
Formal and Heuristic Approaches to
Real-time Scheduling on Reconfigurable

Systems

Thesis submitted to the
Indian Institute of Techenology Guwahati

for the award of the Degree

of

DOCTOR OF PHILOSOPHY

in
Computer Science and Engineering

Submitted by

Cherinet Kejela Addise

Under the guidance of

Dr. Arnab Sarkar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

January, 2022

Abstract

The dynamic partial reconfiguration (DPR) feature offered by modern FPGAs provides

the flexibility of adapting the underlying hardware according to the needs of a particular

situation during the runtime in response to application requirements. DPR has allowed

the possibility of scheduling multiple real-time applications over both space and time

so that the computation capacity of the FPGA floor may be efficiently harnessed. The

scheduler generated/developed for the real-time tasks on FPGAs must not only handle all

timing constraints, dependency constraints(if there is one), and FPGA based placement

constraints but also correctly account for reconfiguration overheads involved in loading

task bitstreams onto the configuration memory of the FPGA through the ICAP port.

Hence, static off-line schedulers are often preferred for such a system in order to satisfy

all these necessary constraints. In addition, off-line computation also allow exhaustive so-

lution space enumeration to pre-compute optimal schedules at design time, thus ensuring

lower design costs through higher resource utilization. This thesis thus endeavors towards

the exploration of new approaches and design of scheduling strategies for real-time tasks

on partially reconfigurable platforms. Particularly, we present three static offline scheduler

design approaches for reconfigurable systems: (i) a formal scheduler synthesis framework

for the real-time tasks executing on an FPGA platform, using supervisory control of timed

discrete event systems as the underlying formalism. (ii) an ILP based solution strat-

egy for scheduling persistent real-time applications represented as precedence constrained

task graphs on partially reconfigurable FPGAs and (iii) a heuristic solution methodology

for scheduling persistent real-time applications represented as precedence constrained task

graphs on partially reconfigurable FPGAs.

Declaration

I certify that:

• The work contained in this thesis is original and has been done by me

under the guidance of my supervisor.

• The work has not been submitted to any other Institute for any degree

or diploma.

• I have followed the guidelines provided by the Institute in preparing

the thesis.

• I have conformed to the norms and guidelines given in the Ethical

Code of Conduct of the Institute.

• Whenever I have used materials (data, theoretical analysis, gures, and

text) from other sources, I have given due credit to them by citing

them in the text of the thesis and giving their details in the references.

Further, I have taken permission from the copyright owners of the

sources, whenever necessary.

Cherinet Kejela Addise

Copyright

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy

of the thesis has been supplied on the condition that anyone who consults it is understood

to recognise that its copyright rests with its author and that no quotation from the thesis

and no information derived from it may be published without the prior written consent

of the author.

This thesis may be made available for consultation within the Indian Institute of Tech-

nology Library and may be photocopied or lent to other libraries for the purposes of

consultation.

Signature of Author..

Cherinet Kejela Addise

Certificate

This is to certify that this thesis entitled “Formal and Heuristic Ap-

proaches to Real-time Scheduling on Reconfigurable Systems”,

being submitted by Cherinet Kejela Addise, to the Department of Com-

puter Science and Engineering, Indian Institute of Technology Guwahati,

for partial fulfillment of the award of the degree of Doctor of Philosophy,

is a bonafide work carried out by him under my supervision and guidance.

The thesis, in my opinion, is worthy of consideration for award of the degree

of Doctor of Philosophy in accordance with the regulation of the institute.

To the best of my knowledge, it has not been submitted elsewhere for the

award of the degree.

...............................

Dr.Arnab Sarkar

Associate Professor

Advanced Technology Development Centre

IIT Kharagpur

Dedicated to
Almighty GOD and all my respectd teachers

whose knowlwdge, blessing, love and inspiration paved my path of success

Acknowledgements

It is a genuine pleasure to express my deepest gratitude to my advisor Prof. Arnab Sarkar

for the continued support of my Ph.D. study and research, for his patience, motivation,

enthusiasm, and immense knowledge. You have inspired and motivated me during difficult

times when I needed words of encouragement. I am also honored to have you as my guide

and sincerely thank you for your understanding and thoughtfulness over the years. I

would not be where I am today without your help and I will always have you to thank for

it. I would also like to thank Prof. Chandan Karfa for his support, advice, punctuality,

friendly approaches, and above all for being there for me when I needed him the most.

Besides my advisors, I would like to thank the rest of my thesis committee members: Prof.

H. K. Kapoor, Prof. John Jose, and Prof. Moumita Patra, for their insightful comments

and encouragement.

My sincere thanks also go to Dr. Rajesh Devaraj and Dr. Sangeet Saha, without whom

I would not have made it through my Ph.D. thesis. We had countless discussions and

shared ideas that have changed my view of the research in many ways. I have learned so

much from you about my field.

I would like to express my gratitude to the director, the deans, and other management

of IIT Guwahati whose collective efforts have made this institute a place for world-class

studies and education. I am thankful to all faculty and staff of Dept. of Computer Science

and Engineering for extending their co-operation in terms of technical and official support

for the successful completion of my research work.

I would also like to give special thanks to the ministry of National Defence, Ethiopia,

particularly Defence Engineering College for allowing me to pursue my Ph.D. research.

I am thankful to my friends Mohammed and Mahari for trusting in my capabilities and

for your words of encouragement. I am so blessed to have a friend like you. I am also

thankful to Dr. Abhijit, Dr. Sanjit, Dr. Piyoosh, Dr. Pranav, Partha Sarathi, and Palash

for sharing their friendly advice during my stay in IITG.

Contents

1 Introduction 1

1.1 Challenges . 4

1.2 Research Objectives . 5

1.3 Summary of work done . 6

1.3.1 Contribution 1 . 6

1.3.2 Contribution 2 . 9

1.3.3 Contribution 3 . 10

1.4 Organization of the Thesis . 12

2 Background: Real-time Systems, Supervisory Control, Spatio-Tempral

Scheduling on FPGAs 14

2.1 Real-Time Systems . 14

2.1.1 Hard vs Soft Real-Time . 15

2.1.2 A Real-Time Tasks Model . 15

2.1.3 A real-time Scheduler . 17

2.2 Real-time Scheduling for Uniprocessor Systems 18

2.2.1 Rate Monotonic (RM) . 18

2.2.2 Deadline Monotonic (DM) . 19

2.2.3 Earliest Deadline First (EDF) . 19

2.3 Real-time Scheduling for Multiprocessor Systems 19

2.3.1 Global Vs. Partitioning Scheduling 20

2.3.2 Recent Trends in Real-time Multiprocessor Scheduling 21

2.3.3 Combined Scheduling of Periodic and Aperiodic Tasks 22

2.4 Timed Discrete Event Systems [1, 2] . 24

2.4.1 A Timed DES and it’s behavior . 24

2.4.2 Accessability and Co-accessability 25

viii

2.4.3 Composition of TDES . 25

2.4.4 Supervisor . 26

2.4.5 Controllability . 27

2.5 Field Programmable Gate Arrays (FPGAs) Its Evolution and Conceptual

Background . 28

2.5.1 Introduction to FPGAs . 28

2.5.2 Closer look into CLBs . 30

2.5.3 Heterogeneous FPGAs . 30

2.5.4 FPGA Design Flow . 32

2.5.5 Dynamic and Partial Reconfiguration 33

2.5.6 Real-time Hardware Tasks . 33

2.5.7 Preemption of Hardware Tasks . 34

2.6 Spatio - Temporal Scheduling of Hardware tasks 35

2.7 Various Task Placement strategies for FPGAs 36

2.7.1 Task Placement For lD Area Model 36

2.7.2 Task Placement For 2D Slotted Area Model 37

2.7.3 Task Placement For Flexible 2D Area Model 38

2.7.4 Task Placement For 2D Heterogeneous FPGAs 41

2.7.5 Real-time Preemptive scheduling: Uniprocessors Vs Multiproces-

sors Vs FPGAs . 41

2.8 Formal and heuristic scheduling for FPGAs: A Survey 43

2.8.1 Formal approaches for Scheduling tasks on FPGAs 43

2.8.2 Spatio-Temporal Scheduling for FPGAs 45

2.9 Summary . 48

3 A Supervisory Control Approach for Scheduling Real-time Periodic

Tasks on FPGAs 49

3.1 Supervisory Control of DES . 49

3.2 Proposed Scheduler Synthesis Scheme . 51

3.2.1 THE MODELS . 51

3.2.2 Task execution on reconfigurable FPGA platforms 53

3.2.3 The Event Set . 53

3.2.4 Task Execution Model . 54

3.2.5 Composite Task Execution Model 55

ix

3.2.6 Resource-Constraint Model . 58

3.2.7 Composite Resource-constraint Model 59

3.2.8 Timing Constraint Model . 60

3.2.9 Composite Timing Constraint Model 60

3.2.10 Supervisor Synthesis . 61

3.2.11 Complexity Analysis . 62

3.3 Supervisor Implementation . 64

3.3.1 Experimental Setup . 64

3.3.2 Supervisor Generation . 66

3.3.3 Task Management . 70

3.3.4 Results . 73

3.4 Summary . 73

4 An ILP-based Approach to Real-Time Scheduling of Task Graphs on

Partially Reconfigurable FPGAs 74

4.1 System Model . 74

4.2 Formalization of the Precedence Constrained Spatio-temporal Scheduling

Problem . 76

4.2.1 Calculation of ASAP time for loading and execution 76

4.2.2 Calculation of ALAP time for loading and execution 77

4.3 An ILP Formulation . 78

4.4 Experiments and Results . 83

4.4.1 Experimental Setup . 83

4.4.2 Results . 86

4.5 Summary . 86

5 Heuristic Approach to Real-Time Scheduling of Task Graphs on Par-

tially Reconfigurable FPGAs 88

5.1 System Model & Problem formulation . 89

5.2 Scheduling and Placement Heuristic . 91

5.2.1 Scheduling . 92

5.2.2 Placement . 98

5.3 Experiments and Results . 108

5.3.1 Experimental Setup . 109

x

5.3.2 Results . 112

5.4 Summary . 115

6 Conclusions and Future Perspectives 116

6.1 Summarization . 116

6.2 Future Works . 119

References 123

xi

List of Algorithms

1 ASAP Load time and Start time . 77

2 ALAP Load time and Start time . 78

3 Variation Aware Dag Scheduling . 92

4 MVDS (K, T l, Te, Y, τ) . 93

5 placer (Tj, PB) . 97

6 NOR (PB) . 100

7 COS (Graph) . 102

8 POS (Graph) . 105

9 MOP (MERs, Tj, PB) . 106

xii

List of Figures

1.1 Pictorial representation of the proposed scheduler synthesis framework . . 7

1.2 System Model . 11

2.1 Periodic task τi . 16

2.2 Time Slices in DP-Fair . 21

2.3 Simple FPGA Internal Architecture . 29

2.4 Configurable Logic Block . 30

2.5 Combination of a 23-location LUT with a (23 × 1) decoder to implement

the function F (a, b, c) = ab+ ac, within a simple CLB 31

2.6 Hetrogeneous FPGAs: A Conceptual Block Diagram 31

2.7 Programmable Logic Design Process . 32

2.8 1D Area Model . 37

2.9 2D Area Model . 38

2.10 2D Flexible Area Model . 39

3.1 Three Slots . 52

3.2 State transition diagram capturing task execution on reconfigurable FPGA

platform . 53

3.3 DES model Gi for Periodic task Ti . 54

3.4 DES model G1 for task T1 . 55

3.5 Example: Composite Task Execution Model (partial diagram) 56

3.6 Example: Gantt chart representation of seq1 56

3.7 Example: Gantt chart representation of seq2 57

3.8 TDES Model for PRR/Slot ki . 58

3.9 TDES Model for ICAP . 58

3.10 Example: TDES Model for PRR/Slot (a) k1, (b) k2, (c) k3 59

3.11 Example: TDES Model for ICAP . 59

xiii

3.12 TDES Model Hi for deadline and period of Ti 60

3.13 Example: TDES Models (a) H1, (b) H2 . 61

3.14 Example: TDES Models (a) H3, (b) H4 . 62

3.15 Example: Supervisor (partial diagram) . 62

3.16 Example: Gantt chart of sequence seq3 . 63

3.17 Spartan FPGA with Static and PR Regions (k1, k2) 64

3.18 TDES Models for RCA (i.e.,T1) and SHA(i.e., T2) 67

3.19 TDES Models for PRRs/slots . 67

3.20 TDES for ICAP . 68

3.21 TDES Model for deadline and period of T1 and T2 68

3.22 supC(Lm(S0)) . 69

3.23 Gantt chart of sequence seq4 ∈ Lm(S) . 69

3.24 System Implementation Structure . 70

3.25 Snap shot from FPGA editor for task Placements on PRRs 72

4.1 ALAP start and load time allocation . 79

4.2 Utilzation vs. No.tasks . 87

4.3 Elapsed time vs. No. tasks . 87

5.1 The Task Graph . 91

5.2 Functional Model . 91

5.3 Infeasible task schedule with highest versions 96

5.4 Feasible task schedule . 96

5.5 horizontal and vertical sweeping lines . 99

5.6 Ovelap Sides . 101

5.7 New region formation through a horizontal guillotine cut lines 104

5.8 New region formation through a vertical guillotine cut lines 104

5.9 NAR vs. APPload . 112

5.10 SLR vs. APPload . 113

5.11 Utilzation vs. No.tasks . 113

5.12 NAR vs.Reconfiguration time factor . 114

5.13 SLR vs.Reconfiguration time factor . 114

5.14 Elapsed time vs. No.tasks . 115

xiv

List of Tables

2.1 Summary of placement strategies . 40

3.1 Task characteristics . 52

3.2 Description of event sets . 54

3.3 Reconfiguration and Execution times (in clock cycles) 65

3.4 Task Characteristics . 66

4.1 Different values of the variable pair (aij, bij) 82

4.2 Normalized Acheived Result . 86

5.1 Parameters Values for Example Task Sets 90

5.2 Obtained values for scheduled Task Sets 97

5.3 overap counter . 108

xv

List of Acronyms

ACC Adaptive cruise control

ALAP As Late As Possible

APP Application

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

ASIP Application Specific Integrated Products

ATG Activity Transition Graph

BLC bottom left corner

BRAM Block Random Access Memory

CE Cyclic Executive

CLB Configurable Logic Blocks

COS Complete Overlap Side

CPU Central Processing Unit

CS Classified Staffing

CTI Critical Task Indicating

DAG Directed Acyclic Graph

DM Deadline Monotonic

DP Deadline Partitioning

DSP Digital Signal Processing

EDF Earliest Deadline First

FCFS First Come First Serve

FF First Fit

FPGA Field Programmable Gate Arrays

GPP General Purpose Processor

xvi

GPU Graphical Processing Unit

HB Hard Blocks

HDL Hardware Description Language

HNV Half Normal Version

HO Horizontal Orientation

ICAP Internal Communication Access Port

ILP Integer Linear Programming

ISE Integrated System Environment

JTAG Joint Test Action Group

KAMER Keeping All MERs

LLF Least Laxity First

LUT Look Up Tables

MAC Multiply and Accumulate

MER Maximal Empty Rectangles

MOP Maximal Overlap Placer

MUL Multipliers

MVDS Multiple Variant Dag Scheduling

NF Next Fit

NOR Non Overlap Rectangle

NAR normalized achieved rewards

NG Negligible

NP Nonpolynomial

NRCA Non-pipelineRipple Carry Adder

NV Normal version

PCAP Processor Communication Access Port

PF Penalty Factor

xvii

POS Partial Overlap Side

PRCA Pipelined Ripple Carry Adder

PRR Partially Reconfigurable Region

QoS Quality of Service

RC Resource Constraints

RCA Ripple Carry Adder

RM Reconfigurable Module

RPU Reconfigurable Processing Units

RT Real-Time

SC Slot Constraints

SCTDES Supervisory Control of Timed Discrete Event Systems

SHA Shift-And-Add

SJF Shortest Job First

SLR schedule length ratio

SMT Satisfiability Modulo Theories

SRPT Shortest Remaining Processing Time

SUR Space Utilization Rate

TDES Timed Discrete Event Systems

TNV Twice Normal Version

TRC Top Right Corner

VADS variation aware dag scheduling

VLS Vertex List Set

VO Vertical Orientation

WCET Worst Case Execution Time

xviii

List of Symbols

Ti ith task

I I = {T1, T2, . . . , Tn} tasks

Ai Arrival time of tasks Ti task

Di Relative deadline of tas Ti(with respect to its arrival)

Pi Fixed (Minimum) inter-arrival time for periodic (sporadic) taskτi

Ei,j Execution time of task Ti task

ai Arrival(event) of Ti

rsi Reserve slot/ tile ki

sdi,j start of download of Ti,j

cdi,j completion of download of Ti,j

sei,j start of execution of Ti,j

cei,j completion of execution of Ti,j

sui,j start of unload of Ti,j

cui,j completion of unload of Ti,j

usi unreserve slot/tile ki

Σspe Set of perspective events

Σrem Set of remote events

Σcon Set of Controllable events

Σunc Set of Uncontrollable events

Σfor Set of forcible events

Σi Set of events associated with task Ti

tick Passage of one unit of the global clock

t Short hand notation for tick

Truni Execution time for task Ti

xix

Trunkii Execution time requirement for Ti’s k
th
i version

Treci Loading time for task Ti

Treckii Load time requirement for the kthi version of Ti

wi Width of task Ti

hi Height of task Ti

REWi Reward obtained for task Ti

DDag Deadline of the task graph

arji Area of T thi task jth implementation

ζi Number of versions of each task Ti

ki Task versions

T li Load start time of Ti

Tei Execution start time of Ti

REWsys Achived system-level reward

τ set of topologically sorted tasks

U Utilization

ERj An integer variable which holds the remaing execution requirement of Tj

ILR an integer variable which holds the remaining time required to load the current

task through ICAP

xx

Chapter 1

Introduction

The increasing algorithmic complexity of embedded applications has led to a paradigm

shift towards heterogeneous and highly integrated systems that include GPPs (General

Purpose Processors), ASICs (Application Specific Integrated Circuits), ASIPs (Appli-

cation Specific Instruction Set Processors), and even reconfigurable devices (such as FP-

GAs). Among these, FPGAs allow the advantage of adaptive high-performance application-

specific hardware instantiation at lower costs. Many of the emerging commercial FPGAs

also feature dynamic reconfiguration [3] so that hardware instantiations can be quickly

reconfigured at runtime allowing even higher flexibility. Therefore, many of today’s safety-

critical real-time embedded systems including avionic and automotive systems, nuclear

reactors, etc. [4], have begun to employ reconfigurable fabric within their architectures.

FPGAs have also been used in synthetic vision, object tracking [5], cryptography [6],

and digital audio/video [7] applications. For example, a given complex safety-critical

system may employ FPGAs as a performance efficient reconfigurable backup platform

for its real-time tasks. When one or more processors in the system fail, the FPGA may

need to assume the responsibility of executing the real-time tasks that were previously

running on the failed processors. However, efficiently executing dynamic hard real-time

tasks on reconfigurable platforms require well-defined resource allocation and admission

control mechanisms which not only guarantee the satisfaction of all timing constraints but

also allow high resource utilization through the systematic management of time (effective

scheduling) and space (effective mapping on the available 2D reconfigurable floor area).

A reconfigurable resource basically consists of a 2-dimensional array of W × H Recon-

figurable Processing Units (RPUs), commonly referred to as Configurable Logic Blocks

(CLBs). A task Ti in such system is a relocatable digital circuit, typically rectangular in

1

shape, which may be configured to be executed consuming a sub-region wi × hi on the

floor (having total area W × H) of the reconfigurable device with the assumption that

enough routing resources will be available to fulfill the needs of any placed task

Many embedded real-time applications are conveniently modeled as precedence con-

strained task graphs. A precedence constrained task graph G = (T,E) is composed of

a set T of task nodes and a set E of edges between task nodes. Each task node Ti ∈ T
represents a distinct functionality of an application. Each node eij ∈ E denote prece-

dence constraints between a distinct pair of task nodes Ti, Tj. As an example, let us

consider the Adaptive cruise control (ACC) system in a modern car whose objective is to

maintain a safe distance with other automobiles in the vicinity. ACC first determines the

current distance and speed of an automobile in the neighborhood along with the speed at

which it itself is running. Based on these parameters ACC determines the desired speed

followed by the required braking force and throttle position (relative to current throttle

position). Finally, it generates actuation outputs to actual physical controls over throt-

tles and brakes. Ofcourse, this entire set of activities must be performed within stringent

timing constraints which is modeled through an overall deadline for the completion of all

activities of the application graph.

In literature, it has been shown that there are a few research works on dependent

task scheduling on FPGAs [8, 9, 10]. However, these works did not consider one or

more of the following; (i) Multiple alternative functional variants for hardware tasks (ii)

Reconfiguration overheads, or (iii) Real-time constraints. The work in [11, 12] show

that the unoccupied programmable resources on the 2D homogeneous DPR device can

be represented by a maximal empty rectangle (MER) list. Since MER is a rectangle that

cannot be completely covered by other rectangles, if there are enough resources, the tar-

geted task can locate an open position by iterating through the MER list. However, such

MER-based placement strategies lead to uncontrolled internal fragmentation. Therefore,

a task allocation algorithm and resource management strategy for multi-variant tasks on

2D partially reconfigurable FPGAs must be proposed.

FPGA-based platforms are increasingly being looked upon as a lucrative and cheap

alternative for executing many of the real-time safety-critical applications. Given an ap-

plication, effectively organizing the executions of the application tasks while satisfying

all timing constraints, is ultimately a scheduling problem. A majority of the existing

scheduling techniques are online and employ heuristic sufficiency based schedulability

conditions in order to provide scheduling decisions within reasonable time. In order to

2

control involved computation overheads, the online scheduler cannot include the consider-

ation of all necessary conditions in the scheduler design and this makes online approaches

inherently sub-optimal in nature. However, optimal solutions can make a fundamental

difference towards enhancing the efficiency of resource-constrained safety-critical cyber

physical systems (CPSs) in terms of reliability, performance, space, cost etc. Formal

model-based design techniques have been found to be a lucrative alternative for many

safety-critical CPSs including designs for reconfigurable platforms. This is because, for-

mal synthesis mechanisms are correct-by-construction, which are typically more suitable

compared to adhoc allocation techniques, especially for safety-critical CPSs [13].

While scheduling a set of real-time tasks on partially reconfigurable systems, dynamic

reconfiguration of the FPGA requires to take decisions about the choice of new config-

urations and this may depend on factors such as: (i) The sequence of events during a

particular run (ii) Decisions on the relative execution order of a set of functionalities over

time (iii) Predictive knowledge about the behavior of the functionalities (iv) Placement

decisions corresponding the functionalities on the available reconfigurable real-estate (v)

Reconfiguration overheads etc. Efficient scheduling decisions related to the selection of

new configurations is therefore a very complex design issue because of the sheer exponen-

tial nature of the combinatorics of possible choices, and is therefore difficult to accomplish

online. Hence, Off-line formal approaches are often preferred in the design of reconfigu-

ration controllers (i.e., scheduler) that are correct-by-construction as well as optimal in

terms of usage of resource.

When FPGAs become the target platforms for the execution of a task, we can appre-

ciate the fact that a task (node) could have different versions based upon their implemen-

tation techniques. For example, let us assume that a task contains a certain conditional

“loop” within its computational steps and one can adopt two distinct implementation

strategies to carry out the execution. Firstly, unroll the “loop” partially and execute it

by exposing spatial parallelism. Secondly, execute the task in its compact form without

unrolling the “loop”. It is worth mentioning that the first implementation will definitely

consume less amount of time than the second implementation, but it is obvious that the

first implementation would be more spatially expensive. However, from Amdahl’s law, it

is also obvious that this “space vs throughput” relation of a hardware circuit (task) cannot

vary proportionally. From the above discussion, we can conclude that a hardware task

could have multiple hardware variants (variation in throughput) based upon its spatial

requirements. In this thesis work, we consider the multiple hardware variants of tasks.

3

1.1 Challenges

A scheduling mechanism which efficiently caters to diverse applications and serves the

variety of processing platforms in today’s safety-critical systems, must meet several chal-

lenges. We now enumerate a few such important challenges.

• A task Ti in a reconfigurable system is a relocatable digital circuit, logically rep-

resented through a corresponding bitstream (.bit file). This bitstream typically

consumes a rectangular subregion of dimension wi×hi and may be configured to be

executed anywhere on the floor (having total area W ×H) of the reconfigurable de-

vice. Parallel execution (spatial) of a given subset of tasks Tp = {Tp1, Tp2,Tp|Tp|}
is achieved through their simultaneous placement on the FPGA floor such that no

task subregion overlaps with the device boundaries or with other subregions. The

vacant region within a set of already placed tasks whose area is not large enough

to allow the feasible placement of any other task, is considered to be wasted due

to fragmentation. One of the principal goals of any placement strategy is to reduce

the total unutilized area lost due to fragmentation. However, the generic problem

which attempts to either minimize the total area consumed by a given set of tasks,

or maximize the number of tasks that may be feasibly accommodated within a given

floor area, is known to be NP-hard [14].

• The floor of the FPGA may contain hard embedded blocks within the uniform fabric

of CLBs. These heterogeneous hard components may include pre-fabricated blocks

of BRAMs, MULs, etc. Due to their efficient implementation, the use of these

inbuilt hard blocks (HBs) may often help improve performance. However, usage of

these HBs restricts the placement of a task to those specific subregions / positions

where the HBs are located and makes the placement techniques more challenging.

• Providing high resource utilization is typically not possible only by harnessing spa-

tial parallelism on the FPGA floor. Rather, this demands scheduling strategies that

also allow proportional fairness in the rates of progress for all co-scheduled tasks,

similar to optimal online general purpose multiprocessor scheduling. However, such

stipulated rates of progress for all tasks may only be maintained by appropriately

multiplexing task executions over time using a preemptive scheduling policy (similar

to DP-Fair) that incurs a significant number of context switches.

4

The design of a seamless context switch/preemption mechanism is another big chal-

lenge imposed by an FPGA’s architecture. Task contexts are stored in state-holding

elements like Flip-flops and LUT-RAMs of CLBs and other Hard Blocks (BRAMs,

MULs, etc.). Switching context in any specific region of the FPGA involves: i) cap-

turing the contexts of tasks that were executing in the region prior to a switch, ii)

updating the contexts of these captured tasks and saving them in external memory,

iii) forming a new bitstream comprising of tasks that should execute in the region

subsequent to the switch, iv) restoring the new bitstream in the region to re-initiate

execution after preemption. Literature [15, 16, 17, 18, 19, 20] has shown that signif-

icant improvements in both context capture/extraction and context updation times

may be obtained through a selective bitstream read-back and context manipulation

mechanism. These improvements have been able to effect a drastic reduction in

overall context switch overheads from more than 10ms to hundreds of microseconds

to a few milliseconds. Such low overheads have now made preemptive scheduling

more affordable in partially reconfigurable systems.

• Dynamic partial reconfiguration (DPR) is a key differentiating capability associated

with field programmable gate arrays (FPGAs). While DPR has been studied exten-

sively in academic literature, it finds limited use in deployed systems [21]. Among

other issues, most design tools available today are incapable of allowing full DPR

features for an application. Though some FPGA vendor tool suppliers incorporate

basic DPR functionality (i.e., dynamic configuration swapping),these tools are still

limited as they do not typically allow dynamic merging of neighboring regions for the

flexible 2D area model. The lack of advanced tools still restricts us from harnessing

the full power of DPR.

1.2 Research Objectives

The principle aim of this dissertation has been to investigate the theoretical and practical

aspects of offline scheduling strategies for reconfigurable systems while keeping in view

the challenges/hurdles discussed in the previous section. In particular, the objectives of

this work may be summarized as follows:

1. Design and implement a formal scheduler synthesis framework that generates an

optimal schedule for a set of non-preemptive periodic real-time tasks executing on

5

a FPGA platform, using supervisory control of timed discrete event systems as the

underlying formalism.

2. Design and implement an ILP-based solution strategy for scheduling persistent real-

time applications represented as a precedence-constrained task graph on partially

reconfigurable FPGAs.

3. Design and implement novel heuristic algorithms for scheduling persistent real-time

applications represented as a precedence-constrained task graph on partially recon-

figurable FPGAs.

1.3 Summary of work done

This research work conducts three offline scheduling approaches for reconfigurable sys-

tems. These approaches are summarized in three contributions as discussed below.

1.3.1 Contribution 1

The contributions of this work can be summarized as:

• Development of DES models for individual system components (i.e., non-preemptive

tasks, reconfiguration port) and system specifications (i.e., resource constraint, tim-

ing constraint), to synthesize an optimal scheduler for the scheduling of a set of

real-time non-preemptive periodic tasks on dynamically reconfigurable FPGAs.

• Demonstration of the practical viability of the proposed scheme through a proof-of-

concept implementation. This has enabled the validation of the correctness of the

proposed scheduling strategy on real platforms.

Now, We briefly discuss the scheduler synthesis framework of our proposal and then the

implementation decription followed.

1. Formal approaches to real-time scheduling for reconfigurable systems.

The pictorial representation of the proposed framework for the formal approaches

is presented in figure 1.1. The proposed framework receives information regarding

the task set, processing platform, constraints, and modeling style, as input param-

eters. A task set is a set of n independent real-time periodic applications/tasks:

6

Fig. 1.1: Pictorial representation of the proposed scheduler synthesis framework

7

T = {T1, T2, . . . , Tn} that needs to be scheduled on a set of q equi-sized Partial

Reconfigurable Region (PRR),{k1, k2, . . . , kq}. These tasks are nonpreemptive in

nature, i.e., once the execution of a task is started on its assigned PRR, the PRR

cannot be reconfigured until the completion of the task. In a reconfigurable system,

a task or application is represented as a relocatable digital circuit, logically repre-

sented through a corresponding bitstream (also referred to as Reconfigurable Module

(RM))) and are stored and maintained in a repository residing in memory. We as-

sume that each task Ti can have mi distinct implementations: {Ti,1, Ti,2, . . . , Ti,mi
}.

The jth implementation of Ti is characterized by, (i) spatial requirement in terms of

the required PRRs, (ii) temporal requirement in terms of the worst-case Execution

Time (WCET) and the associated reconfiguration loading times. The reconfigura-

tions of FPGA are performed under the supervision of our developed reconfiguration

controller module by loading bitstreams from the repository (SPI flash) into the con-

figuration memory of the FPGA through its ICAP port.

Given the task set, a set of executional PRRs and constraints, our framework first

constructs the Timed Discrete Event Systems (TDES) models for each task, Par-

tial Reconfigurable Regions (PRRs), Reconfigurable Port (ICAP), and the tim-

ing constraint. Given n individual TDES models G1, G2, . . . , Gn, corresponding to

T1, T2, . . . , Tn tasks in the system, a synchronous product [22] denoted by composi-

tion G = (G1 ‖ G2 ‖ . . . , Gn) on the models gives us the composite model represent-

ing the concurrent execution of all tasks. Similarly, the composite resource model(i.e.

Res = ICAP ‖ PRR) and timing specification model (H = H1 ‖ H2 ‖, . . . Hn) can

be obtained from individual models that captures the constraints such as resource

and timing. The composite system model is obtained from individual models to find

all the sequences that satisfy the constraints.

That is, S0 = G ‖ H ‖ Res. The model S0 may consist of deadlock states in

it (which will block the execution of system) and hence, to obtain a non-blocking

sub-part of S0, we apply supervisor synthesis algorithm [23]. The resulting model S

contains all feasible scheduling sequences that satisfy the given constraints. It may

happen that the state set of S to be empty, which implies that the given task set is

non-schedulable under the given set of constraints.

2. Supervisor Implementation

The models developed in the above sections are realized on the FPGA using the

8

partial reconfiguration design tools. The tools must allow the implementation of

scalable reconfigurable systems with various partial modules loaded to different lo-

cations of the device at runtime. The partial reconfiguration tools comprise sev-

eral complex tasks, including FloorPlanning, communication architecture synthesis,

physical constraints generation, physical implementation, timing verification, and

the final bitstream generation [24, 25].

The synthesized supervisor was developed on the flexible 2D area model. Realizing

the flexibilities of the 2D area model was the major drawback of the vendor tool

manufacturers, like Xilinx ISE/Vivado or Altera Quartes. Even though there are

academic tools (e.g. GoAhead [26] or OpenPR [27]) that can support the flexible

2D area model, they require detailed technical expertise about the FPGA fabrics.

In our supervisor implementation, we used the academic tool, GoAhead for creating

the partial regions and generation of the communication architectures. Additionally,

the ISE design suit and the VHDL language, were used for writing the code of the

various functional units of the supervisor (i.e., Reconfigurable controller, UART

module, Tick generator, etc.). We used the Atlys development board to test and

verify the working of the scheduler on selected hard task examples.

1.3.2 Contribution 2

In this work, we developed an ILP-based solution strategy for scheduling persistent real-

time applications represented as precedence-constrained task graphs on partially recon-

figurable FPGAs. The generated schedule must ensure that the execution of nodes in

the task graph is completed within the given deadline while satisfying all dependency

and resource-related constraints. While scheduling dependent tasks with varied imple-

mentations on an FPGA, multiple constraints must be satisfied simultaneously. That

is,

1. Unique Load Time Constraint: During a reconfiguration, exactly one version

of each task must start loading through the ICAP on the FPGA floor at a unique

time step.

2. Single Load Channel (ICAP) Constraint: Only one task can be loaded

through the single available ICAP port at a given time.

9

3. Load-execution Dependency Constraint: A task Ti can commence its execu-

tion only after its loading finishes.

4. Execution execution Dependency Constraint: Corresponding to each di-

rected edge (Ti, Tj ∈ E) in the DAG, the execution of task Tj must commence only

after the completion of its predecessor, Ti.

5. Placement Constraints: For a given temporal schedule of the tasks along with

their selected versions, the placement constraints attempt to ensure that the tasks

having overlapping life times on the FPGA floor do not spatially overlap with each

other at any instant over the schedule length. Additionally, these constraints also

guarantee that the tasks do not overlap with the FPGA boundaries.

6. Deadline Constraint: In order to ensure that the application G meets its end-

to-end absolute deadline DG, the sink node T|T | must complete execution by DG.

The ILP solutions have been generated using the IBM CPLEX tool in OPL format.

The simulation was performed on Intel(R) Core(TM) i5-1035G1 CPU @1.00GHZ 1.19GHz

and 8GB installed memory(RAM). The Normalized Achieved Reward (NAR), the utiliza-

tion (U), and cumulative schedules execution time(Sched exe T ime) are the metrics used

to evaluate the performance of the proposed ILP formulation. We varied the application

load (APPload) and the number of tasks on the x-axis. The test result confirmed that the

normalized reward remains comparable with the changes in APPload. The utilization and

the cumulative scheduler execution time were shown to increase as the number of tasks

increased.

1.3.3 Contribution 3

The main objective of contribution 3 is to design and implement a Spatio-temporal sched-

ule that maximizes the aggregate rewards through the judicious selection of task versions

for a given runtime partial FPGA platform. The generated schedule must ensure that

the execution of nodes in the task graph is completed within the given deadline while

satisfying all dependency and resource-related constraints. The pictorial representation

of the proposed system model is shown in Figure 1.2. It represents the Spatio-temporal

scheduler for a given application. The system model is classified into three functional

units as described below.

10

Fig. 1.2: System Model

1. Application

We model a real-time application as a precedence constrained Directed Acyclic

Graph (DAG) G = (T,E), where T is a set of hardware tasks (T = {Ti | 1 ≤
i ≤ |T |}) and E is a set of directed edges (E = {〈Ti, Tj〉 | 1 ≤ i, j ≤ |T |; i 6= j})
representing precedence relations between distinct pairs of tasks. An edge 〈Ti, Tj〉
refers to the fact that task Tj can begin execution only after the completion of

Ti. It is further assumed that a hardware task Ti may have ki different versions /

implementations; that is, Ti = {T 1
i , T

2
i , . . . , T

ki
i }. Although, all versions of a task

produce the same output, their execution times, area requirements and accuracy of

results may vary. Different versions of a task essentially mean different hardware

circuit implementations corresponding to the same functionality [28].

2. Scheduler

The scheduler manages the task execution sequences. Efficient task scheduling al-

gorithms consider task dependencies and resource utilization to exploit the dynam-

ically reconfigurable systems.

11

3. Placer

For a specific version of each task as selected by the scheduler, a deadline meet-

ing temporal schedule might be possible. However, this temporal schedule can be

deemed to be feasible only if it is spatially schedulable on the FPGA floor. The

placement strategy attempts to generate such a feasible spatial schedule. Specifi-

cally, for a subset of tasks (say, τ) having overlapping times in the temporal schedule,

the placement strategy attempts a sub-region of size wi×hi for each task Ti ∈ τ such

that no sub-region overlaps with the device boundaries or with other sub-regions.

The spatial schedule consists of placed tasks along with vacant regions. A vacant

region within a set of already placed tasks whose area is not large enough to allow

the feasible placement of any other task is considered to be wasted due to fragmen-

tation. One of the principal goals of any placement strategy is to minimize the total

unutilized area lost due to fragmentation.

4. We performed a simulation-based experiment to test and verify our heuristic algo-

rithm. The algorithms are implemented in C language and the data set generation

through Matlab. The simulation was performed on Intel(R) Core(TM) i5-1035G1

CPU @1.00GHZ 1.19GHz and 8GB installed memory(RAM). We evaluated the

performance of our proposed heuristic algorithms using the following metrics; The

Normalized Achieved Reward (NAR), Schedule Length Ratio (SLR), Utilization ra-

tio (U), and cumulative schedules execution time(Sched exe time). We varied the

application load (APPload) against the NAR and SLR. The test result shows that

the normalized reward remains comparable with the changes in APPload and the

SLR increases with increasing APPload. For the utilization, we varied the number of

tasks to be placed on the FPGA and we found out that utilization increases as the

number of tasks increases. We also tested the effect of varying the reconfiguration

time factor with respect to NAR and SLR. The result shows that NAR decreases,

whereas the SLR increases as the reconfiguration time factor increases.

1.4 Organization of the Thesis

The thesis is organized into six chapters. A summary of the contents of each chapter is

as follows:

12

Chapter 2: Background on Real-time Systems, Supervisory control and Spatio-temporal

Scheduling on FPGAs

This chapter presents background on real-time systems and supervisory control of timed

discrete event systems. Then, we discuss the Spatio-temporal scheduling of FPGAs.

Chapter 3: A Supervisory Control Approach for Scheduling Real-time Periodic Tasks on

FPGAs

In the third chapter, we present a formal scheduler synthesis framework for a set of non-

preemptive periodic real-time tasks executing on a FPGA platform. First, task execution

on reconfigurable FPGA platforms is discussed. Then, the scheduler synthesis framework

using supervisory Control of DES for tasks executing on FPGAs is presented. The chap-

ter also discusses the detailed implementations of the synthesized supervisor (scheduler)

practically on FPGAs.

Chapter 4: An ILP-based Approach to Real-Time Scheduling of Task Graphs on Par-

tially Reconfigurable FPGAs

In this chapter, we present the design and implementation of an ILP-based Spatio-

temporal schedule for a precedence task graph on partially reconfigurable FPGAs. First,

we discuss the formalization of the precedence-constrained Spatio-temporal Scheduling

Problem. Then, we detail an ILP-based solution to the DAG scheduling problem.

Chapter 5: Heuristic Approach to Real-Time Scheduling of Task Graphs on Partially

Reconfigurable FPGAs

Research conducted in the fifth chapter deals with the heuristic approaches of a Spatio-

temporal schedule for a precedence task graph on partially reconfigurable FPGAs. First,

the discussion of the scheduler algorithms is presented, followed by the placer heuristics.

Chapter 6: Conclusion and Future Work

The thesis concludes with this chapter. We discuss the possible extensions and future

works that can be done in this area.

13

Chapter 2

Background: Real-time Systems,

Supervisory Control, Spatio-Tempral

Scheduling on FPGAs

This dissertation is oriented towards the formal and heuristic approaches to real-time

scheduling on reconfigurable systems. The previous chapter provided an overview of the

complexity of modern embedded systems and discussed how FPGAs may be adapted to

flexibly co-execute multiple performance-critical real-time functionalities on such systems.

In this chapter, first, we present a background on real-time systems and scheduling with

their different flavors and trends. Then, the chapter discusses the supervisory control

of timed discrete event systems. Subsequently, we discuss the evolution of reconfigurable

platforms with a particular emphasis on reconfiguration techniques. Next, a discussion on

the evolution of FPGA-based architectures emphasizing mechanisms used in application

loading and mapping, reconfiguration techniques, use of heterogeneous components (hard

blocks), supporting computing infrastructures, etc. The chapter concludes by presenting

a review of various formal and heuristic real-time scheduling strategies for FPGAs.

2.1 Real-Time Systems

A real-time systems are characterized by the necessity to satisfy two notions of correctness,

functional and temporal. Therefore, such systems must not only produce correct results,

the results should be produced before a stipulated time bound called deadline. Real-time

systems span a wide range of domains including industrial control systems, automotive

14

and aviation systems, multimedia systems, consumer electronics, telecommunications,

etc. A typical example of a real-time system is provided by a temperature controller in a

chemical plant that is required to switch off the heater within 30 milliseconds when the

temperature reaches 250, to avoid an explosion.

2.1.1 Hard vs Soft Real-Time

The hardness of a real-time systems is determined by the criticality of missed deadlines.

Missing a deadline in a hard real-time system may lead to catastrophic consequences.

Some examples of hard real-time systems are: fly-by-wire controllers for airplanes, mon-

itoring systems for nuclear reactors, car navigation, robotics etc. On the other hand,

a soft real-time system is less restrictive; it tolerates deadline misses at the cost of the

quality of results, as long as they remain within certain temporal limits beyond which

the system becomes useless. Obviously, Quality of Service (QoS) degrades as delay in

response increases beyond deadline. Examples of such systems include streaming video,

voice over IP, interactive gaming etc.

2.1.2 A Real-Time Tasks Model

A task is composed of a set of instructions to be executed on a processor. Typically task

executes repeatedly and each such execution instance is referred to as a job. Important

parameters which characterize a real-time task are:

1. Arrival time ai is the time at which a task becomes ready for execution. It is also

referred as release time or request time and indicated by ri.

2. Start time si is the time at which a task starts its execution.

3. Computation time or Execution time Ci is the time necessary to the processor

for executing the task without interruption.

4. Finishing time fi is the time at which a task finishes its execution.

5. Deadline is the time before which a task should be completed. If its measured

w.r.t. system start time (at 0), it will be called as absolute deadline(di) . If its

measured w.r.t. request time (ri), it will called as relative deadline(Di).

15

6. Response time Ri is the difference between the finishing time and the request

time: Ri = fi − ri.

7. Worst-case execution time ei is the largest computation time of a task among

all its possible execution.

8. Lateness Li is the delay of a task completion with respect to its deadline: Li =

fi − di.

9. Tradiness or Exceeding time Ei is the time a task stays active after its deadline:

Ei = max(0, Li).

10. Laxity or Slack time Xi is the maximum time a task can be delayed on its activation

to complete within its deadline: Xi = Di − Ci.

11. Priority Pi is the importance given to a task in context of the schedule at hand.

A real-time task τi can be classified as periodic, aperiodic and sporadic based on

regularity of its activation.

Fig. 2.1: Periodic task τi

1. Periodic tasks consist of an infinite sequence of identical activities, called instances

or jobs, that are regularly activated at a constant rate. The activation time of the

first periodic instance is called phase (φi). The activation time of the kth instance

is given by φi + (k − 1)Ti, where Ti is the activation period of the task.

2. Aperiodic tasks also consist of an infinite sequence of identical jobs. However,

their activations are not regularly interleaved.

3. Sporadic tasks consist of an infinite sequence of identical jobs with consecutive

jobs are seperated by a minimum inter-arrival time.

16

There are three levels of constraint on task deadline:

1. Implicit Deadline: all task deadlines are equal to their periods (Di = Ti).

2. Constrained Deadline: all task deadlines are less than or equal to their periods

(Di ≤ Ti).

3. Arbitrary Deadline: all task deadlines may be less than, equal to, or greater than

their periods.

Processor Utilization Factor U : Given a set of tasks, Γ = {τ1, τ2, ..., τn}, U is the

fraction of the processor time spent in the execution of the task set. U =
n∑
i=1

Ci/Ti

Hyperperiod : It is the minimum interval of time after which the schedule itself repeats

itself. If H is the length of such an inteval, then the schedule in [0, H] is the same as that in

[kK, (k+ 1)K] for any integer k > 0. For a set of tasks activated simultaneously at t = 0,

the hyperperiod is given by the least common multiple of the periods: H = lcm(τ1, ..., τn).

2.1.3 A real-time Scheduler

Scheduling appears in any domain where there is a need to allocate limited available

resources in order to serve a certain number of tasks. It is then necessary to coordinate

the use of such resources so that the tasks may run to completion as efficiently as possible.

This efficiency means optimizing one or many criteria. Such criteria could be to minimize

the schedule length (makespan), maximize resources utilization, minimize the number of

tasks that must be rejected due to insufficient resources etc. The problem of scheduling

can be described by a triplet {α, β, γ} where α represents the set of available resources, β

the set of applications to be executed on the resources along with their time constraints

and γ the objective function to be optimized. The generic multi-resource scheduling

problem has been shown to be NP complete and hence, many scheduling heuristics of

lesser complexity have been proposed.

The set of rules that, at any time, determines the order in which tasks are exeucted

is called a scheduling algorithm. Given a set of tasks, Γ = {τ1, τ2, ..., τn}, a schedule is an

assignment of tasks to the processor, so that each task is executed until completion. A

schedule is said to be feasible if all tasks can be completed according to a set of specified

constraints. A set of tasks is said to be schedulable if there exists at least one algorithm

that can produce a feasible schedule. Scheduling algorithms can be classified based on

preemption.

17

1. Preemptive: tasks can be interrupted at any time (so that the processor may be

assigned to another task) and resumed later.

2. Non-preemptive: once activated, a task must be continuously executed until com-

pletion.

In addition to the above classification, depending on whether the schedule is generated

statically at design-time or dynamically at run-time, scheduling algorithms are differenti-

ated as off-line or online. In offline scheduling, the scheduler has a priori knowledge of the

task set and its constraints, such as arrival times, execution times, precedence constraints,

etc. The schedule is generated and stored at design time and dispatched later during run-

time of the system. Offline scheduling is also referred to as static. Offline scheduling is

usually performed to find the optimal solution of tasks. Contrary to offline scheduling,

the execution sequence is not known in advance for online scheduling. Online scheduling

algorithms make their scheduling decisions at runtime based on the information about the

tasks that have arrived so far. Online scheduling happens to be more flexible than offline

scheduling since it can be used for the cases where the sequence of tasks dynamically

changes at run-time. However, they may incur significant overheads because of runtime

processing. Usually, online scheduling algorithms try to produce an ”approximate” so-

lution, but cannot guarantee the optimal solution. A scheduling algorithm is said to

be optimal if it is able to find a feasible schedule, if one exits. An algorithm is said to

be heuristic if it is guided by a heuristic function in taking its scheduling decisions. A

heuristic algorithm tends toward the optimal schdule, but does not guarantee finding it.

2.2 Real-time Scheduling for Uniprocessor Systems

Scheduling theory has been intensively studied over the years and uniprocessor scheduling

takes the lion’s share in the rich literature review. Many optimal uniprocessor scheduling

algorithms have been proposed along with their schedulability analysis. Here below are

some scheduling algorithms.

2.2.1 Rate Monotonic (RM)

The RM algorithm in [29] is a preemptive static priority scheduling scheme for periodic

and independent tasks systems. In the static priority scheme, tasks are assigned an integer

priority value that remains fixed for the lifetime of the task. Whenever a task is made

18

ready to run, the active task with the highest priority commences or resumes execution,

preempting the currently executing task, if need be. In RM, shorter the period of a task,

higher becomes its priority. Liu and Layland (1973) [29] have proven RM to be an optimal

static priority scheduler for preemptive task systems.

An important shortcoming of the RM algorithm (as shown by Liu and Layland) is

that even on uniprocessor systems no more than 69% of the processor may be utilized to

ensure scheduling feasibility of a set of tasks under rate-monotonic priority assignment,

in the worst case.

2.2.2 Deadline Monotonic (DM)

DM [30] is a static priority scheduling algorithm that gives the highest priority to the

task with the least relative deadline di. DM could be used with periodic, aperiodic and

sporadic tasks systems.

2.2.3 Earliest Deadline First (EDF)

EDF [29] is a dynamic priority scheduling scheme where the highest priority is assigned

to the task with the closest absolute deadline. Priorities are reassessed and updated at

runtime if necessary (e.g. on each task arrival). EDF has been proven to be optimal for

preemptive periodic tasks. Later, EDF has also been shown to be optimal in the case

of non-periodic tasks. EDF scheduling outperforms RM and produces less preemption

compared to RM.

2.3 Real-time Scheduling for Multiprocessor Systems

An increasing number of real-time systems require more than one processors to achieve

their performance goals. The problem of scheduling tasks on multiple processors cannot

be seen as a simple extension of the uniprocessor scheduling due to additional constraints

such as: task migration overheads, inter-task communication overheads etc. Traditionally,

there are two classes of scheduling algorithms for multiprocessor platforms: partitioned

scheduling and global scheduling.

19

2.3.1 Global Vs. Partitioning Scheduling

In global scheduling, all ready tasks are stored in a single priority queue among which

scheduler selects the highest priority task at each invocation irrespective of which processor

is being scheduled. In a purely partitioned approach on the other hand, the set of tasks is

partitioned into as many disjoint subsets as there are processors available, and each such

subset is assigned to a distinct processor [31]. After this mapping is obtained, all instances

/ jobs of a given task are executed only on the processor to which it is associated.

Due to the allowance of task migrations, global scheduling methodologies are typically

able to achieve higher schedulability compared to partitioned scheduling. However, task

migrations and preemptions come at the cost of increased runtime overheads. Therefore

attempts have been made to devise schemes which are able to restrict migrations while

satisfying the performance goals.

Pros and Cons:

The main advantage of partitioning is that it allows the multiprocessor scheduling prob-

lem to be reduced to a set of uniprocessor ones. Within each processor, a separate well

known uniprocessor scheduler like Rate Monotonic (RM), Earliest Deadline First (EDF),

etc. may be easily applied. In addition, the overhead of inter-processor task migrations is

smaller than global scheduling. Finally, because task-to-processor mapping (which task

to schedule on which processor) need not be decided globally at each scheduling event, the

scheduling overhead associated with a partitioned strategy is lower than that associated

with a global strategy [[32], [31]]. However, partition based scheduling approaches may

often be plagued by low resource utilization. Oh et.al. in [33] showed that on homo-

geneous multiprocessor systems where no task migration between processors is allowed

and each processor schedules tasks preemptively employing the Rate Monotonic policy,

the maximum utilization that may be achieved is just 41%. When EDF, a well known

optimal scheduler for uniprocessor systems, is applied to multiprocessors using a fully par-

titioned approach disallowing task migrations, the worst case utilization bound reduces

to 50% [34].

On the other hand, even though the generic global scheduling methodology may have

higher scheduling complexity and cause an unrestricted number of migrations and cache

misses, it possesses many attractive features like flexible resource management, dynamic

load distribution, fault resilience, high system utilization, etc. [35].

20

2.3.2 Recent Trends in Real-time Multiprocessor Scheduling

Recent multiprocessor scheduling techniques for general purpose processors such as ER-

fair [36] and DP-Fair [37] have shown that it is possible to achieve optimal resource

utilization irrespective of the skewness in task weights / periods, by maintaining propor-

tional fair execution progress for all tasks. However, such proportional fairness is achieved

at the cost of higher preemptions / migrations.

ERfair Scheduler: ERfair schedulers mandate execution of each task Ti to proceed

proportionally at a rate lower bounded by a parameter called its weight (wti) which is

defined as the ratio of its execution requirement (ei) and period (pi). To maintain ER-

fairness at the end of any given scheduling quanta or time slot t, si < t < si + pi, at least
ei
pi
× (t − si) of the total execution requirement of ei must be completed for each task Ti,

where si is the start time of task Ti. ERfair ensures schedulability if the summation of

weights of the n tasks is atmost the number of processors
∑n

i=1 ei/pi ≤ m.

Fig. 2.2: Time Slices in DP-Fair

21

DP-Fair Scheduler: Although ERfair is an optimal scheduler allowing full resource

utilization, it suffers from high scheduling overheads as well as inter-processor task migra-

tion overheads. Recently Deadline Partitioning-Fair (DP-Fair), a lower overhead optimal

scheduling strategy with a more relaxed proportional fairness constraint has been pro-

posed. DP-Fair sub-divides time into slices demarcated by the deadlines of all tasks.

Time slice tsi denotes the interval between the (i1)th and ith task deadlines. For example,

as shown in Figure 2.2, let us assume three ready periodic tasks T1, T2, T3 at time 0 with

periods / deadlines 4, 6, 10, respectively. Therefore, there are distinct deadlines at 4, 6,

8, 10 and 12. Hence, we have five distinct time slices ts1, ts2, ts3 ts4 and ts5.

Within each time slice, each task is allocated a ”per-slice workload” which is equal to

its weight times the length of the time slice. If tsli be the length of the ith time slice, then

task Ti should complete its allocated workload (ei
pi
× tsli) within the time slice. Although

the exact intra-time slice task scheduling policy may vary, any adopted strategy must

obey the following three rules:

1. Always run a task with zero local laxity

2. Never run a task with no workload remaining in the slice

3. Do not voluntarily allow more idle processor time than (m−
∑

ei
pi

)× (length of time

slice)

DP-Fair is optimal multiprocessor algorithm. In comparison to ERfair, DP-Fair enforces

a more relaxed rate constraint and preserves scheduling optimality by guaranteeing ER-

fairness constraints to be satisfied only at task period / deadline boundaries. Obvi-

ously, for such a criterion to be guaranteed in a system of m processors, we must have∑n
i=1 ei/pi ≤ m.

2.3.3 Combined Scheduling of Periodic and Aperiodic Tasks

The generic problem of the combined scheduling of periodic and aperiodic tasks has

spun-off in different directions primarily based on the types of real-time tasks that a

system requires to handle. For example, based on task arrival times, scheduling algorithms

have been designed considering either, both periodic and aperiodic tasks to be arbitrarily

arriving at runtime [38], both task types to be statically known offline [39], or considering

periodic tasks to be persistent and aperiodic tasks to be dynamically arriving [40]. On the

22

basis of task deadlines on the other hand, scheduling strategies have been considered for

scenarios where both periodic and aperiodic tasks are hard [41], and also where periodic

tasks are hard and aperiodic tasks are soft [42]. In the former case, sound acceptance

tests must be employed to guarantee that all accepted tasks meet their deadlines. In

the later case, the main objective is to guarantee all deadlines for periodic tasks while

achieving good average response times for the soft aperiodic tasks.

For task sets containing persistent periodic tasks along with dynamic aperiodic tasks,

typically, an initial periodic task schedule is created offline and then aperiodic tasks are

scheduled within the remaining capacity. A hard aperiodic task acceptance strategy,

namely Critical Task Indicating (CTI) algorithm, has been discussed by Lee et al. in

[43]. CTI generates an offline scheduling table to keep an account of residual resources

within a single hyper-period after assigning the periodic tasks in an As Late As Possible

(ALAP) fashion. Later, this table is used by the online scheduler to find slacks where

hard aperiodic tasks may be accommodated. Fohler et al. discussed a similar approach

called Slot-Shifting, in [44]. An extension of the Slot-Shifting algorithm was considered

by Schorr et al. in [45], in order to incorporate non-preemptive aperiodic tasks into an

arbitrary feasible schedule.

On multiprocessor systems, the offline resource allocation step must not only consider

scheduling but also mapping of the static periodic tasks onto available processing ele-

ments such that residual resources necessary to allocate the dynamic aperiodic tasks may

be maximized. In [46], Kato et al. reported that the average response time of aperiodic

tasks may be improved by allowing online migration of some of the periodic tasks. Saez et

al. in [47] introduced a global scheduling strategy where they checked the dynamic state

of each processor and migrated aperiodic tasks to take advantage of the spare time on each

processor and thus allow high resource utilization. Andersson et al. [48] proposed neces-

sary and sufficient feasibility conditions to achieve low overhead exact admission control

in EDF scheduled systems consisting of either, only aperiodic tasks, or a combination of

persistent periodic tasks and dynamic aperiodic tasks. By extending this approach, Nie

et al. [38] developed an on-line EDF based admission controller, called capacity-based

admission control, for dynamically arriving periodic as well as aperiodic tasks.

23

2.4 Timed Discrete Event Systems [1, 2]

2.4.1 A Timed DES and it’s behavior

DES is a discrete state space, event driven system that evolves with the occurrence of

events, such as the arrival or completion of a task. In timed model of DES, both logical

behavior and timing information are considered. Supervisory control of a TDES is timely

disablement or enforcement of certain events in the transition structure of the TDES

such that it’s behavior meets certain specifications. Following the SCTDES, individual

components, i.e., tasks of the system are modeled by an automaton:

G = (Q, Σ, δ, Γ, q0, Qm),

where Q is the finite state space. Σ is the set of events. δ : Q×Σ 7−→ Q is the partial state

transition function. Γ : Q → 2Σ is the active event function. For all states q ∈ Q, Γ(q)

is the set of all events σ ∈ Σ for which δ(q, σ) is defined and it is called the active event

set of G at q. q0 ∈ Q is the initial state. Qm ⊆ Q is the set of marked states representing

the completion of tasks. The event set Σ is partitioned into following disjoint subsets:

Σ = Σc ∪ Σuc ∪ Σfor ∪ {t},

where Σc is the set of controllable events : these are the events that can be prevented (or

disabled) from happening by supervisor. Σuc is the set of uncontrollable events : these

are the events that cannot be prevented from happening by supervisor. Event t denotes

the passage of one unit time, or one tick of the global clock. Σfor is the set of forcible

events : these are the events that can preempt a tick of the global clock by forcing action

of supervisor, and a forcible event itself may be either controllable or uncontrollable.

Let us denote by Σ+ the set of all finite sequence of events of Σ, of the form σ1σ2...σk

where k ≥ 1, k ∈ N and σi ∈ Σ. Let ε /∈ Σ be the empty event and define Σ∗ =

{ε} ∪ Σ+. Transition function δ can be extended to Σ∗ by defining δ(q, ε) = q and

δ(q, sσ) = δ(δ(q, s), σ) for all s ∈ Σ∗ and σ ∈ Σ. The behavior of TDES G is described

by a pair of languages, L(G) and Lm(G), where L(G) is the set of all strings that the

TDES can generate (i.e., the strings s such that δ(q0, s) is defined). Lm(G) ⊆ L(G) is

the language of marked strings that is used to represent the completion of tasks (i.e., the

strings s such that δ(q0, s) ∈ Qm).

24

The prefix-closure of a language L ⊆ Σ∗ is denoted by L and consisting of all the

prefixes of all the strings in L. L = {s ∈ Σ∗ : (∃t ∈ Σ∗) [st ∈ L]}. L is said to be prefix-

closed if L = L. The prefix closure of a language L is relevant to control problems because

it contains the evolutionary history of words in L. By definition, L(G) is prefix-closed, i.e.,

L(G) = L(G), since a string is only possible if all its prefixes are also possible. However,

Lm(G) need not be prefix-closed, since not all states of TDES G need be marked. The

post-language of L after s, denoted by L/s, is the language L/s = {t ∈ Σ∗ : st ∈ L}.
For s ∈ Σ∗, let le(s) denote the last event of the string s, e.g., le(abc) = c for a, b, c ∈ Σ

and abc ∈ Σ∗ [49].

2.4.2 Accessability and Co-accessability

A state q ∈ Q is reachable or accessible if there is a string s ∈ Σ∗ with δ(q0, s) is defined

and δ(q0, s) = q. We denote the operation of deleting all the states of G that are not

accessible by Ac(G). Since Ac operation has no effect on L(G) and Lm(G), without loss

of generality, we assume that an automaton is always accessible (G = Ac(G)) in this

article. A state p ∈ Q is co-reachable or co-accessible if there is a string s ∈ Σ∗ such that

δ(p, s) ∈ Qm. TDES G that is accessible as well as co-accessible is said to be trim. G

is non-blocking if every accessible state is co-accessible. It says that any string that can

be generated by G is a prefix of (i.e. can always be completed to) a marked string of

G, or equivalently L(G) = Lm(G). Likewise, G is said to be blocking if L(G) 6= Lm(G)

and consequently deadlock can happen. G could reach a state q where there are no

outgoing transitions and q /∈ Qm. This is called a deadlock because no further event can

be executed. If deadlock happens, then necessarily Lm(G) will be a proper subset of L(G),

since any string in L(G) that ends at state q cannot be a prefix of a string in Lm(G).

2.4.3 Composition of TDES

There are two composition operations defined on TDES: parallel, denoted by ‖, and

product composition, denoted by ×. To construct an execution model of a composite task

describing the concurrent behavior of individual tasks, we employ the parallel composition

operation. Given two TDESs Gi = (Qi, Σi, δi, Γi, q0i, Qmi) for i = 1, 2, the parallel

composition of G1 and G2 is defined as follows:

G1 ‖ G2 = Ac(Q1 × Q2, Σ1 ∪ Σ2, δ,Γ1‖2, (q01, q02), Qm1 × Qm2),

25

where

δ((q1, q2), σ) =



(δ1(q1, σ), δ2(q2, σ)) if σ ∈ Γ1(q1) ∩ Γ2(q2)

(δ1(q1, σ), q2) if σ ∈ Γ1(q1) \ Σ2

(q1, δ2(q2, σ)) if σ ∈ Γ2(q2) \ Σ1

undefined otherwise

and Γ1‖2(q1, q2) = [Γ1(q1) ∩ Γ2(q2)] ∪ [Γ1(q1) \ Σ2] ∪ [Γ2(q2) \ Σ1].

Product composition of G1 and G2 is defined as follows:

G1 × G2 = Ac(Q1 × Q2, Σ1 ∪ Σ2, δ, Γ1×2, (q01, q02), Qm1 × Qm2),

where

δ((q1, q2), σ) =

(δ1(q1, σ), δ2(q2, σ)) if σ ∈ Γ1(q1) ∩ Γ2(q2)

undefined otherwise

and Γ1×2(q1, q2) = Γ1(q1) ∩ Γ2(q2). Intersection of two languages can be obtained by

performing product composition of their automaton representations, because Lm(G1 ×
G2) = Lm(G1) ∩ Lm(G2)[2].

2.4.4 Supervisor

Let automaton G represents the composed model of individual components (or tasks) in

the system. Behavior of this G is expressed by languages L(G) and Lm(G). In addition

to this, we have a set of specifications (or goals) that are subset of Lm(G) and must

be satisfied by G. Let us assume that each specification is modelled by an automaton

and composed model is represented by K such that K ⊆ Lm(G) and K 6= ∅. In order

to ensure that the behavior of G stays within the given specification, we introduce an

another automaton called supervisor, which is denoted by S. The transition function of

G can be controlled by S in the sense that the controllable events of G can be dynamically

enabled or disabled by S based on the observation of the events generated by system G.

However, the supervisor does not generate events, it only provides the information about

what are the events allowed for G to execute from its current state. If G follows the

event set information provided by S, then Lm(G) will be restricted such that it will never

generate a string that is out of given specification K.

The abstract definition of a supervisor S is a function from the language generated by

26

G to the power set of Σ. Formally, S : L(G) → 2Σ. For each s ∈ L(G) generated so far

by G (under the control of S), S(s) ∩ Γ(δ(q0, σ)) is the set of enabled events that G can

execute at its current state δ(q0, σ). Supervisor S is admissible if for all s ∈ L(G),

Σuc ∩ Γ(δ(q0, s)) ⊆ S(s)

which means that S is not allowed to ever disable a feasible uncontrollable event. Here

S(s) is the control action at s. We shall consider admissible supervisor in this paper.

Given G and admissible S, the resulting closed-loop system is denoted by S/G (read as

“S controlling G”). The controlled system S/G is a TDES, and we can characterize its

generated and marked languages. The language generated by S/G is defined recursively

as follows:

1. ε ∈ L(S/G)

2. [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ S(s))]⇔ [sσ ∈ L(S/G)]

3. no other strings belong to L(S/G)

The language marked by S/G is defined as follows: Lm(S/G) = L(S/G) ∩ Lm(G).

The Lm(S/G) consists exactly of the marked strings of G that survive under the control

of S. Supervisor S controlling TDES G is blocking if S/G is blocking and supervisor S is

non-blocking if S/G is non-blocking. Since marked strings represent completed tasks, a

blocking supervisor results in a controlled system that cannot terminate the execution of

the task at hand.

2.4.5 Controllability

It is well known that given an uncontrolled system with behavior L(G) and a desired

specification K ⊆ Lm(G), there exists a supervisor S such that L(S/G) = K, which

restricts the system behavior to the desired behavior by dynamically disallowing some

of the controllable events while never preventing any of the uncontrollable events from

occuring. For s ∈ Σ∗, the set of eligible events in G after processing string s is defined as

EligG(s) = {σ ∈ Σ|sσ ∈ L(G)}. Similarly for K, EligK(s) = {σ ∈ Σ|sσ ∈ K}. Then

K is controllable (with respect to G) if for all s ∈ K

EligK(s) ⊇

EligG(s) ∩ (Σuc ∪ {t}) if EligK(s) ∩ Σfor = ∅

EligG(s) ∩ Σuc if EligK(s) ∩ Σfor 6= ∅

27

Thus K controllable means that an event σ may occur in K if σ is currently eligible in G

and either (i) σ is uncontrollable, or (ii) σ = tick and no forcible event is currently eligible

in K. The effect of the definition is to allow the occurence of tick (when it is eligible in

G) to be ruled out of K only when a forcible event is eligible in K and could thus be

relied on to preempt it. However, that a forcible event need not preempt the occurrence

of completing non-tick events that are eligible simultaneously [1]. If the controllability

condition is satisfied, then the supervisor that achieves exactly the required behavior, K,

is:

S(s) = {σ ∈ Σc|sσ ∈ K} ∪ [Σuc ∩ Γ(δ(q0, s))].

This S is called as an implicit supervisor [50]. If this supervisor S is adjoined with the

system G, then the behvaior of the resulting closed-loop system will be L(S/G) = K.

When K is not controllable, let C(K) denote the family of controllable sublanguages of

K.

C(K) = {K ′ ⊆ K | K ′ controllable w.r.t. L(G)}

C(K) is always non-empty, since ∅ is controllable. The main result of [51] on control-

lability is that C(K) has a unique largest controllable sublanguage supC(K) such that

supC(K) ⊆ K. So we design a minimally restrictive (or maximally permissive) supervisor

which restricts the system behavior to the supremal controllable sublanguage of K, de-

noted by supC(K). If this minimally restrictive supervisor which is synthesized by SCT is

adjoined with the plant (or system), then the resulting controlled system will dynamically

reconfigure itself to ensure L(S/G) = supC(K).

2.5 Field Programmable Gate Arrays (FPGAs) Its Evolution

and Conceptual Background

2.5.1 Introduction to FPGAs

FPGA is an electronic device which consists of a matrix of reconfigurable logic circuitry,

typically referred to as configurable logic blocks (CLBs), surrounded by a periphery of

I/O blocks, as shown in Figure 2.3. When a FPGA is configured, the internal circuitry

is electrically connected in a way that creates a hardware implementation of the desired

application. Unlike processors, FPGAs use dedicated hardware (using CLBs as build-

ing blocks) for processing logic. Hence, FPGAs are truly parallel in nature and do not

28

have to compete for the same resources when processing different operations of an ap-

plication, as is the case with a software implementation using processors. As a result,

performance of different components of the application become mutually independent;

additional processing incorporated in one component do not affect the performance of

other components.

Fig. 2.3: Simple FPGA Internal Architecture

However, unlike single-purpose hardware designs (also referred to as, Application Spe-

cific Integrated Circuits, ASICs) with dedicated and fixed hardware functionalities, FP-

GAs can literally re-wire their internal circuitry to allow post-fabrication hardware pro-

grammability and thus, these devices are the enabling technology for reconfigurable com-

puting. By incorporating programmability, FPGAs are able to combine the flexibility of

software based implementations along with performance efficiencies often close to that of

single purpose hardware or ASICs. A side effect of the power of reconfigurability is the

ability to correct / modify design errors even after the implementation phase. This is

unlike ASICs where it is almost impossible to rectify design errors post fabrication. This

restriction increases the design, verification and testing overheads of ASICs by multiple

folds, in terms of both cost and time-to-market. With the objective of alleviating such

overheads, FPGA based implementations are often preferred over ASICs in situations

where the intended device is not targeted for huge mass production. Due to the same

reason, FPGAs are also popular as prototyping platforms before the mass manufacturing

phase. However, power and area related overheads for FPGAs are typically higher than

those for ASICs and this limits the design size.

29

2.5.2 Closer look into CLBs

A CLB, which may be considered as the unit building blocks of an FPGA, is essentially

composed of a LUT (Look Up Table), register and decoder as shown in Figure 2.4. The

register shown in the figure is used to synchronize the LUT output with a clock, if nec-

essary. A LUT with 2n locations along with a 2n × 1 decoder is capable of implementing

any n-input function. For example, Figure 2.4 shows how the LUT-decoder combination

Fig. 2.4: Configurable Logic Block

can be used to implement the Boolean function F = a × b + a × c over inputs (a, b,

c), by storing the appropriate output values in a LUT with 23 locations. It is clear that

22n different n - input Boolean functions may be implemented by programming and stor-

ing appropriate values within a LUT with 23 locations and irrespective of the function

implemented, the delay to produce an output remains same.

2.5.3 Heterogeneous FPGAs

Today, FPGAs are increasingly used in many computationally intensive applications with

stringent performance requirements. In order to satisfy performance demands, these

FPGAs often include specialized embedded Hard Blocks (HBs) such as memory blocks

and DSP units within the uniform matrix of homogeneous CLBs, as shown in Figure 2.6.

Inclusion of these HBs are making todays FPGA platforms more heterogeneous in nature.

The most common embedded HBs are:

• Memory Blocks: In applications like image processing, huge amounts of intermedi-

ate data need to be frequently and temporarily stored during their processing. Use

of embedded memory blocks in FPGAs have become crucial for the efficient imple-

mentation of these applications with reduced memory access delays. These memory

blocks, often called Block RAMs (BRAMs) provide dedicated storage capacity up

to about 1MB in many modern FPGAs.

30

Fig. 2.5: Combination of a 23-location LUT with a (23 × 1) decoder to implement the
function F (a, b, c) = ab+ ac, within a simple CLB

Fig. 2.6: Hetrogeneous FPGAs: A Conceptual Block Diagram

• Embedded DSP Blocks: Embedded DSP blocks in FPGAs commonly pro-vide many

MAC (Multiply and Accumulate) units. Associated with the aforementioned BRAM

embedded memory modules, they can be used to easily implement digital processing

functions such as filters.

31

2.5.4 FPGA Design Flow

The FPGA design flow begins with the behavioural description of the intended application

using a Hardware Description Language (HDL) like VHDL / Verilog or a schematic cap-

ture environment. This step of the design flow is interspersed with periods of functional

simulation to verify the correctness of the intended design. After this step, the designer

can at least be sure that his logic is functionally correct before going on to the next

stage of development. At the next step, the design gets synthesized into an intermediate

representation called netlist. The generated netlist is then passed through a translation

process called place route. This step involves mapping the logical structures described in

the netlist onto actual macrocells, interconnections, and input / output pins. The result

of the place & route process is a bitstream which is the configuration data to be loaded

in the configuration memory of the FPGA to implement the desired design. The gener-

ated bitstream may be downloaded into the FPGA through configuration interfaces like

JTAG, SelectMap or Slave Serial ports and ICAP. These ports enable numerous reconfig-

uration techniques including compressed, encrypted and partial bitstream download and

readback.

Fig. 2.7: Programmable Logic Design Process

32

2.5.5 Dynamic and Partial Reconfiguration

FPGAs are most commonly categorized as fully reconfigurable or partially reconfigurable.

Initially, FPGAs came only as fully reconfigurable platforms where all logic resources on

the entire FPGA floor at a given time must be reconfigured as a single atomic operation.

Thus, all concurrently executing applications instantiated on different sub-regions of the

FPGA floor must simultaneously halt at each reconfiguration event. Such a constraint

restricted space-shared dynamic co-execution of independent applications running in dif-

ferent sub-regions within the area of the floor. This restriction was overcome through

the advent of commercial platforms which also feature dynamic partial reconfiguration

enabling a hardware instantiation running in a sub-region to be reconfigured while al-

lowing instantiations in other sub-regions to continue execution uninterruptedly. One

of the biggest companies offering such partial reconfiguration capabilities is Xilinx with

their Virtex families. Xilinx FPGAs usually adopt the module-based style for partial

reconfiguration. A module in a module-based reconfiguration is determined by a separate

partial bitstream, also called a ”task”. Such a module in a particular FPGA sub-region

may be reconfigured without interrupting the execution of other modules, by downloading

the module’s bitstream through the Internal Configuration Access Port (ICAP) into the

configuration memory of the sub-region.

2.5.6 Real-time Hardware Tasks

A software task is defined as a set of instructions (a piece of code) and data (i.e. handled

by those instructions) which is executed on a processor. Important parameters that

characterize a real-time software task include execution time, deadline, response time,

period, latency etc. Similarly, with respect to application execution on FPGAs, we bring in

the concept of a hardware task. FPGAs contain a reconfigurable resource which basically

consists of a 2-dimensional array of W × H Reconfigurable Processing Units (RPUs),

commonly referred to as Configurable Logic Blocks (CLBs). A hardware task Ti in such

system is a re-locatable digital circuit, typically rectangular in shape, which may be

configured to be executed anywhere consuming a sub-region wi × hi on the floor (having

total area W×H) of the reconfigurable device. In addition to these geometric features, all

parameters which characterize a real-time software task, also apply to real-time hardware

tasks.

33

2.5.7 Preemption of Hardware Tasks

As discussed in section 2.1.3, a non-preemptive task only releases the CPU voluntarily.

On the other hand, preemptive tasks can be interrupted (to let another task execute)

and resumed later. One advantage of preemptive scheduling is its capability to schedule

tasks with widely different periods. For example, let us consider a typical periodic task

T1, from the domain of automotive control systems, having an execution time of 10ms

and period of 100ms. Even if this task is always assigned the highest priority in a non-

preemptive system, execution time of all other tasks must not be greater than 90ms to

ensure that no instance of T1 ever misses its deadline in the worst case. This enforces

manual partitioning of tasks having large execution times into small subtasks, making the

design and implementation of the system very complex. Another advantage of preemptive

scheduling is the possibility of admission control using utilization bounds and achieving an

efficient resource utilization, up to 100% for a preemptive scheduler like Earliest Deadline

First (EDF) [29].

In spite of the scheduling flexibility and higher resource utilization as possible in

preemptively scheduled systems, there has been very little work in this regard for re-

configurable platforms. This is primarily due to the challenges involved in saving the

state of a partially completed hardware task and restoring saved states to re-initiate ex-

ecution. Hardware task contexts are stored in state-holding elements like Flip-flops and

LUT-RAMs of CLBs and other Hard Blocks (BRAMs, MULs etc.). Switching context in

any specific region of the FPGA involves:

1. Capturing the contexts of tasks that were executing in the region prior to a switch.

2. Updating the contexts of these captured tasks and saving them in external memory.

3. Forming a new bitstream comprising of tasks that should execute in the region

subsequent to the switch.

4. Restoring the new bitstream in the region to re-initiate execution after preemption.

Authors in [52] have employed a mechanism called Scan Path generation to allow task

context extraction / insertion on reconfigurable platforms. However, to enable hardware

preemption, the methodology necessitates addition of task specific components known as

scan-chains to hardware tasks, thus incurring significant spatial overheads. An improve-

ment over this strategy is the bitstream readback methodology [53]. In [53], the au-

34

thors realized hardware context switching on Virtex-4 FPGAs using bitstream read-back

through ICAP (Internal Configuration Access Port) along with some additional combi-

national logic inside the reconfigurable region. Now, traditional technologies for context

switch, which required to save entire task bitstreams, incurred about ≈ 7ms to extract the

context of a task having size ≈ 500 KB [53]. Needless to say, that such extraction time

is unaffordably high. However, recent literature [16, 17] has discussed that the instanta-

neous state of a task is contained within at most ≈ 8% of its entire bitstream and it is

sufficient to extract only this part of the bitstream during context switch. Through such

selective bitstream read-back scheme, context switch overheads between tasks of typical

sizes (≈ 500 KB) may be drastically reduced to only ≈ 700µsce [17] using this intelligent

selective extraction mechanism. Thus, the actual extraction overhead may be reduced to

at most 1/10th of the full bitstream read-back time. Hence, the overall context switch

overhead also reduced. A detailed discussion on the quantification of hardware context

switching overheads for a specific FPGA family can be found in next section.

2.6 Spatio - Temporal Scheduling of Hardware tasks

Parallel execution (spatial) of a given subset of tasks Tp = {Tp1, Tp2, . . . Tp|Tp|} is achieved

through their simultaneous placement on the FPGA floor such that no task sub-region

overlaps with the device boundaries or with other subregions. The vacant region within a

set of already placed tasks whose area is not large enough to allow the feasible placement of

any other task, is considered to be wasted due to fragmentation. One of the principal goals

of any placement strategy is to reduce the total unutilized area lost due to fragmentation.

A Placer assumes the responsibility of placing a task onto the FPGA floor after verifying

that sufficient residual spatial resources are available to accommodate the task. If a

feasible sub region to place the task is found, then a Loader downloads the task s bitstream

through ICAP onto the configuration memory of the FPGA.

Due to limited resources of the FPGA, all tasks cannot be accommodated simulta-

neously. It is then necessary to additionally multiplex tasks over time on the available

spatial resources. Scheduler’s responsibility in such a system therefore, is to decide both

where and when, to execute tasks in the system. Thus, the job of a real-time scheduler

for FPGAs is to efficiently manage both space and time while appropriately accounting

for reconfiguration related overheads, such that all deadlines are met. Hence, a spatio-

temporal scheduling algorithm simultaneously conduct both temporal allocation along

35

with placement. To specific issues of importance for a dynamic scheduler may be pointed

out here.

• Which tasks should be selected for execution at a scheduling point ?

• What are the best feasible regions available to place those tasks ?

2.7 Various Task Placement strategies for FPGAs

Given a set of tasks = { T1, T2, ...Tn } to be executed at a given time, the problem of

placement is to find a sub-region of size in wi × hi for each task Ti such that no sub-

region overlaps with the device boundaries or with other subregions. The vacant region

within a set of already placed tasks whose areas are not large enough to allow the feasible

placement of any other task, is considered to be wasted due to fragmentation. One of the

principal goals of any placement strategy is to reduce the total unutilized area lost due

to fragmentation. However, the generic problem which attempts to either minimize the

total area consumed by a given set of tasks, or maximize the number of tasks that may

be feasibly accommodated within a given floor area, may be proved to be NPcomplete in

the strong sense [54].

Therefore, researchers have delved towards devising various heuristic placement ap-

proaches [55, 56, 28]. One stream of work [57, 58, 56] has attempted placement using

different restricted area models.

2.7.1 Task Placement For lD Area Model

In [58, 59], placement strategies have been discussed for one dimensional reconfigurable

resources where the reconfigurable width W of the floor is divided into a constant number

of equal sized columns (termed as tile), as shown in Figure 2.8. The placement strategy

in this case therefore becomes a 1D bin packing problem. Steiger et al. [56] introduce

the horizon and stuffing techniques for lD model. The ”horizon” technique attempts to

schedule new tasks when there are no overlapping in both time and space dimension

with other scheduled tasks. The ”stuffing” always places an arriving task on the leftmost

column. However, with equal sized columns, resulting placements are often plagued by

severe fragmentation.

Chen et a1. [60] propose a task placement method called classified stuffing technique

to reduce the fragmentation on a 1D structure. The arriving tasks are placed on the

36

Fig. 2.8: 1D Area Model

basis of a parameter called Space Utilization Rate (SUR), which is defined as the ratio

between the area requirement and the execution requirement of a task. Tasks with high

SUR (SUR > 1) are placed in the leftmost available columns of the FPGA, while low

SUR tasks (SUR < 1) are placed in the right most available columns.

Hubner et al. [61] proposed partitioning of the floor area of Virtex-II into vertical slots.

A task can be placed in any slot. They also proved the possibility of placing different tasks

on top of each other if the sum of the heights of these tasks do not exceed the height of

the slot. This paper emphasizes on the issue of memory configuration and communication

among tasks.

2.7.2 Task Placement For 2D Slotted Area Model

An improvement over the 1D slotted area approach is the 2D partitioned area model

where both the width W and height H of the floor is partitioned into equal intervals

to obtain a fixed number of equal sized rectangular tiles as shown in figure 2.9. Tiles

are placeholders for hardware tasks and each tile can accommodate no more than one

hardware task at a time. Many research works [62, 63, 64] have used the 2D slotted area

model. Further relaxations on the 2D slotted area model lead us to generalized flexible

2D area model which allows the unrestricted freedom to place tasks onto any arbitrary

region of the FPGA. As stated earlier, although this freedom brings in the possibility of

more compact placement, it comes at the cost of much higher computational complexity.

In general, relaxations on the 2D slotted area model (in order to provide higher resource

utilization), lead to two important drawbacks:

• Even though they improve average performance for a set of best-effort tasks, they

often degrade scheduling predictability which is of utmost importance, especially

in real-time systems. This is because, it becomes more complex in this case to

37

Fig. 2.9: 2D Area Model

deterministically account for the spatio-temporal capacity available in the worst-

case, within a given time interval in future.

• These models tend to incur much higher overheads at each spatial scheduling point,

making the complexity of the overall spatio-temporal scheduling problem very ex-

pensive towards online application.

2.7.3 Task Placement For Flexible 2D Area Model

This is the most flexible model that allows allocation of tasks anywhere on the device

as shown in Figure 2.10. The advantage of this model is high device utilization as tasks

can be placed tightly. However, the high flexibility of this model makes scheduling and

placement more difficult. The 2D area model has the problem of external fragmentation:

if tasks are placed on arbitrary positions the remaining free area is fragmented. Many

recent research works [65, 66], have attempted heuristic approaches involving mechanisms

to achieve two principal objectives: (i). Devising a strategy to maintain a record of all

empty regions among already placed tasks and (ii). Finding an appropriate empty region

as well as location within that region to place a task which dynamically arrives at run-

time. Such dynamic addition and deletion of tasks may again lead to a fragmented floor

area resulting in poor resource utilization.

In [67], Bazargan et al. proposed KAMER (Keeping All MERs), a mechanism which

proceeds by maintaining a list of Maximal Empty Rectangles (MERs) that cannot be

covered fully by a set of other empty rectangles. Whenever a task arrives, the algorithm

places it in the bottom-left corner of the largest available MER in a worst-fit manner.

After placement, the remaining empty area of the region is partioned either a vertical

or horizontal split to produce two empty rectangular subregions. Although this method

38

produces good placement quality, a drawback is that a wrong splitting decision could

cause the rejection of an otherwise feasible task. Walder et al. [68] proposed an enhance-

ment version of the Bazarian partitioner which postpones the vertical/horizontal splitting

decision until the arrival of a new task in order to overcome the possibility of wrong

decision.

Fig. 2.10: 2D Flexible Area Model

The authors in [69] used FirstFit and BestFit placement strategies and claimed to

achieve lower fragmentation and task rejection rates compared to KAMAR [67] and En-

hanced Bazargon [68] methods. However, this work maintains the occupancy status of

each CLBs of an FPGA in a 1D array and therefore, is susceptible to high computational

overheads. A few other placement approaches aimed towards the efficient management

of empty regions include algorithms by Handa et al. [70] (which employs a Vertex List

Set(VLS), where a given free space fragment is presented by a list of vertices). Ahma-

dinia et al. [71] proposed management of occupied instead of free area as they observe

that records for occupied spaces grow at a much slower rate than those for free spaces,

making data management for the accommodation of new tasks simpler. Olakkenghil and

Baskaran [72] propose a new data structure based on run-length encoding to manage free

areas. In their work, the FPGA surface is modelled by a matrix coded according to re-

flected binary gray curve. Summary of the different placement strategies are shown in

table 2.1. The contributions presented in this thesis use the flexible 2D area model.

39

Table 2.1: Summary of placement strategies

40

2.7.4 Task Placement For 2D Heterogeneous FPGAs

Many FPGAs may contain not only CLB blocks but also embedded static components

(as BRAM blocks, multipliers and DSPs) in a certain disposition and this heterogeneity

imposes stricter placement constraints for the task. A task including static components

cannot be placed anywhere on the FPGA because their feasible positions are limited by

the locations of static components on the FPGA. Few algorithms deal with task placement

on 2D heterogeneous architecture.

In [73], authors proposed an algorithm to deal with heterogeneous hardware con-

straints while placing a task. Feasible placement positions of the given hardware tasks

are determined offline. At run-time, a task is placed at the first available free position. A

generalization over this problem model is proposed in [74], where a task can have multiple

instances with the scheduling objective being minimization of task rejection ratio. Au-

thors in [62] used a 2D slotted area model and classified tasks according to their resource

requirements. The tasks with the maximum required resources in a given class represents

a slot in the FPGA. Hence this slot can accommodate any task belonging to the class.

A new online placement algorithm which utilizes the symmetry in arrangement of HBs

(BRAMs) on the FPGA floor has been discussed in [75]. The algorithm maintains the

positions of the BRAMs along with the separating distance between BRAMs. On the

arrival of a new task, the algorithm scans the unoccupied BRAMs from left to right and

top to bottom and appropriately places the task.

2.7.5 Real-time Preemptive scheduling: Uniprocessors Vs Multiprocessors

Vs FPGAs

Significant amount of work has already been done in on-line scheduling of real-time tasks

on reconfigurable architectures. The work proposed in [76] [77][78] [79] [80] demonstrate

the preemptive and non-preemptive periodic task scheduling on the reconfigurable sys-

tems. Preemption is an important technique that allows real-time systems to achieve

high resource utilization by lending it the flexibility to co-schedule tasks having differ-

ent behaviours (in terms of execution times, periodicity, task recurrence etc.) in varying

execution environments (ranging from uniprocessors, homogeneous / heterogeneous mul-

tiprocessors and even reconfigurable processing cores). Non-preemptive tasks are char-

acterized by the fact that once allocated a processor at the beginning of execution, the

processor cannot be relinquished from the task until its completion. Preemptive tasks

41

on the other hand, can be interrupted (to possibly allow other tasks to execute) before

completion and resumed later. An important advantage of preemptive scheduling is its

capability to schedule tasks with widely varying periods. For example, let us consider a

typical period task T1, from the domain of automotive control systems, having an execu-

tion time of 10ms and period of 100ms. Even if this is always assigned the highest priority

in a non-preemptive system, execution time of all other tasks must not be greater than

90ms to ensure that instance of T1 ever misses its deadline in the worst case. To ensure

this, tasks having large computation times must be manually partitioned into small sub-

tasks, and this makes the scheduler design very tedious especially in large and complex

systems. In comparison, by allowing preemption, dynamic unicore scheduling strategies

like Earliest Deadline First (EDF) [81] achieves full resource utilization without imposing

any restriction on tasks execution times and / or deadline / periods. These preemptive

systems are also practically realizable in most cases because context switching overheads

involved in each preemption is typically very low and may usually be neglected.

So in a nutshell, a major drawback of non-preemptive scheduling approaches is that it

may severely restrict resource utilization especially in scenarios where the individual task

utilizations or their periods are skewed [82]. The situation becomes worse as we shift from

unicore to multicore systems with numerous processing elements [83]. Traditionally, there

have been two principal approaches towards real-time scheduling of tasks on multicore

systems global scheduling and partitioned scheduling [84]. In fully partitioned scheduling,

all tasks are first assigned to dedicated cores. Tasks allocated to a given core are executed

on that core until completion. The main advantage of partitioned scheduling is that the

multicore scheduling problem can be amicably reduced to a set unicore problems and

scheduled using well-known approaches like EDF. However, a critical drawback of this

approach is that even by employing preemptive scheduling approaches like EDF (which

offer 100% resource utilization on unicore systems), not more than 50% of the system

capacity may be utilized in the worst case [34]

In global scheduling on the other hand, all tasks are maintained in a single ready

queue. At each scheduling event, the m (denotes the number of cores) highest priority

tasks are selected from this queue. By allowing the flexibility of intercore task migrates

during execution. global schedulers can typically achieve significantly superior resource

utilization compared to partitioned schemes. Pfair and its work conserving variant ERfair

[84], both fully global schemes, were the first multicore scheduling strategies that allowed

optimal resource utilization irrespective of the skewness in task weights / periods. This

42

optimally was achieved by maintaining proportional fair execution progress for all tasks

at each time instant throughout the length of the schedule. However, in order to pro-

vide such accurate proportional fairness, these schemes incur unrestricted migrations and

preemptions which leads to high context switch related overheads even in closely-coupled

multicores with shared caches.

The need to control context switch overheads led to the design of more recent semi-

partitioned approaches like DP-Fair and Bfair. These approaches partition time into

slices, demarcated by the arrivals and departures of all the jobs in the system. Within a

time slice, each task is allocated a work load equal to its proportional fair share. The task

shares within each core are usually scheduled using EDF-like strategies and completed

by the end of the time slice. By deviating from the need to maintain strict proportional

fairness at all times, these strategies are able to guarantee resource utilization optimality

while incurring at most m1 migrations within time slices. Thus, context switch overheads

in these semi-partitioned schemes are significantly reduced in comparison to global ap-

proaches like ERfair. However, although the semi-partitioned DP-Fair scheme may be

considered a prominent state-of-the-art scheduler for dynamically arriving task sets in

multi-core systems, it cannot be directly employed in platforms such as FPGAs. This

is due to the inherent architectural constraints in FPGAs which lead to non-negligible

reconfiguration overheads in the order of a few to tens of milliseconds [57]. Thus, in case

of FPGAs, context switches come at a premium and they must be judiciously handled as

well as have to be correctly accounted for within any given interval of time. Otherwise,

correct estimation of available system capacity will not be possible and this may lead

to huge task deadline misses. Due to this fact, algorithms for general purpose multicore

systems are bound to fare poorly on FPGAs.

2.8 Formal and heuristic scheduling for FPGAs: A Survey

In this section, a brief survey of formal and heuristic (in the context of spatio-temporal

scheduling) approaches to real-time Scheduling on reconfigurable systems is presented.

2.8.1 Formal approaches for Scheduling tasks on FPGAs

In literature, it has been experimentally shown that DPR in combination with acceler-

ators results in: (i) better utilization of the FPGA resources, (ii) performance that is

comparable to non-reconfigurable solutions, and (iii) tighter WCET (Worst Case Execu-

43

tion Time) bounds [85]. Biondi et al. proposed a programming framework, named FRED,

to support the development of real-time applications upon heterogeneous platforms, pro-

viding a predictable infrastructure that can ensure bounded delays when requesting a

dynamically-reconfigured hardware accelerator [86]. However, this work presented only

a proof-of-concept of FRED on top of FreeRTOS. Later, Pagani et al. proposed an im-

plementation of the FRED framework on the Linux operating system addressing several

challenges such as, architectural support for the accelerators, reconfiguration and com-

munication mechanisms, implementation of FRED scheduler, and synchronization mech-

anisms between software and hardware tasks [87]. Seyoum et al. developed DART, a tool

that fully automates the design flow in a real-time DPR-based system that comprises both

software and hardware components [88]. Casini et al. proposed a holistic framework to

help designers partition real-time applications on heterogeneous platforms with hardware

accelerators [89]. Goossens et al. studied the hard real-time scheduling of multi-mode

applications on reconfigurable heterogeneous hardware platforms [90]. Valente et al. pro-

posed an approach to calculate DPR time and analyzed when it is really useful to exploit

DPR capabilities, for real-time applications running on heterogeneous platforms [91].

The work in [92] proposed a combined offline-online scheduling algorithm of preemptive

real-time tasks on partially reconfigurable systems. As electronic systems design can

no longer be seen as an isolated hardware design activity, unified modelling language

(UML) becomes of significant interest as a unification language for system descriptions

combining both hardware and software components [93]. The UML design for dynamically

reconfigurable embedded systems is shown in [93, 94, 95]

Offline formal approaches towards the design of reconfigurable controllers/schedulers

have become more suitable to solve the problem of scheduling tasks on reconfigurable

systems than the manual encoding and analysis approach. Aylward et al [96], L. Gong et

al [97], addressed the formal methods that can provide attractive verification techniques

that apply to recongurable embedded-system designs. Singh and Lillieroth [98] present a

typical study addressing the correctness of recongurable cores, such as a 64b adder and

an 8b counter. They consider a formalization based on propositional logic and integer

arithmetic. They use a theorem-prover at runtime to check whether the dynamically

calculated circuits are correct.

The work in X. An et al [99] explored the model-based design of correct controllers

for dynamically recongurable architectures. They formalize the behaviours of the DPR

FPGAs as automata, following a modelling methodology, distinguishing the different lev-

44

els of hardware architecture, task implementation, and application software. They used a

tool (BZR language and compiler) to implement the models, solve the control problems

and generate an executable code. Authors in [100, 101] have proposed a dynamic partial

reconfiguration of concurrent control systems implemented in field programmable gate

array (FPGA) devices. They apply Petri nets and a unified modelling language state

machine diagrams respectively as a specification of the system. Guillet et al [102] pre-

sented a reconfiguration controller for a Dynamic Partial Reconfiguration. They used a

tool (MARTE and BZR language and compiler) to implement the models and synthesize

them using the Discrete Controller Synthesis formal technique.

2.8.2 Spatio-Temporal Scheduling for FPGAs

Diessel and Elgindy [103], combined placement along with a temporal scheduling mech-

anism for non-real-time preemptible task sets. Tasks are allocated from a ready queue

starting from the bottom-left position using the first-fit strategy. When the allocator fails

to accommodate the next pending task, it attempts to create additional space by pre-

empting and locally repacking the currently running tasks utilizing spare logic resources

created due to the partial completion of execution of these tasks.

Spatio-temporal scheduling of tasks with preassigned priorities have also been consid-

ered for reconfigurable systems, where priority could be based on the temporal (deadline,

laxity) or geometrical (size, aspect-ratio) properties of the tasks (or both) [104]. Walder

and Platzuer [68] used non-preemptive online scheduling schemes like First Come First

Serve (FCFS) and Shortest Job First (SJF) for block-partitioned 1D reconfigurable de-

vices. In [60], authors present a scheduling mechanism called Classified Staffing (CS),

where both geometrical and temporal parameters have been used to obtain priorities.

The tasks are first inserted into a ready queue on their temporal priorities (For no real-

time tasks, these priorities are obtained using the Shortest Remaining Processing Time

(SRPT) strategy, while for non-real-time tasks, the Least Laxity First (LLF) strategy is

followed). The tasks in the ordered ready are then placed based on a Spatio-temporal

parameter called Space Utilization Rate (SUR), which is defined as the ratio between the

area requirement and the execution requirement of a task. Using a 1D area model, tasks

with high SUR (SUR > 1) are placed in the leftmost available columns of the FPGA,

while low SUR tasks (SUR < 1) are placed in the rightmost available columns.

Due to the rightmost involved in the hardware tasks preemption on FPGAs. non-

45

preemptive scheduling strategies have usually been employed. In [78], authors presented

a preliminary work on non-preemptive FPGA-based real-time task scheduling and place-

ment using Clairvoyant EDF [105] with some modifications. However, one of the major

drawbacks of real-time non-preemptive scheduling approaches is that they may severely

restrict resource utilization, especially in scenarios where the individual task utilizations

or their periods are skewed [82, 83]. Although few, there exist works that have employed

preemptive scheduling techniques for reconfigurable platforms.

Danne and Platzner [53] consider the problem of scheduling preemptive periodic real-

time tasks on FPGAs by using a flexible 2D area model. They proposed the EDF-Next Fit

(EDF-NF) algorithm, a variant of EDF [81], which uses the concept of master processes

(servers) to reserve the area and execution time of tasks. However, as the paper reveals,

being based on EDF, this algorithm cannot achieve a resource utilization of more than

50% in the case of generic systems.

Assuming the 1D area model, Danne and Platzner [80] proposed the EDF-First-k-Fit

(EDF-FkF) and EDF-Next Fit (EDF-NF) algorithms for scheduling preemptive periodic

real-time tasks on FPGAs. Both the algorithms start by generating a list Q of all active

tasks sorted in the earliest deadline first order. EDF-FkF selects the maximum number

of k of consecutive tasks, starting from the first task in Q, which can be accommodated

within the area of FPGA. On the other hand, EDF-NF conducts a linear search from the

beginning of Q, selects the next task provided it can be feasibly accommodated within

the area of the FPGA, and continues the search until no more tasks can be accommo-

dated. Guan et al. [77] extended the approaches presented by Danne and Platzner by

incorporating actual reconfiguration overheads corresponding to vertex-4 FPGA in the

algorithms.

To achieve higher resource utilization and minimize task rejections, a different dynamic

scheduling and placement approach has been discussed in [28]. In this article, the author

assumes that a hardware task could have multiple hardware variants (varying size) such

that, the larger the size of a task, the faster is its performance. The selection of appropriate

hardware task variants is a trade-off between the maximal utilization of reconfigurable

resources versus the timing requirements of the tasks. A similar algorithm that considers

multiple hardware task shapes has been proposed in [106]. The authors showed that

resource utilizations using conventional scheduling algorithms like EDF and LLF may

be significantly improved by using the flexibility of multiple shapes, against a rigid task

scenario. This work neglected reconfiguration overheads and assumed tasks to be soft

46

real-time in nature. However, reconfiguration overhead is a major constraint that may

adversely affect the temporal performance of tasks if not handled appropriately. In [107],

authors described the reuse and partial reuse approach which allows a single configured

task on the reconfigurable floor to be shared and reused among multiple applications,

thus reducing the number of reconfigurations required.

Works on scheduling for systems that include aperiodic tasks on fully and partially

reconfigurable FPGA platforms, are very few. This is partly due to the fact that the de-

sign of scheduling methodologies for FPGAs involves considerable engineering challenges,

especially in the face of the architectural and temporal constraints that must be satisfied.

A dynamic aperiodic task handling mechanism for partially reconfigurable platforms has

been presented in [108]. Here, Farag et al. proposed a utilization-bound oriented ac-

ceptance test for aperiodic tasks by modifying the Synthetic Utilization based admission

control policy discussed by Abdelzaher et al. in [109].

Among few of the existing research works based on dependent task scheduling on

FPGAs, authors in [75] discussed an ILP formulation and heuristic policy for the Spatio-

temporal scheduling of dependent non-real-time tasks on partially reconfigurable FPGAs.

Here the authors considered the 2D flexible area model and thus, dealt with strict place-

ment constraints. The scheduling objective is to minimize the overall makespan time

corresponding to the execution of the task graph. The work in [110] presents a re-

configurable operating system (ROS) framework for the incoming task graph that aids

the designer from the early design stages to the actual hardware implementation. They

proposed an Island Based Genetic Algorithm flow that optimizes several objectives includ-

ing performance, area, and power consumption. Another research work in [8] proposes

an online task scheduling algorithm that targets the 2D FPGA area partitioning model

and takes into account the data dependency and the data communications. They pro-

posed a heuristic policy named “Communication Aware online task Scheduling Algorithm

(CASA)” to achieve their purpose. Khuat et al. [75] discussed an ILP formulation and

heuristic policy for the Spatio-temporal scheduling of dependent non-real-time tasks on

partially reconfigurable FPGAs. Here the authors considered the 2D flexible area model

and thus, dealt with strict placement constraints. The scheduling objective is to mini-

mize the overall makespan time corresponding to the execution of the task graph. The

work in [9] has proposed a methodology for a dependent hardware task mapping, based

on the availability of multiple architectural variants for each hardware task. It is shown

that their proposed approach significantly improves the total execution time, by the use

47

of trade-offs in resource consumption and data throughput for each hardware task. All

the above works lack real-time constraints. The work in [10] proposes an operating Sys-

tem for runtime reconfigurable multiprocessor systems. The hardwareOS, called CAP-OS

(Configuration Access Port-Operating System) was primarily developed to manage the

usage of the available Internal Configuration Access Ports of the recently released Xil-

inx FPGAs. The partial bitstreams, the software executable, and the task graphs of the

applications are required by the CAP-OS. The CAP-OS is also responsible for the run-

time scheduling of the configurations of the different tasks, allocating the tasks to the

processing elements, and resource management.

2.9 Summary

This chapter started with a brief overview of real-time systems followed by scheduling algo-

rithms on uniprocessors and multiprocessors. Then, we have pointed out the fundamental

definitions of the supervisory control of timed discrete event systems. Subsequently, we

have discussed the evolution of FPGA architecture, the various task placement strategies

for FPGAs, and the formal and heuristic scheduling for FPGAs. In the next chapter,

we present the scheduler synthesis scheme for a set of non-preemptive periodic real-time

tasks executing on a FPGA platform.

48

Chapter 3

A Supervisory Control Approach for

Scheduling Real-time Periodic Tasks

on FPGAs

In the last chapter, we discussed various real-time scheduling algorithms on uniproces-

sor and multiprocessor systems. Also, the scheduler synthesis using Supervisory Con-

trol of Timed Discrete Event Systems (SCTDES) was presented. The evolution of the

FPGA architectures and the different Spatio-temporal scheduling strategies have been dis-

cussed. As mentioned earlier, this dissertation is oriented towards the formal and heuris-

tic approaches to real-time scheduling on reconfigurable systems. With this objective, we

present a formal scheduler synthesis framework for the set of real-time non-preemptive

periodic tasks executing on an FPGA platform, using supervisory control of timed dis-

crete event systems as the underlying formalism. We show the practical viability of our

proposed framework by synthesizing schedulers for small applications and implementing

them on the Atlys development board.

3.1 Supervisory Control of DES

In this section, we briefly discuss the concepts related to SCDES, the underlying formalism

employed in this work.

A DES and its Behavior [111]: First, individual system/specification components

are modeled by an automaton: Y = (Q, Σ, q0, Qm, δ), where, Q is the finite set of

states, Σ is the set of events, q0 ∈ Q is the initial state, Qm ⊆ Q is the set of marked

49

states, δ : Q×Σ 7−→ Q is the (partial) state transition function. Here, the events in Σ are

further categorized as follows: (i) Σc: controllable; supervisor has an ability to prevent

the occurrence of these events. (ii) Σuc: uncontrollable; supervisor cannot prevent the

occurrence of these event. We use q
σ−→ q′ to denote δ(q, σ) = q′.

The closed behavior of Y : L(Y) = {s ∈ Σ∗|δ(q0, s) is defined}. The marked behavior

of Y : Lm(Y) = {s ∈ Σ∗|δ(q0, s) ∈ Qm}. Lm(Y) ⊆ L(Y) represents all finite sequences

that lead to the satisfaction of a phenomena.

The prefix-closure of a language L ⊆ Σ∗ is denoted by L and L = {s ∈ Σ∗ : (∃x ∈
Σ∗) [sx ∈ L]}.

Reachability, Co-reachability and Trim [2]: A state q ∈ Q is reachable, if

δ(q0, s) = q, for some s ∈ Σ∗. DES Y is said to be reachable, if q is reachable for all

q ∈ Q. A state p ∈ Q is co-reachable, if δ(p, s) ∈ Qm, for some s ∈ Σ∗. A DES Y is said

to be co-reachable, if p is co-reachable for every p ∈ Q. A DES Y that is reachable as

well as co-reachable is said to be trim. Y is said to be non-blocking, if L(Y) = Lm(Y).

Otherwise, Y is said to be blocking.

Synchronous Product [111]: Given the DES models of individual system/specification

components, their composite model can be obtained using synchronous product. Given

two languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 with Σ = Σ1 ∪ Σ2 and the natural projection

Pi : Σ∗ → Σ∗i defined by: (i) Pi(ε) = ε, (ii) Pi(σ) = ε if σ /∈ Σi, (iii) Pi(σ) = σ if

σ ∈ Σi and (iv) Pi(sσ) = Pi(s)Pi(σ), s ∈ Σ∗, σ ∈ Σ. The inverse projection of Pi is,

P−1
i : 2Σ∗i → 2Σ∗ . The synchronous product of L1 and L2, denoted by L1||L2, is defined

as L1||L2 = P−1
1 L1 ∩ P−1

2 L2. Synchronous product may be employed to construct an

execution model of a composite task describing the concurrent co-execution behavior of

its constituent individual tasks.

Supervisor and Controllability: Let automata Y and K represent the composite

models of individual components in the system and specification, respectively, such that

Lm(K) ⊆ Lm(Y) and Lm(K) 6= ∅. Given the system Y and its specification K ⊆ Lm(Y),

K 6= ∅, supervisor S = Y ||K is computed. A supervisory control for Y is a map S :

L(Y) → 2Σ. While doing this, the supervisor must respect controllability of the events.

That is, the supervisor must restrict the system behavior to the desired specification

by disallowing controllable events that might lead to undesired behavior, while never

preventing any of the uncontrollable events from occurring.

50

3.2 Proposed Scheduler Synthesis Scheme

In this section, we present the design of the scheduler synthesis mechanism. We start

with the presentation of the system model and assumptions considered in this work.

3.2.1 THE MODELS

System Model : This work considers a system model which consists of a dynamically

reconfigurable FPGA platform, a separate General Purpose Processor (GPP) and a mem-

ory. Tasks or applications are represented as bitstream images (also referred to as Re-

configurable Module (RM)) and are stored and maintained in a repository residing in

memory. Reconfigurations of the FPGA are performed under supervision of the GPP or

through the reconfigurable controller module, by loading bitstreams from the repository

into the configuration memory of the FPGA through its ICAP port. Once a task arrives,

GPP kick-starts its execution on the FPGA by loading its implementation. After the

completion of execution on the FPGA, computed results are returned back.

The architecture of the FPGA has been assumed to be similar to that of the Xilinx

Virtex series of FPGAs. These FPGAs basically consist of a 2D array of CLBs. The

floor area (denoted by K) of the FPGA is partitioned into q equi-sized tiles (also referred

to as Partially Reconfigurable Region (PRR)), {k1, k2, . . . , kq}. A PRR can hold one

RM only at any point of time. However, a task (RM) can consume multiple PRRs

based on its resource requirements. This RM-PRR binding takes place at compile-time

and are stored as bitstream images. Thus, the combinations of one or more RRs can

be configured to execute tasks by loading predefined bitstreams. We consider run-time

partially reconfigurable systems. Hence, a RM in a particular PRR may be reconfigured

without interrupting the execution of other RMs.

Application Model : This consists of a set of n independent real-time periodic applica-

tions/tasks: T = {T1, T2, ..., Tn}. Tasks in T needs to be scheduled on a set of q equi-sized

PRRs. These tasks are non-preemptive in nature, i.e., once the execution of a task is

started on its assigned RR, the RR cannot be reconfigured until the completion of the

task. In a reconfigurable system, a task Ti denotes a relocatable digital circuit, logically

represented through a corresponding bitstream.

We assume that each task Ti can havemi distinct implementations: {Ti,1, Ti,2, . . . , Ti,mi
}.

The jth implementation of Ti is characterized by, (i) spatial requirement Ii,j in terms of the

required PRRs to place Ti,j, (ii) temporal requirement in terms of the Worst Case Execu-

51

tion Time (WCET) of Ti,j (Ei,j) along with associated reconfiguration loading/unloading

time RDi,j. It may be noted that the time required for loading/unloading a task on a

partially reconfigurable device is directly proportional to the task’s bitstream size [92].

A periodic task Ti is represented as, 〈Ai, Di, Pi, 〈Ii,1, RDi,1, Ei,1 〉, . . ., 〈Ii,mi
, RDi,mi

,

Ei,mi
〉〉, where

• Ai is the arrival time of the task Ti.

• Di is the relative deadline of task Ti.

• Pi denotes the period of Ti and Pi ≥ Di.

• Ii,j (j = 1, 2, . . . ,mi) is the set of slots required to place the jth implementation Ti,j

of Ti.

• RDi,j (j = 1, 2, . . . ,mi) is the reconfiguration download time associated with Ti,j.

• Ei,j (j = 1, 2, . . . ,mi) is the WCET of Ti,j.

All these parameters are assumed to be discrete and finite.

Table 3.1: Task characteristics

Tasks {Ii,1, RDi,1, Ei,1} {Ii,2, RDi,2, Ei,2} Ai, Di, Pi

T1 {{k1}, 1, 2} {{k1, k2}, 2, 1} 〈0, 5, 5〉

T2 {{k2}, 1, 2} {{k2, k3}, 2, 1} 〈0, 4, 5〉

T3 {{k3}, 1, 2} {{k2, k3}, 2, 1} 〈0, 7, 10〉

T4 {{k1}, 1, 2} {{k1, k2}, 2, 1} 〈0, 9, 10〉

K2K1 K3

Fig. 3.1: Three Slots

Example: Figure 3.1 shows an example reconfigurable platform consisting of three slots:

k1, k2, k3. We consider the execution of four tasks T1, T2, T3 and T4 whose execution

parameters for the given platform is captured in Table 3.1. We assume Di = Pi. It can be

seen that the implementations T1,1 and T1,2 of task T1 require the slots/tiles I1,1 = {k1}

52

and I1,2 = {k1, k2}, for feasible placement. The reconfiguration loading time of T1,1 is 1

time unit. The execution of T1,1 and T1,2 are 2 and 1 time units respectively.

Problem Statement: Given a set of real-time non-preemptive periodic tasks (T =

{T1, T2, ..., Tn}) to be executed on a reconfigurable computing platform (K = {k1, k2, . . . , kq}),

design a supervisor (i.e., scheduler) which contains a feasible schedule satisfying all timing

and resource constraints (if such a schedule actually exists).

In order to synthesize a scheduler by employing the Supervisory Control Theory of

TDES [111]. First, we discuss the various stages involved in the execution of tasks on

reconfigurable FPGAs.

Task
Arrival

Ready
Queue

Reserve
Tiles

Config
Download

Execution
Completion

Queue
Unreserve

Tiles

Fig. 3.2: State transition diagram capturing task execution on reconfigurable FPGA
platform

3.2.2 Task execution on reconfigurable FPGA platforms

First, we discuss the various stages involved in the execution of tasks on reconfigurable

FPGAs. The typical execution flow of a task Ti on a reconfigurable FPGA platform

is captured as a state transition diagram shown in Figure 3.2. Whenever a task Ti is

released/ready for execution, it is moved to the ready queue. Next, one of the imple-

mentation choices Ti,j of Ti is selected and the associated partially reconfigurable regions

are reserved. Then, the bitstream corresponding to Ti,j is loaded into the reserved PRRs.

Then, the execution of Ti occurs on the allocated PRRs. Once the execution is completed,

Ti is moved to the completion queue until the PRRs corresponding to Ti are unreserved.

The above steps are repeated whenever a task Ti is released for execution.

3.2.3 The Event Set

Based on the state transition diagram discussed in the previous sub-section, let us define

the set of events that capture the execution of tasks on a reconfigurable computing plat-

form. Table 3.2 summarizes the list of events associated with a task Ti. The event set Σi

= {ai, {∪mi
j=1 rsi,j, usi,j, sdi,j, cdi,j, sei,j, cei,j}}. The total event set Σ = ∪ni=1Σi ∪ {t},

53

Table 3.2: Description of event sets

Event Description

ai Arrival of the current instance of Ti

rsi,j Reserve PRRs associated with Ti,j;

rsi,j = {∪k∈Ii,jrsi,j,k}

usi,j Unreserve PRRs associated with Ti,j;

usi,j = {∪k∈Ii,jusi,j,k}

sdi,j Start of download of Ti,j

cdi,j Completion of download of Ti,j

sei,j Start of execution of Ti,j

cei,j Completion of execution of Ti,j

t Progress of one time unit

where t is a special event which captures the progress of one time unit. The event set is

categorized as follows:

• It may be noted that with respect to a particular implementation Ti,j of task

Ti, the following events are considered to be controllable, i.e., Σcon = ∪ni=1 ∪
mi
j=1

{rsi,j, sdi,j, sei,j}.

• The events such as task arrival, completion of download operation, completion of

task execution and, progress of time cannot be prevented by the supervisor. Hence,

the set of uncontrollable events are: Σunc = {∪ni=1{ai}}∪{∪ni=1∪
mi
j=1{usi,j, cdi,j, cei,j}{t}}.

sdi,1

sdi,mi

t t ai

rsi,1

rsi,mi

t

t

cdi,1

cdi,mi

sei,1

sei,mi

t

t

cei,1

cei,mi

usi,1

usi,mi

ai

t

t = Ai

t = RDi,1 # t = Ei,1

t = RDi,mi # t = Ei,mi

t

Fig. 3.3: DES model Gi for Periodic task Ti

3.2.4 Task Execution Model

The DES model Gi for the execution of task Ti on the reconfigurable platform K is

depicted in Fig.3.3. From Fig. 3.3, it may be observed that the arrival of task T ′is first

54

instance ai occurs at the Athi tick from the system’s start time. Subsequently, Ti will be

kept in the ready queue (modelled using a self-loop on event t) or an implementation of

Ti will be selected immediately. An implementation is captured by mi outgoing branches

on events {rsi,1, rsi,2, . . . , rsi,mi
}.

Let us assume that the implementation Ii,1 is selected for the current instance of Ti.

The corresponding operation is represented by rsi,1. Next, the bitstream corresponding to

implementation Ii,1 will be downloaded (which is captured by sdi,1) and it consumes RDi,1

tick events. On the occurrence of completion of the download operation cdi,1, task Ti starts

its execution (captured by sei,1) and consumes Ei,1 ticks. Subsequent to the completion of

execution, Ti moves to the completion queue which is captured by the transition on cei,1.

Finally, the PRR regions associated with Ti,1 will be unreserved (captured by the event

usi,1) and this leads to the completion of execution of the current instance of Ti. Next,

the model Gi waits (captured by the self-loop on t) for the arrival of the next instance of

task Ti. The above steps are repeated, when the next instance of Ti arrived for execution.

sd1,1

sd1,2

a1

rs1,1,1

rs1,2,1

t

t

cd1,1

cd1,2

se1,1

se1,2

t

t

ce1,1

ce1,2

us1,1,1

us1,2,1

a1

t t

t

t

sd2,1

sd2,2

a2

rs2,1,2

rs2,2,2

t

t

cd2,1

cd2,2

se2,1

se2,2

t

t

ce2,1

ce2,2

us2,1,2

us2,2,2

a2

t t

t

t

(a)

(b)

rs1,2,2 us1,2,2

rs2,2,3 us2,2,3

sd3,1

sd3,2

a3

rs3,1,3

rs3,2,2

t

t

cd3,1

cd3,2

se3,1

se3,2

t

t

ce3,1

ce3,2

us3,1,3

us3,2,2

a3

t t

t

t

(c)

rs3,2,3 us3,2,3

sd4,1

sd4,2

a4

rs4,1,1

rs4,2,1

t

t

cd4,1

cd4,2

se4,1

se4,2

t

t

ce4,1

ce4,2

us4,1,1

us4,2,1

a4

t t

t

t

(d)

rs4,2,2 us4,2,2

Fig. 3.4: DES model G1 for task T1

Example(continued): Figure 3.4 shows the DES model G1 for task T1. Similarly, the

DES models G2 for task T2, G3 for task T3 and G4 for task T4, respectively, can be

constructed.

3.2.5 Composite Task Execution Model

It may be inferred that the marked behavior Lm(Gi) corresponding to the execution of

task Ti satisfies distinct execution times of Ti for a given implementation Ti,j. Given n

individual modelsG1, G2, . . . , Gn corresponding to T1, T2, . . . , Tn, the synchronous product

G = G1 ‖ . . . ‖ Gn on the models gives us the composite model of the tasks executing

concurrently. As individual models do not share any common event except tick, all models

55

synchronize only on the tick event. Since individual models satisfy distinct execution times

of Ti on a given implementation Ti,j, Lm(G) also satisfies them. However, the sequences

in Lm(G) may violate resource (i.e., ICAP and PRR) and timing (i.e., deadline and

fixed-inter arrival time) constraints. In the following sub-sections, we develop models to

capture these constraints.

Fig. 3.5: Example: Composite Task Execution Model (partial diagram)

T1,1

T2,1

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

PRR
k1

PRR
k2

PRR
k3

ICAP T3,1 T4,1

T1,1 T4,1 T1,1

T2,1

T3,1

T2,2 T1,1

T2,2

T1 T2 T3 T4 Unused ICAP constraint violation

Fig. 3.6: Example: Gantt chart representation of seq1

Example(continued) : Fig. 3.5 shows the (partial) composite task execution model G

(= G1 ‖ G2 ‖ G3 ‖ G4). To illustrate that G contains both resource and timing constraint

satisfying and violating sequences, let us consider the sequences seq1, seq2, seq3 ∈ Lm(G):

56

T1,1

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

PRR
k1

PRR
k2

PRR
k3

ICAP T2,1 T3,1 T4,1

T1,1 T4,1 T1,1

T2,1

T3,1

T2,2 T1,1

T2,2

T1 T2 T3 T4 Unused

12

Timing
constraint
violation

Fig. 3.7: Example: Gantt chart representation of seq2

• seq1 = a1a2a3a4rs1,1,1sd1,1trs2,1,2sd2,1tcd1,1cd2,1se1,1t rs3,1,3sd3,1se2,1tcd3,1ce1,1us1,1,1

rs4,1,1sd4,1se3,1tce2,1 us2,1,2 cd4,1se4,1tce3,1us3,1,3a1a2rs2,2,2rs2,2,3sd2,2tce4,1 us4,1,1t cd2,2

rs1,1,1sd1,1se2,2tce2,2us2,2,2us2,2,3se1,1 ttce1,1us1,1,1

• seq2 = a1a2a3a4rs1,1,1sd1,1tcd1,1rs2,1,2sd2,1se1,1tcd2,1 rs3,1,3 sd3,1se2,1tcd3,1ce1,1us1,1,1

rs4,1,1sd4,1se3,1tce2,1 us2,1,2 cd4,1se4,1tce3,1us3,1,3a1a2rs2,2,2rs2,2,3sd2,2tce4,1 us4,1,1 tcd2,2

rs1,1,1sd1,1se2,2tce2,2us2,2,2us2,2,3ttse1,1tt ce1,1us1,1,1

• seq3 = a1a2a3a4rs1,1,1sd1,1tcd1,1rs2,1,2sd2,1se1,1tcd2,1 rs3,1,3sd3,1se2,1tcd3,1ce1,1us1,1,1

rs4,1,1sd4,1se3,1tce2,1 us2,1,2cd4,1se4,1tce3,1us3,1,3a1a2rs2,2,2rs2,2,3sd2,2t ce4,1 us4,1,1 tcd2,2

rs1,1,1sd1,1se2,2tce2,2us2,2,2us2,2,3 se1,1tt ce1,1us1,1,1

The gantt chart representation of seq1 is shown in Fig. 3.6. It may be seen that

seq1 respects the timing constraints for all tasks. For example, the implementation T1,1

is selected for task T1 and it is downloaded via ICAP at the first time slot (time slot:

0). Subsequent to the download of the bitstream, T1,1 gets executed on PRR k1 for two

units of time (time slots 1 and 2). Further, it can be observed that seq1 violates the

ICAP constraint. That is, only one bitstream can be downloaded at a time using ICAP.

However, both T1,1 and T2,1 are downloaded simultaneously via ICAP at time slot 0.

The gantt chart representation of seq2 is shown in Fig. 3.7. Here, seq2 does not satisfy

the timing constraint associated with T1. For example, the deadline/period gets violated

when its second instance gets executed. In particular, the second instance of T1 arrives

57

at time instant 5 and its execution needs to be completed within its relative deadline of

10. However, the execution of T1 gets completed at 12 which leads to the violation of

deadline. On the other hand, the sequence seq3 respects both the resource as well as

timing constraints for all tasks (shown in Fig. 3.16).

AVAILABLE BUSY

rsi

usi

Fig. 3.8: TDES Model for PRR/Slot ki

AVAILABLE BUSY

sd

cd

Fig. 3.9: TDES Model for ICAP

3.2.6 Resource-Constraint Model

In this sub-section, we develop the models to capture the resource constraint specifica-

tions for PRRs and ICAP. Specifically, we develop DES models to capture the following

constraints: (i) Once a task Ti is allocated to a PRR/slot kλ, it remains allocated until its

completion. Meanwhile no other task Tj(6= Ti) is allowed to start execution on slot kλ. (ii)

A reconfiguration port ICAP must be exclusively used by a single task when performing

bitstream download operation.

The resource constraint associated with the PRR/slot ki is captured by the DES

model SCk and its transition structure is shown in Figure 3.8. It can be seen that PRR

is initially available for use. Once any task Ti ∈ T reserves PRR ki, then SCk transits

from AVAILABLE to BUSY state. This implies that PRR ki is currently being used by

Ti and it becomes unavailable for the other tasks in T . Once Ti unreserves PRR ki, the

model SCk transits back to AVAILABLE state. Now, PRR ki is availble for execution

for any task in T . Similarly, the DES model for ICAP is shown in Figure 3.9.

58

rs1 = {rs1,1,1, rs2,1,1,
rs4,1,1, rs4,2,1}

us1 = {us1,1,1, us2,1,1,
us4,1,1, us4,2,1}

(a)

rs2 = {rs1,2,2, rs2,1,2, rs2,2,2,
rs3,2,2, rs4,2,2}

(b)

us2 = {us1,2,2, us2,1,2, us2,2,2,
us3,2,2, us4,2,2}

rs3 = {rs2,2,3, rs3,1,3, rs3,2,3}

(c)

us3 = {us2,2,3, us3,1,3, us3,2,3}

Fig. 3.10: Example: TDES Model for PRR/Slot (a) k1, (b) k2, (c) k3

AVAILABLE BUSY

sd = {sd1,1, sd1,2, sd2,1, sd2,2,
sd3,1, sd3,2, sd4,1, sd4,2}

cd = {cd1,1, cd1,2, cd2,1, cd2,2,
cd3,1, cd3,2, cd4,1, cd4,2}

Fig. 3.11: Example: TDES Model for ICAP

Example (continued) : Figures 3.10a, 3.10b and 3.10c show the DES models SCk1 for

PRR/slot k1, SCk2 for PRR/slot k2 and SCk3 for PRR/slot k3, respectively. Figure 3.11

illustrates the DES model of the ICAP.

3.2.7 Composite Resource-constraint Model

Given the q DES models for PRR/slot constraints SCk1 , SCk2 , . . . , . . . SCkq which cor-

responds to the available slots in the given problem, we can compute the composite

slot-constraint model SC as: SCk1 ‖ SCk2 ‖ . . . ‖ SCkq . Hence, Lm(SC) represents the

language that disallows the concurrent execution of multiple tasks on the same PRR/slots.

Similarly, Lm(ICAP) contains sequences that allow only one task to make use of the ICAP

port at any given time. Now we construct the composite resource-constraint model RC

= SC||ICAP . Although, all sequences in Lm(RC) satisfy the slot and reconfiguration

port constraints, sequences in Lm(RC) may not correctly capture timing properties such

59

as execution and deadlines associated with the tasks.

t t ai

t = Ai

tt t t t

t t

usi

t t

t = Pi

usi usi # t = Pi - Di

t = Di

ai

usi = {usi,1, usi,2, , usi,mi}

t

usi

t

usi

Fig. 3.12: TDES Model Hi for deadline and period of Ti

3.2.8 Timing Constraint Model

In the previous sub-sections, we have introduced and discussed models for resource-

constraints associated with the PRR/slot and ICAP port. In this sub-section, we in-

troduce a DES model to capture the timing constraints associated with each task Ti ∈ T .

Figure 3.12 shows the DES model Hi that captures the deadline and period associated

with task Ti. It can be seen that once Ti arrives after Ai ticks from system start, Ti has

to complete its execution within its relative deadline Di. Such a constraint is modelled

by the transitions on the event usi up to Di ticks from the arrival of the current instance

of Ti. After the completion of execution of the current instance of Ti, the next instance of

Ti must arrive after Pi −Di ticks to ensure the fixed inter-arrival time between any two

consecutive instances of the periodic task Ti ∈ T .

Example(continued) : Figures 3.13a and 3.13b show the DES models H1 for T1 and

H2 for T2. Similarly, Figures 3.14a and 3.14b capture the DES models H3 and H4 for T3

and T4, respectively.

3.2.9 Composite Timing Constraint Model

The marked behavior Lm(Hi) contains all sequences that satisfy the deadline and period

constraints associated with Ti. Similarly, we can construct models for other tasks in the

task set T . Given H1, H2, . . . , Hn corresponding to T1, T2, . . . , Tn, we can obtain the

composite model H = H1||H2|| . . . ||Hn. The marked behavior Lm(H) captures the timing

constraints associated with all the tasks in T .

60

a1 tt t t

t

us1

t

us1a1

t

us1

t

us1

(a)
a2 tt t t

t

us2

t

us2a2

t

us2

t

us2

(b)

t

us1

us1 = {us1,1,1,
us1,2,1, us1,2,2}

us2 = {us2,1,2,
us2,2,2,us2,2,3}

Fig. 3.13: Example: TDES Models (a) H1, (b) H2

3.2.10 Supervisor Synthesis

To find only and all sequences in Lm(G) that satisfy the resource as well as timing con-

straints, we compute the supervisor as follows: S = G||RC||H. The resulting marked

behavior Lm(S) (= Lm(G)∩Lm(RC)∩Lm(H)) contains all feasible scheduling sequences

that satisfy the system specifications considered in this work. Hence, we can use any

sequence in Lm(S) to construct the supervisor which can be used to govern task execu-

tion on a given FPGA. It may be noted that sequences in L(S) which violate resource

and/or timing constraints are not part of Lm(S) and hence, such sequences lead to dead-

lock states in S. This implies L(S) 6= Lm(S), i.e., S is blocking. However, to guarantee

that all instances of all tasks meet their resource and timing constraints, during online

execution, S must be made controllable with respect to the system specifications (RC

and H). This is achieved by determining the controllable and non-blocking part of Lm(S)

using Safe State Synthesis [112].

It is possible to further appreciate that through a systematic search over the scheduling

language Lm(S), it is possible to filter-out those scheduling sequences which minimize

migration related overheads. For example, given Lm(S), the proposed framework can be

extended so that feasible schedule(s) which performs best with respect to one or more

61

a3 tt t t

t

us3 us3a3

us3 = {us3,1,3,
us3,2,2,us3,2,3}

t

us3

t

us3

(a)

tt t

t

us3

t

us3

t

us3

t tt

a4 tt t t

t

us4 us4a4

t

us4

t

us4

(b)

tt t

t

us4

t

us4

t

us4

t tt

t

us4

t

us4

us4 = {us4,1,1,
us4,2,1,us4,2,2}

Fig. 3.14: Example: TDES Models (a) H3, (b) H4

a1 a2 a3 a4 rs1,1,1 sd1,1 t cd1,1 rs2,1,2 se1,1 tsd2,1 cd2,1

se2,1tce1,1

rs3,1,3
sd3,1

cd3,1rs4,1,1sd4,1se3,1tce2,1cd4,1

se4,1 t ce3,1 rs2,2,2 rs2,2,3 sd2,2 t ce4,1
t

cd2,2

us1,1,1us2,1,2

us3,1,3 us4,1,1

se2,2 rs1,1,1sd1,1tce2,2us2,2,2us2,2,3

a1 a2

se1,1ttce1,1us1,1,1

Fig. 3.15: Example: Supervisor (partial diagram)

metrics like resource usage, power consumption, fault-tolerance etc can be determined.

Example(continued): The (partial) diagram of the obtained supervisor is shown in

Fig. 3.15. It can be seen that seq3 satisfies all system specifications and it belongs to

Lm(S). Further, the gantt chart representation of seq3 (shown in Fig. 3.16) also illustrates

that there are no resource and timing constraint violations.

3.2.11 Complexity Analysis

A schematic diagram representing the overall flow of the proposed scheduler framework has

been summurized in Figure 1.1. We now present a step-wise discussion on the complexity

of the proposed synthesis scheme.

1. The state space complexity of Gi (shown in figure 3.3) is computed as follows:

62

T1,1

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

PRR
k1

PRR
k2

PRR
k3

ICAP T2,1 T3,1 T4,1

T1,1 T4,1 T1,1

T2,1

T3,1

T2,2 T1,1

T2,2

T1 T2 T3 T4 Unused

Fig. 3.16: Example: Gantt chart of sequence seq3

There are Ai states to measure the arrival time of Ti. After the occurrence of the

arrival event ai, the DES Gi has m branches emanating from it based on the events

{ rsi,1, rsi,2, . . . , rsi,mi
} representing the start of task Ti’s execution on anyone of the

m PRRs/tiles. With the reconfiguration time RDi and execution time Ei, each of

the branches contain (RDi +Ei) states due to transition on tick events. Therefore,

the state-space complexity of Gi becomes O(Ai +m(RDi + Ei)).

2. The state space complexity of the resource-constraint model SCki (shown in figure

3.8) is O(q) because it contains distinct states connected to the initial state to

represent the execution of each task on PRR/slot-ki.

3. The state space complexity ofHi (shown in figure 3.12) isO(Ai+Pi) because distinct

states are used to count the occurrence of each tick starting from the arrival to its

period Pi.

4. The state space complexity of model ICAP (shown in figure 3.9) is a constant.

5. Given n individual DESs {G1, G2, . . . , Gn} corresponding to {T1, T2, . . . , Tn}, an

upper bound for the number of states in the composite task execution model G is∏n
i=1 |QGi |, where |QGi |(= O(Ai + m(RDi + Ei)) is the total number of states in

Gi. Similarly, the total number of states in the composite resource-constraint model

RC is
∏q

i=1 |QRCi |, where |QRCi | is the total number of states in RCi. In the same

63

token, an upper bound for the number of states in the composite timing-constraints

model H is
∏n

i=1 |QHi |, where |QHi | is the total number of states in Hi.

Let S0(= G ‖ SC ‖ H) and S eliminate the sequence in S0 that may possibly terminate

in a deadlock. The total number of states in S0 becomes O(|G| × |RC| × |H|). The time-

complexity for computing G, RC, H and S0 are exponential. However, the computation

of supC(Lm(S)) are polynomial time as it involves simple graph traversal [113]. It may

be observed that the number of states in the Composite models G, RC, and H grows

exponentially as the number of tasks and executional PRRs/slots increases.

3.3 Supervisor Implementation

In this section, we present the procedures for the real-world implementation of the super-

visor/scheduler synthesized using our scheme on FPGAs with DPR support.

FPGA PR Region

Bus Macro

K1 K2

BBBBBBBBBBBBBBBBBBBBB

Static

Region

Fig. 3.17: Spartan FPGA with Static and PR Regions (k1, k2)

3.3.1 Experimental Setup

We used the Atlys development board to test and verify our synthesized scheduler. The

Atlys development board is built around Spartan-6 LX45 FPGA in a 324-pin package,

with a 100MHZ system clock. The platform also includes several input/output interfaces

such as switches, buttons, and LEDs. For memory, the board provides 1 Gbit DDR2

memory and 128 Mbit of flash memory. Communication can be done with a com-port on

the computer through a USB-UART bridge on the board. The Spartan-6 also includes

64

of an ICAP primitive that gives access to the FPGA configuration memory through the

configuration registers.

We considered two independent tasks ({T1, T2}) for implementation. A 16-bit un-

signed ripple carry adder (RCA; denoted by T1) and a 4-bit binary (unsigned) sequential

multiplier using the shift-and-add algorithm (SHA; denoted by T2). Two VHDL imple-

mentations of RCA have been considered: non-pipelined (NRCA) and a two-stage pipeline

(PRCA). The NRCA implementation completes the addition of two 16-bit numbers in ev-

ery 2 clock cycles whereas the PRCA generates an output every clock cycle. Similarly,

two VHDL implementations of the SHA algorithm have been prepared. SHA1 was coded

in such a way that it has a single process with 8 states and it requires 8 clock cycles to

complete one multiplication. SHA2 is coded using two processes and 4 states, as a result,

it requires 4 clock cycles to multiply two 4-bit binary numbers. Thus, for task RCA,

implementation T1,1 refers to NRCA and implementation T1,2 denotes PRCA. Similarly,

implementation T2,1 and implementation T2,2 denote SHA1 and SHA2 respectively.

Figure 3.17 shows a representative architectural view of the implementation done using

Spartan FPGA board with DPR support. The block diagram in Figure 3.17 shows the

presence of (i) static region, (ii) two partially reconfigurable regions (PRRs k1 and k2),

(iii) a set of bus macros across the boundaries of different regions.

All the PRRs obtain hard-coded input data from the static region. Similarly, computed

results from PRRs are displayed to the outside world through the static region. The UART

module and the LEDs on the Atlys board are used for computational verification. The

UART module sends the output received from PRR k1 to the com-port of the computer.

The LEDs display the result of computation from PRR k2.

Table 3.3: Reconfiguration and Execution times (in clock cycles)

Task Impl Rec.clks Exe.clks Diff.bitstream size

NRCA (T1,1) 46, 025 100, 001 14KB

PRCA (T1,2) 55, 887 50, 001 17KB

SHA1 (T2,1) 53, 440 80, 001 16KB

SHA2 (T2,2) 88, 761 40, 001 27KB

In order to construct the DES models, we have profiled both implementations of tasks

T1 and T2 by running them standalone on the Spartan-6 LX45 FPGA, and obtained infor-

mation regarding the number of clock cycles required for their reconfiguration operation

65

and execution. The results are captured in Table 3.3. For this implementation, we have

considered 50, 000 ticks of the internal clock to be the length of one time unit. Along with

the tick generator, a tick-counter module is also used to count and generate an interrupt

signal when a particular number of ticks have elapsed. Therefore, all event generations

(rsi,j, sdi,j. . . , etc) are sequenced by our tick-counter. The clock cycles that we obtained

for the reconfiguration and execution process are converted into our defined tick as shown

in Table-3.4.

Table 3.4: Task Characteristics

Implementation (PRRs, Reconfig Download Time, WCET)

Task {Ii,1, RDi,1, Ei,1} {Ii,2, RDi,2, Ei,2} 〈Ai, Di, Pi〉

RCA {{k1}, 1, 3} {{k1, k2}, 2, 2} 〈0, 7, 7〉

SHA {{k2}, 2, 2} {{k1, k2}, 2, 1} 〈0, 7, 7〉

During the implementation of the whole system, two configuration files are produced

by the final project: the static and the partial configuration files. The static configuration

file (top.bit) consists of the static logic and an empty PR design. When all the necessary

bitfile generations are completed, the top.bit will be the first bitstream to be downloaded

to the board. Using the GOAHEAD, partial netlists have been obtained for each module

implementation. Merging individual netlists with the static logic generates a static design

with a PR module (merged.ncd). We use BitGen -r switch to create a differential bit-

stream from the differences between merged.ncd and top.bit. The differential bitstreams

generated this way are our partial reconfiguration files (i.e., partial.bit) and stored on the

flash memory of the Atlys board.

3.3.2 Supervisor Generation

We apply the modeling concept described in section 3.2 to capture the task implemen-

tation characteristics shown in table 3.4. The TDES model G1 for RCA and G2 for

SHA are shown in fig 3.18a and 3.18b, respectively. Similarly the TDES model for the

resource constraints; the reconfiguration port and PRRs/slots k1 and k2 are shown in

fig 3.19a, 3.19b, and 3.20 respectively. The TDES models H1 and H2 for the pe-

riod and deadline of T1 and T2 are shown in fig. 3.21a and 3.21b respectively. Next,

we computed the supervisor S = G ‖ RC ‖ H. For the purpose of implementa-

tion, we consider the following sequence (say, seq4) that belongs to Lm(S): seq4 =

66

(a) G1 for T1

(b) G2 for T2

Fig. 3.18: TDES Models for RCA (i.e.,T1) and SHA(i.e., T2)

(a) SC k1 for K1 (b) SC k2 for K2

Fig. 3.19: TDES Models for PRRs/slots

67

Fig. 3.20: TDES for ICAP

(a) TDES model H1 for T1

(b) TDES model H2 for T2

Fig. 3.21: TDES Model for deadline and period of T1 and T2

68

Fig. 3.22: supC(Lm(S0))

T1,1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

PRR
k1

PRR
k2

ICAP

T1,1

T2,2

T2,2

T1 T2 Unused

Fig. 3.23: Gantt chart of sequence seq4 ∈ Lm(S)

69

a1a2rs1,1sd1,1tcd1,1se1,1tttce1,1us1,1rs2,2sd2,2ttcd2,2se2,2t ce2,2us2,2. The gantt chart repre-

sentation of this sequence is shown in Figure 3.23. It can be seen that the implementation

I1,1 is selected for T1 and gets executed on PRR k1. For task T2, the implementation I2,2

is selected and it uses both the PRRs simultaneously for its execution. Finally, we have

implemented a VHDL code corresponding to the selected sequence from the synthesized

supervisor.

3.3.3 Task Management

The Supervisor is responsible for the timely module downloading, execution start and

completion taking into consideration all the constraints placed upon it. Fig 3.24 il-

lustrates the system implementation structure of our work. The structure consists of

ScheduleFSM module, Reconfiguration-controller module, Tick counter & Tick generator

module, UART module, PR Regions, SPI flash, LED, and button. The ScheduleFSM is the

top module that encodes the synthesized supervisor discussed in section 3.3.2, it initial-

izes the start address and bitstream size of the partial modules and is responsible to send

the start/stop execution signals to other modules. The Reconfiguration-controller module

requires the start-address and size information of the differential bitstream along with the

”start downloading” signal to function properly. The Tick counter & Tick generator mod-

ule expects the ”start tick” signal from ScheduleFSM to generate sequence of tick counter.

Reconfiguration

Controller

FPGA

SheduleFSM

ICAP

Start

Button

LED SPI Flash

Reconfig

Contr PR Regions

K1 K2

Tick_counter

&

Tick_generator

Terminal

UART

Module

Fig. 3.24: System Implementation Structure

Pressing the GPIO button initializes the SheduleFSM module, which inturn initialize

the various module’s data and control signals. The ”start tick” is the first signal that

70

is set by the SheduleFSM module to enable the Tick counter & Tick generator module.

This module is responsible for generating a tick event that is used by the SheduleFSM

module to monitor event generation.

For example, referring figure 3.22, the final synthesized supervisor, at tick count = 0,

the SheduleFSM set the event sd1,1 (start downloading T1,1) and for the Reconfiguration-

controller module. The Reconfiguration-controller module then selects the appropriate

bitstream from the SPI flash and send it to the ICAP to reconfigure the associated partial

Region. At tick count = 1, events cd1,1 (complete downloading T1,1) and se1,1 (start

executing T1,2) are asserted, so that the placed module starts executing. At the 4th

tick count, events ce1,1 and us1,1 are asserted, indicating that T1,1 complete execution and

unreserve the corresponding slot. Next, task T2,2 starts reserving the slots and continue

the process.

71

(a) Empty PRRs at time slot 0

(b) NRCA placed on k1 at time slot 1

(c) SHA2 placed on both PRRs at time slot 6

Fig. 3.25: Snap shot from FPGA editor for task Placements on PRRs

72

3.3.4 Results

The proposed system model was verified experimentally. Figure 3.25 shows the snap shot

taken from the FPGA editor for task placements at different time interval. Figure 3.25a

illustrates the configuration of PRRs at time instant 0, where both the PRRs are empty.

This figure clearly shows the location of the bus macros at the boundary of static and

partially reconfiguration regions k1 and k2. Figure 3.25b depicts the configuration of the

FPGA at time instant 1 when NRCA (T1,1) has been placed on PRR k1. From this

figure, we can observe that the bus macros which are used for data or control signal

communications are wired with the NRCA logic. Many of the bus macros of k1 (located

at the bottom left) are seen wired with the placed logic. This figure also confirms that

NRCA uses the resources that are available only in PRR k1. The configuration of FPGA

at time instant 6 is depicted in Fig. 3.25c when SHA2 (T2,2) logic has been placed in the

combined area of PRRs k1 and k2. As seen from the figure, the SHA2 logic consumes a

large part of the resource available in PRR k2 and the remaining small logics are placed

on PRR k1.

3.4 Summary

In this chapter, we presented an SCDES based offline scheduler synthesis approach for

non-preemptive periodic real-time tasks on FPGAs with DPR support. The synthesis

process started with the construction of individual DES models that can capture the

task execution and resource-constraints. Using these individual models corresponding to

system components and specifications, we obtained the supervisor that contains all feasible

execution sequences and anyone of those sequences can be used to schedule the task set.

These steps have been illustrated through a running example. An experimental proof-of-

concept validation of our synthesized scheduler has been performed by implementing two

independent real-time tasks on Atlys Spartan-6 FPGA platform.

73

Chapter 4

An ILP-based Approach to

Real-Time Scheduling of Task

Graphs on Partially Reconfigurable

FPGAs

In the earlier chapter of this dissertation, we have considered the supervisory control of

timed discrete event system formalization for scheduling independent hard real-time tasks

on a FPGA platform. In this chapter, we developed an offline ILP-based solution strategy

for scheduling persistent real-time applications represented as a precedence-constrained

task graphs on partially reconfigurable FPGAs. The designed solution strategy must not

only handle all timing constraints, dependency constraints and FPGA based placement

constraints but also correctly account for reconfiguration overheads involved in loading

task bitstreams onto the configuration memory of the FPGA through the ICAP port. It is

important to correctly account for the reconfiguration times because they consume signif-

icant overheads often being comparable to task execution times. We have experimentally

validated the proposed offline solutions and observed that in offline, optimal solution can

be achieved with moderate computational overheads through CPLEX solver.

4.1 System Model

This work assumes a runtime partially reconfigurable FPGA platform with support for

relaxed task placement based on the generic 2D flexible area model. Thus each task Ti,

74

which is assumed to be rectangular in shape having dimension wi × hi, may be placed

anywhere on the FPGA floor of dimension W × H, such that it does not overlap with

other tasks placed on the floor or with the FPGA boundaries. The FPGA is accompanied

by a separate General Purpose Processor (GPP) and memory. Task bitstream images are

stored and maintained in a repository residing in memory. All hardware reconfigurations

are performed according to a schedule generated offline under supervision of the GPP

by loading bitstreams from the repository into the configuration memory of the FPGA,

through its ICAP port.

We model a real-time application as a precedence constrained Directed Acyclic Graph

(DAG) G = (T,E), where T is a set of hardware tasks (T = {Ti | 1 ≤ i ≤ |T |}) and E

is a set of directed edges (E = {〈Ti, Tj〉 | 1 ≤ i, j ≤ |T |; i 6= j}) representing precedence

relations between distinct pairs of tasks. An edge 〈Ti, Tj〉 refers to the fact that task Tj

can begin execution only after the completion of Ti. It is further assumed that a hardware

task Ti may have ki different versions / implementations; that is, Ti = {T 1
i , T

2
i , . . . , T

ki
i }.

Although, all versions of a task produce the same output, their execution times, area

requirements and accuracy of results may vary. Different versions of a task essentially

mean different hardware circuit implementations corresponding to the same functional-

ity [28]. Task versions with varying degrees of area Vs. execution time trade-offs may

be obtained by controlling the degree of parallelism for a set of implementations. Some

known techniques to control the degree of parallelism are loop unrolling with different

unrolling factors and realizing hardwares with different pipeline stages. Hence, without

loss of generality, this work assumes that, higher the area arji (= wji × hji) consumed

by the jth version of the ith task T ji , lower becomes its required execution time Trunji

(arji > arj
′

i =⇒ Trunji < Trunj
′

i). The loading time Trecji corresponding to T ji is a

function of its bitstream size, which in turn is proportional to the area arji consumed by

T ji . A reward REW j
i is assigned to T ji on successful completion. REW j

i is a function

of the accuracy of results produced by the jth version of Ti, its execution requirement

Trunji , area demand arji as well as the relative importance of Ti with respect to other

tasks. The application represented by the real-time task graph G is associated with an

overall deadline Ddag within which a distinct chosen version of each task node in G must

complete execution while satisfying all constraints, as discussed next.

75

4.2 Formalization of the Precedence Constrained

Spatio-temporal Scheduling Problem

Given a real-time application, the proposed work endeavours to appropriately map and

execute the application on a run-time dynamically reconfigurable FPGA platform. As

discussed in the system model, the application is represented as a task graph with an

overall deadline within which the execution of all task nodes in the graph must be com-

pleted. The execution of the task graph must be conducted by choosing one among a set

of multiple allowable versions for each task node and associating appropriate load-start

and execution-start times corresponding to the selected version of each task node. Here,

load-start time for a task refers to the instant at which loading of the task’s bitstream

(associated with the selected task version) into the configuration memory of the FPGA

through its ICAP port, commences. Similarly, execution-start time of a task refers to the

instant corresponding to the commencement of execution of the task on the FPGA. As

discussed above, each task version has a distinct reward value which is awarded subject to

successful completion. The objective of the overall formulation is to maximize aggregate

rewards through judicious selection of task versions so that execution of all nodes in the

task graph may be completed within the given deadline while satisfying all dependency

and resource related constraints, as discussed below. To summarize, an optimal solution

methodology corresponding to the formulation must correctly determine:

• when to reconfigure or load a task ?

• which version of a task to load ?

• where to place a task ?

• when to start the execution of a task ?

4.2.1 Calculation of ASAP time for loading and execution

The As Soon As Possible (ASAP) time allocation policy for a task graph statically

determines the earliest possible commencement time for loading as well as execution, cor-

responding to each task node over all possible choice of task versions, assuming unlimited

available resources (in terms of both FPGA floor area and number of loading channels).

The pseudo-code for the allocation policy is presented in algorithm 1. The algorithm

starts by topologically sorting all tasks in the graph into an ordered list τ . Each element

76

of τ is then assigned its ASAP load time T lsi and ASAP start time Tesi in sequence, in

order to ensure that a task node Ti is only considered for T lsi and Tesi assignment when all

its predecessors have already been assigned their respective ASAP load and start times.

Line-4 of the algorithm assigns system initiation time “0” as the earliest load time

(T lsi) for all tasks. This is because, there do not exist any explicit dependency constraint

corresponding to the loading and placement of tasks on the FPGA. The earliest start time

(Tesi) for each node Ti is assigned in line 5. Tesi is obtained as the maximum over the

earliest completion times of all its predecessors and its earliest load completion time.

Algorithm 1: ASAP Load time and Start time
Input:
i. The task graph G(T,E)
ii. ki: # version of each task Ti
iii. Trecki : Loading time for the kth version of Ti
iv. Trunki : Execution time for the kth version of Ti
Output:
i. T lsi : ASAP load time for Ti:
ii. Tesi : ASAP start time of each task Ti

1 Compute topological ordering of G and store in ordered list τ ;
2 while τ is not empty do
3 Select Ti from the first element of τ ;
4 T lsi=0;

5 Tesi = max
{
max (Tesj

j:(Tj ,Ti)∈E
+min(Trunkj)

1≤k≤kj
), (T lsi +min (Trecki))

1≤k≤ki

}
;

4.2.2 Calculation of ALAP time for loading and execution

The As Late As Possible (ALAP) time allocation policy for a task graph statically

determines the latest possible commencement time for loading as well as execution, cor-

responding to each task node over all possible choice of task versions, assuming unlimited

available resources (in terms of both FPGA floor area and number of loading channels).

The pseudo-code for the allocation policy is presented in algorithm 2. The algorithm

starts by doing a reverse topological sort of all tasks in the graph into an ordered list

τ̂ . Each element of τ̂ is then assigned its ALAP load time T lli and ALAP start time

Teli in sequence, in order to ensure that a task node Ti is only considered for T lli and

Teli assignment when all its successor nodes have already being assigned there respective

ALAP load and start times.

77

If a task Ti has no successor, then its ALAP start time is given by the latest time

at which it must be started so that the task is able to complete at the deadline instant

using the version with the least execution time. Lines 4 and 5 of algorithm 2 depicts

this calculation. Step 7 of the algorithm calculates ALAP start times for the remaining

task nodes. Teli is given by the latest time at which Ti must start in order to complete

on or before the earliest ALAP time among its successors, using the fastest version for

Ti. Finally, the ALAP load time for each task is obtained by subtracting its minimum

loading time from its ALAP start time.

Algorithm 2: ALAP Load time and Start time
Input:
i.The task graph G(T,E)
ii. ki: # version of each task Ti
iii. Trecki : Loading time for the kth version of Ti
iv. Trunki : Execution time for the kth version of Ti
V. DDag: The deadline of the task graph.
Output:
i. T lli: ALAP load time for Ti:
ii. Teli: ALAP start time of each task Ti

1 Compute reverse topological ordering of G and store in ordered list τ̂ ;
2 while τ̂ is not empty do
3 Extract Ti, the first element of list τ̂ ;
4 if Ti has no successor then
5 Teli = Ddag −min (Trunki)

1≤k≤ki
;

6 else
7 Teli = min (Telj

j:(Ti,Tj)∈E
)−min (Trunki)

1≤k≤ki
;

8 Assign T lli=Te
l
i-min (Trecki)

1≤k≤ki
;

4.3 An ILP Formulation

In this section, we present an Integer Linear Programming (ILP) solution to the DAG

scheduling problem. For this purpose, we define two sets of binary decision variables:

i. Z = {Zikl : i = 1, 2, ..., |T |; k = 1, 2, ..., ki; l = T lsi , ..., T l
l
i}, ii. X = {Xikl : i =

1, 2, ..., |T |; k = 1, 2, ..., ki; l = Tesi , ..., T e
l
i} . For both sets of variables, indices i, k and

l respectively denote task id, corresponding version id and time step. Zikl = 1, if the

kth version of Ti (T ki) starts loading at the lth time step. Zikl = 0, otherwise. On the

78

T

1

T

2

T

3

T

4

ALAP
 Start time = 5

ALAP
 Start time = 7

ALAP
 Start time = 9

ALAP
 Load time = 4

ALAP
 Load time = 5

ALAP
 Load time = 8

Fig. 4.1: ALAP start and load time allocation

other hand, Xikl = 1, if the kth version of Ti (T ki) starts execution at the lth time step.

Xikl = 0, otherwise. We now present the required constraints on the decision variables

to model this scheduling and placement problem. Additionally, we also define a set Y of

integer decision variables: where Y = {Yi : i = 1, 2, ..., |T |}. Each decision variable Yi ∈ Y
is a two tuple Yi=〈xi, yi〉, where xi, yi denotes the left bottom coordinates of task Ti on

the FPGA floor and thus, defines its exact placement. We now sequentially present the

different constraints of the proposed ILP before presenting its overall objective function.

1. Reconfiguration Constraints: While loading (reconfiguring) a task at time

step l in the FPGA, it must follow the following constraints:

• Unique Load Time Constraint: During a reconfiguration, each task must

start loading through the ICAP on the FPGA floor at a unique time step.

That is,

∀i : 1 ≤ i ≤ |T | |
ki∑
k=1

T lli∑
l=T lsi

Zikl = 1 (4.1)

The above constraint enforces that for each task Ti exactly one version will be

selected for loading at a unique time step within [T lsi , T l
l
i].

• Single Load Channel (ICAP) Constraint: Only one task can be loaded

through the single available ICAP port at a given time. Time taken to load

79

the kth version of Ti is Trecki . That is,

∀l : 1 ≤ l ≤ Ddag|
|T |∑
i=1

ki∑
k=1

l∑
m=αi

Zikm ≤ 1 (4.2)

where αi = max(0, l− Trecki + 1). Equation 2 ensures that at any time l, the

single ICAP port can be busy due to the ongoing load of atmost one task. A

selected version (index k) of a task (index i) is in the process of being loaded

at time l if it started loading atmost l − Trecki + 1 time steps earlier.

2. Execution Constraints: The following constraints must be satisfied with respect

to the start of execution of the tasks.

• Unique Start Time Constraint: Each task must start execution on the

FPGA floor at a unique time step. That is,

∀i : 1 ≤ i ≤ |T | |
ki∑
k=1

Teli∑
l=Tesi

Xikl = 1 (4.3)

• Load Completion Constraint: A task Ti can commence its execution

only after its loading finishes. To enforce this, the following constraint must

be satisfied for each task.

∀i : 1 ≤ i ≤ |T | |
ki∑
k=1

Teli∑
l=Tesi

l ×Xikl ≥

ki∑
k=1

T lli∑
l=T lsi

l × Zikl +

ki∑
k=1

T lli∑
l=T lsi

Trecki × Zikl (4.4)

While LHS of the above inequality represents the time step corresponding to

the start of execution of a task Ti, the RHS denotes its load completion time

as a combination of load start time and load duration.

• Dependency Constraint: Corresponding to each directed edge (Ti, Tj ∈ E)

in the DAG, the execution of task Tj must commence only after the completion

of its predecessor, Ti. This dependency constraint between task Ti and Tj is

80

symbolically represented as follows:

∀(Ti, Tj) ∈ E |
kj∑
k=1

Telj∑
l=Tesj

l ×Xjkl ≥

ki∑
k=1

Teli∑
l=Tesi

l ×Xikl +

ki∑
k=1

Teli∑
l=Tesi

Trunki ×Xikl (4.5)

3. Placement Constraints: For a given temporal schedule of the tasks along with

their selected versions, the placement constraints attempt to ensure that the tasks

having overlapping life times on the FPGA floor do not spatially overlap with each

other at any instant over the schedule length. Additionally, these constraints also

guarantee that the tasks do not overlap with the FPGA boundaries.

• Non-overlap constraints: Given a pair of tasks T ki and T kj , which must

simultaneously co-execute on the FPGA floor and which should not overlap,

we have four possible ways to position the two tasks so as to avoid overlap.

Let wi,k and hi,k be the width and height of the selected version T ki of task

Ti. Given a pair of tasks T ki , T k
′

j whose execution life time overlap on the

FPGA floor, T ki can either be relatively positioned to the right or left or below

or above T k
′

j . At any given time, only one of the four possibilities mentioned

above can be true. These relative position constraints may be transformed into

inequalities given below.

∀l : 1 ≤ l ≤ Ddag, ∀(i, j) : 1 ≤ i, j ≤ |T |,

∀k : 1 ≤ k ≤ ki,∀k′ : 1 ≤ k′ ≤ kj , |

Zikl × (xi + wi,k) ≤ Zjk′l × xj , (T ki is to the left of T k
′

j), or (4.6a)

Zikl × (xi − wj,k′) ≥ Zjk′l × xj , (T ki is to the right of T k
′

j), or (4.6b)

Zikl × (yi + hi,k) ≤ Zjk′l × yj , (T ki is below of T k
′

j), or (4.6c)

Zikl × (yi − hj,k′) ≥ Zjk′l × yj , (T ki is above of T k
′

j) (4.6d)

As per equation 4.6a, at the time step l, if both the tasks (T ki , T
k
j) attempt

to get placed on the FPGA floor then it can only be possible if the inequality

81

(as stated in eqaution 4.6a) satisfies. Given the two temporally overlapping

tasks T ki , T
k
j , this equation enforces the necessary constraint to allow T ki to be

feasibly placed to the left of T kj , avoiding any possibility of spatial overlap.

To satisfy one of these equations, we use all-pair binary variables aij and bij

for tasks T ki and T k
′

j as shown in Table 4.1.

Table 4.1: Different values of the variable pair (aij, bij)

aij bij Remarks

0 0 T ki is to the left of T k
′

j

1 0 T ki is to the right of T k
′

j

0 1 T ki is below of T k
′

j

1 1 T ki is above of T k
′

j

W and H are the width and height of the FPGA, respectively. For each pair

of tasks, we can rewrite these four equations (4.6a -4.6d) so that only one of

them becomes non-trivial based on the actual relative position.

∀l : 1 ≤ l ≤ Ddag, ∀(i, j) : 1 ≤ i, j ≤ |T |

∀k : 1 ≤ k ≤ ki,∀k′ : 1 ≤ k′ ≤ kj , |

Zikl × (xi + wi,k) ≤ Zjk′l × (xj +W (aij + bij)) (4.7a)

Zikl × (xi − wj,k′) ≥ Zjk′l × (xj −W (1− aij + bij)) (4.7b)

Zikl × (yi + hi,k) ≤ Zjk′l × (yj +H(1 + aij − bij)) (4.7c)

Zikl × (yi − hj,k′) ≥ Zjk′l × (yj −H(2− aij − bij)) (4.7d)

• Chip boundary constraints: It has to be ensured that the tasks are located

within the boundary of the FPGA having dimension W ×H, that is,

∀l : 1 ≤ l ≤ Ddag,∀i : 1 ≤ i ≤ |T |, ∀k : 1 ≤ k ≤ ki|

Zikl × (xi + wi,k) ≤W (4.8a)

Zikl × (yi + hi,k) ≤ H (4.8b)

• Additional constraints: The type and range of the variables are defined as

82

integer, that is,

xi ≥ 0, yi ≥ 0 (4.9a)

aij , bij ∈ {0, 1} (4.9b)

4. Deadline Constraint:

• In order to ensure that the application G meets its end-to-end absolute deadline

DG, the sink node T|T | must complete execution by DG. That is,

k|T |∑
k=1

Tel|T |∑
l=Tes|T |

l ×X|T |kl +

k|T |∑
k=1

Trunk|T | ×X|T |kl ≤ Ddag (4.10)

5. Objective: The objective of the formulation is to choose that feasible solution

which maximizes overall system level reward through appropriate choice of task

versions. Hence, the objective can be written as follows:

Maximize

|T |∑
i=1

ki∑
k=1

T lli∑
l=T lsi

Zikl ×REW k
i (4.11)

4.4 Experiments and Results

In this section, we evaluate the performance of our proposed ILP formulation.

4.4.1 Experimental Setup

Performance evaluation of the proposed ILP formulation has been carried out through a

comprehensive set of simulation-based experiments. The principal metric based on which

evaluations have been carried out are as follows;

(i) Normalized Achieved Reward (NAR in %):

NAR =

∑n
i=1REWi∑n
i=1REW

ki
i

× 100 (4.12)

where
∑n

i=1 REWi denote the total reward obtained on successful execution completion

of the DAG and
∑n

i=1 REW
ki
i is the maximum possible achievable reward, which is the

83

sum of rewards for the highest versions. As referenced in [65], for an application which

consists of (η) number of tasks, width(w), height (h), execution time(e) and deadline

(Dapp), the load factor or utilization ratio of an application on the FPGA size of W and

H is given by,

APPload =

∑η
i=1wi × hi × ei
W ×H ×Dapp

(4.13)

Let wavg, havg and eavg be the average width, height and execution time respectively for

a given task sets, then equation 5.3 can be re-written as,

n = APPload ×

Dapp ×
⌊

W
wavg

⌋
×
⌊

H
havg

⌋
eavg

 (4.14)

where n is the number of tasks nodes obtained for a predfined APPload value.

(ii) Utilization (U) : For an application which consists of n-number of tasks, width(w),

height(h) and execution time(e), the utilization is given by equation (4.15). Where

makespan is the DAGs maximum execution time completion and W × H × makespan

represents the total amount of resources available on the FPGA during the makespan.

U =

∑n
i=1 wi × hi × ei

W ×H ×makespan
(4.15)

(iii)Cummulative schedules execution time : As stated in [65], this time is the run-

time required by the scheduling algorithm (and the underlying placement) each time the

scheduler is invoked. The Sched exe time is expressed by equation (4.16), where n is

the number of invocation of the scheduler and Exec T ime(i) the runtime required by the

scheduling algorithm in its ith call.

Sched exe time =
n∑
i=1

Exec T ime(i) (4.16)

Now various types of datasets have been generated by setting different values for the

following parameters

1. APPload: The APPload is varied between 40% and 90%.

2. Floor size of the FPGA: All our experiments have been conducted assuming the

FPGA floor size to be 52 × 128 (same as the actual dimension of Xilinx Virtex-4

84

(XC4VFX60)).

3. DAGs graph: The number of DAG edges used in our experiment varies from (n+ 4)

for an APPload value of 40% to (n + 9) for an APPload of 90%, where n is the task

nodes obtained from equation 4.13. In generating the DAGs, except for the source

task node, every node has at least one predecessor.

4. Task versions : We used a similar approach for task version generation as mentioned

in [65]. Versions represent the different hardware implementations for a given task.

Task versions are denoted as Normal version(NV), Half Normal Version (HNV), and

Twice Normal Version (TNV). We denote the HNV as a half-sized NV obtained by

dividing the width(resp. the height) by two but requires a twice longer execution

time and a half reward value. The TNV has twice the width (resp. the height)

of NV, but requires a half shorter execution time and a twice reward value. In

addition, the reconfiguration time is directly proportional to the area used as was

assumed in the introduction section. It is assumed that each task could have at least

one version (i.e., the NV) and at most three versions (i.e., NV, HNV, and TNV).

Therefore, task version assignment is taken from a uniformly distributed range of

[1, 4].

5. Task size (Spatial Resource Demand): We have considered synthetic task sets of

sizes varying from (16 × 16) and (32 × 32) for evaluating the performance of our

heuristic algorithm as mentioned in [114]. Rectangular task dimensions have been

obtained by separately generating widths (wi) and heights (hi) of the tasks from

distributions having mean µsz = 8 and standard deviation σsz = 16. For each task,

the execution time and reconfiguration time ranges are taken from [114]. Accord-

ingly, the execution time range is from 10 to 60 time units (ms), reconfiguration

time from 500µs to 600µs and the reward incurred varies in the range of 10 to 100.

It is to be noted that only the NV parameter values are generated.

6. Number of Task : We have considered the following number of task nodes for evalu-

ating the ILP formulation; 10, 15, 20, and 25.

The data points shown in the charts are obtained as the average over 10 runs. The

ILP solutions have been generated using the IBM CPLEX tool in OPL format. The

simulation was performed on Intel(R) Core(TM) i5-1035G1 CPU @1.00GHZ 1.19GHz

and 8GB installed memory(RAM).

85

4.4.2 Results

Table 4.2 shows the normalized reward obtained by the ILP formulation with varying

APPload. From the table, it can be observed that the normalized reward remains com-

parable with the changes of APPload. This may be attributed to the fact that when the

APPload is increasing the number of tasks also increases, thus equation (4.13) remains

more or less the same. These results, therefore, indicate that the achieved reward may be

considered to be robust against variation of APPload.

Figure 4.2 shows the utilization of the ILP formulation with a varying number of tasks.

The utilization rate is 9%, 11%, and 6.5% when the number of tasks varies from 10 to 15,

15 to 20, and 20 to 25 respectively. The rate is attributed to the fact that as the number

of tasks increases, the dependency constraint becomes more complex which resulted in an

unsatisfied placement constraint.

Table 4.2: Normalized Acheived Result

APPload NAR (%)

40 1.0

50 0.98

60 0.95

70 0.89

80 0.86

90 0.84

Figure 4.3 shows the performance of the overall execution time produced by our pro-

posed ILP formulation. The figure illustrates that the execution time increases with the

increase in the number of tasks. This attributes to the fact that the more the number

of tasks increases the more steps that have to be checked for constraint satisfaction and

thus, the final output can be obtained after a long interval time.

4.5 Summary

In this chapter, we have proposed an offline scheduling strategy for real-time precedence-

constrained task graphs consisting of multi-mode safety-critical tasks where each mode

is characterized by distinct spatial and temporal resource demands, reward obtained by

the system on successful execution, and possibly accuracy of results produced. We have

86

10 15 20 25
0

10

20

30

40

No.tasks

U
ti

li
za

ti
on

Fig. 4.2: Utilzation vs. No.tasks

10 15 20 25
0

50

100

150

200

No.tasks

E
la

p
se

d
T

im
e

(m
in

.)

Fig. 4.3: Elapsed time vs. No. tasks

formulated the ILP for the problem and solved it through the CPLEX solver.

87

Chapter 5

Heuristic Approach to Real-Time

Scheduling of Task Graphs on

Partially Reconfigurable FPGAs

In the previous chapter, we proposed an ILP-based solution strategy for scheduling persis-

tent real-time applications represented as a precedence-constrained task graph on partially

reconfigurable FPGAs. Although ILPs provide an optimal solution, their highly exponen-

tial computational complexities make them prohibitively expensive when problem sizes

become even moderately big in terms of the no. of tasks, their temporal (execution time)

and spatial (dimensions on the FPGA floor) requirements, average branching factor, re-

configuration overheads, etc. In this chapter, we develop an offline heuristic algorithm for

scheduling persistent real-time applications represented as a precedence-constrained task

graph on partially reconfigurable FPGAs. The main contributions of this chapter are as

follows. First, we formalize a multi-variant task scheduling problem for partially reconfig-

urable systems. Then, we propose our scheduling algorithm to maximize the accuracy by

executing the highest task’s version by managing reconfiguration overhead, dependency

constraint, and resource constraints. Along with the scheduling strategy, we also proposed

a novel algorithm to tackle the task placement problem for FPGAs. An evaluation using

both synthetic hardware tasks revealed the efficacy of the proposed placement strategy.

88

5.1 System Model & Problem formulation

This work assumes a runtime partially reconfigurable FPGA platform with support for

relaxed task placement based on the generic 2D flexible area model. Each task Ti is

assumed to be rectangular in shape having dimension wi×hi. Ti may be placed anywhere

on the FPGA floor of dimension W ×H, such that it does not overlap with other tasks

placed on the floor or with the FPGA boundaries. The FPGA is accompanied by a

separate General Purpose Processor (GPP) and memory. Task bitstream images are

stored and maintained in a repository residing in memory. All hardware reconfigurations

are performed according to a schedule generated offline under the supervision of the GPP,

by loading bitstreams from the repository into the configuration memory of the FPGA,

through its ICAP port.

We model a real-time application as a precedence constrained Directed Acyclic Graph

(DAG) G = (T,E), where T is a set of hardware tasks (T = {Ti | 1 ≤ i ≤ |T |}) and E

is a set of directed edges (E = {〈Ti, Tj〉 | 1 ≤ i, j ≤ |T |; i 6= j}) representing precedence

relations between distinct pairs of tasks. An edge 〈Ti, Tj〉 refers to the fact that task Tj

can begin execution only after the completion of Ti. It is further assumed that a hardware

task Ti may have ki different versions / implementations; that is, Ti = {T 1
i , T

2
i , . . . , T

ki
i }.

Although, all versions of a task produce the same output, their execution times, area re-

quirements and accuracy of results may vary. Different versions of a task essentially mean

different hardware circuit implementations corresponding to the same functionality [28].

Task versions with varying degrees of area Vs. execution time trade-offs may be

obtained by controlling the degree of parallelism for a set of implementations. Some

known techniques to control the degree of parallelism are loop unrolling with different

unrolling factors and realizing hardware with different pipeline stages. Hence, without

loss of generality, this work assumes that, higher the area arji (= wji × hji) consumed

by the jth version of the ith task T ji , lower becomes its required execution time Trunji

(arji > arj
′

i =⇒ Trunji < Trunj
′

i). The loading time Trecji corresponding to T ji is a

function of its bitstream size, which in turn is proportional to the area arji consumed by

T ji . A reward REW j
i is assigned to T ji on successful completion. REW j

i is a function of

the accuracy of results produced by the jth version of Ti, its execution requirement Trunji ,

area demand arji as well as the relative importance of Ti with respect to other tasks.

Each task node is associated with a load-start time and an execution-start time. Here,

load-start time for a task refers to the instant at which loading of the task’s bitstream

89

(associated with the selected task version) into the configuration memory of the FPGA

through its ICAP port, commences. Similarly, execution-start time of a task refers to

the instant corresponding to the commencement of execution of the task on the FPGA.

The application represented by the real-time task graph G is associated with an overall

deadline Ddag within which a distinct chosen version of each task node in G must complete

execution.

Problem formulation: The objective of the work is to generate a spatio temporal

schedule which maximizes the aggregate rewards through the judicious selection of task

versions for a given runtime partial FPGA platform. The generated schedule must ensure

that execution of all nodes in the task graph is completed within the given deadline

while satisfying all dependency and resource related constraints.To summarize, a solution

methodology corresponding to the problem must correctly determine:

• when to reconfigure or load a task

• which version of a task to load

• where to place a task

• when to start the execution of a task

Table 5.1: Parameters Values for Example Task Sets

Task Truni Treci wi hi REWi

T 1
1 2 2 12 16 20
T 2

1 3 1 12 8 10
T 1

2 2 2 12 12 10
T 2

2 4 1 10 8 5
T 1

3 2 2 12 12 20
T 2

3 2 2 8 12 10
T 1

4 3 1 8 12 10
T 2

4 4 1 10 8 5

Truni: Execution time for task Ti; Treci: Loading time for task Ti ; wi: Task Width;
hi: Height of Ti; REWi: Reward obtained for task Ti

Example: Let us consider the real-time task graph shown in figure 5.1. The task graph

consist of four task, T1,..., T4, each task Ti having two version T 1
i , T 2

i . A task version (T ji)

is associated with a distinct runtime (T jruni
), reconfiguration time (T jreci), dimension/size

(arji)) and reward (REW j
i). The floor size of the FPGA is assumed to be 12 × 24. The

end to end deadline of the task graph is DG = 12.

90

Fig. 5.1: The Task Graph

Fig. 5.2: Functional Model

5.2 Scheduling and Placement Heuristic

The overall functional representation of the proposed system model is presented in figure

5.2. The figure illustrates the Spatio-temporal scheduler for task graphs. The proposed

scheduling strategy is composed of two important phases: Scheduling and Placement.

Now, we discuss each phase in detail.

91

Algorithm 3: Variation Aware Dag Scheduling
Input:
i.The task graph G(T,E)
ii. ζi: No. versions of each task Ti
iii. Trecji : Loading time of the jth version of Ti
V. Trunji : Execution time of jth version of Ti
V. DDag: The deadline of the task graph.

Vi. REW j
i : Reward for executing the jth versison of Ti

Output:
i. Task Schedule /* Task versions (ki), Load (T li) and Execution start times (Tei) */
ii. Achived system-level reward : REWsys

1 /* Let K = {ki : i = 1, 2, ..., |T |}, T l = {T li : i = 1, 2, ..., |T |},
Te = {Tei : i = 1, 2, ..., |T |}, Y = {Yi : i = 1, 2, ..., |T |} denote the sets representing the
currently selected versions, load start times execution start times and left bottom
coordinate of task Ti in the given task set T . */

2 /* Let τ denote the ordered set of tasks obtained by topologically sorting T */
3 ∀Ti ∈ T , Set Ki= ζi (highest version)
4 ∀Ti ∈ T , Compute the Penalty Factor PF (Ti, ki), using equation 5.1
5 Create a min-heap of tasks in T with the PF (Ti, ki) values as the key;

6 Calculate System level reward as: REWsys =
∑

iREW
ki
i ;

7 while MVDS (τ , K, T l, Te, Y) 6= TRUE do
8 Extract the task Tj at the root of the min-heap;
9 kj = kj − 1; /* Decrease the current version of Tj by one; */

10 Update system level Reward as: REWsys=REWsys −REW
kj+1
j +REW

kj
j ;

11 Compute the PF (Tj , kj) and reheapify;

12 Return REWsys

5.2.1 Scheduling

The algorithm “variation aware dag scheduling (vads)” is a heuristic scheduling strategy

that attempts to maximize overall system-level reward by choosing an appropriate version

of each task for execution on the FPGA floor. The algorithm starts by attempting to

generate a feasible schedule by calling the ”Multiple Variant Dag Scheduling (MVDS)”

function with the highest version of all tasks. This feasible schedule must satisfy all the

constraints mentioned in the problem formulation. However, if a feasible solution cannot

be generated (this happens when function MVDS() returns FALSE) VADS chooses an

individual task for which a metric known as ”Penalty Factor (PF)” has the lowest value.

The version of the selected task is decreased by one and then MVDS() is called again in

an attempt to generate a feasible schedule with the currently chosen task versions. This

process continues either until MVDS() generates a feasible schedule, or fails to do so even

92

Algorithm 4: MVDS (K, T l, Te, Y, τ)

Input:
i. Treckii : Load time requirement for the kthi version of Ti
ii. Trunkii : Execution time requirement for Ti’s k

th
i version

iii. DDag: Deadline of the task graph.
Output: TRUE / FALSE: Feasible or infeasible schedule

1 /* Input parameters K, T l, Te and Y denote the sets representing the currently selected
versions, load start times, execution start times and left bottom placement coordinates of
each task Ti in the given task set T */

2 /* Input parameter τ represents the ordered set of tasks obtained by topologically
sorting T */

3 τ̂ = τ /* Copy tasks in ordered set τ into τ̂ */
4 Set ICAP-load = FALSE; /* ICAP-load : A flag which is set to FALSE if the ICAP is

available for loading; TRUE, otherwise */
5 /* Let CT denote the set of tasks currently placed on the FPGA floor; */
6 /* Let RT denote the subset of CT, comprising of tasks currently executing on the

FPGA floor; */
7 CT = RT = φ;

with all tasks being in their lowest versions.

The penalty Factor (PF) is associated with the current version of each task. For

the Kth
i version of a task say Ti, the penalty factor PF (Ti, ki) is defined as the ratio of

the reduction in reward achieved by Ti with respect to the change in spatial resource

consumed by it, when Ti’s version decreases from ki to ki − 1. Penalty Factor PF (Ti, ki)

is represented as :

PF (Ti, ki) =
REW ki

i −REW
ki−1
i

arkii − ar
ki−1
i

(5.1)

In the attempt to generate a feasible schedule, the MVDS () is iteratively called by

VADS as shown in the while loop (line 7-11, of algorithm 1). At any iteration, the tasks

are maintained as min heap with a PF values of tasks as key. The tasks with the minimum

PF value which is at the root of the heap is extracted and its level is decreased by one.

If the task has still not reached its lowest level, its PF value is recalculated and then the

task is reinserted back into the heap.

This value will be stored in a min-heap and a task (say, Ti) from the root of the

heap will be selected. The version of Ti will be decreased by one and the corresponding

system level reward will be re-calculated and the heap will be reformed based on the new

version of a task. This step will continue until the feasible schedule (both spatially and

temporally) is obtained.

93

8 for t = 0; t ≤ Ddag AND τ̂ 6= NULL; t+ + do
9 /* Function placer (Tj, CT,Y) determines the coordinates Yi of Tj, if placeable

and returns TRUE; returns FALSE, if Tj is not placeable within the already
placed tasks in CT */

10 /* Let Tj denote the first task currently in τ̂ and ICAP-Q denote the ordered
set of placeable tasks which are yet to be loaded through ICAP */

11 while (placer (Tj, CT,Y) == TRUE) do
12 Enque Tj into ICAP-Q
13 τ̂ = τ̂ \ {Tj} /* Delete Tj from τ̂ */

14 if (ICAP-load == FALSE AND ICAP-Q 6= NULL) then
15 ICAP-load = TRUE /* Set ICAP port to busy ; */ Load (Tj); /* Allocate

ICAP for loading Tj */
16 T lj = t /* Set current time t as the load start time */

17 ILR= Treckij ; /* start loading Tj; ILR: an integer variable which holds the
remaining time required to load the current task through ICAP */

18 else
19 ILR = ILR-1; /* Decrement remaining time */
20 if (ILR == 0) then CT = CT ∪ {Tj}; /* Add Tj to the set of currently

placed task */
21 ICAP-load = FALSE;

22 if Tj ∈ CT AND all predecessors of Tj has finished execution then
23 RT= RT ∪ {Tj}; /* Add Tj to the set of running tasks */
24 Tej = t /* Set t as the execution start time */

25 ERj=Trun
ki
j ; /* start executing Tj; ERj : An integer variable which holds

the remaing execution requirement of Tj */

26 ∀Tj ∈ RT , ERj = ERj - 1
27 if ERj ==0 /* Tj has completed execution */ then
28 RT = RT \ Tj; CT = CT \ Tj; /* Delete Tj from RT and CT */
29 FT = FT ∪ Tj /* Add Tj to set FT of finished tasks */

30 if |FT | 6= |T | then
31 Return FALSE

32 else
33 Return TRUE;

94

Description of Function MVDS()

The actual scheduling and placement of tasks at each time step is carried out in function

MVDS(). This Algorithm works as follows. Initially, the ordered set of tasks (τ) is stored

in a set τ̂ . There is only a single loading channel (PCAP/ICAP port) through which a

task is downloaded into the FPGA and hence, the status of the ICAP is represented by

a flag ICAP-load to mitigate any conflict. Initially, the ICAP port is free so ICAP-load

is set as FALSE . At the same time, there is no task present in the FPGA thus, both

RT and CT are set as NULL. The main part of the algorithm is presented in lines [8-33]

detailing what happens at each time step t. It is repeated until the deadline of the DAG

(DG) is reached and the τ̂ is empty, i.e. all the tasks have been scheduled. In line [11-13],

the placer employs a placement heuristic (described in next section) to find out whether

task Tj (the first task in τ̂) will be placeable or not along with the already placed tasks on

FPGA (represented as CT). If the Tj is found to be placeable then it is inserted into an

ordered list which stores all the tasks that are ready to be loaded through ICAP (termed

as ICAP-Q) and correspondingly, Tj will be removed from the τ̂ .

Once the task is loaded into the ICAP-Q, the current status of the ICAP port will be

checked. If the ICAP is found to be free (ICAP-load == FALSE) then the first task from

τ̂ will be loaded and the ICAP port will be set as busy till the loading of the corresponding

task get finished. The variable ILR will indicate the duration for which the ICAP will

remain busy (line [17]). As the loading of task initiates, the ILR will decrease. ILR

becomes zero when a task finishes its loading and thus, included in the list CT. Obviously

as a consequence, the ICAP status will be set into free (line [19-21]).

Line ([22-29]) describes the scenario of the tasks execution on FPGA floor. A task

(say, Tj) already present on the FPGA (member of set CT) will be ready for execution

when all of its predecessors finish their execution requirements. Consequently Tj will be

added in the set RT. All tasks belong to RT will continue their execution until their

execution requirements get finished. The variable ERj denotes the remaining execution

requirement of Tj and thus, ERj become zero when a task finishes its execution. After a

task finishes its execution, it will be added to an another set FT and will be deleted from

CT,RT .

At the end of the algorithm, it will be checked whether the number of finished task

(|FT |) is equal to the number of tasks given in the input set T . Any mismatch will infer

95

a incomplete schedule. Otherwise, it will denote a successful schedule and MVDS() will

return TRUE (line [30-33]).

Example: Example: Let us consider the real-time task graph shown in figure 5.1.

The parameters associated with its task nodes are depicted in Table 5.1. The floor size of

the FPGA is assumed to be 12×24. The end-to-end deadline of the task graph is DG = 12.

The proposed heuristic (Variation Aware Dag Scheduling) initially selects the highest

versions for all tasks and attempts to generate a feasible schedule by calling MVDS().

However, MVDS() returns FALSE as the generated schedule (shown in Figure 5.3) violates

the deadline. The reason behind this failure is that the highest versions of T1 and T2 cannot

be simultaneously placed in the floor of the FPGA.

Fig. 5.3: Infeasible task schedule with highest versions

Now, VADS calculates thePenalty Factor (PF) for all tasks ({PF2 = 0.07; PF1 = 0.10;

PF4 = 0.31; PF3 = 0.41}). As T2 has the lowest PF value, its version is decremented by

1. The versions of all other tasks remain the same. MVDS() is then called again in an

attempt to again generate a feasible schedule.

This time, MVDS() returns TRUE as a feasible schedule can be generated, as shown

in figure 5.4.

Fig. 5.4: Feasible task schedule

96

Table II shows the selected version, load start time, execution start time, placement

coordinates and obtained reward values for each task node of the task graph. From

Table II, the following points can be noted.

• A unique version of each task is loaded and executed.

• At any time instant, at most one task occupies the ICAP port

• No task start execution before its loading completes

• All inter-task precedence constraints are always satisfied

• The tasks never spatially overlap each other or with the FPGA boundary

• The sink task node is able to complete execution before the deadline

Table 5.2: Obtained values for scheduled Task Sets

Tasks Selected Load Execute Positions of Left Reward
Version start time start time bottom corner obtained

T1 1 0 2 (0,0) 20
T2 2 2 3 (0,16) 5
T3 1 4 7 (0,0) 20
T4 1 7 9 (0,12) 10

Truni: Execution time for task Ti; Treci: Loading time for task Ti ; wi: Task Width;
hi: Height of Ti; REWi: Reward obtained for task Ti

Algorithm 5: placer (Tj, PB)

Input:
i. Tj : jthtask placement request
ii. PB: Set of placed tasks (blocks) that combines CT and Y from MVDS()
Output: TRUE / FALSE: Feasible or infeasible placement

1 /*Let MERs be the set of maximal empty rectangles and LOC holds the corner with the
maximum overlap counter*/

2 NOR(PB);
3 COS (Graph);
4 POS (Graph);
5 LOC = MOP(MERs, Tj , PB);
6 if LOC == NULL then
7 return FALSE;

8 else
9 return TRUE; /*place the task at the first element of Max Value*/

97

5.2.2 Placement

For a specific version of each task as selected by VADS (), MVDS () generates a deadline

meeting temporal schedule if possible. However, this temporal schedule can be deemed to

be feasible only if it is spatially schedulable on the FPGA floor. The placement strategy

attempts to generate such a feasible spatial schedule. Specifically, for a subset of tasks (say,

τ) having overlapping times in the temporal schedule, the placement strategy attempts a

sub-region of size wi × hi for each task Ti ∈ τ such that no sub-region overlaps with the

device boundaries or with other sub-regions. The spatial schedule consists of placed tasks

along with vacant regions. A vacant region within a set of already placed tasks whose

area is not large enough to allow the feasible placement of any other task is considered to

be wasted due to fragmentation. One of the principal goals of any placement strategy is

to minimize the total unutilized area lost due to fragmentation.

The MVDS () algorithm invokes the top placer module (i.e., placer ()) in line ([11-13]).

The placer () module return TRUE for the feasible placement and FALSE otherwise. The

module is composed of four main heuristic algorithms: (i)The Non Overlap Rectangle()-

scan the FPGA area, identify the empty rectangles and store them as a forest graph where

nodes are rectangles and edges represent the neighbor rectangles. (ii)Complete Overlap Side()-

build the initial set of maximal empty rectangles (MERs). The algorithm collects all

the complete/full overlap line segments between neighboring rectangles and merges the

rectangles starting from the longest overlap line segment. (iii) Partial Overlap Side ()

- obtain the final set of maximal empty rectangles (MERs). The algorithm merges all

rectangles that share same partial overlap line segments with their neighbors. (iv) Maxi-

mal Overlap Placement - determines the best placement location for the requesting task.

The algorithm computes the maximum overlap side counter for the requesting task against

the set of maximal empty rectangles (MERs) obtained previously. The task is placed in

the empty rectangle whose overlap side counter is the maximum.

Non Overlap Rectangle (NOR)

The algorithm starts scanning the FPGA area by drawing the sweeping lines. Horizontal

and vertical sweeping lines (shown as the red dot lines in fig.5.5) are drawn along the four

boundaries of the placed tasks (say T1 and T2 of fig.5.5) beginning from the left end of

the FPGA boundary to the right, and from the bottom to top. The intersection points

98

Fig. 5.5: horizontal and vertical sweeping lines

of these sweeping lines (black dotted marker in Fig.5.5) form the vertices of candidate

rectangles. Even though the candidate rectangles contain both the occupied and the

empty rectangular regions, NOR algorithm extract the empty ones. It is to be noted that

rectangles are represented with their corresponding bottom left corner (BLC) and top

right corner (TRC).

The listing in NOR (PB) illustrates the complete algorithm. The algorithm starts by

drawing the horizontal and vertical sweeping lines along the edges of placed tasks and

FPGA boundaries. These horizontal and vertical lines are sorted along the y-axis and

x-axis respectively. Then, only the empty rectangles are extracted and stored in a graph.

In the graph, nodes represent empty rectangles, edges refer to the neighbor rectangles,

and weight is the length of the overlap line segment. The final output of the NOR algo-

rithm is the adjacency list representation of the empty rectangles.

Example(continued): Let us consider the same real-time task graph depicted in ta-

ble 5.1 and shown in fig. 5.1. The floor size of the FPGA is assumed to be 12× 24. The

end-to-end deadline of the task graph is DG = 12. Initially, the FPGA was empty (i.e.,

PB = NULL) and the scheduler sends T 1
1 , T 1

2 , T 1
3 and T 1

4 sequentially for placement.

Since there is no placed task on the FPGA (i.e., PB = NULL), the function DrawSweep-

ingLines() returns the horizontal and vertical sweeping lines along the boundaries of the

FPGA. Sorting these lines respectively on y-axis and x-axis resulted in HL= {(0,0)(10,0),

(0,10)(10,10) } and VL= {(0,0)(0,10), (10,0)(10,10) }. Rectangle formation is carried out

99

Algorithm 6: NOR (PB)

Input: PB: Set of placed tasks (blocks)
Output: Weighted forest graph of non-overlapping empty rectangles

1 /*function DrawSweepingLines(PB)- Draws a horizontal and vertical sweeping lines
along the four line segments of the placed tasks and edges of the FPGA, from left to
right and bottom to top with reference to the FPGA boundaries.*/

2 DrawSweepingLines(PB);
3 /*Let HL represent an array of sorted horizontal lines and m is the corresponding

cardinality (i.e. cardinality(HL)) */
4 /*Let VL represent array of sorted vertical lines and n is the corresponding cardinality

(i.e. cardinality(VL)) */
5 /*function FormRectangle() - return the left bottom and right top coordinates of the

corresponding rectangle*/
6 for i = 0 to m− 2 do
7 for j = 0 to n− 2 do
8 /* Let R be the newley formed rectangle*/
9 R = FormRectangle(HL[i],VL[j]);

10 /*Region Overlap() return TRUE if the considered rectangle has a shared region
against any element of set PB, FALSE otherwise*/

11 for each p ∈ PB do
12 if Region Overlap(R, P) == TRUE then
13 Discard R(= NULL);

14 if (R 6= NULL) then
15 CreateNode (graph, R)/* create node R and add it to the graph*/
16 /*function GetNeighbourRectangle() return a set of all possible neighbour

rectangles of R (i.e.,NB), NULL if no single neighbour found*/
17 /*function length overlap() compute the length of overlap line segments of

two neighbour rectangles*/
18 /*function AddEdge(R, N, wt)-add an edge between R and its neighbour N*/
19 NB = GetNeighbourRectangle(HL[i], VL[j]);
20 for each N ∈ NB do
21 for each p ∈ PB do
22 if Region Overlap(N, P)==TRUE then
23 Discard N(= NULL);

24 if N 6= NULL) then
25 wt= length overlap(R, N);
26 CreateNode(graph, N)
27 AddEdge(R, N, wt);

28 return(Graph);

100

by the function FormRectangle() which resulted in R= (0,0)(12,24). Next, R is checked

for emptiness using the function Region Overlap (R, PB). Since PB = NULL, rectangle

R is kept. In line (15), the function CreateNode() creates the rectangular node for R. The

GetNeighbourRectangle() function return NULL because rectangle R has no neighbour.

The final output of the algorithm is a single node, R.

(a) Complete Overlap Side
(b) Partial Overlap Side

Fig. 5.6: Ovelap Sides

The Overlap Sides and Rectangle Merging

Overlap sides are classified into two: the complete overlap side and the partial overlap side.

The complete/fully overlap side is a line segment, where its endpoints are the corners of

the neighboring rectangles. Fig.5.6a illustrates the fully overlapping sides for empty rect-

angles RT and RL. The endpoints (a1, b1) and (a, b) are the corners of both rectangles RT

and RL, and therefore the line segment (a1, b1)(a, b) is a complete overlap side. Whereas,

the partial overlap side as shown in fig.5.6b is a side that is partially shared between two

neighboring rectangles. (a1, b1)(a, b) is the partial overlap line segment between rectangle

RT and RL. Rectangle merging is the process of converting two neighboring rectangles

into one. The BLC of the lower or left rectangle (i.e., RL from fig 5.6) and the TRC of

the top or right rectangle (i.e., RT from fig 5.6). The maximal empty rectangle (MER) is

constructed in this way. The MER is an empty rectangle that cannot be covered fully by

any other empty rectangle.

101

Algorithm 7: COS (Graph)

Input: Adjacency list representation of NORs
Output: A subgraph with all complete overlap sides removed

1 /*Let List Rect and NOR be sorted arrays of rectangles in descending order of the
complete overlap sides*/

2 /* Initially, List Rect = all nodes of forest graph, and NOR = NULL */
3 while (List Rect 6= NULL) do
4 Add List Rect[0] in NOR;
5 while (NOR 6= NULL) do
6 RT = NOR[0]; /* get a rectangle with the longest complete overlap side*/
7 for every unvisited neighbour of RT do
8 Add unvisited neighbour into NOR;

9 /*Let NB be the set of neighbour rectangles for RT .*/
10 /*function EqualOverlapEdge(RT , NB)- return a neighbour rectangle that share

the same and equal longest complete overlap side with RT */
11 RL= EqualOverlapEdge(RT , NB);
12 /*let MR represents the merged rectangles*/
13 /* function AdjustGraph(RT , RL, MR)- Update graph structure for RT , RL and

MR, i.e., delete edges, add edges and weights as demanded */
14 /*RemoveNodes(RT , RL)- remove the vertices RT and RL from the Graph*/
15 if RL 6= NULL then
16 AdjustGraph(RT , RL, MR);
17 RemoveNodes(RT , RL);
18 Add MR into List Rect and NOR;
19 Discard RT and RL from List Rect and NOR;

20 else
21 Discard RT from List Rect and NOR;

22 return (Graph);

Complete Overlap Side (COS)

The COS algorithm identifies and collects the complete overlap line segments. Based on

the length of these line segments, we obtain sorted rectangles. Rectangle merging com-

mences from rectangles that have the longest overlap side. The algorithm passes through

two while loops; (i) while (List Rect6= NULL) makes sure that the nodes of a forest

graph are visited. (ii) while (NOR 6= NULL) checks whether all nodes of the currently

considered connected subgraph of a forest are visited or not. In line (6) the algorithm

gets a rectangle with the longest complete overlap side (say RT = NOR[0]). NOR stores

102

the rectangles in descending order of their complete overlap side length. In lines ([7 -

8]) the COS algorithm stores the unvisited neighbors of RT into NOR. If RT has mul-

tiple neighbors, the function EqualOverlapEdge() return a neighbor (say RL) that has

the longest complete overlap side. Once RL is obtained, statements in lines ([16-19] are

executed which are summarized as follows; merge RT and RL (i.e., MR), adjust graph

structure, and update the different data structures accordingly. The process terminates

when List Rect = NOR = NULL.

Example continue: The NOR algorithm constructs a weighted forest graph. The COS

algorithm proceeds on merging for the available complete overlap sides. Initially, List Rect

= {R} and NOR = {∅}. In line (4), NOR = List Rect[0] = {R}. In line (6) we have RT

= NOR[0] = R. currently, the only available rectangle is RT = {R}, therefore, statements

in lines ([7-8]) are not executed. Consequently, the function EqualOverlapEdge() return

NULL (i.e., RL = NULL). Now, the algorithm discards R from List Rect and NOR at

the line (21). Thus, List Rect = NOR = NULL, and the algorithm terminates.

Partial Overlap side(POS)

POS algorithm computes the final set of MERs. Similar to the COS algorithm, POS

also collects all the available partial overlap sides and creates sorted rectangles based on

their length. As the listing POS () algorithm illustrates, line ([1-3]) removes all partial

overlap sides that have edge weight below a predefined THRESHOLD. This enables the

algorithm to give more importance to the longest partial overlap segments that might

have brought a larger area benefit after falling apart and re-merging. Statements in lines

([5-11]) are the same as the COS algorithm discussed above. The function MaxEdgeWt()

in line (12) determines the longest partial overlap line segment shared between a rectangle

(say RT) and its possible neighbors. The value returned by this function is assigned to the

rectangle RL. When RL 6= NULL, the function RegionFormation() create a new region

by drawing horizontal and vertical guillotine cut lines through RT and/or RL starting

from their overlapped line segment endpoints to the opposite side as shown in fig. 5.7 and

5.8. As indicated in fig. 5.7b and 5.8b the new region NR (i.e., {NR1, NR2}) and the

additional remaining fragmented regions (RM1 and/or RM2) are returned by the function

RegionFormation().

From the predefined THRESHOLD value and the area merging criterion, the POS

103

(a) Before

NR1 NR2

RM1

RM2

(b) After

Fig. 5.7: New region formation through a horizontal guillotine cut lines

RL

RT

(a) Before

NR1

NR2

RM1 RM2

(b) After

Fig. 5.8: New region formation through a vertical guillotine cut lines

algorithm determines whether to proceed with merging the rectangles (i.e., merge NR1

and NR2) or keep the original ones (i.e., RT and RL). The merging criterion states that

the newly created region must be greater than its constituent original rectangles by at

least 120%. This criterion is set for two reasons; i) fragmenting an existing region and

merging them anew is a costlier operation in terms of computation demand. ii) Most of

the remaining regions after falling apart and re-merging would be smaller in size which

might not be used by the subsequent placement requests. It is to be noted that for our

experimental part, a THRESHOLD value of 20 and the partial merging criterion of 120%

were considered. If the test, in line (18) is successful, there are several operations to be

performed. The function AddNeighbour() searches the neighbors of RM1 and RM2 and

adds edges accordingly. The graph structure is adjusted for the old neighbor rectangles of

RT and RL and the newly created rectangle NR with AdjustGraph() function. AddEdge()

constructs edges between NR and the remaining regions. And finally, the variables are

updated with the newly formed region(NR), the remaining fragments(RM1 and RM2),

and discard the rectangles RT and RL.

Example(continued): The POS algorithm proceed from where COS stopped. State-

104

Algorithm 8: POS (Graph)

Input: A weighted forest subgraph
Output: MERs: set of Maximal Empty Rectangles

1 for every edge in the graph do
2 if edge weight < THRESHOLD then
3 DeleteEdge(Graph, edge)/*remove edge*/

4 /*Let PAR and PNOR be sorted arrays of rectangles in descending order of partial
overlap sides*/

5 /*Initially, PAR = nodes of forest graph, and PNOR = NULL */
6 while (PAR 6= NULL) do
7 PNOR = PAR[0] and MERs = PAR[0];
8 while (PNOR 6= NULL) do
9 RT = PNOR[0]; /* get a rectangle with the longest partial overlap side*/

10 for every unvisited Neighbour of RT do
11 Add the unvisited Neighbour into PNOR and MERs;

12 RL = MaxEdgeWt(RT , NB) /*return the maximum edge weight between RT and
its neighbours (i.e,. NB)*/

13 /* function RegionFormation(RT , RL) - Create a new regions by drawing a
horizontal/vertical guillotine cut lines through RL and/or RT */

14 /*Let Rg be a set that holds the new formed region (i.e., NR) and the remaining
regions(i.e., RM1 and RM2) from the original rectangles*/

15 /*function AddNeighbours()- searches the nebours of the newely created
remaining regions(i.e., RM1 and RM2) and add edges if it found one*/

16 if RL 6= NULL then
17 Rg = RegionFormation(RT , RL);
18 if Area(NR)> 120%×Area(RT) && Area(NR)> 120%×Area(RL) then
19 AddNeighbours(RT , RL, RM1);
20 AddNeighbours(RT , RL, RM2);
21 AdjustGraph(RT , RL, NR);
22 RemoveNodes(RL, RT);
23 wt1= length overlap(NR, RM1);
24 AddEdge(NR, RM1, wt1);
25 wt2= length overlap(NR, RM2);
26 AddEdge(NR, RM2, wt2);
27 Add NR, RM1 and RM2 in to PAR, PNOR and MERs;
28 Discard RT and RL from PAR, PNOR and MERs;

29 Discard RT from PAR, PNOR;

30 return MERs;

105

ments in lines ([1-3]) skipped because the graph is edgeless. In line (7) we have PAR

= MERs = PNOR[0] = {R}. In line (9) the POS algorithm gets a rectangle with the

longest partial overlap side. That is, RT = PNOR[0] = R). Since R has no neighbour,

the subsequent statements in lines ([10-11]) are skipped. line (12) return NULL (i.e.,

RL = NULL), as a result statements in lines ([19-28]) are not executed. R is discarded

from PAR and PNOR in line (29). Finally, PAR = PNOR = NULL and the algorithm

terminates.

Algorithm 9: MOP (MERs, Tj, PB)

Input:
i. MERs: set of Maximum Empty Rectangles.
ii.Tj : Placement Requesting task (= wj × hj).
iii.PB: a set of placed tasks with BLC and TRC.
Output: Max Value: a variable that hold three information (corner, Maximal overlap

counter and Orientation) .
1 /*Let Max Rect contains a Copy of MERs*/
2 /* let HPB be set of bottom and top line segments of all placed tasks including the

FPGA boundaries*/
3 /* let VPB be set of left and right line segments of all placed tasks including the FPGA

boundaries*/

Maximal Overlap Placer(MOP)

The MOP algorithm determines a corner location with the highest number of overlap

side counters. The overlap side counter at a corner of an empty rectangle is the sum

of unit length overlap line segments between the requesting task’s line segments and the

boundaries of a placed and/or a FPGA. That is, we place the requesting task at a corner

of a given MER and count the number of unit lengths shared between the currently placed

requesting task and the previously placed tasks and/or FPGA boundaries. At each corner

of the MERs, we consider two orientations; the horizontal orientation (HO = wj × hj)

and the vertical orientation (VO = hj × wj).
The algorithm creates a set called Max Set that stores three pieces of information (cor-

ner, overlap counter, orientation) for each maximal empty rectangle. Where, corner refers

to a vertex of a MER with the maximum overlap counter(i.e., out of the four corners), the

overlap counter is the number of unit length overlap line segments and orientation refers

to either HO or VO. The find max() function extracts the maximum overlap counter for

106

4 for each rectangle of Max Rect do
5 /*Let sz1 and sz2 be task’s sizes and Rw and Rh be currently considered

empty rectangle’s width and height*/
6 for each corner of a Rectangle do
7 /*let variable Morient hold the values returned by the function larger()

initialized to NULL*/
8 for each Orientation do
9 if sz1 > Rw OR sz2 > Rh then

10 not-placeable;
11 continue;

12 /*Let Hline represent a set of horizontal unit length line segments that
starts from a corner point and stepping towards left or right till it covers
the size1 displacement/

13 for each hl1 ∈ HPB do
14 for each hl2 ∈ Hline do
15 if line overlap(hl1, hl2)==TRUE then
16 increment overlap cnt;

17 /*Let Vline be a set of vertical unit length line segments that starts
from the corner point and stepping upward or downward till it cover
size2 displacement */

18 for each vl1 ∈ VPB do
19 for each vl2 ∈ Vline do
20 if line overlap(vl1, vl2)==TRUE then
21 increment overlap cnt;

22 /*function larger() return the larger overlap counter with its respective
Orientation*/

23 Mcorner = larger(overlap cnt, Orientation);

24 /*Let Corner best (CB) be a set that store a corner along with the best
Mcorner obtained*/

25 CB = {(corner, Morient)};
26 Discard the occurence of (corner, NULL) from set CB

27 /*function find max (CB) return values corresponding to max. overlap counter
of set CB and assign */

28 /*Let Max CB be a set that store the maximum overlap counter of given
orientation for each corner*/

29 Max CB = find max (CB);
30 /*let Max Set be a set that holds the best of each considered rectangle*/
31 Update max Set with Max CB;

32 Max Value = find max (Max CB);
33 return Max Value;

107

each corner location and store it in a variable Max CB. Max Set is a set that contains

the maximum overlap counter of each rectangle (after comparison among the Max CB).

Finally, the maximal overlap counter is chosen and saved in a variable Max Value which

is returned by the algorithm.

Table 5.3: overap counter

Max REC corner overlap counter
HO VO

(0, 0) 44 0
R (12, 0) 44 0

(0, 24) 44 0
(12, 24) 44 0

Example(continued): MERs ={R}; T = T 1
1 = 12X16; line segments for PB = NULL

and line segments for FPGA={(0,0)(11,0), (0,0)(23,0), (11,0)(11,23), (0,23)(11,23)}. De-

coupling the line segments in to horizontal(i.e., HPB) and vertical(VPB), we obtain; HPB

= (0,0)(12,0), (0,24)(12,24) and VPB = (0,0)(24,0), (12,0)(12,24). Max Rect = MERs =

{R}, where R = (0,0)(12,24),with corresponding corners (0,0), (12,0),(0,24) and (12,24).

Placing BLC of the requesting task at each corner of R, we obtain the results as shown in

the table 5.3. As the table shows the maximum overlap counter obtained by the requesting

task is 44 in horizontal orientation (HO). whenever an equal number of overlap counters

is obtained, the MOP algorithm usually prefers to place tasks starting from the leftmost

corner. Therefore, ((0,0), 24, HO) is stored in Max Value for rectangle R. Additionally,

the table illustrates that the overlap counter in VO is zero. The reason is that size of the

task is greater than the width of the FPGA, and thus no feasible placement is generated.

T 1
2 was the second task in the sequence sent by the scheduler after the successful

placement of T 1
1 . The placer has to re-run the four algorithms to decide whether T 1

2 can

be placeable or not. Accordingly, the placer returns NULL because T 1
2 and T 1

1 cannot be

placed simultaneously in the available FPGA area.

5.3 Experiments and Results

In this section, we evaluate the performance of our proposed heuristic algorithms presented

above.

108

5.3.1 Experimental Setup

Performance evaluation of the proposed heuristic algorithms has been carried out through

comprehensive sets of simulation-based experiments by considering randomly generated

DAGs. The principal metrics based on which evaluations have been carried out are as

follows;

(i) Normalized Achieved Reward (NAR in %):

NAR =

∑n
i=1REWi∑n
i=1REW

ki
i

× 100 (5.2)

where
∑n

i=1REWi denote the total reward obtained on successful execution completion of

the DAG and
∑n

i=1REW
ki
i is the maximum possible achievable reward, which is the sum

of rewards for the highest versions. As referenced in [65], for an application which consists

of (η) number of tasks, width(w), heght(h), execution time(e) and deadline (Dapp), the

load factor or utilization ratio of an application on the FPGA size of W and H is given

by,

APPload =

∑η
i=1wi × hi × ei
W ×H ×Dapp

(5.3)

Let wavg, havg and eavg be the average width, height and execution time respectively for

a given task sets, then equation 5.3 can be re-written as,

n = APPload ×

Dapp ×
⌊

W
wavg

⌋
×
⌊

H
havg

⌋
eavg

 (5.4)

where n is the number of tasks nodes obtained for a predfined APPload value.

(ii)Schedule length ratio (SLR) : The schedule length ratio is given by equation (5.5).

SLR =
makespan

Ddag

(5.5)

where, makespan is the DAGs maximum execution time completion and Ddag is the dead-

line of the whole task graph.

(iii) Utilization (U) : The utilization is given by equation (5.6). W ×H ×makespan

109

represents the total amount of resources available on the FPGA during the makespan.

U =

∑n
i=1 wi × hi × ei

W ×H ×makespan
(5.6)

(iv)Cummulative schedules execution time : As stated in [65], this time is the run-

time required by the scheduling algorithm (and the underlying placement) each time the

scheduler is invoked. The Sched exe time is expressed by equation (4.16), where n is

the number of invocation of the scheduler and Exec T ime(i) the runtime required by the

scheduling algorithm in its ith call.

Sched exe time =
n∑
i=1

Exec T ime(i) (5.7)

Now various types of datasets have been generated by setting different values for the

following parameters.

1. APPload: The APPload is varied between 40% and 90%.

2. Floor size of the FPGA: All our experiments have been conducted assuming the

FPGA floor size to be 52 × 128 (same as the actual dimension of Xilinx Virtex-4

(XC4VFX60)).

3. DAGs graph: The number of DAG edges used in our experiment varies from (n+ 4)

for an APPload value of 40% to (n + 9) for an APPload of 90%, where n is the task

nodes obtained from equation 5.4. In generating the DAGs, except for the source

task node, every node has at least one predecessor.

4. Task versions : We used a similar approach for task version generation as mentioned

in [65]. Versions represent the different hardware implementations for a given task.

Task versions are denoted as Normal version(NV), Half Normal Version (HNV), and

Twice Normal Version (TNV). We denote the HNV as a half-sized NV obtained by

dividing the width(resp. the height) by two but requires a twice longer execution

time and a half reward value. The TNV has twice the width (resp. the height)

of NV, but requires a half shorter execution time and a twice reward value. In

addition, the reconfiguration time is directly proportional to the area used as was

assumed in the introduction section. It is assumed that each task could have at least

one version (i.e., the NV) and at most three versions (i.e., NV, HNV, and TNV).

110

Therefore, task version assignment is taken from a uniformly distributed range of

[1, 4].

5. Task size (Spatial Resource Demand): We have considered synthetic task sets of

sizes varying from (16 × 16) and (32 × 32) for evaluating the performance of our

heuristic algorithm as mentioned in [114]. Rectangular task dimensions have been

obtained by separately generating widths (wi) and heights (hi) of the tasks from

distributions having mean µsz = 8 and standard deviation σsz = 16. For each task,

the execution time and reconfiguration time ranges are taken from [114]. Accord-

ingly, the execution time range is from 10 to 60-time units (ms), the reconfiguration

time from 500µs to 600µs, and the reward incurred varies in the range of 10 to 100.

It is to be noted that only the NV parameter value is generated.

6. Number of Task : To evaluate the utilization of our proposed heuristics, we have

considered the following number of task nodes; 10, 15, 20, and 25.

7. Reconfiguration time: We have considered varying the average reconfiguration time

to be a predefined factor of the average execution time. Initially, the reconfiguration

time was assumed to be negligible (i.e., download as many as possible number of

tasks at each run). Next, we allow task downloading operations to be done at a

predefined time factor of the execution time. Thus, the following reconfiguration

time factors were considered in our experiments; (ng, e/3, e/2, and e), where e stands

for the average execution time and ng denotes the negligibility of the reconfiguration

time. It is to be noted that though the reconfiguration time for e was assumed to

be in the same time units (i.e. ms) as that of execution, a small-time unit was

initialized for it compared to the execution time.

The data points shown in the charts are obtained as the average over 10 runs on differ-

ent DAG instances with a chosen set of parameters. In the formulas we have considered

above, the reconfiguration time is included as a part of the execution time.

We implemented the algorithms in C language and the data set generation through Mat-

lab. The simulation was performed on Intel(R) Core(TM) i5-1035G1 CPU @1.00GHZ

1.19GHz and 8GB installed memory(RAM).

111

5.3.2 Results

Figure 5.9 shows the normalized reward obtained by the proposed heuristics with vary-

ing APPload. From the figure, it can be observed that the normalized reward remains

comparable with the changes of APPload. This may be attributed to the fact that when

the APPload is increasing the number of tasks also increases, thus equation (5.2) remains

more or less the same. These results, therefore, indicate that the achieved reward may be

considered to be robust against variation of APPload.

40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

APPload

N
A

R
(%

)

Fig. 5.9: NAR vs. APPload

Figure 5.10 shows the schedule length ratio(SLR) obtained by the proposed heuris-

tics with varying APPload. The figure illustrates that the SLR increases with increasing

APPload. This is because, as the APPload increases, the feasible schedules are obtained

from the lowest task version combinations. As task versions decrease, the execution time

increases, and as a result, the makespan time also increases. This result conforms to

equation 5.10.

Figure 5.11 shows the utilization of our placement heuristic with the varying number of

tasks. The figure illustrates that the utilization increases as the number of tasks increases.

The rate of utilization is 7.3 %, 7.5%, and 4.1% when the number of tasks varies from

10 to 15, 15 to 20, and 20 to 25. The rate is comparable in the first two instances while

it decreases afterward. This decrement is attributed to the fact that not only does the

number of tasks increase, but also their dependencies become complex. This result in a

112

40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

APPload

S
L

R

Fig. 5.10: SLR vs. APPload

10 15 20 25
0

5

10

15

20

25

30

35

No.tasks

U
ti

li
za

ti
on

Fig. 5.11: Utilzation vs. No.tasks

high probability of an infeasible schedule.

Figure 5.12 shows the effect of the reconfiguration time on normalized achieved re-

wards(NAR). As the reconfiguration time factor varies from ng to e, the NAR continu-

ously decreases. This is due to the fact that as the reconfiguration time increases, the

possibility of generating a feasible schedule would be from the lowest task version combi-

nations. For task number = 20 and reconfiguration factor(= e) the algorithm generates

113

ng e/3 e/2 e
0

0.2

0.4

0.6

0.8

1

Reconfiguration time factor

N
A

R
No.of tasks = 10
No.of tasks = 20

Fig. 5.12: NAR vs.Reconfiguration time factor

ng e/3 e/2 e
0

0.2

0.4

0.6

0.8

1

Reconfiguration time factor

S
L

R

No.of tasks = 10
No.of tasks = 20

Fig. 5.13: SLR vs.Reconfiguration time factor

all infeasible schedules as demonstrated in figure 5.12.

Figure 5.13 shows the effect of reconfiguration time on schedule length ratio(SLR).

114

10 15 20 25
0

5

10

15

20

25

30

No.tasks

E
la

p
se

d
ti

m
e

(m
in

.)

Fig. 5.14: Elapsed time vs. No.tasks

The SLR value increases as the reconfiguration time factor varies from ng to e. As can be

seen from the figure, for task number = 20, the SLR value increases and finally becomes

greater than one (i.e., SLR > 1) which is classified as an infeasible schedule. The SLR

value for the infeasible schedule is omitted from the chart as shown in figure 5.13.

Figure 5.14 shows the performance of the overall execution time produced by our

proposed heuristic algorithm. The figure illustrates that the cumulative execution time

increases as the number of tasks increases.

5.4 Summary

In this chapter, we have presented an offline scheduling strategy for real-time precedence-

constrained task graphs consisting of multi-mode safety-critical tasks where each mode is

characterized by distinct spatial and temporal resource demands, reward obtained by the

system on successful execution, and possibly accuracy of results produced. We have also

considered the cases where the reconfiguration time varies in our heuristics algorithm.

Simulation-based experimental results reveal that our heuristics algorithm can achieve an

optimal solution with moderate computational overheads.

115

Chapter 6

Conclusions and Future Perspectives

6.1 Summarization

FPGA-based platforms are increasingly being looked upon as a lucrative and cheap al-

ternative for executing many real-time safety-critical applications. Given an application,

effectively organizing the executions of the application tasks while satisfying all timing

constraints, is ultimately a scheduling problem. In this context, the schedule acts as a

vital design component that determines an appropriate co-execution order for the applica-

tion tasks such that the desired performance objectives may be achieved while satisfying

all constraints. This thesis presented three static offline scheduler design approaches for

reconfigurable systems: (i) a formal scheduler synthesis framework for the real-time tasks

executing on an FPGA platform, using supervisory control of timed discrete event systems

as the underlying formalism. (ii) an ILP-based solution strategy for scheduling persistent

real-time applications represented as precedence-constrained task graphs on partially re-

configurable FPGAs and (iii) a heuristic solution methodology for scheduling persistent

real-time applications represented as precedence-constrained task graphs on partially re-

configurable FPGAs.

The use of reconfigurable logic within the field of computing has increased during the

last decades. The ability to change hardware during the design process enables develop-

ers to lower the time to market and reuse designs in several different products. Dynamic

reconfiguration requires making decisions about the choice of new configurations and this

may heavily depend on factors such as (i) the sequence of events during a particular run

(ii) decisions on the relative execution order of a set of functionalities, over time (iii) pre-

dictive knowledge about the behavior of the functionalities (iv) Placement decisions corre-

116

sponding the functionalities, on the available reconfigurable real-estate (v) reconfiguration

overheads, etc. Efficient scheduling decisions related to the selection of new configurations

are therefore a very complex design issue because of the sheer exponential nature of the

combinatorics of possible choices and are difficult to accomplish online. Hence, Offline

formal approaches towards the design of reconfiguration controllers/schedulers are often a

lucrative alternative that ensures designs that are correct by construction as well as opti-

mal in terms of usage of resources. Scheduler synthesis based on the SCTDES framework

starts with modeling the individual components and their associated constraints. Such

model-based design of real-time hardware tasks with FPGAs as the processing platform

is very complex and challenging. Chapter 3 of this thesis presents the scheduler synthesis

scheme for a set of non-preemptive periodic real-time tasks along with the implementation

details.

In certain applications, computational activities cannot be executed in an arbitrary

order but have to respect some precedence relations depending on the design stage. Such

precedence relations are usually described through a directed acyclic graph G, where

tasks are represented by nodes and each task has a distinct execution time. Precedence

relations are represented by the edges among nodes i.e output of a given node becomes

the input of a node. In many complex applications, there exist such dependent tasks

which require to be executed multiple times within a given period. For example, a task

within a real-time control system takes input from the environment and then actuates

after some processing. Such task graphs often require to be executed repeatedly within a

given period. The execution of such dependent task graphs on FPGAs becomes a more

complex problem as the hardware tasks (tasks bitstream) require to be loaded before the

start of the execution. Modern FPGAs contain only a single loading channel known as

ICAP/PCAP. Thus, no two tasks can simultaneously be loaded through that port. Hence,

this resource constraint adds some extra complexities.

Having a complex task graph, it could be the case that we cannot simultaneously place

all the task nodes within the finite area of a FPGA. However, through a proper schedul-

ing and placement strategy, the task graph can be efficiently scheduled by maintaining

the precedence constraints among nodes. Scheduling and partitioning of task graphs on

reconfigurable hardware need to be carefully carried out to achieve the best possible per-

formance. Tasks must be managed efficiently in time and space to exploit the advantages

offered by the FPGA. A Spatio-temporal scheduling algorithm needs to find the earliest

starting time for arriving tasks (when) and the region to accommodate (where) them. To

117

achieve the objective the scheduler must be able to handle all the following requests:

• what task to schedule at what time (temporal reconfiguration) ?

• Which version of the tasks to be loaded?

• When to load a particular version of task on FPGA through ICAP?

• where to place the task (spatial reconfiguration) ?

• when to start the execution of a task according with its precedence constraints

(temporal scheduling) ?

In chapters 4 and 5, we presented two solution strategies for scheduling persistent

real-time applications represented as precedence-constrained task graphs on partially re-

configurable FPGAs. Below we summarize the chapters presented in this thesis.

Firstly, a background on real-time systems, supervisory control of timed discrete event

systems, and fundamental technologies and principles concerning FPGAs were introduced

in Chapter 2. This started with the different real-time scheduling algorithms for unipro-

cessor and multiprocessor systems. Furthermore, key concepts of supervisory control of

timed discrete event systems and the steps required to synthesize a supervisor were ex-

plained. After introducing the FPGAs’ fundamental technologies, the dynamic and par-

tial reconfiguration, and real-time hardware tasks, the discussion of the Spatio-temporal

Scheduling of hardware tasks proceeded in this chapter. Finally, the chapter concluded

with a survey of formal and heuristic scheduling of real-time tasks on FPGAs.

In Chapter 3, our first contributory chapter, we have presented a formal scheduler

synthesis framework for a set of non-preemptive periodic real-time tasks executed on

the FPGA platform, using supervisory control of timed discrete event systems as the

underlying formalism. Although in recent years, there have been a few significant works

dealing with model-based real-time hardware task scheduling, this is possibly the first

work that addresses the scheduler synthesis problem using SCTDES for FPGA platforms.

Our framework development starts with the presentation of the system model and the

assumptions considered. The typical task execution on reconfigurable FPGA platforms,

the task execution, and the resource and timing constraint models were explained in detail.

The composite task and resource constraint models and the description of supervisor

synthesis with an example are also discussed. An experimental proof-of-concept validation

118

of our synthesized scheduler has been performed by implementing two independent real-

time tasks on the Atlys Spartan-6 FPGA platform.

In Chapter 4, our second contributory chapter, we presented an offline ILP-based so-

lution strategy for scheduling persistent real-time applications represented as precedence-

constrained task graphs on partially reconfigurable FPGAs. The chapter starts by describ-

ing the system model and formalization of the precedence-constrained Spatio-temporal

scheduling problem. Next, the ASAP and ALAP time allocation policies are discussed.

Then, sets of binary decision variables are declared for the ILP formulation. The different

constraints of the proposed ILP and its overall objective function are explained. We per-

form the simulation-based experiment, and the result obtained summurized and discussed

in this chapter.

In Chapter 5, our third contributory chapter, we presented a novel heuristics algo-

rithm for the real-time scheduling of precedence-constrained task graphs on partially re-

configurable FPGAs. The proposed solution strategy commences by stating the problem

definition and describing the system model and the considered assumptions. Then, the

scheduling and placement heuristics are explained in detail. Two scheduling algorithms

(i.e., VDAS and MVDS) have been discussed. Similarly, the four spatial algorithms (i.e.,

NOR, COS, POS, and MOP) are explained thoroughly. An example was also provided to

elaborate on the working principles of the algorithms. We perform the simulation-based

experiment, and the result obtained summurized and discussed in this chapter.

In summary, the work conducted as part of this thesis deals with; (i) the development

of an offline formal scheduler synthesis mechanism for a set of independent non-preemptive

periodic tasks. The practical viability of this proposal was tested and verified with an

existing Atlys development board from Digilent. (ii) an ILP and a heuristic algorithm

for solving applications represented as precedence-constrained task graphs on partially

reconfigurable FPGAs are presented. Simulation-based validation has been done for both

approaches.

6.2 Future Works

In this section, we present some future perspectives.

• Verification of the individual TDES models for correctness: Given a system and

its specification model, the supervisor synthesized using the SCTDES framework is

119

provably correct-by-construction [115]. However, this correctness property is based

on the assumption that the designs of individual systems and specification models

are sound and complete. Adhoc mechanisms cannot be employed to make such

strong guarantees on the correctness of the individual models. Handcrafted models

developed by system engineers based on their domain knowledge and experience

may often be prone to design flaws.

To avoid the issues associated with individual models, we may apply automated

verification techniques to identify and correct the presence of possible errors in the

developed models. For this purpose, formal approaches such as model checking seem

to be an attractive alternative. In order to apply model-checking, the properties of

interest, the correctness of which we desire to check, must first be identified. Given

these properties, model checking through the following three steps: (1) The model

M must be specified using the description language of a model checker; (2) The

specification language must then be used to code the properties and this will produce

a temporal logic formula ∅ for each specification; (3) Run the model checker with

inputsM and ∅. The model checker outputs YES ifM satisfies ∅ (represented byM
= ∅) and NO otherwise; in the latter case, a counter-example in the form of a trace

of the system behavior exhibiting the violation of the property is produced. The

automatic generation of such counter traces is an important tool in the design and

debugging of safety-critical systems. When a model-checking mechanism is applied

to the handcrafter system and specification models, we can ensure the soundness

and completeness of these models against our chosen properties of interest.

• Dynamic partial reconfiguration as a technique was shown both in its practical

usefulness and its limitations. The use of DPR technology for complex problems

is limited by the current lack of advanced tools in industry or academia. In this

regard, we would like to work on the development of tools that support flexible

2D area models with merging capability. We purview that such a tool will resolve

many problems associated with the practical implementations of Spatio-temporal

scheduling problems on FPGAs.

• Design of a seamless context switch/preemption mechanism is another open di-

rection for future research in this area. Task contexts are stored in state-holding

elements like Flip-flops and LUT-RAMs of CLBs and other Hard Blocks (BRAMs,

MULs, etc.). Switching context in any specific region of the FPGA involves: (i)

120

capturing the contexts of tasks that were executing in the region prior to a switch,

(ii) updating the contexts of these captured tasks and saving them in external mem-

ory, (iii) forming a new bitstream comprising of tasks that should execute in the

region subsequent to the switch, (iv) restoring the new bitstream in the region to

re-initiate execution after preemption. Literature [15, 16, 17, 18, 19, 20]has shown

that significant improvements in both context capture / extraction and context up-

dation times may be obtained through a selective bitstream read-back and context

manipulation mechanism. These improvements have been able to effect drastic re-

ductions in overall context switch overheads from more than 10ms to hundreds of

microseconds to a few milliseconds. Such low overheads have now made preemptive

scheduling more affordable in partially reconfigurable systems. As future work, we

would like to design dynamic preemptive scheduling strategies for periodic real-time

task sets to be executed on run-time partially reconfigurable platforms.

121

Disseminations out of this Work

Conference Papers

1. Cherinet Kejela, Rajesh Devaraj, Arnab Sarkar and Sangeet Saha ”A Supervisory

Control Approach for Scheduling Real-time Periodic Tasks on Dynamically Recon-

figurable Platforms” Euromico Conference on Digital Systems Design 2022 (Ac-

cepted).

2. Cherinet Kejela, Sangeet Saha and Arnab Sarkar ”Real-Time Scheduling of Prece-

dence Constrained Task Graphs on Partially Reconfigurable FPGAs” (Under re-

view).

122

References

[1] W. M. Wonham, “Supervisory control of discrete-event systems ece 1636f/1637s

2009-10,” 2010.

[2] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.

Springer, 2008.

[3] Xilinx, “Virtex-4 family overview,” Tech. Doc. DS112 (v2. 0), pp. 1–8, 2010.

[4] T. Hayashi, A. Kojima, T. Miyazaki, N. Oda, K. Wakita, and T. Furusawa, “Ap-

plication of fpga to nuclear power plant i&c systems,” in Progress of Nuclear Safety

for Symbiosis and Sustainability. Springer, 2014, pp. 41–47.

[5] J. Jin, S. Lee, B. Jeon, T. T. Nguyen, and J. W. Jeon, “Real-time multiple object

centroid tracking for gesture recognition based on fpga,” in Proceedings of the 7th

International Conference on Ubiquitous Information Management and Communi-

cation. ACM, 2013, p. 80.

[6] S. Bhasin, S. Guilley, A. Heuser, and J.-L. Danger, “From cryptography to hardware:

analyzing and protecting embedded xilinx bram for cryptographic applications,”

Journal of Cryptographic Engineering, vol. 3, no. 4, pp. 213–225, 2013.

[7] D. Theodoropoulos, G. Kuzmanov, and G. Gaydadjiev, “A 3d-audio reconfigurable

processor,” in Proceedings of the 18th annual ACM/SIGDA international sympo-

sium on FPGAs, 2010, pp. 107–110.

[8] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “A communication aware on-

line task scheduling algorithm for fpga-based partially reconfigurable systems,” in

Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE An-

nual International Symposium on. IEEE, 2010, pp. 65–68.

123

[9] M. Huang, V. K. Narayana, and T. El-Ghazawi, “Efficient mapping of hardware

tasks on reconfigurable computers using libraries of architecture variants,” in Field

Programmable Custom Computing Machines, 2009. FCCM’09. 17th IEEE Sympo-

sium on. IEEE, 2009, pp. 247–250.

[10] D. Göhringer, M. Hübner, E. Nguepi Zeutebouo, and J. Becker, “Operating sys-

tem for runtime reconfigurable multiprocessor systems,” International Journal of

Reconfigurable Computing, vol. 2011, 2011.

[11] Z. Sun, H. Zhang, and Z. Zhang, “Resource-aware task scheduling and placement

in multi-fpga system,” IEEE Access, vol. 7, pp. 163 851–163 863, 2019.

[12] Z. Guettatfi, M. Platzner, O. Kermia, and A. Khouas, “An approach for mapping

periodic real-time tasks to reconfigurable hardware,” in 2019 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,

2019, pp. 99–106.

[13] R. Devaraj, A. Sarkar, and S. Biswas, “Supervisory control approach and its sym-

bolic computation for power-aware rt scheduling,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 2, pp. 787–799, 2018.

[14] D. Chen, J. Cong, and P. Pan, “Fpga design automation: A survey,” Foundations

and Trends in Electronic Design Automation, vol. 1, no. 3, pp. 139–169, 2006.

[15] H. Kalte and M. Porrmann, “Context saving and restoring for multitasking in re-

configurable systems,” in Field Programmable Logic and Applications, 2005. Inter-

national Conf. on. IEEE, 2005, pp. 223–228.

[16] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada, “A novel mechanism for ef-

fective hardware task preemption in dynamically reconfigurable systems,” in Field

Programmable Logic and Applications (FPL), 2010 International Conference on.

IEEE, 2010, pp. 352–355.

[17] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and H. Takada, “Comparison of

preemption schemes for partially reconfigurable fpgas,” IEEE ESL, vol. 4, no. 2,

pp. 45–48, 2012.

124

[18] A. Morales-Villanueva, R. Kumar, and A. Gordon-Ross, “Configuration prefetching

and reuse for preemptive hardware multitasking on partially reconfigurable fpgas,”

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.

1505–1508, 2016.

[19] K. D. Pham, E. L. Horta, and D. Koch, “Bitman: A tool and api for fpga bitstream

manipulations,” Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2017, pp. 894–897, 2017.

[20] M. Eckert, D. Meyer, and B. Klauer, “Context save and restore of partial reconfig-

uration regions for xilinx fpgas,” 2019 14th International Symposium on Reconfig-

urable Communication-centric Systems-on-Chip (ReCoSoC), pp. 5–12, 2019.

[21] V. Kizheppatt and S. Fahmy, “Fpga dynamic and partial reconfiguration: A survey

of architectures, methods, and applications,” ACM Computing Surveys, vol. 51, pp.

1–39, 07 2018.

[22] A. Brandin and W. Wonham, M, “Supervisory control of timed discrete-event sys-

tems,” IEEE Transactions on Automatic Control, vol. 39, pp. 329 – 342, 1994.

[23] S. Miremadi, B. Lennartson, and K. Akesson, “A bdd-based approach for modeling

plant and supervisor by extended fnite automata,” IEEE Transactions on Control

Systems Technology, vol. 20, pp. 1421 – 1435, 2012.

[24] V. Kizheppatt and fahmy, “Fpga dynamic and partial reconfiguration: A survey of

architectures, methods, and applications,” vol. 51, no. 4, 2015.

[25] D. Koch, Partial Reconfiguration on FPGAs Architectures, Tools and Applications.

Springer, 2013, vol. 153.

[26] C. Beckhoff, D. Koch, and J. Torresen, “Go ahead: A partial reconfiguration frame-

work,” in 2012 IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines. IEEE, 2012, pp. 37–44.

[27] A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, “Openpr: An open-

source partial reconfigration toolkit for xilinx fpgas,” in International Parallel and

distributed processing Symposium. IEEE, 2011.

125

[28] T. Marconi, “Online scheduling and placement of hardware tasks with multiple

variants on dynamically reconfigurable field-programmable gate arrays,” Computers

& Electrical Engineering, vol. 40, no. 4, pp. 1215–1237, 2014.

[29] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp.

46–61, 1973.

[30] P. Altenbernd, “Deadline-monotonic software scheduling for the co-synthesis of par-

allel hard real-time systems,” in Proceedings of the 1995 European conference on

Design and Test. IEEE Computer Society, 1995, p. 190.

[31] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and S. K. Baruah,

“A categorization of real-time multiprocessor scheduling problems and algorithms.”

2004.

[32] B. Andersson and E. Tovar, “Multiprocessor scheduling with few preemptions,” in

Embedded and Real-Time Computing Systems and Applications, 2006. Proceedings.

12th IEEE International Conference on. IEEE, 2006, pp. 322–334.

[33] D.-I. Oh and T. P. Bakker, “Utilization bounds for n-processor rate monotone

scheduling with static processor assignment,” Real-Time Systems, vol. 15, no. 2,

pp. 183–192, 1998.

[34] M. Lopez, M, M. Garcia, J. Diaz, L, and D. Garcia, F, “Worst-case utilization

bound for edf scheduling on real-time multiprocessor systems,” in Proceedings of

the 12th Euromicro Conference on Real-Time Systems, Jun 2000, pp. 25–33.

[35] A. Srinivasan, P. Holman, and J. Anderson, “The case for fair multiprocessor

scheduling,” in Proceedings of the 11th International Workshop on Parallel and

Distributed Real-time Systems, Nice, France, Apr 2003.

[36] M. Caccamo and G. Buttazzo, “Optimal scheduling for fault-tolerant and firm real-

time systems,” in Real-Time Computing Systems and Applications, 1998. Proceed-

ings. Fifth International Conference on. IEEE, 1998, pp. 223–231.

[37] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich,

M. Feilen, and W. Stechele, “Partial reconfiguration on fpgas in practice; tools

and applications,” in ARCS Workshops (ARCS), 2012, Feb 2012, pp. 1–12.

126

[38] W. Nie, K.-J. Lin, and S. D. Kim, “Capacity-based admission control for mixed

periodic and aperiodic real time service processes,” in Service-Oriented Computing

and Applications (SOCA), 2011 IEEE International Conference on. IEEE, 2011,

pp. 1–8.

[39] P. Tan, H. Jin, and M. Zhang, “A hybrid scheduling scheme for hard, soft and non-

real-time tasks,” in Object and Component-Oriented Real-Time Distributed Com-

puting, 2006. ISORC 2006. Ninth IEEE International Symposium on. IEEE, 2006,

pp. 7–pp.

[40] T. Amari, H. Gharsellaoui, M. Khalgui, and S. B. Ahmed, “Aperiodic os tasks

scheduling for hard-real-time reconfigurable uniprocessor systems,” in Proceedings

of the International Conference on Embedded Systems and Applications (ESA). The

Steering Committee of The World Congress in Computer Science, Computer Engi-

neering and Applied Computing (WorldComp), 2012, p. 1.

[41] J.-y. Yin and G.-c. Guo, “An algorithm for scheduling aperiodic real-time tasks on

a static schedule,” in Inf. and Comput. Sc., 2009. Second International Conference

on, vol. 1. IEEE, 2009, pp. 70–74.

[42] H.-K. Tang, P. Ramanathan, and K. Compton, “Combining hard periodic and soft

aperiodic real-time task scheduling on heterogeneous compute resources,” in Parallel

Processing (ICPP), 2011 International Conference on. IEEE, 2011, pp. 753–762.

[43] J. Lee, S. Lee, and H. Kim, “Scheduling of hard aperiodic tasks,” in ACM SIGPLAN

Notices, vol. 30, no. 11. ACM, 1995, pp. 7–19.

[44] G. Fohler, “Joint scheduling of distributed complex periodic and hard aperiodic

tasks in statically scheduled systems,” in RTSS, 1995. Proceedings., 16th IEEE, pp.

152–161.

[45] S. Schorr and G. Fohler, “Online admission of non-preemptive aperiodic tasks in

offline schedules,” Proceedings WiP Session, 2010.

[46] S. Kato, “Real-time scheduling of periodic and aperiodic tasks on multiprocessor

systems,” Ph.D. dissertation, Keio University, 2008.

127

[47] S. Sáez, J. Vila, and A. Crespo, “Firm aperiodic task scheduling in hard real-

time multiprocessor systems,” in Real-Time Programming 2003 (WRTP 2003): A

Proceedings Volume from the 26th IFAC/IFIP/IEEE Workshop, Lagów, Poland,

14-17 May 2003. Elsevier Science Limited, 2003, p. 51.

[48] B. Andersson and C. Ekelin, “Exact admission-control for integrated aperiodic and

periodic tasks,” Journal of Computer and System Sciences, vol. 73, no. 2, pp. 225–

241, 2007.

[49] S.-J. Park and K.-H. Cho, “Supervisory control for fault-tolerant scheduling of real-

time multiprocessor systems with aperiodic tasks,” International Journal of Control,

vol. 82, no. 2, pp. 217–227, 2009.

[50] M. W. Wood, “Application, implementation and integration of discrete-event sys-

tems control theory,” 2005.

[51] R. P. J and W. M. Wonham, “The control of discrete event systems,” in Proceedings

of the IEEE. IEEE, 1989.

[52] S. Jovanovic, C. Tanougast, and S. Weber, “A hardware preemptive multitasking

mechanism based on scan-path register structure for fpga-based reconfigurable sys-

tems,” in Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA

Conference on. IEEE, 2007, pp. 358–364.

[53] K. Danne and M. Platzner, “Periodic real-time scheduling for fpga computers,” in

Intelligent Solutions in Embedded Systems, 2005. Third International Workshop on,

May 2005, pp. 117–127.

[54] Y. Chen and P. Hsiung, “Hardware task scheduling and placement in operating

systems for dynamically reconfigurable soc,” Real-Time Systems, vol. 23, no. 1-2,

pp. 489–496, 2006.

[55] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “A low fragmentation heuristic for

task placement in 2d rtr hw management,” in FPL. Springer, 2004, pp. 241–250.

[56] C. Steiger, H. Walder, M. Platzner, and L. Thiele, “Online scheduling and place-

ment of real-time tasks to partially reconfigurable devices,” in Real-Time Systems

Symposium, 2003. RTSS 2003. 24th IEEE. IEEE, 2003, pp. 224–225.

128

[57] P.-A. Hsiung, M. D. Santambrogio, and C.-H. Huang, Reconfigurable System Design

and Verification, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2009.

[58] C.-C. Chiang, “Hardware/software real-time relocatable task scheduling and place-

ment in dynamically partial reconfigurable systems,” Ph.D. dissertation, National

Chung Cheng University, Taiwan, 2007.

[59] L. Chen, T. Marconi, and T. Mitra, “Online scheduling for multi-core shared recon-

figurable fabric,” in Proceedings of the Conference on Design, Automation and Test

in Europe, 2012, pp. 582–585.

[60] Y.-H. Chen and P.-A. Hsiung, “Hardware task scheduling and placement in op-

erating systems for dynamically reconfigurable soc,” in Embedded and Ubiquitous

Computing–EUC 2005. Springer, 2005, pp. 489–498.

[61] M. Hubner, C. Schuck, and J. Becker, “Elementary block based 2-dimensional dy-

namic and partial reconfiguration for virtex-ii fpgas,” in Parallel and Distributed

Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE, 2006, pp.

8–pp.

[62] M. Sanchez-Elez and S. Roman, “Reconfiguration strategies for online hardware

multitasking in embedded systems,” arXiv preprint arXiv:1301.3281, 2013.

[63] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The erlangen slot machine:

A dynamically reconfigurable fpga-based,” The Journal of VLSI Signal Processing

Systems for Signal, Image, and Video Technology, vol. 47, no. 1, pp. 15–31, 2007.

[64] M. Natale, D and E. Bini, “Optimizing the fpga implementation of hrt systems,”

in 13th IEEE Real Time and Embedded Technology and Applications Symposium

(RTAS). IEEE, 2007.

[65] G. Wassi, M. E. A. Benkhelifa, G. Lawday, F. Verdier, and S. Garcia, “Multi-shape

tasks scheduling for online multitasking on fpgas,” 2014 9th International Sympo-

sium on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC),

pp. 1–7, 2014.

[66] W. Horn, “Some simple scheduling algorithms,” Naval Research Logistics Quarterly,

vol. 21, no. 1, pp. 177–185, 1974.

129

[67] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement for recon-

figurable computing systems,” IEEE design & Test of Computers, vol. 17, no. 1,

pp. 68–83, 2000.

[68] H. Walder, C. Steiger, and M. Platzner, “Fast online task placement on fpgas:

Free space partitioning and 2d-hashing,” in IPDPS ’03 Proceedings of the 17th

International Symposium on Parallel and Distributed Processing. IEEE, 2003, pp.

239–243.

[69] M. Esmaeildoust, M. Fazlali, A. Zakerolhosseini, and M. Karimi, “Fragmentation

aware placement algorithm for a reconfigurable system,” in Electrical Engineering,

2008. ICEE 2008. Second International Conference on. IEEE, 2008, pp. 1–5.

[70] M. Handa and R. Vemuri, “An efficient algorithm for finding empty space for online

fpga placement,” in Proceedings of the 41st annual Design Automation Conference.

ACM, 2004, pp. 960–965.

[71] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new approach for on-

line placement on reconfigurable devices,” in Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International. IEEE, 2004, p. 134.

[72] S. J. Olakkenghil and K. Baskaran, “An fpga task placement algorithm using re-

flected binary gray space filling curve,” International Journal of Reconfigurable

Computing, vol. 2014, p. 5, 2014.

[73] M. Koester, M. Porrmann, and H. Kalte, “Task placement for heterogeneous recon-

figurable architectures,” in Field-Prog. Tech., 2005. Proceedings. 2005 IEEE Inter-

national Conference on, 2005, pp. 43–50.

[74] A. Eiche, D. Chillet, S. Pillement, and O. Sentieys, “Task placement for dynamic

and partial reconfigurable architecture,” in (DASIP), 2010. IEEE, 2010, pp. 228–

234.

[75] Q.-H. Khuat, D. Chillet, and M. Hubner, “Considering reconfiguration overhead in

scheduling of dependent tasks on 2d reconfigurable fpga,” in Adaptive Hardware and

Systems (AHS), 2014 NASA/ESA Conference on. IEEE, 2014, pp. 1–8.

[76] Y. Lu, “Realistic online resource management for partially reconfigurable systems,”

2011.

130

[77] N. Guan, Q. Deng, Z. Gu, W. Xu, and G. Yu, “Schedulability analysis of preemptive

and nonpreemptive edf on partial runtime-reconfigurable fpgas,” ACM Transactions

on Design Automation of Electronic Systems (TODAES), vol. 13, no. 4, p. 56, 2008.

[78] Z. Guettatfi, O. Kermia, and A. Khouas, “Over effective hard real-time hardware

tasks scheduling and allocation,” in 2015 25th International Conference on Field

Programmable Logic and Applications (FPL). IEEE, 2015, pp. 1–2.

[79] F. Dittmann and M. Gotz, “Applying single processor algorithms to schedule tasks

on reconfigurable devices respecting reconfiguration times,” in Proceedings 20th

IEEE International Parallel & Distributed Processing Symposium. IEEE, 2006,

pp. 4–pp.

[80] K. Danne and M. Platzner, “An edf schedulability test for periodic tasks on re-

configurable hardware devices,” in ACM SIGPLAN Notices, vol. 41, no. 7. ACM,

2006, pp. 93–102.

[81] J. W. S. Liu, Real-Time Systems, 1st ed. Prentice Hall, 2000.

[82] S. M. Lauzac, “On multiprocessor scheduling of preemptive periodic real-time tasks

with error recovery,” Ph.D. dissertation, University of Pittsburgh, 2000.

[83] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor

systems,” ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

[84] J. H. Anderson and A. Srinivasan, “Early-release fair scheduling,” in Real-Time

Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference on. IEEE, 2000,

pp. 35–43.

[85] L. Pezzarossa, A. T. Kristensen, M. Schoeberl, and J. Sparsø, “Using dynamic par-

tial reconfiguration of fpgas in real-time systems,” Microprocessors and Microsys-

tems, vol. 61, pp. 198–206, 2018.

[86] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A

framework for supporting real-time applications on dynamic reconfigurable fpgas,”

in 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2016, pp. 1–12.

131

[87] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, “A linux-based

support for developing real-time applications on heterogeneous platforms with dy-

namic fpga reconfiguration,” in 2017 30th IEEE International System-on-Chip Con-

ference (SOCC). IEEE, 2017, pp. 96–101.

[88] B. Seyoum, M. Pagani, A. Biondi, and G. Buttazzo, “Automating the design flow

under dynamic partial reconfiguration for hardware-software co-design in fpga soc,”

in Proceedings of the 36th Annual ACM Symposium on Applied Computing, 2021,

pp. 481–490.

[89] D. Casini, P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimized partitioning

and priority assignment of real-time applications on heterogeneous platforms with

hardware acceleration,” Journal of Systems Architecture, vol. 124, p. 102416, 2022.

[90] J. Goossens, X. Poczekajlo, A. Paolillo, and P. Rodriguez, “Acceptor: a model and

a protocol for real-time multi-mode applications on reconfigurable heterogeneous

platforms,” in Proceedings of the 27th International Conference on Real-Time Net-

works and Systems, 2019, pp. 209–219.

[91] G. Valente, T. Di Mascio, L. Pomante, and G. D’Andrea, “Dynamic partial re-

configuration profitability for real-time systems,” IEEE Embedded Systems Letters,

vol. 13, no. 3, pp. 102–105, 2020.

[92] S. Saha, A. Sarkar, and A. Chakrabarti, “Spatio-temporal scheduling of preemptive

real-time tasks on partially reconfigurable systems,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 22, no. 4, p. 71, 2017.

[93] J. Vidal, F. De Lamotte, G. Gogniat, J. P. Diguet, and P. Soulard, “Uml design

for dynamically reconfigurable multiprocessor embedded systems,” in 2009 17th

IEEE Symposium on Field Programmable Custom Computing Machines. European

Design and Automation Association, 2010, pp. 1195–1200.

[94] I. Quadri, H. Yu, A. Gamatie, E. Rutten, S. Meftali, and J. Dekeyser, “Targeting

reconfigurable fpga based socs using the uml marte profile: From high abstraction

levels to code generation,” Int. J. Embedded Syst, vol. 4, pp. 204 – 224, 2010.

132

[95] G. Labiak, M. Wegrzyn, and A. Munoz, “State based design controllers for fpga

partial reconfiguration,” International society for optics and photonics, vol. 9662,

p. 96623Q, 2015.

[96] J. Aylward, C. H. Crawford, K. Inoue, S. Lekuch, K. Muller, M. Nutter, H. Penner,

K. Schleupen, and J. Xenidis, “Reconfigurable systems and flexible programming

for hardware design, verification and software enablement for system-on-a-chip ar-

chitectures,” in 2011 International Conference on Reconfigurable Computing and

FPGAs. IEEE, 2011, pp. 351–356.

[97] L. Gong and O. Diessel, “Modeling dynamically reconfigurable systems for

simulation-based functional verification,” in 2011 IEEE 19th Annual International

Symposium on Field-Programmable Custom Computing Machines. IEEE, 2011, pp.

9–16.

[98] S. Singh and C. J. Lillieroth, “Formal verification of reconfigurable cores,” in Seventh

Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(Cat. No. PR00375). IEEE, 1999, pp. 25–32.

[99] X. An, E. Rutten, J.-P. Diguet, and A. Gamatié, “Model-based design of cor-

rect controllers for dynamically reconfigurable architectures,” ACM Transactions

on Embedded Computing Systems (TECS), vol. 15, no. 3, p. 51, 2016.

[100] R. Wísniewski, “Dynamic partial reconfiguration of concurrent control systems spec-

ified by petri nets and implemented in xilinx fpga devices,” IEEE Access, vol. 6, pp.

32 376–32 391, 2018.

[101] R. Wísniewski, G. Bazyd lo, L. Gomes, and A. Costa, “Dynamic partial reconfigura-

tion of concurrent control systems implemented in fpga devices,” IEEE Transactions

on Industrial Informatics, vol. 13, no. 4, pp. 1734–1741, 2017.

[102] S. Guillet, F. d. Lamotte, N. l. Griguer, É. Rutten, G. Gogniat, and J.-P. Diguet,

“Extending uml/marte to support discrete controller synthesis, application to recon-

figurable systems-on-chip modeling,” ACM Transactions on Reconfigurable Technol-

ogy and Systems (TRETS), vol. 7, no. 3, p. 27, 2014.

133

[103] O. Diessel and H. Elgindy, “On dynamic task scheduling for fpga-based systems,”

International Journal of Foundations of Computer Science, vol. 12, no. 05, pp. 645–

669, 2001.

[104] G. Wassi-Leupi, “Online scheduling for real-time multitasking on reconfigurable

hardware devices,” 2012.

[105] C. Ekelin, “Clairvoyant non-preemptive edf scheduling,” in ECRTS. IEEE, 2006,

pp. 7–pp.

[106] G. Wassi, M. E. A. Benkhelifa, G. Lawday, F. Verdier, and S. Garcia, “Multi-

shape tasks scheduling for online multitasking on fpgas,” in Reconfigurable and

Communication-Centric Systems-on-Chip (ReCoSoC), 2014 9th International Sym-

posium on. IEEE, 2014, pp. 1–7.

[107] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “Online task scheduling for the

fpga-based partially reconfigurable systems,” in Reconfigurable Computing: Archi-

tectures, Tools and Applications. Springer, 2009, pp. 216–230.

[108] A. El Farag, H. M. El-Boghdadi, S. Shaheen et al., “On the acceptance tests of

aperiodic real-time tasks for fpgas,” in IPDPS 2009.

[109] T. F. Abdelzaher, V. Sharma, and C. Lu, “A utilization bound for aperiodic tasks

and priority driven scheduling,” Computers, IEEE Transactions on, vol. 53, no. 3,

pp. 334–350, 2004.

[110] A. Al-Wattar, S. Areibi, and G. Grewal, “An efficient evolutionary task schedul-

ing/binding framework for reconfigurable systems,” International Journal of Recon-

figurable Computing, vol. 2016, 2016.

[111] W. M. Wonham, Supervisory control of discrete-event systems. Springer, 2015.

[112] A. Vahidi et al., “Efficient supervisory synthesis of large systems,” Control Engi-

neering Practice, vol. 14, no. 10, pp. 1157–1167, 2006.

[113] R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wonham, “Formulas

for calculating supremal controllable and normal sublanguages,” Systems Control

Letters, vol. 15, no. 2, p. 95, 1990.

134

[114] S. Saha, A. Sarkar, and A. Chakrabarti, “Spatio-temporal scheduling of preemptive

real-time tasks on partially reconfigurable systems,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 22, pp. 1 – 26, 2017.

[115] B. A. Brandin and W. M. Wonham, “Supervisory control of timed discrete-event

systems,” IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 329–342,

1994.

135

