
Efficient Mapping of Multi-threaded Workloads on

to Chip Multiprocessors

Thesis submitted in partial fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy
in

Computer Science and Engineering

by

Rakesh Pandey

Under the supervision of

Dr. Aryabartta Sahu

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati - 781039 Assam India

September, 2019

Copyright © Rakesh Pandey 2019. All Rights Reserved.

Dedicated to

My beloved Parents

and

My Wife

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervisor
Dr. Aryabartta Sahu for his unwavering support, inexhaustible patience and posi-
tive guidance during my doctoral research. I am thankful for his ethical beliefs and
philosophy which made me mature as a scientific researcher.

I would also like to thank the rest of my thesis doctoral committee members -
Prof. Jatindra Kumar Deka, Prof. Hemangee K. Kapoor and Dr. Santosh Biswas for
their insightful comments and suggestions which made me improve the quality and
clarity of my thesis work.

I want to thank the heads of the Department of Computer Science and Engineer-
ing during my Ph.D. at IIT Guwahati - Prof. Diganta Goswami and Prof. S. V. Rao
for allowing me to use the facilities and the available resources including the travel
support for the conferences. I am deeply thankful to - Mr. Monojit Bhattacharjee
and Ms. Gauri Khuttiya Deori for efficiently handling the administrative work. I am
obliged to all the faculty members, the staff and security personnel for their constant
help and support.

I would also like to mention my seniors - Dr. Shashi Shekhar Jha, Dr. Shirshendu
Das, Dr. Satish, Dr. Sibaji, Dr. Manojit Ghose, Dr. Mayank Agarwal, Dr. B.
Bhaumik, R. Shenko, and Awnish for being my mentor-cum-friends and creating
indelible moments at IIT Guwahati. I am fortunate to have good friends - Vasudevan,
Achyut, Tushar, Sonia, Vidyapu, Pradeep Sharma and Ashish Rajak with whom I
have shared some ineffaceable moments of my life at IIT Guwahati. I am thankful to
all my colleagues and friends during my journey as a Ph.D. scholar.

Finally yet importantly, I would like to thank Almighty God and my family -
Mummy, Papa, my wife Ajita and my little son Avyang for their boundless love, sup-
port, caring, warmth and encouragement all these years. I am truly indebted to them.

September 24, 2019 Rakesh Pandey

Declaration

I certify that

• The work contained in this thesis is original and has been done by myself and
under the general supervision of my supervisor.

• The work reported herein has not been submitted to any other Institute for any
degree or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data, graphs,
diagrams, theoretical analysis, results, etc.) from other sources, I have given
due credit by citing them in the text of the thesis and giving their details in the
references. Elaborate sentences used verbatim from published work have been
clearly identified and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the
best of my knowledge and understanding and take complete responsibility if
any complaint arises.

• I am fully aware that my thesis supervisor are not in a position to check for
any possible instance of plagiarism within this submitted work.

September 24, 2019 Rakesh Pandey

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati - 781039 Assam India

Dr. Aryabartta Sahu
Associate Professor
Email : asahu@iitg.ac.in
Phone : +91-361-2582370

Certificate

This is to certify that this thesis entitled “Efficient Mapping of Multi-threaded
Workloads on to Chip Multiprocessors” submitted by Rakesh Pandey, in
partial fulfilment of the requirements for the award of the degree of Doctor of Phi-
losophy, to the Indian Institute of Technology Guwahati, Assam, India, is a record of
the bonafide research work carried out by him under my guidance and supervision at
the Department of Computer Science and Engineering, Indian Institute of Technology
Guwahati, Assam, India. To the best of my knowledge, no part of the work reported
in this thesis has been presented for the award of any degree at any other institution.

Date: September 24, 2019
Place: Guwahati

Dr. Aryabartta Sahu
(Thesis Supervisor)

ABSTRACT

Technology advancement in the area of IC design allows billions of transistors to be on
a single chip, which allows the developments of the modern days’ chip multiprocessors
with larger core counts (in range of 100 cores or more). The increased core count in a
chip multiprocessor urges the necessity of the high bandwidth memory, and high-speed
on-chip interconnects. To fulfill the needs of the chip multiprocessors, many future
generations on-chip interconnects as well as memory designs have been proposed.

Once the chip multiprocessor is fabricated, we need to use it efficiently. There-
fore, to utilize the capabilities of the chip multiprocessors and get the best possible
performance, application mapping emerged as a prominent area in the domain of
chip multiprocessor research. In the past, application mapping on to the chip mul-
tiprocessors has mainly considered the task to core mapping, and not the data to
memories, as on-chip memory was smaller (in megabytes). However, for the current
as well as future generation chip multiprocessors where modern network-on-chip orga-
nizations and 3D-stacked memories have been proposed, investigating the impact of
the application mapping and associated data placement becomes crucial. Therefore,
this thesis proposes the techniques to efficiently map the applications on to the chip-
multiprocessors considering the different current as well as future architectural design
variations of the chip multiprocessor systems to improve the system performances.

This thesis takes a bottom-up approach and presents its first contribution to laid
a foundation of the application mapping, and the conclusions arrived from this are
used in the next contributions of this thesis. In the first contribution, a static profile
based multi-threaded application mapping has been performed for the 3D-stacked
DRAM memory based chip multiprocessor, where we consider the task to core map-
ping and virtual page to memory mapping techniques to improve the performance.
This contribution considers the on-chip communication cost as the performance met-
ric while evaluating the proposed techniques. Experiments show that the overall on-
chip communication cost reduction due to the page mapping is significantly higher
as compared to the reduction due to the task mapping. Moreover, virtual page to
memory and task to core mapping reduces overall on-chip communication cost up to
86% (average 56%) and 26% (average 12%) respectively.

The conclusion of the first contribution along with the facts (a) task migration is
a costlier operation and (b) most of the application shows phase-wise behavior at the
run-time, motivated us to propose a self-adaptive run-time page mapping technique

as the second contribution of this thesis. Further, in the second contribution, we have
performed a comparison between the proposed method along with an auxiliary SRAM
buffer and a recent state-of-art work. Our experimental result shows that the proposed
method can be an alternative way to use the 3D-stacked DRAM memory for current
as well as future chip multiprocessors systems. The proposed self-adaptive run-time
page mapping alone shows the communication cost reduction up to a maximum of
80% and an average of about 40% as compared to the base case method. Further,
our self-adaptive run-time page mapping together with the SRAM mapping buffer
outperforms the base-case by an average of 48% in terms of overall execution time.
Also, most importantly, the adaptive run-time mapping with the SRAM mapping
buffer shows a performance improvement by an average of 40% (in terms of overall
execution time) when compared with state-of-art work where 3D-stacked DRAM used
as a coherent cache with temporal SRAM buffer.

In the third contribution, considering the 3D-stacked DRAM-PCM hybrid mem-
ory as a viable alternative of the 3D-stacked DRAM memory, we have proposed an
access-aware self-adaptive run-time page mapping for the 3D-stacked hybrid DRAM-
PCM memory based target chip multiprocessor system. Our technique minimizes the
DRAM refresh related power consumption by performing a simple DRAM access-
aware page placement between DRAM and PCM of the hybrid memory slice. Further,
it uses the DRAM row access information and performs an access-aware self-adaptive
page mapping for the optimized page placement between the different hybrid memory
modules of the 3D-stacked hybrid memory. Our proposed approach performs similar
or better in terms of the execution time and reduces the energy consumption due to
the DRAM refresh by an average of 51% as compared to the base case.

In the fourth and final contribution, we perform the trade-off analysis between
the performance and cache size of the chip multiprocessor system while utilizing
the benefits of the high-end optical interconnects, 3D-stacked DRAM memory and
a self-adaptive run-time page mapping (as proposed in the second contribution). In
this contribution, we found that for a fixed chip multiprocessor die size, reducing the
cache size per core increases the on-chip communication cost and decreases the system
instruction per cycle. However, the chip multiprocessor performance degradation due
to the reduction in cache size per core can be nullified with the use of an efficient
hybrid interconnection network, 3D-stacked DRAM memory, and self-adaptive run-
time page mapping.

Contents

List of Figures xviii

List of Algorithms xix

List of Tables xxi

List of Symbols xxiii

List of Abbreviations xxv

1 Introduction 1
1.1 Chip Multiprocessor . 2

1.1.1 3D-stacked On-chip DRAM Memory 3
1.1.2 3D-stacked On-chip Hybrid DRAM-NVRAM Memory 3
1.1.3 Network-On-Chip . 4
1.1.4 Hybrid Network-On-Chip . 5

1.2 Multi-threaded Application and Run-time
Phase-wise Behavior . 6

1.3 Motivation . 9
1.4 Objectives . 11

1.4.1 Static Profile Based Mapping 11
1.4.2 Run-time Dynamic Mapping 12
1.4.3 Run-time Mapping Considering Hybrid Memory 13
1.4.4 Performance Analysis of CMP having 3D-stacked

DRAM and Hybrid NOC . 13
1.5 Contributions . 14

1.5.1 Static Profile Based Mapping 14
1.5.2 Self-adaptive Run-time Page Mapping 15
1.5.3 Run-time Page Mapping Considering Hybrid Memory 16

xiii

1.5.4 Performance Analysis of CMP having 3D-stacked
DRAM and Hybrid NOC . 17

1.6 Thesis Organization . 18

2 Related Works 19
2.1 Application Mapping . 19
2.2 3D-stacked DRAM Memory . 21
2.3 3D-stacked Hybrid Memory . 23
2.4 Network-On-Chip . 24
2.5 Hybrid Network-On-Chip . 25
2.6 Area and Performance Trade-off Implication Using Hybrid NOC and

3D-stacked Memory . 26

3 System Model and Application
Model 29
3.1 System Model and its Variations . 29

3.1.1 DRAM Memory at the 3D-stacked Memory Layer 33
3.1.2 DRAM and SRAM Buffer at the 3D-stacked Memory Layer . 34
3.1.3 DRAM and PCM memory at the 3D-stacked Memory Layer . 36
3.1.4 DRAM Memory at the 3D-stacked Memory Layer along with

an Optical Layer . 37
3.2 Application Model . 39

4 Static Profile Based Mapping 41
4.1 Problem Formulation . 42
4.2 Static Profile Based Mapping . 43

4.2.1 Thread to Core Mapping . 44
4.2.2 Mapping of Virtual Pages to DRAM Memory Slices 45
4.2.3 Thread Mapping Followed by Virtual Page Mapping 47
4.2.4 Combined Thread Mapping and Virtual Page Mapping . . . 47

4.3 Experimental Setup . 49
4.4 Result and Overhead Analysis . 51

4.4.1 Result Analysis . 51
4.4.2 Overhead Analysis . 55

4.5 Summary . 56

5 Self-adaptive Run-time Page Mapping 57
5.1 Problem Formulation . 58
5.2 Self-adaptive Run-time Page Mapping 61

5.2.1 Page Access and Run-Time Profiling 62
5.2.2 Page Mapping, Migration and TLB Update 63
5.2.3 Experimental Setup . 67
5.2.4 Results . 68

5.3 Comparison with Coherent DRAM Cache 70
5.3.1 Results . 72

5.4 Performance and Area Overhead . 77
5.5 Summary . 79

6 Run-time Page Mapping Considering Hybrid Memory 81
6.1 Access-Aware Self-adaptive Page Mapping on to Hybrid Memory Slices 84

6.1.1 Page Access and Run-Time Profiling 85
6.1.2 Page Mapping Decision Making 87

6.2 Access-Aware Page Placement Between DRAM and PCM of the Hy-
brid Memory Slice . 90

6.3 Experimental Result and Analysis . 92
6.4 Performance and Area Overhead Analysis 95

6.4.1 Performance Analysis . 95
6.4.2 Area Overhead Analysis . 97

6.5 Summary . 98

7 Performance Analysis of CMP having 3D-stacked DRAM and Hy-
brid NOC 99
7.1 Target System Architecture . 100

7.1.1 Routing of Packets . 101
7.2 Problem Formulation . 103
7.3 Self-adaptive Application Mapping 108
7.4 Experimental Environment . 109
7.5 Results . 109
7.6 Performance and Area Overheads . 115

7.6.1 Performance Overheads . 115
7.6.2 Area Overhead . 116

7.7 Summary . 117

8 Conclusions and Future Perspectives 119
8.1 Summary of Thesis . 120
8.2 Future Research Avenues . 122

Publications 125

Vitae 127

List of Figures

1.1 Example of 2D-mesh based industry level CMPs 5

3.1 Example: 3D representation of the system model 30
3.2 Detailed system model representation showing four non-overlapping

areas. 31
3.3 Example: Detailed system model representation for CMP with DRAM

memory . 34
3.4 Example: Detailed system model representation for CMP with DRAM

memory and SRAM buffer . 35
3.5 Example: Detailed system model representation for CMP with DRAM-

PCM based hybrid memory . 36
3.6 Example: Detailed system model representation for CMP with DRAM

memory and optical interconnect . 37
3.7 Example of application model . 39

4.1 Percentage of active virtual pages mapped to different memory slices:
before and after page mapping . 47

4.2 Normalized communication cost on 4× 4 CMP system 52
4.3 Normalized communication cost on 6× 6 CMP system 53
4.4 Normalized communication cost on 8× 8 CMP system 53
4.5 Normalized communication cost for multi-application workload, where

f, c, h, l, g and m are fft, cholesky, heat, lu, magic and matmul bench-
mark respectively from Cilk . 54

4.6 Normalized overall execution time on 8× 8 CMP system 56

5.1 Memory controller (naive MC with new mapping hardware) 63
5.2 Shared centralized TLB and distributed private TLB organization of

a 4× 4 system . 65
5.3 Dynamic run-time page mapping considering 4× 4 CMP 69

xvii

5.4 Overview of 16KB Mbuff . 72
5.5 Overall normalized execution time for different benchmarks, average

is reported as “AVG” . 74
5.6 Mapping-buffer hit rate for its different size 75
5.7 Overall normalized execution time considering different LDRAM and

LH2H values, average is reported as “AVG” 76

6.1 DRAM refresh power consumption for DRAM devices [79]. 82
6.2 Hybrid memory module architecture 83
6.3 Relation between an epoch and row monitoring period 84
6.4 Memory controller (naive MC with new mapping hardware) 86
6.5 DRAM refresh controller architect inside the modified MC 91
6.6 Normalized execution time . 96
6.7 Normalized energy consumption considering the DRAM refresh energy

and PCM access energy . 96

7.1 CMP system architecture. 101
7.2 Example of CMHIG graph . 103

List of Algorithms

1 :Thread to Core Mapping Using Simulated Annealing 45
2 :Virtual Pages to DRAM Slice Mapping 46
3 :Combined Virtual Page and Thread Mapping 50

4 :Page Access and Run-time Profiling 63
5 :Page Mapping Decision Making . 64

6 :Page Access and Run-time Profiling for Hybrid Memory 87
7 :Page Mapping Decision Making for Hybrid Memory 88
8 :Working of the DRAM Refresh Controller Inside Each Modified Mem-

ory Controller . 93

xix

List of Tables

4.1 Initial and optimized thread to core mapping 45
4.2 Default CMP system configuration parameters 52

5.1 System configuration parameters . 68
5.2 Communication cost (CCost) overhead of different TLB organization

and policies for 4× 4 2D mesh, due to respective operation 69
5.3 Example: Total number of L2 cache misses and page migration . . . 78
5.4 Area overhead summary. 79

6.1 System configuration parameters . 94

7.1 A segment of the V IA table stored at router of the NOC-tile vertex
c0, where: INsrc and INdst are intermediate nodes adjacent to source
and destination nodes respectively. 103

7.2 Number of cores that can fit with different cache and core size for the
CMP die area of 240mm2, using (7.1). 105

7.3 System configuration parameters. 110
7.4 Summary of the benchmarks characteristics 110
7.5 Example: Total number of L2 cache misses and page migrations. . . . 116

xxi

List of Symbols
Symbols Description

N Number of processor cores
M Number of memory slices
M Set of memory slices
mi ith memory slice, ∀ mi ∈ M
CST Core to slice array
SNum Memory slice number indexed by CST array
CMIG Core memory interconnection graph
EEcc Electrical edge set
Ccc Set of NOC-tile vertices (or core vertices or cores)
ci ith NOC-tile vertex (or core vertex or core)
eecc(ci, cj) Electrical edge between cores ci and cj

Mbuff SRAM based buffer (termed as mapping buffer)
ONI Set of optical network interfaces
onii ith optical network interface, ∀ onii ∈ ONI
CMHIG Core memory hybrid interconnection graph
eocc(ci, cj) Optical edge between some cores ci and cj

AG Application graph
AGV P Application graph with virtual paging
T Set of threads (or thread nodes)
ti ith thread (or thread node), ∀ ti ∈ T
D Set of data nodes
di ith data node, ∀ di ∈ D
Etc Set of thread communication edges
etc(ti, tj) A thread communication edge, ∀ etc(ti, tj) ∈ Etc

Eda Set of data access edges
eda(ti, dj) A data access edge, ∀ eda(ti, dj) ∈ Eda

xxiii

PP Set of all physical pages (or frames)
ppj jth physical page (or frame), ∀ ppj ∈ PP
VP Set of all virtual pages
vpj jth virtual page, ∀ vpj ∈ VP
Evpa Set of virtual page access edges
evpa(ti, vpj) A virtual page access edge, ∀ evpa(ti, vpj) ∈ Evpa

Ccomm Overall thread communication cost
Cmac Overall memory access cost
distCC Manhattan distance between the core vertices
X(ti) Core vertices having mapped threads ti
ω(etc(ti, tj)) Amount of data communicated between thread ti and tj

ω(evpa(ti, tj)) Number of page access by thread ti to page vpj

Y (vpj) Nearest core vertex to the memory slice having page vpj

Tmiss(ti, vpj) Latency associated to thread ti for the page vpj at time t
Yt(vpj) Nearest core vertex to the memory slice having page vpj at time t
LMB Mbuff access latency to access a cache block
LDRAM DRAM access latency to access a cache block of a page
MRMB Mbuff miss rate
LH2H Hop to hop traversal latency
epo A fixed time epoch (or phase) duration of a multi-phase application
Tepo,i Latency to thread ti for the page vpj in a time epoch epo

TOverall,i Latency to thread ti for all the pages during the total execution
TL2M,total Total miss latency of the application execution
Mig Migrated page list
CorThr Parameter value
Loc Target DRAM slice location list
Ccntr Group of current epoch profile-counters
Pcntr Group of previous epoch profile-counters
Cor Correlation between profiling counters Ccntr and Pcntr

xxiv

List of Abbreviations
Terms Abbreviations

CMP Chip multiprocessor
NOC Network-on-chip
TSV Through-silicon-vias
IPC Instruction per cycle
IC Integrated circuit
MB Megabyte
GB Gegabyte
KB Kilobyte
MC Memory controller
QAP Quadratic assignment problem
SA Simulated annealing
DRAM Dynamic random-access memory
PCM Phase-change memory
NVRAM Non-volatile random-access memory
NVM Non-volatile memories
SRAM Static random-access memory
LPRAM Logic process random-access memory
MCDRAM Multi-channel dynamic random-access memory
3D Three-dimensional
2D Two-dimensional
LLC Last level cache
I/O Input-output
TLB Translation lookaside buffer
MHz Megahertz
GHz Gegahertz
ONI Optical network interface

xxv

SR Specific-router
GR General-router
OS Operating system
ASLR Address space layout randomization
VMT Virtual page to memory slice table
TCT Thread-to-core-mapping table
ACO Ant colony optimization
PC Program counter
CCost Communication cost
LRU Least recently used
LFU Least frequently used
AMAT Average memory access time

xxvi

1
Introduction

In 1971, Intel has launched the first general-purpose programmable processor 4004
in the market with an advertisement in the November 15, 1971, issue of Electronic
News: “Announcing A New Era In Integrated Electronics”. In 1971, the Intel 4004
processor had 2,300 transistors; and by 2010, an Intel Core processor with a 32 nm
processing die held 560 million transistors within it [3].

Advancement in the integrated circuit (IC) fabrication technology have increased
the transistor count significantly by fixing the processor size almost constant. Thermal
losses occur when we put several billions of transistors together on a small area and
switching them on and off again at several billion times per second speed. The faster
we switch the transistors, the more heat generates and hence the thermal losses.
Another drawback of the increased clock speed to switch the transistor on/off is that
processor needs more voltage to work, and there exists a cubic dependency between
the clock speed and the power consumption. Therefore, due to these significant
problems, the processor clock speed became almost stagnant after reaching a specific
value.

Techniques such as parallel processing, data-level parallelism, and instruction-
level parallelism have been evolved and proven to be very effective to improve the
performance and address the issue of power consumption [45]. Multi-core processor
or chip multiprocessor (CMP) utilizes the parallelism to improve the performance and
addresses the major challenges such as power efficiency and heat dissipation. These
advantages are due to the fact that CMPs are constructed using simpler processors
having lower voltage and frequency [84]. Moreover, the advancement across many

1

1.1. CHIP MULTIPROCESSOR

application domains, including network, embedded, and graphics domain requires a
higher number of cores in the system to improve the performance. Olukotun et al. in
[84], have also mentioned the reason to build the CMP system as,

“The motivation for building a single-chip multiprocessor comes from two
sources; there are a technology push and an application pull.”

Following this notion, in this thesis, we consider some modern paradigms under
the umbrella of the CMP system. Moreover, for pedagogical reasons, we briefly dis-
cuss the current and future generation CMP system; and introduce multi-threaded
applications and their general behavior in the following section 1.1 and 1.2 respec-
tively.

1.1 Chip Multiprocessor

During the past few years, there is enormous growth in the complexity of the multi-
core processor or CMP system implementation [115, 83, 54, 12]. Several industry
vendors have started producing CMP at commercial levels, for example, Intel’s core
processors, Intel’s Xeon Phi Knight Landing [107], Tilera’s TILE64 [12], Qualcomm’s
mobile processors [4], AMD’s Ryzen processor [1]. Traditionally, the design space
exploration for CMP has focused on the computational aspects of the processing cores.
However, as the number of cores on the CMP is increasing to fulfill the applications
performance demand, consideration of the communication architecture and on-chip
memory beyond the processor computational aspect became important parameters.

Initially when the number of cores on a CMP was small (< 10), the traditional
design with small SRAM based cache (in MBs) and bus-based (or point-to-point)
network has performed well. However, in the many-core era, as the number of cores
residing on a CMP system is increasing rapidly, the performance of the system is
getting limited by many architectural constraints and resource management tech-
niques. In [100], Rogers et al. have found that off-chip memory bandwidth can
severely restrict the core count of the CMP and thereby reduces the performance.
Also, technology scaling in the CMP can cause unpredictable delays and high power
consumption due to the in-efficient on-chip interconnection [50]. Researches have
identified that network interconnect latency overhead is about 60% to 75% of the
overall miss latency [102]; along with the power consumption of about 40% [38] of

2

1. INTRODUCTION

the overall power consumption. Therefore, the CMP system is also urging the ne-
cessity of the low-latency, low-power, and high bandwidth on-chip interconnects or
network-on-chip (NOC) [33].

1.1.1 3D-stacked On-chip DRAM Memory

In large CMPs (where the number of cores inside the chip is >10), the on-chip memory
bandwidth requirement is very high. In [100], their study shows that on-chip memory
(cache) size needs to grow much faster than the number of cores to compensate for
the limited off-chip bandwidth. Feasible and cost-effective 3D fabrication technology
prompted the researchers to integrate the future CMP systems with the architectures
composed of the heterogeneous technologies. In the 3D chip design, layers fabricated
using different techniques can be stacked over each other. It allows us to stack DRAM
memory, non-volatile memories (NVM) (including phase-change memory, magnetic
random access memories, etc.), and optical layer on top of the chip in 3D-stacked
manner [20, 112, 126].

In the modern CMP system, to address the system bandwidth and performance
demand, 3D-stacked DRAM memory is considered as a reassuring candidate [69,
55, 30]. 3D-stacked DRAM memory having through-silicon-vias (TSVs) provides
higher bandwidth on-chip memory as well as a wide range of design flexibility to the
CMP systems. Logic process RAM (LPRAM) design uses the same process, which
is used to fabricate the processor or logic die. Stacking memory (or cache) on top
of a multi-core die made feasible using Logic process RAM design. Examples of
such systems are Blue Gene/L supercomputer and graphics synthesizer unit of Sony
PlayStation2 which uses on-chip embedded DRAM multiprocessor. As reported in
[67, 40, 69], placing DRAM main memory on top of the processor using 3D fabrication
technologies (that is 3D-stacked memories) shows an impressive performance benefit
up to 92%. Recently, Intel has developed Multi-Channel DRAM (MCDRAM), a 3D-
stacked DRAM memory which is having ≈ 4× more bandwidth as compared to the
DDR4 [2].

1.1.2 3D-stacked On-chip Hybrid DRAM-NVRAM Memory

Although the 3D-stacked DRAM memory has various advantages, its power consump-
tion is rapidly growing with the capacity increase. DRAM memory consumes 20% to

3

1.1. CHIP MULTIPROCESSOR

40% of the overall system power [66, 111]. Liu et al. in [68] have shown that power
consumption due to the DRAM refreshes is projected to reach up to the 50% of the
overall DRAM power consumption. Many previous studies have proposed techniques
to reduce power consumption incurred due to the DRAM refresh operation [44, 6, 81].

To tackle the DRAM refresh power overhead associated with the larger size
DRAM, phase change memory (PCM) has been explored as an alternative to the
DRAM [129, 99, 97, 116]. Phase change memory (PCM) has better scalability (or
higher density) and lower leakage energy as compared to the DRAM memory. Despite
many advantages, PCM has some drawbacks as compared to the DRAM memory, for
example, higher read/write latency and lower write endurance.

Therefore, hybrid memory designed using DRAM and PCM has been proposed
as a potential solution, to take the benefits such as high capacity, lower power and
better performance from both the technologies [64, 124, 126, 96]. Researchers in
[64, 124] have studied the hybrid memory where DRAM works as a cache for the
PCM. Whereas, in [126, 96] researchers have used DRAM and PCM components of
the hybrid memory as two separate memories, and they can be accessed in parallel
while holding a portion of the data.

1.1.3 Network-On-Chip

To fulfill the present and future demand for modular and scalable communication
architectures of many-core system, NOC has emerged as a viable alternative [13].
In the NOC, communication between the cores happens using an underlying fabric
of routers connected in some of the network topologies. Each core is connected to
a router and conventional data signal exchanges between cores is replaced by mes-
sage passing through network router fabric. Using a network to replace the global
wiring has an advantage of simplified structure, performance, and modularity. In
the CMP having larger core count, design of NOC architecture mainly consist of
inter-connection in between the cores, routers, memory associated with the cores,
and topology that is used to connect different routers of the network.

There have been many research that studied the NOC architecture for the CMP
system [56, 78, 73]. The two dimensional (2D) mesh based interconnect topology is the
commonly used interconnection network technique due to its scalability and simplicity
for the CMPs. Many real CMP systems, including Intel’s Xeon Phi Processor [54]
and Tilera’s TILE64 [12], are based on mesh interconnection network. Fig. 1.1 shows

4

1. INTRODUCTION

DRAM DRAM

DRAM DRAM

CORE

(a) TILE64 block diagram [12]

MCDRAM MCDRAM

MCDRAM MCDRAM

D
D

R
4
 C

O
N

T
R

O
L

L
E

R

D
D

R
4
 C

O
N

T
R

O
L

L
E

R

CORE

L2
PCIe

(b) Intel Xeon Phi block diagram [54]

Figure 1.1: Example of 2D-mesh based industry level CMPs

the examples of 2D-mesh interconnect based commercial CMPs. TILE64 has 64 tiles
or cores connected using 8×8 2D-mesh NOC. While Xeon Phi processor has 36 tiles
(each tile with 2 associated cores) and tiles are connected using 6×6 2D-mesh NOC.

1.1.4 Hybrid Network-On-Chip

In the many-core era, the performance and power consumption of the multi-core
processors is limited by commonly used electrical NOC. Connor et al. in [86], explored
that electrical NOC alone can not satisfy the power and performance demands of

5

1.2. MULTI-THREADED APPLICATION AND RUN-TIME
PHASE-WISE BEHAVIOR

the future CMP systems. Therefore, conventional electrical NOCs need to be either
augmented or even replaced by the advanced network interconnects. Nowadays, many
on-chip interconnect network technology, including optical NOC and wireless NOC is
under exploration by the researchers [35, 123, 61].

Optical on-chip interconnect either supplement the electrical interconnection net-
work or replaces it entirely. In [113], authors have explained that the energy and
delay have significant gaps for the shrinking transistors size. Also, the authors have
explained that the signals on electrical wires can be made to travel faster by insert-
ing repeaters; this measure considerably increases the energy for data transmission.
Therefore, the latency of the electrical interconnects is limited by the power budget
and is likely to prohibit further performance and power scaling of the chip multiproces-
sor system, having a larger number of cores. Recently, many hybrid interconnection
topology designs have been proposed by the researchers [114, 43, 113], which utilizes
the 2D-mesh based electrical interconnects along with the optical interconnects.

1.2 Multi-threaded Application and Run-time
Phase-wise Behavior

Technology advancement leads to the development of the multi-threaded and multi-
process program models, that are designed to take advantage of the multiple pro-
cessors and improve the overall performance; and also these program models take
advantage of the multiple cores in the CMP system [87]. In the most popular
user-level multi-threaded program model, the programmer maintains the user-level
threads. User-level multi-threaded programming systems such as POSIX threads [22]
and Win32 threads [92] have been developed to create and manage the user-level
threads. Multi-threaded applications are being developed to take the benefits of the
user-level threads and utilize CMP architectural abilities. In multi-threaded work-
load, a single application is sub-divided into threads based on its specific operations,
and each thread can run in parallel on different cores of CMP. Data sharing in between
the threads are more because they belong to the same application and uses the shared
address space. In the modern-day scenario, many applications have been developed
and are getting developed using the multi-threaded programming model. PARSEC
[14] and SPLASH-2 [118] are examples of the benchmark suits that are produced
using the multi-threaded programming model. Also, applications that are developed

6

1. INTRODUCTION

using OpenMP, Cilk, and Pthread programming tools are examples of multi-threaded
workloads. A CMP remains underutilized if its application is not adequately disin-
tegrated into multiple threads. Therefore, CMP performance may depend on the
amount and characteristics of the parallelism in the applications.

There have been many studies that revealed the phase-wise behavior of most
of the applications at the run-time [105, 104, 29]. Also, researchers have developed
the tools and methods to analyze the phases of execution of the applications. Sher-
wood et al. in [105], shown that applications have phase-based behavior over many
hardware metrics, for example, cache behavior, memory page access behavior, branch
prediction, instruction per cycle (IPC), etc. In this context, we say that the page
access behavior is also a characteristic which may change over the execution phases
of the application. For example, a page that is extensively being used by a core in an
execution phase may be needed by another core in another phase for the processing.
Fig. 1.2(a), 1.2(b), 1.2(c), and 1.2(d) shows the access request pattern generated
from the different cores at the run-time for the randomly selected data pages taken
from the x264, ferret, radiosity, and swaption benchmarks respectively. For exam-
ple, in the first graph (a) of the Fig. 1.2, the selected page is heavily used by the
54th core of the 8 × 8 two-dimensional mesh-based CMP for the duration between
2.5×1014 and 3.4×1014 time cycle of the execution. Further, the same page is needed
heavily by the 2nd core (in the same 8×8 2D-mesh) between time cycle 3.4×1014 and
3.8×1014. Again, the same page is needed by further different cores after 8×1014 time
cycle. Therefore, for a CMP system having multiple memory modules (maybe hybrid
memory modules) and memory controllers, many pages associated with the running
application may need to migrate from one memory module to other at the run-time
such that requesting core can access the data from its nearest memory module.

Based on the phase-wise behavior, the run-time of an application can be divided
into multiple phases (or epochs). In [105], Sherwood et al. have used a fixed size
phase length to make a balance between having a high capture rate and reducing the
percentage of false positives. Contrarily, Shen et al. in [104] have used an off-line
phase detection mechanism based variable length phase size. Therefore, for simplicity
and to avoid off-line application processing, we use a fixed phase (or epoch) size
throughout the thesis while considering the phase-wise behavior.

7

1.2. MULTI-THREADED APPLICATION AND RUN-TIME
PHASE-WISE BEHAVIOR

 0
 10
 20
 30
 40
 50
 60
 70

 2e+14
 3e+14

 4e+14
 5e+14

 6e+14
 7e+14

 8e+14
 9e+14

R
e
q
u
e
s
ti

n
g
 C

o
re

Time (in cycle)

(a) x264

 0
 10
 20
 30
 40
 50
 60
 70

 0 2e+12
 4e+12

 6e+12
 8e+12

 1e+13
 1.2e+13

 1.4e+13

R
e
q
u
e
s
ti

n
g
 C

o
re

Time (in cycle)

(b) ferret

 0
 10
 20
 30
 40
 50
 60
 70

 0 2e+12
 4e+12

 6e+12
 8e+12

 1e+13
 1.2e+13

 1.4e+13
 1.6e+13

R
e
q
u
e
s
ti

n
g
 C

o
re

Time (in cycle)

(c) radiosity

 0
 10
 20
 30
 40
 50
 60
 70

 0 2e+12
 4e+12

 6e+12
 8e+12

 1e+13
 1.2e+13

 1.4e+13
 1.6e+13

 1.8e+13

R
e
q
u
e
s
ti

n
g
 C

o
re

Time (in cycle)

(d) swaption
Figure 1.2: Access requests generated from different cores at the application run-
time for the randomly selected pages.

8

1. INTRODUCTION

1.3 Motivation

Nowadays, there is a huge increase in the complexity of the applications, and they
require different CMP configurations to get the best performance. Modern CMP
system consists of either homogeneous or heterogeneous cores or combination of both
on the same chip. Also, once the chip is fabricated, we need to use it efficiently, so
we require an efficient methodology to use the CMP in a better-way. Therefore, to
utilize the architectural specifications of the CMP system and get the best possible
performance, we need to perform the application mapping on to the CMP system.

In general, the affinity of a task to core gets considered in heterogeneous CMP
environment where the task mapping to different core results in different execution
time. This kind of work is well studied in [9, 19]. In the scheduling of tasks onto
homogeneous multi-core CMP, scheduler either minimizes communication overhead
between tasks [31, 108] or maps the tasks to the cores such that it can take benefit
of data available at that core [77, 21, 37].

Formerly, for the CMPs with smaller core count (<10), application mapping on
to CMP is recognized as a key research area to improve the overall performance and
reduce the power consumption of the system. Moreover, for these CMPs, application
mapping mainly considered the thread to core mapping, and not the data to memory
mapping (as on-chip memory was smaller, in MBs). However, for the current and
future CMP system where core count is huge (>100), researchers have proposed many
future generation architectural designs such as high bandwidth and high density (in
GBs) on-chip memory, and efficient interconnection network to satisfy the growing
need of the CMP systems. Therefore, in this thesis, we investigate the impact of the
application mapping, mainly due to the data mapping for the future generation CMP
systems with higher core count.

Nowadays, researches have proposed the three dimensional (3D) stacking of
the on-chip memory to provide the high bandwidth memory for the CMP systems.
Though 3D-stacked on-chip memory has the capacity in tens of GBs that can fulfill
the on-chip memory bandwidth requirement of the current as well as future CMPs
system, it suffers due to its current cache like architecture [75]. In CMP, 3D-stacked
memories are proposed to be architect either (a) to cache both local and remote data,
or (b) to cache only the local data [69, 107, 30, 64, 124, 126, 96]. Caching only local
data into the 3D-stacked memories enforces the CMPs to suffer inter-node latency
overhead while accessing remote data. However, caching both local and remote data

9

1.3. MOTIVATION

onto the 3D-stacked memory requires a large coherence directory (about 64MB of
coherence directory for 1GB memory) to ensure correctness [36, 32, 30]. Also, many
on-chip interconnect network technology, including wireless NOC and optical NOC is
under exploration by the researchers to provide efficient interconnection [35, 123, 61].

Therefore, considering the different NOC organizations and 3D-stacked memory
for the CMP, and investigating the impact of the data placement becomes crucial for
the current as well as future research. Sanchez et al. in [102], identified that latency
overhead due to the network interconnect of the CMP is responsible for 60% to 75%
of the miss latency. Also, miss latency after the last level cache (LLC) depends on
the memory access time. Moreover, the miss latency increases with the increase in
the NOC size as well as memory size. Therefore, hybrid NOC and on-chip 3D-stacked
memory play a vital role to reduce the average memory access time.

The power consumption due to the NOC is very substantial in chip-multiprocessor
systems and an important aspect for the optimization [130, 34, 38]. Mutlu et al. in
[38], reported that NOC consumes about 40% of on-chip power. So, if we reduce the
effective on-chip network traversal through the NOC, it reduces the on-chip power
consumption significantly, which makes it another essential motivation to solve this
problem. Furthermore, the use of the DRAM and PCM based hybrid memory can also
reduce the system power consumption by reducing the power consumption associated
with the DRAM refresh.

The latency overhead, as well as on-chip power consumption due to the inter-
connection network (or NOC), can be minimized by turning remote access into local.
That can be achieved either by, (a) caching the memory pages at local places
and maintaining coherence, or (b) by moving the memory pages to local
places judiciously. Therefore, to avoid the remote access overheads as well
as the overheads associated with the large coherence directory in the 3D-
stacked memory-based CMP system, we performed the efficient page mapping on to
the memory slices of the 3D-stacked memory. Further, this thesis investigates the ef-
fects of our proposed page mapping on to the performance, power consumption, and
chip-area considering the CMP with hybrid NOC and hybrid 3D-stacked memory.

10

1. INTRODUCTION

1.4 Objectives

The principal aim of this dissertation is to propose application mapping on to the 3D-
stacked memory of the CMP system. In particular, the objectives are to efficiently
map the applications on to the CMP considering the different current as well as
future architectural design variations of the CMP system. Specifically, we consider
the following current as well as future CMP architecture designs in terms of memory
and NOC.

• 3D-stacked memory: In this architectural design, we consider a large main
memory which is placed on top of the processor layer in a 3D-stacked manner.
This main memory can be of type- DRAM only, DRAM along with SRAM
buffer, DRAM as a cache, DRAM as a cache along with the SRAM buffer, and
DRAM-PCM based hybrid memory.

• NOC: In this architectural design, we consider an on-chip interconnection net-
work between the cores of the CMP which is either a 2D-mesh organization
of the electrical interconnects (termed as 2D-mesh NOC), or a combination of
electrical as well as optical interconnects (termed as hybrid NOC).

Therefore, comprehensively, our considered CMP system is composed of (a) mul-
tiple cores that are connected using NOC, and (b) a large capacity 3D-stacked memory
which comprises multiple distributed memory slices (or memory banks). Moreover,
our objective is to consider above mentioned modern CMP design architectures and
analyze the effects of the higher granularity efficient mapping techniques on to the
system performance metrics. In higher granularity mapping techniques, we aim to
map threads and pages associated with the applications on to the cores and mem-
ory slices of the CMP system, respectively. The following subsections describe the
objectives of this thesis in brief.

1.4.1 Static Profile Based Mapping

In the static profile based mapping, our main aim is to generate a good page to
memory slice mapping and thread to core mapping (based on simulated annealing and
ant colony based genetic algorithms) such that the overall communication through
the interconnection network can be minimized. We assume that profiling data is given

11

1.4. OBJECTIVES

or generated by running the application once at the CMP system. Further, we use
the profiled data and aim to optimize the following performance metrics.

1. Communication between threads (in terms of the number of communication
between threads and distance between the cores having associated mapped
threads).

2. Communication due to the memory accesses (in terms of the number of page
access and distance between the cores having associated mapped thread and
DRAM memory slice).

Mainly, we may need to analyze the effects of the proposed virtual mapping
techniques, which can be used to reduce the overall on-chip communication (specif-
ically related to the memory access) due to the remote data (or page) accesses for
the 3D-stacked DRAM-based CMP system. Therefore, application mapping allows
the large size 3D-stacked DRAM memory of the CMP system to be used in a differ-
ent alternative way and without having the overheads associated with the coherence
maintenance.

1.4.2 Run-time Dynamic Mapping

Static profile based mapping is not always useful as it needs the profiling statistics
of the application execution, and therefore, we need to run the application at least
once to get the statistics. Further, as most of the applications are having phase-
wise behavior during their execution and from static profile based mapping, we found
that the communication due to the page mapping dominates the thread to thread
communication. Therefore, our objective is to design methodology for a hardware-
based dynamic run-time page mapping on to the memory slices to minimize the overall
communication.

Further, we aim to extend the hardware-based dynamic run-time virtual page
mapping and compare the overall execution time with the state-of-art work where 3D-
stacked DRAM is used as coherence cache. In this comparison, we may identify that
for the CMP having larger size 3D-stacked DRAM memory, whether our extended
version of the dynamic run-time virtual page mapping performs better as compared
to the 3D-stacked DRAM used as coherence cache (as proposed by state-of-art work
in [30]).

12

1. INTRODUCTION

1.4.3 Run-time Mapping Considering Hybrid Memory

3D-stacked DRAM memory having through-silicon-vias (TSVs) provides a higher
bandwidth on-chip memory as well as a wide range of design flexibility to the CMP
systems. Although the 3D-stacked DRAM has various advantages, its power con-
sumption is rapidly growing with the capacity increase. Researchers have proposed
the large size 3D-stacked DRAM-PCM based hybrid memory that fulfills the on-chip
memory requirements of the future CMP system having a larger core count. However,
for the 3D-stacked DRAM-PCM based hybrid memory, both memory organizations,
either (1) proposed by us (simple memory without allowing to store multiple copies
and virtual page mapping) or (2) memory as coherence cache suffers because of the
massive number of memory pages.

Therefore, the next objective of this thesis is to consider the CMP system having
DRAM-PCM based hybrid memory and propose a new access aware dynamic virtual
page mapping technique. For, CMP system having DRAM-PCM based hybrid mem-
ory, we aim to analyze the feasibility of our proposed technique in reducing, (1) the
energy consumption by avoiding the DRAM refreshes and (2) the overall execution
time by reducing the remote page access.

1.4.4 Performance Analysis of CMP having 3D-stacked
DRAM and Hybrid NOC

The number of cores on CMPs are growing at an exponential rate to increase the
performance. However, inadequate on-chip interconnection and memory bandwidth
have diminished the potential of these CMPs. High performance interconnects, 3D-
stacked main memory, and large on-chip caches are the architectural parameters used
to tackle these issue. For a fixed die-size, high performance interconnects, and 3D-
stacked memory fosters the growing rate of the cores on a CMP whereas increasing
the size of on-chip cache poses a restriction.

Therefore, in this part of the thesis, we aim to study the trade-off between the
performance and overall chip area (evaluated using the number of cores, types of
core and cache area per core) of the 3D-stacked DRAM-based CMP having hybrid
NOC. In this last objective, we aim to analyze the effects of the adaptive virtual page
mapping on to the instruction per cycle (IPC) and communication of the 3D-stacked
DRAM-based CMP having hybrid NOC.

13

1.5. CONTRIBUTIONS

1.5 Contributions

The major contributions of the thesis are described in the following subsections.

1.5.1 Static Profile Based Mapping

In this part of the thesis, we use a profile-driven application mapping of the applica-
tions to minimize the on-chip communication of the 3D-stacked DRAM-based CMP.
In profile based mapping, we run the application on target CMP system architecture
and get the statistics about the thread to a thread communication, and thread to
virtual page access count. Moreover, we use the profiled information to optimize the
overall on-chip communication of the application for the next run.

In this part, we describe (a) simulated annealing based thread only mapping onto
3D-stacked memory, (b) virtual page only mapping of multi-threaded application onto
3D-stacked memory, (c) virtual page mapping followed by thread mapping onto 3D-
stacked memory, and finally (d) combined thread and virtual page mapping onto
3D-stacked memory. An essential point to note here is that we have used simulated
annealing based thread mapping for the simplicity, further for comparison purpose we
have used a recent ant colony heuristic-based thread to core mapping. Moreover, we
have proposed virtual page mapping techniques and two others that uses the simulated
annealing based thread to core mapping. The brief detail of these techniques is given
as follows:

1. Thread mapping: In this case, we try to map threads of the applications to
the core to minimize overall thread to thread communication of the system.
To perform the thread to core mapping, we have used a simulated annealing
method and further compared the result with a recent genetic ant colony based
method [41].

2. Virtual page mapping: In this mapping process, virtual pages of the applica-
tion get mapped to physical pages in such a way that it reduces the overall
communication involved in all the virtual page accesses from all the threads. In
this case, virtual pages get mapped to the physical page of a DRAM slice (and
ultimately to one DRAM controller which is attached to the communication
network of CMP).

14

1. INTRODUCTION

3. Thread mapping followed by virtual page mapping: In this case, we generate
a good thread to core mapping using some method (simulated annealing is
used), and after that virtual page to DRAM memory slice mapping is performed
considering this new thread to core mapping.

4. Combined thread mapping and virtual page mapping simultaneously: In this
approach, we look at both virtual page to DRAM slice mapping and thread
to core mapping simultaneously, so that the mapping take advantage of cost-
effective options from both thread communications and memory accesses. Both
thread communication and memory access get prioritized equally.

After evaluation using all these above options, we choose the minimum cost mapping
option for the next run of the application to minimize the overall on-chip communi-
cation.

1.5.2 Self-adaptive Run-time Page Mapping

As most of the applications exhibit phase-wise behavior at the run-time [29]; therefore,
core to core communications and virtual page access pattern (or footprint) of an
execution phase associated to an application may be different with another phase of
the same execution. Therefore, a static mapping may not be suitable for the complete
duration of execution of an application. Also, in the static profile based mapping, we
need to collect the statistics by running the application once and then only we can
apply the static profile based mapping. However, in the case of dynamic run-time
mapping, we do in the first run itself or mapping changes as the application run-time
in progress. So, we designed an approach to map the application at the run-time for
different phases of the same application.

From the results of the profile based static mapping (as stated in Sub-section
1.5.1), we found that the overall communication reduction due to virtual page map-
ping is significantly higher as compared to thread mapping. Also, as described in [47],
the overheads associated with destroying a thread, transferring thread state (consist
of a program counter, a set of registers, and a stack of procedure records containing
variables local to each thread), creating a new thread and initiating remote execution
make runt-time thread migration relatively tricky. Hence, for run-time mapping and
remapping, we considered the mapping of the virtual page to DRAM memory slices
only and ignored the thread to core mapping.

15

1.5. CONTRIBUTIONS

In the earlier profile based static virtual page to DRAM memory slice mapping,
a virtual page gets associated with a DRAM slice for whole execution period of the
application. However, in the case of dynamic run-time page mapping, we do in the
first run itself, or page gets mapped and remap as it run-time progress. A virtual
page may migrate from one DRAM slice to other DRAM slices.

Recently, many research proposals studied the use of 3D-stacked DRAM as on-
chip cache. Specifically, in [107], CMP system uses 3D-stacked DRAM cache to store
only the local data. In such a multiprocessor system, a data can reside in only
one DRAM cache, which eliminates the need for coherence support for such DRAM
cache. For remote side data, this system has to rely on small on-die caches (such as
L2 caches). So, any on-die cache miss to the remote data leads to significant latency
overhead due to inter-node traversal.

Further, Chou et al. in [30] has recently proposed another DRAM cache archi-
tecture for the CMP system. Their proposed DRAM cache architecture allows the
caching of both the local data and remote data at the cache block-level granularity.
Also, their DRAM cache is designed to ensure the correctness by employing coherence
support. They placed the coherence directory in the 3D-stacked DRAM (termed as
embedded coherence directory) and reused the existing SRAM based on-chip cache
directory to cache the recently accessed embedded coherence directory entry. How-
ever, using DRAM as a coherent cache for the CMP system (with the number of cores
inside the chip is in the range ≥ 100) requires the large size of the coherence directory,
latency overhead to access coherence directory, tag storage and lots of overhead to
maintain the correctness.

Therefore, this part of our thesis considers the adaptive run-time page (data)
mapping similar to as stated in Sub-section 1.5.2 and squarely focuses on a compar-
ative study with a coherent and non-coherent DRAM cache.

1.5.3 Run-time Page Mapping Considering Hybrid Memory

Many researchers have explored 3D-stacked hybrid memory architect using PCM and
DRAM as an alternative to only PCM or DRAM memory [126, 96, 95]. Typically,
these hybrid memories regulate the placement of their data (or pages) to minimize
the leakage power of the DRAM memory and the high access latency of the PCM
memory. In a recent survey [127], authors have explored that studies related to the
hybrid 3D-stacked memory (or hybrid cache architecture) have mainly focused on

16

1. INTRODUCTION

to the data migration between the parts of a hybrid memory module. Also, the
survey shows that studies related to the hybrid memory system have considered the
sophisticated non-uniform cache architecture schemes.

Therefore, in this contribution, we have considered non-coherent 3D-stacked hy-
brid DRAM-PCM memory-based CMP system; and proposed an access-aware self-
adaptive run-time page (or data) mapping. Mainly, in this contribution, we have used
a simple DRAM access-aware page placement technique between DRAM and PCM
for the hybrid memory slice to reduce the DRAM refresh operations and its associated
power consumption overhead. Further, we performed an access-aware self-adaptive
page mapping for the optimized page placement between the different hybrid memory
modules of the 3D-stacked hybrid memory.

1.5.4 Performance Analysis of CMP having 3D-stacked
DRAM and Hybrid NOC

The number of cores on a CMP is growing at an exponential rate to increase the
performance. However, inadequate on-chip interconnection and memory bandwidth
have diminished the potential the CMP. High performance interconnects, 3D-stacked
main memory, and large on-chip caches are the architectural parameters used to
tackle these issue. For a fixed die-size, high performance interconnects, and 3D-
stacked memory fosters the growing rate of the cores on a CMP whereas increasing
the size of on-chip cache poses a restriction.

In this contribution, we consider a self-adaptive data page mapping onto a 3D-
stacked DRAM-based CMP with hybrid interconnection network. Additionally, we
study the trade-off between the performance and cache size per core using different
combinations of the interconnection network, 3D-stacked DRAM memory (on-chip or
off-chip) and an adaptive data page mapping. This part of thesis, analyzes the effect of
reduced cache size on to the system performance while considering the benefits of, (1)
3D-stacked DRAM, to provide high memory bandwidth, (2) high performance optical
interconnect, to enable low-latency communication and efficient memory utilization,
and (3) a self-adaptive run-time page mapping similar to as explained in Sub-section
1.5.2.

17

1.6. THESIS ORGANIZATION

1.6 Thesis Organization

This thesis comprises seven chapters.The chapter wise organization of the thesis is
given as follows:

1. Chapter-1: This chapter provides the introduction and motivation along with
the objectives and contributions behind the research work.

2. Chapter-2: This chapter presents a survey of the previous related works that
are needed to get the idea of the state-of-art works.

3. Chapter-3: This chapter presents an overview of the system and applications
models that are used to perform the contributions of the thesis.

4. Chapter-4: This chapter presents the static profile based mapping approaches
on to the 3D-stacked DRAM based CMP considering the simulated annealing
based thread to core mapping. The contents of this chapter have been published
in [88].

5. Chapter-5: This chapter presents the dynamic run-time virtual page mapping
approach on to the 3D-stacked DRAM based CMP. The mechanism proposed
is compared with a recent state-of-art work [30]. The partial contents of this
chapter are based on the published work reported in [88].

6. Chapter-6: This chapter presents the dynamic access-aware run-time mapping
considering DRAM-PCM based hybrid memory. The chapter is based on the
work published in [89].

7. Chapter-7: This chapter discusses the performance and cache area trade-off
analysis considering 3D-stacked DRAM based CMP having hybrid NOC.

8. Chapter-8: This chapter discusses the conclusion arrived at, and the future
research scopes related to this thesis.

�������

18

2
Related Works

Previous works related to this thesis can be categorized into, (a) application
mapping, (b) 3D-stacked DRAM memory, (c) 3D-stacked hybrid memory, (d) NOC,
(e) hybrid NOC and its uses, and (f) area and performance trade-off implications
using hybrid NOC and 3D-stacked memory. Following sections explain the related
works associated with the above categories.

2.1 Application Mapping

In general, the affinity of the task to core gets considered in the heterogeneous CMP
environment where the task mapping to different core results in different execution
time for the task. This kind of work is well studied in [9, 19]. In [9], Balakrishnan
et al. have presented a detailed study to describe the behavior of commercial ap-
plications running on multi-core systems where each core have different performance
capabilities. They observed that performance asymmetry in each core could have an
unintended negative impact on applications; therefore, it becomes difficult to predict
their performance. So, they suggested robust application designs that can adjust the
applications dynamically for the varying compute capabilities of the system.

Peter Brucker in his book [19], has covered many recent as well as classical
scheduling problems for single and parallel machines. From the theoretical perspec-
tive, he discussed and classified the task scheduling problems for both preemptive
and no-preemptive versions of the task scheduling. Methods to solve these problems
such as linear programming, branch-and-bound algorithms, dynamic programming,

19

2.1. APPLICATION MAPPING

and local search heuristics are also summarized in this book. However, the book does
not consider the data mapping and interconnect related issues for these problems.

In the scheduling of tasks onto multi-core CMP, scheduler either minimizes com-
munication overhead between tasks [31, 108] or maps the tasks to the cores such
that it can take benefit of data available at that core [77, 37]. In [31], Chou et al.
have addressed the run-time task allocation problem for the embedded NOC platform
having heterogeneous processing resources. They have proposed efficient algorithms
to minimize internal and external contention and communication costs. Also, they
characterized the incoming applications by the application characterization graph
(represented as directed graphs) and mapped to a region in the mesh which contains
several cores and minimized both internal and external communication contention.
Sreepathi et al. in [108], have presented many task mapping algorithms that combine
the insights from the network topological information with the application’s behavior
together to provide an efficient task assignment.

In [59], Kwok et al. have presented an extensive survey of the algorithms used for
the static scheduling problem. They have introduced the target multiprocessor model
as a network of processing elements, each of which comprises a processor and a local
memory unit and communication between them is achieved solely by the message
passing. They described the objective of the scheduling algorithms to minimize the
schedule length by adequately allocating the atomic program task (represented as
a directed cyclic graph) to the processing elements. Also, their objective includes
sequence maintenance between the start times of different program tasks such that
the precedence constraints are preserved. However, scheduling problems in this survey
does not consider the issues related to future multiprocessor designs and memory
mapping.

In [77], authors have presented a run-time system assisted data distribution
scheme. Their method allows the programmers to control data distribution in a
portable fashion, without forcing the programmers to understand the low-level system
details. Also, their scheme requires nearly the same programmer efforts as regular calls
to the malloc. In [37], authors have presented a cache hierarchy-aware code mapping
and scheduling strategy for multi-core systems. Their mapping strategy considers
the application data access patterns and on-chip cache hierarchy and determines a
schedule for the iterations assigned to each core to get the dependency-free loop nests.

Application tasks, data placement, and scheduling in multiprocessor have been

20

2. RELATED WORKS

studied by Suhendra et al. in [109]. In [109], they proposed an integer linear program
formulation to do task scheduling, scratchpad memory partitioning, and data alloca-
tion to partitioned scratchpad memory to improve the performance. In [27], Chen et
al. have proposed an approach to map task and data of the data-centric application
(which is a unique kind of benchmark) to chip-multiprocessor. However, local mem-
ory capacity they considered is small (64 KB/Processor) and in their design, they
argue that placing large memory on the logic layer is not feasible. In a recent study
[106], Singh et al. have surveyed different resource allocation or mapping techniques
for multi-core systems. They have identified different upcoming trends and challenges
based on the comparative study.

2.2 3D-stacked DRAM Memory

Evolution in the chip manufacturing technology enabled the placement of the DRAM
memory onto the chip as another 3D-stacked layer [20, 62, 57, 28, 48, 67, 69, 117].
The capacity of the 3D-stacked DRAM memory is in the range of gigabytes (GBs),
which makes it capable of holding a larger number of data sets. For example, Intel
Knight Landing multiprocessor is equipped with 16GB of high bandwidth 3D-stacked
DRAM [107].

Researches have proposed to use the 3D-stacked DRAM either as cache or as
on-chip main memory because of its higher bandwidth, smaller cost and design com-
plexity [67, 69, 117]. In [67], Liu et al. have examined how 3D IC fabrication technol-
ogy can improve interactions between the processor and memory. They have shown
that bringing main memory on-chip gives us a near-perfect performance by reducing
the memory access latency. In [69], Loh et al. have proposed a different 3D-stacked
DRAM memory design approach to fully exploit the 3D integration technology. They
have explored a more aggressive 3D-stacked DRAM organization that makes better
use of the die-to-die bandwidth provided by 3D stacking. Also, in [69], authors have
revealed that revisiting the memory system organization in a 3D context can provide
much more performance improvements.

Furthermore, in [117], Woo et al. have studied the 3D-stacked memory architec-
ture and re-designed the L2 cache and its interface to the 3D-stacked DRAM. Their
technique SMART-3D improves the latency by exploiting the high density and band-
width of TSV between the last-level cache, 3D-stacked DRAM, and processor. In

21

2.2. 3D-STACKED DRAM MEMORY

[25], Chandrasekar et al. have proposed system and circuit level power modeling of
3D-stacked wide I/O DRAMs. Their model for the 3D-stacked wide I/O DRAMmem-
ories is almost as accurate as detailed circuit-level power models of the 3D-stacked
DRAMs.

Lee et al. in [62], have suggested an approach to improve the 3D-stacked memory
bandwidth at low cost by simultaneous multi-layer access in, thus making better use
of the bandwidth that TSV offers. Further, to avoid channel contention, they have
proposed approaches for the coordination between the layers while accessing the data
simultaneously. In [40], authors have proposed an architecture to place the main
memory on top of the processor using 3D fabrication technologies. Their proposed
memory design takes the benefits of the 3D architecture and bridges the performance
gap incurred due to the limited off-chip main memory bandwidth and access latency.

In the article [127], authors have presented that the researches related to the
3D-stacked memory system have considered the sophisticated non-uniform cache ar-
chitecture schemes. However, 3D-stacked memories suffer due to the coherence related
issues for larger size coherence directory associated with these memories. Therefore,
it is an urgency to look upon the newer dimensions of memory management and or-
ganization for the 3D-stacked memories. In [107], authors use the 3D-stacked DRAM
memory as a cache for their considered CMP system model, and this memory stores
only local data within it. For remote side data, the system needs to rely on small
on-die caches. Therefore, each on-die cache miss suffers due to the inter-node traver-
sal overheads while accessing remote data. In another recent work [30], authors have
proposed a DRAM cache architecture that allows caching both the local data and the
remote data at the cache block-level granularity. They placed the coherence directory
in the 3D-stacked DRAM and used an SRAM based on-chip buffer to cache recently
accessed coherence directory entries.

Dynamic run-time page mapping of virtual pages to 3D-stacked memory and
considering the on-chip 3D-stacked memory for physical pages may provide a better
solution to improve the performance. Therefore, it is essential to know the efficient
organization of the translation lookaside buffer (TLB). In [72], authors have used
inter-core cooperative prefetchers and shared last-Level TLBs for TLB usage im-
provement in CMP. Further, the larger size of main memory requires a corresponding
increase in the processor’s TLB resources to avoid performance bottleneck. In [91],
Pham et al. have presented a multi-granular TLB organization that significantly in-

22

2. RELATED WORKS

creases its effective reach. Also, their method reduces the miss rates substantially
and requires no additional OS support.

2.3 3D-stacked Hybrid Memory

Although the 3D-stacked DRAM has various advantages, its power consumption is
rapidly growing with the capacity increase. DRAM memory consumes 20% to 40% of
the overall system power [66, 111]. To tackle the DRAM power overheads associated
with the larger size DRAM, phase change memory (PCM) has been explored as an
alternative to the DRAM [129, 99]. PCM has better scalability (higher density),
non-volatility, and lower leakage energy as compared to the DRAM memory. Despite
many advantages, PCM has some drawbacks as compared to the DRAM memory,
for example, higher read/write latency and lower write endurance. Typically, when
compared with the DRAM memory, each read and write operation associated to the
PCM memory has about 4-6× and 6-32× longer latency, respectively; also, each read
and write of the PCM memory consumes 2× and 10-140× more energy as compared
to the DRAM memory, respectively [124, 93]. Further, the endurance value of PCM
memory is about 108 which is far lower than the DRAM endurance value 1015 [63].

Therefore, hybrid memory constituted using DRAM and PCM has been proposed
as a potential solution to take the advantages of the DRAM and PCM memory
components [124, 93, 64]. In [124], authors have developed a row buffer locality-
aware hybrid memory caching policy to utilize the benefits of the DRAM as well
as PCM memory components of the hybrid memory. In this paper, authors have
observed that PCM array access latency is much higher as compared to the DRAM
array access latency. Therefore, they developed a caching policy that keeps track
of the rows that have high row buffer miss counts and places only such rows in the
DRAM memory component.

In [93], Pourshirazi et al. have proposed a technique to eliminate the DRAM
refresh operations in the DRAM-PCM based hybrid memory. Moreover, their method
evicts the non-accessed rows from DRAM memory if it is time to refresh those DRAM
rows. In [64], Lee et al. have studied the effects of various DRAM and PCM memory
configurations on the system performance and energy consumption considering the
DRAM-PCM based hybrid memory. Further, authors have proposed a novel DRAM
cache design to use in conjunction with the PCM memory such that the performance

23

2.4. NETWORK-ON-CHIP

and energy efficiency of the hybrid memory can be maximized.
Nowadays, 3D-stacked hybrid memory is becoming popular due to its high capac-

ity and scalability benefits. Many recent studies, including [94, 39, 127], have studied
the 3D-stacked hybrid memory architect using DRAM and non-volatile (including
PCM, MRAM, etc.) memory technologies. In [39], Fawibe et al. have presented the
idea related to the address space organization into pages and virtual address to physi-
cal address translation considering the hybrid 3D-stacked DRAM and PCM memory.
In [94], Zhao et al. have introduced different types of heterogeneous multi-core ar-
chitectures considering the emerging 3D-stacked DRAM and non-volatile memory
technologies. Moreover, Zhao et al. have demonstrated the potential benefits to-
wards future application requirement and advantages of leveraging 3D integration on
heterogeneous architectures.

Some studies related to the hybrid memories considering the scratch pad mem-
ory and cache memory are also being performed [80, 119]. However, these memories
are smaller in size as compared to the 3D-stacked hybrid memories. Therefore, co-
herence maintenance for these hybrid memories is easier due to the smaller coherence
directories.

2.4 Network-On-Chip

Initially when up to tens of cores was there on a single chip, the traditional bus-based
interconnect network performed well. However, in the many-core era, as the num-
ber of cores residing on a single chip is increasing rapidly, the traditional bus-based
network cannot handle the synchronization problems of these large systems. Use of
NOC in place of ad-hoc global wiring facilitates the modular design to connect the
components of the chip. In NOC, communication between functional modules hap-
pens using an underlying fabric of routers connected in any of the network topologies.
The structured network or NOC provides a well-controlled electrical parameter that
enables the use of high-performance circuits to reduce the latency and increases the
network bandwidth [33]. In [13], authors have studied the NOC and found that for
present and future many-core systems, it is a viable alternative to provide modular
and scalable communication architecture.

There have been many studies that proposed different types of the NOC designs;
for example ring, tree, butterfly, 2D-mesh, hyper-cubes, torus, etc. [26, 58, 16, 53].

24

2. RELATED WORKS

In [101, 15], the comparison between the state-of-the-art works related to the NOC
design, how NOCs are being evaluated, which aspects have been covered till now, and
the area which needs more research effort have been studied in detail.

Among all the NOC designs, 2D-mesh is the best-suited network topology for the
CMP systems because of its simplicity and scalability. In addition to the advantages,
2D-mesh NOC has some disadvantages such as long network diameter and energy
inefficiency because of the extra hops caused due to the long network diameter [98].
Moreover, Reshadi et al. in [98], have proposed routing algorithm termed as extended
XY to improve the efficiency of the 2D-mesh NOC. Many real CMP systems, including
Intel Knights Landing [107] and Tilera64 [12], are based on the 2D-mesh NOC.

2.5 Hybrid Network-On-Chip

As the trend toward many-core processors continues to grow, the on-chip communi-
cation fabric (networks-on-chip) has become a limiting factor regarding performance
and power consumption. In survey article [113], authors have explained that the en-
ergy and delay have significant gaps for the shrinking transistors size. In the same
survey article [113], authors have suggested that the signals on electrical wires can be
made to travel faster by inserting repeaters, and this measure considerably increases
the energy for data transmission. Therefore, the latency of the electrical intercon-
nects is limited by the power budget and is likely to prohibit further performance and
power scaling of the chip multiprocessor system, having a more significant number
of cores. The survey also shows that silicon photonics is widely considered as one
of the most groundbreaking technologies that allow ongoing performance and power
scaling in chip design. The silicon photonic is having a transformative effect on the
way chips are designed from rack-scale computing down to many-core. In the survey
article [113], authors have provided an exhaustive study on the research efforts that
have been conducted in the realm of on-chip optical interconnects.

Shacham et al. in [103], proposed a circuit-switched photonic NOC that pro-
vides enormous transmission bandwidth while consuming minimal power. Moreover,
authors have also covered some critical design issues such as topology, path-setup
procedures, routing algorithms, and deadlock avoidance rules along with the recovery
procedures for the photonic NOC. Ye et al. in [123], have proposed an optimized 3-D
mesh-based optical NOC. Their floor-plan follows the regular 3-D mesh topology;

25

2.6. AREA AND PERFORMANCE TRADE-OFF IMPLICATION USING
HYBRID NOC AND 3D-STACKED MEMORY

however, all the optical routers are implemented in a single optical layer. Further,
authors have compared the performance and energy efficiency between the 3D mesh-
based optical NOC and the 2D mesh-based electronic NOC.

Werner et al. in [114], have proposed a hybrid network-on-chip topology that
decreases the power consumption efficiently by combining electrical and optical links.
Also, they identified that electrical links are best suited for the near distance com-
munications and optical links are for longer distances. Bahirat et al. in [8], proposed
a hybrid photonic NOC that uses a photonic ring based dedicated layer on top of
the electrical 2D mesh-based NOC which reduces the power consumption by 13× as
compared to the all-electrical 2D mesh NOC.

2.6 Area and Performance Trade-off Implication
Using Hybrid NOC and 3D-stacked Memory

To support the growing need of the applications, the number of cores on a CMP is in-
creasing at an exponential rate. As the number of cores on a CMP increases, the CMP
system needs high bandwidth interconnection network along with the high capacity
on-chip memory to give the higher performance [38, 102]. Advanced architectural
designs such as large 3D-stacked memories and efficient high end interconnects have
been proposed to foster the growing rate of the cores on a CMP. Also, the study
has shown that for a fixed-size die, increasing the number of cores on a chip reduces
the on-chip cache per core [7]. However, on-chip caches are one of the vital param-
eters to get better performance, and a shortage of caches may degrade the system
performance. Therefore, we aim to analyze the trade-off between the performance
and cache size per core for the CMP systems having 3D-stacked DRAM memory and
hybrid interconnection network. Some, related previous studies have been done to
study the performance and cache size trade-off, but none of them have used modern
CMP system architecture as we have considered.

Authors in [7], have introduced an analytical model to study the trade-offs of
utilizing increased chip area for the larger cache size versus more number of cores. Oh
et al. in [82], have presented an analytical model to study the trade-off between the
core count and the cache capacity in the CMP based on different cache organizations.
Their presented model enables to quickly study the effects of the chip area allocation
parameters on the system performance. In [71], authors have claimed that larger

26

2. RELATED WORKS

cache reduces the die area available for the cores and performance degrades due to
longer access latency. Moreover, for the data-center processors (termed as scale-out
server processors), they have proposed a methodology to tightly couple a number
of cores with comparatively smaller cache using the low latency interconnect and
replicated this structure (termed as pod) to form an optimal system. Moreover, there
is no direct connection between the pods, as these are stand-alone servers.

In [10], Balfour et al. have developed a detailed area and energy models for
on-chip interconnection networks. Further, they have described the trade-offs while
designing the efficient networks for tiled CMP system. They have also shown that the
architectures commonly assumed in on-chip networks studies do not perform well in
the CMPs if the core count increases. Huh et al. in [52], have compared performance
and area trade-offs for the CMP implementations to determine the number of cores,
in-order or out-of-order issues, and on-chip cache size for the future server CMPs.

Hill et al. in [49], have used Amdahl’s Law for the CMP system and build a model
to obtain speedups for asymmetric, symmetric, and dynamic CMP systems. Yavits
et al. in [122], have developed an analytical solution to optimize the CMP cache
hierarchy and optimally allocating the area among the hierarchy levels. Their pro-
posed model allows performance optimization under typical CMP restrictions, such
as constrained power budget, constrained area, limited off-chip memory bandwidth,
and limited NOC capacity. In [121], authors have proposed an analytical solution to
optimize 3D CMP cache hierarchy. Their method allows optimal partitioning of the
cache hierarchy into 3D silicon layers and optimal allocation of the area among all
the cache hierarchy levels such that area and power can be minimized.

�������

27

3
System Model and Application

Model
In this chapter, we explain the details of our considered CMP system model and

its different variations along with the application model, which are used throughout
the thesis. We cover all the essential details in this chapter, and it remains persistent
throughout the thesis unless otherwise explicitly mentioned. Moreover, we explain
them further in their respective chapters if required.

3.1 System Model and its Variations

The advent of three dimensional (3D) chip fabrication technology allows us to stack
and fabricate different technological layers together over each other on a single chip
[20, 112, 126]. It allows us to stack DRAMmemory, optical interconnects, non-volatile
memories (including phase change memory) on top of the chip.

Our considered CMP system architecture can be viewed as a 3D-stacked CMP
having mainly two types of layers, and these are (a) processor layer and, (b) 3D-
stacked memory layer. The processor layer comprises N processor cores {c0, c1,
c2, · · · , cN−1} and these processor cores (or cores) are connected using an electrical
k1×k2 2D-mesh (k1×k2=N) network of routers present at this layer. All the cores at
the processor layer are homogeneous. Each core has their private caches (L1-I, L1-D
and L2, and cache coherence is maintained at L2 level using MESI protocol) and
each core is associated with a router present in the 2D-mesh interconnection network.

29

3.1. SYSTEM MODEL AND ITS VARIATIONS

TSV Core L1+ L2 Cache

m 0 m 1

m 2 m 3

Figure 3.1: Example: 3D representation of the system model

3D-stacked memory layer, on top of the processor layer, is made of M {m0, m1,
m2, · · · , mM−1} number of on-chip 3D-stacked memory slices and each slice is having
a memory controller (MC) associated with it. These memory slices are assumed
to be non-coherent, and they do not share data between them. Each 3D-stacked
memory slice may be multi-layered, and connection in between them as well as
to the processor layer is made using TSVs. Moreover, there is some specific router
positions in the 2D-mesh at the processor layer, where each 3D-stacked memory slice
is connected using an additional router port and TSVs. The number of specific routers
(associated to each memory slice) and the specific router positions at the processor
layer can be derived or identified by using overall minimum Manhattan distance
clustering principle [90] or geometric modeling principle [76]. However, we have used
the minimum Manhattan distance clustering principle to decide the locations of the
specific position routers and their numbers. The number of memory channels per MC
can be calculated using the approach as given by Abts et al. [5]. However, in our
case, we use one channel per MC for simplicity.

Fig. 3.1, shows an example of the 3D representation model associated with the
considered CMP system architecture. In Fig. 3.1, processor layer has 64 cores that are
connected using an 8×8 2D-mesh of electrical interconnects. The 3D-stacked memory
layer is placed on top of the processor layer. 3D-stacked memory layer comprises four
3D-stacked memory slices m0, m1, m2 and m3, and these slices may be multi-layered..
Each 3D-stacked memory slice is connected to one of the processor layer router placed
at a certain position, and that processor layer router is termed as a specific router.

Fig. 3.2 shows a simplified and detailed view of Fig. 3.1 associated to the
8× 8 CMP system. The right part of Fig. 3.2, shows the four non-overlapping areas
associated with the four 3D-stacked memory slices {m0, m1, m2 and m3} for the 8×8

30

3. SYSTEM MODEL AND APPLICATION
MODEL

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

Core

Core

TSV

Area−2 Area−3

Area−0 Area−1

3D−stacked
Slice

Processor
Layer

Processor
Layer

Router

Router

0 1 2 3 4 5 6 7

8 9 10 11 12 14 15

16 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

13

17

Figure 3.2: Detailed system model representation showing four non-overlapping
areas.

CMP system. Positions of the 3D-stacked memory slices associated with the specific
position processor layer routers prompt us to consider that every core belongs to a
particular area covered by a 3D-stacked memory slice. We used a 1D-array entitled
as core to slice table (CST), which gives the value of the 3D-stacked memory slice
number SNum for each core. The value SNum is corresponding to the 3D-stacked
memory slice number which is closely associated (or local) to the core indexed by
1D-array.

Therefore, each core belongs to a coverage area associated to a 3D-stacked mem-
ory slice, and this is the closest among all the 3D-stacked memory slices. The CST [i]

array value represent the closest 3D-stacked memory slice to the ith core. For an
example, corresponding to the four 3D-stacked memory slices m0, m1, m2 and m3 the
SNum can have a value from 0, 1, 2 and 3. 3D-stacked memory slices m0, m1, m2

and m3 are connected to the processor layer routers placed at 17th, 13th, 50th and 46th

positions respectively. So, the values of CST array can be derived as CST [64]={0,
0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 0, 0, 2,
2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3}. Therefore,
based on the CST [64] array values, core indices can be divided in to four areas. The
elements (or core indices) associated to the four areas are given as follows:

• area-0: {0, 1, 2, 8, 9, 10, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33}.

31

3.1. SYSTEM MODEL AND ITS VARIATIONS

• area-1: {3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29}.

• area-2: {34, 35, 40, 41, 42, 43, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60}.

• area-3: {30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 53, 54, 55, 61, 62, 63}.

Cores associated to area-0, area-1, area-2 and area-3 are in the coverage area of 3D-
stacked memory slicesm0,m1,m2 andm3 respectively. In this example, the maximum
Manhattan distance between a core and its local 3D-stacked memory slice is 3.

Further, based on the objective of this thesis, our considered CMP system ar-
chitecture can have any of the following four architectural components on top of the
chip in a 3D-stacked manner.

• 3D-stacked DRAM memory, and

• 3D-stacked DRAM memory along with an SRAM buffer, both are similar to
the architecture as described in [69].

• Combination of 3D-stacked DRAM and PCM memory, similar to the design as
given in [126].

• Combination of 3D-stacked DRAM and optical interconnect, similar to as de-
scribed in [69, 8, 61].

In traditional 2D architecture, off-chip memory access is limited by slow (order of
≈ MHz) off-chip buses [46]. Loi et al. in [70], have unveiled that the vertical on-chip
buses (termed as TSV) in the 3D design have an access frequency in the order of ≈
GHz. Therefore, limitations of the off-chip buses (in case of off-chip main memory)
are eliminated by using a 3D-stacked layer on top of the processor layer, that takes
the benefits of the high-speed on-chip TSV. The cores and memory slices which are
connected using TSV can be considered on-chip as reported in [67, 40]. Also, for
the CMP having a larger core count, consider the smaller value of the chip height as
compared to the length and breadth. Therefore, we can assume that communication
time and distance from the 3D-stacked memory layer to processor layer routers using
TSVs are negligible.

Therefore, based on the constituents of the CMP, our considered generic system
model (as shown in Fig. 3.1) get converted into four distinct CMP system models
that are used to achieve the objective of the thesis. Following sub-sections explain
these four distinct CMP system models in detail.

32

3. SYSTEM MODEL AND APPLICATION
MODEL

3.1.1 DRAM Memory at the 3D-stacked Memory Layer

In this variation of the generic CMP system model, each 3D-stacked memory slice
is having an on-chip memory controller (MC) associated with its 3D-stacked DRAM
memory slice. Therefore, there are M {m0, m1, m2, · · · , mM−1} number of on-chip
3D-stacked DRAM memory slices and their MCs. The memory capacity of all the
DRAM slices is equal. The considered CMP architecture is similar to as described in
[74], where 3D-stacked DRAM memory layer is stacked on top of the processor layer.
In general, to reduce the temperature of the chip, the memory slices are placed in the
bottom layers, and the processor layer (logic layer) is the top layer of the 3D-stacked
chip so that heavily utilized processing cores can dissipate heat easily [110]. Logically
both the architectures are the same.

Fig. 3.3 shows an example of the CMP system model having 3D-stacked DRAM
memory slices on top of the processor layer. This CMP system model is same as
shown in Fig. 3.2, except the detailed representation and connection of the 3D-stacked
memory slices. The left part (three-dimensional view) shows the 3D-stacked DRAM
memory slice organization and its interconnection with the processor layer routers
using TSV. Also, the left part shows the organization of the 3D-stacked memory
slices (can be multi-layer) and its memory controllers. The right part of Fig. 3.3
shows a CMP having 64 cores {c0, c1, c2, · · · , c63} and these cores are connected using
an 8× 8 2D-mesh NOC.

Further, considering the CMP system model as shown in Fig. 3.3, the target
3D-stacked DRAM memory based CMP system can be modeled as core memory
interconnection graph CMIG(Ccc, EEcc). CMIG(Ccc, EEcc) graph is a collection of
N core vertices (or NOC-tile vertices or cores, interchangeably used throughout the
thesis) Ccc(c0, c1, …, cN−1) that are connected using the electrical edge set (EEcc).
Edges eecc(ci, cj) ∈ EEcc whenever there is an interconnection between core vertices
ci and cj. The core vertex is formed by grouping the associated adjacent elements
such as processing core, router, memory slice and its associated memory controller (if
present and adjacent to the processor layer router).

Moreover, the right part of Figure 3.3, can be considered as an example of CMIG

graph corresponding to considered CMP system architecture. This graph is having
64 core vertices Ccc(c0, c1,…, c63) and their respective electrical interconnects. In the
right part of Figure 3.3, all the plain shaded core vertices have a core, private caches
(L1 and L2) and processor layer router. Similarly, all the dark shaded vertices have

33

3.1. SYSTEM MODEL AND ITS VARIATIONS

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

Core

Core

TSV

Layer
Processor

Area−2 Area−3

Area−0 Area−1

Processor
Layer

3D−stacked
Slice

Router

Router

DRAM MemoryMemory Controller

0 1 2 3 4 5 6 7

8 9 10 11 12 14 15

16 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

13

17

Figure 3.3: Example: Detailed system model representation for CMP with DRAM
memory

a core, private caches (L1 and L2) along with the processor layer specific position
router, and memory controller (along with its DRAM memory slice) together.

The above CMP system architecture having 3D-stacked DRAM memory and its
core memory interconnection graph CMIG representation is used in Chapter 4 and
the first part of Chapter 5 to achieve our aforementioned objective.

3.1.2 DRAM and SRAM Buffer at the 3D-stacked Memory
Layer

In this case, the CMP system has 3D-stacked DRAM memory along with the SRAM
based buffer on top of the processor layer, which is similar to as explained in section
3.1.1 except the addition of the SRAM based buffer. Specifically, in this CMP system
model, each DRAM memory slice has an SRAM based buffer (termed as mapping
buffer, Mbuff) along with the memory controller (MC). Each DRAM memory slice
along with the Mbuff and MC is connected to a processor layer router (specific
positioned router) using TSV. EachMbuff caches the frequently accessed cache blocks
of the pages associated with its DRAM memory slice. The higher hit rate of Mbuff

(due to efficient interaction method with DRAM memory slice and its size) mitigates
the high DRAM access latency.

34

3. SYSTEM MODEL AND APPLICATION
MODEL

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

Core

Core

TSV

Area−2 Area−3

Area−0 Area−1

3D−stacked
Slice

Processor
Layer

Processor
Layer

Router

Router

DRAM MemorySRAM BufferMemory Controller

0 1 2 3 4 5 6 7

8 9 10 11 12 14 15

16 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

13

17

Figure 3.4: Example: Detailed system model representation for CMP with DRAM
memory and SRAM buffer

Fig. 3.4 shows an example of the CMP system model having 3D-stacked DRAM
memory along with the SRAM memory-based buffer as the constituent of the 3D-
stacked memory slices. The right part of Fig. 3.4 shows a CMP having 64 cores
{c0, c1, c2, · · · , c63} and these cores are connected using an 8×8 2D-mesh interconnect.
Also, each core is associated with a router. Further, the left part (three-dimensional
view) shows the 3D-stacked slice (associated to 3D-stacked layer) organization and its
interconnection with the processor layer routers using TSVs. 3D-stacked layer on top
of the processor layer is having four stacked DRAM slices m0, m1, m2, and m3. Each
DRAM slice is having an on-chip MC and an SRAM memory-based buffer Mbuff ,
and these are connected to the specific routers placed at processor layer. This form
of the CMP system model is used in the second part of Chapter 5 to perform a
comparative study between self-adaptive run-time page mapping and a state-of-art
work [30].

The CMP system model considered in this section is similar to the CMP system
model as considered in section 3.1.1, except the additional Mbuff placed at the 3D-
stacked slice. Therefore, the CMIG(Ccc, EEcc) graph which is considered in section
3.1.1, can also be used for the target CMP system model of this section. So, consid-
ering the CMP system model, as shown in Fig. 3.4, the target 3D-stacked DRAM
memory-based CMP system along with the SRAM buffer can be modeled as core

35

3.1. SYSTEM MODEL AND ITS VARIATIONS

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

����������������
����������������
����������������

����������������
����������������
����������������

Core

Core

TSV

Area−2 Area−3

Area−0 Area−1

3D−stacked
Slice

Processor
Layer

Processor
Layer

Router

Router

Memory Controller DRAM MemoryPCM Memory

0 1 2 3 4 5 6 7

8 9 10 11 12 14 15

16 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

13

17

Figure 3.5: Example: Detailed system model representation for CMP with DRAM-
PCM based hybrid memory

memory interconnection graph CMIG(Ccc, EEcc). Where, everything is same except
the core vertex constituent elements, which also includes a Mbuff along with the
other elements.

3.1.3 DRAM and PCM memory at the 3D-stacked Memory
Layer

In this case, the CMP system has 3D-stacked DRAM and PCM memory placed on
top of the processor layer. 3D-stacked DRAM memory slice and PCM memory slice
together form a hybrid memory slice, and together there are M number of hybrid
memory slices. Also, each 3D-stacked hybrid memory slice is having an on-chip
memory controller (MC) associated with it. This form of the CMP system model is
used in Chapter 6 along with the details if required.

For example, the right part of Fig. 3.5 (two-dimensional view), shows a CMP
having 64 cores {c0, c1, c2, · · · , c63} and these cores are connected using an 8× 8 2D-
mesh based interconnects. It shows the four specific positions denoted by c17, c13,
c50, and c46 associated to four 3D-stacked hybrid memory slices m0, m1, m2, and
m3 respectively. The left part (three-dimensional view) of Fig. 3.5, shows the 3D-
stacked multi-layer organization of the hybrid memory slice and its interconnection

36

3. SYSTEM MODEL AND APPLICATION
MODEL

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

ONI Optical Interconnect (waveguide)

Core

Core

Processor
Layer

Area−2 Area−3

Area−0 Area−1

TSV

Interconnect

Processor

Layer

Optical

Layer

Memory Layer
3D−stacked

Router

Router

DRAM Memory
Memory Controller

0 1 2 3 4 5 6 7

8 9 10 11 12 14 15

16 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

13

17

Figure 3.6: Example: Detailed system model representation for CMP with DRAM
memory and optical interconnect

with the processor layer routers using TSV. The bottom layer of each memory slice
has a memory controller associated with it. Also, each hybrid memory slice contains
the DRAM memory as well as PCM memory and constitutes a hybrid memory slice.

3.1.4 DRAM Memory at the 3D-stacked Memory Layer along
with an Optical Layer

In this form of the CMP system model, an optical interconnect layer in between
the 3D-stacked memory layer and processor layer is placed. The optical interconnect
layer is having M optical network interfaces (ONIs), and these are connected via
optical interconnects (waveguides). Each ONI comprises micro-ring resonator and
on-chip laser sources which are similar to as explained in Beux et al. [61]. Each ONI
is connected to a processor layer router (specific position router in 2D-mesh) and a
memory controller (associated with the DRAM memory slice) using the TSV. This
form of CMP system model is used in Chapter 7.

Figure 3.6 shows an example and detailed representation of the considered 3D-
stacked DRAM memory-based CMP having optical interconnect. In Figure 3.6, pro-
cessor layer has 64 cores that are connected using an 8× 8 two-dimensional mesh of
electrical interconnects. Optical interconnect layer on top of the processor layer is

37

3.1. SYSTEM MODEL AND ITS VARIATIONS

having four optical network interfaces (oni0, oni1, oni2, oni3 ∈ ONI) and these are
connected to each other through optical interconnects (waveguide), which is shown
as thick line between the nodes in right part of Fig. 3.6. Further, a 3D-stacked
DRAM memory layer is placed on top of the optical interconnect layer. There are
four 3D-stacked DRAM memory slices (or memory banks) at the 3D-stacked memory
layer {m0, m1, m2 and m3} and each memory slice is having their own on-chip MC
associated with it.

Researchers have reported that optical network interfaces (ONIs) and DRAM
memory slices can be considered on-chip [67, 40]. Therefore, we can assume that
communication time and distance from the memory slices as well as ONIs to proces-
sor layer routers using TSVs are negligible. So, the considered 3D-stacked DRAM
memory based CMP having optical interconnect, can be modeled as the core memory
hybrid interconnection graph CMHIG(Ccc, EEcc, EOcc). CMHIG(Ccc, EEcc, EOcc)
graph is a collection of NOC-tile vertices Ccc(c0,c1, …,cN−1) that are connected us-
ing an electrical edge set (EEcc) and optical edge set (EOcc). The NOC-tile vertex is
formed by grouping together the associated adjacent elements (processing core, mem-
ory controller and ONI, based on their presence in some cases) with each processor
layer router. The left part of Figure 3.6 shows the constituent components of the
NOC-tile vertices based on the associated adjacent elements to each processor layer
routers. eecc(ci, cj) ∈ EEcc whenever there is an electrical interconnection between
NOC-tile vertices ci and cj. Moreover, eocc(ci, cj) ∈ EOcc whenever there is an optical
interconnection between NOC-tile vertices ci and cj.

Moreover, the right part of Figure 3.6, can be considered as an example of
CMHIG graph corresponding to considered CMP system architecture. This graph
is having 64 NOC-tile vertices Ccc(c0, c1,…, c63) and their respective electrical and
optical interconnects. In the right part of Figure 3.6, all the plain shaded NOC-tile
vertices have a core, processor layer general-router (GR), and their private caches
(L1 and L2) together. Moreover, all the dark shaded vertices have a core, private
caches (L1 and L2), ONI, processor layer specific-router (SR) and, DRAM controller
together. In Figure 3.6, left part shows an enlarge abstract view of the 55th and
46th vertices that are the examples of the plain-shaded and the dark-shaded vertices
respectively.

38

3. SYSTEM MODEL AND APPLICATION
MODEL

d

d

d

d
t

t
t

t

 0

 1

d

 5

 0

 1

 3

 2

 4

 3

 2

d

Thread

Data

Thread to Data Access Edge

Thread to Thread Communication Edge

Figure 3.7: Example of application model

3.2 Application Model

It is evident that in multi-threaded applications, a single application is sub-divided
into multiple threads based on their specific operations, and each thread can run
in parallel to each other. Also, there exists data sharing in between the threads as
they belongs to the same applications and uses the same variables. Therefore, con-
sidering the resource sharing properties of the multi-threaded applications between
their independent threads, here we assume that a multi-threaded application is hav-
ing N threads and D data, and N is same as the number of cores in the CMP. This
assumption is valid if may run multi-threaded applications having multi-application
workloads together to utilize all the processors of the CMP. A multi-threaded applica-
tion can be represented as an application graph AG(T, D, Etc, Eda). An application
graph AG (corresponding to a multi-threaded application) consist of two types of
nodes: (a) set of thread nodes T(t0, t1, …, tN−1) and (b) set of data nodes D(d0,
d1, …, dD−1). These nodes are connected via two types of edges: (a) set of thread
communication edges etc(ti, tj) ∈ Etc and, (b) set of data access edges eda(ti, dj) ∈
Eda.

Fig. 3.7 shows an example of an application graph. This graph has four thread
nodes (t0, t1, t2, t3), six data nodes (d0, d1, d2, d3, d4 and, d5) and their interconnec-
tion. The data access edge eda(ti, dj) represents the edge between the thread node ti

and data node dj and the number of access to data dj by the thread ti is represented
by the weight ω(eda(ti, dj)) of the edge. Similarly, thread to thread communication
edges etc(ti, tj) is between thread node ti and tj and weight ω(etc(ti, tj)) represent the
amount of data communicated between them.

39

3.2. APPLICATION MODEL

In a virtual memory environment, a data node (or data) can be represented using
either a virtual page or many virtual pages. For each virtual page vpj, it get mapped
to an associated physical page pp ∈ PP (PP is the set of all physical pages or frames)
in the DRAMmemory. So, the application graph AG(T, D, Etc, Eda) can be converted
to application graph with virtual paging AGV P (T, VP, Etc, Evpa). Where, term VP
is the set of virtual pages (or total number of pages) corresponding to data of D and
Evpa is the edge set having access edges evpa(ti, vpj) ∈ Evpa for the virtual page vpj ∈
VP accessed by a thread ti. Our assumption, the virtual page access by threads may
include the virtual page accesses of whole virtual space of the application including
data, code, heap and any other parts of the virtual memory.

�������

40

4
Static Profile Based Mapping

In earlier days, SRAM technology was popular to implement caches inside the
chip. However, recently, 3D die stacking technology became more advanced to fabri-
cate on-chip high density 3D-stacked DRAM memory [69, 67, 40]. Research in [69],
reported that placing memory on top of the processor using 3D fabrication technolo-
gies (3D-stacked memories) shows an impressive performance benefit of up to 92%.
High capacity (in GBs) and bandwidth on-chip 3D-stacked DRAM memory has the
potential to satisfy the growing need of the current as well as future generation CMP
systems, where core count is high.

In this Chapter, a 3D-stacked DRAM memory-based CMP system is considered
(target CMP system of this Chapter), where on-chip 3D-stacked DRAM memory is
connected to the processor layer using TSV (to knock down the memory wall problem
of the CMP system). Further, to avoid the coherence directory and remote memory
access related issues for the large size 3D-stacked DRAM memory, we have proposed
efficient profile based static application mapping on to the 3D-stacked DRAM mem-
ory based CMP. Specifically, in this Chapter, we have designed profile based static
application mapping, where virtual pages of the application get mapped to the DRAM
memory slices, and threads of the application get mapped to the cores of the CMP
system such that on-chip communication can be minimized. This Chapter presents
an alternative way to use the 3D-stacked DRAM memory for the CMP systems. In
our proposed approach, 3D-stacked DRAM memory is considered as non-coherent
memory. Moreover, to reduce the effective remote memory access related overheads,
we perform a static virtual page to DRAM memory slice mapping.

41

4.1. PROBLEM FORMULATION

4.1 Problem Formulation

Consider, the application graph representation AGV (T, VP, Etc, Evpa) and the target
3D-stacked DRAM memory based CMP representation CMIG(Ccc, EEcc), as given
in Section 3.2 and 3.1.1 of Chapter 3 respectively. Along with the assumption that
the number of threads of an application and the number of core in the CMP system
is equal and it is N for both, as explained in Chapter 3.

Based on the target CMP system and multi-threaded application graphical rep-
resentations, the aim of this Chapter is to find the mapping of N threads to the N

cores and V P virtual pages to the M DRAM memory slices such that overall on-chip
communication cost is minimized. In order to achieve this, two mapping functions or
tables, X (thread to core table or TCT) : T → C and Y (virtual page to memory slice
table or VMT) : VP → M need to be found such that sum of thread communication
cost (Ccomm represented by equation 4.1) and memory access cost (Cmac represented
by equation 4.2) is minimized subjected to following:

• One thread is assigned to only one processing core.

• Many threads can access to one virtual page, and the virtual pages need to be
in one of the DRAM memory slices.

• Many virtual pages can be mapped to one memory slice. In case if the system
does not support virtual memory, then the size of all mapped pages should not
exceed the size of the memory slice. However, nowadays, almost all the system
supports virtual memory technique so that pages can be swapped in and out.
Therefore, a memory slice can hold virtually infinite pages.

The thread communication cost Ccomm is given as,

Ccomm =
N−1∑
i=0

N−1∑
j=0

ω(etc(ti, tj))× distCC(X(ti), X(tj)). (4.1)

Where ω(etc(ti, tj)) is weight of the edge etc(ti, tj) and this amount of data
get communicated between thread ti and tj. Term X(ti) and X(tj) are the core
vertices having threads ti and tj mapped to their cores respectively. The term
distCC(X(ti), X(tj)) is the Manhattan distance between the core vertices having
threads ti and tj mapped to their cores.

42

4. STATIC PROFILE BASED MAPPING

The memory access cost Cmac is given as,

Cmac =
N−1∑
i=0

|VP|−1∑
j=0

ω(evpa(ti, vpj))× distCC(X(ti), Y (vpj)). (4.2)

Where ω(evpa(ti, vpj)) is the number of page access by thread ti to page vpj.
Y (vpj) gives the CMIG core vertex number associated to the DRAM memory slice
having mapped page vpj. The term distCC(X(ti), Y (vpj)) is the distance between
X(ti) (the core vertex having thread ti mapped to its core) and Y (vpj) (the core
vertex associated to the memory slice having mapped page vpj). Moreover, term VP
represents the set of virtual pages or total number of virtual pages corresponding
to the multi-threaded application. Terms distCC(X(ti), X(tj)) and distCC(X(ti),
Y (vpj)) are calculated using the electrical edge set EEcc associated to the CMIG

graph of the target CMP system. In case of the considered CMIG graph associated
to the 3D-stacked DRAM memory based CMP (where cores are connected using
2D-mesh network), the value of distCC(X(ti), X(tj)) and distCC(X(ti), Y (vpj))

are hop-to-hop Manhattan distance between the associated core vertices. We have
assumed 1 hop distance between any two adjacent core vertices throughout the thesis
to calculate the distances distCC(X(ti), X(tj)) and distCC(X(ti), Y (vpj)).

As reported by Mutlu et al. in [38], NOC consumes about 40% of on-chip power.
So, if we reduce the overall on-chip communication cost (Ccomm+Cmac), it reduces
the on-chip power consumption significantly, which makes it an essential motivational
factor to solve this problem.

4.2 Static Profile Based Mapping

In this Section, we use profile driven mapping of the benchmarks to minimize the on-
chip communication cost. The benchmarks considered are PARSEC [14], SPLASH-2
[118], and many standard multi-threaded applications written using Cilk [42]. In
profile based mapping, the application is executed once on the target CMP to get the
statistics about thread to thread communication, and thread to virtual page access
count. The same profiled information is used to optimize the overall communication
cost of the application for the next execution of the application, assuming that similar
kind of data access pattern will be observed by a different run of the same application.
This Section describes (a) simulated annealing based thread to core mapping, (b)

43

4.2. STATIC PROFILE BASED MAPPING

virtual pages to memory slices mapping, (c) thread mapping followed by virtual page
mapping, and finally (d) combined thread and virtual page mapping. The first two
mapping approaches (a) and (b) are to analyze the effects of the thread to core
mapping and virtual page to memory mapping respectively. However, (c) and (d)
are two different approaches that uses the thread to core and virtual page to memory
mapping concepts together and their aim is to study the effects of the combination
of both the mapping components.

4.2.1 Thread to Core Mapping

In thread to core mapping process, we map N threads of the multi-threaded ap-
plication on to N cores of CMP such that core to core communication cost (given
by equation 4.1) can be minimized. The mapping solution X need to be found, for
which the Ccomm is minimum. This mapping problem is exactly same as the quadratic
assignment problem (QAP). The QAP problem is an NP-Hard problem, and there
is no possibility of finding an approximation scheme for the same problem [60]. So
meta-heuristics are used to solve this kind of problem, to get a good solution within
a reasonable time. We have used simulated annealing (other heuristics also works,
but simulated annealing is used because of simplicity and less execution time) meta-
heuristics to solve this problem. Algorithm 1 shows pseudo-code for solving this
problem using simulated annealing. Simulated annealing uses single solution based
iterative refinement by single pair exchange neighbor generation and evaluation in
solving the problem [60].

This algorithm starts with an initial solution (which is a random thread to core
mapping table X, an example is shown in the top part of Table 4.1). Every iteration
of the algorithm generates a neighbor solution (thread to core mapping table X) using
the exchange of a randomly selected pair (X[a] and X[b]), and evaluates new cost
Cnew

comm using Equation 4.1. The algorithm accepts a newly generated solution if the
cost Cnew

comm associated with the new solution is less than the cost Ccomm associated with
the current best solution. The new solution does get accepted even if the cost of the
new solution is higher than the cost of the current best with some probability defined
by random()%Cnew

comm

Cnew
comm

≤ e−
Cnew
comm−Ccomm

Temp (part of step-7). Therefore, the new solution
X with increased cost also get accepted with some probability. The probability of
acceptance of solution with higher current cost depends on temperature value at the
current iteration, and it decreases with iteration. In each iteration temperature value

44

4. STATIC PROFILE BASED MAPPING

Algorithm 1 :Thread to Core Mapping Using Simulated Annealing
1: Initialize: X (Thread to Core mapping table), and Temp=HIGH;
2: Ccomm = Evaluate cost using Equation 4.1 and X.
3: while Temp > LOW do
4: a=random()%N , b=random()%N
5: Generate a neighbor solution value of X by Swap(X[a], X[b])
6: Cnew

comm = Evaluated cost using new X and Equation 4.1
7: if (Cnew

comm < Ccomm) || (random()%Cnew
comm

Cnew
comm

≤ e−
Cnew
comm−Ccomm

Temp) then
8: Ccomm = Cnew

comm

9: else
10: SwapBack(X[a], X[b])
11: end if
12: Reduce temperature : Temp =α × Temp;
13: end while
14: return X

Initial thread to core mapping
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
c15 c14 c10 c3 c4 c8 c6 c7 c5 c9 c2 c11 c12 c13 c1 c0

Optimized thread to core mapping using SA (simulated annealing)
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
c13 c4 c10 c5 c8 c15 c3 c7 c6 c0 c9 c14 c11 c2 c12 c1

Table 4.1: Initial and optimized thread to core mapping

reduce by a factor of α, and the typical value of α = 0.9. Value of lowest temperature
(LOW = 1), highest temperature (HIGH = 1000) and α controls the number of
iterations. Simulated annealing produces a reasonably good solution X[N] (mapping
of thread to the core) in less time. The bottom part of Table 4.1 shows an example
of the result produced by this method.

4.2.2 Mapping of Virtual Pages to DRAM Memory Slices

In memory page mapping, the on-chip communication cost of virtual page access
from all the cores is minimized as described in Equation 4.2. The values of the
number of virtual pages (|V P |), the number of cores or threads (N) and the number
of DRAM memory slices (M) are not same. Typically these values have relation
|V P | >> N > M as in contrast to the earlier case of thread to core mapping where
the number of cores and the number of threads are equal.

45

4.2. STATIC PROFILE BASED MAPPING

Algorithm 2 :Virtual Pages to DRAM Slice Mapping
1: Initialize: Y (Virtual page to DRAM slice mapping table), X (Thread to Core

mapping table).
2: for every virtual page vpj (j ≤ |V P |) do
3: if ω(evpa(ti, vpj)) is not zero for all the threads ti ∈ N then
4: Cost = ∞.
5: for All the memory slices mj ε M do
6: Y ′=Y (vpj).
7: Map virtual page vpj to mj i.e. Y (vpj)=mj.
8: CostNew=

∑N−1
i=0 ω(evpa(ti, vpj))× distCC(X(ti),mj).

9: if CostNew < Cost then
10: Cost = CostNew.
11: else
12: Y (vpj)=Y ′.
13: end if
14: end for
15: end if
16: end for
17: return Y .

So, with these above simplifications, the virtual page mapping problem can be
solved using a simple approach. Algorithm 2 shows the pseudo-code for mapping of
virtual pages to DRAM memory slices. This method takes active virtual pages (active
virtual page means ω(evpa(ti, vpi)) is not zero for all the threads ti) one by one and
map to a DRAM memory slice which minimizes the on-chip memory access cost of
that page and so minimizes the memory access cost defined by Equation 4.2.

In the evaluation of memory mapping, we use the default thread to core mapping
(X) that is a random mapping of thread to the core as shown in the upper part of the
Table 4.1. As |V P | >> N > M , the on-chip communication due to memory access
has a significant share as compared to the core to core communication in the overall
on-chip communication cost (summation of Ccomm and Cmac). Hence efficient virtual
page mapping to DRAM memory slice reduces the overall on-chip communication
cost significantly.

As an example, Figure 4.1 shows the percentage of active virtual pages mapped
to different memory slices with and without page mapping to DRAM slices for some
randomly selected benchmark applications on 4 × 4 CMP system having 4 DRAM
slices. The change in the percentage of virtual pages mapped to different DRAM
memory slices is significant before and after the virtual page mapping optimization.

46

4. STATIC PROFILE BASED MAPPING

 0

 20

 40

 60

 80

 100

 120

B
e
fo

re

A
ft

e
r

B
e
fo

re

A
ft

e
r

B
e
fo

re

A
ft

e
r

B
e
fo

re

A
ft

e
r

B
e
fo

re

A
ft

e
r

B
e
fo

re

A
ft

e
r

N
�
��
�
��
�
�
�
N
	
�

�
�
�
�
�
��
	
�
�
�
�
a
�
�

�
�
�
�
�
�

�
�
�
��
�
��
�
�
�

B���������

m0

m1

m2

m3

b���!"#uidanimC$%&'(!atC$%&')(*%!"&lC$%&'+%,C$%&'-t

Figure 4.1: Percentage of active virtual pages mapped to different memory slices:
before and after page mapping

For Cilk-fft benchmark the most of the virtual page get mapped to DRAM slice m0

andm1, but after virtual page mapping optimization, the pages are getting distributed
to all the DRAM slices. Similarly, for other benchmarks, the virtual pages get mapped
to different DRAM slices to minimize the overall on-chip communication cost due to
memory access cost.

4.2.3 Thread Mapping Followed by Virtual Page Mapping

In this case, we generate the optimal thread to core mapping using Algorithm 1, and
after that virtual page to DRAM slice get mapped by the approach described in the
previous Sub-section or Algorithm 2. In this case, thread to core mapping gets higher
priority as compared to the virtual page to DRAM slice mapping.

4.2.4 Combined Thread Mapping and Virtual Page Mapping

Communication cost due to the virtual page accessed by the threads dominates the
overall on-chip communication cost, and also many threads access a virtual page. So
the mapping of both threads to cores and virtual pages to DRAM slices together may
be crucial. In this case, we map (thread, virtual page) access pairs to be in adjacent
cores and DRAM slices together.

47

4.2. STATIC PROFILE BASED MAPPING

In this mapping process, we create a list of communications for the thread to
thread pairs and thread to virtual page accesses pairs. Communication pair consists
of a source, destination, and amount of data.

• For thread to thread pairs, the communications are in the form (ti, tj, etc(ti,tj)),
where etc(ti, tj) is the data communication edges. We list out this form of
communications for all the thread pairs.

• For thread to virtual page access pairs, the communications are in the form
(ti, vpj, evpa(ti, vpj)), where evpa(ti, vpj) the virtual page access edges. We list
out this form of communications for all the threads to all the virtual page access
pairs.

We sort all the thread-thread communication pairs (based on ω(etc(ti, tj))) and
all the thread to virtual page access pairs (based on ω(evpa(ti, vpj))) together in non-
increasing order of their amount. The combined mapping approach uses this sorted
communication pairs. Combined thread to the core and virtual page to DRAM slice
mapping employs the following three phases:

(a) Phase I: In this phase of mapping, we select some top (ti, vpj, evpa(ti, vpj))

communication pairs from the sorted combined list of communication pairs and
map to the resources till all the DRAM slices get at least one mapped virtual
page. Initially, we chose M pairs of thread to virtual page access evpa(ti, vpj)

and map their vpj to different DRAM slices and their thread to core which is
near to the DRAM slices (or core which share the router with DRAM slices).
For an example, considering the CMP system model as shown by Figure 3.3,
we map top four thread-virtual page pairs to (c17,m0), (c13,m1), (c50,m2) and
(c46,m3) such that the overall communication cost is minimum.

If among the top M pairs have common threads then we map both the virtual
pages to one DRAM slice and the common threads get mapped to nearby one
and near to the allocated memory slices. Similarly, if the top M pairs have a
common virtual page, then we assign the common virtual pages to one DRAM
slice and the threads to nearby one and near to the memory slices. If this
happens, then include more evpa(ti, vpj) pair to cover all the M DRAM slices.

(b) Phase II: In this phase of mapping, we select communication pairs from the
sorted, combined list of communication pairs one by one and map to the re-
sources till all the threads assigned to one core. Till all the threads not mapped

48

4. STATIC PROFILE BASED MAPPING

to core, we select a top pairs from sorted combined list of communication pairs
which is either etc(ti, tj) or evpa(ti, vpj) communication pair and try to map
them. One of the item (thread or virtual page) of the pair is already mapped
then map the other item of the pair accordingly.

If the next selected pair is etc(ti, tj) pair then we allocate them nearby cores for
thread ti and tj. And similarly if the next selected pair is evpa (ti, vpj) pair then
we find a core-DRAM slice pair where distance is minimum and allocate them.

(c) Phase III: In the last phase, we use simple virtual page to DRAM slice map-
ping as described in Section 4.2.2 and Algorithm 2 for rest of the unmapped
evpa(ti, vpj) pairs.

Algorithm 3 shows the pseudo-code for combined mapping of the virtual page to
DRAM slices and thread to cores. If more than one core is at the same distance from
the MC during thread mapping, then randomly any one core is considered. The first
phase, second phase, and the last phase of mapping get performed in line number 4
to 11, 12 to 18 and 19 of Algorithm 3 respectively.

4.3 Experimental Setup

We have used Sniper simulator (version 6.1 [23]) to evaluate our proposed mapping
methodologies for mapping multi-threaded benchmarks onto the 3D-stacked DRAM
based CMP. Sniper simulator uses Pin binary instrumentation tool and can simu-
late X86 binary of multi-threaded benchmark applications. We have evaluated our
proposed mapping approaches by using many PARSEC benchmarks [14], SPLASH-2
[118] benchmarks, and many other standard multi-threaded application written using
Cilk [42]. We run these benchmarks on the simulator by using 16-cores (4 × 4 two-
dimensional mesh and 4 MCs), 36-cores (6 × 6 two-dimensional mesh and 5 MCs),
and 64-cores (8× 8 two-dimensional mesh and 8 MCs) multiprocessor configurations
to gather the profile data. Table 4.2 shows the micro-architecture parameters used
in this paper. The profile data of a benchmark contains core to core communication
traces (the amount of data communication) and core to L3 cache miss traces (which
is, in general, get converted into the thread to virtual page access frequencies).

In modern-day systems, operating system (OS) uses address space layout ran-
domization (ASLR) to improve memory protection process to safeguards against

49

4.3. EXPERIMENTAL SETUP

Algorithm 3 :Combined Virtual Page and Thread Mapping
1: Initialize: X (Thread to Core mapping table) and Y (Virtual page to DRAM

slice mapping table).
2: Create a list of communications including both thread to thread communication

(ti, tj, etc(ti, tj)) and thread to virtual page access (ti, vpj, evpa (ti, vpj)) commu-
nication.

3: Sort the both list of communication pairs together in non-increasing order of their
weight (or cost).

4: //******** Phase 1 ********//
5: while All the DRAM slices not got mapped at least one virtual page do
6: Take the top (ti, vpj, evpa (ti, vpj) pair.
7: if The chosen pair have thread value already mapped then
8: Map the virtual page to the DRAM slice near to the mapped cores.
9: else if The selected pair has a virtual page already mapped then

10: Map the thread to the nearest free core to the DRAM slice of the virtual
page.

11: else
12: Choose a un-mapped DRAM slice, map the virtual page to the DRAM slice

and thread to core near to the DRAM slice.
13: end if
14: end while
15: //******** Phase 2 ********//
16: while All the thread not got mapped do
17: Take a top pair from sorted combined list of communication pairs.
18: if One of item (thread or virtual page) of the pair is already mapped then
19: Map the other item of the pair accordingly.
20: else
21: If the pair is a evpa(ti, vpj) pair then find a core-DRAM slice pair where

distance is minimum and allocate them.
22: If the pair is a etc(ti, tj) pair then allocate them to nearby cores.
23: end if
24: end while
25: //******** Phase 3 ********//
26: Map rest of the un-mapped virtual pages using Algorithm 2.
27: return X and Y

buffer overflow attacks. ASLR randomizes the location where system executables
are loaded into memory. In the ASLR process, the OS map different virtual address
to data for various executions of the same executable by just adding a random number
of pads to stack and heap area. In such cases, Evpa(ti, vpj) will be different for differ-
ent execution of the same application. So in the profile based application mapping,
we disable ASLR to ensure that for every run of the application, application’s data

50

4. STATIC PROFILE BASED MAPPING

get mapped to the same virtual addresses.
In general, the simulated processor of the Sniper simulator generates the 64-bit

virtual address. This 64-bit virtual address gets converted to newer form of virtual
address, with 16-bit application id, 36-bit virtual page number and 12-bit offset for
4 KB page size (as mentioned and used in Sniper simulator [23]). The higher 24
bits of 36-bit virtual page number get randomized using an address randomization
table which contains each 0 to 255 number only once in the same order. From this
randomized address, 32nd and 33rd bit decides the DRAM slices and this mapping is
static (the values 00, 01, 10 and 11 for DRAM slice number zero, one, two, and three
respectively for the system with 4 DRAM slices). So the fixed part of the virtual
address is lower 24-bits, which means a chunk of 16 MB data (212 continuous virtual
pages) get mapped to a DRAM slice. However, in our case, we modify the simulator
to use a 12-bit page offset, 20-bit virtual page number and 32-bit tag bit, and a virtual
page can go to any DRAM slices by our mapping process.

To evaluate our profile-based mapping, we require to include the thread to core
mapping table (TCT: thread to core table, or X as described in Section 4.1), and
virtual page to the physical page table (VMT: virtual page to memory slice table
or Y as outlined in Section 4.1). The inclusion of the thread to the core mapping
table (TCT) for an application is done at the application level at the time of the
application execution. We have modified the source code of PARSEC, SPLASH-
2 and, Cilk runtime scheduler to take the thread-to-core-mapping table (TCT) as
one of the optional inputs, and it uses that. However, for providing user-defined
page table (or the VMT, virtual page to DRAM slice) for the application, we had
modified the simulator to accept the VMT table at the time of the simulation. The
modified simulator uses our user-supplied page table for address translation and page
mapping so that the virtual page get mapped to the desired DRAM slice of considered
configuration.

4.4 Result and Overhead Analysis

4.4.1 Result Analysis

Figure 4.2, 4.3, and 4.4 show normalized on-chip communication cost for the different
thread to core mapping and virtual page to physical page techniques for benchmarks
on 4×4, 6×6, and 8×8 mesh architecture respectively.

51

4.4. RESULT AND OVERHEAD ANALYSIS

Parameters Values
NOC Topology 2D Mesh
Processor IPC 1
NOC link bandwidth 16 (bits/cycle)
Size of Processor load-store Queue 8
Overall on-chip 3D-stacked DRAM memory size 1 GB
Cache replacement policy (L1, L2, L3) LRU
Cache size (L1, L2, L3) in KB (32, 64, 512 respectively)
DRAM directory type Full map
Cache coherence protocol MOESI
Memory Contention considered No

Table 4.2: Default CMP system configuration parameters

 0

 20

 40

 60

 80

 100

 120

blackscholes

ferret
swaptions

�uidanimate

barnes
lu.cont

Cilk-�t
Cilk-cholesky

Cilk-lu
Cilk-plu

N
�
��
�
��
�
	

�
�
�
�
�

��
�
��
�

�
�
�
�

Original

Thread

Page

Thread-Page

Combined

Min

Figure 4.2: Normalized communication cost on 4 × 4 CMP system

The “Min” values in the bar graphs shown by Figures 4.2, 4.3, 4.4, and 4.5
represents the normalized overall communication cost having maximum reduction
due to the applied mapping techniques that suit the benchmarks in the particular
figure. “Original” is used to represent the normalized overall communication cost
when there is no optimization is used, in this case, thread to the core and virtual page
to memory slice mapping used are system generated. Moreover, “Thread,” “Page,”
“Thread-Page,” and “Combined” are used to represent reduced normalized overall
communication cost due to the thread to core mapping, virtual page to memory slice
mapping, virtual page mapping followed by thread mapping and, combined thread
and virtual page mapping respectively.

52

4. STATIC PROFILE BASED MAPPING

 0

 20

 40

 60

 80

 100

 120

blackscholes

ferret
swaptions

�uidanimate

barnes
lu.cont

Cilk-�t
Cilk-cholesky

Cilk-lu
Cilk-plu

N
�
��
�
��
�
	

�
�
�
�
�

��
�
��
�

�
�
�
�

Original

Thread

Page

Thread-Page

Combined

Min

Figure 4.3: Normalized communication cost on 6 × 6 CMP system

 0

 20

 40

 60

 80

 100

 120

blackscholes

ferret
swaptions

�uidanimate

barnes
lu.cont

Cilk-�t
Cilk-cholesky

Cilk-lu
Cilk-plu

N
�
��
�
��
�
	

�
�
�
�
�

��
�
��
�

�
�
�
�

Original

Thread

Page

Thread-Page

Combined

Min

Figure 4.4: Normalized communication cost on 8 × 8 CMP system

As the memory access cost dominates the overall communication cost, only
thread to core mapping is not effective. Also, for some cases, the overall commu-
nication cost increases due to only thread to core mapping, and this can be seen from
Figure 4.2. The overall communication cost for “fluidanimate” benchmark increase
when we apply the thread to core optimization as compared to default thread to
core mapping. As the ”Thread” only mapping considers number of communications
between thread to thread and completely ignores the communication due to mem-
ory page accesses by the threads. Therefore, for some benchmarks, ”Thread” only

53

4.4. RESULT AND OVERHEAD ANALYSIS

 0

 20

 40

 60

 80

 100

 120

fmch
�ch fmlg fmcg

Avg

N
o
rm

a
li
z
e
d
 C

o
m

m
u
n
ic

a
ti

o
n
 C

o
s
t

Original
Thread

Memory
Thread-Memory

Combined
Min

Figure 4.5: Normalized communication cost for multi-application workload, where
f, c, h, l, g and m are fft, cholesky, heat, lu, magic and matmul benchmark respec-
tively from Cilk

mapping reduces the thread communication cost by minimizing the distance between
threads. However, hop-to-hop distance between threads and memory pages increases
due to the thread only mapping, which results in the increase of the page access
communication cost. Therefore, for some benchmarks, overall communication cost
(which is sum of thread communication cost and page access communication cost)
increases.

When we use the virtual page to DRAM slice mapping optimization, almost for
all the benchmarks, the overall communication cost reduces the minimum of 26%
and the maximum of 86% with an average of 56% for all 16, 36 and 64 core CMP
configurations.

We have also tested our approach on mixed workload (randomly chosen from
Cilk benchmarks) on 4× 4 system to check the benefits due to virtual page mapping,
and Figure 4.5 show a significant improvement. For mix multi-threaded workloads,
the overall communication cost reduces a minimum of 47% and a maximum of 74%
with an average of 64% for 16 cores configuration.

Thread to core mapping (using the simulated annealing method) reduces the
overall on-chip communication cost up to 26% and an average of 12%. Whereas,
other better thread to core mapping techniques (for example using Ant colony opti-
mization (ACO) [41]) can give only 15% to 20% better result (with large execution

54

4. STATIC PROFILE BASED MAPPING

time overhead) as compared to this approach. As a virtual page to DRAM slice map-
ping dominates the overall communication cost, any good approach of thread to core
mapping solve our purpose.

Fig. 4.6, shows that overall execution time of the applications before and after the
virtual page mapping on 8×8 CMP system. Here, reduction in the overall application
execution time is almost negligible as compared to the on-chip communication cost,
as the DRAM memory access latency is dominating the hop to hop traversal latency.

The overall on-chip communication cost does not include any dominating pa-
rameter as overall execution time is having. The overall execution time parameter
includes three main components, (1) time elapsed at processing core (includes private
cache access time, time to process the data etc. at the processor), (2) time elapsed
during on-chip network traversal, and (3) time elapsed during DRAM memory access.

Moreover, the virtual page mapping only reduces the on-chip hop-to-hop network
traversal by reducing the remote accesses, and not the DRAM memory access time as
well as execution time at the processor. So, when we consider the overall execution
time optimization then the DRAM memory access time along with the execution time
at the processor dominates the on-chip traversal time. Therefore, the effect of virtual
page mapping on overall execution time is not that much significant as compared to
the on-chip communication cost. If the hop-to-hop network traversal time dominates
the DRAM access time as well as execution time at the processing core then the
improvement in execution time is going to be significant. In the next chapter, we
further explore this performance parameter by using the SRAM buffer.

As reported in [38], NOC consumes 40% power of large CMP, so the reduction of
overall on-chip communication cost by an average of 56% and 64% reduces power con-
sumption by an average of 22% and 27% for single applications and multi-application
respectively.

4.4.2 Overhead Analysis

In the profile based mapping, we require two profiling counters to get the core to core
communication amount Etc and core to virtual page access count Evpa. Virtual page
to physical page mapping algorithm is also need to be changed a bit. In our case, as
we have assumed M DRAM slices in the system (total DRAM of 1GB), so the size
of each DRAM slice is d1/Me GB. The operating system page replacement algorithm
needs to allocate a frame for the required logical page from the specified DRAM slices.

55

4.5. SUMMARY

 0

 20

 40

 60

 80

 100

 120

blackholes

ferret
swaptions

�uidanim
radiosity

Cilk-�t
Cilk-cholsky

Cilk-plu

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Benchmarks

Before

After

Figure 4.6: Normalized overall execution time on 8 × 8 CMP system

In table Y (result of virtual page to DRAM slice mapping), for the virtual pages vp ∈
VP has any one of the corresponding value from {0, 1, 2, . . . , (M − 1)} which specifies
the DRAM slices to which vp is mapped.

4.5 Summary

In this chapter, different types of thread to the core and virtual page to DRAM slice
mapping have been performed. The evaluation result shows that virtual page to
DRAM slice mapping is more effective as compared to the thread to core mapping
in overall communication cost reduction. Virtual page to DRAM slice mapping and
thread to core mapping reduces overall on-chip communication cost up to 86% (av-
erage 56%) and 26% (average 12%) respectively. Moreover, in the next chapter, we
perform the self-adaptive run-time application mapping and consider communication
cost along with the execution time as the performance metric, and try to minimize
them.

�������

56

5
Self-adaptive Run-time Page Map-

ping

Clearly, there are two approaches to make the computation faster in the mul-
tiprocessor environment, one is to schedule the thread on to the core where data
is available and other is migrate the data where thread is requesting. There is a
trade-off between these approaches based on the target application and multiproces-
sor system. In the large cluster systems with many parallel threads and running
with huge amount of data, balancing mix type threads (i.e compute bound, memory
bound and i/o bound threads) between the processors is beneficial [120]. Therefore,
for such systems, run-time thread migration to perform the balancing of the threads
gives higher performance.

However, in our case, the target applications are shared multi-threaded in na-
ture and need to be run on large CMP systems having larger 3D-stacked memories.
Therefore, run-time thread mapping does not improves the system performance very
significantly. The conclusion of Chapter 4 explains the same, which makes it clear
that the overall communication cost reduction due to the virtual page mapping is
significantly higher as compared to the reduction due to the thread mapping.

In addition, authors in [47], have described that the overheads associated with
destroying a thread, transferring thread state (consist of a program counter, a set of
registers, and a stack of procedure records containing variables local to each proce-
dure), creating a new thread and initiating remote execution make run-time thread
migration relatively tricky. Also, in phase-wise dynamic run-time mapping the num-

57

5.1. PROBLEM FORMULATION

ber of phases can be large and performing thread to core mapping those many times
may cumulatively cause larger overheads. Therefore, in this chapter, we consider only
virtual page to memory mapping along with the default system generated thread to
core mapping.

Research works in [29, 11, 105], shows that most of the application exhibits
phase-wise behavior during their run-time. In other words, the application run-time
execution manifests similar behavior within each phase and shows distinct character-
istics between different execution phases. Therefore, the profile-based static mapping
may not always be suitable for the complete duration of the application execution.
Moreover, in the profile based static mapping, the application needs to be run at least
once to get the profiled data.

Therefore, based on the facts (a) overall communication cost (Ccomm+Cmac) is
dominated by Cmac, (b) costly thread migration, (c) phase-wise behavior, and (d)
unsuitable static mapping, in this Chapter we consider a 3D-stacked DRAM based
CMP system and propose a self-adaptive run-time page mapping technique to mit-
igate the larger network traversal latency incurred while accessing the remote data.
Further, to reduce the larger DRAM access latency, we have also proposed the use
of an auxiliary small SRAM buffer and squarely performed a comparative study with
the coherent DRAM cache model [30]. The auxiliary SRAM buffer (Mbuff , and
termed as mapping buffer) stores the frequently accessed cache blocks and works as
a cache of the 3D-stacked DRAM memory slices. Therefore, the auxiliary SRAM
buffer causes the self-adaptive run-time page (data) mapping to be more effective by
turning a DRAM access latency into SRAM access latency.

5.1 Problem Formulation

Consider, the multi-threaded application representation model AGV P (T, VP, Etc,
Evpa), as given in Section 3.2 of Chapter 3. In addition with the target CMP rep-
resentation model CMIG(Ccc, EEcc) associated to the (a) 3D-stacked DRAM based
CMP and (b) 3D-stacked DRAM based CMP having SRAM buffer, as given in Section
3.1.1 and 3.1.2 of Chapter 3 respectively. The aim of our run-time mapping approach
is to map the application AGV P on to target architecture CMIG to improve the
performance. As communication cost Cmac due to the page mapping dominates the
communication cost Ccomm, so we need to design a run-time page mapping tech-

58

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

nique that considers the amount of thread to virtual page access edges evpa(ti, vpj)

∈ Evpa and ignores the thread to thread communication edges etc(ti, tj) ∈ Etc of the
AGV P (T, VP, Etc, Evpa). In run-time page mapping, a page may get mapped to
different memory slices at different time instances of the application execution. So,
value of Y [vpj] (defined in last Chapter 4) may not be fixed during the application
execution.

Given page access requests (for cache blocks) to page vpj by thread ti at a time
instant t, we formulate (1) total time TL2M,total, and (2) total communication cost
CCost due to the memory page accesses generated after the last level cache misses
over the application run-time. Our objective in this chapter is to reduce the total
time TTotal and total communication cost CCost due to the memory page accesses after
the run-time page mapping.

The miss latency Tmiss(ti, vpj) incurred for thread ti due to the last level cache
(LLC) miss for the page vpj at time instant t, can be calculated as follows.

Tmiss(ti, vpj) = distCC(X(ti), Yt(vpj)).LH2H + [LMB +MRMB.LDRAM]. (5.1)

Where X(ti) is the core vertex associated to the core having mapped thread ti.
Yt(vpj) is the core vertex adjacent to DRAM memory slice having mapped page vpj

at a time instant t. Term distCC(X(ti), Yt(vpj)) is the Manhattan distance between
core vertex associated to X(ti) and Yt(vpj). The term LMB is the Mbuff access
latency to access the block from the Mbuff , and the term LDRAM is the DRAM
access latency to access the cache block of a page. MRMB is the Mbuff miss rate
and LH2H is the hop to hop traversal latency. The latency to access a cache block
means the time to get the cache block from higher level memory to the requested
place.

Further, as most of the applications exhibit run-time phase-wise behavior, for
simplicity suppose that the run-time of an application can be divided into multiple
phases (or epochs) of fixed length. Therefore, using Equation 5.1, the total latency
overhead Tepo,i in a time epoch epo incurred (due to inter-node latency and memory
read/write latency) while serving the L2 cache misses from thread ti (mapped to core

59

5.1. PROBLEM FORMULATION

ci) can be given as follows

Tepo,i =

|VP|−1∑
j=0

ωepo(evpa(ti, vpj)).
[
Tmiss(ti, vpj)

]
, (5.2)

Where ωepo(evpa(ti, vpj)) is the number of page access request generated due to the
L2 cache misses from thread ti to the virtual page vpj in a time epoch epo. Term
VP represents the set of virtual pages or total number of pages corresponding to the
multi-threaded application.

For an application with E number of phases (or time epochs) of the total exe-
cution time, the overall sum of miss latencies TOverAll,i associated with the L2 cache
miss from the thread ti (mapped to core ci) is given as follows

TOverAll,i =
E∑

epo=1

Tepo,i. (5.3)

Therefore, considering the parallel execution of the multi-threaded applications
on to the CMP and overlapped long latency L2 cache misses from each core ti ∈ T ,
the total time (due to the memory accesses) TL2M,total of the application can be given
as following:

TL2M,total = Max(TOverAll,i,∀i ∈ {0, 1, 2, . . . , N − 1}). (5.4)

Where Max gives the maximum value among all the TOverAll,i values. Therefore,
TL2M,total is a reasonable estimate even if many page request happens in parallel from
different threads. The goal of the mapping and Mbuff is to reduce the TL2M,total of
the CMP system.

The research in [51] revealed that the NOC consumes about 28% of the on-
chip power considering the Intel Terascale 80-core chip multiprocessor. Also, the
result of Chapter 4 shows that the communication cost due to the memory page
access dominates the on-chip communication cost associated with the thread to thread
communication. Therefore, the communication cost due to the memory page access
can be evaluated by (5.5).

60

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

CCost =
E∑

epo=1

N−1∑
i=0

∑
∀j∈VP

ωepo(evpa(ti, vpj)).distCC(X(ti), Yt(vpj)). (5.5)

Equation 5.5, shows that CCost value can be reduced by decreasing the Man-
hattan distance distCC(X(ti), Yt(vpj)) (or hop-to-hop count). For chip multiproces-
sors having larger core count, efficient mapping and hybrid interconnect can reduce
distCC(X(ti), Yt(vpj)) significantly which in turn reduce the on-chip power consump-
tion.

Our main aim in this chapter is to map the virtual pages to the memory slices
(DRAM with SRAM buffer) dynamically at the run-time so that memory access
latency after the last level cache along with the on-chip communication can be mini-
mized, and therefore total execution time of the application and chip power consump-
tion get minimized.

5.2 Self-adaptive Run-time Page Mapping

Consider, the virtual page vpj ∈ VP mapped to a physical page ppj ∈ PP associated
to the DRAM slice mi ∈ {m0,m1, · · · ,mM−1}. If access request to a cache block
(associated to page vpj) from a thread ti ∈ T get an L2 cache miss, then the processor
sends cache block access request (associated to the virtual page address of the page
vpj) to the MC of the respective DRAM slice. The processor gets the information
about MC for the page vpj from the local TLB of the processor using its virtual
address. Moreover, virtual page means complete virtual page address and is used
interchangeably throughout the thesis.

For each such L2 cache miss associated to pair (ti, vpj), this Section presents the
adaptive run-time page mapping on to the target CMP system having 3D-stacked
DRAM memory. We have considered phase-wise behavior of the multi-threaded ap-
plication to perform the mapping. To achieve our goal, we have modified the archi-
tecture of the memory controller unit associated with each 3D-stacked DRAM slice.
The modified architecture of the memory controller (MC) for the target 3D-stacked
DRAM memory based CMP system is shown in Fig. 5.1. It has three extra hardware
units, specifically (a) page access unit, (b) profiling unit, and (c) page placement unit.
The working of the modified MC can be divided into two parts, namely: (a) page

61

5.2. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

access, and run-time profiling and, (b) page mapping, migration and TLB update.
The following Sub-sections 5.2.1 and 5.2.2 explains the working in detail.

5.2.1 Page Access and Run-Time Profiling

Algorithm 4 shows the pseudocode of the steps associated with the page access and
run-time profiling mechanism at each MC.

Page Access: To serve each L2 cache miss associated to pair (ti, vpj), at the
current MC, migration controller of the page access unit checks the status of the
page in the migrated list of the MC. The migrated page list can be easily implemented
by an array of one-bit Boolean value for each active virtual pages and represented as
Mig[vpj] array. The true value of Mig[vpj] is interpreted as the page vpj is migrated
to some other DRAM memory slice. Therefore, migration controller forwards such
access request (Mig[vpj] = 1) to another appropriate DRAM memory slice, with the
target DRAM slice number given by Loc[vpj] (detail of calculation of the Loc[vpj] is
given in next Sub-section).

Further, if Mig[vpj] = 0, then page access request goes to the corresponding
MC associated with the memory slice. So, if the page is present in the DRAM slice,
then the access request is served. Otherwise, MC sends a not-found message to the
requesting core. The requesting core needs to update its TLB based on the current
value of the global page table, and the core initiates re-request.

Run-time Profiling: In parallel with page access mechanism, for each L2 cache
miss associated to pair (ti, vpj) run-time profiling is also performed by the profiling
unit. We have used two groups of the profiling counters namely (a) group of the
current epoch profile-counters Ccntr, and (b) group of the previous epoch profile-
counters Pcntr, to profile the page access information. All the current epoch profile-
counters CSNum (where, CSNum ∈ Ccntr, ∀ SNum ∈ {0, …, M -1}) associated with the
(vp, pp) and SNum (derived from CST array) are incremented for each access request
pair (ci, vpj) at the respective memory controller. Core to slice table (CST) gives the
value of the 3D-stacked memory slice number SNum for each core. The value SNum

is corresponding to the 3D-stacked memory slice number which is closely associated
(or local) to the core indexed by 1D-array (further details of CST array is explained
in Section 3.1 of Chapter 3).

62

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

Memory Access

TRUE

4

Page Placement Unit

VPPP

0 P1 P2 P3P

VP

1

5

6

9

7

3

8

C 0 C 1 C 2 C 3

2

To / From other MC

To the core

CST vp jpp j

Mig[VP]

Cor[vpj]=|(P0-C0)| . . . + |(PM−1-CM−1)|

Loc[VP]

SNum

Profiling Unit
Profiling Counters

IF
Cor[vpj] > CorThr

Cor

Mig[vpj]=1

Correlation Calculator

Pcntr,
Ccntr

PcntrCcntr

Dest. Memory Module Finder

Loc[vpj]=IndexMax(C0, C1, C2, C3)

Page Access Unit

Controller

Migration Controller
Naive Memory

ci

(ci, vpj, ppj)

CorThr

EpoOver

Figure 5.1: Memory controller (naive MC with new mapping hardware)

Algorithm 4 :Page Access and Run-time Profiling
1: if Mig[vpj] is set for vpj (marked as migrated) then
2: Forwards this access request to Loc[vpj] DRAM slice.
3: Finish the access request from the current MC for vpj.
4: else
5: if Page is found in DRAM memory slice then
6: Serve the request from DRAM memory slice.
7: else
8: MC sends not-found message to the requesting core.
9: Requesting core updates TLB based on current global page table value.

10: Re-initialize the access request based on newer TLB value.
11: end if
12: end if
13: Profile counters Ccntr is incremented.

5.2.2 Page Mapping, Migration and TLB Update

In this Sub-section, we describe the working of the page placement unit to decide
on the mapping of a page vpj at the end of an epoch. Furthermore, we explain page
migration and TLB update mechanism. Algorithm 5 shows the steps that need to be
performed at the end of each phase (or epoch).

63

5.2. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

Algorithm 5 :Page Mapping Decision Making
1: On getting EpoOver trigger pulse (EpoOver = 1)
2: for Each active page vpj do
3: Calculate Cor[vpj] using Equation 5.6.
4: if Cor[vpi] > CorThr then
5: Target DRAM slice is calculated using Loc[vpj].
6: Initiate page migration for vpj
7: After the end of page migration, set Mig[vpj] = 1.
8: Update the global page table for page vpj as per the calculated Loc[vpj]

value.
9: end if

10: end for
11: Pcntr=Ccntr and Ccntr=0;

Page Mapping: At the end of each phase (or epoch) the EpoOver get triggered
by pulse and the page placement process get initiated. The page placement unit takes
the decision about the mapping of a page vpj. For each active page (or frame) vpj

(for active page vpj, ω(evpa(ti, vpj)) 6=0 for at least one ti ∈ T) of the DRAM memory
slice, the page placement unit starts taking the decision about the mapping for the
page vpj.

Mapping decision of an active virtual page vpj is performed by calculating the
correlation value Cor[vpj] among the values of current epoch profiling counter Ccntr

and values of the previous epoch profiling counter Pcntr. Equation 5.6 is used to
calculate the value of Cor[vpj].

Cor[vpj] = |(P0 − C0)|+ · · ·+ |(PM−1 − CM−1)|, (5.6)

where, CSNum ∈ Ccntr and PSNum ∈ Pcntr for SNum ∈ {0, 1, …, (M-1)} and a page
(vpj, ppj), as shown in Fig. 5.1.

For any virtual page vpj, migration decision is calculated by answering the ques-
tion Cor[vpj] > CorThr, where CorThr is a parameter value. CorThr is used to select
the pages for the mapping that are having a larger effect (higher Cor[vpj] values)
on to the latency and avoiding the migration of the less effective pages. Therefore,
for a virtual page vpj, if vpj is an active virtual page and Cor[vpj] > CorThr is
“TRUE” then the target DRAM slice for that page vpj is calculated. The value of
target DRAM slice Loc[vpj] for a page vpj is calculated by using IndexMax(CSNum

| ∀ SNum ∈ {0, …, M -1}), which gives the index SNum associated to the DRAM

64

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

Central TLB

DC

DC

DC

DC

(a) One centralize shared TLB and
along with private TLB with each
cores

DC

DC

DC

DC

Local TLB

(b) Only private TLB with each cores

Figure 5.2: Shared centralized TLB and distributed private TLB organization of a
4× 4 system

slice having maximum CSNum value. The cores covered by this DRAM slice together
requested the maximum number of access request (LLC misses) to the page vpj in
the current time epoch.

Page Migration: Further, page migration for vpj is initiated with the calculated
target DRAM slice value Loc[vpj]. It takes time to migrate a page of size about 4KB
from one DRAM slice to other, so we have used grace-full page migration (or live page
migration). In live page migration, access to the page from source DRAM slice is not
stopped immediately when it is being migrated to destination DRAM slice. Page
access to the requested page can be served from the destination DRAM slice only
after the completion of the migration. Therefore, once the page vpj is completely
migrated to destination DRAM slice, this page is marked as migrated by setting
Mig[vpj]=1.

TLB Update Mechanism: After each phase and following the page migration,
the global page table gets modified. Therefore, TLB needs to be updated as default
TLB update algorithm does not work. There are two ways to solve this problem.
Figure 5.2 shows two categories of TLB organizations: (a) one centralized shared
TLB and along with private TLB with each core and (b) only private TLB with each
core.

65

5.2. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

Centralized TLB is similar to shared last level TLB, as explained in [72]. In the
case of shared central TLB organization, at the beginning of every time epoch, the
shared central TLB gets updated by all the MCs. Each MC updates their list of the
page to be migrated (or migrated), and all the page migrations occur at one go at
the beginning of the epoch.

Whenever there is access to a virtual page from a core for the first time in current
epoch time (phase), the request goes to shared central TLB to get the updated page
mapping information about the to be access page. After getting the updated page
mapping information, the requested core update its local TLB. After that, access to
the same page by using the local TLB. If there is a miss in shared centralize TLB,
then the core needs to initialize to bring the virtual page from higher memory or disk
into the memory slice local to the core and update the local TLB shared centralized
TLB and access the page. Any page miss in local TLB needed to go to shared
centralized TLB. The list of communications happened in case of shared centralized
TLB organization are:

• Every epoch, all the MCs need to update their list of migration (or placement
change) in the shared centralized TLB.

• For every access to a virtual page from the core for the first time in the current
epoch, it needs to to get the updated information from shared centralized TLB
and access the page from the required DRAM slice.

• All page miss at local processor need to go to Centralized TLB and if there is
miss in centralized TLB, the page needed to be brought from secondary storage
(or hard disk) and be updated in centralized TLB and local TLB.

Area cost of the shared centralized TLB is higher, as in this method of TLB, we
need to store most of the page table or union of all the local TLBs. Also, it needs to
update all the updated information in every time epoch.

In the case of only private TLBs, the updated information about the pages
remapping (or migration), need to send to each core, so that each core can update
their local TLB. This update can be done in either immediately at the beginning of
the time epoch or in a lazy manner based on the on-demand approach.

• Broadcast Method: In this approach, at the start of every time epoch, each
MC send their list of page migration to all the cores. If we assume the number

66

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

of page migrations in an epoch to be limited by a threshold (small numbers),
then all the page migrations from the MC can be clubbed together and send the
single update message to each core. Otherwise one can use the directory-based
TLB update, where update information gets send from MC to cores selectively
[72].

• Lazy Method: In this approach, at the beginning of every time epoch, each MC
update their list and create a to be migrated list. It does not update to any
core immediately. Whenever a page request comes to the MC from a core, if the
requested page is migrated to other memory slices, then it forwards this page
access request to appropriate MC based on the global page table entry (that got
updated after a migration). Moreover, after receiving the page from forwarded
MC, the core updates his local TLB. For simplicity, we have considered a lazy
method to update the TLB.

Whenever there is a local TLB miss at some core, the core needs to get informa-
tion about the availability of the virtual page from the global page table, as page table
has latest updated page entry. Also, if there is no page table entry found in the page
table, then page fault get triggered, and the page entry is brought to nearest DRAM
slice from external secondary memory, and page table gets updated accordingly.

In case of the physically addressed cache, tags, as well as cache blocks, need to be
updated if the pages get migrated from one memory location to another. Therefore, to
enable the run-time page mapping and their migrations, we have considered virtually
addresses caches instead of physically addressed.

5.2.3 Experimental Setup

In this work, we have used the Sniper simulator[23] platform to configure the consid-
ered target chip multiprocessor architecture. The architecture configuration used is
64 core (8 × 8) CMP system with four MC, each controlling 1GB of DRAM. More-
over, our method is also applicable to larger CMP systems with their optimal (can be
decided using [90, 5]) number of MCs and placements. Each simulated processor is
configured with Intel Xeon X550 Gainestown micro-architecture, and other configu-
ration parameters are shown in Table 5.1. Moreover, we modeled the MC, associated
hardware, and performance overheads inside the simulator.

67

5.2. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

Table 5.1: System configuration parameters

Parameters Values
Number of tiles 64
Number of cores per tile 1
Frequency of each core 2.66GHz
Number of threads per core 1
Overall 3D-stacked DRAM 4GB, 1GB per DC
DRAM directory type Full map
Cache block size 64 bytes
Coherence protocol at L2 Level MESI
Mapping-buffer access latency 24 CPU cycles
DRAM access latency LDRAM 410 CPU cycles
Hop-to-hop latency LH2H 18 CPU cycles
Value for CorThr 75

For evaluation, we have used workloads from the multi-threaded PARSEC [14]
and SPLASH-2 [118] benchmark suits. Workloads from the PARSEC [14] and SPLASH-
2 [118] benchmark suits which generate a higher number of last level cache misses
(private L2 cache in our case) are used for the performance evaluation. We run the
multi-threaded workloads with simlarge input for 1010 instruction count.

For simplicity, we have considered the duration of each epoch as 107 cycles to
trigger the page mapping evaluation. Epoch value 107 is chosen for experimental
evaluation as the larger value may omit some phases and latency reduction benefits of
page mapping associated with these phases. Moreover, a lower value may result in no
page migrations and can cause additional latency overhead needed for the evaluation.
Our work is not restricted to any specific phase detection technique. Our considered
target architecture along with the adaptive run-time page mapping, can work with
any good phase detection technique, as given in [29, 11].

5.2.4 Results

Figure 5.3 shows normalized communication cost for different benchmarks using run-
time dynamic virtual page mapping to DRAM slices on 4 × 4 CMP system and we
got similar results for 6× 6 and 8× 8 CMP system. Normalized communication cost
for benchmarks without mapping (referred as “before”) is 100 for all the benchmarks.
With run-time dynamic mapping, the normalized communication cost reduction is
80%, 82%, 83% for ferret benchmark with correlation threshold value 100, 50, and

68

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

 0

 20

 40

 60

 80

 100

 120

blckholes
ferret

swaption
�uidanim

barnes
lu.cont

radiosity

N
o
rm

a
li
z
e
d
 C

o
m

m
u
n
ic

a
ti

o
n
 C

o
s
t

Before
AfterFor-Cr=100

AfterFor-Cr=50
AfterFor-Cr=20

Figure 5.3: Dynamic run-time page mapping considering 4 × 4 CMP

Bench- Naive Opt Num- Migr STLB Bcast Lazy
marks CCost CCost Migr CCost CCost CCost CCost
lu.cont 9.871× 109 8.324× 109 64 18384 6184 30920 7748
Omp-fft 1.514× 107 0.703× 107 43 11008 2272 11360 2848
Cilk-heat 3.013× 1010 1.674× 1010 169 43264 7176 35880 9004
Blackholes 2.612× 109 0.824× 109 105 26880 2600 13000 3258
swaptions 1.013× 1011 0.510× 1011 81 20736 3360 16800 4210

Table 5.2: Communication cost (CCost) overhead of different TLB organization and
policies for 4× 4 2D mesh, due to respective operation

20, respectively. Run-time dynamic page mapping results in the reduction of memory
access cost by 40%, 80%, 42%, 24%, 52%, 18% and 42% for blckschole, ferret, swap-
tion, fluidanimate, barnes, lucount, and radiosity respectively. Also, improvement
using lower correlation threshold is not impressive. So correlation threshold of 100 is
sufficient, and we do not need to go for correlation threshold values 20 and 50. The
lower value of correlation threshold results in more migrations, but they may not be
useful to the reduction of overall on-chip communication cost.

Table 5.2 shows the communication cost overhead of different TLB organization
and policies. Column two and three shows overall communication cost due to page
access with default static mapping (without page mapping optimization) and with
run-time dynamic page mapping to memory slice optimization, respectively. Column
4 shows the number of page migration happened for the benchmarks.

Column 5 shows the worst-case page migration cost for the applications. Page

69

5.3. COMPARISON WITH COHERENT DRAM CACHE

migration cost is also less than 0.01% of the overall on-chip communication cost
due to page access. Column 6, 7, and 8 show the communication cost overhead
of applications for shared centralized TLB, the broadcast approach of TLB update
with only local TLB organization, and lazy (or on-demand) approach of TLB update
with only local TLB organization respectively. We can see that the communication
cost overhead for application is less than 0.01% of overall communication cost due
to page access. So any method of TLB organization works for the smaller number
of page migrations (when the threshold on correlation is higher even if the overall
communication cost reduction is above 50%). Shared centralized TLB require extra
hardware to store at least the union of all the local TLB of cores.

5.3 Comparison with Coherent DRAM Cache

In addition to the communication cost CCost analysis in the previous Section 5.2,
in this Section we perform a comparative study between our proposed self-adaptive
run-time page mapping and a recent state-of-art work proposed by Chou et al. [30].
This comparative study is performed to analyze the effectiveness of the proposed self-
adaptive run-time page mapping. Overall application execution time is used as the
performance metric to perform the comparative study in this Section.

In [30], authors have proposed a framework called CANDY and used the 3D-
stacked DRAM memory as a coherence cache in the CMP system to analyze the
speedup of the system. Further, to avoid the coherence directory access related over-
heads for the large DRAM cache, they have proposed a technique that uses on-chip
SRAM based buffer to store the frequently accessed cache directory information.
Therefore, we have considered the on-chip SRAM based buffer and re-proposed to
use it as a cache of the DRAM memory slice, while performing the page mapping.
Each SRAM based buffer or mapping buffer (Mbuff) stores (or caches) the frequently
accessed cache blocks of the pages associated with the DRAM memory slices and miti-
gates the large DRAM access latency. Mapping buffers introduced at every individual
DRAM memory slice is having a single and distinct copy of the cache blocks. There
is no two mapping buffers (associated to two different 3D-stacked memory slices) that
can have same copy of a cache block. Therefore, each mapping buffer is having single
and distinct cache block stored in it.

Moreover, the coherence maintenance is used at the private last level processor

70

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

caches, and we have used MESI cache coherence protocol to maintain the consistency.
Also, the size of overall last level cache is in few MBs; so the size of coherence directory
to maintain the consistency is very small (in few kb).

To achieve the goal of this Section, we have modified the self-adaptive run-
time page mapping technique by placing the Mbuff into the page access unit of
the modified MC. Fig. 5.4 shows the modified page access unit, which is having
Mbuff in it. Therefore, the working of the modified MC associated to the modified
self-adaptive run-time page mapping which considers the Mbuff is exactly same as
described in Section 5.2 except the changes in the page access unit.

Therefore, for an access request corresponding to the (ti,vpj) pair at the MC, if
the modified page access unit founds that the Mig[vpj]=0 then Mbuff is checked to
get the corresponding cache block entry (associated to page vpj). So, if the entry is
found in Mbuff (a hit in Mbuff), then the latency to access the page is less as it
is an SRAM buffer access. On the other hand, if the entry is not found in Mbuff

(a miss in Mbuff), then the page access request goes to the corresponding DRAM
slice. After serving the request from DRAM memory slice, associated Mbuff is get
updated for the future references. The latency to access the page in case of Mbuff

miss is the sum of SRAM buffer access latency and DRAM access latency.

To mitigate the large DRAM memory access latency, we require a high hit rate
for theMbuff . The hit rate ofMbuff mainly depends on its interaction with DRAM
memory for the page request and its size. For simplicity, we have used a temporal
locality-based technique to insert a cache block into Mbuff and maximize the hit
rate. To exploit temporal locality, we have used the LRU algorithm for cache block
insertion into the Mbuff . As most of the cache block access requests (supposed to be
DRAM access) get served by the Mbuff , so the number of access to DRAM memory
reduces which reduces the overall access latency.

We have used a full associative Mbuff that uses the Least Recently Used (LRU)
algorithm. Whenever a cache block is referred and is not present in Mbuff , it is
fetched from DRAM and inserted using the LRU algorithm. However, searching full
associative Mbuff for a referred cache block is time-consuming. In this case, we do
not use set-associative Mbuff which may degrade the performance by replacing a
cache block that is least recently used in a particular set and not from the whole
Mbuff . Therefore, we have used full associative Mbuff with the facility to look-
up 16 cache blocks at a time in parallel while searching for a cache block. Although

71

5.3. COMPARISON WITH COHERENT DRAM CACHE

Page Access Unit

Insertion

 0 1 15

b0

b1

b15

b16

b17

b31

b239

b240

b255

PB PBPB

16 Parallel Search Cache Block

Block from DRAM Slice

datatag
for the Cache Block

(256−LRU method)

Block

Request for Cache Block

Migration Controller

Mapping Buffer
(Mbuff)

VP Mig[VP] Loc[VP]

Figure 5.4: Overview of 16KB Mbuff

searching more cache blocks in parallel makesMbuff look-up time small, but it incurs
some hardware overhead (in terms of the parallel comparator circuit). Therefore, we
have used searching 16 entries at a time for faster look-up while incurring hardware
overhead of only 16 comparators. Fig. 5.4, shows an example of 16KB Mbuff . It
is having facility to look-up 16 blocks in parallel (this parallel blocks are PB0, PB1,
· · · , PB15) at a time while looking for a cache block entry. For the size of 64 bytes
cache block, the Mbuff (of 16KB) have space for 256 cache blocks, so the Mbuff

uses 256-LRU method to insert a new cache block entry in a full associative fashion.
Also, once a page vpj is completely migrated to destination DRAM slice after the

page mapping, this page is marked as migrated by setting Mig[vpj]=1. Moreover, all
the cache block entries associated to page vpj is flushed out from the current Mbuff .

5.3.1 Results

Fig. 5.5 shows the normalized performance evaluation for different benchmarks.
Moreover, in Fig. 5.5, “BC”, “BC-Mbuff”, “DCC”, “CANDY-Dbuff”, “PMM” and,
“PMM-Mbuff” acronyms refers the following:

• BC (base-case for this work): DRAM is used to store only local data of
the memory node. Moreover, this method does not consider the run-time page
mapping and extra SRAM buffer.

• BC-Mbuff: DRAM is used to store the local data along with the use of
64KB SRAM buffer to store the frequently accessed cache blocks. However,
this method does not use run-time page mapping.

• DCC: DRAM is used as a coherent cache (stores local and remote data) with

72

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

coherence directory within DRAM. However, this method does not use the run-
time page mapping and extra SRAM buffer.

• CANDY-Dbuff: DRAM is used as a coherent cache (stores local and remote
data) along with the SRAM buffer to store the coherence directory information
(as proposed by Chou et al. in [30], and 8MB temporal SRAM buffer) and no
run-time page mapping is performed.

• PMM: DRAM stores only local data and run-time page mapping are performed
without any SRAM buffer.

• PMM-Mbuff (our method): DRAM stores local data along with the use of
adaptive run-time page mapping. Also, a 64KB SRAM buffer is used to store
the frequently accessed cache blocks.

Fig. 5.5 shows the performance comparison considering LDRAM=410 cycles and
LH2H=18 cycles. The DRAM access latency and the inter-node latency values are
considered based on the real system values [107, 131]. In Fig. 5.5, for the real systems,
method “PMM-Mbuff” outperforms “BC” by an average of 48%. “PMM” and “BC-
Mbuff” methods improve performance by an average of 6% and 42% respectively
when compared to base-case. Moreover, when compared with “DCC” and “CANDY-
Dbuff” our method “PMM-Mbuff” shows an average improvement of about 43% and
40% respectively.

Our method “PMM-Mbuff” shows the performance improvement due to, first, the
page migrations towards nearest DRAM slice, and this causes a significant reduction
in the inter-node latency. Second, the substantial reductions due to the low latency
of Mbuff for all the DRAM references. “DCC” also improves an average of about
8% over the base-case. However, due to the DRAM access latency overhead of the
larger DRAM based coherence directory and extra invalidation overhead, it does not
performs well and some times it may degrade the performance of the benchmark (for
example, facesim). “CANDY-Dbuff” uses an SRAM based buffer to reduce the DRAM
based coherence directory access latency, and it improves an average of about 10% (for
temporal locality method) over base case. However, “CANDY-Dbuff” again possess
extra SRAM buffer latency overhead (to access the coherence directory information)
which is not present in our method. Moreover, our approach reduces the remote data
access latency and DRAM access latency by utilizing the page mapping and Mbuff ,
respectively.

73

5.3. COMPARISON WITH COHERENT DRAM CACHE

 0

 20

 40

 60

 80

 100

 120

ocean.cont

ocean.ncont

vips x264 facesim
AVG

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Benchmarks

BC
BC-Mbu�

DCC
CANDY-Dbu�

PMM
PMM-Mbu�

Figure 5.5: Overall normalized execution time for different benchmarks, average is
reported as “AVG”

We performed a sensitivity study for the size of Mbuff . Fig. 5.6 shows an
example of the Mbuff hit rate for its different size (in KB). The larger size of Mbuff

is better as it gives a higher hit rate; however, its SRAM based on-die architecture
makes its larger size costlier. Therefore, we have used 16KB Mbuff per memory
controller, which is giving an average hit rate of about 80% for all the benchmarks.

Note that the use of the SRAM based Mbuff and it’s 80% hit rate lowers the
average memory access time (AMAT) of the DRAM memory. Consider, the centers
of the four non-overlapping areas 17, 13, 50, and 46 as represented in Fig. 3.4,
the average hop-to-hop distance is assumed to be the average distance between the
DRAM slices. So, for a DRAM slice to any other DRAM slice, the average hop-to-
hop distance is 6, which is the average of the Manhattan distances between all the
DRAM slices (6=5+5+8

3
based on XY-routing and Fig. 3.4). Therefore, using the

latency values from Table 5.1 and 80% Mbuff hit rate, the AMAT of the DRAM
memory is 106 cycles (24 + 0.2 ×410) and average hop-to-hop network latency is 108
cycles (6×18). Moreover, without Mbuff , the AMAT of the DRAM memory is 410
cycles. Thus, for the considered latency values (as given in Table 5.1), Mbuff lowers
the AMAT of the DRAM memory and makes it comparable to the average network
latency value. When average network latency value is comparable or higher to the
AMAT of the DRAM memory, our method “PMM-Mbuff” performs better.

74

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

M
a
p
p
in

g
-B

u

�

e
r

H
it

 R
a
te

Mapping-Bu�er Size (in KB)

ocean.cont
ocean.ncont

fmm
vips

barnes
lu.cont

Average

Figure 5.6: Mapping-buffer hit rate for its different size

To analyze the effect of the DRAM access latency LDRAM as well as hop-to-
hop latency LH2H values, we performed further experiments considering some varia-
tions of LDRAM and LH2H values. Fig. 5.7(a) shows the result associated with the
LDRAM=210 cycles and LH2H=18 cycles. Similarly, Fig. 5.7(b) is associated with the
LDRAM and LH2H values of 410 cycles and 48 cycles respectively.

Considering the Mbuff hit rate of 80% and SRAM access latency of 24 cycles,
the AMAT value of the DRAM memory is reduced to 106 cycles (24+0.2×410) cor-
responding to DRAM access latency LDRAM value of 410 cycles, which is about 75%
reduction. However, the AMAT value of the DRAM memory is reduced to 66 cycles
(24+0.2×210) corresponding to DRAM access latency LDRAM value of 210 cycles.
Therefore, benefits of the Mbuff diminishes for the smaller value of the DRAM ac-
cess latency LDRAM (or faster DRAM), as shown in Fig. 5.7(a) and 5.7(b). In Fig.
5.7(a) and 5.7(b) the method “BC-Mbuff” reduces the execution time by an average
of 28% and 30% as compared to the “BC”; whereas, in Fig. 7.3, method “BC-Mbuff”
has reduced the execution time by an average of 42%. Moreover, methods “DCC”,
“CANDY-Dbuff”, and “PMM” in Fig. 5.7(a) performs almost similar to the as shown
in Fig. 5.5.

Further, Fig. 5.7(b) shows that methods “DCC”, “CANDY-Dbuff”, and “PMM”
reduces the execution time by an average of 19%, 29%, and 10% respectively as

75

5.3. COMPARISON WITH COHERENT DRAM CACHE

 0

 20

 40

 60

 80

 100

 120

ocean.cont

ocean.ncont

vips x264 facesim
AVG

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Benchmarks

BC
BC-Mbu�

DCC
CANDY-Dbu�

PMM
PMM-Mbu�

(a) LDRAM=210 cycles and LH2H=18 cycles

 0

 20

 40

 60

 80

 100

 120

ocean.cont

ocean.ncont

vips x264 facesim
AVG

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Benchmarks

(b) LDRAM=410 cycles and LH2H=48 cycles

 0

 20

 40

 60

 80

 100

 120

ocean.cont

ocean.ncont

vips x264 facesim
AVG

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Benchmarks

(c) LDRAM=410 cycles and LH2H=9 cycles

Figure 5.7: Overall normalized execution time considering different LDRAM and
LH2H values, average is reported as “AVG”

76

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

compared to the “BC”. This increase in the execution latency reduction as compared
to the results shown by Fig. 5.5, is due to the larger dominating hop-to-hop latency
LH2H value. Also, it is evident from the result that the methods “DCC”, “CANDY-
Dbuff”, and “PMM” perform better along with the increase in the hop-to-hop latency
LH2H value. Whereas, Fig. 5.7(c) shows that for LDRAM=410 cycles and LH2H=9
cycles, the methods “DCC”, “CANDY-Dbuff”, and “PMM” does not perform good
and improves performance by an average of 3.50%, 4.50%, and 3% as compared to
the “BC”; whereas, the method “PMM-Mbuff” outperforms the “BC” by an average
of 51%.

5.4 Performance and Area Overhead

In DRAM memory, row buffer miss rates (associated to the cache blocks) are usually
65% for the multi-threaded workloads. Therefore, page access latency is almost the
same as block access latency as most of the DRAM uses page mode access. Assuming
page mode DRAM and have row buffer size ≥ 4KB (otherwise, two or more DRAM
bank can be used to make the page size ≥ 4KB). Therefore, for 4KB page size and 64
bytes block size, each page migration incurs a latency overhead of only two DRAM
access latency (one at a source and another at a destination).

In almost all the contemporary CMPs, the standard size of the message (or
packet) for NOC is 64 bytes, therefore 64 packets needed to transfer a 4KB page.
Moreover, the maximum page migration cost associated with each page is 64 times
the maximum distance between the source memory slice and destination memory
slices. To avoid the additional network interconnect overhead, we have used the same
processor layer network for page migration.

In Table 5.3, column four shows the percentage of overall page migration calcu-
lated for the total number of L2 cache misses. It shows that migration due to run-time
adaptive page mapping incurs on an average 3.52% overhead as compared to the total
number of L2 cache misses. For simplicity and due to the small percentage of the total
number of page migration, we have not considered network contention due to page
migration. The live page migration proceeds in parallel with the application execu-
tion without pausing (or interrupting) it directly, therefore application performance
do not get affected by migration overheads (except due to some network traffic). The
number of page migration can also be regulated using CorThr parameter value.

77

5.4. PERFORMANCE AND AREA OVERHEAD

Table 5.3: Example: Total number of L2 cache misses and page migration

Benchmarks # L2 Misses # Migrations Migration %
ocean.cont 1.19× 108 1.66× 106 1.38%
ocean.ncont 1.79× 108 5.67× 106 3.15%
vips 2.99× 107 1.86× 105 0.62%
x264 2.98× 107 1.53× 105 0.51%
facesim 8.99× 107 7.11× 105 0.79%

Given a DRAM memory, consider a 4KB page and 4 DRAM slices (M=4) with
an overall size of Gsize=4GB, there are 4GB

4KB
number of physical pages. Therefore, we

require 4GB
4KB

× 2× 4 number of 16 bit counters (associated with the C and C ′ group
of profiling counters), M+1 comparisons, M subtractions and M additions for the
4GB of DRAM memory. Moreover, for each physical page, it takes log2(M) cycles to
compute using M adder and comparator units. For M=4 number of DRAM slices,
the modified MC incurs a hardware overhead of 4 adders and comparator along with
the time overhead of 4 cycles. Also, to create the migration list Mig, we need an
overall of 4GB

4KB
bit or 128KB of memory space.

For profiling counters, we need 16MB memory space corresponding to 4GB of
DRAM, whereas for coherence directory of DRAM cache we need 256MB space for 64
byte cache block (26 bits for block identification (4GB

64B
= 232

26
= 226 cache blocks), 2 bits

to maintain coherence and 2 bits for DRAM slices per cache block) [30]. Moreover,
the Mbuff causes an SRAM memory overhead of 64KB (16KB×4, for all the 4
Mbuffs). So, area overhead in our case is significantly less as compared to the
architecture where DRAM is used as a coherent cache.

Table 5.4, summarizes the area overheads associated with the different compo-
nents used in the modified DC. In Table 5.4, the first three columns from left show
the storage overhead associated with the profiling counters, migration (Mig) list, and
location (Loc.) array, respectively. Moreover, column four and five show the total
number of flip-flops (FFs) and look-up tables (LUTs) used to design the additional
controller components (including adder, comparator, subtractor, and basic finite state
machines (FSMs)) of the DC that performs the page mapping. We have used the Xil-
inx Vivado (version 2014.3.1) high-level synthesis (HLS) tool to estimate the area
overhead of the additional components. Also, from Table 5.4, we can see that con-
troller area overhead (associated to the adders, comparators, subtractors, and basic
FSMs) are very less as compared to the storage area overhead (associated to the

78

5. SELF-ADAPTIVE RUN-TIME PAGE MAPPING

Table 5.4: Area overhead summary.

Storage Controller (including
Add., Sub. and Comp.)

Profiling Counters Mig. List Loc. Array # FFs # LUTs
16MB 128KB 256KB 1207 1820

profiling counters, migration (Mig) list, and location (Loc.) array).

5.5 Summary

In this chapter, we have proposed a self-adaptive run-time page mapping on to the
3D-stacked DRAM memory based CMP system. Further, we have compared our
method with a recent state of work as proposed in [30]. Our results and analysis
show that the proposed method can be an alternative way to use the 3D-stacked
DRAM memory for current as well as future CMP systems.

The proposed self-adaptive run-time page mapping alone shows the communica-
tion cost reduction up to a maximum of 80% and an average of about 40% as com-
pared to the base case method. Further, our self-adaptive run-time page mapping
together with the SRAM mapping buffer outperforms the base-case by an average
of 48% over base-case in terms of overall execution time. Also, most importantly,
the adaptive run-time mapping with the SRAM mapping buffer shows a performance
improvement by an average of 40% (in terms of overall execution time) when com-
pared to 3D-stacked DRAM used as a coherent cache with temporal SRAM buffer, a
state-of-art work proposed by [30].

One important fact is that the most of the applications exhibit phase wise be-
haviour, but some applications may not have run time phase wise behaviour. For such
applications also our mapping approach will work and the proposed dynamic run time
mapping will behaves like static mapping 4, where one time optimized mapping will
happen.

�������

79

6
Run-time Page Mapping Consider-

ing Hybrid Memory

Although 3D-stacked DRAM memory has various advantages, the power con-
sumption of the 3D-stacked DRAM is rapidly growing with the capacity increase. Fig.
6.1 shows that the power consumption due to the DRAM refresh has reached beyond
40% as compared to the overall DRAM power consumption, as reported by Mutlu et
al. [79]. To tackle the DRAM refresh power consumption overhead associated with
the larger size DRAM memory, many non-volatile memories such as PCM, MRAM,
ReRAM have been explored as an alternative to the DRAM [18, 125, 129, 99]. Among
all types of NVM, PCM memory has been extensively studied by the researchers in
combination with the DRAM memory due to its overall better performance and scal-
ability. PCM memory offers higher density and lower leakage power consumption
(as there is no row refresh in PCM) as compared to the DRAM memory. However,
PCM has some drawbacks as compared to the DRAM memory, for example- higher
read/write latency and lower write endurance [124, 63].

The hybrid memory constituted using DRAM and PCM has been proposed as a
potential solution to take the benefits of both the technologies [64, 124, 126, 96]. This
hybrid memory possesses many benefits such as are lower leakage power, higher den-
sity, lower read/write latency, and improved write endurance. In the CMPs where
on-chip memory has the capacity in tens of GBs, investigating the impact of data
placement becomes crucial. Studies related to the 3D-stacked hybrid memory-based
CMPs have mainly considered the cache architecture for these memories [127]. How-

81

 0

 10

 20

 30

 40

 50

 60

2GB 4GB 8GB 16GB 32GB 64GB

%
 D

R
A

M
 R

e
fr

e
s
h
 P

o
w

e
r

C
o
n
s
u
m

p
ti

o
n

DRAM Size

Figure 6.1: DRAM refresh power consumption for DRAM devices [79].

ever, cache architecture requires a large coherence directory to maintain the coherence.
This, in turn, causes area as well as access time overheads due to the large size coher-
ence directory. Therefore, to take the benefits of the large capacity 3D-stacked hybrid
memories, studies need to consider higher granularity data placement and memory
management schemes for these memories.

In this chapter, we have considered non-coherent 3D-stacked hybrid DRAM-
PCM memory-based CMP system. Fig. 6.2, shows the logical block diagram of the
hybrid memory slice (or hybrid memory module) where DRAM memory works as
the cache for the PCM memory and initially entire application working set resides
in the PCM memory [95, 124, 64]. This type of architecture is chosen for this work
due to its lower management cost and better average performance [93]. Further, to
take advantage of the large capacity 3D-stacked hybrid memory and to minimize the
remote memory accesses overheads, we have performed an access-aware self-adaptive
run-time page mapping.

Specifically, in this chapter, we make the following contributions by performing
the architectural changes in each memory controller unit.

• We have designed a simple DRAM access-aware run-time page placement tech-
nique between DRAM and PCM of the hybrid memory to reduce the DRAM
refresh operations and its associated power consumption overhead.

• Further, based on the DRAM row access information, we performed an access-
aware self-adaptive page mapping for the optimized page placement between

82

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

PCM Memory

DRAM Memory

To/From Core

Figure 6.2: Hybrid memory module architecture

the different hybrid memory modules of the 3D-stacked hybrid memory.

The working of our proposed technique is classified into two parts, (a) access-
aware self-adaptive page mapping on to the hybrid memory slices, and (b) DRAM
access-aware page placement between DRAM and PCM memory of the hybrid memory
slice.

To perform (a), we have considered the phase-wise behavior of the applications,
and for simplicity, we assume that the run-time of an application is divided into
multiple phases (or epochs) of fixed length. We have used EpoOver to trigger the
end of a phase (or epoch), and perform the access-aware self-adaptive page mapping
on to hybrid memory slices. Similarly, to perform (b), we have considered that the
DRAM row gets decayed and inactive due to the leaky nature of its constituent cells
if the rows did not get access for a longer time [93] and need a refresh to retain the
information within it. Therefore, to eliminate the refresh operations associated with
the decayed and inactive rows, we perform row-level periodic monitoring of the DRAM
rows. Moreover, based on the last access time, we evict the decayed rows from the
DRAM to PCM at the end of the row monitoring period. We have used, EndPeriod

to trigger the end of the row monitoring period and to start the DRAM access-aware
page placement decision between DRAM and PCM memory of the hybrid memory
slice.

In this chapter, the value of an epoch (or phase) and row monitoring period are
selected such that we can perform multiple row monitoring within an epoch to give
more priority to the page migration within a hybrid memory slice (between DRAM

83

6.1. ACCESS-AWARE SELF-ADAPTIVE PAGE MAPPING ON TO HYBRID
MEMORY SLICES

Start

Time−line

EndPeriod EndPeriod EndPeriod EndPeriod EndPeriod EndPeriod
EpoOver EpoOver

Row Monitoring PeriodEpoch (or Phase)

Figure 6.3: Relation between an epoch and row monitoring period

and PCM memory). As the row monitoring period is having the value of 128ms (or
3.44× 108 cycles); therefore, the fixed-size epoch value is chosen as 109 cycle. As an
example, Fig. 6.3 shows the relation between the epoch size and the row monitoring
period size.

Following sections 6.1 and 6.2 explains the working of (a) access-aware self-
adaptive page mapping on to the hybrid memory slices and (b) access-aware page
placement between DRAM and PCM of the hybrid memory slice respectively.

6.1 Access-Aware Self-adaptive Page Mapping on
to Hybrid Memory Slices

Access-aware self-adaptive page mapping is similar to the self-adaptive run-time page
mapping as proposed in section 5.2 of chapter 5, except for some essential modifica-
tions. However, for completeness, we brief the self-adaptive run-time page mapping
(as proposed in section 5.2) and avoid the details that are already explained in section
5.2.

To perform the access-aware self-adaptive page mapping on to hybrid memory
slices at the application run-time, we have modified the architecture of the memory
controllers. Fig. 6.4 shows the modified MC for the 8 × 8 CMP system with four
memory slices. Consider, a virtual page vpj is mapped to a physical page or frame ppj
associated with the hybrid memory module mi ∈ {m0,m1,m2,m3}. Therefore, for
each L2 cache miss generated from the core ci associated to the page vpj , the working
of the modified MC can be categorized into two parts, namely, (a) page access and
run-time profiling, and (b) page mapping decision making. Following subsections,
6.1.1 and 6.1.2 explains the working mechanism in detail.

84

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

6.1.1 Page Access and Run-Time Profiling

Algorithm 6 shows the steps needed to perform for the page access and run-time
profiling mechanism at each memory controller, which is similar to as described in
Sub-section 5.2.1 of Chapter 5 except the DRAM to PCM page migration-related
mechanisms. So, as described in previous Chapter 5, for each access request pair (ci,
vpj) associated to the L2 cache misses 1©, migration controller checks the status of
the migrated list value Mig[vpj] in the Mig. Migrated list Mig is a one-dimensional
array at an MC, and it stores a set value for a page migrated to any other hybrid
memory module (or hybrid memory slice). Set value of Mig[vpj] in the migrated list
Mig interprets that the page vpj is migrated to some other hybrid memory module.
Therefore, the migration controller forwards this access request to the appropriate
hybrid memory module (decided by the location array Loc[vpj]) 9©.

Whereas, a not set value of Mig[vpj] determines that the requested entry is
available in the current hybrid memory module and such request goes to the DRAM
refresh controller 8©. DRAM refresh controller at the current MC checks the presence
of the page vpj in the DRAM memory. If the page is not present in the DRAM
memory, then the page is brought from the PCM memory to serve the core. This
page is inserted into an appropriate row of the DRAM memory using the least-
frequently-used (LFU) technique. Moreover, if the page is not present in the PCM,
then MC sends a not-found message to the requesting core. The requesting core
needs to update its TLB based on the current value of the global page table, and the
core initiates re-request. Also, page fault in the global page table is dealt as per the
default method. In parallel, the core access request is served along with the initiation
of a TLB update message. As, a page is brought from the PCM memory to DRAM
memory, so page table entry gets modified. Therefore, the TLB of the requesting core
needs to be updated accordingly. Along with all these necessary measures, a standard
DRAM to PCM write-back is made if required. Therefore, for the access request to
the page vpj , valid bit V alB[vpj] is set to “TRUE” for the corresponding DRAM
row entry. Also, for the row and their associated mapped page vpj , the access bit
array AccB[vpj] and dirty bit array DirtB[vpj] status is maintained. Arrays V alB,
and DirtB are used to keep track the validity (valid or invalid DRAM row), and
dirty status respectively to each DRAM row and their associated pages in the DRAM
memory of a hybrid memory slice. Also, AccB array is used to store the access status
of each DRAM row. While serving to a core ci 7©, if the page is found then the access

85

6.1. ACCESS-AWARE SELF-ADAPTIVE PAGE MAPPING ON TO HYBRID
MEMORY SLICES

8

Memory Access

TRUE

TRUE

4

Page Placement Unit

VPPP

0 P1 P2 P3P

VP
1

9

7

10
11

3

5

6

C 0 C 1 C 2 C 3

2

To / From other MC

To the core

CST vp jpp j

Mig[VP]

Cor[vpj]=|(P0-C0)|+ . . . + |(PM−1-CM−1)|

Loc[VP]

SNum

Profiling Unit
Profiling Counters

Pcntr,
Ccntr

IF
Cor[vpj] > CorThr

Cor

Mig[vpj]=1

Correlation Calculator

PcntrCcntr

Dest. Memory Module Finder

Loc[vpj]=IndexMax(C0, C1, C2, C3)

vpj

Controller

Page Access Unit

Migration Controller

DRAM Refresh

Naive Memory

Controller

ci

(ci, vpj, ppj)

CorThr

EpoOver

Waiting Queue (WQ)

IF AccB[vpj]
AccB[vpj] is SET

Figure 6.4: Memory controller (naive MC with new mapping hardware)

bit array AccB[vpj] is set to ‘TRUE’ upon each such access and reset to ‘FALSE’ at
the decision point (described in section 6.2).

In parallel with the page access mechanism and to decide on the page mapping,
for each pair (ci, vpj) run-time profiling is performed by the profiling unit. We
have used two groups of the profiling counters namely (a) group of the current epoch
profile-counters Ccntr, and (b) group of the previous epoch profile-counters Pcntr, to
profile the page access information. All the current epoch profile-counters CSNum

(where, CSNum ∈ Ccntr, ∀ SNum ∈ {0, …, M -1}) associated with the vp and SNum

(derived from CST array) are incremented for each access request pair (ci, vpj) at
the respective memory controller. Core to slice table (CST) gives the value of the
3D-stacked hybrid memory slice number SNum for each core. The value SNum

is corresponding to the 3D-stacked hybrid memory slice number which is closely
associated (or local) to the core indexed by 1D-array (details of CST array is explained
in section 3.1 of chapter 3).

86

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

Algorithm 6 :Page Access and Run-time Profiling for Hybrid Memory
1: for Each memory access associated to the page vpj do
2: if Mig[vpj] is set for vpj (marked as migrated) then
3: Forwards this request to the hybrid memory module calculated by Loc[vpj].
4: else
5: if vpj is not in DRAM then
6: if vpj is in PCM then
7: Bring vpj from PCM to DRAM Page Buffer.
8: Serve the requesting core ci along with the TLB update mechanism, and

9: Place it into a DRAM row.
10: Perform DRAM to PCM write-back if needed and flush the associated

counters.
11: else
12: MC sends not-found message to the requesting core.
13: Requesting core updates TLB based on current global page table value.

14: Re-initialize the access request based on newer TLB value.
15: end if
16: end if
17: In parallel set the V alB[vpj] =TRUE,
18: Set the access array AccB[vpj] =TRUE, and
19: if vpj is write operation then
20: Set dirty array DirtB[vpj] =TRUE.
21: end if
22: end if
23: Profile counters (Ccntr) is incremented.
24: end for

6.1.2 Page Mapping Decision Making

After the access information is profiled throughout an epoch, at the end of the phase
(or epoch), modified memory controller decides the mapping of the pages residing (or
mapped) only to the DRAM memory of the current hybrid memory module. Thus,
as opposed to the previous Chapter 5 where all the active pages of a memory module
(or memory slice) are checked for the mapping decision, in this Chapter we consider
only those pages that reside in the DRAM memory of the hybrid memory module for
the mapping decision. Algorithm 7 shows the steps to be performed at the end of
each epoch for the mapping decisions.

Page placement unit activates the end of a phase (or an epoch) to start taking
the mapping decision about the pages residing in the DRAM memory of the hybrid

87

6.1. ACCESS-AWARE SELF-ADAPTIVE PAGE MAPPING ON TO HYBRID
MEMORY SLICES

Algorithm 7 :Page Mapping Decision Making for Hybrid Memory
1: if EpoOver=TRUE then
2: for Each page vpj in the DRAM memory slice of the current memory module

do
3: if AccB[vpj]= TRUE for the page vpj then
4: Calculate Cor[vpj] (using Equation 5.6).
5: if Cor[vpi] > CorThr then
6: Calculated target hybrid memory module position using Loc[vpj].
7: Initiate the page migration for the page vpj .
8: Once, migration is completed set the Mig[vpj]=TRUE.
9: Update the global page table for page vpj as per the calculated Loc[vpj]

value.
10: else
11: Page vpj remain in the current DRAM only.
12: end if
13: end if
14: end for
15: end if
16: Pcntr=Ccntr and Ccntr=0;

memory slices by triggering the EpoOver.
For each recently accessed page vpj having AccB[vpj] as the “TRUE” value, the

page placement unit starts deciding about their mapping. A recently accessed page
does not need to be refreshed as it is recently got refreshed or activated by an access
request at the DRAM memory. Therefore, mapping decision considers the pages that
are residing in the DRAM memory of the hybrid memory slices. The value of the
access bit array AccB[vpj], corresponding to the page vpj is decided by the DRAM
refresh controller.

Mapping decision of a recently accessed page vpj (which is a page that resides
in the DRAM of the hybrid memory module) is performed based on the correlation
value Cor[vpj] between the profile-counters Ccntr and Pcntr 3©, which is similar to
as explained in Section 5.2.2. Therefore, for a page vpj if the access bit array value
AccB[vpj] is set 11©, 10©, only then correlation calculator calculates the correlation
value Cor[vpj] using Equation 5.6 and similar to as explained in Section 5.2.2 of
Chapter 5.

Therefore, for a recently accessed page vpj , if Cor[vpj] > CorThr
1 is “TRUE”

5©, then page vpj becomes the candidate for the migration. Further, the target hybrid
1The CorThr is a parameter value and is used to select the pages for the mapping that are having

a larger effect (larger Cor[vpj] values) to the system latency. Details are given in Section 5.2.2

88

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

memory slice value Loc[vpj] for the page vpj is calculated by the destination hybrid
memory module finder 6©, similar to as explained in Section 5.2.2 of Chapter 5.
Also, each page whose migration is initiated, wait in the waiting queue WQ to get
updated into the migration list Mig till the completion of the migration.

Page migration: Once, the target memory slice value Loc[vpj] is calculated,
migration of the pages are initiated one by one and distributed over the entire epoch
time to avoid sudden traffic overhead 9©. Migrating a page (size about 4KB) from one
place to other incurs time overhead; therefore, this work uses a lazy page migration
technique. In this lazy page migration technique, we do not stop the access to a page
from the source hybrid memory module unless this page gets completely migrated to
the DRAM of the destination hybrid memory module. Also, access to the requested
page is served from the destination DRAM only after the completion of the page
migration. Therefore, regular application execution does not get obstructed due to
page migration. Also, as the size of the DRAM at each hybrid memory module is
small, therefore to write the page at the destination DRAM memory, page migration
first considers the invalid row position of the DRAM memory at the destination
hybrid memory slice. However, if all the rows are valid at the DRAM, then the page
migration considers the row associated to the page having least frequently used page
(LFU) for the writing, which is same as our considered regular DRAM to PCM page
eviction method. Simultaneously, update the global page table.

TLB update mechanism: Following the page migrations, the global page table
changes, so TLB of each core needs to be updated. In this chapter, there are two
scenarios when TLB update need to be done and these are, (a) TLB update associated
to the page movement from PCM to DRAM memory of a hybrid memory module,
and (b) TLB update when page movement happens from a hybrid memory module to
another hybrid memory module (which is similar to as explained in Chapter 5). There
are many efficient TLB update algorithms available in the literature, and some are
explained in Chapter 5. For simplicity, we have used the Lazy TLB update method
(as explained in Chapter 5) for both the scenarios associated with the TLB update.
Also, our work is not restricted to any TLB update mechanism.

Moreover, in this case, also, to enable the run-time page mapping between the hy-
brid memory slices, we have assumed that the caches of the CMP system are addressed
by the virtual address instead of the physical address.

Further, page vpj is marked as migrated by settingMig[vpj] corresponding to the

89

6.2. ACCESS-AWARE PAGE PLACEMENT BETWEEN DRAM AND PCM OF
THE HYBRID MEMORY SLICE

TRUE values in the waiting queue WQ (refer Fig. 6.4) and all the entries associated
to page vpj is flushed out from the current hybrid memory module. The first phase
onward, the values of the current epoch profiling counter Ccntr corresponding to
the previous phase becomes the previous profile-counter Pcntr for the current phase.
Moreover, at the end of first time epoch, we have considered zero values for the
previous profiling counter Pcntr, so only current epoch profile-counter Ccntr values are
used to calculate correlation Cor[vpj].

6.2 Access-Aware Page Placement Between DRAM
and PCM of the Hybrid Memory Slice

Many researchers have explored 3D-stacked hybrid memory architect using PCM
as well as DRAM as an alternative to only PCM or DRAM memory [126, 96, 95].
Typically, these hybrid memories regulate the placement of their data (or pages) to
minimize the leakage power of the DRAM memory and the high access latency of
the PCM memory. Therefore, considering that the leakage power due to the DRAM
refresh is more prominent in the future DRAM and PCM based 3D-stacked hybrid
memory, this section presents a simple access aware page placement between DRAM
and PCM to avoid the DRAM refresh operation. To achieve this goal, we have used
the retention time as well as access information related to each row of the DRAM,
similar to as given by Pourshirazi et al. in [93].

Moreover, we performed row-level periodic monitoring of the DRAM rows (as-
suming a page of 4KB resides in a DRAM row) and based on the last access time
we categorize the DRAM rows into live row and decayed row. A live row is the one
that got recent access and therefore activated and refreshed. However, a decayed row
has not been got access for a long time and thus very likely to carry inactive data.
Therefore, to avoid power overhead related to the refresh, we can evict the decayed
row from the DRAM to PCM at the end of the monitoring period (termed as decision
point). Thus, all the refresh operations related to the decayed and inactive rows can
be eliminated.

We have considered the DRAM row monitoring period equal to half of the reten-
tion time, which is similar to as considered by Pourshirazi et al. in [93]. In [68], Liu
et al. have demonstrated that for 64nm 32GB DRAM, approximately 1011 number
of cells have 256ms as their retention time. Whereas, about 30 and 1000 cells have

90

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

1

35

246

IF IFFALSEIF TRUE
TRUE

FALSE TRUE

Row Monitoring Arrays
Access Request

(V alB)(AccB)(DirtB)

V alB[vpj],

Consider vpj for Next Monitoring

Writeback vpj
into PCM

AccB[vpj]=FALSE
V alB[vpj]=FALSE

V alB[vpj]=FALSE

Mark vpj as Invalid

AccB[vpj],

DirtB[vpj]

vpjD2PMig
Access Bit Array
(AccB)

Valid Bit Array
(V alB)

Dirty Bit Array
(DirtB)

EndPeriod

Figure 6.5: DRAM refresh controller architect inside the modified MC

the retention time value of 64ms and 128ms, respectively. Also, they have proposed
a retention time aware DRAM refreshing technique. By assuming 1030 cells out of
1011 cells as inactive cells, for simplicity and to make the hardware cost low, we have
considered an equal retention time value of 256ms for all the rows. Therefore, we have
used the row monitoring period value as 128ms (which is equivalent to 3.44× 108 cy-
cles for our case) for the evaluation and considering the DRAM cells which are having
less retention time can be discarded from the die.

Fig. 6.5, shows the detail structure of the DRAM refresh controller architect
inside the modified memory controller (Fig. 6.4). For a hybrid memory module (or
hybrid memory slice), we have considered that initially, all the pages remain in the
PCM of the hybrid memory slice (or module).

As described in subsection 6.1.1, line number 5 to 13 of the Algorithm 6 shows the
steps associated with the row monitoring performed by the DRAM refresh controller.
Specifically, for each access request to a page vpj and its DRAM row, the access
bit array AccB[vpj], dirty bit array DirtB[vpj], and valid bit array V alB[vpj] status
is maintained to keep track the access, write back, and validity (valid or invalid)
information respectively. Each DRAM refresh controller performs the row monitoring
operation periodically for a monitoring period of 128ms (or 3.44 × 108 cycles) by
maintaining the status of AccB[vpj], DirtB[vpj], and V alB[vpj] arrays.

Moreover, at the end of a monitoring period, the EndPeriod pulse is triggered,
and DRAM refresh controller starts the decision making about the page placement
between the DRAM and PCM memory of a hybrid memory slice. Algorithm 8 shows

91

6.3. EXPERIMENTAL RESULT AND ANALYSIS

the steps to be followed at the decision point based on the row monitoring performed
(as per line number 5 to 13 of the Algorithm 6). At the decision point, all the valid
rows (having a valid page) of the DRAM are being checked one by one 1©. Therefore,
for a page in a valid row 2©, if the associated access array value AccB[vpj] is “TRUE”
then the row is considered for the re-monitoring by setting AccB[vpj] as “FALSE”
and remains in the DRAM itself 3©.

Whereas, for a page in the valid row, if the AccB[vpj] value is “FALSE” then
the row is either get evicted from the DRAM or written back to the associated PCM
based on the dirty bit array DirtB[vpj] value 4©. If the DirtB[vpj] has “FALSE”
value for the row (associated to the page vpj) then the row is evicted from the DRAM
and all entry associated to the row (for example dirty bit array, access bit array) is
flushed from the DRAM 5©. Also, “TRUE” value of the DirtB[vpj] for the row starts
the writing back the page into the PCM 6©. Also, the row monitoring array V alB[vpj]

is updated after the completion of the writing into the PCM.
However, writing a page to the PCM need to read the page from the DRAM and

also it takes time to write it in the PCM. We have considered a lazy approach for the
DRAM to PCM page migration (or write). Also, using the fact that reading a row
in the DRAM can be equivalent to the access request for the row and refreshes the
page automatically, we have considered that until the page writing (or migration) to
the PCM is finished future access to the page is allowed from the DRAM in parallel
with the writing into the PCM. Once, writing into the PCM is completed, all the
associated entry flushed out from the DRAM and page stays in PCM only.

6.3 Experimental Result and Analysis

In this work, we have used Sniper simulator [23] as the platform to configure the
considered target chip multiprocessor system. We have used a 64-core (8 × 8 2D-
mesh interconnection based) CMP system with four memory controllers (MCs). The
hybrid memory modules of our system are considered as non-coherent and are not
allowed to store multiple copies of the pages in between them. Moreover, our mapping
technique is also applicable to larger CMP systems having an optimal number of
memory controllers and their placements (can be decided using [90, 5]). Further, we
have used Intel Xeon X550 Gainestown micro-architecture configuration to simulate
each core of the CMP system, and other CMP configuration parameters are given

92

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

Algorithm 8 :Working of the DRAM Refresh Controller Inside Each Modified Mem-
ory Controller

1: if EndPeriod=TRUE then
2: for All the valid DRAM rows (or pages) vpj do
3: if AccB[vpj]= TRUE then
4: Set AccB[vpj] to FALSE.
5: Consider the page for the next monitoring period.
6: else
7: if DirtB[vpj] = FALSE then
8: Set row associated with vpj as invalid.
9: else

10: Write back the page vpj into PCM.
11: Set row associated with vpj as invalid.
12: end if
13: end if
14: end for
15: end if

in Table 6.1. Moreover, we have modeled each memory controller (MC), associated
hardware and performance overheads inside the simulator, and the resulting latency
is fed into the simulator. We have considered that DRAM refresh energy and PCM
access energy is 5× and 10× respectively as compared to the DRAM access energy.

To perform the system performance evaluation, we have used multiple bench-
mark applications taken from the multi-threaded Cilk-5 [42] and SPLASH-2 [118]
benchmark suits. An application that generates a higher number of last level cache
misses (private L2 cache in our case) and having more substantial execution time is
selected for the performance evaluation.

Fig. 6.6 shows the normalized performance (in terms of the execution time)
for the different benchmarks. Also, Fig. 6.7 shows energy consumption in terms
of DRAM access energy. In Fig. 6.6 and 6.7, “BC”, “BCMap”, “BCPCM”, and
“BCPCMMap” refers to the results corresponding to the following configuration.

• BC: In this configuration, the CMP memory layer consists of only DRAM
memory (PCM memory is not considered) with an overall size of 32GB and
8GB per hybrid memory module (or slice). In this case, DRAM access-aware
adaptive run-time page mapping is not used (base-case for our work).

• BCMap: In this configuration, the CMP memory layer consists of only DRAM
memory (PCM memory is not considered) with an overall size of 32GB and 8GB

93

6.3. EXPERIMENTAL RESULT AND ANALYSIS

Table 6.1: System configuration parameters

Parameters Values
Number of tiles 64
Number of cores per tile 1
Number of threads per core 1
L1-I and L1-D cache size 16KB per core
L2 cache size 128KB per core
Overall 3D-stacked DRAM 1GB, 256MB per MC
Overall 3D-stacked PCM 32GB, 8GB per MC
Cache block size 64 bytes
Memory Page size 4 KB
Coherence protocol at L2 Level MESI
DRAM access latency 160 cycles
PCM access latency 640 cycles
Hop to hop latency 40 cycles
Value for CorThr 100
Each Epoch (or Phase) size 109 cycles
Each Row Monitoring Period size 128ms (or 3.44× 108 cycles)

per hybrid memory module. However, DRAM access-aware adaptive run-time
page mapping is performed in this case. Also, as no PCM memory is considered,
all the pages remain in the DRAM, and DRAM needs a periodic refresh to make
the data integrity considering all the valid DRAM pages.

• BCPCM: In this configuration, we have considered that the hybrid memory
architect using DRAM as well as PCM memory layers, and each hybrid memory
module (or slice) associated with a memory controller is having 256MB DRAM
memory and 8GB PCM memory. However, we have not used the DRAM access-
aware adaptive run-time page mapping for this case.

• BCPCMMap: This configuration considers the benefit of the hybrid memory
(architect using DRAM as well as PCMmemory layers) as well as DRAM access-
aware adaptive run-time page mapping. Also, we have considered a hybrid
memory module (associated with a memory controller) as the combination of
256MB DRAM memory and 8GB PCM memory.

Fig. 6.6 shows the execution time comparison between the four configurations
“BC”, “BCMap”, “BCPCM”, and “BCPCMMap”. The result shown in Fig. 6.6
has normalized to the base-case “BC” configuration. On an average, “BCMap” and

94

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

“BCPCMMap” configurations have reduced the overall execution time by an average
of 4.27% and 4.23% respectively. Moreover, “BCMap” and “BCPCMMap” configura-
tions have reduced the overall execution time up to a maximum of 11% for ocean.cont
benchmark application. Reduction in “BCMap” configuration is due to the use of
the page mapping that reduces the remote accesses, whereas this configuration is
neutral while dealing with the DRAM row refresh overhead. However, technique
“BCPCMMap” uses the benefits of the PCM component of the hybrid memory slice
as well as the page mapping. Also, for the CMP having larger core count, the re-
mote access latency (due to the increased hop count in the interconnection network)
dominates the memory access latency; therefore, execution time in “BCPCM” con-
figuration is almost same to the base-case “BC”.

Fig. 6.7 shows the normalized energy consumption at the 3D-stacked memory
layer for the different considered configurations “BC”, “BCMap”, “BCPCM”, and
“BCPCMMap”. In this figure, we can see that method “BCPCMMap” consumes on
an average of 49% less energy as compared to the “BC”. This reduction in energy
is mainly due to the following reasons: First, configuration “BCPCMMap” takes the
benefits of the DRAM access aware page placement between DRAM and PCM mem-
ory to reduce the DRAM refresh operation. Second, the access-aware self-adaptive
page mapping takes the benefits of the page access (while migrating a page from
a hybrid memory slice to other) mechanism and refreshes the DRAM row. There-
fore, it reduces the DRAM refresh energy by avoiding the refresh operation for those
migrated pages.

Therefore, together from Fig. 6.6 and 6.7, we can see that “BCPCMMap” gives
the similar or better performance (in terms of the execution time) as compared to the
“BC”. Moreover, “BCPCMMap” configuration also reduces the energy consumption
by lowering the DRAM refreshes.

6.4 Performance and Area Overhead Analysis

6.4.1 Performance Analysis

In this work, we have considered the page size of 4KB for the DRAM memory as
well as PCM memory of the hybrid memory slice. Both parts, (a) access-aware
self-adaptive page mapping on to the hybrid memory slices, as well as (b) DRAM
access-aware page placement between the DRAM and PCM memory of the hybrid

95

6.4. PERFORMANCE AND AREA OVERHEAD ANALYSIS

 88

 90

 92

 94

 96

 98

 100

 102

plu ocean.cont
ocean.ncont

heat AVG

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Benchmarks

BC
BCMap

BCPCM
BCPCMMap

Figure 6.6: Normalized execution time

 0

 20

 40

 60

 80

 100

 120

plu ocean.cont
ocean.ncont

heat AVG

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

Benchmarks

BC
BCMap

BCPCM
BCPCMMap

Figure 6.7: Normalized energy consumption considering the DRAM refresh energy
and PCM access energy

memory slices, of our approach generates the page migrations. Former one generates
the pages migrations in between two hybrid memory slices and termed as inter-slice
page migrations. Whereas, latter one causes the page migrations between the DRAM
and PCM of a hybrid memory slice and termed as intra-slice page migrations.

Similar to the technique as described in Chapter 5, this chapter also uses the lazy
page migration technique for the inter-slice page migration, so there is no obstruction
in the regular application execution time. To analyze the percentage of overall page
migrations, in this chapter also we performed the experiments similar to as done in
Chapter 5. Our experiment shows that the number of the page migration due to the

96

6. RUN-TIME PAGE MAPPING CONSIDERING HYBRID MEMORY

run-time self-adaptive page mapping is similar to the number of page migration, as
shown in Fig. 5.3 of Chapter 5.

For the intra-slice page migration, pages that are not dirty can be invalidated
merely by setting valB array. Whereas, we need to migrate (or write) the pages from
DRAM to PCM of a hybrid memory slice only in case of write-back (or being dirty
in DRAM). We have used a one-bit array D2PMig that set to “TRUE” if a DRAM
row (associated to a page) becomes the candidate for the DRAM to PCM migration.
Further, we have used a simple distributed lazy method to perform the DRAM to
PCM page migrations decided at the decision point after each row monitoring
period. Also, in this method, a higher priority is given to the regular DRAM to PCM
read access (generated from the DRAM memory) as compared to the page migrations.

In the distributed lazy page migration, to perform a page migration, it is written
to the PCM at the smaller granularity and spread over the row monitoring period
instead of writing a page entirely at a time. Therefore, to migrate a 4KB page, we
have considered writing 64bytes at a time, and a complete page is written using 64
smaller chunks of 64bytes. Also, after writing a block of 64byte and before starting
the next write, it checks for the regular DRAM to PCM read access and preference
is given to the PCM read if it is present. Moreover, once a page migration (or PCM
write) is get completed, associated D2PMig array is set to “FALSE” along with the
updation of the associated row monitoring arrays AccB, V alB, and DirtB. Similarly,
the next candidate page is considered for the migration. However, if the number of
pages to migrate between DRAM and PCM became high, then the pages that could
not migrate during the row monitoring period will get considered for the upcoming
decision point (as the DRAM row can retain till 256ms).

6.4.2 Area Overhead Analysis

As we have considered, 4KB page size and 4 hybrid memory slices (M=4) with the
DRAM memory size per hybrid memory slice Dsize= 256MB, so there are 4×256MB

4KB

number of physical pages that can reside on the DRAM memory of the DRAM-PCM
based hybrid memory. Also, we need counters for the pages that are in the DRAM
memory and not on the PCM memory while performing the profiling, and therefore,
for that, we need 4× 256MB

4KB × 2× 4 the number of 16-bit profiling counters.
Further, to conduct the computation while deciding the page mapping, it incurs

(M+1) number of the comparator, and also M number of adders. Moreover, for each

97

6.5. SUMMARY

physical page, it takes log2(M) cycles to perform the computations for the mapping
using the M number of the adder and M +1 number of comparator units. Therefore,
for M = 4 hybrid memory slices, the modified memory controller incurs a hardware
overhead of 4 adders and comparator along with the time overhead of 4 cycles. Also, to
create the migration list Mig and waiting queue WQ, we need an overall of 4× 256MB

4KB

bit or 32KB of memory space for each. Similarly, location array Loc for the destination
hybrid memory module incurs 4× 256MB

4KB 2-bit or 64KB memory space. Moreover, for
profiling counters, we need 4MB memory space corresponding to 1GB of total DRAM
memory.

Moreover, to perform the DRAM to PCM page placement considering the overall
hybrid memory, we need 32KB memory corresponding to the AccB, valB, DirtB,
and D2MMig one-bit arrays at each DRAM refresh controller. Also, we need an
overall of 3×M one-bit comparator.

6.5 Summary

In this chapter, we have proposed an access-aware self-adaptive run-time page map-
ping for the 3D-stacked hybrid DRAM-PCM memory-based CMP system. Our pro-
posed method uses a simple DRAM access-aware page placement technique between
DRAM and PCM of the hybrid memory to reduce the DRAM refresh operations
and its associated power consumption overhead. Further, it uses the DRAM row
access information and performs an access-aware self-adaptive page mapping for the
optimized page placement between the different hybrid memory modules of the 3D-
stacked hybrid memory. In this way, our method provides an alternative and efficient
way to use 3D-stacked hybrid DRAM-PCM memory for the future generation CMP
system.

We expected our technique to become more effective in the future large CMP
system (core count ≥ 100) having larger on-chip memory (to fulfill the high memory
bandwidth demand). Our proposed approach performs similar or better in terms of
the execution time as compared to the base case. Our technique reduces the energy
consumption due to the DRAM refresh by an average of 51% as compared to the base
case. Moreover, our method incurs a small area overhead in the memory controller
at the 3D-stacked memory layer.

�������

98

7
Performance Analysis of CMP hav-
ing 3D-stacked DRAM and Hybrid

NOC

The advancement in the fabrication technology of the CMP system has the po-
tential to increase the core count very significantly. However, the benefits of the
increasing number of cores on a CMP system are limited by many architectural con-
straints and resource management techniques. The off-chip memory bandwidth can
severely restrict the core count of the CMPs and thereby reduces the performance,
as reported by Rogers et al. in [100]. Also, the increase in the CMP core count is
urging the necessity of not only the high bandwidth memory but also the high-speed
on-chip interconnects or network-on-chip (NOC).

As described in the previous Chapters, 3D fabrication technology becomes pop-
ular, as it allows us to stack DRAM memory and non-volatile memories on top of
the chip to addresses the system bandwidth and performance demand [20, 126, 85].
Recently, researchers have started exploring many on-chip interconnect technologies,
including wireless NOCs and 3D-stacked optical NOCs [35, 123, 61, 112]. For the
CMPs, optical NOC has been explored extensively in the last few years due to its
easy implementation using the 3D fabrication technology [123, 61, 113]. In 3D fab-
rication, all the optical components associated with the optical NOC are placed at a
separate optical layer, and these are interfaced with the electrical components using
TSVs [113]. Optical on-chip interconnect either supplement the electrical intercon-

99

7.1. TARGET SYSTEM ARCHITECTURE

nection network or replaces it entirely. In [114], Werner et al. have proposed a hybrid
interconnect technique for the CMP systems. Moreover, they have identified that the
electrical links are best suited for the near distance communications and optical links
perform well when the destination is in the two-hop distance or more.

Agarwal et al. in [7], studied that for a fixed die size, we need to reduce the cache
size per core to increase the core count of the CMP. Therefore, the trade-off between
performance and cache size per core need to be analyzed along with the use of 3D-
stacked memories as well as a high-end interconnection network. Also, conclusions
from the last chapters made it clear that the self-adaptive run-time page mapping
is an effective way to use the 3D-stacked memories for the current as well as future
CMP systems.

Therefore, in this chapter, our objective is to study the trade-off between the
performance and cache size per core of the CMP system while utilizing the benefits
of the optical interconnect, 3D-stacked DRAM and a self-adaptive run-time page
mapping. Specifically, we analyze the effects of reduced cache size on to the system
performance while considering the benefits of the following.

1. 3D-stacked DRAM, to provide high memory bandwidth.

2. High performance optical interconnect, to enable low-latency communication
and efficient memory utilization.

3. Finally, we use the self-adaptive run-time page mapping to efficiently use the
3D-stacked DRAM for the CMP system, as proposed in chapter 5.

7.1 Target System Architecture

In this chapter, we have considered a 3D-stacked DRAM based CMP system having
an optical interconnection network, as our target CMP system. Figure 7.1 shows an
example of the considered 3D-stacked CMP architecture, in addition to the detailed
representation and explanation as given in Section 3.1.4 and Chapter 3. In Figure
7.1, processor layer has 64 cores that are connected using an 8 × 8 two-dimensional
mesh of electrical interconnects. In addition to the 2D-mesh electrical interconnects,
there is an optical network present above the processor layer, and together they form
a hybrid interconnection network for the CMP system. Optical interconnect layer on
top of the processor layer is having four optical network interfaces (oni0, oni1, oni2,

100

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

TSV

ONI

DRAM Controller Optical Interconnect

Core L1+ L2 Cache

m 0 m 1

m 2 m 3

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

Figure 7.1: CMP system architecture.

oni3 ∈ ONI) and these are connected in a ring through the optical interconnects
(waveguide). The high bandwidth optical network is shown by a thick line in Fig
.7.1. Further, a memory layer is placed on top of the optical interconnect layer.
Memory layer comprises four {m0, m1, m2 and m3} 3D-stacked DRAM memory
slices (or memory banks) and each memory slice is having their own on-chip memory
controller.

7.1.1 Routing of Packets

We have used modified version of the XY-routing to route the packet in the considered
hybrid interconnection network. Considering the CMHIG graph as shown by Figure
7.2 (right part of Figure 3.6, as explained in section 3.1.4) corresponding to the target
CMP system, for the communication between any pair of source NOC-tile vertex cs

and destination NOC-tile vertex cd. The routing between cs and cd is decided based
on the fact that: “if the use of optical network is beneficial as compared to the only
electrical interconnect then former one should be preferred for the path selection
and packet routes through a pair of intermediate nodes”. Suppose, cx and cy are the
nearest NOC-tile vertices (termed as intermediate nodes and are having adjacent ONI)
from the NOC-tile vertices cs and cd respectively. Consider, the electrical distances
(in number of hops× electrical link latency per hop) (a) from cs to cd as DEsd, (b)

101

7.1. TARGET SYSTEM ARCHITECTURE

from cs to cx as DEsx and, (c) from cy to cd as DEyd. Also, the optical distance (in
number of hops× optical link latency per hop) between between intermediate nodes
cx and cy as DOxy. The routing of the packets from cs to cd uses the optical path if
DEsd > (DEsx+DOxy+DEyd) becomes true. For the true value of this condition, the
electrical path get split into, (1) electrical path from cs to cx, (2) electrical path from
cy to cd, and (3) optical path from cx to cy.

At every processor layer router, the information about the intermediate node
is specified and being used for the optimized routing. Moreover, routing between
each ONI at the optical interconnect layer as well as each router at the processor
layer takes place using dynamic XY-routing based on the input queue traffic. In
the dynamic XY-routing, to avoid the congestion, next hop is decided based on the
current queue length of the corresponding input port in the neighboring routers [65].
Therefore, for a packet that needs to travel some distance in both X and Y directions
to reach the destination, dynamic XY-routing routes the packet to either X or Y
direction depending on the congestion conditions of the input queues associated to
the neighboring routers. Also, the input port of the neighboring routers having a
lower queue length is preferred. For an example: a packet from NOC-tile vertex
c2 to the c61 use the route through intermediate node c17 and c46. However, the
packet traversal between c2 to c17, c17 to c46 and c46 to c61 uses dynamic XY-routing
algorithm.

The intermediate nodes to be used for any pair of nodes (NOC-tile vertices) are
computed statically and stored once at every router of the NOC-tile vertex to route
the packets. A table (termed as V IA table) at every router of the NOC-tile vertex
specifies the intermediate nodes which are used to go to other NOC-tile vertices.
V IA table at each router keeps the information for all the destinations with their
associated intermediate nodes. For example, Table 7.1 shows a segment of the V IA

table stored at the router of the NOC-tile vertex c0 for each destination and values
of the associated intermediate node NOC-tile vertices to go through. Value -1 is used
when there is no specified intermediate node to be used for a source and destination
NOC-tile vertex pair.

For 8× 8 CMP system architecture having four ONIs, we need to compute and
store the routing table at each router. As the number of ONIs are four and need
to represent the -1 (NULL) value, therefore it incurs 3-bits of memory to represent
each intermediate node in V IA table. Overall, it incurs an overhead of 64×(6 bit

102

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

Area−2 Area−3

Area−0 Area−1

0 1 2 3 4 5 6 7

8 9 10 11 12 14 15

16 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

13

17

Figure 7.2: Example of CMHIG graph

Source Destination INsrc INdst
c0 c0 -1 -1
c0 c1 -1 -1
c0 c2 -1 -1
. . . .
c0 c7 c17 c13
. . . .
c0 c63 c17 c46

Table 7.1: A segment of the V IA table stored at router of the NOC-tile vertex c0,
where: INsrc and INdst are intermediate nodes adjacent to source and destination
nodes respectively.

for destination+3 bit for first intermediate node+3 bit for second intermediate node)
bits at each router.

7.2 Problem Formulation

Modern chip-multiprocessors (CMPs) dedicate 40-60% chip area to the caches. As
the cache dominates in a CMP, increasing the size of the cache reduces the number
of cores significantly for a fixed die size. For the present-day CMPs, the overall chip

103

7.2. PROBLEM FORMULATION

area AChip can be given by (7.1).

AChip = Nc × (ACoreL1 + APrivL2), (7.1)

where, Nc is the number of cores on the chip, ACoreL1 is the area of one core with L1
cache (data and instruction), and APrivL2 is the area of the overall private L2 cache
per core.

Table 7.2 shows the number of cores that can be accommodated on a CMP for the
overall die size of 240mm2, and different combinations of the private L2 cache size and
core size. For big size cores (2.4mm2) and L2 cache size of 512KB per core, 240mm2

CMP die can accommodate 61 cores. Whereas, for 32KB per core L2 cache size, 96 big
cores can be accommodated. Similarly, for tiny cores (0.6mm2), 512KB per core L2
cache size results in 114 cores to be accommodated on CMP. Whereas, 32KB per core
L2 cache size results in 346 tiny cores to fit on CMP, which is significantly higher. A
larger number of cores per CMP results in higher performance if an adequate amount
of memory feeds the cores and interconnect bandwidth.

An adequate amount of memory bandwidth can be provided by increasing the
cache size, which is contradictory to increasing the number of cores for the fixed
die size. Therefore, increasing the main memory bandwidth and reducing the delay
between memory and cores by using high end optical interconnects can be an efficient
alternative. In our considered architecture, cores and L2 caches reside at the processor
layer; therefore, reduction in the L2 cache size per core increases the number of cores.
3D-stacked on-chip memory layer increases the memory bandwidth by stacking the
DRAM slices on top of the processor layer. Further, efficient run-time data page
mapping places the critical data to the nearby memory slice of the requesting core.
The use of optical interconnects further reduces the remote memory access delay
and thread to thread communication delay. Also, it reduces the network congestion
overhead due to the page migration incurred after the page mapping by providing a
separate path between the DRAM slices.

In this chapter, our goal is to analyze the effects of the reduced cache size per
core on the CMP system performance by considering (a) the optical interconnects,
(b) different size of the L2 cache per core and, (c) the use of self-adaptive run-time
page mapping onto the DRAM memory slices.

Consider, the multi-threaded application representationAGV P (T, VP, Etc, Evpa),
as given in section 3.2; and a target CMP representation CMHIG(Ccc, EEcc, EOcc), as

104

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

Core type 512KB 256KB 128KB 64KB 32KB
& area mm2 1.5mm2 0.75mm2 0.38mm2 0.19mm2 0.1mm2

Big (2.4mm2) 61 76 86 92 96
Medium(1.5mm2) 80 106 128 142 150

Small(0.8mm2) 104 154 204 243 268
Tiny(0.6mm2) 114 177 246 304 346

Table 7.2: Number of cores that can fit with different cache and core size for the
CMP die area of 240mm2, using (7.1).

given in section 3.1.4. Our self-adaptive run-time mapping approach maps the multi-
threaded applications represented as graph AGV P onto target architecture graph
CMHIG to maximize the performance. We use default thread to core (associated
to the NOC-tile vertex) mapping in this part of work. Moreover, in our mapping ap-
proach, we use page mapping technique considering the amount of thread to virtual
page access edge evpa(ti, vpj) and ignored the thread to thread communication edges
etc(ti, tj) to maximize the performance.

The miss latency TL2M,t incurred for thread ti due to the last level cache (LLC)
miss of a cache block (associated to a page vpj) at time instant t, can be calculated
as follows.

TL2M,t = distCC(X(ti), Yt(vpj)).LH2H + LDRAM . (7.2)

Where X(ti) is the NOC-tile vertex associated with the core having mapped
thread ti. This X(ti) is the default thread to core mapping at the starting of the
application execution and remains the same over the application execution. Yt(vpj)

is the NOC-tile vertex adjacent to the DRAM memory slice having mapped page vpj
at time instant t. The term distCC(X(ti), Yt(vpj)) is the hop distance (or hop count,
calculated using the routing approach as described in Sub-section 7.1.1) between
NOC-tile vertex associated to X(ti) and Yt(vpj). The term LDRAM is the DRAM
access latency to access the cache block of a page. LH2H is the hop to hop traversal
latency, which depends based on the interconnect type while calculating the hop
distance using the routing method described in Section 7.1.1 using the hybrid network.

As most of the applications exhibit phase-wise behavior during their run-time
[105]. Therefore, for an application, the LLC miss pattern of an execution phase may
be different from another phase. So, we considered the run-time phase-wise behavior
of an application and for simplicity divided the whole execution time of an application

105

7.2. PROBLEM FORMULATION

into multiple time epoch (or phase) of fixed length. Therefore, using (7.2), the total
latency overhead TL2M,epo,i incurred due to all the LLC misses from thread ti (mapped
to core ci) in a time epoch epo can be given by (7.3).

TL2M,epo,i =

|VP|−1∑
j=0

ωepo(evpa(ti, vpj)).TL2M,t. (7.3)

Where, ωepo(evpa(ti, vpj)) is the number of page access request by thread ti to
virtual page vpj in a time epoch epo. These page access requests of thread ti is the
LLC miss of processor ci as ti is mapped to ci. The term VP represents the set of
virtual pages and includes total number of pages corresponding to the multi-threaded
application.

For E number of phases (or epochs) associated to the total execution time of an
application, the overall latency TL2M,overall,i associated with the LLC miss from the
thread ti (mapped to core ci) is given as follows.

TL2M,overall,i =

E∑
epo=1

TL2M,epo,i. (7.4)

Therefore, considering the phase-wise behavior and parallel execution of the
multi-threaded applications on to the CMP, the total time after the last level cache
and due to the memory accesses TTotal of the application can be given as following
(as explained by Equation 5.4 in chapter 5).

TL2M,total = Max(TL2M,OverAll,i,∀i ∈ {0, 1, 2, . . . , N − 1}). (7.5)

Where, TL2M,OverAll,i is the overall miss latency associated with the last level cache
miss for ith core ci (having mapped thread ti) over the E number of phases (or epochs)
of the complete application execution.

Therefore, for the total number of instruction Nins of the multi-threaded appli-
cation and total execution cycle TTotal (in cycles), the instruction per cycle IPC of

106

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

the system is given by (7.6).

IPC =
Nins

TTotal
. (7.6)

Considering, the total execution cycle TTotal as sum of the total number of cycles
TL2M,total (incurred after L2 cache misses) and the total number of cycles to perform
computations TCal

1, IPC can be given by (7.7).

IPC =
Nins

TL2M,total + TCal
. (7.7)

In the multiprocessor environment, where multiple instruction execution and
memory page access happens in parallel, the serial calculation of delay TL2M,total is
a reasonable estimate of delay value in calculating the performance. Equation (7.7),
shows that if we reduce the value of TL2M,total then the value of IPC increases. The
value of TL2M,total can be reduced by efficient placement of the memory pages on to
the DRAM slices and low latency interconnection network.

Moreover, on-chip communication cost due to the memory page access can be
evaluated by (7.8).

CCost =

E∑
epo=1

N−1∑
i=0

|VP|−1∑
j=0

ωepo(evpa(ti, vpj)).distCC(X(ti), Yt(vpj)). (7.8)

Where, term distCC(X(ti), Yt(vpj)) is the hop distance or hop count 2 between NOC-
tile vertex associated to X(ti) and Yt(vpj). X(ti) is the NOC-tile vertex associated to
the core having mapped thread ti. Term X(ti) is the default thread to core mapping
at the starting of the application execution and remains same over the application
execution. Yt(vpj) is the NOC-tile vertex adjacent to the DRAM memory slice having
mapped page vpj at time instant t.

Equation 7.8 and 7.2, shows that decreasing the hop count (or hop distance)
distCC(X(ti), Yt(vpj)) proportionally reduces the on-chip communication cost as

1TCal includes computational cycles (at core) and total cycles to handle L1 hit/miss and L2 hit,
used for the IPC calculation as given in [24]

2Calculated using the routing approach as described in sub-section 7.1.1 and it is similar to
distCC(X(ti), Yt(vpj)) as given in previous chapters, except the routing schemes used. In addition,
we have assumed 1 hop distance between any two adjacent ONIs while calculating the communication
cost and distCC(X(ti), Yt(vpj))

107

7.3. SELF-ADAPTIVE APPLICATION MAPPING

well as miss latency of the CMP system. Therefore, for the CMPs having larger core
count, efficient mapping and hybrid interconnect can reduce distCC(X(ti), Yt(vpj))
significantly which in turn reduce the on-chip communication cost and total execution
time. Reduced value of the execution time increases the system IPC as per the
Equation 7.7. Moreover, for a fixed core size, if we reduce the last level cache (L2
cache in our cache) size then value of ωepo(evpa(ti,vpj)) increases (due to the higher
number of miss generated) and so on-chip communication cost and miss latency value
increases.

Therefore, for modern as well as future CMP system, it becomes essential to
analyze and find an architectural design such that it maximizes the IPC and mini-
mize the on-chip communication cost. So, in this contribution, our main aim is to
analyze the effects of the different cache size per core on CMP system IPC and on-
chip communication cost CCost. Also, if the performance of the CMP system with
smaller cache size per core increases then we can utilize the chip area to increase the
number of cores, and this may further increase the performance for the highly parallel
applications.

7.3 Self-adaptive Application Mapping

In this chapter, we have considered the self-adaptive run-time page mapping as ex-
plained in Chapter 5, to effectively utilize the 3D-stacked DRAM memory while ana-
lyzing the effects of the reduced cache size on to the system performance. Therefore,
for every last level cache miss generated to a cache block (associated to a page vpj

mapped to the DRAM slice mk ∈ {m0,m1, · · · ,mM−1}) from a core (having mapped
thread ti ∈ T), associated core sends cache block access request to the memory con-
troller of the DRAM slice having associated virtual page vpj . Moreover, for each such
access request (denoted by pair (ti, vpj , ppj)), self-adaptive run-time page mapping
performs its associated page access, run-time profiling, page mapping, migration and
TLB update mechanisms similar to the ways as described in previous chapters.

The only difference that self-adaptive run-time page mapping poses in this chap-
ter is the use of optical interconnects and the modified routing technique (as men-
tioned in Section 7.1). Therefore, whenever a message needs to travel through the
on-chip interconnection network, it follows the modified routing as described in Sec-
tion 7.1.1 and based on this routing, it decides the optimal path to travel.

108

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

7.4 Experimental Environment

In this contribution, we have used the Sniper simulator [23] platform to configure the
considered target chip multiprocessor architecture. The architecture configuration
used is 64 cores (8 × 8) CMP system with four DRAM controllers and four optical
interconnects. Intel Xeon X550 Gainestown micro-architecture along with the private
L1-I and L1-D of 8 KB and different sizes (32, 64, 128, 256, and 512 KB) of L2 cache
per core is used to configure each simulated core of the target CMP system. Also,
Table 7.3 shows the other configuration parameters used in this work. For our optical
interconnect model, we have assumed the optical link latency of 4 cycles between two
ONIs (including the delay of all the optical components). Moreover, we modeled the
DRAM controllers and ONIs, associated hardware and performance overheads and
fed the resulting latencies to the simulator for correct timing simulation.

For evaluation, we have used workloads from the multi-threaded PARSEC [14]
and SPLASH-2 [118] benchmark suits. Workloads from the PARSEC [14] and SPLASH-
2 [118] benchmark suits which generate a higher number of the last level cache misses
(private L2 cache in our case) are used for the performance evaluation. We run the
multi-threaded workloads with simlarge input for 108 instruction count.

In this work, we have assumed that queuing delay has less effects on system
performance as compared to the latency delay due to the interconnects (on-chip and
off-chip). Moreover, the same is supported by the summary Table 7.4 for the used
benchmarks, which shows that all the used benchmarks have low miss per kilo in-
struction (MPKI) at the last level cache, which gets translated to low injection rate
at the routers of the CMP system. Therefore, we did not model the “queuing delay”
for the optical interconnects at the junction points of the electrical and optical inter-
connects. Furthermore, the used Sniper simulator considers and models the effects of
the “queuing delay” at the electrical 2D-mesh network. Also, our results presented in
this work are produced using the simulator, which considers and models the effects
of the queuing delay for the electrical 2D-mesh network.

7.5 Results

The 3D-stacked DRAM in our considered CMP does not allow the storage of multiple
copies of the virtual pages for the remote accesses and hence avoids the overhead
associated with the coherence maintenance. Run-time self-adaptive virtual page to

109

7.5. RESULTS

Table 7.3: System configuration parameters.

Parameters Values
Number of tiles 64
Number of cores per tile 1
Core frequency 2.6GHz
Number of threads per core 1
Overall 3D-stacked DRAM 4GB, 1GB per DC
DRAM directory type Full map
Electrical link bandwidth 16 (bits/cycle)
Electrical link latency 10 (cycle/per hop)
Optical link bandwidth 256 (bits/cycle)
Optical link latency 4 cycles maximum
3D-stacked DRAM access latency 40 cycles
(including negligible TSV traversal delay)
DRAM frequency (for on-chip and off-chip both) 800MHz
Size of Processor load-store Queue 8
Cache replacement policy LRU
DRAM directory type Full map
Off-chip DRAM access latency 400 cycles
(including long off-chip wire traversal delay,
and used only for the “BC”)
Network Contention considered No
Value for CorThr 100

Table 7.4: Summary of the benchmarks characteristics

Benchmarks Application Domain Average MPKI at L2 Cache
64KB 128KB 256KB 512KB

ferret Similarity search 7.07 6.08 4.94 4.09
x264 Media processing 18.89 11.78 3.96 2.72
barnes N-body method 3.55 1.14 0.69 0.54
fmm Fast multipole method 1.17 0.83 0.73 0.60

memory slice mapping improves the performance by placing the highly demanded
remote virtual pages of a core to its nearest DRAM memory slice. Further, the use
of efficient optical interconnects and routing technique reduces the on-chip distance
significantly between two distant NOC-tiles (or core vertices), which in turn optimizes
the communication cost and access latency. Also, network traffic generated due to
the page migration between the DRAM slices is tackled by the optical interconnects
as all the page migrations use the optical interconnects only. Whereas, based on
the routing mechanism, other message packets may also route through the optical

110

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

interconnects.
To perform our proposed trade-off analysis, we have used different architectural

cases of the interconnection network and placement of the DRAM memory (off-chip
and 3D-stacked on-chip) along with the self-adaptive run-time page mapping. These
cases are given as follows.

1. BC: (base-case for this work) A CMP system with off-chip DRAM memory
and without a hybrid network is considered for this case. The run-time self-
adaptive page mapping is not used for this case. We have used the one-hop
electrical distance between off-chip DRAM slices and processor layer specific
router. Also, for this case, we have considered 400 cycles as the access latency
of the off-chip DRAM memory.

2. STKDRAM: In this case, a CMP system with 3D-stacked on-chip DRAM
memory and without a hybrid network is considered. The run-time self-adaptive
page mapping is not used in this case.

3. STKDRAM+RSAPM: In this case, we have considered a CMP system with
the 3D-stacked on-chip DRAM memory and without hybrid interconnection
network. We have used the run-time self-adaptive page mapping in this case.

4. STKDRAM+HNOC: A CMP system with the 3D-stacked on-chip DRAM
memory along with the hybrid interconnection network is considered for this
case. In this case, we have not used the self-adaptive run-time page mapping.

5. STKDRAM+RSAPM+HNOC: In this case, a CMP system with the 3D-
stacked on-chip DRAM memory along with the use of the hybrid network is
considered. Also, we have used the run-time self-adaptive page mapping for
this case.

Figure 7.3 shows the overall communication cost (in the number of memory access
× hop count) associated with the barnes, ferret, x264 and fmm benchmarks for the
different values of the L2 cache size per core to estimate the power consumption of the
network-on-chip (NOC). Similarly, Figure 7.4 shows the instruction-per-cycle (IPC)
associated with the barnes, ferret, x264, and fmm benchmarks. We have considered,
different combinations of the interconnection network (only electrical or hybrid), page
mapping technique, and placement of the DRAM memory (3D-stacked based on-chip
or off-chip) for the result evaluation.

111

7.5. RESULTS

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

32KB 64KB 128KB 256KB 512KB

C
o
m

m
u
n
ic

a
ti

o
n
 C

o
s
t

L2 Cache Size (in KB)

BC
STKDRAM

STKDRAM+RSAPM
STKDRAM+HNOC

STKDRAM+RSAPM+HNOC

(a) barnes

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

32KB 64KB 128KB 256KB 512KB

C
o
m

m
u
n
ic

a
ti

o
n
 C

o
s
t

L2 Cache Size (in KB)

(b) ferret

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

32KB 64KB 128KB 256KB 512KB

C
o
m

m
u
n
ic

a
ti

o
n
 C

o
s
t

L2 Cache Size (in KB)

(c) x264

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

32KB 64KB 128KB 256KB 512KB

C
o
m

m
u
n
ic

a
ti

o
n
 C

o
s
t

L2 Cache Size (in KB)

(d) fmm
Figure 7.3: On-chip communication cost (in number of memory access×hop cont)
of the CMP system.

112

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

32KB 64KB 128KB 256KB 512KB

IP
C

L2 Cache Size (in KB)

BC
STKDRAM

STKDRAM+RSAPM
STKDRAM+HNOC

STKDRAM+RSAPM+HNOC

(a) barnes

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

32KB 64KB 128KB 256KB 512KB

IP
C

L2 Cache Size (in KB)

(b) ferret

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

32KB 64KB 128KB 256KB 512KB

IP
C

L2 Cache Size (in KB)

(c) x264

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

32KB 64KB 128KB 256KB 512KB

IP
C

L2 Cache Size (in KB)

(d) fmm
Figure 7.4: Instruction per cycle (IPC) of the CMP system

113

7.5. RESULTS

Given a fixed die size, a CMP can have a higher number of cores if the size of
the L2 cache per core is reduced from a larger value to a lower value. For example,
considering a fixed die size of 240mm2, if the size of the L2 cache per core is reduced
from 256KB to 128KB then as per Table 7.2, a CMP can have 10, 26, 50 and, 69
additional cores for big, medium, small and tiny size cores respectively.

Figure 7.3(a), 7.3(b), 7.3(c) and 7.3(d) shows that while increasing the L2 cache
size per core the communication cost value of “BC” reduces. Also, if the size of the
L2 cache per core is reduced from a larger value to a smaller one, then the com-
munication cost value of the “BC” increases. For an example in Figure 7.3(a), the
communication cost value of “BC” at 256KB L2 cache size per core is 6.30×106, and
it increases to 7.15×106 when the L2 cache size is decreased to 128KB. However, if we
use “STKDRAM+RSAPM+HNOC”, “STKDRAM”, “STKDRAM+RSAPM” and
“STKDRAM+HNOC” cases then this increased communication cost value of “BC”
(7.15×106 at 128KB L2 cache per core) reduced to 3.26×106, 5.77×106, 5.09×106

and 3.48×106 respectively.

Figure 7.3 shows that cases “STKDRAM+RSAPM+HNOC”, “STKDRAM”,
“STKDRAM+RSAPM” and “STKDRAM+HNOC” reduces the communication cost
by an average of 51.87%, 15.42%, 28.33%, and 48.97% respectively as compared to
the communication cost value of base-case (“BC”). “STKDRAM+RSAPM+HNOC”
case uses the benefits of hybrid interconnects as well as self-adaptive page mapping
and shows the highest reduction by an average of 51.87% and maximum of 54.86%.
(for ferret benchmark) from the communication cost value of “BC” for the 128KB
size of the L2 cache per core.

Also, “STKDRAM+RSAPM+HNOC” shows an average of 36.45%, 23.54% and
2.9% more reduction in the value of “BC” (for the 128KB size of the L2 cache
per core) as compared to the “STKDRAM”, “STKDRAM+RSAPM” and “STK-
DRAM+HNOC” respectively. Similarly, the case “STKDRAM+RSAPM+HNOC”
takes the benefits of the hybrid interconnects along with the self-adaptive page map-
ping and reduces the increased value of the communication cost incurred due to the
smaller size L2 cache per core.

Interestingly, for any particular L2 cache size (say 128KB or any other considered
L2 cache size) and without reducing the L2 cache size per core, from Figure 7.3(a),
7.3(b), 7.3(c) and 7.3(d) we can see that “STKDRAM+RSAPM+HNOC” reduces the
communication cost value of “BC” by an average of 50.69%. Whereas, “STKDRAM”,

114

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

“STKDRAM+RSAPM” and “STKDRAM+HNOC” reduces the communication cost
value of “BC” by an average of 16.58%, 28.35% and 47.70% respectively.

Figure 7.4(a), 7.4(b), 7.4(c), and 7.4(d) shows that IPC value is very small
for “BC”. Also, if the L2 cache size per core is reduced from a larger value to a
smaller, then the IPC value of the “BC” reduces to further smaller values. IPC
values of the “STKDRAM”, “STKDRAM+RSAPM”, “STKDRAM+HNOC”, and
“STKDRAM+RSAPM+HNOC” cases also reduces as compared to their higher IPC
values associated with the larger L2 cache size per core. Figure 7.4, shows that
the IPC value of the “STKDRAM”, “STKDRAM+RSAPM”, “STKDRAM+HNOC”,
and “STKDRAM+RSAPM+HNOC” cases perform better as compared to the IPC
value of the “BC” by an average of 145%, 160% 185.45%, and 187.27% respectively.

For an example in Figure 7.4(a), the IPC value of “BC”, “STKDRAM”, “STK-
DRAM+RSAPM”, “STKDRAM+HNOC”, and “STKDRAM+RSAPM+HNOC” at
128KB L2 cache size per core is 0.59, 1.45, 1.48, 1.62, and 1.63 respectively. Whereas,
at 32 KB L2 cache size per core, the IPC value of “BC”, “STKDRAM”, “STK-
DRAM+RSAPM”, “STKDRAM+HNOC”, and “STKDRAM+RSAPM+HNOC” is
0.39, 1.18, 1.25, 1.42, and 1.44 respectively. Therefore, we can see that “STK-
DRAM+RSAPM+HNOC” at 32 KB L2 cache size per core performs almost sim-
ilar to the “STKDRAM” case and better than “BC” case at the 128KB L2 cache
size per core. So, for the fixed die size and to increase the core count, “STK-
DRAM+RSAPM+HNOC” improves the chip multiprocessor performance even after
the reduction in the cache size per core.

Therefore, based on the result and design specifications, consider config(a): as-
sociated with a 64-core CMP system having 1 GB 3D-stacked DRAM (overall 4GB),
4 optical interconnect based hybrid NOC, and 64KB L2 cache per core along with
the page mapping technique, and config(b): associated with a 64-core CMP system
having overall 4GB off-chip DRAM, only 2D-mesh based NOC, and 128KB L2 cache
per core, we can say that config(a) performs better than config(b).

7.6 Performance and Area Overheads

7.6.1 Performance Overheads

In almost all the contemporary CMPs, the standard size of the message (or packet)
for network-on-chip (NOC) is 64 bytes; therefore, 64 packets are needed to transfer

115

7.6. PERFORMANCE AND AREA OVERHEADS

Table 7.5: Example: Total number of L2 cache misses and page migrations.

Benchmarks # L2 Misses # Migrations Migration %
barnes 1.03× 106 3.70× 104 3.59%
ferret 1.80× 106 3.51× 103 0.19%
fmm 1.22× 106 8.65× 103 0.70%
x264 6.87× 105 2.78× 103 0.40%

a 4KB page. Moreover, the maximum page migration cost associated with each page
is 64 times the maximum distance between the source memory slice and destination
memory slices. Insertion of high bandwidth, low latency optical interconnects be-
tween memory slices reduce the page migration time significantly. Also, there is no
latency overhead as the page migration happens in parallel with the regular applica-
tion execution.

Table 7.5 shows the percentage of the overall number of page migrations calcu-
lated with respect to the total number of L2 cache misses (for L2 cache size=128KB).
It shows that migration due to run-time adaptive page mapping incurs on an average
1.22% overhead as compared to the total number of L2 cache misses. Moreover, for
simplicity and due to the two order smaller number of page migrations as compared
to the total L2 cache misses (as shown in Table 7.5), we have not considered the
network contention due to the page migrations.

7.6.2 Area Overhead

For a 4GB (Gsize= 4GB) DRAM memory with 4KB page size and having 4 (M=
4) DRAM slices, there are 4GB

4KB number of physical pages. Therefore, we require
4GB
4KB × 2 × 4 number of 16 bit counters, (M + 1) comparisons, M additions, and
M subtractions for all the DRAM memory pages. For 4 (M = 4) DRAM slices,
the modified DC incurs a hardware overhead of 4 adders and comparators. Also,
for migration list Mig, we need an overall of 4GB

4KB bit or 128KB of memory space.
Similarly, location array Loc[V P] needs an overall of 2× 4GB

4KB bit or 256KB of memory
space (2-bit to represent four DRAM slices).

Therefore, to implement run-time page mapping, profiling counters along with
the location array Loc and migration list Mig needs 16MB + 256KB + 128KB mem-
ory space associated with the overall 4GB of DRAM memory. Whereas, 4GB DRAM
memory as cache, needs 256MB space to maintain the coherence directory for the 64-
byte cache block size (26 bits for block identification (4GB

64B = 232

26 = 226 cache blocks),

116

7. PERFORMANCE ANALYSIS OF CMP HAVING 3D-STACKED DRAM AND
HYBRID NOC

2 bits to maintain coherence and 2 bits for DRAM slices per cache block) [30, 32, 36].
Therefore, the area overhead of the DRAM as a cache is more.

Also, for 8×8 CMP system having four ONIs, V IA table incurs 3-bits of memory
to represent each intermediate nodes (as the number of ONIs are four and we also
need to represent the -1 (NULL) value). Therefore, overall V IA table incurs an
overhead of 64×(6 bit for destination+3 bit for first intermediate node+3 bit for
second intermediate node) bits at each router.

7.7 Summary

In this work, we have analyzed the trade-off between the CMP performance (IPC
and communication cost due to the memory page access) and cache size per core (L2
cache in our case). We found that for a fixed CMP die size, to increase the core count
of the CMP reducing the cache size per core (L2 cache or LLC in our case) increases
the on-chip communication cost and decreases the system IPC. However, the CMP
performance degradation due to the smaller cache per core can be enhanced with
the use of an efficient hybrid interconnection network, 3D-stacked DRAM memory,
and an efficient application mapping. Also, the hybrid interconnection network and
3D-stacked DRAM memory fulfill the need of the CMP with the higher core count.

We found that cache size per core can be reduced up to a certain extent while
using the efficient hybrid interconnection network, 3D-stacked DRAM memory, and
a run-time self-adaptive application mapping. Also, for a given cache size per core
(when not reducing the cache size), the use of the efficient hybrid interconnection
network, 3D-stacked DRAM memory, and application mapping increases the system
IPC and decreases the on-chip communication cost significantly.

In this thesis, we have assumed that queuing delay is having negligible effects
on system performance as compared to the latency delay due to the interconnects
(on-chip and off-chip). Moreover, the same is supported by the benchmark summary
Table 7.5 for the used benchmarks, which shows a low injection rate (< 20). There-
fore, we did not model the queuing delay at the junction points (of the electrical and
optical interconnects). The used Sniper simulator considers (models) the effects of
the “queuing delay” at the electrical 2D-mesh network. Our results presented in this
thesis are produced using the simulator, which considers and models the effects of
the queuing delay for the electrical 2D-mesh network. Also, as the research related to

117

7.7. SUMMARY

the self-adaptive run-time page mapping considering the 3D-stacked memory-based
CMPs with/without hybrid interconnect is in a nascent stage. Therefore, as a founda-
tional and preliminary work, we have modeled the access latencies without considering
the queuing delays.

Further, considering the “queuing delay” at the time of latency modeling (in
Section 7.2) at the junction points of the electrical and optical interconnects is an
essential future work of this Chapter for the high injection rate (MPKI) applications.
As application having a high injection rate (MPKI) may create queuing delays and
may not be ignored while modeling the latency equations. Also, analyzing the effect
of different core size on to the CMP system performance is an important future work
that needs to be explored, as the higher number of cores may decrease the Tcal value
for the highly parallel applications that in turn may reduce the system IPC.

�������

118

8
Conclusions and Future Perspec-

tives

In the multi-core era, technology advancement has led the developments of the
chips that can have up to hundreds of cores on a single chip [12, 107]. The number
of cores on a single chip is also expected to go beyond hundred to satisfy the growing
need of the current as well as future applications [17, 7]. However, there are several
architectural constraints and resource management techniques that limit the benefits
of the increasing core count. Researchers have found that bandwidth limitations
of the off-chip memory and on-chip interconnects are the primary constraints that
severely restricts the CMP core count and thereby performance benefits [100, 50, 7].

Researchers have proposed many high bandwidth 3D-stacked memories such as
DRAM memory and non-volatile memories (NVMs) (including phase-change memory
(PCM), magnetic random access memories (MRAM), etc.), to address the memory
bandwidth and performance demands of the current as well as future CMP systems
[69, 55, 30, 126]. Moreover, NOC has emerged as a viable alternative to fulfill the
present and future demand of the modular and scalable interconnection network [13].
Recently, researchers have started exploring many efficient on-chip interconnection
networks, including optical and wireless NOC, to satisfy the growing need of the
CMP systems [35, 123, 61].

Assimilating the past and the needs of the present as well as future CMP systems,
the contributions made in this thesis addresses the importance and challenges related
to the 3D-stacked memory and network interconnect architectures that have been

119

8.1. SUMMARY OF THESIS

proposed for the current as well as future CMP systems. This chapter presents a
summary of the contributions made in this thesis. This chapter concludes with the
avenues for future research and directions of the extension.

8.1 Summary of Thesis

This thesis aims to introduce the methods of application mapping considering the
current as well as future generation CMP system architectural variations. It is envis-
aged that the contributions made in this thesis can be appropriately applied to the
future CMP systems where state-of-art methods may seize to apply.

With a bottom-up approach, the first contribution (Chapter 4) laid a foundation
of the application mapping, and the conclusions arrived from this are used in the
next contributions of this thesis. In the first contribution, a static profile based
multi-threaded application mapping (using different types of thread to the core and
virtual page to DRAM slice mapping) has been performed for the 3D-stacked DRAM
memory based target CMP. Experiments show that the overall on-chip communication
cost reduction due to the page mapping is significantly higher as compared to the
reduction due to the thread mapping. Moreover, virtual page to DRAM slice mapping
and thread to core mapping reduces overall on-chip communication cost up to 86%
(average 56%) and 26% (average 12%) respectively.

The conclusion of the first contribution (virtual page mapping is more effective
as compared to the thread mapping) along with the facts (a) thread migration is a
costlier operation and (b) most of the application shows phase-wise behavior at the
run-time, prompted us to propose a self-adaptive run-time page mapping technique in
the second contribution (Chapter 5) of this thesis. Further, in the second contribution
(Chapter 5), we have performed the comparison between proposed method along with
an improvement (addition of SRAM mapping buffer) and a recent state of work (as
proposed in [30]). Our experimental result shows that the proposed method can
be an alternative way to use the 3D-stacked DRAM memory for current as well
as future CMP systems. The proposed self-adaptive run-time page mapping alone
shows the communication cost reduction up to a maximum of 80% and an average of
about 40% as compared to the base case method. Further, our self-adaptive run-time
page mapping together with the SRAM mapping buffer outperforms the base-case
by an average of 48% in terms of overall execution time. Also, most importantly,

120

8. CONCLUSIONS AND FUTURE PERSPECTIVES

the adaptive run-time mapping with the SRAM mapping buffer shows a performance
improvement by an average of 40% (in terms of overall execution time) when compared
to 3D-stacked DRAM used as a coherent cache with temporal SRAM buffer, a state-
of-art work proposed by [30].

As the future, CMPs (where the number of cores is expected to increase) needs
much larger memory bandwidth for the better performance, and research has shown
that increasing the DRAM memory size incurs much DRAM refresh related power
consumption [79]. Therefore, for the future CMPs, 3D-stacked DRAM-PCM hybrid
memory is proposed as a viable alternative of the 3D-stacked DRAM memory and
under exploration. Consequently, in third contribution (Chapter 6) of this thesis,
we have considered a 3D-stacked hybrid DRAM-PCM memory based target CMP
system and to take advantage of the large capacity 3D-stacked hybrid memory as
well as to minimize the DRAM refresh operations (its associated power consumption
overhead) and remote memory accesses overheads, we performed a simple DRAM
access-aware page placement technique between DRAM and PCM of the hybrid mem-
ory slice. Further, our method uses the DRAM row access information and performs
an access-aware self-adaptive page mapping for the optimized page placement be-
tween the different hybrid memory modules of the 3D-stacked hybrid memory. In
this way, our method provides an alternative and efficient way to use 3D-stacked
hybrid DRAM-PCM memory for the future generation CMP system. Our proposed
approach performs similar or better in terms of the execution time as compared to
the base case. However, the proposed technique (in Chapter 6) reduces the energy
consumption due to the DRAM refresh by an average of 51% as compared to the base
case.

The fourth and final contribution of this thesis (Chapter 7) performs the trade-off
analysis between the performance and cache size of the CMP system while utilizing
the benefits of the high-end optical interconnects, 3D-stacked DRAM memory and
a self-adaptive run-time page mapping. The study has shown that for a fixed-size
die, increasing the number of cores on a chip reduces the on-chip caches per core [7].
However, on-chip caches are one of the vital parameters to get better performance, and
a shortage of caches may degrade the system performance. In this final contribution
(Chapter 7), we found that for a fixed CMP die size, reducing the cache size per core
(L2 cache or LLC in our case) increases the on-chip communication cost and decreases
the system IPC. However, the CMP performance degradation due to the smaller cache

121

8.2. FUTURE RESEARCH AVENUES

per core can be enhanced with the use of an efficient hybrid interconnection network (a
combination of electrical and optical interconnects), 3D-stacked DRAM memory, and
our self-adaptive run-time page mapping. Also, the hybrid interconnection network
and 3D-stacked DRAM memory fulfill the need of the future CMP systems.

Our result analysis in fourth contribution (Chapter 7) has shown that cache
size per core can be reduced up to a certain extent while using the efficient hybrid
interconnection network, 3D-stacked DRAM memory, and a run-time self-adaptive
application mapping. Also, for a given cache size per core (when not reducing the
cache size), the use of the efficient hybrid interconnection network, 3D-stacked DRAM
memory, and application mapping increases the system IPC and decreases the on-chip
communication cost significantly.

8.2 Future Research Avenues

The contributions made in the chapters of this thesis provide ample scope and several
clear directions for future research. Though the application mapping (mainly due to
the page mapping), the second contribution of this thesis is still in its nascent form for
the modern CMP systems having larger core count, it has a strong potential to use
the modern architectural designs (such as 3D-stacked memories and high-end NOCs)
in an alternative and efficient way. One immediate upgrade to the self-adaptive run-
time page mapping could be the use of any machine learning approach to decide the
CorThr value (which is the deciding parameter for the number of page migration) at
the run-time, instead of a fixed CorThr value.

To perform the self-adaptive run-time page mapping, we need overall of 16MB
memory space for the profiling counters, which is very less if we compare with the
storage overhead associated with the 256MB coherence directory for the 4GB 3D-
stacked DRAM as a cache with 64-byte cache block size (as explained in [32, 36]).
However, this 16MB space associated with the profiling counters is still huge in itself.
Therefore, another dimension of future work can be to reduce the considerable amount
of the counter space by adopting further efficient counter design such as given by Zhao
et al. in [128]. Moreover, as a new dimension, we can further reduce the amount of
counter space by adopting a new mapping technique that selects only highly active
pages (applying a filter on the active pages).

In this thesis, we have used page access behavior of the threads to perform the

122

8. CONCLUSIONS AND FUTURE PERSPECTIVES

efficient phase-wise mapping. However, we may use many other profile information
to perform the thread/page mapping, which may lead to other future dimensions of
this thesis.

Also, for the dynamic run-time mapping, we may use the combination of thread
and page mapping techniques, where any recent less overhead based thread to core
mapping technique can be used [120].

�������

123

Publications

• Rakesh Pandey and Aryabartta Sahu, “Run-time adaptive data page map-
ping: A Comparison with 3D-stacked DRAM cache”, in Elsevier Journal of
Systems Architecture (JSA), 2020.

• Rakesh Pandey and Aryabartta Sahu, “Performance and Area Trade-off of
3D-stacked DRAM Based Chip Multiprocessor with Hybrid Interconnect,” in
IEEE Transactions on Emerging Topics in Computing (TETC), 2019 (Early
Access, DOI: 10.1109/TETC.2019.2946887).

• Rakesh Pandey and Aryabartta Sahu, “Access-Aware Self-adaptive Data Map-
ping onto 3D-Stacked Hybrid DRAM-PCM based Chip-Multiprocessor”, The
21st IEEE International Conference on High Performance Computing and Com-
munications (HPCC), 2019.

• Rakesh Pandey and Aryabartta Sahu, “Efficient Mapping of Multi-threaded
Applications onto 3D Stacked Chip-Multiprocessor”, The 19th IEEE Inter-
national Conference on High Performance Computing and Communications
(HPCC), 2017.

• Rakesh Pandey and Aryabartta Sahu, “Adaptive Multi-workload Mapping
onto 3D Stacked Chip-Multiprocessor having Multiple Memory Controllers and
Channels”, (Manuscript in Preparation).

• Rakesh Pandey and Aryabartta Sahu, “Performance Analysis considering
Multi-workload Mapping onto 3D Stacked Chip-Multiprocessor having Multiple
optical links and Memory Controllers”, (Manuscript in Preparation).

�������

125

Vitae
Rakesh Pandey joined the Dual (M.Tech + Ph.D)
Degree programme at the Department of Computer
Science and Engineering (CSE) of Indian Institute of
Technology (IIT) Guwahati, India in July 2013. Prior
to joining Dual Degree, he did his Bachelors of Tech-
nology (B.Tech) degree in Electronics and Communica-
tion Engineering (ECE) from Uttar Pradesh Technical
University, Lucknow, India.
He has keen interests in pursuing the field of computer

architecture. His current research interests include DRAM memory controller
design for the adaptive application mapping, and consideration of the high end
optical interconnects in the NOC design for the 3D-stacked chip multiprocessor
system. He enjoys playing cricket, watching scientific movies and traveling to the
places where nature has bestowed its bounty.

Contact Information
Email : rakesh.pandey@iitg.ac.in,

rakeshpandey377@gmail.com

Address : Village- Kataya, P.O.- Udairajgang
Distt.-Siddharthnagar, Uttar Pradesh- 272204,
INDIA

�������

Bibliography
[1] AMD Ryzen™ Threadripper™ Processors. https://www.amd.com/en/

products/ryzen-threadripper. Accessed: 2019-09-13.

[2] An Intro to MCDRAM (High Bandwidth Memory) on Knights
Landing. https://software.intel.com/en-us/blogs/2016/01/20/
an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.
Accessed: 2019-08-15.

[3] Intel’s First Microprocessor. https://www.intel.com/content/www/us/en/
history/museum-story-of-intel-4004.html. Accessed: 2019-08-15.

[4] Snapdragon 8 Series Mobile Platforms. https://www.qualcomm.com/
products/snapdragon-8-series-mobile-platforms. Accessed: 2019-09-13.

[5] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti. Achiev-
ing Predictable Performance Through Better Memory Controller Placement in
Many-core CMPs. In Proceedings of the 36th Annual International Symposium
on Computer Architecture, ISCA ’09, pages 451–461, 2009.

[6] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas. Refrint: Intelligent refresh
to minimize power in on-chip multiprocessor cache hierarchies. In 2013 IEEE
19th International Symposium on High Performance Computer Architecture
(HPCA), pages 400–411, Feb 2013.

[7] N. B. Anant Agarwal, Jason Miller and D. Wentzlaff. Core Count vs Cache Size
for Manycore Architectures in the Cloud. In CSAIL Technical Reports, volume
MIT-CSAIL-TR-2010-008, pages 39–50, Feb 2010.

[8] S. Bahirat and S. Pasricha. Exploring Hybrid Photonic Networks-on-chip Fore-
merging Chip Multiprocessors. In Proceedings of the 7th IEEE/ACM Inter-
national Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’09, pages 129–136, 2009.

[9] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The Impact of Performance
Asymmetry in Emerging Multicore Architectures. In Proceedings of the 32Nd
Annual International Symposium on Computer Architecture, ISCA ’05, pages
506–517, 2005.

129

https://www.amd.com/en/products/ryzen-threadripper
https://www.amd.com/en/products/ryzen-threadripper
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms
https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms

[10] J. Balfour and W. J. Dally. Design Tradeoffs for Tiled CMP On-chip Networks.
In Proceedings of the 20th Annual International Conference on Supercomputing,
ICS ’06, pages 187–198, 2006.

[11] S. Banerjee, G. Surendra, and S. K. Nandy. On the Effectiveness of Phase Based
Regression Models to Trade Power and Performance Using Dynamic Processor
Adaptation. Journal of Systems Architecture, 54(8):797–815, Aug. 2008.

[12] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, and et al.
TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In 2008 IEEE In-
ternational Solid-State Circuits Conference - Digest of Technical Papers, pages
88–598, Feb 2008.

[13] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,
35(1):70–78, Jan 2002.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques,
PACT ’08, pages 72–81, 2008.

[15] T. Bjerregaard and S. Mahadevan. A Survey of Research and Practices of
Network-on-chip. ACM Comput. Surv., 38(1), June 2006.

[16] L. Bononi and N. Concer. Simulation and analysis of network on chip archi-
tectures: Ring, spidergon and 2d mesh. In Proceedings of the Conference on
Design, Automation and Test in Europe: Designers’ Forum, DATE ’06, pages
154–159, 2006.

[17] S. Borkar. Thousand Core Chips: A Technology Perspective. In Proceedings
of the 44th Annual Design Automation Conference, DAC ’07, pages 746–749,
2007.

[18] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao. Emerging NVM: A Survey on
Architectural Integration and Research Challenges. ACM Trans. Des. Autom.
Electron. Syst., 23(2):14:1–14:32, Nov. 2017.

[19] P. Brucker. Scheduling Algorithms. Springer, 5th edition, 2010.

[20] B. Bryan, A. Murali, B. Ned, D. John, Jiang, and et al. Die Stacking (3D)
Microarchitecture. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 39, pages 469–479, 2006.

[21] X. Bu, J. Rao, and C.-z. Xu. Interference and Locality-aware Task Scheduling
for MapReduce Applications in Virtual Clusters. In Proceedings of the 22Nd

130

International Symposium on High-performance Parallel and Distributed Com-
puting, HPDC ’13, pages 227–238, 2013.

[22] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Longman
Publishing Co., Inc., 1997.

[23] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An Evalua-
tion of High-Level Mechanistic Core Models. ACM Transactions on Architecture
and Code Optimization, 11(3):28:1–28:25, Aug. 2014.

[24] S. Chakraborty and H. K. Kapoor. Analysing the Role of Last Level Caches in
Controlling Chip Temperature. IEEE Transactions on Sustainable Computing,
3(4):289–305, Oct 2018.

[25] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens. System and
circuit level power modeling of energy-efficient 3D-stacked wide I/O DRAMs.
In 2013 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 236–241, March 2013.

[26] C. Chang and Y. Hsu. Object oriented network-on-chip modeling. In 2010
International Computer Symposium (ICS2010), pages 457–466, Dec 2010.

[27] G. Chen, F. Li, S. W. Son, and M. Kandemir. Application Mapping for Chip
Multiprocessors. In Proceedings of the 45th Annual Design Automation Con-
ference, DAC ’08, pages 620–625, 2008.

[28] Y.-J. Chen, C.-L. Yang, and J.-J. Chen. Distributed Memory Interface Synthe-
sis for Network-on-chips with 3D-stacked DRAMs. In Proceedings of the Inter-
national Conference on Computer-Aided Design, ICCAD ’12, pages 458–465,
2012.

[29] C. B. Cho and T. Li. Complexity-based Program Phase Analysis and Classifi-
cation. In 2006 International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pages 105–113, Sept 2006.

[30] C. Chou, A. Jaleel, and M. K. Qureshi. CANDY: Enabling coherent DRAM
caches for multi-node systems. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[31] C. Chou and R. Marculescu. Run-Time Task Allocation Considering User Be-
havior in Embedded Multiprocessor Networks-on-Chip. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 29(1):78–91, Jan
2010.

131

[32] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato. Increasing
the Effectiveness of Directory Caches by Deactivating Coherence for Private
Memory Blocks. In Proc. of the ISCA, pages 93–104, 2011.

[33] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proceedings of the 38th Design Automation Conference (IEEE
Cat. No.01CH37232), pages 684–689, June 2001.

[34] B. K. Daya, C. O. Chen, S. Subramanian, W. Kwon, S. Park, T. Krishna,
J. Holt, A. P. Chandrakasan, and L. Peh. SCORPIO: A 36-core research chip
demonstrating snoopy coherence on a scalable mesh NoC with in-network or-
dering. In 2014 ACM/IEEE 41st International Symposium on Computer Ar-
chitecture (ISCA), pages 25–36, 2014.

[35] S. Deb, K. Chang, X. Yu, S. P. Sah, M. Cosic, A. Ganguly, P. P. Pande,
B. Belzer, and D. Heo. Design of an Energy-Efficient CMOS-Compatible NoC
Architecture with Millimeter-Wave Wireless Interconnects. IEEE Transactions
on Computers, 62(12):2382–2396, Dec 2013.

[36] S. Demetriades and S. Cho. Stash directory: A scalable directory for many-
core coherence. In 2014 IEEE 20th International Symposium on HPCA, pages
177–188, Feb 2014.

[37] W. Ding, Y. Zhang, M. Kandemir, J. Srinivas, and P. Yedlapalli. Locality-aware
mapping and scheduling for multicores. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
1–12, Feb 2013.

[38] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu.
MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Intercon-
nect. In 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip,
pages 1–10, May 2012.

[39] A. Fawibe, J. Sherman, K. Kavi, M. Ignatowski, and D. Mayhew. New Memory
Organizations for 3D DRAM and PCMs. In Architecture of Computing Systems,
pages 200–211. Springer Berlin Heidelberg, 2012.

[40] Feihui Li, C. Nicopoulos, T. Richardson, Yuan Xie, V. Narayanan, and
M. Kandemir. Design and Management of 3D Chip Multiprocessors Using
Network-in-Memory. In 33rd International Symposium on Computer Architec-
ture (ISCA’06), pages 130–141, June 2006.

[41] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo. Ant Colony
Heuristic for Mapping and Scheduling Tasks and Communications on Hetero-

132

geneous Embedded Systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(6):911–924, June 2010.

[42] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the
Cilk-5 Multithreaded Language. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, PLDI ’98,
pages 212–223, 1998.

[43] E. Fusella and A. Cilardo. H2ONoC: A Hybrid Optical–Electronic NoC Based
on Hybrid Topology. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(1):330–343, Jan 2017.

[44] M. Ghosh and H. S. Lee. Smart Refresh: An Enhanced Memory Controller
Design for Reducing Energy in Conventional and 3D Die-Stacked DRAMs. In
40th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO 2007), pages 134–145, Dec 2007.

[45] J. Goodacre and A. N. Sloss. Parallelism and the ARM instruction set archi-
tecture. Computer, 38(7):42–50, July 2005.

[46] M. Guan and L. Wang. Improving DRAM Performance in 3-D ICs via Tem-
perature Aware Refresh. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 25(3):833–843, March 2017.

[47] Hai Jiang and V. Chaudhary. Compile/run-time support for thread migration.
In Proceedings 16th International Parallel and Distributed Processing Sympo-
sium, pages 9 pp–, April 2002.

[48] S. M. Hassan, S. Yalamanchili, and S. Mukhopadhyay. Near Data Processing:
Impact and Optimization of 3D Memory System Architecture on the Uncore. In
Proceedings of the 2015 International Symposium on Memory Systems, MEM-
SYS ’15, pages 11–21, 2015.

[49] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer,
41(7):33–38, July 2008.

[50] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings of the
IEEE, 89(4):490–504, Apr 2001.

[51] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz Mesh
Interconnect for a Teraflops Processor. IEEE Micro, 27(5):51–61, Sept. 2007.

[52] Jaehyuk Huh, D. Burger, and S. W. Keckler. Exploring the design space of
future CMPs. In Proceedings 2001 International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 199–210, Sep. 2001.

133

[53] A. Jantsch and H. Tenhunen, editors. Networks on Chip. Kluwer Academic
Publishers, 2003.

[54] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High Performance Pro-
gramming. Morgan Kaufmann Publishers Inc., 1st edition, 2013.

[55] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi. Unison Cache: A Scalable
and Effective Die-Stacked DRAM Cache. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 25–37, Dec 2014.

[56] Jingcao Hu and R. Marculescu. Energy- and performance-aware mapping for
regular NoC architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(4):551–562, April 2005.

[57] U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, and H. L. et al. 8Gb 3D DDR3 DRAM
using through-silicon-via technology. In 2009 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, pages 130–131,131a, Feb 2009.

[58] J. Kim, J. Balfour, and W. Dally. Flattened Butterfly Topology for On-Chip
Networks. In Proceedings of the 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 40, pages 172–182, 2007.

[59] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, Dec. 1999.

[60] P. S. Laursen. Simulated Annealing for the QAP- Optimal Tradeoff between
Simulation Time and Solution Quality. European Journal of Operational Re-
search, 69(2):238 – 243, 1993.

[61] S. Le Beux, H. Li, I. O’Connor, K. Cheshmi, X. Liu, J. Trajkovic, and G. Nico-
lescu. Chameleon: Channel efficient Optical Network-on-Chip. In 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1–6, March
2014.

[62] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu. Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost. ACM
Transactions on Architecture and Code Optimization (TACO), 12(4):63:1–63:29,
Jan. 2016.

[63] E. Lee, J. E. Jang, T. Kim, and H. Bahn. On-demand snapshot: An efficient
versioning file system for phase-change memory. IEEE Transactions on Knowl-
edge and Data Engineering, 25(12):2841–2853, Dec 2013.

134

[64] H. G. Lee, S. Baek, C. Nicopoulos, and J. Kim. An Energy- and Performance-
aware DRAM Cache Architecture for Hybrid DRAM/PCM Main Memory Sys-
tems. In Proceedings of the 2011 IEEE 29th International Conference on Com-
puter Design, ICCD ’11, pages 381–387, 2011.

[65] M. Li, Q.-A. Zeng, and W.-B. Jone. DyXY - a proximity congestion-aware
deadlock-free dynamic routing method for network on chip. In 2006 43rd
ACM/IEEE Design Automation Conference, pages 849–852, July 2006.

[66] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt. Un-
derstanding and Designing New Server Architectures for Emerging Warehouse-
Computing Environments. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 315–326, 2008.

[67] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the Processor-
Memory Performance Gapwith 3D IC Technology. IEEE Design and Test of
Computers, 22(6):556–564, Nov. 2005.

[68] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-Aware Intelligent
DRAM Refresh. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 1–12, 2012.

[69] G. H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In
Proceedings of the 35th Annual International Symposium on Computer Archi-
tecture, ISCA ’08, pages 453–464. IEEE Computer Society, June 2008.

[70] G. L. Loi, B. Agrawal, N. Srivastava, Sheng-Chih Lin, T. Sherwood, and
K. Banerjee. A thermally-aware performance analysis of vertically integrated
(3-D) processor-memory hierarchy. In 2006 43rd ACM/IEEE Design Automa-
tion Conference, pages 991–996, July 2006.

[71] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi. Scale-out Proces-
sors. In Proceedings of the 39th Annual International Symposium on Computer
Architecture, ISCA ’12, pages 500–511, 2012.

[72] D. Lustig, A. Bhattacharjee, and M. Martonosi. TLB Improvements for
Chip Multiprocessors: Inter-Core Cooperative Prefetchers and Shared Last-
Level TLBs. ACM Transactions on Architecture and Code Optimization,
10(1):2:1–2:38, Apr. 2013.

[73] R. Marculescu, U. Y. Ogras, L. Peh, N. E. Jerger, and Y. Hoskote. Outstanding
Research Problems in NoC Design: System, Microarchitecture, and Circuit Per-
spectives. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 28(1):3–21, Jan 2009.

135

[74] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R. Das. Ar-
chitecting On-chip Interconnects for Stacked 3D STT-RAM Caches in CMPs.
In Proceedings of the 38th Annual International Symposium on Computer Ar-
chitecture, ISCA ’11, pages 69–80, 2011.

[75] S. Mittal and J. S. Vetter. A Survey Of Techniques for Architecting
DRAM Caches. IEEE Transactions on Parallel and Distributed Systems,
27(6):1852–1863, June 2016.

[76] M. E. Mortenson. Geometric Modeling. John Wiley & Sons, Inc., 1985.

[77] A. Muddukrishna, P. A. Jonsson, and M. Brorsson. Locality-aware Task
Scheduling and Data Distribution for OpenMP Programs on NUMA Systems
and Manycore Processors. Sci. Program., 2015:5:5–5:5, Jan. 2016.

[78] S. Murali, S. Murali, G. De Micheli, G. De Micheli, and G. De Micheli.
Bandwidth-Constrained Mapping of Cores Onto NoC Architectures. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe - Volume
2, DATE ’04, pages 20896–, 2004.

[79] O. Mutlu and L. Subramanian. Research Problems and Opportunities in Mem-
ory Systems. Supercomput. Front. Innov.: Int. J., 1(3):19–55, Oct. 2014.

[80] S. Nafiul, B. Hameed, and C. Jeanine. LMStr: An On-Chip Shared Hardware
Controlled Scratchpad Memory for Multicore Processors. MemSys, 7 2017.

[81] P. Nair, C. Chou, and M. K. Qureshi. A case for Refresh Pausing in DRAM
memory systems. In 2013 IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA), pages 627–638, Feb 2013.

[82] T. Oh, H. Lee, K. Lee, and S. Cho. An Analytical Model to Study Optimal Area
Breakdown between Cores and Caches in a Chip Multiprocessor. In 2009 IEEE
Computer Society Annual Symposium on VLSI, pages 181–186, May 2009.

[83] K. Olukotun, L. Hammond, and J. Laudon. Chip Multiprocessor Architecture:
Techniques to Improve Throughput and Latency. Morgan and Claypool, 2007.

[84] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case
for a Single-chip Multiprocessor. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VII, pages 2–11, 1996.

[85] S. Onsori, A. Asad, K. Raahemifar, and M. Fathy. High performance 3D CMP
design with stacked hybrid memory architecture in the dark silicon era using a
convex optimization model. In 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 2607–2610, May 2016.

136

[86] I. O’Connor and G. Nicolescu. Integrated Optical Interconnect Architectures for
Embedded Systems. Springer-Verlag New York, 01 2013.

[87] P. S. Pacheco, editor. Morgan Kaufmann, 2011.

[88] R. Pandey and A. Sahu. Efficient Mapping of Multi-threaded Applications onto
3D Stacked Chip-Multiprocessor. In 2017 IEEE 19th International Conference
on High Performance Computing and Communications (HPCC), pages 324–331,
Dec 2017.

[89] R. Pandey and A. Sahu. Access-Aware Self-adaptive Data Mapping onto 3D-
stacked Hybrid DRAM-PCM based Chip-Multiprocessor. In The 21st IEEE
International Conference on High Performance Computing and Communica-
tions (HPCC-2019), Aug. 2019.

[90] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., 1982.

[91] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increasing TLB reach by
exploiting clustering in page translations. In 2014 IEEE 20th International Sym-
posium on High Performance Computer Architecture (HPCA), pages 558–567,
Feb 2014.

[92] T. Q. Pham and P. K. Garg. Multithreaded Programming with Win32. Prentice
Hall, 1st edition, 1998.

[93] B. Pourshirazi and Z. Zhu. Refree: A Refresh-Free Hybrid DRAM/PCM Main
Memory System. In 2016 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pages 566–575, May 2016.

[94] Qiaosha Zou, M. Poremba, Rui He, Wei Yang, J. Zhao, and Y. Xie. Hetero-
geneous architecture design with emerging 3D and non-volatile memory tech-
nologies. In The 20th Asia and South Pacific Design Automation Conference,
pages 785–790, Jan 2015.

[95] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance
Main Memory System Using Phase-change Memory Technology. In Proceedings
of the 36th Annual International Symposium on Computer Architecture, ISCA
’09, pages 24–33. ACM, 2009.

[96] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page Placement in Hybrid Mem-
ory Systems. In Proceedings of the International Conference on Supercomputing,
ICS ’11, pages 85–95, 2011.

137

[97] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. . Chen, R. M.
Shelby, M. Salinga, D. Krebs, S. . Chen, H. . Lung, and C. H. Lam. Phase-
change random access memory: A scalable technology. IBM Journal of Research
and Development, 52(4.5):465–479, July 2008.

[98] M. Reshadi, A. Khademzadeh, A. Reza, and M. Bahmani. A novel mesh ar-
chitecture for on-chip networks. D & R Industry Articles, http://www. design-
reuse. com/articles/23347/on-chipnetwork. html, 2013.

[99] R. Rodríguez-Rodríguez, F. Castro, D. Chaver, L. Pinuel, and F. Tirado. Re-
ducing Writes in Phase-change Memory Environments by Using Efficient Cache
Replacement Policies. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’13, pages 93–96, 2013.

[100] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling
the Bandwidth Wall: Challenges in and Avenues for CMP Scaling. In Proceed-
ings of the 36th Annual International Symposium on Computer Architecture,
ISCA ’09, pages 371–382, 2009.

[101] E. Salminen, A. Kulmala, and T. D. Hamalainen. On network-on-chip compar-
ison. In 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD 2007), pages 503–510, Aug 2007.

[102] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An Analysis of On-chip
Interconnection Networks for Large-scale Chip Multiprocessors. ACM Trans-
actions on Architecture and Code Optimization (TACO), 7(1):4:1–4:28, May
2010.

[103] A. Shacham, K. Bergman, and L. P. Carloni. On the Design of a Photonic
Network-on-Chip. In Proceedings of the First International Symposium on
Networks-on-Chip, NOCS ’07, pages 53–64, 2007.

[104] X. Shen, Y. Zhong, and C. Ding. Locality Phase Prediction. In Proceedings
of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XI, pages 165–176, 2004.

[105] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and Prediction. In Pro-
ceedings of the 30th Annual International Symposium on Computer Architecture,
ISCA ’03, pages 336–349, 2003.

[106] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak. A Sur-
vey and Comparative Study of Hard and Soft Real-Time Dynamic Resource
Allocation Strategies for Multi-/Many-Core Systems. ACM Comput. Surv.,
50(2):24:1–24:40, Apr. 2017.

138

[107] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hut-
sell, R. Agarwal, and Y. Liu. Knights landing: Second-generation intel xeon
phi product. IEEE Micro, 36(2):34–46, Mar 2016.

[108] S. Sreepathi, E. D’Azevedo, B. Philip, and P. Worley. Communication Charac-
terization and Optimization of Applications Using Topology-Aware Task Map-
ping on Large Supercomputers. In Proceedings of the 7th ACM/SPEC on In-
ternational Conference on Performance Engineering, ICPE ’16, pages 225–236,
2016.

[109] V. Suhendra, C. Raghavan, and T. Mitra. Integrated Scratchpad Memory
Optimization and Task Scheduling for MPSoC Architectures. In Proceedings
of the 2006 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, CASES ’06, pages 401–410, 2006.

[110] Tao Zhang, Kui Wang, Yi Feng, Xiaodi Song, Lian Duan, Y. Xie, Xu Cheng,
and Youn-Long Lin. A customized design of DRAM controller for on-chip 3D
DRAM stacking. In IEEE Custom Integrated Circuits Conference 2010, pages
1–4, Sep. 2010.

[111] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis,
and N. P. Jouppi. Rethinking DRAM Design and Organization for Energy-
constrained Multi-cores. In Proceedings of the 37th Annual International Sym-
posium on Computer Architecture, ISCA ’10, pages 175–186, 2010.

[112] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn. Corona:
System Implications of Emerging Nanophotonic Technology. In 2008 Interna-
tional Symposium on Computer Architecture, pages 153–164, June 2008.

[113] S. Werner, J. Navaridas, and M. Luján. A Survey on Optical Network-on-Chip
Architectures. ACM Comput. Surv., 50(6):89:1–89:37, Dec. 2017.

[114] S. Werner, J. Navaridas, and M. Luján. Designing Low-Power, Low-Latency
Networks-on-Chip by Optimally Combining Electrical and Optical Links. In
2017 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pages 265–276, Feb 2017.

[115] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor System-on-Chip (MP-
SoC) Technology. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(10):1701–1713, Oct 2008.

[116] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson. Phase Change Memory. Proceedings of the
IEEE, 98(12):2201–2227, Dec 2010.

139

[117] D. H. Woo, N. H. Seong, D. L. Lewis, and H. S. Lee. An optimized 3D-stacked
memory architecture by exploiting excessive, high-density TSV bandwidth. In
HPCA - 16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, pages 1–12, Jan 2010.

[118] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In Proceedings
of the 22Nd Annual International Symposium on Computer Architecture, ISCA
’95, pages 24–36, 1995.

[119] L. Wu and W. Zhang. Cache-aware SPM allocation algorithms for hybrid SPM-
cache architectures. Sixteenth International Symposium on Quality Electronic
Design, pages 123–129, 2015.

[120] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel,
X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou. Gandiva: Introspective
Cluster Scheduling for Deep Learning. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation, OSDI’18, page
595–610, USA, 2018. USENIX Association.

[121] L. Yavits, A. Morad, and R. Ginosar. 3D cache hierarchy optimization. In 2013
IEEE International 3D Systems Integration Conference (3DIC), pages 1–5, Oct
2013.

[122] L. Yavits, A. Morad, and R. Ginosar. Cache Hierarchy Optimization. IEEE
Computer Architecture Letters, 13(2):69–72, July 2014.

[123] Y. Ye, J. Xu, B. Huang, X. Wu, W. Zhang, X. Wang, M. Nikdast, Z. Wang,
W. Liu, and Z. Wang. 3-D Mesh-Based Optical Network-on-Chip for Multi-
processor System-on-Chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(4):584–596, April 2013.

[124] H. Yoon. Row Buffer Locality Aware Caching Policies for Hybrid Memories.
In Proceedings of the 2012 IEEE 30th International Conference on Computer
Design (ICCD 2012), ICCD ’12, pages 337–344, 2012.

[125] S. Yu and P. Chen. Emerging Memory Technologies: Recent Trends and
Prospects. IEEE Solid-State Circuits Magazine, 8(2):43–56, Spring 2016.

[126] W. Zhang and T. Li. Exploring Phase Change Memory and 3D Die-Stacking
for Power/Thermal Friendly, Fast and Durable Memory Architectures. In Pro-
ceedings of the 2009 18th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’09, pages 101–112, 2009.

140

[127] Y. Zhang, L. Li, Z. Lu, A. Jantsch, M. Gao, H. Pan, and F. Han. A Survey of
Memory Architecture for 3D Chip Multi-processors. Microprocess. Microsyst.,
38(5):415–430, July 2014.

[128] Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics counter architecture
with optimal space and time efficiency. SIGMETRICS Perform. Eval. Rev.,
34(1):323–334, June 2006.

[129] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and Energy Efficient Main
Memory Using Phase Change Memory Technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09, pages
14–23, 2009.

[130] D. Zhu, Y. Li, and L. Chen. On Trade-off Between Static and Dynamic Power
Consumption in NoC Power Gating. In 2019 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED), pages 1–6, 2019.

[131] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek. Intel® QuickPath
Interconnect Architectural Features Supporting Scalable System Architectures.
In 2010 18th IEEE Symposium on High Performance Interconnects, pages 1–6,
Aug 2010.

141

	List of Figures
	List of Algorithms
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Chip Multiprocessor
	3D-stacked On-chip DRAM Memory
	3D-stacked On-chip Hybrid DRAM-NVRAM Memory
	Network-On-Chip
	Hybrid Network-On-Chip

	Multi-threaded Application and Run-time Phase-wise Behavior
	Motivation
	Objectives
	Static Profile Based Mapping
	Run-time Dynamic Mapping
	Run-time Mapping Considering Hybrid Memory
	Performance Analysis of CMP having 3D-stacked DRAM and Hybrid NOC

	Contributions
	Static Profile Based Mapping
	Self-adaptive Run-time Page Mapping
	Run-time Page Mapping Considering Hybrid Memory
	Performance Analysis of CMP having 3D-stacked DRAM and Hybrid NOC

	Thesis Organization

	Related Works
	Application Mapping
	3D-stacked DRAM Memory
	3D-stacked Hybrid Memory
	Network-On-Chip
	Hybrid Network-On-Chip
	Area and Performance Trade-off Implication Using Hybrid NOC and 3D-stacked Memory

	System Model and Application Model
	System Model and its Variations
	DRAM Memory at the 3D-stacked Memory Layer
	DRAM and SRAM Buffer at the 3D-stacked Memory Layer
	DRAM and PCM memory at the 3D-stacked Memory Layer
	DRAM Memory at the 3D-stacked Memory Layer along with an Optical Layer

	Application Model

	Static Profile Based Mapping
	Problem Formulation
	Static Profile Based Mapping
	Thread to Core Mapping
	Mapping of Virtual Pages to DRAM Memory Slices
	Thread Mapping Followed by Virtual Page Mapping
	Combined Thread Mapping and Virtual Page Mapping

	Experimental Setup
	Result and Overhead Analysis
	Result Analysis
	Overhead Analysis

	Summary

	Self-adaptive Run-time Page Mapping
	Problem Formulation
	Self-adaptive Run-time Page Mapping
	Page Access and Run-Time Profiling
	Page Mapping, Migration and TLB Update
	Experimental Setup
	Results

	Comparison with Coherent DRAM Cache
	Results

	Performance and Area Overhead
	Summary

	Run-time Page Mapping Considering Hybrid Memory
	Access-Aware Self-adaptive Page Mapping on to Hybrid Memory Slices
	Page Access and Run-Time Profiling
	Page Mapping Decision Making

	Access-Aware Page Placement Between DRAM and PCM of the Hybrid Memory Slice
	Experimental Result and Analysis
	Performance and Area Overhead Analysis
	Performance Analysis
	Area Overhead Analysis

	Summary

	Performance Analysis of CMP having 3D-stacked DRAM and Hybrid NOC
	Target System Architecture
	Routing of Packets

	Problem Formulation
	Self-adaptive Application Mapping
	Experimental Environment
	Results
	Performance and Area Overheads
	Performance Overheads
	Area Overhead

	Summary

	Conclusions and Future Perspectives
	Summary of Thesis
	Future Research Avenues

	Publications
	Vitae

