is not entirely realistic

when it comes to practical scenarios. In this contribution, the solutions, in the form

of robot controllers, are thus evolved in an online and continuous fashion. Based

on a single parameter, viz. the cross-reactivity threshold, the proposed approach

divides the main task into subtasks and evolves separate sub-controllers for each of

them. The better evolved solutions are rewarded and shared with other robots using

mobile agents. A comparison of mobile agent-based communication with traditional

broadcasting method portrays the former to be more energy efficient than the latter.

All the emulated experiments were conducted using the Tartarus platform. As

an addendum, a brief review of the immunological terms and concepts employed

in this thesis is also presented. Finally, the thesis concludes by summing up the

contributions and providing avenues for future research and possible applications.
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“You have to dream before your dreams can come true.”

A.P.J. Abdul Kalam (1931 - 2015)

Indian scientist and leader

1
Introduction

When the world’s first toaster, ‘El Tosto’, found its way into the common house-

holds in early 1900’s [2], it was designed to do just its assigned job of toasting bread

slices, which it did perfectly. Many years later in 1982, a group of graduate students

from the Carnegie Mellon University, connected a coke machine to the Internet [5]

to usher in an era of connected devices. This networked coke machine performed

tasks which included reporting temperature and stock market trends. Though naïve

by today’s standards, the data collected from the coke machine showed promises in

research on product marketing. Finally in 1990 [3], a toaster was made to switch on

and off via the Internet which marked the onset of devices connected to the network.

In the not-too-distant days to come, one might live in a scenario wherein a smart

refrigerator connects to a patient’s dietician, decides what items need to be bought

and places the necessary orders at a grocery store. On delivery, a robot stacks them

within the refrigerator and also places the desired foodstuff into a smart oven. After

the meal is cooked the oven signals the robot to serve the same at the dining table,

which it does before ringing the dinner bell. The human being, of course, remains

oblivious of most of these Machine to Machine (M2M) interactions. According to the

Nobel laureate, David Kahneman, human beings exhibit a cognitive bias amounting

to an irrational decision-making behavior due to their self-interest, thus making

them sway away from the wise choices [95]. Unless hacked upon illegally, data

collected continuously from devices and appliances portray the bare truth of what
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goes on within them. The pioneering work by Kahneman and Tversky [96] thus

provides some basis for leaving certain decisions to such smart devices which have

already infiltrated our living spaces, rather than completely bank on human beings.

Networked devices have brought a new era of intelligence dissemination creat-

ing a pervasive and ubiquitous ecosystem. Moyer et al. [133] define a networked

appliance as a “dedicated function consumer device with an embedded processor and

a network connection”. The devices which were once deployed to mind their own

business, now share their information with other entities connected to the same net-

work. The exchange of knowledge has opened up a plethora of application scenarios

including smart homes [36], vehicular networks [101], elderly care [130], smart grids

[172], localization [143], defence [184], water management [155], animal care [110],

etc. The end devices forming the network generate a huge amount of data which

is collected and processed to extract valuable information. This surge in data has

pushed the research in other domains such as Machine Learning [126], Data Science

[197], Deep Learning [72] and Optimization [57], to name a few. The number of

connected things will reach 20.4 billion by 2020 [60] which is equivalent to at least

2.5 devices per person on this planet. Rapid advancements in Very Large Scale

Integration (VLSI) technologies have also led to the proliferation of cheap sensing

and embedded devices giving rise to new paradigms such as Cyber-Physical Systems

(CPS) and the Internet of Things (IoT). In addition, robots have added another di-

mension in terms of mobility and actuation in networked devices. The movement

of the robots controlled by mutual consensus from the networked devices envisages

interesting applications and research areas.

The term network defines the way these devices communicate. One widely used

approach is Cloud Computing [154] wherein the data is offloaded and analyzed based

on which the devices are controlled. These devices form the leaf nodes while the

decision-making is left to the cloud. Though using a cloud for networking is a simple

and controlled solution, it suffers from issues such as scalability and privacy [21, 169].

Decentralizing control and distributing the computing among the devices could be an

alternate architecture for better intelligence sharing. A recent dissertation work [185]

from the University of Cambridge that describes a decentralized email architecture
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tested on low-cost devices such as Raspberry Pi1 (Pi2), backs the feasibility of

decentralized and distributed approaches. In modern days, the term networked

devices have evolved into broader areas such as Cyber-Physical Systems and the

Internet of Things both of which are often used interchangeably. Such systems

could also be realized in a decentralized and distributed manner.

1.1 Cyber-Physical Systems

The term Cyber-Physical System (CPS), coined by Helen Gill in 2006 [11], refers

to the confluence of the cyber and the physical worlds. A CPS is a theoretical

framework which treats its components as models [105]. It encompasses a broad

group of devices over a network. The cyber component is the software which controls

and actuates its physical counterpart. The interconnection of various heterogeneous

devices forms a CPS. The devices within a CPS are generally resource-limited in

terms of their computing capability and network bandwidth.

The initial road-map for research in CPS recognized computing and networking,

security and resource-scheduling, as some of the primary research domains [105, 168].

Shi et al. [168] state energy-efficiency to be another significant issue in CPS research.

Due to the constraint on resources, a CPS needs to ensure that the participating

devices are also energy-efficient. Parolini et al. [142] proposed an approach to keep

the energy consumption in data centers at a minimum while also satisfying user

requests. With the explosion in the population of networked devices, middlewares

or platforms, that are scalable to the current needs of a CPS, are also deemed

necessary. In the words of Kim and Kumar [105],

“...due to the scale, structure, and behavioral complexities of today’s and

tomorrow’s CPS, it is an important challenge to develop extensible, scal-

able, and adaptable software platforms that can operate in distributed,

heterogeneous, time-critical, and safety-critical environment.”

A CPS has a strong relation with currently popular paradigms such as the Internet of

Things (IoT), Industry 4.0, Networked Robotics, Machine-to-Machine (M2M), Edge
1https://raspberrypi.org
2Henceforth, in this thesis, Pi strictly refers to the Raspberry Pi.
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and Fog computing, Vehicular Networks (VANETS), Network of Things and Web of

Things [114]. According to Lee [114], a CPS is a theory which is more durable and

flexible in comparison to its implementations (e.g., an IoT) and applications (M2M)

counterparts. Though a CPS is a more fundamental term, industrial marketing

standards have made IoT as the new face of networked devices. However, an IoT

has different perspectives and thus many a time overlaps with other paradigms

creating confusion. From the various definitions of an IoT released by IEEE [129],

the one by NIST, United States, states -

“Cyber-physical systems (CPS) - sometimes referred to as the Internet of

Things (IoT) - involves connecting smart devices and systems in diverse

sectors like transportation, energy, manufacturing and health care in

fundamentally new ways.”

Following the same notion, this thesis considers all modern paradigms under the

umbrella of a CPS and thus uses them interchangeably. For pedagogical reasons,

an IoT and its other flavors are discussed in the following subsection. A brief

introduction on networked robotics is also presented.

1.1.1 Internet of Things

The Internet of Things (IoT) is an interconnection of physical devices over the In-

ternet. These devices referred to as things can sense, store, compute and actuate

under certain resource-constraints. A mobile smartphone and a sensor mote are

some typical examples of things. Al-Fuqaha et al. [7] discuss six main elements

needed to facilitate an IoT. An embedded device equipped with sensors, i.e., the

thing, first needs to be identified by the use of any addressing techniques such as

IPv6. Since data is the main driving force, the second element is the capability

to sense and collect data. The third element is communication, which could be

through WiFi, Bluetooth and LTE-Advanced [63]. Depending upon the applica-

tion requirement, the range of communication could be either far (LTE) or near

(RFID). Computation can be either onboard the thing or on a cloud platform [40].

Cloud platforms process big data and provide real-time analytics. Services and

knowledge understanding are the final elements which enable the functionality of an
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IoT. Identification and sensing, are the basic components of any CPS. Atzori et al.

[10] recognize communication and computation as the main research blocks in IoT

enabled applications.

Conventional IoT architectures are centralized wherein all the data is offloaded

to a cloud platform which provides virtually unlimited storage and computation

facilities [74, 22]. The things at the leaf end, sample the data and upload it to the

cloud platform. Though relatively simpler to implement, this centralization is prone

to privacy issues. In addition, since the cloud is a far-off remote server, latencies are

introduced in the execution of associated applications [169]. Further, this centralized

notion is difficult to scale for a large number of devices [166].

To ease on the difficulties posed by centralization, paradigms such as Fog and

Edge computing evolved. A Boeing 787 generates 500 Gigabytes of data per flight

it takes [1] which if allowed to send to a cloud will introduce critical latencies in the

response time. Since the data is collected at the edge nodes, it would be sensible to

place the storage, computation, and communication close to the edge. This forms

the basis of Fog [21] and Edge [169] computing wherein virtualized platforms are

deployed between the things and the cloud. The simplest example could be a Pi

acting as a gateway between the things and the cloud. Some of the use cases of

computing on edge include connected vehicles, smart grids, and location-awareness

[169]. Though edge computing may have mitigated issues in centralization to a

certain level, the aspect of a central entity at the top is still prevalent in such

systems.

Industries play an essential role in the economy of a country. The CPS and IoT

have given rise to a fourth industrial revolution defined as Industry 4.0 [115]. Smart

factories under Industry 4.0 are meant to be sustainable making energy-efficiency

an important goal. Such factories include smart machines, devices, logistics and

product designs which are now user-centric. Mass Customization [55], flexibility,

energy-management, remote monitoring, and automation are some of the character-

istics of a CPS/IoT that enabled the concept of Industry 4.0 [171].

Interoperability among different IoT setups is a vital requirement. Organiza-

tions adopt different protocols within their IoTs often making them incompatible

with those used by other firms thus hindering networking. This led to the pro-
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posal of Web of Things where the things are connected using the client-server based

web connections. Though this provides a simple cross-communication architecture,

client-server based communication is challenging to scale [100].

1.1.2 Networked Robotics

Growth in automation and smart factories has accelerated the deployment of robots

in the industries. Actuation and in some cases, mobility, make robots disparate from

the concept of things in a typical IoT scenario and thus, demands an explicit treat-

ment. The IEEE Robotics and Automation Society (RAS) [6] defines a networked

robot as a robotic device connected to communicate through a wired or wireless

medium. According to RAS, a networked robot could be either tele-operated by a

human user from a remote position through a communication channel or autonomous

wherein the robots and sensors connected to the same network share the information

and perform a task. Kumar et al. [111] extend the coverage of networked robotics

to multiple robots connected through generally a wireless medium. According to

them, such multi-robot systems can perform tasks which require coordination and

collaboration which are otherwise impossible or arduous for a single-robot or un-

coordinated multi-robot systems. Jha et al. [87, 90, 91] have realized sharing,

learning and distributed task-allocation in a set of networked robots. They have

also proposed mechanisms to deliver services and provide synchronization, to a set

of connected robots using mobile software agents [146]. Kamei et al. [99] have pro-

posed the concept of networked robots connected to a cloud. The robot could be an

embedded device, sensor or a smartphone, all of which share the same cloud plat-

form and are controlled by it. This is similar to an IoT wherein the things include

the sensors and robots.

A large amount of work has been done in the area of networked robotics. How-

ever, the use of non-conventional methods in this field is still in its infancy. Godfrey

et al. [66] have formulated an immunology inspired architecture to service robots

connected to a network. They have used mobile agents [35] to deliver solutions to

robots that encounter a problem. The use of pheromones [69] and cloning has further

extended their approach for large-scale networked systems. The current generation

of a CPS of robots requires not just solution-providing services but also a means to
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adapt and evolve with the changing nature of problems encountered.

1.2 Decentralized CPS

Kuwahara [112] defines autonomous decentralized systems as an integration of mul-

tiple subsystems wherein each of which is autonomous and can perform its tasks

independently. The subsystems can collaborate to avoid complete failures and also

provide maintenance. Though the definition from Kuwahara dates back to more

than 20 years, it encompasses the principles of decentralized and distributed com-

puting in the modern days. A new year resolution by Mark Zuckerberg, Facebook

founder and current CEO, provides a democratic view [4],

“...of the most interesting questions in technology right now is about cen-

tralization vs. decentralization....with government using technology to

watch their citizens many people now believe technology only centralizes

power rather than decentralizes it.”

Centralized networks have always been a mainstream technology from an implemen-

tation point of view owing to their simpler architecture and comparatively cheap

initial cost of investment. Centralization provides more control and authoritative

powers to the owner and thus aids in rapid updates in rules and policies. However,

as pointed out by Zuckerberg, centralized systems are, prone to single point failures,

have privacy risks and scaling them poses a great challenge.

A decentralized CPS (dCPS) is an amalgam of physical subsystems connected

and controlled by cyber units in a decentralized manner. The devices forming such

a CPS share their information across the network to which they are connected and

make decisions based on collective knowledge. Semwal et al. [166] describe some of

the advantages of peer-to-peer (P2P) local sharing of knowledge forming such CPS:

1. Trust: Instead of a central server with no control, the data in a decentralized

CPS is distributed across the nodes closer to the user and is governed by

his/her own rules. The users thus can have more trust since there is limited

or no third party involvement.
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2. Reduced network latency: The in-network processing on the nodes which is

closer to the user reduces the delays which may occur when the same happens

at the remote server side.

3. No single-point of failure: Failure of the central server can cause the whole

system to go down. For instance, if Google’s email server goes down, produc-

tivity (at least to some parts of the world) can come to a stand-still. This

may not be the case in a decentralized system where the application could be

running at multiple nodes.

4. Running cost: Conventional cloud services are based on the ”pay-as-you-go”

model which increases the cost as the storage and communication increases

[21]. Decentralized CPS favors data processing within the nodes and thus

reduces the data traffic.

5. Easy to scale: To be precise, centralized systems should be favored for small

or controlled scales. However, decentralized systems only need to connect a

node to any of the nodes in the network which make them scalable without

affecting the performance.

Thus, decentralization provides a set of merits which can cater to better and smart

CPS and IoT based applications. The author in [185] has proposed a decentralized

architecture for IoT devices to store and provide email services to the users. The

same has been evaluated on a system comprising Pi. Jha et al. [90] have proposed

mechanisms to provide sharing and learning in multi-robot systems connected in a

decentralized manner. The authors have also presented a stigmergy based approach

[87] to control the population of autonomous mobile agents moving across a network

of nodes.

Nature is an exemplar of decentralized decision making. For example, in insect

colonies, information gathered by an individual is shared through local interactions

with its peers. Trophallaxis exhibited by bees [109] and pheromone communication

in ants [83] are typical examples. Such local interactions lead to interesting global

behaviors resulting in mound-building by termites [41] and social wasps forming

complex nests [182]. The social behavior in insects and animals have inspired re-

searchers to develop algorithms allowing robots to mimic such decentralized skills.
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Termite-inspired robots building structures by Werfel et al. [191] and shape for-

mation by thousand of Kilobots [157] by Rubenstein et al. [158], are some of the

remarkable decentralized multi-robots systems. With the increase in the number of

devices and robots, research in decentralized CPS throws up promising avenues for

novel applications. However, implementing such systems opens up a formidable list

of challenges and issues which are required to be addressed for their deployment in

the real world.

1.3 Research Challenges in Decentralized CPSs

Though decentralized CPSs have advantages over their centralized counterparts they

pose their own set of research challenges, some of which have been described below:

1. Choice of Communication method: Since there is no concept of a central node

to which all other nodes are connected, methods that ensure efficient message

communication become mandatory. Broadcasting is one such widely used

method.

2. Middleware: As pointed in [105], the development of middlewares that can

meet the current needs of a CPS poses to be a significant challenge.

3. Dynamic nature of the network: Unlike conventional IoTs and sensor networks,

a decentralized CPS includes mobile entities such as robots and vehicles which

can at any point of time connect to or disconnect from the network. This calls

for mechanisms that cope up with such dynamism, during run-time.

4. Scalability: One of the prime reasons behind using a decentralized approach

is scalability. Hence, mechanisms designed for such a CPS should provide the

appropriate performance while also facilitating scalability.

5. On-the-fly (run-time) Alteration: Upgradation in centralized servers necessar-

ily mean a downtime during which most services may need to be halted. A

decentralized CPS is favored in such scenarios since new nodes can be added or

existing ones deleted, in run-time. Providing seamless on-the-fly modifications

is a challenging task.
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6. In-network Information Processing: In order to reduce data size and thus

minimize communication cost, in-network processing is carried out wherein

data is processed within the nodes itself and only the relevant information

is forwarded. However, execution of remote procedures which can carry and

process the data is non-trivial.

7. Distributed knowledge sharing: A single node which is part of the dCPS may

not have the global perception about a task. Thus, knowledge distributed

among the nodes needs to be shared. However, what and how to share form

some of the crucial questions that need to be answered in such scenarios.

8. Task Ordering and Mutual Exclusion: Tasks delegated to a dCPS of robots

may require resources which are shared by them. Thus, a mechanism which

can ensure mutual exclusion of resources by ordering the execution of tasks is

crucial for such decentralized systems. Formulating such methods remains a

great challenge.

9. Selection of the best solutions (algorithms, heuristics, mechanism, etc.): Find-

ing the best solution for a given problem is the essence of any intelligent CPS.

However, with different problems distributed amongst the nodes, finding the

best solution without any central or globally accessible data on their perfor-

mance scores, becomes a challenging affair. Mechanisms which can search the

mappings to select the best solution for a given problem need to be devised to

cater to dCPSs.

10. Self-adaptation and Organization: The dynamics of the environment and the

nature of the problem can change over time. This demands that the algorithms

be self-adaptive to such changes and organize or align themselves towards the

course that leads to better performances.

11. Security and Privacy: In a dCPS, the data is stored and processed across the

nodes. Algorithms that can ensure authorization and authentication and cater

to such distributed environments are thus needed. A typical example includes

the adaptation of blockchain technology in decentralized scenarios.
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12. Generation of new solutions and their evolution: A dCPS should be self-

sustainable in the sense that it not only selects the best solution but also

generates and evolves a new set of solutions as and when required. Thus,

for a stream of new problems, the system should be capable of adapting and

learning.

13. Life-long Learning: Unlike conventional systems which have a separate train-

ing and testing phase, life-long learning facilitates the continuous learning of

patterns of incoming problems and devises the best possible solution. Embed-

ding such life-long learning into a decentralized CPS will boost its learning

ability.

This thesis aims to lay a foundation for catering to the challenges discussed above.

The initial half of the thesis involves the development of a middleware suitable for a

decentralized CPS followed by a real-world comparison against a centralized system.

The latter half of thesis propounds mechanisms inspired by the Biological Immune

System, a classical decentralized system found in vertebrates. The thesis makes use

of mobile agents to provide task ordering, mutual exclusion, solution selection and

evolution and finally tries to wrap up the whole as a dCPS capable of decentralized

and distributed learning. A brief review of mobile agents is presented in the next

section. A short introduction to the Biological Immune System is also presented in

the following section.

1.4 Mobile Agents

Agents are software entities that are capable of performing task(s) on behalf of a user

[56]. They are autonomous and possess the ability to make their own decisions and

drive themselves towards a goal. Maes et al. [121] refer to agents as computational

systems that can sense and act autonomously in an environment to realize a set

of goals. Just as human beings and robots form entities in the Physical world,

these agents can be considered to be their counterparts in the Cyber world. The

agents are typically static, i.e., they perform their task(s) while residing on top of

a computing unit and exchange messages with other static agents to collectively

collaborate towards a common goal.
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However, there is a particular class of agents which has an added capability of

being mobile known as mobile agents. A mobile agent is a piece of software code

which can suspend its current task execution, migrate to a remote node while car-

rying its code and data and resume the code execution at the remote node side.

On completing its task on the remote side, it can also bring the results back to

the source node. Outtagarts [139] have listed various applications of mobile agents

including e-commerce, smart grids, energy efficiency and metering, network man-

agement, e-learning, and web-services. The author also emphasizes the efficacy of

mobile agents over other conventional message communication techniques such as

client-server architecture, Remote Procedure-Call (RPC) [17], CORBA [159], etc.

In addition to exhibiting mobility, a mobile agent can also clone and multiply

itself, carry a payload (data or a program), make local decisions, execute a program

on a remote site or node, etc. Mobile agents can also be used to churn out and carry

intelligence along with them as they migrate within a network [78]. They have

been used in a wide range of applications which include wireless sensor networks

[33], robot control [97, 179], e-commerce [122], security [24, 120], e-learning [102],

networked robotics [66, 67], IoT [64, 163], etc. Some of the major advantages of

using mobile agents are:

(a) Bandwidth and latency reduction: A mobile agent has the innate ability to

carry the computation in the form of code to a remote site. Instead of fetching

the whole raw or unprocessed data from a remote site, mobility allows for the

computing program or logic to migrate to this site and process the data therein.

This results in reducing network traffic and latency.

(b) Discontinuous operation: In a dynamic network where the devices are mobile,

it is rare that a continuous connection is maintained between two nodes for a

long time. In a conventional client-server system, a sudden disconnection may

cause the server to resend the whole data, making it an expensive affair. On

the contrary, in a mobile agent-based scenario, migration occurs only when a

connection is established. The mobile agent then resides in the new node till

the connection to the next node is available. Unlike large amounts of data

that need to be processed, a mobile agent is comparatively lightweight. Thus,
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a failure in migration does not compound into significant losses in bandwidth

and time.

(c) Cloning: The ability of a mobile agent to clone aids in creating multiple copies

of the program in the nodes forming a decentralized CPS. This facilitates

a certain amount of parallelism and hence rapid execution within the CPS.

Godfrey et al. [68] show how cloning can hasten the process of servicing such

nodes.

(d) Adaptivity and flexibility: In a traditional centralized system, any upgrade

would require the system to be brought down, changes made and then restarted.

In a mobile agent-based system, upgrades could be packaged within the mobile

agent and released into the network. This On-The-Fly Programming (OTFP)

[163] support facilitates a higher amount of flexibility. Agents can sense and

perceive their environment and change their behaviors accordingly. A mobile

agent can add new behaviors in the form of a payload and can also adapt to

different situations.

Mobile agents thus have the potential to provide a viable distributed solution to

challenges related to a dCPS [160].

Mobile agents have been a prominent tool in Wireless Sensor Networks (WSN)

where continuous network connectivity is difficult to achieve [33]. Godfrey et al.

[64] have proposed a framework for IoT applications where mobile agents are used

for providing emergency services to the connected devices. A recent dissertation by

Lappänen [117] presents mobile agents for IoT in a resource-oriented manner. The

framework proposed provides a REST-based interface to developed opportunistic

agent-based applications. Kambayashi et al. [98] have used mobile agents in multi-

robot scenarios to implement an intelligent cart system. They have used an evo-

lutionary ant clustering algorithm to design the system. Jha et al. have proposed

a mobile agent based mechanism to provide synchronization [87], learning [90] and

distributed task allocation in a milieu of networked robots. Semwal et al. [164]

have presented ordering of tasks to provide mutual exclusion in a dCPS. Mobility

in agents has also been exercised in a railway system to provide onboard services to

the passengers [59].
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These features and applications, thus, justify the use of mobile agents as a tool

for realizing dCPSs. The following sections describe the significant contributions

and provide a brief chapter-wise summary of the thesis.

1.5 Contributions of the Thesis

The major contributions of the thesis are described below:

1. A middleware for a decentralized CPS: A brief introduction to the mid-

dleware, nicknamed, Tartarus, used as a platform to bridge the gap between

the cyber and physical systems forms the initial portion of Chapter 2. Though

there are several multi-agent platforms, one that can enable the deployment

of decentralized and autonomous software entities which in turn can control

physical components, is grossly missing. This contribution extends the func-

tionalities of the existing Tartarus platform so as to allow it to access different

hardware such as Pi and LEGO MINDSTORM NXT robots. A modular ar-

chitecture for multi-agent platforms which can be used for implementing CPSs

is also proposed. A CPS comprising robots, sensors and a human-in-the-loop

is also implemented to show the feasibility of using Tartarus in real-world

scenarios.

2. Towards decentralization of Cyber-Physical Systems using Mobile

Agents: This contribution presents a mobile agent based approach to trans-

form a centralized CPS into a decentralized one. The proposed approach

makes use of local information sharing to achieve a global goal. With a

Location-Aware and Tracking System (LATS) as a real-world CPS applica-

tion, the efficacy of the proposed approach has been portrayed. Mobile agents

are responsible for monitoring and tracking the movements of human beings

without the need for a central logging server. Fetching the output of queries

such as when and where is or was a person present in an area, is fairly simple

from a central database stored in a remote node. However, in large-scale sys-

tems where decentralization becomes a necessity, catering to LATS becomes

a challenging task. This work uncovers the complexities of implementing a

dCPS and propounds a simple approach to deal with the problem.
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3. A Mechanism for Mutual Exclusion in a dCPS of Multiple Robots:

This contribution mitigates the problem of mutual exclusion which can arise in

a dCPS of robots. Robots may require resources which are shared, to complete

a task. However, if more than one robot tries to access this shared resource

without any central commanding authority, it may lead to a catastrophic sit-

uation. To address the problem of mutual exclusion in a dCPS comprising

mobile robots, an agent-based approach is proposed. The approach orders the

sequential, interdependent and independent tasks in the form of a pipeline

wherein the robots form mobile computing nodes. A conventional pipelined

computing architecture uses a global clock to synchronize the execution of in-

structions. In contrast to the fixed times consumed to execute instructions,

the execution of tasks by robots in the real world could vary with time due to

various factors such as path taken, remaining power in the battery, etc. In or-

der to cater to such dynamic changes in execution times for the same task, the

pipeline formed by a set of mobile robots need to possess an inherent adaptive

synchronizing mechanism. The proposed approach uses mobile agents that

knit through real mobile robotic nodes and manage the execution of tasks in

a pipelined manner. The mechanism also facilitates on-the-fly addition and

deletion of both robots and tasks. The main highlights of this contribution

are:

(a) A mobile agent based decentralized and distributed mechanism for or-

dering multi-robot task executions.

(b) A solution for the mutual exclusion problem among multiple robots within

a CPS.

(c) Validation of the proposed mechanism through emulation.

(d) Real world implementation of the proposed mechanism using mobile

robots in a Warehouse Management System (WMS) type scenario.

4. Selecting the best solution in a dCPS: The previous contribution as-

sumed that the solutions available within the network are distinct and the

best. However, in real systems, there could be several solutions for a given

task/problem. Choosing the best among these based on their performances
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especially in decentralized and distributed systems remains a challenge. This

contribution proposes an immunology inspired mechanism for finding the best

solutions for problems distributed across the networked system. Though sev-

eral hyper- and meta-heuristic approaches have been used to find the best

solution, scenarios wherein the problem may change or new ones may arrive,

systems employing such methods may need to be halted and retuned offline.

This becomes cumbersome if the problems are spread across the nodes in a

network. The problem could be one in the soft world, for instance, sorting a

set of numbers or it could be something in the real world such as the task of

pushing objects in a robotic scenario. Realizing this using conventional client-

server based methods will not be robust. Further, it is difficult to scale. The

problems can occur at any of the nodes. The goal is to evolve and select those

mappings that select the best solution. The mechanism uses mobile agents

to carry the evolved mappings as their payloads and share them across the

network. The system continuously evolves and learns the mappings life-long.

5. A Mechanism for the distributed evolution of solutions: This forms

the last contribution of the thesis and discusses a novel immuno-inspired be-

havior evolution cum selection mechanism for a dCPS of robots. Traditional

evolutionary methods use a single monolithic robotic controller to perform

a task. However, due to complexity in the task, the evolutionary process

suffers from bootstrapping and deception issues. The proposed approach di-

vides the main task into several subtasks/problems and evolves separate sub-

controllers/solutions for each of them. Each sub-controller forms a new solu-

tion for the given problem (subtask) at hand. The approach is distributed in

the sense that each node evolves its own set of controllers and shares them

with other nodes via mobile agents. Experiments conducted on three different

real scenarios portrays the feasibility of the proposed mechanism. In addition,

a comparison of results obtained through emulation reveals that the mobile

agent-based approach for sharing of solutions is far more energy efficient than

broadcasting based methods. This work enhances the previous contribution by

not only selecting the best but also generating and evolving the new solutions

thereby delivering a life-long learning system.
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It may be noted that mechanisms proposed in this thesis do not address some of the

issues faced in implementing large scale CPSs such as security of agents and CPS,

energy consumption, communication protocols and time-critical executions. These

may be left as the future scope of this thesis.

1.6 Outline of the Thesis

The thesis comprises eight chapters. The chapter wise organization of the thesis is

given below:

1. Chapter 1: This chapter provides the survey and motivation behind the

research. For pedagogical reasons, a few terminologies and their origins are

discussed.

2. Chapter 2: This chapter presents Tartarus as a middleware that can be used

to realize dCPSs. The chapter is based on the work published in [163, 167].

3. Chapter 3: A mobile agent based approach to realize a dCPS is presented

herein. The chapter uses Tartarus as a tool to develop cyber entities which

in-turn can control the physical devices. The contents in this chapter have

been published in [166].

4. Chapter 4: This chapter presents a mobile agent based mechanism to solve

the problem of providing mutual exclusion in distributed systems devoid of

central commanding authorities. The mechanism proposed was tested on a

real-world experimental warehouse developed in the Robotics lab. at the De-

partment of Computer Science & Engg., IIT Guwahati. The contents of this

chapter are based on the published work reported in [164].

5. Chapter 5: This chapter discusses the biological concepts and computa-

tional models derived from immunology. The chapter forms a prequel to the

subsequent ones which use the principles and theories, propounded by immu-

nologists, to solve a set of problems in a dCPS.

6. Chapter 6: A mechanism to evolve and share mappings which select the best

solution for problems distributed across a network of nodes, is presented in
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this chapter. An extensive analysis in the emulated world and a real-world

implementation is also presented.

7. Chapter 7: The work in the previous chapter assumed a continuous supply of

new algorithms from a source. However, in the real-world, encountering new

problems implies the need to create and evolve new solutions that can cater to

the dynamic nature of the environment. This chapter presents an embodied

behavior evolution cum selection algorithm for a dCPS of robots. The chapter

is based on the published work reported in [165].

8. Chapter 8: This final chapter highlights the conclusions arrived at. A sum-

mary of the contributions made is presented and new avenues for future re-

search have also been described.

[[]X]\\
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“Imagination is more important than knowledge.

Knowledge is limited. Imagination encircles the world.”

Albert Einstein (1879 – 1955)

Theoretical physicist

2
Bridging the Gap between Cyber and

Physical Systems

The pervasive Internet has lured a variety of embedded devices including sensors

nodes, controller boards, smartphones, etc., to form their respective niches within

its fold. With a heterogeneous set of devices forming the nodes within, using the

Internet as a mere passive entity amounts to a gross under-utilization of such a mas-

sively networked resource. By tethering robots as mobile nodes onto this network, it

is possible to realize both the flow of information as also on-demand physical actu-

ation. Managing the communication and control of such a Cyber-Physical Systems

(CPS) is a complex task and calls for an integrated platform that can cater to scal-

ability, heterogeneity, and ability to be programmed on-the-fly and controlled in a

distributed and decentralized manner. A Multi-Agent System (MAS) is a paradigm

that can cater to the requirements of managing various processes within a CPS.

Agents herein, form the cyber components and sit on top of the physical devices

(such as embedded hardware, robots, etc.) and cause the execution of a designated

set of tasks to achieve the desired goal. Such systems require a platform or middle-

ware for the creation and management of agents. Most MASs use static agents that

remain resident on the devices. However, the mobility of such agents can become

a vital means for learning and information dissemination across a network of CPSs

[90]. Mobile soft agents are capable of migrating autonomously across the network
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they inhabit and also execute their inherent code at desired nodes. While there are

numerous multi-agent platforms, a system that can cater to the creation of a cyber

system comprising static and mobile soft agents which in turn can control physical

systems, is grossly missing. Tartarus [163], an open-source multi-agent platform has

distinctive features which include heterogeneous OS support, interface to embedded

hardware, on-the-fly programming and security which can satisfy the needs for im-

plementing a CPS. However, its capabilities are limited to emulation of CPS/IoT

scenarios [18]. Along with its emulation abilities, Tartarus can be an ideal candidate

to be augmented with real-world CPS control facilities.

This chapter extends the functionalities of Tartarus as a multi-agent platform

in order to network and integrate robots with other heterogeneous devices so as to

form a CPS. Its inherent agent-based technology provides a range of features which

include autonomy, intelligence, distributed and decentralized control, among oth-

ers. The chapter describes the manner in which these functionalities were extended

to provide vital features that can make the cyber agents access and control real

physical devices with ease. The chapter describes the development and integration

of software interfaces which allow access to different hardware such as Pi, Intel®

Galileo, Lego® Mindstorm® NXT, etc., all of which make Tartarus a tool that can

be used not merely for study and analysis of such systems, but also to implement

and deploy MAS based CPSs in the real-world. This chapter thus portrays Tartarus

as a platform to bridge the gap between the cyber and physical worlds. After an

initial motivation followed by a description of the architecture and different existing

and augmented features of Tartarus, this chapter presents an implementation of a

CPS of robots.

2.1 Motivation

The current cyberspace is growing at a fast pace with millions of new devices being

added every year. Such a growth has propelled research towards bringing compu-

tations closer to the devices in their physical space. Cyber-Physical Systems (CPS)

form a new area of research wherein researchers attempt to bridge the gap between

Computational and Physical entities. CPS involves an interconnection of various
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devices such as sensor nodes, mobile phones, embedded computers, PCs, routers,

etc. and focuses on the interactions of the computational and physical processes

with real-time feedback. This makes a CPS both heterogeneous and distributed.

Further, a CPS may require intelligence to be embedded within the devices so as

to make it smart. In order that devices make their own localized decisions without

human intervention, autonomy for the devices within the CPS becomes mandatory.

It is naturally desirable that a CPS be able to accommodate heterogeneous devices,

provide autonomy to all devices within, facilitate distributed computing while also

be scalable. Addressing these challenges calls for the formulation of a platform that

can allow rapid prototyping and programming of a CPS.

A CPS of robots could be one wherein robots, which are active entities inter-

faced to the physical world through sensors and actuators, form the major com-

ponent. Robots are considered to be autonomous or semi-autonomous beings and

hence must be capable of decision making. The terms scalability and heterogene-

ity in a CPS of robots would thus allow multiple and different classes of robots to

form a complex CPS. Realizing such a CPS which has multiple robots interacting

with a host of other devices, all of which aid in solving problems in a distributed or

decentralized manner, is a challenging task.

Multi-Agents System (MAS) is a paradigm that can address such challenges

from a computational perspective [153]. It involves the coordination of processes

springing through the local interactions of individual agents which results in an

overall intelligent behavior exhibited by the system. Agents [202] in a MAS can

be defined as software entities that carry out a task on behalf of a user, organiza-

tion, or any client-side system. An agent has various distinguishing features such

as autonomy, reactivity, pro-activity, social interaction, adaptability, rationality,

specialization, etc. that separate it from any other conventional piece of software.

Agents are mostly known to be static entities. However, their mobility adds another

dimension to their utility, especially in distributed and decentralized environments.

Agents equipped with the capability to migrate from one node to another over a net-

work are called as Mobile Agents (MA) [78]. Researchers have used mobile agents in

a variety of applications such as robotics [149], network management [16], electronic

commerce [122, 140], energy efficiency and metering [209], wireless sensors [33], grid
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computing [148], distributed data mining [107], security [24], and e-learning [207],

to name a few .

The intrinsic capability of a mobile agent to migrate and make local decisions

autonomously makes it a good candidate for a middleware solution for a CPS. Such a

mobile agent based middleware for a CPS could help in alleviating the challenges of

distributed processing, scalability, flexibility and localized decisions. It is important

to note that within a CPS, the end devices should be provided with autonomy

facilitated through their computational core. Mobile agents provide a disruptive

technology to bring together the computational and physical processes within a CPS.

Tartarus and its predecessor Typhon [123] have been used in a variety of applications

ranging from an agent based Internet of Things (IoT) [64], synchronizing cooperative

tasks among robots [87], creating partial green corridors for emergency services in a

traffic [18], sharing and learning on-the-fly by a set of distributed nodes in a network

[90], etc. However, most of these work were limited to emulated scenarios and do

not cover the heterogeneity of CPS and IoT systems which are desired in this thesis.

This chapter reforms Tartarus into a software tool to render distinctive features

that can make the cyber agents access and control the real physical devices with

ease. Tartarus is completely coded in open-source SWI-Prolog [196] environment.

This facilitates Tartarus to utilize all Prolog based features [156] such as assertion

and retraction of rules, dynamic database, etc. Tartarus provides all agent related

functionalities including mobility, cloning, and payload carrying capacity, among

others. Further, it supports multithreading and heterogeneity in terms of devices.

Multithreading allows the platform to host more agents and also facilitates con-

currency of all operations within, thereby increasing throughput while also making

better use of system resources. This chapter is towards the integration of additional

interfaces to allow Tartarus to seamlessly bind with the robots and embedded de-

vices such as a Pi.

The next section provides a brief background on the available multi-agent plat-

forms and comments on their viability in CPS and IoT scenarios. In the succeeding

sections, the architecture of Tartarus, its features followed by a real-world imple-

mentation, are presented.
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2.2 Bridging Frameworks

In order to control an agent based system, a proper and well-defined host or platform

is prime. Currently, agent systems have not been embedded on to any OS. Several

middleware environments have however been developed and made available for de-

ployment of agents. An agent platform should be based on an interpreted language

as most of the code contained within, for instance, a mobile agent, may have refer-

ences to functions or predicates that may not be available with the host [78]. This

is so because mobile agents are deployed at the remote server. Researchers have

developed mobile agent platforms in various programming environments. JADE

[15], Concordia [200], Agent Tcl [73], Ara [144], TACOMA [93], AgentSpace [174]

and Aglets [178] are some of the Java-based mobile agent platforms. Concordia,

JADE, and Aglets are purely Java based while Agent Tcl supports three languages

viz. Tcl and Schema other than Java. Further Ara supports Tcl, C/C++ and Java

with a customized compiler for agents written in C/C++. Prolog-based agent plat-

forms include Jinni [181] which is based on the principles of both Java and Prolog.

It supports multithreading, control mobility and inference processing and works in

conjunction with BinProlog [180].

Except few, most of the platforms discussed have been reportedly used for re-

alizing purely software systems and their use in the realm of embedded devices is

seldom discussed. TACOMA LITE, a low footprint version of TACOMA can run on

PDAs. Mobile-C [132] a purely C/C++ based platform with an embeddable C/C++

interpreter that can be used in conjunction with small embedded systems. With its

small footprint this platform has been used to develop an agent based real-time traf-

fic detection and management system [132]. AgentSpace, a Java-based mobile agent

platform has been used to realize an Internet of Things [64]. Typhon [123], is a Win-

Prolog based mobile agent platform that runs on the Chimera (static) Agent System

(www.lpa.co.uk). It has been used in conjunction with LEGO® MINDSTORMS®

NXT based robots and other third-party sensors in applications that bear a resem-

blance to a CPS [87].

While most of the popular agent systems are yet to find their way into full-

fledged applications which involve control of embedded systems, a few like Mobile-
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Figure 2.1: Architecture of Tartarus

C and Typhon provide these features but only to a limited extent. In order to

add intelligence and program for the same, Prolog stands out due to its inherent

search engine, dynamic code manipulation, and rapid prototyping features. A CPS

framework which could facilitate programming in Prolog coupled with both static

and mobile agent paradigms could definitely aid in achieving scalability, distributed

and decentralized control, code evolution and even on-the-fly programming. A smart

CPS not only involves computation but also intelligence in making autonomous

decisions. As a system, it can comprise homogeneous as well as heterogeneous

devices like sensors, embedded controllers, computers, PDAs, etc. The next section

presents a description of the architecture of Tartarus.

2.3 Tartarus: A Multi-Agent Platform

This section explains the architecture of Tartarus along with its significant features

and components. Tartarus is a platform that can cater to both static and mobile

agents, both of which are coded using Prolog.

2.3.1 Architecture

Figure 2.1 depicts the basic architecture of the Tartarus platform. As can be seen

in the figure, the platform runs atop the SWI-Prolog environment which forms the

core execution engine. Further, Tartarus comprises three major components whose

functionalities are as follows:
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1. Tartarus Agent Host (TAH): The TAH forms the core of the Tartarus plat-

form. It provides all the services required to create and manage a suite of

agent related functionalities within the platform. The TAH is responsible for

the creation of static and mobile agents, migration of mobile agents from one

platform to another, management of agent execution, agent security and the

facilitation of all inter-agent interactions. The TAH also performs various

bookkeeping activities which include keeping a record of the current agents

inhabiting the platform, agent hop-times and agent parameters such as pro-

cess id, agent name, active agent port numbers, payload information, agent

handlers, etc.

2. Tartarus Thread Handler (TTH): The TTH acts as a controller for managing

multiple threads of executions within the Tartarus platform. All the agents

whether static or mobile run as a separate thread within Tartarus. The TTH

is responsible for the synchronization of these threads and the preservation

of their state and data. Hence, the TTH provides a concurrent execution

environment within the Tartarus platform.

3. Tartarus Plugin Channel (TPC): The TPC forms the crucial component that

extends the CPS based functionalities of the Tartarus platform. It facilitates

the interfacing of the platform with the hardware entities or controllers such

as the Pi and NXT robots. Hence, new devices can easily be interfaced with

the Tartarus platform by integrating their respective plugins via the TPC.

Such plugins, however, are specific to controllers and need to be written by the

programmer or supplied by the third-party vendor who provides the hardware.

2.3.2 Features

Table 2.1 depicts some of the significant predicates within Tartarus. Predicates

arguments, syntax and their description are mentioned therein. Following is a list

of features provided by the Tartarus platform:

1. Multi-threading: Tartarus provides concurrent creation and execution of mo-

bile agents using multi-threading. Its engine takes care of the management and
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Table 2.1: Some of the significant predicates within the Tartarus platform

Function of the
Predicate Description Syntax

Agent Creation

Creates a new agent with
the specified name or gen-
erates a name out of ran-
dom alphabet.

create_static_agent(AgentName,(IP,Port),
HandlerName)
create_mobile_agent(AgentName,(IP,Port),
HandlerName)

Agent Migration

Allows movement of an
agent from a source Tar-
tarus host to the Tartarus
destination host, thus em-
powering mobility to the
agents.

move_agent(AgentName,(IP, Port)).

Agent Payload Allows addition of user de-
fined predicates and data. add_payload(AgentName, ListOfPredicates).

Agent
Communication

Exchange of messages
among static agents
stationed at different
Tartarus hosts.

agent_post(AgentName,(DestinationIP, Des-
tinationPort),ListOfPredicates).

Agent Clone
Creates a clone of the par-
ent agent at a given IP and
Port number.

clone_agent(AgentName,(DestinationIP,
DestinationPort),CloneName).

Agent Kill Kills the specified agent. kill_agent(AgentName).

synchronization of the threads created thus ridding the users the complexities

of managing parallel or concurrent computing.

2. Heterogeneity: Tartarus is independent of the underlying OS on which it runs.

Tartarus running on Linux can seamlessly communicate with Tartarus running

on Windows, thus providing for cross-platform communication.

3. Hardware-in-the-loop: Unlike most of the available agent platforms, Tartarus

can be ported on embedded boards that currently include the Pi and Intel®

Galileo development board. It also comes with an interface for the LEGO®

MINDSTORMS® NXT robots. These special interfaces allow developers to

access the control systems of the underlying hardware, thus making the job of

developers easier.

4. Distributed Control: Agents within Tartarus have the capability to share data

between nodes, migrate from one node to another and execute the code on a

destination node. This localized nature of agents makes it possible to realize

distributed and even decentralized control systems. For instance, a remote

node Ni can easily retrieve current raw data from a sensor node connected to
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Nj and trigger a robot at Nk.

5. Scalability and on-the-fly programming: If the number of entities comprising

a system can be increased or decreased with ease without compromising the

performance, then the system is said to be scalable. However, this notion of

scalability is weak and may require that the entire system be brought down or

powered off during the process of scaling. With Tartarus a system can achieve

strong scalability through on-the-fly programming. This feature allows addi-

tion or deletion of entities or platforms to or from the system seamlessly even

during its execution. By introducing mobile agents with appropriate programs

as their payload, it is possible to rewrite or retract code at various nodes which

will ensure that the overall system works with a new set of hardware or nodes

attached, deleted or modified.

6. Payloads: Mobile agents can carry a set of programs or data as a payload to

be either executed on demand at the destination node or be downloaded for

use by that node. Tartarus provides the necessary execution environment to

the agents in order to execute a program based on their defined logic. Agents

can also be programmed to shed (offload) or upload payloads during runtime.

By modifying payloads, one may even attempt to alter the behavior of the

agent in runtime.

7. Security: Security in Tartarus is at the moment naïve and is implemented

using a lock and key mechanism. Each Tartarus platform has a lock which

could be an encrypted code or password. A mobile agent is allowed to enter a

Tartarus node only if it has the associated key for the same. Better security

aids could be developed to make the system secure. An investigation into

adopting Blockchain Technology [147] for securing mobile agents is currently

being carried out.

8. Ease of Installation: Installing Tartarus is simple and does not require any

intricate adjustments such as setting path variables as in the case of Java-

based platforms.
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Figure 2.2: A depiction of the Tartarus platforms configured as a CPS

2.3.3 Tartarus for CPS

The Tartarus agent platform uses the TCP/IP protocol stack for communication

over the wired or wireless channel in a LAN/WAN. Each Tartarus platform cre-

ates its own TCP/IP socket for initializing the communication interface with other

Tartarus platforms available within the network. Tartarus platform allows the cre-

ation of both static and mobile agents. Mobile agents can communicate amongst

themselves or with static agents and vice versa. Each static agent creates a sep-

arate TCP/IP socket and thread for communication and execution respectively.

Mobile agents use the default Tartarus platform socket for any form of communi-

cation. Since Tartarus is created using the SWI-Prolog environment, it provides

the flexibility of generating interpreted code. Tartarus can thus support on-the-fly

programming (discussed later). Further, the code of Tartarus mobile agents could

evolve based on the feedbacks collected from the different nodes in the CPS network.

Figure 2.2 shows an approximate visualization of several Tartarus platforms

configured as a CPS comprising a Pi controller board (Node 1), a laptop (Node 2)

and desktop computers (Nodes 3, 4, 5 and 6). In addition, each of the nodes 2 and

3 are connected to a LEGO ® MINDSTORMS ® NXT robot via Bluetooth. The

communication among the nodes can be wired or wireless as shown in the figure.
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Tartarus platforms are shown hosting mobile agents Mi (M1 and M2) and static

agents Si (S1, S2 and S3). The mobile agents under migration are depicted as

MuMi. In Figure 2.2, S1 and S2 are hosted at Node 1 while S3 at Node 3. Further,

M1 and M2 are under execution at Nodes 2 and 3 respectively while MuM3 is a

mobile agent 3 migrating from Node 2 to Node 1 on a wireless link. The intra-node

communication between a static agent S3 and a mobile agent M2 is shown on Node

3.

2.4 Tartarus: Real-World Application

To validate the applicability of this extended version of Tartarus, a CPS compris-

ing robots, sensors and a human-in-the-loop is implemented. A total of three NXT

robots equipped with light and ultrasonic sensors were used along with a Pi Model

B+ board coupled with a webcam. Since the NXT robots are not Wi-Fi enabled,

they were connected using Bluetooth to the PCs running Windows. The Lego inter-

face plugin for the Tartarus platform, also developed in-house at the Robotics Lab.

at the Department of Computer Science & Engineering IIT Guwahati, was used to

control the robots. The Pi hosted the Tartarus platform running on Linux. The

camera was connected to the Pi board as shown in the Figure 2.4 and interfaced via

the Pi plugin (also developed in-house) attached to the TCP of the Tartarus plat-

form. The PCs and the Pi were networked through the wired Ethernet backbone.

A total of 13 Tartarus platforms formed the nodes which were connected to form a

CPS as shown in Figure 2.3.

As an example, CPS scenario, a situation wherein a vehicle encounters a road-

block (for instance, a tree fallen across the road), is considered. The vehicle then

signals to the nearest node for help, which in turn takes a snapshot of the condition

and sends it over a human administrator. Based on the situation, the latter sends

an agent in search of an appropriate rescue vehicle that can remove the block. The

agent migrates across the network, finds the concerned vehicle and triggers it to

move towards the roadblock and eventually removes it.

Figure 2.3 shows the aerial view of the implementation of the above scenario

of the CPS with robots. The CPS comprises a network of 13 nodes - 12 PCs and
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Figure 2.3: The top-view of the implementation setup of the Cyber-Physical
System comprising computer nodes (not shown physically) and Pi board with
Webcam all configured as Tartarus hosts. (The robots are linked to the computer
based hosts via Bluetooth)

a Pi controller board, configured as a Tartarus platform. Thus, each of these nodes

has the Tartarus software installed to make them act as TAH. The figure also shows

three robots - one commuter and two others which are stationed at a docking station

and are specially designed for specific purposes which include rescue and salvage

operations. The commuter, robot nicknamed Santa, is the one that travels along

the black-lines path and is analogous to a vehicle on a conventional road. All robots

maintain a wireless link (Bluetooth) with a node in the network. Heterogeneity in

hardware and software environments is emphasized by the use of the PC based nodes

running on Windows and the Pi on Linux, all of which act as TAH. A Webcam,

interfaced to the Pi board placed near the path, serves as a Monitoring node in the

CPS network. More of such monitoring nodes could be envisioned to be populated

along the length of the path with motors to control their pan and tilt. The 12 PCs

used were the maximum available at the time of experiment. However, more number

of nodes can be added to increase the scale of the network.
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Figure 2.4: The Pi based Tartarus host interfaced to the Webcam

Figure 2.5: The snapshot captured by the Webcam mounted on the Pi based
Tartarus host

As the commuter Santa travels along the black path from Source A to Destina-

tion B, it encounters a roadblock, a green object symbolizing the tree. As soon as,

this robot detects the obstacle using its ultrasonic sensor, it communicates to the

nearest Monitoring node, which in this case is the Pi. The static agent within the

monitoring Pi based TAH host, in turn, initiates an action to assess the problem by

activating its webcam and taking a snapshot of the current situation. The snapshot

is then forwarded to the human administrator available at another remote TAH in

the network. Figure 2.5 shows the image captured by the webcam in our implemen-

tation. Based on the snapshot, the human administrator ascertains the gravity of
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the situation and spawns a Tartarus mobile agent into the CPS network with the

instruction to find the appropriate kind of rescue robot that is able to remove the

obstruction from the location of the problem. The program to be executed by the

rescue robot to overcome the problem at hand is also bundled in as its payload. The

mobile agent migrates into the CPS network and forages for the specified Rescue

robot. Since there are two different types of Rescue robots, named Rudolph with a

capability of pushing objects and Claus which has claws to pick and place objects,

stationed at the docking station, the mobile agent compares their respective con-

figurations against its requirements and chooses the Claus. It then initializes Claus

to start following the black path towards the location of the roadblock. On reach-

ing the specified location Claus, using the program in the agent’s payload performs

the grabbing of the obstacle using its claws and removes it from the path. The

commuter robot Santa, now finds the path free and continues its sojourn along its

path to eventually reach its destination. Having accomplished its task, the Tartarus

mobile agent guides Claus back to its docking station .

2.4.1 Discussions

While the scenario of the CPS with robots implemented seems naïve, it throws more

light on the feasibility of using Tartarus as a platform for realizing a full-fledged

CPS. With a proper (wired or wireless) network of Tartarus platform in place, it is

possible to make mobile agents move to sense and actuate the connected physical

devices including robots and sensors across the network. This potentially opens

up a plethora of applications in the real world where robots, sensors, gadgets, and

mobile devices need to communicate to perform tasks in a distributed, decentralized

and asynchronous manner. In the above implementation, it could happen that

Claus, while at work on the problem, needs the assistance of Rudolph for pushing

an object. Claus (or the human administrator) can thus request its nearest TAH

to spawn mobile agents to usher in Rudolph to the site of action. Further, if the

tasks involved need to be performed in a collaborative and synchronized manner the

same could be achieved using a set of mobile agents [87]. The human administrator

A video of the implementation can be accessed at the following link: https://www.youtube.
com/watch?v=qcLgqFjAtik
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could pitch in to change the course of actions of the robots and other devices that

populate the net by spawning new mobile agents carrying the new programs as

their payloads on-the-fly. Such agents would seek and search the targeted robots in

the CPS network and replace the older programs within the robot/devices, thereby

changing their respective behaviors when the overall system is still in operation

(on-the-fly).

2.5 Chapter Summary

This chapter detailed the manner in which a multi-agent platform, Tartarus , can

aid in the realization of a CPS that includes mobile robots, vehicles, and other

heterogeneous devices. The significance of using agents, both static and mobile, has

also been stressed. Mobile agents that are inherently autonomous allow the flow of

robotic or device-specific programs on-the-fly. These agents can facilitate the change

of behaviors and actions on the part of the entities (robots and devices) within

the network, even while the CPS is active and running. New systems or devices

capable of hosting Tartarus can be added to an already running CPS network on-

the-fly thereby making them scalable even during run-time. The features of Tartarus

together with the implementations portrayed in this chapter, validate its feasibility

as a deployment tool for real-world CPS based applications. The fact that a live

demonstration of Tartarus was allowed at the top-tier International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS) held in Singapore [167],

authenticates its usefulness in realizing real-world CPSs. A video on the same can

be found here .

Connecting the cyber world with its physical counterpart is always fraught with

hurdles. The use of Tartarus alleviates this to quite an extent by empowering agents

to actually sense, think and act in the real world. It is envisaged that by 2020, the

number of connected devices across the world will reach 20.8 billion [60]. This will

result in the creation of an ecosystem comprising different IoT/CPSs working either

sequentially or concurrently. While one IoT may be used for weather forecasting

and reporting, another could be working to ameliorate agriculture. Empowered with

https://github.com/tushar-semwal/ProjectTartarus
https://www.youtube.com/watch?v=VeryfhtT5Tk
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the hardware-in-the-loop feature, Tartarus will not only be able to handle issues in

forecasting and agriculture but also use the derived information to monitor and

drive physical devices such as sensors and actuators, deployed in such scenarios.

Subsequent chapters uses Tartarus as a tool for the implementation of proposed

systems and mechanisms.

One significant issue that needs to be addressed is whether a CPS should be

controlled centrally or otherwise. For instance, the CPS presented in this chapter

could have been controlled centrally or in a decentralized and distributed man-

ner. Most of the currently available implementations of CPS and IoT, inherently

use a centralized cloud-based server that contributes to churning out the necessary

intelligent decisions, leaving the associated leaf-devices (including robots) fairly un-

derutilized. Though this centralized methodology, on first sight, seems to provide

for an easy, manageable and rapid solution, they suffer from adverse limitations such

as low scalability, robustness, and reliability, and at times even prove to be expen-

sive. In contrast, with the number of connected devices on the rise, a decentralized

and distributed solution could prove to be a more viable solution. In such a sce-

nario each node generates and stores its own data within itself. Information is thus

distributed in the various nodes forming the CPS. This calls for a paradigm that

can generate pertinent decision and control information from the data distributed

across a network. The decision on whether the components in a CPS should be con-

trolled centrally or otherwise rests on the wisdom of the applications programmer.

It is thus mandatory that a platform used to implement a CPS should provide such

flexibility so as to facilitate the judicious use of centralized or decentralized control.

The following chapter thus endeavors to present a mobile agent based approach to

realize decentralized and distributed CPS/IoT systems.

[[]X]\\
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“It is true that contemporary technology permits de-

centralization, it also permits centralization. It de-

pends on how you use the technology.”

Noam Chomsky (1928)

American linguist 3
Decentralizing a Cyber-Physical System

Research in VLSI technologies has been making progress in leaps and bounds re-

sulting in a drastic fall in embedded hardware prices. Embedded devices including

mobile phones are now capable of performing much more complex computations

than their earlier counterparts thereby paving a way for the realization of comput-

ing ecosystems which are both ubiquitous and pervasive. Networking capabilities

have added another dimension to the application of these devices and given birth

to new paradigms and perspectives while realizing IoTs and CPSs. These physical

devices generate huge amounts of data which are traditionally offloaded to a remote

server which in turn performs all the relevant computations and decision making.

Though such a centralized solution is straightforward and relatively easy to imple-

ment, it poses a threat to the privacy and integrity of personal data and also adds

to the usage cost due to unnecessary upload and download of data. The use of

a centralized system becomes highly sensitive in medical and military applications

[173]. A framework that can facilitate data processing and decision making in a

decentralized and distributed manner among the devices connected to a network,

will greatly reduce the above practical issues and is thus the need of the day.

This chapter presents a mobile agent based approach for realizing Decentralized

and Distributed CPS (dCPS) including IoT. The approach couples the local peer-

to-peer communication with concepts from multi-agent abstraction to transform a

centralized system into a fairly distributed system with no or partial centralization.
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An indoor Location-Aware and Tracking Service (LATS) has been used as a CPS

application to portray the use of mobile agent based mechanisms that share and

process data locally within the participating nodes. These mechanisms thus form

the crux of the work reported in this chapter. Agents populating the network

monitor and track human beings in an indoor environment. Providing LATS is a

challenging task in a dynamic environment [199]. Such scenarios call for queries

that relate to where and when a person was or is in the area being monitored,

what is the direction of the person’s movement, etc. Firing queries to a database of

related information stored centrally is fairly simple. However, if the person being

tracked is in continuous motion, the database becomes dynamic which makes the

task of querying, a complex one. The complexity increases if many are tracking

multiple human beings. Things worsen further when the devices that track and

store the data are numerous and have limited computational and storage resources.

Data, in such scenarios, is both dynamic and distributed across a network. The

problem compounds as new queries for information are fired asynchronously and

concurrently. This chapter stresses the importance and significance of dCPS and

introduces a mobile agent based approach to realize it. The approach also addresses

the issues mentioned above and endeavors to overcome them.

3.1 Motivation

The advent of the Internet of Things (IoT) [10] has facilitated devices to be con-

nected with ease and enhanced to communicate and share data. Gartner Inc. [60]

has predicted that by 2020, the IoT will form the basis for most business processes

and systems. It has also conjectured that by this year, more than 6.4 billion such

devices will become connected. This drastic increase in connected devices is bound

to revolutionize and greatly enhance Information and Communication Technologies

(ICT) [161]. The Internet serves as an easy, reliable and accessible means for com-

munication but is not without issues. Two of the major issues that crop up in the

implementation of a typical IoT are security and the cost incurred in cellular commu-

nication. For applications such as a cab inquiry and booking system, which involves

devices spread across an enormous geographic area, the use of the Internet can be
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traded off with some aspects in security. This may not be true for critical areas

such as in military applications, hospitals, industries, smart buildings, etc. where

security could be a major concern. Current IoT architectures [74, 104] make use of

cloud-based solutions for imparting services to the users. The integrity, safety, and

insecurity of data stored in a cloud along with the associated services for sensitive

domains like medical and industrial ones, remain matters of concern. The other

issue is that in the conventional cloud-based IoT architecture, a device communi-

cates through a central server supporting the cloud platform. This increases the

cellular communication costs. A set of devices within a networked infrastructure

can communicate locally and also perform computations thus, preventing a very

large number of interactions with the cloud [186]. For scenarios such as an IoT

for military or health care application, an Intranet based solution could perform

effectively. Issues like security and communication expenses in an Intranet can be

greatly contained. Another important issue is data privacy which is crucial in the

case of medical hospitals, government and also for a consumer. Leakage of personal

information and data ownership are at risk in a cloud-based centralized architecture.

In cloud-based systems, most of the data and intelligence churning activities

are performed by a server hosted elsewhere in a centralized manner. For an Intranet-

based solution, a framework that can facilitate this in a decentralized manner needs

to be evolved. The devices participating in such an Intranet of Things, could include

a range of connected embedded devices with their associated interfaces that connect

them to the real physical world through sensors and actuators. The word “things”

in an IoT refers to passive devices which seldom inherit any form of smartness

within them. This is due to the fact that it is the cloud which is responsible for the

intelligence and not the actual device. What is thus required to make an intelligent

Intranet of Things, is a cyber counterpart which can induce and embed intelligence

into these devices. Multi-Agent Systems (MAS) [201] can act and provide as a

fitting solution for realizing embedded intelligence. If such agents are made to

operate on top of each embedded device, they can make decisions autonomously at

the lower levels, thus transforming a network of such devices into a smart Cyber-

Physical System (CPS). Figure 3.1 depicts such a CPS wherein the core comprises

the real physical world being sensed and controlled via the sensors and actuators.
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Figure 3.1: An Agent based Cyber-Physical System

The actual decision making and intelligence churning process is carried out by the

agents (static and mobile) within the cyber world. These agents are programs that

run on the connected embedded devices.

The concept of using agents in an Intranet of Things is very similar to the

implementation of a Fog Computing environment [21]. The cloud is extended to the

user side and constitutes a set of distributed and decentralized computing nodes

which form the edge of the network. Such a concept has several advantages which

include -

1. Privacy: Most of the cloud servers are owned by multinational corporations

such as Amazon, Google, Microsoft, Cisco, etc. which continuously receive

data from the user side. Leakage of personal information and data ownership

becomes a critical issue when all of the user’s data is collected for analytics

purpose at the cloud [186]. A safer solution would be to have a local infras-

tructure on which the user has more control than the cloud server. This would

allow local data filtering and computation before sending it over to the cloud.

An agent based system could be a better solution for ensuring privacy.

2. Cost: Cloud services follow a “Pay-as-you-go” model which adds to the cost

as the storage and network communication increases [21]. In a local compu-

tational infrastructure model, these costs can be reduced if the data collected
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is filtered locally and the only pertinent information is sent to the cloud.

3. Network Latency: A cloud has inherent latency issues and thus may not be

a viable solution for applications such as live video streaming in connected

vehicles, real-time data analytics in smart grids [21], etc., all of which require

a rapid response. An Intranet of Things that uses agents, on the contrary, can

provide fast local computations thereby decreasing latency.

4. Energy: As already mentioned, agents in an Intranet of Things can filter the

acquired data prior to sending it over to the cloud. Since this reduces com-

munication overheads, it also reduces the energy consumed and consequently

increases the battery life of the devices constituting the network [29].

The succeeding sections provide a background on earlier realized LATS applications

followed by the description of the proposed approach.

3.2 Background

Since the work described herein uses LATS as an agent based application embedded

on a Pi, a brief survey on the same is presented below.

Location-dependent services are part of a dynamic model where either the

object or the observer or both can be mobile with respect to their geo-location

[106]. Some of the classical approaches for tracking of a moving object include the

use of Global Positioning System (GPS), Radio Frequency Identification (RFID),

camera, etc. The most popular method of positioning is by using a GPS on board a

mobile phone. This method is, however, effective mainly outdoors where the device

can reach out to the satellites. Indoor localization using such GPS is unreliable

due to the topology of the rooms and the erratic and low-intensity satellite signals

received within. This calls for an efficient yet cost-effective solution to provide for a

reliable indoor positioning and tracking system.

Catarinucci et al. [31] have proposed an IoT-aware architecture for smart

healthcare. They have leveraged the use of combining UHF RFIDs [47] and WSNs

[204] for deploying a healthcare system. Each patient has an RFID tag which trans-

mits its data to an RFID receiver which in turn transmits the data to the associated
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doctor. Since RFID tags are passive devices, the system uses minimum power and

is thus quite efficient in terms of energy consumption. The major drawback is that

for proper data transfer, the patient has to be in very close proximity to the RFID

receiver.

Bluetooth Low Energy (BLE) technologies [70] can offer a far more superior

solution than RFIDs. Yoshimura et al. [206] portray a system for analyzing the

visitors’ length of stay in an art museum through the use of non-invasive Bluetooth

based monitoring. In their work, eight Bluetooth sensors were installed in the busiest

locations at the Denon wing of the Louvre museum. The data on the number

of visitors visiting these places was collected for a period of 5 months and then

analyzed to get meaningful results. They have claimed that the use of non-invasive

technologies (such as Bluetooth) allows them to gather honest results. This is so

since visitors change their behaviors if they are aware of the fact that they are being

tracked.

Early work in location-aware services by Wolfson et al. [199] describe a mech-

anism for tracking moving objects through the use of a database. They present a

Database for Moving Objects (DOMINO) on top of an existing database which al-

lows the database management system to predict the future location of the moving

object. Every time the object in motion updates its location, its future location is

also predicted.

Wolfson et al. [198] has also proposed a trajectory location management system

to model the moving object. They highlight the critical issues associated with the

point-location management model [198]. A point-location model does not provide

facilities for interpolation or extrapolation of location data of the moving object and

is not accurate.

In a trajectory location model, an estimate of the source and destination of a

moving object is determined. This information is coupled with an electronic map

and a trajectory is constructed based on the travel time information. In the real

world, the relevant data is not always available at a centralized location. Wolfson

et al. [198] conclude that their model needs to be improved to suit scenarios where

data is available in a distributed form. The latter part of this chapter shows how

LATS can be implemented when the data is distributed across a network of devices.
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Figure 3.2: Decentralized and Distributed LATS

3.3 Decentralization using Mobile Agents

A complex system can be divided into subsystems, each controlled by an agent.

This form of abstraction eases the designing and realization of systems. This section

presents Location Aware and Tracking Service (LATS) as a use case and describes

the detection mechanism and the main units that comprise the application. Finally,

a mobile agent based algorithm to process the queries from the users is discussed.

3.3.1 Detection Mechanism

The lower portion of Figure 3.2 portrays the manner in which Pi-nodes have been

deployed along the corridor. A Pi-node consists of a Pi interfaced to a BLE re-

ceiver and Wi-Fi adaptor. A Cyber Computing Unit comprising Tartarus and its

associated plugins run on the Pi. Each Pi-node within the corridor is connected to

its neighbor (s) through Wi-Fi. A person who is to be tracked (depicted as a stick

figure with a red band on the wrist in the figure) needs to wear a BLE tag that emits

beacons at a certain rate. This BLE tag along with the Pi-node forms a Wearable

and Acquisition Unit (WAU).
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(a) (b)

Figure 3.3: (a) A BLE tag (b) A Pi-node

Users who need to track a person(s) are provided with a User Interaction

Unit (UIU) running on their respective computing machine. The functioning of the

WAU, CCU, and UIU shown in the upper portion of Figure 3.2, has been detailed

in the subsequent subsections. As can be seen in the lower portion of the figure,

the corridor is divided into virtual zones (indicated by different colors) whose areas

are preset based on the RSS values from the BLE tag received by the associated

Pi-node.

When a person enters a zone within the corridor, the BLE receiver of the Pi-

node within that zone detects his/her presence in that zone. As the person moves

away from this zone and enters the neighboring one, the RSS in the new zone

increases while in the former’s decreases. This indicates the transition of the user

from one zone to another. Eventually, when the RSS detected at the previous zone

becomes minimum and that at the next zone becomes maximum, the system detects

the presence of the person in the latter zone.

3.3.2 Wearable and Acquisition Unit (WAU)

This unit includes a wearable Bluetooth Low Energy (BLE) device (HM-10) which

emits data packets in the form of beacons at preset intervals. These packets are

received by a BLE receiver interfaced to a Pi via its on-board UART module. Fig

3.3a and 3.3b show a BLE tag (comprising a BLE device and a battery) as a wearable

unit (configured as a beacon transmitter) and a Pi-node comprising a Pi interfaced

42



3. DECENTRALIZING A CYBER-PHYSICAL SYSTEM

to a BLE receiver as the acquisition unit. The Pi also has a USB Wi-Fi adaptor.

Each data packet transmitted by the wearable BLE device is 30 bytes long and

contains five fields of information as given below:

1. Preamble: This read-only field is 9 bytes wide and contains the manufacturer’s

data.

2. Universally Unique Identifier (UUID): This field which is 16 bytes wide can be

preset to contain the identity of the BLE device.

3. Major: This is a user writable field which helps in identifying a subset of such

devices within a large group.

4. Minor: It is also a writable field which is used for specifying a subset of the

Major field.

5. Tx Power: This field is a calibrated 2’s complement value denoting the signal

strength at 1 m from the device. This field is compared with the measured

signal strength at the receiving end in order to ascertain the distance between

the transmitter and receiver.

The BLE receiver extracts the information within these five fields and forwards it

to the CCU.

3.3.3 Cyber Computing Unit (CCU)

A CPS is a tight coupling between the physical and the cyber worlds. The Tartarus

platform serves the purpose of a cyber unit which runs on top of the physical unit

(Pi in the present case). Tartarus comes with a plugin to access the peripherals on

board the Pi.

A static agent named Database agent within a Tartarus instantiation running

on a Pi fetches the beacon data from the buffer register within the BLE receiver

via the UART [125] interface. The Database agent then stores the data in an SQL

database along with the time-stamp on the memory card in the Pi. If a user remains

within a zone for a long period, there will be a large accumulation of data, most

of which could be redundant. To avoid this, beacon data is read always but stored

only under some conditions.
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Figure 3.4: A sample snapshot of the part of the database maintained at a Pi-
node

Thus, data is logged only when there is considerable change in the Received

Signal Strength (RSS) of the beacon. Further, instead of making a decision based

on the normally noisy RSS values, three regions — Beyond, Far and Near have

been used to describe the position of a user within a zone. The three regions can

be defined as follows:

(i) Beyond: When the RSS value is zero it means that the person is not detected

and is beyond the concerned zone.

(ii) Far: This is a case when the person being tracked is far from the Pi-node.

This is detected by a weak RSS value at the Pi-node of the concerned zone

and would mean that the person wearing the BLE tag is in between 2m to 5m

of the radial distance from the associated Pi-node.

(iii) Near: A strong RSS value indicates the person to be well within the range i.e.

less than 2m in the present case.

Each SQL entry comprises a total of six fields of information — the Timestamp,

UUID, Major, Minor, RSS, and Region. A sample snapshot of the data entered at

a Pi-node is shown in Figure 3.4.

An entry is made to the SQL database only when the value of the sixth field

changes in terms of the Region. For instance, if the sixth field changes from beyond

to near, an entry is logged with the new Region. If the next consecutive entry is also

near, then no entry to the database is made. Similarly, if the sixth field changes to
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either far or beyond, an entry is made. It may be observed that from the database

the information about the period of stay of a user in a particular region or zone can

be easily computed. Further, a person may also be tracked as s/he moves from one

zone to another. One may also easily infer as to exactly when s/he entered a zone,

the amount of time spent within that zone and when s/he exited the same. Thus,

as a person passes through a corridor comprising several such zones, the respective

Pi-nodes keep track of the next zone to which the person has moved. This is done

through the concept of a Motion Vector which has been described below.

3.3.4 Motion Vector

Let Z = ZP1 , ZP2 , ZP3 ,…, ZPn be a set of zones, where Pj represents the jth Pi-node

and n is the total number of Pi-nodes in the network (one per zone). A Motion

Vector (−−→MV ), describes the movement of a person wearing the BLE tag, from one

zone to another and is given by,

−−→
MV = ZPa → ZPb

; a, b ϵ {1, 2,…, n}

Each Pi-node in a CCU, stores and updates two types of Motion Vectors — Mo-

tion Vector Forward (
−−−→
MVF ) and Motion Vector Backward (

−−−→
MVB). When a person

wearing the BLE tag moves from the far region to the beyond region of a certain

zone, say ZPx , the corresponding Pi-node, Px within that zone, sends a message to

all its neighbouring Pi-nodes informing that the person bearing the specific UUID

is now in the process of leaving its zone ZPx . If any of the neighbouring Pi-nodes,

say Py, detects this UUID within its zone, ZPy , it will acknowledge the presence of

the person to the Pi-node, Px. This causes the Pi-node, Px to update its Motion

Vector Forward, −−→MV F = ZPx → ZPy , against the associated person. Similarly,

the Pi-node Py updates its −−→MV B = ZPx → ZPy and −−→MV F = ZPy → ZPy . The
−−→
MV F = ZPy → ZPy represents a transition from ZPy to itself. This indicates that

the user is currently in that zone and acts as a presence indicator. Table 3.1 shows

the Motion Vectors at Pi-nodes Px and Py after a user transits from zone ZPx to

zone ZPy (zone ZPx is assumed to be the very first entry zone). Here INFINITY

represents that a user is not traceable at any of the zone and thus can be considered

to be outside of the infrastructure where agent based LATS is deployed.
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Table 3.1: Motion Vectors at Pi-nodes Px and Py after an inter-zonal transition

INFINITY → Zone ZPx
→ Zone ZPy

MVF ZPx
→ ZPy

ZPy
→ ZPy

MVB INFINITY → ZPx ZPx → ZPy

The UUID and Major-Minor values allow for classifying a particular BLE device

wearer. For example, one can track the faculty members and students in an academic

department using the content within these fields. This makes the database contain

finer details and thus allow a range of queries to be satisfied. As can be seen,

the Database agent thus manages the database and the Motion Vectors within the

associated Pi-node.

3.3.5 User Interaction Unit (UIU)

This unit provides an interface for the users to access the tracking service of the

agent based LATS. The interface could be in the form of a mobile app or a Graphical

User Interface (GUI) running on a Pi, a laptop or a PC, all connected to the same

network as that of WAU. A Tartarus instantiation running on a Pi and a laptop

has been used to fire queries to the system. To fire a query, a user can release an

agent from the same Tartarus instantiation. The UIU was populated with mobile

agent programs for a set of queries. Since Tartarus facilitates agent programming

[163], users and developers could write custom mobile agent programs for a range

of queries and add them to the UIU to improve its functionality. The code for the

agent of the associated query shall be already available with the Tartarus as part of

the UIU.

Querying

A mobile agent serves the purpose of query processing. Since the databases are

distributed over the various Pi-nodes, these mobile agents move from one such node

to another and search and retrieve the information that can satisfy the user’s query.

The mobile agent then aggregates the relevant data concerning the person being

tracked and delivers it to the UIU for processing and rendering. A user wearing

the BLE device or a third party may wish to query this LATS to gather a range of
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information which include -

1. Where am I?: Such a query invariably emanates from a person who is lost within

the building or does not know how to move around or needs to convey his/her

bearings to someone else. Under such conditions, the user can fire an SQL query

packaged in a mobile agent to the nearest one-hop neighboring Pi-node. Once

the mobile agent enters this Pi-node, it executes its code and eventually lands

up in the Pi-node of the zone in which the person is currently present. The agent

then retrieves the location information stored a priori within this Pi-node and

provides it to the user. A segment of the relevant mobile agent code is presented

in Figure 3.5.

Figure 3.5: Mobile Agent code snippet for the query, Where am I?

2. Where is X?: A query of this kind is required for a person to know whether X

is within the building under consideration and if so, where. This agent based

LATS allows for a non-intrusive mechanism to find the location of X. The user

packs this query into a mobile agent and transmits it onto the Tartarus platform

of the closest Pi, the one within the zone s/he is in currently. On reaching this

Pi, the mobile agent scans the database within it to find whether X is/was in this

zone. (i) If it discovers that X is within a particular zone currently, it retrieves

the location information from the Pi-node and backtracks its path to the user’s
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system and provides the information on X. (ii) If the agent finds a Motion Vector

Forward for X in that zone, then it uses the vector to find the next zone visited

by X and migrates to the concerned Pi-node of this zone. It continues to do

so till it eventually lands in a Pi-node of a zone where X is currently present.

On reaching this, it retrieves the relevant information and retraces its path back

to the user’s system to provide the information on X. In case X has left the

place, the Motion Vector Forward within the Pi-node in the zone where X was

last present, will point to INFINITY. The agent would then assume that X is no

more in the area and report accordingly to the user. (iii) If no trace of X is found

in the database, the mobile agent continues its migration along the Pi-nodes in a

conscientious manner [128] [Appendix .1] till it eventually finds that X has been

within the zone of some Pi or left the place. It may be noted that a user who

wishes to know the bearings of another can alter his query to extract a range of

information on the person being tracked.

3. Trace(X): This query will provide a list of locations associated with all those

zones which X visited in order. The query can again be packed into a mobile

agent and sent to the network of Pi-nodes to search the individual databases

and retrieve the list. A mobile agent algorithm to trace the path of a BLE tag

bearer is shown in Algorithm 1 and an example of mobile agent routing for the

same is described in Appendix .2.

3.4 Experiments and Results

Experiments conducted involved users who were asked to move from one zone to

another. In addition, experiments involving the acquisition of raw BLE data were

also conducted to get more insights into the behavior of the device. Subsequent

sections discuss the experiments conducted to acquire and store tracking information

which in turn are used and processed by mobile agents to satisfy user queries.

3.4.1 Data Acquisition

A BLE tag bearer was asked to move back and forth across the radial axis of a

Pi-node. The actual RSS values received at the Pi-node nominally ranged from -40
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Algorithm 1 An algorithm performed by an agent to trace the path of a BLE tag
bearer
Result: Path followed by X ; // X is a person whose path is to be traced
Stack S = Empty
Queue Q = Empty
while Path followed by X is not retrieved by Agent ; // Agent continues the
search until the total path traced by X is found
do

MVF(X) = Motion Vector Forward of X at visited Pi-node, Pv
MVB(X) = Motion Vector Backward of X at visited Pi-node, Pv
if (MVF(X) = Nil) OR (MVB(X) = Nil) ; // If trace is not found by
the agent
then

Select a neighbouring node at random and migrate to it ; // Agent
migrates to another node

else
if (MVF(X) = ZPv → ZPv) OR (MVF(X) = ZPv → INFINITY ) ; // If
agent has found last node visited by X
then

insertStack(S , v) ; // Agent inserts the node ID into its
internal stack
while X’s starting position is not found do

Use MVB of each earlier visited Pi-nodes to trace back the path
insertStack(S , Pi-nodes visited before v )

end
Path followed by X = getStack(S)
return Path followed by X ; // Agent returns the path followed
by X

else if (MVF(X) = ZPv → ZPw); // If Agent finds the intermediate
node visited by X
then

while X’s starting position is not found do
Use MVB(X) of each earlier visited Pi-nodes to find the start position

end
while X’s last/current position is not found do

Use MVF(X) of each next visited Pi-nodes to reach the last/current
position
insertQueue(Q , Pi-nodes visited from the start position)

end
Path followed by X = getQueue(Q)
return Path followed by X

end
end
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Figure 3.6: BLE raw and filtered data

dBm to +20 dBm . In order to portray the graph in the 1st quadrant for clarity,

the values are biased by adding +200 dBm to each of the data points. Figure 3.6

shows the biased raw and filtered BLE data taken over a certain number of sample

points. As expected, a trend similar to a sinusoidal wave can be observed in the

figure thereby validating the performance of the BLE. The RSS received from a BLE

device is subject to noise due to various reasons such as multi-path propagation,

signal absorption, signal interference, etc. Based on the analysis by Faragher et al.

[51], different filters may be applied to the raw BLE data. After a series of empirical

experimentation on data filtering, it was found that a moving average filter with a

window size of 6 samples at a time, provides satisfactory results. Analysis revealed

a rule of thumb that indicates that as the window size increases, the filtered data

becomes more stable. However, this may take more time to produce tracking results.

Hence, a compromise needs to be made in terms of accuracy and reactiveness of the

deployed tracking system.

An experiment wherein each user was made to wear a BLE tag and asked to

move from one zone to another in order to obtain their respective tracking profiles

was performed. The experiment was conducted at the ground floor of the Depart-

ment of Computer Science and Engineering block of the Indian Institute of Tech-

Depending upon the manufacturer, the actual raw RSS values for a BLE device may range from
-80 dbm to +25 dbm.
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Figure 3.7: Graph showing Inter-Zonal movement for a single BLE tag bearer

nology Guwahati. Since it is logical to assume that the profile generated between

two consecutive zones can be extended to other such multiple consecutive zones, the

inter-zonal movement for a single user is first described herein. The results portray-

ing a user’s movement within two zones, ZP1 and ZP2 along with the three regions,

beyond, far and near categorized on the basis of RSS is shown is shown in Figure

3.7. As in Figure 3.6, the Y-axis denotes the filtered and biased RSS values from the

BLE receiver at the Pi-node while the X-axis indicates the sampling index ranging

from 1 to the number of samples taken at a sampling rate of 1s.

The graph shows two different colored series each corresponding to the RSS at

Pi-node within a particular zone. The orange colored series denotes the same for

Zone 1 (ZP1) while the blue colored series indicates that for Zone 2 (ZP2). Initially,

the user is outside the coverage area of both ZP1 and ZP2 . As seen from the Figure

3.7, when the user starts moving towards ZP1 , the RSS (orange color) increases

from sample number 41 onwards and attains a maximum when the user is nearest

to the associated Pi-node of ZP1 . It then starts to decrease as the user moves away

from the Pi-node in ZP1 . When the user enters the periphery of ZP2 , where both

the zones overlap to an extent, an increase in the RSS at ZP2 is observed with a

corresponding decrease of the same at ZP1 . A similar pattern is exhibited when the

user moves away from ZP2 to the next neighboring zone. A similar experiment that

was conducted when the person moved from ZP2 to ZP1 is recorded with ZP2 as
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entrance zone and ZP1 as the exit zone. The relevant plots are depicted in the latter

part of Figure 3.7. It may be observed that there are some random spikes generated

due to noise and reflections. Since these peaks cross from the beyond region to the

far region and again go back within a second, the corresponding vectors are not

stored in the database.

3.4.2 Query Processing

The post data acquisition step involves satisfying queries fired from the user side. In

order to compare the results of query processing using the conventional cloud-based

method and the proposed dCPS approach, experiments were conducted for the two

scenarios described in this section. Since testing on a real system would mean the

requirement of a large number of Pis, for both the experiments a multi-floor building

was emulated using a 50-node overlay network formed over a network of 4 Pi-nodes

and 2 PCs. Each PC hosted 23 emulated Pi-nodes created using Tartarus. The BLE

tag bearers who move around in the building and need to be tracked, were emulated

by mobile agents that move from one node to another. A total of 10 BLE tag bearer

were introduced into the network, out of which 6 were made to move randomly

within the building. The remaining 4, designated as Head, Professor, Janitor, and

Guard were programmed to have predefined movements. In addition, a separate

dedicated server acted as the Cloud for both the systems. Figure 3.8 portrays the

conceptual layout of the network deployed in a building. For the conventional cloud-

based method, the Pi-nodes may or may not be connected to one another. For the

proposed mobile agent based approach (as shown in Figure 3.8), these connections

are mandatory since there need to be paths for the mobile agents to migrate.

3.4.3 Scenario 1: Conventional Cloud approach

In this approach, every Pi-node was capable of directly communicating with the

Cloud. As the BLE tag bearers (mobile agents) move around the building (network),

all pertinent data within the Pi-node (such as Timestamp, UUID, Motion Vectors

etc.) are directly sent to the Cloud. This is done by each of the Pi-nodes as and

when new data is generated within them. Thus, all the data acquired and generated

at the Pi-nodes is stored and managed at the cloud. All queries in this scenario are
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Figure 3.8: System deployed in a multi-floor building

directly sent to the cloud, which are in turn processed at the cloud and returned to

the concerned user.

3.4.4 Scenario 2: Proposed dCPS approach

In this scenario, a user fires a query in the form of a program within a mobile agent

via the UIU. This agent then knits through the connected Pi-nodes in the network,

performs the concerned task(s) and processes the data within these nodes thereby

processing the query. While doing so, it also sends the acquired data at each node

to the cloud. It may be noted that in this case the cloud is updated only with

the relevant information pertaining to the query. Unlike the previous centralized

scenario, the cloud connectivity is made only from those Pi-nodes where the mobile

agent finds query-related information. This drastically reduces data traffic between

the networked devices and the cloud.
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Figure 3.9: Traffic flow for centralized cloud based and mobile agent based sys-
tems

3.4.5 Comparison of Scenario 1 with Scenario 2

Experiments were performed where queries were fired by the user in both the cen-

tralized cloud-based and the mobile agent scenarios. Data transfer cost in terms of

the number of times the Pi-nodes connect to the cloud was logged in both these

cases. Figure 3.9 shows the cumulative number of connections made between the

Pi-nodes and the cloud server for a set of Trace(X) queries, where X is the person

being tracked.

In case of a centralized cloud-based approach, one can infer that the cumulative

number of connections made to the cloud increases steadily with time. As mentioned

earlier, this is because, for every new data generated at a Pi-node, a connection is

made to the cloud.

On the contrary, in the case of the proposed agent based approach, such con-

nections are made to the cloud only when information found is relevant to the

query fired. The cumulative number of connections made by the mobile agents

during the execution of the queries Trace(Head), Trace(Janitor), Trace(Guard) and

Trace(Professor) are shown in the figure. These numbers are far lower than that for

the centralized scenario clearly indicating the viability of the proposed approach.
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The horizontal flat portions termed as voids in the curves, denote the absence of

any connections made to the cloud. Such portions could occur in the centralized

scenario when the BLE tag bearers are stationary i.e when no new data is generated

at the Pi-nodes. For the dCPS scenarios too, such voids could occur provided no

queries are fired.

3.5 Chapter Summary

This chapter introduces the concepts of decentralized and distributed computing in

CPS and IoT based systems and describes how they can be realized using Multi-

Agent paradigms. An agent based Location-Aware and Tracking Service (LATS)

application has also been described to bring out the flexibility and versatility of

using mobile agents for information sharing and processing on a distributed network

of nodes. The system can track people wearing a BLE device indoors with fair

reliability and accuracy and also provide answers to a range of queries as regards to

the person being tracked. Experimental results reveal that the proposed approach

performs better than the conventional cloud-based method. In addition, the use of

mobile agents allows multiple queries to be fired using multiple agents concurrently.

Queries need not be pre-programmed or preset. Since mobile agents can be released

even during runtime, these queries can be fired on-the-fly. The use of agents can

thus make a network of things smarter and flexible unlike those that do not use

agents. Since agents can be created and released even during run-time [163], the

system can be scaled, upgraded and programmed to be adaptable.

Centralized systems provide superior control to the designer but are susceptible

to single-point failures. In contrast, decentralizing and distributing the decision

making process and computing among different nodes makes the system more robust

and scalable. However, pure decentralization may not be desirable as it completely

removes administrator authorities which may be needed at times. This chapter

favors the same viewpoint and opens up avenues for hybrid architectures where

the lower layers manage in a decentralized manner and transfer only the necessary

information flow to the upper centralized layers. This type of mixed system leverages

the best of both the designs.
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Though this chapter attempted to lay down the foundations for the use of

decentralization in CPS and IoT systems, it must be mentioned that the lack of a

central controlling entity does make their realization a challenging task. The same is

true for loosely coupled cyber controlled physical systems. Some of the challenging

issues include synchronization [87], task-allocation [91] and population control of

mobile agents [65] most of which have been discussed in [86] for networked robotic

systems. This thesis tries to cater to a broader domain which includes a CPS of

robots, embedded systems, vehicles, and devices, all of which have their respective

sets of challenges to be addressed. The absence of a central authority for control

would naturally mean that each entity comprising the network are peers of others.

In a CPS of robots when a resource needs to be used by more than one entity at

the same time, it is essential to handle Mutual Exclusion, lest there will be a clash.

Implementing mutual exclusion in decentralized environments is a difficult problem

especially when some entities (such as robots) take different execution times for the

same task/job due to their varying internal conditions (battery charge, wear and

tear, etc.). Talking about decentralization without addressing mutual exclusion is

thus meaningless. The next chapter describes a novel mechanism to solve this issue

by ordering the execution of tasks in the form of an adaptive pipeline of robots

which is devoid of a global clock.

[[]X]\\
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“Research is what I’m doing when I don’t know what

I’m doing.”

Wernher von Braun (1912 – 1977)

Aerospace Engineer

4
Ensuring Mutual Exclusion and Ordered

Task Executions

Ordering becomes necessary to mitigate or completely avoid chaos. The disorder

could be in the form of independent robots or devices vying for a shared resource. If

the resources are to be shared by the robots within a CPS for the completion of their

assigned tasks, then a mechanism for mutual exclusion of shared resources becomes

mandatory in order to avoid contentions and deadlocks. Tasks involving shared

resources are common in the real world. For instance, a ticket counter where people

wait in a queue is a typical example of a shared resource. In the realm of Multi-Robot

System (MRS), a sole battery-charging terminal where at an instant only one robot

can plug-in and charge itself forms an example where mutual exclusion needs to be

exercised. Thus ordering the execution of allocated tasks during run-time becomes

crucial. This is so because, in the real world, there can be several physical tasks

that use shared resources and are required to be executed concurrently. Ordering

such executions requires a careful understanding of the available resources needed

to complete a task within a CPS.

The mutual exclusion problem in a CPS can be fairly solved using a centralized

control system. To order the task executions, this central controller can monitor and

communicate with all the robots regarding their respective turns to gain access to the

shared resource. Though simple and straightforward, this solution could drastically

57



load the central controller with heavy computational and communication overheads.

This is so because the central authority has to communicate with several robots

simultaneously and take decisions globally. Further, any change to this CPS of

robots in the form of the addition of new tasks or robots would mean bringing down

the central server.

This chapter formulates the problem of ordering the execution of sequential,

independent and interdependent tasks to be executed by multiple mobile robots

within a CPS and proposes a mechanism to solve the same. An agent based dis-

tributed approach has been formulated to ensure Mutual Exclusion of Resources

(MER) among multiple robots connected to form a dynamic network. A sequence

of topologically ordered and interdependent tasks that involves shared resources,

forces their execution in the form of a pipeline. Since the number of mobile robots

available to execute a set of tasks could vary, this chapter tries to portray these

robots as a pipeline wherein the number of processing units could vary during run-

time. A conventional pipelined computing architecture requires a clock in order to

synchronize and allocate proper time slots for the execution of processes. However,

in a real-robot scenario, the execution times for the various tasks performed by a

set of robots may vary over time due to several issues such as communication de-

lays, wear and tear, etc. If a pipeline needs to cater to such varying times required

for the executions, it should possess an inherently adaptive clocking mechanism so

as to compensate for such variations. The proposed mechanism caters to a decen-

tralized and distributed CPS (dCPS) comprising nodes such as computers, robots,

and sensor nodes, and uses mobile software agents that knit through them to aid

the execution of the various tasks while also ensuring mutual exclusion of shared

resources. The computations, communications and control, are achieved through

these mobile agents. The robots perform physical execution of the tasks in an asyn-

chronous and pipelined manner without the use of a global clock. The mechanism

also features addition and deletion of tasks as well as the insertion and removal of

robots facilitating On-The-Fly Programming of the CPS. The major contributions

of this chapter towards the Task Execution Ordering Problem are:

1. A mobile agent based decentralized distributed mechanism for ordering multi-

robot task executions.
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2. A solution for the MER problem among multiple robots within a CPS.

3. Validation of the proposed mechanism through emulation.

4. Real world implementation of the proposed mechanism in a Warehouse Man-

agement System (WMS) type scenario.

4.1 Motivation

While robotic applications are fast making inroads into a plethora of automated

systems, the tight coupling between the application and the robotic hardware seem

to deter both their scalability and flexibility. The need of the day is to transform

such automated systems into ones that are malleable and accessible over a network.

Through this transformation, a fair amount of generic nature can be embedded

within such systems, thereby allowing for changes to be made in the patterns or

nature of executions of the tasks performed. This flexibility can be realized only if

we facilitate networking among all the entities within these systems. Networking can

allow the entities to communicate with one another and resolve several issues that

crop up during runtime. If the entities are mobile, the network becomes dynamic

and makes one-to-one communication, a much-disorganized task. A centralized

approach for controlling the entities may perform well but makes the system rigid,

expensive and hardly scalable. On the contrary, a decentralized and distributed

control mechanism coupled with a mobile computing environment can empower

these systems with autonomy, flexibility, and scalability. Such automated scenarios

can be viewed to be made up of two primary components – a cyber component

that caters to both computing and networking of the entities and a set of physical

processes which are executed in the real world by a set of robots using percepts

received from either on-board sensors or sensor nodes. Considering the fact that the

physical processes are initiated, linked and to some extent controlled by the cyber

component, this type of system can be categorized as a Cyber-Physical System

(CPS) [11]. Hence, a networked Multi-Robot System (MRS) coupled with a mobile

computing environment can provide a fitting framework for a CPS.

Research in MRS has mostly been focused broadly on two main areas viz. task

allocation and task partitioning. In the former [61], tasks are assigned to the ap-
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propriate participating entities (robots) in such a way that the desired performance

level can be achieved with complete utilization of available resources. The latter,

on the other hand, is the process by which a task is divided into a set of subtasks

so as to reduce the complexity of its execution [150]. Apart from these, there is also

a third objective crucial to an MRS based CPS viz. that of task execution which is

grossly ignored in MRS specifications. Task execution is an inherent objective (usu-

ally defined by the user) that always commences after task allocation or partitioning.

While the allocation and partitioning are merely planning models, task execution

adheres to the actual implementation which validates the assignments of the tasks.

Hence, both task allocation and task partitioning are dependent on task execution

without which a task cannot be said completed. Early work on Multi-Robot Task

Allocation (MRTA) by Parker [141] describes an architecture where fault tolerance

was incorporated in a heterogeneous set of robots for carrying out different tasks.

They demonstrated dynamic task allocation (a subclass of task allocation) within

an MRS. A formal analysis of the problems faced in MRTA has been presented in

[62]. Botelho and Alami [23] describe a technique for allocation and reallocation of

tasks. In their work, each robot is provided with details of its own plan. A robot is

allowed to make changes in its plan depending upon its capabilities as also those of

the other robots. The use of auctioning techniques based on the dynamics of a mar-

ket has been proposed by Dias and Stentz [46], where the robots are assigned tasks

through negotiations with their peers in a distributed manner. Khaluf and Rammig

[103] narrow down the scope of task allocation to time-constrained tasks. However,

they have ignored the complexities of real-world task execution and provided only

the simulation results.

In the domain of distributed computing, the Mutual Exclusion of Shared Re-

sources (MER) is referred to as a classical benchmark problem to resolve resource

contentions [151]. MER is required when different nodes need to access a shared

resource at the same time, lest a race condition [151] occur. A CPS constituting mo-

bile networked robots could be looked upon as a Mobile Ad-hoc Network (MANET).

The problem of MER becomes more complicated in the context of MANETs [14]

wherein mobile nodes move in a disorganized manner leading to dynamism in the

communication topology. In addition, MANETs are constrained with limited band-
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width, low power usage, low computations capabilities, dynamic topology, etc. [53]

that increases the complexity of the MER problem as compared to their static coun-

terparts. Solutions to the MER problem in distributed and dynamic networks can be

broadly divided into two categories [8] — token based and permission based. In the

token-based approach, a node with a unique token can access the shared resources

while others have to wait for the arrival of the token. On the other hand, in the

permission-based approach, a node can get access to a shared resource if it can get

permissions from all other nodes in the network by exchanging messages. Since, in

this approach, a node sends a request for getting access through messages to all the

connected nodes, it consumes bandwidth and thereby introduces network latency.

Although many variants of the MER problem have been proposed [32, 76, 27, 9],

an adaptive and scalable solution in the context of a CPS, wherein the entities

performing tasks need to share physical resources in the real world, has still not

been proposed. Wu et al. [203], have modeled the problem of mutual exclusion of

traffic intersections as a variant of the classical mutex problem. Vehicles compete

to get access to the traffic intersection by exchanging messages. A vehicle passes

through the intersection when it receives permissions from other vehicles involved

in the competition. Their approach, however, uses multiple messages which lead to

communication overheads and network latency. Minimizing such overheads while

ensuring MER is crucial for the performance of a CPS.

Depending upon their nature, tasks can be divided into two types - (i) Indepen-

dent and (ii) Sequential. Independent tasks can be executed in isolation and thus do

not in any way rely on other tasks. By sequential, it mean that these tasks follow a

topological order such that a task say, Ti+1 is executed only if the execution of the

preceding task Ti is completed. In a typical computing environment, when a pro-

gram includes both concurrent and sequentially executable instructions or methods,

the associated compiler separates the independent ones from the sequential ones.

Based on the program, it assigns the independent ones to individual cores within a

multi-core processor to maximize parallelism. The number of such cores which could

be looked upon as independent processing units, naturally do not change. On the

contrary in a real-world multi-mobile-robot scenario where robots are synonymous

to such computing cores, this may not be the case. The number of robots available
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to perform a set of tasks may vary over time. Such variation could be due to the fact

that some robots may need to be charged while others could have malfunctioned for

some reason. Their number could also increase if more robots are deployed into the

scenario. A precompiling procedure to initially allocate sequential and independent

tasks to a set of robots, as in a typical multi-core computing environment could be

disastrous.

Further, in the physical world, tasks could be interdependent by virtue of the

fact that they require both robots and resources to get executed. For instance,

consider the case where robot R1 is to execute a task T1 using a resource Ψ1 while

robot R2 is to execute task T2 using the same resource Ψ1. In this scenario, assuming

T1 and T2 to be independent tasks, it can be observed that though both robots R1

and R2 are free to execute the two tasks, the non-availability of Ψ1 concurrently to

both R1 and R2 creates a bottleneck. One of them has to wait for the other to free

the resource Ψ1 forcing T1 and T2 to be executed sequentially executed. It may be

noted here that, independent tasks may also suffer from similar bottlenecks when

they require the same resource. Under such conditions, this resource dependency

forces these independent tasks to be executed sequentially. One can thus conclude

that a technique that can handle the ordering of all types of tasks on-the-fly while

also catering and effectively utilizing the varying number of mobile processing units,

forms a sine qua non for CPSs comprising mobile robots. The algorithm proposed

in this chapter is novel in the sense that:

1. Intelligent messages in the form of mobile agents have been used to solve

the problem of mutual exclusion while executing tasks in a multi-robot dis-

tributed environment. Conventional distributed scenarios as in Wu et al. [203],

use message broadcasts to share information and ensure mutual exclusion of

shared resources. Message broadcasting drastically increases the communi-

cation cost [203] and can clutter a network. The proposed mechanism have

used a conscientious agent migration strategy [128] which has least inter-node

communication cost [69] as compared to other agent based approaches such as

CLInG [162], EVAP [37] and Random-walk with cloning [58].

2. Synchronization in distributed settings is a major challenge and is tradition-
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ally achieved by using a single node (or a subset of nodes) which provide for

clocking. This poses issues of reliability when such nodes fail. In the domain of

robotics, the problem of synchronization deteriorates since the time required

to execute a given task by a robot can vary due to several environmental

factors.

The following sections describe the constituents and system specifications of the

proposed approach. The Task Execution Ordering Problem (TEOP) among mul-

tiple robots and the inherent objectives for realizing the CPS are discussed in the

subsequent sections.

4.2 Work in Brief

Execution of tasks in a dCPS wherein the entities such as robots and sensors nodes

are independent, is a challenging affair. The situation becomes complex when the

resources required for the execution of the tasks are shared among the robots. This

calls for a mechanism to provide Mutual Exclusion (MUTEX). One simple solution

is ordering of task executions in the form of a pipeline. A pipeline is made up of

processing units which executes the atomic commands provided to them. Multiple

pipelines could be used to provide concurrency. A traditional pipeline makes use of a

global clock to provide synchronization of task executions. However, the assumption

is that the task execution will always take the same amount of time.

This work is inspired by the pipeline architecture where the processing units

are the robots and the code for the executions of tasks are delivered to them through

mobile agents. In a real-world, the assumption that the tasks are atomic and take

the same time for execution may not hold. Due to the difference in the designs of

robots, environmental conditions and other forms of noise, the execution time will

always differ. Thus, this demands for the pipeline to be adaptive and flexible.

The work presented herein uses mobile agents to make the robots adapt to

variations in task executions. Each mobile agent carries information and instructions

to execute the tasks. The robots are the processing units waiting for the suitable

mobile agent to arrive and deliver the instruction sets required for the executions

of the tasks. The problem formulation and how it is solved in the real world are
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discussed in the subsequent sections.

4.3 Preliminaries

This section presents the entities and characteristics that make up the CPS used

herein followed by a formal description of the problem at hand. Mechanisms to

ensure MER when the tasks within a CPS need to be executed in a sequential

manner are discussed further. The manner in which the tasks can be altered, added

or removed on-the-fly in/from the sequence is also be illustrated.

4.3.1 Constituents of the proposed CPS

A CPS is an amalgam of both the cyber and the physical worlds where the term

cyber comprises computations, communications and control while the term physical

comprises interactions with the real world [168]. The proposed CPS is composed of

heterogeneous entities such as a Multi-Robot System (MRS), mobile agents, sensors

and computer nodes. Mobile agents form the cyber entities which carry out com-

putations, manages all the communications and control the dynamics of the MRS.

The interaction of robots with external surroundings where robots execute the se-

quential tasks forms the physical component. Following are the basic constituents

of the proposed CPS under consideration:

1. Nodes: A node refers to any device that is capable of computations and com-

munications and hosts an agent framework. It can be an embedded system,

a personal computer, a robot or even a sensor node. Nodes are connected to

each other to form a network W .

2. Network: A network W is a dynamic wireless Mobile Ad-hoc Network (MANET)

wherein a node can connect or disconnect to another node at any point of time.

The connections are inherently managed by the nodes within the network us-

ing any of the available mechanisms [45].

3. Robots: A set of networked robots R ={R1, R2, R3, . . . , Rk|k ≥ 1} all of which

hosts an agent platform within and can connect to the network W in an ad-hoc

manner. These are essentially a subset of nodes responsible for the execution
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of tasks. Robots are mobile and are equipped with sensors and actuators that

enable them to sense their environment and act upon them, respectively.

4. Tasks: A set of finite tasks T = {T1, T2, T3, . . . , Tn|n ≥ 1}, capable of being

executed by the set of robots R.

5. Resources: Utilities and nodes other than robots, such as a path, parking/charging

bays, a rack containing items which can act as a node, sensor nodes, etc., in

the MRS environment required by a robot to accomplish a task, constitute a

set of resources Ψ = {Ψ1, Ψ2, Ψ3,…,Ψr|r ≥ 1}. Resources need to be shared

amongst robots in the set R while a robot executes the tasks in T. Once a

robot takes over a resource(s), it becomes non-shareable before it is freed by

the robot. For clarity, two forms of conventions have been followed in this

paper viz. Ψi and Ψi, where for the task Ti, Ψi is a particular resource from

the set Ψ while Ψi ⊆ Ψ.

6. States: States pertain to robots. STji indicates that a robot is in state Si and

requires to execute the task Tj . All free robots remain in the state designated

as S∗
1 .

7. Agents: A set of mobile agents µ= {µ1, µ2, µ2,…,µm|m ≥ 1}, such that each

mobile agent µi ∈ µ, carries the programs of its associated tasks as its payload.

It may be noted that each agent carries the programs for a set of task(s)

assigned to it along with the information of the required set of associated

resources. An agent also carries with it the State Information (SI) in the form

of STji of the robots which it can serve, and the next state to which the robots

transit after execution of Tj .

8. Job: A Job Ji is a collection of tasks in T along with the associated set of

resources in Ψ, which are required to be executed by the robots in R and con-

stitute the basic inputs to the system. Here, Ji ⊆ {(T i1,Ψ1),(T i2,Ψ2),..,(T in,Ψn)},

T in is the nth task of job Ji and Ψn ⊆ Ψ. The intersection of subsets of the type

Ψn need not be a null set indicating that a particular set of resources could

be required by more than one task. These jobs are processed and packed into

mobile agents by a Job Distributor JDist. New jobs received by the JDist could
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commence their execution even when their predecessors are being executed.

Here k, n, r and m ∈ I where I is a set of positive integers.

4.3.2 System Specifications

For a better insight into the complexity of the proposed CPS, the specifications and

behavior of the system need to be defined precisely. Listed below are some pertinent

points about the system —

1. The number of nodes in the network W is finite.

2. Any node can connect or disconnect from the network W at any instant of

time.

3. The system is completely oblivious of the total number of robots R present in

the network W at any point of time.

4. The number of mobile agents µ inhabiting the network W varies dynamically

with the change in the sequence of tasks.

5. The sequence in which the tasks in the set T need to be executed may be

changed as per the requirements.

6. Each of the robots and the agents are autonomous entities capable of carrying

out independent executions.

7. There is no direct robot-to-robot or agent-to-agent communication.

4.4 The Task Execution Ordering Problem

Consider a CPS with a finite number of homogeneous robots. Each robot is required

to carry out the execution of a finite number of tasks that are interdependent. Since

all the robots are required to execute such tasks, a robot may need a set of resources

which are shared among its peers. This invokes the necessity for the mutual exclusion

of these resources while executing the tasks. As discussed earlier, in the real world

the number of robots available for task execution may vary with time. In addition,

one may need to alter, add or delete tasks on-the-fly. Under such circumstances,
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Figure 4.1: Graph depicting the inherent sequential and interdependent nature of
execution of tasks

ordering the task executions on-the-fly, becomes a challenging problem. This chapter

models this problem as a Task Execution Ordering Problem (TEOP) and proposed

a solution to the same using a set of mobile agents.

For simplicity, consider a straightforward scenario where each task Ti requires

a single resource Ψi. The scenario can be easily extended to more complex ones

where instead of a single resource, a task may require a set of resource Ψi which

may be common with those of other tasks. Figure 4.1 represents the problem in

the form of a directed acyclic graph. Each node of the graph represents a robot Ri
performing a task Ti using the resources in Ψi with the help of a mobile agent µi.

Additionally, there are some nodes which represent the operator - AND (.). This

operator makes sure that a certain robot can perform a task Ti if and only if the

previous dependent task Ti−1 is completed (the sequential execution constraint).

Since mobile agents carry the programs of the corresponding tasks, this translates

the actual dependency of execution onto these agents. Hence, if a robot Rj is vying

for resources to execute a task Ti, the mobile agent µi carrying the program for

the task Ti must be free and available in the network. By free, it means that the

mobile agent should not be resident within a robot nor aiding the execution of the
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associated task.

The graph shown in the Figure 4.1 depicts the manner in which the robots

execute the tasks while also ensuring mutual exclusion. It may be noted that all

the nodes having the same color correspond to the same robot. Thus only one of

these same-colored nodes can be active at any moment of time. For instance, the

red colored nodes stand for the robot R2. The tasks T1, T2 and T3 thus cannot be

executed concurrently since they all need to be executed by the same robot viz. R2.

As an explanatory example, consider the node (R2, µ2(T2,Ψ2)) denoting ex-

ecution of task T2 by robot R2 using resource Ψ2 and mobile agent µ2. In order

to traverse to this node, both inputs to the AND node viz. (R1, µ2(T2,Ψ2)) and

(R2, µ1(T1,Ψ1)) need to be TRUE i.e. R1 should have executed task T2 using µ2 and

Ψ2 and R2 should have executed T1 using µ1 and Ψ1. This indicates the sequential

nature of execution of tasks by R2 viz. (R2, µ1(T1,Ψ1)) → (R2, µ2(T2,Ψ2)). Ad-

ditionally, the interdependency between (R2, µ2(T2,Ψ2)) and its predecessor nodes

(R1, µ2(T2,Ψ2)) and (R2, µ1(T1,Ψ1)) can also be observed. This means that T2 (car-

ried only by agent µ2), which requires resource Ψ2 for execution, cannot be executed

by multiple robots at the same time thereby ensuring mutual exclusion.

4.4.1 Inherent Objectives

With several robots and shared resources, ordering the executions of sequential,

independent and interdependent tasks, becomes a complex task especially when the

number of executing robots and tasks vary at run-time. This section discusses this

problem of ordering in terms of its segregated objectives.

Objective 1

The main objective of the work presented in this paper is to honor the mutual

exclusion of the use of resources Ψ by the robots in R while executing all the tasks

in the set T. Let Rj,ti be a binary function that returns 1 during the time slot when

the robot Ri has acquired resource Ψj . Hence the objective is

∀Ri ∈ R, execute(Ri,T)
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subject to

∀Ψj ∈ Ψ,
n∑
i=1

Rj,ti ≤ 1 (4.1)

Rj,ti ∈ {0, 1}, ∀i, j

at any time instant t.

Here, execute(Ri, T) denotes that the robot Ri ∈ R executes the tasks in the set

T. As can be observed from Equation 4.1, the constraint of the objective function

essentially denotes the MER amongst the robots such that no more than one robot

can acquire the same resource at any given time.

The Objective 1 essentially makes the robots in R to align their executions

in the form of a pipeline. Pipelining [136] is extensively used by the computer

processors in order to increase throughput. It facilitates the execution of the several

of instructions in a single unit of time. For instance, the three main subtasks

performed by processors to complete the execution of an instruction are – Fetch,

Decode and Execute [136]. In the absence of a pipeline, the processor has to finish

the first instruction which it received from the memory and then move towards the

next instruction sequentially. This makes the other functional units of the processor

such as the ALU to idle while the Fetch instruction is being performed. However, in

a pipelined architecture, when the processor is busy executing an instruction, other

units within, can perform other subtasks concurrently. However, these subtasks need

to be synchronized by a common clock. Any increase or decrease (addition/deletion)

in the number of subtasks can cause asynchronism. This gives rise to the second

objective.

Objective 2

The second objective is concerned with maintaining the time period of each stage in

the asynchronous robotic pipeline. A pipeline in the context of processors comprises

a set of cascaded tightly coupled processing elements. The output of one is given

as input to the next. These elements are driven synchronously by a clock whose

time period is set to a value greater than the maximum delay incurred between the

elements in the pipeline. Finding this maximum time delay and setting the clock
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Figure 4.2: Pipelined execution of a set of sequential and interdependent tasks
having shared resources in the proposed CPS where different colors indicates
different robots

accordingly is possible in the domain of a computing system as the execution and

delay times once fixed, never change. However, in real-world robotic scenarios, these

timings depend on the task at hand and the conditions and position or location of

the robot. In other words, the time to execute a task could vary temporally. This

adds another dimension of complexity since the asynchronously executed tasks whose

execution times vary, could cause problems when the robot(s) try to access a shared

resource. Under such conditions, the use of a synchronous lock whose time period is

set to a constant value a priori could prove to be disastrous. It may be noted that

when n robots are executing n tasks, each with distinct resources concurrently, the

robotic pipeline is full and operating at its maximum, thus satisfying the following

optimality criteria –

∀Ψj ∈ Ψ,
r∑
j=1

k∑
i=1

Rj,ti = r (4.2)

at any time instant t.

Objective 3

The final objective of this chapter is to facilitate the concept of on-the-fly ordering.

In the proposed CPS scenario, one may require to modify, add (insert) or delete tasks

in/from the set T on-the-fly while the robots are executing tasks in the current set

T. Further, it may happen that the robots themselves, which are analogous to the
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processing elements in a pipeline, need to be inserted or removed due to failures, low

batteries, etc. Hence, providing such flexibilities to the end users of such a system

is of vital importance.

Taking all these challenges into consideration, the graph in Figure 4.1 is con-

verted into a pipeline model as depicted in Figure 4.2. The vertical axis in herein

represents the robots in action while the horizontal one represents the time slots

when the robot Rn uses the resource Ψn in order to accomplish task Tn. In addi-

tion, P1, P2, P3, .., Pn denotes pipelines formed at time slots 1, 2, 3,...,n respectively.

As discussed earlier, it can be seen that in time slot 2, the program carried by µ2
facilitates R1 to execute T2 using the resource Ψ2. Concurrently, R2 executes T1
using the program in µ1 and the associated resource Ψ1. Both µ1 and µ2 remain

resident on the respective robots R2 and R1 until the tasks are accomplished and

thus are not available to any other robot during slot 2, thus ensuring mutual exclu-

sion among the robots. It may also be noted that R1 executes T3 whose program is

carried by µ3 using Ψ3 in time slot 3 only after R1 and R2 both have executed T2
and T1 respectively as shown in Figure 4.1. It can be seen that in the nth time slot,

the pipeline becomes full with all robots R1, R2,…, Rn in states Sn, Sn−1, Sn−2,…, S⋆1
executing the allocated tasks Tn, Tn−1, Tn−2,…, T1 using the associated resources

Ψn, Ψn−1, Ψn−2,…, Ψ1 respectively without any contention. It may be noted that

these associated resources could be subsets of Ψ, namely Ψn, Ψn−1, Ψn−2,…, Ψ1.

The next section presents the mechanism to achieve the objectives listed above

4.5 The Proposed Mechanism

In the CPS scenario used herein, the robots initially reside at a bay or docking

station and their states are initialized to S⋆1 . This signifies that all the robots in R

are currently vying to execute the associated task viz. T1. As mentioned earlier,

every robot hosts an agent framework that allows these agents to knit through them.

In addition, all the mobile agents in µ are also released into the network W

by the Job Distributor JDist. Task ordering among the jobs is highly dependent on

how the JDist assigns tasks and their associated resources to the agents. Thus, a

separate section is provided for its discussion along with an underlying algorithm.
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4.5.1 Job Distributor

The Job Distributor JDist assigns the various subsets ({Ti,Ψi}) within a job to

corresponding agents along with the information on the associated set of resources

required to execute the tasks. It also embeds the State Information (SI) of the

robots it can serve together with the next state to which the robots need to transit.

Further, the JDist also maintains a list of already assigned resources so that the same

resource is not assigned to other agents. An agent returns to the JDist when the

assigned task(s) has been executed thereby relinquishing the associated resources.

In the example graph shown in Figure 4.1, a simple scenario was chosen where a task

requires only a single resource. But in the real world, it is natural to have tasks that

require multiple resources which may need to be shared with other tasks. Further,

the tasks within a job could be sequential or independent. The task assignment

strategies followed by the JDist for different scenarios are described below.

A. Only sequential tasks

Consider a warehouse scenario wherein an item has to be first fetched from a rack,

carried to a packing station and finally packed and shipped to its desired destination.

This job comprises a total of 3 sequential tasks - Fetching (T1), Carrying (T2) and

Packing (T3), all of which are sequential in nature. For cases when these tasks use

different resources, the JDist assigns a distinct agent for each task together with the

associated set of resources. Thus T1 and Ψi, are embedded in µ1. Likewise, T2 and

Ψj and T3 and Ψk are embedded within µ2 and µ3. The SI and next SI written

onto each of these agents µ1, µ2 and µ3 are – S⋆1 → ST22 , ST22 → ST33 and ST33 → S⋆1

respectively. Since T3 is the last task of the job, the next SI is stored as S⋆1 thereby

freeing the robot executing this job. These 3 mobile agents are then released into

the network.

B. A mix of sequential and independent tasks

Imagine a job that involves a request for exchange of an item. The set of tasks

comprising this job could be - first Fetch (T1) the new item, then Carry (T2) it to the

packing station and then Pack (T3) the same. While these tasks are being executed
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by one robot in a sequential manner, another robot could concurrently Stamp (T4)

the item as defective (or some such) and Place (T5) it back to the concerned rack.

Since the two sequences (T1 → T2 → T3 and T4 → T5) are independent of each other

they do not share any resources. For such kind of jobs, the JDist sets the SI of the

assigned agents µ1, µ2 and µ3 to S⋆1 , S
T2
2 and ST33 and that of µ4 and µ5 to S⋆1 and

ST52 , respectively. This concurrent execution of the two sequences (T1 → T2 → T3

and T4 → T5) within a job improves both time and robot utilization.

C. Multiple tasks using the same resource(s)

In the above two cases, it is assumed that the tasks that were sequential did not

use a common resource i.e. (Ψi ∩Ψj ∩Ψl = ∅). It may happen that a job comprises

two or more tasks which require the same set of resources. Under such conditions,

the task assignment is done purely on the basis of the shared resource needed. For

example, if Ψi is required to execute tasks T1 and T2 while Ψj requires T3. Thus,

T1 and T2 are interdependent while T3 is independent (assuming Ψi ∩ Ψj = ∅).

Under such scenarios, the JDist assigns both the interdependent tasks T1 and T2 to

a single agent µi while T3 is assigned to another agent µ2. The State Information

(SI) embedded within µ1 and µ2 are given below:

µ1: S⋆1 → ST22 → S⋆1

µ2: S⋆1 → S⋆1

It can be seen from the above SI that µ1 will find a free robot and make it execute

T1 and T2 consecutively before freeing it. µ2 will find a separate free robot and make

it execute T3 concurrently. Since T1 and T2 are now within the same agent, mutual

exclusion of the resources shared by these tasks are ensured by the agent itself. It

may also happen that Ψi ∩ Ψj ̸= ∅. This can be easily reduced to the scenario

similar to Ψi i.e. all the three tasks T1, T2 and T3 will become interdependent and

thus, packed into a single agent by the JDist.

It may be noted that in a set of sequential tasks within a job, say, {T1, T2, T3},

the resource for a certain task(s) (T3) could be free while those of the others are

already assigned to agents of the previous jobs. In such scenarios, the JDist is forced

to wait for the agents to return and relinquish the resource(s). However, if T3 is an

independent task, the JDist will assign it to a separate agent and release it. The
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Algorithm 2 Sequence of steps followed by the Job Distributor JDist
1: Input: A Job Ji in the form of a set of tasks and associated resources {Jobs

can arrive at the Job Distributor asynchronously}
2: Output: µ: A set of mobile agents with each agent containing a task(s) and its

associated resource(s)
3: repeat
4: if ∀tasks ∈ Ji == Sequential then
5: if resources_available() == True then
6: if num_of_tasks_require_same_resource(Ji) > 1 then
7: Follow steps as described in Section 4.5.1.C;
8: else
9: Follow steps as described in Section 4.5.1.A;

10: end if
11: else
12: while(resources_available() == True);
13: end if
14: else if ∀tasks ∈ Ji == (Sequential OR Independent) then
15: if resources_available() == True then
16: if num_of_tasks_require_same_resource(Ji) > 1 then
17: Follow steps as described in Section 4.5.1.C;
18: else
19: Follow steps as described in Section 4.5.1.B;
20: end if
21: else
22: while(resources_available() == True);
23: end if
24: end if
25: until Job is present

agent then follows Algorithm 3 and executes the assigned task. The algorithm for

the JDist is portrayed in Algorithm 2.

4.5.2 Mobile Agent based Mechanism

Consider a scenario with repetitive jobs having similar tasks and associated

resources are landing on the JDist which are then assigned to the corresponding

mobile agents and release into the network of robots. Now, as soon as the mobile

agent µ1 lands on robot (say R1), it verifies the current state of that robot. If a

matching state is found (which in this case is S⋆1), µ1 provides the code for the task

T1 to the robot (R1 here). Hence, the robot R1 commences the execution of task

T1 by acquiring the resources Ψ1 as per the program received from the agent µ1.

After the execution of task T1 by R1, the mobile agent µ1 updates the state of R1
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Algorithm 3 Sequence of steps followed by each mobile agent µi for the execution
of their assigned task Ti

1: Input: State Sx ∈ {S⋆1 , STix } and Program for task Ti ∈ T; { State is S⋆1 if Ti is
the first task to be executed else State is STix }

2: Output: Execution of task Ti, ∀Rk ∈ R;
3: repeat
4: migrate_to(Rk) ; {Agent migrates to a robot Rk}
5: S=get_state(Rk) ; {Agent fetches the current state of robot Rk}
6: if Sx==S then
7: commence_execution(Ti,Ψi) ; {Agent makes robot Rk execute the code for

Ti using Ψi}
8: Sx+1 = get_next_state(); {Agent calls the function to get the next State

Information (SI) stored within it}
9: update_state(Rk, Sx+1); {Agent updates the state of the robot Rk to the

next state carried by the agent}
10: end if
11: leave_robot(Rk) ; {Agent migrates into the network to search for other

robots}
12: until Job is present
Note: A mobile agent carries with it the program or code for a task Ti assigned to
it, the state Sx of the robots which it needs to search for and execute the code for
Ti along with the very next state the robot should transit (after execution of Ti), in
accordance with the job whose task Ti, it carries.

to the next state (depending upon the next task). Consequently, R1 relinquishes

the resource Ψ1 and waits for µ2 to arrive. The mobile agent µ1 then leaves the

robot, returns back to JDist and releases the task along with the associated resource

information. This task and resource is then assigned to a new mobile agent for

the next job (which in the current scenario is similar to the previous job) by the

JDist and is then released into the network. If µ1 does not find a matching state, it

migrates to another neighboring robot in a conscientious manner, thereby avoiding

more recently visited robots.

The mobile agent µ1 for job J2 lands up in another robot (say R2) in state S⋆1
and makes it execute task T1 using the resource Ψ1. In this manner, µ1 continues

to make all robots in state S⋆1 to perform task T1 sequentially. When µ2, which is

also migrating within the network, lands in R1, it aids the latter in the execution of

task T2 using Ψ2. Hence, both the robots R1 and R2 execute the tasks T2 (job J1)

and T1 (job J2) respectively in a concurrent manner forming a 2-stage pipeline. As

time progresses all the k robots start executing distinct tasks concurrently to form
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of a k-stage pipeline. Here, the autonomous mobile agents act as tokens to acquire

the associated resources in order to carry out an execution. Algorithm 3 depicts

the steps that each mobile agent follows for the execution of their assigned tasks.

Thus, it can be seen that by virtue of following this algorithm, the set of agents µ

order the execution of tasks, in a manner that ensures mutual exclusion of shared

resources among the jobs.

The proposed solution ensures that the free robots are selected and mutually

excluded once they start a task within a specific job. Thus, once a robot is booked

(mutually excluded) for a job by an agent, the same robot continues to execute

all tasks related to this job. The robot is finally released only after the last task

(contained within the related agent) is executed. Mutual exclusion is also taken

care of when tasks common to multiple jobs require the same resource. Common

tasks requiring different resources occurring across multiple jobs are executed con-

currently. Mobile agents, once released into the network, act autonomously without

any central control. With many networked robots in the scenario and with mobile

agents knitting through this network, this proposed CPS as a whole, performs in a

decentralized and distributed manner.

4.5.3 Asynchronous Execution Times

Unlike instructions in a CPU, the tasks executed by robots may not have fixed

execution times. This could be due to a range of reasons which include wear and

tear of various parts, the nature of the paths traversed by a robot, obstacles, charging

times and network delays. This issue of non-uniformity in execution times of the

various tasks in the pipeline cannot be efficiently handled by the traditional method

of using a common clock.

In the present decentralized and distributed CPS, a mobile agent is the only

entity that has the code for the execution of a specific task. To mitigate the problem

of varying time periods in the robotic pipeline, the mobile agents do not leave a robot

until the concerned task is accomplished. Consider a case when Ri is executing task

Tj using µj and Tj takes more time than Tj−1 which is being executed by Ri+1 using

µj−1. This forces Ri+1 (after the execution of Tj−1) to wait for the completion of

execution of Tj by Ri. This is because µj (currently within Ri) has not yet been
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released. Thus, even though the time durations that the robots take to switch from

one task to another within the pipeline keep varying over time, the mobile agents

facilitate pipelined execution without the use of a common clock. This makes the

proposed mechanism adaptive to varying task execution times.

4.5.4 On-the-fly Addition/Deletion of task(s)

A real-world system is always prone to changes which could be sudden or gradual.

For a system comprising sequential tasks, these changes can be in the form of addi-

tion of new tasks or the deletion of already existing tasks to/from the set T. There

may also be a case where an existing task is required to be replaced by a new or

modified version. Traditionally in a centralized system, one would have to bring the

whole system down by suspending the executions of all the tasks and then restart

the same after the modifications are made. This naturally is a time-consuming

and inefficient exercise. The proposed method for the execution of sequential tasks

inherently allows for On-The-Fly Programming (OTFP) without bringing the sys-

tem down. In order to ensure the modification of the task sequence, all the state

transitions, from one state to the next, are stored a priori locally in the state transi-

tion database of each robot. In this context, the modification could mean addition,

deletion or altering the sequence in which the tasks are executed.

The addition of a new task to the set T requires two new mobile agents —

one that updates the state change information in the robots (referred to as the

Sequence Agent (µseq)) and another that carries the program for the new task (µ′1).

The former agent, µseq, which is released into the network W with the new modified

sequence, migrates within W and updates the state transition database within each

robot to reflect the modifications. Thus, if the initial state transition database in

all robots comprised the sequence S⋆1 , S2, S3,…, Sn and the new task to be inserted

between T1 and T2 is T ′
1 then this agent updates the sequence to S⋆1 , S′

1, S2, S3, . . . , Sn

in all robots in R. This would mean that a robot completing the execution of task T1
(in state S⋆1) would now transit to S′

1 instead of S2 thereby executing the associated

task T ′
1 before T2 using the second newly released agent µ′1. Once the modifications

are done in each robot, the µseq terminates itself. The second agent µ′1 is the one

that carries the new program as its payload and aids the robots to perform the new
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task T ′
1. This agent behaves the same way as all the other agents in the set µ.

Deletion is done by merely deleting the concerned state in the transition database

by this agent. It may be noted that if any of the task(s) previous to the task cur-

rently being executed by the robot gets modified, then the robot continues with the

successive tasks and does not redo the entire job. The sequence can also be altered

in a similar manner to control the order in which the tasks in T are executed. Both

addition and deletion, thus facilitate the shuffling of the sequence of tasks in the

pipeline on-the-fly. The above feature thus provides OTFP facility to the system.

4.5.5 Mutual Exclusion for Concurrent Tasks

Contrary to the pipelined case, all tasks in the set T can be executed concurrently.

Since each task Ti has its own dedicated resource Ψi, the agent µi can latch on to any

robot Rj (provided it is free) and commence executing the associated task. Thus,

if there are n tasks (i.e. n agents) and n robots then at any point of time all agents

can execute their respective tasks using a robot each. If there are m jobs comprising

n tasks each and if all tasks take the same amount of time t for execution, then the

total time required for execution of all the jobs would be m*t, where * designates

the multiplication operator. Mutual exclusion will be preserved, even if the number

of robots is greater than the number of jobs. This is so since each task is associated

with a single agent which in turn can use only one robot at any moment of time. It

may thus be noted that the mechanism described herein can cater to both sequential

and concurrent sets of tasks.

4.5.6 Avoiding Deadlocks

According to Coffman et al. [39], a system is in a deadlock state if all the four

conditions defined below hold simultaneously –

1. Mutual Exclusion: The resources required are non-shareable and thus requires

mutual exclusion.

2. No-Preemption: Resources already assigned cannot be preempted.

3. Circular wait: Presence of circular list or chains of processes waiting for re-

sources acquired by their predecessors.
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4. Hold and Wait: A process is holding at least one resource and is also waiting

to occupy another resource.

The conditions (1) and (2) hold for the current proposed system. Mutual

exclusion is a necessary requirement since the resources become non-shareable once

the robots latch on to them. Preemption comes with the risk of indefinite starvation

of a resource(s) by the robot preempted by the system and thus adds to the overall

cost of execution.

Consider the resource-allocation graph shown in Figure 4.1 which has been con-

verted to a pipeline representation portrayed in Figure 4.2. According to condition

(3), if a resource-allocation graph contains at least one cycle, then it can attain a

deadlock state. Thus, in order to show that the proposed system is deadlock free, it

is sufficient to prove that the graph is acyclic. By applying Kahn [94] algorithm for

topological sorting on the graph shown in Figure 4.1, a pipeline representation sim-

ilar to Figure 4.2 can be obtained. This proves that the graph is a Directed Acyclic

Graph (DAG). Hence, condition (3) does not hold for the proposed system thereby

making it deadlock free. Depending upon the type of job, condition (4) could hold

for certain scenarios and therefore does not guarantee the deadlock-free behavior of

the proposed system. Even though condition (3) is sufficient to ensure the deadlock-

free behavior of the system, further investigations to remove the condition (4) could

be carried out and forms the part of future work of this paper.

4.6 Implementation

In order to validate the efficacy of the proposed mechanism, an automated warehouse

as a CPS in order to implement the proposed mechanism has been chosen. This

CPS is used to process shipments after the orders are received at the warehouse.

The CPS within the automated warehouse comprises a set of networked robots and

smart racks. The robots are required to fetch items from the racks and deliver them

to the packaging zones. These chores can be decomposed into several tasks such

as follow a path to the selected rack, pick the item, traverse towards the packaging

zone and place the item there. This sequence of tasks involves the use of shared

resources such as the racks and the paths. Warehouses generally optimize on space
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which means that the racks are placed close-by thus allowing only one robot to move

in between them. This path as also the concerned rack thus form shared resources

which can be used by only one robot at any moment of time. This enforces the need

to ensure mutual exclusion of resources within the automated warehouse.

In order to ensure that mutual exclusion is preserved, warehouse management

systems have to either constantly monitor and control the movement of robots or

the robots themselves have to manage and regulate such exclusions. The former

method is more centralized and resource intensive where a single or multiple sets

of servers constantly monitor and control the robots. Centralized methods have

their own drawbacks [127]. The latter method, wherein the robots themselves as

a whole manage such mutual exclusions and executions, forms a decentralized and

distributed approach which is what this chapter portrays.

The performance of the proposed mechanism for ordering task execution was

validated by emulation followed by experiments using real robots. In order to test

the practical viability over large networks, the proposed method was emulated on

real networked nodes. Emulation (and not simulation) was carried out to ensure

that the experiment is closer to the real environment and captures the real-time

issues such as network failure, congestion, packet/data loss, etc. in the system.

According to the authors in [34], emulation offers more concrete and reliable results

than simulation. Tartarus [163], a mobile agent platform was used for emulation

of the proposed mechanism for sequential and interdependent task execution. Each

instance of Tartarus running on a computer acts as a node in the network. For the

experiments, a 100-node network was created with sets of nodes running on separate

computers connected through a LAN. A separate node acted as the Job Distributor

(JDist) which receives the request (job) for the items and converts it in the form of

tasks per request. Another additional PC (personal computer) was used to log the

status of all the entities and events during the experiments. These logs were used

to plot the graphs and analyze the results. It may be noted that these additional

nodes (JDist and PC) did not participate in the proposed mechanism. Experiments

were conducted to rigorously test the features of the proposed method for scalability,

adaptivity, and OTFP. Each experiment was performed 10 times and the average of
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Figure 4.3: A warehouse with racks, robots and embedded boards with sensors

the readings was taken into account while plotting the graphs .

4.7 Experiments and Results

In this section, the experiments conducted and results obtained from both emulation

and real-robots, are discussed. The section also compares the proposed approach

with its centralized counterpart and highlights the conditions when it is favorable

to use the former.

4.7.1 Emulation

As mentioned earlier, a 100-node Tartarus based network was deployed on 10 PCs

over a LAN wherein each node represented an instance of Tartarus. For honoring

equal distribution of load, each PC was initiated with 10 instances of Tartarus.

Depending on their functionality in the real world, the nodes in the emulation

scenario are divided into three types. The Robotic nodes (R) and the Shared resource

nodes (Φ) form the Primary nodes while the remaining constitute the Secondary

nodes (Σ). In the present context, these Σ nodes are the inactive nodes which merely

allow the agent to flow through in the network such as a router, sensor nodes, etc.

A video of the experiment performed is available at the following link:
https://www.youtube.com/watch?v=-D9HbtSpe9E
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They may, however, be made active so as to perform other tasks such as sensing,

data processing, etc. based on the application scenario. A static agent residing on

each of the R- and Φ-type nodes performed the job of waiting for the mobile agents

in order to receive the code for the task to be performed within them. For emulation,

the tasks were designed such that it would take 2 seconds to execute each of them

assuming an ideal environment without any unforeseen time lags. Figure 4.3 depicts

the primary and secondary nodes for a warehouse scenario.

4.7.2 Comparison with a Centralized Controlled System

In order to fortify the stand on the use of this decentralized and distributed mech-

anism, it is essential to compare the results of the same with those obtained using

a centralized control mechanism. A centralized emulation framework for the ex-

perimental set-up was thus made using the same agent platform viz. Tartarus. A

centralized server operating at a node was responsible for posting the relevant com-

mands using TCP-message based communication. This centralized scenario thus

comprised the central node hosting the server and the R and Φ nodes acting as its

clients. The setup was obviously devoid of mobile agents. The proposed mechanism

for execution of mutually-exclusive sequential tasks was emulated on this central-

ized framework. Instead of the mobile agents carrying the programs required for

the execution of the tasks, the robots herein had the required programs to execute

all the tasks, embedded in their respective memories a priori on-board. The experi-

ment comprised execution of a series of jobs with increasing number of tasks. Since

the experiment was performed on an emulated framework, a total of 5 different soft

computational tasks were chosen viz. Sorting (Sort), Merging (Merge), Addition

(Add), Subtraction (Sub) and Division (Div) of data within the nodes. The 5 tasks

were repeated for jobs containing more than 5 tasks i.e. if a job has 7 tasks, than

the sequential tasks within this job comprises – Sort, Merge, Add, Sub, Div, Sort,

Merge. The tasks were designed in such a way that the total computational time

for each task was equal to 2 seconds in an ideal environment without any lags.

Initially, no resources are occupied until the execution commences. The central

server thus sends a message to the robot node R1 to commence the execution of task

T1. In order to ensure mutual exclusion, messages are passed to the central server
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Figure 4.4: Centralized versus the proposed decentralized and distributed ap-
proach

by each robot as and when a task is to be initiated or completed. On receiving a

message from a robot node, say Rj after the completion of task Ti (i, j ≥ 1), the

centralized server sends a message to the Rj+1th node informing that the resource

Ψi has been relinquished and that the task Ti can now be executed. In this way,

each robot executes a task Ti only when the central server gives it a green signal

to do so. The central server thus manages task execution for all robot nodes and

hence serves to ensure mutual exclusion.

The variation in the performances of the centralized and the proposed mobile

agent based decentralized and distributed mechanisms have been portrayed in Fig-

ure 4.4. As can be observed, when the number of tasks per job is below 30, the

centralized mechanism seems to perform a tad better than the proposed version.

However, as the number of tasks grows (beyond 30), the throughput of the central-

ized system degrades rapidly since the average time for execution of a task increases.

With increasing number of tasks, the volume of information to be exchanged (be-

tween the robot nodes and the server) in order to manage the execution of these

tasks and ensure mutual exclusion, also increases drastically. Such a large number

of server-to-client communications results in a majority of time being wasted on

acknowledging and replying to the various nodes. When the central server is loaded

with such a large number of requests, it takes more time for the completion of the
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Figure 4.5: Addition/Deletion of tasks on-the-fly

tasks due to these computational constraints. In the case of the proposed decen-

tralized approach, the rate of increase in the average time required for completion

of the jobs can be observed to be gradual thus indicating the superiority of this

approach. These results also show that the system is scalable in the sense that it is

hardly affected by the increase in the number of tasks per job (aka. mobile agents).

4.7.3 Task Addition and Deletion

As previously mentioned, each of the tasks takes 2 seconds to complete execution

in an ideal environment. To study the effect of addition/deletion of tasks on-the-

fly, tasks were added and deleted during execution. This caused the length of the

sequence of tasks in a job to vary at runtime. Figure 4.5 shows the average time

spent per task after addition or deletion of tasks in the set T. The numbers above

and below the curve in the graph depict the number of tasks comprising the job

being executed. As can be seen in Figure 4.5, the experiment initially started off

with 10 tasks. While these tasks were being executed, a new task was inserted

into the system by the Job Distributor (JDist). This was achieved by following the

procedures mentioned in Section 4.5.4, eventually modifying the total number of

tasks in the task sequence to 11, 12, 15, 12, 20…and so on as depicted in Figure 4.5.

It may be noted that some of the tasks were also deleted in between the run. One

can observe that the graph is almost linear which clearly indicates that, though tasks

are added/deleted through OTFP, there seems to be no significant impact on the net

time taken for execution. This is so because the extra delays due to communication
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(a) (b)

Figure 4.6: (a) Top view of the test-bed (b) Structure of one of the LEGO®

MINDSTORMS® NXT robot used in the experiments

overheads and computational requirement are distributed among the nodes of the

underlying network. This concurrency reduces the effective increase in such lags. In

a centralized approach, all these overheads would add up on the controlling entity,

thereby degrading its performance.

4.7.4 Experiments on a Robotic Warehouse

In order to provide a proof-of-concept of the actual working of the proposed tech-

nique in the real world, a prototype of the warehouse automation scenario was

implemented using a set of mobile robots. The job of each mobile robot was to pick

an item from a rack, carry it to the packaging zone situated at another location

and place it there, from where on it could be parceled and dispatched. As shown

in Figure 4.6a, the experimental setup contains mobile robots and shared resources.

The latter include the smart racks and three zones viz. a line following zone, a wall

following zone and a packaging zone, all of which need to be shared i.e. they need

to be used by the robots in a mutually exclusive manner. A job is divided into four

sequential tasks designated T1 to T4, which are briefly described below:

1. T1: A mobile robot waiting at the robot bay executes T1 by virtue of which it
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moves forward before it detects a wall. On detecting the wall, it takes a right

turn and again moves forward to finally stop when it detects a black line.

2. T2: This task makes the mobile robot to open its claws and start following the

black line before a green marker is detected. This marker denotes the location

of the smart rack.

3. T3: The robot picks the item from the smart rack using its claws and then

follows the wall until a red marker is detected. It then places the item in the

packaging zone, thus executing task T3.

4. T4: The robot follows a black line before a yellow marker is detected which

denotes the start location, thus reentering the bay once again, thereby accom-

plishing task T4.

For experimentation with real robots, a set of LEGO® MINDSTORMS® NXT

robots are used. Since these robots cannot host the Tartarus platform within their

controller block, they were connected to respective computers (hosting Tartarus)

via Bluetooth. An interface similar to LPA-PRO-NXT interface [88] was used to

control the robots via these computers that formed the nodes of the network. The

movement of the robots was based on one castor wheel and a two-wheel differential

drive. A pair of claws attached to the front of the robots facilitated the picking of

items while an on-board ultrasonic sensor gauged the distance of objects in front.

The robot was capable of following a black line path using a pair of IR sensors. In

addition, a color sensor detected different markers laid on the floor. Figure 4.6b

shows the structure of one such robot.

As soon as a request for an item is received by the JDist, the same is converted

into a job J and the corresponding set of mobile agents carrying their respective

programs (one per agent) is released into the network. A set of four experiments

were performed with the number of robots varying from 1 to 4. A total of 4 jobs

were assumed to be always fed into the system. In the first experiment, only one

robot R1 was made available at the bay. This signifies a case when one robot needs

to perform all the tasks in a sequential manner. R1 which is initially in state S⋆1
is thus the only robot available to receive the program for task T1 from agent µ1.
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Figure 4.7: Execution of tasks using a single robot

Figure 4.8: Pipelined execution of tasks by 2 robots

After receiving the program, R1 starts executing T1 since the shared resources viz.

all the zones and smart racks are free. As mentioned earlier, a mobile agent resides

within the robot before the latter completes the associated task. After the task is

completed, the mobile agent leaves the robot and starts migrating into the network

in search of another robot in a similar state that requires the associated program.

After task T1 is accomplished, R1 goes ahead in the pipeline only if the resources

required to execute T2 are available. This is only possible when R1 receives the
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Figure 4.9: Pipelined execution of tasks by 3 robots

program to execute T2 via the corresponding agent µ2. Task T2 is that of picking

an item from the rack. The third task T3 is to place this item at the packaging

zone. After T3 is accomplished R1 performs the final task T4 of following the black

line and returning to the bay from where it started. This experiment is one of the

conventional ways of performing a sequence of tasks with a single robot. It can thus

be used as a baseline while comparing the results obtained from experiments using

the proposed decentralized and distributed method using pipelined execution.

In the second, third and fourth set of experiments, the same jobs were executed

but now in a pipelined manner with the numbers of robots enumerated as 2, 3 and

4 respectively.

Figures 4.7, 4.8, 4.9 and 4.10 depict four graphs where each one corresponds to

the results obtained when the number of robots were varied from 1 to 4 respectively.

The X-axis in each graph represents the time consumed (in seconds) by the tasks

while the Y-axis represents the jobs to be done. The numbers imprinted on the

boxes within the graphs denote the execution times taken by the corresponding

tasks.

Figure 4.7 shows the results obtained when there is only one robot available to

complete the jobs. The different patterns filled inside the boxes in each row denote

the corresponding tasks viz. T1, T2, T3 and T4. As can be seen in the figures, each
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Figure 4.10: Pipelined execution of tasks by 4 robots

row of boxes i.e. tasks denotes a specific job. As soon as all the tasks comprising a

job are completed, the robot switches to executing the first task of the next job. In

the case when there is only a single robot there are no inter-job execution delays.

This is so because the robot does not have to wait for any shared resources to become

free for its use.

Figures 4.8, 4.9 and 4.10 show results for cases when the number of robots

available are 2, 3 and 4 respectively, in the experiments. In the Figure 4.8, two

distinct colors have been used to show the two robots — blue signifying R1 while

green representing R2. It can be observed that when R1 is executing T1, R2 waits

in the robot bay before the resource Ψ1 acquired by R1 is relinquished. When R1

completes the task T1, it relinquishes the associated resource Ψ1, which in turn

triggers R2 to commence execution of T1 while R1 switches to execute T2 using

resource Ψ2. Execution commences only after the associated agent (µ1 for T1 and

µ2 for T2) reach the concerned robot and provide the relevant programs. Thus, when

the mobile agent µ1 triggers execution of T1 by R1, the rest of the robots at the bay

cannot execute T1 since the associated mobile agent µ1 is now busy with R1. This

inherently ensures proper ordering of execution of tasks while also obeying mutual

exclusion.

Subsequently, both R1 and R2 enter the pipeline and concurrently execute

tasks T2 and T1 respectively. It can be observed that the robots seem to take
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Figure 4.11: Execution of jobs comprising both sequential and independent tasks

unequal times to execute the same tasks which in turn cause idle periods between

the executions of two consecutive tasks. Each idle period between the tasks along the

row indicates the extra time the robot waits for the resource of the subsequent task

to be relinquished by its predecessor. In the real world, execution times depend on

the wear and tear that the robots undergo, their controllers, charge on the battery

and other environmental conditions. In Figures 4.9 and 4.10, these idle periods

are more prominent due to the presence of more robots. Thus, one cannot provide

guarantees that a task will take the same amount of time to complete as it did

earlier as in the emulation experiments. The speed-up obtained when 2, 3 and 4

robots were used were found to be 1.75, 1.84 and 2.21 respectively.
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Figure 4.12: Execution of tasks using 3 robots - Addition and Deletion of task T2A
on-the-fly

4.7.5 A mix of Sequential and Independent tasks within a job

Real-world jobs usually comprise heterogeneous tasks where a few of them could be

sequential while the rest may be independent. Results for the experiments conducted

for such jobs have been portrayed in Figure 4.11. The experiment was conducted in

an emulated environment similar to the one discussed in Section 4.7.1. As can be

seen from the figure, job J1 and J6 are composed of purely sequential tasks and thus

are executed in sequence. Jobs J2, J3, J4 and J5 comprises two sequences of tasks

which are independent of each other. Thus, as shown in the figure, the proposed

system manages to execute the two sequences of tasks within a job in sub-optimal

concurrent manner.

4.7.6 Modification of the Sequence of Tasks

Figure 4.12 shows the graph when a task is added and deleted on-the-fly from the

sequence of tasks T . In this experiment, a new task T2A was introduced via µ2A
during the execution of T2 in Job 2. It was then deleted immediately after its

execution in Job 2. The same task was again added during the execution of T2 in

Job 4. The additions and deletion were performed using mobile agents as described

in Section 4.5.4. The new task in the context of the warehouse scenario was a

detour from the normally used path which constituted the mobile agent µ2A and the
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Figure 4.13: Execution of tasks using 3 robots - Removal of a robot (R2) on-the-
fly

associated resource Ψ2A. After R2 completed task T2, µ2A caused it to execute T2A
in Job 2. Since Ψ2 is now free, R3 (saffron colored row box) commenced execution

of T2 using µ2 concurrently, as seen in Figure 4.12.

It can be seen that the introduction of task T2A introduced a large idle period

in Job 3. This was because when R3 was executing task T2, R2, having finished

execution of T2A, commenced the execution of T3. The case arose because the

time for executing T2A by R2 was less than that for executing T2 by R3. Addition

and deletion of tasks on-the-fly seemed to have no effect on the other concurrently

running tasks.

4.7.7 Removal of robots

The batteries of all the robots need to be recharged after their energy levels go

below a certain predefined threshold. The threshold was chosen in such a way that

even if this threshold were to be crossed at the commencement of a job, the robot

would have enough energy to complete all the remaining tasks in that job and then

return to the robot bay for charging. This is synonymous to the removal of a robot

from the system. It can be observed in Figure 4.13, that R2 was removed after it

completed Job 2 in a 3-robot scenario. The absence of R2, caused R3 to perform

the task T1 in Job 5 just after R1 completed T1 in Job 4. As can be observed the

pipeline continues to execute tasks concurrently in spite of the absence of R2.
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It can thus be observed from the results of the experiments, both emulation

and real-world, that though the task execution times vary, the system adapts to

these changes and maintains the pipeline even in the absence of a clock. Also, the

resources associated to the tasks are used in a manner that mutual exclusion is

preserved without any direct communication.

4.8 Chapter Summary

This chapter portrays a mechanism for ordering the execution of a set of interde-

pendent tasks within a CPS of robots and sensor nodes operating in the real-world

under the constraint of mutual exclusion. A CPS, which forms part of an automated

warehouse has been used as the target application. The mechanism, however, can

be easily ported to other decentralized and distributed scenarios where shared re-

sources are utilized and mutual exclusion needs to be implemented. It has also been

shown that a centralized solution could no doubt be an option to solving the mutual

exclusion problem but its performance degrades as the system is scaled upward.

The use of mobile agents makes the mechanism described herein decentralized, dis-

tributed and scalable and also allows for changes to be made in the tasks as also

the set of robots operating within the system, during runtime.

A robot could fail or be removed from the CPS environment leading to the

unpredictability of the nature of the execution of the pipeline. Uncertain incidents

such as these can conventionally cause the stalling of the pipeline. The absence of a

common clock for the pipeline aids the mechanism in coping up with such a situation.

Since the mobile agents manage the execution and ensure mutual exclusion, the

waiting times differ based on the availability of the shared resources which in turn

aids in re-synchronizing such unforeseen changes in the environment. This also

addresses the challenge posed by fluctuations in the execution times taken by the

physical processes or tasks performed by the robots. Additionally, since mobile

agents carry the related programs for task execution, this mechanism can support

heterogeneity in terms of the use of a range of computational entities including

robots and sensor nodes. New entities can be plugged into the CPS along with

mobile agents carrying the programs for the associated tasks. The use of mobile
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agents facilitates the OTFP feature which allows such injection or addition and

deletion of tasks on-the-fly. This feature can also help in purging deprecated or

faulty programs from the system and replacing them with the updated ones during

runtime. One can also envisage augmenting this mechanism with Self-healing as in

[87] so that a failure within the CPS is quickly noted and the concerned agent is

drawn towards the node so that the task(s) can be re-executed if required.

This chapter alleviates the problem of Mutual Exclusion which may arise in

a distributed network of nodes such as CPS and IoT with no central controlling

authority. However, it has been assumed that the tasks or problems to be solved do

not change during the running life of the system. In the real-world, this may not

be so. Problems could change or new ones could take their place asynchronously

across the CPS network. This may impede the functioning of the system. It may also

happen that its parameters need to be re-tuned offline. Such a catastrophic scenario

could be avoided if the system were able to adapt by itself and continuously learn

and evolve during its lifetime. Systems empowered with such features will not only

cope up with changes in the problems that need to be solved but also learn to find

the more optimal solutions for the problem at hand. The next chapter presents a

method to find the best solution which can cater to a given problem, in a distributed

and decentralized manner. From an incoming stream of new solutions, the system

tries to adapt and find the best mappings between the given problems and solutions.

Concepts imbibed from the Biological Immune System have been used to achieve

embodied life-long learning in dCPS.

[[]X]\\
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“Nature holds the key to our aesthetic, intellectual,

cognitive and even spiritual satisfaction.”

Edward Osborne Wilson (1929)

American biologist

5
Immunological Inspiration and Metaphors

Robustness, adaptability, and decentralization found in biological systems have al-

ways been the inspiration for many researchers to mimic these properties. One such

system is the Biological Immune System (BIS), known for its remarkable ability to

recognize and learn the pattern of incoming antigens (pathogens or foreign cells)

during the life of the host. The BIS is composed of several components which coor-

dinate through local interactions to serve the global purpose of protecting the host

body. One of the most significant features of the BIS is its distributed manner of

functioning. Heterogeneous populations of antibodies attack populations of antigens

across the body of the host in a distributed, and concurrent manner. Based on the

learned information, the more effective antibodies formed as a result of previous

antigenic attacks, facilitate a faster response to similar attacks in the future thereby

making the system self-adaptive and one that evolves continuously. Exploiting this

paradigm would naturally pave the way for realizing mechanisms for decentralized

and distributed CPS. This chapter attempts to provide a review of the immuno-

logical metaphors and the manner in which they are adopted in the computational

world. The contents herein form a prelude to the work presented in the subsequent

chapters which describe mechanisms and algorithms inspired by the BIS.
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5.1 Biological Immune System

The Biological Immune System (BIS) is a two-tier defense system comprising the

innate immune system and the adaptive immune system. The former is present

from the very birth of a vertebrate and remains constant throughout the life of an

individual. The cells that contribute to this system do not require prior exposure

to the foreign cells or antigens and are thus immediately available to curb a set of

antigenic attacks. While the innate system remains fixed to the type of antigens it

can counter, the adaptive immune system learns the patterns of new antigens and

develop responses specific to each of them, thereby, making it the primary source

of inspiration behind the subsequent contributions made in this thesis. It may be

noted that henceforth, the acronym BIS shall refer to the adaptive immune system.

5.1.1 The Adaptive Immune System

The ability of the BIS to learn and quickly counter the effects of a new or already

encountered antigen provides tremendous insights and motivation to develop robust,

yet simple selection and learning mechanisms suited to decentralized and distributed

computational scenarios. The BIS consists of several types of immune cells such as

the B-, T-, Killer and plasma cells, all of which together defend the biological being.

For simplicity, these cells will be referred to as immune cells. The antibodies on the

immune cells within a BIS are responsible for the recognition of a given antigen. The

paratope, which forms the antigen-binding site of the antibody and the correspond-

ing complementary-shaped epitope on an antigen, facilitate antigenic recognition.

Figure 5.1a shows an antigenic detection by the complementary paratope-epitope

matching for three different antibodies. The immune cells associated with each of

the antibodies are shown in Figure 5.1b. The term antigen has been used syn-

onymously for all types of foreign pathogens. As soon as an antigen is detected

within the body of an individual, the process of generating and/or attracting the

right kind of antibodies at the site of detection is initiated. The antibodies make

their way to the antigenic site through the fluids present inside the body. Different

antibody-antigen interactions and recognition mechanisms which form the basis of

the adaptive immune system [43] have been proposed; the more prominent ones
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(a) (b)

Figure 5.1: (a) Different antigenic epitopes and complementary paratopes of anti-
bodies (b) Immune cells with different antibodies

being from the theories of Clonal Selection, the Immune Network, and the Danger

theory. A detailed review on these three theories and resulting mechanisms is pro-

vided in Chapter 5. The following sections describe the significant contributions

and provide a brief chapter-wise summary of the thesis.

5.2 Theories of Biological Immune System

A theory intends to explain the activities of a complex system. Though theories

are overwritable, one should be open enough to salvage the general ideas and use

them as a computational tool to solve problems in different domains [43]. The same

applies to the Clonal Selection, Immune Network, and the Danger theories. All these

theories have been separately used for solving computational problems. However,

this thesis attempts to portray a hybrid approach that aims to combine them in

order to adopt the best. In other words, this thesis emphasizes the fact that from

a computational perspective, the mechanisms from these theories can be used in

tandem to mimic the best possible selective and learning behaviors of the BIS.

5.2.1 Clonal Selection

Clonal Selection [28] is one of the earliest and widely accepted theories. According

to this theory, in the presence of an antigenic attack, the immune cells capable of

successfully recognizing an antigen, proliferate and clone into multiple cells. The

clones in turn, undergo somatic hypermutation [43] depending upon the activation

events. Unlike its conventional counterpart, hypermutation is a controlled form of
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Figure 5.2: The clonal selection. Antibodies which are able to recognize the anti-
gens, binds and get activated resulting in a clone

mutation wherein the search attempts to narrow down onto the optimum. Cloning

and hyper-mutation together add diversity to the antibody repertoire of the adap-

tive immune system which in turn helps ameliorate the antigenic recognition. The

antibodies which are more efficient in this recognition process eventually become

memory cells that remain for a longer time within the biological being. These

cells, in turn, reduce the secondary response times to the same antigen. Figure 5.2

presents a simplistic schematic process of clonal selection.

5.2.2 Idiotypic Network

The Idiotypic or Immune Network (IN) theory proposed by Jerne in 1974 [85],

portrays a novel way of looking into how the BIS works. Unlike clonal selection, this

theory states that the immune cells interact with one another even in the absence of

an antigenic attack. According to Jerne [85], in addition to a paratope, an antibody

on an immune cell harbors an idiotope, which can be looked upon as analogous to

an epitope on an antigen. A paratope of an antibody can interact and recognize

the idiotope of another even in the absence of an antigen (epitope). Several such

interactions can aid in the formation of a dynamic network, also known as the
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Figure 5.3: Antibody to Antibody interactions in Immune Network Theory. The
solid lines are the stimulations while the dotted lines represent the suppressions.

idiotypic network. The interactions (as shown in Figure 5.3) can be either positive

(stimulation) or negative (suppression) depending on whether a paratope recognizes

an idiotope. These stimulations and suppressions finally result in the proliferation

or decay of the antibody molecules.

5.2.3 Danger Theory

This theory [124] proposes that the immune system responds to events that are

harmful and cause damage, which in turn signifies danger. Danger signals are how-

ever not flagged in normal cell death (apoptosis). A danger zone formed at the site

of an antigenic attack attracts the attention of the concerned immune cells. On

reaching this zone, these cells get stimulated, undergo clonal expansion and in turn

contain the attack. Figure 5.4 shows the danger signals being released under an

antigenic attack. Researchers have been inspired by mechanisms exhibited by the

BIS, to formulate algorithms for a variety of applications.

The theories presented above, thus point towards the adaptive, learning and

information processing properties inherent in the BIS. The following section lists

some of the relevant features associated with the BIS and presents an Artificial

Immune System built on the immune metaphors.
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Figure 5.4: Release of danger signals and attraction of specific antibodies towards
the portion of host body part under attack

5.3 Features

Though there are several properties [43] which can be found in the BIS, those that

are important from the computational perspective are discussed below.

• Decentralization and Autonomy: A BIS is devoid of any central controlling

entity. Thus the components autonomously interact with the environment

they live in and provide for a global aim of recognizing foreign cells.

• Pattern recognition: A BIS uses novel mechanisms for identifying antigenic

patterns. One way is a lock and key mechanism wherein paratopes on the

antibodies match complementarily with the epitopes of the antigens.

• Dynamic repertoire and Generalization: To cater to the varying antigenic

patterns that can force their way into the host body, the BIS maintains a

dynamic repertoire of antibodies which adapts to the changing patterns once

encountered. This provides for a better immune response to a secondary attack

of a similar kind.

• Distributedness: The immune cells and the organs are distributed across the

host body and thus do not have a central point of failure.
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• Fault tolerance: If an immune cell of a specific type that has generated the re-

sponse for an antigen is removed, other cells become activated on encountering

the antigen thereby reassigning the task of matching.

• Robustness: The BIS is a population-based system and thus offers diversity in

the different patterns of antigens it can detect by maintaining a repertoire of

matching antibodies. Thus, even if some of the cells die, the diverse population

still is capable of curbing the attack. This provides for robustness to unseen

attacks.

• Adaptiveness: During the lifetime of the host body, the BIS generates re-

sponses to the attacks it has encountered in the past. It learns and memorizes

the patterns and adapts by producing a population of immune cells having

varying antibodies.

• Learning and Memory: For a prolonged response, some immune cells adapt

significantly than others and thus reside in the host body for a more extended

period of time contributing towards learning and memory in the BIS.

• Self-organization: According to the principle of clonal selection, whenever an

antigenic attack happens, the matching immune cells become activated, clone

and hypermutate to contain the attack autonomously. Without the aid of

any external entity, the different components of the BIS self-organize to the

incoming foreign invasion.

Such intriguing features have attracted the research on developing computational

tools inspired by the BIS. The Artificial Immune System (AIS) is one such paradigm

which is based on the mechanisms found in the natural immune system.

5.4 Artificial Immune System

Jerne’s theory of the Idiotypic network is still controversial in the domain of im-

munology [43]. However, from a computational point of view, it offers functions

and tools which can be applied to tasks such as optimization, autonomous robot

101



5.4. ARTIFICIAL IMMUNE SYSTEM

navigation, and computer security. According to Castro and Timmis [43], Artificial

Immune Systems are,

“...adaptive systems, inspired by theoretical immunology and observed

immune functions, principles and models, which are applied to problem

solving.”

Thus Artificial Immune System (AIS) not only involves non-mathematical theories

but is an amalgam of mathematical functions, models and metaphors. It includes all

the aspects ranging from pattern recognition to optimization and clonal selection to

danger theory. Some of the application areas where AIS has been applied includes

classification [189], data mining [183], computer security [77], optimization [176],

robot navigation and control [82], machine learning [189], scheduling [38] and agent-

based systems [92]. Castro and Timmis [43] identify three basic elements to design

an AIS:

1. Representation: An abstraction of components such as immune cells, danger

signals and mutation in the computation world.

2. Affinity Measures: A set of functions to quantify the extent of interactions

between the different components within the BIS.

3. Immune Algorithms: A set of algorithms which regulate the meta-dynamics

within the system.

The following sections describe the computational counterparts of the BIS which

have been applied to the work proposed in this thesis.

5.4.1 Shape-Spaces and Cross-Reactivity Threshold

Perelson and Oster [145] proposed the concept of shape-space (S) to represent the

amount of interactions between the immune cells and antigens. Each antibody (Ab)

has a Paratope (Pt) which aids in recognizing an Epitope (Ep) of the antigen (Ag).

The Ep and Pt can be described by L parameters thereby forming an L-dimensional

point in the shape-space S. A shape-space could be a real-valued, integer, symbolic

or binary, depending upon the application. The extent of the complementarity or

the affinity in the shapes of Ep and Pt contributes to a recognition. Greater the
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Figure 5.5: A Shape Space S

affinity, greater is the potential of that Ab to curb the corresponding Ag. An Ab is

selected for an Ag only if the complementary shape of the Ep of that Ag lies within

a small region of the shape space surrounding that of the Pt of Ab. This small

region which is referred to as the Active Region (AR), is characterized by the cross-

reactivity threshold (ϵ) [43]. All antibodies within this region are attracted towards

the antigen Ag and hence are stimulated by it. Stimulated antibodies clone and

proliferate proportionate to their affinities [28] and thus quell the antigenic attack.

Figure 5.5 shows a 2-D shape space S wherein the black dots signify antibodies and

the crosses indicate the antigens. When a newly detected antigen has no antibodies

to suppress it, an Ab which is complementarily coincident to the Ag is created

(Figure 5.5(a)). All Ags that fall within the active region of this Ab can now be

catered to, by this Ab. As can be seen in Figure 5.5(b) the Ab can cater to two of

the Ags that lie within its AR. Several types of Abs could recognize the same Ag

if the latter lies within the overlap of their active regions (Figure 5.5(c)). In brief,

the role of the BIS is to create, select and evolve a repertoire of Abs which are best

suited to curb antigenic attacks.

5.4.2 Affinity Measures

Affinity measure (ψ) is the distance between the points on the shape-space S, i.e.,

between the Ag and Ab. For a real-valued shape, ψ can be calculated by using a
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simple Euclidean distance given by,

ψ =

√√√√ L∑
i=1

(Abi −Agi)2 (5.1)

where L is the dimension of real-valued vectors Ag and Ab. For binary shape-space,

hamming distance could be a measure of affinity between the Ag and Ab.

5.5 Applications

Though AIS has figured in a wide range of closed-world problems, this brief sur-

vey describes only those encountered in decentralized, distributed and real-world

scenarios.

The primary function of the BIS is to distinguish between the self cells and the

non-self cells where the former are part of the host and the latter include everything

else. Based on this classical definition, initial research in AIS catered to the area

of security in the computational world. Of late, security has become a necessary

requirement in the deployment of IoT based applications. Authors in [118] and [119]

have proposed AIS based intrusion detection models for IoT scenarios. Each of the

nodes within the IoT develops its own local intrusion detection antibody-like sub-

modules which are shared among the nodes, thus making it a distributed system.

Zhang et al. [208] have used CLONALG [44] and AIRS [189] to provide a three-

layered hierarchical system for communication to improve security in smart grids.

Though the work on security, cited above, emphasized distributed sharing of knowl-

edge in simulated worlds, the AIS mechanisms used were inherently centralized.

Implementing these mechanisms in real, decentralized and distributed scenarios is

the need of the day. Besides, a prescription for an embodied version is also missing.

In the beginning, AIS was mainly used to implement security. It was only

later that the cognitive and learning properties of AIS were found to be useful

in other application areas [79]. The Immune Network theory was first used in

mobile robotics by Watanabe et al. [187]. They implemented adaptive behavior

arbitration in a robot situated in a dynamic environment. The antigens were mapped

to the sensor readings (states) obtained from the environment while the antibodies
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were taken to be hand-coded atomic actions. Whitbrook et al. [193, 192, 194]

introduced evolutionary strategies to learn new actions. The actions were evolved

in the training phase while the state-action mappings were learned later during

execution. Augmenting the above work with sharing and learning mechanisms in

multi-robot scenarios can greatly enhance the performance of such systems.

Watkins et al. [189] introduced an Artificial Recognition System (AIRS) as a

supervised classifier. Though AIRS was initially developed for a single computing

system, its efficacy on a network of devices has been discussed in [188]. Watkins

[188] has stressed the need for a communication mechanism to interact and share

knowledge amongst different components in the AIS.

AIS was introduced as a life-long learning system by Sim et al. [176]. This

system was used to solve the 1D bin-packing problem. Inspired by the Immune

Network theory, Sim et al. proposed a self-sustaining network of interacting entities

which is computationally efficient and scalable. The implementation was however

confined to a closed-world optimization problem. There is no mention of mechanisms

to extend this work to suit real-world decentralized and distributed scenarios, as in

a BIS.

In the above discussed immuno-inspired work, problems are represented as anti-

gens while solutions form the antibodies. In order to sustain good solutions, their

concentration or population is increased as in the BIS. Controlling these antibody

populations (concentration) in a decentralized and distributed manner is yet another

challenge. Early work has reported the use of the concept of resources [183, 189]

to control the population of antibodies. However, such a mechanism can work only

on a single machine or system wherein the information about all its resources is

known and accessible globally. One of the ways by which nature tackles this issue in

decentralized and distributed environments is by using an indirect form of commu-

nication termed stigmergy [65]. This mode of communication operates when each

entity senses and acts based on its respective local environment which in turn trans-

lates to the desired global change. Godfrey et al. [65], describe a cloning controller

that uses stigmergy to achieve controlled on-demand cloning in a distributed and

decentralized networked system. The work presented in the next chapter also uses

the same principle to manage and control the heterogeneous antibody populations.
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5.6 Chapter Summary

This chapter presented the fundamental concepts required in understanding the BIS.

The features which make it a befitting solution for realizing a decentralized CPS

were also described. The chapter further presented the three theories propounded

in the immune system and their computational counterpart, the Artificial Immune

System, was also explained. The different application domains provide sufficient

evidence to apply these simple yet powerful mechanisms in real-world decentralized

cyber-physical systems. As mentioned earlier, the aim behind the inclusion of this

chapter was to provide the readers with a brief overview and significance of immune-

inspired mechanisms used in the following chapters.

[[]X]\\
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“Success is not the key to happiness. Happiness is the

key to success. If you love what you are doing, you will

be successful.”

Albert Schweitzer (1875 – 1965)

Alsatian theologian, organist and physician 6
On Immuno-inspired Solution Selection

Several hyper- and meta-heuristic methods have been successfully employed to find

better solutions for problems in closed-world scenarios. However, when the prob-

lems change or new problems crop up, the system trying to solve them needs to be

halted and its parameters re-tuned offline. In a real-world scenario, the complex-

ity further increases when these problems are distributed across a physical network

of devices and robots with no central controlling authority. Circumventing these

challenges using conventional approaches such as client-server based methods is not

robust and difficult to scale. From many times, researchers have looked into non-

traditional methods which are inspired by Nature. Colonies of ants and bees with

each entity having limited intelligence can give rise to impressive patterns result-

ing from coordinated activities instigated by stigmergy (indirect communication).

Even the Vertebrate Immune System boasts of such decentralized mechanisms to

defend the host body from antigenic attacks. Such decentralized and co-operative

mechanisms found in the immune system forms the inspiration of the work reported

herein.

This chapter presents a mechanism that integrates the three main theories in

immunology viz. the Clonal Selection theory, the Immune Network theory, and the

Danger theory, to find the best solution for a given set of problems in a dCPS. Prob-

lems can occur in any of the nodes comprising this networked system. The system

evolves the mapping between the problem and its pertinent solutions and shares
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this information across the network of nodes thereby accelerating the search for the

best solution. Sharing has proved to be beneficial in enhancing the performance

of decentralized and distributed systems [90]. This chapter addresses the challenge

of finding the best solution in scenarios which are devoid of an all-knowing global

entity.

6.1 Introduction

Finding the best solution for a given problem has always been the motivation for

research in the field of Artificial Intelligence (AI). Several conventional techniques

have been employed where an algorithm, a meta-heuristic or a hyper-heuristic is

tuned to search for a good solution which can cater to a set of problems. Though

successfully applied, many a time such approaches require cumbersome re-tuning of

the associated parameters if a new problem is added or the nature of the problem

itself changes with time [176]. In such scenarios, a system that stores and exploits

the past knowledge, self-organizes and learns on-the-fly could be the need of the day,

especially in the domain of Cyber-Physical Systems (CPS) [11] such as a network

of multiple robots and embedded systems. A CPS is an interconnection of various

heterogeneous devices over a network. It is made up of cyber software components

which control and actuate their physical counterparts.

Centralized cloud-based computing is traditionally a mainstream architecture

for CPSs. A central authority could collect all the data from such devices and

process the same to decide the best solution on their behalf. This centralization,

no doubt, provides a global control and is relatively simple to implement. However,

it suffers from issues such as scalability, a central point of failure, unreachability in

remote areas, privacy issues [21, 169], to name a few. Decentralizing control and

distributing the computing among the devices could be an alternate architecture for

better intelligence sharing especially in networked embedded systems. For instance,

recent work on a decentralized email architecture [185] tested on low-cost devices

such as Pi, strongly backs the feasibility of decentralized and distributed approaches.

Decentralized systems are those which do not have a central authority to control

and coordinate a given process. They are deemed to be distributed if there are
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multiple entities (nodes) which are part of the networked system and can compute

and communicate concurrently and autonomously. The devices forming such a CPS

share their information across the network to which they are connected and make

decisions based on collective knowledge. Semwal et al. [166] have described some of

the advantages of peer-to-peer (P2P) local sharing of knowledge in such decentralized

Cyber-Physical Systems (dCPS).

Since there is no central authority having a global knowledge, finding the best

solutions for a varying stream of problems at each node, is a challenging affair

especially in such dCPSs. To illustrate this, consider a scenario described in [164]

wherein mobile robots and devices are connected across a dynamic network within

a warehouse. New mobile robots may connect to this dynamic network at any

time while existing ones could disconnect themselves for some reason (e.g., need to

recharge their batteries). These nodes may need to share information on the state

of the warehouse and the items within, asynchronously. In such a robotic scenario,

a task to be executed could be viewed as a problem which needs to be solved. For

example, the task of retrieving an item from a shelf by a robot is a problem that

needs to be solved by it. New kinds of problems or tasks could also crop up or be

presented to any of these robots. Vehicular Networks (VANETS), where the vehicles

need to communicate with their peers to share information, forms another example

of a dCPS. Service providers can provide value-added advertisements to customers

to attract them. Displaying a right advertisement matching to the needs and profile

of passengers in vehicles forms an interesting and a challenging application area.

In Nature, most of the problems are solved in a decentralized manner. For

instance, insects such as ants, and bees which individually possess limited capa-

bilities, tend to exhibit complex behaviors through simple peer-to-peer interactions

and stigmergy [19]. Researchers have proposed several algorithms which are inspired

by Biology mainly due to their simplicity and evolving nature. The Artificial Im-

mune System (AIS) [42], a computational learning model inspired by the Biological

Immune System (BIS) uses such a set of algorithms. The BIS comprises numer-

ous antibodies capable of tackling antigenic invasions. The BIS can select the best

antibody (solution) to curb the invasion by a given antigen (problem). The best

antibody increases in population, proliferates and subsequently quells the antigenic
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population. The AIS, which is the computational counterpart of the BIS, is different

from other biological counterparts such as Neural Networks, in the sense that it is

inherently a distributed system with no central controlling entity. This makes it

robust, highly-tolerant and self-organized [30]. Many different theories and models

which represent different aspects of the AIS have been proposed and used, the more

prominent ones being - Clonal Selection [28], the Immune Network [85] and the

Danger Theory [124]. These theories have formed the basis for realizing a plethora

of applications in the areas of security [77], optimization [44], robotics [82], data

mining [183], machine learning [189], etc. Though a BIS manifests itself in a decen-

tralized manner, most researchers have merely reported their AIS implementations

in a centralized manner within closed-world scenarios. A few [189, 119, 118] have

proposed decentralized solutions but demonstrated their working in closed world.

Shrivastava et al. [170] and Jha et al. [92] describe how an Idiotypic Network could

be implemented in a decentralized manner. The authors in [176, 80] describe an

AIS based hyper-heuristics for solving the hard problems of 1-D bin-packing and

job scheduling. However, these problems too are of the closed-world type.

This chapter proposes a mechanism that integrates the three main theories

in immunology viz. the Clonal Selection theory, the Immune Network theory, the

Danger theory, to find the best solution for a given set of problems in a decentralized

and distributed manner. Problems can occur in any of the nodes comprising a CPS.

The system evolves the mapping between the problem and its pertinent solutions

and shares this information across the network of nodes thereby accelerating the

search for the best solution. Using the problem of sorting numbers as an example

domain, an extensive analysis of the proposed system in emulation environments

has been carried out. The problem of sorting was used only because the mapping

between a sorting algorithm and the type of data set it can handle best is evident.

This helps in authenticating the viability of the proposed approach. This chapter

also presents a real-world robotic application wherein, given a dynamic-set of path-

following algorithms, the robots need to toil in the physical world and find the best

among them. New path-following algorithms were also injected into the system on-

In this chapter, a dynamic-set refers to a set into which elements can be inserted or deleted
on-the-fly.
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the-fly to test its learning ability. Depending on the features of the path such as its

straightness and crookedness, the robots cooperate and search the best algorithm to

tackle the situation. With new algorithms coming into the fray during run-time, the

robots were still able to find the better-suited ones thus contributing to decentralized

learning. Sharing has been proved to be beneficial in enhancing the performance

of the decentralized and distributed systems as in [90]. This chapter addresses the

challenge of implementing distributed sharing in dCPSs and proposes a mechanism

to realize the same using a hybrid of theories propounded in immunology. In order to

emphasize the novelty, some of the features of the proposed mechanism are described

below:

1. Unlike closed-world problems reported in [176], mechanisms proposed herein

cater to the learning and sharing across a real physical network of participating

nodes. Nodes could mean computing devices and robots; static or mobile.

2. The proposed approach integrates concepts not only from the Immune Network

theory but also those from the Danger theory and the Clonal Section theory

to eventually provide adaptivity, self-learning, and self-organization in real

decentralized and distributed CPSs.

3. Instead of conventional broadcasting methods, this chapter leverages the use of

mobile agents, to share the knowledge amongst the nodes. The mobile agents,

dubbed as Intelligent Packets (iPkts), are used to carry the mappings between

the problem and solution.

4. Finally, how the proposed mechanism can be emulated and also implemented

in a real-world warehouse scenario comprising mobile robots, is shown.

The goal was thus to develop an embodied, decentralized and adaptive system which

can learn the pattern of incoming problems, with time, and be able to select the best

out of a given set of solutions to tackle them, for applications devoid of any central

controller. It may be noted that the word solution could be either a heuristic, an

algorithm, a program, or a system.

The next section discusses the motivation and describes the three theories

on immunology. Subsequent sections present the proposed approach, the related
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terminologies and immune metaphors, followed by the results obtained in both the

emulated and real-world environments and conclusions arrived at.

6.2 Motivation

One of the application scenario which motivates the work presented herein is the

exploration of remote areas by a fleet of networked mobile robots. With no cen-

tralized server, these robots need to work in a decentralized manner sharing vital

information amongst themselves. Further, imagine that these robots have to map

an unknown terrain (e.g., Mars Exploration Rover mission) and characterize a wide

variety of rocks and soil. Since the environment is unknown and the changes that

could occur therein are uncertain, the robots have to continuously learn and adopt

new strategies to prolong their survival. A study reported in Nature [12] showcase

how cells could be disseminating information through simple peer-to-peer interac-

tions, forming a network of cells. Similarly, the mobile robots could also share the

strategies (solutions) which are congenial to their survival. This requires a mech-

anism which not only shares the information but also maps the problems to the

best solutions in a decentralized manner since there is no central system controlling

them. One may argue that a specific robot among the fleet could act as a leader and

take the necessary decisions. Such an approach is, however, prone to failures [205].

For example, the leader itself could be a single of point of failure which could render

the fleet inoperable. Mechanisms which facilitate distributed knowledge sharing and

decentralized decision making thus become mandatory in such scenarios.

Autonomous Vehicles (AV) carrying passengers by road also form another sce-

nario. AVs need to optimize on both on-road comfort and efficiency in terms of low

fuel consumption. Modern-day AVs update their driving profile based on the expe-

rience collected from the environment. One of these updates, for instance, could be

to decrease the speed based on the road conditions. However, in order to be pro-

active, the AVs need to share their experience with other AVs such that they can

leverage this prior information and reduce redundant learning. For instance, two

AVs driving in opposite directions could inform one another about the respective

road conditions. Based on this information, the AV going towards a road which is
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in a bad state can adapt its driving strategy. The Information passed between AVs

could thus be represented as a feature vector that encodes the road health status

such as bumps, detours, debris, etc. Thus, in this scenario, the feature vectors of

different roads form the problems while the driving strategies to be used consti-

tute the solutions. Selecting the best solution for a particular road condition in a

decentralized manner forms an appealing research area.

Though the presented problem of selecting the best solution for a problem in a

decentralized and distributed manner may seem naíve, it puts up many interesting

challenges crucial in the realization of information sharing and mapping. These

include:

1. Finding mechanisms for the sharing of mappings across the network of nodes.

2. Deciding the meta-dynamics of the system such that the good solutions are

rewarded while bad ones are suppressed.

3. Handling asynchronous arrival of solutions and problems which can modify

the mapping information.

4. Continuous learning post the deployment of the system.

The next section presents briefly some of the underlying mechanisms found in the

BIS followed by the proposed approach and its associated meta-dynamics.

6.3 Brief Survey

Though AIS has figured in a wide range of closed-world problems, this survey de-

scribes only those encountered in decentralized, distributed and real-world scenarios.

A brief survey on work relevant to the one proposed herein also follows.

The primary function of the BIS is to distinguish between the self cells and

the non-self ones where the former are part of the host while the latter includes

everything else. Based on this classical definition, initial research in AIS catered to

security in the computational world. Of late, security has become a requirement in

the deployment of IoT based applications. Authors in [118] and [119] have proposed

AIS based intrusion detection models for IoT scenarios. Each of the nodes within
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the IoT develops its own local intrusion detection antibody-like sub-modules which

are shared among the nodes, thus making it a distributed system. Zhang et al. [208]

have used CLONALG [44] and AIRS [189] to provide a three-layered hierarchical

system for communication to improve security in smart grids. Though the work

on security cited above emphasized distributed sharing of knowledge in simulated

worlds, the AIS mechanisms used were inherently centralized. Implementing these

mechanisms in real, decentralized and distributed scenarios is the need of the day.

In the beginning, AIS was mainly used to implement security. It was only

later that the cognitive and learning properties of AIS were found to be useful

in other application areas [79]. The Immune Network theory was first used in

mobile robotics by Watanabe et al. [187]. They implemented adaptive behavior

arbitration in a robot within a dynamic environment. The antigens were mapped

to the sensor readings (states) obtained from the environment while the antibodies

were taken to be hand-coded atomic actions. Whitbrook et al. [193, 192, 194]

introduced evolutionary strategies to learn new actions. The actions were evolved

in the training phase while the state-action mappings were learned later during

execution. Augmenting the above work with sharing and mapping mechanisms in

multi-robot scenarios can greatly enhance the performance of such systems.

A recent work by Raza and Fernández [152] describes a multi-tier immunology

inspired framework to control heterogeneous mobile robotic systems. Their proposed

system uses mechanisms inspired by clonal selection and idiotypic network theories.

Watkins et al. [189] introduced an Artificial Recognition System (AIRS) as a

supervised classifier. Though AIRS was initially developed for a single computing

system, its efficacy on a network of devices has been discussed in [188]. Watkins

[188] has stressed the need for a communication mechanism to interact and share

knowledge amongst different components in the AIS.

AIS was introduced as a lifelong learning system by Sim et al. [176]. This

system was used to solve the 1D bin-packing problem. Inspired by the Immune

Network theory, Sim et al. discussed a self-sustaining network of interacting entities

which is computationally efficient and scalable. The implementation was however

confined to a closed-world optimization problem. There is no mention of mechanisms

to extend this work to suit real-world decentralized and distributed scenarios, as in
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a real BIS.

In the above discussed immuno-inspired work, problems are represented as anti-

gens while solutions form the antibodies. In order to sustain good solutions, their

concentration or population is increased as in the BIS. Controlling this antibody

population (concentration) in a decentralized and distributed manner is yet another

challenge. Early work has reported the use of the concept of resources [183, 189]

to control the population of antibodies. However, such a mechanism can work only

on a single machine or system wherein the information about all its resources is

known and accessible globally. One of the ways by which nature tackles this is-

sue in distributed and decentralized environments is by using an indirect form of

communication termed stigmergy [65]. This mode of communication operates when

each entity senses and acts based on its respective local environment which in turn

translates to the desired global change. Godfrey et al. [65], describe a cloning con-

troller that uses stigmergy to achieve controlled on-demand cloning in a distributed

and decentralized networked system. The work presented herein also uses the same

principle to manage and control the heterogeneous antibody populations.

6.4 The Proposed Approach

The proposed mechanism runs on each of the nodes or devices (or robots) connected

to each other and forming a dCPS. Through an input channel stream, the problem

instances can be added to these nodes on-the-fly. Each of the problem instances is

assumed to be represented in the form of a Feature Vector (FV), Fx, which could

be binary, symbolic or real-valued. The solutions which can cater to the problem

instances are also associated with the feature vector, Fy. Figure 6.1 shows an antigen

binding with an antibody and their equivalent Fx and Fy in the computational

world.

The nodes concurrently search for an appropriate mapping between the FVs

of a heterogeneous set of problem instances and a repository of solutions and select

the best solution. Sharing of the mapping information among the nodes accelerates

the search for the best solution. Intelligent Packets (iPkts) are used to share the

knowledge (mapping information) among the nodes comprising the physical network.

115



6.4. THE PROPOSED APPROACH

Figure 6.1: Computational counterparts of an antigen and antibody

Finally, the overall system maintains a minimal repertoire of solutions and the

associated mappings which can cover the entire problem space for a node. Each of

the nodes has initially a minimum number of solutions which may or may not cater

to the sets of problem instances. This chapter uses the concept of Localized Idiotypic

Networks (LIN) [92] which are basically formed from local interactions (stimulations

and suppressions) among the available solutions within a node. A solution receives a

performance feedback if it solves the problem instance within the node. The better-

performing solutions are stimulated (rewarded) while the lesser ones are suppressed

(penalized) mutually. This results in an increase in the population of the best

local solutions and the dwindling of the others as in the conventional Idiotypic

Network [85]. As shown in Figure 6.2, such LINs are formed concurrently across

the physical network of nodes so that eventually the best solution(s) survive in

the entire physical network. This makes the proposed mechanism decentralized and

distributed. Formally,

let P be the set of instances of a problem to be solved. For example, if we consider

the problem of sorting a sequence of numbers then the sequence {4,2,6,8,1}, is an

instance of this problem. Let S be the repository of solutions for P. Elements

in both P and S can be added to or deleted at any moment of time. A problem

instance x ∈ P and a solution y ∈ S are represented in the form of Fx and Fy,

respectively. Let M be the mapping between x and y. The objective is to find a

mappingM∗ such that for a given x:

|ζ(M∗(Fx,Fy))| ≥ |ζ(x, y)| ∀y ∈ S (6.1)

In this thesis, a physical network refers to an actual network of hardware nodes which are
interconnected through a wired or wireless medium. An Idiotypic Network, on the contrary, is a
meta-level network formed by the interactions between the solutions.
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Figure 6.2: Local Idiotypic Networks formed across a dCPS

where ζ(x, y) is a real-valued function used to evaluate the performance of a solution.

As can be observed from Equation 6.1, the goal is to search for a mapping such that

for a given problem instance, the solution with the maximum performance score

is selected. Mapping M∗ also allows many-to-one mapping between a subset of

problem instances and the best solution. Thus, alternatively, the purpose of the

proposed mechanism is to cluster the sets of similar problems instances with centroid

being the best solution. Hence, as discussed, the proposed approach maintains a

repertoire S that contains the minimal number of required best solutions. How to

share and exploit the knowledge amongst a network of devices is the challenge.

The following sections describe the critical components of the proposed mech-

anism.

6.4.1 Intelligent Packets Migration

Sharing of information within a collective of nodes is traditionally realized using

broadcasting. Though this method of sharing is simple and effective, it consumes a

fair amount of energy. Energy conservation is vital in multi-robots and IoT scenarios

wherein frequent charging may not be feasible. This chapter therefore extends and

use an Intelligent Packets Migration (IPM) scheme as the one proposed in [165].

In this scheme, each mobile agent, dubbed as Intelligent Packet (iPkt), decides

its migration strategy based on the current state of the environment. They can be
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either autonomous or controlled by the participating nodes in the physical network.

Each iPkt is associated with a unique solution and contains the FV (Fy) and related

meta-information about a solution namely an ID, activation value and a performance

score. As can be seen in Figure 6.2, the nodes wherein LINs are formed are the ones

where problems have currently occurred. Thus, based on the state of the nodes, the

iPkts are migrating towards it which is in contrast to broadcasting based methods.

6.4.2 The Proposed Mechanism

The pseudo-code for the overall functioning of the proposed mechanism is given in

Algorithm 4. The terminologies and symbols used are explained defined below.

• Node (N): A node N is a low-end computational device which has communi-

cation capabilities. A Pi board, robots, laptops, mobile devices, servers, etc.

form examples of typical nodes. These nodes when connected to each other,

form a physical network W. Nodes may also be envisioned to be connected to

sensors and actuators for sensing and control.

• Mapping (M): This mapping is a relation between the two entities viz. the

instances in set P and the associated best solution.

• Affinity (ψ): Affinity ψ is the strength of mapping between the Fx and Fy .

A high ψ value corresponds to a strong mapping and vice-versa.

• Performance Score (ζ): After a solution solves a problem instance, it receives

a performance score ζ which provides the measure of the efficacy with which

the problem was solved. This score, for instance, could be a sum of output

feedbacks such as execution time, memory consumed, etc.

• Activation (τ): It is the overall sum of the stimulations (Sti) and suppressions

(Sup) received by a solution.

• Internal Repertoire (IRep): The repertoire of solutions and mapping informa-

tion available within a node are stored in IRep.

• External Repertoire (XRep): Solutions and mapping information received

from other nodes (through sharing) are maintained in XRep.
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Algorithm 4 The proposed mechanism running concurrently at each node
1: P = ∅; {The set of current problems}
2: S = ∅; {The set of current solutions}
3: Fx = FV of problem instance x in P
4: Fy = FV of problem instance y in S
5: while True do
6: Add new problem instances to P; {if available}
7: DiffuseDangerSignals(); {diffuse signals to the neighbouring nodes to attract iPkts using

equations 6.4 and 6.5}
8: S ← S ∪ IRep ∪ XRep; {append the solutions available in the internal and external reper-

toire to S}
9: for all ∀ x ∈ P do

10: for all ∀ y ∈ S do
11: Aff ← CalcAffinity(Fx,Fy); {using equation 6.6, calculate the affinities between the

FVs of the problem instances and solutions}
12: if psi ≥ ψth then
13: CandAbs← append(y)
14: end if
15: end for
16: Calculate Stimulations using equation 6.8;
17: Calculate suppressions using equation 6.9;
18: Update the net activation after stimulations and suppressions using equation 6.10;
19: Select the solution having the maximum activation value;
20: Execute the solution and get the feedback score;
21: If allowed, clone the iPkt associated with the best solution and Hyper-mutate the Fy of

each cloned iPkt; {cloning controller clones based on resources}
22: Allow the iPkts and its clones to migrate and share the new mappings;
23: end for
24:
25: end while

The proposed approach integrates concepts not only from the Immune Network the-

ory but also from the Clonal Selection and the Danger theories to suit both static

and dynamic network scenarios. Nodes may asynchronously receive different sets of

problem instances which are needed to be solved using the best available solution.

New solutions may also be added to the nodes. The task of the proposed mechanism

is to find the mapping which selects the best solution for a given problem instance.

Since new problem instances and solutions could crop up or change at the various

nodes, the associated mappings may also vary making the search complex. To tackle

this dynamic scenario, the proposed mechanism leverages the concepts from Danger

theory to first attract the candidate solutions with the required mappings. This is

then followed by interaction between the different solutions and problems instances

as in Immune Network theory. Finally, the best solution is selected, cloned and the

mapping is mutated and shared among other participating nodes. The Clonal Selec-

tion theory based mutation and cloning contribute towards the evolution within the
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system. The proposed mechanism has three essential elements - Selective Search,

Localized Idiotypic Network and Decentralized Population Control. Selective Search

(steps 7-15) corresponds to the search and screening of the candidate solutions which

may have the required mappings to select the best solution. Search is enhanced by

emanating danger signals while affinity decides the candidate solutions among all

the solutions that are considered to be capable to solve the problem instance. The

Localized Idiotypic Network is responsible for the interactions between the solutions

and the problems as described in Sec. 6.4.2.C and in steps 16-18 of Algorithm 4.

After a solution is selected and used to solve the problem instance, it is cloned,

mutated and shared. In decentralized and distributed systems, communication cost

is desired to be low. Since mapping information of each solution is wrapped and

shared using iPkts, excessive cloning of these packets can cause a population to

explode. This could result in higher communication cost and may choke the phys-

ical network in the worst case. To avoid such networking failures, a decentralized

population controller has been used. The metadynamics of the proposed mechanism

are presented below.

Metadynamics

A. Danger Signals

Whenever a problem instance which needs to be solved occurs at a node, the node is

said to be distressed and diffuses Danger Signals (DGS) across its neighbors. These

DGS have been modeled based on the pheromone diffusion mechanism as described

by [69]. The signals have two parameters —strength (Sg) and lifetime (Tlife) which

wane at each hop across the distressed node that emanated it. This forms a DGS

gradient, with signals in the outer periphery having lesser strengths. The extent

to which these signals diffuse in an omni-directional manner is set by a constant

called the signal spanning length (lspan). The signals also carry with them the FV

of the antigenic problem instance and penetrate into the neighboring nodes in the

form of a diffused signal gradient. When the iPkts that move around the network

in a conscientious manner [128], encounter these DGS at a node, they compare the

FV within them with the FV within the signal at that node. If this amounts to a

recognition (i.e., ψ(Fx,Fy) ≥ ψth), they follow the signal strength gradient towards
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the distressed node; else they ignore the signals and move on conscientiously as in

[69]. DGS also have a lifetime and thus are volatile.

The dynamics of these DGS are expressed by the DGS gradient (∆Sg) and

lifetime gradient ∆Tlife given by—

∆Sg = Sgmax/lspan (6.2)

∆Tlife = Sgmax/lspan (6.3)

where Sgmax is the maximum signal strength diffused between distressed node and

its one-hop neighbor.

The strength Sg(H) and lifetime Tlife(H) of DGS at neighboring nodes with

hop-count H is given by—

Sg(H) =


Sgmax, if H = 0

Sg(H − 1)−∆Sg, 1 ≤ H ≤ lspan
(6.4)

Tlife(H) =


Sgmax, if H = 0

Tlife(H − 1)−∆Sg, 1 ≤ H ≤ lspan
(6.5)

After the solutions have reached the distressed node, an affinity measure is used to

filter out the candidate solutions, as described in the next subsection.

B. Affinity

An antibody is said to recognize an antigen if its paratope has a high affinity with

the epitope of the antigen. In the BIS, affinity is based on the degree of complemen-

tarity between the shapes of the paratopes and the epitopes. In the computational

realm, instead of complementarity, the concept of similarity is often defined as the

affinity measure and could be taken to be proportional to the Euclidean distance

between the FVs the problem instance and the solution. Affinity ψ(Fx,Fy) between
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the Fx of the problem instance and Fy of the solution is given by,

ψ(Fx,Fy) = ψmax −
√

Σni=1(Fxi −Fyi)2 (6.6)

such that, ψmax =
√
n where n is the length of the FV and i ≤ n.

A solution is a candidate solution for a problem instance, if the affinity ψ

between the associated FVs is greater than or equal to an affinity threshold ψth,

given by

ψth = µ ∗ ψmax (6.7)

where µ is a system constant. Lower values of ψth will attract more numbers of

candidate solutions towards the distressed node or site of the antigenic attack and

vice versa.

Once the candidate solutions have been found, they take part in the interaction

among themselves, forming an Idiotypic Network, as advocated in [85]. Since such

idiotypic networks are forms concurrently among various nodes, they can be termed

as Localized Idiotypic Network (LIN), as described in the following subsection.

C. Localized Idiotypic Network

Even in the absence of new problem instances from the input stream, stimulations

and suppressions occur between the solutions concurrently across the nodes in the

network thus forming an LIN. Depending upon which solution has the better per-

formance, rewards and penalties in the form of Stimulations (Sti) and Suppressions

(Sup) are added to the activation (τ) of the interacting solutions. In the computa-

tional world, the nodes connected to a network are the local interaction sites where

the iPkts carrying mapping information of the solutions, interact and exchange their

respective Sti and Sup.

A solution gets stimulated by another if its ζ is better than the other, else it

gets suppressed. The stimulations Stiji received by solution yi from the solution yj
is given by—

Stiji = ψ(Fyi ,Fyj ) + α ∗ τj , 0 < α ≤ 1 (6.8)
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where, ψ(Fyi ,Fyj ) is the affinity between the solutions yi and yj , α is the scaling

factor and τj is the activation value of yj .

Similarly, the suppressions Supij received by yj from yi is given by—

Supij = γ ∗ ψ(Fyi ,Fyj ) + δ ∗ τi, 0 < δ ≤ 1 (6.9)

where γ is the discounted penalty factor, δ is the scaling factor and τi is the activation

value of yi.

Activation τ received by an solution y is equal to the sum of total stimulations

and suppressions received from the antigens and interacting antibodies. In this work,

Farmer’s discrete equation model [52] for an idiotypic network has been leveraged

to calculate the total activation which is given by—

τ = τprev + Sti− Sup (6.10)

where τprev is the activation value of a y after the last LIN interaction.

The solution with the maximum τ value is chosen to solve the problem instance.

This best solution then receives the performance score and is eligible to clone and

mutate after packing its associated mapping information into an iPkt.

D. Cloning and Distributed Population Control

Survival of the fittest defines the rationality of nature. Only those individuals who

can compete and survive are allowed to produce off-springs. The rest are eventually

purged from the environment. The BIS follows the same rational behavior for the

immune cells it harbors. Only those immune cells which are better than the rest

in curbing the antigens are allowed to proliferate. While this behavior seems obvi-

ous, the mechanisms that facilitate this selective and efficient proliferation within

large IC populations in a distributed and decentralized manner within a vertebrate

body remain intriguing especially in the absence of a centralized population track-

ing system. Besides, these biological population control mechanisms also inhibit the

exponential growth of the population of the immune cells lest it bloats the whole

body.

In the proposed mechanism, the iPkts carrying the mapping and other meta
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information of a solution, meet at interaction site within the node. This interaction

site is implemented in the form of a queue. When the migrating iPkts reaches a

node N , they first enter this queue where interactions in the form of Sti and Sup

takes place. The total number of clones which an iPkt can produce depends on three

factors– the maximum queue length (Qmax), activation (τ) and maximum allowed

activation (τmax) where Qmax is the maximum allowed number of iPkts that can

enter the interaction site (queue) and τmax is the maximum value of activation an

iPkts can have. The equations behind the population control for a node N are

provided below—

NC = CloningSpace ∗ τ/τmax (6.11)

s.t.

CloningSpace = Qmax −Qcurrent (6.12)

whereNC is the allowed number of clones for a node, CloningSpace is the maximum

possible number of clones for the concerned node and Qcurrent is the current length

of the queue.

Based on the conditions above, if an iPkt clones itself, then depending upon

the value of NC and minimum activation value (τmin) required to generate a clone,

its activation value τ is reduced to the value given by—

τ = τprev −NC ∗ τmin (6.13)

Hence, by sensing the number of iPkts already available at an interaction site, the

cloning controller through stigmergic means, approximates the global population of

other iPkts across the network. If the queue of interaction site is full then it is safe

to conclude that the overall network is bloated with iPkts. This forms the basic

principle behind the distributed population control.

E. Hyper-mutation

Some of the immune cells undergo somatic hyper-mutation [43] causing more effec-

tive changes in the surface receptors of their paratopes, thus fortifying the attack

on the antigens. This process adds diversity to the BIS and thus aids in the evo-

124



6. ON IMMUNO-INSPIRED SOLUTION SELECTION

lutionary process. In the computational world discussed herein, this is achieved by

using affinity-proportional mutation to candidate solutions that can cater in a better

way to new problem instance. A Gaussian mutation function is applied to each of

the attributes of Fy within the cloned iPkt. For affinity-proportional mutation, the

following exponential function has been used—

λ(ψnorm) = e−ρ∗ψnorm (6.14)

where λ(ψnorm) is the function representing affinity-proportional mutation and ψnorm
is the normalized affinity calculated by, ψnorm = ψ/ψmax.

Thus, the overall mutation of each attribute of a FV is given by—

Fmyi = Fyi + λ(ψnorm) ∗G(0, ν) (6.15)

where Fmyi is the ith attribute of hyper-mutated Fy, G(0,ν) is the Normalized Gaus-

sian Probability Distribution function and ν is the desired variance.

F. Apoptosis Life time of an iPkt is represented as the remaining number of

hops it can take. Activation also represents the amount of energy within a cell.

Both of these factors decide whether or not an iPkt is allowed to be reside in the

network. With each hop to a node, the time to apoptosis Γ is decreased by unity

and is given by–

Γ(H) =


Γmax, if H = 0

Γ(H − 1)− 1, 1 ≤ H ≤ Γmax

(6.16)

An iPkt is purged out of the system if,

(Γ(H) = 0) ∨ (τ < τmin) (6.17)

The mechanism proposed in this chapter are designed to cater to the resource-

constrained devices. The next section provides the computational complexity of

Algorithm 4.

125



6.5. EXPERIMENTS AND RESULTS

6.4.3 Time Complexity Analysis

The equations presented above are linear having a maximum time complexity equiv-

alent to O(n). Lines 6 - 8 and 16 - 22 all adds up to the complexity of O(n). Loop

from lines 9 - 15 have a worst case time complexity of O(n2). This loop though

appears to be the most resource intensive part of Algorithm 4, however, since the

environment is distributed, the complexity of the loop is shared across the nodes.

Greater the nodes, lesser will be the complexity of the loop. Thus, the overall

complexity of Algorithm 4 varies between O(n2/N) to O(n2).

6.5 Experiments and Results

This section discusses the experiments and results from both the emulation and

real-robots scenarios.

6.5.1 Emulation

The problem of sorting of input sequences (problem instances) at different nodes of a

dCPS has been chosen as a problem to test the efficacy of the proposed mechanism.

This section initially discusses the problem and its features and then present the

experiments and results obtained.

Sorting is one of the most basic and practical problems in the computational

domain. According to [108], more than 25% of CPU time is involved in sorting op-

erations. Sorting algorithms can have different time complexities depending upon

the type of input data. For example, in general, it is known that Insertion-Sort

is worse than Quick-Sort. However, Insertion-Sort performs better when the input

comprises nearly sorted permutations of sequences of numbers. It can be inferred

thus that the choice of the algorithm is dependent on the characteristics or features

of the problem instance. In the work reported in [75], the author has used a total

of four features to form the FV. These are - the length (L), the Number of Inver-

sions (INV ), the Number of Runs (RUN) and the Longest Ascending Subsequence

(LAS) where, L denotes the length of the input sequence, INV is the total number

of inversions present in a sequence, RUN is the maximum number of continuous

ascending subsequences and LAS is the length of longest ascending subsequence.
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Table 6.1: System parameters and their values

Parameter Value Parameter Value Parameter Value Parameter Value
µ 0.5 Sgmax 100 lspan 2 ρ 2
α 0.4 δ 0.2 σ 1 ν 0.6

Γmax 1000 τmin 5 τmax 20 v 5

INV ranges from 0 for a completely sorted sequence to L∗ (L− 1)/2 for a reversely

ordered sequence. Similarly, RUN is 1 for a sorted permutation and is equal to L

for a reversely ordered sequence while LAS is L for a sorted sequence and 1 when

the same sequence is in reverse order. Thus, the shape space to be chosen in the

problem of sorting is real-valued. In the experiments, the same set of features as in

[75] have been used and thereby, the value of n is equal to 4. It may be noted that

feature extraction is itself a challenging task. Fortunately, with advancement in

various feature extraction and machine learning methods, it is possible to represent

a given problem instance with its features. In the course of the experiments, it is

assumed that the features are available as a part of the dataset.

Though decentralized and distributed systems have their advantages, experi-

mental evaluation becomes difficult since there is no central authority. Hence, one

separate dedicated computer node served as a log server to record events such as

sharing, executions, etc. The results are thus presented with reference to a step-

count managed by the log-server. It may be noted that the log-server does not

interfere with the functioning of the proposed approach. Each of the experiment is

repeated 10-times and the average of all the trials is reported.

6.5.2 Experiment on a 10-node physical network

The first set of emulation experiments were performed on a 10-node network con-

nected in a grid topology and created using 5 Personal Computers (PC), each

running two instances of Tartarus [163, 167], a multi-agent platform, developed

in-house. Tartarus facilitates the building of an overlay network and supports

programming and cloning of mobile agents [113, 211]. The iPkts are implemented

using mobile agents [113] though other variations such as peer-to-peer messaging

could also be used. Each instance of Tartarus represents a node running on an IP.

https://github.com/tushar-semwal/ProjectTartarus
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Unique Port numbers are used for TCP/IP socket connections between the nodes.

Initially, the Intrinsic Repertoire (IRep) is fed with four algorithms as the potential

solutions – Quick-Sort (QS), Insertion-Sort (IS), Shell-Sort (ShS) and Selection-Sort

(SelS). The problem dataset is divided into four sets– P1, P2, P3 and P4. P1 com-

prised all 40,320 permutations of length 8 (8P8) from the set {1,2,3,4,5,6,7,8}. Set

P2 contained 2000 randomly permuted sequences of length 1000 each. P3 consti-

tuted a set of 2000 nearly-sorted permutations of length 1000 each and P4 contained

2000 randomly permuted input sequences of random lengths varying from 8 to 1000.

Feature vector Fy carried by each iPkt is randomly initialized using one of the FVs

from the problem dataset chosen. Algorithm 4 was used to conduct the experiments.

Table 6.1 provides the values of the constant parameters used during the course of

the experiments.

The following approach has been adopted for better clarity and ease in the

analysis:

• Since the proposed mechanism does not have a training phase, a fixed number

of problem instances are randomly chosen from each of the problems sets P1,

P2, P3 and P4 and are then introduced to half of the total number of nodes

in a random manner.

• After specific stopping criteria is met, the system’s learned knowledge is tested

on the remaining number of problem instances.

• The trend in the learning of the mechanism and the number of quality solutions

selected is then analyzed and reported in this chapter.

In this experiment, at each iteration of the Algorithm 4, antigens in the form

of input sequences along with their FVs were allowed to appear in a controlled and

defined manner, at random nodes concurrently (this thesis will refer to this as one

barrage of antigenic attacks). The antigenic attacks caused the associated node

to diffuse the DGS to its neighbors. Each experiment was repeated 10-times and

the average of the results are reported. Figure 6.3a, 6.3b, 6.3c and 6.3d provides

the plots for the population of the algorithms on different antigenic set of input

sequences P1, P2, P3 and P4 respectively. For convenience, iPkt containing map-
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(a) (b)

(c) (d)

Figure 6.3: Population curves for a 10 node network: (a) Problem instances com-
prising all possible permutations of length 8 (b) Problem instances comprising
randomly permuted sequences of length 1000 (c) Problem instances comprising
nearly sorted sequences of length 1000 (d) Problem instances comprising randomly
permuted sequences of length varying from 8 to 1000

ping information associated with Insertion, Shell, Quick and Selection Sort will be

referred to as IS-iPkt, ShS-iPkt, QS-iPkt and SelS-iPkt, respectively.

It may be noted that the population count represents the trend in the learning

of the system running the proposed mechanism. Since the nodes select only those

solutions with highest populations, an increase in the population of a particular

solution across the network signifies that the nodes have arrived at the best solution

for the corresponding problem instance.

Problem set P1: As can be seen from Figure 6.3a, the population of IS-iPkts

emerged out to be the winner by increasing in population while suppressing those

carrying the other algorithms. This happened because Insertion-Sort performed
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better than the other algorithms and hence received more rewards and therefore

stimulations from the iPkts of the other populations (ShS-iPkts, QS-iPkts and SelS-

iPkts), causing an overall increase in its population (concentration) in the network.

As a result, the others which performed badly received more of penalties and were

suppressed greatly by the IS-iPkts. Repeated penalties and hence suppressions

from IS-iPkts, drastically lowered the population of those iPkts which were carrying

mappings of badly performing sorting algorithms (ShS, QS, and SelS). It is thus clear

that after step-count = 500, the remaining population is dominated by IS-iPkts. It

may also be noted that the trends show an on-demand selective domination in the

better/ best-performing algorithm in a distributed manner across the network. At

step-count = 850, a copy of a previously fired barrage of antigens was introduced

in the network causing a secondary response [43] as can be seen from the peak at

around step-count = 980. Beyond this, the population of the best iPkts (IS-iPkts)

seems to wane, indicating that the rate of rewards and hence stimulations are dying

down due to the absence of any antigenic attacks. Beyond step-count = 1000, only

the best iPkts increase in number to contain the fresh attack. The other iPkts do

not tend to increase in population as they are by no means effective in containing

the attack by the same kind of antigen.

The results presented reveal some interesting aspects. Though it is well known

that Insertion-Sort is theoretically worse than Merge-Sort and Quick-Sort, there is

a rapid increase in the population of IS-iPkts (Figure 6.3a) indicating that it is the

best choice when the input problem instance to be sorted is of shorter length. One

may thus infer that the proposed mechanism can wean out the best-suited algorithm

(viz. Insertion-Sort) for set P1 as confirmed by [75]. What is more interesting is

that the population of the iPkts representing the better/best algorithm suppresses

those of the others carrying the less performing ones. The winning population thus

emerges concurrently across the network in a distributed and decentralized manner.

Problem set P2: Figure 6.3b shows the plot for data set P2 which contains ran-

domly permuted input sequences of length 1000. As can be seen, after the first

barrage at step-count = 80, all populations seem to increase except that of IS-

iPkts. After step-count = 120, the population of ShS-iPkts and SelS-iPkts also
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Table 6.2: A summary of the results on the 10-node network

Problem
set

Type Known
best

Achieved
best

P1 All permutations of short length sequences Insertion
Sort

Insertion
Sort

P2 Randomly permuted long length sequences Quick
Sort

Quick
Sort

P3 Nearly sorted long length sequences Insertion
Sort

Insertion
Sort

P4 Randomly permuted sequences of length varying from 8
(short) to 1000 (long)

Quick
Sort

Quick
Sort

seem to stagnate. At step-count = 470, it is evident that QS-iPkts is the best for

the kind of data in the set P2. QS algorithm seems to gain most of the rewards and

stimulations while the others eventually decline in population.

It can be seen that for instance set P2, there is no increase in the population

of IS-iPkts. This emphasizes the fact that these iPkts received suppressions from

others and hence were not allowed to proliferate into the network. For the first

three barrages, QS-iPkts, ShS-iPkts and SelS-iPkts underwent multiple interaction

scenarios. The first scenario is when they all received stimulations from the IS-iPkts

as all of them carry algorithms which are definitely better than the Insertion-Sort

for the set P2. The second scenario is when SelS-iPkts and ShS-iPkts interacted

and mutually stimulated one another. Since QS-iPkts is the winner the chances

of receiving stimulations from it are rare. The third kind of interaction is where

QS-iPkts received stimulations from ShS-iPkts, IS-iPkts and SelS-iPkts. After

the fourth barrage, QS-iPkts seems to dominate and win the solution space clearly.

It can be further analyzed that the IS-iPkts are heavily suppressed by the other

iPkts due to which their population dwindles.

The initial rise in the population of other three algorithms is due to the fact

that they received stimulations from IS-iPkts but eventually QS-iPkts, due to their

high valued performance, rapidly proliferated and suppressed other types of iPkts.

Problem set P3: In Figure 6.3c, antigenic data was in the form of nearly sorted

sequences of size 1000. The populations of both ShS-iPkts and IS-iPkts seem to

increase initially due to their higher performances but are soon dominated by that

of the latter. The increased population causes increased proliferation across the
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network, thus suppressing the populations of SelS-iPkts, QS-iPkts and ShS-iPkts.

When the observations with that from Figure 6.3a are coupled, one may conclude

that Insertion-Sort seems to be the best option when it comes to sorting of small

length sequences or nearly sorted long length sequences. Further, Figures 6.3b and

6.3c show that Shell-Sort performs satisfactorily for instances from sets P2 and P3,

possibly indicating that this algorithm could emerge as the winner when it comes

to problem instances comprising long length nearly sorted or randomly permuted

sequences. However, the same requires more investigations and thus provides scope

for future work.

Problem set P4: Figure 6.3d shows the population graph when the length of the

input sequences varies from 10 to 1000 and the sequences are randomly permuted.

Since the data set P4 contains a mix of different types of input sequences, it is clear

from the figure that both ShS-iPkts and QS-iPkts have about the same population

size. It is then at step-count = 1300, QS-iPkts is the winner. It may be noted

that since the antigenic sequences taken out of the set P4 could have had drastically

different features, other algorithms such as Selection-Sort also seem to increase in

population. In brief, the heterogeneity of the input data can cause multiple algo-

rithms to dominate in a network.

A summary of the results on a 10-node network is shown in Table 6.2. As can

be seen from the table, the results obtained validates the correctness of the proposed

mechanism.

6.5.3 On-the-fly Addition of Solutions

The previous experimental results show the case wherein the number of solutions

(viz. algorithms) was fixed a priori. Each of the 10 nodes contained all the solutions

and the task was to find a mapping such that the best solution was selected for a

given problem instance. Though this may seem trivial, the experiments validated the

correctness of the proposed approach. A new set of solutions could also be added to

the existing repertoire of solutions, on-the-fly. It may be noted that, the system will

now find mappings taking these new solutions too into consideration. Figure 6.4a

shows the learning phase when new solutions were added to the repertoire randomly
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(a) (b)

Figure 6.4: On-the-fly addition of new solutions for the experiment on problem
instances comprising sets (a) P1 and (b) P4

for the problem set P1 . As can be seen, initially there were only two solutions (viz.,

Shell and Selection) and the mechanism found the best (Selection) among them.

It may be observed that at step-counts 150, 620, 900 and 1005, the new solutions

Quick, Insertion, Merge and Heap respectively, were added. The addition of these

solutions changed the dynamics within the system and made it adapt and arrive at

the new best solution viz. Insertion. Figure 6.4b shows the case when the set P4
which is a mix of sequences having different features, yields multiple best solutions.

As can be seen from Figure 6.4b, for set P4 both Quick and Shell sort emerged to

be the best solution.

The mechanism was thus capable of finding the best solutions from amongst

the old and newly added ones. Freshly added solutions tend to change the course

of mappings thereby exhibiting the adaptive and self-organizing abilities of the pro-

posed mechanism.

6.5.4 Experiments on a 50-node physical network

To understand the behavior of the mechanism when scaled, experiments using a

network of 50 nodes deployed over 10 PCs with each PC hosting 5 instances of the

Tartarus platform, were performed. The system constants were taken to be the same

as in Table 6.1. Experiments using P2 and P3 data sets, the results of which have

been portrayed in Figures 6.5a and 6.5b respectively. As can be seen, the trend is
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(a) (b)

Figure 6.5: Population curves for the experiment on problem instances comprising
sets (a) P2 and (b) P3 repeated on a 50-node network

similar to that in Figures 6.3b and 6.3c with Quick-Sort and Insertion Sort having

the maximum population counts, respectively. Since the increase in the number of

nodes in the physical network did not alter the behavior of the system, one may

conclude on the scalability of the mechanism.

Figure 6.6: Performance in a 50-node dynamic network for the experiment on set
P4
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(a) (b)

Figure 6.7: Effect of (a) Influx Rate and (b) Barrage Size on learning

6.5.5 Performance in a Dynamic Network

A dynamic network is a physical network wherein the nodes may connect or dis-

connect randomly thereby changing topology. In all the previous experiments, the

network was assumed to be static with no new nodes being added or removed from

the system. However, in real-world scenarios, this may not be the case. For instance,

in a Mobile Ad-hoc Network (MANET), the nodes are mobile and thus could eas-

ily connect or disconnect from the network. Depending on the application, this

dynamism could be high or low. To study the performance of the proposed mecha-

nism in dynamic networks, a 50-node physical network wherein nodes could break

off and re-connect to the network with a probability p, was used. The value of p

was varied from 0 (static network) to 1 (highly dynamic network). p = 1 represents

a case where a node will break or reconnect 10 times in a second. Figure 6.6 shows

the number of step-counts taken to converge on set P4, for different values of p.

As can be seen, the convergence is faster for lower values of p. As p increases,

the number of step-counts also increases. Due to the high dynamism (p ≥ 0.7), the

probability of diffused DGS getting severed is high. This in turn causes the iPkts

containing the mappings to be shared, to be misled thereby delaying convergence.
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6.5.6 Effect of Influx Rate

The Influx Rate (η) is the percentage of the total number of nodes which receive a

barrage of problem instances at any instant of time. Figure 6.7a shows the learning

trends for different values of η. As can be seen from the figure, as η increases,

the number of step-counts required for convergence decreases till around a value of

60% in this case. This is so because as η increases, more number of nodes become

involved in finding the solution for the given problem instance, thereby increasing

the rate of sharing and hence convergence.

However, beyond η = 60%, the step-count increases thereby slowing the con-

vergence. This is because due to high η, the number of iPkts generated by the

corresponding nodes, increases. On a limited bandwidth scenario, such an effect

can choke up the network thereby slowing down the convergence [65].

6.5.7 Effect of Barrage Size

Barrage Size β, the number of problem instances per barrage, has a direct effect on

the learning rate of the proposed mechanism. For low values of β, it is obvious that

generalization and hence learning is difficult. On the other hand, for large values

of β, the mechanism may try to overfit which could mean a waste of computational

resources. This can be seen in Figure 6.7b where the number of step-counts required

to find an appropriate mapping decreases with an increase in β initially. This trend

lasts up to a certain point when β = 10. Beyond this, the mechanism requires an

increasing number of step-counts for convergence. One may conclude that the range

of values of β for optimal performance is application-specific and may require to be

found empirically.

6.5.8 Effect of Danger Signals

If no Danger Signals (DGS) were diffused by a distressed node, the iPkts would

possibly be mislead and many a time be late in reaching such nodes. The presence of

DGS facilitates selective guidance of these iPkts towards the distressed node. iPkt

are inherently programmed to compare the affinity between the feature vectors, Fy
and Fx. If this affinity is higher than the affinity threshold τ , the iPkt starts to move
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Figure 6.8: Effect of Danger Signals (DGS)

along the danger signal gradient towards the distressed node. Due to the presence of

the signal gradient, they tend to move towards the distressed node along the shortest

path. If such signals were to be diffused farther into the network, the amount of

time taken by the pertinent iPkt to reach the distressed node would be drastically

reduced. However, this could be computationally expensive and at times a futile

exercise in case of dynamic networks. Figure 6.8 depicts boxplots for step-counts for

both cases viz. with and without the use of DGS. As expected, the mean step-count

required for finding the best solution when DGS are used is less than that when

these signals are not used. Further, it can be seen from the boxplots that when the

proposed approach does not use DGS, the variance in the step-counts required to

find the best solution, is high. This, as already mentioned, is because of the absence

of any selective guidance offered to the iPkts which results in an increase in the

convergence time. On the contrary, the use of DGS, causes the system to arrive

at the best solutions in almost the same time increasing repeatability to an extent.

For the reference, a boxplot of step-counts when sharing is disabled is also shown in

Figure 6.8.

6.5.9 Experiment on an IoT scenario

As a proof of concept, the proposed mechanism was also tested on a 50-node network

formed within 10 computational devices. Each of these 10 devices was attached to

a Temperature sensor so that it constituted an IoTized network. The data from

these 10 devices were distributed to the emulated nodes formed within them, with
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Figure 6.9: An IoT node
comprising a Grove V1.1 Tem-
perature sensor and Raspberry
Pi 3

Figure 6.10: Population curves for a 50-node
IoT

each containing 5 nodes. Temperature sensors were of the Grove V1.1 make (shown

in Figure 6.9). The experiments performed comprised sorting the sensory values

obtained from these sensors at each of the 50 nodes. Figure 6.10 presents the results

of the experiment in a graphical manner. As can be seen, during the initial learning

phase of the mechanism, the population of all the four different algorithms increased

but eventually, Insertion-sort and Selection-sort emerged as the winners. Analysis

of the raw sensory data revealed that the values of INV and RUN were low which

means that the values generated by the temperature sensor are usually the same

for fairly large and continuous periods of time. This is so because the ambient

temperature changes at a very slow rate due to which the data is most often nearly

sorted. This means that Insertion-Sort should be the winner. The results obtained

from the experiment authenticate the same.

6.5.10 Comparison with the non-sharing approach

A system which shares the knowledge with the participating entities will generally

converge faster than the one where the entities learn in isolation. To demonstrate

the efficacy of sharing among peers, a comparison of performance of the proposed

mechanism with and without sharing has been shown in Figure 6.11.

When sharing is absent, different nodes will arrive at the best solution at

different step-counts. In Figure 6.11, each dotted line thus, represents the trend in
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Figure 6.11: Comparison of results: With and Without sharing

the average of the populations of a particular solution taken across all the nodes.

As can be observed, the best solution (dotted black lines) was found at the 960th

step-count which is far later than that when sharing was used (step-count 480 for

solid black lines). The faster convergence results due to the fact that sharing most

of the time allows the best mappings to reach the nodes while the search is still

on. Sharing thus makes the system act akin to a typical parallel and distributed

search scenario. For clarity, only the best solutions for each of the case (i.e., with

and without sharing) are shown in dark lines while the population of other solutions

is grayed out.

6.5.11 Experiments using Real-Robots

To test the efficacy of the proposed mechanism in real-world scenarios, it is essential

to embody it onto real situated robots. This section presents a proof-of-concept of

the mechanism running on a physical network of real-robots.

With a surge in the popularity of e-commerce, companies such as Amazon and

Flipkart maintain large warehouses to store their inventory. In conventional Ware-

house Management Systems (WMS), a human operator uses manual loading vehicles

to pick and place items within. Robots, from Kiva and GreyOrange, are now been

widely used by such e-commerce firms to smoothen the process of picking, packing

and delivering items ordered online. As soon as an order arrives, a centralized entity
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Figure 6.12: Experimental arena with robots, paths and their sub-paths

decides a path for the robot to follow so that it can reach the rack which contains

the corresponding item. QR codes laid on the floor of the warehouse aid in guiding

the robots to their respective destinations. Depending on the characteristics of the

path created, the robots may need to adapt their velocities to ensure that they stay

on the path or track. Further, based on the weight of the rack and the type of items

within, the robot may also need to minimize any form of vibrations.

The robots populating such scenarios may encounter different types of sub-

paths such as straight, curved, U-turns, etc., as they move. Hence, they may need

to use different strategies or Path-Following Algorithms (PFA) to cater to these

sub-paths. They could choose from a dynamic-set of PFAs and eventually adapt by

finding out the best one for a given sub-path. Considering the changing nature of

the environments the robots work in, formulating a generic PFA which can cater

to all the sub-paths, is a difficult problem. On the contrary, designing a system

which receives a stream of PFAs and then selects the best suited for the given sub-
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Table 6.3: Sub-paths and their features

sub-path (sp-
X)

Description Linear-
ity

Curva-
ture

90° Sharpness

sp-a curved path 0.3 0.7 0 0.2
sp-b path with 90°

turns
0.5 0.3 0.9 0.7

sp-c straight path 0.7 0.2 0 0
sp-d acute turns 0.4 0.5 0.3 0.9

path, would be simpler and viable. Thus, the proposed mechanism is mapped into

a warehouse scenario to try and solve this issue. In this context, the solutions are

the different PFAs (or heuristics or rules) while the problem instances constitute the

paths having different features (linearity, curvature, 90°, sharpness of turn as shown

in Table 6.3). Figure 6.12 depicts a small warehouse area of size 3m x 3m populated

by two real-robots used to prove the practical viability of the proposed mechanism

experimentally. The black strips act as the paths to be followed. Two main paths,

Path-1 and Path-2 and their directions are shown using differently colored (green

and blue) arrows. As can be seen, each path is composed of several sub-paths with

varying linearity, curvature, and 90° turns as described in Table 6.3. For clarity,

a few of these sub-paths have been labeled in Figure 6.12. Path-1 is made up of

sub-paths sp-a, sp-b and sp-c while Path-2 comprises sp-a, sp-b, sp-c and sp-d. It

may be noted that sub-paths of the same type need not have exactly the same

features. For instance, the sub-paths of type sp-a in Path-1 and that in Path-2 are

noticeably different. The figure also shows two separate cross-checkerboard flags,

one for each path (green for Path-1 and blue for Path-2), which signify the start and

end points of a lap for each of the paths, respectively. Since each path is a cycle, a

robot is said to have completed one lap if it reaches the respective start point of the

corresponding path.

For experimentation with the real-robots, a pair of LEGO MINDSTORM NXT

robots has been used. The robots were based on a two-wheel differential drive with

one castor wheel. Two light sensors attached to the front of the robot were used to

sense the black path. Since these robots are incapable of hosting the Tartarus mobile

agent platform on their controller blocks, they were controlled by two different

connected computers hosting a Tartarus platform each, via Bluetooth. Tartarus
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was needed to create and allow the migration of the iPkts carrying the PFA to

sp-X mapping information. An interface similar to LPA-PRO-NXT [88] was used

to control these robots. As a proof-of-concept, the robots were made to follow two

different paths (Path-1 and Path-2) simultaneously as shown in Figure 6.12. The

information regarding the sub-paths and their corresponding features are initially

made known to the robot in the form of a map.

The task of the proposed mechanism was to make the robots execute the al-

gorithms received from an input stream of PFAs, and learn the best algorithm-to-

sub-path-type mapping. When the robot encounters a sub-path, it emanates danger

signals to attract those iPkts which carry mapping information for this sub-path

type. These attracted iPkts constitute the external repertoire (XRep) for that

robot. The iPkts already available within the robot form the internal repertoire

(IRep). The IRep and XRep interact and compete with each other to form a LIN.

It may happen that the XRep is empty in which case the LIN is formed due to inter-

actions of iPkt within IRep. Finally, the iPkt with the best mapping is selected and

the associated PFA is executed by the robot for that sub-path. If the corresponding

PFA is currently not available within the robot, then it requests the same from the

input stream and executes it. Every time a robot finishes crossing a sub-path, the

associated mapping information and the performance measure of the best PFA is

packed into an iPkt, cloned and shared with the other robot(s). As discussed ear-

lier, the number of clones produced is proportional to the cloning resource available

within the robotic node. Since the cloned information percolates concurrently across

the physical robotic network, sharing and hence learning is accelerated.

The use of multiple robots in the real-world scenario described herein, triggered

the execution of several PFAs for different paths, concurrently in the arena. This

accelerated the learning process and based on the features of the path, only the

best-matched PFAs were selected. The inherent sharing thus reduced redundancy

of trials and all robots eventually learned the best algorithm to be used for each

type of sub-path.

Eight PFAs using different strategies, listed in Table 6.4 were used in the exper-

iments. For each lap of a path and each robot, a distinct PFA was randomly chosen

and introduced into the robots via Tartarus. Experiments were repeated 10 times.
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Table 6.4: PFAs and the strategies used

PFA Strategy
A1 If both sensors detect white then move straight with maximum speed else

switch off either of the motors to turn
A2 If both sensors detect white then move straight with maximum speed else

move the motors in opposite directions to turn
A3 Reduce the speed of the left motor by a fixed amount to steer left and

vice-versa for smooth movement
A4 Based on the deviation in the light sensor value from the edge of the

path, proportionally decrease the speed of either of the motors
A5 Proportional and Derivative (PD) control
A6 Proportional and Integral (PI) control
A7 Proportional, Integral and Derivative (PID) Control
A8 Same as A1 but has an extra case which checks whether both the sensors

are away from the black path and takes a sharp turn

The system was reset before every experiment. The graph between the time taken

and the lap# for a single experiment is shown in Figure 6.13a. As can be seen, the

robots on Path-1 and Path-2 in their very first lap received algorithms A2 and A5,

respectively. Since there is no other algorithm available initially, A2 and A5 were

executed for all the sub-paths of paths 1 and 2 individually by each robot. Further,

as A2 and A5 cannot be the best-suited PFAs for all the sub-paths, the overall time

taken for the first lap is considerably high, especially for the Path-2. In the second

lap, A1 and A7 are received by the robots on Paths 1 and 2, respectively. By now,

PFAs A2, A1, A5 and A7 are tried by the robots concurrently on different sub-paths.

The results portrayed in Figure 6.13a being just one experimental instance, it can

be observed that there are fluctuations in the times consumed in the initial laps.

This is due to the fact that the robots are struggling to adapt and learn the best

PFA (solutions) for a given sub-path (problem instance). Eventually, the time per

lap stabilizes at around 22 and 32 seconds for the Paths 1 and 2 respectively. It

may also be noted that though a maximum of eight PFAs were used, new PFAs can

still be injected through the stream on-the-fly. This may cause initial turbulence

resulting in higher execution times which will eventually settle as the mechanism

adapts using the new PFA(s).

After repeating the experiment 10 times, the average of the time taken to com-

plete a lap of a path by a robot is shown in Figure 6.13b. As can be comprehended
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(a) (b)

Figure 6.13: (a) Time taken per lap for the two paths in one experiment (b) Aver-
age time taken per lap for the two paths

from the figure, initially the robots consumed a higher amount of time since the

mappings between the PFA and the sub-path were not yet learned. At laps 6 and

8 for paths 1 and 2, the average time per lap plateaued out at around 22 and 31

seconds, respectively. This is due to the fact that with the increase in the number

of laps, the mechanism evolved better mappings and hence consumed lesser times.

As can be seen in Figure 6.12, the sub-paths are not structured or well-defined but

are handmade which make them rugged. This exerts more selective pressure on

the mechanism which in turn authenticates the efficacy of the proposed mechanism

in real-world scenarios. The final best mappings between the PFA and the corre-

sponding sub-path found by the mechanism are listed in Table 6.5. It can be seen

that only three PFAs were selected to cater to four different sub-path types (A2 is

common for sp-b and sp-d) which necessarily means that the mechanism can also

arrive at generic solutions .

It may be observed that the overall execution on the part of the robots is

distributed. Further, since there is no central controlling authority, the robots work

in a decentralized manner much like the biological immune system. The results thus

substantiate the continuous learning and adaptive properties earlier stated to be

presented in the proposed mechanism.

A video can be accessed via the link: https://goo.gl/EzVUyo
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6. ON IMMUNO-INSPIRED SOLUTION SELECTION

Table 6.5: Best PFAs found for a given sub-path type

sub-path Best PFA
found

Remarks

sp-a (curved path) A4 Since the change in acceleration is pro-
portional to deviations from the path,
the movement of the robot is smooth.
Hence, A4 is well suited for such curved
sub-paths

sp-b (sharp
90° turns)

A2 Moving motors in opposite directions
can make the robot rotate about its
axis. Thus appropriate for right-angled
turns.

sp-c (straight path) A1 For straight paths, moving at max speed
could be a viable solution as compared
to other more complex PFAs.

sp-d (sharp acute
turns)

A2 Since both sp-b and sp-d are sharp
turns, A2 seemed to the best option.

6.6 Chapter Summary

An Immunology-inspired approach to find the best solution(s) for a given set of

problems in a decentralized and distributed manner has been portrayed in this

chapter. Mechanisms from the Clonal Selection theory, the Immune Network theory,

and the Danger theory, have been combined to selectively search the mapping(s)

associated with the best solution(s). Using sorting as a problem in an emulated

distributed scenario, an extensive analysis of the results obtained in both static and

dynamic networks have been discussed. The approach also proved to be scalable

in terms of both the number of solutions and the number of nodes. On-the-fly

addition of new solutions allows the system to adapt and find better mappings for

the given problem. Sharing eventually induces all nodes or robots to have the best

mappings between the problem and the solutions. If we now envisage a scenario

wherein a node from such a converged network, say N1, is removed and added

to another network, say N2, the better-performing solutions in the repertoire of

this newly added learned node could proliferate and transfer knowledge to nodes

within N2, thereby hastening convergence in N2. This implies that it is possible to

transfer the knowledge learned by one system to another. In addition to emulation,

a proof-of-concept of the proposed system using multiple real-robots in a warehouse
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scenario has also been presented. This approach could also be used in the domain of

autonomous and connected Vehicles. The paths in a warehouse could be looked upon

to be synonyms to the roads while the features of the sub-paths could be grabbed

using maps such as those hosted by Google. Depending on the road conditions,

connected vehicles could then share their driving algorithms and arrive at better

ones.

The approach presented in this chapter makes an inherent assumption that the

stream of solutions, from which the best one is to be selected, is already available.

However, in the real systems, solutions suitable for the underlying problem are re-

quired to be generated and evolved from scratch. This calls for a mechanism to

not only select but also evolve new solutions which can be executed for the prob-

lem encountered. Though the mechanisms for the evolution of solutions along with

selection for closed-world scenarios have been discussed in [176], modifying them to

suit real decentralized and distributed environments, still remains a challenge. For a

CPS of robots with an objective to learn a task in one such environment would mean

that it needs to evolve a set of robot-controllers (solutions) and then select the best

among them for the concerned task. The application areas for the proposed approach

include terrain exploration, warehouses, and service robots, wherein it is desirable

to extend the running time of a robot by reducing the related energy consumption.

Hence the mechanism should also be energy efficient and use intelligent communi-

cation techniques to work under power constraints. The next chapter describes one

such mechanism to provide embodied evolution cum selection of robot-controllers in

a decentralized and distributed system of multiple robots. The mechanism leverages

the use of mobile agents to transfer the information among the robots efficiently.

[[]X]\\
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“Don’t say you don’t have enough time. You have

exactly the same number of hours per day that were

given to Helen Keller, Pasteur, Michelangelo, Mother

Teresa, Leonardo da Vinci, Thomas Jefferson, and Al-

bert Einstein.”

H. Jackson Brown Jr. (1991 – 1994)

American author 7
Augmenting Embodied Evolution

While in the biological realm, survival may be the only intrinsic motivation behind

evolution, in the field of robotics, the accomplishment of a set of tasks forms an

additional component. These two motives together are deemed necessary in both

single and multi-robot scenarios. Due to their inherent resistance to noise and

smooth input to output mapping, several researchers have used Artificial Neural

Networks (ANN) [54] to evolve controllers (solutions) for such a CPS of robots

[134].

Traditional evolutionary approaches incorporate an iterative evolutionary search

for a single monolithic robot controller which can aid a robot to achieve the desired

tasks. The search for a single optimal robotic controller is performed using several

iterations that involve multiple runs of the associated algorithm on centralized (and

sequential) simulation environments. This separately evolved controller is then em-

bedded into real robots. Single controllers have been evolved to implement different

tasks such as obstacle avoidance, gait learning and search [134]. However, boot-

strapping the evolutionary process becomes difficult especially when the tasks to be

learned are complex for a single controller to cater to. In such scenarios where a

complex task may contain bootstrap [71] and deception [195] issues, researchers have

opted to employ behaviour-decomposition [175] based techniques wherein, separate

subcontrollers are evolved to cater to each of the different subtasks. An arbitra-

tor that sits on top of these subcontrollers and performs the task of selecting the
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appropriate subcontroller for the current task [49, 116], is then evolved.

In contrast to traditional evolutionary approaches, the term Embodied Evolu-

tion (EE) applies to a CPS of robots that autonomously and continuously adapt

their behaviors in accordance with the changes in the environment [26]. In EE,

robot controllers learn both onboard and online, and continue to do so even when

the robots are actually deployed in an environment, thereby reducing the reality

gap [84]. EE is still susceptible to bootstrapping and deception issues when the task

to be accomplished is complex for single-controller based robots to learn. Tradi-

tional approaches have been known to use behavioral decomposition [116] to avoid

bootstrap issues, but they have seldom been applied in an embodied, onboard and

online manner. What needs to be explored is a technique that is a distributed, fully

embodied and evolutionary version of such traditional approaches.

In this chapter, an immunology-inspired embodied action-evolution cum se-

lection algorithm has been proposed to evolve different subcontrollers for different

regions of the search space. Sensor values sampled from the environment constitute

the antigen while the associated subcontroller (actions) corresponds to an antibody.

Similar to the way antibodies are evolved and primed for different antigens, the

algorithm evolves and selects different subcontrollers for an associated region of the

antigenic (sensory) space. Some of the salient features of the proposed algorithm

are:

1. On-the-fly and onboard Evolution: The subcontrollers are evolved on-the-fly

and onboard the robots.

2. Distributed Learning: While the encapsulated version of the algorithm within

one robot seeks and learns to choose the best subcontroller, sharing of these

controllers across its peers in the collective of robots speeds up the convergence

process [26].

3. Single Parameter Tuning: A single system parameter viz. the cross-reactivity

threshold (explained in Chapter 5) can be used to tune and vary the granularity

of search in the antigenic space.

This chapter describes an alternative algorithm to evolve and select different sub-

controllers on-the-fly for different regions (ranges) of antigenic space (sensor values)
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sampled from the environment, in a decentralized and distributed manner. The use

of an immunology inspired algorithm ushers a new era wherein multiple subcon-

trollers or solutions can be created, evolved and arbitrated online in a dCPS.

7.1 Background

Though a copious amount of research on evolutionary approaches can be cited,

this section discusses the behavior-decomposition and embodied evolution based

techniques which are more pertinent to the work presented in this chapter.

7.1.1 Behavioral decomposition

In this method, instead of just one robot controller, different subcontrollers are

evolved to solve distinct subtasks. After these subcontrollers have adequately evolved,

another (usually ANN based) controller is trained to map the input states of the

robot to one of the already evolved subtask specific controllers. Lee [116] describes

each of the low-level subtask specific controllers as behavior primitives while the

top-level controller that has learned to map the inputs to these subcontrollers was

termed the behavior arbitrator.

Lee [116] implemented a Genetic Programming (GP) based controller to solve

a box-pushing task. This task was manually divided into two subtasks. Separate

subcontrollers (primitives) were evolved for each subtask on a simulator. Finally,

a GP based arbitrator was evolved to combine these subcontrollers hierarchically.

Though their approach was implemented on a real robot, each subcontroller was

evolved separately in an offline manner. Further, there is no evidence that there

proposed architecture can be used across multi-robot scenarios in a decentralized

manner. Moioli et al. [131] proposed the GasNet system where subcontrollers

for two different tasks were activated or inhibited based on the production and

secretion of virtual hormones. Their homeostasis-inspired controller was able to

select appropriate subcontrollers depending on internal and external stimuli.

Duarte et al. [49] portrays a search and rescue task using a real e-puck robot.

The overall task was divided into a few subtasks and separate subcontrollers were

evolved for each of them. The experimenter provided the fitness function for each
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subtask. After the appropriate subcontrollers were found, a behavior arbitrator was

evolved which delegates a subtask to the best subcontroller based on the sensory

inputs. Though a complex task was solved using their hierarchical controller, the

behavior primitives and the behavior arbitrator do not seem to have been evolved

in an online and onboard manner. A similar line of work by Duarte et al. [50] also

demonstrates an approach for the incremental transfer of their evolved hierarchical

control system from simulation to real robots. Of late, Duarte et al. [48] have

presented EvoRBC, an approach to evolve a control system for robots with arbitrary

locomotion complexity and implemented it on a simulated robot. They have used a

Quality Diversity algorithm to build a repertoire of behavior primitives (e.g., move

straight, turn right). This repertoire is then used to evolve an ANN which maps the

sensory inputs of the robot to an appropriate primitive.

In most of the above-reported approaches, the subcontrollers are evolved sepa-

rately and lack the essence of continuous, distributed, decentralized and on-the-fly

learning.

7.1.2 Embodied Evolution

A recent comprehensive paper by Bredeche et al. [26] presents a review of the

research published since the inception of the term Embodied Evolution (1997-2017).

EE involves continuous and online learning in a collective of robots. A population

of robots learns in a decentralized manner by sharing the controllers evolved among

the peer robots. Although there has been a recent surge in papers [26] where EE

has been successfully applied, most of the work that cites the use of real robots

[190, 81, 177, 138] are constrained to a single controller that can solve relatively

simple tasks such as obstacle avoidance and phototaxis. Only recent, a work by

Heinerman et al. [81] implements a relatively complex task of foraging using a

single controller. A robot may require learning several such tasks. Under such

conditions, the subcontroller will need to be re-trained to take in the set of new

tasks. In an ANN-based subcontroller, such re-training may not be a viable exercise.

Intuitively, one may conclude that evolving a single subcontroller to cater to an

ever-increasing number of tasks, is extremely cumbersome if not impossible. Using

behavior primitives and an associated arbitrator may be a logical step to circumvent
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Figure 7.1: An Antibody tackling two different Antigens (SNis are the values
obtained from sensors onboard the robot)

this drawback. However, the drawback is that for every incremental addition of a

new subtask the behavior arbitrator has to be trained offline all over again. This calls

for an online and onboard continuous learning mechanism for both the subcontrollers

and that arbitrator which will consequently lower the reality gap. The algorithm

proposed in this chapter distinguishes itself from earlier presented techniques in a

way that instead of subtask division, it keeps dividing the whole sensor-sampled

search area within the given environment, into separate regions. A subcontroller is

then evolved on-the-fly for each such region.

7.2 Methodology

The method proposed in this chapter is inspired by the novel action-selection mech-

anism exhibited by the Biological Immune System (BIS). This section initially dis-

cusses the immunological metaphors used, followed by a description of the compu-

tational counterparts and the explanation of the proposed algorithm.

7.2.1 From Immunology to the Real World

In the real world, the antigenic epitope Ep can be visualized as an L-dimensional

vector sampled from the environment via sensors onboard a robot. L corresponds

to the number of sensors attached to the robot. Figure 7.1 depicts an epitope Ep

(top) formed when a robot encounters an obstacle in front. The corresponding

antibody Ab, as shown in Figure 7.1, comprises four components - a paratope Pt,
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the associated subcontroller Ctr, a concentration C value and an ID number. A new

Ab is created if the Ag is not recognized by any of the Abs present in the repertoire.

The Pt of such a new Ab is initialized to the Ep of the current Ag so that both Pt

and Ep are dimensionally equivalent and have the same shape space. The Ctr is a

vector comprising the weights of an associated neural network while the C denotes

the fitness value returned after executing the Ctr when the corresponding Ab is

chosen to quell Ag. The fitness function depends on the task and is provided by the

experimenter based on the application. Abs, with better performing Ctrs, evolved

based on fitness values, are assigned proportionately higher concentrations. The

ID number aids in uniquely identifying an Ab. Figure 7.1 also shows another Ag

(bottom) which falls in the AR of the same Ab.

The Euclidean distance between an Ep and a Pt is used as the affinity mea-

sure (ψ). Lesser this distance more is the affinity. An Ab is chosen to tackle a

given environment state (Ag) if the affinity ψ between the Ep and the Pt is less

than ϵ, a system constant akin to the cross-reactivity threshold [43]. Antibodies

that satisfy this criterion are referred to as the candidate antibodies. All such can-

didates antibodies are stimulated by the corresponding antigen Ag located within

the overlap of all active regions of these antibodies as shown in Figure 5.5(c) of

Chapter 5. This antigenic stimulation (AgSti) results in increasing the C of all the

candidate antibodies by an amount proportional to their respective ψ values. In

the computational world, a specific subcontroller is synonymous to an Ab while an

environmental state acts as an Ag. Thus, different subcontrollers could be evolved,

each of which is tuned to specific environmental states. This chapter presents a BIS

inspired novel algorithm to evolve subcontrollers (antibodies) for specific actions

required to counter different environment states (antigens) sampled by the sensors

onboard a robot. Just as the BIS, this algorithm is decentralized and distributed in

nature and evolves subcontrollers on-the-fly.

7.2.2 The Proposed Algorithm

The proposed algorithm is outlined in Algorithm 5. The algorithm runs on

every robot belonging to the swarm. It works in tandem with a communication

routine which facilitates foreign antibodies (subcontrollers) to be received from the
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Algorithm 5 The Proposed Algorithm
1: ϵ← Constant;{Initialize cross-reactivity threshold}
2: IRep,XRep,CandAb← ∅;{Create empty lists}
3: while True do
4: Ep← fetchSensorV alues();{Get sensor values}
5: for each Abi in IRep do
6: ψ ← measureAffinity(Ep, P ti); {Calculate affinity between Ag and Ab}
7: if ψ ≤ ϵ then
8: agStimulation(ψ,Abi);{Stimulate Abi}
9: CandAbs← append(Abi);{Add Abi to the list of candidate antibodies}

10: end if
11: end for
12: if CandAb = ∅ then
13: NewAb← createNewAntibody(Ep);{Create a new Ab if there are no can-

didate antibodies to select}
14: CandAbs ← append(NewAb);{Add new Ab to the list of candidate anti-

bodies}
15: IRep← append(NewAb);{Add new Ab to the internal repertoire}
16: end if
17: if (random() < Psharing) OR (XRep.size = 0) then
18: BestAb← selectBestAntibody(CandAbs); {Select the best Ab from list of

candidate antibodies}
19: else
20: BestAb← selectBestAntibody(XRep); {Select the best Ab from the exter-

nal repertoire}
21: end if
22: while Current Ag space is within the AR of BestAb do
23: Execute and Evolve BestAb using an EA;
24: end while
25: CandAb,XRep← ∅;
26: end while

peer robots in the collective and stored in an extrinsic antibody repertoire (XRep)

within the robot. During the task execution by a robot, its intrinsic antibody

repertoire (IRep) is broadcast to all the peer robots within a communication range.

Instead of all, only a set Abs from IRep selected based on a fitness criterion can also

be shared.

Initially, the IRep within a robot is a tabula rasa. As mentioned, the sensor

values sampled from the environment form the epitope Ep of the antigen Ag. As

soon as Ep of the current Ag has been sampled, the distances (ψ) between this

Ep and the Pts of all the Abs in IRep are calculated using the measureAffinity

function (line 6 of Algorithm 5). The Abs for which the ψ values are less than ϵ
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are made to be stimulated (using agStimulation function) by the antigen Ag and

are then appended to a list of candidate antibodies (CandAbs). As in the BIS,

the AgSti raises the concentration C of all antibodies within the CandAbs by an

amount proportional to their respective ψ values. In the beginning, since no Abs

exist in the IRep, a new Ab is created whose Pt is initialized to Ep and the weights

of the associated Ctr are randomly set (line 13). The ID is provided sequentially,

starting with 1. The value of its C is set to an initial non-zero minimum value lest it

be discarded immediately. Antibodies with C equal to zero, are purged from IRep.

The new Ab with ID 1 is then added to the currently empty list CandAbs.

For final execution by the robot, the best Ab is selected from either XRep

or the list of CandAbs based on a probability Psharing. The selecBestAntibody

function (lines 18 and 20) selects the matching Ab (ψ ≤ ϵ) having the highest C

value. The Ctr of the best Ab is evolved in order to produce adequate behavior

within the associated AR. When the robot is executing a controller of the selected

Ab, the environmental state is continuously sampled. It may be noted that during

the task execution, if the Ep sampled from the environment is outside the AR of the

currently selected best Ab, the current task execution is stopped and the process to

select and evolve a new Ab recommences.

The algorithm partitions the environment (antigenic) space sensed by the robot

based on ϵ which in turn defines the area of the Active Region (AR) of a subcontroller

(antibody). More the value of ϵ, more is the environment space catered to by

that subcontroller. Increasing ϵ will mean a lesser number of subcontrollers for a

given environment space. If ϵ were to cover the entire environment space then, the

algorithm would try to evolve just one subcontroller that can cater to all conditions,

as in [81, 138]. On the other hand, a very low value of ϵ would mean a smaller AR

resulting in too many subcontrollers catering to particular tasks.

(1+1)-Online Evolutionary Algorithm

The evolution of the Ctr of the best Ab that has been selected can be achieved using

an Evolutionary Algorithm (EA). This work leveraged the (1+1)-Online evolution-

ary strategy [25] to evolve the antibodies with controllers that deliver satisfactory

performance. In this strategy, the controller weights are mutated using a Gaussian
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(a) The Robot (b) The Experimental Arena

Figure 7.2: (a) Structure of the LEGO® MINDSTORMS® NXT robot used in the
experiments (b) The Experimental Arena

function with N(0, σ), where the value of σ doubles if the offspring of the controller

of the selected Ab performs lower than the currently used parent controller. An

offspring replaces the parent if the former outperforms the latter one.

7.3 Experiments

For experimentation, a set of LEGO® MINDSTORMS® NXT robots each having a

Colour Sensor (CS), an Ultrasonic Sensor (US) and a Light Sensor (LS) are used

and shown in Figure 7.2a. The US mounted in front of the robot aids in obstacle

detection while the CS facilitates identifying the color of an object encountered by

the robot. The two LSs are fixed parallel to the two motors in order to detect the

light from both directions. The range of values from the ultrasonic, color and light

sensors vary from 0 to 200, 0 to 9 and 0 to 100, respectively. High values from

the US denote that the obstacle is far from the robot while low values indicate the

presence of the obstacle. High values from the LS show that the robot is near to

the light while lower values specify that the robot is far away from the light source.

For CS, the default value is calibrated to 7. The high and low values were decided

based on the size of the arena. For instance, if the size of the area is more than the
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detectable range of the US, then the a value near the maximum 200 will correspond

to the high values. For tasks involving foraging, a Lego gripper was also attached

to the lower frontal part of the robot. With two motors attached to two rear wheels

and a caster wheel at the front, the robot used a differential drive to move around in

its environment. The operating speed of the motors was set to 70% of the maximum

speed. A Pi mounted onboard the robot and interfaced with the sensors, and the

motors constituted the main hardware controller. As depicted in Figure 7.2b, 8 to 12

lightweight yellow colored hexagonal-puck shaped objects were scattered randomly

across a 2m x 2m arena which constituted the environment. For the yellow color, the

CS returned a value 3. The only obstacle in the arena are the walls surrounding the

arena. A Wi-Fi router placed near the arena facilitated the interconnection between

the robots and hence the sharing of antibodies. Experiments were performed in both

static and dynamic networks. Since Wi-Fi range covers the whole arena, dynamism

was implemented by randomly creating and breaking the connection between the

robots. The Ctr constituted a feed-forward ANN with four input nodes, five hidden

nodes, and two output nodes and used the hyperbolic-tangent (tanh) as the activation

function. Out of the four input nodes, two were connected to the two light sensors,

while the remaining were provided inputs from each of the ultrasonic and the color

sensors. The sensor readings were normalized to the range between 0 and 1 and

then fed to the inputs of the controller ANN.

7.3.1 Scenarios

The proposed algorithm was tested on a set of three scenarios explained below in

the order of increasing complexity.

Scenario S1 - Static Environment

In this scenario, a light source (an incandescent bulb) was fixed at some minimum

height in the center of the arena. The objective was to make the robot move towards

the light source (phototaxis) and then stay near it. If the robot encountered an

obstacle, then it had to avoid it. Using a bare minimum of just a single US and

one LS puts additional pressure on the algorithm while searching and evolving an

optimum controller. For a single robot controller, the task of phototaxis together
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with obstacle avoidance thus becomes non-trivial. Similar to online evolutionary

systems presented in [81], the objective function used herein rewards behaviors (Ab)

for each of the sub-goals achieved. The sub-goals herein include motion of the

robot towards the light source and avoiding obstacles. The objective function for

an evaluation period of t′ timesteps is as follows:

FT1 =
t=t

′∑
t=0

(fobs + flight) (7.1)

where,fobs = vtrans ∗ (1− vrot) ∗ d

flight = max
1≤j≤2

(lightSensori)

fobs is a classical function adapted from [135] wherein vtrans is the translational

speed, vrot is the rotational speed and d is the distance between the obstacle and

the US onboard the robot. vtrans, vrot and d, are all normalized between 0 and 1.

The fitness function flight rewards movement towards the light source. lightSensori
is the normalized value from the LS between 0 (no light) and 1 (brightest light).

Scenario S2 - Static Environment with Puck Pushing

The primary goal here was to push the yellow colored pucks towards the light source

while also avoiding the walls. If no pucks are encountered, the robot should continue

moving towards the light source. The CS fixed behind the gripper facilitates the

detection of the puck based on its colour. Along with the sub-goals defined in S1,

the task S2 also comprises a fitness function to reward the controlled pushing of the

puck using the gripper attached to the robot. The objective function for S2 is given

by:

FT2 =
t=t

′∑
t=0

(fobs + flight + fpuck) (7.2)

where, fpuck = bpuck + vtrans

bpuck is a binary variable which is equal to 1 if a puck is within the gripper else it

defaults to 0. The meanings of fobs and flight are same as that defined in scenario

S1.
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Scenario S3 - Dynamic Environment

In this scenario, a change in the environment needed to be compensated by a reversal

of a behavior. Here, the light source was switched ON or OFF in an asynchronous

manner during runtime. When the light was ON, the goal remained the same as

in scenario S2 where the robot needed to push the puck towards the light source.

However, when the light source was switched OFF, the robot needed to learn to

repel these object whenever encountered. Irrespective of whether the light source

was ON or OFF, the robot also needed to learn to avoid the walls or any other static

obstacle. The objective function used in this scenario is given below.

FT3 =
t=t

′∑
t=0

(fobs + flight + blight ∗ fpuck + blight ∗ fantipuck) (7.3)

where, blight is a boolean variable equal to 1 if the light intensity is above a certain

threshold. The average of the values returned from the LS at different positions in

the arena while the light is ON, forms the threshold. fantipuck models the repulsion

of a robot when it encounters a puck.

Two sets of experiments were carried out - 1) Real-robot 2) Energy Saving.

In the real-robot experiments, the sharing module of the proposed algorithm was

switched off and only a single real-robot was used to learn the respective tasks in

the three scenarios explained later. In addition, a set of three real robots were was

also used to learn the same tasks with the sharing module enabled. This allowed

the robots to share their subcontrollers (antibodies) mutually. The second set of

experiments were designed with a completely different motive. These experiments

were intended to introduce and test a new and energy efficient sharing mechanism.

Experiments herein were carried out in an emulated environment with 80 soft or

virtual robots connected through a dynamic network. Besides, experiments wherein

attempts to evolve single robot controllers for each of the scenarios were also per-

formed. Though not crucial, this was necessary to validate the fact that the used

scenarios are substantially complex for a single controller.
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7.4 Results

This section initially discusses the results on the attempts to evolve a single controller

for all the tasks, followed by analyses of the set of experiments which are performed

using the real-robots. Finally, it showcases the results obtained with the IPM scheme

running on an emulated network of 100 nodes.

7.4.1 Evolving a Single Robot Controller

A total of ten runs per scenario were performed to evolve a single controller using

(1+1)-Online EA running on a single robot. The controller was allowed to evolve

for 200 iterations in scenario S1 while the same was 400 for the other two scenarios.

In scenario S1, the controllers which learned to move straight towards the light or

avoid the obstacle, easily evolved during the first half of the total of 200 evaluations

in all the ten runs of the same experiment. It was only after an average 145th

evaluation count that controllers which learned partial phototaxis together with

obstacle avoidance emerged. These controllers were of inferior quality in the sense

that they followed a curved path while moving towards the light source, instead of

the preferred straight movement.

In the scenario S2, a controller which learned all the three subtasks, namely

foraging, phototaxis and obstacle avoidance, was not evolved. From the pool of

controllers found during the 400 evaluations, some of the evolved controllers learned

only obstacle avoidance while some others learned foraging and phototaxis. No

controller learned all the tasks. Scenario S3 had two subtasks which are switched

based on the two conditions: 1) Condition C1, when the light source is turned ON,

and the robot had to push the pucks towards the light while also avoiding obstacles.

2) Condition C2, wherein the light source is turned OFF and the robot had to learn

to avoid obstacles and to repel the pucks encountered. The conditions C1 and C2

were triggered asynchronously. The duration for which each condition lasted was

kept such that a minimum of 5 consecutive controller evaluations could take place

under each condition. This asynchronous switching made it impractical for a single

controller to learn the whole task. It may thus be concluded that it is difficult for a

single monolithic controller to learn all the tasks described herein.
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Figure 7.3: Variations in antibody fitness for scenarios S1

7.4.2 Experiments using Real-Robots

Ten trials for each of the scenarios were performed. The value of ϵ was empirically

found and set to 0.45, 0.4 and 0.25 for the scenarios S1, S2 and S3, respectively.

For a given scenario, the desired value of ϵ can be found by first initializing it to

half the normalized range. The value may then be gradually increased or decreased

based on whether the number of subcontrollers generated is sufficient to make the

robot(s) learn the scenario. Using the proposed algorithm, the subcontrollers were

allowed to evolve for 200 iterations in scenario S1 while the same was 500 for the

other two scenarios.

Scenario S1

Figure 7.3 shows a typical evolution-selection curve of the antibodies created, evolved

and selected during one of the trials. The X-axis denotes the iteration count and

Y-axis indicates the fitness values returned by the objective function defined in equa-

tion 7.1. For this particular run, the robot was initially placed near the boundary

wall of the arena, facing the light source. Following is a description of the events

that resulted in the graph shown in Figure 7.3. The robot initially sampled the Ag

from its environment and the first antibody Ab1 was created, depicted by the cyan

colored marker on the graph (Figure 7.3). The robot then executed the randomly

For the video: https://goo.gl/8qtJtd

160

https://goo.gl/8qtJtd


7. AUGMENTING EMBODIED EVOLUTION

initialized Ctr of Ab1 which caused it to move to a place whose Ag, when sampled,

was found to be outside the AR of Ab1. The random behavior executed by the robot

was that of rotating around its position. Since initially, the robot was facing an open

area, rotation around its axis caused it to face the wall leading to a drastic decline in

their US and LS values, justifying the need to generate a fresh Ab to tackle this new

and unknown antigenic space. Having sampled this new Ag (a vector having small

values in the US and LS fields) the robot created a corresponding fresh antibody Ab2
(orange colored marker) and executed it. These very first versions of the antibodies

Ab1 and Ab2 corresponds to the case (a) in Figure 5.5, which shows the creation of

new antibodies coincident on their corresponding Ags. The transitions from Ab1 to

Ab2 (and vice-versa) are shown using red colored arrows on the graph in Figure 7.3.

These transitions from one Ab to another indicate the on-the-fly selection property

of the proposed algorithm. The green colored arrows denote the selection of the

same Ab after an iteration ends. This indicates that the robot has sensed the next

Ag within the AR of the same antibody.

In both cases (pointed by the arrows), the evolution of an Ab is carried out

using an EA where the parent Ctr of Ab is mutated to produce an offspring which

is then executed based on a probability. If the offspring perform better than the

parent, the offspring Ctr replaces the parent Ctr of the same Ab. Since the robot

is in continuous motion, the sampled Ag is always changing. Thus, the same Ab

is selected when different Ags appear within its AR, as previously highlighted in

case (b) of Figure 5.5. The best antibodies evolved are indicated with the markers

filled with black color as shown in Figure 7.3. Iteration 3 onwards, IRep has two

antibodies from which the robot could choose one. These include Ab1 which can

be triggered for the antigenic space wherein the robot is in an open area and Ab2
which can be chosen when there is an obstacle in front. This process of evolution

and selection continues until the training period ends. The best antibodies evolved

can then be used during the testing phase. For the remaining 9 out of 10 runs, the

robot is placed in different positions and orientations. It may be noted here that

the concept of action-selection should not be confused with those in incremental

learning approaches [20], as it may seem so from Figure 7.3. The antibodies herein

are selected based on an event without any human interference or for that matter
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Figure 7.4: Variations in antibody fitness for scenarios S2

any other entity.

Scenario S2

This scenario is a complex extension of S1 wherein along with phototaxis and ob-

stacle avoidance, the robot also needs to learn to push the puck towards the light

source as and when it encounters one. In addition, the robot needs also to learn

to avoid an obstacle while pushing this object without mislaying or losing them.

Figure 7.4 shows a similar evolution-selection curve (as in Figure 7.3) wherein the

antibodies were evolved and selected during the training period. In this trial, the

robot was randomly placed in a position facing the wall of the arena. The reper-

toire, IRep is set to NULL before initiating the algorithm. Since this scenario is an

extension of S1, the antibodies that could tackle the antigenic spaces involving ob-

stacles and phototaxis, emerged to be of similar nature as found during the training

in S1. In addition, two new antibodies (Ab3 and Ab4) were created, evolved and

selected. Ab3 was selected whenever the robot encountered a puck object with no

obstacle in front. Ab4 evolved to tackle the case when the robot encountered an

obstacle while pushing the object. The flow of evolution and selection can be seen

in Figure 7.4. The meanings of the red and green arrows are the same as mentioned

in the earlier graph. It can be seen that while on one side the proposed algorithm

evolves new antibodies, it is also capable of selecting a pertinent one amongst these
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Figure 7.5: Variations in antibody fitness for scenarios S3

for execution.

Scenario S3

The environment in this scenario changes dynamically and asynchronously with the

robot having no control over it. The robot, in turn, needs to change its behavior

based on this change in its environment. As mentioned in earlier, scenario S3 requires

different behaviors, and thus different Abs for each of the light conditions (ON or

OFF). As can be seen from Figure 7.5, the light source was initially in the OFF

position from the 1st to the 176th iteration. After this, it was kept switched ON till

the 325th iteration and turned OFF again. The Abs specific to the light’s OFF state

were initially created, evolved and selected during the time the same OFF state

was maintained. As soon as the light source was switched ON, the antigenic space

changed, leading to the creation of a new set of Abs. These Abs then followed the

same evolution-selection journey in order to produce suitable Ctrs. As can be seen

from the figure, when the light OFF state occurs again, the previously evolved Abs

present in the repertoire were triggered and again and evolved further. It may be

noted that the Abs in all the runs of each of the experiments for scenarios S1, S2
and S3, were learned from scratch.

A total of 5 independent trials for S3 were also conducted using three real robots

which were allowed to share their respective IReps among the peers with similar
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results. Increasing the number of robots further will aid a parallel search, which in

turn can enhance the learning. This experiment also validated that the algorithm

can be run across a collective of robots. The advantage of sharing, however, is put

down to an extent by the energy consumed in the sharing operations. In the next

set of experiments, presents and implement an alternative way to share knowledge

among the robots in an energy conservative manner.

7.4.3 Sharing Scheme for Energy Conservation

Sharing of information within a collective of robots is traditionally realized using

broadcasting on the part of individual robots. This method, though simple and

effective, consumes a fair amount of energy. Energy conservation is vital in mobile

robot scenarios since charging points may not be available or could be far away

from its current location. Thus, every attempt to reduce energy consumed needs

to be made. This work used mobile agents to share the information among the

robotic nodes. This communication strategy was found to be more conservative in

energy consumption than the conventional broadcast method. For experimentation,

an emulation environment Tartarus [163] was chosen instead of simulation since the

former allows for better analyses of real network parameters such as data transfer

speed, bandwidth and energy consumed.

Each mobile agent is a piece of code which has the ability to migrate from

one node to another in an autonomous manner. These mobile agents or Intelligent

Packets (iPkt) can migrate from one node to another in a network, take decisions

and also execute the code they carry based on predetermined conditions. An iPkt

can also carry information in the form of its payload and transport the same to

the other nodes during its sojourns across the network. These iPkts are used to

carry the controllers (weights of the ANN) evolved by a robotic node to facilitate

sharing with its peers in the network. To restrict the extraneous movement of such a

packet, the same has been programmed to move in a conscientious manner wherein

the iPkt maintains a list of already-visited robot nodes. Every time an iPkt visits a

node, it appends the node identifier (node address) in the list. In the conscientious

movement, an iPkt migrates to that neighboring node which is either not visited

or has been least visited. Unlike broadcasting, the conscientious method provides
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Figure 7.6: Plots of γavg and Ω for different networks for Broadcast and IPM
schemes

for a controlled movement and thus greatly aids in the reduction of unnecessary

packet migrations. In addition, an iPkt can also be programmed to move to another

robotic node under certain conditions such as when a controller with a desired

fitness is found. This could further contribute to reducing the energy spent on

communication. It may be noted that to know the neighbors, an iPkt at a node

needs to broadcasts a small hello message packet to create a routing table. Since

the hello broadcast is done only by those nodes that currently have a packet within

and when it wants to migrate to a neighboring node, the overall communication

overheads turn out to be less than that in case of broadcasting. For comparing

the efficacy of the sharing schemes, a standard EA such as the one proposed in

[81] has been implemented to solve the soft task of learning an OR gate function.

An ANN with 2 input nodes, 3 hidden nodes, and 1 output node was used. For

broadcasting, the social learning method prescribed in [81] was used while in the

case of mobile agent based strategy, the encapsulated version (individual learning)

of the same method as in [81] was implemented wherein the Pkts were used to share

the evolving controllers among the emulated robot nodes forming the network.

In Figure 7.6, the left Y-axis denotes the inter-robotic node communications

(sending and receiving) per robot node averaged (γavg) over 10 runs of the exper-
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iments. The right Y-axis is based on a metric called the Convergence count (Ω),

which is the number of iterations spent from the point when the first best solution

was found by a node till 90% of the robot population converges to the same solu-

tion due to sharing. In the X-axis, b-cast denotes the broadcast method while the

terms iPkt-x correspond to the cases when x iPkts were used. The value x, i.e. the

number of iPkts is chosen proportionately to the total number of robotic nodes in

the network. The emulation experiments were carried out on 20, 40 and 80-node

dynamic networks. Dynamism was introduced by varying the number of neighbors

per node from 0 (isolated node) to a maximum of 5. The neighbors of a node were

changed randomly over time making it the equivalent of a dynamic network.

As can be seen from Figure 7.6, with an increase in the number of nodes,

the average number of communications made per node using the broadcast method

remains higher than that reported using the IPM scheme. The graph also shows that

as the number of iPkts is increased, the sharing too is enhanced (lower convergence

counts). This can be observed for each of 20, 40 and 80-node scenarios where the

convergence counts drops with the increase in iPkts. It may be noted that, though

one may infer that an increase in iPkts would accelerate the sharing process, it

comes at the cost of higher communication overheads per node. Overall, one may

thus conclude that if saving power is prime, then the IPM method seems to have an

edge over the conventional broadcast mechanism.

7.5 Chapter Summary

This chapter describes an immunology-inspired distributed and embodied action-

evolution cum selection algorithm for learning of specific subcontrollers in a CPS of

robots. Robots in a collective evolve individual subcontrollers for coping up with

the environment just the way the BIS creates and tunes antibodies to quell antigenic

attacks on-the-fly. Subcontrollers are shared amongst the robots to facilitate other

robots to get better solutions and to cope up with the environment. Based on the

value of ϵ, the environment (antigenic) space sensed by the robot can be partitioned

into different Active Regions (AR). A separate subcontroller is then evolved for each

AR. ϵ thus governs the number of subcontrollers generated. Since power can be a
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significant source of concern in mobile robots, the use of iPkts for sharing allows for a

fair amount of saving in the same. Further investigations into adjusting the number

of iPkts and their subsequent routing will provide better insights into making the

sharing mechanism more energy efficient.

[[]X]\\
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“Study Nature, Love Nature, Stay Close To Nature, It

Will Never Fail You.”

Frank Lloyd Wright (1867 – 1959)

American architect

8
Conclusions and Avenues for Future Re-

search

With the large-scale proliferation of sensors and embedded devices including robots,

the need for algorithms that are scalable, robust, intelligent and work in conjunction

with decentralized Cyber-Physical Systems (dCPS), has become mandatory. This

thesis addressed the importance and challenges of realizing dCPSs in a bottom-up

fashion. Assimilating the past and the needs of the modern-day, the contributions

made in this thesis are two-fold. While the first half introduced Tartarus as a mid-

dleware and solved the classical problem of mutual exclusion in dCPS, the second

half took a non-conventional approach and proposed mechanisms inspired by the

Biological Immune System (BIS). As in the previous work by Godfrey et al. [67, 64]

and Jha [86], mobile agents were found to be a viable tool for in-network informa-

tion processing and sharing of knowledge within the dCPS. This chapter presents

a summary of the contributions made and discusses their applications envisioned

in the real world. This chapter concludes with the avenues for future research and

directions for their extension.
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8.1 Summary of Thesis

This thesis aimed at introducing the concept of decentralization in Cyber-Physical

Systems and the Internet of Things. It is envisaged that the contributions made

in this thesis will apply to scenarios wherein a centralized control is impractical.

Such milieus include a swarm of robots and drones exploring remote areas, a dense

network of IoT devices, modern warehouses, offshore asset management, and other

similar moderate and large-scale systems. With a bottom-up approach, the first

contribution (Chapter 2) laid a foundation on top of which the future decentralized

mechanisms can be built. Tartarus, a multi-agent middleware, was enhanced and

presented as a tool to bridge the gap between the cyber and physical systems. It

included support not only for the general high-level operating system based com-

puters, but also encompassed embedded devices, sensors and robots. In contrast to

its predecessor, Typhon, which was built on top of a proprietary brand of Prolog,

Tartarus was developed using SWI-Prolog, a free software thereby embracing the

principles of Open Science . Some of the significant features of Tartarus are het-

erogeneity, multiple hardware support, payload capability in agents and on-the-fly

programming, which portrays it as a versatile tool for the realization of a real-world

dCPS. Its modular software architecture facilitates easy upgrade and addition of in-

terfaces to cater to new hardware. The agents in Tartarus, both static and mobile,

were tested against a real-world scenario comprising robots, a Pi mounted with a

camera forming a monitoring node and a human-administrator in the loop. The

system displayed its unique characteristics as a platform for realizing a dCPS.

With this platform in place, the next contribution (Chapter 3) comprised a

mobile agent based methodology to realize decentralized CPS and IoT systems. The

primary aim of this chapter was to realize a dCPS and compare it with its centralized

counterpart. For the same, a Location-Aware and Tracking System (LATS) was

used as an application. Several Pi-nodes comprising a Pi and a Bluetooth Low

Energy (BLE) module, were deployed across a building at the Indian Institute of

Technology Guwahati. Users who need to be tracked were made to wear a BLE

beacon transmitter. If a user enters the zonal area of a Pi-node, his/her location

https://www.fosteropenscience.eu/content/what-open-science-introduction
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is registered on the Pi-node. In the decentralized version of the LATS, the data

remained within the Pi-nodes. This contribution proposed a novel motion vector

based approach using which the direction of the person was calculated through local

interactions among the neighboring Pi-nodes. Finally, the queries regarding the

where and when about such persons were wrapped into a mobile agent and released

into the network of Pi-nodes. The mobile agents utilized the motion vectors to

trace the user. The results of the proposed decentralized agent-based methodology

when compared with the centralized version, validated the former’s efficacy over the

latter. The use of mobile agents to share the information can be easily extended to

different IoT environments, for instance, an IoT for data collection in museums.

The next contribution (Chapter 4) deals with a classical problem of mutual

exclusion of shared resources in a dCPS of robots. Centralized systems have their

advantages, one of which is global control. However, in decentralized systems, co-

ordinating the access of resources required to accomplish a task by a set of mobile

robots, is a challenging affair. The proposed mechanism solved the problem of mu-

tual exclusion by ordering the tasks received by a job distributor in the form of a

pipeline. Each job is made of a sequence of tasks which were allocated dynamically

to the set of robots acting as processors modeled as a pipeline. Though this re-

sembles a pipeline processor, it needs to be emphasized that the processors (robots)

herein are physically mobile and have varying execution times for the same task.

The emulation experiments conducted demonstrated the versatility of the proposed

mechanism against the varying periods of task execution. On-the-fly addition and

deletion of both tasks and robots form the enticing features that make the mech-

anism suitable for industrial applications. The experiments on real robots further

strengthen the usability of this approach. Besides, the proposed mechanism was

also proved to be deadlock free. However, the proposed system is limited by the

size of the network of nodes. For extensive networks (nodes > 1000), there could be

considerable delays while searching for a robot to be serviced by a mobile agent. The

situation may further worsen (due to an increase in delays) if the available band-

width for communication is low. One solution to control such a limitation is to use

pheromone-conscientious migration strategy [69], which allows for a bi-directional

search on the part of the robotic nodes and the agents across the network. Tackling
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the complexity of the tasks whose programs are carried by the mobile agents, opens

up future scope for the research. While on one side a box-pushing operation may

need just a single robot, complex tasks, such as carrying an extended object, may

require multiple robots to synchronize their actions. After reserving the necessary

number of robots, the concerned agent within this proposed system could release

a new set of agents or clones capable of performing the relevant tasks as also syn-

chronizing them using stigmergy based mechanisms as discussed in [87]. The Job

Distributor (JDist) is the only central entity in the proposed system which could

be replaced by its distributed version. This means that instead of a single entity

that does the task of book-keeping of the allocated resources, each node could act

as a scaled-down version of the proposed JDist. These mini versions of the JDist
could then communicate with one another to ensure a distributed locking mech-

anism. This work can also be extended to scenarios where different robots have

different abilities such that some subset of robots are capable of executing only spe-

cific tasks. The challenge would then be to choose just those robots which are fit

for the execution of the required tasks. Since physical processes are performed in

the real world, the entities of a typical CPS are bound to encounter unpredictable

changes in the environment. Further, these physical processes inherently operate at

a different time-scale leading to the creation of an asynchronous environment within

the system.

In the previous contribution (Chapter 4), the solution to execute a task by a

robot was assumed to be the only best one available. However, in real situations,

this may not be the case. There could be several ways to perform the same task. It

is desirable that, from the many solutions, only the one which is the best in terms of,

for instance, the least task completion time or maximum battery conservation, be

chosen. Hence, the approach developed in the previous chapter was extended and

complemented with a truly decentralized and distributed solution selection system.

In this contribution (Chapter 6), an mechanism to find the best solution for a

given set of problems in dCPS scenarios was proposed. The developed approach

was inspired by the selection properties found in the BIS. An extension to the

work by Jha et al. [89], this contribution not only applies Idiotypic Networks to

reward the better solutions but also integrates concepts from the clonal selection
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and Danger theories to attract and clone superior solutions. The problems occurring

at a node in a dCPS forms an antigen while the solutions represent the antibodies.

The objective was to find a mapping which selects the best solution for a given

problem without any global knowledge. The distressed nodes release danger signals

in the form of problem signatures across their peers. The mobile agents carrying

the relevant mappings are attracted towards this node facing a problem. This is

equivalent to an enhanced concurrent search in the decentralized networked system.

Once the desired mobile agents reach the distress node, an Idiotypic Network is

formed wherein better solutions are stimulated while inferior ones are suppressed.

This is similar to a reinforcement-based mechanism wherein the superior quality of

solutions are rewarded. The results gathered from extensive simulation experiments

validate the objectives of the proposed approach to select the best solutions in both

static and dynamic environments. Further, a proof-of-concept implementation on a

set of robots proved the applicability of the technique in a real-world dCPS. This

mechanism can also be used to deliver services in a vehicular network or to a music

recommendation application in a locally formed IoT devoid of any cost-intensive

cloud server.

The final contribution of this thesis (Chapter 7) ameliorates the previously

proposed decentralized and distributed online selection algorithm. The work in

Chapter 6 assumed an infinite stream of solutions. However, in real environments,

the system may need to generate and evolve new solutions based on the performance

feedback of the currently available solutions. This enhanced contribution augments

the selection mechanism with an evolutionary strategy to create fresh solutions as

per the needs thereby making the dCPS self-sustainable and adaptive. In contrast to

traditional evolutionary approaches wherein a single solution is evolved to cater to

the whole task, the mechanism proposed in this work partitions the entire problem

space into subtasks and evolves different solutions for each of the subtasks. Using

cross-reactivity threshold as a single parameter, the division of the problem space

can be controlled. Three scenarios with varying complexity were constructed to test

the mechanism. The experiments conducted using a set of real robots validated the

feasibility of the approach. The comparison with a traditional approach proved the

efficacy of the proposed mechanism. Besides, the use of mobile agents for sharing
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the solutions among the robots further aided in conserving the power consumption.

The results favored the utilization of mobile agents when the network is dense and

suggested the use of broadcasting for sparse networks. Along with applications to

a dCPS of robots, the mechanism can also be employed for selecting and evolving

avatars in computer games.

8.2 Future Research Avenues

The work reported in the chapters of this thesis provide ample scope and promul-

gate several clear directions for future research endeavors. This thesis in no way

dissuades the readers from the use of centralization but points in the direction of

persuading multi-layered hybrid architectures for control. For instance, the hori-

zontal exploration could be decentralized while retaining centralization among the

vertical layers. Though Tartarus, the first contribution of this thesis is still in its

nascent form, it has a strong potential to act as a middleware. One immediate

upgrade to Tartarus could be the support for Android-based mobile devices. The

smartphones continuously collect data from a user. A Tartarus instance running

on such devices can greatly extend the scope of applications such as opportunistic

location-aware message passing, local mobile intelligence, appliance control, etc. As

an agent platform, FIPA [137] compliance will also be an essential add-on to the

Tartarus. Plugins for interfacing other embedded systems and robots could increase

the heterogeneity of this platform. Support for inter-language communication such

as Python and Java can further add to the ubiquity of Tartarus. Providing mo-

bile agent based mechanisms proposed by Jha et al. [92, 90, 91] and Godfrey et

al. [67, 65] in addition to the ones proposed in this thesis as packages, will greatly

contribute towards making Tartarus as a rapid prototyping tool. Last but not least,

ensuring the security of the agents needs to be looked upon. The use of Blockchain

Technology [210] can provide some pointers for securing agents in Tartarus.

The work on ordering task executions in a dCPS of multiple robots currently

forms a single sequential pipeline. A significant extension to this work could be to

allow multiple parallel pipelines to overlap the type of tasks the robots perform. A

further research direction can be to create agent behaviors which will enable more
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than one robot to share the same resource alternatively or simultaneously to speed up

the pipelined processing. Another research perspective is the job distributor whose

current implementation is naïve. The robotic nodes can themselves distribute the

tasks as and when they arrive. This will aid in reducing the central component

and balancing the overall dCPS. The mechanisms for selection and evolution of

solutions described in Chapters 6 and 7 can be augmented with techniques such

as Genetic Programming (GP) [13] to create novel heuristics. This will contribute

towards unique and better quality of solutions. Communication techniques which

can reduce the power consumption in the devices and robots forming the dCPS is

another avenue of research that needs to be investigated.

With the mass growth in the number of sensing and computing devices, the

limit of a pure centralized notion of intelligence is becoming visible. This could

be the right time to exploit non-traditional inspirations such as those from Biology

to develop algorithms which are scalable, robust, distributed, versatile, incorporate

decentralization, and learn and evolve continuously during their lifetime.

[[]X]\\
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.1 Conscientious Migration Strategy

In the Conscientious Migration Strategy [128], the mobile agents migrate to the

neighboring node only when that node has not been not visited or happens to be

the least visited one. In order to keep track of the visited nodes, a mobile agent

appends the recently visited node to a list, comprising the nodes already visited,

maintained within itself. Thus before moving to the next node, an agent checks if

the next visited node is a member of this list. If so, it chooses another neighboring

node or the least visited neighbor.

.2 Query Processing

Figure 1 shows 10 Pi-nodes connected to each other in a topology similar to the

geographical map of a floor of a building. The 10 Pi-nodes are denoted by a, b,

c, d, e, f , g, h, i, j and their corresponding zonal areas by ZPa , ZPb
,.., and ZPj

respectively. For the sake of simplicity, only part of the database relevant to agent

routing is shown in each Pi-node. Let us assume that the path followed by a BLE

tag bearer X is: d→ e→ f → i→ h.

Figure 1: Agent migration in the proposed approach
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In the figure, MVF(X) and MVB(X) denotes Moving Vector Forward and Mov-

ing Vector Backward for X respectively. Imagine a user fires a query from node a to

trace X. The associated mobile agent now has 3 neighboring nodes (b, c and d) to

migrate. Since there is no motion vector for X in the node a, the mobile agent opts

for the conscientious strategy and chooses one of these neighbors. Assume that it

chooses node b and migrates to it. Since the motion vectors for X are absent in b,

the conscientious strategy forces it to backtrack to a. If it now selects node d and

migrates to it, the motions vectors of X within d will force the agent to switch to

the strategy of following motion vectors. From d onwards, the motion vectors will

guide the agent through nodes e, f, i and h in that order and thereby retrieve the

trace for X.

If the query was fired from node e , since the MVB for X point to node d,

the agent migrates to d, after which it follows the MVFs to discover the trace

d→ e→ f → i→ h as in the previous case.
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