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Abstract

Steganography is an art of covert communication where a message

is hidden in some natural-looking objects such that no one can even

suspect the ongoing communication. It is an ancient practice and

is probably originated in Greek mythology. However, presently, the

secret message is communicated using a cover of digital media like

images, video, text, etc. On the other hand, steganalysis is a science

for detecting such hidden communication. In this dissertation, we

have proposed few steganalysis algorithms which can detect some very

recent embedding schemes using the deep learning models.

The conventional image steganalysis methods generally have three

primary steps: preprocessing, feature extraction, and classification.

It is evident from the literature that features from the steganographic

noise domain are relatively more effective for steganalytic detection.

Accordingly, few recent steganalysis schemes extract steganographic

noise using high pass filtering. They assume that embedding noise

generally presents in the image’s high-frequency components, but this

assumption may not always be valid. Besides, very recently, deep

learning-based image steganalysis schemes have become popular for

their increasing detection performance. It is also observed that a

proper balance between the width and depth of a deeper architecture

may improve the detection performance. These observations mainly

motivate us to propose few steganalysis algorithms which are primar-

ily based on deep neural models. The four major contributions of this

dissertation are as follows.

As we stated earlier, steganalytic classifiers generally work well on

the features extracted from the noise domain. It is observed that



steganographic noise may not always reside in the high-frequency zone

of the cover image. For example, a recent embedding scheme called

Clustering Modification Directions (CMD) follows a typical distribu-

tion as it tries to embed in neighboring areas with similar embedding

directions. In the first part of our first contributory chapter, we pro-

pose a steganalytic approach to break the CMD embedding scheme.

Most of the recent deep learning-based methods use fixed kernel-based

high pass filters to extract steganographic noise, which may not al-

ways be very accurate, especially when embedding noise spreads in

the low-frequency zone. In the second part of the first chapter, we

have introduced a neural network-based dynamic filter kernel. We

show that such a denoising kernel can extract steganographic noise

more efficiently than fixed kernel-based filters. Subsequently, we pro-

posed a deep classifier trained on the noise residual obtained through

our proposed denoising kernel and shown that proposed steganalysis

outperforms recent state-of-the-art schemes.

Intuitively, steganographic noise can be detected better if features are

learned from different contextual representations. For example, sup-

pose steganographic noise spreads in a relatively homogeneous region.

In that case, it can be better tracked with the higher scale space,

while noise in the highly textured zone is detected well with lower

scale space. In the second contributory chapter, two Convolutional

Neural Network (CNN)-based methods are proposed, which exploit

different contextual representations of the stego image for tracing the

embedding more precisely.

The first method uses various sized filters to capture useful stegan-

alytic features using densely connected blocks. The proposed model

has no fully connected network, enabling testing any size of images

regardless of the image size used for training. It is experimentally

shown that the proposed scheme outperformed the existing methods.

In the second method, a set of thirty denoising kernels are learned to

compute the noise residual. A multi-contextual detection model with



a self-attention mechanism is proposed. The model is trained on the

noise residual for accurate detection and is able to outperform the

state-of-the-art detectors.

In the recent literature on the deep-learning, it is observed that a

balance between the width and depth of a deep model may increase

the detection performance effectively. In this line of thought, we have

used the concept of Fractal Net as a steganalytic detector in the third

contributory chapter. Experimentally, it is found that steganalytic

detection of the network increases if the width of the network is in-

creased in a particular proportion to the depth. The proposed deep

network is constructed by repeating a basic fractal block so that a

balance between the depth and width is maintained. A comprehen-

sive set of experiments reveals that the proposed model outperformed

the state-of-the-art methods.

In the final contributory chapter, we have proposed a steganographic

embedding model as a data hiding application where we have used

a Generative Adversarial Network (GAN)-based embedding model to

hide an image within another image. The proposed method ensures

visual quality, statistical un-detectability, and noise-free extraction

by incorporating the perceptual loss function and adversarial train-

ing. The proposed framework is tested on various datasets, and re-

sults have shown notable improvement (∼ 1 dB) over related existing

methods.

Finally, the thesis is concluded by summarizing the significant contri-

butions and proposing some relevant future research directions.
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Chapter 1

Introduction

The word steganography is originated from the Greek word “stegano-graphia,”

which means “covert-writing.” Steganography is an art of covert communica-

tion where a secret message is hidden in an innocent-looking cover medium in

such a way that nobody except sender and receiver can even suspect the secret

communication.

On the other hand, steganalysis is a science to detect the presence of a secret

message in an innocuous-looking stego (cover + secret message) media.

Steganography has been studied for centuries. The first steganography tech-

nique was reported in the fifth century BC by Herodotus, when people used to

write secret messages on the wooden table covered with wax over it, the messages

tattooed on the slaves shaved head and sent when hair regrew [22, 23]. In 1983,

Gustavus Simmons published the first paper on steganography which illustrates

steganography as the so-called prisoners’ problem [24].

The prisoners’ problem: Alice and Bob are two prisoners locked up in separate

cells and wish to create an escape plan. Their communication is allowed by

means of sending messages through a trusted courier, as long as they do not

discuss escape plans. The warden eve inspects all the communication taking

place through the courier. If Eve finds any sign of conspiracy, she will hinder

the escape plan by putting both of them in solitary confinement. Alice and Bob

1



succeed if the communication leads to planning their escape without raising Eve’s

suspicion.

In the early 1990s, with advancements in storage technology and seamless

communication, digital files became the prime choice of steganographers to hide

secret messages within the digital medium.

1.1 Steganography system

Figure 1.1: A typical steganograpy system.

A typical steganography system is shown in Figure 1.1. In general, a steganog-

raphy system consists of two components - embedding (Em) and extraction (Ex)

algorithms. The embedding algorithm takes three inputs - the cover object (c)

where to embed the message, the secret message (m) to be communicated, and

the secret key (k). The output of the steganographic embedding is known as the

stego object (s). The extraction algorithm takes two inputs - the stego object

(s) and the secret key (k). The extraction algorithm extracts the hidden message

(m) from the stego object. The mathematical representation of the embedding

and extraction process is given by eq. (1.1).

Em : c⊗m⊗ k → s

Ex : s⊗ k → m
(1.1)
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1.2 Steganography in Digital Images

Digital images are one of the most popular sources of cover objects due to their fre-

quent usage over the Internet. Till 2017, 46% of total tools available for steganog-

raphy over the Internet hide messages in digital images [4]. Image steganography

is the process of hiding a secret message within an image (known as the cover

image). The cover image with a hidden message is called a stego image. The

primary goal of image steganography is to hide a secret message within a cover

image such that the Human Visual System (HVS) can not perceive the change

due to the embedding.

1.2.1 Characteristics of Steganography

The three key characteristics of steganography methods are imperceptibility, ca-

pacity, and robustness [25].

• Imperceptibility: It means both visual and statistical undetectability.

For visual undetectability, there should not be any visual artifacts for em-

bedding with respect to the HVS. For statistical undetectability, we have

to ensure that the change in the natural image statistics due to embed-

ding should be low so that any statistical detection tool can’t distinguish

between the cover and stego image.

• Capacity: The embedding capacity (also called payload) is the amount of

information that can be hidden in the cover image without degrading its

quality. In image steganography, the payload is usually measured in terms

of bits per pixel (bpp).

• Robustness: Robustness refers to the strength of the object to resist ste-

ganalytic attacks. In other words, it denotes the degree of difficulty to

destroy the hidden information without destroying the cover image. For

example, the extraction process should obtain the hidden message even if
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the stego image has undergone various image processing operations such as

rotation, cropping, etc.

1.2.2 Types of Steganography

Based on the embedding domain, the image steganography methods can be

broadly divided into two types - spatial-domain steganography and transformed-

domain steganography.

Spatial-domain steganography: In the spatial domain, images are repre-

sented as pixel space. This type of steganography modifies the individual pixel

values of the cover image to hide the secret information in the cover image. The

spatial-domain steganography allows the steganographer to hide relatively large

messages. LSB embedding is an example of spatial-domain steganography.

Transform-domain steganography: In this scheme, the cover image is first

transformed to a transform space (e.g., DCT), then the secrete message is embed-

ded to transform coefficients. The transform-domain methods offer high security,

strong imperceptibility, and robustness.Examples of transform-domain schemes

are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT),

Discrete Fourier Transform (DFT), etc.

1.3 Steganalysis in Digital Images

The steganalysis in digital images refers to analyzing innocuous-looking images

to detect the trace of hidden information. Steganalysis can be thought of as the

action performed by the warden (Eve) in the prisoners’ problem. Specifically, the

warden can be categorized into two types - active and passive warden.

The active warden technique deliberately checks and modifies the object in

transmission to destroy the hidden information, even if it is clean. In the pas-

sive warden technique, the object in the transmission is examined to determine
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whether it contains a piece of covert information. Active and passive wardens are

shown in Figures 1.2 and 1.3, respectively.

Figure 1.2: The Active warden technique. The object is distorted before sending to
the receiver.

Figure 1.3: The Passive warden technique. The hidden infomation is detected when
stego object is transmitted.

1.3.1 Types of Steganalysis

Based on the steganographic method’s prior knowledge, steganalysis methods can

be categorized into two types- targeted/specific and blind/universal.

Targeted steganalysis: In the targeted method, the steganalyst knows the

steganographic embedding algorithm used for hiding the message. In general,

5



Figure 1.4: A typical steganalysis process.

the targeted methods lookup for specific distortions.

Blind steganalysis: Blind methods do not use any prior knowledge about the

embedding algorithm used. These methods are useful when the source of the

object under analysis is unknown. In practice, blind methods are more generic

tools for detection but may not work well for every steganographic scheme.

1.3.2 Steganalysis Process

Every steganalysis follows a standard procedure for detecting the trace of hidden

information. First, feature extraction is performed to extract all the essential

features required for classifying the given image as stego or cover. Second, based

on the extracted features, a classification model decides whether the given image

is stego or cover. A typical steganalysis process is shown in Figure 1.4.

1.3.3 Applications

Image steganography covers a broad area of applications for security and privacy:

• Medical Imaging: Steganography is used to embed the patient’s record

into the image, reduce transmission time, and provide protection of infor-

mation [26].

• Military Agencies: Steganography is known to be used by military agen-

cies to provide anonymous communication over the Internet [27].
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• Intelligence Agencies: Intelligence agencies use steganography for the

safe transmission of confidential data [28].

• Smart Identity cards: In smart identity cards, the user’s personal details

are embedded in the photograph itself [27].

• Document Authentication: Steganography allows storing additional in-

formation such as owner identity and the document’s subject in the docu-

ment itself for verification [27].

• Steganographic File systems: Steganographic file system safely masks

given files in a file system such that an eavesdropper will not be able to

guess their presence without the corresponding access keys, even though the

eavesdropper is thoroughly familiar with the file system and has obtained

complete access to it [29].

1.4 Literature Survey

This section presents a literature survey of the works related to steganography

and steganalysis in the spatial domain.

1.4.1 Steganography Schemes

Steganography systems have evolved over the years to improve security of the

information exchange. In the spatial-domain schemes, the covert message is

embedded by replacing redundant pixel bits of the image. The steganographic

schemes can be roughly categorized as the Prior arts: Least Significant Bit (LSB)

embedding/replacement etc., Recent Methods: Cost function-based embedding,

adaptive embedding, etc., and Deep-Learning based techniques: These methods

utilize CNN and GAN to design steganographic frameworks.

7



1.4.1.1 Least Significant Bit (LSB) steganography

Least Significant Bit (LSB) steganography takes advantage of the fact that a

small perturbation to a pixel of an image is not perceivable by the HVS. In this

method, the least significant bit of the selected pixel is replaced with the message

bit. The selection of the pixels for replacement is either successive or pseudo-

random. In successive selection, the consecutive pixels of the cover image are

replaced with the message bits. In pseudo-random selection, a key is used as a

seed for a Pseudo-Random Number Generator (PRNG). The PRNG generates a

random number that specifies a pixel to be modified. Nonetheless, the stego image

embedded by the LSB scheme is susceptible to noise and can be easily destroyed

by any modification to the stego image. A variety of LSB steganography can be

found in [23,30–33].

1.4.1.2 Content-adaptive Steganography

The idea of content-adaptive methods is evolved in recent times. The objective of

these methods is to embed a secret message by minimizing a heuristically defined

distortion function. The development of these methods is usually driven by the

detection performance of steganalysis [34]. In these steganography algorithms,

the distortion caused by the embedding modifications relies on the local image

content, which results in high embedding modification in the texture regions and

low in the smooth regions of the image. Consequently, the name is content-

adaptive steganography. An example of the distortion function used by these

methods is given in eq. (1.2).

D(X, Y ) =
M
∑

i=1

N
∑

j=1

ρij|Xij − Yij|, (1.2)

where ρij is the costs of modifying pixel Xij to Yij, and X and Y , represent

the cover image and the corresponding stego images, respectively, each with size

M ×N . The embedding of the message to the cover image is done by minimizing
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the distortion function, D(X, Y ), using Syndrome-Trellis Codes (STC) [35]. Some

of the recent content-adaptive steganography methods are listed below.

HUGO: Highly Undetectable steGO (HUGO) [6] is a secure steganography

method that uses high-dimensional image models. HUGO used a steganalysis

method called SPAM [13] to compute the high-dimensional features. The dis-

tortion function is a weighted sum of differences of SPAM features of cover and

corresponding stego images. This design of HUGO enables the embedding to take

place primarily in the textured area and edges.

WOW: Wavelet Obtained Weights (WOW) [5] utilizes a collection of direc-

tional high-pass filters to compute the directional residuals and determine the

content around each pixel in different directions. This method measures and ag-

gregates the embedding impact for each directional residual, thereby forcing the

high distortion to the predictable areas in at least one direction (clean edges and

smooth regions) and low distortion to the unpredictable regions in every direction

(texture regions). The WOW algorithm is highly adaptive and more secure than

the HUGO.

S-UNIWARD: Spatial UNIversal WAvelet Relative Distortion (S-UNIWARD)

[15] used a so-called universal distortion function that does not depend on the

embedding domain. The distortion is computed as a sum of relative changes

of wavelet coefficients. The S-UNIWARD utilizes the wavelet filter bank of the

WOW steganography. This method is designed for spatial as well as JPEG do-

mains.

HILL: HIgh-Low-Low (HILL) [18] steganography uses the smoothed residual to

model the embedding distortion, unlike WOW and S-UNIWARD, where weighted

filter residual difference is used. The HILL algorithm uses a high-pass filter (Ker-

Bohme filter eq. (1.5)) followed by low-pass filters to identify the unpredictable
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regions. The HILL steganography showed better performance against SRM ste-

ganalysis as compared to HUGO, WOW, and S-UNIWARD.

CMD steganography: Clustering Modification Directions (CMD) steganog-

raphy [36] works as a wrapper for steganography schemes by dynamically varying

the embedding costs to attain a lower detection rate. The dynamic cost function

allows the algorithm to take advantage of mutual embeddings and clustering of

similar distortions. This clustering ensures that the embeddings in neighboring

pixels are of similar nature (±1), which increases the steganographic security.

The CMD approach is very general and robust and can be applied to any exist-

ing additive steganographic algorithm, such as WOW [5], S-UNIWARD [15], and

HILL [18]. When the wrapping of CMD is applied over any of the aforementioned

steganography schemes, the steganalytic performance of SRM [14] degrades by

∼ 5%.

1.4.1.3 Steganography Using GAN

With the recent evolution of deep-learning, researchers have explored various as-

pects of deep-learning; specifically, Generative Adversarial Network (GAN) [37],

to solve steganographic problems, such as designing embedding distortion func-

tions, generating secure cover images for embedding, hiding the message in im-

ages, etc.

Embedding Distortion Learning Using GAN: Tang et al. proposed the

ASDL-GAN [38] for automatic learning of steganographic distortion function.

ASDL-GAN uses a generator network with 25 layers of the CNN model, which

predicts the embedding change probabilities for every cover image pixel. The

predicted probabilities are used as embedding distortion. The XuNet [39] is used

as the discriminator of ASDL-GAN to ensure the undetectability against state-

of-the-art detectors. However, the performance of the ASDL-GAN could not

compete with that of the handcrafted steganography scheme S-UNIWARD. In
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a similar direction, Yang et al. proposed a UT-GAN [40] to predict embedding

change probability from a given cover image. The UT-GAN uses U-Net [41] ar-

chitecture as the generator and modified XuNet architecture as the discriminator.

The authors showed that the UT-GAN outperformed the steganography schemes

ASDL-GAN, S-UNIWARD, HILL, and MiPOD.

Secure Cover Generation Using GAN: Volkhonskiy et al. [42] devised a

GAN-based model called SGAN to generate container/cover images from a noise

distribution. The generated images are embedded using ±1 embedding to obtain

corresponding stego images. Haichao et al. [43] proposed a model similar to

SGAN [42], namely SSGAN. The SSGAN model uses Wasserstein distance as a

loss function [44] for training. The steganalyzer used in SSGAN is well known

(one of the early CNN-based steganalyzers) GNCNN [2]. The authors showed

that the SSGAN generated cover is more secured than SGAN. The cover images

produced by [42, 43] are more secure than the ordinary cover images. However,

the generated images can be easily suspected as they look unrealistic. Therefore,

these images may not be used as the cover image in practice.

Information Hiding Within an Image Using GAN: Hayes and Danezis

[45] proposed a generative adversarial model comprised of a generator, a stegan-

alyzer, and an extractor. The generator hides an n-bit binary message within a

cover image, and the extractor retrieves the secret message from the stego image.

Baluja [20] used an adversarial training approach to hide one image in another

image of the same size. In [21], Baluja extended this approach to hide multiple

images in an image. This approach only uses MSE loss for both embedder and

extractor and has not used any discriminator to impose undetectability. Zhang

et al. proposed ISGAN [46] to hide and recover a grayscale image within the

Y-channel of an image using GAN. ISGAN used SSIM and MS-SSIM loss for

training to improve the imperceptibility. Zhu et al. [47] used a GAN-based net-

work to embed and extract a bit string encoded message in the image. Zhang et
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al. [48] introduced SteganoGAN to hide/extract binary data to/from images. The

methods [47, 48] have not used extractor loss in training, resulting in improper

embedding and might show visual artifacts in generated stego images.

1.4.2 Steganalysis Schemes

Steganalysis is the complementary process of steganography, where the goal of

steganalysis is to detect the traces of hidden messages in the innocuous-looking

stego object. Steganalysis involves feature extraction followed by classification

between the cover and stego features. Based on the feature representation, the

steganalysis methods can be broadly categorized into two types, namely, Hand-

crafted and Deep feature-based.

1.4.2.1 Handcrafted Feature-based Steganalysis

Handcrafted feature-based methods exploit the fact that the recent content-adaptive

steganography schemes perform high embedding to the texture areas and low to

the smooth regions of the image. Consequently, these methods employ various

handcrafted high-pass filters to extract the features from the texture regions.

These features are then used to train machine learning-based classifiers to detect

steganographic embedding traces in the image.

Pevny et al. devise Subtractive Pixel Adjacency Matrix (SPAM) [13] for ste-

ganalysis in digital images. SPAM method identified the deviations between

neighboring pixels, which are due to the steganographic perturbation. This model

applied a high-pass filter to suppress the image component and expose the stego

noise. A higher-order Markov chain [49] is used to model the dependencies be-

tween the neighboring pixels of the noise residual. The resulting transition prob-

ability matrix of the Markov chain is used as a feature to train a soft-margin

Support Vector Machine (SVM) [50] with a Gaussian kernel for classifying the

image as cover or stego.

Fridrich & Kodovsky devised Spatial Rich Model (SRM) [14] for steganalysis.

The objective of SRM is to capture various dependencies among the neighboring
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pixels, which enables the model to detect embedding changes in the texture re-

gions. SRM uses various small submodels to capture these dependencies. Each

submodel is created from noise residual, Rij, computed using high-pass filters as

follows:

Rij = X̂ij(Nij)− c.Xij, (1.3)

where c denotes the order of residual, Nij is the neighbors of pixel Xij, Xij 6= Nij,

and X̂ij(.) is a predictor of c.Xij defined over Nij. The set {Xij +Nij} is known

as residual’s support. The residuals are quantized and truncated as follows:

Rij ← round

(

trunT

(

Rij

q

)

)

, (1.4)

where trunT (x) = x if x ∈ [−T, T ], and q > 0 denote the quantization parameter.

The truncation step limits the dynamic range of residuals which results in the

reduced dimensionality of co-occurrence matrices [14]. The quantization causes

the residual more sensitive to the embedding modification in spatial discontinu-

ities such as edges and textures. The co-occurrence matrix (of order D = 4) is

computed from the quantized residual (with T = 2, and q ∈ {1, 1.5, 2}) of entire

image. This co-occurrence matrix is used as an SRM feature vector to train the

Ensemble Classifier (EC) [17]. The EC used with SRM features consists of L

Fischer Linear Discriminant (FLD)s as base learners due to their simplicity and

fast training. The optimal value of L is automatically learned during ensemble

training. The decisions of base learners are aggregated by majority voting. SRM

is one of the successful steganalyzers. Other different variations of SRM, such

as CRMQ1 [51], JRM [52], etc., were subsequently reported in the literature.

Though handcrafted feature-based schemes are known to detect state-of-the-art

steganalysis schemes successfully, their detection performance relies heavily on

handcrafted filters’ design.

1.4.2.2 Deep Feature-based Steganalysis

In recent times, deep learning methods, specifically, Convolutional Neural Net-

works (CNNs), have shown tremendous success for many computer vision applica-
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tions, such as object detection [53], object tracking [54], image classification [55],

medical imaging [56], etc. This success drove the researchers to explore CNN for

steganalytic classification.

Tan & Li [57] proposed a deep learning architecture based on a nine-layered

Stacked Convolutional Auto-Encoder (SCAE) to simulate the SRM for stegana-

lytic detection. For example, the first layer consists of forty kernels, initialized us-

ing a high-pass filter (KV filter) given in eq. (1.5). The method used max-pooling

in the subsequent layers for dimensionality reduction. Finally, a fully-connected

layer, followed by a softmax layer, is used for classification. The detection perfor-

mance of the method was inferior to that of the handcrafted feature-based SRM.

This method is the first work that used deep learning for steganalysis. Therefore,

various design considerations are not taken into account, such as avoiding the use

of max-pooling.

KV =
1

12
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







(1.5)

Qian et al. [2] proposed a shallow CNN architecture with a Gaussian activation

function, called GNCNN, to model the cover signal as 0 and stego signal as +1 or

−1. GNCNN used the KV filter in preprocessing step to increase the signal-to-

noise ratio (SNR), thereby suppressing image content and exposing noise content

in preprocessing step to allow better extraction of stego noise. GNCNN was the

first CNN model, which attained steganalytic detection close to the SRM. How-

ever, the shallower architecture of GNCNN might not have good discriminative

power for steganalytic detection.

Xu et al. [39] devised a structural design of CNN (XuNet), which includes

absolute layers (ABS) for better modeling of the stego noise (negative as well

as positive embeddings) and Batch Normalization (BN) [58] to evade the CNN

model from falling in the local minima when training. XuNet also used the
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KV filter in preprocessing step of the network. The structural design of XuNet

enabled the model to attain performance competitive to the SRM.

Qian et al. [59] presented a transfer learning paradigm, where the model

(GNCNN) is trained using images embedded with a high payload. The trained

weights are then finetuned using lower payloads. The steganalytic detection per-

formance of the model was better than that of SRM on WOW steganography

with low embedding rates.

Ye et al. [60] introduced a CNN architecture (YeNet) where layers were ini-

tialized with the thirty high-pass filters of SRM and TLU activation to limit

the residual within a confined range. They also used data-augmentation [61] as

regularization to improve the training of the steganalyzer.

Li et al. [16] proposed a steganalyzer with a diverse-activation-module called

ReSTNet. ReSTNet was inspired by the observation that increasing the width of

the network boosts the steganalytic detection performance. The ReSTNet archi-

tecture is formed by combining three pre-trained CNNs. Each CNN preprocessed

the input image using a different type of filter - Gabor [62], SRM linear, and

non-linear filters and also used distinct activation functions - ReLU, Sigmoid,

and TanH. This diverse design of the model performed better than the existing

approaches.

Yedroudj et al. [63] proposed a steganalyzer by fusing state-of-the-art detec-

tors. Yedroudj-Net used thirty filters from SRM in the preprocessing step, similar

to YeNet. After preprocessing, the model uses five convolution layers for feature

learning, followed by a fully-connected network.

Boroumand et al. [4] proposed an end-to-end deeper CNN model that utilizes

skip connections [64] for steganalytic detection. The first seven layers of the model

compute the noise residuals, and the rest five layers performed the steganalytic

detection using the computed noise residuals. Unlike other existing methods, this

is the first method, which does not use any fixed high-pass filter for preprocessing.
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1.5 Motivation and Objective

Steganography is a well-explored area where plenty of embedding schemes and

counter detection (steganalysis) schemes are reported in the last two decades.

With the emergence of the deep-learning paradigm, embedding and corresponding

detection methods are a bit modified. Thus, it can be said that the challenges for

both embedding and detection procedures are a bit changed. We have observed

the following issues in the recent scientific literature:

• Nowadays, embedding is not restricted to high-frequency zones of the im-

age; rather, it also spreads over low-frequency zones (e.g., CMD embed-

ding [36]). Consequently, older detection techniques which assume mostly

high-frequency-zone-based embedding, may not work well for these meth-

ods. In this line of thought, extraction of the embedding noise may be

improved by using a dynamic (i.e., learnable) filter kernel.

• In recent literature, most of the existing steganalysis methods considered

the fixed context sizes of filters in subsequent layers while designing the

CNN-based steganalyzers. However, it is observed that multi-contextual

features collected from different scale-space of the image may help better

model the embedding noise.

• Most of the existing steganalysis approaches used a deeper network architec-

ture to learn the steganographic noise. However, a recent study [65] showed

that, for an end-to-end deep-learning-based detection model, a suitable bal-

ance between width and depth of the network performs notably well and

may be used as a detection network.

• Most of the recent GAN-based steganography schemes designed to hide

an image within another image suffer from visual artifacts and lack un-

detectability due to the limitations, such as the absence of suitable loss

function, feedback from the extractor, and a better discriminator to impose

undetectability.
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Motivated by the above observation and limitation of the existing works, the

main objectives of this thesis are as follows:

• Understand the embedding procedure of CMD [36] steganography and de-

vise a steganalysis approach to detect the CMD steganography.

• Propose a deep learning-based steganalyzer that can learn the preprocess-

ing filter instead of using a fixed one, thereby improving the steganalytic

detection performance.

• Develop a deep learning-based steganalysis model that can learn the sparse

characteristics of noise residuals and attain improved detection.

• Devise an end-to-end deep learning-based steganalyzer whose design is fo-

cused on depth as well as the width for better learning of steganographic

features.

• Finally, devise a GAN-based steganography method that can hide an image

within another image, which can ensure imperceptibility and undetectabil-

ity at the same time.

1.6 Contribution of the Thesis

The main contributions of this thesis are as follows.

1.6.1 Breaking CMD Steganography and Kernel Learning
for Steganalysis

In the initial part of our first contributory chapter, we propose a steganalytic

approach to break the CMD steganography scheme [36]. Empirical evaluation

shows that the method effectively identifies the embedding regions and nullifies

the effect of CMD steganography. In the second part of this chapter, we have

introduced a convolutional neural network-based dynamic filter kernel. We show

that such a denoising kernel can extract steganographic noise more precisely than
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fixed kernel-based filters. Subsequently, we proposed a deep classifier trained on

the noise residual obtained through our proposed denoising kernel and schemes.

1.6.2 Multicontextual Design of CNN for Steganalysis

In the second contributory chapter, two CNN-based methods are proposed, which

exploit different contextual representations of the stego image for tracing the em-

bedding more precisely. The first method uses various sized filters to capture

useful steganalytic features using densely connected blocks. The proposed model

has no fully connected network, enabling testing any size of images regardless

of the image size used for training. It is experimentally shown that the pro-

posed scheme outperformed the existing methods. In the second method, a set

of thirty denoising kernels are learned to compute the noise residual. A multi-

contextual detection model with a self-attention mechanism is proposed. The

model is trained on the noise residual for accurate detection and is able to out-

perform the state-of-the-art detectors.

1.6.3 Steganalysis using Fractal Architecture : The Role
of Network Depth and Width in Steganalysis

In the recent literature on the deep-learning, it is observed that a balance between

width and depth of a deep model may increase the detection performance effec-

tively [65]. In this line of thought, we have used the concept of Fractal Net [66]

as a steganalytic detector in the third contributory chapter. Experimentally, it

is found that steganalytic detection of the network increases if the width of the

network is increased in a particular proportion to the depth. The proposed deep

network is constructed by repeating a basic fractal block so that a balance be-

tween the depth and width is maintained. A comprehensive set of experiments

reveals that the proposed model outperformed the state-of-the-art methods.
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1.6.4 Hiding Image within Image using Conditional GAN:
An application of Steganalysis

In the final contributory chapter, we have proposed a steganographic embedding

model as a data hiding application where we have used a GAN-based embedding

model to hide an image within another image. The proposed method ensures

visual quality, statistical un-detectability, and noise-free extraction by incorpo-

rating the perceptual loss function and adversarial training. The proposed model

also uses a state-of-the-art steganalyzer called XuNet [39] as the discriminator to

impose undetectability. The proposed model is tested on various datasets, and

results have shown notable improvement (∼1dB) over related existing methods.

1.7 Organization of the Thesis:

This PhD thesis consists of seven chapters. The first chapter consists of a brief

introduction to steganography and steganalysis, a brief literature survey, research

motivation and objectives, contribution of the thesis. The rest of the thesis is

organized as follows,

• Chapter 2 presents the requisite background of the research, such as the

preliminary concepts of convolutional neural networks, evaluation metrics,

and the datasets used in carrying out the experimentation.

• In Chapter 3, a steganalysis method is presented for the detection of CMD

steganography. Further, a deep learning-based steganalysis model is pro-

posed, which replaces the fixed high-pass filter used in the preprocessing

stage of steganalyzers with a filter learned by a CNN.

• Chapter 4 proposed a multi-contextual framework for steganalysis. The

proposed model uses the different context sizes in each layer of the network

to learn sparse noise residuals for steganalytic detection.

• Chapter 5 presents a novel deep learning-based steganalyzer that is inspired
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by the Fractal network. The proposed model is designed by considering the

balance between the depth and width of the network.

• Chapter 6 devises a conditional generative adversarial model to hide an

image within another image. The model preserves imperceptibility as well

as undetectability by employing suitable loss functions and a state-of-the-

art steganalyzer as the discriminator.

• In Chapter 7, this thesis is concluded along with the future scope of the

research directions.

1.8 Summary

In this chapter, a brief introduction of steganography and steganalysis is pre-

sented to formulate the scope of research works. First, the concept of steganog-

raphy and steganalysis is explained. Then, brief literature on steganography and

steganalysis is discussed. Based on the shortcomings of the existing literature,

the objectives of the research are formulated. Finally, a brief description of the

contributions and the organization of the thesis is presented.
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Chapter 2
Research Background

In this chapter, a brief overview of some fundamental concepts related to the

topics of interest is presented. It includes a brief introduction to Convolutional

Neural Network (CNN) such as VGGNet [67], ResNet [64], DenseNet [68], and

FractalNet [66]. The concepts of these CNNs are used to construct the proposed

deep learning steganalyzers to detect the stego images. In addition, various eval-

uation metrics for evaluating the proposed methods and corresponding datasets

used for experiments are also discussed in this chapter.

2.1 Convolutional Neural Networks

In the recent deep learning paradigm, Convolutional Neural Network (CNN) has

shown tremendous success for tasks in various domains such as Computer Vi-

sion [55,67,69–71], Natural Language Processing (NLP) [72–75], Speech process-

ing [76–78], etc. The ability to automatically learn task-specific characteristics

allowed CNNs to achieve state-of-the-art performance on different benchmarks

effectively. The use of CNNs has been made possible by recent advances in com-

puter hardware and the availability of very large-scale data. In general, a CNN

architecture is comprised of the following components: convolutional layers, ac-

tivation function, pooling layers, and fully connected layers.

The detailed description of each of these components are as follows:
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1. Convolutional Layers: The parameters of the convolutional layer consist

of a collection of learnable filters. Each filter is spatially small but extends

across the full depth of the input volume. When an input image is pre-

sented to a convolutional layer, each filter moves over the height and width

of the input image and obtains a dot product between the inputs in the

filter and the input at any position. It generates a two-dimensional activa-

tion map representing some similarity measure between the kernel and the

corresponding image patch as the filter moves through the input volume.

Each value of the activation map corresponds to the response of the filter at

each spatial location in the input. These activation maps are further given

as input to an activation function.

2. Activation Function: The activation function generally put some non-

linearity over the convoluted feature maps. Some of the popular activation

functions are as follows:

(a) Rectified Linear Unit (ReLU): f(z) = max(0, z)

(b) Hyperbolic Tangenet (TanH): f(z) = ez−e−z

ez+e−z

(c) Sigmoid : f(z) = 1
1+e−z

(d) Leaky ReLU: f(z) =

{

z, if z ≥ 0

α.z, otherwise
,

where α is a constant. Usually, α = 0.001.

(e) Parametric ReLU (PReLU): f(z) =

{

z, if z ≥ 0

α.z, otherwise
,

where α is a hyperparameter learned together with the model param-

eters.

3. Pooling Layer: The pooling layer gradually reduces the number of param-

eters and spatial size of the representation and controls overfitting. On

each depth slice of the input, the pooling layer works independently and

resizes it spatially, using different pooling operations like max pooling, av-

erage pooling, etc. Pooling layers are usually applied to the representation
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Figure 2.1: An example of CNN architecutre.

produced by the activation function. For example, a pooling layer with

2× 2 size filters with the stride of 2 downsamples each slice of depth in the

input by 2 along both width and height. This operation discards 75% of

the activations. The popular types of pooling operations are Max Pooling

and Average Pooling.

4. Fully Connected Layers: Like the usual neural networks, neurons in a fully

connected layer have full connections to all activation in the previous layer.

Therefore, the activations of fully connected layers can be computed using

a matrix multiplication followed by a bias offset.

In general, the first three components constitute a single layer of a CNN. For

deeper CNN, such layers with different hyper-parameters are placed subsequently,

followed by the one or more fully connected layers. An example of CNN is given in

Figure 2.1. The initial convolutional layers learn to extract the high-level features

such as edges, lines, etc. As layers go deeper, the convolutional layers learn to

extract the fine-grained features. These features are further learned by the fully

connected layers to accomplish the intended task. In this thesis, the concepts of

some of the existing deep CNN models - a) VGG-16, b) ResNet, c) DenseNet,

and d) FractalNet are utilized to design the efficient steganalyzers.
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2.1.1 VGG-16

VGG-16 [67] is one of the popular deep convolutional neural networks proposed

by Simonyan and Zisserman for the task of Imagenet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2014 [7]. It was the runner-up of the ILSVRC 2014

challenge. The architecture of VGG-16 is shown in Figure 2.2. An RGB image

Figure 2.2: VGG-16 model architecture.

with dimensions 224 × 224 × 3 is given to the input of the network. All the

convolutional layers have a filter of size 3× 3. All the layers except the last fully

connected use ReLU as the activation function. The stride is fixed to 1 pixel to

span each pixel of the image, and padding is kept as 1 to retain the same spatial

dimension as the input. Max pooling is applied after a set of convolutional layers

with a 2× 2 window and stride of 2. VGG-16 outperformed the performance of

AlexNet [55] on large-scale image recognition task [7] by attaining 7.3% Top-5

error.

2.1.2 ResNet

Figure 2.3: A residual building block.

The depth of convolutional neural networks has been growing in terms of the

number of layers. For example, VGG-16 was deeper as compared to the AlexNet.

24



Nevertheless, only increasing the network depth may not improve the performance

of the network always; instead, it may get degraded [64]. This degradation prob-

lem is addressed by He et al. through Residual Network (ResNet) [64]. The main

idea of ResNet is “skip connection,” as shown in Figure 2.3. The skip connections

skip a set of layers, which does not increase the number of parameters, and it

simply sums the output activations from the previous layer to the layer ahead.

The authors suggested that it is easier to optimize the residual mapping than the

original mapping. This configuration of ResNet also solved the vanishing gradi-

ent problem. ResNet was the winner of ILSVRC 2015. ResNet showed the best

performance compared to the existing models for large-scale image classification

tasks by achieving a 3.57% Top-5 error.

2.1.3 FractalNet

FractalNet [66] architecture shown in Figure 2.4 is based on self-similarity and

is generated by expanding the basic fractal/block by using the expansion rule

shown in Figure 2.5.

Figure 2.4: FractalNet architecture

Formally, let k be the number of intertwined columns or width. The base

case f1(x) contains a single layer of convolution between input and output. i.e.,
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Figure 2.5: Fractal expansion rule

f1(x) = conv(x). Successive fractals can be recursively defined using the following

rule:

fk+1(x) = [fk ◦ fk(x)]⊕ [conv(x)],

where ◦ represents the composition and ⊕ denotes the join operation between

two different blocks. The value k denotes the width of the network. The depth

of the network, which is the longest path between the initial and final layer, can

be defined as 2k−1. This organization of FractalNet forces the network to vary

the depth and width of the network proportionally. The join layer combines the

features from two or more incoming paths. The features from the incoming con-

nections can be joined using sum, max-out, average, or concatenate. In the latter

case, the number of channels in the subsequent layers may increase. FractalNet

also uses drop-path regularization to force each input to the join layer to be indi-

vidually significant. Further, the FractalNet is comprised of several fractal blocks

connected using pooling layers. FractalNet has shown a competitive performance

to the ResNet [64] for the image recognition task.
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2.1.4 Generative Adversarial Networks (GAN)

Generative Adversarial Network (GAN) [37] is a deep learning framework pro-

posed by Goodfellow et al. for estimating generative models using adversarial

training. In adversarial training, two models, a generative model (G) and a dis-

criminative model (D), are trained simultaneously. G strives to capture data

distribution, and D estimates the probability that the given sample came from

training data or is generated by G. To understand the procedure mathemati-

cally, let pg represent the generator’s distribution over data x, pz(z) denotes the

input noise variables. G(z; θg) denotes a mapping to data space, where G is a

differentiable function with parameters θg. Let D(x; θd) be another differentiable

function with parameter θd, which outputs a single value. D(x) denotes the prob-

ability that x has drawn from data rather than pg. D is trained to maximize the

likelihood of correctly classify both training examples and generated samples by

G. At the same time, G is trained to (fool the D) minimize log(1−D(G(z))). G

and D play the two-player minimax game using eq. (2.1).

min
G

max
D

L(D,G) = Ex∼pdata(x)

[

logD(x)
]

+ E
z∼pz(z)[log(1−D(G(z)))] (2.1)

This network setting enables the generative model to estimate data distribution

so that the discriminator fails to classify between the original and generated data.

2.2 Evaluation Metrics

The Steganography and Steganalysis algorithms can be evaluated using quanti-

tative and visual metrics.

2.2.1 Quantitative Metrics

A variety of metrics, such as the minimum detection error probability, Receiver

Operating Characteristics (ROC), Area Under Curve (AUC), Weighted Area Un-

der Curve (WAUC), are used to show the performance of a steganalyzer quanti-

tatively. These metrics are outlined below.
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• Minimum Detection Error Probability: A steganalytic detection sys-

tem is consists of three main components - Input, Steganalytic detector,

and Output. (i) The input image may be either cover (natural image) or

a stego image (embedded image). (ii) The steganalytic detector is a model

that is trained to identify that the given input image is cover or stego.

(iii)The output of the steganalyzer is the decision that the given image is

cover or stego. When a model is tested to classify a given image I, one of

the following two errors may be possible:

False Alarm (FA): a cover image C (negative) is incorrectly classified as

stego image S (positive).

Missed Detection (MD): a stego image S is incorrectly classified as cover

image C. Let PFA and PMD denote the probability of false alarm and

missed detection, respectively. The conditional probabilities can be defined

as follows:

PFA = P(S | I ∈ C)

PMD = P(C | I ∈ S)

Therefore, the total error probability PE can be defined as:

PE = PFA . P(I ∈ C) + PMD . P(I ∈ S)

Here, P(I ∈ C) = P(I ∈ S) = 1
2
.

PE =
1

2
(PFA + PMD) (2.2)

In general, for steganalysis, minimum error probability under equal priors

is used for the evaluation of a model. The minimum error probability under

equal priors can be written as:

PE = min
PFA

1

2
(PFA + PMD) (2.3)

• Receiver Operating Characteristics (ROC) Curve: The ROC curve

is a metric used to assess a binary classifier’s performance. This curve is
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created by plotting the True Positive Rate (TPR) against the False Positive

Rate (FPR) at different threshold values. The area under the ROC curve

is called Area Under Curve (AUC). An example of a ROC curve is shown

in Figure 2.6. The ROC curve is depicted in the ”blue” color. The shaded

region indicates the AUC. The value of AUC is indicated on the top-left

corner of the plot.

Figure 2.6: An example of ROC curve.

• Weighted Area Under Curve: It is a widely accepted fact that reliable

steganalysis should result in low false-alarm rates [79]. Therefore, more

weightage is assigned to the AUC below the true-positive rate threshold

than to the region above the threshold and then normalized in 0 and 1.

The modified AUC is known as WAUC in steganalysis literature [80]. An

example of WAUC is given in Figure 2.7. The weights for the area below

(“red”) and above (“gray”) the threshold are 2 and 1, respectively. Recently,

WAUC has been used as an evaluation metric for steganalysis literature [80,

81].
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Figure 2.7: An Illustration of WAUC.

2.2.2 Image Quality

Any processing applied to an image may result in a loss of quality. Evaluation

of image quality can be done in two ways - Subjective and Objective [82]. Sub-

jective approaches are based on human judgment and function without specific

reference parameters. Objective approaches are based on comparisons using ex-

plicit numerical criteria, and it is possible to make a variety of references, such

as ground truth or prior knowledge, etc. A few examples of objective approaches

used in this work to evaluate the quality of stego images are average Peak Signal

to Noise Ratio (PSNR), the average Structural Similarity Index (SSIM), the

average Multi-scale Structural Similarity Index (MS-SSIM) [1], and the average

Universal-Image-Quality Index (UQI) [83], and the average Visual Information

Fidelity (VIF) [84]. These metrics are calculated between the original cover im-

ages and the corresponding generated stego images.

• PSNR: Consider 8-bit grayscale image x and distorted version of that

image y with sizeM×N . The Peak Signal to Noise Ratio (PSNR) between

x and y is calculated as:

PSNR(x, y) = 10log10

(

peak2

MSE(x, y)

)

, (2.4)
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where peak denotes the maximum possible intensity (for 8-bit grayscale,

peak = 255) and MSE(x, y) = 1
MN

∑M

i=1

∑N

j=1(xij − yij)
2

• SSIM: The Structural Similarity Index (SSIM) is another metric for

image quality assessment, which is based on the degradation in structural

information. The SSIM models image distortion as combination of three

components - distortion in luminance (l), contrast distortion (c), and loss

of correlation (s). The SSIM between image x and y is defined as:

SSIM(x, y) = l(x, y).c(x, y).s(x, y), (2.5)

where

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

l(x, y) measures the closeness of mean luminance of two images. l(x, y)

is maximum (= 1) when µx = µy. c(x, y) compares the contrast of two

images. It is maximum (= 1) when σx = σy. s(x, y) compares the structure

using correlation coefficient between two images x and y. The SSIM∈ [0, 1],

where 0 implies no correlation between images, and 1 implies x = y. C1,

C2, and C3 are positive constants used to avoid zero denominator.

• MS-SSIM: The Multi-scale Structural Similarity Index (MS-SSIM) takes

the original image and the distorted image as input and iteratively applies

low-pass filtering and downsamples the image by a factor of 2. The orig-

inal image is indexed at scale 1 and the maximum scale M. At ith scale,

the contrast comparison and structure comparison denoted as ci(x, y) and

si(x, y), respectively. The luminance is compared only at scale M and is

denoted by lM(x, y). The MS-SSIM is computed by combining these terms
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Figure 2.8: MS-SSIM evaluation system. L: low pass filtering and 2 ↓: downsample
by factor of 2 [1].

as:

MS-SSIM(x, y) = [lM(x, y)]αM .

M
∏

i=1

[ci(x, y)]
βi [si(x, y)]

γj (2.6)

The relative importance of different components is tuned by αM , βi, and

γj.

• UQI: The Universal-Image-Quality Index (UQI) is defined as

Q =
4σxyx̄ȳ

(σ2
x + σ2

y)[(x̄)
2 + (ȳ)2]

, (2.7)

where x = xj|j = 1, 2, ..., N y = yj|j = 1, 2, ..., N are original and test im-

ages, respectively. x̄ = 1
N

∑N

j=1 xj, ȳ = 1
N

∑N

j=1 yj, σ
2
x =

1
N−1

∑N

j=1(xj− x̄)
2,

σ2
y = 1

N−1

∑N

j=1(yj − ȳ)
2, and σxy =

1
N−1

∑N

j=1(xj − x̄)(yj − ȳ). The range

of Q belongs to [1, 1] . The best value of Q = 1 is achieved when yj = xj,

∀i. The UQI can also be written as the product of three different factors:

decay in correlation, distortion in luminance, and distortion in contrast as

follows:

Q =
σxy
σxσy

.
2x̄ȳ

(x̄)2 + (ȳ)2
.
2σxσy
σ2
x + σ2

y

(2.8)

• VIF: The Visual Information Fidelity (VIF) is a metric that measures

the information fidelity for the whole image in a statistical model of the

HVS [84]. The VIF uses two variables. The first is the statistics between

the initial and the final stage of the visual channel without distortion. The

second is the mutual information between the input of the distortion block
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and the output of the visual block. The VIF is estimated for a collection of

N ×M wavelet coefficients from each sub-band as follows.

V IF =

∑

i∈subbands

I(CN,i;FN,i|sN,i)

∑

i∈subbands

I(CN,i;EN,i|sN,i)
, (2.9)

where I(CN,i;FN,i|sN,i) and I(CN,i;EN,i|sN,i) are the information that can

ideally be computed by the brain from a specific wavelet sub-band in the

reference and the test images, respectively.

2.3 Datasets

A variety of image datasets with different resolutions and textures are used for

experimentation. Details of datasets are as follows:

• BOSSBase: The BOSSbase dataset [85] is initially used for assessing the

performance of the steganalysis schemes competing in the BOSS (Break

Our Steganography System challenge organized in 2010. The BOSSbase

dataset comprised 10,000 raw grayscale images taken from seven different

digital cameras. Each image in Bossbase has a dimension of 512 × 512.

These images are generally used as the cover image to train and test a

steganalysis system.

• BOWS2: The BOWS2 dataset [86] is a popular dataset used in the Break

Our Watermarking System (BOWS) contest to assess the performance of

watermarking systems. BOWS2 is later also used to train and test stegana-

lytic detectors. The BOWS2 dataset contains 10,000 grayscale images, each

with a dimension of 512× 512.

• Imagenet: The Imagenet [7] is a large-scale dataset designed for the

ILSVRC started in 2010 for object recognition research. The dataset con-

tains ≈ 1 million images of different sizes and 1,000 object classes. Apart
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from object recognition, the Imagenet dataset is also used in various com-

puter vision applications for the training and testing of models.

• Microsoft COCO: The Common Objects in COntext (COCO) [8] is a

large-scale dataset released by Microsoft for object detection, segmentation,

and image captioning tasks. It contains 330K images, with 80 object cate-

gories and five captions per image. Recently, the Microsoft COCO dataset

has also been used in other computer vision applications.

• DIV2K: The DIVerse 2K (DIV2K) [87] dataset consists of 1,000 high-

definition images with large diversity contents used in the NITRE challenge

CVPR 2017 and 2018 for super-resolution, image dehazing tasks.

2.4 Summary

In this chapter, background concepts on the Convolutional Neural Network (CNN)

have been presented. These concepts are used to design different kinds of ste-

ganalysis schemes proposed in the later chapters. In addition, evaluation metrics

used to evaluate the methods and the datasets are presented in this chapter.

With this background, this thesis’s first contribution will be discussed in the

next chapter, where the first method mounts attack the Clustering Modification

Directions (CMD) steganography and the second method performs the stegana-

lytic detection by learning denoising kernel to replace filter used in preprocessing

step.
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Chapter 3
Breaking CMD Steganography and

Kernel Learing for Steganalysis

The content-adaptive steganography methods such as HUGO [6], WOW [5],

S-UNIWARD [15], etc., use different kinds of filters to identify the predictable

and unpredictable regions and a distortion function that assigns high embedding

to the unpredictable and low to the predictable areas. However, it has been ob-

served that these algorithms distribute some of the steganographic embeddings

to the predictable regions too. Considering this observation, Li et al. [36] pro-

posed a steganography method called Clustering Modification Directions (CMD)

algorithm. CMD algorithm works as a wrapper over the existing steganography

algorithms. CMD method clusters the embeddings to a specific direction to im-

prove security. When CMD wrapping is applied over the existing steganographic

algorithms, a state-of-the-art steganalyzer suffers the loss of detection accuracy

by ∼ 5%. On the other side, it has been observed that the existing steganalysis

schemes use a set of fixed handcrafted high-pass filters for enhancing the stego

noise while suppressing the image contents. Due to the heterogeneity of em-

bedding algorithms, a fixed filter may not be beneficial in extracting meaningful

features.

Motivated by the above observations, this chapter presents two steganalysis

approaches. The first method, discussed in Section 3.1, is proposed to detect the
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CMD steganography, thereby nullifying the effect of CMD. The second method,

described in Section 3.2, is a deep learning-based approach that learns a filter

that can replace the fixed high-pass filter (KV filter) in the preprocessing step

of the steganalyzers. Learning the filter enables the steganalyzer to improve the

performance of the classifier used for the detection.

3.1 Breaking CMD steganography

In this section, a novel steganalysis method called Selective-Signal-Removal (SSR)

is proposed to attack the CMD steganography. The SSR method’s preprocess-

ing step is motivated by the selective nature of the CMD in terms of embedding

locations. In the SSR scheme, the correspondence between the texture distribu-

tion and the CMD scheme’s embedding locations are exploited to attack CMD

steganography. This scheme allows the feature extraction from the image regions

directly affected by the data embedding rather than from the whole image.

3.1.1 CMD steganography
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Figure 3.1: An example of decomposition of an image into 4 non-overlapping sub-
images. (a) The original image pixel-grid in which red dotted boundary indicates a
sub-block of the images, the four elements in each sub-block assigned to different sub-
images. (b) 4 sub-images.

The CMD algorithm starts with decomposing the cover image into non-overlapping

sub-images with size L1 × L2, for L1, L2 ≥ 1. The given data payload with m

bits is also divided accordingly into segments. Each segment size is m/L1.L2 (for
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fixed block-size). An embedding order is chosen to embed in the sub-images (e.g.,

horizontal zig-zag order). Initially, the first sub-image is initialized with the cover

image, and the difference image, D, is calculated between the stego and cover im-

age (stego−cover). Next, the initial cost of the stego image is assigned using any

of the existing steganography schemes, such as S-UNIWARD, WOW, or HILL.

The estimated difference image is used to determine the direction (here, direction

denotes the positive or negative change in pixel intensity) of pixel changes. For

the remaining blocks, the distortion function is designed in such a way that pixel

modifications follow similar directions. If a pixel has more neighbors modified

to +1, then its cost for positive embedding is reduced by a constant factor of α.

Similarly, if a pixel has a majority −1 modified neighbors, its cost for negative

embedding is reduced by α. This change in the distortion function ensures that

the embeddings in the same directions are clustered together. Figure 3.1 shows

the decomposition of a 6× 6 image. The four colors denote the four subsampled

sub-images from the original image.

The CMD algorithm embeds the data, preserving the inter-pixel dependencies

by changing all pixels in a local cluster in the same direction. If we follow the three

steps of steganalysis, namely: high-pass filtering, feature extraction, and classifi-

cation, CMD effectively prevents good quality features from being extracted. A

local cluster of modified pixels has the same response to a high-pass filter in both

cover and stego images; this results in inter-pixel dependencies more diminutive

than that in non-CMD embedding. All the handcrafted features like state tran-

sition matrices of SPAM [13] and co-occurrence matrices of SRM [14] rely on

the disruptions in pixel dependencies to generate rich feature vectors. Therefore,

SPAM and SRM cannot steganalyze the CMD scheme with usual accuracy.

A detailed study of the CMD embedding patterns reveal the following critical

observations:

1. The CMD and non-CMD algorithm (pure WOW, HILL, S-UNIWARD)

strive to maximize the embedding capacity in pixels that are surrounded
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Figure 3.2: Examples of embedding by non-CMD and CMD approach. The first col-
umn shows cover images; the second column shows the simple S-UNIWARD embedding
(with 0.5 bpp) locations in the corresponding image and the third column shows the em-
bedding locations in the corresponding image in the case of CMD-S-UNIWARD (with
0.5 bpp) steganography.

by texture-rich areas of the image.

2. It is observed that CMD embedding follows a typical distribution as it tries

to embed in neighboring areas with similar embedding directions. As a re-

sult, it may be possible that data is embedded in low-frequency zones, but

it is not statistically visible. This typical nature of embedding helps CMD

to be statistically undetectable against conventional steganalysis, which as-

sumes steganographic embedding usually chooses a high-frequency zone for

better covertness. However, it is experimentally observed that most of the

visible CMD embedding is clustered in high-texture regions. (Please refer

to Figure 3.3).

3. The CMD algorithm forms clusters of pixels that are modified in the same

direction. Such groups form super-pixels in the difference image correspond-

ing to the image.

The aforementioned observations can be seen in Figure 3.2.
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Figure 3.3: Observations of CMD embedding effect through the proposed heuristic
function and assignment algorithm. First row: Examples of the difference (stego −
cover) for CMD-S-UNIWARD embedding with 0.5 bpp where white and black pixels
represent +1 and −1 embedding respectively. Second row: White blocks denote the
region of the image above the threshold T , and black indicates regions below the threshold
T .

3.1.2 Selective Signal Removal (SSR)

Motivated by the above observations, the relation between image texture and em-

bedding locations is investigated. The Discrete Cosine Transform (DCT) [88] has

been widely used in the area of image processing to capture the texture variation

in an image [89,90]. In the proposed scheme, DCT is used to find the high texture

regions in an image. The sum of the squared coefficients (excluding the DC com-

ponent) is used to capture the texture variation in a block effectively. A threshold

for each image is investigated through a comprehensive set of experimentation to

locate the possible regions (relevant regions) of CMD embedding. It has been

observed that CMD tends to embed in high texture regions, which is exploited

in this work. This observation is also shown in Figure 3.3 and experimentally

validated in the subsequent sections.

The Selective-Signal-Removal (SSR) technique, as the name suggests, essen-

tially seeks to remove pixels from irrelevant regions (regions having less proba-

bility for CMD embedding) and allows only relevant regions for generating dis-

criminative features. The idea is to eliminate such irrelevant regions of the image
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to estimate a more useful feature. The SSR scheme divides the image into non-

overlapping blocks (super-pixel) of size B × B. A heuristic function determines

whether a given block is relevant or not and assigns 0 (non-relevant) and 1 (rel-

evant) accordingly. This assignment process generates a bit-map image. The

bit-map is then upscaled to match the dimensions of the given image. Finally,

the Hadamard product is used to map the bit-map on the original image to form

a new image I ′. The set of new images forms a new dataset. Further, the SRM is

trained on this new dataset. The efficiency of the heuristic function and assign-

ment algorithm depends on its accuracy to find the embedded regions within an

image. The block diagram of the SSR scheme is depicted in Figure 3.4.

Figure 3.4: Block diagram of proposed SSR scheme

3.1.2.1 Heuristic Function

The heuristic function uses an assignment algorithm to determine whether a

super-pixel is relevant or irrelevant based on the threshold value (T ). The heuris-

tic function h is as follows:

h : (I, B, T ) −→ IB (3.1)

The dimensions of mask IB depend on block size B. For example, given an

image I of dimensions 512× 512 and block size of 4× 4, we get IB of dimensions
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128×128 (as 512/4 = 128) as each super-pixel represents a 4×4 square of pixels.

After the generation of IB, it is up-sampled to match the dimension of the original

image, say I ′B.

3.1.2.2 Assignment Algorithm

The assignment algorithm discriminates between the relevant and irrelevant super-

pixels by means of assigning values 0 and 1. The assignment algorithm assigns

1 (relevant) and 0 (irrelevant) to a super-pixel using a threshold value T . The

super-pixels above this threshold are assigned 1, and the others are assigned 0.

The assignment algorithm uses the following equation:

(n×n)−1
∑

i=1

(dct[i])2 ≥ T ⇒ assign 1

(n×n)−1
∑

i=1

(dct[i])2 < T ⇒ assign 0,

(3.2)

where dct[i] denotes the DCT of super-pixel i in the bit-map, T represents the

threshold, and n× n denotes the size of the bit-map.

3.1.2.3 Threshold

The threshold parameter, T , divides an image into embedding and non-embedding

zones. This parameter is image-dependent, i.e., it may vary from image to image.

In order to find out the threshold value for an image, the following procedure is

followed: (i) Initially, the image is divided into the super-pixels of size B × B.

(ii) Each super-pixel is subjected to the DCT, and the squared sum of all AC co-

efficients is computed, which results in a new image with size n/B × n/B (since

the sum of squared DCT value gives a single value). (iii) It is experimentally

found that the median works best as a threshold for segmenting the image into

embedding and non-embedding zones.
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(a) cover image (b) B = 4 (c) B = 16 (d) B = 32 (e) B = 64

Figure 3.5: Illustration of the effect of block-size (B) selection on the heuristic function
output.

3.1.2.4 Identification of Optimal Block Size

Block size B is an essential parameter for the heuristic function h, as it defines

the number of pixels in each super-pixel. For example, B = 4 means that the

heuristic function considers the super-pixel of size 4×4. While up-sampling from

IB to I ′B, the whole block is allocated the corresponding boolean form, as is IB.

Thus in the final image, I ′ is obtained by applying Hadamard product between

the original image I and I ′B, i.e., I
′ = I ⊙ I ′B. The block size manifests as the

coarseness of the removed image signals. Figure 3.5 shows how block size affects

the appearance of the final image I ′.

In order to find the best suitable block size, we have defined the Block Corre-

lation (Bcor) as the ratio of the total number of non-zero pixels in the difference

image of cover and stego processed by the SSR scheme and without the SSR

scheme. Let X and Y denote a cover and CMD-stego images, respectively, and

let X ′ and Y ′ indicate a cover and CMD-stego image after processed by the SSR

scheme. Let us denote the difference between the cover and the CMD-stego image

processed by the SSR scheme as DSSR = Y ′ −X ′ and the difference between the

cover and CMD-stego as D = Y −X. Then Bcor is given by eq. (3.3).

Bcor =
no. of non-zero pixels in DSSR

no. of non-zero pixels in D
(3.3)

A high value of Bcor implies that the image I ′ processed by SSR has many pix-

els that are different in cover and stego, which is obvious since many irrelevant

super-pixels are removed (which are not affected by the embedding). In order to
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Block correlation vs. Block size
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Figure 3.6: Illustration of the effect on Block Correlation (Bcor) with different block
size.

select the most affected region of the image by the embedding, a high block cor-

relation is preferable. In order to justify this claim, Bcor is compared for different

block sizes over the entire dataset (10,000 images of BossBase [85]) with CMD-S-

UNIWARD [36]. Figure 3.6 shows the variation of Bcor over different block sizes.

The bar graph in Figure 3.6 shows an initial rise from B = 2 to B = 4 and then

falls monotonously up to B = 128. This observation is intuitive due to the obvi-

ous geometrical constraints on large block sizes and its inability to represent finer

distributions of embedding locations. For example, in the experiments, a block

size of 128 makes it inappropriate to choose 8 out of 16 boxes (image dimension

= 512 × 512) such that the correlation is high. This is because there are only

sixteen 128× 128 blocks in the image, and picking 8 out of the 16 such that they

map the embedding pixels perfectly is unlikely. However, if the block size is very

small, then the DCT coefficients may fail to capture the texture variation. In that

case, the edges and corners in the image have a high sum of squares DCT values

even though they may not belong to a texture-rich region. This can be observed

for B = 2, where the Bcor is 0.782606 as compared to an average correlation of

0.797211 for B = 4. SRM captures the four-dimensional inter-pixel dependencies

of the image. Therefore, the SRM features consider every four consecutive pixels
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Table 3.1: Comparison of the classification error (in %) of SRM and proposed SSR-
SRM scheme for different block sizes on the different payloads. The SSR-SRM has
lower classification error for the block-size 16× 16. The lower classification errors are
shown in boldface.

Payload
(bpp)

SRM SSR-
SRM
4× 4

SSR-
SRM
8× 8

SSR-
SRM

16× 16

SSR-
SRM

32× 32

SSR-
SRM

64× 64

0.5 20.79 19.42 16.99 16.51 16.69 17.14
0.4 25.46 24.22 21.02 20.52 20.88 21.89
0.3 30.65 29.18 25.77 25.53 25.74 27.04
0.2 35.34 34.86 32.66 31.24 32.47 34.12

and their relation to each other. Thus, a smaller block size may fail to model

the inter-pixel dependency used in SRM, whereas the correlation with embedded

pixels (non zero entries of D) is lower for large block sizes. Intuitively, a relatively

smaller block can model ±1 pixels of D more accurately. A larger block preserves

the inter-pixel dependencies (that are modeled as the co-occurrence matrix in

the SRM), which means that the amount of spatial distortion introduced in the

image is relatively less for a large block size as compared to a smaller block. This

trade-off implies that intermediate block size should be chosen for the assignment

algorithm. In order to find an optimum block size, the proposed SSR technique

is tested on the CMD-S-UNIWARD at embedding rates of 0.2, 0.3, 0.4, and 0.5

bpp. The classification test error of the scheme is shown in Table 3.1. Block

size of 16× 16 dominates all other block sizes across all the embedding rates and

may be the optimal parameter for our proposed scheme. The relation between

the block correlation and the classification accuracies for different block-sizes are

shown in Figure 3.7. From Figure 3.7, it can be observed that the highest test

accuracy is achieved for the block size 16 × 16, which has a block correlation of

∼ 0.74. This result is consistent with our hypothesis that an intermediate block

size provides a balance between block correlation with embedding locations and

the effective population of SRM features.
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Block Correlation and Classification accuracy vs. Block size
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Figure 3.7: Classification accuracy (Green) and block correlation (Blue) with different
block size.

3.1.2.5 Discussion on Effectiveness of the SSR

The SSR technique generates features subjected to Fischer Linear Discriminant

(FLD) classifier [91]. FLD is a useful classifier if the distance between class

means is high and the intra-class variance is low. This is shown by making a

valid assumption that entries of the SRM features for cover and stego images can

be modeled as random variables independent of each other. The SRM feature is

a high-dimensional array where each element is a normalized co-occurrence of a

particular pattern in the high-pass residual. Let C be a random variable vector

that denotes an SRM feature. The SRM feature is a co-occurrence matrix that

stores how many times a particular pixel sequence occurs in the residual. For

example, SRM [w][x][y][z] is a number that represents the number of times the

pixel values of w, x, y, and z occur consecutively (either vertically or horizontally).

Now each of these patterns can appear either in the area of the image marked as

0 or in the area marked as 1, and this assignment is independent of each other.

And the sum of these two will give the value of SRM [w][x][y][z], which is given by

C. Therefore, C can be written as C0 + C1, where C0 denotes the co-occurrence

due to 0 labeled part and C1 indicates the part of image I labeled as 1 (labeling
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is done by the assignment algorithm); similarly, X0 and Y0 denote the cover and

stego labeled as 0 and X1 and Y1 denote the cover and the stego labeled as 1.

For a cover-stego pair (say X and Y ), C is as follows:

CX = CX0
+ CX1

CY = CY0 + CY1
(3.4)

Since C0 and C1 are independent, in the ideal case, the variances of CX and CY

can be written as:

V arideal(CX) = V ar(CX0
) + V ar(CX1

)

V arideal(CY ) = V ar(CY0) + V ar(CY1)
(3.5)

With the SSR technique, the signal of all the parts of the image that are labeled

as 0 (by defining I ′ = I ⊙ I ′B ) are removed. Now C has to be written as C1

(instead of C0 + C1 as the 0 labeled part has been removed and contributes 0 to

the value ). Therefore, X and Y can be written as:

CX = CX1

CY = CY1
(3.6)

Similarly, the variances of CX and CY can be written as:

V arssr(CX) = V ar(CX1
)

V arssr(CY ) = V ar(CY1)
(3.7)

Therefore, from eq. (3.5) and (3.7) we get:

V arssr(CX) ≤ V arideal(CX)

V arssr(CY ) ≤ V arideal(CY )

This explains the reduction in variance for cover and stego. It is also empirically

verified that the variance decreases to 26,394 from 34,671 dimensions for the

cover images class (76.12%). For the stego class, variance decreases to 34,061

from 34,671 (SRM feature dimension) dimensions (98.24%). The observations

are in agreement with our hypothesis. These observations are taken for SRM and

SSR-SRM features extracted from CMD-S-UNIWARD at 0.4 bpp embedding

rate.
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3.1.3 Experimental Study

3.1.3.1 Experimental setup

Experiments are performed using the BossBase v1.0 dataset [85] with 10,000

grayscale images with size 512× 512. We performed classification on the dataset

using the ensemble classifier (with FLD classifiers as base learners) on the SRM

features. Randomly selected 5,000 images are used for training and the rest for

testing with five-fold cross-validation. Experiments are performed using the SSR

preprocessing on state-of-the-art steganography algorithms: CMD-S-UNIWARD,

CMD-WOW, and CMD-HILL. Parameters for CMD are kept as L = 2 and

α = 9 with the embedding done in a row by row order for different subsamples.

In order to get a detailed picture of the improvements due to SSR, embedding

rates used are 0.2 bpp, 0.3 bpp, 0.4 bpp, and 0.5 bpp. For each of the above,

the optimal block size, B = 16, is used in the heuristic function h given in

eq. (3.1). The steganalytic classification error (PE) is calculated using eq. (2.3).

The probabilities are represented on a scale of 100 (as percentage error) in the

results.

3.1.3.2 Comparison with the State-of-the-art Steganalyzers

This subsection compares the performance of the proposed scheme against the

CMD-S-UNIWARD, CMD-WOW, and CMD-HILL in terms of error detection

accuracy while classifying between stego and cover image. The detection error is

reported in terms of percentage (%) error [92]. Table 3.2 compares the proposed

scheme’s performance with SRM [14] against CMD-S-UNIWARD, CMD-WOW,

and CMD-HILL steganography, respectively. The proposed scheme clearly shows

a significant improvement over the state-of-the-art. Finally, Table 3.3 shows

how the proposed SSR algorithm mostly nullifies the effect of CMD wrapping

on a steganography algorithm. We can achieve almost the same accuracy as an

SRM based classifier attain on simple (without CMD embedding) S-UNIWARD

steganography.
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Table 3.2: Comparison of the classification error (in %) of proposed SSR-SRM scheme
with SRM on CMD-WOW, CMD-SUNIWARD, and CMD-HILL.

Embedding Payload (bpp) SRM SSR-SRM

CMD-WOW

0.5 20.85 16.10
0.4 25.48 19.84
0.3 29.82 24.59
0.2 34.66 31.15

CMD-SUNIWARD

0.5 20.79 16.51
0.4 25.46 20.52
0.3 30.65 25.53
0.2 35.34 31.24

CMD-HILL

0.5 25.75 20.42
0.4 30.32 24.06
0.3 35.96 29.20
0.2 39.60 35.14

Table 3.3: Comparison of classification error (in %) between SRM applied on simple
S-UNIWARD (SRM on S-UNIWARD) and SRM applied on SSR processed CMD-S-
UNIWARD (SSR-SRM).

Embedding Rate SRM on S-UNIWARD SSR-SRM on CMD-S-UNIWARD

0.5 15.46 16.51
0.4 20.69 20.52
0.3 25.65 25.53
0.2 31.34 31.24
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3.2 Kernel Learning for Steganalysis

Recently, deep learning-based methods such as CNNs have been successful for

steganalysis. These methods, in general, follow a three-step process- preprocess-

ing, feature learning, and classification. However, the last two steps, i.e., feature

learning and classification, are usually performed with a single deep learning net-

work. Unlike a simple binary classification where both classes’ features vary,

steganalysis is challenging because the stego and cover images are visually iden-

tical. Therefore, classifiers are trained on noise content despite image content. In

order to train on noise content, state-of-the-art steganalyzers use a set of high-

pass filters to suppress the image content and enhance noise content. The feature

learning is carried out by the convolutional layers. The learned features are used

by fully connected layers for classification.

It has been observed in the literature presented in Section 1.4.2 that most of

the existing CNN-based methods used a fixed high-pass filter for preprocessing of

images with the assumption that steganographic noise is a typical high-frequency

noise. In addition, most of the embedding schemes generally tend to embed in

high-frequency image zones as high-frequency content helps to mask the stegano-

graphic noise. Moreover, some of these approaches used a deeper network for

classification, which may lead to overfitting training data. Considering the het-

erogeneity among embedding parameters, like image statistics, embedding rate,

embedding strategies, etc., fixed kernel-based noise extraction may not always

be optimal. Besides, a deeper network for classification may lead to overfitting.

With the above line of thought, the main contributions of the proposed work are

two-fold:

1. A filter kernel is learned using a CNN to extract the stego noise more

accurately in preprocessing step.

2. An existing [2] CNN model is employed with some minor modifications as

the steganalytic classifier.
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3.2.1 Proposed Work

The proposed work is comprised of two modules. In the first module, a denoising

CNN is trained, where the stego images are given as input and the corresponding

cover images as ground-truth. The learned denoising CNN is used to extract the

steganographic noise residual, which is used to train the steganalytic classifier to

detect the stego images.

3.2.1.1 Denoising Kernel Learning using CNN

The proposed denoising CNN (DCNN) consists of a single convolution layer with

16 kernels with a size 5×51. The proposed network has no pooling layer because,

in general, the stego noise is a relatively weak signal, and applying a pooling

operation may discard the stego noise. The stride is fixed to 1 so that it convolves

over the entire image without any padding. The proposed DCNN predicts a

denoised cover image from a stego image. The learned kernels of DCNN are used

with a classification network for steganalytic detection. The architecture of the

proposed DCNN is shown in Figure 3.8.

Stego

Image

Denoised

Image

De-noising

CNN

16 filters 

size = 5x5 256256

2
5

6 2
5

6

Figure 3.8: Architecture of CNN used for denoising CNN(DCNN).

The DCNN takes an image (cover or stego) of size 256 × 256 and predicts

the corresponding cover image. The predicted cover image is subtracted from

1In order to find the suitable kernel size for denoising, the extensive experiment has been
carried out with different filter sizes (e.g., 3× 3, 5× 5 and 7× 7). The 5×5 filters are found to
be suitable as denoising filters.
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the input image to obtain the steganographic noise. The DCNN takes an input

image I and predicts denoised image Î as output.

Î = fDCNN(I), (3.8)

where the function fDCNN is the filter learned by DCNN. A pixel-wise difference

between the input image (stego) and the denoised image (predicted cover) is

calculated as the steganographic noise residual R̂i,j.

R̂i,j = Ii,j − Îi,j, (3.9)

where R̂i,j, Ii,j, Îi,j are noise residual, input image, and denoised image (predicted

cover by DCNN), respectively, at pixel (i, j).

3.2.1.2 Steganalytic Classifier

In the second module of this work, a shallower CNN architecture is employed

as a steganalytic classifier. It consists of two convolutional layers and two fully

connected layers, and a two-way softmax layer. In order to come up with this

architecture of the steganalytic classifier, an extensive set of experiments is con-

ducted with a varying filter size of each layer from the set {3× 3, 5× 5, 7× 7}.

The number of hidden units in fully connected layers is varied from the set {4096,

2048, 1000, 750}. The fully connected layers with 1000 neurons have similar ste-

ganalytic classification errors compared to that of 750 neurons. However, the use

of 750 neurons has reduced the number of training parameters. The description

of the final steganalytic classification module is given in Figure 3.9.

The first layer of the classification CNN takes noise residual with 256×256

dimensions as input. The first convolutional layer is composed of 64 filters, each

of size 7×7. The first layer’s output is 64 feature maps of size 128×128, which

are used by the second layer as input. The second layer consists of 16 filters of

size 5×5 to extract more detailed features. The output of this layer is 16 feature

maps of size 64×64, which is further fed to the fully connected layers. The fully

connected layers are consist of 750 neurons each. Finally, a softmax layer is used
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Figure 3.9: The architecture of the proposed steganalyzer: The left part represents
Denoising CNN (DCNN), and the right part shows the classifier network.

for binary classification (cover and stego). The ReLU activation is applied to each

layer of the classification network. Moreover, dropouts [93] (with a probability of

0.8) are applied to the second convolution layer and the hidden layers to mitigate

network overfitting. The model does not include any pooling layers as it may

suppress the weak stego noise.

3.2.1.3 Training

The training of DCNN and the classifier is carried out on BOSSBase v1.0 [85]

and BOWS2 Ep.3 [86] datasets. The BOSSBase and BOWS2 datasets are having

10,000 gray-scale images. Each image is split into four sub-images from the center,

each with a size 256×256 to increase the dataset size. The creation of sub-images

is shown in Figure 3.10. Therefore, each of the BOSSBase and BOWS2 datasets

is having 40,000 images. We call these new datasets as cropped-BOSSBase and

cropped-BOWS2 datasets, respectively. Both networks are trained and tested in

three scenarios.

Scenario-1: Under this scenario, 15,000 pairs (15,000 cover and 15,000 stego)

of images from cropped BOSSBase dataset are used to train DCNN. The vali-

dation of DCNN is done on 20% of training pairs. The Steganalytic classifier is

trained and validated (with 20% of training data) using another 15,000 pairs. A

set of 10,000 pairs are kept aside for testing of the complete network.

Scenario-2: The DCNN under this scenario is trained and validated (with

20% of training pairs) using 30,000 pairs (30,000 cover and 30,000 stego) images
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BossBase Cover image with size 512x512 Cropped 4 Cover images each with size 256x256

Image I Image II

Image IVImage III

Figure 3.10: Division of images (Original size = 512 × 512 image) into four sub-
images each of size 256× 256.

from cropped BOSSBase v1.0 [85]. The steganalytic classifier is trained with

30,000 pairs of cropped BOWS2 [86] and validated (with 20% of training pairs),

and testing is done using 10,000 pairs of images from cropped BOSSBase v1.0

and 10,000 pairs of images from cropped BOWS2 dataset.

Scenario-3: Under this scenario, mixed datasets are formed with 2,500 images

each using S-UNIWARD [15], WOW [5], and HUGO [6] with payloads 0.2, 0.3,

0.4 and 0.4 bpp, total 3× 4× 2, 500 = 30, 000 pairs for both, cropped-BOSSBase

and cropped-BOWS2 dataset separately, while leaving 10,000 pairs untouched for

testing. Both the CNNs are trained and tested in two ways:

(i) DCNN is trained and validated on 30,000 (20% validation) mixed-cropped-

BOSSBase and Steganalytic classifier on 30,000 (20% validation) mixed-cropped-

BOWS2.

(ii) DCNN is trained and validated on 30,000 (20% validation) mixed-cropped-

BOWS2 and classifier on 30,000 (20% validation) mixed-cropped-BOSSBase.

Training parameters of DCNN All the kernels of the DCNN are initialized

to a random normal distribution with µ = 0 and σ = 0.02. During training,

the Adagrad optimization algorithm [94] is used with a learning rate of 0.001.
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Each batch consists of 150 images ( 75 cover and 75 stego images). The mean-

squared loss is used as a cost function. The network is trained until it converges

(≈ 80 epochs), and the model with the best validation accuracy is chosen for the

evaluation of the model.

Evaluation of DCNN The kernel’s weight learned by the DCNN is similar to

various kernels of SRM. Figure 3.11 depicts the visualizations of (16 filters) of the

trained DCNN. It is clear that there is no dead filter [3] (filter with almost white

features is referred to as the dead filter), and all filters have learned to extract

slightly different noise characteristics.

Figure 3.11: Visualization of 16 learned kernels weights of size 5×5 of DCNN.

To show the effectiveness of DCNN, we evaluated the noise residuals resulted

from the high-pass filter and DCNN using 10,000 test images from the cropped-

BOSSBase dataset using Peak Signal to Noise Ratio (PSNR) and Structural

Similarity Index (SSIM).

(i) Cover image prediction using high-pass filters : First stego image is convolved

with the high-pass filter (KV filter) eq. (1.5), which results in the noise residual.

This noise residual is subtracted from the stego image, which yields a cover image

predicted by the KV filter.

(ii) Cover image prediction using DCNN : DCNN is trained to predict the cover

image from a given input image.

The PSNR and the SSIM between the original cover and cover predicted us-

ing a high-pass filter (HPF) is calculated; likewise, the PSNR and the SSIM

between the original cover and cover predicted using DCNN is calculated. The
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Table 3.4: Quantitative evaluation of DCNN in terms of mean (µ) and standard
deviation (σ) of PSNR (dB) and SSIM. Tabulated scores are obtained with original
cover and cover image predicted by the HPF and the DCNN on different embedding
configurations. P† refers to the considered set of payloads {0.2,0.3,0.4,0.5} in bpp.

Method Embedding Payload µ(PSNR) σ(PSNR) µ(SSIM) σ(SSIM)
scheme (bpp)

HPF
S-UNIWARD

P†HUGO 30.719 10.56 0.908 0.13
WOW

DCNN

S-UNIWARD

0.5 44.878 8.12 0.996 0.01
0.4 41.791 6.88 0.994 0.01
0.3 40.536 7.34 0.998 0.00
0.2 39.103 6.38 0.995 0.01

HUGO

0.5 42.267 6.45 0.994 0.01
0.4 42.023 6.13 0.996 0.01
0.3 41.557 6.81 0.994 0.01
0.2 40.383 7.05 0.997 0.00

WOW

0.5 43.612 5.56 0.996 0.00
0.4 42.516 6.29 0.995 0.01
0.3 41.592 8.16 0.995 0.01
0.2 40.215 8.95 0.991 0.02

average PSNR (µ(PSNR)), standard-deviation of the PSNR (σ(PSNR)) and av-

erage SSIM (µ(SSIM)) and standard deviation of the SSIM (σ(SSIM)) between

the original cover and predicted cover of 10,000 test images for different stegano-

graphic embeddings (S-UNIWARD, HUGO, WOW) and different payloads (0.2,

0.3, 0.4, 0.5 bpp) are tabulated in Table 3.4 for both high-pass filters and pro-

posed DCNN as the denoising tool. It has been observed that the PSNR and

SSIM for the proposed DCNN are relatively higher than that of the HPF, and

thus the efficacy of the proposed DCNN has been shown over conventional HPF.

Training parameters of Steganalytic Classifier This CNN is trained with

the stego noise produced by DCNN. All the network layers are initialized with

random normal distribution with µ = 0 and σ = 0.02. The learning algorithm

used is Adagrad [94] optimizer. Each mini-batch consists of 150 images (75 cover

and 75 stego images). The learning rate is fixed to 0.005. The categorical cross-

entropy loss [95] function is used for error calculation while training. Intuitively,

the network converges faster for the images with high embedding rates than the
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images with a low embedding rate while training.

3.2.2 Experimental Results and Discussion

In this subsection, the steganalytic performance of the proposed model is com-

pared with the state-of-the-art steganalysis schemes.

Table 3.5: Steganalytic detection error comparison of proposed scheme with
SPAM [13], SRM [14], GNCNN [2], YeNet [3], and SRNet [4] against
S-UNIWARD [15], HUGO [6] and WOW [5] steganography under Scenario -1. The
best result is denoted using boldface values.

Steganography Steganalysis 0.2 0.3 0.4 0.5
scheme scheme bpp bpp bpp bpp

S-UNIWARD

SPAM 0.5189 0.4000 0.351 0.306
SRM 0.3607 0.315 0.267 0.214
GNCNN 0.3971 0.359 0.309 0.263
YeNet 0.3218 0.2571 0.1955 0.1660
SRNet 0.2917 0.2337 0.1743 0.1496
Proposed 0.191 0.1206 0.0764 0.0532

HUGO

SPAM 0.4371 0.429 0.391 0.357
SRM 0.3638 0.296 0.252 0.214
GNCNN 0.3789 0.338 0.2889 0.257
SRNet 0.2547 0.1976 0.1681 0.1371
Proposed 0.2334 0.1187 0.0842 0.0542

WOW

SPAM 0.445 0.429 0.390 0.3661
SRM 0.3896 0.312 0.257 0.221
GNCNN 0.377 0.343 0.293 0.248
YeNet 0.2435 0.2036 0.1707 0.1445
SRNet 0.2266 0.1798 0.1471 0.1214
Proposed 0.2024 0.113 0.0702 0.0628

The detection accuracy of the proposed scheme is compared with SPAM [13],

SRM [14], GNCNN [2], YeNet [3], and SRNet [4] against three state-of-the-art

spatial domain steganographic algorithms – S-UNIWARD, HUGO, and WOW.

The proposed scheme is also compared with ReST-NET [16] against S-UNIWARD.

The Matlab code for these steganographic schemes is taken from [96], which are

single key steganography algorithms. For comparison, the SRNet model 1 is im-

plemented in the same setting as the proposed scheme for 500000 iterations. The

model with the best validation accuracy2 has been chosen for comparison with the

1SRNet model code is available at http://dde.binghmton.edu/download/
2SRNet trained weights, test data, and codes are available at https://drive.google.com/
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proposed model. The steganalytic detection performance is compared in terms

of classification error (PE) defined in eq. (2.3). The detection performance of the

proposed scheme is tabulated in Table 3.5. The best result is shown using bold-

face. For further illustration, the results presented in Table 3.5 are graphically

depicted in Figure 3.12.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.2  0.3  0.4  0.5

E
rr

o
r 

d
et

ec
ti

o
n
 p

ro
b
ab

il
it

y
 (

P
E
)

Payload (bpp)

GNCNN
TLU-CNN

SRNet
Proposed

 0.1

 0.2

 0.3

 0.4

 0.5

 0.2  0.3  0.4  0.5

E
rr

o
r 

d
et

ec
ti

o
n
 p

ro
b
ab

il
it

y
 (

P
E
)

Payload (bpp)

GNCNN
TLU-CNN

SRNet
Proposed

(i) S-UNIWARD (ii) WOW

 0.1

 0.2

 0.3

 0.4

 0.5

 0.2  0.3  0.4  0.5

E
rr

o
r 

d
et

ec
ti

o
n
 p

ro
b
ab

il
it

y
 (

P
E
)

Payload (bpp)

GNCNN
SRNet

Proposed

(iii) HUGO

Figure 3.12: Steganalytic detection error comparison of the proposed scheme under
scenario-1 with GNCNN [2], YeNet [3] and SRNet [4] against (i) S-UNIWARD, (ii)
WOW [5] and (iii) HUGO [6].

Figure 3.12 (i) and (ii) show the comparison of the proposed scheme with

the state-of-the-art steganalytic schemes against S-UNIWARD and WOW re-

spectively. Figure 3.12 (iii) represents the comparison of the proposed scheme

with the state-of-the-art steganalytic schemes against HUGO. A Receiver Op-

erating Characteristics (ROC) curve is also given in Figure 3.13 to support the

open?id=1MxObzvnkFSSGR4gcfcl_Esqp27kSk5TN
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Figure 3.13: ROC curve for the steganalytic detection of the proposed scheme for
WOW and S-UNIWARD embedding with 0.4 and 0.5 bpp.

performance of the proposed steganalyzer.

The results show that the proposed model outperformed the existing schemes.

A similar observation can be made from Table 3.4, where it has been shown that

the predicted cover through the proposed CNN is more accurate than the cover

predicted by fixed HPF with respect to the PSNR and SSIM. In Table 3.6, the

proposed model steganalytic detection error is tabulated for all the three scenar-

ios on S-UNIWARD, HUGO, and WOW, respectively. From Table 3.6, it can

be observed that the proposed model performs better for scenario-2, which is

intuitive since the dataset size is double in scenario-2. Unlike Scenario-1 and 2,

Scenario-3 is trained on a mix of all the embedding payloads of S-UNIWARD,

HUGO, and WOW (2500 image pairs each). Table 3.7 shows the results when

detection performance of the proposed scheme is compared to ReST-NET [16]

against S-UNIWARD. It is clear that the proposed scheme performs better than

ReST-NET [16]. The results presented in Table 3.5 - 3.7 show that the pro-

posed scheme performs better in terms of detection accuracy over state-of-the-art

embedding schemes [5, 6, 15] on different payloads.
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Table 3.6: Steganalytic detection error comparison of the proposed scheme under all
three scenarios against the S-UNIWARD, HUGO, and WOW embedding scheme. The
best result is shown in green, and the second-best result is shown in blue colour.

Embedding Proposed Dataset 0.2 0.3 0.4 0.5
scheme scheme bpp bpp bpp bpp

S-UNIWARD
Scenario-1 BOSSBase 0.191 0.1206 0.0764 0.0532

Scenario-2
BOSSBase 0.1404 0.0908 0.0588 0.0484
BOWS2 0.1298 0.0809 0.047 0.0388

Scenario-3
BOSSBase 0.1685 0.103 0.0771 0.0664
BOWS2 0.1744 0.0903 0.0645 0.0521

HUGO
Scenario-1 BOSSBase 0.2334 0.1187 0.0842 0.0542

Scenario-2
BOSSBase 0.1725 0.1104 0.0602 0.0455
BOWS2 0.164 0.0991 0.0505 0.0351

Scenario-3
BOSSBase 0.1895 0.1195 0.0896 0.0745
BOWS2 0.2047 0.1124 0.0779 0.0622

WOW
Scenario-1 BOSSBase 0.2024 0.1130 0.0702 0.0628

Scenario-2
BOSSBase 0.1716 0.1070 0.0681 0.0513
BOWS2 0.1599 0.0914 0.0538 0.0440

Scenario-3
BOSSBase 0.2012 0.1243 0.0926 0.0752
BOWS2 0.2080 0.1127 0.0776 0.0617

Table 3.7: Steganalytic detection error comparison of the proposed scheme with the
ReST-NET [16] against the S-UNIWARD scheme 0.1 and 0.4 bpp.

Payload S-UNIWARD
(bpp) Proposed ReST-NET
0.1 0.3287 0.3977
0.4 0.0588 0.1427

3.2.3 Implementation Setup

The proposed scheme is implemented using the TFLearn1 version v0.3 framework,

which is compatible with Tensorflow [97] version 1.0 and later versions. The

training procedure is carried out on a standard workstation with the NVIDIA

Tesla P100 with 16 GB GPU memory and CPU: Xeon E5-2620 with 64 GB

memory and 32 CPU cores. The SRNet [4] is also trained on the same machine

using Tensorflow [97] to compare with the proposed scheme.

1http://tflearn.org/

59



3.2.4 Summary

In this first contributory chapter, two novel steganalysis schemes have been

proposed. The first scheme described in Section 3.1, named Selective-Signal-

Removal (SSR), is proposed to attack the CMD steganography algorithm. The

strategy forces the feature extraction from the regions of the images that are

influenced by embedding rather than the whole image. The scheme follows the

intuition that the CMD forms the cluster of pixels that are modified in the same

direction. The SSR scheme proceeds by determining a suitable threshold value

using the DCT of images. Empirically, it is found that the CMD embedding falls

in the regions that are marked as above the determined threshold. Therefore, a

heuristic function with an assignment algorithm is used to segment the image into

relevant (above threshold) and irrelevant super-pixels. The assignment algorithm

assigns 1 to the relevant super-pixels and 0 to irrelevant ones. Consequently, a

bitmap image is formed. The Hadamard product is performed on the bitmap

and the original image to build a new dataset. This new dataset is used to train

the SRM with Ensemble Classifier. The experimental results show that the pro-

posed scheme mostly nullified the effect of CMD wrapping and hence increase the

classification accuracy by approx 5% in steganalytic classification.

The second scheme discussed in Section 3.2, a deep learning-based stegan-

alyzer has been proposed where the predicted noise residuals are used to train

the deep classifier. One of the main contributions of this work is that this noise

residual is predicted using a neural network rather than through a conventional

high-pass filter, as it is assumed that stego noise may not always present in

high-frequency components of a stego image. It has been experimentally shown

that such image denoising is more accurate than the conventional fixed high-pass

filter-based denoising. Further, it has also been experimentally shown that the

classifiers trained using noise residual computed by DCNN perform better for ste-

ganalytic detection. A comprehensive set of experiments reveal that the detection

performance of the proposed scheme outperformed state-of-the-art steganalyzers.
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In the next chapter, the use of heterogeneous context size is explored by designing

different multi contextual frameworks for steganalysis.
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Chapter 4
Steganalysis: The Role of Hetrogeneous

Context Size

The success of the deep-learning steganalytic detectors depends on their network

architecture design. Early detectors design started with shallow architecture,

and later it is improved by increasing depth, employing batch normalization,

removing max-pooling, etc. In this chapter, two different deep-learning-based

steganalytic detectors are presented. The first model uses densely connected

blocks with progressively increasing context size in each block. The second model

uses different context sizes in each block to design a novel steganalytic detector.

In the next section, the first model is presented.

4.1 Densely Connected Convnets

It has been observed from the literature presented in Section 1.4.2.2 that the

existing CNN-based steganalysis methods: (i) Sharply increase the feature space

by using a sequence of kernels in subsequent layers. (ii) Fixed-sized kernels are

used, which may not be much expressive in learning the stego features since the

stego signal is weak and sparse. Choosing kernel size is critical as lower sized

kernel may fail to model noise (embedding) precisely, while a large kernel may

lead to overfitting. (iii) Use a fully connected layer at the end for classification.
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The use of fully connected layers imposes a constraint that the training and testing

must be of the same spatial dimension. In order to use images of different sizes,

the images must be resized before testing due to the restriction mentioned above.

However, resizing may lead to the loss of stego signals, conceptually similar to

pooling. Considering the above drawbacks of the existing schemes, the main

contributions of the proposed method are as follows:

• A densely connected convolutional network without pooling layers is pro-

posed, which progressively captures the steganalytic features at different

scales.

• The proposed model does not include any fully connected layer, which allows

the model to be tested on any image size regardless of the size of images

used for training.

The proposed model is trained and tested on BOSSBase 1.0 [85] dataset, and the

detection performance is compared with SRM [14], SPAM [13] against S-UNIWARD [15],

HUGO [6], WOW [5], and HILL [18]. The proposed method’s performance is also

compared with recent work [19] on WOW and S-UNIWARD embeddings.

4.1.1 Proposed Work
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Figure 4.1: The proposed model architecture. The architecture of each block is similar;
one of the blocks (Block 1) is also shown in dotted box. Block consists of 4× (Conv →
BN → ReLu) with sizes indicated for each convolution block.
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This section presents the proposed scheme for targeted steganalysis. The

proposed model is inspired by DenseNet [68]. The model architecture of the

proposed method is shown in Figure 4.1. The proposed model comprises an

image processing layer followed by four densely connected convolution blocks and

a sigmoid layer for classification. Since the steganalytic classifiers are trained on

the noise residual instead of the image components, a fixed high-pass filter (HPF )

given in eq. (1.5) has been used in the image processing layer.

The kernel of the image processing layer is kept fixed and is not updated

while training. The noise residual extracted from the image processing layer is

used as input to the subsequent dense blocks. The densely connected blocks

are used to avoid vanishing gradient problems and help extract stego features

from a weak and sparse embedding noise. Each block is connected to all its

subsequent blocks. Consequently, all the blocks receive the feature map from

all their preceding blocks. Each block comprises five convolutional layers. The

Table 4.1: Details of the layers in each dense block

layer # input feature size # of filters filter size Output feature size
1 1× 512× 512 4 1× 1 4× 512× 512
2 4× 512× 512 8 2× 2 8× 512× 512
3 8× 512× 512 16 3× 3 16× 512× 512
4 16× 512× 512 32 4× 4 32× 512× 512
5 32× 512× 512 64 5× 5 64× 512× 512

details of the layers used in each block are given in Table 4.1. All the blocks

have the same configuration except for the last block (Block 4), where the output

feature size is 1 × 512 × 512. Convolutional layers in each block are followed

by the Batch Normalization (BN) [58] for faster convergence and the ReLU [98]

activation. The pooling layer has not been used since the use of pooling may

result in loss of the stego noise. The number of convolutional filters progressively

increases as 4, 8, 16, 32, and 64, and the kernel size also increases gradually from

1×1 to 5×5 as each block slowly increases the scope of the convolution operator.

The different sized kernels help to learn the features at different scales, thereby

avoiding the loss of the stego signal and capturing more prominent features.
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The densely connected blocks’ output is a negative residual map that is pixel-

wise added to noise residual extracted by the image processing layer to boost the

noise components. The resulting output is used as input to the classification layer

(sigmoid layer). The classification layer determines whether the input image is a

stego or cover image using the mean sigmoid over entire pixels. The network is

trained by minimizing the cross-entropy loss function.

4.1.2 Implementation Details and Results

4.1.2.1 Experimental Setup

The experiments are carried out on the BOSSBase v1.0 dataset [85]. The dataset

consists of 10,000 cover images of size 512× 512. The steganographic embedding

algorithms1 S-UNIWARD, HUGO, WOW, and HILL, are used to obtain stego

images. Further, 10000 cover-stego pairs of images are divided into training:

5000, validation: 1000, and testing: 4000 cover-stego pairs. To compare the

performance, SRM and SPAM are also implemented with the same split as the

proposed model. The proposed model is implemented using Pytorch [99] on a

standard workstation having NVIDIA Quadro M-4000 GPU (8GB) for 90 epochs.

The learning rate is initially set to 0.001 and decays by a factor of 10 every 30

epochs. The batch size is empirically kept as 8 (4 cover and 4 stego). Adam

Optimizer [100] is used to optimize the network parameters when training.

4.1.2.2 Results

The quantitative results are given in Table 4.2 when compared to the proposed

model is compared with SRMwith EC [17] and SPAMwith EC against S-UNIWARD,

HUGO, WOW, and HILL embedding with different payloads. The results are

measured in terms of percentage (%) classification accuracy. The best result is

shown in boldface. A series of graphs are also given in Figure 4.2 for a visual

presentation where the proposed scheme is shown in red color, SRM with EC is

1Steganographic algorithms, feature extractors such as SRM, SPAM and Ensemble classifier
can be found at: http://dde.binghamton.edu/download/
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Table 4.2: Steganalytic classification accuracy (in %) of the proposed scheme is com-
pared to SRM [14] with Emsemble classifier [17] and SPAM [13] with Ensemble classifier
against S-UNIWARD [15], HUGO [6], WOW [5] and HILL [18].

Scheme Payload(bpp) Proposed scheme SRM with EC SPAM with EC

S-UNIWARD

0.1 66.50% 59.05% 54.24%
0.2 68.50% 62.17% 58.92%
0.3 70.75% 65.80% 63.44%
0.4 75.25% 73.70% 67.51%

HUGO

0.1 63.50% 60.03% 52.36%
0.2 70.25% 67.98% 56.00%
0.3 74.00% 74.46% 60.03%
0.4 77.25% 78.30% 63.98%

WOW

0.1 67.25% 60.97% 52.46%
0.2 70.75% 65.77% 55.82%
0.3 74.00% 69.26% 58.98%
0.4 76.50% 75.12% 62.33%

HILL

0.1 61.50% 55.45% 52.28%
0.2 65.75% 61.37% 55.26%
0.3 69.50% 67.11% 58.41%
0.4 75.00% 72.58% 61.37%

Table 4.3: Comparison of the proposed scheme with Tian and Li [19] in terms of
steganalytic classification accuracy (in %) against WOW [5] and S-UNIWARD [15].

Payload WOW S-Uniward
bpp Proposed scheme Tian and Li [19] Proposed Tian and Li [19]
0.1 67.25% 67.90% 66.50% 65.10%
0.3 74.00% 69.00% 70.75% 67.20%
0.4 76.50% 71.4% 75.25% 69.80%

shown in black color and SPAM with EC is shown in blue. It can be observed from

the results that the proposed scheme outperformed SRM [14] as well as SPAM

for most of the steganographic algorithms. The proposed scheme’s steganalytic

performance is also compared with Tian and Li’s recent work [19], which has the

same experimental setup as the proposed method. The results are given in Ta-

ble 4.3. The proposed scheme has comparable performance against WOW [5] on

0.1 bpp, and for the rest of steganographic embedding and payloads, the proposed

method outperformed Tian and Li [19].
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Figure 4.2: Steganalytic performance comparison of the proposed scheme (red) with
SRM with EC (green) and SPAM with EC (blue) against S-UNIWARD, HUGO, WOW,
and HILL steganography on embedding rates - {0.1, 0.2, 0.3, 0.4} bpp.
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4.2 Multicontextual Design of CNN for Steganal-

ysis

As it is observed from the previous work, recent steganographic embedding does

not always restrict their embedding in the high-frequency zone; instead, they dis-

tribute it as per embedding policy. Thus learning the embedding zone is a chal-

lenging task. This section introduces a deep neural network that can extract mul-

tiple contextual features from noise residuals. Unlike conventional approaches,

the proposed model extracts noise residual using learned denoising kernels to

boost the signal-to-noise ratio. After preprocessing, the sparse noise residuals are

fed to a novel Multi-Contextual Convolutional Neural Network (M-CNet) using a

heterogeneous context size to learn the fine-grained noise residuals. The model

performance is further improved by incorporating the Self-Attention module to

focus on the areas prone to steganalytic embedding.

The design of steganalytic detectors can be roughly divided into two types

- the first type is the methods that use some preprocessing element to compute

noise residual and then perform detection utilizing the residuals. The second

type is an end-to-end network which does not require any explicit preprocessing

elements. The following observations are made from the existing literature given

in Section 1.4.2:

1. A majority of the methods [2, 39, 60, 63, 101] use fixed high-pass filters in

preprocessing stage for noise residual computation.

2. The computed noise residuals are very low-amplitude signals that require a

robust detector to be learned.

3. The modern steganography algorithms distribute the embedding in the less

predictable regions of the carrier image. Therefore, a mechanism is needed

for the detectors to focus on these parts as well as the usual highly probable

image regions.

With the above motivation, our contributions are four-fold:
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1. A set of thirty filters is learned using a CNN model to replace the fixed

high-pass filters used in preprocessing steps for residual computation from

images [102].

2. A multi-context design of a steganalyzer is devised to learn the low-amplitude

and sparse noise residuals.

3. The proposed model uses a Self-Attention [103] mechanism to focus on areas

that are likely to be affected by embeddings.

4. Additionally, an ablation study is presented at the end for justification of

the proposed architecture.

4.2.1 Proposed Method

(a) Cover (b) WOW (c) S-UNIWARD (d) HILL (e) MiPOD

Figure 4.3: Stego noise embedded by different steganographic algorithms - (b) WOW,
(c) S-UNIWARD, and (d) HILL (e) MiPOD with payload = 0.4 bpp

The name of the proposed model is M-CNet, “Multi-contextual network for

steganalysis.” In this model, we have used convolutions with different kernel sizes

to get the responses having different contexts, hence the name “multi-context.”

We believe that steganographic noise is not equally visible with a particular ker-

nel. Instead, it (noise) can be traced more prominently with suitable kernel size

depending on the local image statistics (context). The proposed model can be

roughly divided into two modules. The first module is an extension of our previ-

ous work [102], and the second module is a multi-context CNN model.
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4.2.1.1 Rationale

In principle, the modern content-adaptive steganography schemes hide most stegano-

graphic embedding in the noisy or texture region and relatively less in the smooth

regions. The same observation can be made through Figure 4.3, where (a)

shows the cover image and (b)-(e) depicts the steganographic embedding done

by WOW [5], S-UNIWARD [15], HILL [18], and MiPOD [104], respectively. No-

ticeably, Figure 4.3 (b)-(e) shows that most steganographic embeddings are clus-

tered towards the high-texture regions and are sparsely distributed across the

smooth areas. This observation drives the steganalysis schemes to focus on the

high-textured region to learn the features that may lead to better detection. Ste-

ganalysis methods [2, 13, 14, 39, 60, 101] use different high-pass filters to suppress

the image content and expose the noise content of an image. This allows the

detectors to train on the noise domain rather than the image domain. However,

this may not always be true. There are some recent embedding schemes that

embed not only in the high-frequency zone but also in smoother areas [105,106].

For these cases, high-frequency-based filters may not be very useful.

With this motivation, we propose a denoiser subnetwork to compute the noise

residual from a given image. For simplicity of reference, we call the denoiser

subnetwork φDN subnetwork.

4.2.1.2 Denoiser Subnetwork φDN

The denoiser (φDN) subnetwork extends one of our previous works [102], where

the cover image is predicted using a single-layered CNN from a stego image.

Later, the noise residual is computed as the pixel-wise difference between the

stego and the predicted cover images to train a classifier. We refer to the sub-

network mentioned above as “denoiser” due to its post-processing adaptability

of predicting the stego noise residual. However, in this work, we train the φDN

subnetwork to estimate the noise residual, bypassing the post-processing step di-

rectly. Furthermore, instead of utilizing 16 filters as in [102], we propose to use
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Figure 4.4: Architecture of the Denoiser subnetwork (φDN ).

30 filters to extract the rich set of features that may capture the stego embed-

dings in both low and high-frequency zones. We have shown that such empirical

changes in the φDN subnetwork’s engineering may lead to a notable reduction in

the detection error probability (see Section 4.2.4.1). A graphical overview of the

φDN subnetwork has been presented in Figure 4.4. Architecturally, the denoiser

subnetwork consists of two convolution layers, with 30 and 1 filters, respectively.

To formally define the regime of operations of the φDN subnetwork, let X, Y

denote the cover and stego images, respectively. Consequently, the target cover

and stego noise residuals can be written as Nc = |X − X| and Ns = |Y − X|,

respectively. Given an input image X or Y , the proposed φDN subnetwork aims

to estimate the corresponding Nc or Ns noise residual. The thirty kernels of

the first convolution layer in the φDN subnetwork are initialized with SRM fil-

ters. It has been observed that such an initialization leads to faster convergence

and a significant boost in detection accuracy. It should be mentioned that the

pixel-wise formulation of noise residual may capture stego embeddings in both

low and high-frequency zones of an image. However, unlike [102], in this work,
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we utilize the inherent knowledge of the φDN subnetwork to train the proposed

multi-contextual classifier. Precisely, instead of the predicted noise residual, we

input the intermediate feature maps f0, f1, ...f29 generated by the 30 filters of the

first layer in φDN to the M-CNet. By way of analysis, the intermediate feature

representations of the final noise residual may have a variety of finer details (see

Figure 4.5) that can be better leveraged by the multi-contextual filters of the pro-

posed M-CNet. To the best of our knowledge, this is the first work that distills

and incorporates the inherent information of the denoiser subnetwork in terms of

intermediate feature representations and optimally trains the classifier.

image corresponding ouput of φDN

Figure 4.5: Sample output of φDN subnet: The first column represents input image,
and columns 2 to 5 show the noise residual maps when preprocess using kernels of φDN
subnet.

4.2.1.3 Multi-context subnetwork

The purpose of the multi-context subnetwork is to learn the discriminative fea-

tures that may not be learned using the fixed-size kernels due to the non-uniform

sparsity of the stego noise in an image. The multi-context subnetwork is com-

bined with the preprocessing element φDN to form the M-CNet. As shown in

Figure 4.6, the multi-context subnetwork comprises six convolution blocks, fol-

lowed by a Self-Attention layer [103], followed by a Global Average Pooling (GAP)
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Figure 4.6: Architecture diagram of the M-CNet.

layer, and a fully-connected layer followed by the softmax layer. Each convolu-

tion block (block1 to block5 ) is equipped with three different kernel sizes - 1× 1,

3 × 3, and 5 × 5 to learn the noise residual at different contextual orientations.

The learned features are then concatenated by using a CONCAT layer before

feeding to the next layer. After concatenation, the features are normalized using

the Batch Normalization (BN) [107] for the faster convergence of the network,

followed by a Parametric ReLU (PReLU ) non-linearity [108] before feeding to the

next layer. The ABS layer is applied to the concatenated features, which offers

better learning of noise residual by preserving the negative as well as positive

features [39]. The block6 is kept with a filter of size 1× 1, which reduces model-

ing strength by keeping the salient features. The stego noise is fine-grained and

sparse features scattered across the entire residual map. Therefore, a mechanism

is needed to learn these noises and focus on the areas that are likely to be most

affected by embeddings. With this motivation, a Self-Attention layer is used to

enable the network to learn the features from the regions that are most likely

to be affected by the steganographic embeddings. The employed Self-Attention

mechanism adaptively refine the learned noise residual (output of the PReLU

after block6 ) by suppressing the irrelevant multi-contextual features. After the

Self-Attention layer, the Global Average Pooling layer is used to reduce the di-

mensionality of the features by retaining only essential features. Following the

GAP layer, a fully connected network layer followed by the softmax is used for

binary classification using learned features. In order to come up with the final

architecture, an extensive set of experiments have been conducted; the details are
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presented in Section 4.2.4.

4.2.2 Experimetal Study

This section presents the dataset details, steganography algorithms, and the eval-

uation metric used to train and evaluate the models.

4.2.2.1 Dataset

The performance of the proposed M-CNet is compared with SCA-Yenet [60] and

SRNet [4]. Therefore, the same dataset configuration has been used for training,

testing, and validation, with some minor changes. The entire dataset is consists

of the union of BOSSbasee 1.01 [85] and BOWS-2 [86]. Both of these datasets

contain 10,000 grayscale images of size 512 × 512. Each of these images is first

resized to 256 × 256 using the imresize function of Matlab. The training set

is comprised of 4,000 randomly selected images from the BOSSbase1.01 dataset

and the entire BOWS2 images (10,000). The validation set consists of randomly

selected 1,000 images from the remaining BOSSbase dataset and the rest 5,000

images are used for testing. Therefore, the training set contains 2×14, 000 images

(14,000 cover and 14,000 stego), the validation set includes 2×1, 000 images, and

the test set contains 2 × 5, 000 images. Further, 2 × 2, 000 pairs are randomly

selected from the training set to train and validate (2 × 1, 600 for training, and

2×400 for validation) the φDN subnetwork. The stego image dataset is generated

with S-UNIWARD [15], WOW [5], HILL [18], and MiPOD [104] steganography

algorithms1 using random keys.

All the models reported in this work are trained on the same dataset splits, as

reported in Section 4.2.2.1. The models are implemented using PyTorch [99] on

Nvidia V-100 with 32 GB GPU memory. Each epoch of M-CNet training takes

≈ 22 minutes, approximately six days to train for 400 epochs.

1The code for steganography algorithms are downloaded from http://dde.binghamton.

edu/download/stego_algorithms/
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4.2.2.2 Training

The proposed model is trained for the detection of spatial domain steganography

schemes.

Training φDN subnetwork: The φDN subnetwork is trained using 2 × 1, 600

images and validated with 2 × 400 images. These images are not overlapped

with any of the training, validation, and testing dataset of the proposed M-CNet

model. The φDN is trained for 100 epochs, with a mini-batch of 20 images (10

cover and 10 stego), using the Adamax [109] optimizer. The learning rate is

initialized to 10−3 and decayed every 25 epochs by a factor of 10−1. Each mini-

batch images are subject to data augmentation, rotation by 90◦, horizontal and

vertical flipping, with a probability of 0.4. The φDN subnetwork is trained by

minimizing the mean-squared loss (L2).

L2 = ‖Ŷ − Y ‖
2
2, (4.1)

where Y and Ŷ denote the input and the image estimated by φDN subnetwork,

respectively. After the training, the model with the minimum validation error is

chosen for the preprocessing of the proposed M-CNet model.

Training M-CNet: The training of M-CNet is carried out on 2×12, 000 train-

ing images. Adamax [109] optimizer is used with a minibatch of 20 images (10

cover and 10 stego) for 400 epochs. The learning rate is initialized to 10−3 and

decayed every 40 epochs by a factor of 10−1. All the weights of convolutional

kernels are initialized with Xavier initializer [110], and biases are initialized with

0. The weights of fully connected neurons are initialized with Gaussian distri-

bution with µ = 0.0 and σ = 0.01. Each mini-batch of training is subject to

data augmentation by horizontal and vertical flipping and rotation by 90◦ with a

probability of 0.4. The M-CNet is trained by minimizing the binary cross-entropy
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loss LBCE.

LBCE = −
1

N

N
∑

i=1

(yi.logŷi + (1− yi).log(1− ŷi)), (4.2)

where N denotes the number of training examples, y and ŷ represent the true

label and the predicted label, respectively.

In this work, we have also given the Receiver Operating Characteristics (ROC),

Area Under Curve (AUC), and the Weighted Area Under Curve (WAUC)1 as an

alternative metric of evaluation.

The results presented in Section 4.2.3 are reported for a random 50-50 split

of the BOSSBase1.01 dataset. However, to evaluate the detection performance

across different splits, we trained the proposed M-CNet model on five different

random 50-50 splits of BOSSBase, keeping BOWS2 fixed in training set on WOW

with payload 0.4 bpp. As a result, the standard deviation of detection error (PE)

is obtained ≈ 0.00359 for these five splits.

4.2.3 Results and Discussion

In this section, the results of the M-CNet are presented and compared with the

state-of-the-art detectors.

The detection performance of the proposed M-CNet model is compared with

the prior arts, namely, YeNet [60] and SRNet [4]. YeNet and SRNet are two

spatial domain steganalytic detectors, which achieved state-of-the-art detection

accuracy in the spatial domain. Both the methods are based on different training

mechanisms. YeNet is based on the training with preprocessing filters, whereas

SRNet is based on end-to-end training without preprocessing. The detection per-

formance of these methods is compared with the proposed M-CNet while detect-

ing the spatial domain steganography schemes, such as WOW [5], S-UNIWARD [15],

and HILL [18]. For a fair comparison with the proposed M-CNet, YeNet and SR-

Net are implemented with the experimental setup stated in the respective papers.

1code to compute WAUC is downloaded from: https://www.kaggle.com/c/

alaska2-image-steganalysis/overview/evaluation
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(a) WOW (b) S-UNIWARD

(c) HILL

Figure 4.7: Comparison among SCA-YeNet, SRNet, and M-CNet in terms of detec-
tion error probability PE on BOSSBase on (a) WOW, (b) S-UNIWARD, and (c) HILL
steganography.

The detection error probability PE (defined in eq. (2.3)) of the steganalyzers is

recorded in Table 4.4. The ROC curve for M-CNet is shown in Figure 4.8, and

AUC/WAUC scores are given in Table 4.5.

Curriculum Learning for training with lower payloads: IIt is a well-

known fact that when a detector is trained on a steganography algorithm with

a low payload, it performs worse, and sometimes it may not converge at all

while training [59]. The solution to this kind of problem has been found us-

ing curriculum and transfer learning [111, 112]. Some of the recent steganalysis

schemes [4, 60] used curriculum learning for training the model with the lower

payloads. Following this trend, we trained the proposed M-CNet model with a
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Table 4.4: Detection error probability PE for M-CNet, YeNet, and SRNet. The best
results are indicated in bold face.

Embedding Detector
Payload (bpp)

0.1 0.2 0.3 0.4 0.5

WOW

SCA-YeNet 0.2442 0.1691 0.1229 0.0959 0.0906

SRNet 0.2587 0.1676 0.1197 0.0893 0.0672

M-CNet 0.2555 0.1649 0.1115 0.0759 0.0563

S-UNI

SCA-YeNet 0.3220 0.2224 0.1502 0.1281 0.1000

SRNet 0.3104 0.2090 0.1432 0.1023 0.0705

M-CNet 0.3100 0.2010 0.1375 0.0910 0.0658

HILL

SCA-YeNet 0.3380 0.2538 0.1949 0.1708 0.1305

SRNet 0.3134 0.2353 0.1830 0.1414 0.1151

M-CNet 0.3165 0.2301 0.1755 0.1389 0.1120

higher payload (0.4 bpp) and then transferred its weights to train it for lower

payloads (0.3 bpp) using a very small learning rate (10−7), reducing every 100

epoch by a factor of 10−1. The proposed M-CNet model using the curriculum

learning is fine-tuned for 200 epochs. The proposed M-CNet model with curricu-

lum learning is evaluated for epochs between 51 to 200. The model with the best

validation PE is evaluated, and results are presented in Table 4.4.

The results presented in Table 4.4 and Figure 4.7 show that the proposed

M-CNet performed well when it is tested on WOW and S-UNIWARD while it

attains the performance comparable to SRNet [4] on HILL embedding. It should

also be noted that better detection performance is obtained for the embedding

algorithms with higher payloads, such as 0.3 - 0.5 bpp. Further, the ROC curve

presented in Figure 4.8 and AUC and WAUC (see Table 4.5) is given as the

alternate measure of detection performance. The ROC and AUC also depict

that the proposed model performed better for the embedding algorithms WOW

and S-UNIWARD than HILL embedding. While the method such as SRNet

design consideration is based on residual connections and end-to-end learning,
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Figure 4.8: ROC curve of M-CNet when tested on WOW, S-UNIWARD, and HILL
steganography with 0.4 bpp.

the proposed M-CNet is explicitly designed to learn the sparse and low-amplitude

noise residual extracted by its preprocessing network(φDN). The experimental

results show that the proposed model outperformed the prior arts. The detection

efficacy of the proposed M-CNet model might be due to the multi-contextual

design, which may have helped in learning the sparse and low-amplitude noise

residual spread over both low and high-frequency regions. Later, the adopted

self-attention mechanism might have helped in focusing on those regions more by

suppressing the irrelevant regions.

Further, we evaluated the proposed M-CNet model with different architectural

configurations. The details of the experiments are presented in Section 4.2.4.
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Table 4.5: AUC and WAUC scores of the M-CNet when detecting different types of
steganography at differnt payloads.

Embedding Metric
Payload (bpp)

0.2 0.3 0.4 0.5

WOW
AUC 0.9324 0.9686 0.9835 0.9885
WAUC 0.9517 0.9776 0.9883 0.9917

SUNI
AUC 0.8848 0.9143 0.9636 0.9830
WAUC 0.9170 0.9387 0.9740 0.9879

HILL
AUC 0.8066 0.8592 0.8821 0.9066
WAUC 0.8425 0.9343 0.9502 0.9685

4.2.4 Ablation Study

This section presents a brief ablation study to assess the proposed model with

different configurations and various scenarios. Unless explicitly specified, all the

experiments presented in this section are performed on WOW steganography with

a payload of 0.5 bpp.

4.2.4.1 Configurations of Kernels in the φDN

An obvious question one may ask is, how do the different choices of φDN affect

the performance of the proposed M-CNet model? Our goal with the φDN is to

learn the kernels that can improve the noise residual computation. Therefore,

we kept our search confined to a single layer. Table 4.6 presents the different

configurations of filters explored for the φDN . The first column represents the

number of filters (n), the second and the third column represent the filter size

(s) used and the corresponding detection error probability PE, respectively. The

best PE is achieved in this experiment for n = 30 and 32, and s = 3 × 3.

These results are obtained when all the kernels are initialized with the Kaiming

initialization [108]. We also investigated the initialization of the kernels using

SRM, which has kernel sizes of 1 × 1 to 5 × 5. The smaller size SRM kernels

are padded to zeroes to match the dimension of 5× 5. In order to initialize with

the SRM kernels, we kept the no. of filters n = 30 and kernel size s = 5 × 5.

The details of initialization are presented in Section 4.2.4.2. We also explored
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a few smaller architectures with a few layers for the φDN but could not get any

promising results.

Table 4.6: Detection error probability (PE) with different filter size and no. of filters
in φDN .

# filters (n) filter size (s) PE

16
3× 3 0.0820
5× 5 0.0873

30
3× 3 0.0800
5× 5 0.0810

32
3× 3 0.0811
5× 5 0.0830

64
3× 3 0.0895
5× 5 0.0937

4.2.4.2 Kaiming vs. SRM vs. Gabor initialization

It has been widely established that the learning-based models may achieve poor

convergence when initialized with the random weights derived from the Gaussian

distribution [110]. To overcome this drawback, we experimented by initializ-

ing the kernels of the φDN module with different filters, namely, Kaiming [108],

SRM filters [14], and Gabor filters [62]. For our experiment, 30 Gabor filter are

obtained with following parameters: Scale σ ∈ {0.5, 1}, Wavelength of the co-

sine function λ = σ/0.56, Spatial aspect ratio γ = 0.5, and fifteen orientations

θ ∈ [0, 14π/15]. The experimental results are tabulated in Table 4.8. The SRM,

and Gabor Kernels are first padded with zeroes to match the dimension to 5× 5

before the initialization. The φDN converged faster while training when initialized

with SRM kernels. We also evaluated the performance of the proposed M-CNet

model with these initializations; results are shown in Table 4.7. The results show

that the proposed M-CNet model also performed better when initialized with

SRM kernels.
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Table 4.7: Detection error probability when the φDN subnetwork is initialized with
different types of kernels.

Initialization Kaiming SRM Gabor
PE 0.0810 0.0563 0.0723

4.2.4.3 Split vs. end-to-end training of the φDN subnetwork

The training of the proposed M-CNet model is carried out in two phases (we

call it split training). In the first phase, the φDN subnetwork is trained. In the

second phase, the learned weights of the φDN are used in preprocessing, and the

entire network is trained, keeping the learned kernel weights of the φDN fixed.

Nevertheless, to investigate the performance of the proposed M-CNet model when

trained in the end-to-end fashion, both the networks (φDN and multi-context

subnetworks) are clubbed together, keeping the φDN in the front end of the M-

CNet. As a result, the error detection probability PE is found to be 0.0848 for

end-to-end trained M-CNet, which is inferior to the performance with the split

training (0.0563).

4.2.4.4 Detection performance of the proposed M-CNet when the φDN
subnetwork is replaced with handcrafted filters like- SRM,
KV, or Gabor

To this end, we trained the model without any preprocessing and with prepro-

cessing using KV, SRM, and Gabor filters [62]. The KV filter is a single 5 × 5

filter, which has been used in numerous steganalyzers [2, 39] for preprocessing.

The SRM [14] filter bank consists of 30 linear and non-linear filters. All these ker-

nels are resized to 5× 5 before using with M-CNet. A set of 2D Gabor filters [62]

has been used by Li et al. [16] in the preprocessing stage of the detector for bet-

ter extraction of noise residual. The Gabor filters are obtained using the setting

stated in Section 4.2.4.2. The best detection error probability is found when the

model is trained with preprocessing using φDN kernels. The result shows that

the preprocessing elements, which are learned, are comparatively better than the
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Table 4.8: Detection error probability when different kind of filters are used in pre-
processing stage of the proposed M-CNet.

Preprocessing using PE

No filter 0.1115

KV filter 0.1079

Gabor filter 0.0959

SRM filters 0.0824

φDN kernels 0.0563

fixed ones.

image Stego noise Feature maps predicted by Self-Attention layer Feature maps predicted by block6

Figure 4.9: Sample: The first two columns represent an image and corresponding noise
residual (N = Y−X). The next four columns (col. 3-6) show the 4 feature maps (out
of 256) predicted by the Self-Attention layer of M-CNet, and the col. 7-10 show the
4 feature maps (out of 256) predicted by block6 (M-CNet without Self-Attention).

4.2.4.5 Choice of filter configuration in multi-context subnetwork

We carried out experiments with different configurations of the proposed M-CNet,

keeping only one type of kernel in each convolutional layer except for the last

layer where 1x1 kernel size is used. The results of this experiment are presented

in Table 4.9. When all the layers of the proposed M-CNet are equipped with

the 1 × 1 kernel size, the detection error is found to be 0.1319, which might

84



be due to the smaller context size alone is not suitable for capturing the stego

features. The better detection error 0.0968 is obtained for the model with kernel

size 3× 3. Nevertheless, considering the low amplitude and sparse characteristics

of stego noise, any single type of kernel alone may not be suitable to capture such

features. Therefore, we further explored the models with multiple context sizes in

each layer to capture these features more precisely. The results of this experiment

are presented in Table 4.10. We initially experimented with combinations of two

different size kernels in each convolution layer, keeping the last layer fixed with

only 1x1 kernels. Finally, we experimented with all three different kernel sizes in

each layer. The model with this configuration performed better than the former

combinations.

Table 4.9: Detection error probability when only one type of filter size is used in each
layer of the multicontext network.

Layers configuration PE

All layers 1× 1 0.1319

All layers 3× 3 0.0968

All layers 5× 5 0.1010

First two layers 5× 5→ three layers 3× 3 0.1054

Table 4.10: Detection error probability PE when multiple filters of different size are
used in each layer of the network.

Layers configuration PE

1× 1 and 3× 3 0.0939

1× 1 and 5× 5 0.0872

3× 3 and 5× 5 0.0786

1× 1, 3× 3, and 5× 5 0.0563
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4.2.4.6 Increasing and Decreasing depth and no. of filters per layer
of the proposed M-CNet

An extensive set of experiments have been conducted to develop the final archi-

tecture of the M-CNet; some of them are presented here. The first question is,

how does the performance changes along with the depth of the network? To this

end, we conducted the experiments keeping all the components fixed and vary-

ing only the depth (d = no. of blocks) from 2 to 8. Beyond d = 8, the model

exhausted the available resources for computation. The result presented in Ta-

ble 4.11 shows that the M-CNet performed best for d = 6 and 7. However, we

kept the configuration of the M-CNet model to d = 6 since it saves the number of

trainable parameters and lowers the training time. It can infer from the results

that the model with d = 2 is very weak to learn the stego embedding, whereas,

for d = 8, the low-amplitude stego noise may vanish along with the depth of the

network.

Table 4.11: Detection error PE with variation in depth of M-CNet.

Depth (d) 2 3 4 5 6 7 8

PE 0.2239 0.1080 0.0980 0.0729 0.0563 0.0610 0.0759

4.2.4.7 Choice of activation

There are various choices for activation function such as Sigmoid, TanH, ReLU,

Leaky ReLU (LReLU ), Parametric ReLU (PReLU ).

Sigmoid(θi) =
1

1 + e−θi
; TanH(θi) =

eθi − e−θi

eθi + e−θi
,

f(θi) =

{

θi, if θi > 0

αi.θi, if θi ≤ 0,

where θi denote the input to the nonlinear activation on the ith channel. f(θi)

denote the ReLU activation when the parameter αi = 0, LReLU when αi is fixed

to a small constant (αi = 0.01), and PReLU when αi is learned with the model.
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The aim of LReLU is to avoid the zero gradients that occur in ReLU. But,

experiments in [113] showed that replacing the ReLU with the LReLU has a very

negligible impact on accuracy. However, PReLU adaptively learns the parameters

jointly with the model and also has a considerable impact on the accuracy [108].

For steganalytic detectors, PReLU helps to learn the positive as well negative

embedding more precisely by retaining the negative values using learned param-

eters, which might be lost when ReLU is used. We experimented with Sigmoid,

TanH, ReLU, and PReLU activation to compare the performance when different

types of activation are used. The PE for each of these activations is recorded in

Table 4.12. Experimentally, the best detection error is observed when PReLU

activation is used throughout the network.

Table 4.12: Detection error PE with variation in depth of M-CNet.

Activation Sigmoid TanH TanH→ReLU ReLU PReLU
PE 0.1811 0.0776 0.0670 0.0607 0.0563

4.2.4.8 With or without Self-Attention?

To answer this question, we trained the M-CNet without the Self-Attention [103]

and compared the performance with the M-CNet. The detection error is found

to be PE = 0.0855. A set of samples for the model with and without the Self-

Attention are presented in Figure 4.9. In Figure 4.9, col. 1 shows a cover image,

col. 2 shows the noise embedding (N = Y − X) by WOW steganography with

payload 0.5 bpp, the col. 3-6 represent the features predicted by the Self-Attention

layer of the M-CNet, and col. 7-10 represent the features predicted by block 6

when the Self-Attention layer is not used in M-CNet. The samples show that the

outputs predicted by the layers provide a variety of features by assigning high

values (255) to the highly textured and low values (0) to the smooth regions.

Nevertheless, it can be clearly observed that the output maps predicted by Self-

Attention focus more on the regions that contain steganographic embeddings.

This precise feature learning of Self-Attention caused the increase in detection
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accuracy by ≈ 3%.

4.2.4.9 Detection performance of the proposed M-CNet for stego-
source mismatch

To this end, we trained the proposed M-CNet model on one steganography algo-

rithm and tested it with another with the same payload. The results presented in

Table 4.13 show that when the model is trained on the easy to detect algorithm

WOW and tested on the hard-to-detect algorithm MiPOD, the model performed

worse. Comparatively, it performed better when trained on MiPOD and tested

on WOW and several other steganography.

Table 4.13: Detection error probability PE of the proposed M-CNet for stego-source
mismatch scenario on different embedding with payload 0.4 bpp

Train\Test WOW S-UNI HILL MiPOD
WOW 0.0759 0.1479 0.3301 0.2850
S-UNI 0.1082 0.0910 0.2501 0.2095
HILL 0.1629 0.2755 0.1389 0.2160
MiPOD 0.1412 0.1580 0.1812 0.1441

4.2.4.10 Detection performance of the proposed M-CNet for cover-
source mismatch

Table 4.14: Detection error PE for proposed model cover-source mismatch for WOW
0.4 bpp

Trained on Tested on PE
Imagenet BOSSbase 0.3936
BOSSbase ∪ BOWS2 Imagenet 0.4725

In order to assess the performance of the M-CNet for the scenario when train-

ing images are coming from one distribution and test images from another with

the same embedding and payload (WOW 0.4 bpp). We performed the following

set of experiments: (1) Trained on the training set explained in Section 4.2.2.1

(here, we referred to it as BOSSbase ∪ BOWS2) and tested on 5, 000 randomly

88



selected images from Imagenet1 [7]. (2) Trained on 10,000 real-world images from

the Imagenet dataset and tested on the BOSSbase test set. Since the Imagenet

dataset consists of a wide variety of images, when the M-CNet is trained on

Imagenet and tested on BOSSbase performed better than when it is trained on

BOSSbase ∪ BOWS2 and tested on Imagenet. The results of this experiment are

tabulated in Table 4.14.

4.3 Chapter Summary

In this contributory chapter, two novel steganalysis methods have been presented.

In the first module of this chapter, a densely connected convolution network

for steganalysis is presented. The model captures complex dependencies that

are more appropriate for steganalysis, and the learned features avoid the loss

of stego signals. The proposed model has no fully connected layer, which adds

the advantage that the model can be tested on any image size, unlike with fully

connected layers where the image size used for training and testing must be

the same. The proposed scheme’s steganalytic performance is compared with

SRM, SPAM with EC, and a recent method [19] against different steganographic

algorithms on different embedding rates. The proposed model outperforms the

existing methods with a considerable margin.

In the second module of this chapter, a steganalytic detector, M-CNet, is

proposed to learn the feature for the steganographic embeddings with multiple

context sizes. The proposed M-CNet model is equipped with learned kernels for

preprocessing, which offers diverse noise residual by exposing noise components

and suppressing image components. Further, the M-CNet employed the Self-

Attention mechanism to focus on the image regions, which are likely to be more

affected by steganographic embeddings. Through an ablation study, the design

of the proposed model is justified in favour of its detection performance. The

1Imagenet images are first converted to grayscale using rgb2gray and then resized to 256×
256 using imresize function of Matlab before the embedding.
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experimental results show that the M-CNet outperformed the state-of-the-art

detectors.

In this contributory chapter, we have learned that a deeper network with

efficient design criteria improves steganalytic detection accuracy. However, a

deeper network may not always yield better detection accuracy. Instead, a proper

balance between width and the depth of a network may help improve detection

accuracy. In our third contributory chapter, we will consider this issue for further

improving the detection accuracy.
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Chapter 5
Steganalysis using Deep Fractal Network:

The Role of Depth and Width

In the recent steganalysis literature, it has been observed that a deeper network

using skip connections generally helps to model the steganographic noise effi-

ciently [4]. Very recently, it has been reported that models with wider networks

can carry more significant features through their layers [16]. Interestingly, it has

been observed in Wider Residual Network [65] that a deep network where depth

directly depends on the chosen width, performs better than any only-wider or

only-deeper networks. To show this, the authors of [65] have conducted various

experiments by varying the depth and width of the residual network on CIFAR-10

and CIFAR-100 datasets [114]. It has been observed that for a deep network, if

we increase the width, the test error starts decreasing up to a certain extent; after

that, it starts increasing [65]. Therefore, exploiting this depth and width trade-

off, an optimal depth and width combination can be found that can maximize

the detection accuracy.

Motivated by these observations, the following contributions have been made

in this chapter:

• A concept of a recent deep-learning-based model popularly known as Frac-

talNet [66] has been extended to design the proposed network to model the
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steganographic noise where embedded images are used as input.

• The proposed model has been designed in such a way that a balance between

the width and depth of the network can be maintained to maximize the

detection performance.

5.1 Proposed Method

This section presents the details of the proposed method. The proposed model is

inspired by FractalNet [66]. For simplicity, we call the proposed model as SFNet

(Steganalysis with Fractal architecture).

5.1.1 FractalNet.

f 
k

f 
k

f 
k

f (x)
k+1

x x

f (x)
k

Conv

join layer

Figure 5.1: Fractal expansion rule

In recent years, extensive research has been done for image recognition tasks

[64, 67, 70, 71]. Recently, FractalNet [66] has shown a competitive performance

to the ResNet [64] for image recognition task. The FractalNet architecture is

based on self-similarity and is generated by expanding the basic fractal/block by

using the expansion rule shown in Figure 5.1. Formally, let k be the number

of intertwined columns or width. The base case f1(x) contains a single layer of
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convolution between input and output. i.e., f1(x) = conv(x). Successive fractals

can be recursively defined using the following rule:

fk+1(x) = [fk ◦ fk(x)]⊕ [conv(x)],

where ◦ represents the composition, and ⊕ denotes a join operation between

two different blocks. The value k denotes the width of the network. The depth

of the network, which is the longest path between the initial and final layer, can

be defined as 2k−1. This organization of FractalNet forces the network to vary

the depth and width of the network proportionally. The join layer combines

the features from two or more incoming paths. The features from the incom-

ing connections can be joined using sum, max-out, average, or concatenate. In

the latter case, the number of channels in the subsequent layers may increase.

Further, FractalNet also uses drop-path regularization to force each input to a

join layer to be individually significant. Further, the FractalNet is comprised of

a number of fractal blocks connected using pooling layers. A detailed discussion

on FractalNet can be found in [66].
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Figure 5.2: An overview architecture of the proposed SFNet with no. of columns(n)
= 5 and depth (d) = 16. However, the results mentioned in this chapter are with n =
6 and d = 32.

5.1.2 SFNet Architecture

In this work, the concept of the FractalNet has been used. More specifically,

the proposed network grows by using the expansion rule of the FractalNet ar-

chitecture, where the balance between the depth and the width of the network
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Conv ABS BN ReLU

(i) C-A-B-R block

Conv BN ReLU

(ii) C-B-R block

Figure 5.3: C-A-B-R and C-B-R blocks of the proposed SFNet

is maintained. In the proposed SFNet, two types of fundamental blocks have

been used, namely - C-A-B-R and C-B-R. The detailed architecture of SFNet is

shown in Figure 5.2, which consists of C-A-B-R and C-B-R blocks in a particular

arrangement, followed by a fully connected classification module and join layers

for connecting two fractals for expansion. The regimes of operations of C-A-B-R

and C-B-R blocks are as follows.

C-A-B-R block is a sequence of a convolution layer with 16 filters followed by

the ABS layer followed by Batch Normalization (BN) [58] and ReLU non-linearity

at the end. The ABS layer after the convolutional layer allows the features with

negative as well as positive values by discarding the sign of the generated feature

map, which facilitates and improves statistical modeling of noise residual in the

subsequent layers. These blocks are attached to the front-end of the network,

which directly receives the input image of size 256 × 256 and outputs a feature

map of the size 16 × 256 × 256. An overview of the C-A-B-R block is shown in

Figure 5.3 (i).

C-B-R block is a sequence of a convolution layer with 16 filters followed by

BN [58] and ReLU non-linearity. The C-B-R block is shown in Figure 5.3 (ii).

C-B-R block receives inputs either from a C-A-B-R block or from a previous C-

B-R block, a feature map with dimension 16×256×256, and outputs the feature

with the same dimensionality. These blocks are the fundamental component of

SFNet and are placed between the C-A-B-R blocks and fully connected layers.

In general, it is not possible to assert which task is being executed by which

component of the deep CNN [4]. Therefore, it is difficult to describe the mapping

function learned by the C-A-B-R and C-B-R blocks. However, the proposed
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fractal-based architecture may have learned more significant features than any

wider or deeper network for steganalysis by maintaining the balance between

height and width, thereby achieving the competitive results with state-of-the-art.

Global Average Pooling (GAP) has been used for reducing the dimensionality

of the feature space, which takes 16×256×256 dimensional features and reduces

it to 16 × 1 × 1 dimensions. The output of the GAP is further fed to the fully

connected layer, followed by softmax for binary classification.

Each fractal unit is expanded by using a join layer where an element-wise mean

is computed between two incoming features. For example, let P = {p1,p2, ..,pr}

be the incoming features from one branch and Q = {q1, q2, .., qr} be the number

of feature coming from another branch, the join layer computes the feature-wise

arithmetic mean as F = 1
2

∑r

i=1(pi + qi), where r is the number of features

from each branch (number of the features from each branch is the same). In

general, for n branches, each with r features, the output feature of the join layer

is F = 1
n

∑r

i=1(pi + qi). Join layers are shown using a vertical green line in the

SFNet architecture, Figure 5.2.

Similar to the FractalNet, the width (k) and depth (d) of the proposed SFNet

are related as follows

d = 2k−1 (5.1)

The total number of blocks (C-A-B-R and C-B-R) can be calculated as: N =
∑k

i=0 2
i = 2k − 1. We have performed several experiments by varying the value

of k from 2 to 7 and it has been observed that the SFNet performed best with

k = 6, which means the depth d, and the total number of blocks N are 32 and

63, respectively.

5.2 Experimental Study

This section presents the experimental study, including - datasets, training and

testing regimes, and the metric used to evaluate the proposed model.
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5.2.1 Datasets.

The training and testing of the proposed SFNet are carried out on the union

of BOSSBase 1.01 [85] and BOWS2 [86] dataset, each of which contains 10,000

grayscale images, each with size 512× 512. The steganalytic performance of the

SFNet is primarily compared with SRNet [4]. Therefore experimental setup has

been kept similar to the SRNet. Each image is resized to 256× 256 using Matlab

imresize function. From BOSSBase, 4,000 images are randomly selected, and en-

tire BOWS2 images have been used for training. From the remaining BOSSBase

images, 1,000 are randomly chosen for validation, and the rest 5,000 are used

for testing. The stego images are created using the steganography tools1 with

random keys. Therefore, the dataset comprised of 14, 000 × 2 (cover and stego)

used for training, 1, 000× 2 for validation, and 5000× 2 for testing.

5.2.2 Training SFNet.

The proposed SFNet has been trained for spatial domain steganography schemes,

namely- S-UNIWARD [15], WOW [5], HILL [18], and MiPOD [104] using Py-

torch [99] framework on Nvidia V100 GPU (32 GB). The batch size of 20 cover

/ stego pairs (batch size =40) is used for training, validation, and testing. Each

batch size is subject to data augmentation with random rotation by 90◦ and ver-

tical/horizontal flip. The batch normalization parameter used as ǫ = 10−5, and

momentum for running mean and running variance computation are set to 0.1.

The kernel weights of each convolutional and fully connected layers are initialized

with random normal distribution with µ = 0 and σ = 0.01. Since batch normal-

ization is used, biases of the kernels of convolutional layers are kept false [58].

The biases of the fully connected layers are initialized with zero. The training of

1Steganography algorithms can be downloaded from http://dde.binghamton.edu/

download/stego_algorithms/
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SFNet is carried out by minimizing the following loss function

L = −
1

N

N
∑

i=1

(yi.logŷi + (1− yi).log(1− ŷi)), (5.2)

where y, ŷ, and N denote true label, predicted label, and the total number of

training samples, respectively. Adamax [100] optimizer is used for optimization.

The training is performed for 300 epochs (210k iterations). The learning rate is

initialized to lr = 10−3 and decayed every 25 epochs by a factor of 2. The model

with the best validation accuracy is selected for the testing.

5.2.3 Comparison with state-of-the-art detectors.

In order to evaluate the steganalytic performance of the proposed SFNet, it has

been compared with the state-of-the-art detectors in the spatial domain, SR-

Net [4] and YeNet [60]. Both the works are implemented with the experimental

setup stated in the respective papers.

The results obtained using the proposed model, shown in Section 5.3, are

given for a random 50-50 split of the BOSSBase dataset. This is because the in-

detail experiments are infeasible, considering the resource and time complexity.

However, to assess the performance across different BOSSBase splits, we trained

the SFNet on five different 50-50 splits of BOSSBase (BOWS2 is kept fixed in

the training set) for WOW at 0.5 bpp. The standard deviation of ≈ 0.00373 on

PE is found for these five splits.

5.3 Results

This section presents the results of the steganalytic experiments conducted for

the proposed model.

The results of the steganalytic detection is reported for WOW, S-UNIWARD,

and HILL for payloads: {0.1, 0.2, 0.3, 0.4, 0.5} bpp (bits-per-pixel). The stegan-

alytic detection error PE is given in Table 5.1, and for better comprehension, the
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Figure 5.4: Graphical plot of detection error probability on WOW, S-UNIWARD, and
HILL on 0.1-0.5 bpp.

Table 5.1: Comparison of detection error PE of the proposed scheme with the state-
of-the-art steganalysis schemes. Best results are shown in bold face.

Embedding Detector 0.1 0.2 0.3 0.4 0.5

WOW
SCA-YeNet 0.2442 0.1691 0.1229 0.0959 0.0906

SRNet 0.2587 0.1676 0.1197 0.0893 0.0672
SFNet 0.2532 0.1579 0.1066 0.0788 0.0558

S-UNI
SCA-YeNet 0.3220 0.2224 0.1502 0.1281 0.1000

SRNet 0.3104 0.2090 0.1432 0.1023 0.0705
SFNet 0.3002 0.1964 0.1326 0.0942 0.0659

HILL
SCA-YeNet 0.3380 0.2538 0.1949 0.1708 0.1305

SRNet 0.3134 0.2353 0.1830 0.1414 0.1151
SFNet 0.3339 0.2438 0.1821 0.1460 0.1088

same results are graphically plotted in Figure 5.4. The proposed SFNet attains

the improvement over YeNet [60] and SRNet [4] by ∼ 3% and ∼ 1%, respectively,

subject to the different embedding algorithms and payloads. A large improve-

ment is obtained for the S-UNIWARD and WOW algorithms, whereas for HILL,

we get performance comparable to SRNet. Further, as an alternative measure of

evaluation, we have also given ROC curve in Figure 5.5 along with the AUC in

Table 5.2.

5.3.1 Curriculum Learning.

One of the biggest challenges in training any steganalytic model is the time it takes

to converge for the images with a low payload, such as 0.1 or 0.05 bpp. Sometimes

the model failed to converge at all. In recent literature, this problem is usually
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Figure 5.5: ROC curves of SFNet for WOW, S-UNIWARD and HILL with payloads
{0.2, 0.4} bpp.

Table 5.2: Area under ROC curve (AUC) for WOW, S-UNIWARD and HILL at
payload ={0.2, 0.4} bpp for ROC curves plotted in Figure 5.5.

Embedding
Payload (bpp)
0.2 0.4

WOW 0.9242 0.9787
S-UNI 0.8942 0.9835
HILL 0.8348 0.9333

handled by Curriculum learning [111], where the model is initially trained with

easy examples (embedded with higher payload) and then gradually increased the

difficulty level of the examples. Keeping these facts in mind, SFNet is initially

trained for payload 0.4bpp and 0.5bpp for each steganographic algorithms, and

then the learned weights with 0.5 bpp are transferred to train the model with

lower payloads (0.1 - 0.3 bpp). The learning rate is kept very small (10−5) during

the finetuning for the images with smaller payloads. When finetuning, the model

is trained up to 200 epochs, and the one with the best validation score is selected

for testing. The detailed results are shown in Table 5.1 and Figure 5.4.
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5.4 Ablation Study

This section presents the ablation study of the proposed model. Throughout this

study, unless stated explicitly, we have used WOW embedding with payload 0.5

bpp to obtain corresponding stego images for all the experiments.

5.4.1 How does the SFNet architecture differs from the
Fractal net?

The only similarity of the SFNet with the Fractal net [66] is the expansion rule

and, more specifically, SFNet can be viewed as a block of Fractal net with no.

of columns=6 modified with steganalysis point of view. However, the original

Fractal net design consists of several such blocks (best, with no. of columns=4

and no. of fractal blocks=5) attached using max pooling. The Fractal net is de-

signed for image classification applications. However, image classification, where

the difference between the different classes of the image can be easily observed by

the Human Visual System (HVS), is very different from the steganalysis, where

one cannot perceive the difference between the cover and the corresponding stego

images with HVS. To verify this effect, we trained the Fractal net (with no.

of blocks=5, and no. of columns=4) with standard parameters reported in the

paper [66] for 300 epochs using the dataset used for the experiment of SFNet.

This configuration of the Fractal net failed to train with the dataset (training

accuracy≈50% and validation accuracy ≈50%.). We found that this was because

of the use of drop-path and dropout regularizations (too much regularization)

used in the network. To overcome this situation, we trained the Fractal net with-

out drop-path and dropout regularization. This modified Fractalnet overfitted

the training data (training accuracy≈ 99% and validation accuracy≈ 50%) due

to too complex architecture.
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5.4.2 How does the choice of model architecture affect the
performance?

An exhaustive set of experiments with different configurations of SFNet has been

conducted in order to come up with the final model. The details of the experi-

ments are as follows:

C-A-B-R vs. C-B-R block. To investigate the effect of applying ABS to

the initial layers, we evaluated the model on WOW 0.5 bpp with and without

ABS. The PE without ABS was 0.0713, and with ABS, it was found to be 0.0596,

which may be due to the ABS in initial layers offers better modeling of noise

residuals [39]. We have also experimented with ABS throughout the network,

which resulted in 0.0043↑1 a rise in detection error, which means that adding

ABS layer throughout the network, does not offer any better residual modeling

and adds computational overhead. Therefore, the C-A-B-R block is kept only in

the initial layers.

Number of filters in each layer. In contrast, the number of filters used in

each convolution layer of the FractalNet [66] is 64. When SFNet is experimented

with the 64 and 32 filters in each convolution layer, the steganalytic detection

error probability achieved are 0.0932 (0.0336↑) and 0.0770 (0.0174↑) respectively.

The best result is achieved for the number of filters in each convolution layer =16.

This may be due to the fact that the proposed model is already wider, and by

increasing the number of filters in each convolution layer, it may learn redundant

features across the width. Therefore, all the values reported in Table 5.3 are using

16 filters in each convolution layer.

Width (k), Kernel size (s), and Activations. We started the process of

selecting the model with very shallow architecture (k = 2) and varied the size of

filters and activation functions (ReLU and TanH). We have used the filters of size

1↑ denote the increase (Bad) and ↓ decrease (Good) in PE .
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Table 5.3: Variation of error detection probability with choice of architecture.

Width depth s = 3 s = 5 s = 7
k = d = ReLU TanH ReLU TanH ReLU TanH
2 2 0.3401 0.4128 0.3774 0.3678 0.3597 0.4038
3 4 0.1823 0.2831 0.1812 0.2830 0.1997 0.3424
4 8 0.0821 0.1660 0.1254 0.1861 0.2090 0.3274
5 16 0.0791 0.1082 0.1025 0.1426 0.1336 0.2172
6 32 0.0596 0.1102 0.1024 0.1270 0.1942 0.2213
7 64 0.0698 0.1197 0.4093 0.4285 0.4650 0.4773

s = {3, 5, 7}, and the number of filters in each convolution layer was fixed to 16.

Table 5.3 shows the result of steganalytic detection error by varying the k, s, and

activation functions. Initially, increasing the width of the network from k = 2

to k = 6 resulted in performance gain but declined beyond k = 6 (for k = 7).

The kernel size s = 3 is found to be the best choice for the network. However,

when the kernel size for the convolution of C-A-B-R block except for the first

one is varied from s = 3 to s = 5, a slight performance gain of 0.0038↓ is found

(PE = 0.0558), and this gain was consistent with other embedding algorithms as

well. Among all the cases, SFNet performed better with the ReLU activation.

5.4.3 How does the SFNet behave when input is prepro-
cessed using filters with fixed kernels?

The literature of steganalysis before the SRNet [4] heavily relied on the fixed

high-pass filters such as KV filter, SRM filters [14], Gabor filters [62], etc., for

preprocessing. To this end, we experimented using these filters to assess the

behavior of SFNet when it is trained in the residual noise domain instead of the

embedded image domain. The input images are preprocessed using these filters

to get residual noise, which is fed to the model for training and evaluation. The

preprocessing filters with smaller dimensions (less than 5 × 5) are padded with

zeroes to match the dimension of 5 × 5 before preprocessing. The experimental

results are shown in Table 5.4. It can be observed from the results, KV filter (a

single 5×5 filter) offers less diverse noise residuals, which increases the PE. When
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preprocessing is done by using SRM or Gabor filters, the value of PE relatively

decreases. However, without preprocessing, the SFNet obtains the best PE.

Table 5.4: Steganalytic detection error when input images are preprocessed using hand-
crafted filters. The best result is shown in bold face.

Preprocessing No. of Detection error
with (filters) filters probability
KV + SFNet 1 0.1038
SRM linear + SFNet 16 0.0698
SRM non-linear + SFNet 14 0.0673
SRM linear & non-linear + SFNet 30 0.0643
Gabor + SFNet 16 0.0632
SFNet 0 0.0558

5.4.4 How does SFNet perform for stego source mismatch?

In order to investigate the effects on the performance of the SFNet when the stego

source is mismatched, a real-world situation, when the stego image embedding is

not the same as the model trained on, we trained the model on one embedding

algorithm and tested it on another. Table 5.5 shows the results when SFNet is

trained on one steganography algorithm and tested on another. The results are

shown for WOW, HILL, S-UNIWARD, and MiPOD for 0.4bpp. When SFNet

is trained on an easily-detectable algorithm (WOW), it performs worse for the

detection of the least-detectable embedding (MiPOD) and vice-versa.

5.4.5 How does SFNet perform for cover source mismatch?

Finally, the performance of the SFNet is evaluated for the situation of cover

source mismatched, where the model is trained on different cover/stego pair

datasets and tested on a different dataset. To this end, in one experiment, we

trained the SFNet on the union of BOSSBase 1.01 [85] and BOWS2 [86] as orig-

inal training stated in Section 5.2 and tested on the 2× 5000 cover-stego pairs of
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Table 5.5: Detection error PE for proposed model stego source mismatch for payload
0.4 bpp

Train / Test WOW HILL S-UNI MiPOD
WOW 0.0788 0.2853 0.1369 0.2606
HILL 0.1484 0.1433 0.1891 0.1781
S-UNI 0.0996 0.2228 0.0942 0.1981
MiPOD 0.1426 0.1748 0.1655 0.1503

Table 5.6: Detection error PE for SFNet for cover source mismatch at 0.4 bpp.

Train: ImageNet Test: BOSSBase
Steganography Algo. (PE)

WOW 0.3863
MiPOD 0.4473

Train: BOSSBase Test: ImageNet
Steganography Algo. (PE)

WOW 0.4569
MiPOD 0.4700

a real-world dataset, ImageNet [7]. In another experiment, we trained the SFNet

on 2 × 10, 000 cover-stego pairs of ImageNet and tested on 2 × 5000 images of

the BOSSBase dataset. The ImageNet dataset has 1,000 classes of color images.

From each class, 10 images with a dimension greater than or equal to 256× 256

were randomly selected to form 10,000 images. These images are then resized

to 256× 256 and converted to grayscale using MATLAB functions imresize and

rgb2gray. The results of these experiments are given in Table 5.6. It can be

observed from results when SFNet is trained on the ImageNet and tested on the

BOSSBase; it performs better steganalytic detection than vice-versa. It may be

due to the diversity of the ImageNet dataset. Another observation can also be

made that the performance of SFNet is consistent with other results for easily

detectable WOW and hard to detect MiPOD.

Through the experimental and ablation studies, it has been shown that a bal-

anced trade-off between the height and width of the SFNet performed better for
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steganalytic detection. Furthermore, the proposed SFNet does not require any

preprocessing using fixed filters such as KV or SRM filters.

5.5 Chapter Summary

In this third contributory chapter, a novel steganalysis scheme, SFNet, has been

proposed, which is inspired by the concept of Fractal network. The proposed

SFNet is an end-to-end network that does not involve any preprocessing filters to

expose stego noise; and instead, it directly trains on the embedded images. The

fractal architecture of SFNet allows the network to grow with a balance between

depth and width, thereby achieving more accurate detection performance. SFNet

models the stego features using C-A-B-R and C-B-R blocks without any residual

shortcuts. The SFNet is tested with easily detectable as well as hard to detect

steganographic algorithms and compared with the state-of-the-art steganalyzers.

The experimental results reveal that the SFNet outperformed the state-of-the-art

steganalysis schemes.

As of now, in the three contributory chapters, we have shown how a deeper

model helps to get improved detection performance for spatial images. In the

next and final contributory chapter, we will show how a GAN-based model can

be used for hiding a complete image within another image without much visual

degradation.
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Chapter 6
StegGAN: Hiding Image within Image -

An Application of Steganalysis

In the previous three contributory chapters, we have presented different deep-

learning-based spatial image steganalysis techniques, which mostly outperform

state-of-the-art literature. In this chapter, we will try to use a deep learning model

for efficient data hiding. The research motivation for proposing efficient data

hiding is mainly two-fold. Primarily, it helps different data hiding applications

like digital watermarking, access control, covert communication, etc. In addition,

it can challenge existing steganalytic detectors, which in turn helps to design

more efficient steganalysis techniques.

From literature presented in Section 1.4.1.3, it has been observed that most of

the Generative Adversarial Network (GAN) based data hiding methods empha-

size perceptual imperceptibility and accurate extraction. Statistical undetectabil-

ity has not been paid much importance. In addition to that, the extraction of

the hidden message is not always precise due to the following reasons:

1. Intuitively, in steganography, both the embedder and extractor models play

a two-player game in such a way that the extractor’s response can be used

to finetune the embedder effectively. However, vice-versa may not be much

useful in training of the extractor model. This hypothesis has not been

taken into consideration properly in most of the existing works [47, 48].
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This not only reduces “Extraction” accuracy but, as an effect of in-accurate

extraction, embedding performance is also reduced. Thus a majority of the

existing solutions suffer from visual artifacts in the extracted hidden images.

2. Most of the methods mentioned above have taken only Mean Squared Error

(MSE) into consideration as a loss function for estimating the stego images.

However, in recent image restoration problems, it has been observed that

the restored images suffer from visual artifacts if only MSE is used [115].

With the above line of thought, this work makes the following contributions.

1. We propose a two-players framework conceptually similar to a GAN, called

“Embedder - Extractor,” where both of them have an underlying architec-

ture based on a cGAN framework.

2. The incorporated adversarial training in both networks helps to (1) generate

stego image similar to cover (in case of proposed embedder) with respect

to visual imperceptibility as well as statistical undetectability such that

a recent steganalyzer XuNet [39] can be fooled, (2) retrieve hidden image

indistinguishable to the original message (in case of the proposed extractor).

3. In addition to adversarial and MSE losses, the perceptual loss [116] has

been used to train the proposed extractor to retrieve the hidden image with

a better Human Visual System (HVS) quality.

4. A weighted loss from the proposed extractor has also been used to train the

proposed embedder.

5. Finally, a thresholded version of the input cover image is given as a control

map along with the cover image and a secret message.

6.1 Proposed Method

In this work, a Conditional Generative Adversarial Networks (cGAN) [37, 117]

based model is proposed. For simplicity of reference, we call the proposed model
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Figure 6.1: An overview of the proposed framework for hiding an image within an
image.

StegGAN. The proposed model is comprised of two main modules : (a) An em-

bedder, which hides the given secret image into the given cover image. (b) An

extractor, which extracts the hidden secret message from the generated stego im-

age by the embedder. Both the embedder and the extractor have an underlying

architecture inspired by the cGAN, as shown in Figure 6.1. The embedder and

the extractor networks consist of two sub-networks, namely a Generator and a

Discriminator. Throughout this chapter, we denote φEb and ψEb as generator

and discriminator of the embedder, respectively, and φEx and ψEx as generator

and discriminator of the extractor, respectively. Given a cover image C, a secret

image M, and the thresholded cover image TC, the embedder aims to hide the

M into the C by using TC, such that the φEb and ψEb play a 2-player mini-max

game until a Nash equilibrium [118] is achieved based on the following equation:

min
φEb

max
ψEb

LEb
GAN , (6.1)

where LEb
GAN = EC∼pcover [log(1−ψEb(φEb(C,M,TC)))] +EM∼psecret [log(ψEb(C))].

The proposed extractor aims to extract the M from the stego image S such that

the φEx and ψEx play the similar two-player mini-max game based on the following

equation:

min
φEx

max
ψEx

LEx
GAN , (6.2)
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Figure 6.2: The architecture of the encoder-decoder network used in the φEb and φEx.
Each layer is labeled with [a, b× b, c], where a, b, and c represent no. of input channels,
kernel-size, and no. of output channels, respectively.

where LEx
GAN = ES∼pstego [log(1− ψEx(φEx(S)))] + EM∼psecret [log(ψEx(M))].

The regimes of operation of the φEb, ψEb, φEx, and ψEx, along with the given

input is described as follows.

6.1.1 Network φEb

Hiding an image into another image where both the images are assumed to be

different in every context is a challenging task. It can be related to the image

reconstruction and restoration problem where the reconstructed image is not

only comprised of another hidden image in it but also maintains its originality.

In recent times, deep models such as the encoder-decoder framework [41] have

been useful in solving image restoration tasks. The generator sub-network φEb of

the embedder takes C,M, and TC as input and predicts the stego image S. The

thresholded image TC is computed as the Otsu-thresholding [119]1, with binary

inverse for each cover image which gives the binary segmented image where the

smooth regions are assigned value 0 and textured regions are assigned value 1.

The φEb sub-network consists of an encoder-decoder framework shown in Figure

6.2, where the encoder consists of 6 convolution layers. Each filter in the encoder

part of the network has a spatial dimension of 3× 3 with a stride and padding of

1. BN has been used for faster convergence of the network after every layer. Each

convolution layer in the encoder part consists of 32 filters except the last layer,

which has three filters. The decoder part consists of 6 transpose convolution

1Otsu-thresholding can be found at: https://docs.opencv.org/3.0-beta/doc/py_

tutorials/py_imgproc/py_thresholding/py_thresholding.html
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layers, where each layer consists of 32 filters except the final layer, which consists

of 3 filters. The transpose convolution is also known as the “Deconvolution”

operation, which is one of the most popular methods for upscaling the image in

deep learning. Each transpose convolution layer in the decoder part is followed

by BN and consists of kernels of size 3× 3 with a spatial stride of 1. The layers

in the encoder part include Parametric ReLU (PReLU) [120] as an activation

function, whereas ReLU has been used in the decoder part.

6.1.2 Network ψEb

The goal of the discriminator network is to maximize the probability of accurately

classifying the samples into real (cover) or fake (stego) that inspires the embedder

to generate a stego image more similar to the cover. The discriminator module,

as shown in Figure 6.1, is inspired by the XuNet [39], which has been proposed

to classify images into stego and cover.

6.1.3 Network φEx

For simplicity, we have considered the architecture of the φEx model similar to the

φEb, unlike in [45], [20], described earlier. The extractor model takes a stego image

S as input and estimates the hidden secret image M̄. In general, a steganographic

system uses a secret key that is used for embedding, which is shared with the

intended receiver for extraction. In the proposed method, extractor network

weights can be treated as a secret key, and it is assumed that weights have been

shared offline with the receiver to extract the hidden message from the stego

image [45].

6.1.4 Network ψEx

The goal of the discriminator of the extractor network is to maximize the prob-

ability of classifying the samples into real (M) or fake (M̄) extracted messages,

thereby influence the extractor to estimate the message from the stego image
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Figure 6.3: The architecture of the ψEx. Each layer is labeled with [a, b× b, c], where
a, b, and c represent no. of input channels, kernel-size, and no. of output channels,
respectively.

more accurately. The discriminator model of the extractor network, as shown in

Figure 6.3, consists of four convolution layers l1, l2, l3, and l4, with 8, 16, 16, and

1 kernel, respectively. The BN and PReLU activation follow each convolution

layer. The network returns the mean sigmoid value of the output of the last

convolution layer.

6.1.5 Cost Functions

The cost functions for the proposed models can be defined as follows:

6.1.5.1 Cost function of φEb

The φEb takes a cover and secret images in addition to a threshold map as input

and estimates a stego image. The generated stego image should be identical to

the cover image and also contains the secret message, which can be extracted in

its original form later. The Mean Squared Error (MSE) is used to generate a

stego image identical to the cover image, which can be defined as follows:

L
φEb

2 = ||S−C||22 (6.3)

The adversarial loss for N set of images from the discriminator ψEb (XuNet) to

guide the φEb can be defined as

LφEb

A = −
1

N

N
∑

i=1

log ψEb(φEb(C
i,Mi,Ti

C
)) (6.4)
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However, a model may learn to hide the secret image in the cover image better

if it can learn from the extractor. The goal of the proposed model is that the

extractor model can retrieve the hidden secret message from the stego image

accurately despite that one can not differentiate between the stego and cover

image both perceptually and statistically. Based on this argument, the φEb takes

the feedback from the extractor model, too, to compute its loss for optimization.

The MSE between the extracted and actual secret message can be used to guide

the φEb and can be defined as

L
φEb

E = ||M̄−M||22 (6.5)

Therefore, the total loss for φEb can be written as

LφEb
= L

φEb

2 + α.LφEb

A + β.LφEb

E (6.6)

Consequently, the final training objective of the embedder model becomes:

min
φEb

max
ψEb

LEb
GAN + L

φEb

2 + β.LφEb

E (6.7)

6.1.5.2 Cost function of φEx

The extractor retrieves the hidden secret image from the stego image generated

by the φEb, and to achieve this, MSE is defined as:

L
φEx

2 = ||M̄−M||22 (6.8)

However, MSE, in general, results in splotchy and blurred artifacts in the re-

sultant images [121]. Therefore, to retain the high-frequency components in the

reconstructed images, the perceptual loss1 [116] is incorporated based on a pre-

trained VGG16 [67] model (V) at layer “relu2 2” which can be written as follows:

L
φEx

V
= ||V(M̄)− V(M)||22 (6.9)

1https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_

style/neural_style.py.
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Given a set of N estimated secret messages, the cross-entropy loss from the dis-

criminator to regulate the φEx is defined as:

L
φEx

A = −
1

N

N
∑

i=1

log ψEx(φEx(S
i)) (6.10)

Therefore, the total loss for the φEx can be written as:

LφEx
= L

φEx

2 + κ.LφEx

V
+ ω.LφEx

A (6.11)

Consequently, the final training objective of the extractor becomes:

min
φEx

max
ψEx

LEx
GAN + L

φEx

2 + κ.LφEx

V (6.12)

The training algorithm for the proposed model is given as follows:

Algorithm 1 Training algorithm : Main

1: procedure main(C,M) ⊲ Runs the φEb, φEx for embedding M in C and
extracting M̄ from S

2: Initialize φEb, φEx, ψEb and ψEx.
3: Get training data.
4: Initialize α, β, κ and ω
5: Initialize V ⊲ Pretrained VGG for perceptual loss
6: while No. of iterations do
7: while Training data do
8: S← φEb(C,M,TC)
9: M̄← φEx(S)
10: O(φEb(M̄,S)) ⊲ Optimize the φEb model
11: O(φEx(S, M̄)) ⊲ Optimize φEx model
12: end while
13: end while
14: return None
15: end procedure

6.2 Experiments

This section presents the details of the dataset, network parameters used to train

the proposed framework, followed by the quantitative and the qualitative results.
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Algorithm 2 Optimize algorithm : φEb

1: procedure O(φEb)(M̄,S) ⊲ Update weights of φEb i.e, θφEb

2: L
φEb

2 ← ||S−C||22 ⊲ Compute MSE loss
3: G2 ← ∇L

φEb

2 ⊲ Compute gradients w.r.t LφEb

2

4: L
φEb

A = − 1
N

∑N

i=1 log ψEb(φEb(C
i,Mi,Ti

C
)) ⊲ Compute Adv. loss

5: GA ← ∇α.L
φEb

A ⊲ Compute gradients w.r.t LφEb

A

6: L
φEb

E = ||M̄−M||22 ⊲ Compute extractor feedback loss
7: GE ← ∇β.L

φEb

E ⊲ Compute gradients w.r.t LφEb

E

8: θφEb
← θφEb

− {G2 + GA + GE} ⊲ Gradient descent
9: Update weights of ψEb i.e., θψEb

10: LReal ← log(ψEb(C))
11: GR ← ∇LReal

12: LFake ← log(1− ψEb(φEb(C,M,TC)))
13: GF ← ∇LFake

14: θψEb
← θψEb

+ GR + GF ⊲ Gradient ascent
15: return None
16: end procedure

Algorithm 3 Optimize algorithm : φEx

1: procedure O(φEx)(S, M̄) ⊲ Update weights of φEx i.e, θφEx

2: L
φEx

2 = ||M̄−M||22 ⊲ Compute MSE loss
3: G2 ← ∇L

φEx

2 ⊲ Compute gradients w.r.t LφEx

2

4: L
φEx

V
= ||V(M̄)− V(M)||22 ⊲ Compute perceptual loss

5: GV ← ∇κ.L
φEx

V
⊲ Compute gradients w.r.t LφEx

V

6: L
φEx

A = − 1
N

∑N

i=1 log ψEx(φEx(S
i)) ⊲ Compute adv. loss

7: GA ← ∇ω.L
φEx

A ⊲ Compute gradients w.r.t LφEx

A

8: θφEx
← θφEx

− {G2 + GV + GA} ⊲ Gradient descent
9: Update weights of ψEx i.e., θψEx

10: LReal ← log(ψEx(M))
11: GR ← ∇LReal

12: LFake ← log(1− ψEx(φEx(S)))
13: GF ← ∇LFake

14: θψEx
← θψEx

+ GR + GF ⊲ Gradient ascent
15: return None
16: end procedure
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6.2.1 Training Details

The proposed framework is trained on randomly selected 0.1M images from the

ImageNet [7] training dataset, out of which 50K is randomly chosen as cover

images, and the rest were taken as secret images. Both cover and secret images

have been resized to a spatial size of 256× 256 during training.

The proposed model is trained for 191 epochs on NVIDIA Tesla V100 GPU

(32 GB) using PyTorch [99]. The learning rate is experimentally reduced from

10−1 to 10−9, the batch size of 16, and the Adam [100] optimization algorithm

is used. The weights of the costs are experimentally set as follows: α = 0.2,

β = 0.3, κ = 0.1 and ω = 0.0004. A variety of evaluation metrics, such as

Structural Similarity Index (SSIM) [122], Peak Signal to Noise Ratio (PSNR),

Visual Information Fidelity (VIF) [84], Multi-scale Structural Similarity Index

(MS-SSIM) [1], and Universal-Image-Quality Index (UQI) [83] have been used

to assess the proposed scheme. The proposed model is tested on a variety of

datasets, namely- Imagenet [7], Microsoft COCO [8], DIV2K [9], KODAK [10],

SIPI [11], and finally, with Lena image. For testing on Imagenet, a test set

consists of randomly selected 1000 pairs of (cover, secret) images each of size

512 × 512 from the ImageNet [7], which have not been included in the training

set is used.

6.2.2 Results

The quantitative results for the proposed model on the selected Imagenet test set

are shown in Table 6.1. Though it is challenging to hide and retrieve an image

from another image, the proposed embedder and extractor models have achieved

a PSNR and SSIM of {42.24 dB, 0.9905}, and {37.17 dB, 0.9508}, respectively. In

addition to traditional evaluation metrics PSNR and SSIM, the StegGAN has also

achieved notable results in terms of VIF ∼ 0.87, 0.66, MS-SSIM ∼ 0.99, 0.95 and

UQI ∼ 0.99, 0.93 on the pairs (Cover, Stego) and (Secret, Extracted) respectively,

as shown in Table 6.1. These findings prove the efficiency of the StegGAN in
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Table 6.1: Quantitative evaluation of the StegGAN on the test set selected from the
Imagenet [7] test set. The best and the second-best results are shown in Bold and Blue
fonts, respectively.

Approach Pairs Statistics SSIM PSNR VIF MS-SSIM UQI

w/o TC

C, S
µ 0.8096 18.7992 0.5131 0.8706 0.8014
σ 0.0937 2.9920 0.0891 0.0493 0.1117

M, M̄
µ 0.7679 26.1422 0.4449 0.8658 0.7518
σ 0.1406 2.1253 0.0959 0.0450 0.1924

w/o L
φEx

V

C, S
µ 0.9883 35.9531 0.8965 0.9906 0.9940
σ 0.0057 2.6197 0.0380 0.0038 0.0075

M, M̄
µ 0.9437 36.2182 0.6706 0.9529 0.9147
σ 0.0296 1.5264 0.0603 0.0123 0.1404

w/o L
φEb

E

C, S
µ 0.9911 40.8910 0.9301 0.9942 0.9937
σ 0.0131 1.7549 0.0244 0.0036 0.0177

M, M̄
µ 0.4105 10.5273 0.0054 0.5881 0.4568
σ 0.1762 2.3492 0.0021 0.1008 0.2104
µ 0.9905 42.2446 0.8741 0.9902 0.9985

C, S
σ 0.0033 0.9018 0.0393 0.0036 0.0027
µ 0.9508 37.1736 0.6618 0.9542 0.9276

StegGAN
M, M̄

σ 0.0156 1.1595 0.0604 0.0102 0.1286

hiding an image within an image.

To justify the applicability of the proposed model, a few samples of the cover

and secret images, corresponding stego, and extracted secret images from the

Imagenet [7] test set are presented in Figure 6.4. The first through fourth col-

umn represents a cover, corresponding stego image, a secret, and corresponding

extracted image, respectively. The fifth and sixth columns depict the residual

computed at scale-×5 and intensities clipped at 255, between the cover and cor-

responding stego, and between the secret and corresponding extracted images.

The rows show a variety of images hidden and extracted by using the proposed

StegGAN. It can be observed from Figure 6.4 that the StegGAN achieves visually

notable performance for a variety of images.
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Cover image Stego image Secret image Extracted image Cover residual×5 Secret residual×5

Figure 6.4: Sample images from Imagenet [7]: cover images, stego images (Embedder
output), secret images, extracted image, residual between the cover and stego ×5, and
residual between secret and extracted ×5.

Table 6.2: Quantitative comparison of the StegGAN with [20] and [21] in terms of
SSIM and PSNR for the cover and generated stego image.

Metric StegGAN NIPS-17 [20] T-PAMI-19 [21]
Reported Implemented by us Reported Implemented by us

PSNR 42.24 dB – 28.0764 dB 41.2 dB 28.5610 dB
SSIM 0.9905 – 0.9200 0.980 0.9216

6.2.3 Comparison with the existing schemes

For existing methods [20, 21], none of the following information is available: (i)

Code/pre-trained model, (ii) Training/testing dataset, and (iii) Hyperparameters.

However, to compare with these methods [20, 21], we have tried to implement

the schemes with the best possible hyperparameters and datasets. With these

hyperparameters, the trained model did not achieve the results as claimed in [20]

and [21]. The results reported in [20] and [21], as well as the results of our

implementation of [20] and [21], are given in Tables 6.2 and 6.3, along with the

qualitative comparison as shown in Figure 6.5. Standard hyperparameters used:
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Table 6.3: Quantitative comparison of the StegGAN with [20] and [21] for the secret
and extracted image.

Metric StegGAN NIPS-17 [20] T-PAMI [21]
Reported Implemented by us Reported Implemented by us

PSNR 37.17 dB – 24.7608 dB 37.6 dB 25.9725 dB
SSIM 0.9508 – 0.6773 0.9700 0.5955

C S C′ by StegGAN S′ by StegGAN C′ by [20] S′ by [20] C′ by [21] S′ by [21]

Figure 6.5: Sample images from Imagenet [7]: for qualitative comparison with existing
schemes; C = Cover, S = Secret, C ′ = Stego and S′ = Extracted.

learning rate- initialized to 10−1 and experimentally reduced till 10−9, optimizer-

Adam, batch size- 16, and no. of epochs- 200.

Our implementation could not achieve the result as claimed (41.2 dB between

cover and stego and 37.6 between secret and extracted) in the paper. However,

we were able to hide and extract the hidden secret image with some accuracy

((C, S) PSNR ∼ 28 dB) and ((M, M̄) PSNR ∼ 25 dB).

6.2.4 Results on other Datasets

In this subsection, the test results of the StegGAN, which is already trained on

Imagenet [7], have been presented on a variety of datasets, namely- Microsoft

COCO [8], DIV2K [9], KODAK [10], and SIPI [11]. We have also presented the

qualitative results when hiding in the Lena image. The StegGAN results are also

compared with our implementations of [20] and [21] on these datasets.

6.2.4.1 Microsoft COCO and DIV2K

Object detection is often a more complex task than an image classification prob-

lem due to the contextual size of an object in an image. We have extended the
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test of the generality of our proposed scheme on object detection tasks to verify

if such types of images will be used to communicate then how our approach will

handle such scenarios. For this, we have adopted the Microsoft COCO dataset,

which is popular for object detection and segmentation. It has been observed

that the proposed scheme achieves ∼ 0.98 in SSIM when compared to ∼ 0.85

and ∼ 0.80 by [20] and [21], respectively, on the C, S image pairs, as shown in

Table 6.4. The qualitative comparison is also given in Figure 6.6. We have also

tested our approach on the popular test-set, DIV2K, used for the Single Image

Super-Resolution task, as shown in Table. 6.5. It can be observed from Table. 6.5

that the StegGAN obtains a remarkable improvement over the NIPS-17 [20] and

T-PAMI [21] in terms of SSIM. The visual comparison is given in Figure 6.6.

Table 6.4: Quantitative evaluation of the StegGAN on the test set selected from
COCO [8] test set. The best and the second-best results are shown in Bold and Blue
fonts, respectively.

Approach Image pairs SSIM PSNR VIF MS-SSIM UQI

C, S 0.9799 36.2609 0.8359 0.9980 0.9943
StegGAN

M, M̄ 0.9428 31.9235 0.6112 0.9774 0.9755

NIPS-17 [20]
C, S 0.8481 25.5090 0.5645 0.9519 0.9723
M, M̄ 0.6581 23.4855 0.2136 0.7857 0.9311

T-PAMI [21]
C, S 0.8003 24.2799 0.5314 0.9536 0.9650
M, M̄ 0.5883 23.5594 0.1986 0.7526 0.9296

6.2.4.2 KODAK and SIPI

We have also tested our approach on two of the standard test sets in the domain of

image processing, KODAK, and SIPI. The KODAK dataset has 25 uncompressed

true-color images with dimensions of 768 × 512. These images are first resized

to 512 × 512 and then arranged so that each image hides every other image

(25× 24 = 600 image pair) for quantitative evaluation. From the SIPI dataset, 7

images (6 color and 1 grayscale) are selected from the “Miscellaneous” category,

and 37 color images from the “Aerials” category (total 44 images) are chosen.

These images are resized to 512 × 512 and arranged similarly to the KODAK
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Cover image Stego image Secret image Extracted image Cover residual×5 Secret residual×5

COCO

DIV2K

Figure 6.6: Sample Images from COCO [8] and DIV2K [9] datasets: cover images,
stego images, secret images, extracted image, residual between the cover and stego ×5
and residual between secret and extracted ×5.

dataset for quantitative evaluation. The quantitative results are shown in the

Tables. 6.6, and 6.7, respectively. It can be observed that the proposed scheme
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Table 6.5: Quantitative evaluation of the StegGAN on the test set selected from
DIV2K [9] test set. The best and the second-best results are shown in Bold and Blue
colors, respectively.

Approach Image pairs SSIM PSNR VIF MS-SSIM UQI

C, S 0.9744 34.3940 0.7898 0.9970 0.9935
StegGAN

M, M̄ 0.9410 31.8501 0.5909 0.9751 0.9903

NIPS-17 [20]
C, S 0.7966 24.1730 0.5067 0.9483 0.9707
M, M̄ 0.5690 23.0901 0.1854 0.7572 0.9536

T-PAMI-19 [21]
C, S 0.8405 25.5222 0.5330 0.9580 0.9728
M, M̄ 0.6160 23.2747 0.1941 0.7845 0.9550

Table 6.6: Quantitative evaluation of the StegGAN on the test set selected from KO-
DAK [10] test set. The best and the second-best results are shown in Bold and Blue
colors, respectively.

Approach Image pairs SSIM PSNR VIF MS-SSIM UQI

C, S 0.9788 30.9707 0.8064 0.9959 0.9942
StegGAN

M, M̄ 0.9363 29.4952 0.5553 0.9678 0.9920

NIPS-17 [20]
C, M 0.7651 22.8523 0.4651 0.9383 0.9674
M, M̄ 0.5435 22.7666 0.1487 0.6877 0.9631

T-PAMI-19 [21]
C, S 0.8319 25.9525 0.5242 0.9377 0.9739
M, M̄ 0.6150 23.6198 0.1584 0.7330 0.9652

has not only outperformed the existing SoA methods for hiding an image within

an image but also retains the visual features of the extracted images with ∼ 0.99

in terms of UQI. The qualitative comparison is shown in Figure 6.7.

6.2.4.3 Hiding in Lena image

It is a widely known fact that the high-frequency details in an image are very

difficult to reproduce during image reconstruction or restoration. For decades,

Lena image, which comprises finer and high-frequency details with flat and sym-

metric face, has been used in image processing and computer vision. We also

attemptd to use our approach to hide an image in the Lena image and observed

that there is negligible loss of high-frequency details in the generated stego images

and perceptually similar extracted images, as shown in Figure 6.8.

We have tested and compared the StegGAN on various test sets widely used
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Cover image Stego image Secret image Extracted image Cover residual×5 Secret residual×5

KODAK

SIPI

Figure 6.7: Sample images from KODAK [10] and SIPI [11] datasets: cover images,
stego images, secret images, extracted image, residual between cover and stego ×5 and
residual between secret and extracted ×5.

for different image restoration problems and observed that the StegGAN is more

reliable for hiding an image within an image than the existing state-of-the-art
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Table 6.7: Quantitative evaluation of the StegGAN on the test set selected from
SIPI [11] test set. The best and the second-best results are shown in Bold and Blue
colors, respectively.

Approach Image pairs SSIM PSNR VIF MS-SSIM UQI

C, S 0.9788 30.9707 0.8064 0.9959 0.9942
StegGAN

M, M̄ 0.9363 29.4952 0.5553 0.9678 0.9920

NIPS-17 [20]
C, S 0.7651 22.8523 0.4651 0.9383 0.9674
M, M̄ 0.5435 22.7666 0.1487 0.6877 0.9631

T-PAMI-19 [21]
C, S 0.8319 25.9525 0.5242 0.9377 0.9739
M, M̄ 0.6150 23.6198 0.1584 0.7330 0.9652

Cover image Stego image Secret image Extracted image Cover residual×5 Secret residual×5

Figure 6.8: Test results on a few KODAK images hidden in the Lena image.

methods.

6.3 Ablation Study

In this section, an ablation study of the StegGAN has been presented. The

randomly chosen subset of Imagenet [7], adopted as the test set for evaluating

the proposed StegGAN in earlier sections, has also been utilized for different

evaluations throughout this section.
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Cover image Stego image Secret image Extracted image

w/o TC

w/o L
φEx

V

w/o L
φEb

E

Figure 6.9: Comparison with baseline configurations.

6.3.1 Comparison with the baseline configurations

The performance of the StegGAN has also been compared with the baseline

configurations: (1) w/o TC: Similar to the proposed model except for input

without threshold map TC, (2) w/o L
φEx

V
: Similar to proposed model except

for the use of perceptual loss in the proposed extractor, (3) w/o L
φEb

E : Similar

to the proposed model except for the use of extractor loss in the training of

embedder. The inclusion of the threshold map in the proposed embedder’s input

has improved the visual quality of both stego and extracted hidden images by

∼ +23.45 dB, ∼ +11.03 dB in PSNR, respectively, compared to its absence as

in w/o TC. The thresholded input may have acted as a control signal, which

might have regulated the intensity of the hidden image in such a way that it

will be hidden in the high textured regions of the cover image while embedding.

It has been observed that stego images generated in the case of w/o TC model
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suffer from visual artifacts (secret image outlines and color variation problem).

The addition of the thresholded cover image as a control map has overcome this

issue. Due to the fact that perceptual loss between features from the first several

layers of the CNN helps in retaining the high-level features of the image, the

proposed model outperforms baseline configuration w/o L
φEx

V
by ∼ +1 dB in

PSNR. Intuitively, the feedback from the extractor to the embedder model has

improved the visual quality of both stego and extracted hidden image by ∼ +1

dB, ∼ +26 dB in PSNR, respectively, as shown in Table 6.1.

The subjective comparison with the proposed baseline configurations has been

shown in Figure 6.9. As mentioned above, it can also be observed from Figure 6.9

that the stego image in the case of w/o TC suffers from the artifacts, whereas

in the case of w/o L
φEx

V
, the model has generated the noticeable results but

secondary to the proposed scheme. In the absence of LφEb

E , even though the em-

bedder generates the stego image almost similar to the cover image; the extractor

model fails to retrieve the hidden secret image from the stego image.

6.3.2 Where is the secret image hidden within the image?

Figure 6.10: ROC of StegExpose: ROC of steganalysis of embedded images using
Stegoexpose [12]. From the curve, it can be observed that Stegoexpose unable to detect
the stego images.
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When concealing an image in another image, one of the possibilities is, the

secret image may get embedded in the LSB of the pixels of the cover image.

The stego images generated from the proposed model are tested using a publicly

available tool for LSB detection: StegExpose [12]. A 1000 pairs of cover and

stego images were tested, the StegExpose with the default setting (threshold =

0.2). The Receiver Operating Characteristics (ROC) of the StegExpose shown in

Figure 6.10 indicates that the StegExpose is not able to classify original images

from the generated images beyond random guessing. This result (AUC≈ 50)

implies the model doesn’t hide in the LSB of the cover. On the other hand, there

are no visible artifacts such as ringing effects present in the stego image, which

implies that it doesn’t embed the image in MSB as well. Therefore, it can be

inferred from the above observations that the proposed model may be using the

intermediate bits of the pixels of the cover image to hide the secret image.

6.3.3 What amount of payload the Embedder introduce
to the stego image?

In order to measure the amount of payload embedded by the Embedder when

hiding a secret image in a cover image, we analyzed the 1000 cover images and

corresponding embedded images. The average payload is found to be 1.7144 bpp

(µ = 1.7144 and σ = 0.1255). Though the proposed Embedder hides an entire

secret image inside a cover image, it introduces the only payload of 1.7144 bpp to

the cover image, which shows the efficacy of the proposed model over the existing

scheme [20], whose embedding rate lies in [1.0 bpp− 4.0 bpp].

6.3.4 How much are the generated stego images robust
against steganalytic detectors?

An obvious question for any steganography is how much secure the stego images

are to the steganalytic detectors? Since the payload introduced by the proposed

model is relatively high ( ∼ 1.7 bpp) when hiding an entire image, we cannot

claim that the steganalyzers cannot detect the stego images. To answer this
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question, a popular steganalytic classifier, the Color Rich Model (CRMQ1) [51]

with Ensemble Classifier (EC) [17], is trained and tested over 1000 generated

pairs with 50-50 train and test split. The CRMQ1 [51] with EC was able to

classify between a cover and a generated stego image with 89.22% accuracy.

6.3.5 How does a Single image Layer Separation model

performs on the generated stego images?

ROW - I

a  b  c  d 

e  f  g  h

ROW - II

a  b  c  d 

e  f  g  h

Figure 6.11: Layer Separation: Row-I shows the layer separation of the Cartoon image
a. original image b. embedded image, c. secret image, d. extracted secret, e, and f
are layer separated image of a; g and h are layer separated images of b. Similarly, for
the rainy image in Row-II.

In literature, a layer separation problem is defined as a decomposition task

where an image is decomposed into two layers. The problem of hiding an image

in another image can be related to a layer super-imposition problem where an

image is superimposed onto another image. However, such images can be well
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separated by using layer separation techniques such as proposed in [123]. We use

the proposed scheme in [123] and see whether the proposed model in this paper

is performing super-imposition of the cover and secret images or steganography.

To verify this, we take a cover image shown in Row-I as Figure 6.11 (a), a secret

image is shown in Figure 6.11 (c) and generated the stego image by using the

StegGAN as shown in Figure 6.11 (b). We then use the layer separation scheme

proposed in [123] over the original cover image and generated the stego image

one by one. The layers obtained by using [123] on the original cover image are

shown in Figure 6.11 (e,f) in Row-I, whereas the same on the generated stego

image is shown in Figure 6.11 (g,h). While layers of both stego and cover images

look similar, note that no information of the hidden secret image can be inferred

from either of the layers of stego image. This concludes experimentally that the

StegGAN does not perform super-imposition of cover and secret images. Row-II

of Figure 6.11 consists of another example where a secret image is hidden in a

rainy image, and none of the layers of the stego image consists of any information

about the hidden secret image.

6.3.6 Are embedded images sensitive to the Wavelet De-
composition?

Stego image Secret image LL

LH HL HH

Figure 6.12: Haar Wavelet decomposition of the stego image.
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In the previous subsection (Section 6.3.5), we have shown that the StegGAN

does not perform super-imposition of cover and secret images using a single image

layer separation method. To further support our claim, in this subsection, we have

decomposed the stego image generated by the proposed model into the frequency

domain sub-bands using Haar Wavelet transformation [124]. It can be observed

from Figure 6.12 that none of the four sub-bands (LL, LH, HL, and HH) reveal

any information about the hidden image. If the secret image is super-imposed

on to the cover image, at least one of the sub-bands would have shown the edgy

details of the secret image.

6.4 Chapter Summary

In this contributory chapter, a novel image hiding model, StegGAN, is proposed,

which consists of two cGAN sub-networks. The first embedder sub-network is

responsible for embedding an image within another image using adversarial train-

ing. The second extractor sub-network strives to extract the hidden image from

the embedded image. A set of experiments has been carried out to justify the

applicability of the proposed scheme over the state-of-the-art schemes. The ex-

perimental results reveal that the StegGAN outperformed the existing schemes.

An ablation study is also given to justify the proposed architecture to achieve the

presented results.

The next chapter concludes the thesis by briefly summarizing the work pre-

sented in the thesis and discussing the future research works.
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Chapter 7
Conclusion and Future Works

7.1 Summary of the Contributions

In this dissertation, the main emphasis is on designing spatial image steganaly-

sis based on deep learning. In the first three contributory chapters, it has been

experimentally observed that convolutional neural network-based kernel learning

for noise extraction performs better than fixed kernel-based methods. Multiple

context-based image steganalysis model with self-attention yields better detection

results. Moreover, maintaining a balance between the width and depth of a con-

volutional neural network achieves better detection accuracy. A GAN-based data

hiding scheme is proposed in the final contributory chapter with a higher payload

and reduced visual artifacts. The chapter-wise contributions are discussed below:

7.1.1 Breaking CMD Steganography and Kernel Learning
for Steganalysis

In the first contributory chapter, several experiments are conducted to under-

stand the relationship between the Clustering Modification Directions (CMD)

embedding and the embedding location. Selective-Signal-Removal (SSR) method

is proposed to counter the effect of the CMD algorithm. A comprehensive set

of experiments shows that the proposed SSR method nullifies the effect of CMD

embedding. Further, a deep learning method is proposed to learn a denoising
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kernel that can replace the fixed high-pass filters used to preprocess the input

images steganalytic classifier. It is empirically shown that the proposed method

outperformed the existing steganalysis schemes.

7.1.2 Steganalysis: The Role of Hetrogeneous Context
Size

In the second contributory chapter, the effect of heterogeneous context size is

explored through two different methods. The first method investigates the impact

of increasing the context size in each block, and then these blocks are densely

connected to form a detector for steganalysis. This method also showed a way

to detect the images with different resolutions. The second method proposed a

multi-contextual design of CNN (MC-Net), where each block contains different

context sizes. In order to amplify the signal-to-noise ratio of images, a set of thirty

filters analogous to SRM filters is learned. The experimental results showed that

the proposed method outperforms the state-of-the-art detectors.

7.1.3 Steganalysis using Deep Fractal Network: The Role
of Depth and Width

The third contributory chapter explores the role of depth and width in designing

steganalytic detectors. A steganalytic detector called SFNet is proposed that

uses the concept of the deep fractal network to develop the proposed model. The

depth and width of the model increased in a balanced way using a well-defined

formula. This study showed that a deeper or a wider network performs well, but

This study showed that a deeper or a wider network performs well, but a proper

balance between width and depth makes the network more efficient with respect

to steganalytic detection accuracy.
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7.1.4 StegGAN: Hiding Image within Image - An Appli-
cation of Steganalysis

In the final contributory chapter, a steganography method for hiding an image

within another image is proposed as a deep learning application. The proposed

model called StegGAN is based on the conditional GAN framework. StegGAN

consists of an embedder, an extractor, two discriminators, one for embedder and

another for the extractor. The discriminator of embedder is a well-known ste-

ganalyzer called XuNet. Unlike existing methods, StegGAN uses a thresholded

version of the cover image to guide the model to embed in the high texture regions.

Further, StegGAN minimizes various losses such as MSE, perceptual loss, extrac-

tor loss, and discriminator loss to perform the embedding. The proposed method

is evaluated on a variety of datasets, and the results reveal that the StegGAN

outperformed the existing methods quantitatively as well as qualitatively.

7.2 Future Works

The present study of this dissertation can be extended further in several directions

as listed below:

• The denoising kernels proposed in chapters 3 and 4 can be learned by em-

ploying GAN for further improvements.

• All the steganalytic detectors proposed in this thesis are designed for the

spatial domain. These works can be extended for JPEG domain steganal-

ysis.

• StegGAN proposed in chapter 6 is presented to hide a single image within

another image. This work can be further extended to hide and extract

multiple images within a single image.
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