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Abstract

Webpages are the visual gateways into the information from the World Wide Web. The
information retrieved from the Web gets rendered on webpages, predominantly through
textual and image elements. The visual characteristics of the rendered elements determine
the user’s visual attention allocation. With the progressive expansion of competitive e-
commerce and Web resources, attention modeling is essential for Web authors, information
creators, advertisers, and Web-designers to understand and predict the user attention on
webpages.
The existing attention models evolved from position-based analyses to standalone image-
processing techniques as applied on webpage screenshots. The state-of-the-art computational
models are centered on binary predictions to determine whether a given webpage region (pixel
or group of pixels) is salient or not. Consequently, these approaches are limited in predicting
the saliency (attention-drawing ability) of a whole web element and to further segregate
among salient elements, which would be beneficial for preferential webpage rendering. The
element-driven attention models are desired as the webpage is an ensemble of web elements
(unlike an image), and designers provide visual features for individual web elements to
achieve the desired visual representation. However, the bottleneck was to incorporate the
elements’ heterogeneous features into the model as texts are represented using features such
as ‘text-size’ and ‘text-color’ whereas images are represented using ‘brightness’, ‘intensity’
and ‘color histograms’. This thesis work is predominantly centered around overcoming
the heterogeneity bottleneck to predict the users’ element-driven free-viewing attention on
multi-modal webpages, precisely consisting of text and images.
Owing to the prominence of position, primarily, the position-based free-viewing attention
allocation is investigated at the higher-granularity for text and image elements. Subsequently,
the designer-oriented informative text and image visual features are identified in explaining
the free-viewing attention. Additionally, the association between visual features and the
allocated user attention is computationally modeled, separately for text and images. The
analyses revealed: (i) the elements positioned in the Right and Bottom regions of a webpage
are not always ignored; (ii) Space-related (column-gap, line-height, padding) and font
Size-related (font-size, font-weight) intrinsic text features, and Mid-level Color His-
togram intrinsic image features are informative, while position and size are informative
for both the types; (iii) the informative visual features predict the ordinal visual attention
on an element with 90% average accuracy and 70% micro-F1 score; (iv) For the prominent
images, the visual features also help in predicting the weighted-voting-based attention and
multiple discrete levels of attention.



The aforementioned segregated analysis established the prominence of text and image visual
features in explaining the users’ free-viewing attention. However, both the modalities, in
unison, determine the user attention on bi-modal webpages. The feature differences between
both the modalities act as a bottleneck to unify them and subsequently model the attention.
In the second contribution, a computational approach is presented and empirically analyzed
to overcome the heterogeneity bottleneck, and to unify the text and images. For this,
Canonical Correlation Analysis (CCA) is employed. The eye-tracking analyses on real-world
webpages reveal: (i) text and images are unifiable if the interface idiosyncrasies alone or
along with user idiosyncrasies are constrained; (ii) The font-families of text are influential
and are comparable to color histogram visual features of images in achieving the unification
between both modalities.
The achieved unification is utilized to overcome the limitations of existing approaches. That
is, element-granular attention is predicted as opposed to region-based prediction, and multi-
level attention is predicted as opposed to binary (salient or not) prediction. For this, the
Support Vector Machine (SVM) based multi-class classification is employed. The analyses
of the user attention collected on real-world webpages reveal: (i) the achieved unification
outperforms the random baseline in predicting the element-granular user attention; (ii) the
presented model demonstrates the efficacy in predicting the attention on all the elements
unified into text as well as unified into image visual spaces; (iii) the model also outperforms
the baseline for predicting the attention on unseen webpage data.
In the fourth contribution, the element-granular attention prediction is extended to predict a
prominent user scanpath on webpages for free-viewing. For this, users’ positional preference
accumulation and adherence to zero-sum-rule are utilized besides the element-granular
attention prediction. The analyses on the eye-tracking experiment conducted on two
real-world webpage datasets reveal: (i) the considered text and image visual features
outperform (average accuracy of more than 87% and micro-F1 score of more than 63%) the
random baseline in predicting the users’ scanpath on webpages; (ii) the presented approach
demonstrates the prediction efficacy for scanpath prediction on unseen webpage data (average
accuracy of more than 82% and micro-F1 score of more than 57%).
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1
Introduction

Webpages are the visual interfaces between users and the World Wide Web (WWW), the
largest source of transformable information [1]. The users across the globe visually perceive
the information from WWW as Web-browsers render on Graphical User Interface (GUI)s
called webpages. The progressive expansion of the Web [62] and the number of Internet
users [130] drew the research community’s interest towards web-designing and web-interface
based user attentional analyses. Especially, the user attentional understanding and modeling
obtained prominence due to the ever-increasing commercial value of Web-based businesses
such as business-to-consumer model (valued at 2.3 trillion USD in 2017 and projected to be
4.48 trillion USD by year 20211). Moreover, understanding of user’s attentional behavior
helps in the improvement of user perception and satisfaction which may further help in user
retainment towards the website [81].
As information on webpages is represented through elements of different modalities, such as
text and images, researchers explored their prominence in drawing the user attention [51, 61,
143]. For example, Hsieh and Chen [69] found that video-based and picture-based webpages
are better than text-based webpages in drawing the user attention towards advertisement;
and, the associated information modality can be manipulated to prolong the attention [70].
The foundational and theoretical work by Faraday [51] suggested a decreasing preferential
order (in drawing the user attention) for six salient visual elements as motion, size, color,
text-style, images and position. That is, motion element is attended over a large-sized
element which in turn is preferred over a colored element and so on. However, the subsequent
empirical analyses [61, 143] invalidated the suggested preferential ordering. Both these
analyses highlighted the prominence of element’s position in drawing the attention for which
Faraday assigned the least priority. Highlighting the prominence of position-bias, pattern-
based models were proposed such as F-pattern [105], Z-pattern, Zig-Zag pattern, etc. [16].
However, these generic pattern-based models are limited in the applicability [16, 137] as they

1https://www.statista.com/topics/871/online-shopping/
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do not incorporate the underlying visual features. The subsequent attentional analyses were
centered on overcoming this limitation and predicting the attention at higher granularity.
The existing attention prediction approaches may broadly be classified into User Attention-
based approaches and Visual Feature-based approaches. The former is centered on eye-gaze
data, and the latter is based on stand-alone image processing techniques.

User Attention-based (UAB) approaches: Leveraging the eye-mind hypothesis [80]
that established the connection between eye-gaze and visual attention, UAB approaches elicit
a prominent attention pattern from an ensemble of gaze allocations. The approaches include:
(i) fixation—proxy for visual attention [14]—heatmap based F-pattern [105], Z-pattern,
and Zig-Zag pattern [16]; (ii) scanpath—sequence of fixation allocations on a webpage—
based trending patterns [46, 47, 49]. The former approaches help in the determination
of prominent regions while the latter approaches further arrange them into a prioritized
sequence concerning the user attention. As the UAB approaches are based on direct
measurement (through non-intrusive eye-tracking [165]) of visual attention, the findings are
easily interpretable and more reliable. However, these approaches are limited in as follows.

1. Generalizability: the underlying webpage visual features are not incorporated into
these approaches, consequently limiting the applicability. For example, F-pattern
applicability is restricted to the text-rich webpages [16, 137].

2. Feasibility: the UAB approaches are pattern eliciting than attention predictive; thus,
users’ attention data is required for every test webpage. However, collecting this
data on every webpage and especially after every small modification enforced on a
webpage may not be practical due to the time-constraints, money-constraints, and
user-availability constraints.

Visual Feature-based (VFB) approaches: Computational VFB approaches help to
overcome the limitations of UAB approaches. The typical procedure is to extract multiple
feature maps, all are of same dimension (as that of the considered webpages), and integrate
them to determine the salient or attention-drawing locations [133, 134, 135, 142, 144]. These
approaches are the adaptations of saliency prediction techniques proposed for standalone
images [14, 76]. However, these approaches are limited in as follows.

1. Interpretability: due to non-direct incorporation of human attention. For example,
scanpath cannot be evident, unlike in the UAB approaches.

2. Granularity: the dichotomous prediction (salient or non-salient) conceals the true
saliency of underlying location. That is, a location with very high saliency and the
location with saliency score just above the threshold are considered equivalent;

3. Extensibility: the prominence of webpage constituting elements is overlooked due to
the processing of the whole webpage as an image. Consequently, these approaches
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1. INTRODUCTION

cannot be extended to other web element-driven applications such as user preferential
rendering [88, 115], and incorporation of dynamic (motion-related) characteristics.

The Heterogeneity Bottleneck: The limitations of UAB and VFB approaches can be
overcome through the incorporation of (i) human visual attention, (ii) idiosyncrasies of
individual elements, and (iii) higher-granularity in attention (say, scanpath). However, the
predominant bottleneck in their simultaneous incorporation is the heterogeneity of data
modalities constituting a webpage. The text and image elements are represented using
a distinct set of visual features. Moreover, the number of text features may not equal
the number of image features, unlike the VFB approaches, where all feature maps are of
the same dimension. Even in case same feature count is achieved for both modalities, the
existing feature-integration approaches cannot be applied due to the absence of one-to-one
correspondence between text and image features.
This thesis work is predominantly centered on overcoming the heterogeneity bottleneck to
predict the element-driven attention on webpages at the higher granularity.

1.1 Scope of the Thesis

There are five key areas of study associated with the thesis work including, (i) attention
modeling, (ii) eye-tracking, (iii) interface, (iv) users, and (v) webpages; as shown in Figure 1.1.

Attention Modeling: Based on the attention guiding features, the attention models may
broadly be classified into following three categories.

1. Bottom-Up— the underlying visual features guide the attention. For the current
analysis, we limit ourselves to Bottom-Up attention modeling. The Bottom-Up
attention models may further be dichotomized into following two categories.

(i) Computational—learning the association between visual features and attention.
The Computational modeling may further be classified into Uni-modal approaches
and Multi-modal approaches. Concerning the attention modeling on webpages,
the image-processing techniques cater to Uni-modal approaches and the element-
driven approaches (on multi-modal webpages) cater to Multi-modal approaches.
As the current thesis work presents the element-driven approaches for attention
modeling on bi-modal webpages, the work registers in Multi-modal category.

(ii) Non-Computational— observation-based approaches such as F-pattern [105].

2. Top-Down— user preferences guide the attention.

3. Mixed— a combination of the former two. Among the three, the Mixed attention
modeling is complicated as it is difficult to attribute the allocated attention to either
of Bottom-Up features or the Top-Down features.
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Figure 1.1: Scope of the thesis concerning the attention modeling, eye-tracking, webpages,
users, and interface components.

Eye-tracking: It is a technique to capture, record, and store the eye-movements for further
analysis. Based on the activity for which the eye-movements are captured, the eye-tracking
approaches are classified into following two categories.

1. Task-based— capture the eye-movements when the user is gazing voluntarily so as to
perform a specific task.

2. Free-viewing— capture the eye-movements when the user is gazing involuntarily. As
the thesis work is centered on Bottom-Up attention modeling, that is, the webpage
visual feature influence on the user attention is modeled, the eye-tracking experiments
are limited to free-viewing.

Interface: With the advances in hardware technologies, wide variety of interfaces are
available for the users to visualize the webpages. The interfaces may broadly be classified
into Desktops, and Non-Desktops which include the displays such as mobile phone interfaces
and foldable interfaces. Owing to their prevalent usage, existing literature, and easier
experimental setups the current thesis work limits to attention modeling on regular Desktop
displays (precisely, with the dimension of 22").
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Users: Concerning the webpage access, the users are either novice with limited or no web
usage experience, or experienced. Owing to the progressive expansion of the Internet and
the users, the attention models for experienced web users are desired. The experienced web
users may either be Children, Adults, or Elderly. The thesis limits to adult and experienced
web users towards the attention modeling.

Webpages: The existing webpages may broadly be classified into following three categories.

1. Static— rendered content does not change through-out the web session. Owing to
the simplicity of static webpages, the thesis work limits to static webpages. Though
static webpages may further be classified into Uni-modal and Multi-modal, the latter is
considered due to their prevalence than their counter-parts (say, text-only webpages).

2. Dynamic— presence of motion elements.

3. Interactive— web content changes based on user input such as through pop-ups.

To summarize, the thesis work aims to model the experienced adult users’ free-viewing
attention on multi-modal static webpages as displayed on desktop monitors. Towards
the attention modeling, the bottom-up computational approaches incorporating multiple
modalities are considered.

1.2 Motivation

The thesis work derives the motivation from the information-retrieval domain towards
overcoming the prominent heterogeneity bottleneck to predict the attention on bi-modal
webpages. Rasiwasia et al. proposed an approach to bridge the semantic gap, the bottleneck
between text and images through correlation maximization between respective semantic
features [32, 118, 119]. The authors considered Wikipedia articles and paired each text
paragraph with an image element from the corresponding section. The pairing presumes that
the paired elements are associated with the same semantic concepts. For example, an image
of ‘Statue of Liberty’ is paired with a text paragraph describing the same. In other words,
the text element and the image element are considered as two different views of the same
semantic concept. Subsequently, a space that achieves the homogeneous representation for
both text and images was learned using the paired elements’ semantic features. Towards the
construction of homogeneous space, Canonical Correlation Analysis (CCA)— a multivariate
analysis technique to maximize the correlation between two sets of features [64, 68], was
employed. Consequently, the learned space enabled the comparison of text and images
which was utilized for Semantic Cross-Modal Information Retrieval (CMIR)— given a text,
retrieve the semantically equivalent image, and vice-versa [118, 119].
The overcoming of heterogeneity bottleneck enables the attention prediction at the granularity
of web elements. That is, the prominence of the whole element on a given webpage
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Figure 1.2: Organization of the contributions

can be estimated as opposed to the region-based predictions in the state-of-the-art. To
elaborate, the application of existing approaches may determine some regions of an element
(say, text) as salient while the remaining as non-salient whereas web-designers assign the
visual characteristics to the element as a whole. Additionally, the element-based attention
predictions are useful for applications such as user preferential webpage rendering [88, 115],
and incorporation of dynamic (motion-related) characteristics.

1.3 Objectives and Contributions

The overall objective of the thesis is to analyze, establish, and predict the association between
web elements’ visual features and the free-viewing user attention. Among the multiple possible
modalities, only text and images are perceived through visual-alone inspection on webpages.
Accordingly, the formulated objectives and the corresponding contributions are as follows.
See Figure 1.2 for the organization of the contributions.

I. Position-based and Modality-specific Attention Analyses: As the majority of the earlier
attentional analyses are position-based, more fine-grained analyses are performed to
answer the following research questions.

R1: How users allocate free-viewing ordinal attention on text and image elements
positioned in 3× 3 webpage regions?
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R2: Which intrinsic visual features are informative in explaining the free-viewing
ordinal attention on web elements?

R3: How the informative intrinsic visual features perform in predicting the free-viewing
ordinal visual attention?

The attention analyses on real-world webpages (described in Chapter 4) resulted in
following key findings.

1. Though users predominantly allocate the initial attention to Middle and Top regions,
the elements in Right and Bottom regions are not completely ignored.

2. The textual elements’ Space and Font-Size determining intrinsic visual features, and
image elements’ Mid-level Color Histogram intrinsic visual features are informative,
while position and size are informative for both the modalities.

3. The informative visual features predict the ordinal visual attention on an element
with 90% average accuracy and 70% micro-F1 score.

4. The analyses concerning the image elements revealed that the image visual features
outperform the random baseline in predicting the free-viewing user attention.

II. Unification of Text and Images: As text and images influence the user attention
allocation on bi-modal webpages, a Canonical Correlation Analysis (CCA) based
computational approach is presented to unify the cross-modal visual features of text
and images. Through this analysis, we tried to answer the following research questions.

R1: Are the text and image visual features correlated based on the free-viewing user
attention allocation on bi-modal webpages? Do the user idiosyncrasies and the
interface idiosyncrasies affect such correlations?

R2: Which cross-modal visual features are comparable with each other based on
the free-viewing user attention allocation on bi-modal webpages? Do the user
idiosyncrasies and the interface idiosyncrasies affect such comparisons?

R3: Can the text visual features delineate the free-viewing user attention on image vi-
sual features and vice-versa for the bi-modal webpages? Do the user idiosyncrasies
and interface idiosyncrasies affect such delineations?

The CCA based computational approach (described in Chapter 5) resulted in following
findings.

1. Cross-modal text and image visual features are correlated when the interface id-
iosyncrasies, alone or along with user idiosyncrasies are constrained.

2. The font-families of text are comparable to color histogram visual features of images
in drawing the users’ attention.
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3. Text visual features and image visual features can delineate each other’s free-viewing
attention drawing ability.

III. Element Attention Prediction: The unification achieved through the Webpage-oriented
Grouping (WG)— considers all users’ attention on each webpage separately, and
Webpage-and-User-oriented Grouping (WUG)— considers each user’s attention on each
webpage separately towards the unification; are utilized for element-granular attention
prediction. Through this analysis, we tried to answer the following research questions
concerning both the groupings.

R1: Can attention on elements be predicted if all the elements are unified into a text
modality?

R2: Can attention on elements be predicted if all the elements are unified into an
image modality?

R3: How well the achieved unification perform to predict the attention on unseen data
for both the above research questions?

The multi-class classification based computational approach (described in Chapter 6)
resulted in following findings.

1. The element attention prediction outperforms the random baseline when all the
elements are unified into the text modality.

2. The element attention prediction outperforms the random baseline when all the
elements are unified into the image modality.

3. For both, WG and WUG, the element attention prediction outperforms the ran-
dom baseline for unseen webpage data, while both achieved comparable predictive
performance.

IV. Scanpath Prediction The unification achieved through the WG, and WUG, are utilized
to predict the prominent scanpath on webpages. For this, the element attention
prediction model is extended to incorporate the users’ positional-bias. The following
research questions are investigated concerning both the groupings.

R1: Can scanpath be predicted if all the elements are unified using WG?

R2: Can scanpath be predicted if all the elements are unified using WUG?

R3: How well the achieved unification perform to predict the scanpath on unseen data
for both the above research questions?

Following are the scanpath prediction findings (described in Chapter 7).

1. The scanpath attention prediction outperforms the random baseline for WG

2. The scanpath attention prediction outperforms the random baseline for WUG
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3. For both, WG and WUG, the scanpath prediction outperforms the random baseline
for unseen webpage data, while both achieved comparable predictive performance.

1.4 Thesis Organization

This thesis comprises eight chapters. The chapter wise organization of the thesis is given as
follows:

Chapter 1: This chapter introduces the prominence of the research problem besides the
summarization of thesis contributions and organization.

Chapter 2: This chapter introduces the relevant literature including Document Object
Model (DOM) of webpages, eye-tracking, visual attention terminology, and the promi-
nent attention models on webpages.

Chapter 3: This chapter describes the free-viewing eye-tracking experiments conducted on
real-world webpages whose data was utilized throughout the analyses presented in the
thesis. Among the three experiments, two were conducted by us while the remaining
experiment data was curated from the open-source.

Chapter 4: This chapter illustrates the prominent position-based user attention analyses
and highlights the prominence of elements’ visual features. Further, the computational
modeling of association between modality-specific features and the modality-specific
allocated attention are presented.

Chapter 5: This chapter presents the computational approach to unify the text and image
modalities concerning the user attention. Further, three groupings are presented to
account for the user and webpage idiosyncrasies.

Chapter 6: This chapter presents a computational approach to predict the quantitative
visual attention on web elements, utilizing the unified representation achieved in
Chapter 5. The attention prediction is performed in text visual space as well as the
image visual space.

Chapter 7: This chapter elucidates an approach to determine a visual feature-based scan-
path on webpages. Accordingly, this chapter introduces an approach to quantify the
users’ positional preference which in association with element attention prediction is
leveraged for scanpath prediction.

Chapter 8: This chapter discusses the applications, limitations, concluding remarks, and
the future research directions.
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2
Background & Related Work

Our thesis incorporates the knowledge of key concepts including, webpage, eye-tracking,
visual attention, multi-modalities1, and computational modeling. Accordingly, this chapter
introduces the relevant background of these related concepts, and subsequently summarizes
the previous works to posit the current thesis work.
The background includes the (i) introduction of webpage as a Document Object Model
(DOM) in Section 2.1, (ii) eye-tracking as a technique to capture the eye movements in
Section 2.2, and (iii) the association between eye movements and visual attention in the
terminology of eye movements in Section 2.3. The related works include the (i) uni-modal
(text-only or image-only) analyses that motivated the feature selection for our analysis
(Section 2.4), (ii) related webpage-based analyses to describe the limitations in state-of-the-
art (Section 2.5), and (iii) classification-based prediction approaches from machine learning
literature that we utilized in the current thesis work (Section 2.6).
Our work considers the webpage as an ensemble of segregable elements. These elements are
traversable through a structure called DOM which is described in the following section.

2.1 Webpage as Document Object Model (DOM)

DOM defines a logical structure for webpages (broadly, valid Hypertext Markup Language
(HTML)2 documents), and means of accessing and manipulating the constituent elements [27].
That is DOM assists in building the webpages as well as traversing through the associated
structure and content. An example HTML webpage snippet along with the corresponding
graphical DOM representation is shown in Figure 2.1. For example, to access or modify
the attributes of tag <H1>, the arrow paths shown in Figure 2.1(right) are traversed:
DOCUMENT → <HTML> → <BODY> → <H1>. Web browsers read the HTML page
and render the content as per the tags (see HTML, HEAD, TITLE, BODY, H1 and IMG in

1through-out, modalities means data modalities such as text and images
2https://www.w3.org/html/

11

https://www.w3.org/html/
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<!DOCTYPE html>
<HTML>
<BODY>
<H1>Hel lo World !</H1>
<P style=" font s i z e : 2em; margin top : 0 . 6 7em;
margin bottom : 0 . 6 7em; margin l e f t : 0em;
margin r i g h t : 0em; font weight : bold ">
Hel lo World !</P>
<IMG src=" sun . png " height=" 22 " width=" 22 ">
</BODY>
</HTML>

Figure 2.1: (left) Sample HTML webpage; and (right) its equivalent DOM

Figure 2.1(left)) whose visual representation is further attuned by the associated attributes
(see height and width attributes of IMG tag).
Cascading Style Sheets (CSS)3 are widely utilized to enhance the visual representation of
elements through extended visual attribute setting functionality. That is, CSS attach the
styling to web elements, such as fonts, coloring, and spacing. The CSS helps in overcoming
the inherent tag-based representational limitations. For example, by default, the majority of
web-browsers assign HTML tag <H1> with the CSS attributes font-size: 2em,margin-top:
0.67em, margin-bottom: 0.67em, margin-left: 0em, margin-right: 0em, font-weight:
bold, to the enclosed text. However, assignment of same attributes to an HTML text
paragraph tag <P> (see style attribute) results in same visual representation (as shown
in Figure 2.1(right)) which may be further extended by adding color, border, etc. In
summary, the HTML tags represent the logical separation of the content whereas their visual
rendering is guided by CSS attributes. Thus, investigating the CSS attributes’ influence on
user attention helps the web designers in setting the attribute values accordingly.
Though the DOM helps in webpage exploration, not many studies leveraged it for attentional
analyses on webpage. The analyses evolved from theoretical approaches to adapting the
image processing techniques and towards the DOM based approaches as described in the
related works (Section 2.4 and Section 2.5).
To understand and analyze the user’s visual interaction with webpages, the user’s eye
movement behavior needs to be captured. For this, a technique called eye-tracking has been
widely employed which is described in the following section.

2.2 Eye-tracking

Eye-movements are important body movements that reveal valuable information about
inner and outer world. So, studying eye-movements has huge applications in diverse
fields [42]. Consequently, Eye-tracking—a technique to record and store the eye-movement

3https://www.w3.org/Style/CSS/Overview.en.html
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2. BACKGROUND & RELATED WORK

data for further analysis— obtained the prominence from technological as well as application
perspective.
The eye-tracking technologies evolved over the years in capturing the human physiological
eye-movements. The four broad categories of eye-movement capturing techniques [41, 116]
are:

• electro-oculography techniques utilize the electric potential generated from the skin
surrounding ocular activity for eye-movement estimation.

• scleral contact techniques physically mount the contact lens or search coil onto the eye
for direct eye-movement measurement.

• photo-oculography or video-oculography techniques utilize the eye-features such as pupil
size, limbus position, and corneal reflections to measure the translatory or rotatory
eye-movements.

• pupil center/corneal reflection (PCCR) techniques utilize the orientation of corneal
reflections with respect to the pupil center to measure the eye-movements. Among
the four, PCCR techniques are widely employed for non-intrusive and remote eye-
tracking [41].

The genesis of PCCR eye-tracking involves eye illumination with an infrared light source
to form a bright eye, and a corneal reflection called glint or Purkinje image as shown
in Figure 2.2. The reflections are captured by the specialized camera(s), subsequently
measuring the orientation of Purkinje image with respect to the pupil center to estimate
the gaze direction (see the sample illustrations in Figure 2.2). On combining with the
appropriate calibration, the gaze-direction is mapped to a point-of-regard in the visual
scene. A sample PCCR eye-tracker, Tobii X2-60 which employed for the experimentation
(described in Chapter 3) is shown in Figure 2.3. With the advancement in hardware and
computational architectures, the eye-tracking was achieved with a lesser number of light
sources [136], easier calibration [24, 92], statistical modeling [5], and in tandem with other
measurements such as brainwave measurements [7].
The progressive robust eye-tracking techniques invited numerous applications in multiple
domains [42]. In Industrial engineering, eye-tracking was used to identify the pilot’s primary
source of information during flight, driver’s search strategy during driving, visual inspection
of medical X-ray, etc [42]. In Marketing/Advertising domain, eye-tracking helped to identify
the consumer preferences for advertisements [93, 126, 158, 163]. In Psychology, human
reading behavior [120], scene perception, art perception, film perception, visual search
task and more are studied [42]. In Neuroscience, eye-tracking was studied to establish the
relationship between eye-movements and the visual attention. In Computer science, the
eye-gaze was explored for interactive mechanisms such as pointing modality similar to a
keyboard or mouse [8, 77, 138], and for understanding student’s web-based learning [79].
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bright eye

(bright pupil)

glint

(corneal reflection)
Eye

directed at the camera directed above the camera directed below the camera

directed to left

Figure 2.2: pupil center/corneal reflection (PCCR) based gaze directions

Especially in interface usability studies, eye-tracking was employed to understand the
effectiveness of interface in presenting the information and user attention allocation strategies
on interfaces [42].

2.3 Visual Attention and Terminology

During the visual inspection, only a fraction of visual-scene (webpage in the current setting)
is perceived in higher detail [41]. This contributes a visual angle of 1–2◦, called foveal visual
angle, out of possible 220◦ visual angle whereas the remaining visual scene is perceived
blurry as shown in Figure 2.4. The eye-movements are often stationed to process the visual
information under gazing location. These stable eye-movements which indicate the user
perception are called fixations based on which following useful terminology is developed.

• Fixations are standstill in eye-movements (typically for a duration of 80–100 ms [19])
which act as proxy for visual attention [63, 80]. An element underlying a fixated
location is called an attended element or fixated element, or a Data-Of-Interest (DOI)
according to terminology of Jianu and Alam [79].

• Saccades are the rapid eye-movements in-between the fixations during which no

14



2. BACKGROUND & RELATED WORK

Figure 2.3: A prototype PCCR eye-tracker, Tobii X2-60

Figure 2.4: Illustration of eye-gazing towards a web image element. The stable allocation
of foveal visual angle (1-2◦) results in fixation, an indicator of underlying element’s visual
perception.

significant information is processed.

• Scanpath is an alternate sequence of fixations and saccades. The ordinal sequence of
fixations by a user on a webpage constitutes a scanpath. Each user’s gazing session on
a webpage results in a scanpath. Example scanpaths are shown in Figure 2.5.

• Fixation-indices (FIs) are ordinal numbers associated with the fixations to indicate
the sequential allocation of fixations. FIs are numbered as 1, 2, and so on. For
free-viewing, the lower the FI value the quicker is the attention-drawing ability of the
underlying element. Thus, FI is an indicative of ordinal visual attention. Adapting
the machine learning terminology, all fixated elements associated with same FI form a
class. For example, all the fixated elements with FI=1 are the class of elements with
quickest attention-drawing ability.

Three prominent factors influence the user’s fixation allocation [19]: (i) elements’ saliency
on a webpage, (ii) user’s expectations and memory bias, and (iii) given task or information
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Figure 2.5: Example users’ scanpaths on a webpage: Each bubble is a fixation with the
inscribed number (fixation index) indicating the ordinal number of the fixation in a scanpath.
Each user’s scanpath is indicated with a different color.

at the hand. The attention driven by the first factor is called bottom-up visual attention and
the latter two is called top-down visual attention. Though eye-tracking helps in measuring
the attention through fixations, attributing it to any of the three factors is an intricate task
in their simultaneous presence. To overcome this difficulty, often, any of the two factors are
restricted to understand the other factor’s influence on attention. For the current thesis
work, we limit the latter two factors to analyze and model the intrinsic visual features’
influence on attention.

2.4 Modality-specific Visual Feature based Analyses

Literature explored the restricted set of visual features from text and image modalities for
their influence on psychology, cognition, and perception. This section describes the explored
visual features from either modality to motivate the feature selection for our analysis.

2.4.1 Text Modality

The webpages during 1990s and early 2000s [1] were predominantly unimodal consisting
of textual elements. Consequently, wide-variety of literature focused on text feature based
analyses. The important results from the literature are as highlighted.

1. Text and Background colors: Users find desaturated color combinations more
satisfactory for text and background and their preference is influenced by the intensity
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of the color (called, saturation) [108]. Additionally, achromatic background color
helps in reduced reading time [72]. Text and background color combinations influence
the understanding of the text [153]. These works motivated us to consider text and
background related color features for the attention analysis.

2. Font families: For a specific font-size, ‘arial’ was easier to read than ‘times new
roman’ while text with larger font size is more readable [9]. Motivated by this work,
we included font-family and font-size features for the analysis of our proposed
model.

3. Spaces and Font sizes: Text length and character density influence the reading rate
with the longer text being read faster than shorter length text [40, 45]. Medium size
lines (with 55 characters per line) support the medium and fast reading of the text
effectively [43, 44]. This motivated us to consider the position of the text from the
left, right, top, and bottom edges of the screen. As we conducted the experiments on
fixed size screens, these positional parameters account for text length. We also utilized
font-size to account for the number of characters per line besides its own influence.

For searching, bigger line spacing reduces the reaction time in completing the search task [96]
while users prefer justified text for searching. Better legibility was reported for colors with
greater luminance contrast having dark backgrounds on Cathode Ray Tubes (CRTs) [73].
As spacing, text justification influence the user’s attention, we considered indentation,
padding and margin features of the text in analyzing our model.
For the webpages, all the aforementioned feature values are manipulated through Cascading
Style Sheets (CSS) features by the web designers. Accordingly, CSS based visual features
(described in detail in Section 3.5) were considered for the attentional analyses in our thesis
work.

2.4.2 Image Modality

Multiple works were presented in computer vision and cognitive science domains to predict
the attention on images [14]. Majority of these works used features such as color and
intensity [75, 76]. Lin et al. [95] reported that composition of icons (which are typically
pictorial information) and background significantly affects the attention. These works
motivated us to consider the image elements’ intrinsic visual characteristics including color

histograms, color spread (mean and variance of R, G, B color components) and other
features such as brightness, intensity, luminance, hue, saturation, value for the
feature-based analyses.
Ma and Zhang [99] reported that contrast significantly influences the attention besides
aspects such as color and intensity. Whether an element is perceived or not depends on its
ability to stand out from the surroundings. Contrast helps to quantify this standing-out
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nature. So, we considered contrast features of the image elements for our computational
approaches.
Recently, Jana et al. [78] proposed a regression-based model to predict the attention
(representative FI in a scanpath) on web images (i.e. image elements on a webpage). The
authors divided the screen into three vertical regions and every image is constrained to
entirely present in either of the regions. The total number of image elements on the screen
are restricted to 6. The linear combination of size, position, and chromatic contrast features
were utilized to learn an attention-factor which is further exploited for assigning the ranking
order (FI) to images. However, in real-world webpages, the image position and size cannot
be restricted to any specific region as they are prominent to draw user attention [61, 143].
Especially, different webpages intended for different set of users require the varied image
position and size. Additionally, all the features may not affect the attention linearly. That
is, a linear change in feature value may not correspond to a linear change in attention
value. Most importantly, the Fixation-Index (FI) is a categorical value, but not continuous.
Consequently, mapping the linear-regression output (attention-factor), a continuous value, to
a categorical value (FI) results in inconsistent predictions based on the used mapping scheme.
For example, in [78], attention-factor value of all six images were sorted to accordingly
assign the fixation-indices from 1 to 6. Consequently, even if all the users made their first
three fixations on three images and fourth fixation on some other element (say, text) and
subsequent three fixations on remaining three images, their model still assigns the fixation-
indices from 1 to 6 instead of {1, 2, 3, 5, 6, 7}. In contrast, if the magnitude of attention-factor
value (instead of sorted index) is utilized for ranking, different fixation-indices (beyond 6)
may be assigned for the images. On the contrary, the classification model’s output variable
itself is categorical which do not require external mapping, unlike the regression. Thus,
classification-based modeling may be more appropriate than regression-based modeling.

2.5 Attention Models for Webpages

Web 2.0 [28] made the webpages multimodal. The webpages became rich of content consisting
text, image, and video modalities. Among these modalities, only the former two modalities
(text and images) are perceived dedicatedly through visual-alone sensory. This also motivated
the HCI research community to propose attentional models for multimodal webpages.
Faraday proposed the first visual attention model of webpage users [51]. As per this
theoretical model, a user selects a salient region on webpage followed by its scanning in a
left-to-right pattern. A salient region is selected based on the presence of elements, called
Salient Visual Elements (SVEs), in the decreasing order of preference: motion, size, image,
color, text style and position. However, empirical studies demonstrated otherwise and
invalidated the theoretical preferential ordering suggested by [51]. Especially, the element’s
position (center and top-left regions of a webpage) [61] and size [143] found to be predominant
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in drawing the user attention. The subsequent analyses, focused dedicatedly on the user
attention (we call them as, User Attention-based approaches) or dedicatedly on the webpage
visual features (we call them as, Visual Feature-based approaches).

2.5.1 User Attention-based (UAB) approaches

Heatmap-based Inferences

The typical approach is to accumulate the users’ attention allocations (fixations) on a
webpage, and indicate the accumulated value with a color. Warmer colors (such as, red and
orange) are used to designate a larger value, and cooler colors (such as, blue and green)
are used to designate a lower accumulated value to result in a heatmap. A standing-out
pattern consisting of warmer colors is assigned as users’ attention allocation pattern. The
prominent one of these patterns is the F-pattern of web content reading [105], according to
which the users first scan in a long horizontal movement at the top of a webpage followed by
a small downward movement on the left. Then, a shorter horizontal movement is observed
followed by a complete downward movement on the left to result in an ‘F’ shape resembling
heatmap pattern. Analogously, Alistair and Abdallah [4] investigated the user attention
allocation on different designs of webpages in the context of browsing and searching tasks.
The authors found that higher amount of fixation densities were allocated in the upper parts
of the webpages, and users focused on information-scent (likely to contain the information
corresponding to the goal) and salient objects during the search task. Subsequently, based
on the observations, a heatmap prediction model was suggested for browsing and search
tasks.
However, as the observed patterns are not associated with the underlying visual features,
a multitude of other patterns emanated based on the webpage content and user attention
allocations, such as the Z-pattern, the Zig-Zag pattern, the Layer-cake pattern, the Spotted
pattern, the Commitment pattern, and more [16, 110]. Moreover, the heatmap-based
approaches limit the webpage-specific interpretation. That is, even if the users’ fixation data
is available on a webpage, the designer need to apply one of the existing patterns (such as
F-pattern) than eliciting a prominent pattern from the available data.

Scanpaths and AOI-based Inferences

The scanpaths help to overcome the limitations of heatmap-based inferences. Typically,
the visible webpage region is divided into an ensemble of Areas-Of-Interest (AOIs), and
the scanpath traversals across them is visualized. An example AOI selections are shown in
Figure 2.6. As demonstrated by Eraslan et al. [48, 49, 50], such approaches help in identifying
a trending scanpath on a webpage from the collection of scanpaths. However, as the visual
attributes of AOIs are overlooked in such analyses, the identified trends are not generalizable
to other webpages with varied visual features, or the same webpage with varied AOI selection.
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AoI1

AoI2

AoI3

AoI4

AoI5

AoI6

Figure 2.6: Example Areas-Of-Interest (AOIs) on a webpage

Eraslan et al. [48] presented the survey of eye-tracking based scanpath analysis techniques
for webpages. All those techniques categorize under UAB approaches. In contrast to our
terminology of web elements (motivated by Buscher et al. [19]), the authors utilized visual
elements as each visual element may consist of multiple web elements based on the webpage
segmentation level provided to the Vision based Page Segmentation (VIPS) algorithm [2].
That is, each visual element was designated as an AOI and four categories of scanpath
analysis techniques were presented, as summarized.

• Similarity/Dissimilarity Calculation: these techniques helps to compare and
determine if two scanpaths are similar or dissimilar. The corresponding approaches
include String-edit algorithm [67], its improvized version String-edit algorithm with a
substitution matrix [147], and Scan-Match technique [33]. These techniques are not
centered on predicting a trending (or common) scanpath.

• Transition Probability Calculation: these techniques helps to determine the
transition probabilities across the visual elements. These techniques are also not
centered on predicting a trending (or common) scanpath. The approaches include
Markov Models [25, 82, 159] and eSeeTrack [151] techniques.

• Pattern Detection: these techniques helps to either search for a given pattern or to
discover all the patterns matching with the given scanpath pattern. The approaches
include, (i) eyePatterns analysis tool— searches/ discovers the specific pattern among
all available scanpths [159]; (ii) Sequential PAttern Mining (SPAM) algorithm— similar
to eyePatterns tool but with a tolerance to additional visual elements present in
the patterns; [65] (iii) T(emporal)-pattern detection— detects the patterns within
scanpaths [18, 39, 101]. Here, T-pattern indicates two events (say, fixation allocation)
either occurred more than once or appeared invariantly over time in a behaviour
(attention allocation, in current settings) sequence.
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• Common Scanpath Identification: in contrast to the aforementioned approaches,
these techniques helps to achieve a representative scanpath (called common scan-
path) from the given group of scanpaths. The approaches include, Multi Sequence
Alignment [66], Hierarchical Clustering with Dotplots algorithm [57], Shortest Com-
mon Supersequence [117], Position-based Weighting model [4], and eMine scanpath
algorithm [47].

Besides generalizability, the UAB approaches are limited by feasibility constraint. The UAB
approaches are pattern eliciting than attention predictive; thus, users’ attention data is
required for every test webpage. Collection of this data on every webpage and especially
after every small modification enforced on a webpage may not be practical due to the
time-constraints, money-constraints, and user-availability constraints.

2.5.2 Visual Feature-based (VFB) approaches

To overcome the aforementioned limitations, data-driven computational approaches were pro-
posed for attention modeling on webpages [14, 94, 100, 134, 144, 156]. The typical approach
is to consider the whole webpage as an image (through screenshot capture), and apply the
image processing-based saliency prediction techniques to identify the salient (potentially
attention drawing) locations (a group of pixels). These approaches are adaptations of seminal
work by Itti and Koch [74, 75, 76], which were directly applied on webpages (screenshots) to
identify the web-viewing entry points [144].
In Masciocchi and Still [100], Itti’s image saliency prediction model [76] was applied on
webpages to correlate the saliency points with fixations (indicative of visual attention).
In [156], the low-level (based on pixels) and high-level (based on semantics) feature maps
were integrated to predict the saliency on webpages. Shen and Zhao [134] further extracted
low spatial frequency (for images) and high spatial frequency (for text) feature maps, both
are of the same dimension and integrated them to estimate the possible fixation on a given
webpage position. Similarly, Li et al. [94] achieved saliency prediction through an integration
of high frequency representation, sub-band features, position and face feature maps. In
summary, the saliency based models process the whole webpage as an image to
predict the salient regions.
The saliency-based computational approaches do not directly associate the webpage visual
features with the user attention. Additionally, unlike an image, webpage is a segregable
ensemble of elements from multiple modalities. The processing of whole webpage as an
image (through screenshot) overlooks the intrinsic visual features of the underlying web
elements (text and images). Moreover, these saliency-based techniques may determine a part
of an element (say, text) as salient and the other part of the same element as non-salient,
while, the designers may like to associate the visual characteristics for the whole element,
such as through the Cascading Style Sheets (CSS) features.
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2.5.3 Element Visual Features’ and User Attention based Analysis

Buscher et al. [19] made efforts to overcome the limitations of UAB and VFB approaches by
preserving the visual characteristics of individual web elements. They considered a restricted
set of visual features to predict the attention on web elements for information-foraging
and page-recognition tasks. The considered features include (i) 44 binary features
corresponding to the HTML tags such as <A>, <H1>, <DIV>, <IMG>, etc. (assign ‘1’
to the corresponding tag and ‘0’ for all other tags); (ii) ten binary features to indicate the
element’s position in either of 3× 3 grid regions or below the fold; (iii) one binary feature to
indicate whether link element <A> points to top page of a website; (iv) one binary feature
to indicate the presence of a logo; (v) one binary feature to indicate the depth in DOM tree;
(vi) the remaining features represent the element’s size and aspect ratio. However, there are
several issues with the feature set as listed below.

• Predominantly, using a binary feature to represent an element discards all its intrinsic
visual features. For example, a red color link and a blue color link are considered
equivalent as both are identified using <A> tag.

• The tag (alone) consideration results in data inconsistencies as different tag nesting
results in different feature values whereas user perceives the same data. For exam-
ple, between ‘<DIV><H1>Hello World!</H1></DIV>’ and ‘<H1><DIV>Hello
World!</DIV></H1>’, though same visual content ‘Hello World!’ is perceived, the
former snippet considers <DIV> tag while the latter considers <H1> tag as the
feature value resulting in data inconsistency.

• Additionally, ‘<DIV><DIV><DIV><H1>Hello World!</H1></DIV></DIV></DIV>’
increases the depth in DOM by 3 levels when compared with <H1>Hello World!</H1>
even though user notices no disparity in visual perception.

Broadly, the majority of HTML tags correspond to two prevalent modalities, text and image.
For example, <H1>, <H2>, <H3>, <H4>, <H5> and <H6> all represent the text on
webpage with varying visual representation. Similarly, <IMG> and <PICTURE> represent
the images on a webpage.
Thus, studying the user attentional behavior with respect to the visual representation
determining features (intrinsic visual features) would be more beneficial and helps the
web-designers in estimating the prominence of a given web element. Further, these anal-
yses help in incorporating the feature values directly into the web-designing. For exam-
ple, user attentional analysis on intrinsic features font-size, margin-top, margin-left,

margin-right, margin-bottom, and font-weight would help the designers in setting these
feature values for any text element, beyond <H1> to <H6>.
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2.6 Prediction Approaches

In this thesis work, classification-based prediction approaches are utilized to predict the
attention on web elements at the higher granularity (Fixation-Indices). This section describes
the corresponding literature that we employ for our analysis in Chapter 4, Chapter 6, and
Chapter 7.

2.6.1 Multi-class Classification using SVM

This section describes the multi-class classification based on Support Vector Machine (SVM).
The objective is to predict an expected class (a representative FI in the current setting)
from the set of multiple possible classes for a given data-point (visual features of a web
element in the current setting). Towards achieving this objective, classification techniques
learn a separating boundary among the multiple classes based on the training data. Then,
for a test data-point, the separating boundary is utilized to determine the expected class.

For multi-class classification, learning a single separating boundary is a complex task, whereas
learning a separating boundary for binary classification is simpler. Thus, often, an ensemble
of binary classifiers are constructed through which multi-class classification is achieved.

The SVM is the most popular classification technique primarily introduced for binary
classification [15, 30]. Subsequently, it has been employed for multi-class classification
through multiple reformulations [71]. Among them, “one-Vs-one” based formulation was
shown to perform better for practical applications [71]. In this reformulation, for θ classes,(θ

2
)

= θ(θ − 1)/2 binary classifiers are trained to classify between any pair of classes. For a
test data-point, the prediction results are obtained from all the trained binary classifiers and
the class with the highest votes is assigned as the predicted class label. That is, a majority-
voting-scheme is employed to assign the class label. In remainder of this subsection 2.6.1,
the SVM based binary classification is described which we utilize for multi-class predictions.

Binary Linear SVM formulation

Consider d fixated web elements (text or images) represent points in n−dimensional feature
space Rn, where n is the number of visual features. That is, x = [x1|x2|· · · |xd]> ∈ Rn×d.
The respective class-labels of the d points are denoted as y = [y1,y2, · · · ,yd]> with yk ∈
{+1,−1} ∀k. Then, SVM achieves the classification by maximizing the margin (separation)
between the data-points of two classes (fixation-indices). Without loss of generality, assuming
the binary classifier need to be built for classes i (positive class) and j (negative class), the
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Figure 2.7: Linear SVM illustration for binary classification of classes i and j

SVM is formulated as the following constrained optimization problem [30].

min
w,b,ξ

1
2w>w + λ

d∑
k=1

ξk (2.1)

such that w>xk + b ≥ 1− ξk, if fk = i;

w>xk + b ≤ −1 + ξk, if fk = j;

and ξk ≥ 0; ∀ k = 1, . . . , d (2.2)

That is, the objective is to obtain a best separating boundary called hyperplane, w>x+b = 0,
between the two classes as shown in Figure 2.7. The optimal hyperplane maximizes the
margin 2/‖w‖ between the two classes to separate the two classes which is achieved by
minimizing the w>w. In Equation 2.1, the parameters w and b determine the position of
hyperplane. The slack variable ξk is useful for accommodating the data outliers as shown in
Figure 2.7. The λ > 0 is a regularization parameter.

The class i points are bounded by w>xk+b ≥ 1−ξk and class j points by w>xk+b ≤ −1+ξk,
where k = 1, . . . , d. The vectors passing through the boundary points (with respect to the
other class) are the support vectors (shown in Figure 2.7) that help in determining the
hyperplane.

The optimization problem in Equation 2.1 is solved for w and b using the Lagrangian
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formulation [22, 30]. The class of a test web element xt is determined based on the sign of

sign
(

d∑
k=1

ykβkx>k xt + b

)
=
{
i, if positive

j, if negative
(2.3)

where βk, k = 1, 2, . . . , d are the Lagrangian multipliers [30].

Binary Kernel SVM formulation

The aforementioned formulation is useful if the data-points are linearly separable. However,
the separability may not hold always. In those non-linear settings, the data-points are
projected into a high-dimensional space using non-linear transformation function φ(x).
In the high-dimensional space, the separating hyperplane (w)> φ(x) + b = 0 is obtained,
where parameters w and b decide the orientation of hyperplane. Without loss of generality,
considering ith class as positive class and the jth class as negative class, the separating
hyperplane is supported by class-specific linear boundaries called support vectors in the
classification as given by (w)> φ(x) + b = +1 and (w)> φ(x) + b = −1 respectively. That
is, class i datapoints are bounded by (w)> φ(x) + b ≥ +1 and class j datapoints by
(w)> φ(x) + b ≤ −1. The optimal hyperplane achieves a maximum margin— magnitude
separation between class-specific support vectors— of 2/‖w‖ [30] as shown in Figure 2.7.
The objective is to maximize the margin 2/‖w‖ which is equivalent to the minimization of
the denominator ‖w‖, to result in following constrained optimization problem analogous to
Equation 2.1.

min
w,b,ξ

1
2 (w)>w + λ

d∑
k=1

ξk (2.4)

such that (w)> φ(xk) + b ≥ 1− ξk, if fk = i

(w)> φ(xk) + b ≤ −1 + ξk, if fk = j

and ξk ≥ 0 ∀ k = 1, . . . , d. (2.5)

where, λ > 0 is a regularization parameter, and d is the cumulative number of datapoints in
class i and class j. The slack variable ξ controls the classification threshold and accounts for
noise (outliers) in the data as shown in Figure 2.7. For ξ < 1/‖w‖, the separating hyperplane
acts as final decision boundary with the mis-classifications occurring at ξ > 2/‖w‖ as shown
in Figure 2.7. Analogous to Equation 2.1, the optimization problem Equation 2.4 is solved
using Lagrangian formulation and primal-dual reformulations [22, 30]. Accordingly, class i
or class j is determined for a test webpage image xt based on the sign of

sign
(

d∑
k=1

fkβkK(xk,xt) + b

)
(2.6)
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where, βk is the weight of kth datapoint such that 0 ≤ βk ≤ λ; K(xk,xt) ≡ φ(xk)>φ(xt) is
the kernel function that elicits the non-linear association between visual features and the
quantitative attention.

Multiclass SVM

The multi-class classification is achieved through the “one-Vs-one” reformulation [71]. That
is, for θ classes,

(θ
2
)

= θ(θ − 1)/2 binary classifiers are trained and the test predicted class is
obtained from each of them. A majority-voting-scheme is employed to assign the class with
maximum votes as a class label to the test element.

Performance Metrics of Classification

In classification and prediction tasks, the correctly classified positive and negative instances
are respectively called true positives (TP) and true negatives (TN). Accordingly, the negative
instances that are incorrectly predicted as positives are false positives (FP) and the positive
instances that are incorrectly predicted as negatives are false negatives (FN) [162]. Based
on these notations, the following metrics are defined to analyze the performance of the
classification model.

Precision is the proportion of correctly predicted instances among all the positively pre-
dicted instances.

Precision = TP

TP + FP
(2.7)

Recall is the proportion of correctly predicted instances among the given positive instances.

Recall = TP

TP + FN
(2.8)

Kappa κ-statistic [26] helps to check the agreement between predicted and observed labels
while accounting for the agreement occurring by chance [162].

κ = overall accuracy− expected chance accuracy
1− expected chance accuracy (2.9)

Average Accuracy is the average of accuracies achieved from all the classifiers.

Average Accuracy =

θ∑
i=1

(TPi + TNi)

θ∑
i=1

(TPi + TNi + FPi + FNi)
(2.10)
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Micro Precision, Micro Recall and Micro F1-score metrics are utilized for analyzing
the performance of classifier on non-uniformly distributed classes.

Micro Precision =

θ∑
i=1

TPi

θ∑
i=1

(TPi + FPi)
(2.11)

Micro Recall =

θ∑
i=1

TPi

θ∑
i=1

(TPi + FNi)
(2.12)

Micro F1-score = 2×Micro Precision×Micro Recall
Micro Precision + Micro Recall (2.13)

2.6.2 Multi-label Classification

A data-point may associate with multiple labels simultaneously (motivated in Section 4.6 for
image elements). In such settings, predicting as many relevant labels as possible would be
the objective of a prediction model. For this settings as well, SVM is utilized. As we limit
this approach to predict multiple Fixation-Indices (FIs) on image elements, the remainder
of this subsection 2.6.2 is explained in the context of image elements.
Consider d unique web image elements, each represented using n visual features. Let
the set of possible fixation-indices be L = {z1, . . . , zf}. Representing each image as a
point in n-dimensional space I, the associated labels represent points in f-dimensional
space, Y = {+1,−1}f . Thus, the ith image is represented using the feature vector x(i) =(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
n

)>
and the associated multilabels as y(i) =

(
y

(i)
1 , y

(i)
2 , . . . , y

(i)
f

)>
. Note

that y(i) is a binary-valued vector with +1 indicating the presence of a fixation-index and
−1 for its absence. For example, y(i)

2 = +1 if the image is associated with the label z2 which
refers to second fixation-index.
However, the latter fixation-indices may be guided by other factors such as absence of
(or exhausted) salient elements, influence of semantic features, etc. To mitigate their
influence on free-viewing attention prediction and to segregate the initial fixation-indices
from latter fixation-indices, we introduce a fixation-index threshold θ such that θ ≤ f

resulting in z = {z1, . . . , zθ}. Accordingly, y(i) is modified as y(i) =
(
y

(i)
1 , y

(i)
2 , . . . , y

(i)
θ

)>
Then, the objective is to predict the set of fixation-indices for a test image element y(t)

using its associated visual features x(t). The current setting is typically considered as a
multilabel classification problem where we need to predict the binary values for each of
y(t) =

(
y

(t)
1 , y

(t)
2 , . . . , y

(t)
θ

)>
.

Multiple approaches exists in the literature to solve this multilabel prediction problem [114,
152]. Due to the complexity of multilabel classification, often, the problem is transformed
into multiple binary classification problems which is called a problem transformation method.
The simpler binary classification is then solved through state-of-the-art approaches such as
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support vector machine (SVM) [30].
As the fixation-indices obtained from one user are independent of another user, we considered
the Binary Relevance (BR) method based problem transformation method. In this approach,
θ binary classifiers are learned each corresponding to a fixation-index. For a test image
element, the binary value +1 or -1 is assigned as a relevancy score based on the decision
from corresponding binary classifier. The resulting set of Fixation-Indices (FIs) forms a
label-set L̂t while the ground-truth label-set is denoted as Lt. Thus, the kth binary classifier
is a mapping function

Ck : I −→ {+1,−1} k = 1, . . . , θ (2.14)

Accordingly, the predicted multilabels of test image x(t) are

ŷ(t) = L̂t =
(
C1(x(t)), C2(x(t)), . . . , Cθ(x(t))

)>
(2.15)

Performance Metrics

Table 2.1: Description of Multi-user Multi-level Attention Prediction Performance Metrics

Metric Description Computation Desired
Subset
0/1
loss

Proportion of mis-matches where even a single
mis-classification for an image instance is

considered as complete mis-match
1
d

d∑
i=1

1(
Li 6=L̂i

) ↓ (low)

Hamming
loss

Proportion of mis-matches accounting only for
the mismatched label instances

1
d

d∑
i=1

1
θ

θ∑
j=1

1(
L

(j)
i
6=L̂i

(j)
) ↓ (low)

Accuracy
proportion of correctly classified labels

(analogous to average accuracy in single-label
prediction)

1
d

d∑
i=1

θ∑
j=1

1(
L

(j)
i

=+1 && L̂i

(j)
=+1

)
θ∑
j=1

1(
L

(j)
i

=+1 ‖ L̂i
(j)

=+1

) ↑ (high)

Precision
(PPV)

(analogous to single-label prediction)
proportion of correctly predicted labels among

all the positive labels
1
d

d∑
i=1

θ∑
j=1

1(
L

(j)
i

=+1 && L̂i

(j)
=+1

)
θ∑
j=1

1(
L̂i

(j)
=+1

) ↑ (high)

Recall
(TPR)

(analogous to single-label prediction)
proportion of correctly predicted positive

labels among all the actual labels
1
d

d∑
i=1

θ∑
j=1

1(
L

(j)
i

=+1 && L̂i

(j)
=+1

)
θ∑
j=1

1(
L

(j)
i

=+1
) ↑ (high)

F1-
score

(analogous to single-label prediction) harmonic
mean of precision and recall

1
d

d∑
i=1

2
θ∑
j=1

1(
L

(j)
i

=+1 && L̂i

(j)
=+1

)
θ∑
j=1

1(
L̂i

(j)
=+1

)+1(
L

(j)
i

=+1
) ↑ (high)

Unlike the binary classification or multiclass classification (which take only one output label),
the predicted output of multilabel classification takes multiple labels and accordingly may
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partially match the ground-truth output (or set of labels). Thus, the distinct performance
metrics are introduced in the literature to estimate the performance of a multilabel classifier.
In Table 2.1, the performance metrics computation is summarized using the following
indicator function for simplicity, where C denotes the any of C1, . . . , Ck binary classifiers.

1(y(i) 6=C(x(i))) =
{

1 if y(i) 6= C(x(i))
0 if y(i) = C(x(i))

(2.16)

In Table 2.1, subset 0/1 loss and Hamming loss indicate the poorer prediction performance,
and consequently, lower values are preferred. Between the two, Hamming loss allows for
partial match whereas the subset 0/1 loss considers the complete match (that is, correct
prediction of all multilabels of a test image). On contrary, other metrics are analogous to
the typical performance metrics of binary and multiclass classification and higher values are
preferred for these metrics.

2.7 List of Visual Features

We considered the following web-designing oriented visual features that characterize the
visual representation of text and image elements on webpages.

Visual Text Features

Font-size Size of the font that corresponds to em square in typography [12, 29]. Larger the
font-size bigger is the text character’s visual appearance on the webpage. Font-size
may be indicated in either of the four ways: absolute-size, relative-size, length, and
percentage. The absolute-size values are ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’,
‘x-large’ and ‘xx-large’ [29]. The ‘medium’ value is reference medium value being the
user-preferred default font-size (typically, 16 px). Other absolute-sizes are scaled with
respect to their appearance in the aforementioned sequence. For example, ‘x-large’
font-size is 16 × 6/4 = 24 px for a 16 px medium font. The relative-size values are
interpreted in relation to the parent element’s (obtained from traversing the DOM
tree) font-size and the absolute-sizes. The two possible relative-sizes are ‘larger’ and
‘smaller’. For example, a text element’s font-size results in ‘small’ when its relative-size
is ‘smaller’ and its parent’s absolute-size is ‘medium’. The length-based font-size reports
the absolute, fixed size of the text for rendering on the screen and to be measured in
the units of cm, mm, in, pt, pc, and px. To overcome the adaptability difficulties
of the fixed-size fonts, relative length units are adopted for denoting the font-sizes,
such as em, ex, ch, rem and more. The font-size indicated in percentage scales the
parent element’s font-size to the mentioned percentage and assigns it to the considered
text element. For the sake of unified representation, we transformed all the rendered
text’s font-sizes into px units for our analysis.
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Font-weight indicates the weight to be applied to the font, that is, thickness or thinness
to the existing font. The possible values are 100, 200, . . . , 900. The larger the value,
larger is the thickness with value 400 indicating the “normal” font-weight and 700
indicating the “bold” font [29]. Additionally, “bolder” and “lighter” values are used to
set the font thickness with respect to the font-weight of the parent element.

Line-height determines the height of text line. That is the amount of space allocated
for each line of text. Increasing the line-height for a specific font-size increase the
space around the corresponding line. The line-height is either specified as a number
that indicates a scaling with respect to the font-size or “normal” which is a default
line-height, or in length, percentage units as described in Font-size. All units are
converted to the equivalent px units after rendering the text on webpage.

Color The color feature is associated with multiple text element’s characteristics including
background, outline, text emphasis, text decoration, column rule, border
and the text foreground itself. The color value is reported either as a color name
(such as “red”, “yellow” and “blue”) or using the six-digit hexadecimal code (for
example “#00FF00” denotes the green color) corresponding to RGB color components
or through a decimal number ∈ [0, 255] for each of the RGB color components (for
example, “rgb(0,0,255)” indicates a blue color). It is not uncommon to denote the
transparency of the color through the alpha channel. An alpha = 0.0 indicates complete
transparency while alpha = 1.0 indicates a fully opaque color. That is, rgba(255,0,0,1.0)
indicates an opaque red color. For the sake of unified representation, we extracted the
color features and converted them into an equivalent red, green, blue color component
and alpha feature values.

Padding The area occupied by the rendered text is called content area. The content area is
optionally surrounded by a border. The padding sets the space between the rendered
content and the border. The larger the padding value larger is the space between
content and the border. The padding is described using four features corresponding
to the four rectangular edges of the border, padding-left, padding-right, padding-top
and padding-bottom. The possible values are length and percentage based metrics, as
earlier described for Font-size.

Border-size Border is the rectangular edge outside of the content area and padding. The
width of the border along the four rectangular edges is denoted by border-size or
border-width. In case of zero width border, the border edge matches with padding
edge [29]. Analogous to “padding”, border-size contributes four visual features, border-
left, border-right, border-top and border-bottom. The possible values are “thin”,
“medium” and “thick” besides the earlier defined length based metrics. The former
three values are in the increasing sequence of magnitudes whereas their absolute value
is user agent-dependent but consistent throughout the document [29].
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Margin Margin sets the space outside the text element, that is, outside any of the defined
borders. The larger is the margin larger will be the outer space around the text
element. This feature also contributes four visual features describing the space along
the four rectangular edges, margin-top, margin-bottom, margin-left and margin-right.
The possible values are length and percentage based metrics.

Column-gap When the text is represented as columns, the desired space between the
columns is specified by “column-gap”. The larger is the column-gap, larger is the
spatial separation between the columns. The in-between column separation lines, if any,
will be placed in the center of the column-gap. The possible values are length-based
metrics or “normal” which is suggested to be 1 em by the World Wide Web Consortium
(W3C).

Text-indentation indents the first line of the text block [29]. The larger the text-
indentation value larger is space before starting the first line in a text block. The
text-indentation value can be negative or more than the size of the text block in
which case the first line overflows the text block. The possible values are length and
percentage based metrics; the former indicates the absolute indentation and the latter
indicates the percentage of indentation with respect to the width of the text block.

Font-family specifies the decreasing prioritized list of fonts to be applied to the corre-
sponding text element. Each value is an alternative to their preceding value in the
list and all values are separated by commas. That is, the browser tries to apply the
first font-family to the text, in case of failure, tries to apply the second font-family
and so on from the prioritized list. The feature is assigned with specific font-family
names such as “Gill” and “Helvetica”, or generic font-family names such as “serif”,
“sans-serif”, “cursive”, “fantasy” and “monospace”. Typically, generic font-families
are used for fallback mechanism and are placed at the last position in a prioritized
list. More details about the font-family feature are available in [29]. Unlike the above
text features, font-family values are not ordinal, that is, we can not order the “Gill”
and “Helvetica” to indicate which is bigger than the other. Thus, font-family feature
contributes a categorical feature.

Position The distance of the element’s border box edges from the top and left edges of the
displayed webpage. That is, top and bottom positional values indicate the element’s
top border edge and bottom border edge distance from top edge of the displayed
webpage. Similarly, left and right positional values indicate the element’s left border
edge and right border edge distance from left edge of the displayed webpage. These
computations ensure that “right distance” ≥ “left distance” and “bottom distance” ≥
“top distance”.

Area visible text element’s area occupied on the screen. The four positional features are
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utilized in computing the area as (right distance - left distance)×(bottom distance -
top distance).

Note that setting Font-size, Font-weight, Line-height, Color, Padding, Border-size,
Margin, Text-indentation, and Font-family features to “inherit” assigns corresponding
parent element’s feature value to the respective element’s feature. The parent element is
determined from the DOM tree.

Visual Image Features

Consider the image is in RGB color format where Ri, Gi, Bi respectively denote the red (R),
green (G) and blue (B) color component values at the ith pixel. Without loss of generality,
we employed the following formulations to compute the visual features of each image with
N pixels.

Color histograms: Each color component value of a pixel is indicated on a scale of 0 to
255. As there are 256 levels, it is typical to distribute the color frequencies into eight
uniformly spaced bins (log2 256 = 8). To account for the gray images, we computed
the gray color histograms. For the colored images, decolorization— color image to
gray-scale transformation [98], was performed to determine the gray component values
using 0.2989×R+0.5870×G+0.1140×B (rgb2gray() function in Matlab). Accordingly,
red, green, blue and gray components contribute a total of 32 features.

Luminance: Perceived luminance is computed as a linear combination of R,G,B color
components, Luminance = 0.299×R+ 0.587×G+ 0.114×B [11, 53]. The weights
used in Luminance computation corresponds to the weights used in RGB to gray-
scale conversion after rounding the digits to three decimal places. We compute the
mean value of luminance to assign a uni-value to the image. That is, Luminance =
1
N

N∑
i=1

0.299Ri + 0.587Gi + 0.114Bi.

Color spread To quantify the spread of the color, mean and variance are computed for
each color component of an image. Accordingly, color spread provides six image visual
features.

Brightness: Though ‘luminance’ is used synonymously with the brightness [11], the latter
is typically computed as an arithmetic mean of R,G,B color components. That is,

Brightness = 1
N

N∑
i=1

Ri+Gi+Bi
3 .

Hue, H: Smith [140] introduced the HSV color model to approximate the perceptual
properties of ‘Hue’, ‘Saturation’ and ‘Value’ [132]. ‘Hue’ is a traversal on the color
circle from red color to yellow, green, cyan, blue, magenta and back to the red color,
indicated with a value in [0, 1]. In simple words, ‘Hue’ is something that left after
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removing the desaturation or gray component from a given color. That is, ‘Hue’ is a
mixture of at most two-color primaries whereas ‘color’ is a mixture of at most three
color primaries. The normalized R,G,B color components are utilized in computing
the ‘Hue’ using Hexcone model [140].

Saturation, S: Saturation measures the hue’s departure from white or gray which are
achromatic. That is, increasing S decreases the whiteness in an image. The saturation
is zero for gray color, R = G = B. Hue is not defined at zero saturation points, and in
fact, its value is immaterial as these are gray points [140].

Value, V : Introduced by Munsell [104], “value” corresponds to “lightness” of a color [132].
That is, “value” measures the departure of hue from the zero energy color, black [140].
The smaller the value of V the higher is the blackness in the image. Assuming the
R,G,B color components are normalized to [0, 1], V corresponds to the largest color

component value. That is, V = 1
N

N∑
i=1

max(Ri, Gi, Bi).

Contrast: To quantify the contrast of an image on a given webpage, all of the above visual
features are computed for webpage screenshot. The difference between respective
visual features of a webpage and the image results in contrast features. That is,
mean luminance, mean hue, etc. of an image are respectively subtracted from mean
luminance, mean hue, etc. of the respective webpage.

Position: Image element’s position on the corresponding webpage. It is an ensemble of
four distances, ‘top distance’, ‘bottom distance’, ‘left distance’ and ‘right distance’
where former two distances are computed from the screen’s top edge and the latter
two from screen’s left edge.

Area: visible image area occupied on the screen. Computed using the ‘Position’ feature as
(right distance - left distance)×(bottom distance - top distance).

2.8 Summary

In this chapter, the preliminaries and the existing works are presented to introduce the
perspective for our thesis work in the context of literature. The prominent point concerning
the webpages is, they are logically segregable unlike the standalone images. We also described
that eye movements indicate the users’ cognitive and perceptual behaviour. The fixations
(standstill in eye movements for a certain threshold of time) act as proxy for visual attention.
Among the modality-independent features, the element’s position and size (or area)
are predominant in drawing the user attention. The tag-based consideration discards the
intrinsic visual features of the respective elements. We also described the utilized prediction
approaches and the list of visual features considered for our analysis for remainder of the
thesis.
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3
Eye-tracking Experiments and Visual

Features
Eye-tracking experiments help to collect and prepare the ground-truth user attention towards
the analysis of computational attention models. In total, we utilized the fixation data from
three free-viewing eye-tracking experiments. As very few works are centered on DOM
based attention modeling (in contrast to image-based attention modeling), we ourselves
conducted two of those free-viewing experiments, Experiment-I (Section 3.2) and Experiment-
II (Section 3.3). However, to demonstrate the efficacy of proposed approach on unseen data,
we utilized the free-viewing experiment dataset from [134] which we denote as Experiment-
III (Section 3.4). Further, this chapter summarizes the visual features of text and image
modalities (Section 3.5) that are utilized throughout the thesis work.

3.1 Common Experimental Setup

3.1.1 Apparatus

A host computer decorated with the eye-tracking experimental setup is shown in Figure 3.1.
The involved apparatus components are as follows.

1. Tobii X2-60 eye-tracker1— a binocular eye-tracker that samples the gaze at 60 Hz
(60 times in a second) and called a “fixation picker” [86] was utilized for our fixation-
based research. The eye-tracker’s accuracy (the average difference between real stimuli
position and measured gaze position) is 0.4◦ and the precision (variation of the recorded
data measured via root mean square of successive samples) is 0.34◦.

2. EPU— external processing unit to perform the gaze related calculations which reduces
the computational load on the host computer.

1https://www.tobiipro.com/product-listing/tobii-pro-x2-60/
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3.1. COMMON EXPERIMENTAL SETUP

3. Ethernet cable to transfer the processed gaze-data from EPU to host CPU; magnetic
strip to attach the eye-tracker onto the display monitor.

4. A power connector to supply the power to EPU.

5. A magnetic strip to mount the eye-tracker.

6. A host computer with Windows 7, 64-bit operating system and 8 GB RAM was used
for rendering the stimuli on 22" display monitor.

Computer before eye-tracker setup Computer after eye-tracker setup

Eye-tracker connections

Eye-tracker

Eye-tracker EPU

Power supply connector

Ethernet cableInfrared 
sensor

Ethernet 
connector 

to CPU

Ethernet connector 
to eye-tracker EPU

Ethernet port

Power port

Power pin

USB connector to eye-
tracker EPU

USB port

Power button

Infrared 
sensor

Figure 3.1: Eye-tracker setup used for collecting the gaze-data

The magnetic strip was attached at the bottom edge of display monitor onto which the
eye-tracker was mounted for non-intrusive eye-movement tracking. The eye-tracker was
connected to the EPU to send the sampled gaze-data for processing. The I-VT filter
(Velocity-Threshold identification fixation filter [90, 128]) is used to detect the fixations.
The I-VT filter assigns an angular velocity (measured in degrees/second) to each gaze data
point, and all the points with the velocity less than a threshold (default 30 degrees/second is
utilized as per [90, 106, 122]) are classified as fixation; The fixation location is an arithmetic
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mean of all the points corresponding to a fixation. The EPU was connected to the host
CPU using Ethernet cable for storing the processed data for further analysis. The necessary
apparatus connections are shown in Figure 3.1.

3.1.2 Stimuli Preparation

Exp-I

Exp-II

Exp-I

Exp-II

Figure 3.2: Sample stimuli webpages of Experiment-I (top two rows) and Experiment-II
(bottom two rows).

In order to account for the user attentional behavior on webpages with varied visual features,
we considered the webpages from multiple categories including SHOPPING, HEALTH,
ARTS, HOME, NEWS, and SPORTS from Alexa2. The sample stimuli of Experiment-I3

and Experiment-II4 are shown in Figure 3.2. Each webpage was displayed in full-screen
mode on a 22" display monitor and screenshot was captured (at a screen resolution shown
in Table 3.1). The screen-shot helps in rendering the webpage as a whole avoiding the
rendering latencies of individual web elements which may influence the attention allocation.
Additionally, the stimuli webpages (including HTML, CSS, and media) were stored locally

2https://www.alexa.com/topsites/category
3Stimuli screenshots & webpages are available at http://bit.ly/2DaUoup & https://bit.ly/3l8avjv.
4Stimuli screenshots & webpages are available at https://bit.ly/2C8JmKP & https://bit.ly/3l8avjv.
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Table 3.1: Summary Experimental Details

Characteristic Experiment-I Experiment-II Experiment-III

Number of webpages 51 36 149
Number of participants 65 (33M; 32F) 42 (21M, 21F) 11 (4M, 7F)
Min. age of participants 21 years 20 years 21
Max. age of participants 34 years 32 years 25
Avg. age of participants 24.32 years 26.93 years NA
Standard deviation of age 3.24 years 2.69 years NA
Screen resolution 1680× 1050 1280× 720 1360× 768
Fixation-threshold 100 ms 100 ms 100 ms
Each webpage display duration 5 seconds 5 seconds 5 seconds
Number of fixations on Text 11722 5726 NA
Number of fixations on Images 3013 2223 5762
Total number of fixations 14735 7949 5762

for the purpose of replication and reproducibility.

3.1.3 Experimental Setup

A slide-show presentation was prepared with a blank slide inserted after every webpage
to reset the participants’ attention after every webpage. Counter-balance mode of stimuli
presentation was considered to mitigate the ordering effects [161]. A 22" desktop monitor
was used for displaying the stimuli. Each slide (including the blank webpage) was presented
for five seconds duration which is typical for free-viewing analyses [134].

3.1.4 Procedure

Participants (see the details in Table 3.1) were individually invited to the experimental setup.
Each participant was briefed about the experimental setup. Instructions were provided
that all the webpages are independent (to avoid the expectational bias about presentation
sequence). In pre-experimentation step, eye-tracker calibration was performed using a
5-point method (participants gazed at the center of a red-color ball when it was moving
along the four corners and the center of the screen as shown in Figure 3.3, second from
left). Quality of the calibration was assessed and recalibration was performed, in case of
errors. After successful calibration, an automated slideshow was presented using counter-
balanced mode (to mitigate the stimuli ordering effects on attention) which was free-viewed
by the participant while their eye-movements were captured by the eye-tracker. In the
post-experimental survey, participants were asked how many of the webpages shown in the
experimentation was previously seen by you? for which each participant reported a number
from 0 to the number of stimuli webpages. The reported median of zero known webpages
mitigated the possible memory-bias effect.
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3. EYE-TRACKING EXPERIMENTS AND VISUAL FEATURES

Stimuli Calibration

Calibration-Check

Gaze-tracking

Figure 3.3: Experimental procedure in four steps: (i) stimuli loading (ii) eye-tracker cali-
bration for a participant (iii) checking for successful calibration (iv) gaze-tracking during
stimuli presentation

3.1.5 Data Extraction

From users’ gaze data, fixations were extracted with the fixation duration of at least 100
milliseconds which is a typical threshold [55]. Accordingly, Fixation-Indices (FIs) were
assigned. Now, the locally stored webpages were launched in a headless browser to replicate
the screenshots of stimuli webpages, as seen by the participants. Based on the fixation-
position, the DOM tree of the corresponding webpage is traversed (using a JavaScript
program) and the leaf node element is identified, analogous to [19]. The corresponding
fixated elements were identified from the fixation location. Among the extracted fixations,
the repetitive fixations (multiple fixations from the same participant on a web element) are
pruned. The repetitions might be due to the lack of further salient elements on a webpage,
where, as per inhibition-of-return, participants are less likely to attend the already attended
element [89]. Consequently, we considered the FI corresponding to the first attention

39



3.2. EXPERIMENT-I DATA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

F
re

q
u
e
n
c
y

Fixation-index

Text
Image

Figure 3.4: Experiment-I: Frequency distribution of fixation-indices

allocation (on the element) for the analysis.

3.2 Experiment-I Data

The frequency distribution of FIs of both the modalities obtained from Experiment-I is
shown in Figure 3.4. The number of fixations on text is 11722 and the number of fixations
on images is 3013.
The preliminary observation shows that more number of text elements were fixated than
the image elements for respective FIs. This is attributed to the presence of relatively more
number of text elements than image elements on bi-modal webpages. However, for both
modalities, the frequency of an FI (attention-levels) decreases with increasing FI value.
Consequently, the latter FIs are relatively sparser being associated with lesser number of
elements.
This dataset is widely utilized for demonstrating the efficacy of proposed element-driven
computational approaches on multimodal webpages (in Chapter 5, Chapter 6 and Chapter 7).

3.3 Experiment-II Data

The frequency distribution of FIs for both the modalities obtained from Experiment-II is
shown in Figure 3.5. The number of fixations on text is 5726 and the number of fixations on
images is 2223.
Analogous to Experiment-I, more number of text elements are associated with an FI than
the image elements. Comparing both the experiments, the dataset size (number of fixations)
of Experiment-I is larger than the Experiment-II as more number of elements are fixated
from both the modalities. This is attributed to the more number of stimuli webpages and
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Text

Mixed

Pictorial

Figure 3.6: Sample stimuli webpages from each category of Experiment-III

participants in Experiment-I. See Table 3.1 for summarization of both the experiments.
This dataset is utilized for preliminary analyses towards the computational approaches
(in Chapter 4), and for demonstrating the efficacy of element-driven attention prediction
approaches on unseen data (in Chapter 6 and Chapter 7).

3.4 Experiment-III Data

We have utilized the open-source dataset as presented in [134, 135]. The stimuli consists
of three categories of webpages (Text, Mixed, and Pictorial) which were free-viewed by 11
participants where each webpage was displayed for five seconds. The sample stimuli from
each category is shown in Figure 3.6. The typical threshold of 100 milliseconds [19] is used
to identify the fixations and assign the fixation-indices for each user on each webpage. As,
only webpage screenshots are available (unlike the HTML webpages), we manually extracted
the image elements corresponding to the fixation-locations. In case only a part of the image
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3.5. CONSIDERED VISUAL FEATURES

Figure 3.7: Frequency distribution of fixation-indices (attention-levels)

element is above the visual fold, the respective visual portion is considered for feature
extraction and analysis. We made this curated data (consisting of extracted images, features
along with attention allocations) publicly available5 for research community’s interest.
The frequency distribution of the FIs from Experiment-III are shown in Figure 3.7. In
total, image elements from text category obtained 1369 fixations, mixed category obtained
1866 fixations, and pictorial category obtained 2527 fixations. Evidently, web images on
Pictorial-category webpages consistently received more fixations followed by Mixed-category
and Text-categories. This is attributed to the presence of more number of image elements
on Pictorial-category than its counterparts. However, across the categories, the frequency of
attention-levels consistently reduced with increasing attention-level indicating the reduction
in salient image elements.
This dataset is utilized for image elements’ based computational analysis (in Chapter 4), and
for demonstrating the efficacy of element-granular attention prediction on cross-experimental
data (in Chapter 6).

3.5 Considered Visual Features

Towards the application of the proposed approach, the following visual features are extracted
for Data-Of-Interests (DOIs) (fixated elements) of both modalities.

3.5.1 Visual Text Features

For each text DOI, the visual representation determining Cascading Style Sheets (CSS) [29]
features were extracted, analogous to [19]. The extracted features are segregated into groups

5at https://bit.ly/2lL1ORW
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3. EYE-TRACKING EXPERIMENTS AND VISUAL FEATURES

Table 3.2: Visual features of text modality

Feature
Group

# of
feat. Visual Text Features

COLOR 40 Text color, Background color, Outline color, Text decoration color, Text
emphasis color, Border color (left, right, top, center), Column rule color

SPACE 11 Line height, Margin, Padding, Column gap, Text indentation
SIZE 6 Font size, Font weight, Border size

FAMILY 22, 9,
15

Selected 85% of the font-families contributing to the cumulative
distribution. (22 without grouping; 9 for WG & UG; 15 for WUG)

POSITION 5 left, right, top, and bottom distance from edges and area
Total 84 without grouping; 71 for WG and UG; 77 for WUG

Table 3.3: Visual features of the image modality

Feature Group # of
feat. Visual Image Features

HISTOGRAM 32 Eight uniform histogram bins for each of red, green, blue, and gray color
components

COMPREHENSIVE 11 Luminance, hue, saturation, brightness, value, mean, and variance of the
R,G,B color component values

CONTRAST
HISTOGRAM 32 Difference between the respective HISTOGRAM of the stimuli webpage

and the image
CONTRAST COM-

PREHENSIVE 11 Difference between the respective COMPREHENSIVE features of the
webpage and the image

POSITION 5 left, right, top, and bottom distance of the image from screen, and area
Total 91

for easy comprehension as shown in Table 3.2. Note that the WG, UG, and WUG are
introduced in Chapter 5. From each COLOR attribute, four features including red, green,
blue, and color opacity features were extracted. The SPACE that describes the spacing
around and within the text DOI contributed eleven features. The margin and padding
represent the rectangular spacing around left, right, top, and bottom sides with four features
each. The font-size and its thickness determining font-weight contributed six features towards
SIZE group along with a rectangular border size. The POSITION group describing the
rectangular position of the text DOI and its size contributes five features.

Among the considered features, only font-family is consisting of categories such as ‘Arial’,
‘Times New Roman’, ‘Sans’, etc. We performed a dummy variable coding— considering each
unique category as a separate dichotomous feature where the respective category occurrence
is indicated with one and absence with zero [146]. However, such an approach may result
in sparse dichotomous features for the rarely occurring font-family values. Consequently,
we computed the Cumulative Distribution Function (CDF) of font-family frequencies and
merged the sparse font-families which do not contribute to 85% of the total data. The
resultant FAMILY feature counts for each criterion is shown in Table 3.2.
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3.5.2 Visual Image Features

Color histograms were extracted for each image DOI. Eight uniformly spaced histograms
are computed for red, green, blue, and gray color components. Besides color histograms, we
considered average and variance values for each color component, brightness, luminance, hue,
saturation, and intensity. For contrast features, we subtracted the feature values of images
from the corresponding values associated with the respective webpage. This resulted in
consideration of 91 image features as reported in Table 3.3. In summary, HISTOGRAM and
COMPREHENSIVE describe the INTRINSIC visual characteristics of image DOIs while
CONTRAST HISTOGRAM and CONTRAST COMPREHENSIVE features describe the
contrast with respect to the underlying webpage.
The detailed description of text and image visual features is provided in Section 2.7.

3.6 Summary

In this chapter, three free-viewing eye-tracking experiments are described. Two of those were
conducted by us while the remaining experiment was available in the open-source. Further,
the text and image visual features considered for the rest of the analyses are summarized
and segregated into cohort groups for easier comprehension. The preliminary observations
of the users’ attention data revealed:

• Frequency of Fixation-Indices (FIs) decreases with the corresponding increase in FI
value. That is, latter FIs are relatively sparse when compared with initial FIs.

• Overall, on bi-modal webpages, more number of unique text elements are associated
with a given FI than the respective unique image elements.
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4
Text, Images, and Position based

Attention Analysis
The attention modeling evolved from position-based analysis to computational models.
Accordingly, this chapter analyzes the position-based attention allocation but, quantitatively
at the higher granularity (Section 4.1). Subsequently, the prominence of the text and
image visual features in explaining the free-viewing attention is analyzed (Section 4.2) and
computationally modeled (Section 4.3). Owing to the prominence of image elements in
drawing the user attention, ground-truth attention allocation approaches were proposed and
analyzed for the same (Section 4.5 and Section 4.6).
For the analysis reported in this chapter (Section 4.1, Section 4.2, Section 4.3), the data from
eye-tracking Experiment-II (described in Section 3.3) was utilized. In the following section,
the prominence of position in drawing the user attention for text and image modalities is
analyzed.

4.1 Analysis-I— User’s Positional Visual Attention Distribu-
tion

In this section, user’s positional attention distribution is presented to answer the following
first research question.
R1 → How users allocate free-viewing ordinal attention on text and image elements
positioned in 3× 3 webpage regions?
Towards the analysis, each webpage was divided into 3× 3 uniform regions (tiles), analogous
to [19]. We refer these regions as TopLeft,TopCenter, . . . ,BottomCenter,BottomRight where
Top,Middle,Bottom indicate the row of a region while Left,Center,Right indicate the column
of a region (as shown in Figure 4.1a). In each region, following attention allocation based
metrics were computed.
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Figure 4.1: Median time (in milliseconds) for first fixation on 3x3 webpage regions during free-
viewing, information foraging and page recognition tasks. Note that the values corresponding
to information foraging and page recognition tasks were directly utilized from [19] for sanity
comparison.

Median time for first fixation: The median time (in milliseconds) a participant takes
to allocate their first fixation in a region. The metric considers the time taken for the
first fixation among all webpages.

Viewing frequency: The percentage of participants fixated in a region among all the
participants that fixated on the corresponding webpage at all. The metric considers
the fixations of all participants on all webpages.

Fixation-Index (FI) frequency: The frequency of Fixation-Indices (FIs) obtained from
all the participants.

The first two metrics help to understand the user’s region-based attention allocation whereas
the FI frequency indicates the user’s attention allocation at the granularity of text and image
elements. The MiddleCenter region (see Figure 4.1a) is the quickest to draw user attention as
opposed to MiddleLeft region in information-foraging and TopLeft region in page-recognition
tasks. The MiddleCenter also obtained the highest viewing frequency up to first one second
of user’s gazing. It achieved 53.68% of viewing frequency as opposed to MiddleCenter region
in information-foraging with 27.5% and MiddleLeft region in page-recognition tasks with
27.4%. Overall, TopLeft,TopCenter,MiddleLeft, MiddleCenter regions are more prominent in
drawing the user attention and Bottom,Right regions are least prominent in drawing the user
attention for all the three tasks. The detailed description of Median time for first fixation
and Viewing frequency are as follows.
Figure 4.1 shows the median time for first fixation over all the webpages during free-
viewing (Figure 4.1a), and its comparison with information foraging (Figure 4.1b) and page
recognition (Figure 4.1c) tasks reported in [19]. The smaller the balloon size inside the
tile the lower is the time taken for first fixation in that region. That is, a smaller balloon
indicates the region’s higher prominence in drawing the user attention [20, 113].
Clearly, MiddleCenter region (see Figure 4.1a) is the quickest to draw user attention
during free-viewing with 268 milliseconds followed by TopCenter,TopLeft and MiddleLeft
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Figure 4.2: Viewing frequency upto each of five seconds during free-viewing ((a), (d), (e), (f),
(g)) and for the first second during information foraging (b) and page recognition (c) tasks

regions with 776, 1120 and 1144 milliseconds respectively. Although TopLeft, TopCenter,
MiddleLeft, MiddleCenter regions are prominent for free-viewing, information-foraging and
page-recognition tasks, their preferential dominance varied across the tasks. That is, the
MiddleCenter,MiddleLeft and TopLeft regions respectively drew user’s earliest attention
during free-viewing, information foraging and page recognition tasks. However, Bottom and
Right regions were least prominent in drawing the first fixation for free-viewing, analogous to
information-foraging and page-recognition tasks. The users preferring MiddleCenter region
over either of the MiddleLeft or TopLeft is attributed to the absence of a task. On the
contrary, during the latter two tasks, users tried to explore the most relevant information
containing regions which emanated from the user experiences.
Themedian time for first fixation helps in understanding how prominent a region is in drawing
the user’s first attention. However, it does not emphasize the proportional contribution of
all the participants. For example, say, out of six participants five participants made their
first fixation in TopRight region after 500, 550, 570, 600, 620 milliseconds whereas only one
participant fixated in BottomRight region after 400 milliseconds (ms). Accordingly, 570
ms and 400 ms are their respective median time for first fixations giving an impression
that BottomRight draws quicker attention than TopRight among all participants, whereas
it could only draw the attention of one participant. To overcome this limitation of the
aforementioned metric viewing frequency was computed.

Viewing Frequency: We computed the viewing frequency— the percentage of partic-
ipants fixated in a region among all the participants that made at least one fixation on
the respective webpage [19], to understand overall participants’ viewing behavior across all

47



4.1. ANALYSIS-I— USER’S POSITIONAL VISUAL ATTENTION DISTRIBUTION

webpages. Figure 4.2 shows the viewing frequency during the first second of free-viewing
(Figure 4.2a) in comparison with information foraging (Figure 4.2b) and page recognition
(Figure 4.2c) tasks reported in [19]. Additionally, the evolution of viewing frequency during
the gazing session are shown in the intervals of one second, Figure 4.2a, Figure 4.2d, Fig-
ure 4.2e, Figure 4.2f, and Figure 4.2g. During the first second of gazing, MiddleCenter draws
the dominant users’ attention with a viewing frequency of 53.68% as compared to dominant
27.5% in MiddleCenter region for information foraging and 27.4% in MiddleLeft region for page
recognition tasks. Though the four regions, TopLeft,TopCenter,MiddleLeft,MiddleCenter, are
dominant than rest of the Bottom and Right regions in all the three cases, the viewing fre-
quency is almost evenly distributed across these four regions for information foraging and page
recognition than free-viewing. Among the dominant four, TopLeft,TopCenter,MiddleLeft
regions’ viewing frequency of free-viewing is comparable to information foraging and page-
recognition. It indicates the users’ bias towards MiddleCenter region for free-viewing, in
agreement with the findings of [61].
To understand the participants’ viewing behavior with the elapse of time, we computed the
viewing frequency for the incremental duration of one second. The viewing frequency is
shown in Figure 4.2a, Figure 4.2d, Figure 4.2e, Figure 4.2f, and Figure 4.2g indicates that
users drift their attention to other regions of the webpage with the passage of time. The
lowest metric value (17.44%) associated with the BottomRight region as shown in Figure 4.2g
indicates the participants’ lower interest in this region. The relatively lower viewing frequency
associated with the Bottom region over the gaze-session may also attribute to the earlier
generic, visual feature discarded web design guidelines such as F-pattern [105], following
which designers are less likely to position the visually appealing content in the Bottom region
of webpages.

Viewing Behavior on Text and Image Elements

The Fixation index frequency (FI frequency) is computed for text and image elements to
understand their prominence in drawing the user attention based on their position in each
region. Figure 4.3 and Figure 4.4 show the Top-5 most frequent FIs in each region for text and
image elements respectively. Overall, text elements received a higher number of fixations than
images for each region. Even the frequency of ordinal attention (fixation-index) is more for
text elements than image elements. This may be attributed to the presence of more number
of text elements than image elements on webpages. In congruence with the median time for
first fixation and viewing frequency, the MiddleCenter,TopCenter,TopLeft,MiddleLeft regions
drew a relatively higher number of initial fixations than Bottom,Right regions. Especially,
for the TopLeft region, FI=1 is most frequent for images whereas FI=3 is most frequent for
texts. This may be essentially due to the presence of dominant logo images in this region.
In TopCenter region, FI=1 is most frequent for both text and images. However, the FI
frequency of text is significantly higher than the images. This may be due to the presence of

48



4. TEXT, IMAGES, AND POSITION BASED ATTENTION ANALYSIS

162
145

136 134

103

3 1 2 4 5

176

94
85

68
58

1 2 3 4 5

29 28
26 25

22

1 8 5 7 11

100 97

67
61

51

2 3 1 4 5

389

153

88 76 58

1 2 3 4 5

34 34
31 30

28

5 7 6 9 8

46
42 40

27 26

3 5 4 1 6

51
47 45 44 43

7 1 10 3 9

19

16
14

13 13

7 5 9 8 10

Figure 4.3: Fixation Indices distribution for Text elements in 3x3 plot. In each subplot,
horizontal-axis indicates the fixation indices and vertical-axis indicates the corresponding
frequency. Note that the horizontal-axis is not sorted, and limits along the vertical axis
varied across subplots for better visualization.

47 47

37

24
21

1 2 3 4 5

75
68

27
23

17

1 2 3 4 6

11

9
8

7 7

7 3 11 1 8

62

41
36

22

12

2 1 3 4 5

324

103

45
27 24

1 2 3 4 5

18

14

11
9 9

6 5 7 1 2

11

9 9
8

7

4 10 12 3 1

25 24 24 23 23

6 2 3 1 4

17
15 15

13
12

9 7 8 11 3

Figure 4.4: Fixation Indices distribution for Image elements in 3x3 plot. In each subplot,
horizontal-axis indicates the fixation indices and vertical-axis indicates the corresponding
frequency. Note that the horizontal-axis is not sorted, and limits along the vertical axis
varied across subplots for better visualization.

49



4.1. ANALYSIS-I— USER’S POSITIONAL VISUAL ATTENTION DISTRIBUTION

majority webpage titles in this region.
For the text and images positioned in MiddleCenter region of webpages, the percentage
of difference (difference between frequencies×100/mean of frequencies) between most fre-
quent FI (FI=1) and the second-most frequent FI (FI=2) as shown in Figure 4.3 and
Figure 4.4 is very high (103.51% for images and 87.08% for text) in comparison to
TopCenter,TopLeft,MiddleLeft regions’ (9.79%, 0%, 40.78% for images and 60.74%, 11.07%,
3.05% for text). The very high percentage of difference indicates that the MiddleCenter
region is predominant in drawing the first fixation than any other fixation-index with respect
to the other regions. Subsequently, for text, TopCenter region achieves dominant FI=1,
TopLeft region achieves either of the third or first, MiddleLeft region achieves either of second
or third fixation. On the contrary, TopCenter,TopLeft,MiddleLeft regions obtain either of
first or second fixation for images.
Though the Bottom,Right regions are less prominent in drawing the user attention, the
elements in these regions are not always discarded. The FI=1 is among the Top-5 frequent
FIs in the TopRight,BottomLeft,BottomCenter regions for both the text and images (see
Figure 4.3 and Figure 4.4). For images, FI=1 and 2 are among the Top-5 in MiddleRight
region. It indicates that visually salient elements succeed in drawing the user attention even
if they are positioned in Bottom or Right regions on a webpage.

Key Findings of Analysis-I

• MiddleCenter region is the quickest to draw user’s first fixation during free-viewing in
contrast to MiddleLeft and TopLeft regions respectively for the information foraging
and page recognition tasks.

• In free-viewing, MiddleCenter region dominates in drawing higher proportion of users’
attention followed by MiddleLeft,TopCenter,TopLeft regions.

• Proportion of users fixating in MiddleLeft,TopCenter,TopLeft regions are comparable
for the three cases, free-viewing, information foraging and page-recognition.

• Overall, text elements receive more number of fixations as well as more frequent number
of fixation-indices when compared with the image elements.

• For both text and images, MiddleCenter,MiddleLeft,TopCenter,TopLeft regions are
prominent to draw the user’s initial fixations.

• However, the text and image elements in Bottom and Right regions are not always
discarded and salient elements in this region may draw the user’s first fixation.

The Analysis-I highlights the prominence of position in drawing user attention. However, it
is not clear whether the positional bias is because of the idiosyncratic user behavior or web
designers preference to place the visually appealing content in the upper and left part of the
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webpages, following the earlier design guidelines. Additionally, to investigate the prominence
of elements’ intrinsic visual features (besides the position) in drawing the user attention, we
performed a quantitative relational analysis between visual features and the ordinal visual
attention (fixation indices) as described in Section 4.2.

4.2 Analysis-II— Identification of Informative Visual Fea-
tures

In this section, we perform the information-gain based analysis to identify the informative
visual features in explaining the achieved attention. The visual features with higher infor-
mation gain are considered as highly influential as they better explain the attention. That
is, the analysis investigates the answer to the following research question.
R2 → Which intrinsic visual features are informative in explaining the free-viewing
ordinal attention on web elements?

Information Gain: indicates the information associated with a feature apropos to the
achieved attention, that is, fixation indices. That is, it indicates the relevance (attention
explaining ability) of the feature with respect to the ordinal visual attention. The relative
information gain scores are of interest than their absolute values in identifying the influential
features [52, 103]. We computed the entropy-based information gain for text and image
features using

Information Gain(Feature) = H(Class) +H(Feature)−H(Class, Feature) (4.1)

where H(.) indicates the entropy and H(., .) indicates the joint entropy.
The frequency distribution of Fixation-Indices (FIs) from Experiment-II are visualized in
Figure 4.5. The latter FIs are sparser when compared with the initial FIs. To segregate
the initial fixations from the latter, we define the following thresholding (called saliency
thresholding, θ) on the ordinal visual attention (fixation-indices). This is essential as the
latter fixations might occur on visually less salient elements as all the salient elements are
already explored.

θ ∈ {1, 2, · · · , fmax} (4.2)

fe = min(fe, θ) (4.3)

The fixation-indices less than the thresholding variable θ persist with the same fixation-index,
highlighting its prominence in drawing the user attention. The fixation-indices from and
above the θ are denoted with θ to indicate the less salient visual attention associated with
the element.
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Figure 4.5: Frequency distribution of fixation indices over text and image elements

θ selection: To select the θ value, we computed the median FI on both text and image
elements. The frequency distribution of fixation indices along with the median FI is shown
in Figure 4.5. The median FI on the text is five and the median FI on the image is four.
That is, on an average, a user makes five fixations on text elements and four fixations on
image elements during their gazing session on a webpage. For the sake of uniformity and
analytical comparison, we consider the thresholding as θ = 5. To further investigate the
influence of other FIs on attention, we performed the analysis in the multiple of θ. That is,
thresholding values are θ = 5, 10, 15, fmax. θ = fmax indicates the performance analysis over
all the FIs, that is, without thresholding.

4.2.1 Informative Text Visual Features

The informative gain (IG) scores for Top ten text features are shown in Table 4.1. The text
element’s size is the most informative visual feature with respect to ordinal attention (see
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Table 4.1: Information gain of text visual features. Color intensity represents relative
importance of a feature in comparison to others.

Feature Info. gain Info. gain Info. gain Info. gain
θ = 5 θ = 10 θ = 15 Overall

size 0.0426 0.0443 0.0356 0.0362
rect.left 0.0342 0.0285 0.0295 0.0303
rect.top 0.0268 0.0246 0.0248 0.0256
rect.right 0.0221 0.0148 0.0154 0.0166
padding-bottom 0.0053 0.0056 0.0064
rect.bottom 0.0172 0.0076
font-size 0.0069 0.0088
column-gap 0.0069 0.0088
line-height 0.0070
font-weight 0.0038

Table 4.1). It confirms the intuition that larger sized text elements draw better attention
than their smaller counterparts. Additionally, highlighting the prominence of position, the
four position-related visual features were found to be among the Top-10 informative visual
features. These are in agreement with [19] findings where size and position were found to
be informative for information foraging and page recognition task settings.
The notable intrinsic informative visual features are padding-bottom, font-size, column-gap,
line-height and font-weight. These five text-related intrinsic visual features were dis-
carded in [19] due to tag-only consideration. Regarding the feature groups (shown in Ta-
ble 3.2), SPACE (with features padding-bottom, column-gap, line-height) and SIZE
(with features font-size, font-weight) groups are informative where especially the former
group was little explored for user attentional analyses on the text. Surprisingly, none of
the COLOR related intrinsic visual features were found to be informative which are widely
explored in the literature [17, 108, 153]. This may be attributed to the wide usage of black
color for text and white color for the background with little variation in both of them. To
summarize, besides element’s size and position, text’s font and its thickness, and the
height of text line, the spacing between the columns of text, the spacing between text content
and the border are informative in explaining the user’s free-viewing ordinal attention on
text elements.

4.2.2 Informative Image Visual Features

The informative gain (IG) scores for Top-15 image features are shown in Table 4.2. The image
element’s position from the top of the webpage is the most informative visual feature followed
by its size. Among the color histograms, the MID-LEVEL HISTOGRAM (third, fourth, fifth,
and sixth histogram bins) are more informative than lower (first two bins corresponding to
lower color component values) and higher histograms (last two bins corresponding to higher
color component values), indicating pure colors and absence of colors are least informative in
explaining the user attention. Surprisingly, neither of COMPREHENSIVE and CONTRAST
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Table 4.2: Information gain of image visual features. Color intensity represents relative
importance of a feature in comparison to others.

Feature Info. gain Info. gain Info. gain Info. gain
θ = 5 θ = 10 θ = 15 Overall

rect.top 0.1364 0.1258 0.1273 0.1056
size 0.1130 0.1044 0.1064 0.1091
hist_gray_3 0.1111 0.1174 0.1004 0.0772
hist_R_5 0.1130 0.0975 0.0988 0.0996
hist_gray_5 0.1117 0.0909 0.0922 0.0931
hist_gray_6 0.1059 0.1077 0.0892 0.0895
hist_G_5 0.0977 0.0882 0.0890 0.0898
hist_G_3 0.0875 0.0893 0.0899 0.0912
hist_B_5 0.1083 0.0878 0.0881 0.0893
hist_G_6 0.1007 0.0870 0.0885 0.0888
hist_B_3 0.0993 0.0862 0.0867 0.0878
hist_B_4 0.1019 0.0813 0.0823 0.0835
hist_R_4 0.0971 0.1005 0.0712 0.0717
hist_gray_4 0.0879 0.0909 0.0920 0.0669
rect.left 0.0790 0.0813 0.0852 0.0884

visual features found among the Top-15 most informative intrinsic visual features.
In [19], intrinsic image features were discarded by utilizing the binary-valued “IMG” feature
to indicate the image presence. However, the “IMG” HTML tag was not found to be
informative among Top-10 features for information foraging and page recognition tasks. On
the contrary, the IG scores of image intrinsic visual features were higher as well as densely
packed than text features across all the FI thresholding as shown in Table 4.1. We attribute
this observation to the inherent representation of the images, as multiple pixels constitute
an image with each pixel associating three simultaneous values corresponding to the red,
green and blue color components. Typically, in case of a modification in pixel value, all the
associated color component values altered resulting in tighter IG scores for images.

Key Findings of Analysis-II

• The text intrinsic visual features padding-bottom, column-gap, line-height (SPACE
group) and font-size, font-weight (SIZE group) are informative besides size and
position in explaining the free-viewing ordinal attention on text elements.

• For images, MID-LEVEL HISTOGRAM are highly informative besides the size and
position.

• Surprisingly, the widely explored COLOR features of text and COMPREHENSIVE,
CONTRAST features of images were not found to be among the highly informative
features.

• Relatively, image intrinsic visual features are more informative (with higher IG scores)
than the text’s intrinsic visual features.
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• The modality-independent features, size and position, are informative for both
text and images, analogous to the information foraging and page recognition task
settings [19].

4.3 Analysis-III —Modeling the Attention onWeb Elements

The Analysis-II helped in identifying the informative visual features with respect to the
attention. Further extending the investigation, we explored how well the informative visual
features perform in predicting the ordinal visual attention on a given web element. That
is, we investigate the following research question which is solved through the multi-class
classification procedure described in subsection 2.6.1.
R3→ How the informative intrinsic visual features perform in predicting the free-viewing
ordinal visual attention?
It is essential to understand the influence of informative visual features (obtained from
Section 4.2) in segregating and predicting the attention on individual web elements. Towards
the segregation, we performed decision tree based analysis to predict whether an element
obtains a fixation-index less than or equal to the given threshold θ or not, in subsection 4.3.1.
Towards the attention prediction, we built a multi-class classification model using linear
SVM to predict the actual fixation-index of a given element in subsection 4.3.2.

4.3.1 Salient Element Identification through Decision Tree

Table 4.3: Element saliency prediction metrics using Decision Trees

Metric Text Image Task-dependent
θ = 5 θ = 10 θ = 5 θ = 10 [19]

Precision 77.29% 55.93% 95.83% 63.64% 75%
Recall 93.72% 34.38% 82.14% 50.00% 53%
Kappa (κ) 0.2505 0.2278 0.6739 0.3642 0.59

Procedure: All the fixated text elements along with their associated fixation indices (FIs)
are considered for the analysis. An element whose FI is less than θ is considered as a salient
element, that is, the positive class is assigned. Accordingly, the negative class is assigned for
the elements with FI equal to θ. For the elements with multiple class assignments (based
on FIs from multiple participants), majority-voting-scheme is pursued to assign the true
class label with the random resolving of conflicts (that is, an equal number of positive and
negative class labels). Subsequently, elements are divided into 80:20 train:test sets through
random sampling. Using the informative features obtained from Section 4.2, a decision
tree is constructed using the train set whose performance is evaluated using the test set of
elements. Additionally, 10-fold cross-validation with 10 iterations is performed and averaged
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performance is considered. The same procedure was followed for image elements and the
analysis was conducted using ‘rpart’ (Recursive partitioning for classification) and ‘caret’
(Classification and Regression Training) packages from R language [54, 149].

Results: The decision tree based metrics for θ = 5 and 10 are shown in Table 4.3. The
metrics indicate a very good performance of the informative features in identifying the
salient elements at the fixation-index threshold (θ = 5) closer to the median FI. Both the
precision and recall performances are higher than the respective task-dependent performance
reported in [19] where a decision tree is constructed to investigate whether an element
obtains a fixation or not. The higher performance in the free-viewing case is attributed
to prominence of visual features in guiding the initial fixations whereas user idiosyncratic
expectational bias is an addendum in directing the attention in task-dependent settings. The
relative higher precision of the images (95.83%) than the text (77.29%) indicates that image
visual features are more influential in deciding whether an element is salient or not than
their counterpart text features. In contrast, the recall of text (93.72%) is higher than the
images (82.14%) indicating the visual features of the salient text elements better segregates
them from non-salient element features than their counterpart image features. The overall
performance in identifying the salient elements is substantial [102] for images (κ = 0.6739)
than text (κ = 0.2505). However, the model performance reduces with an increase in θ (see
performance for θ = 10 in Table 4.3) as informative visual features reduced and the later
fixations are less likely driven by the visual features.
The decision tree based analysis helped in segregating the salient elements from non-salient
elements. To further quantify the saliency of the identified elements and to predict the
ordinal visual attention, we performed multiclass classification using Linear Support Vector
Machine (SVM) as described in subsection 2.6.1.

4.3.2 Ordinal Visual Attention Prediction on Web Elements

Ordinal visual attention or Fixation-Index (FI) prediction is a multiclass classification
problem. Each possible value of FI represents a class. Unlike the binary classification (salient
or non-salient determination), multiclass (number of classes > 2) classification (prediction
of FI) is a difficult problem to solve. One can not obtain a single boundary to separate
all the classes from each other. For θ classes,

(θ
2
)

= θ(θ − 1)/2 separating boundaries need
to be determined to separate any class from every other class. That is, θ(θ − 1)/2 binary
classifiers are required. Accordingly, multi-class classification requires to learn number of

parameters ×
(θ

2
)
parameters. For this ordinal visual attention prediction, we utilized the

approach as described in subsection 2.6.1. The analysis was carried out using ‘rminer’ (Data
Mining Classification and Regression Methods) [31] and ‘kernlab’ (Kernel-Based Machine
Learning Lab) packages [83] in R.
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Figure 4.6: Ordinal visual attention prediction procedure

Table 4.4: Ordinal visual attention prediction performance

Type Model Average
Accuracy(%)

micro
F1-score(%)

Text Our model 87.37 68.44
Baseline 68.48 21.20

Image Our model 89.10 72.75
Baseline 67.84 19.61

Data Preparation: The frequency distribution of the FIs for text and images are shown
in Figure 4.5. The FIs are reassigned using Equation 4.3 to persist with the original FI in
case it is less than the threshold θ or else replace with the threshold FI. For the elements
with multiple FIs, majority-voting-scheme is followed to assign the ground-truth FI with the
random resolving of conflicts.

Results: The ordinal visual attention prediction results at median FI thresholding are
shown in Table 4.4. Clearly, the informative intrinsic visual feature-based multiclass model
outperformed the baseline model. The text-based model outperformed the baseline micro
F1-score by 222.83% with a value of 68.44% and Average Accuracy by 27.58% with a value
of 87.37%. Similarly, the image-based model outperformed the baseline micro F1-score by
270.98% with a value of 72.75% and Average Accuracy by 31.34% with a value of 89.10%.
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Figure 4.7: Prediction performance of informative intrinsic visual features with variation in
θ

The relatively superior performance of the images over text is attributed to the higher
information gain scores of image intrinsic visual features. The seemingly higher baseline
average accuracies (68.48% for text and 67.84% for images) are attributed to the class
imbalance (see Figure 4.5), where accuracy tend to bias towards the prediction of most
frequent class.

Variation in θ: To further understand the influence of θ on prediction performance, the
prediction procedure is repeated for each increment in θ. Average Accuracy and micro
F1-scores are shown in Figure 4.7. The Average prediction Accuracy of text and images
remained higher than 86% (and closer to 90%) throughout the variation in θ and remained
outperformed the baseline models. However, the Average Accuracy of baseline models
(for both text and images) progressively increased with each increment in FI threshold
θ. This corresponds to the increase in class-imbalance with an increase in FI threshold.
In contrast, the class-imbalance (or bias) overcoming micro F1-score remained lower for
baseline models throughout the variation in θ. The prediction performance reduced with an
increase in FI threshold. This is attributed to the reduction in remaining salient elements
of a webpage on which user attention allocation varied diversely, resulting in relatively
inadequate performance.

Key Findings of Analysis-III

• Informative visual features help in segregating the salient elements (fixation-index up
to the median FI) from non-salient.

• Image features are better than text features in deciding whether an element is salient
or not.
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• Text features are better than image features in correctly identifying the salient elements
as salient.

• The informative visual features help in predicting the salient fixation-index of an
element with nearly 90% average accuracy.

• The best fixation-index prediction is achieved at the thresholding near the median
FI of the elements with 68.44% and 72.75% micro F1-score respectively for text and
images.

• The average accuracy remains around 90% and micro F1-score reduces with increased
FI threshold θ.

Motivation for Remainder of the Chapter: On prevalent bi-modal webpages con-
sisting of text and images1, the latter stand-out from rest-of-the text [21, 165] and draw
relatively more attention [112]. Images are highly probable (60–70%) in drawing human’s
first attention [121] and overall attention of more than 50% as compared to text [123].
Consequently, Jana et al. [78] proposed a regression-based model to computationally pre-
dict the attention on image elements. However, the constrained model suffers from the
limitations as discussed in subsection 2.4.2. In remainder of this chapter, we present the
computational approaches towards overcoming those limitations. In Section 4.4 possible
non-linear association between image visual features and the user attention is investigated.
In Section 4.5, multiple ground-truth attention assignment techniques are investigated. In
Section 4.6 possibility of assigning multiple ground-truth attention to the same image element
are explored.

4.4 Kernel-based Attention Prediction

We investigated for the non-linear association between image visual features and the user
attention. That is, instead of assuming linear separation (boundary) between the classes,
multiple non-linear separations were considered during the classification. We utilized the
following popular kernel functions [141] in Equation 2.6 for our analysis.

Gaussian Radial Basis Function (Gaussian RBF) kernel:

K(Ik, It) = exp
(
−σ‖Ik − It‖2

)
(4.4)

It is a general-purpose kernel, especially used in the absence of prior-knowledge about
the data. φ() of Gaussian RBF kernel projects data from Rn to R∞. The hyper-
parameter σ > 0 is the inverse kernel width, that is, larger σ narrows the width of
bell-shaped curve of Gaussian RBF and vice-versa.

1any non-textual information such as pictures, icons, graphics and photographs are collectively referred as
images
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Polynomial kernel:

K(Ik, It) = (scale〈Ik, It〉+ offset)degree (4.5)

This kernel is especially popular in natural language processing domain. The hyper-
parameters scale helps to normalize the pattern without modifying the data, offset
provides the bias, and degree > 0 is the degree of polynomial.

Linear kernel:

K(Ik, It) = 〈Ik, It〉 (4.6)

It is useful for linearly separable data and is fastest to compute. Especially popular in
text classification.

Hyperbolic tangent kernel:

K(Ik, It) = tanh (scale〈Ik, It〉+ offset) (4.7)

Hyperbolic tangent kernel or sigmoid kernel or multilayer perceptron kernel is well-
known in neural networks field. Usage of sigmoid kernel with SVM is equivalent to an
application of two layer perceptron. The hyper-parameters are similar to polynomial
kernel’s.

Laplacian kernel:

K(Ik, It) = exp (−σ‖Ik − It‖) (4.8)

Similar to Gaussian RBF kernel but less sensitive to variations in σ.

Bessel kernel:

K(Ik, It) = −Besseldegreeorder

(
σ‖Ik − It‖2

)
(4.9)

The hyper-parameters order and degree are the parameters of Bessel function. Typ-
ically, degree is set to 1 and the kernel is popular in theory of function spaces of
fractional smoothness [141].

ANOVA RBF kernel:

K(Ik, It) =
degree∑
j=1

n∏
l=1

K
′(Ijkl , I

j
tl

) (4.10)

where K ′(Ijkl , I
j
tl

) is a Gaussian RBF kernel with Ikl and Itl indicating the lth feature
of Ik and It respectively. Accordingly, the kernel is similar to Gaussian RBF and
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Laplacian kernels.

In the aforementioned kernels, Ik and It are the webpage image data-points where former
is from training set and latter from test set. The 〈Ik, It〉 = I>k It is the inner product and
‖Ik− It‖ is the Euclidean distance between Ik and It. For the analysis, the hyper-parameters
are set to the default values, that is, scale = 1, offset = 1, degree = 1, and order = 1.
To analyze the performance of the proposed approach we utilized the gaze data from
Experiment-II.

Prediction Performance

The webpage image and associated fixation-index data was split into 80:20 train test
proportions for the analysis. In total θ(θ − 1)/2 = 10 binary classifiers were constructed
with the train-data and majority-voting-scheme was applied to predict the fixation-index for
test-data. The 5-fold cross-validation was employed to measure the performance. Prediction
procedure was repeated for 10 times after randomly permuting the data. The random
permutation overcomes the possible special structures occurring in splitting the data. The
performance over all the iterations were averaged to obtain the overall model performance.

Table 4.5: Prediction performance at median fixation-index

Method Average Accuracy micro-F1

Gaussian RBF kernel 91.64 79.10
Laplacian kernel 90.90 77.25
Polynomial kernel 89.18 72.95
Linear kernel 89.04 72.60
ANOVA RBF kernel 88.92 72.30
Bessel kernel 87.70 69.25
Sigmoid kernel 87.18 67.95

Jana and Bhattacharya model [78] 73.92 34.80

Random prediction (RP) model 67.63 19.07

The standard multiclass classification performance metrics, Average Accuracy and micro F1-
score are computed. Especially, for the class imbalanced data (such as shown in Figure 4.5b),
micro F1-score is best indicator of prediction performance as accuracy biases towards the
prediction performance on most frequent class (FI=1 in Figure 4.5b).
The averaged performance metrics are shown in Table 4.5. Among the kernels, Gaussian
RBF achieved the best performance (average accuracy=91.64% and micro-F1=79.10%)
followed by Laplacian (average accuracy=90.90% and micro-F1=77.25%) and polynomial
kernels. Sigmoid kernel achieved the relatively lowest performance with an average accuracy
of 87.18% and micro F1-score of 67.95%. As shown in Table 4.5, kernels’ performance
is consistent across the metrics. That is, the kernel with the highest average accuracy
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in θ.
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has shown the highest micro F1-score as well, and so on. However, micro F1-score better
highlighted the varied prediction performance of the kernels (ranging from 67.95% to 79.10%)
than the average accuracy (ranging from 87.18% to 91.64%). The linear kernel which linearly
models the association between image visual features and fixation-indices shown median
performance (average accuracy=89.04% and micro-F1=72.60%) among the kernels. This
performance indicates the significant linear association between considered features and the
quantitative visual attention.

Comparison with State-of-the-art: To compare our model performance with state-
of-the-art model, the constrained regression model [78] was applied on our dataset. As
their model restricts the image elements’ properties (a total of 6 images distributed into 3
vertical columns with each column containing 2 images completely inside them), webpage
satisfying the constraints was considered for learning the model parameters. Among the
five features, ‘Intensity-contrast’, ‘Chromatic-contrast’, ‘Size’, ‘X-position’, and ‘Y-position’,
former two features were discarded due to low correlation magnitude (<0.09 [78]) with the
fixation-index (-0.03 and 0.05 respectively). The significant correlations -0.30, -0.19, and
0.25 of ‘Size’, ‘X-position’, and ‘Y-position’ features resulted in regression model coefficients
as 0.41, 0.26, and 0.33 respectively. As shown in Table 4.5, their model achieved an average
accuracy of 73.92% and micro F1-score of 34.80%. Clearly all our kernel based models
outperformed the state-of-the-art performance. The rationale for poor performance of the
regression-based model is, our dataset consists of real-world webpages with no constraints
on images’ properties whereas their model expects the presence of only 6 images on webpage
but no other element.

Performance Vs. θ: To further understand the influence of fixation-index threshold θ on
performance, metrics were computed with variation in θ from 5 to 12 as shown in Figure 4.8.
The Gaussian RBF and Laplacian kernels showed persistently better performance than
other kernels. However, the prediction performance of the kernels reduced with increasing θ.
Especially, micro F1-score reduction was substantial whereas the average accuracy reduced
moderately. The performance reduction (beyond median fixation-index) is attributed to the
reduced number of salient webpage images, as on an average only four webpage images drew
user attention on each webpage.

In summary, the performance metrics demonstrated the efficacy of the proposed approach
in predicting the user’s attention on webpage images. The sample user attention predictions
are shown in Figure 4.9.

63



4.5. WEIGHTED VOTING BASED ATTENTION PREDICTION ON IMAGES

1

2 6

9 3

8

Prediction
model

Ground-truth attention Predicted attention

1

2 7

9 3

8

Figure 4.9: Predicted quantitative visual attention (on right) for the images of a webpage
(on left, along with Ground-truth attention).

4.5 Weighted Voting based Attention Prediction on Images

Motivation

Towards the representative attention assignment (prior to prediction), subsection 4.3.2
considered all user attention allocations as equivalent. That is, users’ initial attention and
the latter attention are uniformly weighted. In contrast, typically, the user’s initial attention
is of more interest and important than the latter attention as the latter attention may be
influenced by other factors such as the reduction in attention-drawing elements or semantic
features. Thus, it is essential to incorporate the prominence of each attention allocation
through adequate weighting.

(a) sample webpage

1

2 3

4

1 1
2

3

5
4

32

user1 
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(b) user attention

Figure 4.10: Example users’ attention on a sample webpage. The bubbles in (b) are the
fixations with the inscribed numbers indicating fixation-indices. The connected sequence of
fixations constitute a scanpath for each user.

For example, in Figure 4.10, image I1 able to draw the first attention (FI=1) from user1 and
user3, and the second attention (FI=2) from user2. Similarly, image I2 able to draw the second
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attention (FI=2) from user1 and user3 and the first attention (FI=1) from user2. Overall,
images I1, I2, I3, I4 and I5 able to draw the unique fixation-indices of (1, 2), (1, 2), (3), (3, 4), (5)
with the respective frequencies (2, 1), (1, 2), (2), (1, 2), (1). Thus, the frequencies indicate
the supporting votes for the corresponding fixation-indices. Accordingly, the process of
obtaining an effective visual attention (an effective fixation-index) for the attended image
element should utilize both the components, fixation-index and the associated frequency.
Accordingly, following research problem is formulated.
R4 → How the image visual features perform in predicting the weighted-voting-based
effective free-viewing visual attention?
In this section, we present a computational approach to assign and subsequently predict an
effective free-viewing visual attention on image elements.

4.5.1 Effective Visual Attention Assignment

Consider, an image I is associated with a bag of fixation-indices (FIs) from the possible set
of fixation-indices {1, 2, . . . }. Though the initial fixations (lower fixation-indices) indicate
the element’s attention drawing ability, the latter fixations (higher fixation-indices) may be
guided by other factors such as scarcity of salient elements or influence of semantic features
which are non-prominent. To segregate the prominent FIs from the non-prominent FIs, we
introduce a saliency threshold (θ) as,

f = min(f, θ) (4.11)

where, f is the fixation-index of I. The θ preserves the individual representation of prominent
FIs (f < θ) and assigns a composite representation for all the non-salient FIs (f ≥ θ) limiting
the number of possible FIs to θ.
Now, the objective is to assign a representative fixation-index, called effective fixation-index
for the image I from {1, 2, . . . , θ}. Towards the assignment, we utilize the implicit prominence
associated with the FIs (the lower the FI the higher is the prominence) and the explicit
prominence as designated by the users. The former prominence is indicated with a weight for
each FI while the latter prominence is determined from the frequency (votes) of respective
FIs. Owing to the visual feature-based free-viewing analysis, we introduce following intuitive
weighting strategies to assign the implicit prominency for each FI.

Uniform Weighting

Assigns an equal weight to all the fixation-indices. This is an adequate weighting if all the
fixation-indices are equally prominent. To note, the work in [155] corresponds to the uniform
weighting.

wf = 1
θ
∀ 1 ≤ f ≤ θ (4.12)

65



4.5. WEIGHTED VOTING BASED ATTENTION PREDICTION ON IMAGES

Algorithm 1: Effective Fixation-Index Assignment
1 for k ∈ {1, . . . , d} do // iterate over all the images
2 for f ∈ {1, . . . , θ} do // iterate over all the associated fixation-indices of I
3 vf ← Frequency(Ik, f) // computes the frequency of FI f as the vote count
4 wvf ← vf × wf // weights wf s are obtained from either of Eq. Equation 4.12 or

Equation 4.13 or Equation 4.14 or Equation 4.15
5 end
6 ek ← argmax

f
(wvf ) // assign FI with maximum weighted votes as effective fixation-index

7 end

Linear Weighting

Assigns the weight as a decreasing linear function of fixation-index value with the highest
weight assigned to the first FI and the lowest weight assigned to the last FI, i.e., θ. This is
an adequate weighting if the FI’s prominence is consistently reducing with the increase in
its value.

wf = θ − f + 1
θ + 1 ∀ 1 ≤ f ≤ θ (4.13)

Proportional Weighting

The previous two strategies assign explicit weight and do not account for the inherent
strength (probability of occurrence) of fixation-index in the overall attention data. To
incorporate the inherent strength of a fixation-index, the frequency-based weighting strategy
is introduced with the highest weight assigned to the most frequent fixation-index (due to
the higher likelihood of its occurrence).

wf = frequency(f)
θ∑
i=1

frequency(f)
∀ 1 ≤ f ≤ θ (4.14)

Inverse Proportional Weighting

Analogous to Proportional Weighting, Inverse Proportional Weighting accounts for the
frequency-based prominence of the fixation-index. However, the least frequent (in the overall
attention data) fixation-index is assigned with the highest weight.

wf = 1− frequency(f)
θ∑
i=1

frequency(f)
∀ 1 ≤ f ≤ θ (4.15)

For each of the aforementioned weighting-strategies, the effective fixation-index is achieved
using the algorithm 1. That is, the product of implicit prominence (wf ) and the explicit

66



4. TEXT, IMAGES, AND POSITION BASED ATTENTION ANALYSIS

prominence (vf ) is computed to assign the FI with the highest product as the effective
fixation-index of I. The assigned effective fixation-index acts as the ground-truth attention
for I.
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Figure 4.11: Illustration of weighting methods on a sample web image. The fixation-index
with the highest weighted votes (wvf ) is assigned as the effective fixation-index in each
weighting strategy.

Figure 4.11 shows a sample effective fixation-index assignment using the four weighting
strategies. The considered image element obtained five unique fixation-indices 1,2,3,4,5 with
the respective votes of 7,7,4,1,5. The application of each weighted-voting strategies and
the selection of FI with maximum weighted votes resulted in the effective fixation-indices
of 1,1,5,2 respectively for uniform weighting, linear weighting, proportional weighting, and
inverse proportional weighting. Note, in case of a tie, the lower fixation-index is assigned
as an indication of element’s ability to draw the user’s initial fixation. Evidently, all the
weighting strategies are directed towards the assignment of optimal representative fixation-
index, analogous to majority-weighted-voting utilized in crowdsourcing [84, 85]. To note, all
the weighting strategies result in the same effective FI in the presence of single unique FI.
The proposed effective fixation-index (effective FI) prediction approach is described in the
rest of the section for each weighting strategy.
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4.5.2 Prediction Model
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Figure 4.12: Proposed model flow-diagram

The prediction approach is shown in Figure 4.12. The aforementioned multi-class classification
is utilized for attention prediction. That is, as there are θ classes, we built

(θ
2
)

= θ(θ − 1)/2
binary classifiers to classify between every pair of possible classes. For this, the ensemble of
data-points corresponding to both the classes are utilized from given d data-points. For a
test image element It, the classification results are obtained from the constructed θ(θ − 1)/2
classes and the class with the highest frequency is determined as the effective fixation-index
et. That is, the majority-voting-scheme is employed towards the effective fixation-index
prediction.
To analyze the performance of the proposed approach, the fixation data from eye-tracking
Experiment-II (as described in Section 3.2) is utilized.

Preliminary Data Characteristics

The average number of fixated image elements per webpage is 6. On an average 5.54
participants attended to each image element. The percentage of attended image elements by
varying minimum number of attended participants is shown in Figure 4.13b. Maximum
number of participants attended to an image element is 12. Further, more than 50% of the
images are fixated by at least five participants. This highlights the necessity of effective
fixation-index assignment.
For the analysis, the median FI is considered for θ selection. That is, θ is set to 5 in
Equation 4.11.
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Figure 4.13: θ based variation in (c) number of information visual features, and (d) entropy,
for four weighting strategies

Feature Selection

Feature selection helps to prune the redundant features and to select the informative
features in explaining the effective visual attention. We considered the features with positive
information gain scores for the analysis, analogous to [19]. The number of informative
visual features are 24, 21, 24, 27 respectively for uniform, linear, proportional and inverse
proportional weightings. Among them, 18 visual features were informative across the four
weighting strategies. The informative features along with information gain scores are shown
in Table 4.6.
Across the weighting strategies, the element’s ‘top position’ (distance from the top edge
of the webpage) obtained the predominant information gain highlighting its attention
explaining ability. The HISTOGRAM features succeeded the POSITION feature and are
highly informative across the weighting strategies. However, the HISTOGRAM features
corresponding to the pure colors (first and eighth histogram bins) were not found to
be informative across all weighting strategies. This is attributed to their wide usage as
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Table 4.6: Information-gain scores of visual features at θ = 5 for four weighting strategies.
Color intensity represents the relative importance of a feature. The feature names starting
with “hist” and “diff_hist” respectively denote the histogram features and contrast histogram
features where the corresponding color component (R,G, B, gray) and bin number (1, . . . , 8)
are suffixed. The “rect.top”, “rect.left”, “rect.bottom”, “size” denote the rectangular image
element’s ‘top distance’, ‘left distance’, ‘bottom distance’, and ‘area’.

Group Feature Uniform Linear Proportional Inv. Pro.

POSITION rect.top 0.1110 0.1380 0.0976 0.1186
HISTOGRAM hist_R_6 0.1118 0.0998 0.0935 0.1043
HISTOGRAM hist_gray_7 0.1086 0.0809 0.0981 0.1174
HISTOGRAM hist_gray_5 0.1047 0.0876 0.1061 0.1217
HISTOGRAM hist_G_6 0.1037 0.0998 0.0967 0.1084
HISTOGRAM hist_G_5 0.1002 0.0773 0.0889 0.1101
HISTOGRAM hist_gray_6 0.0997 0.1054 0.1067 0.0989
POSITION size 0.0946 0.0967 0.0972 0.1193

HISTOGRAM hist_B_5 0.0982 0.0799 0.0852 0.1030
HISTOGRAM hist_R_5 0.0925 0.0842 0.0947 0.1103
HISTOGRAM hist_R_4 0.0802 0.1389 0.0671 0.0962
HISTOGRAM hist_B_3 0.0863 0.0869 0.0781 0.0851
HISTOGRAM hist_B_6 0.0877 0.0707 0.0665 0.0816
HISTOGRAM hist_B_4 0.0763 0.0692 0.0700 0.0985
POSITION rect.left 0.0746 0.1014 0.0635 0.0919

HISTOGRAM hist_gray_3 0.0720 0.0773 0.0675 0.0921
HISTOGRAM hist_gray_4 0.0664 0.0710 0.0619 0.0858
HISTOGRAM hist_B_2 0.0660 0.0743 0.0692 0.0916
HISTOGRAM hist_R_7 0.0931 0.0775 0.1119
HISTOGRAM hist_G_7 0.0887 0.0810 0.0980
HISTOGRAM hist_G_3 0.0795 0.0617 0.0936
CONTRAST diff_hist_G_5 0.0743 0.0776 0.0927
HISTOGRAM hist_G_2 0.0695 0.0896
HISTOGRAM hist_G_4 0.0679 0.0794
CONTRAST diff_hist_R_3 0.0749 0.0614
HISTOGRAM hist_R_3 0.0684 0.0755
CONTRAST diff_hist_B_2 0.0527 0.0549
POSITION rect.bottom 0.0858

HISTOGRAM hist_gray_2 0.0799

background color (typically, white) across all the webpages, normalizing their attention
explaining ability. Overall, the element’s position (‘top distance’, ‘left distance’), size and
the de-saturated color histograms were found to be informative across all the weighting
strategies. This signifies the prominence of image position, size, and intrinsic histogram
visual features in explaining the free-viewing user attention.

Surprisingly, no COMPREHENSIVE feature was found to be informative in any weighting
strategy and no CONTRAST feature (from Table 3.3) was found to be informative across
all four weighting strategies. Though three CONTRAST features were informative in at
least one weighting strategy, the associated information gain scores were lower. The non-
prominence of CONTRAST features may be attributed to the user’s inherent preference for
the image elements on a webpage.
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Number of Informative Features Vs. θ

To further understand the informative features, the number of informative visual features
are computed with variation in θ as shown in Figure 4.13c. The number of informative
features for uniform, linear, and inverse proportional weighting significantly decreased with
an increase in θ. On the contrary, the number of informative features were relatively stable
for proportional weighting up to θ = 9 after which it followed the reduction pattern of
remaining weighting strategies. Beyond θ = 12, the number of informative visual features
are approaching zero as other factors influence the attention which cannot be described by
visual features.

Entropy Vs. θ

To understand the influence of θ on effective FI assignment (ground-truth), the entropy was
computed for the four weighting strategies as shown in Figure 4.13d. At median θ, the
linear weighting achieved the highest entropy among all strategies, and consistently remained
till θ = 11. However, the increment in the entropy gradually reduced as the latter FIs are
less frequent and were further weighted lower. The inverse proportional weighting achieved
the second highest entropy till θ = 11 but outperformed the linear weighting beyond. The
highest entropy achieved for the latter θ is attributed to the higher weight assignment for
the less frequent latter FIs. The uniform weighting and proportional weighting followed
a similar entropy pattern, however, the latter weighting strategy achieved relatively lesser
entropy owing to the FI’s frequency based weighting.
Observing the variation in number of informative visual features (Figure 4.13c) and the
entropy (Figure 4.13d), we conclude that the distribution of effective fixation-indices varying
significantly (higher entropy with increase in θ) which can not be explained by the visual
features (lesser number of informative features with increase in θ). This also indicates,
among the four strategies, proportional weighting strategy is a better candidate for modeling
the effective visual attention with image visual features. However, to quantify and compare
the prediction performance, metrics were computed for all the four strategies.

4.5.3 Prediction Performance

The prediction model was trained with 90% of data and tested with remaining 10% obtained
from the application of each weighting strategy. At median FI, a total of θ(θ − 1)/2 = 10
binary SVM classifiers were constructed with the majority-voting-scheme employed to predict
the effective FI on test images. The performance is validated with Repeated 10-fold cross-
validation with 5 repetitions. That is, data was randomly sampled after each repetition
(in which 10-fold performance metrics were computed) to mitigate the influence of possible
special structures emanating in splitting the data. The performance over all the iterations
and repetitions were averaged to obtain the overall model performance.
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Table 4.7: Prediction performance at median FI. Boldface indicates the best performance
and underlined text indicates the second best performance.

Weighting Average Accuracy micro F1-score

Predicted Baseline ↑ (%) Predicted Baseline ↑ (%)

Uniform 91.10 69.22 31.61 77.75 23.04 237.46
Linear 84.26 68.43 23.13 60.65 21.08 187.71

Proportional 86.52 67.25 28.65 66.30 18.14 265.49
Inverse Proportional 89.14 67.31 32.43 72.85 18.28 298.52

Towards the performance, the standard multi-class classification metrics, Average Accuracy
and micro F1-score were computed.

The performance metrics of the four weighting strategies are shown in Table 4.7. The visual
features performed the best at uniform weighted effective visual attention prediction, followed
by Inverse proportional weighting, proportional weighting, and linear weighting. The best
performance of uniform weighting indicates that all the FIs (up to median FI) are equally
prominent and the visual features can computationally predict the corresponding effective
visual attention. Additionally, it is supported by the relatively poorer prediction of linearly
weighted (weight decreased with increase in FI) effective visual attention. Further support
is provided by the second best performing inverse proportional weighting. The weights
introduced in the Inverse proportional strategy are comparable to the uniform weights (as
shown in Figure 4.11) which significantly varies from the linear weights. The prediction
performance of the proportional weighted effective visual attention is more closer to the
uniform weighted and inverse proportional weighted strategies than the linear weighted
strategy.
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Figure 4.15: Average accuracies of four weighting strategies compared with the baseline for
varying θ
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Figure 4.16: Micro F1-scores of four weighting strategies compared with the baseline for
varying θ

Comparison with Baseline

The majority of the existing approaches are dichotomous (salient or not prediction) in nature
and are limited in predicting the multi-level (FI) attention. As there is no baseline algorithm
that exists for comparing with the proposed method, we follow the strategy proposed in
[32, 118] by employing random prediction model. That is, to demonstrate the efficacy of
visual features in predicting the effective visual attention, the performance was compared
with Random prediction (RP) model— randomly predicts a effective fixation-index from
{1, . . . , θ} [107]. The RP model performance comparison with our proposed model is shown
in Table 4.7. Evidently, all weightings outperformed the baseline across all metrics. The
inverse proportional weighting outperformed the baseline with an improvement of 32.43%
in average accuracy and an improvement of 298.52% in micro F1-score. The second best
performance in average accuracy improvement is 31.61% (for uniform weighting) and in
micro F1-score improvement is 265.49% (for Proportional weighting).

Performance with variation in saliency threshold θ

To understand the influence of θ, performance was measured at θ varying further after
median, θ = 5, 6, . . . as shown in Figure 4.14. The average accuracy of the four weighting
strategies consistently remained high with more than 84% where linear weighting exhibited
relatively poorer accuracy. In contrary, the differences in prediction performance were
lucid in the micro F1-score computation as shown in Figure 4.14b. The proportional
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Given Image Uniform Linear Proportional Inv. Pro.

Figure 4.17: Example effective visual attention predictions. Left-most column represents the
test image and subsequent columns denote the predictions from each weighting strategy

weighting consistently outperformed other weighting strategies with a micro F1-score of
at least 60%. The uniform weighting and inverse proportional weighting demonstrated
similar prediction with a gradual reduction in performance with an increase in θ. The linear
weighting consistently demonstrated the poorer performance among all, with a significant
reduction in performance with an increase in θ. Performance reductions of the uniform,
linear and inverse proportional weighting strategies indicate that all FIs are not equally
prominent and their prominence can neither be linearly weighted and nor their frequency
of occurrence be ignored. Overall, the uniform weighting performs better for the initial FI
prediction (up to effective FI=7) while proportional weighting performs the best for the latter
FI prediction (effective FI=7 onwards) as shown in Figure 4.14. The performance comparison
with the baseline are shown in Figure 4.15 for average accuracy and in Figure 4.16 for
micro F1-score. With the increase in θ, the prediction performance approached towards
the baseline. However, the proportional weighting significantly outperformed the baseline
throughout the variation in θ (see Figure 4.15c and Figure 4.16c). The example predictions
are shown in Figure 4.17.

4.6 Multi-users’ Multi-level Attention (MUMLA) on Images

In Section 4.5, different weighting strategies are proposed to obtain a unique representative
(aka effective) FI from multiple users’ FI allocations. This section presents an approach
to predict all the unique FIs associated with an image element without considering any
weighting. Essentially, following research question is investigated.
R5 → How the image visual features perform in predicting the free-viewing Multi-users’
Multi-level Attention (MUMLA)?
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Figure 4.18: Illustrative example of multi-user attention on sample webpage.

4.6.1 Introduction and Motivation

Owing to the user idiosyncrasies [125], each image may either receive (i) similar but different
FIs (levels) of user attention (say, first and second levels), or (ii) diverse FIs of user attention
(say, first and seventh FIs), or (iii) same FI from all the users. The work by [155] is suitable
for the last setting. In the first setting, assigning one of the similar levels (to web image)
and overlooking others may result in inconsistencies as, the knowledge of the similar levels
is not incorporated into the modeling. In the second setting, assigning a single multi-level
attention may not be adequate as the image is associated with diverse levels (classes) with
no specific level being dominant. Moreover, the multi-users’ attention on web images may
be an amalgamation of all the three settings which needs to be adequately modeled.

D ≡

Image FI = 1 FI = 2 FI = 3 FI = 4 FI = 5
I1 +1 +1 -1 -1 -1
I2 +1 +1 -1 -1 -1
I3 -1 -1 +1 -1 -1
I4 -1 -1 -1 +1 -1
I3 -1 -1 +1 -1 +1

In the setting of multi-user attention allocation, each image may receive either of three
types of attention as described above. In Figure 4.18, the images I1, I2, I3, I4, I5 respectively
received the bag of fixation-indices *2, 1, 1+, *1, 2, 2+, *3, 3+, *4, 4+, *5+ where *+ denotes a bag.
Accordingly, the unique FIs associated with the images in Figure 4.18 are as tabulated in
D above. The +1 indicates the presence of an attention-level and -1 indicates the absence.
The images I1, I2 drew similar but different attention levels (FI=1,2 for each), images
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I3, I4 drew same level of attention across users (FI=3 and FI=4 respectively), while I5

drew diverse attention-levels (FI=3 and FI=5). Among the images, assigning a unique
multi-level attention to I1 and I2 may not justify their attention-drawing ability as both are
predominantly drawing users’ initial attention but with different attention-levels. Further,
for image I5, assigning either of FI=3 and FI=5 levels may result in discarding of other
diverse level with similar prominence.

Thus, to preserve the prominence of each attention-level and to predict the possible attention
levels of a given image, we propose a Multi User Multi Level Attention (MUMLA) prediction
approach as described in the following section.

4.6.2 MUMLA Prediction Approach
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Figure 4.19: Proposed model flow-diagram

We formulated the MUMLA prediction as a multilabel classification problem. The model
flow diagram of the proposed approach is shown in Figure 4.19.

To analyze the performance of the proposed MUMLA prediction approach, the fixation data
from Experiment-III (described in Section 3.4) and Experiment-II (described in Section 3.3)
are utilized.
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4.6.3 MUMLA Prediction with Experiment-III

We demonstrate the performance of the proposed approach on open-source dataset [134]
consisting of Text-rich webpages, Mixed webpages, and Pictorial-rich webpages (see the
sample webpages in Figure 3.6). The rest of the section describes the data-processing
and preparation followed by multi-user multi-level attention characteristics and prediction
according to the proposed approach.

Data Preparation, Description & Characteristics

Table 4.8: Data Characteristics of the Three Categories

Characteristic Text Mixed Pictorial
Number of Webpages 50 49 50
Number of Users 11 11 11

Number of unique fixations 1369 1866 2527
Median Attention-level 6 7 7

Label Cardinality, LCard(D) = 1
d

d∑
i=1
|Li| at θ = 7 2.0228 1.947 2.1426

Label Density, LDens(D) = LCard(D)
θ at θ = 7 0.289 0.2781 0.3061

Label Diversity, LDiv(D) = |{L | ∃I : (I, L) ∈ D}| at θ = 7 71 72 80
Proportion of Label Diversity, PLDiv(D) = LDiv(D)

d at θ = 7 0.2023 0.1589 0.1541

The frequency distribution of FIs for the three categories is shown in Figure 3.7. Evidently,
web images on Pictorial-category webpages consistently received more fixations followed by
Mixed-category and Text-categories. This is attributed to the presence of more number of
image elements on Pictorial-category than its counterparts. However, across the categories,
the frequency of FIs consistently reduced with increasing FI indicating the reduction in
salient image elements.

θ Selection: The median FI of the three categories is 6,7,7 respectively for Text, Mixed,
Pictorial categories. To segregate the prominent FIs from non-prominent FIs and to enable
the comparison across categories, we consider maximum of the median fixation-indices, i.e.,
7 as the representative median saliency threshold (median FI) θ. Accordingly, FIs 1, 2, . . . , 6
are prominent being the initial allocations and the FI 7 corresponds to non-prominent latter
attention allocations.

MUMLA Data Characteristics: Considering each FI as a class label, the MUMLA
data characteristics [13, 166] are summarized in Table 4.8. Label Cardinality— the average
number of FIs associated with each image element; highlights the prominence of multi-label
approaches. On an average, image elements received approximately two attention-levels
across categories. Thus, it may not be good idea to apply the existing single-label assignment
approaches as, two attention-levels may be similar but different allocations or diverse
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(a) Co-occurrence graph: (from left to right) Text, Mixed, Pictorial

(b) Multilabel data characteristics: (from left to right) Cardinality, Density, Diversity, Proportional
Diversity

Figure 4.20: Data characteristics: (a) Co-occurrence graph of MUMLA at median FI
thresholding. The bubble size indicates the frequency of FI and the edge width indicates the
co-occurring frequency of the connected fixation-indices. First two FIs and median FI (7)
are highlighted for better interpretation; (b) Multilabel data characteristics with variation
in sparse threshold θ.

attention allocations. Analogously, the Label Density— normalized Label Cardinality also
followed the similar trend. The Label Diversity— distinct number of FI sets (where, each Li is
an attention-level set) in D; further strengthened the necessity of multi-label approaches. At
θ = 7, 27− 1 = 127 unique FI sets (each ⊆ L) are possible out of which 55.91%, 56.69%, and
62.99% are part of Text, Mixed, and Pictorial categories respectively. Further, Text-category
images have more Proportion of Label Diversity—normalizing the Label Density with number
of instances, than the remaining two categories. The relatively lower LDiv value and the
relatively higher PLDiv value of Text-category indicates, the respective category images
are associated with more multi-labelness though less number of image elements are present
in this category. The counter discussion holds true for Pictorial-category.
To further understand the attention-levels’ co-occurring characteristic, the co-occurrence (one
attention-level occurring along with the another in L) graph [34] is plotted at median saliency
thresholding as shown in Figure 4.20a. The Text-category followed by Pictorial-category
images received relatively more ‘similar but different’ and ‘diverse’ levels of attention as
indicated by the thicker connecting lines among first, second and seventh attention-levels.
In contrary, the Mixed-category images received relatively more ‘diverse’ levels of attention
allocations than ‘similar but different’ attention allocations as the line connecting first and
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second attention-levels is relatively thinner.

MUMLA Data Characteristics with θ Variation: To understand the influence of θ
selection on multi-labelness, the four characteristics are computed with increasing θ as shown
in Figure 4.20b. The increase in Label Cardinality and the corresponding decrease in Label
Density with θ indicates the latter attention-levels are sparse and are co-occurring with initial
attention-levels which also contributed to increase in Label Diversity and Proportion of
Label Diversity. Overall, the Pictorial-category demonstrated relatively more multi-labelness
than its counterparts.

Prediction Performance

Table 4.9: Prediction performance at median saliency-thresholding (θ = 7). Boldface: best
performance; Underlined: second best performance; among the three categories.

Category Metric Predicted Baseline Outperformance (%)

Text

Hamming loss 0.1925 0.3172 64.78
Subset 0/1 loss 0.6286 0.9077 44.40
Accuracy 0.5476 0.3479 57.40
F1-score 0.6223 0.4548 36.83
PPV 0.8272 0.5052 63.74
TPR 0.5537 0.5470 1.22

Mixed

Hamming loss 0.1728 0.2866 65.86
Subset 0/1 loss 0.5546 0.8825 59.12
Accuracy 0.6057 0.3862 56.84
F1-score 0.6749 0.4958 36.12
PPV 0.8641 0.5455 58.41
TPR 0.6141 0.5966 2.93

Pictorial

Hamming loss 0.1895 0.3120 64.64
Subset 0/1 loss 0.5838 0.8856 51.70
Accuracy 0.6004 0.3878 54.82
F1-score 0.6792 0.5029 35.06
PPV 0.8912 0.5539 60.90
TPR 0.6101 0.6027 1.23

Without loss of generality, the MUMLA dataset, D in each category is randomly split into
80:20 train, test ratio. θ binary-classifiers are constructed using the training data while
the test-data is utilized towards prediction performance computation. Accordingly, 5-fold
cross-validation is performed with 10 iterations (to mitigate the possible occurrence of special
structures during the random split). The performance metrics averaged across the iterations
are obtained as overall performance.
The prediction performance at median saliency-thresholding is shown in Figure Table 4.9. To
understand the quality of prediction, the performance is compared with Random prediction
model [107]— randomly assign the FIs overlooking the constituting visual features. In each
category, all the metrics outperformed the random prediction metrics demonstrating the
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(a) Hamming Loss (b) Subset 0/1 Loss (c) Accuracy

(d) F1-score (e) PPV (f) TPR

Figure 4.21: MUMLA prediction performance with variation in saliency-threshold θ

efficacy of the proposed approach and the considered image visual features. To note, the
True Positive Rate (TPR) (also called, recall) of the baseline is comparable to predicted
performance. However, the Positive Predictive Value (PPV; also, called precision) and
F1-score of the baseline are significantly lower than the predicted values highlighting the bias
associated with random prediction. Overall, the MUMLA prediction on web images from
Mixed-category and Pictorial-category performed better than the Text-category. However,
the relative performance with respect to the random prediction is better in Text and Mixed
categories than Pictorial category.

Prediction Performance with θ Variation: To further analyze the influence of θ on
prediction, the performance metrics are computed for each increment in θ value for three
categories. The progression of the performance is shown in Figure 4.21. Among all the
metrics, the variation in θ has little influence on Hamming Loss which is consistently around
0.19 as shown in Figure 4.21a. Overall, the prediction performance for the Pictorial and
Mixed categories are comparable and both are relatively better than the prediction for
Text-category (see Figures 4.21c, 4.21d, 4.21e, 4.21f). For all the three categories, the
prediction performance reduced with increasing θ indicating the influence of other factors
(such as reduction in salient elements and possible influence of semantic features) which may
not be explained by the considered visual features. However, the prediction performance
consistently outperformed the baseline throughout the variation in θ as shown in Figure 4.22.
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(a) Text

(b) Mixed

(c) Pictorial

Figure 4.22: Multilabel prediction performance comparison with baseline for three categories:
(from left to right) Hamming loss, Subset 0/1 loss, Accuracy, F1-score, PPV, and TPR.
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Table 4.10: Prediction performance at median fixation-index

Metric Our Model
(%)

Baseline
(%)

Improvement
(%)

Subset 0/1 loss 66.50 94.30 29.48 ↓
Hamming loss 23.62 41.08 42.50 ↓

Accuracy 67.49 47.24 42.87 ↑
Precision 84.14 66.30 26.91 ↑
Recall 78.91 71.92 09.72 ↑
F1-score 76.57 61.07 25.38 ↑

4.6.4 MUMLA Prediction with Experiment-II
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Figure 4.23: Loss metrics with variation in fixation-index threshold

The computed performance metrics are summarized in Table 4.10. Clearly, our approach
outperformed the baseline model for all the metrics. Among the loss functions, the subset
0/1 loss seems high with 66.50%. However, this is attributed to the nature of its computation
where even a misclassification of the single label is considered as complete misclassification
which was avoided in the computation of Hamming loss. To note, the subset 0/1 loss,
hamming loss, accuracy, precision and F1-scores of our model performed significantly better
than the baseline (more than 25% improvement). The recall of the baseline is comparable
with our model indicating its bias towards a specific metric.
To further understand the influence of thresholding (θ value) on performance, metrics were
computed with variation in θ from 5 to 14 as shown in Figure 4.23 and Figure 4.24. Our
model consistently performed better than the baseline. However, the prediction performance
reduced with increase in the threshold value, indicating the reduced influence of visual
features in drawing the user attention. Especially, the baseline demonstrated relatively
smaller but better performance than our model from eighth fixation-index thresholding.
This performance is attributed to the nature of random predictions which tend to bias to a
particular metric and perform significantly poorer with respect to the other metrics.
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Figure 4.24: Performance metrics with variation in fixation-index threshold

In summary, the performance metrics demonstrated the efficacy of our approach in predicting
the MUMLA attention on webpage images.

4.7 Summary

In this chapter, primarily, position-based attention allocation was presented in terms of the
fixation-indices. The analyses revealed that though the users predominantly allocate the
initial attention to Middle region and the Top regions, the elements in Right and Bottom
regions are not completely ignored. The observation may be attributed to the visual features
of the elements. To understand the prominent visual features, the information-gain scores
were computed between the visual features and fixation-indices. The analysis revealed that
space and font-size visual features are informative for textual elements, and Mid-level Color
Histogram visual features are informative for image elements, while position and size are
informative for both the modalities. The subsequent computational attention modeling
demonstrated the efficacy of informative visual features in predicting the user attention on
web elements with 90% average accuracy and 70% micro-F1 score.
Owing to the prominence of image elements, respective modality-specific attention prediction
models were proposed in the context of (i) non-linear association between visual features
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and user attention, (ii) Weighted-Voting-based ground-truth attention preparation, and (iii)
visual features predicting multiple levels of user attention (Multi User Multi Level Attention
(MUMLA)) settings. The empirical results demonstrated that the image visual features
outperform the random baseline in all the three settings. Though the Gaussian RBF kernel
outperformed other kernels (91.64% average accuracy and 79.10% micro-F1 score), the
comparable performance of the linear-kernel (89.04% average accuracy and 72.60% micro-F1
score) highlighted the linear association between image visual features and user attention.
Towards the ground-truth preparation, the uniform weighting (up to effective FI of 7) is
suitable for initial FI prediction while proportional weighting is best suited for latter FI
prediction (from effective FI of 7 onwards).
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5
Unification of Multi-Modalities

In Chapter 4, the prominence of text and image visual features are established in explaining
the free-viewing attention. However, both the modalities in unison guide the user attention
on bi-modal webpages. But, the intrinsic visual features of the modalities are different. This
heterogeneity in visual features complicates the simultaneous user attention analyses and
modeling on bi-modal webpages. This chapter presents a computational approach to unify
the multi modalities and empirically analyzes the performance of the same.
The widely utilized Areas-Of-Interest (AOIs) are the prima facie of ‘where on the screen’
paradigm. That is, the AOI-based analyses explore where is the user interest (from the
perspective of visual attention) on an interface in contrast to what interests the user on
an interface. Further, the interpretations vary based on the manual selection of AOIs.
Moreover, the interpretations are not generalizable as the underlying visual information is
not associated with the user attention. To overcome these limitations, Data-Of-Interests
(DOIs), a prima facie of the ‘what on the screen’ paradigm are introduced [3]. Additionally,
[79] introduced a data-centric formalism (DOI-model) for eye-tracking analyses which helps
in answering a broad set of questions corresponding to Roth’s objective primitives— identify,
compare, rank, associate, and delineate [127].
The predominant bottleneck in the DOI-based analyses is elements’ heterogeneity on graphical
user interfaces (GUIs). Especially, the prominent webpages consist of heterogeneous data
modalities, including text and images. Elements of each modality are associated with
respective intrinsic visual features, such as brightness, intensity, color histograms for images,
and font-size, color, font-weight for text. As the visual features of one modality differ from
the other modality, and both the modalities determine the attention in unison, performing
the visual feature-based attentional analyses is complicated.
To overcome these limitations, we investigate the possible unification between heterogeneous
modalities (text and images) on webpages. Especially, the prominence of user idiosyncrasies
and interface idiosyncrasies are explored in the context of DOI formalism. The contributions
are the investigations of the following research questions (as highlighted in Chapter 1) whose
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Figure 5.1: Flow diagram of the proposed approach: (a) Heterogeneous webpages with user
fixations; (b) Represent DOIs (fixated webpage elements) in respective visual feature spaces
and pair the heterogeneous DOIs based on attention similarity (measured with respect
to fixation indices); (c) Learn a homogeneous space (wts and wis) through correlation
maximization between paired DOI; (d) Compute the correlation between each of the hetero-
geneous visual features and obtain a maximally correlated homogeneous feature space to
identify and compare the attention-influential cross-modal features; Compute the distances
among DOIs in original feature space and the homogeneous space to quantify the delineation.

solutions are obtained through the approach shown in Figure 5.1:

R1: Are the text and image visual features correlated based on the free-viewing user
attention allocation on bi-modal webpages? Do the user idiosyncrasies and the
interface idiosyncrasies affect such correlations?

R2: Which cross-modal visual features are comparable with each other based on the free-
viewing user attention allocation on bi-modal webpages? Do the user idiosyncrasies
and the interface idiosyncrasies affect such comparisons?

R3: Can the text visual features delineate the free-viewing user attention on image visual
features and vice-versa for the bi-modal webpages? Do the user idiosyncrasies and
interface idiosyncrasies affect such delineations?

Concerning Roth’s five task taxonomy [127], research question R1 indicates the objective
primitive of identify. The research question R2 is directed towards answering the compare,
rank, and associate objective primitives. Research question R3 is an insight eliciting research
question whose results are based on overall observations of answers from R1 and R2;
accordingly, it is under the delineate objective primitive of Roth’s taxonomy.
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Figure 5.2: Example webpages (G1 and G2) and users (U1 and U2) considered for illustrating
our proposed grouping criteria

5.1 Terminology

Consider, an interface consists of heterogeneous text and image elements. Each fixated
element during the gaze session, aka data-of-interest (DOI), is associated with data features,
visual features, user features, and perceptual features. The data features describe the identity
of the DOI through its modality and constituting interface. The visual features (described in
Section 3.5) represent the characteristics of the rendered elements. The user features describe
the identity of the user. Accordingly, the perceptual features describe the fixation-related
characteristics including fixation-position, fixation-index— the ordinal number of a fixation
in a scanpath, and the modality-fixation-index— the modality-specific relative fixation-index
on the DOI. To note, though the fixation-index is from standard terminology, we introduced
modality-fixation-index to capture the relative prominence of modalities within a scanpath.
For example, from Figure 5.2, the text DOI on the webpage G1 with fixation-index numbered
3 from user U2 received a modality-fixation-index of two as it is the second text-modality
element to be fixated by U2 on G1. Similarly, the image DOI element on webpage G1 with
fixation-index numbered 2 from user U2 received a modality-fixation-index of one as it is the
first image-modality element to be fixated by U2 on G1.

5.2 Views of Attention and Grouping

Multiple text and image DOIs may associate with the same fixation-index, indicating
the same attention drawing ability. Accordingly, the elements represent two views (one
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(a) Webpage-oriented (WG)
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(c) Webpage-and-User-oriented (WUG)

Figure 5.3: Pairings from each grouping for the attention shown in Figure 5.2.

corresponding to text and another corresponding to the image) of the same perceptual
characteristic (analogous to views of the semantic concept in cross-modal information
retrieval [32]). However, the perception is affected by two prominent factors namely, user
idiosyncrasies and interface idiosyncrasies. Thus, we introduce three attention grouping
strategies to constrain and marginalize their influence on user perception. Subsequently,
text and image DOIs with a similar attention drawing ability are paired towards unification.

Webpage-oriented Grouping (WG)

The interface’s idiosyncrasies influence the users’ attention allocation [16, 164]. For example,
users’ attention allocation on text-rich webpages differ from image-rich webpages [110]. Con-
sequently, we propose to constrain the influence of interface idiosyncrasies while marginalizing
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the user idiosyncrasies. That is, all users’ attention allocation on each interface is considered
a group. Within the group, each text DOI is paired with every image DOI sharing the same
fixation-index. The example pairs achieved using the WG strategy are shown in Figure 5.3a.
On webpage G1, the text element with FI=1 (achieved from user U2) is paired to the image
element with FI=1 (achieved from user U1) as both the elements were able to draw the same
level of user attention (FI=1) on the given webpage, G1. Similarly, text elements with FI=2
and 3 were respectively paired to the image elements with FI=2 and 3. The same approach
applied on the G2 resulted in the pairs as shown in Figure 5.3a. To note, the work by [154]
represents the WG based pairing.

User-oriented Grouping (UG)

Analogous to the interface, the user idiosyncrasies also determine the attention allocation on
interfaces [23, 72, 108]. Consequently, we propose to constrain the influence of user idiosyn-
crasies while marginalizing the interface idiosyncrasies. Each user ’s attention allocation
on all interfaces is considered a group. Within the group, each text DOI is paired with
every image DOI sharing the same fixation-index. The example pairs achieved using the UG
strategy are shown in Figure 5.3b. For user U1, the text element with FI=1 (achieved on
webpage G2) is paired to the image element with FI=1 (achieved on webpage G1) as both
the elements were able to draw the same level of user attention (FI=1) for the given user,
U1. Similarly, text elements with FI=2 and 3 were respectively paired to the image elements
with FI=2 and 3. The same approach was applied for the user U2 whose resulting pairs are
shown in Figure 5.3b.

Webpage-and-User-oriented Grouping (WUG)

To account for both interface idiosyncrasies and user idiosyncrasies, we propose to constrain
them simultaneously. That is, each user ’s attention allocation on each interface, i.e. scanpath,
is considered as a group. However, unlike WG and UG, no two DOIs will be associated with
the same fixation-index within a group. Thus, we utilize the modality-fixation-index for
pairing the text and image DOI. Within the group, pair the first fixated text with the first
fixated image; second fixated text with the second fixated image; and so on. The example
pairs achieved using the WUG strategy are shown in Figure 5.3c. For user U1 attention on
webpage G1, the text element with FI=2 (modality-FI=1) is paired to the image element
with FI=1 (modality-FI=1) as both the elements were quickest to draw the user attention
among respective modality-specific web elements. Similarly, for user U1 attention on webpage
G2, text element with FI=1 (modality-FI=1) was paired to the image elements with FI=2
(modality-FI=1). The remaining pairs obtained through the same approach were shown in
Figure 5.3c.
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5.3 Proposed DOI based Approach

5.3.1 (R1) Attentional Correlation Computation

Without loss of generality, consider T ∈ Rm×d and I ∈ Rn×d represent the visual features of
the paired text and image DOI. That is, for n pairs, each text DOI with m features and
each image DOI with n features represent a point in the visual text space and visual image
space respectively, as shown in Figure 5.1b.

Towards answering the research question R1, consider, linear transformation of T along the
direction wt ∈ Rm and linear transformation of I along the direction wi ∈ Rn maximizes
the correlation (ρ) between text and image features as formulated below,

ρmax = argmax
wt,wi

w>t Ctiwi√
w>t Cttwt ×w>i Ciiwi

(5.1)

where Ctt = E[T̃ T̃>], Cti = E[T̃ Ĩ>] and Cii = E[Ĩ Ĩ>] are covariance matrices of paired
data with E[·] being the expectation function and T̃ and Ĩ being the mean centered text
and image visual features, respectively.

Equation 5.1 is transformed to a constrained optimization problem of CCA [64, 68] and
solved through a Generalized Eigenvalue Equation formulation [150]. The resulting wt

and wi pairs, called canonical variates or canonical directions, are the Eigenvectors of
C
−1/2
tt CtiC

−1
ii CitC

−1/2
tt and C

−1/2
ii CitC

−1
tt CtiC

−1/2
ii , respectively. The obtained canonical

directions (minimum of m and n) result in a space called homogeneous space or maximally
correlated space (see Figure 5.1c). Accordingly, the obtained correlations help answer the
research question R1.

5.3.2 (R2) Comparison of Visual Features

Even though the computed canonical directions help in establishing the correlation between
text and images, the prominent cross-modal feature comparison (text features with image
features) is not straightforward (answer to research question R2). The predominant reason
is, wt and wi are obtained from the linear combination of features from respective visual
spaces. Consequently, the identities of the individual visual features are concealed in the
composite directions wt and wi. To extract the prominence of individual features, we utilize
the correlation-based approach [56]. That is, correlation between each of the visual feature
and the corresponding canonical direction, called canonical loading [36, 56], is computed.

Considering each column of T and I represent a visual feature, i.e., T = [Tf1 |Tf2 |. . . |Tm]
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and I = [If1 |If2 |. . . |In], the canonical loading is computed as

cor(T,w>t T ) = E[T̃ (w>t T̃ )>] = E[T̃ T̃>]wt = Cttwt (5.2)

similarly cor(I,w>i I) = E[Ĩ(w>i Ĩ)>] = E[Ĩ Ĩ>]wi = Ciiwi (5.3)

The canonical loading of each feature indicates the amount of its associated information
(precisely, square root of variance) captured by the corresponding canonical variate. Thus,
the text feature with the highest canonical loading is comparable to the image feature with
the highest canonical loading when the canonical variates wt and wi are highly correlated (i.e.
ρmax is larger). To further account for the user idiosyncrasies and interface idiosyncrasies,
the cross-modal feature comparison is repeated for the three grouping criteria, WG, UG,
and WUG.

5.3.3 (R3) Cross-modal Delineation

The research question R3 centers on the ability of one modality visual features (say, text)
to represent the attention on another modality (say, image). In other words, we need to
investigate if the text data and image data preserve their associated characteristics even
after projected into the homogeneous space?
Considering the homogeneous space is constructed with h (= min(m,n)) canonical directions,
the data can be projected into the homogeneous space.

Text projected into the homogeneous space T ′ = W>t × T (5.4)

Image projected into the homogeneous space I ′ = W>i × I (5.5)

where Wt = [wt1|wt2|. . . |wth] and Wi = [wi1|wi2|. . . |wih]. That is, each column in Wt

and Wi is a canonical direction horizontally stacked in the order of decreasing canonical
correlations from left to right.
To answerR3, data characteristics in the original space and the projected space are inspected.
That is, data characteristics of T are compared with T ′ and I are compared with I ′ . For the
quantitative comparison we employ the Spearman’s rho test that measures the preservation
of pair-wise distances between the data-points in both of the spaces [59, 139].

5.4 Results and Analysis

This section presents the empirical results for the three research questions. Among the
considered features, the redundant constant features (variance=0) and the linearly dependent
features are pruned. The resulting features (indicated as text rank and image rank in
Table 5.1) are utilized for further analysis.
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Table 5.1: Summary of empirical data, significant canonical directions (at the significance
level p = 0.01), and achieved maximum correlation for three groupings

Parameter WG UG WUG

No. of (Text, Image) pairings 14330 9057 3283
Text Features 71 71 77
Image Features 91 91 91
Text rank 52 52 59
Image rank 65 65 83

Significant directions (p < 0.01) 28 1 30
Maximum correlation (ρmax) 0.9948 0.3124 0.9946

5.4.1 Correlations between Text and Image DOIs

The application of the proposed approach (see subsection 5.3.1) resulted in the correlations
between visualized text and image features as shown in Figure 5.4. The WG, WUG, and UG
groups achieved the maximum correlation (ρmax) of 0.9948, 0.9946, and 0.3124 respectively.
The number of correlation directions are equal to the minimum rank which is the rank of text
data for three groupings. The second highest correlation for the three groupings is 0.9881,
0.9367, and 0.1876 respectively. A similar decreasing trend is followed for the correlations
along remaining canonical directions. Though the highest ρmax of WUG is comparable to
WG, for the remaining directions, WUG outperformed the WG and UG with respect to the
magnitude of correlation achieved between text and image features.
To investigate whether the achieved canonical correlations and the respective directions
are significant or spurious, we employed Wilk’s lambda test [160]. The test computes the
amount of variance accounted by the canonical directions from that of the original feature
variables. The higher the variance accounted the better is the significance of the canonical
direction, with the ideal proportion of accounted variance being 1. The canonical variates
that account for lower variance are rejected at the significance level of p = 0.01. The test
resulted in 28, 30, and 1 significant canonical directions, respectively for WG, WUG, and
UG as reported in Table 5.1.

Influence of User and Interface Idiosyncrasies The user-oriented grouping achieved a
significantly lower ρmax of 0.3124 and its value further reduced in each iteration of correlation
computation. Though the UG grouping constrained the user idiosyncrasies (to note, the
participants were young adults and all are experienced web users), still, the correlational
association is not captured. In contrary, constraining the interface idiosyncrasies along
with user idiosyncrasies (WUG grouping) achieved the correlation between text and images.
Further, the sole constrainment of interface idiosyncrasies also achieved the high correlation
between both of the modalities. The high correlation obtained for WG and WUG indicates
that free-viewing attention drawing text and image visual features are correlated
when the interface idiosyncrasies are constrained (answer to research question R1).
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Figure 5.4: Correlations for the three grouping criteria

Additionally, the user idiosyncrasies have little influence on such a constrained correlation
which is further supported by the lower correlation obtained for UG.

5.4.2 Comparative Text and Image Features

Among the three criteria, we utilized the high correlation achieving WG and WUG for
cross-modal visual attribute comparison. The approach described in subsection 5.3.2 is
utilized to obtain the comparative text and image features with respect to the free-viewing
attention. Though, in total, the number of comparisons achieved is equal to the minimum
feature count of text and image, the majority of them results in very low canonical loading.
Consequently, we limit to compare the Top-3 visual features based on associated canonical
loadings.
The font-family (‘open sans’) of the text is comparable with the color histogram (mid-level
blue color component) of the image along the most prominent canonical direction for WG
grouping as shown in Figure 5.5. The text feature achieved a canonical loading of 1.00
and the image feature achieved a canonical loading of 0.46. To note, in the histogram
feature denoted as ‘hist_B_6_182’, ‘B’ (from R, G, B, gray) represents the blue color,
‘6’ (from 1 to 8) represents the histogram bin number, and the number (182) denotes a
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representative color component value (∈ [0, 255]) for the respective bin. Further, the font-
family (‘arial’) of text is comparable to the color histogram of the image (mid-level blue color
histogram). In aggregation, the FAMLIY of the text is comparable to the HISTOGRAM
of images in describing the free-viewing user attention on interfaces. This comparison is
further strengthened by the very high squared ρ2

max = 0.9896 along the first canonical
direction. With respect to the Top-2 canonical loadings (with ρ2

max > 0.8), the FAMILY,
COLOR, SPACE features of text are as influential as HISTOGRAM, CONTRAST HIST,
and POSITION features of the images in establishing the correlation between both the
modalities.
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Figure 5.5: Interpretative visualization of WG canonical loadings. The decreasing intensity
and size of the ball (moving from left to right) indicates the decreasing prominence (inscribed
with ρ2

max) of the corresponding canonical direction. At each position, text feature cuboids
are placed above and image feature cuboids are placed below the ball in the decreasing order
of canonical loadings. Each cuboid consists of feature name (on front), feature group (on
top), and corresponding canonical loading (on side).

As shown in Figure 5.6 for WUG, along the most prominent canonical direction, the
FAMILY feature achieved the highest canonical loading of 1.00 while the CONTRAST
COMPRE feature achieved 0.21. That is, a significant difference exists between both the
canonical loading scores. On the other hand, along the second most canonical direction
(with ρ2

max = 0.9758), the FAMILY group achieved comparable canonical loadings with that
of the image’s HISTOGRAM features. Similarly, FAMILY and HISTOGRAM features are
comparable in achieving the correlation maximization along the third canonical direction. In
contrast, FAMILY features are comparable to the CONTRAST HIST features in achieving
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5.4. RESULTS AND ANALYSIS

the fourth and fifth canonical direction. The latter feature comparison is of little interest
as the corresponding ρ2

max values as well as the canonical loadings are reducing. Overall,
FAMILY features of text dominated the canonical loadings across the canonical directions
with ρ2

max > 0.8 and are comparable to the attention associated with the HISTOGRAM
(followed by CONTRAST HIST) features, as visualized in Figure 5.6.
In summary, from the interface idiosyncrasies constrained WG and WUG groupings, FAM-
ILY features of text are comparable to and as influential as HISTOGRAM and
CONTRAST HIST features of images in explaining the free-viewing user atten-
tion (answer to research question R2). The low canonical correlation obtained for UG
grouping indicates that the proposed method cannot enable the comparison of text and
image features for the marginalization of user idiosyncrasies.

5.4.3 Cross-Delineation of Attention

The squared canonical correlation explains the amount of variance along a text canonical
direction from that of the corresponding image canonical direction, and vice-versa [56].
For example, the first canonical direction of WG explains the 0.9896 cross-modal variance
and the first canonical direction of WUG explains 0.9890 cross-modal variance. Thus, the
higher the squared canonical correlation, the higher is the delineation association between
both of the modalities. The very low ρ2

max = 0.0976 of UG indicates that text and images
cannot delineate the user attention on each other in the absence of interfaces’ idiosyncratic
marginalization. In contrast, the very high squared canonical correlations achieved for WG
and WUG prefer the cross-modal delineation between both the modalities.
The squared structural correlation (or squared canonical loading) explains the amount of
original features’ variance captured by the respective canonical direction [56]. For example,
the second canonical direction of WG (see Figure 5.5) captured 0.68× 0.68 = 0.46 variance
of a text FAMILY feature and a CONTRAST HIST image feature. The canonical loadings
visualized in Figure 5.5 and Figure 5.6 highlight the prominence of obtained canonical
directions in preserving the variance associated with the original features. The delineation
is further supported by the significance verified by the Wilk’s Lambda test.
To further verify the cross-modal delineation and the preservation of visual characteristics,
the approach presented in subsection 5.3.3 was applied. The distance of each data point was
computed from every other data point in the original space (text space for text data point and
image space for the image data point) and the respective homogeneous spaces (constructed
from the significant canonical directions). The sample distribution of the distances for the
three groupings are shown in Figure 5.7. The Spearman’s Rho (ρs) correlation was computed
between the distances obtained in the original space and the homogeneous space. The ρs
for the three grouping criteria are reported in Figure 5.8. For the WG and WUG criteria,
our approach reflects a very strong quality in preserving the local neighborhood for both
text and images with ρs values greater than 0.94 at p < 0.01. Between the two modalities,
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Figure 5.7: Distance of each DOI element from rest of the DOI elements in the original
space and the homogeneous space for three groupings: The horizontal axis is the index of
the DOI element and the vertical axis is the normalized distance (actual distance/maximum
distance).

the neighborhood is relatively better preserved for the text than for the images. This is
attributed to the relatively larger variation in the image visual features when compared
with the text features. In user-oriented grouping, the local neighborhood preservation is
very strong for the text and strong for the images. However, the Spearman’s Rho differed
significantly between text and images where such a difference is marginal in WG and WUG
groupings. The variation in ρs for UG is attributed to the low homogeneity established
between text and images as indicated by the respective canonical correlation. Further, the
UG grouping preserves the local neighborhood along a single (significant canonical) direction,
whereas WG and WUG preserve along 28 and 30 significant canonical directions, respectively.
Overall, the corresponding distances as visualized in Figure 5.7 highlight that, for both
text and images, distances are better preserved in WUG and WG groupings than in the
UG grouping. In summary, text and images delineate the attention on each other
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Figure 5.8: Spearman’s Rho (ρs) for three groupings

when the interface idiosyncrasies are constrained (answer to research question R3).

5.5 Prominent Feature Groups

To determine the prominent feature groups in unifying the text and image modalities for WG
and WUG, we employ the robust leave-one-out strategy. That is, correlation computation
procedure is repeated after excluding one feature group at a time.

5.5.1 Webpage-oriented Grouping

The canonical correlation achieved through the leave-one-out strategy applied WG is shown
in Figure 5.9a. The POSITION group (consists of element’s position and size) which was
earlier found to be predominant in drawing the user attention [61, 143] was not found to
significantly influence the correspondence between text and images. The feature group’s
exclusion achieved a ρmax of 0.9948 for both the modalities. The individual exclusion of
text’s SPACE and SIZE (font-size related features) groups, and image’s COMPREHENSIVE,
CONTRAST COMPREHENSIVE and HISTOGRAM feature groups did not significantly
affect the canonical correlation. Though the exclusion of text COLOR features did not
influence the initial canonical correlation, the later correlational correspondence was relatively
affected by their absence (see Figure 5.9a). Between the two CONTRAST groups, the absence
of CONTRAST HISTOGRAM reduced more correlation compared with the CONTRAST
COMPREHENSIVE features.
The notable feature groups towards the text and image canonical correlations are the FAMILY
of text and CONTRAST (combination of CONTRAST HISTOGRAM and CONTRAST
COMPREHENSIVE) of images. The exclusion of FAMILY group resulted in the ρmax of
0.9111 which further reduced progressively along the increasing canonical direction number.
The CONTRAST group’s exclusion resulted in ρmax of 0.8972 which gradually reduced along
other canonical directions. The text elements’ font-family and image elements’ contrast
demonstrated the prominence in correlation establishment which were also shown to be
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Figure 5.9: Canonical correlation between text and images for WG

prominent for the modality-specific controlled analyses [9, 99].

Owing to the predominance of FAMILY feature group, its combinatory correlational influence
is studied with other image feature groups as shown in Figure 5.9b. The prominence of image
CONTRAST features is further established as the exclusion of FAMILY and CONTRAST
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features resulted in ρmax of 0.6814 which further reduced along the subsequent canonical
directions. Analogous to the leave-one-out strategy, the exclusion of COMPREHENSIVE,
HISTOGRAM, and CONTRAST COMPREHENSIVE features along with the FAMILY
had little influence on the correlation. Between the two CONTRAST groups, the absence of
CONTRAST HISTOGRAM significantly reduced the ρmax (to 0.7324) when compared with
the absence of CONTRAST COMPREHENSIVE feature group (ρmax = 0.9119).
In summary, the FAMILY features of text and the CONTRAST (especially, the CONTRAST
HISTOGRAM) features of image are influential in achieving the explicit correlation between
both the modalities.

5.5.2 Webpage-and-User-oriented Grouping

The achieved correspondence between text and images as the unification correlation is shown
in Figure 5.10.
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Figure 5.10: Unification correlation between images and text

The most influential features in establishing the cross-modal correlation are FAMILY features
of text and CONTRAST features of image. The exclusion of the former feature-group resulted
in correlations of 0.8779, 0.7182, 0.5939, and so on, while the exclusion of later feature-group
achieved 0.8426, 0.7985, 0.7920, and so on correlations. The combined exclusion of both the
feature groups further deteriorated the correlation to 0.5395, 0.5098, 0.4864, and so on.
The INTRINSIC (ensemble of HISTOGRAM and COMPREHENSIVE) visual features
of image and the COLOR attributes of text are the second-most influential features in
their respective modalities towards the unification. The quality along initial canonical
directions was better determined by the INTRINSIC image features while the text COLOR
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attributes dominate the determination of later canonical directions. The non-influential
text’s STROKES features indicate the prominence of other features over font-size and
spacing associated with text elements.
The prominent position and element’s size [61, 143] constituting EXTRINSIC group did
not find to influence the cross-modal correlation. Even the exclusion of the feature-group
from both the modalities resulted in 0.9838, 0.9763, 0.9712, and so on correlations (see
Figure 5.10) indicating their limited prominence in fusing the text and images.

5.6 Summary

In this chapter, a computational approach was presented to correlated and unify the
text and image visual features according to the user attention allocation. The empirical
analysis revealed that text and image visual features are correlated when the interface
idiosyncrasies are constrained. The font-family features of text are comparable to and as
influential as HISTOGRAM and CONTRAST HISTOGRAM features of images in achieving
the unification between both the modalities. Surprisingly, the prominent state-of-the-art
features, including element’s position and size [61, 143] (constituting EXTRINSIC group),
did not find to influence the cross-modal correlation. However, the text and images delineate
the attention on each other when the interface idiosyncrasies are constrained, that is, for
Webpage-oriented Grouping (WG) and Webpage-and-User-oriented Grouping (WUG).
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6
Element-based Attention Prediction

In Chapter 5, a computational approach has been presented, and found that Webpage-
oriented Grouping (WG) and Webpage-and-User-oriented Grouping (WUG) groupings
achieve unification between text and image modalities. In this chapter, the achieved unified
representation is leveraged for predicting the user attention on webpages at the granularity
of web elements. As opposed to the existing binary-level predictions (salient or not), the
presented computational approach predicts a quantitative multi-level (each level is considered
as a class) attention of the elements as indicated by the associated Fixation-Index (FI). In
summary, we tried to answer the following research questions as poised in Chapter 1.

R1: Can attention on elements be predicted if all the elements are unified into a text
modality?

R2: Can attention on elements be predicted if all the elements are unified into an image
modality?

R3: How well the achieved unification perform to predict the attention on unseen data for
both the above research questions?

6.1 Motivation

We derive the motivation from semantic feature-based Cross-Modal Information Retrieval
(CMIR) [32, 118, 119] to propose the unified approach for attention prediction. The objective
of CMIR is to retrieve the semantically equivalent text of a given image and vice-versa.
Towards the CMIR, the semantic commonality between text and images is leveraged. As
some text elements share the semantics with some image elements (for example, a paragraph
describing a ‘Tree’ and a ‘Tree’ diagram itself), the cross modalities with shared semantics
are paired and a common feature-space is learned using the Canonical Correlation Analysis
(CCA) [68]. Towards the pairing, Rasiwasia et al. [118] utilized Wikipedia articles to pair
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Figure 6.1: WG: Schematic of the proposed web element attention prediction approach. Left)
Stage-I: Pair the text and image elements based on shared webpage and fixation-indices,
subsequently, learn a maximally correlated Common Visual Space for both the natural
visual spaces. Right) Stage-II: Project all cross-modal elements into either of natural visual
space through the achieved Common Visual Space and employ SVM based classification for
attention prediction.

each text paragraph with an accompanying image in the corresponding section. That is, text
and corresponding image are considered as two views of the underlying semantic concept.
Subsequently, similarity measurement techniques, such as k-nearest neighbor method, are
employed in the common feature-space to achieve the cross-modal retrieval.

6.2 Proposed Approach

Text and image elements in tandem influence the user attention allocation on webpages. The
multi-level attention prediction may be simplified if the text elements from text visual space
are projected into the image visual space, or vice-versa. Unfortunately, no such natural
correspondence exists between the respective spaces to achieve the unification. Consequently,
we propose a two stage approach to predict the attention on web elements, as shown in
Figure 6.1. In Stage-I, unification is achieved between text and images (as described in
Chapter 5). In Stage-II, the multi-level attention prediction approach is delineated using
the unified approach.
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6. ELEMENT-BASED ATTENTION PREDICTION

6.2.1 Stage-I: Correlation Model

Consider T ∈ Rm×d
′
and I ∈ Rn×d

′
represents the d′ paired text and image elements with

m text visual features and n image visual features. Accordingly, each text element and an
image element represents a point in text visual space ⊆ Rm and image visual space ⊆ Rn

respectively.

Let the linear transformation of text-data along wt ∈ Rm×1 and image-data along wi ∈ Rn×1

establishes the correspondence between them. Then, the correlation (ρ) between transformed
text (Twt) and images (Iwi) is,

ρ = w>t Σtiwi√
(w>t Σttwt)

√
(w>i Σiiwi)

(6.1)

where, Σtt and Σii are empirical co-variance matrices of text and image data respectively
while Σti denotes the empirical cross co-variance between text and image data. Now, the
correlation is constrained to obtain the linear transformation directions wt and wi that
maximize the correlation C as,

ρmax = max
wt 6=0,wi 6=0

w>t Σtiwi√
(w>t Σttwt)

√
(w>i Σiiwi)

(6.2)

where, ρmax denotes the maximum correlation between text and images, accordingly, an
indicator of quality of correspondence between text and images. The ideal value of ρmax is 1.

Evidently, ρmax in (Equation 6.2) is unperturbed by the scaling of wt and wi which results
in numerous solutions corresponding to the scaled versions. To achieve the unique solution,
the denominator is constrained to unity through the following reformulation [68].

max
wt,wi

w>t Σtiwi (6.3)

subject to w>t Σttwt = 1 and w>i Σiiwi = 1 (6.4)

Subsequently, the constrained optimization problem is transformed into the unconstrained
problem through the application of Lagrangian, L

L(wt,wi, λt, λi) = w>t Σtiwi+ (6.5)

λt(1−w>t Σttwt) + λi(1−w>i Σiiwi)

Partial derivatives are applied on L with respect to wt and wi towards the computation of
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6.2. PROPOSED APPROACH

Algorithm 2: Multi-level attention prediction
Input:
test web element Et,
saliency threshold θ,
binary classifiers Ci,j ; for all i = 1, . . . , θ − 1; and j = i+ 1, . . . , θ
Output: Predicted multi-level attention ft

1 for k ← 1 to θ do // iterate over each possible class
2 vk ← 0 // initialize the vote-count of kth class
3 end
4 for k ← 1 to θ − 1 do
5 for l← k + 1 to θ do
6 j ← Ck,l(It) // binary-classify for k or l
7 vj ← vj + 1 // increment respective class vote
8 end
9 end

10 ft ← argmax
k

(vk) // assign the maximum voted class

11 return ft

maximum correlation achieving directions.

∂L

∂wt
= Σtiwi − 2λtΣttwt = 0 (6.6)

∂L

∂wi
= Σ>tiwt − 2λiΣiiwi = 0 (6.7)

The above two equations are reformulated as below to indicate the formulation of generalized
eigenvalue problem [91]

[
0 Σti

Σit 0

] [
wt

wi

]
= λ

[
Σtt 0
0 Σii

] [
wt

wi

]
; λ = 2λt = 2λi (6.8)

The iterative solution of the generalized eigen value problem indicates that the wis are
the eigen vectors of Σ

−1
2
ii ΣitΣ−1

tt ΣtiΣ
−1
2
ii while the eigen vectors of Σ

−1
2
tt ΣtiΣ−1

ii ΣitΣ
−1
2
tt gives

the wts [32]. In total, h =min(m,n) directions are possible for each modality. During the
iterative process, the first pair of wt and wi transformation directions (also called canonical
directions) achieves the highest correlation. Each of the subsequent iterations results in
the decreasing correlations and the wt and wi pairs which are orthogonal to the existing
transformation directions. The subspace constructed from the obtained linear transformation
directions is called Common Visual Space ⊆ Rh in which both the modalities achieve unified
representation as shown in Figure 6.1. Further, the elements of one modality can be
transformed into the visual space of other modality through the Common Visual Space.
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6. ELEMENT-BASED ATTENTION PREDICTION

6.2.2 Stage-II: Prediction Model

Consider T and I represent the text and image elements (represented using the visual features)
for which the multi-level attention needs to be predicted. Let, a total of h (minimum of m
and n) linear transformation directions are obtained from the aforementioned correlation
model. Arranging h directions into the transformation matrices respectively for text and
images as Wt = [wt1|wt2|. . . |wth]m×h, Wi = [wi1|wi2|. . . |wih]n×h.

projected text in the image space T ′ = T ×Wt ×W+
i (6.9)

projected images in the text space I ′ = I ×Wi ×W+
t (6.10)

where, W+
i and W+

t indicates the Moore-Penrose inverse or psuedo inverse of the Wi and
Wt respectively.
The unified elements (ensemble of original feature space elements and the projected elements)
in the text space are represented as

[
T
I′

]
d×m

, and analogously, unified elements in the image

space as
[
T
′

I

]
d×n

; where, d represents the number of unified elements. Considering ith row

of either of the matrices as an element Ei, the associated multi-level attention is indicated
as fi.
However, not all the levels of user attention is equally important. Especially, the later
attention may be influenced by the factors apart from visual features, such as semantic
features or exhaust in the salient elements, etc. Thus, we introduce thresholding on multi-
levels to segregate and combine the non-prominent attention levels (the later fixation-indices).
Analogous to the fixation-index, the increasing attention-level value indicates decreasing
prominence. Thus, thresholding the maximum attention-level to θ (called saliency-threshold),
results in θ classes each corresponding to an attention-level, i.e., fk ∈ {1, . . . , θ}; k =
1, . . . , d. Accordingly, the multi-level attention prediction on web elements transforms to a
polychotomous classification problem with θ classes.
We utilize the multiclass support vector machine (multiclass SVM) based approach to solve
this polychotomous prediction problem, as described in subsection 2.6.1.
We analyze the performance of the proposed approach on two real-world webpage datasets.

6.3 Prediction Performance using WG

Wt and Wi Selection: The inclusion of all features achieved the correlation of 0.9948,
0.9357, 0.9088, 0.9065, and so on respectively along first, second, third, and so on canonical
directions. In total, 51 canonical directions and corresponding correlations are obtained as
shown in Figure 5.9b. However, all correlations need not be significant, particularly, those
correspond to the later canonical directions. The application of Wilks’ Lamda [160] test
identified 28 significant canonical directions at the significance level of 0.01 which are utilized
in the multi-level attention prediction.
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Figure 6.2: Experiment-I: Prediction performance metrics with variation in θ

6.3.1 Prediction Performance on Same Dataset

For the analysis in this section, the fixation-data from Experiment-I (described in Section 3.2)
is used in both the stages.

Ground-truth Preparation: For each fixated web element, the fixation-indices from all
users are obtained. The fixation-index resulting from the application majority-voting-scheme
is assigned as the ground-truth multi-level attention. In case of conflict (multiple majority-
voted fixation-indices), the fixation-index with the lower value is assigned as an indicator of
element’s attention drawing ability.

θ selection: The maximum of median fixation-indices is considered as the saliency-
threshold in Equation 4.3. The median fixation-index of text and images (from Experiment-II)
are 5 and 4 respectively. Accordingly, θ = 5 is considered for the prediction performance
analysis.

Procedure: The image elements are projected from Image Visual Space into the Text
Visual Space (via the Common Visual Space) using Equation 6.10 where the significant
canonical directions are utilized for Wt and Wi. On the unified data, the procedure described
in subsection 6.2.2 is applied with a 5-fold cross-validation with 10 iterations. The micro
prediction performance metrics (average accuracy and micro-F1 score) computed in the
each iteration are averaged to obtain an overall prediction performance. Further, the whole
procedure is repeated by projecting the text elements from Text Visual Space into the Image
Visual Space via the Common Visual Space.

Baseline Selection: A very few of the existing approaches are centered on element-
granular attention prediction and that to multi-level attention prediction. The location-based
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6. ELEMENT-BASED ATTENTION PREDICTION

Ground-truth PredictedGround-truth Predicted

Text Modality Image Modality

Figure 6.3: Experiment-I: Example multi-level attention predictions on elements

saliency-oriented approaches (though limited to binary-level predictions) cannot be utilized
for the baseline as, two locations corresponding to the same element may indicate one
as salient and the other as non-salient. On the other hand, pattern-oriented approaches
are centered on eliciting an attention-pattern than prediction. Though the work in [19]
considered limited visual features of web elements, the attention prediction is proposed for
task-dependent settings and constrained to binary-level prediction. Thus, we utilize the
random prediction as the baseline (analogous to [32, 118]) to comprehend the performance
of the proposed approach.

At median saliency-threshold, the multi-level attention was predicted at an average accuracy
of 82.79% and the micro-F1 score of 56.98% in the Text Visual Space. The attention prediction
in Image Visual Space also achieved similar performance with the average accuracy of 81.72%
and micro-F1 score of 54.29%. Both metrics outperformed the baseline random prediction
which achieved an average accuracy of 68.03% and micro-F1 score of 20.07%. To further
understand the influence of saliency-threshold, the performance metrics are computed with
each unitary increment in θ as shown in Figure 6.2. The average accuracy gradually increased
and micro-F1 score gradually reduced with θ towards saturation. Nevertheless, throughout
the variation in θ, the approach outperformed the baseline. The contrasting variation in the
performance metrics is attributed to the class-imbalance which is better accounted by the
micro-metric F1-score. The prediction performance is consistent across the visual spaces.
Thus, the research questions R1 and R2 are answered when the interface idiosyncrasies are
constrained. However, the observed variation in prediction performance is attributed to the
utilization of low dimensional (28 significant canonical directions) Common Visual Space for
elements’ unification where not all the dimensions achieved optimal correlation between text
and images. Example predictions from the proposed approach are shown in Figure 6.3.
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Table 6.1: Experiment-III: Prediction Performance at Median θ

Category Metric Text Space Image Space Baseline

Text Avg. Acc. 86.45 85.23 75.56
micro-F1 52.56 48.29 14.46

Mixed Avg. Acc. 87.54 86.61 75.62
micro-F1 56.40 53.14 14.66

Pictorial Avg. Acc. 87.73 86.96 75.58
micro-F1 57.05 54.35 14.52

6.3.2 Prediction Performance on Unseen Dataset

For this analysis, we utilize the dataset of Experiment-I for Stage-I construction and dataset
extracted from Experiment-III (described in Section 3.4) for Stage-II prediction.

Procedure: The text data and linear transformation directions (Wt andWi) from previous
analysis are considered in combination with each category of image elements. The prediction
performance at 5-fold cross-validation with 10 iterations is computed for each category in
both the visual spaces. The saliency-threshold (θ) is considered as the maximum of median
fixation-indices from three categories which is 7 (from Experiment-III).
The prediction performance at median saliency-thresholding is shown in Table 6.1. The
prediction for the three categories outperformed the baseline and are comparable. The
Figure 6.4 shows the performance variation with the unitary increments in θ. Analogous
to analysis on same dataset, the average accuracy gradually increased, the micro-F1 score
gradually decreased towards the saturation. The prediction was not significantly affected
due to the utilized visual space. The example multi-level attention predictions are shown in
Figure 6.5.
From both the above analyses, the reducing performance with the increasing θ indicates the
decreasing prominence of visual features in predicting the user attention. Especially, the later
multi-level attention allocations (larger fixation-index values) may be influenced by other
factors such as the absence of attention-drawing elements or influence of semantic features,
which are not explainable by the visual features alone. Thus, the proposed approach better
predicts the user’s prominent initial attention, which is guided by the underlying visual
features. Thus, the research question R3 is answered when the interface idiosyncrasies are
constrained.

6.4 Prediction Performance using WUG

The approach presented in Section 6.3 is adopted for presenting the results using WUG. That
is, in Stage-I, WUG grouping is utilized in place of WG grouping as shown in Figure 6.6.
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Figure 6.4: Experiment-III: Prediction performance metrics with variation in θ
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Text

Mixed

Pictorial

Category Image Ground-truth Predicted

Figure 6.5: Experiment-III: Example multi-level attention predictions

Wt and Wi Selection: The inclusion of all features achieved the correlation of 0.9948,
0.9357, 0.9088, 0.9065, and so on respectively along first, second, third, and so on canonical
directions. In total, 51 canonical directions and corresponding correlations are obtained as
shown in Figure 5.9b. However, all correlations need not be significant, particularly, those
correspond to the later canonical directions. The application of Wilks’ Lamda [160] test
identified 30 significant canonical directions at the significance level of 0.01 which are utilized
in the multi-level attention prediction.

6.4.1 Prediction Performance on Same Dataset

For the analysis in this section, the fixation-data from Experiment-I (described in Section 3.2)
is used in both the stages.

Ground-truth Preparation: For each fixated web element, the fixation-indices from all
users are obtained. The fixation-index resulting from the application majority-voting-scheme
is assigned as the ground-truth multi-level attention. In case of conflict (multiple majority-
voted fixation-indices), the fixation-index with the lower value is assigned as an indicator of
element’s attention drawing ability.

θ selection: The maximum of median fixation-indices is considered as the saliency-
threshold in Equation 4.3. The median fixation-index of text and images are 5 and 4
respectively. Accordingly, θ = 5 is considered for the prediction performance analysis.

Procedure: The image elements are projected from Image Visual Space into the Text
Visual Space (via the Common Visual Space) using Equation 6.10 where the significant
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Figure 6.6: WUG: Schematic of the proposed web element attention prediction approach.
Left) Stage-I: Pair the text and image elements based on shared webpage and fixation-indices,
subsequently, learn a maximally correlated Common Visual Space for both the natural
visual spaces. Right) Stage-II: Project all cross-modal elements into either of natural visual
space through the achieved Common Visual Space and employ SVM based classification for
attention prediction.

canonical directions are utilized for Wt and Wi. On the unified data, the procedure described
in subsection 6.2.2 is applied with a 5-fold cross-validation with 10 iterations. The micro
prediction performance metrics (average accuracy and micro-F1 score) computed in the
each iteration are averaged to obtain an overall prediction performance. Further, the whole
procedure is repeated by projecting the text elements from Text Visual Space into the Image
Visual Space via the Common Visual Space.

Results: At median saliency-threshold (5, that is, average of text median FI=7 and image
median FI=3), the multi-level attention was predicted at an average accuracy of 87.83%
and the micro-F1 score of 69.58% in the Text Visual Space. The attention prediction in
Image Visual Space also achieved similar performance with the average accuracy of 87.36%
and micro-F1 score of 68.4%. Both metrics outperformed the baseline random prediction
which achieved an average accuracy of 67.83% and micro-F1 score of 19.58%. To further
understand the influence of saliency-threshold, the performance metrics are computed with
each unitary increment in θ as shown in Figure 6.7. The average accuracy gradually
increased and micro-F1 score gradually reduced with θ towards saturation. Nevertheless,
throughout the variation in θ, the approach outperformed the baseline. The contrasting
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Figure 6.7: Experiment-I: Prediction performance metrics with variation in θ

Table 6.2: Experiment-III: Prediction Performance at Median θ = 7

Category Metric Text Space Image Space Baseline

Text Avg. Acc. 87.65 87.07 75.53
micro-F1 56.76 54.73 14.34

Mixed Avg. Acc. 88.55 87.98 75.59
micro-F1 59.93 57.92 14.56

Pictorial Avg. Acc. 88.7 88.53 75.5
micro-F1 60.45 59.87 14.26

variation in the performance metrics is attributed to the class-imbalance which is better
accounted by the micro-metric F1-score. The prediction performance is consistent across
the visual spaces. Thus, the research questions R1 and R2 are answered when the user
idiosyncrasies are constrained along with interface idiosyncrasies. However, the observed
variation in prediction performance is attributed to the utilization of low dimensional (30
significant canonical directions) Common Visual Space for elements’ unification where not
all the dimensions achieved optimal correlation between text and images.

6.4.2 Prediction Performance on Unseen Dataset

For this analysis, we utilize the dataset of Experiment-I for Stage-I construction and dataset
extracted from Experiment-III (described in Section 3.4) for Stage-II prediction.

Procedure: The text data and linear transformation directions (Wt andWi) from previous
analysis are considered in combination with each category of image elements. The prediction
performance at 5-fold cross-validation with 10 iterations is computed for each category in
both the visual spaces. The saliency-threshold (θ) is considered as the maximum of median
fixation-indices from three categories which is 7.
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Figure 6.8: Experiment-III: Prediction performance metrics with variation in θ
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The prediction performance at median saliency-thresholding is shown in Table 6.2. The
prediction for the three categories outperformed the baseline and are comparable. The
Figure 6.8 shows the performance variation with the unitary increments in θ. Analogous
to the attention prediction on same dataset, the average accuracy gradually increased,
the micro-F1 score gradually decreased towards the saturation. The prediction was not
significantly affected due to the utilized visual space.
From both the above analyses, the reducing performance with the increasing θ indicates the
decreasing prominence of visual features in predicting the user attention. The later multi-
level attention allocations (larger fixation-index values) may be influenced by other factors
such as the absence of attention-drawing elements or influence of semantic features, which
are not explainable by the visual features alone. Thus, the proposed approach better predicts
the user’s prominent initial attention, which is guided by the underlying visual features.
Thus, the research question R3 is answered when the user and interface idiosyncrasies are
constrained together.

6.5 Summary

The text and image visual features predict the user attention on web elements for the WG as
well as WUG groupings. The prediction performance outperforms the baseline through-out
the variation in scanpath threshold θ. However, the visual features’ predictive performance
reduces with increase in θ as other factors such as absence of salient elements guide the
latter attention which may not be explained by the considered visual features.
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7
Scanpath Prediction on Webpages

In Chapter 6, element-granular attention prediction approach is presented utilizing the
unification approach. In this chapter, we propose to extend the element-granular attention
into a prominent scanpath prediction. In summary, we answer the following research
questions as poised in Chapter 1.

R1: Can scanpath be predicted if all the elements are unified using WG?

R2: Can scanpath be predicted if all the elements are unified using WUG?

R3: How well the achieved unification perform to predict the scanpath on unseen data for
both the above research questions?

7.1 Motivation

To note, though the trending scanpath prediction approaches exist in the literature [46, 47, 49],
those approaches expect the users’ scanpath data on a given test webpage. That is, the
existing approaches are pattern-eliciting than scanpath predictive. Especially, collecting
users’ fixation data on multiple webpages, as well as multiple times on the same webpage
(after every modification during web-designing) is not feasible due to money, time, and user
availability constraints. In contrast to the existing approaches, our work determines the
prominent scanpath through the selection of most attention drawing elements.

7.2 Prediction Model

The schematic of the proposed approach is shown in Figure 7.1 for WG grouping. Comparing
with the two-stage element attention prediction in Chapter 6, the first stage is considered as
it is, while the second stage is adapted to the scanpath prediction.
The Prediction model consists of Element Attention Predictor (EAP), Positional Preference
Predictor (PPP), and Scanpath Predictor modules. The EAP helps to quantitatively
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Figure 7.1: WG: Schematic of the proposed approach. UNIFICATION MODEL achieves
homogeneous representation for text and images. ELEMENT ATTENTION PREDICTOR
utilizes the homogeneous representation to build classifiers for attention prediction on
web elements. SCANPATH PREDICTOR arranges the elements into scanpath where the
positional-bias captured in POSITIONAL PREFERENCE PREDICTOR helps in resolving
the conflicts among elements.

determine the user attention (fixation-index) on web elements while the PPP provides
generic positional preference. The Scanpath Predictor module utilizes the results of EAP
and PPP to designate the scanpath.

Scanpath-threshold θ: A webpage may contain large number of elements, but only some
of those elements prominently draw the user attention. To note, on an average users allocate
up to five fixations on a webpage (described later). Thus, to incorporate this user behavior
we introduce a Scanpath-threshold, θ, that defines the scanpath length (number of elements
incorporated into the scanpath). Rest of the section describes the construction of Stage-II
modules to predict the scanpath of length θ.
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7. SCANPATH PREDICTION ON WEBPAGES

Element Attention Predictor (EAP)

Consider T and I be the overall collection of text and image elements (represented using
visual features) fixated by the users. Then, their corresponding unified feature representation
is as achieved

text projected into homogeneous space T ′ = T ×Wt (7.1)

images projected into homogeneous space I ′ = I ×Wi (7.2)

Where, the h canonical directions are horizontally stacked into the matricesWt = [wt1|wt2|. . . |wth]m×h
and Wi = [wi1|wi2|. . . |wih]n×h.
Accordingly, the ensemble of unified elements in the homogeneous visual space are represented
as E =

[
T
′

I′

]
d×p

. That is, each row of matrix E acts as a point in h dimensional homogeneous

space (see EAP module in 7.1a). In addition, each data point is associated with a fixation-
index (class-label or attention level). Together we notate every row of E along with the
associated fixation-index as a set given as {(E1, f1), (E2, f2), . . . , (Ed, fd)}.
However, not all the fixation-indices are equally important. Especially, the fixation-indices
denoting the latter attention allocation may be influenced by factors apart from visual
features (such as semantic features or exhaust in the salient elements, etc.) and may be
difficult to predict from the visual-features alone. Thus, we utilize the scapth-threshold, θ,
to segregate the prominent fixation-indices from the non-prominent (later) fixation-indices
towards the attention prediction. The θ thresholding is applied to every fk (k = 1, . . . , d) and
the revised dataset is re-written as {(E1,min(f1, θ)), (E2,min(f2, θ)), · · ·, (Ed,min(fd, θ))}.
The attention prediction on web elements transforms to a polychotomous classification
problem with θ classes. We employ the multiclass classification procedure described in
subsection 2.6.1 to solve this classification problem.

Positional Preference Predictor (PPP)

The EAP helps in estimating the user attention on web elements. However, some elements on
the same webpage may be similar in drawing the user attention, say, half of the users fixated
first on one element while the remaining half users fixated on another element. Accordingly,
both elements may achieve the same FI from EAP. In contrary, the scanpath prediction
should follow zero-sum-rule— no two elements can obtain the same fixation-index. That
is, no two elements can be associated with the same fixation-index. Thus, to resolve these
conflicts and to abide by the zero-sum-rule, we utilize the users’ overall positional preference
(or, bias) on webpages.
Primarily, a uniform rectangular-grid is constructed with the dimension of the considered
webpages. Each grid-cell size is set to the minimum size among all the elements. This
consideration overcomes the possibility of mapping multiple elements into the same cell during
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Positional preference grid

image element's center

Webpage

Figure 7.2: Illustration of element’s mapping to a positional preference grid-cell

conflict-resolve. Now, for each fixated element (Ek ∈ E; k = 1, . . . , d), the element’s center
is mapped to the underlying grid-cell (as shown in Figure 7.2) towards the accumulation of
positional preference. In the grid-cell, the lower the associated FI value, the higher is the
attention-drawing ability. Thus, to accordingly designate the prominence for each fixation,
we considered the likelihood of associated fixation-index. The prominence added to the
corresponding grid-cell is as computed.

prominence of fk(∈ {1, . . . , θ}) = frequency(fk)
θ∑

f ′=1
frequency(f ′)

(7.3)

The Equation 7.3 assigns highest prominence for FI=1 (as they are the most frequent FIs),
second highest prominence for FI=2, and so on (see Figure 3.4 and Figure 3.5).
As elements may spread across multiple grid-cells, the prominence of the current cell needs
to be propagated to the adjacent grid-cells. Towards this, we utilize the matrix smoothing
formula presented for oceanographic data [87].

Pi,j = Pi−1,j + Pi,j−1 + 2Pi,j + Pi+1,j + Pi,j+1
6 (7.4)
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7. SCANPATH PREDICTION ON WEBPAGES

where Pi,j denotes the preference accumulated in (i, j)th grid-cell, as shown in Figure 7.2.

Scanpath Predictor

The scanpath predictor module utilizes the results of EAP module and the PPP module to
assign the scanpath on a given test webpage, as shown in Figure 7.1b. Given a test webpage,
obtain and segregate the text elements and image elements. Compute the respective visual
features for each of these modalities. Map every element into the homogeneous visual
space using Equation 7.1 and Equation 7.2. Compute the fixation-index of each element
through the application of multiclass classification in EAP module. Obtain the θ most
attention-drawing elements. Arrange the θ elements into a scanpath based on predicted
fixation-index and utilize the positional preference from PPP (assign lower FI value to the
element with higher positional preference) to enforce the zero-sum-rule.
Towards the analysis of the proposed approach, the relatively smaller (in the number of
stimuli webpages), second experiment (Experiment-II), is utilized to demonstrate the quality
of unification (Stage-I) towards the scanpath prediction on unseen data (Stage-II). That
is, attention-data from Experiment-I is utilized for Stage-I while the attention-data from
Experiment-II is utilized for Stage-II prediction.

7.3 Prediction Performance using WG

7.3.1 Prediction Performance on Same Dataset

The dataset from Experiment-I is utilized in both the stages of the predictive model.

Positional Preference: The approach presented in the PPP is applied to the users’
attention obtained from Experiment-I. The grid-cell size is set to 14 px, equivalent to the
minimum sized fixated element. The smoothing procedure is repeated for ten times for the
positional prominence propagation across grid-cells. The achieved positional preference is
visualized in Figure 7.3.

Scanpath-threshold θ selection: The maximum of median fixation-indices is considered
for the scanpath-threshold θ. The median fixation-index of text and images are 6 and 3.
Accordingly, θ = 6 is considered for the prediction performance analysis.

Ground-truth Preparation: For each fixated web element, the fixation-indices from all
users are obtained. The fixation-index resulting from the application majority-voting-scheme
is assigned as the ground-truth element-granular attention. Towards the scanpath assignment,
the elements are sorted based on the element-granular attention with the utilization of
positional preference towards resolving the conflicts.
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Feature selection: Primarily feature pruning is performed on both the modalities to
remove the redundant (constant and linearly dependent) features. Subsequently, text
and image canonical directions are computed, and Wilk’s Lambda test [160] is applied to
determine the significant directions. A total of 28 canonical directions were obtained at the
significance-level of 0.01.

Procedure: The elements were projected into the homogeneous space using Equation 7.1
and Equation 7.2, where the significant canonical directions are utilized for Wt and Wi.
On the unified data, the presented EAP approach is employed with robust leave-one-out
strategy. That is, elements of one webpage are used for attention prediction while all the
remaining elements’ data is utilized in training the model. The procedure is iterated for each
webpage as the test webpage and others as training data. The same approach is repeated for
scanpath prediction with the utilization of positional preference shown in Figure 7.3. As the
classes (fixation-indices) are imbalanced, the micro metrics (average accuracy and micro-F1
score) were computed in each iteration and are averaged to obtain an overall prediction
performance.
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7. SCANPATH PREDICTION ON WEBPAGES

Table 7.1: Experiment-I: Element-granular attention and Scanpath prediction performance
at median thresholding (θ = 6)

Granularity Metric Predicted Baseline ↑ (%)
Scanpath Avg. Acc. 87.83 72.33 21.43

micro-F1 63.48 16.99 273.63

Baseline Selection: A very few of the existing approaches are centered on web elements
limiting the baseline comparison. Though the work in [19] considered limited visual features
of web elements, the attention prediction is proposed for task-dependent settings and
constrained to binary-level prediction. Thus, we utilize the random prediction [107] as the
baseline (analogous to [32, 118]) to comprehend the performance of the proposed approach.
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Figure 7.4: Experiment-I prediction performance with variation in thresholded value

Results: The prediction performance at median scanpath-threshold is shown in Table 7.1.
Evidently, the presented approach outperformed the baseline for both metrics and at both
granularities (individual elements and the whole scanpath). Between the granularities, the
prediction performance is relatively lower for the scanpath than the individual elements.
This is attributed to the zero-sum-rule. Even though the element’s attention-drawing ability
(associated fixation-index) is correctly predicted at the element-level, different FIs must be
assigned to these elements in case of conflicts resulting in performance reduction. Comparing
the metrics, the average accuracy is relatively higher than the micro F1-score for both
granular predictions. However, the relatively higher accuracy is observed for the baseline
as well. This is attributed to the class imbalance of fixation-indices (initial FIs are more
frequent and the latter FIs are less frequent), which results in the bias of average accuracy
(towards more frequent FI). The bias-mitigating micro F1-score is the better indicator of
the model’s performance.
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7.3. PREDICTION PERFORMANCE USING WG

Table 7.2: Experiment-II: Element-granular attention and Scanpath prediction performance
at median thresholding (θ = 5)

Granularity Metric Predicted Baseline ↑ (%)
Scanpath Avg. Acc. 82.44 68.31 20.69

micro-F1 56.11 20.78 170.02

To understand the prominence of scanpath-threshold on the performance prediction, the
aforementioned procedure is repeated for each increment in the scanpath threshold (θ) value.
The presented approach consistently outperformed the baseline, as shown in Figure 7.4.
However, the prediction performance reduced with increasing θ indicating the limitation of
the considered visual features in predicting the latter attention. Thus, the research question
R1 is answered.

7.3.2 Prediction Performance on Unseen Dataset

To further analyze the efficacy of unification on scanpath prediction, the computedWt andWi

are utilized to predict the scanpath on unseen webpages, i.e., webpages from Experiment-II
(described in Section 3.3).
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Figure 7.5: Experiment-II prediction performance with variation in thresholded value

The frequency distribution of the FIs is shown in Figure 3.4. In total, text elements received
5726 unique fixations and image elements received 2223 unique fixations. The distribution
of the fixation-indices is shown in Figure 3.5. Text elements were fixated with median
FI of five and image elements were fixated with median FI of four. Accordingly, θ = 5 is
considered for median thresholding.

Procedure: The text data and image data are projected into the homogeneous space
using Wt, and Wi respectively. Subsequently, the aforementioned leave-one-out strategy is
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7. SCANPATH PREDICTION ON WEBPAGES

utilized to predict the user attention on individual web elements. The positional preference
was computed and utilized towards the scanpath prediction.
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Figure 7.6: Example scanpath predictions

The prediction performance at median scanpath-thresholding is shown in Table 7.2. Anal-
ogous to Experiment-I, the model outperformed the baseline for both the metrics, and
relatively more average accuracy was achieved than the micro F1-score due to the imbalance
in frequency of FIs. Both the element-granular attention prediction and scanpath prediction
performance was comparable, but relatively lower than that of Experiment-I. In between
both the predictions, the element granular attention was better predicted than the scanpath
owing to the adherence to zero-sum-rule. The Figure 7.5 shows the performance variation
with the unitary increments in θ. The performance variation was analogous to the analysis
of Experiment-I, where the prediction performance reduced with increasing θ. The example
scanpath predictions are shown in Figure 7.6. From both the above analyses, the reducing
performance with increasing θ indicates the reducing prominence of visual features in pre-
dicting user attention. However, the proposed approach better predicts the user’s initial
attention and corresponding scanpaths. Thus, the research question R3 is answered for WG.
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7.4. PREDICTION PERFORMANCE USING WUG

7.4 Prediction Performance using WUG

The aforementioned prediction approach is applied with the WUG grouping applied in
Stage-I, as shown in Figure 7.7.
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Figure 7.7: WUG: Schematic of the proposed approach. FUSION MODEL employs canonical
correlation analysis (CCA) to achieve the homogeneous representation for text and images.
ELEMENT ATTENTION PREDICTOR applies multiclass classification on the achieved
homogeneous representation to predict the user attention on web elements. SCANPATH
PREDICTOR ordinates the scanpath sequence through zero-sum rule where the positional-
preference capturing POSITIONAL PRIORITY PREDICTOR is utilized towards resolving
the conflicts among elements.

7.4.1 Prediction Performance on Same Dataset

The dataset from Experiment-I is utilized for training and testing with appropriate data
splitting.

Feature Selection: Considering all the features and removal of constant and linearly
dependent features resulted in 57 canonical directions. However, the correlations along the

126



7. SCANPATH PREDICTION ON WEBPAGES

Table 7.3: Experiment-I: Attention prediction performance at median thresholding (θ = 6)
for the granular element and scanpath (webpage)

Granularity Metric Predicted Baseline ↑ (%)

Scanpath micro-F1 51.85 15.56 233.23
Avg. Acc. 83.95 71.85 16.84

latter canonical directions are significantly lower than that along the initial canonical direc-
tions. Thus, we employed Wilks’ Lamda [160] test to determine the 30 significant canonical
directions at the significance level of 0.01. That is, the dimension of the homogeneous visual
space is h = 30. The significant canonical directions were utilized in the EAP module as
well as the Scanpath Predictor module towards the attention prediction as described in rest
of the paper.

Positional Priority: The positional priority is computed from the user attention data of
Experiment-I. Each grid-cell dimension is set to 14px, the size of the minimum sized fixated
element. The smoothing procedure is repeated for ten times and the resulting positional
priority is visualized in Figure 7.3 which we further utilized for scanpath prediction on
webpages of Experiment-I.

Ground-truth Preparation: Majority-voting-scheme is employed to assign the ground-
truth for individual web elements. That is, for each fixated web element, the frequency of
associated fixation-indices is computed and the fixation-index with the highest number of
votes is designated as the ground-truth attention for that element. In case of conflicts, the
lower FI is assigned as an indicator of element’s attention drawing ability. Towards the
scanpath, the most attention-drawing θ elements are selected and the scanpath is assigned
in the order of associated FIs. In case of conflicts in achieving the zero-sum rule, the PPP
corresponding to the element’s center is utilized. The element with higher positional priority
obtains the lower FI value in the arrangement of scanpath.

Scanpath-threshold θ selection: The text modality median FI is 6 and the image
modality median FI is 3. The maximum of these medians, 6 is considered as the scanpath-
threshold (θ) in Equation 4.3. Accordingly, the prediction performance at θ = 6 is denoted
as the performance of the proposed model.

Procedure: All the text and image elements from their natural visual spaces were projected
into the homogeneous visual space using Equation 7.1 and Equation 7.2 respectively. Here,
significant canonical directions were considered in Wt and Wi. In the homogeneous visual
space, EAP module is executed with leave-one-out strategy— train the model with elements
of all webpages except one webpage which is utilized for prediction, and repeat the procedure
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7.4. PREDICTION PERFORMANCE USING WUG

for all webpages, one at a time. Towards the scanpath prediction, the θ most attention-
drawing elements (as determined by the FI values) are selected for each webpage and are
ordered according to zero-sum-rule with the positional priority (see Figure 7.3) resolving
the conflicts. As the FI classes are imbalanced, micro-metrics (micro F1-score and Average
Accuracy) are computed to analyze the overall prediction performance.
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Figure 7.8: Experiment-I prediction performance with variation in scanapth-threshold θ

Baseline Selection: Our approach accounts for both the visual attention and element-
granular visual features simultaneously. Unfortunately, most of the existing approaches are
limited in their simultaneous incorporation. Thus, we consider the random prediction [107] as
a baseline (analogous to [118]) to understand the proposed model’s prediction performance.
The prediction performance at median scanpath-thresholding is shown in Table 7.3. Clearly,
the model outperforms the baseline in predicting the attention at the granularity of element
as well as the webpage (that is, scanpath). Comparatively, the attention was better predicted
at the granularity of web elements than the scanpath. This is especially attributed to the zero-
sum-rule which enforces every element to take different FIs even if their attention-drawing
ability is same.
To further understand the influence of scanpath-threshold selection on prediction performance,
the performance was computed with each increment in θ as shown in Figure 7.8. Consistently,
the element-granular attention was better predicted than the scanpath prediction. However,
for both the predictions, the model outperformed the baseline. In between the two metrics,
the average accuracy remained approximately consistent across the θ variation whereas the
micro F1-score reduced with increase in θ value. The consistency in average accuracy may
be attributed to the class imbalance, where the accuracy is tend to bias towards the most
frequent FI. The micro F1-score better indicates the model’s performance. Overall, the
model performance approached the baseline for the larger θ values indicating the limitation
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7. SCANPATH PREDICTION ON WEBPAGES

Table 7.4: Experiment-II: Attention prediction performance at median thresholding (θ = 5)
for the granular element and scanpath (webpage)

Granularity Metric Predicted Baseline ↑ (%)

Scanpath micro-F1 57.22 20.06 185.24
Avg. Acc. 82.89 68.02 21.86

of visual features’ ability in describing the users’ latter visual attention. Thus, the research
question R2 is answered.

7.4.2 Prediction Performance on Unseen Dataset

To further demonstrate the efficacy of the two-stage model, the Wts and Wis from the
Experiment-I, are utilized to predict the element-granular and scanpath prediction on new
dataset, Experiment-II (see Table 3.1).
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Figure 7.9: Experiment-II prediction performance with variation in scanpath-threshold θ

The visual features are computed for text and images analogous to the Experiment-I. The
text and image elements are projected into the homogeneous space. The EAP module, PPP
module and the scanpath predictor module are applied as reported in aforementioned section.
The median FI of text is five and the median FI of image is four. Thus, scanpath-threshold
θ is set to the maximum of medians, i.e., five.

Results: The prediction performance at median scanpath-thresholding is shown in Ta-
ble 7.4. The prediction performance was found to be similar to that of Experiment-I. The
Figure 7.9 shows the model’s performance with increasing θ values. The element-granular
attention was better predicted than the scanpath and micro F1-score better indicated than
model performance than the average accuracy which remained approximately constant
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Figure 7.10: Example scanpath predictions

throughout the variation in θ. Overall, the model performance approached the baseline with
increasing θ. In summary, the results demonstrate the efficacy of the proposed approach on
predicting the scanpaths on webpages. The example scanpath predictions from the proposed
approach are shown in Figure 7.10. Thus, the research question R3 is answered for WUG.

7.5 Summary

The text and image visual features predict the users’ scanpath on webpages for the WG as
well as WUG groupings. The prediction performance outperforms the baseline through-out
the variation in scanpath threshold θ. However, the visual features’ predictive performance
reduces with increase in θ as other factors such as absence of salient elements guide the
latter attention which may not be explained by the considered visual features.
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8
Conclusions and Future Perspectives

The user attention modeling on webpages benefits the web designers, content authors,
individual bloggers, and advertisers. The evolution of the Web, Internet, and Internet
users (used interchangeably with Web users) drawn research community’s interest towards
attention modeling on webpages.
The attention modeling evolved from user attention-based observational models (such as
F-pattern) to the visual feature-based computational models (based on image processing
techniques). The former approaches are limited in applicability due to the constraints such
as user availability, time, and money involved in the experimentation. The latter approaches
are limited in the interpretability due to the non-direct incorporation of user attention and
the limited granularity (salient or not determination). This thesis aims to overcome the
limitations of both the approaches while leveraging the best of both worlds (user attention
from UAB approaches and visual features from VFB approaches).

8.1 Summary of Thesis

The objective of the thesis is to consider the webpage as an ensemble of elements, and
determine the prominence of element as a whole. This processing is essential as the designers
synthesize the whole element and then incorporate into a webpage during designing. The
findings of element-based attentional approaches are as summarized.
In Chapter 4, the prominence of elements’ position and visual features is presented. The
analyses revealed that though the users predominantly allocate the initial attention to Middle
region and the Top regions, the elements in Right and Bottom regions are not completely
ignored. The observation may be attributed to the visual features of the elements. To
understand the prominent visual features, the information-gain scores were computed between
the visual features and fixation-indices. The analysis revealed that space and font-size visual
features are informative for textual elements, and Mid-level Color Histogram visual features
are informative for image elements, while position and size are informative for both the
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modalities. The subsequent computational attention modeling demonstrated the efficacy
of informative visual features in predicting the user attention on web elements with 90%
average accuracy and 70% micro-F1 score.
To leverage the prominence of visual features in explaining the free-viewing user attention,
the Chapter 5 presented a computational approach to correlate and unify the text and image
modalities. The empirical analysis revealed that text and image visual features are correlated
when the interface idiosyncrasies are constrained. The font-family features of text are
comparable to and as influential as HISTOGRAM and CONTRAST HISTOGRAM features
of images in achieving the unification between both the modalities. The text and images
delineate the attention on each other when the interface idiosyncrasies are constrained, that
is, for Webpage-oriented Grouping (WG) and Webpage-and-User-oriented Grouping (WUG).

In Chapter 6 and Chapter 7, the established unification is extended to predict the user
attention on web elements and scanpath on a webpage respectively. The analysis found that
text and image visual features predict the user attention on web elements and scanpath on
webpages for the WG as well as WUG groupings. The prediction performance outperforms
the baseline through-out the variation in scanpath threshold θ. However, the visual features’
predictive performance reduces with increase in θ as other factors such as absence of salient
elements guide the latter attention which may not be explained by the considered visual
features.

8.2 Applications

Our computational attention modeling and prediction approach is centered on web-design
oriented visual features. Thus, designers may manipulate the visual features directly and
estimate the user attention on individual web elements or the whole webpage. The model
also helps in the repeated computation of user’s attention after every alteration to webpage
elements during their synthesis and rendering. This overcomes the difficulty in finding the
time, money, and especially users to perform the repetitive eye-tracking experiments for
understanding the attention.
In Chapter 4, space-related and font-size-related features were found to be informative
for text, Mid-level Color Histograms are found to be informative, while element’s position
and area was found to be informative for both modalities. Thus, to achieve the desired
attention on an element, the corresponding informative visual features may be varied.
For example, (i) element’s area on a webpage may be increased and the corresponding
attention may be predicted. Accordingly, the area may be further increased or decreased
until the desired attention is achieved. In case the area is constrained (say, to incorporate
multiple other elements), the element’s position may be varied to achieve the desired
attention. (ii) For text elements, besides position and size, the remaining informative
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CSS features including column-gap, line-height, padding, font-size, font-weight

may be varied to achieve the desired user attention. These features would be useful in
case the element’s position and size cannot be modified. Say, increasing the font-size

and font-weight will make the text appear in more bolder font making it more (quick)
attention-drawing than in earlier settings. (iii) For image elements, besides position and
size, the intrinsic color features need to be manipulated towards achieving the desired user
attention. Using the purer colors (with color component values around 0 and around 255)
for images may assimilate them with the background which is majorly either white in color
or sometimes black in color. In contrast, using the Mid-level Color Histograms may highlight
the image elements, especially from the background. Thus, color component values may be
manipulated towards mid-level color components (say, from 50 to 200) to achieve the desired
user attention.

In Chapter 5, we have established that text and image visual features are unifiable concerning
the user’s attention. This finding is especially useful in cross-modal element replacement on
a webpage. That is, to replace an image element with a text element and vice-versa. The
motivation for the application is described as follows.

The Internet bandwidth is limited in the developing and least developed countries (LDCs)
when compared with the developed countries. As per United Nation’s Information and
Communication Technology’s (ICT’s) Facts and Figures [130], in the year 2016, the interna-
tional Internet bandwidth per user is 6 kilobits per second (kbps) for LDCs and 53 kbps for
developing countries while it is 140 kbps for the developed countries. It means, for example,
to visualize a complete 7.5kB (or 60 kb) image on the webpage, users from LDCs have to
wait for 10 seconds. Such high latency causes user dissatisfaction besides affecting their
psychological and cognitive processing. Thus, apart from other solutions that address limited
bandwidth problem, web designers can choose to render the content with low bandwidth
cost modalities (text as opposed to images) to serve the information needs of the progressive
41.3% of people from developing countries (Internet users) [130]. However, the unimodal
conversion of the multimodal webpages, through replacement of high-cost modalities (images)
with the low-cost modalities (text), should achieve equivalence from two representational
aspects of the modalities: 1. semantic features— to represent the semantic information
associated with the elements, 2. visual features— to represent how users visually perceive
the elements presented on the interface. Towards this, the semantic cross-modal analyses
(given a text fetch the semantically equivalent image and vice-versa) [157] helps to obtain
the equivalent semantic low-cost modality of a given modality. However, such an equivalent
modality cannot be used for direct replacement as user attention needs to be preserved even
after the replacement. The preservation is desired for both the user and the website owner
as web elements are designed so as to draw user’s desired attention. The homogeneous visual
space constructed in Chapter 5 will be useful to find a similar attention-drawing cross-modal
element [129].
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In Chapter 6, we have presented a computational approach to predict the user attention on
individual web elements and scanpath on a webpage. The element-based attention prediction
finds application in improving the user’s perceived webpage load time [88]. Typically, users
perceive a webpage as quick loading if the user’s information of interest is rendered before
others. Thus, our approach can be employed to identify the prominent (quicker) attention-
drawing elements (say, elements predicted to achieve first and second fixations), and render
them a priori to other elements. This approach improves the user’s perceived webpage
load time and thereby satisfaction. Especially, with the techniques available to capture the
webpage screenshot in advance from the user-end [37, 60, 145], the rendering policies are
implementable at the web servers, as well.
In Chapter 7, we have presented a computational approach to predict the user scanpath on
webpages. This approach finds applications in web designing as well as rendering. The size
of the Web (in terms of number of webpages) is increasing progressively with the time [131],
and users are provided with numerous alternatives for each need. For example, multiple
e-commerce websites are available to purchase the same goods, and multiple online-platforms
are available to learn the same subject. In this competitive environment, it is essential
to draw the users’ attention to their desired entity (displayed on a webpage) as quick as
possible, to prevent the churn. Our scanpath prediction approach helps to determine the
sequence of quickly attention-drawing elements. This overcomes the possibility of assigning
multiple elements with same attention-drawing ability as per the approach presented in
Chapter 6. For the web-designer, the predicted scanpath indicates whether the desired entity
(say, a new product on an e-commerce webpage) is able to quickly draw the user attention or
not (say, among first three fixations). If not, the visual features of the corresponding element
may be modified to achieve the desired attention in the scanpath. Accordingly, the desired
entity may be rendered before the other elements (without the necessity to resolve the
conflicts among multiple elements with is likely as per the approach presented in Chapter 6).
Additionally, the predicted scanpath can be utilized to enhance the attention-drawing ability
of the semantically prominent elements through the manipulation of their corresponding
visual features. This helps to achieve the user satisfaction from information as well as visual
perception aspects.

8.3 Limitations

Our thesis work helps to overcome the predominant bottleneck associated with multi
modalities on webpages. However, like any other research work, it is worth noting the
limitations of our thesis work. The limitations concern the three aspects namely, user,
attention, and the interface (precisely webpages). Regarding the user, the user attention
may be affected by the age, gender, culture, etc. Regarding the attention, the user goal,
such as searching, browsing, and free-viewing, may determine the user’s attention allocation
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besides the influence of visual features. Regarding the interface, the user interface on which
the users view the webpage may determine the user attention allocation, such as mobile
devices, laptops, palmtops, desktops, etc. As addressing the affect of each factor involves a
dedicated experimental setup with elaborate analyses and multiple user participation, which
is beyond the scope of our thesis, this section highlights the prominent limitations to guide
the future research direction.

• The intrinsic visual feature influence on free-viewing attention was analyzed for
prominent Generation Y (age 18–31 [38]) users. However, further investigations are
solicited for the influence of other user characteristics such as culture [35, 97, 124] and
age [148] on the intrinsic visual feature-based attention allocation. As participants in
our study were experienced web users, extending the analyses to novice users help in
enhancing the model’s applicability for diverse users.

• For the current thesis work, webpage images were identified using the image-related
HTML tags (<img> and <picture>), analogous to [19]. Accordingly, text embedded
into the images is processed as an image though users may perceive it as text; However,
extracting the text along with its visual features from images is not feasible as these
images (such as logos) were designed using graphics editors, representing them using
the web-designer oriented CSS features may not be practical.

• Though the performance of our model is demonstrated for predicting the free-viewing
attention, further investigations are required for task-dependent settings [10] such as
task cognitive demand [6], task motivation [111], searching [58, 109], etc.

• In our thesis work, motion elements such as animations were discarded from the analysis.
Their presence may influence the attention allocation. However, their inclusion would
complicate the analysis due to the incorporation of motion related characteristics and
synchronizing the user attention with motion frame.

8.4 Future Research Directions

As described in Chapter 1, our thesis work is based on five key research components, namely,
attention modeling, webpages, interface, users, and eye-tracking. The scope for future
research expands to each of the component as described below.

Attention Modeling: The presented approach explored for the linear association between
text and images (in Stage-I), further approaches are desired to explore the possible non-
linear association. In Stage-II, multiple other prediction approaches may be employed for
improved performance. Especially, with the advancement in machine learning techniques,
more sophisticated approaches such as deep learning and reinforcement learning techniques

135



8.4. FUTURE RESEARCH DIRECTIONS

may be applied. However, it is worth to note the limited data availability due to the costs
involved in experimentation.

Eye-tracking: The prominent future direction is to extend and analyze the performance
of the proposed approach for task-dependent settings. In the current setting, the task-at-the-
hand and user expectational-bias are constrained. In their presence and variation, respective
factor-dependent components need to be incorporated towards the pairing and attention
modeling. Accordingly, the stimuli preparation and gaze parameter selection needs to be
performed. For example, in search tasks, the gaze-duration (an indicator of cognitive load)
on the web elements is important and may need to be considered besides the fixation-index.

Interface: In the current setting, we limited the analysis to regular desktop monitors.
However, the approach can be extended to analyze the proposed model performance on
other interfaces such as mobile phones and other devices such as palm-tops. Especially, such
investigations help reveal the prominence of elements’ display size or proportion of elements’
occupancy on a given interface on the user attention.

Users: The proposed views of human attention and the corresponding pairing of text and
images assume that all the user attention allocations on a webpage are similar. However,
the idiosyncratic characteristics (such as age, gender, web experience) may influence the
user attention allocation and accordingly need to be incorporated towards the cross-modal
pairing in their respective presence.

Webpages: The current work is limited to static webpages and category-specific webpage
features are not considered. That is, the webpages intended for e-commerce may be designed
differently in comparison to the webpages intended for news portals. The proposed approach
in our thesis may be analyzed for different categories for the applicability. Further, the
evolving eye-tracking technologies may be applied on the dynamic webpages to analyze and
model the element-driven attention while catering to the evolution of the Web [1]. Even for
the static webpages, the work may be extended to develop the browser-plugins so that user
attention can be predicted on-fly.
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