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Abstract

This thesis deals with the generation of key dependent feedback configurations for LFSRs in

Word based Stream Ciphers. In particular, SNOW 2.0 and SNOW 3G are considered. This

work looks at methods of replacing the word based LFSR in these ciphers with σ-LFSRs whose

feedback configurations depends on the secret key. Further, the security implications of these

changes are analysed in detail.

The first contribution of this thesis is the design of the σ−KDFC scheme. In this scheme, the

word based LFSR in a stream cipher is replaced with the σ-LFSR whose state transition matrix

has the same characteristic polynomial as the original LFSR. This scheme uses the fact that,

there exists a large number σ−LFSR feedback configurations corresponding to each primitive

characteristic polynomials. We demonstrate that the degree of the entries of feedback matrices

as polynomials in variables derived from the key is significantly high. This significantly increases

the resistance to Algebraic Attacks. Further, this scheme resists those Fast Correlation Attacks

where in the feedback equation is taken over an extension field of F2. However, this scheme gives

no added advantage against Fast Correlation Attacks that employ Linear Recurring Relation

over GF (2). This makes the scheme vulnerable to attacks like the one given in [1]. This leads

to the next contribution of the thesis.

The next task taken up in this work is the design of random z-primitive σ-LFSR configura-

tions. These configurations are random in both in terms of feedback gain and the characteristic

polynomial of the state transition matrix. In this scheme, the feedback configuration is hidden

using a symmetric matrix that is derived from the key. This symmetric matrix and the feedback

gain are used to derive a parameter that is made public. The receiver can retrive the feedback

configuration from the public parameter using the secret key. In addition to the attacks that

are resisted by σ-KDFC scheme, this scheme also resists attacks like the one given in [1] which

employ the LRR over GF (2).

Finally, we discuss methods of doing away with the public parameter in the above mentioned

scheme. This avoids the communication cost incurred in sharing the public parameter.

The thesis concludes by summarising the major contributions and discussing scope for future

work.
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Notation

Symbol Meaning
F2n Finite field of cardinality 2n
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2 n-dimensional vector space over F2

M [i, :] The ith row of a matrix M
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Mm(F2) Matrix Ring over F2
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R Real Number
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Chapter 1

Introduction

1.1 Word Based Linear Feedback Shift Register

Cryptography is the art of securing communication in the presence of third parties. It involves

the use of mathematical algorithms that convert plaintexts (original messages) into ciphertexts

(encrypted messages), that are unreadable to anyone without the valid key. It has been used for

centuries to protect sensitive information, including military secrets, diplomatic messages, and

financial transactions. With the rise of digital communication, cryptography has become in-

creasingly important in protecting online information. It is used in various applications such as

secure messaging, online banking, e-commerce, and data storage. It ensures the confidentiality,

integrity, and authenticity of digital information. Hash functions and Digital Signatures ensure

integrity and authenticity. Any cryptographic scheme has many associated algorithms—for

example, Encryption, Decryption, MAC and Digital Signatures. Further, depending upon the

nature of key sharing, a cryptographic scheme can be symmetric or asymmetric. A cryp-

tographic scheme that acts on blocks of plaintext data to generate blocks of ciphertexts of

the same size is known as a Block cipher. Examples of block ciphers include BlowFish[2],

Rijndael[3, 4],Present[5],Simon and SPECK[6], Midori[7] and so on . On the other hand, a

stream cipher encrypts a stream of data one element at a time. In a stream cipher, the ci-

phertext is the XOR sum of a pseudorandom keystream and the plaintext. LFSRs are often

used to build pseudorandom keystream generators in stream cipher as they are extremely easy

to implement both in hardware and software. Grain[8], Trivium[9], Mickey-2[10], Fruit-80[11],

Espresso[12] are a few examples of LFSR based stream cipher. Word-based LFSRs were in-

troduced to enable efficient software implementation on computers with modern word-based

processors. Various stream ciphers with word based LFSRs include RC4[13], Sober[14], SNOW

1.0[15], SNOW 2.0[16],Turing[17], SNOW 3G[18], ZUC[19], SNOW V[20], Sosemanuk [21], and

SNOW Vi [22].

A σ-LFSR, introduced in [23] is a special word-based LFSR that implements the multiple

1



recursive matrix method for pseudorandom vector generation given in [24]. Here, feedback

gains are taken as matrices. A heuristic algorithm to generate a σ−LFSR with three nonzero

gain matrices is proposed in [25]. [26] deals with a special σ-LFSR configuration known where

each gain matrix is designed as a scaler multiple of each other. In [23], it is conjectured that

the number of primitive σ−LFSR configurations with b, m-input m−output delay blocks is

( |GL(m,F2)|
2m−1 × ϕ(2mb−1)

mb
× 2m(m−1)(b−1)). For the case m = 1 and m = n, this conjecture is proved

in [27]. The proof for the general case is given in [28]. Further, [28] gives a constructive method

for enumerating σ−LFSR configurations. Krishnaswamy et al. The article[29] introduces a

special class of σ-LFSR called z-primitive σ-LFSR. This paper also gives the cardinality of the

set of z-primitive σ−LFSRs( |GL(m,F2)|
2m−1 ).

The knowledge of the feedback function plays a critical role in most attacks on LSFR-

based stream ciphers. These include Algebraic attacks, Correlation attacks, Distinguishing

attacks, Guess and determine attacks, Cache timing attacks etc.([30, 31, 32, 33, 34, 35, 36, 1]).

Therefore, hiding the feedback function of the LFSR could potentially increase the security of

such schemes. One way of doing this is by using dynamic feedback control. This approach

is used in stream ciphers such as K2 ([37]) and A5/1. This converts the deterministic linear

recurrence into a probabilistic recurrence. However, key recovery attacks on K2 and A5/1 have

been reported in the literature ([38, 39]). In this thesis, we have suggested methods of hiding

the feedback configuration of σ-LFSR.

1.2 Contribution

In this thesis, we have suggested methods of hiding the feedback configuration of σ-LFSRs to

resist various known plaintext attacks.

1 The first method, called the σ-KDFC (Key Dependent Feedback Configuration), uses the

algorithm given in [40, 28]. This method is a key-dependent σ−LFSR configuration whose

characteristic polynomial is a publicly known primitive polynomial. The feedback gains

obtained in this method are non-linear functions of the secret key. Further, the number

of iterations in this algorithm can be adjusted depending on the available computing

power. As an example, we study the interconnection of the σ-KDFC scheme with the

finite state machine (FSM) of SNOW-2.0. The randomness of the generated keystream is

verified using empirical tests. Further, the security of the scheme against various attacks

is analysed.

2 The second scheme proposed in this thesis addresses the vulnerability in σ-KDFC caused

by the publicly known characteristic polynomial. This scheme generates a random z-

primitive σLFSR configuration masked using the secret key. This masked configuration

is declared as a public parameter. The receiver regenerates the feedback configuration

2



from the public parameter using the secret key. The ability of this scheme to resist attacks

that σ-KDFC is vulnerable to is demonstrated. Finally, we have suggested ways of doing

away with the public parameter to avoid the cost of sharing the same.

1.3 Thesis Organization

The rest of the thesis is organised as follows

1 Chapter 2 deals with the background information needed to understand the thesis. It

covers some basic algebraic definitions and describes several word-based cryptographic

schemes. Further, this chapter briefly discusses various attacks on stream ciphers and

introduces σ-LFSRs.

2 Chapter 3 introduces, describes and analyses the σ-KDFC scheme. It proposes a method

for generating key-dependent feedback configurations (KDFC) for σ-LFSRs. It analyses

the security impact of replacing the existing word-based LFSR in SNOW 2.0 with a

key-dependent σ-LFSR.

3 Chapter 4 proposes a method of generating a random z−primitive σ−LFSR configuration.

Further, it describes a method of concealing this configuration in a public parameter

matrix. This chapter also contains a security analysis of the proposed scheme when it is

used in SNOW 2.0 and SNOW 3G.

4 Chapter 5 suggests methods of removing the public parameter in the scheme described

in Chapter 4.

5 Chapter 6 concludes the thesis and suggests areas of future research.

3
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Chapter 2

Preliminaries

This chapter discusses some basic concepts related to this work. The first part of the chapter

deals with algebraic preliminaries. The rest of the chapter discusses word-based stream ciphers

and attacks on them.

2.1 Algebraic Preliminaries

Given below are some algebraic preliminaries. The definitions and results given in this section

are taken from [41, 42, 43].

Definition: 1 Binary Operation: A binary operation on a set B is a map f : B×B → B

which assigns an element of B to each ordered pair of elements in B.

Definition: 2 Group: A nonempty set of elements G constitutes a group under a binary

operation ′.′, if

1. p, q ∈ G =⇒ p.q ∈ G.(Closure Property)

2. p, q, r ∈ G =⇒ p.(q.r) = (p.q).r(Associative Property)

3. There exists an element i such that p.i = i.p = p ∀p ∈ G. The element i is called the

identity element of the group G.

4. For each p ∈ G, there exists an element p−1 such that p.p−1 = p−1.p = i. The element

p−1 is called the inverse of p.

A group is denoted by two tuples (G, .) where G refers to the set and . refers to the operation.

A group is abelian or commutative if the operation . is commutative i.e. ∀a, b ∈ G, a.b = b.a.

Given below are a few examples of groups.

a) The set of integers Z,+ is a group under addition.
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b) {GL(n,R),*} is the group of all real nonsingular n × n matrices under matrix multipli-

cation.

c) The set of permutations of a finite set constitutes a group under composition.

Observe that the first example is Abelian while the other two are not.

Definition: 3 Subgroup: A nonempty subset K of the group G is a subgroup of G if the

following hold,

1. ∀p, q ∈ K =⇒ p.q ∈ K.

2. p ∈ K results that p−1 ∈ K.

SL(n,R), the group of real n×n matrices with determinant 1, is a subgroup of GL(n,R) under
matrix multiplication.

Definition: 4 Order of a Group: The order of a Group is the number of elements in that

Group. The order of G is denoted by o(G).

Definition: 5 Order of an element: Given a group (G, .) the order of p ∈ G, denoted by

o(p), is the least positive integer m such that p.p. · · · .p︸ ︷︷ ︸
m−times

= i, where i is the identity element of

the group G.

Definition: 6 Cyclic Group: A group (G, .) is a cyclic group if ∃p ∈ G such that G = {pi :
i ∈ Z}, where pi = p.p. · · · .p︸ ︷︷ ︸

i−times

. Here, p is called the generator of the cyclic group.

A group generated by an element p is denoted by < p >.

Example: 1 The set of integers modulo n, denoted by Zn, is a cyclic group under addition

with generator 1.

Theorem: 1 Let (G, .) be a finite cyclic group of order n > 1 generated by p. Then px is also

a generator of the group if and only if x is less than and co-prime to n.

Corollary: 2 [41] The total number of generators for a finite cyclic group of order n is ϕ(n).

Definition: 7 Ring: A non-empty set R equipped with two operations + and . is said to be

a ring (R,+, .) if the following set of axioms is satisfied.

� R is an abelian group with respect to +.

� For all p, q, r ∈ R, the following are satisfied
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– (p.q).r = p.(q.r)(Associative)

– (q + r).p = q.p+ r.p(Distributive)

The set of integers Z is a ring with addition and multiplication. For convenience, the + and

. operations are henceforth referred to as addition and multiplication. A ring that contains a

multiplicative identity is called a ring with identity. A ring where multiplication is commutative

is called a commutative ring.

Definition: 8 A subset S of a ring R is a subring of R if it is closed under the operations +

and . and forms a ring under the same operations.

Definition: 9 An ideal J is a subring of a ring R, which satisfies the following property.

� ∀p ∈ J and r ∈ R we have pr ∈ J and rp ∈ J .

An ideal J partitions a ring R into disjoint cosets called residue classes modulo J . Two elements

a, b ∈ R belong to the same residue class modulo J if a − b ∈ J . The residue class containing

the element a is denoted by [a]. The set of residue classes constitutes a ring where addition

and multiplication are inherited from R and are defined as follows.

[a] + [b] = [a+ b] (2.1)

[a].[b] = [a.b] (2.2)

An ideal J in a commutative ring R is said to be generated by set of elements p1, p2, . . . pk ∈ J ,

denoted by J =< p1, p2, p3, . . . , pk >, if J := {a1p1 + a2p2 + · · · + akpk|a1, a2, . . . , ak ∈ R}. An
ideal generated by a single element is called a principal ideal. A commutative ring where all

ideals are principal ideals is called a principal ideal domain.

Definition: 10 Field: A field is a set F with two binary operations + and ×, denoted by

(F,+, .) satisfying the following properties:

� (F,+) is an abelian group with additive identity element 0.

� (F− {0}, .) is an abelian group with multiplicative identity 1.

� The distributive law p(q + r) = pq + pr holds ∀ p, q, r ∈ F.

Example: 2 Given a prime p, {Zp,+, .} is a field where + is addition modulo p and . is

multiplication modulo p.

Definition: 11 Vector Space: A nonempty set V is said to be a vector space over a field F
if;
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1. The following operations are associated with V .

� Addition : V × V −→ V , The addition of v, w ∈ V is denoted by v + w

� Scalar Multiplication : F× V −→ V . The scalar multiplication of a ∈ F and v ∈ V

is denoted by cv.

2. V satisfies the following properties

� V is a commutative group under addition.

� Scalar multiplication is associative with field multiplication.

(cd)v = c(dv)∀c, d ∈ F and v ∈ V

� Scalar multiplication of a vector with the multiplicative identity of the group gives

the same vector.

� (c+ d)v = cv + dv ∀c, d ∈ F and v ∈ V

� c(v + w) = cv + cw ∀v, w ∈ V and c ∈ F

Given a vector space V , a set of linearly independent vectors (v1, v2, . . . , vn) in V whose

linear combinations generate the entire vector space is called a basis of the vector space. Given

a basis B = (v1, v2, . . . , vn) the vector v = a1v1+a2v2+ · · ·+anvn is represented by the n-tuple

(a1, a2, . . . , an). The cardinality of all bases of a vector space is the same and is called the

dimension of the vector space.

Definition: 12 If V1 and V2 are finite dimensional vector spaces over a field F, then T : V1 →
V2 is said to be a linear transformation if T (x+ y) = T (x) + T (y) and T (cx) = cT (x)∀c ∈ F,

Given a field F, if T is a linear transformation from Fm to Fn, then for a given basis, it is repre-

sented by a matrix A ∈ Fm×n, i.e., T (v) = vA. Further, if m = n then a vector v ∈ Fm is said to

be cyclic with respect to the transformation T if the set of vectors v, T (v), T 2(v), . . . , Tm−1(v)

spans Fm.

Given a field F, any subset of F which is also a field under the operations of F is called a

subfield of F. If K is a subfield of F, then F is said to be an extension of K. Such an extension

is denoted by F/K. Given an extension F/K, the field F is a K-vector space. The dimension of

this vector space is called the degree of field extension.

Definition: 13 The characteristic of a field F, char(F), is the smallest positive integer p such

that 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p−times

= 0 where 1 is the multiplicative identity of F.

Theorem: 3 [43] The characteristic of a field F, char(F), is either 0 or prime p.
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A field with finite cardinality is called a finite field. Such a field always has a prime charac-

teristic (Corollary 1.45 in [42]). Let Fq be the finite field of order q. The set Fq \{0} constitutes
a cyclic multiplicative group denoted by F∗q (Theorem 2.8 in [42]). Given any prime p, the set

Zp is a field where the addition and multiplication operations are inherited from integers. Any

other finite field having characteristic p is an extension of Zp. Further, the cardinality of such

a finite field is pn where n is the degree of field extension (Theorem in [42]).

Definition: 14 A polynomial f ∈ F[x] is said to be irreducible over F if it cannot be written as

a product of two non-constant polynomials in F[x] i.e. if m,n ∈ F[x] and f = mn then either

m or n is a constant.

Theorem: 4 [43] Let f(x) ∈ F[x] be an irreducible polynomial of degree n over the field F and

let K be the extension field F[x]/ < p(x) >. Let α = x (mod p(x)) ∈ K. Then the elements

{1, α, α2, α3, · · · , αn−1} are a basis for K as a vector space over F , so the degree of the extension

if n, i.e., [K : F] = n. Hence

K = {a0 + a1α + a2α
2 + · · ·+ an−1α

n−1|a0, a1, · · · , an−1 ∈ F}

consists of all polynomials of degrees less than n in α.

Theorem: 5 [41] The finite field of cardinality qn, Fqn, is isomorphic to Fn
q .

Thus, each element of Fqn can be represented as an element in Fn
q and vice versa.

Lemma: 6 [42] Every a ∈ Fpn satisfies the equation ap
n
= a.

The above lemma implies that the order of any non-zero element of Fpn in F∗pn divides pn − 1

Definition: 15 Given q = pn and α ∈ Fqm, the elements α, αq, αq2 , · · · , αqm−1
are called con-

jugates of α with respect to Fqm.

Definition: 16 Given q = pn, α ∈ Fq is said to be a primitive element of Fq if it generates the

multiplicative group F ∗q .

If α ∈ Fq is a primitive element, then so are all its conjugates to any subfield of Fq. For q = pn,

F∗q has ϕ(pn − 1) generators.

Definition: 17 Primitive Polynomial A monic irreducible polynomial f ∈ Fq[x] having

degree n is called a primitive polynomial over Fq if its roots generate F∗qn.
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Number of primitive polynomials of degree n over Fq is
ϕ(qn−1)

n
.

Consider a primitive polynomial f(x) = xn+ cn−1x
n−1+ cn−2x

n−2+···+c0 . Let α ∈ Fqn be the

root of f(x). The set of elements (1, α, α2, . . . , αn−1) is a basis for Fqn as a vector space over

Fq [42]. For this basis, the following matrix represents the linear transformation corresponding

to multiplication by α.

Mα =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1

c0 c1 c2 · · · cn−1


(2.3)

A finite field of cardinality q = pn contains every finite field whose cardinality is a factor of q.

The following lemma characterizes the primitive elements of these sub-fields.

Lemma: 7 Given m, b ∈ Z and a prime p, if α is a primitive element of GF (pmb), αz is a

primitive element of GF (pm), where z = pmb−1
pm−1 .

Proof: As α is a primitive element of GF (2mb), α generates the cyclic multiplicative group

F ∗
2mb . Therefore, α2mb−1 = 1. Further, the cardinality of the cyclic group generated by αz, i.e.

the order of αz, is 2mb−1
GCD(2mb−1,z) . Hence, if z = 2n−1

2m−1 ,

order(αz) =
2mb − 1

GCD(z, 2mb − 1)
(2.4)

=
(2m − 1)(2m(b−1) + 2m(b−2) + · · ·+ 1)

(2m(b−1) + 2m(b−2) + · · ·+ 1)
(2.5)

= 2m − 1 (2.6)

As, the order of the element αz is 2m−1, it can be said that αz is the generator of the subgroup

F ∗2m , i.e. α
z is a primitive element of GF (2m), where z = 2mb−1

2m−1 . □

Corollary: 8 Let f(x) be a primitive polynomial of degree n = mb over F2 and α be its root. If

z = 2mb−1
2m−1 , a polynomial g(x) having degree m with root αz is a primitive polynomial. Further,

the polynomial g(x) is given as follows:

g(x) = (x+ αz) ∗ (x+ α2z) ∗ · · · ∗ (x+ α2m−1z) (mod f(α)) (2.7)

Proof: The primitiveness of g(x) follows from Lemma 1. Since mb is the smallest exponent of

α that equals 1, (αz, α2z, α22z,. . . , α2m−1z) are all distinct. Further, if αz is a root of g(x), so are

α2z, α22z,. . . , α2m−1z. Therefore, g(x) = (x+αz)∗ (x+α2z)∗ · · · ∗ (x+α2m−1z) (mod f(α)). □

10



2.2 Basic Concepts on Cryptography

Cryptography is a data modification technique that ensures that a sender’s message transmitted

on a public channel can be retrieved only by the intended recipients [44]. Given below are a

few related definitions.

Definition: 18 Alphabet(A): It is a set of symbols used for encryption. It consists of b bit

words, A = {0, 1}b, for some b ∈ Z+.

Let us define the formal notion of the cryptosystem as follows.

Definition: 19 Cryptosystem: A cryptosystem or cipher CS is defined by the following five

tuple CS = {Pt, Ct,K,Enc,Dec}.

� Pt is the finite set of possible plaintexts. Pt = m1,m2, · · · ,mk, where mi ∈ A.

� Ct is the finite set of possible ciphertexts. Ct = c1, c2, · · · , cℓ, where ci ∈ A.

� K is the keyspace, a finite set of possible keys. K = k1, k2, · · · , kn, where ki ∈ A

� The encryption algorithm Enc : K × Pt 7→ Ct. The Key used in encryption is called

encryption key ke ∈ K.

� The decryption algorithm Dec : K × Ct 7→ Pt. The Key used in decryption is called

decryption key kd ∈ K.

� ∀ke, kd ∈ K, Dec(kd, Enc(ke, P )) = P holds for all P ∈ Pt.

The encryption and decryption keys are generated using randomized key generation algorithms

with the security parameter as the argument. The encryption algorithm may or may not be

randomized, while the decryption algorithm is deterministic. A single secret key is shared

between the two parties via a secure channel in a symmetric or private key encryption scheme.

This key is used for both encryption and decryption. On the other hand, in a public key or

asymmetric key encryption scheme, both parties have their public and private keys. The public

keys are publicly declared, while the secret keys are known only to the respective parties. The

sender encrypts the message using the receiver’s public key, while the receiver decrypts the

cipher text using his secret key.

A block cipher is an encryption scheme that encrypts a block of data at a time. Examples

of block ciphers include DES. 3-DES, AES-128 and AES-256. On the other hand, a stream

cipher is an encryption scheme that encrypts a stream of data one element at a time. Here, the

message stream is combined with a pseudorandom number sequence known as the keystream

to generate the ciphertext. Examples of stream ciphers include SOSEMANUK and the SNOW

series of ciphers.
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Fig. 2.1: Communication in Symmetric Key Primitive

This thesis deals with stream ciphers that are synchronous and additive. These terms are

defined below.

Definition: 20 A synchronous stream cipher is one in which both the plaintext and the cipher-

text are generated independently of the keystream.

Formally, we describe a synchronous stream cipher by three functions {fun1, fun2, fun3} as

follows

� St+1 = fun1(St, K), where S0 is the initial state, K is the key and the function fun1

evaluates the state St+1 at the t+ 1-th instant using the key and the state St.

� zt = fun2(St, K), where fun2 evaluates the keystream value zt at time instant t as a

function of the key and the state at that time instant.

� ci = fun3(zi,mi), where fun3 is the output function that produces the ciphertext ci by

combining the keystream and the plaintext mi.

Definition: 21 A binary additive stream cipher is a synchronous stream cipher in which fun3

is the XOR function, and the keystream, plaintext, and ciphertext are all binary streams.

Additive stream ciphers are often constructed using Linear Feedback Shift Registers (LF-

SRs), which are extremely easy to implement in hardware and software.
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Fig. 2.2: General Model of Additive Stream Cipher

The security of a stream cipher can be assessed by quantifying the ability of a Probabilistic

polynomial time(PPT) algorithm to distinguish its keystream from a random sequence. In this

context, the computational indistinguishability of two sequences is defined as follows

Definition: 22 Computational Indistinguishability : Two sequences {Si}i∈N and {Ti}i∈N
are computationally indistinguishable if for all Probabilistic Polynomial Time(PPT) algorithms

B the following holds:

ADV S,T
B (n) = | P

y←Si
[B(y) = 1]− P

y←Ti
[B(y) = 1]| ≤ ϵ(n) (2.8)

where ADV S,T
B is the advantage of PPT B, n is the security parameter and ϵ : N → R, is a

negligible function i.e. for every positive polynomial p(.), there exists an integer y > 0 such that

for every n > y and ϵ(n) < 1
p(n)

.

The security of a stream cipher can be proved by showing that its keystream is indistin-

guishable from a random sequence. However, since indistinguishability requires every PPT

algorithm to have a negligible advantage, establishing it is difficult. Hence, most practical

stream ciphers like SNOW series, Sosemanuk, ZUC, etc., are not provably secure. The security

of these schemes is instead based on heuristics. These include resistance to various attacks

like Algebraic Attacks, Fast Correlation Attacks, Time Memory and Data trade-off attacks,

Guess and Determine attacks, Distinguishing Attacks, Differential Attacks, NIST Randomness

Tests[45] etc.
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2.2.1 LFSRs and σ−LFSRs

An LFSR is a machine that generates a binary sequence {x0, x1, x2, . . .}, which satisfies a

relation of the following type.

xN =
N−1∑
i=0

ci × xN−i j ≥ N (2.9)

Such a relation is called a linear recurring relation (LRR), and the polynomial f(x) = c0 +

c1x + · · · + cNx
N is called the characteristic polynomial of the LFSR. The degree of an LFSR

is the degree of its characteristic polynomial.

As shown in Figure 2.3, an LFSR consists of a set of delay blocks whose outputs are acted

upon by a linear feedback function.

Fig. 2.3: Linear Feedback Shift Register(LFSR)

The state of an LFSR is the set of outputs of its delay blocks at a given time instant.

Alternatively, a state vector consists of N consecutive elements of the sequence generated by

the LFSR. Two consecutive state vectors xk and xk+1 are related by the equation xk+1 = xkMf

where Mf is given as follows;

Mf =



0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2
...

. . .
... · · · ...

0 0 · · · 1 cn−1


(2.10)

The matrix Mf is called the state transition matrix of the LFSR, and it is the companion
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matrix of the characteristic polynomial of the LFSR.

Given any periodic sequence, there exists an LFSR that generates it.

Definition: 23 The minimal polynomial of a sequence is the characteristic polynomial of the

LFSR with the least number of delay blocks that generate the sequence.

The degree of the minimal polynomial of a periodic sequence is called the linear complexity of

the sequence.

For a given degree N , the period of a sequence generated by an LFSR is maximum when

its characteristic polynomial is primitive[46]. Such a sequence is called an m-sequence; its

period is 2N − 1. Such sequences have good statistical properties such as balancedness, 2-level

autocorrelation, and the span-N property. However, among all sequences having period 2N−1,

m-sequences have the least linear complexity. This is undesirable from a cryptographic point

of view. Further, the feedback equation of an LFSR can be recovered from the generated

sequence in O(N2) time by the Barlecamp Massey Algorithm using 2N consecutive bits of

the sequence.([47]). Therefore, LFSRs are used along with various mechanisms that introduce

non-linearity to create secure stream ciphers.

2.2.2 σ-LFSRs

The advent of word-based processors and the need to effectively use them motivated the design

of word-based LFSRS. Here, each delay block has multiple inputs and multiple outputs. Such

LFSRs are used in stream ciphers like SOSEMANUK, SNOW 1.0, SNOW 2.0 and SNOW-3G.

A σ-LFSR is a special word-based LFSR that implements the following matrix linear recur-

ring relation (MLRR);

Dn+b = Bb−1 ∗Dn+b−1 +Bb−2 ∗Dn+b−2 + · · ·+B0 ∗Dn (2.11)
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Fig. 2.4: Block Diagram of σ-LFSR

where each Di ∈ Fm
2 and Bi ∈ Fm×m

2 . A σ-LFSR that implements the MLRR given in

Equation 2.11 has b. m-input m-output delay blocks. The output of the σ-LFSR is a sequence

of vectors in Fm
2 . The matrices B0, B1, · · · , Bb−1 are called the gain matrices of the σ-LFSR

and the following matrix is defined as its configuration matrix.

C =



0 I 0 · · · 0

0 0 I · · · 0
...

...
... · · · ...

0 0 0 · · · I

B0 B1 B2 · · · Bb−1


∈ Fmb×mb

2 (2.12)

where 0, I ∈ Fm×m
2 are the all-zero and identity matrices respectively. We shall refer to the

structure of this matrix as the M -companion structure. The characteristic polynomial of the

configuration matrix is called the characteristic polynomial of the σ-LFSR.

If Dn (considered as a row vector) is the output of the σ-LFSR at the n-th time instant,

then its state vector at that time instant is defined as D̂n = [Dn,Dn+1, . . . ,Dn+b−1]
T . This

vector is obtained by stacking the outputs of all the delay blocks at the n-th time instant. The

following equation relates two consecutive state vectors:

D̂n+1 = CD̂n (2.13)

The output of the σ-LFSR can be seen as a collection of m scalar sequences emanating from

the m outputs of the first delay block. These scalar sequences are the component sequences of

the σ-LFSR.

Theorem: 9 The sequence generated by a σ−LFSR is periodic if and only if the first gain
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matrix B0 ∈Mm(F2) is invertible.

If the sequence generated by a σ−LFSR is not periodic, it has a pre-period followed by a

periodic sequence.

A σ-LFSR is considered primitive if its characteristic polynomial is primitive. Sequences

generated by such σ-LFSRs have a maximum period. Each component sequence of a vector

sequence generated by a primitive σ-LFSR has the same period as the output sequence of

the σ-LFSR. Further, the minimal polynomial of each of these sequences is the same as the

characteristic polynomial of the σ-LFSR. These sequences are shifted versions of each other.

Given a primitive polynomial f(x), define a map fM : GL(mb,F2) 7→ GL(mb,F2) such that

fM(Q) = Q ×M × Q−1, where M is the companion matrix of primitive polynomial f(x) and

Q ∈ GL(mb,F2). The following theorem gives the structure for the matrix Q, which ensures

the matrix fM(Q) is a m-companion form.

Theorem: 10 [28] Given n = m× b and a polynomial f(x) of degree n. Let M ∈ Fn×n
2 be the

companion matrix of f(x). The matrix C = Q×M ×Q−1 is in the m- companion matrix form

iff Q is an invertible matrix of the form

Q = [v1; v2; · · · ; vm; v1 ∗M ; v2 ∗M ; · · · ; vm ∗M ; · · · ; v1 ∗M b−1; v2 ∗M b−1; · · · ; vm ∗M b−1]

where vi ∈ F 1×n
2 is row vector.

The map fM is strictly surjective. Hence, it induces a partition on GL(mb,F2) where two

matrices belong to the same equivalence class if they produce the same image under the map.

The equivalence class of a matrix Q is denoted by [Q]. The following lemma characterizes

matrices belonging to the same equivalence class.

Lemma: 11 [28].Suppose, Q1, Q2 ∈ GL(mb, F2), the condition fM(Q1) = fM(Q2) iff Q1 =

Q2 ×M i for i ∈ {0, 1, 2, · · · , 2mb − 2}.

As the characteristic polynomial of M is primitive, for i ̸= j and q ̸= 0, QM i ̸= QM j.

Therefore, the cardinality of the set [Q], denoted by |[Q]|, is 2mb − 1. Further, every matrix in

an equivalence class has a unique first row. As |[Q]| is equal to the number of non-zero vectors

in Fmb
2 , given any non-zero vector v ∈ Fmb

2 , there is a unique element in [Q] with first row v.

This property is not unique to the first row and is valid for the other rows. Therefore, for every

m-companion matrix C with the same characteristic polynomial as M , there exists a unique

Q ∈ GL(mb, F2) with the following structure such that C = QMQ−1:

Q = [en1 ; v2; · · · ; vm; en1 ∗M ; v2 ∗M ; · · · ; vm−1 ∗M ; · · · ; en1 ∗M b−1; v2 ∗M b−1; · · · ; vm−1 ∗M b−1]

(2.14)
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Thus, the number of m-comapnion matrices with the same primitive characteristic polynomial

as M equals the number of matrices Q with the above structure. In [23], this number was

conjectured to be the following:

NP =
|GL(m,F2)|

2m − 1
× ϕ(2mb − 1)

mb
× 2m(m−1)(b−1) (2.15)

where ϕ represents Euler’s totient.

For the cases where m = 1 and m = n, this conjecture is proved in [27]. For the case where

m = 2, this conjecture is proved in [40]. This conjecture is constructively proved in the general

case in [48]. Moreover, this proof gives an algorithm for calculating the feedback functions of

the corresponding σ-LFSRs.

Definition: 24 Matrix state of σ−LFSR sequence Let S = {S(i) ∈ Fm
2 }i∈Z be a sequence

generated by a σ-LFSR with a primitive characteristic polynomial f(x) of degree n. The i-th

matrix state of S is a matrix of n consecutive elements of S starting from the i-th element

MatS(i) = {S(i), S(i+ 1), · · · , S(i+ b− 1)}m×n

The dimension of a σ−LFSR sequence S is the rank of any of its matrix states MatS(i).

Theorem: 12 Consider a σ-LFSR with b, m-input m-output delay blocks with configuration

matrix C = Q ×M × Q−1 where the structure of Q is as given in Equation 2.14 and M is

the companion matrix of the characteristic polynomial of the σ-LFSR. The first m rows of the

matrix Q constitute a matrix state of the sequence generated by the σ-LFSR.

Proof: For 1 ≤ i ≤ mb, let the i-th column of Q be denoted by ci. Further, for some

1 ≤ i ≤ mb, let ci be a state vector of the σ-LFSR. The next state vector of the σ-LFSR is

C × ci. This vector is computed as follows

C × ci = (Q×M ×Q−1)× ci = Q×M × (Q−1 × ci) = Q×M × ei1 = Q× ei+1
1 = ci+1 (2.16)

Thus, the next state vector is the next column of Q. Therefore, the n columns of Q are n

consecutive state vectors of the σ-LFSR. Consequently, these vectors’ first m rows constitute

m consecutive outputs of the σ-LFSR. Hence, the first m rows of the matrix Q are a matrix

state of the sequence generated by the σ-LFSR. □

2.2.3 z-primitive σ-LFSR

z-primitive σ-LFSRs are special σ-LFSRs that are defined as follows:
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Definition: 25 Let S be a primitive σ-LFSR with b, m-input m-output delay blocks. Let its

distance vector be D = (d1, · · · , dm−1). If all the elements of the distance vector are divisible by

z = 2mb−1
2m−1 , i.e. z|di ∀ 1 ≤ i ≤ m− 1, then S is called a z-primitive σ-LFSR.

The following theorem gives the cardinality of the z-primitive σ-LFSRs set.

Theorem: 13 [29] The number of z−primitive σ−LFSR of having b, m-input m-output delay

blocks is |GLm(GF (2))|
2m−1 × ϕ(2mb−1)

mb
, where |GLm(GF (2))| is the total m×m invertible matrices over

GF (2) and ϕ(2mb−1)
mb

is the number of primitive polynomials of degree mb over GF (2).

Given m and b, the set of z-primitive σ-LFSR configurations is a subset of primitive σ-

LFSR configurations. For the case, b = 1, both the sets have the same cardinality (This follows

from Theorem 1 and 6.3.1 in [28]). Therefore, when b = 1, every σ-LFSR configuration is a

z-primitive σ-LFSR configuration.

Definition: 26 Given m, b ∈ Z and a primitive polynomial f with degree mb, The z-set for the

3-tuple (m, b, f), denoted by zfmb, is the set of distance vectors of z-primitive σ-LFSRs having

b, m-input m-output delay blocks and characteristic polynomial f .

Note that there is a one-to-one correspondence between the set of distance vectors and the

set of σ-LFSRs.

Theorem: 14 [29] Let α and αz be roots of primitive polynomials f(x) and g(x) having degrees

mb and m respectively. The following map ϕ from zfmb and zgmis a bijection.

ϕ : zfmb −→ zgm

(d0, d1, · · · , dm−1) 7→ (
d0
z
,
d1
z
, · · · , dm−1

z
)

If α and αz are roots of primitive polynomials f(x) and g(x) having degrees mb and m respec-

tively, the above theorem proves that there is one-to-one correspondence between z-primitive

σ-LFSRs having b, m-input m-output delay blocks and characteristic polynomial f(x) and

σ-LFSR configurations with a single m-input m-output delay block and characteristic poly-

nomial g(x) (This is because every primitive σ-LFSR configuration is a z-primitive σ-LFSR

configuration when b = 1.)

2.3 Properties of Cryptographic Boolean Functions

In this section, we briefly discuss the properties of cryptographic boolean functions.

Definition: 27 Boolean Function: An n variable Boolean function is a map from Fn
2 to F2.

[49]
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Definition: 28 Hamming Weight: The Hamming Weight of a binary sequence S, HW (S),

is the number of set bits (1s present in S.

Definition: 29 Hamming Distance: The Hamming Distance of two same lengths sequences

S1 and S2, denoted by HD(S1, S2), is defined as in the number of positions they differ.

HD(S1, S2) = HW (S1 ⊕ S2)

Definition: 30 Truth Table Representation: For a function f , the ordered 2n tuple Tf =

(f(α0), f(α1), . . . , f(α2n−1)) is called truth table of f . Each function can be uniquely described

by its truth table Tf .

Definition: 31 Algebraic Normal Form Representation

An n-variable Boolean function f can be written in the Algebraic Normal Form (ANF)

representation as follows [50].

f = ⊕
I∈P (l)

aI

(∏
i∈I

xi

)
= ⊕

I∈P (n)
aIx

I (2.17)

where, P (n) denotes the power set of N = {1, ..., n} and f belongs to the ring F2[x0, x1, . . . , xn−1]/ <

x2
0 + x0, x

2
2 + x2, . . . , x

2
n−1 + xn−1 >.

The algebraic degree of the Boolean function f with the algebraic normal form representation

given in Equation 2.17 is defined as {max|T ||aT ̸= 0}, where |T | represents the cardinality of

the set T .

Definition: 32 Walsh Hadamard Transformation(WHT) Walsh Hadamard Transfor-

mation is a map from Vn → Z, which is defined as follows

Wf (u) =
∑
x∈Fn

2

f(x)(−1)<u.x>

For the sign function, it can be written as

Wf̂ (u) =
∑
x∈Fn

2

(−1)f(x)⊕<u.x>

Numbers Wf̂ (u) are called Walsh Hadamard coefficients of a Boolean function f .

It explains the difference between the number of places f(x) == lu(x) and the number of

places f(x) ̸= lu(x) where lu(x) =< u.x > is a linear function where x ∈ F⊭
n. We define bias(ϵ)

as Pr(f(x) == lu(x)) − 1
2
=
|Wf (u)|
2n+1 . It is used to estimate f(x) from the linear function lu(x),

which is very important in Correlation attacks.
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Definition: 33 Balancedness: A boolean function is said to be balanced if HW (Tf ) = 2n−1.

It implies Wf (x) = 0 ∀x ∈ Vn.

Affine Function An affine function Lα,cis defined as

Lα,c : Vn → F2

where Lα,c(x) = α.x + c =
n∑

i=1

(αi ∗ xi) + c and α, x ∈ Vn and c ∈ F2. if c = 0 then

Lα,0(x) = α ∗ x is a linear function. We consider An as a set of n variable affine functions.

Definition: 34 Nonlinearity [51] The nonlinearity of a n-variable boolean function f is the

minimum hamming distance from An.

nl(f) = min
∀l∈An

HD(f, l)

Nonlinearity can be expressed with Walsh spectra of f as

nl(f) = 2n−1 − 1

2
max
u∈Vn

∣∣∣Wf̂ (u)
∣∣∣

The largest Walsh coefficient of a boolean function is the key value to determine the nonlinearity.

This helps to find the nearest affine function of a Nonlinear boolean function.

Example: 3 [51] let f(x1, x2, x3) = 1 + x1 + x2 + x2x3 + x1x2x3 is a boolean function on Vn.

So it’s truth table is [1, 1, 0, 1, 0, 0, 1, 1] and walsh coefficients are [−2, 2, 2,−2,−2, 2,−6,−2].
So maximum value of walsh coefficients is 6 ,

∣∣∣Wf̂ (α6)
∣∣∣ = 6. The nearest linear function of f

will be lα6,1 =< α6.x > +1 = 1 + x1 + x2. We can check easily that d(f, lα6,1) = 1

Definition: 35 Correlation Immunity[49]: A n variable boolean function f(x1, x2, · · · , xn)

is called correlation immune of order l, 1 ≤ l ≤ n, if for any fixed subset of k values the proba-

bility, given the output f(x1, x2, · · · , xn), is always 1
2k
. In other way, f is correlation immune

of order l for any l subset of i.i.d (xi1 , xi2 , · · · , xil) if the following is true

I((xi1 , xi2 , · · · , xil); f(x1, x2, · · · , xn)) = 0

,where I(x; y) is the mutual information.

In addition to that, f is called m-resilinet if f is balanced. An important property of m-

resilient boolean function to Walsh coefficient is as follows

Wf (x) = 0,∀x, 1 ≤ HW (x) ≤ l
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Definition: 36 Algebraic Immunity[52]: If f : Fn
2 → GF(2) is n−variable boolean func-

tion, the Algebraic Immunity of f , AI(f), is the lowest degree annihilator function of f, g such

that f ∗ g = 0 or (1 + f) ∗ g = 0. A boolean function with optimal algebraic immunity (⌈n
2
⌉) is

said to be one of the good cryptographic characteristics.

Definition: 37 Strict Avalanche Criterion[49]: A boolean funtion f(x) with n variable

satisfies the SAC(k) iff f(x)⊕ f(x+ a) is balanced for 1 ≤ HW (a) ≤ k.

SAC property explains that if we change one bit of the input, the output will change with

probability 1
2
. Moreover, An S-Box with a high SAC value resists the differential cryptanalysis

attack.

2.3.1 S-Boxes

An (n,m) S-Box(Substitution Box) f is a vectorial boolean function f : {0, 1}n → {0, 1}m

where each component boolean function (f1, f2, · · · , fn) is represented as fi : Fn
2 → GF(2) is a

nonlinear boolean function. In cryptography, S − box is used for substitution, obscuring the

relation between key and ciphertext(Confusion Property).

2.4 SNOW 2.0

The SNOW series of word-based stream ciphers was first introduced in [53]. This version of

SNOW is known as SNOW 1.0. This was vulnerable to a linear distinguishing attack and a

guess and determine attack [54]. SNOW 2.0 (Adopted by ISO/IEC standard IS 18033-4) was

introduced later in [16] as a modified version of SNOW 1.0. The block diagram of SNOW 2.0 is

shown in figure 2.5. The cipher works in two phases: the initialization stage and the keystream

generation phase.

22



Fig. 2.5: The block diagram of SNOW 2.0

In figure 2.5, + and ⊞ represent bit wise XOR (addition in the field GF (2)) and integer

addition modulo 232 respectively. As shown in figure 2.5, the keystream generator in SNOW

2.0 consists of an LFSR and an FSM (Feedback State Machine). The LFSR consists of 16 delay

blocks Di ∈ F 32
2 . It implements the following linear recurring relation:

Dt+1
15 = α−1Dt

11 +Dt
2 + αDt

0.

where α is the root of the following primitive polynomial

GS(x) = (x4 + β23x3 + β245x2 + β48x+ β239) ∈ F28 [X]

where β is the root of the following primitive polynomial.

HS(x) = x8 + x7 + x5 + x3 + 1 ∈ F2[X]

The FSM contains two 32-bit registers, R1 and R2. These registers are connected using

an S-Box made using four AES S-boxes. This S-box serves as the source of nonlinearity. The

output of the FSM at time t, Ft satisfies the following equation

Ft = (Dt
5 ⊞Rt

1)⊕Rt
2, t ≥ 0 (2.18)

For a 256- bit key and a 128-bit initialization vector (IV), SNOW 2.0 is initialized as follows:
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(D0, D1, D2, D3, D4, D5, D6, D7) = (k1 ⊕ IV1, k2, k3, k4 ⊕ IV2, k5, k6, k7, k8)

(D8, D9, D10, D11, D12, D13, D14, D15) = (k1 ⊕ 1, k2 ⊕ 1, k3 ⊕ 1, k4 ⊕ 1, k5 ⊕ 1, k6 ⊕ 1, k7 ⊕ 1, k8 ⊕ 1)

where, 1 represents the value 232−1, Key(K)={k1, · · · , k8},ki ∈ F 32
2 and Initialization Vector(IV )

= {IV1, IV2, IV3, IV4} where, ivi ∈ F 32
2 . For a 128-bit key and a 128-bit initialization vector

(IV), SNOW 2.0 is initialized as follows:

(D0, D1, D2, D3, D4, D5, D6, D7) = (k1 ⊕ 1, k2 ⊕ 1, k3 ⊕ 1, k4 ⊕ 1, k1, k2, k3, k4)

(D8, D9, D10, D11, D12, D13, D14) = (k1 ⊕ 1, k2 ⊕ 1⊕ IV4, k3 ⊕ 1⊕ IV3, k4 ⊕ 1, k1 ⊕ IV1, k2, k3)

D15 = k4 ⊕ IV1

runs for 32 clock cycles. In each clock cycle, the state of SNOW 2.0 is updated as follows

Dt+1
15 = α−1Dt

11 +Dt
2 + αDt

0 + Ft (2.19)

Further, the keystream at time t, zt follows the equation zt = (Dt
15 ⊞Rt

1)⊕Rt
2. In SNOW 2.0,

the registers R1 and R2 updated as follows

Rt+1
1 = Dt

5 ⊞Rt
2

Rt+1
2 = S(Rt

1)
(2.20)

where S is a S-Box over F 32
2 , composed of four parallel AES S-boxes[3](S1) followed by the AES

MixColumn transform matrix (denoted by N1 ∈ F4×4
28 ). In order to define N1 over F28 for field

multiplication, the polynomial y8 + y4 + y3 + y + 1 ∈ F2[y] is used. The working procedure of

S is as follows:
bt+1
0

bt+1
1

bt+1
2

bt+1
3

 = N1 ×


S(bt0)

S(bt1)

S(bt2)

S(bt3)

 =


Y Y + 1 1 1

1 Y Y + 1 1

1 1 Y Y + 1

Y + 1 Y 1 1



S(bt0)

S(bt1)

S(bt2)

S(bt3)

 (2.21)

where, b = (bt0, b
t
1, b

t
2, b

t
3), bi ∈ F 8

2 , be the input to S at time t and the output at (t + 1) is

(bt+1
0 , bt+1

1 , bt+1
2 , bt+1

3 ) ∈ F32
2 .
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2.5 SNOW 3G

SNOW 3G keeps all the functionality of SNOW 2.0 while adding a third register R3 and a

transformation SBox2 to the FSM.

Fig. 2.6: Building Block of SNOW 3G Cipher

Let the outputs of the registers in the FSM of SNOW3G at time instant t be denoted by

Rt
1, R

t
2 and Rt

3 respectively. Let the output of the FSM at time instant t be denoted by Ft. The

following equations govern the FSM:

Ft = (Dt
15 ⊞R1

t)⊕R2
t, t ≥ 0

Rt+1
1 = (Dt

5 ⊕Rt
3)⊞Rt

2

Rt+1
2 = SBox1(Rt

1)

Rt+1
3 = SBox2(Rt

2)

SBox1 in the above equation is the same as the S-Box of SNOW 2.0, while SBox2 is another

bijection over GF (232), based on the Dickson polynomial.

2.6 Known Plaintext Attacks(KPA) on Stream Ciphers:

A known-plaintext attack (KPA) is a cryptanalysis technique wherein, given access to the

plaintext and the corresponding ciphertext, the attacker tries to retrieve secret information like
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the secret key. In this section, we discuss some KPAs on Stream Cipher.

2.6.1 Algebraic Attacks:

An Algebraic attack [55, 56, 57] is a known plaintext attack on a stream cipher. In an algebraic

attack, the cryptosystems’ key is retrieved by solving a system of multivariate polynomial equa-

tions over a finite field. The degree of these polynomial equations is reduced by multiplying

them with low-degree ’annihilators’. This attack is used against various models like the nonlin-

ear combiner, the nonlinear filter generator and the nonlinear combiner with memory. Consider

a cryptosystem that uses an LFSR with a k-bit state vector. Such an LFSR is updated by a

linear update function L : Fk
2 → Fk

2. Let the initial state of the LFSR be S0 = {s0, s1, . . . , sk−1}.
At the t-th clock, the keystream output is given by zt = f(St), where f is a nonlinear function.

St = Lt(S0) denotes the state when the linear function L is operated t-times on the initial state

S0. The problem is to recover the initial state S0 = {s0, s1, . . . , sk−1}. In a known plaintext

attack, l keystream bits(say,zk1 , zk2 , . . . , zkl) are known to the adversary. These are used to

generate a system of equations of degree deg(f) as follows:

f(Lk1(S0)) = zk1

f(Lk2(S0)) = zk2
...

f(Lkl(S0)) = zkl

The complexity of solving the system of equations increases if the degree of the nonlinear

functions f is high. An algebraic attack involves generating low-degree equations using some

weakness in the internal structure of the nonlinear functions. The main idea[52] is to find

polynomials g such that the degree of either gf or g(1 + f) is significantly lower than f .

These polynomials are multiplied with the abovementioned equations to generate lower-degree

equations. These equations are then solved using techniques like Linearization, Extended Lin-

earization(XL), SAT Solver, Grobner Basis, etc.

The article [30] explains an Algebraic Attack on SNOW 2.0. This attack first attempts to

break a modified scheme where the ⊞ operator is approximated by ⊕. It solves 217 quadratic

equations using the Linearization technique. The time complexity of solving this equation is 251.

Further, the article[31] describes an algebraic attack that uses linearly independent nonlinear

equations generated from ⊞. The time complexity of this attack is 2294.
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2.6.2 Fast Correlation Attacks:

A correlation attack is a known-plaintext attack extensively used against LFSR-based stream

ciphers. Such attacks utilize the correlation between the output of the keystream and that of

the LFSR. Here, the effect of the non-linearity is modelled as a noise added to the output of the

LFSR. In other words, the keystream generation equation is considered as zt = st + et, where

zt and st are the value of the keystream and the output of the LFSR at the t-th time instant.

et is the binary noise that models the nonlinear function. The idea of launching a correlation

attack by exploiting the bias in et was introduced in [58]. Here, given a keystream of length

N , a guess of the initial state is used to generate the first N bits of the LFSR sequence. The

two sequences are then added (EXORed), and the bias of the resulting sequence is checked.

The guess is considered potentially correct if this bias is above a certain threshold. The time

complexity of this simple algorithm is N2n, where N is the size of the keystream and n is the

size of the LFSR. The article[59] proposes a fast correlation that avoids the exhaustive search

of the initial state. Here, parity check equations remove the noise et from zt and recover the

LFSR sequence st. Such schemes are limited by their requirement of a low number of LFSR

taps and a significantly high bias. To circumvent this problem, the one-pass algorithm [60] was

developed and successfully applied on various stream ciphers [34, 35]. Here, the n bit initial

state of the LFSR is divided into two parts, of m bits and n − m bits, where m-bits of the

LFSR are guessed through an exhaustive search and n −m bits are found using parity check

techniques.

An FCA can be seen as a problem of decoding an [N, n]-linear code [61]. If at is the t-

th column of the generator matrix, parity check equations are given by et =< S0, at > ⊕zt.
The code size is reduced by replacing pairs of columns of the generator matrix whose last

m entries are common by their sum(XOR). This procedure reduces the number of bits to be

estimated to n − m. This, however, increases the noise in decoding. In [62], this technique

is generalized using the generalised birthday problem[62]. Moreover, using the Fast Walsh

Hadamard transformation(FWHT) to verify the correct guess reduces the exhaustive search

complexity from N2n to N + 2n. This process is iteratively used to find the initial state S0.

The feedback polynomial of the LFSR plays a pivotal role in FCA. Several FCAs against

SNOW 2.0 and SNOW 3G are reported in the literature. The first FCA on SNOW 2.0[34] had

a time complexity of 2212.38. It uses the one-pass algorithm along with a generalised birthday

attack. The attack in [35] considers the LFSR in SNOW 2.0 as an LFSR over F28 , which

implements a linear recurring relation of degree 64. Here, Wagner’s k-tree approach, described

in [62], is used to create parity check equations. The time complexity of this attack is 2164.5,

around 2.49 times better than the one in [34]. However, this attack depends on the LFSR’s

feedback equation (expressed as an equation over F232). A better correlation 214.411 for the FSM

approximation equation in SNOW 2.0 is found using a linear mask search [63]. It recovers the
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key of SNOW 2.0 with a time complexity of 2163.91. To determine the state of the LFSR on

SNOW3G, [64] outlines a vectorized linear approximation attack with a bias value of 2−40 and

time complexity of 2177. Another attack model is put forth by [1]. It is based on a modified

Wagner K-tree technique and a linear approximation of a composition function. This attack

has a time complexity of 2216.86 for SNOW 2.0 and 2222.33 for SNOW 3G. This technique uses

the linear recurring relation of degree 512 that the output of the LFSR satisfies.

2.6.3 Distinguishing Attack

In a distinguishing attack, the keystream generated by a pseudo-random number generator

(PRNG) is distinguished from a random sequence of the same length. This is done by finding

a relation satisfied by the keystream bits with a higher probability than those of a random

sequence. A higher bias reduces the time and memory complexity of such attacks. One way

of finding such a relation is by using linear masks. This method is commonly used in attacks

on SNOW 2.0 [32, 33, 34]. It adapts the linear cryptoanalysis method given in [65] to stream

ciphers.

2.6.4 Guess and Determining Attack

In a Guess and Determine Attack, the attacker aims to estimate the values of a minimum

number of variables using which the complete sequence can be constructed. For SNOW 2.0,

this includes the values of the outputs of the delay blocks of the LFSR and the outputs of the

registers of the FSM at some time instant. This is done by guessing some of the values and

determining the rest of them using system equations. If the sequence generated using these

estimates matches the output of the key-stream generator, then the guesses are deemed correct.

Otherwise, a fresh set of guesses are considered. The set of variables whose values are guessed

is the basis for the attack. For both SNOW 2.0 and KDFC-SNOW, these variables take their

values from F32
2 . Hence, if the basis size is k, then the probability of a correct guess is 2−32k.

Thus, on average, one needs O(2−32k) attempts to make a correct guess. Therefore, the problem

is finding a basis for the minimum possible size. A systematic Vitterbi-like algorithm is given

in [66]. The complexity of this attack was found to be 2265([66]) for SNOW2.0. The complexity

of this attack was reduced to 2192 in ([67]) by incorporating a couple of auxiliary equations.

2.6.5 Cache Timing Attack

It is a kind of side-channel analysis attack where the adversary accesses the cache memory

before or after the generation of each keystream bit. In schemes like SNOW 2.0 (and other

schemes in the SNOW series), multiplication in the finite field is performed using look-up tables

corresponding to the non-zero constants in the feedback equation. Further, another look-up
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table is used for the implementation of the S-BOX. These implementations are cache-friendly.

However, the adversary can extract secret information about the LFSR by monitoring the cache

access. According to the attack model of [36, 68], the adversary uses two synchronous oracles:

1 KEYSTREAM(J) It returns the J−th keystream block.

2 SCA-KEYSTREAM(J) It returns the unordered list of cache accesses done while creating

the J−th keystream.

In SNOW 2.0 and SNOW 3G there are multiplications over F232 that are done in every clock

cycle viz. multiplication by α and α−1. These multiplications are implemented as follows

α ∗ x = (x << 8)⊕ T1[x3] (2.22)

α−1 ∗ x = (x >> 8)⊕ T2[x0] (2.23)

where x = (x3||x2||x1||x0) ∈ F232 , xi ∈ F28 and T1, T2 are two 8 × 32 tables. Thus, from the

list of cache accesses, the adversary can extract 8-bits of information, viz. the first four bits of

St and the last four bits of St+11. The adversary then gathers all linear equations formed from

these bits for (512/8=64) clock cycles. The state of the LFSR can then be found by solving

these linear equations.

2.7 Summary

This chapter studies mathematical concepts and algorithms to understand known-plaintext

attacks on the cyphers SNOW 2.0 and SNOW 3G. We list out all the attacks in the following

table. We aim to hide the cypher’s feedback polynomial to withstand known plaintext attacks.

In the following chapters, we give methods to hide the feedback polynomial.
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Attack Name Versions Time Complexity

Algebraic Attack
Billet et. al.,2005[30] 251

Courtois et al., 2008[31] 2294

Distinguishing Attack
Watanabe et. al.,2003[32] Keystream Required: 2225

Maximov et. al.,2005[69] Keystream Required: 2205

Nyberg et. al.,2006[33] Keystream Required: 2174

Fast Correlation Attack

Lee et. al.,2008[34] 2204.38

Zhang et. al.,2015[35] 2164.15

Todo et. al.,2018[70] 2162.91

Yang et. al.,2019[64] 2177(SNOW 3G)

Gong et. al,.2020[1] 2162.86 ,2222.32(SNOW 3G)

Guess and Determine Attack
Ahmadi et. al,,2009[66] 2265

Nia et. al, 2014[67] 2192

Cache Timing Attack Leander et al.,2009[36] 232
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Chapter 3

Key Dependent Feedback

Configuration Scheme

This chapter proposes and evaluates a method for generating key-dependent feedback configu-

rations (KDFC) for σ-LFSRs. σ-LFSRs with such configurations can be applied to any stream

cipher that uses a word-based LFSR. A configuration generation algorithm uses the secret

key(K) and the Initialization Vector (IV) to generate a new feedback configuration after the

initialization round. It replaces the older known feedback configuration. The keystream is gen-

erated from this new feedback configuration and the FSM. We have mathematically analysed

the feedback configurations generated by this method. As a test case, we have applied this

method to SNOW 2.0 and have studied its impact on resistance to algebraic attacks. Besides

resisting algebraic attacks, SNOW 2.0 can also withstand other attacks like Distinguishing At-

tacks, Fast Correlation Attacks, Guess and Determining Attacks and Cache Timing Attacks.

Further, we have also tested the generated keystream for randomness and briefly described its

implementation and the challenges involved.

The rest of this chapter is organized as follows. Section 3.1 examines σ-KDFC and its time

complexity. Section 3.2 analyses the algebraic degree of the elements of the feedback function

generated by σ-KDFC. Section 3.3 discusses the interconnection of σ-KDFC with the FSM

of SNOW and its security against various cryptographic attacks. Section 3.4 concludes the

chapter.

3.1 σ-KDFC

As mentioned in Chapter 2, in the case of σ-LFSRs, many possible feedback configurations

have the same characteristic polynomial. For a given primitive polynomial, the number of such
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configurations is given by

NP =
|GL(m,F2)|

2m − 1
× ϕ(2mb − 1)

mb
× 2m(m−1)(b−1). (3.1)

where 3.1, GL(m,F2) is the general linear group of non-singular matrices ∈ Fm×m
2 , and ϕ

represents Euler’s totient function. This has been constructively proved in [48]. This proof

gives an algorithm for calculating such feedback functions for a primitive polynomial. Before

proceeding to the construction of a key-dependent feedback configuration, we briefly describe

this generation algorithm.

Algorithm 1 Invertible Matrix Generation Algorithm
Input:

1. A full rank matrix stored in M ∈ Fm×m
2 .

2. A set of (n −m) primitive polynomials of degrees {m,m + 1, · · · , n} stored in an array
L. The corresponding companion matrices are PL(i) for m ≤ i ≤ n. These polynomials
can be arbitrarily selected from the lists of primitive polynomials, which are available in
the literature.

3. A set of random binary vectors Ri ∈ F1×n
2 , i ∈ {0, · · · , n −m},( These are the (n −m)

random vectors generated in the first step of the initialization process).

1: procedure Find inv(M,L,R)
2: Y ←M
3: d← Dimension(M)
4: t← 0
5: while t ≤ (n−m) do
6: c← Y [(t (mod m)); ]
7: V al← Lin solver(c, PL[t])
8: Y ← Y × V al
9: Y [:, d+ t− 1]← Rt

10: Y [c, d+ t− 2]← 0
11: Y [c, d+ t− 1]← 1
12: t← t+ 1
13: end while
14: end procedure

Note that at every step, the size of c vector increases. Therefore the time taken for each

iteration of Algorithm 1 increases with each iteration. To circumvent this problem, a few of these

iterations could be run offline in a server and the resulting Y matrix could be made public. Let

this matrix be denoted by Yinit. The remaining iterations can be done during the initialization

phase of the keystream generator. When this is done, the variable Y in Algorithm 1 will be

initialized as Yinit, and the variable t will be initialized as k (mod m), where k(m < k < n) is
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the number of iteration done offline. Further, the number of random vectors generated in the

first step will now be n−m− k. The array L will contain primitive polynomials with degrees

(m+ k, · · · , n). The for loop will run n−m− k times.

In Algorithm 1, the V al← Lin solver(c, PL[t]) is calculated using the Algorithm 2 as follows.

Algorithm 2 Find the power of A, c, such that c× V al = e1|c|
Input:

1. c ∈ F1×n
2 .

2. Companion matrix A ∈ Fn×n
2 of a primitive polynomial of degree n over GF (2).

1: procedure Linear Solver(c,A)

2: M ←


c

c× A
c× A2

...
c× An−1


n×n

3: Solve the equation y ×M = en1 .
4: l← y[0]× I + y[1]×M · · · y[n− 1]×Mn−1.
5: Return l.
6: end procedure

Algorithm 2 is used as a subroutine to find out the matrix l. Basically the l matrix is used

to convert c× l = en1 , where l = Ad, where d ∈ {1, · · · , 2n− 1}. As A is a companion matrix of

a primitive polynomial, it is full rank. This results {c×Ai} for i ∈ {0, 1, · · · , n− 1} as a basis

vector for Fn
2 . This space is called Krylov subspace [71].
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Algorithm 3 Configuration Matrix Generation
Input:

1. Companion matrix of a primitive polynomial of degree n, Pz.

2. Y ∈ Fm×n
2 from Algorithm 1.

1: procedure Config gen(Pz, Y )
2: Pz ← PL[n−m−1]

3: Q←



Y [0 :, ]
Y [1 :, ]

...
Y [m− 1 :, ]
Y [0 :, ]× Pz

Y [1 :, ]× Pz
...

Y [m− 1 :, ]× Pz
...

Y [0 :, ]× P b−1
z

Y [1 :, ]× P b−1
z

...
Y [m− 1 :, ]× P b−1

z


4: C ← Q× Pz ×Q−1

5: Return C.
6: end procedure

Algorithm 3 is used to generate the m−companion matrix for a given primitive polynomial

Pz. Theorem 10 supports the construction of the matrix Q and the configuration matrix C.

Below is an example demonstrating the working of Algorithm -1 and Algorithm-3 for the

case m = 4, b = 2.

Example: 4 The characteristic polynomial of the LFSR is assumed to be x8+x4+x3+x2+1,

a primitive polynomial of degree 8. Here,

Ist Iteration: In this iteration the matrix M is the companion matrix of the primitive

polynomial x4 + x+ 1.
1 1 0 1

0 1 0 0

1 0 1 1

0 0 0 1


4×4

×M i

−−−→


0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

 7→


0 0 0 0 1

1 1 1 1 1

1 0 0 1 1

1 0 1 1 0


4×5
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2nd Iteration: In this iteration the matrix M is the companion matrix of the primitive

polynomial x5 + x2 + 1.
0 0 0 0 1

1 1 1 1 1

1 0 0 1 1

1 0 1 1 0


4×5

×M i

−−−→


0 0 0 1 1 1

0 0 0 0 0 1

1 0 1 0 0 1

1 1 0 1 0 0


4×6

3rd Iteration:In this iteration the matrix M is the companion matrix of the primitive poly-

nomial x6 + x+ 1.
0 0 0 1 1 1

0 0 0 0 0 1

1 0 1 0 0 1

1 1 0 1 0 0

 ×M i

−−−→


1 0 0 0 1 0 1

0 0 1 1 0 1 0

0 0 0 0 0 0 1

0 0 0 1 1 0 1



4th Iteration:In this iteration the matrix M is the companion matrix of the primitive poly-

nomial x7 + x+ 1.
1 0 0 0 1 0 1

0 0 1 1 0 1 0

0 0 0 0 0 0 1

0 0 0 1 1 0 1

 ×M i

−−−→


0 0 1 0 0 1 1 1

0 0 0 0 0 1 0 1

1 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1


(In the above iterations, A

×M i

−−−→ means multiplying all the rows of the matrix A with the

matrix M i, and the colour red indicates that the number has been randomly sampled). At the

end of the above iterations, we get the following matrix Y .

Y =


0 0 1 0 0 1 1 1

0 0 0 0 0 1 0 1

1 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1


4×4

The corresponding matrix Q is as follows.

Q =



0 0 1 0 0 1 1 1

0 0 0 0 0 1 0 1

1 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 1

0 0 0 0 1 0 1 0

0 0 1 1 1 0 1 1

0 0 0 0 0 0 1 0


8×8
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The following matrix P is the companion matrix of the primitive polynomial x8 + x4 + x3 +

x2 + 1.

P =



0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


8×8

This results in the following matrix C

C = Q ∗ P ∗Q−1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 1

0 0 0 1

0 1 0 1

0 0 0 1

0 1 1 1

1 0 1 1

0 0 0 0


8×8

C =

(
0 I

B0 B1

)

In the above example, B0 and B1 are the two gain matrices computed using Algorithm 1,3.

Note that in every iteration of Step 3 in Algorithm 1, m− 1 random numbers are appended

to the rows of the matrix Y . Some of these numbers are derived from the secret key in the

proposed scheme. Consequently, the derived feedback configuration depends on the secret key.

We now proceed to look at this configuration in detail.

To create a keystream generator from the proposed σ-LFSR configuration, it can be con-

nected to a Finite state machine, which introduces non-linearity. Figure 3.1 shows the schematic

of the proposed scheme and its interconnection with an FSM. The scheme has an initialization

phase wherein the feedback configuration of the σ-LFSR is calculated by running Algorithm 1.

To reduce the time taken for initialization, Algorithm 1 is precomputed till k iterations of step

3 and the resulting matrix Y is made public. The number k can be chosen depending on the

computational capacity of the machine that hosts the σ-LFSR. The feedback configuration is

calculated by running the remaining part of the algorithm in the initialization phase. In this
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Fig. 3.1: The Schematic of σ-KDFC

phase, there is no keystream generated at the output. The following subsection explains the

initialization phase in detail.

3.1.1 The Initialization Phase

During the initialization phase, the σ-LFSR has a publicly known feedback configuration. Fur-

ther, the pre-calculated matrix Y ∈ Fm×(m+k)
2 , and the primitive polynomials pm+k+1(x), pm+k+2(x),

. . . , pmb(x) are also publicly known. The initial state of the σ-LFSR is derived from the secret

key and the IV. (as is normally done in word-based stream ciphers like SNOW). The σ-LFSR

is run along with the FSM for mb−m− k clock cycles. This generates mb−m− k vectors in

Fm
2 . This corresponds to the mb−m− k remaining iterations in Algorithm-1.

The remaining part of Algorithm 1 is now run. In each iteration, the binary numbers

appended to the rows of the matrix Y are the entries of the corresponding vector. More

precisely, in the i-th iteration of Step 3, for t ̸= i + k mod m, the t-th row of Y is appended

with the t-th entry of the i-th vector that was generated.

The feedback gains of the σ-LFSR are now set according to the configuration matrix gen-

erated by Algorithm 3.

Once the feedback gains are set, the σ-LFSR is run along with the FSM. The first b vectors

are discarded, and the keystream starts from the b + 1-th vector. The reason for doing this is

that the initial state of the σ-LFSR with the new configuration is generated by the publicly

known feedback configuration used in the initialization process.

The algorithm for generating the configuration matrix can be applied for all values of m

and b. Therefore, the above-described KDFC scheme can be used with any existing word-based

stream cipher, irrespective of the size and number of delay blocks.
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Time Complexity of the Initialization Phase

Algorithm-?? involves solving a system of linear equations in less than mb variables. This can

be done with time complexity of O((mb)3) using Gaussian elimination. The time complexity of

Algorithm-1 has mb−m− k iterations. Therefore, if k is chosen such that mb−m− k is O(1),
then the overall time complexity is O((mb)3). In Algorithm-3, the matrix C can be calculated

by solving the linear system of equations CQ = QPmb for C. Matrix Inversion in Algorithm-??

has a time complexity of O((mb)3). Thus, the time complexity of the initialization phase is

O((mb)4).

3.2 Algebraic Analysis of σ-KDFC

The entries of the feedback matrices, B0, B1, . . . , Bb−1, calculated by the procedure given in the

previous section, are functions of the matrix Y generated in Step 3 of Algorithm 1. The entries

of Y are, in turn, non-linear functions of the initial state of the σ-LFSR.

Note that the last row of Y is always en1 . Let the first m− 1 rows of Y be v1, v2, . . . , vm−1.

Let U be the set of variables denoting these rows’ entries. Therefore,

Bk(i, j) = fk(i,j)(U) for 0 ≤ k ≤ b− 1 and 1 ≤ i, j ≤ m (3.2)

where fk(i,j)s are polynomial functions.

The algebraic degree of the configuration matrix, denoted by Θ, is defined as follows

Θ (CS) = max
k,i,j

(
|fk(i,j)(U)|

)
(3.3)

Θ can be considered a measure of the algebraic resistance of σ-KDFC. We now proceed to

find a lower bound for Θ.
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The matrix Q generated in Step 4 of Algorithm 1 is given as follows

Q =



v1

v2
...

vm−1

en1

v1Pmb

...

vm−1Pmb

en1Pmb

...

v1P
b−1
mb
...

vm−1P
b−1
mb

e1P
b−1
mb



(3.4)

where Pmb is the companion matrix of the publicly known primitive characteristic polynomial of

the σ-LFSR. The configuration matrix C is generated by the formula C = Q×Pmb×Q−1. Since
Q is an invertible boolean matrix, the determinant of Q is always 1. Therefore, Q−1 = Q(a)

where Q(a) is the adjugate of Q. Moreover, since the elements of Q belong to F2, the co-factors

are equal to the minors of Q. The rows of Q can be permuted to get the following matrix QP

QP =



en1

en1Pmb

...

e1P
b−1
mb

v1

v1Pmb

...

v1P
b−1
mb
...

vm−1

vm−1Pmb

...

vm−1P
b−1
mb



(3.5)
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The matrix QP can be decomposed as follows into four sub-matrices Q1, Q2, Q3 and Q4:

QP =

[
Q1 Q2

Q3 Q4

]
(3.6)

where Q1 ∈ Fb×(mb−b)
2 is the all zero matrix and the matrices Q2 ∈ Fb×b

2 , Q3 ∈ Fmb−b×mb−b
2 and

Q4 ∈ Fmb−b×b
2 are as follows

Q2 =


0 · · · 0 1

0 · · · 1 ∗
...

...

1 · · · ∗ ∗

 (3.7)

Q3 =



v1,1 v1,2 · · · v1,mb−b

v1,2 v1,3 · · · v1,mb−b+1

...
... · · ·

v1,b v1,b+1 · · · v1,mb

v2,1 v2,2 · · · v2,mb−b

v2,2 v2,3 · · · v2,mb−b+1

...
... · · · ...

v2,b v2,b+1 · · · v2,mb

...
... · · · ...

vm−1,1 vm−1,2 · · · vm−1,mb−b

vm−1,2 vm−1,3 · · · vm−1,mb−b+1

...
... · · · ...

vm−1,b vm−1,b+1 · · · vm−1,mb



(3.8)

40



Q4 =



v1,mb−b+1 · · · v1,mb−1 v1,mb

v1,mb−b+2 · · · v1,mb ∗
...

... · · · ...
v1,mb+1 · · · ∗ ∗
v2,mb−b+1 · · · v2,mb−1 v2,mb

v2,mb−b+2 · · · v2,mb ∗
...

... · · · ...

v2,mb+1 · · · ∗ ∗
...

... · · · ...

vm−1,mb−b+1 · · · vm−1,mb−1 vm−1,mb

vm−1,mb−b+2 · · · vm−1,mb ∗
...

... · · · ...

v1,mb+1 · · · ∗ ∗



(3.9)

Where ∗s are linear combinations of the entries of the previous row. Note that Q−1 can be

got by permuting the rows of Q−1P . Since QP is invertible, det(QP ) = det(Q3) = 1.

Let Γk be the set of polynomial functions of U variables with degree k. We now proceed to

analyse some of the minors of QP .

Lemma: 15 For 1 ≤ j ≤ (mb− b), µ(QP [b, j])) ∈ Γmb−b

Proof: For two matrices A and B with the same number of rows, let [AB]p,q be the matrix

which is got by removing the pth column from A and appending the qth column of B to A. For

i = b and 1 ≤ j ≤ (mb− b), µ(QP [i, j])) is given by:

µ(QP [i, j]) = det([Q3Q4]j,1) (3.10)

Recall that, for a binary matrix M ∈ Fmb×mb
2 , its determinant is given by the following formula,

det(M) =
∑

f∈Smb

∏
1≤i≤n

M(i, f(i)) (3.11)

where Smb is the set of permutations on (1, 2, . . . ,mb). Observe that the diagonal elements

of ([Q3Q4])j,1 are distinct vi,ks. Their product corresponds to the identity permutation in the

determinant expansion formula for [Q3Q4])j,1. The resultant monomial has degree mb − b.

Further, this monomial will not occur due to any other permutation. Hence det([Q3Q4]j,1) is

always a polynomial of degree mb− b. □
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Lemma: 16 If 1 ≤ i ≤ b then

µ(QP [i, j]) =

det(Q3) i+ j = mb+ 1

0 i+ j >= mb+ 1
(3.12)

Proof: Observe that, for 1 ≤ i ≤ b and i + j = mb + 1, the QP [i, j]s are the anti-diagonal

elements of Q2. The minors of these elements are all equal to the determinant of Q3. As we

have already seen, the invertibility of QP implies that this determinant is always 1. Therefore,

µ(QP [i, j]) = 1 when i+ j = mb+ 1

Note that, for 1 ≤ i ≤ b and i + j > mb + 1, the QP [i, j]s elements of Q2 that are below

the anti-diagonal. If the row and column corresponding to such an element are removed from

QP , then the first b − 1 rows of the resulting matrix are always rank deficient. Therefore, the

determinant of this matrix is always 0. Therefore, µ(QP [i, j]) = 0. □

Lemma: 17 If b+ 1 ≤ i ≤ mb and 1 ≤ j ≤ n− b, then µ(QP [i, j]) ∈ Γmb−b−1.

Proof: Observe that the elements of QP considered in this lemma are elements of the sub-

matrix Q3. Therefore, µ(QP [i, j]), for the range of i and j considered, is nothing but the

determinant of the sub-matrix of Q3 got by deleting the ith row and jth column of Q3. The

diagonal elements of such a sub-matrix are distinct vi,js. Their product will result in a monomial

of degree mb−b−1. This corresponds to the identity permutation in the determinant expansion

formula given by Equation 3.10. Observe that no other permutation generates this monomial.

Hence, the minor will always have a monomial of degree mb − b − 1. Therefore, µ(QP [i, j] ∈
Γmb−b−1. □

Lemma: 18 If b+ 1 ≤ i ≤ n and mb− b+ 1 ≤ j ≤ mb, then µ(QP [i, j]) = 0.

Proof: The elements of QP considered in this lemma are elements of the submatrix Q4. When-

ever the row and column corresponding to such an element are removed from QP , the rows of

the submatrix Q2 become linearly dependent. Therefore, the first b rows of the resultant matrix

are always rank deficient. Consequently, µ(QP [i, j]) = 0.

□

For a given matrix A with polynomial entries, let Θ(A) be the maximum degree among all

the entries of A. As there are mb − b rows in QP with variable entries, Θ(Q−1P ) ≤ mb − b.

Therefore, we get the following as a consequence of Lemma 15.

Θ(Q−1) = Θ(Q−1P ) = mb− b (3.13)

Recall that the configuration matrix C is given by QPmbQ
−1. We now use the above-

developed machinery to calculate Θ(C).
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Theorem: 19 Θ(C) ≥ mb− b .

Proof: Observe that the gain matrices B0, B1 · · · , Bb−1 appear in the last m rows of CS . These

rows are generated by multiplying the last m rows QPmb with Q−1. The last m rows of QPmb

are as follows 

0 0 · · · 1 ∗ · · · ∗ ∗
v1,b+1 v1,b+2 · · · v1,mb ∗ · · · ∗ ∗
v2,b+1 v2,b+2 · · · v2,mb ∗ · · · ∗ ∗

...
... · · · ...

... · · · ...
...

vm−1,b+1 vm−1,b+2 · · · vm−1,mb ∗ · · · ∗ ∗


(3.14)

The element C[mb−m+ 1,mb−m+ 1] is got by multiplying the (mb−m+ 1)-th row of

QPmb with the (mb−m+1)-th column of Q−1. Note that the (mb−m+1)-th column of Q−1

is equal to the b-th column of Q−1P . This column has the following form due to Lemma’s 15

and 16.

Q−1[:,mb−m+ 1] = (P1, P2, · · · , Pmb−b, 1, 0, · · · , 0)T (3.15)

where P1, P2, · · · , Pmb−b ∈ Γ(mb− b). Therefore,

C[mb− b+ 1,mb− b+ 1] = ( 0, 0, · · · , 1︸ ︷︷ ︸
(mb−b) entries

, ∗, · · · , ∗, ∗)

× (P1, P2, . . . , Pmb−b, 1, 0, · · · , 0)T

= Pmb−b

Hence, it is proved that Θ(C) ≥ mb− b. □

Example: 5 Consider a primitive σ−LFSR with 4, 2-input 2-output delay blocks i.e. m = 2

and b = 4. Therefore n = mb = 8. The primitive polynomial for the companion matrix Pz is

f(x) = x8 + x4 + x3 + x2 + 1. The corresponding matrix QP has the following submatrices.

Q1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (3.16)

Q2 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (3.17)
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Q3 =


x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

x4 x5 x6 x7

 (3.18)

Q4 =


x5 x6 x7 x8

x6 x7 x8 x1 + x3 + x4 + x5

x7 x8 x1 + x3 + x4 + x5 x2 + x4 + x5 + x6

x8 x1 + x3 + x4 + x5 x2 + x4 + x5 + x6 x3 + x5 + x6 + x7

 (3.19)

Therefore,

Q−1P [:, 4] = [Q−1[:, 7] = (P1, P2, P3, P4, 1, 0, 0, 0)

where

P1 : x2x4x6x8 + x2x4x7 + x2x5x8 + x2x6 + x3x6x8 + x3x7 + x4x5x6 + x4x6 + x4x8 + x5.

P2 : x1x4x6x8+x1x4x7+x1x5x8+x1x6+x2x3x6x8+x2x3x7+x2x4x5x8+x2x4x6x7+x2x5x6+

x2x5x7 + x3x4x8 + x3x5x6 + x3x5x8 + x3x6x7 + x4x5 + x4x7

P3 : x1x3x6x8 + x1x3x7 + x1x4x5x8 + x1x4x6x7 + x1x5x6 + x1x5x7 + x2x3x5x8 + x2x3x6x7 +

x2x4x5x7+x2x4x6+x2x4x8+x2x5x6+x2x6x8+x2x7+x3x4x7+x3x4x8+x3x5x7+x3x5+

x4x5 + x4x6

P4 : x1x3x5x8+x1x3x6x7+x1x4x5x7+x1x4x6+x1x4x8+x1x5x6+x2x3x5x7+x2x3x6+x2x4x7+

x2x5x8 + x2x5 + x2x6x7 + x3x4x6 + x3x4x7 + x3x8 + x4x5

Here, CS [7, 7], is equal to P4 which is a polynomial of degree 4.

3.3 Integration with SNOW 2.0

In this subsection, we refer to SNOW 2.0, which is already discussed in the second chapter and

then discuss as a case study to show how σ-KDFC can be applied to an LFSR-based cipher

stream. We refer to the resulting cipher as KDFC-SNOW.

3.3.1 KDFC-SNOW:

In the proposed modification, we replace the LFSR part of SNOW 2.0 by a σ-LFSR having 16,

32-input 32-output delay blocks. The configuration matrix of the σ-LFSR is generated using

Algorithm 1. We shall refer to the modified scheme, shown in Figure 3.2, as KDFC-SNOW.
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Fig. 3.2: The block diagram KDFC-SNOW

During initialization, the feedback function of the σ-LFSR is identical to that of SNOW-2.

As in SNOW 2.0, the σ-LFSR is initialized using a 128-bit IV and a 128/256-bit secret key K.

KDFC-SNOW is run with this configuration for 32 clock cycles without producing any symbols

at the output. The vectors generated in the last 12 of these clock cycles are used in Algorithm-1

to generate a new feedback configuration. As we have already mentioned, some of the iterations

of Algorithm 1 are pre-calculated, and the remaining ones are done as a part of the initialization

process. In this case, it is assumed that 468 of these iterations are pre-calculated, and the last

12 iterations are carried out in the initialization process. This calculated configuration replaces

the original one, and the resulting setup generates the keystream.

3.3.2 Initialization of KDFC-SNOW

� The delay blocks D0, · · · , D15 are initialized using the 128/256 bit secret key K and a

128 bit IV in exactly the same manner as SNOW 2.0. The registers R1 and R2 are set

to zero.

� The initial feedback configuration of the σ-LFSR is identical to SNOW 2.0. This is done

by setting B11 and B0 as matrices that represent multiplication by α−1 and α respectively.

Further, B2 is set to identity. The other gain matrices are set to zero.

� KDFC-SNOW is run in this configuration for 32 clock cycles without making the output

externally available. The last 12 values of F t are used as the random numbers in Algorithm

1.

� A new configuration matrix is calculated using Algorithms-1, and the corresponding feed-

back configuration replaces the original one. The scheme is now run with this configura-
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tion. The first 32 vectors are discarded, and the key stream starts from the 33rd vector.

3.3.3 Governing Equations of KDFC-SNOW

Let Dt
i ∈ F232 denote the value stored in the ith delay block at the t-th time instant after the

key stream generation has started. The outputs of the delay blocks of the σ-LFSR satisfy the

following equation:

Dt+1
15 = B0D

t
0 +B1D

t
1 + · · ·+B15D

t
15 (3.20)

Therefore,

Dt+1
k =

D0
k+t+1 0 ≤ k + t+ 1 ≤ 15∑15
i=0BiD

t+k
i k + t+ 1 > 15

(3.21)

Let Ft be the output of the FSM at time t. The following equation gives the value of the

keystream at the t-th time instant

Ft = zt +Dt
0 = (Dt

15 ⊞Rt
1) +Rt

2 (3.22)

The registers are updated as follows:

Rt+1
1 = Dt

5 ⊞Rt
2 (3.23)

Rt+1
2 = S(Rt

1) (3.24)

zt = Rt
1 ⊞Dt

15 +Rt
2 +Dt

0 = (Rt−1
2 ⊞Dt

4)⊞Dt
15 +Rt

2 +Dt
0 (3.25)

where Rt
1 and Rt

2 represent the values of registers R1 and R2 at time instant t. The operation

”⊞” is defined as follows:

x⊞ y = (x+ y) mod 232 (3.26)

The challenge for an adversary in this scheme is to find the gain matrices {B0, B1, · · · , B15} in
addition to the initial state {D0

0, · · · , D0
15}.

Note that Equations 3.22 to 3.25 are got from the FSM. Since the FSM part of the keystream

generator is identical for SNOW 2.0 and KDFC-SNOW, these equations are identical for both

schemes.

3.3.4 Security enhancement due to KDFC-SNOW

In this section, we briefly describe the resistance of KDFC-SNOW against various kinds of

attacks like algebraic attacks, distinguishing attacks, fast correlation attacks, guess and deter-

mining Attacks, and cache timing attacks.
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Algebraic Attack:

We first briefly describe the Algebraic attack on SNOW 2 described in [30] and demonstrate

why this attack becomes difficult with KDFC-SNOW. This attack first attempts to break a

modified scheme version where the ⊞ operator is approximated by ⊕. The state of LFSR and

the value of the registers at the end of the 32 initialization cycles are considered unknown

variables. This accounts for a total of 512+ 32 = 544 unknown variables. The algebraic degree

of each S-box(S) equation (156 linearly independent quadratic equations in each clock cycle )

is 2. Rearranging the terms in Equation 3.25, we get the following

Rt
2 = (Rt−1

2 ⊞Dt
4)⊞Dt

15 +Dt
0 + zt. (3.27)

Note that R0
1 = R0

2 + z0 + D0
0 + D0

15.Therefore, by approximating ⊞ as ⊕, Equation 3.27

expands to the following:

Rt
2 = R0

2 +
t∑

i=0

zi +
t∑

i=0

(Di
4 +Di

15 +Di
0) (3.28)

Further, Equation 3.24 can be expanded as follows:

Rt+1
2 = S(Rt

1) = S(Rt
2 + zt +Dt

15 +Dt
0) (3.29)

In Equation 3.29, the outputs of the delay blocks can be related to the initial state of the LFSR

using the following equation.

Dt+1
k =

D0
k+t+1 0 ≤ k + t+ 1 ≤ 15

α−1Dk+t
11 +Dk+t

2 + αDk+t
0 k + t+ 1 > 15

(3.30)

Because of the nature of the S-Box, Equation 3.29 gives rise to 156 quadratic equations per

time instant ([30]). When these equations are linearized, the number of variables increases

to
∑2

i=0

(
544
i

)
≈ 217. Therefore, with 217/156 ≈ 951 samples, we get a system of equations,

which can be solved in (251) time, to obtain the initial state of the LFSR and the registers.

This attack is then modified to consider the ⊞ operator. This attack has a time complexity of

approximately (2294).

The feedback equation is no longer known when a sigma-LFSR replaces the LFSR in

SNOW 2.0. If the entries of the feedback gain matrices are considered as unknowns, then there

are a total of 16 ∗m2 +mb+m = 16928 unknown variables (This includes the 16 ∗m2 entries

of the feedback matrices and mb +m entries corresponding to the state of the LFSR and the

register R2 at the beginning of the keystream). The output of the delay blocks at any given

instant are functions of these variables. Here, Equation 3.30 is replaced by Equation 4.3. Now,
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if the outputs of the delay blocks in Equation 3.29 are linked to the initial state of the LFSR

(i.e. the state when the key stream begins) using Equation 4.3 instead of Equation 3.30, then

the resulting equations contain the feedback matrices and their products. For example, in the

expressions for R2
2 and R3

2, D
1
15 and D2

15 are given as follows

D1
15 = B0D

0
0 +B1D

0
1 + . . .+B15D

0
15

D2
15 = B0D

1
0 +B1D

1
1 + . . .+B15D

1
15

= B0D
0
1 +B1D

0
2 + . . .

+ B15(B0D
0
0 +B1D

0
1 + . . .+B15D

0
15)

= B15B0D
0
0 + (B15B1 +B0)D

0
1 + . . .

+ (B15B15 +B14)D
0
15

While D1
15 is a polynomial of degree two in the unknown variables, D2

15 is a polynomial of degree

3. Similarly, with each successive iteration, the degree of the expression for Dt
15 keeps increasing

till all the m2b entries of the feedback matrices are multiplied by each other. A similar thing

happens with the expressions for Dt
0. This results in a set of polynomial equations having a

maximum degree equal to m2b + 1 = 16385. Therefore, although the equations generated by

Equation 3.29 are quadratic in terms of the initial state of the σ-LFSR, they are no longer

quadratic in the set of all unknowns. We instead have a system of equations in 16982 variables

with a maximum degree of over 16000. Linearizing such a system will give us a system of linear

equations in N =
∑M

i=0

(
16928

i

)
unknowns where M is higher than 16000. Such an attack is,

therefore, not feasible.

One could instead consider the rows of the matrix Y generated by Algorithm 1 as unknowns.

Assuming that the first row is en1 , the total number of unknowns will now be 31 ∗ 512 = 15872.

As we have already seen, the entries of the feedback matrices (Bis) are polynomials in these

variables. From Theorem 19, the maximum degree of these polynomials is at least mb − b.

Therefore, the maximum degree of the equations generated by Equation 3.29 will be at least

mb− b+1 = 497. Therefore, linearizing this system of equations gives rise to a system of linear

equations in N =
∑497

i=0

(
16416

i

)
≈ O(23207) unknowns. Therefore, an algebraic attack on this

scheme that uses linearization seems unfeasible.

Another approach to the algebraic cryptoanalysis of SNOW 2 is found in [31]. Therein,

linear equations are generated by assuming a set of values for the entries of the registers of

the FSM. Two methods of cryptoanalysis are presented in this chapter. In the first method,

the attacker guesses the values of ten consecutive register entries R1. The guessed value of

Rt
1 uniquely determines the value of = Rt+1

2 ( by Equation 3.24). Given values of Rt
1 and

Rt
2, Equation 3.22 gives rise to two linear equations and thirty quadratic equations. These

equations can be generated for nine-time instances. Further, given values of Rt+1
1 and Rt

2, the
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value of Dt
5 can be uniquely determined. One can thus determine 8 consecutive values of Dt

5.

These, along with the linear and quadratic equations, result in an over-determined system of

equations. These, when solved, give us an estimate of the current state. Since the relation

between the current state and the initial state is linear, one can get an estimate of the initial

state from the estimate of the current state. The correctness of the guesses can be verified by

using the estimated initial state and the system equations of SNOW 2.0 to regenerate the key

stream and check if it matches the actual one.

In the second method, the attacker assumes the following nine consecutive entries of the

register R1

Rt
1 = 0, Rt+1

1 = 232 − 1, Rt+2
1 = 0, · · · , Rt+8

1 = 0 (3.31)

Now, there are 7 consecutive time instances,k, where the values of Rk+1
1 and Rk

2 are simul-

taneously known. Hence, at each time instance, Equation 3.23 gives rise to 32 linear equations

over GF (2). This accounts for a total of 224 equations. Further, there are 7 consecutive values

of k wherein the value of Rk
1 is 0, and the value of Rk

2 is known. Therefore, Equation 3.22 gives

us 32 linear equations over GF (2) at each time instance. This accounts for another 224 linear

equation. If the assumption made in this attack holds true, at the t + 1-th time instance, the

value in the register R1 is zero while the value in the register R2 is given as follows.

Rt+1
2 = Dt+1

5 + 1111 · · · 1 (3.32)

When these values are substituted in Equation 3.22, we get another 32 linear equations. Recall

that, at the t+ 2-th time instance, the value in the register R1 is 1111 · · · 1. As a consequence

of Theorem 2 in [31], this results in Equation 3.22 generating 32 linear equations satisfied with

probability half. This probability becomes 1 when D2
0 + z2+S(0) is zero. We thus have a total

of 512 linear equations. When these equations are linearly independent, solving them gives us

the state of the LFSR. The correctness of the assumptions is verified by checking if the sequence

generated from this state matches the actual keystream.

In both these attacks, to verify the correctness of the assumptions, one has to generate the

sequence with the calculated state of the LFSR and check if it matches the actual keystream.

To do this, the feedback equation of the LFSR is needed. This verification cannot be done

since this is not available in KDFC-SNOW. As a result, KDFC-SNOW is immune to these

attacks. For a similar attack to work on KDFC-SNOW, the assumptions should enable the

attacker to calculate 512 output words of the LFSR (as against the 32 output words calculated

in these attacks). This would mean more assumptions. Consequently, the probability of these

assumptions being true will be significantly lower. This will result in a much higher time

complexity for the attack.
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Distinguishing Attack:

In the distinguishing attack, the attacker aims to distinguish the generated keystream from a

random sequence. Distinguishing attacks on SNOW 2.0 have been launched using the linear

masking method [32, 33, 34]. This method adapts the linear cryptanalysis method given in

[65] to stream ciphers. In this method, the algorithm of the keystream generator is assumed

to consist of two parts: a linear one and a non-linear one. In the case of SNOW 2.0, the

linear part is the LFSR, and the non-linear part is the FSM. The linear part satisfies a linear

recurring relation of the form f(xn, xn+1, xn+2, . . . , xn+k) = 0 for all n. We then try to find

a linear relation, called the masking relation, that the non-linear part approximately satisfies.

This relation is of the following form:

ℓ1∑
i=0

Γixn+i =

ℓ2∑
i=0

Λizn+i (3.33)

where z0, z1, . . . is the output sequence of the key stream generator. The Γis and Λs are linear

masks that map the corresponding xn+is and zn+is to F2 respectively. The error in the masking

relation can be seen as a random variable. If p is the probability that the non-linear part

satisfies Equation 3.33, then p − 1
2
is called the bias of the masking relation. The Masking

relation, along with the linear recurring relation, is used to generate a relation in terms of

the elements of the output sequence. The error in this relation can also be seen as a random

variable. If the probability of the sequence satisfying this relation is pf , then pf − 1
2
is the bias

of this relation. This bias can be related to the bias of the masking relation using the piling

up lemma in [65]. The main task in this type of attack is to find masks Γis and Γ′is which

maximise the bias of the masking relation. The following linear masking equation is used in

[32] and [33] for the FSM of SNOW 2.

Γ0xn + Γ1xn+1 + Γ5xn+5 + Γ15xn+15 + Γ16xn+16 =

Λ0zn + Λ1zn+1

In [32], it is assumed that all the Γis and Λis are equal. In [33] it is assumed that Γ0,Γ15

and Λ0 are equal to each other. Γ1,Γ5.Γ16 and Λ1 are also assumed to be equal. Since

f(xn, xn+1, . . . , xn+k) is a linear relation, the following relation can be written purely in terms
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of the zis

Γ0f(xn, xn+1, . . . , xn+k) +

Γ1f(xn+1, xn+2, . . . , xn+k+1 +

Γ5f(xn+5, xn+6, . . . , xn+k+5) +

Γ15f(xn+15, xn+16, . . . , xn+k+15) +

Γ16f(xn+16, xn+17, . . . , xn+k+16) = 0

The linear relation between the elements of the output sequence in both [32] and [33] is obtained

using this method. Further, if there are ℓ non-zero coefficients in f , then the random variable

corresponding to the error in this relation is a sum of ℓ random variables, each corresponding

to the error in the linear masking equation.

The feedback equation is unknown in the proposed σ-LFSR configuration. Therefore, the

only known linear recurring relation that the output of the σ-LFSR satisfies is the one defined

by its characteristic polynomial. If the characteristic polynomial is assumed to be the same as

that of the LFSR in SNOW 2, then the corresponding linear recurring relation has 250 non-zero

coefficients. Further, since these coefficients are elements of F2, the non-zero coefficients are

equal to 1. Therefore, as a consequence of the piling up lemma, if the bias of the masking

equation is ϵ, then the bias of the relation between the elements of the key stream is given as

follows

ϵfinal = 2249 × ϵ250 (3.34)

The number of elements of the key stream needed to distinguish it from a random sequence

is 1
ϵ2final

. Therefore, for an identical linear masking equation, the length of the key stream for

the distinguishing attack is much higher for the proposed configuration than SNOW 2. This is

demonstrated in the following table.

Reference ϵ ϵfinal
SNOW 2.0

ϵfinal
KDFC
SNOW

#Keystream
SNOW 2.0

#Keystream
KDFC-SNOW

[32] 2−27.61 2−112.25 2−6653.5 2225 213307

[33] 2−15.496 2−86.9 2−3625 2174 27250

Table 3.1: Comparison of Distinguishing Attack Result for SNOW 2.0 and KDFC SNOW

Fast Correlation Attack:

The Fast Correlation Attack is a commonly used technique for the cryptanalysis of LFSR-based

stream ciphers. This method was first introduced for bitwise keystreams in ([59]). Here, the
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attacker views windows of the key stream as noisy linear encodings of the initial state of the

LFSR. She then tries to recover the initial state by decoding this window. Further, linear

combinations of elements in this window can be seen as encodings of subsets of the initial

state. This results in smaller codes which are more efficient to decode [61]. The linear recurring

relation, satisfied by the output of the LFSR, is used to generate the parity check matrix for

this code. A Fast correlation attack for word-based stream ciphers was first described in [72].

An improvement on this attack is given in [34]. Both these schemes consider a linear recurring

relation with coefficients in F2. For SNOW 2.0, this relation has order 512. This is equivalent

to considering each component sequence generated by a conventional bitwise LFSR with the

same characteristic polynomial as the LFSR in SNOW 2.0. The time complexity of the attack

given in [34] is 2212.38. The scheme in [35] considers the LFSR in SNOW 2.0 to be over F28 . This

results in a linear recurring relation of order 64. Further, it utilizes the k− tree Algorithm given

in [62] to generate parity check equations. This results in a significant improvement in the time

complexity of the attack. The time complexity of this attack is 2164.5, which is around 249 times

better than that of the attack given in [34]. However, to derive the linear recurring relation

over F28 , the knowledge of the feedback function is critical. In KDFC SNOW, the characteristic

polynomial of the σ-LFSR is publicly known. The attacker can, therefore, generate a linear

recurring relation over F2 that the output of the σ-LFSR satisfies. Therefore, the attack in [34]

will also be effective against KDFC-SNOW. However, without the knowledge of the feedback

function, the attacker cannot derive a linear recurring relation over F28 . Hence, KDFC-SNOW

resists the attack given in [35].

[70] uses MILP(Mixed Integer Linear Programming) to find a linear mask that gives better

correlation. This results in an attack with a time complexity of 2162.91, which is 21.59 times

better than [35]. [1] further modifies this attack using a small trick in k− tree algorithm.

The time complexity with this modification turns out to be 2162.86. These attacks consider a

feedback polynomial of degree 512 over F2. Therefore, KDFC-SNOW does not provide any

extra security against these attacks.

Guess and Determine Attack

The guess and determine attack given in [66] can be applied on SNOW 2.0 as follows;

Consider the following equations, which are satisfied by SNOW 2.0

D16
t = α−1D11

t +D2
t + αD0

t (3.35)

Rt
1 = D4

t + S(Rt−2
1 ) (3.36)

zt = D0
t + (D15

t +Rt
1) + S(Rt−1

1 ) (3.37)

These equations are used to generate the following tables The entries in the above tables
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0 2 11 16
1 3 12 17
...

...
...

...
18 20 29 34

4 35 37
5 36 38
...

...
...

22 53 55

0 15 36 37
1 16 37 38
...

...
...

...
18 33 54 55

Table 3.2: Index table for SNOW 2.0

correspond to the variables that are to be estimated. The entries in the first table, i.e. 0 to

34, correspond to 35 consecutive outputs of the LFSR. The entries 35 to 55 correspond to 21

consecutive entries of Register R1. Each row of the above tables corresponds to the values of

the delay blocks and registers in Equations 3.35, 3.36 and 3.37 at a particular time instant.

Consider a multi-stage graph with 56 nodes in each stage corresponding to the 56 entries

in the above tables. Each node is connected to all the nodes in the next stage, giving rise to a

trellis diagram. An entry is said to be eliminated by a path if, knowing the values of the entries

corresponding to the nodes in the path, the value of that entry can be calculated.

Now, recursively calculate an optimal path that eliminates all the entries. The desired basis

corresponds to the nodes in this path. In the i-th iteration of this algorithm, calculate the

optimal path of length i to each node in the i-th stage. To find the optimal path to the k-th

node, consider all the incoming edges of node k. By appending the node k to the optimal paths

of length i− 1 ending at the source nodes of these edges, we get 55 paths of length i. Choose

the edge corresponding to the path that eliminates the most variables. In case of a tie, consider

the path that results in the most rows with two unknowns. This process continues until a path

that eliminates all the entries is found. This algorithm results in a basis of cardinality 8 for

SNOW 2.0.

In KDFC-SNOW, the feedback equation of the σ-LFSR is not known. The smallest known

linear recurring relation that the output of the σ-LFSR satisfies is the relation corresponding

to its characteristic polynomial. This relation is given as follows.

xn+512 = xn+510 + xn+504 + xn+502 + xn+501 + xn+494 + xn+493 + xn+490 + xn+486 + xn+485 +

xn+483+xn+481+xn+480+xn+478+xn+477+xn+471+xn+470+xn+469+xn+466+xn+462+xn+461+

xn+459+xn+458+xn+452+xn+449+xn+446+xn+445+xn+444+xn+441+xn+438+xn+437+xn+434+

xn+433+xn+432+xn+431+xn+429+xn+427+xn+424+xn+423+xn+420+xn+419+xn+414+xn+412+

xn+411+xn+409+xn+405+xn+402+xn+400+xn+399+xn+398+xn+396+xn+395+xn+393+xn+392+

xn+390+xn+388+xn+387+xn+385+xn+375+xn+374+xn+372+xn+371+xn+366+xn+365+xn+363+

xn+362+xn+359+xn+357+xn+356+xn+355+xn+354+xn+353+xn+352+xn+351+xn+350+xn+347+

xn+345+xn+344+xn+343+xn+341+xn+339+xn+338+xn+337+xn+336+xn+333+xn+330+xn+329+

xn+326+xn+324+xn+322+xn+319+xn+310+xn+307+xn+306+xn+305+xn+304+xn+303+xn+301+

xn+299+xn+298+xn+297+xn+296+xn+295+xn+294+xn+293+xn+292+xn+291+xn+289+xn+286+

xn+285+xn+283+xn+282+xn+281+xn+278+xn+276+xn+274+xn+271+xn+269+xn+264+xn+262+
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xn+259+xn+258+xn+257+xn+255+xn+253+xn+251+xn+249+xn+248+xn+243+xn+240+xn+239+

xn+238+xn+236+xn+235+xn+233+xn+232+xn+230+xn+229+xn+228+xn+227+xn+226+xn+222+

xn+217+xn+216+xn+215+xn+214+xn+213+xn+210+xn+208+xn+206+xn+203+xn+201+xn+199+

xn+193+xn+190+xn+184+xn+179+xn+178+xn+177+xn+175+xn+174+xn+173+xn+172+xn+171+

xn+169+xn+165+xn+164+xn+163+xn+158+xn+156+xn+155+xn+153+xn+152+xn+151+xn+149+

xn+147+xn+146+xn+143+xn+141+xn+138+xn+136+xn+132+xn+131+xn+129+xn+128+xn+126+

xn+125+xn+124+xn+123+xn+121+xn+120+xn+119+xn+118+xn+117+xn+116+xn+115+xn+113+

xn+112 + xn+111 + xn+109 + xn+105 + xn+104 + xn+103 + xn+102 + xn+98 + xn+97 + xn+94 + xn+93 +

xn+89+xn+88+xn+87+xn+81+xn+78+xn+76+xn+75+xn+73+xn+72+xn+70+xn+69+xn+68+

xn+67+xn+66+xn+65+xn+63+xn+59+xn+58+xn+57+xn+56+xn+55+xn+53+xn+51+xn+50+

xn+49+xn+47+xn+46+xn+45+xn+44+xn+41+xn+39+xn+37+xn+36+xn+33+xn+30+xn+26+

xn+25 + xn+21 + xn+20 + xn+19 + xn+16 + xn+5 + x0

As in SNOW 2.0, the following equations are also satisfied,

Rt
1 = Dt

4 + S(Rt−1
1 )

zn = Dt
0 + (Dt

15 +Rt
1) + S(Rt−1

1 )

The following tables can be constructed using these three equations. We ran the Vitterbi-like

512 510 504 502 · · · 5 0
513 511 505 503 · · · 6 1
...

...
...

...
...

...
...

1025 1023 1007 1005 · · · 516 513

Table 3.3: Index table for f1(x)

4 1026 1028
5 1027 1029
...

...
...

517 1539 1541

0 15 1027 1028
1 16 1028 1029
...

...
...

...
513 528 1540 1541

Table 3.4: Index table for Equation 31 and Equation 32

algorithm with the above tables on a cluster with 40 INTEL(R) XEON(R) CPUs (E5-2630

2.2GHz). The program ran for 16 iterations and generated the path {1041, 17, 15, 13, 28, 16,
11, 14, 9, 1050, 18, 39, 12, 7, 5, 0, 3}. This path has a length of 17. This corresponds to a time

complexity of 2544.
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Cache Timing Attack

The feedback gains in the proposed KDFC scheme do not correspond to known elements of the

finite field. Instead, the feedback gains are matrices which are dependent on the key. Therefore,

the feedback equation cannot be calculated by using look-up tables. As a result, the attacker

cannot obtain any information from the list of cache accesses as done in [36].

3.3.5 Randomness Test

In this subsection, we evaluate the randomness of the keystream generated by KDFC-SNOW.

Test Methodology

We have used the NIST randomness test suite to evaluate the randomness of a keystream

generated by KDFC-SNOW. There are 16 randomness tests in the suite. Each test returns

a level of significance, i.e. P − V alue. If this value is above 0.01 for a given test, then the

keystream is considered to be random for that test.

KDFC-SNOW has been implemented using SageMath 8.0. The NIST randomness tests have

been conducted on the generated keystream using Python 3.6. The characterestic polynomial

of the σ-LFSR has been taken as f(x) = x512+x510+x504+x502+x501+x494+x493+x490+x486+

x485+x483+x481+x480+x478+x477+x471+x470+x469+x466+x462+x461+x459+x458+x452+

x449+x446+x445+x444+x441+x438+x437+x434+x433+x432+x431+x429+x427+x424+x423+

x420+x419+x414+x412+x411+x409+x405+x402+x400+x399+x398+x396+x395+x393+x392+

x390+x388+x387+x385+x375+x374+x372+x371+x366+x365+x363+x362+x359+x357+x356+

x355+x354+x353+x352+x351+x350+x347+x345+x344+x343+x341+x339+x338+x337+x336+x333+

x330+x329+x326+x324+x322+x319+x310+x307+x306+x305+x304+x303+x301+x299+x298+x297+

x296+x295+x294+x293+x292+x291+x289+x286+x285+x283+x282+x281+x278+x276+x274+x271+

x269+x264+x262+x259+x258+x257+x255+x253+x251+x249+x248+x243+x240+x239+x238+x236+

x235+x233+x232+x230+x229+x228+x227+x226+x222+x217+x216+x215+x214+x213+x210+x208+

x206+x203+x201+x199+x193+x190+x184+x179+x178+x177+x175+x174+x173+x172+x171+x169+

x165+x164+x163+x158+x156+x155+x153+x152+x151+x149+x147+x146+x143+x141+x138+x136+

x132+x131+x129+x128+x126+x125+x124+x123+x121+x120+x119+x118+x117+x116+x115+x113+

x112+x111+x109+x105+x104+x103+x102+x98+x97+x94+x93+x89+x88+x87+x81+x78+x76+

x75+x73+x72+x70+x69+x68+x67+x66+x65+x63+x59+x58+x57+x56+x55+x53+x51+x50+

x49+x47+x46+x45+x44+x41+x39+x37+x36+x33+x30+x26+x25+x21+x20+x19+x16+x5+1.

(This polynomial is the characteristic polynomial of the LFSR in SNOW 2.0 when it is

implemented as a σ-LFSR, i.e. when multiplication by α and α−1 are represented by matrices).

The keystream has been generated using the following key (K) and initialization vector (IV).
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K = [681, 884, 35, 345, 203, 50, 912, 358]

IV = [645, 473, 798, 506]

Test Results

The results obtained from 16 NIST tests are shown in table 3.5.

S.No. Test P-Value Random
01. Frequency Test (Monobit) 0.35966689490586123 ✓
02. Frequency Test within a Block 0.24374184001729746 ✓
03. Run Test 0.9038184342313019 ✓
04. Longest Run of Ones in a Block 0.5246846287441829 ✓
05. Binary Matrix Rank Test 0.1371167998339736 ✓
06. Discrete Fourier Transform (Spectral) Test 0.1371167998339736 ✓
07. Non-Overlapping Template Matching Test 0.3189818228443801 ✓
08. Overlapping Template Matching Test 0.211350493609367 ✓
09. Maurer’s Universal Statistical test 0.4521082097311434 ✓
10. Linear Complexity Test 0.1647939201114819 ✓
11. Serial Test 0.7821664366290292 ✓
12. Approximate Entropy Test 0.880218270580662 ✓
13. Cummulative Sums (Forward) Test 0.34630799549695923 ✓
14. Cummulative Sums (Reverse) Test 0.6633686090204551 ✓
15. Random Excursions Test 0.969735280059932 ✓
16. Random Excursions Variant Test 0.97387 ✓

Table 3.5: NIST Randomness Test

These results are comparable to that of SNOW 2.0([73]). Note that the feedback configu-

ration of SNOW 2.0 is one of the possible feedback configurations in the σ-KDFC scheme.

3.3.6 Challenges in implementation

The feedback function of a σ-LFSR can be implemented in hardware by ANDing the bits at the

output of the delay blocks with the corresponding columns of the feedback matrices and then

EXORing their respective outputs. A fairly fast combinational circuit can implement this.

The main problem of KDFC lies in its software implementation. Since the feedback function

is not fixed, look-up tables cannot be used to implement the σ-LFSR. Further, the choice of

the feedback configurations is not restricted to the set of efficiently implementable σ-LFSR
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configurations as given in ([23]). This makes the implementation of KDFC SNOW extremely

challenging.

In our implementation, the state of the σ-LFSR is stored as a set of 32 integers. The i-th

integer corresponds to the i-th output of the delay blocks. Calculating the feedback function

of the σ-LFSR involves calculating the bitwise XOR of a subset of the columns of the feedback

matrices (Bis). To make the implementation more efficient, for all 1 ≤ i ≤ 32, the i-th columns

of the feedback matrices are stored in adjacent memory locations. Thus, each integer in the

state of the σ-LFSR corresponds to a set of columns of the feedback matrices stored in a

contiguous memory block. The state vector is now sampled one integer at a time, and the

columns of the Bis corresponding to the non-zero bits in these integers are XORed. We then do

a bit-wise right shift on each of these integers and introduce the result of the XOR operation

bitwise as the most significant bits. In this way, the σ-LFSR can be implemented using bitwise

XORs and shifts. The FSM is implemented as in SNOW 2.0 [16]. This implementation takes 25

cycles to generate a single word on an Intel Probook 4440s machine with a 2.8 Ghz i5 processor.

Each iteration of Algorithm-1 involves solving a system of linear equations. This process is

time-consuming and contributes to increasing the initialization time. The initialization process

was implemented using a C code with open mp (with 3 threads). In this implementation, linear

equations were solved using a parallel implementation of the LU decomposition algorithm.

3.4 Summary

In this chapter, we have described using σ-LFSRs with key-dependent feedback configurations

in stream ciphers that use word-based LFSRs. In this method, an iterative configuration gen-

eration algorithm(CGA) uses key-dependant random numbers to generate a random feedback

configuration for the σ-LFSR. We have theoretically analysed the algebraic degree of the re-

sulting feedback configuration. As a test case, we have demonstrated how this scheme can be

used along with the Finite State Machine of SNOW 2.0. We have analysed the security of the

resulting key-stream generator against various attacks and demonstrated an improvement in

security compared to SNOW 2.0. Further, the key streams generated by the proposed method

are comparable to SNOW 2.0 from a randomness point of view.
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Chapter 4

Application of z-primitive σ-LFSRs to

resist Fast Correlation Attacks

In this chapter, we propose a method for hiding both the feedback equation of a word-based

LFSR and the characteristic polynomial of the state transition matrix. This is to deny the

attacker the knowledge of any linear recurring relation that the LFSR satisfies. This is done

to counter Fast Correlation Attacks using linear recurring relations to generate parity check

equations. Here, we employ a z-primitive σ-LFSR whose characteristic polynomial is randomly

sampled from the distribution of primitive polynomials over GF (2) of the appropriate degree.

We propose an algorithm for locating z-primitive σ-LFSR configurations of a given degree.

Further, an invertible matrix is generated from the key. This is then employed to create a

public parameter to retrieve the feedback configuration using the key. If the key size is n- bits,

the process of retrieving the feedback equation from the public parameter has an average time

complexity O(2n−1). The proposed method has been tested on SNOW 2.0 and SNOW 3G for

resistance to fast correlation attacks.

4.1 Proposed Scheme

In this section, we describe a method of converting the existing feedback configuration of the

LFSR into a random z-primitive σ-LFSR configuration. In contrast to the scheme given in

Chapter 3, the characteristic polynomial in this scheme is also randomly sampled from the set

of primitive polynomials of a given degree. Information about this configuration is embedded

in a public parameter. On the decryption side, the configuration is recovered from the public

parameter using the secret key. In the proposed scheme, in addition to sharing the secret key

and calculating the initial state of the LFSR, the following two steps must be performed before

the start of communication.

� Generating a random z-primitive σ-LFSR configuration.
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� Generating the public parameter using the state transition matrix of the z-primitive σ-

LFSR and the secret key and declaring it to the entire network.

4.1.1 Generation of z−primitive σ LFSR Configuration

This subsection aims to generate a random configuration matrix of z-primitive σ−LFSR with b,

m-input m-output delay blocks. The first step in this process is to randomly sample a primitive

polynomial f of degree mb. We then calculate a primitive polynomial g with degree m such

that if α is the root of f then αz is the root of g where z = 2mb−1
2m−1 . After that, we calculate

the distance vector of a primitive σ-LFSR with a single m-input m-output delay block having

characteristic polynomial g. This distance vector generates an element of zfmb. This is then

used to generate a σ-LFSR configuration with characteristic polynomial f . Given a randomly

sampled polynomial f of degree mb, this process involves the following algorithms;

� An algorithm to find a primitive polynomial g of degree m.

� An algorithm to generate an element of zgm.

� An algorithm to generate the σ-LFSR configuration with characteristic polynomial f from

an element of zgm.

Algorithm 4 Algorithm to find a primitive polynomial of degree m
Input:

1. Companion matrix, Mf of a randomly sampled primitive polynomial f of degree n over
GF (2),

1: procedure Find primitive deg m(Mf )
2: z ← 2n−1

2m−1
3: B ←M z

f

4: Sample a random vector v ∈ F n
2 .

5: i← 0
6: while do i ̸= (m− 1)
7: v1 ← v ×Bi

8: A[i, :]← v1
9: i← i+ 1
10: end while
11: Solve the following equation for a = (a0, a1, · · · , am−1) ∈ Fm

2 .

a.A = v ×Bm

12: end procedure
13: Output:

1. A primitive polynomial g = a0 + a1 ∗ x+ a2 ∗ x2 + · · ·+ am−1 ∗ xm−1 + xm.
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In the above algorithm, the matrix Mf represents the root of f . The above algorithm cal-

culates the minimal polynomial of the matrix M z
f , which, according to Lemma 1, is a primitive

polynomial of degree m.

We now proceed to generate a random element of zgm. Observe that for a σ-LFSR with a

single delay block with characteristic polynomial g, the feedback gain matrix can be any matrix

with characteristic polynomial g. This is used to prove the following lemma.

Lemma: 20 Given a primitive polynomial g of degree m, the set of matrix states of sequences

generated by σ-LFSRs with a single delay block having characteristic polynomial g is the set

of all full rank matrices. Further, corresponding to each such σ-LFSR configuration, a unique

matrix state with the first row em1 exists.

Proof: Consider a σ-LFSR configuration with characteristic polynomial g having a single delay

block and feedback gain matrix B. The characteristic polynomial of B is g. Given any vector

v, the matrix M1 = [v,Bv, . . . , Bm−1v] is a matrix state of this σ-LFSR configuration. As g is

a primitive polynomial, the matrix M1 is invertible. To prove the first statement of the lemma,

we now prove that any invertible matrix having first column v is a matrix state of a sequence

generated by some σ-LFSR configuration with characteristic polynomial g having a single delay

block.

Let M2 be an arbitrary full-rank matrix with first column v. Let P = M2M
−1
1 and B′ =

PBP−1. Comparing the first columns on both sides of the equation PM1 = M2, it is apparent

that v is an eigenvector of P corresponding to the eigenvalue 1. Now,

M2 = PM1 = P [v,Bv, . . . , Bm−1v]

= [Pv, PBv, . . . , PBm−1v]

= [v, PBP−1Pv, . . . , PBm−1P−1Pv]

= [v, PBP−1v, . . . , PBm−1P−1v]

= [v,B′v, . . . , B′m−1v]

Thus, M2 is a matrix state of a σ-LFSR with a feedback matrix B′ having characteristic

polynomial g. Thus, any arbitrary matrix having the first column v is a matrix state of a

σ-LFSR with characteristic polynomial g. Further, as v can be arbitrarily chosen, any full rank

matrix is a matrix state of a sequence generated by a σ-LFSR configuration with characteristic

polynomial g having a single delay block. Alternatively, the set of matrix states of sequences

generated by σ-LFSRs with a single delay block having characteristic polynomial g is the set

of all full-rank matrices.

Now, the minimal polynomial of each component sequence is g(x). Therefore, every set of

m-consecutive binary values occurs exactly once as a sub-sequence of these sequences in each
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period [74]. Thus, for each sequence generated by a σ-LFSR with characteristic polynomial

g, there is a unique matrix state with the first row as em1 . As all sequences generated by a

primitive σ-LFSR configuration are just shifted versions of each other, this matrix uniquely

characterizes the σ-LFSR configuration. □

As a consequence of the above lemma, for a primitive polynomial g(x) with degree m and

companion matrix Mg, given a random full rank matrix M = [em1 ; v2; . . . ; vm−1] ∈ Fm×m
2 , the

set of integers (d1, d2, . . . , dm−1) such that vi = emi M
i
g for 1 ≤ i ≤ m − 1 is an element of zgm.

However, given an intertible matrix in Fm×m
2 , calculating the set of integers (d1, d2, . . . , dm−1)

is not trivial. This is illustrated in the following lemma and corollary.

Lemma: 21 Let a, b ∈ Fm
2 and g be a primitive polynomial of degree m over GF (2). Let

Mg ∈ Fm×m
2 be the companion matrix of g. The calculation of the value i in the equation

a×M i
g = b takes O(m× eK + eK ×

√
PK +m3) time, where 2m − 1 =

∏k
i=1 P

ei
i and Pk is the

largest factor.

Proof: Mg is a representation of a root of g and can therefore be seen as a primitive element of

F2m . Therefore, B = {Mg,M
2
g , · · · ,Mm−1

g ,Mm
g } forms a basis for Fm

2 . Hence, any M i
g can be

given by a linear combination of the elements in B. Given an equation a×M i
g = b for a, b ∈ Fm

2 ,

the value of M i
g can be computed by solving the following linear equation for v

v ×



a

a×Mg

a×M2
g

...

a×Mm−1
g


m×m

= b (4.1)

If v = (a0, a1, . . . , am−1, then M i
g = (a0×I+a1×Mg+· · ·+am−1×Mm−1

g ). Solving Equation 4.1

takes O(m3) operations. The value of i can then be found from M i
g by calculating the discrete

logarithm using the Pohlig Hellman algorithm[75]. The time complexity of Pohlig Hellman

algorithm is O(m × ek + ek ×
√
Pk), where 2m − 1 =

∏k
i=1 P

ei
i and Pk is the largest factor.

Therefore, the total time needed to calculate the value of i is O(m× eK + eK×
√
PK +m3). □

Calculating an element of zgm from the matrix M involves solving (m− 1) instances of the

problem discussed in the above lemma. We, therefore, have the following corollary.

Corollary: 22 Given a matrix M = (em1 , v1, · · · , vm−1) ∈ Fm×m
2 and a companion matrix

Mg ∈ Fm×m
2 of a primitive polynomial g, Finding the distance vectors d1, d2, · · · , dm−1 using

Pohlig Hellman Algorithm from the equation em1 ×Mdi
g = vi for i ∈ [1,m − 1] takes O((m −

1)× (m× eK + eK ×
√
PK +m3))) time.
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From Corollary 2 and Lemma 5, it is apparent that calculating an element of zgm from a random

invertible matrix is computationally expensive. We therefore present a randomized algorithm

(Algorithm 5) where an invertible matrix M1 and the distance vector are simultaneously gen-

erated. The first row M1 is taken as em1 . The algorithm runs for m− 1 iterations. In the i-th

iteration, an integer di is randomly chosen from the set of integers ranging from 1 to 2m − 1.

The vector em1 Mg is then evaluated. If this vector is linearly independent of the previously

added rows of M1, then di is appended to the list of entries of the distance vector. Otherwise,

the process is repeated with a new choice of di. Thus, each iteration adds a new entry to the

distance vector, and a new row is appended to M1. The linear independence of the newly added

vector is checked by simultaneously generating a matrix M2 whose entries are all 0 below the

anti-diagonal. Further, for all 1 ≤ j ≤ m, the span of the first j rows of M2 is the same as the

span of the first j rows of M1. The linear independence of the rows of M2 ensures the linear

independence of the rows of M1. Theorem 23 proves the algorithm’s correctness. Moreover,

the proof gives an insight into the workings of the algorithm.
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Algorithm 5 Randomized Algorithm to generate a z-set for g
Input:

1. A companion matrix Mg ∈ Fm×m
2 of primitive polynomial g.

1: procedure Z − Set(Mg)

2: M1 ←


em1
z
z
...
z

 M2 ←


em1
z
z
...
z

 ∈ Fm×m
2 ▷ z is zero vector of dimension m

3: i← 2
4: while do i ̸= m
5: d← Random− Integer(2, 2m − 1)
6: v ← em1 ×Md

g

7: M1[i, :]← v
8: M2[i, :]← v
9: j ← 1
10:

11: while do j ̸= i
12: M2[i, :]←M2[i, :] +M2[i,m− j + 1] ∗M2[j, :]
13: j ← j + 1
14: end while
15: if M2[i,m− i+ 1] == 1
16: List.add(d)
17: i← i+ 1
18: endif
19: end while
20: end procedure
21: Output:

1. Full rank Matrix M1 ∈ Fm×m
2 .

2. The distance vector, List.

In Algorithm 5, we generate the z-set for a given primitive polynomial g. It uses a random

number generator to generate the distance values that build an invertible matrix. Now, we

calculate the average running time of Algorithm-5 to generate an invertible matrix. As the first

vector for both the matrix is em1 , the probability of the vector,v1, being linearly independent of

em1 , is 1− 21−m. Hence, the average number of vectors that need to be sampled to get such a v1

is 1
(1−21−m)

. Similarly, the average number of vectors that need to be sampled to get a vi which

is independent of em1 , v1, . . . , vi−1 is 1
(1−2i−m)

. This number is always less than 2. Hence, on

average, generating a full rank matrix requires less than 63 iterations. The above algorithm’s

main computational challenge is finding the value Md
g . This can be done using the Binary

Exponentiation Algorithm(BEA)[76] with matrix Mg and integer d as inputs. Using BEA, for
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any d ∈ [1, 2m − 1], Md
g can be calculated in O(m3)) time. Here, two matrices are multiplied

in O(m2) time using Algorithm 6.

Algorithm 6 Matrix-Matrix Multiplication over Binary Field

1: procedure Matrix-Multiplication(A,B)
2:

3: for i = 0 to N do
4: Sum = 0
5:

6: for j = 0 to N do
7: Sum+ = ((COUNTSETBITS((A[i]&&B[j])))&&1)× 2N−1−j

8:

9: end for
10: M [i] = Sum
11:

12: end for
13:

14: end procedure

The COUNTSETBITS(x) function in the above algorithm counts the number of ones in

(A[i, :]&&B[:, j]). The output of the bitwise AND of the COUNTSETBITS function with the

integer 1 tells us the number is even or odd. It gives integer 1 when the count is odd and gives

0 when the count is even. It runs in O(1) time. The working C code of the function is given

below whether

int Btable [ 2 5 6 ] ;

void i n i t i a l i z e ( )

{
Btable [ 0 ]=0 ;

int i ;

for ( i =0; i <256; i++)

{
Btable [ i ]=( i&1)+Btable [ i / 2 ] ;

}
}

u32 COUNTSETBITS( u32 n)

{
return ( Btable [ n & 0 x f f ]+

Btable [ ( n>>8)& 0 x f f ]+
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Btable [ ( n>>16)&0 x f f ]+

Btable [ ( n>>24)])&1;

}

Theorem: 23 Given a primitive polynomial g of degree m over GF (2), Algorithm 2 generates

an element of the zgm.

Proof: As a result of Lemma 20, the above theorem stands proved if it is proved that the

matrix M1 is invertible. This is proved by inductively proving that each new row added to

M1 is linearly independent of all its previous rows. We now inductively prove the following

statements;

� For all 1 ≤ i ≤ m, the first i rows of M2 are linear combinations of the first i rows of M1.

Further, M2(i,m− i+ 1) = 1 and M2(i, k) = 0 for all k > m− i+ 1.

� For all 1 ≤ i ≤ m, the first i rows of M1 are linearly independent.

As the first rows of M1 and M2 are em1 , both these statements are trivially true when i = 1.

Assume they are true for all i < ℓ < m.

Observe that, when i = ℓ, due to lines 7 and 8 of Algorithm 5, M2[ℓ, :] is initially equal to

M1[ℓ, :]. M2[ℓ, :] is then modified in the subsequent while loop (Line 11 to Line 15 of Algorithm

5) by adding it with some of the previous rows of M2. By assumption, the first ℓ−1 rows of M2

are linear combinations of the first ℓ−1 rows ofM1. Hence, at the end of this while loop, M2(ℓ, :)

is a linear combination of the first ℓ rows of M1. Further, by assumption M2(j,m− j + 1) = 1

and M2(j, k) = 0 for all j < ℓ and k > m− j +1. Therefore, when i = ℓ and j = p < ℓ, in Line

12 of Algorithm 5, the p-th row of M2 (whose m − p + 1-th entry is 1) is added to M(ℓ, :) if

and only if M(i,m− p+ 1) = 1. Therefore, after this addition M(i,m− p+ 1) becomes zero.

Further, all the entries of M(ℓ, :) that have been made zero in the previous iterations of the

while loop remain zero as M(p, k) = 0 for all k > m− p+1. Therefore, at the end of the inner

while loop M(ℓ, k) = 0 for all k > m − ℓ + 1. Now, the value of i is incremented only when

M2(ℓ,m− ℓ+ 1) = 1. Therefore, M2(ℓ,m− ℓ+ 1) = 1 and M2(ℓ, k) = 0 for all k > m− ℓ+ 1.

The structure of the first ℓ rows of M2 ensures these rows are linearly independent. Further,

since these rows are a linear combination of the first ℓ rows of M1, the first ℓ rows of M1 are

linearly independent. Thus, both statements are true when i = ℓ and the theorem stands

proved.

□

The element of zgm generated in Algorithm 5 is then used to find an element of zfmb using

the bijection mentioned in Theorem 14. This is then used to generate the desired σ-LFSR

configuration in the following algorithm.
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Algorithm 7 Generation of m-companion matrix of Z primitive σ− LFSR

1: Input :

1. Distance vector D = (d1, d2, · · · , dm−1)(Generated from Algorithm 5).

2. Randomly sampled Primitive polynomial f of degree n(mb).

2: procedure CONFIG-GEN(INVm, f, g) .

3: Compute z ← 2mb−1
2m−1

4: Construct the subspace Vf of Fmb
2 by following:

Vf = (en1 , e
n
1 ∗M

z∗d1
f , en1 ∗M

z∗d2
f , · · · , en1 ∗M

z∗dm−1

f ) = (en1 , w1, · · · , wm−1)

▷ where Mf is the companion matrix of the polynomial f

5: Q←



en1
w1
...

wm−1
en1 ×Mf

w1 ×Mf
...

wm−1 ×Mf
...

en1 × (Mf )
b−1

w1 × (Mf )
b−1

...

wm × (Mf )
b−1



∈ Fn×n
2

6: Amb ← Q×Mf ×Q−1

7: end procedure
8: Output : M−companion matrix Amb over Mm(F2).

Theorem: 24 Algorithm7 generates the configuration matrix of a z−primitive σ−LFSR whose

characteristic polynomial is the primitive polynomial f considered in Algorithm 4.

Proof: The set D = {d1, · · · , dm−1} is an element of zgm. Therefore, by Theorem 14 the set

D′ = {zd1, . . . , zdm−1} is an element of zfmb. Therefore, by the arguments given in Section 2,

the vectors (en1 , w1, . . . , wm−1, e
n
1Mf , w1Mf , · · · , wm−1M

b−1
f ,

. . . , en1M
b−1
f , w1M

b−1
f , · · · , wm−1M

b−1
f ) are linearly independent. Hence, by Lemma 10, the ma-

trix QMfQ
−1 is an m-companion matrix with characteristic polynomial f .

Now, by Theorem 12, the first m-rows of the matrix Q constitute a matrix state of the

sequence generated by a σ-LFSR with configuration matrix QMfQ
−1. Therefore, the distance

vector of this σ-LFSR is {zd1, · · · , zdm−1}. As each entry of this vector is a multiple of z, the

σ-LFSR is z-primitive.

□
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Complexity Analysis:- Each M z×di
f in Step 4 of Algorithm 7 can be calculated in O(n3)

time. Since this operation is done (n − 1)-times, the computational complexity of Step 4 is

O(n4). Further, Q × Mf × Q−1 can be calculated in O(n3) time. Thus, the overall time

complexity of Algorithm 4 is O(n4).

Example: 6 For the case where m = 3 and b = 3, we aim to generate a z-primitive σ-LFSR

configuration with characteristic polynomial f(x) = x9+x6+x4+x3+x2+x+1. The following

is the companion matrix of f(x)

Mf =



0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0


1. z = 29−1

23−1 = 73

2. g(x) = (x+ α73) ∗ (x+ α73∗2) ∗ (x+ α73∗4) (mod f(x)) = x3 + x2 + 1 , where α is root of

f(x).

3. Randomly sample a matrix from linear group GL(3, GF (2)). Let the sampled matrix be

Mat =

 0 0 1

1 0 0

0 1 0



4. The distance vector corresponding to the above matrix is {6, 5}

5. The subspace Vf in Step 4 of Algorithm 4 is as follows:

Vf = {e91, e91 ∗M6
f , e

9
1 ∗M5

f }
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6. The matrix Q in Step 5 of Algorithm 4 is as follows

Q =



0 0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 1

1 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 1 0

1 1 0 0 0 1 0 1 1

0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 0

1 0 0 0 1 0 1 1 0

0 0 0 1 0 1 1 1 0


7. The configuration matrix of the z-primitive σ-LFSR is calculated as follows,

Q×Mf ×Q−1 =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 1 1 0 1 0 1 0

1 0 0 1 0 0 0 0 1

0 1 0 0 1 0 1 1 0


=



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 1 1 0 1 0 1 0

1 0 0 1 0 0 0 0 1

0 1 0 0 1 0 1 1 0



8. The gain matrices for the configuration matrix (Q×Mf×Q−1) are follows B0=

1 0 1

1 0 0

0 1 0


B1=

1 0 1

1 0 0

0 1 0

 B2=

0 1 0

0 0 1

1 1 0


4.1.2 Generation of the Public Parameter

Recall that in the generation of the configuration matrix, the primitive polynomial in Algorithm-

4 and the elements of the distance vector in Algorithm 5 are randomly chosen independent of

the key. Hence, the key does not completely contain the information needed to recover the σ-

LFSR configuration. Therefore, in addition to the key, we generate a publicly known parameter

matrix C to enable the receiver to recover the σ-LFSR configuration.

Note that the proposed scheme has two secret keys K1, K2 ∈ F 128
2 and two initialization
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vectors IV1, IV2 ∈ F 128
2 . We now state the algorithm that generates the public matrix C

followed by a brief explanation.

Algorithm 8 Generation of Public Matrix on the Sender Side

1: Input:
2: Two random keys K1, K2 ∈ F 128

2 .
3: Two public initialization vectors IV1 and IV2 ∈ F 128

2 .
4: procedure GEN CMatrix(f,K1, K2, IV1, IV2)
5: Take the Configuration matrix M1 from Algorithm 7 with m = 32 and b = 16.
6: Generate the vector v1 ∈ F 512

2 using the initial state generation algorithm of SNOW 2.0
with (K1, IV1). Let v1 ← v1,1||v1,2||v1,3||v1,4 where v1,i ∈ F 128

2 .
7: U [1, :]← v1.
8:

9: for i = 2 to 512 do
10: vi,k ← AES − 128(vi−1,k, K2, IV2) ▷ k ∈ [4]
11: vi ← vi,1||vi,2||vi,3||vi,4
12: U [i, :]← vi
13:

14: end for
15: a← 2512 − 1.
16:

17: for i = 0 to 511 do
18: Mask[i]← (a >> i)
19:

20: end for
21:

22: for i = 0 to 511 do
23: U [i, :]← (U [i]&&Mask[i])
24: U [i, :]← U [i, :]⊕ (1 << (511− i))
25:

26: end for
27: L← UT

28: S ← L× U
29: Compute C = M1[480 : 512, :]× S.
30: end procedure
31: Output: C ∈ F 32×512

2 .

In the above algorithm, the secret keyK1, K2 is used to generate a secret matrix S multiplied

with the last 32 rows of the M-companion matrix, M1, to produce the matrix C. This C is

then made public. To generate a matrix M , a vector v1 is generated using the (key, IV) pair

K1, IV1. This is done using the procedure to generate the initial state of SNOW 2.0 and SNOW

3G. v1 is then divided into four equal parts of 128 bits. Each part is encrypted using the AES-

128 algorithm using the key IV pair K2, IV2. The encrypted words are then concatenated

to generate the next vector v2. This procedure is then followed recursively to generate 512
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vectors. These vectors are considered as rows of a matrix. The elements of the matrix below

the diagonal are then discarded, and all the diagonal elements are made 1. This results in an

upper triangular matrix U . The matrix S is then generated by multiplying the transpose of U

with U . That is S = U × UT .

Algorithm 9 Recovery of Public matrix on the Receiver Side

1: Input:
2: Take two random keys K1, K2 ∈ F 128

2 .
3: Take two public initialization vectors IV1 and IV2 ∈ F 128

2 .
4: procedure GEN CMatrix(f,K1, K2, IV1, IV2)
5: Generate the vector v1 ∈ F 512

2 using the initial state generation algorithm of SNOW 2.0
with (K1, IV1). Let v1 ← v1,1||v1,2||v1,3||v1,4 where v1,i ∈ F 128

2 .
6: U [1, :]← v1.
7:

8: for i = 2 to 512 do
9: vi,k ← AES − 128(vi−1,k, K2, IV2) ▷ k ∈ [4]
10: vi ← vi,1||vi,2||vi,3||vi,4
11: U [i, :]← vi
12:

13: end for
14: a← 2512 − 1.
15:

16: for i = 0 to 511 do
17: Mask[i]← (a >> i)
18:

19: end for
20:

21: for i = 0 to 511 do
22: U [i, :]← (U [i]&&Mask[i])
23: U [i, :]← U [i, :]⊕ (1 << (511− i))
24:

25: end for
26: L← U.transpose()
27: Compute S = U × L.
28: Compute the inverse of S.
29: end procedure
30: Output: C × S−1 ∈ F 32×512

2 .

The receiver computes the matrix S from (K1, K2). The feedback gain matrices Bi are

recovered by multiplying the public matrix C(Generated in Algorithm 8) with the inverse of S.

Thus, the receiver regenerates the LFSR configuration from the keys (K1, K2) and the public

matrix C

Whenever a user intends to transmit confidential data using an LFSR-based word-oriented

stream cipher, Algorithm-5 uses (K1, IV1, K2, IV2) pair to mask the configuration matrix of the
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LFSR. The process of generating the challenge matrix occurs during the pre-computing phase

prior to the initialization cycle of the Cipher. The σ−LFSR configuration corresponding to the

M-companion matrix generated in Algorithm 7 is then used for Keystream Generation.

4.1.3 Initialization Phase:

The initialization phase of this scheme is the same as the initialization phase of SNOW 2.0 or

SNOW 3G. It runs for 32 clock cycles using the same feedback polynomial over GF (232), and

the adversary cannot access the keystreams during this period. At the last clock, it replaces

the coefficients of the feedback polynomial over GF (232) by the gain matrices Bi ∈ F 32×32
2 M1.

4.1.4 Keystream Generation Phase:

In the Key generation phase, the LFSR part of SNOW 2.0 and SNOW 3G is regulated by the

following equation:

Dt+1
15 = B0D

t
0 +B1D

t
1 + · · ·+B15D

t
15 (4.2)

where Bi ∈ F 32×32
2 , i ∈ [16] is the gain matrices of M1. And, each delay block(Dj, j ∈ [16]) is

updated as:

Dt+1
k =

D0
k+t+1 0 ≤ k + t+ 1 ≤ 15∑15
i=0BiD

t+k
i k + t+ 1 > 15

(4.3)

The FSM update is the same as in SNOW 2.0 and SNOW 3G.

4.1.5 Security of the proposed scheme

Here, in addition to the keystream, the attacker has access to the public matrix C generated

by Algorithm 8. He/She could potentially use this matrix to retrieve the gain matrices of the

LFSR. On average, a brute force attack will require 2255 guesses to get to the correct key. We

now show that other methods of deriving the feedback configuration are computationally more

expensive.

Lemma: 25 Given any symmetric invertible matrix S ′ ∈ Fmb×mb
2 , there exists a matrix M ′ ∈

Fm×mb
2 such that the public parameter C is a product of M ′ and S.

Proof: LetM1 be the configuration matrix of the σ-LFSR and let C = M1[mb−m+1 : mb, :]×S
be the public parameter matrix derived in Algorithm 8. Given any symmetric invertible matrix

S ′ ∈ Fmb×mb
2 ,

C = M1[mb−m+ 1 : mb, :]× S × S ′−1 × S ′

= M ′ × S ′
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where M ′ = M1[mb−m+ 1 : mb, :]× S × S ′−1 ∈ Fm×mb
2 . □

To find the σ-LFSR gain matrices from the public parameter, one can sample an invertible

symmetric matrix S ′ and find the corresponding values of M ′ such that C = M ′ × S ′. If the

feedback configuration corresponding to M ′ is z-primitive, assuming this to be the feedback

configuration, one can launch any existing attack to generate the initial state of the LFSR. The

number of invertible symmetric matrices in Fmb×mb
2 is 2

mb(mb−1)
2 , Hence, the average number of

attempts needed to get the correct invertible matrix is O(2
mb(mb−1)

2
−1) which is prohibitively

high.

Alternatively, one could sample a z-primitive LFSR configuration and consider the config-

uration matrix a potential M1. One can then check if the public parameter can be written

as a product of this matrix’s last m rows and a symmetric matrix S. This involves checking

if a set of m × mb linear equations in mb(mb−1)
2

variables has a solution (For SNOW 2.0 and

SNOW 3G, the number of equations is 8192 and the number of variables is 130816). If this

set of equations has a solution, one can launch any known attack to recover the initial state of

the LFSR. For a given value of m and b, the total number of z-primitive LFSR configurations

is |GL(m,F2)|
2m−1 × ϕ(2mb−1)

mb
. For SNOW 2.0 and SNOW 3G, this number turns out to be 21493.

Therefore, the average number of z-primitive LFSRs that must be sampled to get to the right

configuration is approximately 21492.

4.1.6 Resistance to Attacks:

Several Known plaintext attacks like Algebraic Attacks[30, 31], Distinguishing Attacks([32,

33]),Fast Correlation Attacks[34, 35, 70, 64, 1], Guess and Determine Attacks[77, 66], Cache

Timing Attacks([36, 68]) are reported for SNOW 2.0 and SNOW 3G. All these attacks either

use the feedback equation of the σ-LFSR or the linear recurring relation corresponding to the

characteristic polynomial of the LFSR. A method of hiding the configuration matrix is explained

in [78]. However, the characteristic polynomial of the σ-LFSR is publicly known. The scheme

given in [78] is therefore vulnerable to schemes that use the characteristic polynomial of the

σ-LFSR. This polynomial gives rise to a linear recurring equation of degree 512 with coefficients

in F2. These schemes include the fast correlation attack given in [1] and the fault attack on

SNOW3G given in [79]. The characteristic polynomial in this scheme is not known. Therefore,

to get to the characteristic polynomial, the attacker has to keep sampling from the set of

primitive polynomials of degree 512 till he/she gets to the correct characteristic polynomial.

As the number of primitive polynomials of degree 512 over F2 is 2502, the attacker on average

will sample 2501 polynomials. Alternatively, by sampling the key space, the attacker could try

to generate the symmetric matrix S in Algorithm 8. This, on average, will take 2255 attempts

to get to the correct key.
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References Applied Ciphers FCA Complexity Our Scheme
Lee et al.,2008[34] SNOW 2.0 2204.38 2256

Zhang et al.,2015[35] SNOW 2.0 2164.15 2256

Todo et al.,2018[63] SNOW 2.0 2162.91 2256

Yang et al.,2019[64] SNOW 3G 2177 2256

Gong et al.,2020[1] SNOW 2.0, SNOW 3G 2162.86, 2222.33 2256, 2256

Table 4.1: Comparison results of our scheme with various schemes

4.2 Experiment Result

The proposed scheme has been implemented in C (using a GCC compiler) on a machine with

an Intel Core i5-1135G7 processor having 8GB RAM and a 512 GB HD drive. The parallel

implementation of en1 ×M z×di
f for n = 512, Mf ∈ F 512×512

2 and 1 ≤ |di| ≤ 512 where i ∈ {1, 31},
took a total of 0.04 seconds. The calculation P ×Q×P−1(step-6 in Algorithm 7) took another

.08 seconds. Algorithm 7 was completed in 0.13 seconds. The total initialization time for

our scheme is, on average, 0.2 seconds (Averaged over 200 test cases). Besides, to accelerate

the keystream generation process, 32- bit vector-matrix multiplications in the σ−LFSR are

done using Algorithm 6 with constant time complexity, O(c), where c = 32. This lead to an

improvement in performance over existing implementations. The Key generation times(KGT)

for SNOW 3G and our proposed scheme are given in the following table. ook-up table-based

implementation of LFSR in SNOW 3G can be cryptanalysed by cache timing attacks[36].

Hence, we have considered the implementation of the LFSR part of SNOW 3G(especially field

multiplication over GF (232)) programmed without any look-up tables.

Number of Keystreams KGT for SNOW3G KGT for Proposed SNOW3G)
210 .009490 Seconds .003138 Seconds
215 .2032 Seconds .0586 Seconds
220 6.397 Seconds 1.8152 Seconds

Table 4.2: Comparison of Key Generation Time of our proposed scheme with SNOW 3G

4.2.1 Hardware Implementation

Tools and Framework AMD Xilinx Vitis HLS

Target Device
Zynq 7000 ZC702 Evaluation Board
xc7z020-clg484-1

Table 4.3: Specification for Hardware Implementation

For our hardware implementation, we use an HLS (High-Level Synthesis) framework to

synthesise both baseline SNOW 3G and Proposed SNOW 3G on the device highlighted in
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Table 4.3. We generate z−primitive σ LFSR Configuration generated from the software and

use it in the implementation of our proposed SNOW 3G scheme on FPGA.

SLICES LUTs FFs Throughput
Metrics

0

2

4

6

8

0.33 0.30 0.42

9.33
Comparison (Baseline SNOW3G vs Proposed SNOW3G)

Fig. 4.1: Comparison of Hardware Implementation

Figure ?? illustrates the comparison between our proposed SNOW3G and the baseline

SNOW3G implemented on FPGA. Our analysis reveals significant resource savings in our

scheme, with reductions of 0.33, 0.3, 0.42 times in terms of Slices, LUTs, and FFs respec-

tively, compared to the baseline SNOW3G. Moreover, our scheme demonstrates a remarkable

9.3x improvement in throughput, attributable to our optimized algorithms.

4.3 Summary

In this chapter, we have introduced a z-primitive sigma-LFSR generation algorithm to generate

an m-companion matrix of m input-output and b number of delay blocks for word-based LFSR.

Besides, to hide the feedback polynomial over GF (2), we have multiplied a key-dependent

invertible matrix with the m-companion matrix. Finding the part of the multiplied matrix

shared as a public parameter is analogous to searching a symmetric matrix from the space of

2256×511. Our scheme can resist Fast Correlation Attacks (FCA). We have shown that applying
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our scheme to SNOW 2.0, SNOW 3G, and Sosemanuk can withstand FCA. Besides, our scheme

is robust against any known plaintext attacks based on the Feedback equation of the LFSR.
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Chapter 5

Removing the Public Parameter

In this chapter, we discuss methods of doing away with the public parameter in the scheme de-

scribed in chapter-4. In this scheme, the receiver cannot regenerate the feedback configuration

of the σ-LFSR from just the key. This is because some parameters in the initialization process

are randomly sampled. This includes the characteristic polynomial of the σ-LFSR and the

entries of the distance vector in Algorithm 5. The public parameter hides the feedback config-

uration using a matrix generated from the secret key. The receiver uses this parameter and the

secret key to recover the feedback configuration. However, sharing the public parameter incurs

a communication cost, which can be undesirable. The public parameter can be eliminated if the

randomly sampled elements in the initialization process are made key-dependent. The rest of

the chapter discusses methods of doing the same. During the configuration generation process,

the scheme’s LFSR and FSM are assumed to be identical to SNOW 3G. After the initialization

process, the LFSR is replaced with the proposed σ-LFSR configuration.

5.1 Generating a random primitive polynomial

In this section, we describe an algorithm that generates a random primitive polynomial that

acts as the characteristic polynomial of the σ-LFSR in the scheme proposed in the previous

chapter.

As already stated, the LFSR and FSM are initially identical to SNOW 3G. However, the

LFSR is initialized with a 256-bit key and a 256-bit IV (as against a 128-bit key in SNOW

3G). The output of the FSM is added to the output of the first delay block, and the scheme is

run for 32 clock cycles. In this phase, the output of the scheme is discarded. The state of the

system at the end of the process is considered the initial state for the characteristic polynomial

generation algorithm. The algorithm for this initialization process is given below.
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Algorithm 10 Initialization Algorithm

Input: Key K = (k0, · · · , k7) ∈ F256
2 where each ki ∈ F32

2 and Initialization vector IV =
(IV0, IV1, · · · , IV7) ∈ F256

2 where each IVi ∈ F32
2 .

1: procedure INIT-SNOW3G((K, IV ))
2: (D0, · · · , D15)← (k0⊕ 1, k1⊕ 1, k2⊕ 1, k3⊕ 1, k4⊕ 1, k5⊕ 1, k6⊕ 1, k7⊕ 1, k0⊕ IV0, k1⊕

IV1, k2 ⊕ IV2, k3 ⊕ IV3, k4 ⊕ IV4, k5 ⊕ IV5, k6 ⊕ IV6, k7 ⊕ IV7)
3: (R0

1, R
0
2, R

0
3)← (0, 0, 0)

4: for t← 1 to 32 do
5: F ← FSMupdate()
6: temp = α−1D11 ⊕D2 ⊕ αD0

7: (D15 · · · , D0)← (temp,D15, · · · , D1 ⊕ F )
8: end for
9: end procedure

In Algorithm 10, the Dis denote the outputs of the delay blocks, and the Ris denote the

values of the registers.

Starting with the state generated in Algorithm 10, the scheme is run identically to SNOW

3G. The functionality of SNOW 3G for a single clock pulse is given as follows:

Algorithm 11 SNOW-3G-KSG

Input:Last Updated Value of(D0, · · · , D15, R1, R2, R3)
Output:Keystream z at time t.

1: procedure Keystream-Generation((D0, · · · , D15, R1, R2, R3))
2: F ← FSMupdate()
3: z ← F ⊕D0

4: temp← α−1D11 ⊕D2 ⊕ αD0

5: (D15 · · · , D0)← (temp,D15, · · · , D1)
6: Output z
7: end procedure

The state vector is considered as a 512-bit integer. At each instant, the co-primeness

of this integer with 2512 − 1 is checked. As soon as an integer x co-prime to 2512 − 1 is

obtained, the minimal polynomial of Mx is calculated where M is the companion matrix of the

characteristic polynomial of the LFSR in SNOW 3G. This polynomial is primitive and is taken

as the characteristic polynomial of the σ-LFSR. This procedure is given in Algorithm (12).
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Algorithm 12 Randomised Primitive Polynomial of degree-512 Generation Algo-
rithm

1: procedure Gen Key Based Prim Poly((Mf , K, IV ))
2: (i, j)← (0, 0)
3: while i < 8 do
4: ki ← rand int(1, 232 − 1)
5: i← i+ 1
6: end while
7: while j < 8 do
8: IVj ← rand int(1, 232 − 1)
9: j ← j + 1
10: end while
11: INIT − SNOW3G(K, IV )
12: x← (D0 + (D1 << 32) + (D2 << 48) + · · ·+ (D15 << 480))
13: t← 33
14: while do{GCD(x, 2512 − 1)! = 1}
15: F ← FSMupdate()
16: temp = α−1D11 ⊕D2 ⊕ αD0

17: (D15 · · · , D0)← (temp,D15, · · · , D1)
18: x← (D0 + (D1 << 32) + (D2 << 48) + · · ·+ (D15 << 480))
19: t← t+ 1
20: end while
21: f1 ← Compute Minimalpoly(Mx)
22: end procedure
23: Output:Primitive Polynomial f1.

5.1.1 Time Complexity Analysis:

Algorithm 12 samples a random primitive polynomial from the set of ϕ(2512−1)
512

primitive poly-

nomials. The probability of an integer x being co-prime to 2512 − 1 is
ϕ(2512−1)

512
−1

2512
≈ 1

210
. Hence,

the average number of iterations of SNOW 3G needed to get the desired x is around 210.

Calculating Mx
f and its minimal polynomial has an average time complexity of O(n2log(n).

5.2 Finding the z-set

This section describes the key-dependent version of the Algorithm 5. We use the SNOW 3G

KSG algorithm as a random number generator.
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Algorithm 13 Key Dependent Algorithm to generate a z-set for g
Input:

1. A companion matrix Mg ∈ Fm×m
2 of primitive polynomial g.

2. Take the Key K2 ∈ F 128
2 and initialization vector IV2 ∈ F 128

2 .

1: procedure z − set(Mg, K2, IV2)

2: M1 ←


em1
0
0
...
0

 M2 ←


em1
0
0
...
0

 ∈ Fm×m
2 ▷ 0 is zero vector of dimension m

3: i← 2
4: while do i ̸= m
5: d← SNOW 3G((D0, D1, · · · , D15, R1, R2, R3))
6: v ← em1 ×Md

g

7: M1[i, :]← v
8: M2[i, :]← v
9: j ← 1
10:

11: while do j ̸= i
12: M2[i, :]←M2[i, :] +M2[i,m− j + 1] ∗M2[j, :]
13: j ← j + 1
14: end while
15: if M2[i,m− i+ 1] == 1
16: List.add(d)
17: i← i+ 1
18: endif
19: end while
20: end procedure
21: Output:

1. Full rank Matrix M1 ∈ Fm×m
2 .

2. The distance vector, List.

In Algorithm 13, we generate the z-set for a given primitive polynomial g. It uses SNOW-

3G-KSG to generate the distance values that build an invertible matrix. Now, we calculate the

average running time of Algorithm 13 to generate an invertible matrix. The probability of the

vector,v1, being linearly independent of em1 , is 1− 21−m. Hence, the average number of vectors

that need to be sampled to get such a v1 is 1
(1−21−m)

. Similarly, the average number of vectors

that need to be sampled to get a vi which is independent of em1 , v1, . . . , vi−1 is 1
(1−2i−m)

. This

number is always less than 2. Hence, on average, generating a full rank matrix requires less

than 63 iterations. Using the binary exponentiation algorithm, em1 ×Md
g requires m2log(m).

The following lemma proves that replacing the Mg by MT
g generates a valid distance vector.
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Lemma: 26 Consider a m-th degree primitive polynomial g(x). Let Mg be the companion

matrix of g. Let d1, d2, · · · , dm−1 be integers such that the following matrix R =


em1

em1 ×MT
g
d1

...

em1 ×MT
g
dm−1



is full rank. Then, the matrix R
′
=


em1

em1 ×Mg
d1

...

em1 ×Mg
dm−1

 is also full rank.

Proof: Mg and MT
g are similar to each other, i.e., there exists an invertible matrix T such that

MT
g = T−1 ×Mg × T . Hence, R can be written as follows,

R =


em1

em1 ×MT
g
d1

...

em1 ×MT
g
dm−1



=


em1

em1 × (T−1 ×Mg × T )d1

...

em1 × (T−1 ×Mg × T )dm−1



=


em1

em1 × T−1 ×Md1
g × T

...

em1 × (T−1 ×Mdm−1
g × T ).


Therefore,

R× T−1 =


em1 × T−1

em1 × T−1 ×Md1
g

...

em1 × (T−1 ×Mdm−1
g )



As a consequence of the characteristic polynomial of Mg being primitive, there exists α ∈
{1, 2m − 1} such that em1 × T−1 × Mα

g = em1 . Multiplying Mα
g in both sides of the above
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equation, we get,

R× T−1 ×Mα
g =


em1 × T−1 ×Mα

g

em1 × T−1 ×Md1
g ×Mα

g
...

em1 × (T−1 ×Mdm−1
g ×Mα

g )



=


em1

em1 × T−1 ×Mα
g ×Md1

g
...

em1 × (T−1 ×Mα
g ×Mdm−1

g )



=


em1

em1 ×Md1
g

...

em1 ×Mdm−1
g )

 = R′

As R, T and Mα
g are invertible matrices, R‘ = R× T−1 ×Mα

g is also invertible.

□

In Algorithms 13,5, em1 ×Md1
g can be calculated using the Binary exponentiation algorithm

and Algorithm-6. This method has a time complexity of O(m3). This can be reduced to O(m2)

by replacing Mg with MT
g . Recall that if α is a root of the primitive polynomial g, then the

set (1, α, α2, . . . , αm−1) is a basis of F2m as a vector space over F2. Observe that, in this basis,

em1 represents αm−1) and MT
g represents multiplication by α. Therefore, calculating em1 ×Md1

g

is equivalent to finding the expression of αm+d1−1. This calculation can also be done using the

Binary exponentiation algorithm. This involves performing m multiplications over Fm
2 . Each

such multiplication can be done in O(m) time using the Algorithm (15).

Algorithm 14 is the binary exponentiation algorithm for calculating αz (mod f(α))
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Algorithm 14 Algorithm to find αz (mod f(α))

Input:

� n-bit integer z.

1: procedure POW Z(z)
2: Coeff ← {z0, z1, · · · , zm−1} ▷ Binary representation of z
3: power ← {2}
4: while len(power) ≤ len(Coeff) do ▷ len(X) is the number of elements in the set X
5: x←Mult(power[len(power)− 1], power[len(power)− 1], P rimpoly)
6: power.insert(x)
7: end while
8: result← 1
9: i← 0
10: while i ≤ len(Coeff) do
11: IF(Coeff [i] == 1)
12: result←Mult(power[i], result, Primpoly)
13: EndIF
14: end while
15: end procedure
16: Return:result

The multiplication over F2m subroutine, Mult(a, b, Primpoly), used in Algorithm 14 is as

follows

Algorithm 15 Finite Field Multiplication over GF (2m)

1: procedure Mult((a, b, Primpoly))
2: result← 0
3: while b > 0 do
4: IF(b&&1)
5: result = result BITXOR a
6: EndIF
7: a = a << 1
8: IF(a&&(1 << n))
9: a = a BITXOR Primpoly
10: EndIF
11: b = b >> 1
12: end while
13: end procedure
14: Output: result

Given an integer 0 ≤ z ≤ 2m − 1, αz can be expressed as follows

αz =
m−1∏
i=0

αzi2
i

=
∏

0≤i≤m−1
zi=1

α2i (5.1)
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where (zm−1zm−2 . . . z1z0) is the m-bit binary representation of z. The first while loop in

Algorithm (14) (Steps 4 to 7) calculates α2i mod f(α) for 0 ≤ i ≤ m − 1. These values are

then used to calculate αz in the second while loop. Both these while loops invoke the mult

function given in Algorithm. Given polynomials p1(α) and p2(α) having degree less than m,

this function calculates p1(α) × p2(α) mod f(α). p1 and p2 are represented as m-bit binary

strings (unsigned integer) whose entries correspond to the coefficients of these polynomials.

The polynomial f (given as Primepoly in Algorithm (15) is similarly considered as an m-bit

string where the coefficient of αm is left out.

Here, a, b ∈ F2m and Primpoly is hexadecimal representations of f(x). For example, the

hexadecimal representation of f(x) = x4+x+1 would be 0x13. BITXOR denotes the bitwise

xor operation. Algorithm 15 is called m-times by the Algorithm 14. Hence, the time complexity

to find out αm−1+z is O(mlog2(m)).

5.3 Summary

In this chapter, we propose two key-based randomised algorithms, Algorithm 12 and Algorithm

13. By replacing the randomised algorithms of the previous scheme with these two algorithms,

we can initiate the encryption of the previous one without using the public parameter. We

also have reduced the average time complexity of both algorithms by an efficient finite field

multiplication over GF (2) by the Algorithm 15.
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Chapter 6

Future Work and Conclusion

In this chapter, we present a summary of the results that we found in our research and also

discuss the scope for future research.

6.1 Summary of the Results

Here, we demonstrated the application of the randomized feedback configuration of primitive

σ-LFSR in word-based stream cipher, SNOW 2.0 and SNOW 3G, to resist known plaintext

attacks.

In Chapter-3, we propose the σ-KDFC scheme and apply it to SNOW 2.0 to resist attacks. It

replaces the existing feedback configuration of the LFSR with a random feedback configuration

of a σ-LFSR generated by the 256-bit secret key of SNOW 2.0. It resists the algebraic attacks

[30, 31] by increasing the algebraic degree of the keystream equation. We theoretically analyze

the algebraic degree of the unknown gain matrices, which is a function of the initial state of

σ-LFSR. As this scheme hides the feedback equation of SNOW 2.0, it also resists attacks like

Distinguishing Attacks, Fast Correlations Attacks, Guess and Determine Attacks and Cache

Timing Attacks.

In Chapter-4, we mainly focus on attacks on Word Based Ciphers, where the LRR over

GF (2) is shared publicly. Fast Correlation Attack by [1] is such a kind of attack. Here,

we propose a z-primitive σ-LFSR generation algorithm. Further, this algorithm depends on

a randomly sampled primitive polynomial of degree 512 and z-set of a primitive polynomial

of degree 32. In addition, the random z-primitive σ−LFSR configuration is masked by a

key-dependent secret matrix and shared as a public parameter to the receiver. The receiver

can access the configuration matrix with the help of the scheme’s private key and the public

parameter. We applied this scheme on SNOW 3G, and it resists all kinds of Known plaintext

attacks.

In Chapter-5, we modified the previous scheme by removing the public parameter. As shar-
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ing the public parameter may incur communication costs, we generate a primitive polynomial

of degree 512 and a z-set of the primitive polynomial degree 32 using the 256-bit key of SNOW

3G initialization algorithm.

6.2 Scope for Future Work

The work presented in this thesis can be extended to include the following aspects:

� The main problem in the σ−KDFC scheme is that the system’s running time in the

initialization phase of the cipher may take some time. The efficient implementation of

the Linear solver and the inverse of the Hankel matrix computation may be taken as

further studies.

� Vector-Matrix multiplication is another problem in σ−LFSR implementation. Traditional

SNOW ciphers are implemented using look-up tables, which is faster than our scheme.

However, look-up table-based finite field multiplication may cause Fault attacks and Cache

timing attacks. Finding σ−LFSR configuration with two or three nonzero gain matrices

may be taken as a future study.

� Finding the configuration matrices over GF (2m) from the search space of |GL(m,GF (2))|
2m−1

z-primitive σ-LFSR and implementing the finite field multiplication efficiently is another

interesting problem.

� Designing a public key cryptosystem using our proposed scheme would be another problem

to study.

86



Publications

1. Nandi S, Krishnaswamy S, Zolfaghari B, Mitra P. ”Key-dependent feedback configuration

matrix of primitive σ–lfsr and resistance to some known plaintext attacks”. IEEE Access.

2022 Jan 7;10:44840-54.

2. ”Recent Results on Some Word Oriented Stream Ciphers: SNOW 1.0, SNOW 2.0 and

SNOW 3G”,Nandi, Subrata and Krishnaswamy, Srinivasan and Mitra, Pinaki ,2022,Inte-

chOpen.

3. Nandi, Subrata, Satyabrata Roy, Srinivasan Krishnaswamy, and Pinaki Mitra. ”IEMS3:

An Image Encryption Scheme Using Modified SNOW 3G Algorithm.” In International

Conference on Network Security and Blockchain Technology, pp. 161-172. Singapore:

Springer Nature Singapore, 2023.

4. Subrata Nandi, Srinivasan Krishnaswamy, Nitesh Narayana GS et al. Chakravyuha: A

Scheme to Resist Fast Correlation Attack for Word Oriented LFSR based Stream Cipher,

11 April 2024, PREPRINT (Version 1) available at Research Square.(Under Review in

Design Codes and Cryptography) [https://doi.org/10.21203/rs.3.rs-4228602/v1]

87



88



References

[1] X. Gong and B. Zhang, “Fast computation of linear approximation over certain composi-

tion functions and applications to snow 2.0 and snow 3g,” Designs, Codes and Cryptogra-

phy, pp. 1–25, 2020.

[2] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (blowfish),” in

International Workshop on Fast Software Encryption. Springer, 1993, pp. 191–204.

[3] J. Daemen and V. Rijmen, “The block cipher rijndael,” in International Conference on

Smart Card Research and Advanced Applications. Springer, 1998, pp. 277–284.

[4] C. Sanchez-Avila and R. Sanchez-Reillol, “The rijndael block cipher (aes proposal): a

comparison with des,” in Proceedings IEEE 35th Annual 2001 international carnahan con-

ference on security technology (Cat. No. 01CH37186). IEEE, 2001, pp. 229–234.

[5] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,

Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,” in Crypto-

graphic Hardware and Embedded Systems-CHES 2007: 9th International Workshop, Vi-

enna, Austria, September 10-13, 2007. Proceedings 9. Springer, 2007, pp. 450–466.

[6] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The

simon and speck families of lightweight block ciphers,” cryptology eprint archive, 2013.

[7] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F. Regaz-

zoni, “Midori: A block cipher for low energy,” in Advances in Cryptology–ASIACRYPT

2015: 21st International Conference on the Theory and Application of Cryptology and In-

formation Security, Auckland, New Zealand, November 29–December 3, 2015, Proceedings,

Part II 21. Springer, 2015, pp. 411–436.

[8] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher proposal: Grain-

128,” in 2006 IEEE International Symposium on Information Theory. IEEE, 2006, pp.

1614–1618.

[9] C. De Canniere and B. Preneel, “Trivium,” in New Stream Cipher Designs: The eSTREAM

Finalists. Springer, 2008, pp. 244–266.

89



[10] S. Babbage and M. Dodd, “The stream cipher mickey 2.0,” ECRYPT Stream Cipher, pp.

191–209, 2006.

[11] V. Amin Ghafari and H. Hu, “Fruit-80: a secure ultra-lightweight stream cipher for con-

strained environments,” Entropy, vol. 20, no. 3, p. 180, 2018.

[12] E. Dubrova and M. Hell, “Espresso: A stream cipher for 5g wireless communication sys-

tems,” Cryptography and Communications, vol. 9, pp. 273–289, 2017.

[13] G. Paul and S. Maitra, RC4 stream cipher and its variants. CRC press, 2011.

[14] G. Rose and P. Hawkes, “The t-class of sober stream ciphers,” Unpublished manuscript.

http://www. home. aone. net. au/qualcomm, 1999.

[15] P. Ekdahl and T. Johansson, “Snow-a new stream cipher,” in Proceedings of First Open

NESSIE Workshop, KU-Leuven. Citeseer, 2000, pp. 167–168.

[16] P. Ekdahl and T. Johansson, “A new version of the stream cipher snow,” in Interna-

tional Workshop on Selected Areas in Cryptography. St. John’s, Newfoundland, Canada:

Springer, August 2002, pp. 47–61.

[17] G. G. Rose and P. Hawkes, “Turing: A fast stream cipher,” in International Workshop on

Fast Software Encryption. Lund, Sweden: Springer, February 2003, pp. 290–306.

[18] G. Orhanou, S. El Hajji, and Y. Bentaleb, “Snow 3g stream cipher operation and com-

plexity study,” Contemporary Engineering Sciences-Hikari Ltd, vol. 3, no. 3, pp. 97–111,

2010.

[19] F. Xiu-tao, “Zuc algorithm: 3gpp lte international encryption standard,” Information

Security and Communications Privacy, vol. 12, 2011.

[20] P. Ekdahl, T. Johansson, A. Maximov, and J. Yang, “A new snow stream cipher called

snow-v,” IACR Transactions on Symmetric Cryptology, pp. 1–42, 2019.

[21] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,

L. Granboulan, C. Lauradoux, M. Minier et al., “Sosemanuk, a fast software-oriented

stream cipher,” in New stream cipher designs. Springer, 2008, pp. 98–118.

[22] P. Ekdaahl, T. Johansson, A. Maximov, and J. Yang, “A new snow stream cipher called

snow-v,” IACR Cryptology ePrint Archive, Report 2018/1143, 2018.

[23] G. Zeng, W. Han, and K. He, “High efficiency feedback shift register: sigma-lfsr.” IACR

Cryptology ePrint Archive, vol. 2007, p. 114, 2007.

90



[24] H. Niederreiter, “The multiple-recursive matrix method for pseudorandom number gener-

ation,” Finite Fields and their Applications, vol. 1, no. 1, pp. 3–30, 1995.

[25] G. Zeng, K. He, and W. Han, “A trinomial type of σ-lfsr oriented toward software imple-

mentation,” Science in China Series F: Information Sciences, vol. 50, no. 3, pp. 359–372,

2007.

[26] B. Tsaban and U. Vishne, “Efficient linear feedback shift registers with maximal period,”

Finite Fields and Their Applications, vol. 8, no. 2, pp. 256–267, 2002.

[27] S. R. Ghorpade, S. U. Hasan, and M. Kumari, “Primitive polynomials, singer cycles and

word-oriented linear feedback shift registers,” Designs, Codes and Cryptography, vol. 58,

pp. 123–134, 2011.

[28] S. Krishnaswamy and H. K. Pillai, “On multisequences and their extensions,” arXiv

preprint arXiv:1208.4501, 2012.

[29] G.-M. Tan, G. Zeng, W.-B. Han, and X.-H. Liu, “Construction and enumeration of a class

of primitive sigma-lfsr sequences,” Ruanjian Xuebao/Journal of Software, vol. 23, no. 4,

pp. 952–961, 2012.

[30] O. Billet and H. Gilbert, “Resistance of snow 2.0 against algebraic attacks,” in Cryptogra-

phers’ Track at the RSA Conference. San Francisco, Ca, USA: Springer, February 2005,

pp. 19–28.

[31] N. T. Courtois and B. Debraize, “Algebraic description and simultaneous linear approxi-

mations of addition in snow 2.0.” in International Conference on Information and Com-

munications Security. Springer, 2008, pp. 328–344.

[32] D. Watanabe, A. Biryukov, and C. De Canniere, “A distinguishing attack of snow 2.0 with

linear masking method,” in International Workshop on Selected Areas in Cryptography.

Springer, 2003, pp. 222–233.

[33] K. Nyberg and J. Wallén, “Improved linear distinguishers for snow 2.0,” in International

Workshop on Fast Software Encryption. Graz, Austria: Springer, March 2006, pp. 144–

162.

[34] J.-K. Lee, D. H. Lee, and S. Park, “Cryptanalysis of sosemanuk and snow 2.0 using linear

masks,” in International Conference on the Theory and Application of Cryptology and

Information Security. Springer, 2008, pp. 524–538.

91



[35] B. Zhang, C. Xu, and W. Meier, “Fast correlation attacks over extension fields, large-unit

linear approximation and cryptanalysis of snow 2.0,” in Annual Cryptology Conference.

Springer, 2015, pp. 643–662.

[36] G. Leander, E. Zenner, and P. Hawkes, “Cache timing analysis of lfsr-based stream ci-

phers,” in IMA International Conference on Cryptography and Coding. Springer, 2009,

pp. 433–445.

[37] S. Kiyomoto, T. Tanaka, and K. Sakurai, “K2: a stream cipher algorithm using dynamic

feedback control.” in Secrypt, 2007, pp. 204–213.

[38] S. Ma and J. Guan, “Improved key recovery attacks on simplified version of k2 stream

cipher,” The Computer Journal, vol. 64, no. 8, pp. 1253–1263, 2021.
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