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Abstract

In recent times, with huge advancement of artificial intelligence, com-

putational intelligence has been emerging to make more appealing me-

dia interfaces like a smart web page, attractive advertisement, cover

page of books, etc. To this end, it is required to have some object

metrics which essentially describe some subjective media properties.

Image or object memorability is such a metric which describes a sub-

jective property of an image. Latest research works show that it is

not an incomprehensible concept: variation in remembering images is

consistent across viewers. It suggests that independent of a viewers’

contexts and biases, some images are intrinsically more memorable

than others. This research work proposes few visual factors which

play a major role in determining memorability at object and image

levels and few deep learning based memorability prediction models

are proposed to predict object and image memorability scores indi-

vidually.

In the first contributory chapter, the relationship between relative

spatial characteristics (location and size) of an object and its memo-

rability is explored. It has been experimentally shown that objects of

larger size tend to be more memorable than objects of smaller size.

Also, the objects present at the center of the image tend to be more

memorable whereas objects present at the corners are not. Further, a

deep learning based object memorability prediction model is proposed.

The proposed model utilizes the object size and location information

along with other deep object features to predict the memorability of

the given object segment.

The second contributory chapter addresses the relationship between

image memorability and two image features: motion and depth. In



this work, it has been experimentally shown that (a) images con-

taining objects in motion tend to be more memorable, (b) images

containing objects nearer to the camera at the center tend to be more

memorable, and (c) images containing objects farther from the cam-

era at the center tend to be less memorable. Further, deep learning

based image memorability prediction models are proposed which uti-

lize motion and depth cues along with the object features to predict

memorability scores.

In the third contributory chapter, a Multiple Instance Learning (MIL)

based deep Convolutional Neural Network (CNN) is proposed to uti-

lize visual emotion cues along with other deep object features to pre-

dict image memorability scores. Experimental results depicted that

incorporation of emotion cues through MIL framework improved the

memorability prediction task, and the proposed model performed bet-

ter than the current state-of-the-art model by achieving a rank corre-

lation close to human consistency.

In this final contributory chapter, it has been addressed how image

memorability can be increased. Towards this goal, an end-to-end

deep learning model is proposed to enhance the memorability of a

generic image. Since the proposed scheme aims to translate an input

image to another image having higher memorability, the underlying

problem has been considered as memorability based image-to-image

translation. The proposed model modifies the given input image to

increase its memorability score while retaining its high-level contents.

Finally, the dissertation concludes by briefly summarizing the work

presented in the dissertation and explaining future research directions.
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Chapter 1
Introduction

Every day people are flooded with data, which is equivalent to 174 newspapers’

content [8]. Due to this information overload, it is difficult to reach the target

audience with the intended information. One of the possible solutions for this

problem may be info-graphics (a visual representation of information) as it can

be related to a famous phrase “A picture is worth a thousand words” (or precisely

84.1 words [9]). Also, humans are exceptionally capable of remembering particu-

lar images, including those representing daily events and scenes [10] and even the

shapes of arbitrary form [11]. However, a person may come across hundreds of

images while browsing social media, checking the newspaper, reading a magazine,

etc. In spite of enormous storage capacity [12, 13], the human cognitive system

may not be able to store all the images (he/she comes across) with the same

degree of details. Few images are remembered with more details; few with minor

details and remaining are forgotten immediately [1]. For example, photos with

natural scenery tend to be less remembered than images with animals, vehicles

and faces [2]. In this scenario, it is important to find the answers for the follow-

ing questions: (a) “Is it possible to create/modify a picture so that it has more

chances to be remembered?” and (b) “Is it possible to create/modify an image

such that an object within that image has more chances to be remembered?”

For these questions to be answered, the existence of a measure to quantify the
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chances of remembering or forgetting an image or an object is much essential.

One such measure is memorability.

1.1 Memorability

Humans are very good at memorizing images. People do not just remember the

summary of an image but can identify which picture they have seen and few of its

details [11, 12]. There are many general reasons for an image to be remembered

including (a) image may contain family members, (b) fun event with friends or

(c) a well-known monument. But there are images which do not contain friends,

family members, or famous monuments and still highly memorable [11–14]. In

this thesis, understanding and predicting the memorability for the latter group

of images and objects is considered.

Memorability is defined as an objective measure which determines the degree

at which images or objects within images are memorable [1, 3]. While it may

seem like forgetting or memorizing an image or an object within images is en-

tirely subjective, recent works [1–3] showed that variation in remembering images

is consistent across viewers, indicating that certain images are inherently more

memorable than others, independent of a viewers’ contexts and biases.

1.1.1 The Memory Game: Measuring Memorability

Isola et al. [1] made the first attempt to measure the memorability of images.

They measured the memorability of an image as the probability that an observer

will detect repetition of an image a few minutes after the exposition when shown

amidst a stream of images as shown in Figure 1.1. According to cognitive psycho-

logical studies, this setting determines which images mark a trace in long-term

memory. With the aforementioned setting, Isola et al. [1] presented workers on

Amazon Mechanical Turk (AMT) [15] with a Visual Memory Game. Participants

of the game viewed a stream of images. Every image is displayed with a dura-

tion of 1 second and 1.4 seconds of a gap is maintained between every two image
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+ + + + + +. . .
100

Memory Repeat

Vigilance Repeat

1 Second 1.4 Second

time

Figure 1.1: Mechanical Turk workers played a “Memory Game” in which they watched for
repeats in a long stream of images [1].

presentation, as shown in Figure 1.1. Participants job was to hit the space bar

whenever they saw a repeat of an image at any time in the sequence. The im-

age sequence was composed of two categories of images: “target” images (2222)

and “filler” images (8220). These images were randomly sampled from the scene

categories of the SUN dataset [16]. There are two reasons to use filler images.

First, to provide the spacing between the first and second presentation of a target

image; second, to enable the vigilance task. Vigilance task enabled to check the

participants’ attention towards the game by observing the participants responses

for the repetition of filler images. For the filler images, repeats occurred with

a spacing of 1 to 7 images and for the target images with a spacing of 91 to

109 images. Every target image was repeated precisely once, and except for the

vigilance task filler image, every filler image was shown at most once. Once the

data collection has been done, the memorability score is assigned to each target

image. It was defined as the percentage of correct detections by participants.

1.1.2 Human Consistency on Memorability

Analogous to other image properties like photo quality, saliency, attractiveness,

composition, and color harmony, memorability also seems to depend on the view-

ers’ context, and it appears to be subjective to some inter-subject variability [17].

However, recent works [1–3] showed that there is a sufficiently large degree of

agreement between users in remembering images and objects within images, in-
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dependent of a viewers’ contexts and biases.

In order to understand human consistency in remembering images, Isola et

al. [1] conducted an experiment. In this experiment, the participants’ pool is

split into two independent halves and measured how well the memorability scores

obtained from the first half of the participants matched with the second half of

the participants using Spearman’s rank correlation [18]. This process was carried

out on 25 random splits and reported the average Spearman’s rank correlation.

The experiment on Isola et al. [1]’s memorability dataset yielded a rank correla-

tion coefficient values of 0.75, indicating humans are consistent remembering or

forgetting images. The same approach is adopted in other existing memorability

datasets to evaluate human consistency.

1.1.3 Applications

Image and object memorability is a recent topic in the field of computer vision

and has the following promising applications in various domains:

Educational Domain: Memorable academic materials such as flow diagrams

or figures representing a particular methodology can be designed to help

students to memorize.

User Interface Design Domain: Memorable user interface design can be cre-

ated for easier navigation for a complex website with hundreds of web pages.

Commercial Domain: Various commercial products, including the logo of a

product/company, the cover page of a magazine/book, advertisements can

be made memorable.

Computation Photography Domain: By incorporating memorability concept,

it is possible to create more memorable pictures of an event or a trip.
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1.2 Literature Survey

The idea of memorability and its association with other aspects of the human

cognition system have been well studied from a psychological perspective [12,17,

19–22]. These studies are focussed completely on visual memory related aspects

such as the capability of memorizing object-related information [12], visual emo-

tional effect on memorability [20–22] or the brain’s learning technique, e.g., the

role of the amygdala in memory [19, 22]. From last few years, many researchers

shed light on measuring memorability of images and objects within images. It

enabled the research community to understand the cause of visual memorability

and its associations with various visual factors, for instance, evoked emotions,

saliency, aesthetics, etc. The subsequent subsections details about the existing

work on understanding image memorability. It also details about existing meth-

ods for predicting image memorability using hand-crafted features and deep learn-

ing techniques. Further, the existing literature on understanding and predicting

memorability of an object within an image is also presented in the following

subsections.

1.2.1 Understanding Image Memorability

Isola et al. [1] defined the image memorability score as the probability that a

viewer will detect a repeat of an image within a stream of pictures and measured

the memorability scores for 2222 images to understand what makes images mem-

orable. From their study, it is reported that object and scene semantics such as

‘Labeled Object Counts,’ ‘Labeled Object Areas,’ ‘Labeled Multiscale Object Areas,’

‘Object Label Presences,’ and ‘Scene Category ’ are the primary reasons of mem-

orability. Authors, in [23], attempted to understand the intrinsic memorability

of images by discovering the relationship between human-understandable visual

attributes and image memorability. To achieve this, they have augmented the

image memorability dataset [1] with interpretable spatial, content, and aesthetic

image properties using AMT. From their analysis, it is reported that images
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containing people with visible faces in an enclosed space are more memorable,

whereas pictures with a pleasing view and pleasant scenery are not. Mancas and

Meur [24] attempted to investigate the relationship between image memorability

and saliency. From their investigation, it is reported that image memorability is

well correlated with two parameters related to saliency: (1) eye fixation duration

and (2) inter-observer congruency. Baveye et al. [25] analyzed the relationship

between visual emotions and memorability and reported that images evoking

negative emotions tend to be more memorable than positive emotions. Recently,

Khosla et al. [2] annotated memorability scores for the large-scale image dataset

containing more than 58,000 images to understand the relationship between image

memorability and a set of high-level image attributes such as emotions, saliency,

popularity, and aesthetics. Authors discovered that emotions and saliency have

a positive influence on making images memorable, but popularity and aesthetics

are not. To be specific, images evoking negative emotions like disgust, fear, and

anger are statistically more memorable than positive emotions like excitement,

awe, and contentment. However, the images portraying the amusement emotion

are exceptional and are equally memorable like images evoking negative emotions.

With respect to saliency, Khosla et al. [2] reported that memorability and human

eye fixation consistency are positively correlated.

From all of the aforementioned investigations, it is found that object and

scene semantics, saliency, and emotions are the primary reasons to make images

memorable or forgettable. However, there are few visual cues such as depth and

motion information of an image whose relationship with image memorability is

uncovered from any of these studies.

1.2.2 Predicting Image Memorability Using Hand-crafted
Features

This subsection details the existing image memorability prediction models using

hand-crafted features. As mentioned in the previous subsection, Isola et al. [1]

created the first image memorability dataset and showed that image memorabil-
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ity prediction task could be addressed using current computer vision techniques

with machine learning tools. They have developed the first image memorabil-

ity prediction model by mapping a combination of global image features with

memorability scores using a Support Vector Regressor (SVR). The chosen global

features are GIST [26], spatial pyramid histograms of Scale-Invariant Feature

Transform (SIFT) [27], Histogram of Oriented Gradients (HOG) [28], Structural

Similarity Index (SSIM) [29], and pixel color histograms. These are the standard

visual features that have been previously found to be effective at scene and ob-

ject recognition tasks. The same group of researchers [1], annotated images of

memorability dataset [1] with various visual properties, including spatial layout,

image aesthetics’, visual emotions, image dynamics, location, and contain a per-

son. These annotations are used along with global image features (such as GIST,

spatial pyramid histograms of SIFT, HOG, SSIM, and pixel color histograms)

to predict image memorability scores using SVR. Khosla et al. [30] proposed a

probabilistic model to predict image memorability maps. They have approached

the problem in reverse direction by introducing a data-driven method that fuses

local and global image features to determine how and which local regions of the

image may be forgotten instead of which regions of the image may be remem-

bered. The local and global features used in their methods include HOG, color

name features, local binary pattern, SSIM, Object Bank, and Saliency. Mancas

and Meur [24] used saliency coverage and visibility features [31] along with SIFT,

HOG, SSIM, and pixel color histograms to predict image memorability scores us-

ing SVR. In [32], a multi-view adaptive regression method is proposed to predict

image memorability scores. This method also uses similar hand-crafted features

to utilize properties like texture, gradient, and shape to predict memorability

scores. From the aforementioned studies, it is visible that all these works have

been used standard visual features that have been previously found to be effective

at scene and object recognition tasks along with few other image features such

as saliency and color histograms.
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1.2.3 Deep Learning Based Image Memorability Predic-
tion

Image memorability prediction is a complex task. Consider Figure 1.2, where

the first row shows highly memorable images, the second row shows average

memorable images, and the third row shows the least memorable images. From

(a) Score = 1 (b) Score = 1 (c) Score = 1 (d) Score = 1 (e) Score = 1

(f) Score=0.66 (g) Score=0.66 (h) Score=0.66 (i) Score=0.66 (j) Score=0.66

(k) Score=0.26 (l) Score=0.27 (m) Score=0.29 (n) Score=0.22 (o) Score=0.27

Figure 1.2: Sample images along with their ground-truth memorability scores taken from
LaMem [2]. The first row shows highly memorable images. The second row shows average
memorable images, and the third row shows the least memorable images.

Figure 1.2, it is clear that images that share the same level of memorability do

not look alike; hence, it may require complex features designed specifically for

the memorability prediction task to achieve better performance. Recently, deep

CNN techniques have shown huge success in various computer vision tasks by

automatically learning the task-specific features. Inspired by the success of deep

CNN techniques in computer vision applications [33–38], few CNN based image
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memorability models have been reported recently. To begin with, Khosla et

al. [2] proposed deep CNN based image memorability prediction model, MemNet

through transfer learning technique. MemNet is obtained by fine-tuning the deep

CNN model [39] on LaMem dataset. LaMem is a large scale image memorability

dataset with more than 58,000 images created by Khosla et al. [2]. For the

fine-tuning purpose, the deep CNN model [39] was loaded with weights which

were pre-trained on two datasets:ILSVRC 2012 [40] and Places [39]. In parallel,

Baveye et al. [25] fine-tuned the deep CNN model [35] on image memorability

dataset [1] to predict memorability scores. This model is similar to [2] but uses

GoogleNet [35] and memorability dataset created by Isola et al. [1] in place of

AlexNet [39] and LaMem [2].

1.2.4 Understanding and Prediction of Object Memora-
bility

From the aforementioned literature survey, it can be observed that a series of stud-

ies have shed light on what distinguishes the memorability of different images and

the intrinsic properties which make images memorable. However, understanding

memorability is limited to image level. Though Khosla et al. [30] attempted

to determine which local regions within an image are memorable or forgettable,

clear comprehension of the memorability of a particular object(s) within an image

remained elusive until recently.

Dubey et al. [3] made the first attempt to understand how and which objects

inside an image are memorable or forgettable. They augmented both images and

object segments from the PASCAL-S dataset with ground-truth memorability

scores, as explained in Section 1.1.1 and hence, become the first to create object

memorability dataset. Their work shed light on various factors and properties

that may influence the memorability of an object. From their analysis following

observations are reported: (a) simple pixel statics such as mean and variance

of HSV color channels do not play a significant role in determining the object

memorability in images, (b) saliency is a good predictor of object memorability

9
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when image contains a few objects but in complex scenes it is a weaker predictor,

(c) object categories play a vital role in determining object memorability, and (d)

image memorability is greatly affected by the memorability of its most memorable

object. Further, they extracted features from AlexNet [33], which is pre-trained

on ImageNet dataset [40]. Then an object memorability prediction model has

been developed by mapping these deep object features to object memorability

scores using SVR.

1.3 Motivation and Objectives

From the aforementioned literature survey, it can be observed that a series of

studies have been devoted to understand which properties of an image (or an ob-

ject) are responsible for making an image (or an object) memorable or forgettable.

Moreover, a series of research works have developed prediction models to deter-

mine memorability score for the given image (or object). Indeed all these studies

shed light on many factors and properties which influence visual memorabilities.

However, the existing literature suffers from the following limitations:

• With respect to object memorability, the current literature has the following

limitations:

– The state-of-the-art research on object memorability prediction is still

in its rudimentary phase with only one prediction model proposed by

Dubey et al. [3].

– Though it is clear from the existing literature that relative spatial

characteristics of an object (such as object location and object size)

have a strong correlation with image memorability [1], the relationship

between object memorability and the relative spatial characteristics of

an object is unclear and to the best of our knowledge, no efforts have

been made in the existing literature to understand the same.
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• With respect to image memorability, the existing literature has the following

limitations:

– Although the existing studies shed light on many factors and properties

which influence image memorability, the relationship between image

memorability and two visual cues: depth and motion, is unclear.

– Though it is discovered that visual emotions have a significant role in

making an image memorable [2], no existing models used the same in

predicting image memorability scores.

– Though the existence of many memorability prediction models, no

end-to-end deep learning model exists to enhance the memorability of

a generic image.

Motivated by the aforementioned shortcomings of the existing methods and

inspired by the success of deep learning techniques in many computer vision

applications, the primary objectives of this dissertation are defined as follows:

• Understand the relationship between memorability (of an image/object)

and visual characteristics such as spatial characteristics of an object, depth

distribution of an image, motion cues within an image, etc.

• Develop a deep learning based object memorability prediction model which

utilizes the object features such as the category of an object, spatial-size,

and spatial-location of an object, etc.

• Devise a deep learning based prediction model which uses the image proper-

ties like depth, motion, emotion, etc. to determine the memorability score

of the given input image.

• Propose an end-to-end deep learning model to enhance the memorability of

the given generic image.
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1.4 Contribution of the thesis

The major contributions of this dissertation are as follows.

1.4.1 Object Memorability Prediction: Location and Size
Bias

In the first contributory chapter, the relationship between relative spatial char-

acteristics (Spatial-location and Spatial-size) of an object and its memorability

is explored. Various experiments are conducted to understand the relationship

between object memorability and spatial-size of an object. Through experimental

results, it is showed that objects present at the center of an image tend to be

more memorable than objects present at the corners. Further, a deep learning

based object memorability prediction model is proposed. The proposed model

can utilize the object size and location information along with other deep object

features to predict the memorability of the given object segment. Experimental

results highlight that the spatial-location and spatial-size of an object play a sig-

nificant role in object memorability prediction and the proposed deep learning

model outperforms the existing method.

1.4.2 Image Memorability: The Role of Depth and Mo-
tion

This chapter explores the relationship between image memorability and two im-

age properties: motion and depth, which, to the best of our knowledge, has not

been studied by the existing methods. In this work, motion and depth cues of an

image have been represented by predicted optical flow and depth map, respec-

tively. Various experiments have been conducted to understand the association of

image memorability with its two image properties: motion and depth. From the

experimental analysis, it has been shown that (a) images containing objects with

motion tend to be more memorable, (b) images containing objects nearer to the

camera at the center tend to be more memorable (c) images containing objects
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farther from the camera at the center tend to be less memorable. Further, deep

learning based image memorability prediction models are proposed which utilize

motion and depth cues along with object features to predict memorability scores.

1.4.3 Visual Emotion based Image Memorability Predic-
tion using Multiple Instance Learning

From the existint literature, it has been observed that visual emotions have a

significant role in making an image memorable and hence, emotion cues need

to be considered in predicting memorability scores. However, existing methods

have not been considered emotion cues in predicting memorability scores. In this

chapter, multiple instance learning based deep CNN is proposed to utilize visual

emotion cues along with other deep object features to predict image memorability

scores. It has been experimentally shown that incorporation of emotion cues

through MIL framework improves the memorability prediction task.

1.4.4 Image Memorability Enhancement using Memora-
bility based Image-to-Image Translation

In the final contributory chapter, an end-to-end deep learning model is proposed

to enhance the memorability of a generic image. Since the proposed scheme aims

to translate an input image to another image having higher memorability, the

underlying problem has been considered as memorability based image-to-image

translation. The proposed model modifies the given input image to increase its

memorability score while retaining its high-level contents. Also, the proposed

method learned the mapping between two image domains without using paired

(input, label) image dataset. To the best of our knowledge, the proposed model is

the first of its kind. Through experimental results, it is showed that the proposed

method increases the memorability score of the input image higher than that of

the state-of-the-art general image-to-image translation techniques.
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1.5 Organization of the Thesis:

This PhD dissertation consists of seven chapters. The first chapter includes an

introduction to image and object memorability, followed by a literature survey,

research motivations and objectives of the thesis, and contributions of the thesis.

The rest of the thesis is organized as follows:

• Chapter 2 describes the necessary background of the research which includes

some preliminary concepts such as deep convolutional neural networks, eval-

uation metrics, and experimental datasets which are to be used in the later

chapters.

• In Chapter 3, the relationship between relative spatial characteristics (lo-

cation and size) of an object and its memorability is explored. Further, a

deep learning based object memorability prediction model is proposed by

utilizing these relative spatial characteristics.

• Chapter 4 first explores the relationship between image memorability and

two image features: motion and depth. Further, deep learning based im-

age memorability prediction models are proposed which utilize motion and

depth cues along with object features to predict memorability scores.

• Chapter 5 presents a novel deep CNN image memorability prediction model

based on multiple instance learning framework. The proposed prediction

model utilizes visual emotion cues through MIL framework to predict the

memorability scores.

• Chapter 6 devises an end-to-end deep learning model to enhance the memo-

rability of a generic image using memorability based image-to-image trans-

lation technique. The proposed model modifies the given input image to

increase its memorability score while retaining its high-level contents.

• In Chapter 7, this Ph.D. dissertation has been concluded along with the

possible future directions.
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1.6 Summary

In this introductory chapter, a brief introduction is presented over image and ob-

ject memorability domain to formulate the scope of research in this field. First,

the concept of image and object memorability are explained. Then, brief liter-

ature on image and object memorability prediction is described. Based on the

limitations of the existing literature, the objectives of the research work are for-

mulated. Finally, a brief description of the contributions and the organization of

the thesis have been presented.
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Chapter 2
Research Background

In this chapter, a brief overview of some fundamental concepts relevant to the

topics of interests is presented. It includes a brief introduction to deep convolu-

tional neural networks such as AlexNet [33], VGG-16 [34], and ResNet [36]. These

networks are used in this dissertation to build various deep learning models to

predict image and object memorability scores. Further, the evaluation metrics

used to evaluate the proposed memorability prediction models and corresponding

datasets used for experimentations are also presented in this chapter.

2.1 Deep Convolutional Neural Networks

Deep CNNs are a class of deep neural networks, which have shown the consid-

erable success on various competitive tasks related to computer vision domain.

The capability of learning automatically task-specific features enabled the CNNs

more powerful in achieving the state-of-the-art results on various competitive

benchmarks. Recent improvements in computational hardware and availability

of very large-scale data have made the research in CNNs feasible. In general,

the CNN architecture consists of three main types of layers: (1) convolutional

layer, (2) pooling layer, and (3) fully-connected or dense layer. Typically, a CNN

architecture is comprised of a series of alternate convolutional and pooling layers

followed by one or more dense layer at the end. An example architecture of a

17
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convolutional neural network is shown in Figure 2.1. The detailed descriptions of

these layers are as follows:

1. Convolutional Layers: A convolutional layer is nothing but a set of neurons

where each neuron represents a learnable convolution kernel. Each kernel

is small in terms of spatial size and extends for each channel of the input

data. When an input image is given to a convolution layer, each kernel is

moved across the height and width of the input image and obtains the dot

product between the entries in the kernel and the input at any position.

As the filter move across the input volume, it produces a two-dimensional

activation map. Each value in the activation map is the response of the

kernel at every spatial location of the input. These activation maps will be

given as input to an activation function. Activation functions get activated

when they see the visual features which are extracted from these learned

kernels. Rectified Linear Unit (ReLU) is one of the most common activation

function used immediately after the convolutional layer.

2. Pooling Layers: The function of the pooling layer is to gradually minimize

the spatial volume of the learned representations to decrease the number of

parameters and amount of computation in the network and also to control

the overfitting problem. Pooling layer with filter size N×N reduces N×N
spatial data by a single value. For example, a 2 × 2 pooling filter replaces

2× 2 spatially arranged values by single value. The replacement strategies

include Max pooling, Average pooling, and so on. In Max pooling, the

entire data volume of spatial size N ×N is replaced by the maximum value

computed on the data where the filter is applied. The Average pooling

replaces the entire data volume of spatial size N × N by the arithmetic

mean computed on the data where the filter is applied.

3. Fully Connected Layers: These layers are nothing but multilayer percep-

trons. Each neuron in a layer receives input from all the neurons of the
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previous layer. The output of each neuron in a layer is sent to all the neu-

rons of the next layer. Therefore, the activations of the neurons belong to

a particular layer is calculated using matrix multiplication and then, by a

bias offset.

Input Image

Convolutional Layer Pooling Layer Fully-Connected 
Layers

O
utput

Convolutional Layer Pooling Layer

Feature Maps

Convolutions Subsampling Convolutions Subsampling Fully-Connected

Figure 2.1: An Example architecture of CNN

These three layers are used to build deep CNN, as shown in Figure 2.1. The

convolutional layers learn to extract the features required for the intended task.

These features are fed to the fully connected layers to learn more abstract level

feature representations to perform the intended classification or regression task.

In this dissertation, three existing deep CNN models: 1) AlexNet [33], 2) VGG-

16 [34], and 3) ResNet [36], are utilized to devise memorability prediction models.

Brief description of these three models is explained in the following subsections.

2.1.1 AlexNet

AlexNet proposed by Krizhevesky et al. [33] is probably the first deep CNN model,

which showed huge success in large-scale image recognition task [4] by achieving

Top-5 error rate of 15.3%. The architectural block diagram of the AlexNet is

shown in Figure 2.2. AlexNet is a feed-forward neural network that constitutes of
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Figure 2.2: The architectural block diagram of the AlexNet

five convolutional layers (for feature extraction) and three fully-connected layers

(for classification task). As shown in Figure 2.2, the first convolutional layer

contains 96 kernels of size 11 × 11. Convolutional operation is applied with a

stride of 4, which produces feature maps of dimension 55×55×96 from the input

image of dimension 227 × 227 × 3. The first convolutional layer is followed the

max-pooling layer with pixel window size 3×3 and stride of 2, which sub-samples

55 × 55 × 96 dimension feature maps to 27 × 27 × 96. The details of the other

layers are shown in Figure 2.2. Similar to the first convolutional layer, the second

convolutional layer is also followed by a max-pooling layer. However, the third,

fourth, and fifth convolutional layers are connected without any sub-sampling

layers. Similar to the first and second convolutional layer, the fifth convolutional

layer is also followed by a sub-sampling layer. The features extracted from the

fifth convolutional layer are passed through three fully-connected layers to learn

more abstract level feature representations to perform image classification task

using the final layer, which is the soft-max layer.

Despite the fact that deeper networks yield better accuracy, higher depth of

the network may also bring the problem of overfitting. Therefore, AlexNet incor-

porated the dropout layers proposed by Srivastava et al. [41]. The dropout layer

randomly skips some neurons’ output during the training process to enforce the

model to learn critical features. To address the overfitting problem further, local

response normalization is applied on the feature maps of the first two convolu-
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2.1 Deep Convolutional Neural Networks

tional layers.

2.1.2 VGG-16

VGG-16 another popular deep convolutional neural network proposed by K. Si-

monyan and A. Zisserman [34] to perform large-scale image recognition task [4].

The architectural block diagram of VGG-16 is shown in Figure 2.3 and other

variants of VGG can be found in [34]. Input to the VGG-16 is an RGB image
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Figure 2.3: The architectural block diagram of the VGG-16

with of dimension 224 × 224 × 3. All the convolutional layers use 3 × 3 kernel

size. Except for the last fully-connected layer, all the convolutional and fully-

connected layers use ReLU as the activation function. The convolution stride

is set to 1 pixel. The spatial padding of convolution layer is set to 1 pixel to

retain the input spatial resolution after each convolution. Max pooling is em-

ployed after few convolutional layers with a 2×2 pixel window and stride of 2, as

shown in Figure 2.3. The features extracted from the last convolutional layer are

passed through three fully-connected layers to learn more abstract level feature

representations to perform image classification task using the final layer, which

is the soft-max layer. VGG-16 has shown better performance than AlexNet on

large-scale image recognition task [4] by achieving Top-5 error rate of 7.3%.
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2.1.3 ResNet

Starting from AlexNet, the state-of-the-art convolutional neural network architec-

ture has been growing more in-depth with more number of layers. For example,

AlexNet had eight layers, VGG-16 introduced 16 layers, and so on. However,

merely stacking layers together to increase the network depth may not improve

the performance of the model always; instead, the network performance may get

saturated and degraded rapidly [36]. He et al. [36] observed that the perfor-

Weight Layer

Weight Layer

x

     x

Identity

ReLu

ReLu

+

F(x)

 F(x) + x

Figure 2.4: Residual learning: a building block.

mance degradation of deeper networks is not due to the overfitting problem and

adding more layers to the deeper model resulted in higher training error [36].

This degradation problem is addressed in ResNet proposed by He et al. [36]. The

key idea of ResNet is identity mapping, which is achieved by “skip connection”,

as shown in Figure 2.4. The skip connection bypasses one or more layers which

do not cost any parameters, and it simply adds the output from the previous

layer to the layer ahead. The key idea of these skip connections is to expect every

few stacked layers to learn the residual mapping in place of desired underlying

mapping. The key idea can be formally represented as follows. Let the desired

underlying mapping be H(x), and the residual mapping be F (x) = H(x) − x.

Then the original mapping can be represented as H(x) = F (x) + x. The authors

hypothesize that optimizing the residual mapping is easier than optimizing the
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2.2 Evaluation Metrics

original mapping. ResNet also solves the famous vanishing gradient problem.

Vanishing gradient problem is nothing but the gradient value becomes very small

when the gradient is backpropagated to earlier layers after several applications of

the chain rule. Due to the existence of skip connections in ResNet, the gradients

can flow back to the earlier layers without vanishing. ResNet outperformed all

other existing deep CNN models on large-scale image classification task [4] by

achieving top-5 error rate of 3.57%.

2.2 Evaluation Metrics

In this dissertation, proposed models rank the images based on their memora-

bility property. In order to verify whether the proposed prediction models rank

the images near to humans, the Spearman’s rank correlation coefficient (ρ) is

employed. In this dissertation, a deep learning model is proposed to increase

the image memorability by modifying the given input image while retaining most

of the high-level contents of the given image. To evaluate the retention of the

high-level contents, Structural Similarity Index (SSIM) has been employed. The

further details of these two evaluation metrics are described in the subsequent

subsections.

2.2.1 Spearman’s Rank Correlation (ρ)

Spearman’s Rank Correlation [18] between predicted and ground-truth image

memorability scores is computed to measure the consistency between predicted

and ground-truth memorability scores. The ρ value ranges from -1 to +1, where

+1 represents a complete agreement, and -1 represents the complete disagreement.

The ρ between predicted and ground-truth memorability ranks is computed, as

shown in Equation 2.1

ρ =
cov(R y,R Y )

σR yσR Y

(2.1)

where R y and R Y are the rank variables for the ground-truth and predicted

memorability scores, σR y and σR Y are the standard deviations of the rank vari-
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able R y and R Y , and cov(R y, R Y ) is the covariance of R y and R Y .

2.2.2 Structural Similarity Index (SSIM)

The SSIM [29] is a technique to measure the structural similarity between two

images. It measures the perception-based quality degradation of an image with

respect to a reference image which is of perfect quality. The general form of the

SSIM between two images I and J is defined as shown in Equation 2.2:

SSIM(I, J) =
(2µIµJ +m1)(2σIJ +m2)

(µ2
I + µ2

J +m1)(σ2
I + σ2

J +m2)
(2.2)

where µI and σ2
I are the mean and variance of I. µJ and σ2

J are the mean and

variance of J . σIJ is covariance of I and J . m1 = (a1r)
2 and m2 = (a2r)

2,

a1 = 0.01 and where a2 = 0.03 by default and r is the dynamic range of the pixel

values.

2.3 Experimental Dataset

There are three standard image memorability datasets and one object memora-

bility dataset which are publically available. These datasets are annotated using

the memory game through AMT, as explained in Section 1.1.1 of Chapter 1. The

details of these datasets are as follows:

Isola et al. [1] made the first attempt to measure the memorability of im-

ages and created the image memorability dataset containing 2222 images. These

images were randomly sampled from SUN dataset [16] that contains 899 cate-

gories and 130,519 images in total. All the images are scaled and cropped about

their centers to be 256 × 256 pixels and images are in RGB color space. Each

image is annotated by 78 viewers on an average. The human consistency (refer

Section 1.1.2) for this dataset yielded Spearman’s rank correlation (ρ) of 0.75.

Similar to Isola et al. [1], Khosla et al. [2] also developed the memory game

to measure the memorability of large-scale image dataset, LaMem, consisting

of 60,000 images. These images are sampled over a variety of image dataset
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including MIR Flickr [42], AVA dataset [43], affective images dataset [44], image

saliency datasets (MIT1003 [45] and NUSEF [46]. Thus, their dataset contains

scene-centric images, object-centric images, and other types such as images of art,

images evoking certain emotions, and other user-generated images such as ‘selfies.’

All the images are scaled and cropped about their centers to be 256× 256 pixels

and images are in RGB color space.. Each image is annotated by 80 participants

on an average. The human consistency for this dataset yielded Spearman’s rank

correlation (ρ) of 0.68.

Dubey et al. [3] created a memorability dataset with 850 annotated images

using the memory game. These images were taken from PASCAL-S dataset [47].

All the images are scaled and cropped about their centers to be 256× 256 pixels

and images are in RGB color space. Each image is annotated by 80 participants

on an average. Each image is annotated by 80 participants on an average. The

human consistency for this dataset yielded Spearman’s rank correlation (ρ) of

0.70.

Dubey et al. [3] made the first attempt to measure the memorability of objects

within images. Memorability is measured for a total of 3412 object segments

extracted from 850 images. All of these 850 images are sampled from PASCAL-S

dataset [47]. The PASCAL-S dataset is built on the validation set of the PASCAL

VOC 2010 [48] segmentation challenge. Authors used the memory game, which

is explained in Section 1.1.1 to measure the object memorability scores. Each

object is annotated by 16 participants on an average. The human consistency for

this dataset yielded Spearman’s rank correlation (ρ) of 0.76.

2.4 Summary

This chapter presented a brief description of necessary fundamental concepts

related to deep convolutional neural networks such as AlexNet, VGG-16, and

ResNet. Also, the evaluation metrics which are employed to evaluate the proposed

deep learning models are described. Along with these details, image and object
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memorability datasets used for the experimentations are also presented.

With this background, the first contribution of this dissertation will be dis-

cussed in the next chapter, where it is shown that the relative size and location of

an object play essential roles for understanding the corresponding object memora-

bility within an image. Also, a deep learning based model is devised to utilize the

relative size and location details, along with other object features in predicting

object memorability scores.
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Chapter 3
Object Memorability Prediction:
Location and Size Bias

Humans selectively process visual information to perform various visual tasks

such as object detection, object recognition, scene analysis, etc. Due to this se-

lective nature, the human visual system selects very few visual candidates to carry

out afore-mentioned visual tasks. Since most of the computer vision algorithms

are designed to help human-visual tasks, such algorithms need to have informa-

tion about visual candidates or objects. In this chapter, few important visual

factors which influence memorability at object level are discovered and also deep

learning models are devised to utilize the proposed visual factors in determining

memorability scores.

Object memorability is one such important information that may aid in car-

rying out an intended human-visual task. Object memorability is a task of pre-

dicting how well an object within an image can stick on to humans’ memory after

a single view [3]. It requires the understanding of intrinsic object features which

influence the memorability of an object. In recent years, a significant amount

of research has been carried out to shed light on inherent characteristics which

influence memorability prediction [1, 2, 23–25, 49–52]. However, these studies are

limited to image level where memorability prediction is carried out for the entire

image.
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3. OBJECT MEMORABILITY PREDICTION: LOCATION AND
SIZE BIAS

Though Khosla et al. [30] attempted to determine which local regions within

an image are memorable or forgettable, clear comprehension of the memorability

of particular objects within an image remained elusive until recently. Dubey et

al. [3] made the first attempt to understand the object memorability by annotat-

ing object segments with memorability scores. This dataset is used to investigate

the relationship between object memorability and various visual information such

as color, shape, pixel statistics, object category, and saliency. With this investiga-

tion, authors stated the following observations: a) shape, color, and other pixel

statistics are the poor predictors of object memorability, b) saliency is a good

predictor but only when the image complexity is low, and c) object category is a

prime visual factor in determining the object memorability score. Further, they

have proposed an object memorability prediction model by mapping deep features

representing object category information with object memorability scores using

SVR. The deep features are extracted using the AlexNet [4], which is pre-trained

on ImageNet dataset [40]. The trained SVR model is tested on ground-truth ob-

ject segments as well as on automatically generated object segments (to automate

the object memorability prediction task). A generic object proposal algorithm,

i.e., MCG for image segmentation and object proposal generation [5], is employed

to generate the object segments automatically.

Although the existing work on object memorability shed light on various visual

factors which influence object memorability, it is suffering from the following

limitations:

• Though it is clear from the existing literature that relative spatial charac-

teristics of an object (such as object location and object size) have a strong

correlation with image memorability [1], the relationship between object

memorability and the relative spatial characteristics of an object is unclear.

Also, to the best of our knowledge, no efforts have been made in the existing

literature to understand the same.

• The state-of-the-art research on object memorability prediction is still in
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its rudimentary phase with only one prediction model proposed by Dubey

et al. [3] which uses object category alone as an intrinsic feature to predict

object memorability scores.

To overcome these shortcomings, the following contributions are made in this

chapter:

• The influence of Spatial-location and Spatial-size of an object in determining

object memorability within an image has been explored. A set of experi-

ments has been carried out to reveal the importance of these characteristics

in object memorability prediction.

• Further, a baseline model is proposed to demonstrate the improvement of

object memorability prediction due to the influence of the Spatial-location

and Spatial-size of an object.

• Finally, a deep CNN model is devised for automatic feature learning on

Spatial-location, Spatial-size, and category characteristics of an object to

accurately predict the object memorability score.

Rest of the chapter is organized as follows: A detailed study on the influence of

proposed visual characteristics is shown in Section 3.1. The proposed object mem-

orability prediction models are described in Section 3.2. Performance evaluation

of the proposed models is presented through a set of experiments and correspond-

ing results in Section 3.3. Finally, the summary of the chapter is presented in

Section 3.4.

3.1 Relative Spatial Characteristics

Spatial-size and Spatial-location of an object are two major visual factors to de-

termine the object’s importance [53]. The object larger in size and closer to

the center is likely to be more important as it has a higher probability of being
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mentioned by annotators [53]. While the relationship between the object memo-

rability and its relative spatial characteristics (Spatial-size and Spatial-location)

is unclear, it is revealed from the recent study [1] that memorability of an im-

age and relative spatial characteristics of objects within that image do have a

strong correlation. In this section, the influence of these two relative spatial char-

acteristics, Spatial-location and Spatial-size, in determining object memorability

prediction has been analyzed.

3.1.1 Spatial-location

Spatial-location of an object can be defined as the position of an object within

an image frame. From the object memorability dataset, it can be observed that

Spatial-location of an object may suppress the effect of object category in pre-

dicting its memorability. It is depicted in Figure 3.1 where the objects in each

row, are from the same category (the first row contains Person category objects,

second and third contain Animal category objects.) but differ with respect to

their memorability scores.

To analyze the influence of object location within the image, an experiment is

conducted based on ground-truth object memorability scores. In this experiment,

the given image is divided into nine rectangular zones to decide the object posi-

tion, as shown in Figure 3.2. These zones are named according to their positions.

Every object present in the given image is mapped to one of these zones based

on the total number of object’s pixels located in each of the nine zones. Zone

mapping is formally defined as follows:

L : The set of nine zones representing different parts of the image, as shown

in Figure 3.2.

O : The object segment whose Spatial-location need to be determined.

Oi: The portion of the object segment O belonging to ith zone Li, where i ∈
{1, 2, ..., 9}.
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3.1 Relative Spatial Characteristics

(a) Original Image (b) Memorability score = 0.63 (c) Memorability score = 0.17

(d) Original Image (e) Memorability score = 0.94 (f) Memorability score = 0.6

(g) Original Image (h) Memorability score = 1.0 (i) Memorability score = 0.82

Figure 3.1: Spatial-location bias on object memorability. Images in each row are showing
objects with the same category, but differ in memorability scores and spatial location. The
mentioned memorability scores are ground-truth values.

z : The zone to which object segment O is mapped.

z is computed using following mapping function:

z = arg max
∀Li∈L

|Oi| (3.1)

where |Oi| is the number of pixels belonging in Oi. In this manner, all the object

segments present in the dataset are grouped into nine zones. For each zone, a

zone-score is computed by averaging the memorability scores of the objects be-

long to the corresponding zone as follows:
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Oik : The kth object segment belonging to ith zone. Where i = {1, 2, ..., 9},
k = {1, 2, ..., ni} and ni is the number of object segments from the dataset

belonging to ith zone

yik : The ground-truth memorability score corresponding to the object segment

Oik

zsi : The Zone-Score of ith zone Li.

zsi is computed as follows:

zsi =
1

ni

∑
∀k∈{1, 2, ...,ni}

yik (3.2)

Computed zone-scores zsi are presented in Figure 3.3. It is evident from the

Figure 3.3 that objects that belong to the middle-center zone tend to have higher

memorability scores than the objects that belong to the corners of the image.
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Bottom_Left
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Figure 3.2: Zone-Map of Image to map the objects into one of the nine possible zones.

To investigate the relationship between Spatial-location and memorability of

an object segment further, another experiment is conducted, which has two steps.

In the first step, object memorability dataset is divided into training and testing

sets. Then zone-scores are computed from the training set using Equation 3.2.

In the second step, each object segment of the test set is mapped into one of the

nine zones using Equation 3.1. Then memorability score for each object from the
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test set is computed by assigning zone-score of the corresponding zone (computed

in the first step). Finally, Spearman’s rank correlation (ρ) is computed between

predicted memorability scores and ground-truth scores. This process is carried

out in six-folds for cross-validation purpose. This experiment yielded an average

rank correlation of 0.40. From this result, it is observed that Spatial-location and

object memorability are positively correlated. Therefore, Spatial-location can be

considered as one of the important visual characteristics for predicting object

memorability scores.
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Figure 3.3: Change in memorability score w.r.t. Spatial-location. The Zone-scores are
computed for each zone by averaging the memorability scores of all the objects fall into each
zone.

3.1.2 Spatial-size

Spatial-size of an object can be defined as the relative size of an object with

respect to image size. Similar to the Spatial-location, Spatial-size may also sup-

press the effect of object category in determining object memorability scores. It

is shown in Figure 3.4, where the objects in each row are from the same category
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(first and the third rows contain person category objects, and the second row

contains Animal category objects) but differ much in their memorability scores.

For example, though the object segments shown in Figure 3.4(f) & 3.4(h) be-

long to the same object category Animal, the memorability score (0.29) of object

segment depicted in Figure 3.4(f) is relatively lesser than the memorability score

(0.66) of the object segment depicted in Figure 3.4(h). Hence, the Spatial-size of

an object is an intuitive factor to influence its memorability score.

(a) Original Image (b) Mem score = 0.35 (c) Original Image (d) Mem score = 0.86

(e) Original Image (f) Mem score = 0.29 (g) Original Img (h) Mem score = 0.66

(i) Original Image (j) Mem score = 0.5 (k) Original Image (l) Mem score = 0.75

Figure 3.4: Spatial-size bias on object memorability. Each row depicting object segments
belonging to the same category, but differ in memorability scores and spatial size. Mem score
represents ground-truth memorability scores.

To understand the relationship between an object’s Spatial-size and its mem-

orability, an experiment is conducted based on the ground-truth object memo-

rability scores. In this experiment, all the object segments present in the object

memorability dataset is divided into six non-overlapping sets based on Spatial-

size as shown in Equation 3.3
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S1 = {Ok | 0 < OSk < 2}

S2 = {Ok | 2 ≤ OSk < 5}

S3 = {Ok | 5 ≤ OSk < 10}

S4 = {Ok | 10 ≤ OSk < 20}

S5 = {Ok | 20 ≤ OSk < 30}

S6 = {Ok | 30 ≤ OSk < 100}

(3.3)

where

Ok : kth object segment in the object memorability dataset.

OSk : Spatial-size of Ok. It is defined as follows:

OSk =
OPk

IPk

∗ 100 (3.4)

where

OPk : Total number of pixels belong to Ok

IPk : Total number of pixels belong to the image which contains Ok

The ranges of values in Equation 3.3 are chosen to ensure the balanced number

of objects in each set. For each of these groups, the size-score(SSi) is computed

as follows:

SSi =
1

Si

∑
∀Ok∈Si

yk (3.5)

where yk is the memorability score of Ok and i = {1, 2, ..., 6}.
The computed SSi for i = {1, 2, ..., 6} is given in Figure 3.5, where it is evident

that an increase in the size of an object tends to increase in its memorability score.

The relationship between Spatial-size and memorability of an object segment

is investigated further using another experiment. This experiment is carried out

in two steps. In the first step, object memorability dataset is divided into training

and testing sets. Then SSi for i = {1, 2, ..., 6} is computed using Equation 3.5.
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Average Memoribility Score
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Figure 3.5: Change in memorability scores w.r.t. Spatial-size. The Size-Score computed
for each size range by averaging memorability scores of the object segments belonging to the
corresponding size range.

In the second step, each object segment of the test set is mapped into one of the

six sets Si for i = {1, 2, ..., 6} based on the object Spatial-size. Then memora-

bility score for each object segment from the test set is computed by assigning

corresponding SSi. Finally, Spearman’s rank correlation is computed between

predicted and ground-truth object memorability scores. This process is carried

out in six-folds for cross-validation purpose. This experiment yielded an aver-

age rank correlation of 0.50. From this result, it is observed that Spatial-size

and memorability of an object are positively correlated. Therefore, Spatial-size

can be considered as one of the important visual factors for determining object

memorability scores.

3.2 Object Memorability Prediction

Based on the analysis carried out in Section 3.1, it is observed that Spatial-

size and Spatial-location play a crucial role in determining object memorability.
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Therefore, these two visual factors are incorporated in determining object mem-

orability in the proposed models. The initial stage of this section describes the

details of input data preprocessing for object memorability prediction process.

Later part describes the proposed deep learning based object memorability pre-

diction models.

3.2.1 Input Data Preprocessing

In order to predict the object memorability score, the object segment needs to be

extracted from the image. In the existing work [3], the input object segments are

prepared by cropping and resizing the object segments, as shown in Figure 3.6.

From this figure, it is evident that Spatial-location and Spatial-size information

are distorted while extracting object segments. In contrast to the object segments

(a) (b) (c) (d)

Figure 3.6: Examples of input object segments prepared according to the existing work [3]. (a)
original image. (b), (c), and (d) are extracted object segments. The extracted object segments
convey no Spatial-location and Spatial-size information.

of Figure 3.6, the images of Figure 3.7 retained Spatial-location and Spatial-size

information as it is. In our proposed work, the input object segments are prepared

to retain Spatial-location and Spatial-size information, as shown in Figure 3.7. It

is carried out by assigning a value 128 to all the pixels belonging to RGB channels

of the image except the object segment pixels. The nature of convolutional neural

network architecture exploits the spatial locality information [4]. Due to this

reason, the CNN model trained on object segments which are prepared, as shown

in Figure 3.7 utilizes Spatial-location and Spatial-size details.
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(a) (b) (c) (d)

Figure 3.7: Examples of input object segement prepared according to the our proposed method.
(a) original image. (b), (c), and (d) are extracted object segments. Images in (b), (c) and (d)
represent object segments having Spatial-location and Spatial-size information.

3.2.2 Proposed Object Memorability Prediction Models

In this chapter, three models are proposed to predict the object memorability

scores. The first model is named as SVR for Object Memorability Prediction

(SVR-OMP), which is similar to the existing model of [3] but differ in object

segment preparation. This model is proposed to demonstrate the improvement

of object memorability prediction due to the incorporation of Spatial-location and

Spatial-size, which was not considered in [3]. Further, to provide an end-to-end

object memorability prediction model, a deep CNN model is proposed, which is

named as Deep CNN for Object Memorability Prediction-I (DCNN-OMP I). This

model is extended to improve the performance using the modular approach of

fine-tuning, which is named as Deep CNN for Object Memorability Prediction-II

(DCNN-OMP II).

3.2.2.1 SVR-OMP Model

The SVR-OMP model is built by training the SVR on deep features. The archi-

tecture of SVR-OMP model is shown in Figure 3.8. The object segment is passed

through the pre-trained CNN model [4] which is trained on ImageNet dataset [40],

and deep features of 4,096 dimension are extracted from the last fully-connected

layer FC7. These deep features are mapped to object memorability scores using

SVR. To incorporate the Spatial-location and Spatial-size characteristics of the
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object segment, the input image is prepared as proposed in Section 3.2.1.

C
o
n
v
 1

P
o
o
l 

1

C
o
n
v
 2

P
o
o
l 

2

C
o
n
v
 3

C
o
n
v
 4

C
o
n
v
 5

P
o
o
l 

3

F
C

 6

F
C

 7

11
 X

 1
1 

X
 9

6

5 
X

 5
 X

 2
56

3 
X

 3
 X

 3
84

3 
X

 3
 X

 3
84

3 
X

 3
 X

 2
56

40
96

40
96

227 

2
2

7
 

Input

Image

P
re

d
ic

te
d
 O

b
ej

ec
t 

M
em

o
ri

b
il

it
y
 S

co
re

S
V

R

Figure 3.8: The architecture of the proposed SVR-OMP model.

3.2.2.2 DCNN-OMP I

Though the SVR-OMP model can perform better than existing work [3](Please

refer to Section 3.3 for performance comparison), the deep features used to train

the SVR-OMP are extracted from the model trained to perform object classifica-

tion task [4]. Hence, the performance achieved through SVR-OMP can be further

improved with a deep CNN model which is trained to perform object memora-

bility prediction task. However, training a deep CNN model from scratch forces

the use of a large amount of labeled dataset to get better performance. As the

number of labeled object segments in the object memorability dataset [3] is very

less, fine-tuning is employed to construct the deep CNN based object memora-

bility prediction model. It is found from the literature that object memorability

and image memorability are positively correlated [3]. Hence, it might be efficient

to fine-tune a deep CNN model trained on image memorability prediction task.

Recently, Khosla et al. [2] created a large volume of image memorability dataset

and developed a deep CNN model on this dataset to predict image memorability

scores. This model achieved state-of-the-art performance in image memorability

prediction. In the proposed scheme, a deep CNN model for object memorability

prediction is built by fine-tuning Khosla et al.’s [2] image memorability predic-

39



3. OBJECT MEMORABILITY PREDICTION: LOCATION AND
SIZE BIAS

tion model. The architecture of the proposed model DCNN-OMP I is depicted

in Figure 3.9. The architecture is same as the deep CNN model proposed in [4]

except the last layer. The number of output neurons are changed from 1000 to

1, and the output function is changed from Softmax() to Sigmoid() to predict

object memorability score between 0 and 1.
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Figure 3.9: The architecture of the proposed Deep CNN model DCNN-OMP I. The architec-
ture is similar to the deep CNN model proposed in [4] except the last layer where the number
of outputs is reduced from 1000 to 1 and Softmax layer is replaced by Sigmoid layer to predict
object memorability score.

Recently, Anderson et al. [54] proposed a novel approach of fine-tuning, named

as modular approach, to learn on small data. This approach ensures a better

learning method even with the relatively low volume of training samples. In or-

der to improve the performance of object memorability prediction further, the

proposed model DCNN-OMP I is extended by employing the modular approach

of fine-tuning [54]. Accordingly, the architecture of the DCNN-OMP I is modi-

fied. The modified model is named as DCNN-OMP II and explained in the next

subsection.

3.2.2.3 DCNN-OMP II

In this section, the brief details of the modular approach [54] for fine-tuning are

presented first. Then, based on the modular approach, the architecture of the

DCNN-OMP I is modified.
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The modular approach of fine-tuning [54] treats the entire network as a mod-

ule during the fine-tuning process. The central idea of the modular approach is to

merge the pre-trained and untrained modules to understand the shift in distribu-

tion between datasets. The effect of combining pre-trained and untrained modules

adds new representations to the network model instead of replacing previously

learned representations. Equation 3.6 and 3.7 shows the formal representation

of regular fine-tuning and modular approach of learning from a small volume of

data.

Yft = SF (Net(X,W = {PT Net})) (3.6)

Ymd = SF ([Net(X,W = {PT Net}), Net(X,W ∗ = {PT Net})]) (3.7)

SF () in both the equations represents Softmax function. In Equation 3.6, Yft

represents the class label predicted from the model built by the regular fine-tuning

method. Net represents the deep network which is currently being learned. X is

the input to the network. W is the set of trainable weights which are initialized

with the weights of the pre-trained network denoted by PT Net. In Equation 3.7,

Ymd represents the class label predicted by the model built by the modular ap-

proach. W ∗ represents the non-trainable weights which are initialized with the

weights of the pre-trained network denoted by PT Net. Similar to the modular

approach proposed by Anderson et al. [54], the DCNN-OMP I model is extended

to incorporate the modular approach of fine-tuning. The extended model is named

as DCNN-OMP II. The architecture of DCNN-OMP II is depicted in Figure 3.10.

The architecture contains a stack of two networks. Both these networks’ archi-

tecture and parameters are similar to the image memorability model [2]. The

upper branch of the network is initialized with the weights of the image memo-

rability model [2], and it is frozen from being learned. Therefore, the previously

learned feature representations of the image memorability model [2] are retained

for object memorability prediction. The lower branch of the network is also ini-

tialized with the weights of the image memorability prediction model [2], but it
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Figure 3.10: The architecture of the proposed Deep CNN model DCNN-OMP II.

is allowed to learn during the fine-tuning process. This branch of the network

learns the new feature representations for object memorability prediction. Both

the upper branch and lower branch produces deep features of dimension 4,096.

The last layer of the entire network takes these 2×4096 deep features as input and

produces one output which is passed through the Sigmoid function to generate

object memorability score between 0 and 1.

3.3 Experimental Results

All the experiments are conducted on object memorability dataset created by

Dubey et al. [3]. The dataset contains ground-truth memorability scores for 3412

object segments extracted from 850 images. All of these 850 images are sam-

pled from PASCAL-S dataset [47]. For more details of the object memorability

dataset, kindly refer Section 2.3.
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3.3.1 Experimental Set-up

The proposed models are trained on preprocessed ground-truth object segments.

The preprocessing ensures the incorporation of the visual factors Spatial-size and

Spatial-location, as explained in Section 3.2.1. To train the proposed models, the

dataset is divided into training and testing sets in six-folds for cross-validation

purpose. Further, proposed models are also evaluated on automatically gener-

ated object segments similar to Dubey et al. [3]. To generate object segments

automatically, a state-of-the-art generic object proposal algorithm, MCG [5] is

used.

The loss function, optimizer, and hyper-parameters are same for all the proposed

deep CNN models. Object memorability prediction is essentially a regression

task. For such tasks, L2 loss is the most widely used loss function. Equation 3.8

shows the employed L2 loss function.

L2 =
∑
j

||Yj − yj||22 (3.8)

where Yj and yj represent the predicted and ground-truth memorability scores

of the jth image. To minimize network loss, Ada-delta optimizer is used with

an initial learning rate of 0.001. The models are trained with a batch size of

50 images. Preprocessed ground-truth object segments are used to fine-tune the

proposed models.

3.3.2 Performance Evaluation

The Spearman’s rank correlation coefficient (ρ) is used to evaluate the perfor-

mance of the proposed models. Table 3.1 shows the rank correlation coefficient

values of existing [3] and proposed object memorability models. The models

are evaluated on both ground-truth object segments as well as MCG [5] object

segments.
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Evaluation of the Proposed Models on Ground Truth Object Segments:

To evaluate the proposed models on ground-truth object segments, rank cor-

relation is computed between predicted memorability scores and ground-truth

memorability scores. Compared with the existing model [3], the SVR-OMP

model shows improved performance of object memorability prediction with ρ

= 0.71. This indicates that incorporation of Spatial-location and Spatial-size im-

proved the object memorability prediction accuracy indicating Spatial-location

and Spatial-size are two important factors in making object memorable or for-

gettable. Further, both deep CNN models DCNN-OMP I and DCNN-OMP II

performed better with ρ value of 0.74 (almost near to human consistency ρ =

0.76). This indicates that deep features learned by fine-tuning of the image mem-

orability model are good predictors of object memorability scores compared to

the deep object features representing object category information. Though the

modular approach of fine-tuning [54] is employed to improve the performance, the

result did not improve further for ground-truth object segments. From this, it

can be observed that the ρ = 0.74 (almost near to human consistency ρ = 0.76)

may be an upper bound on object memorability prediction.

Table 3.1: Comparison of performance between the existing model [3] and the proposed models
SVR-OMP, DCNN-OMP I and DCNN-OMP II on ground-truth object segments.

Models Dubey et al.’s Proposed Proposed Proposed
Model [3] SVR-OMP DCNN-OMP I DCNN-OMP II

ρ 0.70 0.71 0.74 0.74

Evaluation of the Proposed Models on Automatically Generated Ob-

ject Segments: To completely automate the object memorability prediction,

object segments are generated from each image present in the object memorabil-

ity dataset using MCG [5] algorithm. For top K = 20 generated object segments,

memorability scores are predicted using the proposed models. Then, the memo-

rability map is generated for each image by computing average predicted scores
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of all the object segments belong to that image. Finally, the rank correlation

between the average predicted memorability score inside each of the object seg-

ments and their ground-truth memorability scores is computed. Compared with

the existing model [3], the SVR-OMP model shows improved performance of

object memorability prediction for MCG object segments with ρ = 0.40. This

proved again that the Spatial-location and Spatial-size play a role in determin-

ing object memorability prediction. However, the proposed deep CNN model,

DCNN-OMP I model performance (ρ = 0.39) is same as the existing model [3].

One of the major reasons for this performance is a relatively low volume of the

training dataset. One possible solution to the low volume of the dataset is the

modular approach of fine-tuning, as discussed in Section 3.2.2.3. Due to the incor-

poration of the modular approach, the extended model DCNN-OMP II improved

the performance (ρ = 0.40) for MCG object segments, as shown in Table 3.2.

However, the improvement is still not significantly high for MCG object seg-

Table 3.2: Comparison of performance between the existing model [3] and the proposed models
SVR-OMP, DCNN-OMP I and DCNN-OMP II on MCG [5] object segments.

Models Dubey et al.’s Proposed Proposed Proposed
Model [3] SVR-OMP DCNN-OMP I DCNN-OMP II

ρ 0.39 0.40 0.39 0.40

ments. Another possible reason for this performance is the quality of the object

segments generated using MCG [5] algorithms. The poor quality object segment

not only disturbs the object category information but also the Spatial-size and

Spatial-location information. Consider Figure 3.11, where the first row depicts

the original image, second and third rows depict the ground-truth object seg-

ments, and fourth and fifth rows depict the MCG object segments. From this

figure, it is observed that the Spatial-size and Spatial-location information are dis-

torted in MCG object segments due to improper object proposals. Though the

proposed models showed minor improvement for MCG object segments, the per-

formance is much better (near to human consistency) than the existing model [3]
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for ground-truth object segments.

(a) Original Image

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m) (n) (o) (p)

(q) (r) (s) (t) (u)

Figure 3.11: Quality difference between ground-truth and MCG [5] object segments. (a)
Original Image, (b-k) Ground-truth object segments and (l-u) Top 10 object segments generated
using MCG algorithm.

Object Memorability Prediction Models’ Bias on the Spatial-size in-

formation: To demonstrate the proposed models’ bias on the Spatial-size in-

formation, object segments are sorted based on predicted memorability scores.
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Various ranges of these sorted object segments are selected to examine the aver-

age Spatial-size of object segments on these ranges, as shown in Table 3.3. Object

segments are sorted into sets according to predictions made by existing and pro-

posed models (denoted by column headings of Table 3.3). From Table 3.3, it is

evident that the proposed models assign the higher ranks to larger Spatial-size

object segments and lower ranks to smaller Spatial-size object segments. It is also

evident that Spatial-size bias is comparatively less in Dubey et al.’s model [3].

Table 3.3: Comparison of predicted memorability scores versus Spatial-size of object segments.

Range of Images Dubey et al.’s [3] SVR-OMP DCNN-OMP I DCNN-OMP II
Top 10 24% 27% 33% 36%
Top 25 26% 27% 33% 34%
Top 50 25% 26% 31% 32%
Top 100 24% 25% 28% 28%
Top 200 21% 22% 22% 22%

Bottom 200 6% 5% 5% 5%
Bottom 100 5% 4% 4% 4%
Bottom 50 5% 4% 4% 4%
Bottom 25 4% 4% 4% 4%
Bottom 10 4% 3% 3% 3%

Object Memorability Prediction Models’ Bias on the Spatial-location

information: To demonstrate the Spatial-location bias of the proposed models,

object segments are sorted based on predicted memorability scores and various

ranges of these sorted object segments are selected to examine Spatial-location

information of object segments. An average number of objects located at the

center as well as at the corners are computed on these ranges, as shown in Ta-

bles 3.4 and 3.5 respectively. Object segments are sorted into sets according to

predictions made by existing and proposed models (denoted by row headings of

Tables 3.4 and 3.5). The % values of Top 10, 25, 50, 100, and 200 are computed

for Tables 3.4 and 3.5 as shown in Equations 3.9 and 3.10 respectively. In the

same manner, % values are also computed for the Bottom 10, 25, 50, 100, and
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200 ranges for the Tables 3.4 and 3.5.

Center Top i % = 100 ∗
∑F

k=1 center obj count

F ∗ i
(3.9)

Corner Top i % = 100 ∗
∑F

k=1 corner obj count

F ∗ C ∗ i
(3.10)

In Equations 3.9 and 3.10, variable i takes values from the set {10, 25, 50, 100, 200}.
The center obj count represents the total number of images containing objects

at the center of the image. The corner obj count represents the total number

of images containing objects at the corners of the image, F represents the total

number of folds that is six and C represents the total number of corners that is

four. Further, each range’s result is included in all the other ranges’ results that

are bigger than the current range. For example, Top 25 includes Top 10 results,

Top 50 includes Top 25, and Top 10 results and so on. From Tables 3.4 and 3.5,

it is evident that proposed models place object segments located at the center at

higher ranks and object segments located at the corners at lower ranks. It is also

evident that location-bias is comparatively less in Dubey et al.’s model [3].

Table 3.4: Comparison of predicted memorability scores versus the average number of objects
located at the center of an image.

Range of Images Dubey et al.’s [3] SVR-OMP DCNN-OMP I DCNN-OMP II
Top 10 60% 74% 76% 77%
Top 25 60% 72% 76% 76%
Top 50 60% 68% 69% 72%
Top 100 59% 60% 61% 63%
Top 200 45% 50% 50% 50%

Bottom 200 11% 6% 4% 4%
Bottom 100 11% 5% 3% 2%
Bottom 50 12% 6% 2% 1%
Bottom 25 11% 7% 2% 1%
Bottom 10 8% 7% 0% 0%

48



3.4 Summary

Table 3.5: Comparison of predicted memorability scores versus the average number of objects
located at the corners of an image.

Range of Images Dubey et al.’s [3] SVR-OMP DCNN-OMP I DCNN-OMP II
Top 10 2% 0% 1% 1%
Top 25 3% 1% 1% 1%
Top 50 3% 2% 2% 1%
Top 100 4% 3% 2% 2%
Top 200 5% 3% 3% 3%

Bottom 200 12% 15% 18% 16%
Bottom 100 10% 14% 16% 17%
Bottom 50 10% 13% 15% 17%
Bottom 25 10% 13% 15% 16%
Bottom 10 10% 13% 15% 15%

3.4 Summary

In this chapter, the influence of Spatial-location and Spatial-size of an object

segment in predicting its memorability score is analyzed. A baseline model is de-

veloped to demonstrate the improvement of object memorability prediction due

to the incorporation of these two characteristics in the prediction method. Next,

a deep CNN model is devised for automatic feature learning on these two object

characteristics to predict the object memorability scores. The proposed models

utilized the Spatial-location and Spatial-size of an object segment in predicting

memorability scores and performed better than the existing work. Further, the

proposed deep CNN models showed their capability of scaling the object memo-

rability prediction accuracy up to human consistency based on the quality of the

input object segment.

This chapter addressed a few important visual factors which influence mem-

orability at the object level and also devised deep learning models to utilize the

proposed visual factors in determining memorability scores. In the next chapter,

the influence of few important visual factors such as motion and depth cues on the

memorability at image level will be analyzed. Further, deep learning based pre-

diction models are proposed to incorporate the proposed visual factors to predict
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image memorability.
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Chapter 4
Image Memorability: The role of Depth
and Motion

In the last chapter, it has been shown that the relative size and location of an

object within an image play important roles for understanding the corresponding

object memorability. In this chapter, the memorability issue has been extended

to image level, and it has been shown that in addition to the known visual charac-

teristics such as object and scene semantics, emotion, saliency, etc., image depth

and image motion are also playing important roles to understand the image mem-

orability. It is observed from the computer vision literature that depth cues play

a vital role in solving many computer vision related problems including image de-

noising [55, 56], visual saliency prediction [57, 58], image quality assessment [59],

etc. Similarly, motion information is used in various vision applications, including

video saliency detection [60], single image action recognition [61], etc. However,

the influence of motion and depth cues has remained unexplored in case of image

memorability. To summarize, the existing literature on image memorability suffer

from the following limitations:

• Though depth and motion cues play a major role in solving many computer

vision tasks, their influence in determining memorability of an image has

remained unexplored.
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• Most of the existing methods for image memorability predictions rely on

hand-crafted features, which are manually engineered and based on peoples’

observation. These features may not infer the image memorability related

complex high-level visual factors, including motion and depth cues.

Motivated by these observations, this chapter explores the role of depth and

motion cues in determining the memorability of an image. Due to the unavail-

ability of a single dataset containing the annotations of depth, motion, and mem-

orability altogether, current state-of-the-art prediction models are used to obtain

optical flow (motion cues) and depth maps of still images of LaMem dataset [2].

The key contributions of this chapter are as follows:

• Explore the influence of depth and motion cues in determining memorabil-

ity of an image through predicted optical flow (motion cue) and predicted

depth map (depth cue) using state-of-the-art optical flow and depth map

prediction models.

• Device deep learning based image memorability prediction models which

utilize depth and motion cues along with object semantics to predict mem-

orability scores for the given input image.

Rest of the chapter is organized as follows. The role of the motion and depth

in image memorability prediction is presented in Section 4.1. The proposed image

memorability prediction models are detailed in Section 4.2. Section 4.3 elaborates

on experimental details, and finally, the summary of the chapter is presented in

Section 4.4.

4.1 Role of Motion and Depth in Determining

Image Memorability

This section explores the influence of motion and depth cues in determining the

memorability of an image using publicly available large-scale image memorability

dataset LaMem [2].
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4.1.1 Motion and Memorability

From the image memorability dataset LaMem [2] it can be observed that images

containing objects with motion tend to be more memorable. In order to under-

Figure 4.1: Examples of high-memorable images containing objects with motion.

stand this relationship further, motion cues of the single static image are essential.

In the computer vision literature, a recent scheme [62] has been reported which

developed a deep learning based optical flow prediction model to predict dense

optical flow from a single static image. The model proposed in [62] takes a still

image as input and predicts the optical flow to represent the future motion of

every pixel. In this thesis, the motion cue is represented as the optical flow.

Therefore, optical flow is obtained using the state-of-the-art deep learning model

proposed in [62], and the same is used to study the relationship of memorability

with motion cue of an image.

If the motion direction of a pixel in optical flow is different from its surrounding

pixels’ motion directions, then it is defined as salient flow-pixel. Heuristically,

the existence of a salient flow-pixel may ensure the existence of object(s) with

motion within an image. Consider the images in Figure 4.2, which shows the

original images and corresponding predicted optical flow superimposed images.

From Figure 4.2 it can be observed that images containing objects in motion tend

to have more number of salient flow-pixel (depicted in the first row of Figure 4.2)

than the images containing it can be observed that images containing still objects

with less or no motion (depicted in the second row of Figure 4.2) In order to

understand this observation further, a Salient Motion Score (SMS) is computed
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Figure 4.2: Examples of images containing objects with motion and no motion along with
corresponding optical flow superimposed images.

for each image. The SMS of an image is an aggregate over pixel-level SMS, which

is a measure of the degree to which a pixel’s direction is different from its 3 × 3

neighborhood. It is mathematically defined in the equation Eq.4.1.

SMS =
1

MN
(
i=M∑
i=1

j=N∑
j=1

SMSi,j)

SMSi,j =
k=+1∑
k=−1

l=+1∑
l=−1

|dir(i+ k, j + l)− dir(i, j)|

(4.1)

where M and N are row and column of the image, dir(i, j) is the pixel’s direction

at ith row and jth column. The predicted pixel’s direction can take values in

the range 1 to 40 i.e. the range 0 to 360 is normalized to the range 1 to 40.

From the equation 4.1, difference between direction values 1 and 40 becomes 39

but it is wrong due to cycliclity. The correct difference is 1. To handle this

cyclicity, the value of |dir(i+ k, j + l) − dir(i, j)| is set to 40 − |dir(i+ k, j +

l) − dir(i, j)| if |dir(i+ k, j + l) − dir(i, j)| > 20. Interestingly, a meaningful

rank correlation of 0.23 is found between image memorability score and SMS on

LaMem dataset [2]. This correlation indicates that motion information positively

influences the memorability.
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4.1.2 Depth and Memorability

Similar to motion information, depth is another vital image cue whose relation-

ship with memorability is remained unexplored. This subsection sheds light on

how depth cues affect the memorability of an image. The publicly available

memorability datasets do not contain ground-truth depth information. Hence,

the current state-of-the-art depth estimation model [63] is used to obtain depth

maps for the memorability dataset. The depth map prediction model proposed

in [63] takes an RGB image as input and produces the corresponding depth map.

Consider Figure 4.3, which depicts high memorable images with corresponding

Figure 4.3: Examples of high memorable images (first row) with their corresponding predicted
depth values (second row).

predicted depth maps. It is evident from Figure 4.3 that images having lesser

depth values at the center tend to be more memorable. Similarly, consider Fig-

ure 4.4, which shows low memorable images with corresponding predicted depth

maps. It is visible that images with higher depth values at the center tend to

be less memorable. To further understand this observation, a Weighted Depth

Score (WDS) is computed for each image using equation Equation 4.2.
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Figure 4.4: Examples of low memorable images (first row) with their corresponding predicted
depth maps (second row).

WDS =
M∑
i=1

N∑
j=1

1

di,j
(Pix(i, j))

where, di,j =
√

(i− imid)2 + (j − jmid)2,

P ix(i, j) = current pixel′s depth values,

imid = Middle pixel′s row number,

jmid = Middle pixel′s column number,

i = 1, 2, ...,M(row size),

j = 1, 2, ..., N(column size).

(4.2)

Higher WDS of an image indicates that it has farther depth values at the center

and vice versa. On computing WDS for LaMem dataset [2], a reasonable rank

correlation of 0.17 is observed between WDS and image memorability score. This

analysis suggests that depth is one of the influential cues in determining image

memorability.
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4.2 Memorability Prediction

In this section, two deep learning based image memorability prediction models

are proposed. In the first model (OFD-MemNet-I ), the deep CNN models which

were trained to predict depth map and optical flow are fine-tuned on image mem-

orability dataset to utilize depth and motion cues. The fine-tuned models are

ensembled with MemNet [2] to find the final predicted memorability scores. In

the second model (OFD-MemNet-II ), two copies of LaMem are created. Images

belong to the first copy of LaMem dataset are superimposed with their corre-

sponding depth maps. Images belong to the second copy of LaMem dataset are

superimposed with their corresponding optical flow maps. To utilize depth cues

to predict memorability scores, VGG-16 is fine-tuned on depth imposed LaMem

dataset. Similarly, to use motion cues in memorability prediction, another copy

of VGG-16 is fine-tuned on optical flow imposed LaMem dataset. Also, the third

copy of VGG-16 is fine-tuned on LaMem dataset without any super-imposition to

utilize deep object features in memorability prediction. Finally, all three VGG-16

are ensembled to obtain the final predicted memorability score.

4.2.1 Proposed OFD-MemNet-I

The proposed model, OFD-MemNet-I (Object Flow Depth-MemNet-I), devises

multiple memorability scores based on motion, depth, and object features. These

scores are ensembled to obtain the final memorability score for the given input

image. The architecture of the proposed OFD-MemNet-I is shown in Figure4.5,

which consists of three deep CNN branches:

MemNet: To utilize the deep object features, the existing deep CNN model

MemNet [2] is directly adopted. The model has acquired rich deep object feature

representations which were learned on various datasets, including ImageNet [40],

Places Database [39] and LaMem dataset [2]. As stated in [2], the MemNet

predictions have a rank correlation of 0.64 with their corresponding ground-truth
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Figure 4.5: The architecture of the proposed Deep CNN model OFD-MemNet-I.

scores. The memorability score, say Yo−mem predicted from MemNet for the input

image, say X is defined in Equation 4.3.

Yo−mem = σ(Xo−FC) (4.3)

σ(z) =
1

1 + exp(−z)
(4.4)

where Xo−FC is the single output value extracted from the last fully con-

nected layer of the MemNet and σ() is the Sigmoid function defined as shown in

Equation 4.4.

F-MemNet: To use the motion cues in predicting image memorability scores,

the dense optical flow prediction model (F-CNN ) [62] is fine-tuned on LaMem

dataset [2]. The F-CNN model has rich deep motion feature representations

58



4.2 Memorability Prediction

learned on realistic video frames. It takes a static image as input and predicts

the optical flow representing future motion. The F-CNN is fine-tuned on LaMem

dataset, termed as F-MemNet (Flow-MemNet), to map fine-tuned deep motion

features to memorability scores. Predictions from the proposed F-MemNet model

yield a rank correlation of 0.55 with their corresponding ground-truth scores. The

memorability score, say Yf−mem predicted from F-MemNet for the input image,

say X is defined in Equation 4.5.

Yf−mem = σ(Xf−FC) (4.5)

where Xf−FC is the single output value extracted from the last fully connected

layer of the F-MemNet and σ() is the Sigmoid function defined as shown in

Equation 4.4.

D-MemNet: To incorporate depth cues in determining memorability of an im-

age, the deep residual network proposed in [36] loaded with pre-trained weights

from the state-of-the-art depth estimation model [63] is fine-tuned on LaMem

dataset [2]. Due to pre-trained weights, the fine-tuned model, termed as D-

MemNet (Depth-MemNet), is able to map the fine-tuned depth features to image

memorability scores. Predicted memorability scores from D-MemNet model pro-

duced a rank correlation of 0.63 with their corresponding ground-truth scores.

The memorability score, say Yd−mem predicted from D-MemNet for the input

image, say X is defined in Equation 4.6.

Yd−mem = σ(Xd−FC) (4.6)

where Xd−FC is the single output value extracted from the last fully connected

layer of the D-MemNet and σ() is the Sigmoid function defined as shown in

Equation 4.4.

All three models are trained independently, and their corresponding memora-

bility scores are ensembled as shown in Figure 4.5 to obtain the final memorability

score of the OFD-MemNet-I. Ensembling multiple deep network outputs not only
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increases the model accuracy but also avoids model over-fitting [64]. Basic En-

semble Method (BEM) is the simple approach to combine network outputs by

means of arithmetic mean [65]. Given n networks outputs {y1, y2, ..., yn}, the

BEM output YBEM is defined in Equation 4.7.

YBEM =
1

n

n∑
i

yi (4.7)

The individual performance of the F-MemNet and D-MemNet are relatively

lower than the existing model MemNet [2] (refer Table 4.1). Therefore, the out-

puts of D-MemNet and F-MemNet are aggregated first and then the aggregated

result is further aggregated with the output of MemNet to obtain the final mem-

orability score say, YOFD−I of the OFD-MemNet-I as given in Equation 4.8.

YOFD−I =

Yf−mem+Yd−mem

2
+ YO−mem

2
(4.8)

Experimental details are discussed in Section 4.3. The proposed model OFD-

MemNet-I performed better than state-of-the-art image memorability prediction

model MemNet by achieving a rank correlation of 0.655. However, the individ-

ual performance of the F-MemNet and D-MemNet are relatively lower than the

existing model MemNet [2]. F-MemNet and D-MemNet are obtained by fine-

tuning optical flow prediction model [62] and depth map prediction model [63],

their performance is limited by the network architectures of the models proposed

in [62] and [63] respectively. To address this limitation, we introduced one more

model OFD-MemNet-II. The proposed OFD-MemNet-II will be explained in the

next subsection.

4.2.2 Propose Model OFD-MemNet-II

The proposed model OFD-MemNet-II consists of three deep learning models,

namely VGG-FMemNet, VGG-DMemNet, and VGG-MemNet, as shown in Fig-

ure 4.6. The first (VGG-FMemNet) model is trained to utilize motion cues to

predict memorability scores. The second (VGG-DMemNet) model is trained
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Figure 4.6: The architecture of the proposed model OFD-MemNet-II.

to utilize depth cues to predict memorability scores. Finally, the third (VGG-

MemNet) model attempts to map fine-tuned deep object features to image mem-

orability scores. In the end, the outputs of all three models are ensembled to

obtain the final predicted memorability scores. All these three proposed models

are fine-tuned on VGG-16 model [34] and hence, share the same architecture,

which is shown in Figure 4.6.

VGG-FMemNet: Instead of fine-tuning the dense optical flow prediction model

on memorability dataset, a novel method is proposed which inputs motion cues

explicitly to the deep CNN model. For this purpose, optical flow of the given

image is predicted using the dense optical flow prediction model proposed in [62].

Then, the predicted sparse Optical flow vectors are super imposed on correspond-

ing RGB image using the Matlab inbuilt function quiver(). A quiver plot dis-

plays vectors as arrows with components (u,v) at the points (x,y). In this manner,
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Figure 4.7: Examples of motion cues superimposed images. First row shows original images
and the second row shows predicted optical flow superimposed images.

image memorability dataset LaMem is modified to incorporate motion cues. Fig-

ure 4.7 shows examples of super-imposition of predicted optical flow on original

images. The deep CNN model, VGG-16 [34] is fine-tuned on modified LaMem

dataset to utilize motion cues in predicting image memorability scores. In this

chapter, VGG-16 architecture and its weights are employed for the fine-tuning

purpose; hence, it is named as VGG-FMemNet. However, in place of VGG-16,

other successful object or image classification models [35, 36], can also be fine-

tuned on optical-flow superimposed LaMem dataset to utilize motion cues to

predict memorability scores. In the fine-tuning process, the last fully-connected

layer’s output, say XF−FC is set to 1 to obtain a single score. The entire net-

work’s weights are updated in the fine-tuning process. This model is named as

VGG-FMemNet and its architecture is shown in Figure 4.8. The memorability

score, say YF−mem predicted from VGG-FMemNet for the input image, say X is

defined in Equation 4.9.

YF−mem = σ(XF−FC) (4.9)

where σ() is the Sigmoid function defined as shown in Equation 4.4.
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Figure 4.8: The VGG-16 architecture modified and employed to train VGG-FMemNet, VGG-
DMemNet, and VGG-MemNet.

VGG-DMemNet: Similar to VGG-FMemNet, a novel method is proposed

which inputs depth cues explicitly to the deep CNN model. For this purpose,

the depth map for the given image is predicted using the depth prediction model

proposed in [63]. Then, the predicted depth values are superimposed on the

original image to provide depth cues to the deep CNN model. Consider I is an

RGB image of dimension M × N × 3, D is the corresponding depth image of

dimension M ×N . D contains values in the range of 0 to 1, where 0 represents

the closest depth, and 1 represents the farthest depth. Input image X will be

converted from RGB space to YCbCr space and depth is imposed in Y -channel,

and finally, the modified image is converted back from Y CbCr to RGB space as

follows:
IY CbCr = RGB2Y CbCr(X)

DIY CbCr(i, j, 0) = IY CbCr(i, j, 0)−D(i, j)

DIY CbCr(i, j, 1) = IY CbCr(i, j, 1)

DIY CbCr(i, j, 2) = IY CbCr(i, j, 2)

DI = Y CbCr2RGB(DIY Cbcr)

(4.10)

where i varies from 0 to M − 1 and j varies from 0 to N − 1. RGB2Y CbCr()

is a Matlab function used to convert an image from RGB to YCbCr space,

Y CbCr2RGB() is a Matlab function used to convert an image from YCbCr

to RGB space. This way of imposing depth map on its original image masks
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farther objects and retains near objects within images. Figure 4.9 shows exam-

ples of depth-superimposed images obtained using Equation 4.10 in the second

row, corresponding original images in the first row. In the fine-tuning process,

Figure 4.9: Examples of depth superimposed images. The first row shows original images,
and the second row shows the corresponding depth-superimposed images

the last fully-connected layer’s output, say XD−FC is set to 1 to obtain a single

score. The entire network weights are updated in the process of fine-tuning. This

model is named as VGG-DMemNet and its architecture is same as shown in Fig-

ure 4.8. The memorability score, say YD−mem predicted from VGG-DMemNet for

the input image, say X is defined in Equation 4.11.

YD−mem = σ(XD−FC) (4.11)

where σ() is the Sigmoid function defined as shown in Equation 4.4.

VGG-MemNet: From the existing literature on image memorability, it can

be observed that object semantics are more important in making an image mem-

orable. Therefore, OFD-MemNet-II includes object related features along with

depth and motion cues to determine memorability score of an image. To uti-

lize object related features in predicting memorability scores, object classifi-
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cation model VGG-16 is fine-tuned on large-scale image memorability dataset

LaMem [2]. The fine-tuned model is named as VGG-MemNet. The proposed

model VGG-MemNet is similar to MemNet proposed in [2]. However, MemNet

is obtained by fine-tuning AlexNet [33] on LaMem, but the VGG-MemNet is

obtained by fine-tuning VGG-16 on LaMem and hence, it is as named VGG-

MemNet.

In the fine-tuning process, the last fully-connected layer’s output, say XO−FC

is set to 1 to predict memorability score. The entire network weights are up-

dated in the fine-tuning process. This model is named as VGG-MemNet and its

architecture is the same as shown in Figure 4.8. The memorability score, say

YO−mem predicted from VGG-MemNet for the input image, say X is defined in

Equation 4.12.

YO−mem = σ(XO−FC) (4.12)

where σ() is the Sigmoid function defined as shown in Equation 4.4. The final

predicted memorability score YOFD−II for the given input image X is obtained

by combining the three networks outputs VGG-FMemNet, VGG-DMemNet, and

VGG-MemNet using BEM in Equation 4.13.

YOFD−II =
YF−mem + YD−mem + YO−mem

3
(4.13)

where YF−mem, YD−mem, and YO−mem are the memorability scores generated

by VGG-FMemNet, VGG-DMemNet, and VGG-MemNet, respectively. Though

each of the networks VGG-FMemNet, VGG-DMemNet, and VGG-MemNet are

intended to utilize different features, they are performing equally well, as shown

in Table 4.1. Hence, ensembling is carried out with equal weights.

4.3 Experiments and Results

This section details the experiments and corresponding results to demonstrate

the performance of the proposed model on image memorability prediction. Three

publicly available datasets (LaMem [2], Isola et al.’s memorability dataset [1] and
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Table 4.1: Performance comparison of the existing and proposed models along with Human
Consistency (ground-truth).

Dataset MemNet OFD-MemNet-I F-Memnet D-MemNet VGG-MemNet VGG-FMemNet VGG-DMemNet OFD-MemNet-II Human Consistency
[2] (Proposed) (Proposed) (Proposed) (Proposed) (Proposed) (Proposed) (Proposed) (ground-truth)

LaMem [2] 0.640 0.655 0.55 0.63 0.650 0.652 0.654 0.671 0.68

Isola [1] 0.61 0.63 0.53 0.59 0.638 0.638 0.641 0.667 0.75

Dubey [3] 0.450 0.47 0.36 0.45 0.492 0.495 0.497 0.515 0.76

Dubey et al.’s memorability dataset [3]) are used in the experiments. The Spear-

man’s rank correlation coefficient (ρ) is employed to evaluate the performance of

the proposed model.

4.3.1 Experimental Set-up

The training process of VGG-MemNet, F-MemNet, and D-MemNet are similar

to that employed in [2]. However, all these models are initialized with different

pre-trained models weights. For example, VGG-MemNet is loaded with VGG-16

model, F-MemNet is loaded with F-CNN. All these models have fine-tuned on

LaMem [2] dataset. In the fine-tuning process, all the layers are allowed to learn,

and the output of the last fully-connected layer of all these models are set to one

for single score prediction. VGG-MemNet has fed with an image of 224× 224× 3

dimension, F-MemNet is fed with an image of 227× 227× 3 dimension, and D-

MemNet is fed with an image of 304×228×3 dimension. The training process of

VGG-FMemNet is same as VGG-MemNet. However, the input image is modified

to superimpose optical flow, as explained in Section 4.2.2. Similarly, the training

process of VGG-DMemNet is conducted with the depth superimposed RGB input.

The loss function, optimizer, and hyperparameters are same for all the net-

works. Image memorability prediction is essentially a regression task. For such

tasks, L2 loss is the most widely used loss function. The equation Eq.4.14 shows

the loss function employed in this work.

L2 =
∑
j

||Yj − yj||22 (4.14)
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where Yj and yj represent the predicted and ground-truth memorability scores of

the jth image. To minimize the network loss, Ada-delta optimizer is used with

an initial learning rate of 0.001. The models are trained with a batch size of 20

images.

4.3.2 Performance Evalution

The LaMem contains 60,000 images and divided into five sets for cross-validation

purpose. Each set contains 45,000 training samples, 10,000 testing samples, and

3,741 validation samples. Accordingly, five models are trained, tested, and results

are averaged. Further, the trained models are tested on other publicly available

memorability datasets. Table 4.1 presents the performance comparison of the

existing and proposed models along with Human Consistency (ground-truth) on

three publicly available memorability datasets. The performance is represented

by means of rank correlation (ρ) computed between ground-truth, and predicted

memorability scores.

From Table 4.1 it is evident that the proposed OFD-MemNet-I performs bet-

ter than MemNet [2] by achieving a rank correlation of 0.655. However, the

individual performance of F-MemNet and D-MemNet (which are part of the

OFD-MemNet) are relatively lower to the state-of-the-art image memorability

prediction model MemNet [2]. However, F-MemNet and D-MemNet improve

performance when aggregated with MemNet [2]. The reason behind individual

lower performance of F-MemNet and D-MemNet may be the underlying architec-

ture, i.e., the ρ value of 0.63 and the ρ value of 0.55 is the maximum performance

which can be achieved by means of fine-tuning the depth prediction model [63]

and optical flow prediction model [62] respectively. One more possible reason

for the curtailed individual performance of F-MemNet may be the absence of

an abundant number of images which contains objects with motion in LaMem

dataset.

Interestingly, the proposed OFD-MemNet-II outperforms both OFD-MemNet-
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I and MemNet [2] by achieving a rank correlation of 0.671, which is near to human

consistency (ρ = 0.68). From Table 4.1, it can be observed that VGG-MemNet

is ranking the images better than MemNet. This improvement in VGGMem-

Net is expected as underlying architecture of VGG-MemNet (VGG-16 [34]) has

shown better accuracy in image classification task [40] than the underlying archi-

tecture of MemNet (AlexNet [33]). From the results, it is also evident that the

performances of VGG-FMemNet performed better than F-MemNet and VGG-

DMemNet performed better than D-MemNet. This improvement indicates that

explicit incorporation of depth and motion cues enabled the underlying architec-

ture to learn motion and depth related features to predict image memorability

scores more accurately.

In order to analyze how well the image memorability prediction models are

ranking the images, we employed the variation of precision-recall task defined

by Isola et al. [1]. In this analysis, images are arranged in descending order of

predicted memorability scores. Various ranges (such as “Top 10”, “Top 100”,

“Bottom 25”, etc.) of these sorted images are selected and examined the av-

erage ground-truth memorability scores on these ranges. Table 4.2 shows this

analysis on LaMem dataset [2]. Images are sorted into sets according to pre-

dictions made by existing and proposed models (denoted by column headings

of Table 4.2). The same analysis is also carried out on the other two datasets.

Table 4.3 shows corresponding results on Isola et al. dataset [1] and Table 4.4

shows corresponding results on Dubey et al. dataset [3]. From Tables 4.2, 4.3,

and 4.4, it is evident that the proposed models (VGG-MemNet, VGG-FMemNet,

VGG-DMemNet, and OFD-MemNet-II ) ranks the images better than the ex-

isting model (MemNet) based on image memorability property. For example,

Table 4.2 shows that “Bottom 10” images ranked based on MemNet prediction

are 58.06% memorable. Whereas “Bottom 10” images ranked based on OFD-

MemNet-I prediction are 45.94% memorable. This observation indicates images

which are ranked with lower values by OFD-MemNet-I are least memorable to

human visual system than the images which are ranked with lower values of Mem-
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Net. Similarly, from Table 4.3 and Table 4.4, it is evident that top ranked images

of OFD-MemNet-II model are more memorable than the top ranked images of

MemNet model. Also, the bottom ranked images of OFD-MemNet-II model are

less memorable than bottom ranked images of MemNet model.

Table 4.2: Comparison of predicted versus ground-truth image memorability scores on LaMem
dataset [2]. Images are arranged in descending order of predicted memorability scores. Various
ranges of these sorted images are selected. The average ground-truth memorability scores are
shown for each set in each row. The reported results are averaged over 5-fold cross-validation
models.

Range of MemNet OFD-MemNet-I VGG-MemNet VGG-FMemNet VGG-DMemNet OFD-MemNet-II Ground-truth
Sorted Images [2] (Proposed) (Proposed) (Proposed) (Proposed) (Proposed)

Top 10 91.70% 91.90% 90.85% 92.44% 92.86% 92.86% 100%
Top 25 90.40% 90.99% 90.22% 91.34% 91.88% 91.92% 100%
Top 50 89.57% 90.29% 90.18% 90.50% 91.02% 91.10% 99.35%
Top 100 89.17% 89.50% 89.99% 89.59% 90.05% 90.15% 98.45%
Top 200 88.91% 89.05% 89.52% 88.63% 88.99% 89.07% 97.57%

Bottom 200 55.06% 54.40% 54.94% 51.70% 51.52% 50.82% 42.16%%
Bottom 100 54.35% 53.50% 53.7% 50.09% 49.93% 49.12% 39.01%
Bottom 50 54.20% 54.04% 52.02% 48.88% 48.62% 47.80% 36.3%
Bottom 25 54.44% 53.60% 50.88% 47.91% 47.50% 46.85% 34.41%
Bottom 10 58.06% 55.51% 48.76% 49.97% 46.30% 45.94% 33.57%

ρ 0.64 0.655 0.650 0.652 0.654 0.671 0.680

Table 4.3: Comparison of predicted versus ground-truth image memorability scores on Isola
et al. dataset [1]. Uses same measures as detailed in Table 4.2.

Range of MemNet OFD-MemNet-I VGG-MemNet VGG-FMemNet VGG-DMemNet OFD-MemNet-II Ground-truth
Sorted Images [2] (Proposed) (Proposed) (Proposed) (Proposed) (Proposed)

Top 10 80.16% 81.11% 81.23% 83.33% 82.57% 82.75% 96.54%
Top 25 75.46% 79.3% 80.09% 79.85% 80.59% 81.83% 94.39%
Top 50 75.13% 77.89% 78.96% 78.84% 80.09% 80.18% 92.24%
Top 100 74.32% 76.7% 77.13% 77.42% 77.87% 78.65% 89.59%
Top 200 73.58% 75.36% 75.75% 75.25% 76.43% 76.51% 85.33%

Bottom 200 35.91% 35.46% 35.23% 36.09% 35.63% 34.58% 22.85%%
Bottom 100 32.8% 31.94% 31.64% 33.20% 32.51% 31.17% 18.66%
Bottom 50 30.14% 29.23% 30.06% 31.20% 30.01% 29.07% 14.93%
Bottom 25 28.81% 28.39% 28.69% 30.60% 28.03% 27.64% 10.95%
Bottom 10 28.29% 27.83% 26.59% 28.63% 23.81% 23.33% 5.69%

ρ 0.610 0.63 0.638 0.638 0.641 0.667 0.750

4.4 Summary

This chapter made the first attempt to understand the influence of motion and

depth cues on image memorability and found that these two cues have a positive

role in determining memorability. This chapter also proposed two novel image

69



4. IMAGE MEMORABILITY: THE ROLE OF DEPTH AND
MOTION

Table 4.4: Comparison of predicted versus ground-truth image memorability scores on Dubey
et al. dataset [3]. Uses same measures as detailed in Table 4.2.

Range of MemNet OFD-MemNet-I VGG-MemNet VGG-FMemNet VGG-DMemNet OFD-MemNet-II Ground-truth
Sorted Images [2] (Proposed) (Proposed) (Proposed) (Proposed) (Proposed)

Top 10 84.72% 85.76% 86.84% 85.52% 85.14% 85.76% 92.23%
Top 25 83.79% 84.43% 85.21% 84.02% 84.39% 84.68% 91.23%
Top 50 83.69% 84.27% 84.69% 82.88% 83.30% 83.54% 90.13%
Top 100 83.36% 83.58% 83.61% 81.77% 82.11% 82.31% 88.65%
Top 200 82.17% 82.35% 82.50% 80.54% 80.75% 80.96% 86.94%

Bottom 200 71.8% 71.56% 71.28% 67.89% 67.46% 67.35% 65.17%%
Bottom 100 69.85% 69.76% 68.91% 64.90% 64.57% 64.33% 60.87%
Bottom 50 68.01% 67.95% 66.33% 62.55% 62.43% 61.87% 57.15%
Bottom 25 66.36% 66.62% 65.74% 61.39% 61.18% 60.51% 54.2%
Bottom 10 63.98% 64.49% 66.00% 60.39% 59.57% 59.22 50.92%

ρ 0.450 0.47 0.492 0.495 0.497 0.515 0.76

memorability prediction models, which exploits motion and depth cues along with

object features. The proposed models outperform the state-of-the-art model,

MemNet [2], by achieving a near human consistency rank correlation.

In the next chapter, another important visual factor, visual emotion is utilized

to predict image memorability scores. Visual emotion is found important in

making an image memorable from the existing literature. However, emotion

features are not considered in the existing deep learning based image memorability

prediction models. In the next chapter an MIL based deep learning model is

developed which utilizes emotion cues from multiple local salient regions as well

as from single global region of an input image to predict memorability score.
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Chapter 5
Visual Emotion based Image
Memorability Prediction using Multiple
Instance Learning

In the last chapter, it has been shown that how image motion and depth influence

the overall image memorability. In this chapter, image memorability has been

studied with more high-level features such as visual emotion.

Visual emotion is one of the important visual factors which play a vital role

in solving many computer vision tasks, including eye fixation prediction [66],

image retrieval [67], cloud gaming framework [68], and many more. From the

existing literature on image memorability discussed in Section 1.2 of Chapter 1,

it is found that visual emotions are important in making an image memorable

or forgettable. However, the existing image memorability prediction models fall

short in utilizing visual emotion cues in predicting memorability scores and suffer

from the following limitations:

• Most of the existing methods for image memorability predictions rely on

hand-crafted features, which are manually engineered and based on peoples’

observation. These features may not be able to completely infer the image

memorability related complex high-level visual factors, including object se-

mantics, and visual emotions.
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• Recently, few attempts have been made to learn the memorability related

features automatically using deep learning based image memorability pre-

diction models [2, 25]. However, these models are obtained by fine-tuning

object classification models to utilize object and scene semantics. Hence,

the learned features are limited to object and scene semantics and not con-

sidered emotion cues in particular.

These shortcomings are addressed in this chapter with the following contri-

butions:

• A novel deep learning based image memorability prediction model is pro-

posed, which learns automatically various image memorability related com-

plex high-level visual factors and utilizes the same in predicting memora-

bility scores.

• The proposed deep learning model employs multiple instance learning frame-

work specifically for the utilization of emotions evoking from global and

multiple salient local regions of an image to predict image memorability

scores.

The overview of the proposed deep learning model Ens-MemNet is depicted

in Figure 5.1. The Ens-MemNet architecture contains two main branches. The

upper branch (VGG-MemNet) is a deep CNN which is fine-tuned on VGG-16 [34]

to map deep object features to memorability scores. The lower branch (MCDR-

MemNet) maps deep emotion features (extracted from a single global view and

multiple salient local regions) to memorability scores by means of MIL. The final

memorability score of the given input image is obtained by ensembling the scores

generated from the upper and lower branch of the Ens-MemNet. An extensive set

of experiments is conducted on publicly available image memorability datasets to

evaluate the performance of the proposed model.

Rest of the chapter is organized as follows. Section 5.1 presents the proposed

image memorability prediction model. Experimental details and corresponding
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Figure 5.1: The architecture of the proposed model Ens-MemNet.

results are discussed in Section 5.2. Finally, the summary of the chapter is pre-

sented in Section 5.3.

5.1 Proposed Model for Image Memorability Pre-

diction

This section presents a detailed description of the proposed model Ens-MemNet

with its two branches, MCDR-MemNet and VGG-MemNet. The MCDR-MemNet

attempts to extract and utilize the emotion cues from a single global region and

multiple salient local regions by means of MIL framework to predict memorability

scores. The VGG-MemNet attempts to map fine-tuned deep object features to

image memorability scores. Finally, the Ens-MemNet ensembles the outputs of

MCDR-MemNet and VGG-MemNet to obtain the memorability scores which are

predicted based on object, saliency, and emotion cues.
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Figure 5.2: The architecture of the proposed VGG-MemNet model.

5.1.1 Deep CNN for mapping object features to memora-
bility scores

It is evident from the existing literature that object semantics play a major role

in determining the image memorability scores. Therefore, the proposed model

considers object features, along with the emotion and saliency cues to predict

image memorability scores. To utilize the advantage of object features in im-

age memorability prediction, the framework proposed in [2] is employed. In [2],

Khosla et al. employed the deep CNN model, AlexNet, proposed in [33] to map

deep object features with memorability scores. Their model was pre-trained on

two datasets: ILSVRC 2012 [40] and Places [39]. Recently, AlexNet accuracy for

image classification task [40] is extended by other successful deep learning models,

including VGG [34], GoogleNet [35] and ResNet [36] and their variants. In this

chapter, the VGG-MemNet proposed in Section 4.2.2 of Chapter 4 is utilized to

predict memorability scores. The VGG-MemNet is obtained by fine-tuning the

VGG-16 model [34] on LaMem dataset [2]. In place of VGG-16, any other deep

learning based image classification model can be employed. In the fine-tuning

process, the last fully-connected layer’s output, say Xor is set to 1 to predict

memorability score. The entire network weights are updated in the fine-tuning

process. This model is named as VGG-MemNet and its architecture is shown in

Figure 5.2. The memorability score, say YO−mem predicted from VGG-MemNet
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for the input image, say X is defined as given in Equation 5.1.

YO−mem = σ(Xor) (5.1)

where Xor is the output of the last fully-connected layer of VGG-MemNet and

σ() is the Sigmoid function defined as shown in Equation 4.4.

5.1.2 MIL based Deep CNN for mapping emotion features
to memorability scores

In this subsection, a novel deep learning model, MCDR-MemNet is proposed to

utilize emotion and saliency information in predicting image memorability scores.

The MCDR-MemNet learns multi-context deep emotion feature representations

from multiple salient local regions within the image as well as from the global

view of the entire image. These multi-context deep emotion feature representa-

tions are aggregated under MIL framework to predict memorability score. Before

presenting MCDR-MemNet, a brief description of MIL is presented.

5.1.2.1 Multiple Instance Learning (MIL) Framework

MIL is a weakly supervised learning framework. In this framework, the learner

receives bags, each containing multiple training instances. However, the ground-

truth label is provided for the entire bag, and no label information is provided for

the instances within each bag [69]. The basic underlying assumption of the MIL

framework states that all the positive bags must contain at least one positive

instance, but all the negative bags must contain only negative instances [69].

MIL framework is initially proposed for drug design [70], and later it is used

in computer vision domain to address various kinds of problems including object

detection [71], visual categorization [72], image retrieval [73]. Most of these works

have applied MIL on hand-crafted features to achieve the given task. Recently,

MIL framework is also applied on deep representations to solve various computer

vision problems. Song et al. [74] proposed a weakly-supervised framework which

combines deep representations and MIL to perform object detection. In [75],
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deep feature representations and MIL are combined to analyze medical images.

In [76], the authors proposed a MIL based deep learning model to perform image

segmentation at pixel-level. In [77], deep representations learned from local and

global views are combined with MIL to analyze image aesthetics. In recent years,

notable success has been achieved using the combination of MIL and deep learning

representation. However, no existing methods are explicitly intended for image

memorability prediction where MIL is employed. Hence, a MIL framework has

been employed in this chapter to utilize efficiently the emotion cues to predict

image memorability scores.

5.1.2.2 Multi-context patch extraction for MIL based memorability
prediction

In a recent work [78], the authors shown that different regions within an image

may evoke different emotions. Due to this effect, different regions within an

image may yield different memorability scores. Similarly, Dubey et al. [3] showed

that not all objects within an image are equally memorable. This study also

indicates that different regions within an image can yield different memorability

scores. Therefore, predicting the memorability score for a given image from a

single global view may not always be accurate. It is also observed from the image

memorability datasets that some of the images contain a single focused object.

Such kind of images may not evoke multiple emotions from different regions;

instead, the entire image evokes a single emotion. Hence, a single global view of

the input image is sufficient to determine the memorability score for such images.

These observations suggest that global and local contexts are essential to utilize

visual emotion information in image memorability prediction. To predict the

memorability score based on the emotion evoked from the global view, an entire

image is treated as a global image patch (xg) as shown in the first column of

Figure 5.3. To predict memorability score based on multiple local emotions, four

patches are extracted from four salient local regions (xl1, xl2, xl3, and xl4) within

an image as shown in second, third, fourth and fifth columns of Figure 5.3. Since
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(a) Global Patch (b) Local Patch 1 (c) Local Patch 2 (d) Local Patch 3 (e) Local Patch 4

(f) Global Patch (g) Local Patch 1 (h) Local Patch 2 (i) Local Patch 3 (j) Local Patch 4

(k) Global Patch (l) Local Patch 1 (m) Local Patch 2 (n) Local Patch 3 (o) Local Patch 4

(p) Global Patch (q) Local Patch 1 (r) Local Patch 2 (s) Local Patch 3 (t) Local Patch 4

Figure 5.3: Example images showing global and local patches. Local patches are extracted
from top four salient regions.

the memorability dataset does not contain memorability score at pixel level but

image level, it is not possible to employ a fully-supervised learning framework.

Therefore, a weakly supervised learning framework MIL is employed. The MIL

assumption can be easily fit by considering the input image X as bag and the

multi-context patches xl1, xl2, xl3, xl4 and xg as multiple instances related to bag

X. The feature representations generated from these multi-context patches are
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combined through MIL to predict the memorability scores. In order to generate

local image patches, top four salient regions are selected. The saliency map is

generated by means of the saliency prediction model proposed in [6].
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Figure 5.4: The architecture of the proposed MCDR-MemNet model.

5.1.2.3 MCDR-MemNet : MIL Based Multi-Context Deep Represen-
tation Network for emotion-based image memorability predic-
tion

A simple way to utilize emotion information in image memorability prediction is

fine-tuning one of the existing deep CNN image classification models [33–36] in

two stages. In the first stage, deep emotion representations are learned by means

of transfer learning technique. In this process of transfer learning technique, an

image classification model is fine-tuned on visual emotion dataset to perform

the emotion classification task. In the second stage, the fine-tuned model is

further trained on image memorability dataset to map learned deep emotion

representations to memorability scores. In this work, VGG-16 [34] is fine-tuned

in the same fashion to utilize emotions in image memorability prediction. In

the first stage, VGG-16 is fine-tuned on the publicly available large-scale visual

emotion classification dataset [78] to learn deep visual emotion features. The fine-

tuned model is named as VGG-Emo. In the second stage, VGG-Emo is further
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fine-tuned on LaMem dataset to map fine-tuned deep emotion features with image

memorability scores. The VGG-Emo model fine-tuned on LaMem is named as

VGG-EmoMemNet. Fine-tuning details are discussed in section 5.2.1. However,

VGG-EmoMemNet can utilize the emotion cue evoking from the global view of an

input image and may not utilize the multiple emotions evoking from various local

regions within an image. In order to utilize emotions evoking from both local and

global contexts, an MIL based Multi-Context Deep Representation Memorability

Network (MCDR-MemNet) is devised using VGG-EmoMemNet. The proposed

MCDR-MemNet architecture is shown in Figure 5.4, which contains two branches.

Both of these branches are initialized with weights of the VGG-EmoMemNet. The

upper branch takes global patch (xg) as input, and the lower branch takes local

patches (xl1, xl2, xl3, and xl4) as inputs. In order to effectively utilize the learned

emotion features, the proposed deep network, MCDR-MemNet is trained to learn

multi-context deep representation by means of MIL framework.

Training MCDR-MemNet using MIL framework: On the basis of MIL

framework property, input image X is defined as the bag. The global and local

image patches (xl1, xl2, xl3, xl4, and xg) extracted from the input image (as

explained in section 5.1.2.2) are defined as instances. The last fully-connected

layer’s output of the upper branch of the MCDR-MemNet provides single global

representation: xgr. Similarly, the last fully-connected layer’s output of the lower

branch of the MCDR-MemNet provides four local representations: xlr1, xlr2, xlr3,

and xlr4. The representation of the entire bag is produced by aggregating the

global and local representations using the aggregating function AGG(·) as given

in Equation 5.2. The aggregate function AGG(·) performs a linear combination

of its inputs with equal weights. The predicted memorability score YMIL−mem of

the entire bag is defined as given in Equation 5.2.

YMIL−mem = σ(Xer)

where,

Xer = AGG(xgr, xlr1, xlr2, xlr3, xlr4)

(5.2)
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where σ() is the Sigmoid function defined as shown in Equation 4.4.

5.1.3 Ens-MemNet : Ensemble of Memorability Networks

Final predicted memorability score for the given input image is obtained by en-

sembling two deep networks: VGG-MemNet and MCDR-MemNet, as shown in

Figure 5.1. Ensembling multiple network outputs not only increases the model

accuracy but also avoids model over-fitting [64]. BEM is a simple approach to

combine network outputs by means of arithmetic mean [65]. Given n networks

outputs {y1, y2, ..., yn}, the BEM output YBEM is defined as given in Equation 5.3.

YBEM =
1

n

n∑
i

yi (5.3)

The final predicted memorability score YEns for the given input image X is ob-

tained by employing BEM as given in Equation 5.4. Memorability scores gen-

erated by VGG-MemNet and MCDR-MemNet are represented as YO−mem and

YMIL−mem, respectively. in Equation 5.4.

YEns =
YO−mem + YMIL−mem

2
(5.4)

5.2 Experiments and Results

This section details about the experimental set-up and the corresponding re-

sults to demonstrate the superiority of the proposed model over the existing

model. Three publicly available datasets (LaMem [2], Isola et al.’s memorability

dataset [1] and Dubey et al.’s memorability dataset [3]) are used in the experi-

ments. The Spearman’s rank correlation coefficient (ρ) is employed to evaluate

the performance of the proposed model.

5.2.1 Experimental Set-up

The training process of MCDR-MemNet is carried in two phases. In the first

phase, VGG-16 is fine-tuned twice on two different datasets. First, it is fine-
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5.2 Experiments and Results

tuned on image emotion classification dataset [78] to learn emotion features. In

this process, the model is trained to classify an input image into one of the eight

emotion classes (Amusement, Anger, Awe, Contentment, Disgust, Excitement,

Fear, and Sad). The fine-tuned model is named as VGG-Emo. During the fine-

tuning process, all the layers are allowed to learn, and the last fully-connected

layer output neurons of VGG-16 are varied from 1000 to 8. The VGG-Emo is

further fine-tuned on LaMem dataset to predict image memorability scores. The

fine-tuned model is named as VGG-EmoMemNet. In this fine-tuning process, all

the layers are allowed to learn, and the number of output neurons of the last fully

connected layer of VGG-Emo model is varied from 8 to 1.

In the second phase, two copies of VGG-EmoMemNet are created as the upper

and lower branches of MCDR-MemNet as shown in Figure 5.5. Then MCDR-

MemNet is fine-tuned under MIL framework. MCDR-MemNet is fed with one

global and four local patches. The global patch has the dimension of 224×224×3

which is resized, and center cropped from the original image and local patches are

extracted from top four salient regions from the original image with each patch

has the dimension of 224× 224× 3.

The training process of VGG-MemNet is carried out by fine-tuning the VGG-

16 on LaMem [2]. In this fine-tuning process, all the layers are allowed to learn,

and the output of the last fully-connected layer of VGG-16 is set to 1 for memora-

bility prediction. VGG-MemNet is fed with an image of 224×224×3 dimension,

which is resized and center cropped from the original image. Image memorability

prediction is essentially a regression task. For such tasks, L2 loss is the most

widely used loss function [2]. The L2 loss function used to train the proposed

models is shown in Equation 5.5.

L2 =
∑
j

||Yj − yj||22 (5.5)

where Yj and yj represent the predicted and ground-truth memorability scores

of the jth image. To minimize network loss, Ada-delta optimizer is used with

an initial learning rate of 0.001. The models are trained with a batch size of 50
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images.

5.2.2 Results

The LaMem dataset contains 60,000 images and is divided into five sets for cross-

validation purpose. Each set contains 45,000 training samples, 10,000 testing

samples, and 3,741 validation samples. Accordingly, five models are trained,

tested, and the results are averaged. Further, the trained models are tested on

other publicly available memorability datasets. Table 5.1 presents the perfor-

mance of MemNet [2], VGG-MemNet, MCDR-MemNet, and Ens-MemNet on

three publicly available memorability datasets. The performance is represented

by means of rank correlation (ρ) computed between ground-truth and predicted

memorability scores. From Table 5.1, it can be observed that VGG-MemNet is

ranking the images better than MemNet. This improvement in VGG-MemNet

is expected as the underlying architecture of VGG-MemNet (VGG-16 [34]) has

shown better accuracy in image classification task [40] than the underlying archi-

tecture of MemNet (AlexNet [33]). From the results, it is also evident that the

performance of VGG-EmoMemNet is relatively better than VGG-MemNet, indi-

cating that deep emotion features are important in determining image memorabil-

ity. Interestingly, MCDR-MemNet performed much better than VGG-MemNet.

This result suggests that the utilization of local emotions evoking at the salient

regions within an image and global emotion evoking from the entire image can

help the deep learning model to rank images more accurately. The results also

prove that the performance of Ens-MemNet model is better than that of all the

other models, including MemNet. The better performance of Ens-MemNet shows

that the combination of object, emotion, and saliency information can make the

deep learning model better in image memorability prediction.

In order to analyze the performance of the proposed models further, images are

arranged in descending order of predicted memorability scores. Various ranges of

these sorted images are selected and examined the average ground-truth memora-
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Table 5.1: Performance comparison of the existing (MemNet [2]) and proposed models (VGG-
MemNet, VGG-EmoMemNet, MCDR-MemNet and Ens-MemNet).

Dataset MemNet [2] VGG-MemNet VGG-EmoMemNet MCDR-MemNet Ens-MemNet
LaMem [2] 0.640 0.650 0.655 0.663 0.671

Isola [1] 0.61 0.638 0.633 0.638 0.664
Dubey [3] 0.450 0.492 0.483 0.497 0.511

bility scores on these ranges. Table 5.2 shows this analysis on LaMem dataset [2].

Images are sorted into sets according to predictions made by existing and pro-

posed models (denoted by column headings of Table 5.2). This analysis is also car-

ried out on the other two datasets. Table 5.3 shows corresponding results on Isola

et al. dataset [1] and Table 5.4 shows the results on Dubey et al. dataset [3]. From

Tables 5.2, 5.3, and 5.4, it is evident that the proposed models (VGG-MemNet,

VGG-EmoMemNet, MCDR-MemNet, and Ens-MemNet) ranks the images better

than the existing model (MemNet) based on image memorability property. For

example, Table 5.2 shows that “Bottom 10” images ranked based on MemNet

prediction are 58.06% memorable. Whereas “Bottom 10” images ranked based

on Ens-MemNet prediction are 48.41% memorable. Similarly, from Tables 5.3

and 5.4, it is evident that top ranked images of Ens-MemNet model are more

memorable than top ranked images of MemNet model. Also, the bottom ranked

images of Ens-MemNet model are less memorable than bottom ranked images of

MemNet model.

5.2.3 Emotion bias in existing and proposed models

In [2], the authors collected the ground-truth memorability scores for the labeled

emotion dataset (affective images dataset [44]) and analyzed the relationship be-

tween visual emotions and memorability. From their analysis, they discovered

that images portraying negative emotions such as disgust, anger, and fear tend

to be more memorable (except for amusement) than those projecting positive

emotions such as contentment and awe. Based on their analysis, they ranked

the emotions in decreasing order of ground-truth memorability scores as follows:
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Table 5.2: Comparison of predicted versus ground-truth image memorability scores on LaMem
dataset [2]. Images are arranged in descending order of predicted memorability scores. Various
ranges of these sorted images are selected. The average ground-truth memorability scores are
shown for each set in each row. Reported result are averaged over 5-fold cross-validation models

Ranges of MemNet VGG-MemNet VGG-EmoMemNet MCDR-MemNet Ens-MemNet Ground Truth
Sorted Images [2] (Proposed) (Proposed) (Proposed) (Proposed)

Top 10 91.70% 90.85% 92.42% 93.15% 91.89% 100%
Top 25 90.40% 90.22% 91.72% 91.76% 91.36% 100%
Top 50 89.57% 90.18% 90.71% 91.27% 90.85% 99.35%
Top 100 89.17% 89.99% 90.35% 90.42% 90.38% 98.45%
Top 200 88.91% 89.52% 89.64% 90.00% 90.02% 97.57%

Bottom 200 55.06% 54.94% 54.69% 54.57% 54.23% 42.16%%
Bottom 100 54.35% 53.7% 53.33% 52.79% 52.74% 39.01%
Bottom 50 54.20% 52.02% 51.90% 51.65% 51.25% 36.3%
Bottom 25 54.44% 50.88% 51.46% 51.20% 50.34% 34.41%
Bottom 10 58.06% 48.76% 49.69% 50.94% 48.41% 33.57%

ρ 0.64 0.65 0.655 0.663 0.671 0.680

Table 5.3: Comparison of predicted versus ground-truth image memorability scores on Isola
et al. dataset [1]. Uses same measures as detailed in Table 5.2.

Ranges of MemNet VGG-MemNet VGG-EmoMemNet MCDR-MemNet Ens-MemNet Ground Truth
Sorted Images [2] (Proposed) (Proposed) (Proposed) (Proposed)

Top 10 80.16% 81.23% 80.78% 81.75% 82.43% 96.54%
Top 25 75.46% 80.09% 79.8% 79.77% 81.41% 94.39%
Top 50 75.13% 78.96% 77.86% 78.57% 79.48% 92.24%
Top 100 74.32% 77.13% 77.23% 76.64% 77.63% 89.59%
Top 200 73.58% 75.75% 75.21% 74.9% 76.29% 85.33%

Bottom 200 35.91% 35.23% 34.81% 34.83% 34.08% 22.85%%
Bottom 100 32.8% 31.64% 32.64% 31.64% 31.66% 18.66%
Bottom 50 30.14% 30.06% 30.64% 29.41% 28.94% 14.93%
Bottom 25 28.81% 28.69% 28.91% 26.6% 29.47% 10.95%
Bottom 10 28.29% 26.59% 28.52% 26.23% 26.86% 5.69%

ρ 0.610 0.638 0.633 0.638 0.664 0.750

Table 5.4: Comparison of predicted versus ground-truth image memorability scores on Dubey
et al. dataset [3]. Uses same measures as detailed in Table 5.2.

Ranges of MemNet VGG-MemNet VGG-EmoMemNet MCDR-MemNet Ens-MemNet Ground Truth
Sorted Images [2] (Proposed) (Proposed) (Proposed) (Proposed)

Top 10 84.72% 86.84% 86.11% 85.91% 86.69% 92.23%
Top 25 83.79% 85.21% 84.8% 84.95% 85.23% 91.23%
Top 50 83.69% 84.69% 84.43% 84.25% 84.24% 90.13%
Top 100 83.36% 83.61% 83.6% 83.16% 83.71% 88.65%
Top 200 82.17% 82.50% 82.14% 82.25% 82.53% 86.94%

Bottom 200 71.8% 71.28% 70.69% 70.58% 70.72% 65.17%%
Bottom 100 69.85% 68.91% 68.7% 68.29% 68.12% 60.87%
Bottom 50 68.01% 66.33% 66.35% 66.17% 65.72% 57.15%
Bottom 25 66.36% 65.74% 65.15% 64.77% 65.51% 54.2%
Bottom 10 63.98% 66.00% 64.6% 63.47% 63.78 50.92%

ρ 0.450 0.492 0.483 0.497 0.511 0.76
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{Disgust, Amusement, Fear, Anger, Excitement, Sad, Awe, Contentment}. This

finding is similar to [23], where authors showed that attributes like ‘peaceful’ are

negatively correlated with memorability. In this chapter, the degree of emotion

bias of the existing and proposed models in determining image memorability is

also analyzed. For the analysis purpose, 400 random images labeled with eight

emotion classes (Amusement, Anger, Awe, Contentment, Disgust, Excitement,

Fear, and Sad) are sampled from the emotion dataset created by Rao et al. [78].

These 400 images are sampled with equal distribution of emotion classes (50 im-

ages for each emotion class). For these images, memorability scores are predicted

from the existing as well as proposed models. Based on the predictions, these

images are sorted. Further, various ranges of these sorted images are selected,

as shown in Figures 5.5 and 5.6. Distribution of emotion class is computed to

understand ranking behavior of the existing and proposed models for each emo-

tion category. In each sub-figures of Figures 5.5 and 5.6, emotion categories are

mentioned in decreasing order of ground-truth memorability scores from left to

right.

From Figures 5.5 and 5.6, it is evident that proposed emotion based mod-

els (VGG-EmoMemNet, MCDR-MemNet, and Ens-MemNet) tend to put images

which evoke more memorable emotions such as disgust and amusement in higher

ranks and images which evoke less memorable emotions such as contentment and

awe in lower ranks. The degree of this emotion bias is higher in MCDR-MemNet

compared to other proposed and existing models. It is evident from this observa-

tion that MIL based multi-context deep representation model (MCDR-MemNet)

can effectively capture the emotion cues which are important to determine the

image memorability scores.
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(a) MemNet [2]
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(b) VGG-MemNet
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(c) VGG-EmoMemNet
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(d) MCDR-MemNet
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(e) Ens-MemNet
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(f) MemNet [2]
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(g) VGG-MemNet
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(h) VGG-EmoMemNet
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(i) MCDR-MemNet
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(j) Ens-MemNet
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(k) MemNet [2]
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(l) VGG-MemNet
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(m) VGG-EmoMemNet
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(n) MCDR-MemNet
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(o) Ens-MemNet
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(p) MemNet [2]
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(q) VGG-MemNet
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(r) VGG-EmoMemNet
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(s) MCDR-MemNet
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(t) Ens-MemNet

Figure 5.5: Emotion distribution on top ranked images according to the predictions of existing
and proposed models (denoted by each sub-figure title). Images are sorted according to the
predictions made by existing and proposed models and chosen sets of “Top 10”, “Top 25”, “Top
50”, and “Top 100” images. Emotion distributions are reported for these sets of “Top 10”,
“Top 25”, “Top 50”, and “Top 100” images in the first, second, third and fourth rows of the
image respectively.
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(b) VGG-MemNet
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(c) VGG-EmoMemNet
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(d) MCDR-MemNet
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(e) Ens-MemNet
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(g) VGG-MemNet
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(h) VGG-EmoMemNet

0

10%

20%

30%

40%

50%

60%

70%

N
u
m

b
e
r
 o

f
 I

m
a
g
e
s

Disgust Amusement Fear Anger Excitement Sad Awe Contentment

Emotions  in decreasing order of  ground truth memorability scores

(i) MCDR-MemNet
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(j) Ens-MemNet
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(k) MemNet [2]
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(l) VGG-MemNet
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(n) MCDR-MemNet
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(p) MemNet [2]
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(q) VGG-MemNet
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(r) VGG-EmoMemNet
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(s) MCDR-MemNet
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(t) Ens-MemNet

Figure 5.6: Emotion distribution on least ranked images according to the predictions of
existing and proposed models (denoted by each sub-figure title). Images are sorted according to
the predictions made by existing and proposed models and chosen sets of “Bottom 10”, “Bottom
25”, “Bottom 50”, and “Bottom 100” images. Emotion distributions are reported for these sets
of “Bottom 10”, “Bottom 25”, “Bottom 50”, and “Bottom 100” images in the first, second,
third and fourth rows of the image respectively.
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5.2.4 Ensembling of VGG-FMemNet, VGG-DMemNet,
MCDR-MemNet, and VGG-MemNet

In order to verify the influence of motion, depth, emotion, and other object related

features on image memorability prediction process, VGG-FMemNet (proposed

in Chapter 4), VGG-DMemNet (proposed in Chpater 4), MCDR-MemNet, and

VGG-MemNet ensembled. Model ensembled in this way is named as Final-Ens-

MemNet. The corresponding results are shown in Table 5.5 along with the results

of OFD-MemNet-II (proposed in Chapter 4) and Ens-MemNet.

Table 5.5: Performance of the proposed models, VGG-FMemNet, VGG-DMemNet, MCDR-
MemNet, VGG-MemNet, OFD-MemNet-II, and Ens-MemNet along with Final-Ens-MemNet.

Dataset VGG-MemNet VGG-FMemNet VGG-DMemNet MCDR-MemNet OFD-MemNet-II Ens-MemNet Final-Ens-MemNet
LaMem [2] 0.650 0.652 0.654 0.663 0.671 0.671 0.676

Isola [1] 0.638 0.638 0.641 0.638 0.667 0.664 0.675
Dubey [3] 0.492 0.495 0.497 0.497 0.515 0.511 0.519

From Table 5.5, it is visible that ensembling emotion, depth, motion and ob-

ject related features enhances the accuracy of the memorability prediction process.

The Final-Ens-MemNet yielded a rank correlation co-efficient value of 0.676 for

LaMem dataset which is very close to human consistency (0.68).

5.3 Summary

In this chapter, a novel deep learning model Ens-MemNet is proposed to pre-

dict image memorability scores. The proposed model is designed to learn and

utilize various high-level visual factors, including object semantics, and visual

emotions evoking at single global and multiple salient local image regions. The

Ens-MemNet is obtained by ensembling two networks: MCDR-MemNet and

VGG-MemNet. In order to utilize multiple emotions evoking from various salient

regions within an image, MIL based deep learning model, MCDR-MemNet is

devised. VGG-MemNet is obtained by means of fine-tuning a deep learning

based object classification model, VGG-16 [40], on image memorability dataset

to utilize object semantics. The MCDR-MemNet model is ensembled with VGG-

88



5.3 Summary

MemNet model to obtain final predicted memorability scores. Through an exten-

sive set of experiments, it is shown that the proposed image memorability pre-

diction model Ens-MemNet performed better than the state-of-the-art model [2].

The proposed model, Ens-MemNet yielded a rank correlation of 0.67, which is

very close to human consistency (ρ = 0.68) on large-scale image memorability

dataset LaMem [2].

Until now, in this dissertation, the influence of some visual factors are analyzed

for determining object and image level memorability. In the next and the final

contributory chapter of this dissertation, an application of image memorability

prediction is addressed where it has been discussed how memorability of image

can be increased while retaining most of its high-level contents. To achieve this

application, an end-to-end deep learning model is devised which takes a natural

image as input and modifies it in such a way that its memorability score is

increased while retaining its most of its high-level contents.
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Chapter 6
Memorability based Image to Image
Translation

In the initial three contributory chapters of this dissertation, it has been shown

how different visual factors like object location and size, image motion, depth, and

emotions help to understand and predict the object or image level memorability.

In this last contributory chapter, it has been addressed how image memorability

can be increased. Towards this goal, a deep learning model has been devised

which can enhance the memorability of an image. Generating memorable images

is essential in many practical applications, including the creation of a memorable

logo, magazine cover photo, user interface design, academic materials, and much

more. In recent literature, Khosla et al. [79] showed that memorability of face

images could be modified without disturbing the properties like identity, age,

attractiveness, and emotional magnitude of the person. However, their model is

limited to face images. Along the same line of thought, image color and texture

features are modified in [80] to change the emotions evoked by an image. These

findings boosted our intuition that it may be possible to modify an image to make

it more memorable while retaining its high-level content. This chapter attempts

to alter the given image to make it more memorable while retaining its high-level

contents (see Figure 6.1). Since the proposed scheme aims to translate an input

image to another image having higher memorability, the underlying problem can
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6. MEMORABILITY BASED IMAGE TO IMAGE TRANSLATION

be treated as memorability based image-to-image translation.

Recently, Isola et al. [7] proposed a conditional generative adversarial network

based method to perform automatic image-to-image translation. Their proposed

model can successfully translate an image from one representation of a given im-

age to another, e.g., labels to street scenes, black and white to color, edges to

photo, etc. This approach also supported the proposed intuition that images can

be modified to increase their memorability score. However, incorporation of this

approach for memorability based image translation requires paired image dataset.

Generating paired image dataset is not only expensive and time-consuming but

also practically not feasible because it requires manual image manipulation and

verification of memorability property. Furthermore, image memorability is influ-

enced collectively by various visual factors including emotions, saliency, object

and scene semantics [2] and hence, it is difficult to change these factors individ-

ually to increase the image memorability. Image-to-image translation technique

without paired examples is proposed in [81] to translate, for instance, day to

night, horse to zebras, photo to monet, and vice-versa. For this kind of trans-

lation, the need of target domain is necessary, and in most of the cases, it is

known. In the case of memorability based image translation, the target domain

is unknown.

To address the aforementioned problems, a memorability based image-to-

image translation is proposed in this chapter by defining image translation as the

mapping F : I → I ′ between two image domains I and I ′. Here, I corresponds

to input image domain, and I ′ is the unknown image domain which contains the

modified versions of the images present in I. Also, every image in I ′ is more mem-

orable than its corresponding image in I. To achieve the proposed translation,

a novel deep learning model is devised, which is trained in the absence of paired

examples using mean-squared error and memorability loss between I and F (I).

The mean-squared error is employed to enforce minimal changes in the translated

image. Whereas, memorability loss is used to implement the modifications such

that the translated image is more memorable than its input counterpart. To the
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best of our knowledge, this is the first end-to-end deep learning model that trans-

lates a generic image (not specific to face images) to its modified version to make

it more memorable without using paired image dataset. The detailed descrip-

tion of the proposed memorability based image-to-image translation approach is

presented in the next section.

(a) Original Image with PMS = 0.767 (b) Modified Image with PMS = 0.790

(c) Original Image with PMS = 0.806 (d) Modified Image with PMS = 0.811

Figure 6.1: Examples of images with their modified versions to increase the memorability
score. The Predicted Memorability Score (PMS) is reported for each image.

Rest of the chapter is arranged as follows. In Section 6.1, the proposed ap-

proach to increase image memorability is explained. Section 6.2 details about

the experimental set-up and corresponding results. Finally, the summary of the

chapter is presented in Section 6.3.
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6. MEMORABILITY BASED IMAGE TO IMAGE TRANSLATION

6.1 Proposed Model

The architecture of the proposed model is shown in Figure 6.2. The model has two

networks: Translator Network and Memorability Prediction Network. The Trans-

lator Network learns to modify the given input image to increase its memorability

score in such a way that high-level contents of the input image are retained. The

VGG-MemNet is used as Memorability Prediction Network to evaluate the mod-

ifications with respect to the memorability of an image. Further details of both

the networks are presented in the following subsections.
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Figure 6.2: Framework of the Proposed Method.

6.1.1 Translator Network

The proposed Translator Network takes an RGB image as input and outputs

its modified version in RGB space. As shown in Figure 6.2, Translator Network

contains three branches. Each branch is a Residual Network dedicated to pro-

cessing a color channel. All these branches have the same architecture, which is

shown in Figure 6.3. The circle with a dot symbol in Figure 6.2 represents a lin-

ear combination of input color channels and residual information. The proposed

Residual Network contains a skip connection between layer 1 and layer 4 to retain

the structural information of the given color channel. Residual values generated

from each channel represents different style information. This style information
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Figure 6.3: Residual Network: Generates residual values which are later used to modify the
image to increase its memorability. BN represents Batch Normalization.

is incorporated into the input image using pixel-wise weighted addition as given

in Equation 6.1.

Ci
Output = α.Ci

Input + β.Ci
Residual (6.1)

where, Ci
Output, C

i
Input, and Ci

Residual represent modified color channel, input color

channel and predicted residual channel for channel i ∈ {R,G,B}. Each layer of

the Residual Network has 3 × 3 size kernels. Batch normalization is added for

each layer for faster convergence. ReLu is used as activation function for all the

layers except the last layer. The output of the last layer is normalized between 0

and 1 by means of sigmoid function. The number of output channels are fixed to

64, 128, 64 and 1 for the layers 1 to 4 respectively.

6.1.2 VGG-MemNet

In order to verify the modifications performed by the proposed Translator Net-

work, a memorability prediction model is required. For simplicity, the VGG-

MemNet proposed in Section 4.2.2 of Chapter 4 is utilized to predict memorabil-

ity scores. The VGG-MemNet is obtained by fine-tuning the VGG-16 model [34]

on LaMem dataset [2]. The scores generated by VGG-MemNet are in the range

of 0 to 1, where 0 indicates the least memorable image, and 1 indicates the most

memorable image. The image generated by Translator Network is fed to the

95



6. MEMORABILITY BASED IMAGE TO IMAGE TRANSLATION

Input 

Image

C
o
n
v
1
_
1

P
o
o
l
1

S
i
g
m

o
i
d

P
r
e
d

i
c
t
e
d

 
I
m

a
g

e
 
M

e
m

o
r
a
b

i
l
i
t
y

 
S

c
o

r
e

224*224*3

3
 x
 3
 x
 6
4

2
 x
 2

C
o
n
v
1
_
2

3
 x
 3
 x
 6
4

C
o
n
v
2
_
1

P
o
o
l
2

3
 x
 3
 x
 1
2
8

2
 x
 2

C
o
n
v
2
_
2

3
 x
 3
 x
 1
2
8

C
o
n
v
3
_
1

P
o
o
l
3

3
 x
 3
 x
 2
5
6

2
 x
 2

C
o
n
v
3
_
2

3
 x
 3
 x
 2
5
6

C
o
n
v
3
_
3

3
 x
 3
 x
 2
5
6

C
o
n
v
4
_
1

P
o
o
l
4

3
 x
 3
 x
 5
1
2

2
 x
 2

C
o
n
v
4
_
2

3
 x
 3
 x
 5
1
2

C
o
n
v
4
_
3

3
 x
 3
 x
 5
1
2

C
o
n
v
5
_
1

P
o
o
l
5

3
 x
 3
 x
 5
1
2

2
 x
 2

C
o
n
v
5
_
2

3
 x
 3
 x
 5
1
2

C
o
n
v
5
_
3

3
 x
 3
 x
 5
1
2

F
C

6

F
C

7

F
C

8

4
0
9
6

1
4
0
9
6

Figure 6.4: VGG-MemNet architecture

VGG-MemNet for memorability prediction to evaluate the modifications with

respect memorability.

6.1.3 Loss Function

The objective of the proposed memorability based image to image translation

model is to modify the given input image such that the modification has to

satisfy two criteria. The first criterion is that memorability of the modified image

must be more memorable than the input image. The second criterion is that the

modified image must contain most of the high-level contents of the input image.

Based on these two criteria, the loss function Ltranslaor is defined as shown in

Equation 6.2. The loss function Ltranslator for the proposed approach is comprised

of two loss functions: Lmse and Lmem. While Lmse tries to retain the contents of

the input image to achieve the second criterion, Lmem enforces modifications such

that the modified image’s predicted memorability score should increase to reach

1 for achieving the first criterion. In order to define the loss function Ltranslaor,

let I and I ′ be the domains of input and translated images respectively, and

the one-to-one mapping function is to be learned by the Translator Network be

F : I → I ′. Also, let p ∈ I be a given input image, and F (p) be the output

generated by the Translator Network. Then, the loss function Ltranslaor is defined
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6.2 Experiments and Results

as

Ltranslaor = λmse.Lmse + λmem.Lmem (6.2)

where λmse and λmem are hyper-parameters, the mean-squared error Lmse is writ-

ten as

Lmse =
1

M.N.D

M∑
i=1

N∑
j=1

D∑
k=1

||F (p)i,j,k − pi,j,k||22 (6.3)

where, M,N , and D are the image height, width, and channels respectively. The

memorability loss Lmem is given by

Lmem =
1

t

t∑
i=1

||1− YF (pi)|| (6.4)

where, t is the total number of training samples and YF (pi) refers to the pre-

dicted memorability score of the ith translated image F (pi). With this, the ob-

jective of the proposed framework is to minimise the Ltranslator loss.

6.2 Experiments and Results

This section details the experiments and corresponding results. The proposed

model is trained and tested on image memorability dataset LaMem [2].

6.2.1 Training of Memorability prediction model VGG-
MemNet

VGG-MemNet is fine-tuned on LaMem dataset [2] by varying the number of

outputs of last fully connected layer to 1. For training purpose, 45000 images

are used. The trained network is tested on 10000 images. Image memorability

prediction is basically a regression task. L2 loss is the most commonly employed

loss function [2] for regression tasks. Therefore, the L2 loss function is used to

train the proposed model, which can be represented mathematically as shown in

Equation 6.5.

L2 =
∑
j

||Yj − yj||22 (6.5)

97



6. MEMORABILITY BASED IMAGE TO IMAGE TRANSLATION

where Yj is the memorability score obtained from the proposed VGG-MemNet

and yj is the ground-truth memorability scores for the jth image. Adam [82]

optimiser is employed to reduce network loss. The initial learning rate is set to

0.001.

6.2.2 Training of Translator Network

The Translator Network is trained on 5000 images which are not used to train the

VGG-MemNet. To ensure the diversity in terms of memorability, images with the

following range of memorability scores are chosen equally (i.e., 1000 from each

range): 0 to 0.6, 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9 and 0.9 to 1.0. The proposed

model is tested on 2000 images which are not used to train the VGG-MemNet

as well as Translator Network. Diversity in terms of memorability is ensured in

the testing dataset also. Adam [82] optimizer is used to reduce the Ltranslator loss

with 0.001 learning rate. Hyper-parameters are experimentally adjusted with the

following values: α = 0.7, β = 0.3, λmse = 10, and λmem = 1.0.

6.2.3 Performance Evaluation

To evaluate the performance of the proposed VGG-MemNet, the Spearman’s rank

correlation coefficient (ρ) is employed. The VGG-MemNet yielded a ρ value of

0.65 that is closer to human performance (ρ= 0.68 [2]) in memorability prediction.

The proposed memorability based image to image translation model is evaluated

with respect to two aspects: (1) the increase in PMS obtained from VGG-MemNet

and (2) the retention of structural similarity. In order to quantify the increase in

PMS, a new measure Mean Memorability Score Difference (MMSD) is defined as

MMSD =
1

s

s∑
i=1

(YF (pi) − Ypi) (6.6)

where s is the total number of image samples. pi and F (pi) are the ith input

and translated image samples. To quantify the retention of structural similarity,

SSIM [83] is employed.
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Table 6.1: Comparison of performance between proposed memorability based image-to-image
translation method and the style transfer methods [7].

Methods Cezanne Style Monen Style Ukiyoe Style Vangogh Style Proposed
Transfer [7] Transfer [7] Transfer [7] Transfer [7] Method

MMSD in % 0.2548 0.3453 0.5453 0.7981 2.0298

Average SSIM 0.6668 0.7219 0.5351 0.5647 0.7972

To the best of our knowledge, this is the first end-to-end deep learning model

that translates a generic image (not limited to face images) to its modified version

to make it more memorable without using paired image dataset or using any

additional style information. Therefore, the proposed model is compared with

an unpaired image to image translation model [81], which transfer the given

input image to styles like Cezanne, Monet, Ukiyo-e, and Van Gogh. Table 6.1

shows the MMSD and mean SSIM, which are computed between input images

and the corresponding translated images. From Table 6.1, it is visible that style

transfer methods proposed by [81] increased the memorability scores but not

better than the proposed method. It is also evident that the proposed model has

been learned to modify the input image to increase its memorability (visible from

the MMSD values) by preserving most of the image contents (evident from the

SSIM values). Further, Table 6.2 shows qualitative results with a few example

images translated using proposed and existing models. From Table 6.2, it is

visible that the images generated from the proposed model modified in terms of

color and texture to increase the memorability property (indicated from PMS

values). From the translated images, it can also be noticed that the proposed

method retains most of the high-level contents of the input image compared to

other methods.

6.3 Summary

In this chapter, a novel memorability based image-to-image translation method is

proposed using deep learning approach. The proposed method modifies the given
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Table 6.2: Examples of style trasfer methods along with the proposd method. PMS is reported
for each image.

Cezanne [81] Monet [81] Ukiyo-e [81] Van Gogh [81] Original Proposed Method

PMS = 0.764 PMS = 0.774 PMS = 0.766 PMS = 0.778 PMS = 0.762 PMS = 0.788

PMS = 0.749 PMS = 0.750 PMS = 0.753 PMS = 0.755 PMS = 0.746 PMS = 0.789

PMS = 0.794 PMS = 0.797 PMS = 0.794 PMS = 0.805 PMS = 0.784 PMS = 0.810

image to increase its memorability score while retaining its high-level contents.

Also, the developed method learned the mapping between two image domains

without using paired (input, label) image dataset like conventional image transla-

tion techniques. Experimental results showed that the proposed method increases

the memorability score of a given image higher than that of the state-of-the-art

image-to-image translation techniques.

The next chapter concludes the thesis by briefly summarizing the work pre-

sented in the dissertation and explaining the future research directions.
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Chapter 7
Conclusion and Future Works

7.1 Summary of the Contributions

In this dissertation, major part of the work is motivated to understand and predict

the memorability at object and image levels. Towards this goal, the relationship

of memorability with different visual factors which influence the memorability

at object and image levels are analyzed. Also, various deep learning models are

developed to predict memorability scores at image and object level. Further, an

application of image memorability prediction model is devised to increase the

memorability of an image using an end-to-end deep learning model. A brief

summary of these contributions is narrated in the following subsections.

7.1.1 Object Memorability Prediction: Location and Size
Bias

In the first contributory chapter, the relationship between object memorability

and its two spatial characteristics, such as Spatial-location and Spatial-size, is

explored. Various experiments are conducted to understand the influence of these

two spatial characteristics on object memorability. From the experimental results,

it has been shown that (a) objects of larger size tend to be more memorable than

objects of smaller size, and (b) objects present at the centre of the image tend

to be more memorable than the objects present at the corners. Further, a deep
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learning based object memorability prediction model is proposed to utilize the

proposed spatial characteristics along with other object features. Experimental

results highlight that the Spatial-location and Spatial-size of an object play a

significant role in object memorability prediction and the proposed deep learning

model performs better than the existing object memorability prediction model.

7.1.2 Image Memorablity: The Role of Depth and Motion

The second contributory chapter extended the study of memorability concept

to image level and explored the relationship between image memorability and

two important image features: motion and depth. Various experiments have

been conducted to understand the influence of these two features in making an

image memorable or forgettable. From the experimental results, it has been

shown that (a) images containing objects in motion tend to be more memorable,

(b) images containing objects nearer to the camera at the center tend to be

more memorable, and (c) images containing objects farther from the camera

at the center tend to be less memorable. Further, deep learning based image

memorability prediction models are proposed which utilize motion and depth

cues along with the object features to predict memorability scores. Experimental

results demonstrated that the proposed models perform better than the current

state-of-the-art model indicating depth and motion are two important visual cues

which need to be considered in image memorability prediction.

7.1.3 Visual Emotion based Image Memorability Predic-
tion using Multiple Instance Learning

From the existing literature, it is evident that visual emotions have a significant

role in making an image memorable or forgettable. However, the existing im-

age memorability prediction methods have not been considered emotion cues in

predicting memorability scores. In the third contributory chapter, a multiple in-

stance learning based deep CNN is proposed to utilize visual emotion cues along
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with other deep object features to predict image memorability scores. Experimen-

tal results depicted that incorporation of emotion cues through MIL framework

improved the memorability prediction task and the proposed model performed

better than the current state-of-the-art model by achieving a rank correlation

close to human consistency.

7.1.4 Image Memorability Enhancement using Memora-
bility based Image-to-Image Translation

In the fourth and final contributory chapter, an end-to-end deep learning model

is proposed to enhance the memorability of a generic image. Since the aim of the

proposed scheme is to translate an input image to another image having higher

memorability, the underlying problem has been considered as memorability based

image-to-image translation. The proposed model modifies the given input image

to increase its memorability score while retaining its high-level contents. Also,

the developed method learned the mapping between two image domains without

using paired (input, label) image dataset. To the best of our knowledge, the

proposed model is the first of its kind. Experimental results showed that the

proposed model increases the memorability score of the given image higher than

that of the state-of-the-art general image-to-image translation techniques.

7.2 Future Scope

The present study of this dissertation can be extended further in several direc-

tions, as listed below:

• The proposed memorability prediction models are limited to object and

image levels. Therefore, the study of memorability can be extended for

the video sequence. This extension may open many opportunities to un-

derstand the relationship of memorability at video level, including various

temporal dynamics. Also, it may enable to build video memorability pre-

diction models to predict memorability scores for the given video.
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• Existing and proposed research works on image and object memorability

have shed light on various visual characteristics which influence memora-

bility. All these works are with respect to 2D images. The effect of these

visual factors on memorability with respect to 3D images is yet to be dis-

covered, and the proposed memorability prediction models can be extended

accordingly.
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