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Abstract

In recent years, the use of unsupervised learning-based methods for network intrusion

detection has attracted much attention. Multiple methods using unsupervised mechanisms

have been proposed that utilize the information in various formats like network packets, flow

information, etc., and use various methods for attack identification. Most of these methods

have the limitations on not considering the time factor inherently but explicitly using the

time-dependent features for various time windows and considering equal importance for all

previous contexts. Also ignoring the fact that each protocol-specific attack is unique and

ignoring the protocol awareness to determine attacks. Moreover, considering a single type

of view or set of features (network header or flow) to build a machine learning model and

ignoring the importance of different views in attack determination. This thesis presents four

unsupervised learning-based methods in this direction.

The first method proposes a network intrusion detection method by using a Time-aware

LSTM autoencoder that uses the concept of regeneration error estimation on contextual data

and predicts an attack if it is higher than the defined threshold. The introduction of Time-

aware LSTM units in the autoencoder network considers the time decay inherently based on

previous contextual information and leads to better overall metrics in comparison to other

units like MLP / LSTM. The experiments show that the Time-aware LSTM-based model

outperforms the baseline models. This research work further utilized the autoencoder-based

method to build a protocol-aware system for attack detection. In the second method, a

Protocol aware unsupervised network intrusion detection method is proposed that provides

a way to incorporate protocol channel importance while deciding attacks. The concept of

protocol awareness is introduced by learning the local (protocol-specific) and global repre-

sentation individually by protocol channels and incorporating the channel importance by

utilizing an attention network. Through the experiments on two NIDS datasets, and mul-

tiple protocol-specific attacks, it is analyzed that the proposed method outperforms the

non-protocol-aware method.

In the third method, a multiview-based network intrusion detection system is developed

by using a self-supervised learning-based method. In this method, the network packet level

data is utilized to extract multiple possible views with predefined time windows consecutively

and construct the autoencoder-based model specific to each view. Once the encoders for

each specific view are created, this work proposes the strategy to build the self-supervised

ix



learning-based model using majority voting on the classified output from individual en-

coders. Through the experiments on two attacks FTP brute force, and UDP DDoS attack,

it is demonstrated that the proposed method outperforms the individual view-based mecha-

nism when multiple views are utilized in computation. The last method is the online method

for network attack detection by using an on-the-fly mechanism to create clusters and utilize

the statistical features of computed clusters and compare the cluster profiles. Later on, the

distance between cluster profiles is estimated and an attack is identified if the distance is

more than the defined threshold. The proposed model executes in an online mode as it

executes the algorithm for each discrete time window data generated through flows. The

experiments conducted on two widely used NIDS datasets show that attack is identified

with high accuracy and the model can be deployed in real network traffic easily.
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1
Introduction

With the advancement of the Internet, network attacks have become more destructive and

pose a great threat to overall security. The number of attacks on computer networks has

increased a lot over the years. Cybercrime is expected to cause $10.5 trillion USD in

global losses by 2025 [3]. According to Mcafee [4], the potential cost of cybercrime to

the global community is enormous around $1 trillion and a data breach costs the average

company of about $3.8 million. These attacks are easily performed by exploiting existing

vulnerabilities in various networking protocols like SSH (Secure Socket Shell), FTP/FTPS

(File Transfer Protocol), HTTP/HTTPS (Hypertext Transfer Protocol), ICMP (Internet

Control Message Protocol), SCP (Secure Copy Protocol) etc. using sophisticated open-

source utilities like LOIC [5], Slowloris [6], Nmap [7], etc. Network-related attacks consist

of many types depending upon the specific vulnerability it targets for. Some of the attacks

are as follows:

1. Fingerprinting: These groups of attacks involve the collection of information for

running operating systems, running applications, open ports, etc. for the host in a

network, and understanding the existing vulnerabilities. This is the initial step while

attacking the host.

2. Sniffing or Eavesdropping: In such attacks, the attacker listens to or monitors
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network traffic and tries to capture unprotected information. The attacker further

uses the captured information to perform other attacks.

3. Spoofing: In these kinds of attacks, the attacker spoofs the legitimate host using the

address information of the legitimate host and sends the spoofed messages to the victim

with the purpose of impersonating a genuine host and concealing its own identity. IP

Spoofing and DNS Spoofing are some types of attacks related to this category.

4. Brute Force attacks: With the help of these attacks, the attacker attempts to get

access to the victim’s resources by trying out multiple login attempts. Brute force

attacks are applicable to various applications such as FTP, SSH, or HTTP.

5. Denial of Service: In these kind of attacks, the attacker prevents users from accessing

services on the network. These attacks can also be performed in a distributed way

where an attacker utilizes the compromised hosts to target the victim machine. SYN

Flooding, UDP Flood, etc. are kind of these attacks.

Intrusions are these sets of actions that attempt to compromise the confidentiality, in-

tegrity, or availability of the systems. Whereas Intrusion detection systems (IDS) are essen-

tial tools to guarantee availability, confidentially, and data integrity to detect and help in

avoiding these attack activities. Intrusion detection systems are hardware or software ap-

plications that monitor these malicious activities and raise the alarms to the administrator.

These malicious threats have continuously emerged over the years, so the requirement for

an advanced security solution is inevitable. IDS are generally confused with firewalls. The

Firewall looks outwardly for intrusions to stop them before they enter the protected net-

work. It analyzes the packet and filters incoming and outgoing traffic based on predefined

rules. On the other hand, IDS only has a monitoring role and never blocks the communi-

cation. Due to these reasons, IDS is preferred over firewalls for securing modern encrypted

communication and hosts.

1.1 IDS taxonomy based on placement

IDS can be classified into two types based on its placement i.e. Host-based or Network-based.

Host-based IDS (HIDS) monitors and analyzes the specific host for running applications,

system calls, system logs, file integrity checking, policy monitoring, etc., and generates

alarms if any suspicious activity is identified. Various HIDS-based solutions like file integrity
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Figure 1.1: IDS Taxonomy

checkers are used to detect intrusions by checking the checksum of files at regular intervals.

Tripwire [8], and Osiris [9] are some of the available solutions. HIDS solutions can also be

implemented through log analysis where known patterns are matched in logs by using regular

expressions. Open Source Security Event Correlator (OSSEC) [10] is one of the tools used for

this purpose. On the other hand, Network-based IDS (NIDS) detects malicious behavior by

monitoring the network traffic. Network-based IDS are normally deployed to the dedicated

machine or switches that receive entire network traffic for analysis. In order to receive all

network traffic the NIC card of the machine is required to run in promiscuous mode. This

thesis mainly deals with developing machine learning-based solutions for NIDS.

1.2 IDS taxonomy based on attack detection

Several machine-learning approaches have been proposed in developing IDS systems for

detecting various types of malicious attacks [11–13]. Such approaches may be classified

into two types based on the detection method i.e. Supervised learning based IDS and

Unsupervised learning based IDS.

1. Supervised learning based methods : Supervised learning-based methods gen-

erally use methods such as classifiers [14–16] or signature matching [17–19] or re-

gressors [20], that consider building the models using labeled network traffic data.

Signature-based approaches generally use attack-specific fixed signatures for attack de-

tection. These signatures are stored in databases and network activity is flagged as an

attack if the signature is matched. Signature matching-based utilities like Snort [21],

Bro [22] etc. are used to work with these predefined sets of rules and detect attacks
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based on fixed rules. Signature-based IDS can also follow fixed attack-specific signa-

tures that are defined by multiple open-source databases like National Vulnerability

Database (NVD), Common Vulnerability Exposure (CVE), Bugtraq, etc. A simple

example of a Snort signature for an ICMP Flooding attack is represented as follows:

alert icmp any any − > HOME NET any (msg: ”ICMP flood”;sid: 1000001; rev:1;

classtype: icmp-event;detection filter:track by dst,count 500, seconds 3;)

This signature is used to flag an ICMP flood attack if more than 500 ICMP packets are

generated within 3 seconds. Various classifiers and regression-based methods are also

proposed in this area that on the other hand require labeled data to train the model.

This requires data updates frequently to consider the detection of updated and new

attack scenarios.

2. Unsupervised learning based methods : Unsupervised learning-based methods at-

tempt to identify anomalous patterns in unlabeled data that significantly deviate from

the normal scenario [23,24]. These kinds of IDS build a model of the normal behavior

of the system and then estimate the deviations in the monitored data depending on the

pre-determined threshold. Multiple methods using unsupervised learning-based mech-

anisms have been proposed utilizing the normal data and estimating these thresholds

in terms of distance [25], entropy [26] or regeneration error estimation [27,28]. Subse-

quently predicting an attack if the estimated value is greater than the learned threshold.

The major advantage of these systems is that these approaches can detect unknown at-

tacks. Whereas the major drawback is that it often generates an overwhelming number

of false alarms.

Comparison between two approaches are given in table 1.1. Considering detection of

unseen attacks and labeled data generation is a herculean task, this thesis proposes meth-

ods for detecting the network intrusions using unsupervised learning-based methods. The

objective of this thesis is to propose solutions that improve the quality of unsupervised

learning based attack detection utilizing machine learning-based techniques. In section 1.3

the current research gaps in building unsupervised learning-based IDS solutions are dis-

cussed that motivate us to build new methods for IDS solutions. Section 1.4 mentions the

major objectives of this research. Section 1.5 presents the list of contributions made in this
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Table 1.1: Comparison of Supervised and Unsupervised learning based IDS

Method
Data

Requirement
Capture new

attacks
Data Update False Alarms

Supervised
Learning

Labelled Data is
desired that in-
volves huge man-
ual labelling ef-
fort.

It is unable
to capture the
new attacks.

Frequent data
update is
needed.

Less number
of false alarms
are generated.

Unsupervised
Learning

Labelled data is
not required and
model can be
build on normal
data alone.

It can capture
new attacks
and zero day
attacks.

It does not re-
quire frequent
data updates.

High number
of false alarms
are generated.

direction and the organization of the thesis is presented in section 1.6

1.3 Research Challenges and Motivation

In recent years, a variety of methods [29, 30] have been devised for unsupervised learning-

based IDS. However, most of these implementations have the following research gaps that

motivate us to work in this direction.

1.3.1 Challenges related to data

As mentioned earlier, supervised learning-based IDS not only requires labeled network traffic

data or fixed rules to start with as well as fails to identify new types of attacks and zero-day

attacks. To resolve this issue various unsupervised learning-based mechanisms have been

proposed. Although unsupervised learning-based methods are more effective in detecting

a wider range of attacks, building these models are computationally intensive and requires

clean data that is free from contamination and attack-specific information. Some other

major challenges related to data are as follows:

1.3.1.1 Data Volume

The volume of network traffic and high dimensionality is another challenge for building

unsupervised learning-based IDS. Most of the earlier proposed unsupervised learning-based

solutions like OC-SVM [31], Isolation Forest [32], etc. are not able to create on large network
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data. Recently autoencoder-based models [27,33,34] have been proposed to solve this issue

that can work on huge network traffic. To reduce the dimensions, various methods [35]

like PCA, SVD, T-SNE, etc. has also been proposed to resolve the problem of curse of

dimensionality.

1.3.1.2 Data availability

On the other hand, getting labeled data for the generated network communication data is

also cumbersome. Generative models like [36,37] have been recently used to solve this issue

with synthetic data. Self-supervised learning is another method in this direction that can

be used to identify these intermediate labels from the structure of the data which transform

the problem of unsupervised attack detection into a classification problem. Autoencoder-

based models can inherently provide self-supervision by looking into the reconstruction error

measures [38, 39]. This motivates us to build a self-supervised learning-based framework

where the outcome of individual view-based models is utilized in generating the labels in

the background and training a classification model.

1.3.2 Challenges related to type of anomaly

Unsupervised learning-based network intrusion detection systems involve identifying out-

standing patterns that are referred to as anomalies or outliers. There are three types of

anomalies (i) point, where an individual data point is considered anomalous, (ii) contex-

tual, where the data point is found outlier in a specific context, and (iii) collective, where

the collection of data points is considered as outliers.

Some of the solutions [40,41] can capture pointwise anomalies by looking into individual

data points and estimating statistical deviation from the normal condition. The major

problem is that it may avoid capturing contextual and collective anomalies. The solutions

like histogram analysis [42] and clustering can help to capture these scenarios well. Various

clustering-based methods in [43, 44] have been utilized to identify the collective anomalies

by comparing the individual clusters together which are usually based on similarity, and

distance measures. However, these solutions are unable to capture the contextual nature of

attacks well.
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1.3.3 Challenges in captured information

Unsupervised learning-based IDS involves capturing the inherent information from benign

network traffic. This captured information poses challenges in distinguishing between benign

and attack events. Most of the recent solution captures the coarse representations that

consist of capturing limited information and non-contextual information. The captured

representation can have the following challenges.

1.3.3.1 Limited Information

In general, attacks specific characteristics are dependent on the inherent protocol. Most

of the existing solutions ignore the importance of protocol properties while determining

the attack and tend to build the global representation [14, 16, 45]. These methods build an

unsupervised model for the entire cross-sectional data and do not consider the heterogeneous

information related to protocols. The earlier proposed solutions consider attack detection

for a group of attacks together, ignore this protocol-specific information internally, and

generate representations independent of protocol during training. To include the protocol-

specific decision, various supervised learning-based models [46–48] are proposed that apply

filters at the protocol, host, or VM level for data reduction and further train the machine

learning model on the reduced dataset that makes the solution protocol-specific but lacks

protocol awareness while making a decision. These solutions tend to generate a homogeneous

representation. In motivation to this, a method for protocol-aware unsupervised network

intrusion detection systems is proposed that can learn the protocol-aware representations

automatically and utilize this information for the final decision.

1.3.3.2 Standalone view

On the other hand, earlier studies have also considered the specific representations generated

from network communication data individually and built the unsupervised learning-based

model that is unable to capture the combined effect of multiple representations. These

individual views consist of network, flow, and binary representations that are generated

from the information available in network packets. That is network header (describing the

protocol header-specific information), network payload (consisting of the data bytes trans-

ferred), or both. For detection of the attacks, each of these representations plays a different

role. For example, network view represents statistical information about header fields and
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is suitable for detecting high-volume attacks like DDoS. Flow level information is suitable

to detect attacks for low volume attacks like password guessing. These multiple represen-

tations together can take advantage of each view and build a combined representation for

accurate detection of attacks. A few recent works reported in [49, 50] try to capture the

information from spatial and temporal views together for supervised learning mechanisms.

This motivates us to develop unsupervised learning-based approach utilizing information

from multiple views together and improving the detection results.

1.3.4 Challenges in capturing context

Various unsupervised learning based IDS have been proposed earlier to detect network

attacks. These methods are normally based on data mining, statistical analysis, etc. to

develop the network baseline profile and detect the attacks in case of high deviation. Earlier

data mining-based methods like nearest neighbor information [51] based on the distance to

the neighbor, Local Outlier factor based methods [52] care about the local outlier. Statistical

machine learning based methods are also developed. Such as the chi-square method for

anomaly detection, and dimensionality reduction-based method like PCA [53] have been

used to project data to subspace and identify the anomaly. OC-SVM-based method [31]

trains the classifier to distinguish abnormal data from normal.

1.3.4.1 Contextual behavior

The major limitation of earlier mentioned proposed methods is that they do not consider

the context information into account for decision. However, utilizing context information in

attack decisions plays an important role in correct predictions as attacks follow the particular

life-cycle of events. To consider this, various solutions [28] have been developed recently that

include the temporal context while training.

1.3.4.2 Diminishing temporal context

Although solutions have been developed recently to consider the contextual information

while training but these solutions consider all the previous contexts with equal weights. So

the diminishing weight factor is missing inherently in the model training process. However,

in real scenarios, the most recent information imparts more importance. Another method

[27] is also proposed that utilizes time-dependent features for various time windows but does
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not consider the weight decay inherently in the model to provide a higher importance to

recent events. This motivates us to consider the influence of diminishing temporal context

inherently in model training and capturing the richer representations using unsupervised

mechanisms.

1.3.5 Challenges for online scenarios

Machine learning models can be trained in two ways i.e. offline and online (on-the-fly).

In offline training, models are trained on prepared datasets usually once and continuously

used for prediction purposes. On the other hand, online models are trained continuously on

the generated subset of data over time. The main shortcoming of the models trained in an

offline manner is that it is unable to capture new attacks due to the change in data. The

major problem in developing these online solutions is to detect the attack in the stipulated

time. In order to solve this issue online learning-based methods have been devised that can

be trained on new incoming data and predict the attack in the given time frame. Existing

online solutions have been devised like Kitsune [27], ORUNADA [54] are proposed recently

to train and detect the attacks on the fly. These methods suffer from high complexity and

longer inference times due to the fact that Kitsune uses the ensemble of multiple autoencoder

models and ORUNADA utilizes aggregated feature for computation. This motivates us to

build an online solution that is unsupervised in nature and detects attacks on-the-fly with

minimum time requirement.

1.4 Objectives

As discussed in the previous section 1.3, there are many challenges in building IDS solutions.

However, this thesis is majorly focused on solving the challenges of labeled data require-

ments, handling new attacks, learning new patterns using self-supervision, etc., and is based

on the following objectives.

1. Considering the earlier proposed methods incorporate context information into account

by utilizing the time-dependent features with equal importance for all previous time

contexts. To include the weight decay information inherently to provide higher impor-

tance to recent context, this thesis is focused on building the unsupervised learning-

based model identifying network-related attacks.
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2. Previous studies build the unsupervised model for entire cross-sectional network data

together and do not consider heterogeneous information related to different protocols.

This motivates us to consider the different protocol-specific characteristics by utilizing

the global and protocol-specific local representations together for attack decisions and

the major objective is to include a protocol channel for improving the attack detection

metrics.

3. Most of the proposed solutions consider the single view into account like network, flow,

or image and does not consider utilizing multiple views together for attack detection.

Motivated by this, the unsupervised mechanism is needed that utilizes the combined

information from different views in determining the attack activity and proposes the

self-supervised learning-based method to transform the problem into a classification

problem.

4. Existing challenges in already available complex on-the-fly training methods motivate

us to develop the unsupervised learning-based method that can train on the incoming

data at a particular time slot and identify the attacks in on-the-fly manner.

This thesis is mainly focused on building unsupervised mechanisms for identifying application-

specific attacks in networks.

1.5 Contributions

To overcome the above-mentioned challenges this thesis proposes methods for unsupervised

learning-based network intrusion detection. The contributions of this thesis are as follows.

The first contribution of the thesis work studied the influence of temporal context in

building unsupervised learning-based IDS and utilized the Time-aware LSTM (TLSTM)

based autoencoder to capture time-dependent contextual information and regularise the

features using the TLSTM-based autoencoder. The proposed system is based on an unsu-

pervised setup to estimate reconstruction errors and identify attacks based on a threshold

obtained only from normal traffic. The recent benchmark dataset from the Canadian Insti-

tute for Cybersecurity (CISC) i.e. CICIDS2018 and CICDDoS2019 are used for evaluating

the performance of the suggested method for FTP Bruteforce and UDPDoS attack and

compared the results with LSTM-based autoencoder model.

The second contribution of the thesis work is the method of developing an unsupervised
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protocol-aware IDS solution using the autoencoder-based model. It introduces efficient

architecture to develop the IDS that can combine protocol-specific encoders with attention

networks to include the importance of each protocol channel for attack identification. The

attacks are identified based on a reconstruction error threshold obtained from normal traffic.

The recent benchmark datasets - CICIDS2018 and CICDDoS2019 are utilized for evaluating

performance of the proposed model on a wide set of attacks like BruteForce (FTP Bruteforce

and SSH Bruteforce) and DDoS attacks (SYN Flood, UDP DoS, and NTP DoS). The

major contribution of the proposed method is to introduce the protocol awareness during

identification of attack.

A method of utilizing multiple views of network packets to build an unsupervised

learning-based method using an autoencoder framework is also proposed as third contri-

bution. The proposed method introduces self-supervision by utilizing output from view-

specific encoders and developing a binary classification model for attack detection. The

benchmark dataset CICIDS2018 for FTP-BruteForce and UDP DDoS attack detection is

used to analyze the results. This work studied the capacities of multiview-based learning

to solve the problem of attack detection on real networks and demonstrated that utilizing

multiple views together for attack detection helps in improving the overall detection metrics.

The main innovation of the proposed method is to utilize the different views and building

self supervised learning based method.

This thesis further proposed an online method for network attack detection by utilizing

statistical features generated from the flow-level data with specified time window. The

proposed method is able to identify the attacks for continuous network traffic data and

utilize the pre-learned attack-specific distance threshold for attack detection. The validation

of the proposed method is performed on the CICIDS2018 dataset for the detection of FTP

Brute Force and HTTP DDoS attacks. The major contribution of the approach is to perform

the attack detection on-the-fly and utilizing the statistical features of cluster profiles.

1.6 Organization of the thesis

The thesis is organized as follows:

• Chapter 2 presents the background study on unsupervised learning-based methods for

Intrusion detection systems. It also discusses the major concepts used in computer net-

works and related attacks, unsupervised learning based methods, state-of-the-art work
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in this direction, and the available datasets for building intrusion detection systems.

• Chapter 3 provides an unsupervised method of attack detection using the Time-Aware

LSTM model. The proposed method is based on autoencoder-based model development

and estimating the reconstruction error threshold for attack detection. It discusses the

advantage of the TLSTM unit over LSTM units in the autoencoder network. The

results are compared with One class SVM-based outlier detection models.

• Chapter 4 discusses the unsupervised method for detecting attacks in a protocol-aware

manner. The proposed method is based on combining the autoencoder and attention-

based networks to learn and utilize the importance of individual protocol channels in

attack decisions. The proposed method further improves the results from the non-

protocol aware mechanism.

• Chapter 5 represents the usage of multiple views generated on network packet data

for attack detection. The method is based on combining multiple views together and

building a self-supervised training based model. The proposed method detects the

attacks by using only raw packet data in an unsupervised manner. Network view,

Flow view, and Image view are extracted and used to build the model, and the effect of

different time window lengths on the attack metrics is discussed in the experimentation.

• Chapter 6 presents the on-the-fly method for network attack detection using statistical

feature distance. It reviews the existing unsupervised mechanism to solve the problem

and proposes a new approach to solve it using cluster distance estimation on computed

statistical features. The proposed method trains the machine learning model in an

online manner and detects the attacks for a given time window length.

• The concluding remarks of the thesis and future perspectives are discussed in Chapter

7.

;;=8=<<
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2
Background Study

Intrusion detection systems deal with identifying malicious activities in the network. In

current scenarios, networks have become potential targets of attackers due to existing vul-

nerabilities in networking protocols. IDS are the systems that monitor these activities

and generate respective alarms. In October 1972, the United States Air Force published

a paper written by James P. Anderson [55] where the author presented a threat-based

model. It introduces the idea of automating the detection of clandestine users and the con-

cept of intrusion detection is dedicated to this paper. Later, Doorth Denning published a

model for real-time detection in 1987 by modeling intrusion detection as an expert system

(IDES) [56]. IDES uses a rule-based expert system to detect known attacks and perform

statistical anomaly detection on user and network data. Over the decades, multiple methods

have been devised for intrusion detection systems and research has been transformed from

knowledge-based systems to machine learning-based systems. Most of the recent machine

learning-based systems that are based on supervised learning require labeled data and pre-

defined rules, therefore to handle the evolving attacks at a fast pace and to detect zero-day

attack various unsupervised mechanism have been devised.

The rest of the chapter is structured in the following way. Section 2.1 presents the net-

working terminologies used in this research work. Section 2.2 and 2.3 discusses the machine

learning-based methods for implementing supervised and unsupervised learning-based IDS
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solutions. Section 2.4 discusses deep learning algorithms used in the direction of building

unsupervised solutions in this thesis. Available open source datasets are introduced in sec-

tion 2.5, out of which recent data sets are used for implementation and experimentation.

Section 2.6 discusses metrics used for evaluating the proposed unsupervised learning-based

methods.

2.1 Network terminologies and related attacks

A computer network is a set of devices connected for information exchanges. It is a com-

bination of hardware and software that transport data from one node to another. The

protocol is a set of rules defined for data exchange. The communicating entities follow this

set of protocols and define what, how, and when the communication happens. These set of

protocols are organised in various layers as follows.

2.1.1 TCP/IP Layer architecture

TCP/IP protocol suite [57] is the set of protocols defined to build an interconnection of

networks. It provides the abstraction of the communication mechanism provided by the

network. It is modeled in different hierarchical layers that define the protocol stack. A layer

provides services for the layer directly above and makes use of services provided by the layer

directly below it. As defined in the figure 2.1, the IP layer provides the ability to transfer

data without a guarantee of reliable delivery and TCP makes use of this service to ensure

reliability. TCP/IP protocol suite consists of various layers as follows.

Figure 2.1: TCP/IP layer architecture
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2.1.1.1 Data Link Layer

Data Link Layer consists of protocols that define the interface to the actual network hard-

ware. It is responsible for the node-to-node delivery of the data and error-free transmission

of data among hosts. It also performs various functions like framing to prepare the internet

layer packets for transmission and uses MAC (Media Access Control) address to specify the

address for transmission in the local network. MAC address consists of 48-bit representation

for specifying the address. The data link layer consists of various protocols depending upon

the kind of network used. For example: IEEE 802.3 Ethernet protocol is used for Local

area network (LAN). MAC Flooding and MAC Spoofing are commonly known attacks in

the data link layer. MAC flooding attack involves sending many packets with fake MAC

addresses to overflow the switch’s address table and causing it to become full and unable

to process any legitimate traffic. In, a MAC spoofing attack attacker sends the spoofed

messages with a changed MAC address in order to gain unauthorized access or launch a

Man-in-the-Middle attack.

2.1.1.2 Network Layer

The network layer is used to send data from source network to destination network. It can

also provide an unreliable transmission facility between hosts located on different networks.

Internet Protocol (IP) is the well-known protocol in this layer that is information exchange

mechanism used by TCP /IP protocols. It is connectionless and does not ensure reliability,

flow control, or error recovery. The main purpose of this protocol is to provide routing

functionality that delivers transmitted messages to the destination. The IP datagram is

the basic unit of information transmitted across the networks and the IP address represents

the information of the network and host in the form of a 32-bit representation in dotted

format. For example: 192.168.3.4 is the IP address of the host. Various other protocols like

Address resolution protocol (ARP), ICMP (Internet control message protocol), etc. also

exist in this layer. ARP Cache Poisoning is a well-known attack where an attacker attempts

to update the ARP table of the victim machine by sending illegitimate ARP messages. In

an IP Spoofing attack, the attacker attempts to send the spoofed message with a different

IP address. ICMP flooding is another well-known denial of service attack where attacker

attempts to send a large volume of ICMP echo packets and overwhelm the victim machine.
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2.1.1.3 Transport Layer

The transport layer provides end-to-end data transfer by delivering data from the application

to the remote peer. It is responsible for the delivery of messages from one process to another

process using a socket. The socket is defined as a type of file handle that is used by the

process to request network services. It is a triple < Protocol, IPAdddress, Port > like

< tcp, 192.168.3.4, 8080 >. Transmission Control Protocol (TCP) is one of the protocols that

is connection-oriented and provides reliable delivery, congestion control, and flow control

mechanisms. Most of the application layer protocols like Telnet, FTP, etc. use it where the

communication is established using a TCP connection. User datagram protocol (UDP) is

another standard protocol that provides a mechanism for one application to send a datagram

to another. However, it provides no reliability, flow control, or error recovery to IP. Some

well-known attacks that exist in this layer are TCP SYN Flooding, UDP Flooding, etc.

In SYN Flooding attack, the attacker rapidly initiates a connection to a server without

finalizing the connection and exploiting the three-way handshake connection establishment

procedure in TCP. In a UDP Flooding attack, attackers send large amounts of UDP traffic

with spoofed IP addresses to random ports on a targeted system. Due to this, the targeted

server’s resources can quickly be exhausted and it becomes unavailable to normal traffic and

legitimate users.

2.1.1.4 Application Layer

The application layer consists of protocols that are used by applications for communication

among different hosts. Various applications have been designed to make use of these services

with the help of application layer protocols. These services are utilized to make resources

available and data is allowed to move and remote users can communicate well. Application

layer protocols like FTP, SSH, HTTP, etc. have been defined for communication. Attacks

like Brute Force attacks, DDoS attacks, etc. are exists in this layer due to existing vulner-

abilities in the protocols. In brute force attacks, the attacker attempts multiple trials to

crack passwords, login credentials, and encryption keys for applications like FTP, SSH, and

HTTP. HTTP DDoS is another type of attack in which attackers attempt to overload a web

server or application with a flood of HTTP requests causing the server to unresponsive to

legitimate requests. A brief description of various application layer protocols is presented

as follows.

16



Network terminologies and related attacks

1. File Transfer Protocol (FTP) : FTP is a standard protocol for the transfer of files

among communicating hosts. It uses TCP as a transport protocol to provide reliable

end-to-end delivery of files. The FTP client initiates the connection to port 21 where

the FTP server is listening for new connections and follows various commands like

open, pass, site, etc. to establish a connection and transfer the data. Additionally,

FTP also provides security and authentication to prevent unauthorized access to the

data.

2. Secure Socket Shell (SSH) : SSH is the protocol that establishes the secure connections

between systems by using port 22. The traffic sent through this connection is encrypted

by using public/private keys that are used to verify the both user and the remote

system. It allows the application traffic with compression also.

3. Hyper Text Transfer Protocol (HTTP) : HTTP is a protocol designed to allow the traffic

of HTML (Hypertext markup language) documents and is a well-known protocol for the

World Wide Web (WWW). HTTP client-like browser first establishes the connection

with the server at port 80 and sends the request in the form of a request method and

the server responds with a status and message containing server information, body

content, etc. It is a stateless protocol because it does not keep track of connections. it

can also use SSL (Secure Socket Layer) as an encrypted communication channel and

is defined as HTTPS and work on port 443.

2.1.2 Structure of Network Packet

A network packet is the basic unit of data that is grouped together and transferred over the

network. Data sent over the computer networks is divided into packets and is recombined at

the destination host. Network packets consist of three major parts the header, the payload

and the trailer. The packet header consists of information about the origin and destination

header that contain information from multiple protocols and the payload is the actual data

that the packet is delivering to the destination. If the packet is of fixed length then the

payload may be padded with blank information to make it the correct size. The trailer

consists of few bits that are used in cyclic redundancy check (CRC).

Network packets go through the process of encapsulation by multiple protocols. As

shown in the figure 2.2, data is divided into multiple segments where a segment is the unit

data sent from the transport layer to the network layer. These segments are received at the
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network layer and added to the IP header that constitutes the IP datagram. IP datagrams

are further received at the data link layer and the link layer protocol-specific frame header

and footer are added further that is transmitted to the destination host.

Figure 2.2: Structure of the network packet after appending information at each layer

2.2 Supervised learning based IDS

Supervised learning-based IDS majorly involves techniques like regression, rule-based, clas-

sification, etc. These techniques rely on network experts to provide details on characteristics

and associated labels to build the signatures, rules, or classifiers.

Decision Tree-based models utilize a tree-like structure that represents classification

outcomes as leaf nodes and branches are constructed based on split criteria. Various decision

tree learning-based algorithms like ID3 C4.5, etc. have been proposed earlier and have been

used in the development of intrusion detection systems [58,59]. These decision trees are also

used in ensemble modeling [60–62] where the final conclusion is driven by the prediction

of the group of models together. Support Vector Machine (SVM) is another well-known

classifier that is based on finding a separating hyperplane in feature space between two

classes so that the distance between the hyperplane and the closest data points of each class

is maximized. Various solutions like [63–65] are based on SVM-based learning.

Probabilistic learning-based models like the Naive Bayes algorithm is also presented

where input features are assumed to be independent in which the conditional probabilities

form the classifier model [66, 67]. Bayesian network ignores the independence assumption

and is able to represent the variables and relationships between them. The network is

constructed with nodes as the discrete or continuous random variables and directed edges

as the relationships between them are used to represent a directed acyclic graph. The child

nodes are dependent on their parents. Various methods like [68–70] have been proposed
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that utilize the Bayesian network for classification.

Neural Network models have recently been used to develop IDS systems that are inspired

by the brain and composed of interconnected artificial neurons capable of certain compu-

tations on their inputs. Various extensions of neural networks like recurrent, convolutional,

feed-forward networks, etc. [71,72] have been developed over time and have been used as a

classification method for attack detection.

Regression-based methods like Logistics regression, polynomial regression, etc. are also

utilized in building IDS systems [20,73]. Since this thesis focuses on unsupervised learning-

based therefore we present a detailed study of existing unsupervised learning-based methods

in the next section.

2.3 Unsupervised learning based IDS

Unsupervised learning-based IDS models benign behavior of the system from the normal

profile and any deviation from the known profile is considered an intrusion. The benign

profile is represented as a set of features that are extracted from network packets, flows, etc.

These methods generate a baseline profile of normal system activity and observations of de-

viations are tagged as intrusions. There are a number of machine learning-based techniques

reported for unsupervised learning-based methods that can be categorized as follows.

2.3.1 Clustering based methods

These techniques attempt to group similar instances into clusters and identify the anomalous

points or sets of points based on different factors like size, distance, density, etc. There

are several approaches for clustering the input data. For example, connectivity models

(e.g., hierarchical clustering) attempt to group the data points by the distances between

them. In centroid models (e.g., k-means), each cluster is represented by its mean vector.

Distribution-based models (e.g., Expectation Maximization algorithm) assume the groups

to follow a statistical distribution and density-based models group the data points as dense

and connected regions (e.g., Density-Based Spatial Clustering of Applications with Noise

[DBSCAN]). Lastly, graph models (e.g., clique) describe each cluster as a set of connected

nodes (data points).

Some of the earlier proposed methods like Syarif et al. [74] investigated the performances

of various clustering algorithms when applied for anomaly detection. Five different clustering
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approaches, the k-means, improved k-means, k-medoids, Expectation Maximization (EM)

clustering, and distance-based anomaly detection algorithms are used for the comparison of

results. Lin [75] proposed a centroid-based model using two distances for clusters that are

measured and summed. The first one is based on the distance between each data sample

and its cluster center, and the second distance between data and its nearest neighbor in the

same cluster. This one-dimensional distance feature is used for IDS by the k-NN classifier.

Here K-means clustering is used to identify cluster centers. The idea behind the proposed

method is that cluster centers for a given dataset offer discrimination capabilities for the

recognition of both similar and dissimilar classes. This approach provides an accuracy of

90.76%. Horng [43] proposed the connectivity model based on BIRCH clustering and built

over the KDD 99 dataset for five classes (Probe, DoS, U2R, R2L). It builds five clustering

feature trees where each leaf node corresponds to the cluster. After this representation

dataset is obtained and feature selection is performed. 4 SVM one for each class are trained

and combined together in an ensemble-based model.

Clustering-based methods are also widely used to identify brute force activity. The

density-based method proposed by [44] applies the DBSCAN algorithm on FTP traffic

generated at the campus network environment to separate normal data from abnormal

data through clustering. It captures only selected traffic destined for FTP servers. When

an attack occurs, multiple logon sessions attempt to fail, and that creates points in the

same cluster with equal time series. The Indicator parameter is defined as a number of

equal time intervals in the cluster. When this indicator parameter reaches a threshold

value, an attack scenario is notified. Authors in [76] proposed a solution for HTTP Brute

Force activities using the agglomerative approach of hierarchical clustering. The proposed

approach is based on the per-connection histogram of packet payload sizes. It analyzes that

the brute force attack contains three phases a) scan b) brute force c) compromise. The

brute force phase features a significantly larger number of packets per flow than the scan

phase. The key to identifying brute force attacks in the flow level data is to aggregate similar

records into clusters and then find clustering histograms that are similar. The histograms

from benign connections are quite different from histograms in typical brute-force attacks.

The hierarchical clustering agglomerative approach used MDPA (Minimum difference of

pair assignment) as a distance metric. In the case of non-attack traffic largest cluster

may however contain histograms that are not very similar. So to filter out the estimated

average intra-cluster distance for the large cluster is used to ignore if it is greater than some
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threshold. Detection of brute force is done by using the largest cluster of tuples since it is

assumed that attack traffic is dominant enough to compromise clusters.

The concept of a clustering-based unsupervised method for attack detection is utilized

in Chapter 6 where the proposed method is implemented by using a density-based (i.e.

DBSCAN ) algorithm.

2.3.2 Outlier detection based methods

Outlier detection can also be used to find traffic that deviates from the baseline of nor-

mal traffic to find anomalies. Various methods like One class SVM (OC-SVM), Cluster

based local outlier factor (CBLOF), Isolation Forests etc. are used to detect attacks in an

unsupervised manner.

Goldstein et al. [42] proposed a very simple method using a histogram for all features

and showing traffic that stands out in the histogram. The proposed approach reaches the

AUC performance of 0.9999 and is able to classify the KDD99 dataset in 0.06 seconds. This

might not be suitable for real data, since malicious and benign traffic is more alike. Cheng

et al. [32] use a combination of isolation forest and Local Outlier Factor (LOF) to find

outliers. The Isolation forest is used to find global outliers and LOF is used to find local

outliers since the efficiency of LOF is lower, the performance is better. The performance

of the method of Cheng et al. gets varying results. On the most imbalanced dataset, the

accuracy is 0.9999 and the f1 score is 0.7692, which is due to a lower TPR, but a very low

FPR. However, on a more balanced dataset, the performance is much poorer.

Payload information in network packets is also used to detect outliers. Like in the

earlier proposed method PAYL [77], 256 features from the payload of every packet are used

to generate the feature vector, and a model of normal system behavior is derived with

the average standard deviation of these vectors. Now the outlier is detected based on the

mahalanobis distance of the vector if it exceeds with predefined threshold. Another method

McPAD [78] is proposed by Perdisci et al. which used One class support vector machine

to classify payloads as normal or attack. It proposes a technique class 2-v grams which

pairs two bytes that are v bytes apart in the payload in the packet. An iterative clustering

algorithm is used to reduce the number of features and K number of One class SVM models

are created. The final decision is made by the ensemble of these K models.
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2.3.3 Statistical learning based methods

In statistical learning-based methods, statistical information is used as a measure for identi-

fying deviation from normal statistical profiles in order to detect the attacks. The statistical

profiles are generated by analyzing the network features and the incoming profile is marked

as anomalous if deviation from the normal profile is more than the pre-defined threshold.

Various statistical measures from network information like changes in the number of pack-

ets transmitted, high-frequency usage of certain IP addresses and ports, frequent changes in

TCP flags, etc. can be used to learn the deviation. The statistical methods can also utilize

entropy measures to analyze various network feature values for attack detection. The major

drawback of statistical methods is that they fail to detect attacks if the attacker generates

disruptions below the learned threshold.

Ye and Chen [40] proposed an anomaly detection technique based on a chi-square statis-

tic in which a profile of normal events in an information system is generated. The basic idea

in this approach is to detect both a large departure of events from normal as anomalous

and intrusions. Krügel [41] proposed a statistical processing unit for detecting anomalous

network traffic, to detect rare attacks such as R2L and U2R. A metric is developed that

allows the system to automatically search identical characteristics of different service re-

quests. The anomaly score of a request is calculated based on the three main characteristics

i.e. the type of request, the length of the request, and the payload distributions. The

network administrator defines a threshold to raise alarms for anomalous requests.

Manikopoulos [79] proposed a hierarchical multitier multiwindow statistical anomaly

detection technology to monitor network traffic parameters simultaneously, using a real-time

probability distribution function(PDF) for each parameter. The similarity measurements

of measured PDF and reference PDF are combined into an anomaly status vector classified

by a neural network. This methodology detects attacks and soft faults with traffic anomaly

intensity as low as 3 to 5 percent of typical background traffic intensity, thereby generating

an early warning. Another method presented by Tan et al. [80], for DoS attack detection

is a system that uses multivariate correlation analysis (MCA) for accurate network traffic

characterization by extracting the geometrical correlations between network traffic features.

The proposed system involves extraction of the geometrical correlations between network

traffic features. First basic features are generated in a well-defined time interval with a

triangle area map generation module and then correlations between two distinct features
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within each traffic instance are extracted. At last decision for attack is made based on the

computed statistics.

2.3.4 Deep learning based methods

Deep Learning is the sub-field of machine learning that uses a cascade of many layers for

processing where each successive layer uses output from the previous layer. In deep learning,

higher-level features are derived from lower-level features after processing through multiple

layers. Various unsupervised deep learning-based models like auto-encoders, etc. have

been used to develop the IDS methods. The detailed description of various deep learning

algorithms used in this thesis is described in section 2.4.

2.4 Deep Learning Algorithms

This section describes the deep learning algorithms in detail that are used to build the un-

supervised learning-based methods in this research. It also discusses the associated research

papers that are based on specific deep-learning algorithms.

2.4.1 Multi-Layer Perceptron (MLP)

A Multilayer perceptron (MLP) is a fully connected layer of perceptron units. The structure

of a multi-layer perceptron consists of multiple layers as shown in figure 2.3. It consists of

an input layer, one or several hidden layers, and an output layer that consists of multiple

perceptron units where each perceptron unit acts as a neuron and uses a nonlinear activation

function. The neurons are computation entities, that calculate activation function at each

layer in a feed-forward fashion, and error is propagated backward for weight normalization.

The gradient descent algorithm [81] is used to adjust and learn the weights where increment

or decrement in the weight vector happens by the input vector scaled by the residual error

and the learning rate. Other optimization algorithms have also been proposed recently like

Adagrad (2011), Adam (2015), etc. that are more flexible with adaptive learning rates,

and show impressive results when applied to deep neural networks. Multilayer Perceptron

considers each input separately while processing, due to which it is unable to capture the

temporal context.
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Figure 2.3: Multi-layer perceptron

Multilayer perceptron has been majorly used for classification purposes where the last

layer contains the number of neurons depending on the number of attack classes to iden-

tify. Huang [82] proposed a new artificial neural network (ANN) called an extreme learning

machine (ELM). The ELM is a single hidden layer feed-forward neural network, which ran-

domly uses the input weights and hidden layer bias without tuning and determines the

output weights in an analytical way. Li [83] proposed a Fast Learning Network (FLN) that

is based on connecting the multilayer feed-forward neural network and a single-layer feed-

forward neural network in parallel. FLN showed reasonable performance and stability using

a smaller number of hidden nodes and utilizing less time. MLP has also been used in build-

ing an autoencoder-based network which is based on an unsupervised learning mechanism

that attempts to learn the representation from benign data and identify attacks based on

deviation. A recent study [84] attempts to build an autoencoder network based on MLP

units to identify the anomalies. This concept has also been used in chapter 3 to compare

the influence of temporal effect with the proposed autoencoder-based model. MLP-based

autoencoders have also been developed in the proposed multiview-based system in chapter

5.

2.4.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) is the deep learning algorithm where connection

patterns are inspired by the visual cortex, and is based on convolution operation. The

convolutional layers parameters are a set of learnable filters where every filter is applied
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along width and height of input (2-dimensional) vector. During the forward pass, each filter

slides across the width and height of the input, producing a 2-dimensional activation map.

As filter slide across the input, the dot product is computed between the filter and the

input in a feed-forward fashion. As shown in figure 2.4, the CNN model consists of multiple

operations like padding where extra information is added to consider the information from

the borders that can lead to good accuracy. Pooling operation is used to reduce the number

of learnable parameters and different pooling operations like max-pooling, average-pooling,

etc. are applied for the set of values in the filter.

Figure 2.4: Convolutional Neural Network

Kim et al. [85] proposed a CNN model for detection against denial of service attacks and

evaluated its performance through comparison with a Recurrent Neural Network (RNN)

model. Furthermore, the optimal CNN design for better performance through numerous ex-

periments is also suggested. Zhang [86] proposed a complex multilayer IDS model based on

CNN and gcForest. It also discusses a novel P-Zigzag algorithm for converting the raw data

into two-dimensional greyscale images. They used an improved CNN model in a coarse grain

layer for initial detection. Then in the fine-grained layer, gcForest is used to further classify

the abnormal classes into N-1 subclasses. They used a dataset by combining UNSW-NB15

and CICIDS2017 datasets. The experimental results show that the proposed model signif-

icantly improves the accuracy and detection rate compared to the single algorithms while

reducing the false alarm rate. Jiang [87] proposed an efficient IDS system by combining

CNN and bidirectional long short-term memory (BiLSTM) in a deep hierarchy. The class

imbalance problem is addressed by using the SMOTE [88] to increase the minority samples,
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which helps the model to fully learn features. CNN is used for extracting spatial features

while BiLTSM is used for temporal features. The experiments are performed using NSL-

KDD and UNSWNB15 datasets. CNN model has also been used in building unsupervised

models like autoencoders. The proposed method [89] involves building variational autoen-

coder using CNN units. The similar concept has been used to build the CNN autoencoder

for image views in chapter 5.

2.4.3 Recurrent Neural Network (RNN)

A Recurrent Neural Network is a neural network with directed cycles where nodes send

feedback signals to each other. It is based on a recursive operation where the output of the

next layer becomes input to the previous layer and RNNs are able to capture patterns for

temporal context. It is constrained by shared weights across neurons where each neuron

observes different times. Recurrent Neural Networks are the natural way to model sequential

data. Back-propagation with time is the common strategy to learn in recurrent neural

networks as shown in the figure 2.5 and the recurrent process is representation by equation

(2.1) where, yt is output at time t, yt−1 is the output at previous time t− 1, xt is the input

at time t and U,W are weight matrices of the neuron.

Figure 2.5: Recurrent Neural Network with one hidden layer
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yt = f(U.xt. + W.yt−1) (2.1)

Recurrent neural networks suffer from exploding and vanishing gradient issues where the

gradients shrink exponentially due to smaller weights and grow exponentially due to larger

weights because of their recursive nature of processing. RNN-based IDS proposed by Yin et

al [90] in the context of binary and multi-class classification of the NSL-KDD dataset. The

model tested using a different number of hidden nodes and learning rates and the results

showed that different learning rates and the number of hidden nodes affect accuracy of the

model. The best accuracy is obtained by using 80 hidden nodes and a learning rate of 0.1

and 0.5 for binary and multi-class scenarios respectively. Xu [91] proposed an IDS based

on RNN using GRU as the main memory together with the multilayer perceptron and a

softmax classifier. The proposed methodology tested using KDD Cup99 and NSL-KDD

datasets. The experimental results showed good detection rates in compariosn to other

methodologies. The major drawback of their model is lower detection rates for minority

attack classes like U2R and R2L.

2.4.4 Long Short term memory (LSTM)

Long short-term memory (LSTM) [92] is a type of recurrent neural network (RNN) that

inherently captures the order sequence. It is introduced by Hochreiter and Schmidhuber

in 1997 that mitigates the vanishing and exploding gradient problem by replacing the con-

ventional nodes in the hidden layer of conventional RNN(Recurrent Neural Network) with

memory cells. LSTM consists of various cells i.e. update u<t>
g , output o<t>

g , forget gates

f<t>
g . where these cells remember values over arbitrary time intervals and regulate the flow

of information through the cell as shown in figure 2.6. Due to this reason it is used to handle

vanishing and exploding gradient problems in RNN.

As shown in figure 2.6, Let us assume for given sequence of inputs x1, x2, . . xt, model

computes sequence of output as y1 ,y2. . . .yt. Let wf , wu, wo, wa, wd and bf , bu, bo, ba, bd are

trainable parameters (weights and bias), c<t−1> and c<t>represents previous and next cell

states respectively. Equations (2.2) are used to compute the forget f<t>
g , update u<t>

g and

output gate o<t>
g states and ultimately the final cell state c<t> and activation values a<t>

are computed.

27



Background Study

Figure 2.6: Long short-term memory network



f<t>
g = sigmoid(wf [a<t−1>, xt] + bf )

u<t>
g = sigmoid(wu[a<t−1>, xt] + bu)

o<t>
g = sigmoid(wo[a

<t−1>, xt] + bo)

c̃<t> = tanh(wcx
t + uca

<t−1> + +bc])

c<t> = f<t>
g c<t−1> + u<t>

g c̃<t>

a<t> = tanh(wa[a
<t−1>, xt] + ba)

a<t> = o<t>
g .tanh(c<t>)

(2.2)

The fundamental idea behind the use of LSTM for anomaly detection is the system

checks the past values over a certain amount of time and tries to predict the behavior for

the upcoming time step. If behavior in the next time step belongs to normal behaviors,

then it is normal, and anomaly otherwise as used in [93]. The Stacked LSTM RNN is also

used for anomaly detection, as discussed in [94]. In this approach, the model is designed

to accept only one-time steps as input, and the LSTM state is maintained across the input

sequence. The data is trained with normal time series instead of training on normal data

only. Thus, for each observation, there are multiple predictions made at different times

previously. The prediction information is then gathered to calculate error vectors using a

multivariate gaussian distribution to detect an anomaly. LSTM units have also been used to

develop autoencoders that can capture the temporal effect [27,28]. In this research, LSTM

units have been used to analyze the effect of temporal features in Chapter 3. LSTM units
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also also used to develop the protocol aware mechanism for IDS in Chapter 4.

2.4.5 Autoencoder

An auto-encoder(AE) is a learning algorithm that applies back-propagation, sets the target

values to be equal to its inputs, and learns the compressed representation of the input

data as shown in figure 2.7. The middle layer is the compressed representation. The auto-

encoder model is composed of an encoder and a decoder stage. The encoder compresses the

input data, causing loss of information and the decoder tries to reconstruct the compressed

data as accurately as possible. The loss is then calculated as the difference between the

original input and the reconstructed one. The aim of this task is to learn the intermediate

representation of the input data in latent space. To compress data with minimal loss of

relevant information, the network has to find patterns in the input and ideally learn some

semantics or context of the data. The backpropagation and gradient descent techniques are

the standard methods to train an autoencoder. An autoencoder does not require labeled

input data because it uses the input as a model for correcting its output. This training

process is thus unsupervised in nature. Autoencoders are particularly used for nonlinear

dimensionality reductions and learned representations can be used as a classifier for attack

detection. For a given input sample x, autoencoder regenerates the input x́ again, and can

be defined in equation (2.3) where x́ is the regenerated output of x.

x́ = decoder(encoder(x)) (2.3)

For anomaly detection task, the autoecoder is generally trained using normal data, and the

regeneration error (say, e = (x − x́)2) is expected to be low for normal data, and high for

anomalous data.

Different variants of AE have been proposed like Stacked AE, Sparse AE, and Variational

AE which have been used for attack detection. Autoencoder model have been used to learn

the intermediate representations and use in building the classification methods. Shone et

al [34] proposed an IDS based on deep AE and Random Forest. In the proposed approach,

only the encoder part of AE is utilized to train the Random Forest model in order to make

the model efficient in terms of computational and time. The experiments were performed

for multiclass classification scenarios using KDD Cup 99 and NSL-KDD datasets. Yan [33]

proposed an IDS using a stacked sparse autoencoder (SSAE) and SVM. The SSAE used as
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Figure 2.7: Structure of an Autoencoder network

the feature extraction method and SVM as a classifier. The performance results have been

presented by comparing different feature selection, ML, and DL methods using the NSL-

KDD dataset. Autoencoder models have also been used to build unsupervised learning-based

methods by using various inherent units like MLP, LSTM, CNN, etc. These methods are

usually trained on Benign traffic and identify the attacks based on high deviation from the

learned thresholds. The major research contribution of this thesis is focused on building

such autoencoder-based models. These methods have been extensively used in Chapter 3,

Chapter 4, Chapter 5.

2.4.6 Self Attention and Multi-head Attention

LSTM units have been used earlier to build the encoder-decoder network to solve the

sequence-to-sequence problem but the major drawback of the LSTM-based network is that

it is unable to remember the long-range dependency because the performance of the network

degrades rapidly as the length of input sequence is increased. To resolve this issue attention

mechanism [95] has been devised that selectively concentrates on relevant information in

the input sequence. The Self-Attention mechanism is generally used to learn the effect of

different positions of sequence in order to compute the final representation. It is used in

developing transformer-based models that help in the process of computing the attention
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weights and is mainly used to learn the relative importance of input sequences that may

result in a better intermediate representation. The importance of the attention mechanism

is to highlight important concepts rather than focusing on all the information.

The self-attention is described as mapping a query (Q) and a set of key-value (K, V)

pairs to an output, where the query, keys, values, and output are all vectors. The meaning of

query, value, and key depends on the application for e.g. in the case of text similarity, query

is the sequence embeddings of the first piece of text and value is the sequence embeddings

of the second piece of text. Key (K) is usually assigned the same as a value vector. The

attention is defined as in equation 2.4

Attention(Q,K, V ) = softmax((Q.KT ).V ) (2.4)

The self-attention is usually able to capture the representations in one linear projection.

However, it is beneficial to capture the representations in multiple projections, and Multi-

head attention [95] is used for this. It is mainly used to generate multiple representations

from the output of the self-attention layer and learns different representations using multiple

heads in parallel. It combines the knowledge of the same attention pooling via different

representation sub-spaces and captures richer representations. This layer is introduced

to learn more generalized outcomes by learning different aspects of an input sequence.

Let headi denotes the computed information in ith projection then multihead Mhead is

represented as in equation 2.5

{
headi = Attention(Q,K, V )

Mhead(Q,K, V ) = Concat(head1, head2, ...headh)
(2.5)

Several solutions have been proposed by using the attention mechanism. Tan et al [96]

proposed a neural attention model for intrusion detection using transformer-based archi-

tecture and tested the results on the CICIDS2017 dataset. The comparison with the bi-

directional LSTM and Conditional Random Field (CRF) model suggests a meaningful im-

provement in the score. The concepts of self attention and multihead attention have been

used in this research to learn the protocol channel importance and improving the detec-

tion metrics for unsupervised intrusion detection system. This concept is primarily used in

chapter 4.
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2.5 IDS Datasets

Machine learning algorithm requires a lot of data to train with and the quality of data

is crucial in any machine learning problem. Over the period, several datasets have been

prepared using the test bed with attacks. These datasets constitute network packets as

raw data and the flow level information is extracted using various utilities and subsequently

data labelling is performed by domain experts. In the intrusion detection field, a lot of

standard datasets are proposed like KDD99, NSL-KDD, UNSW-NB15, etc. However, some

of these datasets are too old and are unable to depict the modern network scenario. Other

recent datasets like CICIDS2018 and CICDDoS2019 are specifically built to depict the

modern network which is developed at CIC (Canadian Institute of Cybersecurity). These

recent datasets (i.e. CICIDS2018 and CICDDoS2019) have been utilized in this thesis for

building unsupervised learning-based methods that consist of realistic attack scenarios. A

brief description of available datasets is as follows.

2.5.1 KDD99

KDD99 Dataset [97] is a well-known benchmark dataset in the research of Intrusion Detec-

tion techniques. It has been one of the most popular datasets since its release in 1999 which

was developed by MIT Lincoln Labs. The dataset consists of nine weeks of raw TCP dump

data from a simulated U.S. Air Force network, with the addition of numerous attacks. It

consists of the attack categories into 4 major types i.e. Denial of Service (DoS), Probing,

User to Root (U2R), and Remote to Local (R2L). Denial of Service is a kind of attack in

which the attacker compromises the victims so that it becomes unable to handle legitimate

requests. Syn Flooding, Smurf Attack, UDP Storm, etc., are some of the examples of DoS

attacks. On the other hand, the main objective of Probing is to gather information about

the victim host like port scanning, OS fingerprinting, etc. The U2R attack poses unau-

thorized access to local machines using superuser privileges. In this attacker tries to gain

root privileges by exploiting some vulnerability in the victim machine e.g. Buffer overflow

attacks. In the R2L type of attack, the attacker gains unauthorized access to the remote

machine and acquires local access to the victim machine and password guessing is one kind

of such attack. The KDD99 dataset contains a huge number of redundant and duplicated

records and other mistakes that affect the performance of classifiers due to which it become

biased towards more frequent records.
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2.5.2 NSL-KDD

The NSL-KDD dataset [98] is the refined version of the KDD99 dataset which is generated

after removing the existing anomalies in the KDD99 dataset. The redundant records are

removed from the KDD99 dataset and it makes sure that sufficient numbers of records

are available in the dataset for each category. In the complete dataset train and test files

are provided separately as KDDTrain+ and KDDTest+. NSL-KDD dataset contains 41

different flow level features which are divided into 4 different types as follows:

• Basic features : duration, protocol type , service, flag, src bytes, dst bytes, wrong

fragment, urgent.

• Content related features : num failed login, logged in, num compromised, root shell,

su attempted, num root, num file creations, num shell, num access file, is hot login, is

guest login.

• Time related features : count, srv count, serror rate, srv error rate, rerror rate etc.

• Traffic features : dst host count, dst host srv count, dst host same srv rate, dst host

same src port rate etc.

Although NSL-KDD is the improved version of the KDD99 dataset, it is not a compre-

hensive representation of the modern attack environment. Due to this recent benchmark

datasets are generated to mimic the modern network behaviour.

2.5.3 UNSW-NB15

The UNSW-NB15 dataset [99] is the latest dataset developed to overcome the limitations of

the KDD99 and NSL-KDD Datasets. The UNSW-NB15 dataset consists of captures span-

ning two days in which attacks are launched with normal traffic for reference. This dataset

defines the attack categories into 9 major types. The training dataset constitutes data in

multiple CSV files. It consists of 4 different CSV files with around 1 million records. These

records are collected over a test bed using Argus and Bro IDS through IXIA PerfectStorm

Tool in the Cyber Range lab of UNSW Canberra. A brief introduction of different attacks

is as follows.

• Reconnaissance: This is a kind of attack in which attackers gather information about

the targeted machine. It can be of multiple types like IP/ Network reconnaissance, site

reconnaissance, DNS reconnaissance, social engineering, port scan, OSscan, etc.
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• ShellCode: It is a small piece of code that is used as a payload in the exploitation

of software vulnerability. Buffer overflow attack is one of the known attacks in this

category.

• Generic: Generic attacks are attacks that work against cryptographic primitives and

find vulnerabilities in the available algorithms like birthday attacks, man-in-the-middle

attacks, etc.

• Worm: Worm is a standalone malware computer program that replicates itself in order

to spread. It uses a computer network to spread to other systems and compromise the

network systems.

• Fuzzers: Fuzzers use the widest range of unexpected inputs in order to discover new

and unknown vulnerabilities in the network.

• DoS: DoS attacks are majorly categorized into attacks that compromise the accessibility

of the system like the Smurf attack.

• Exploits: Exploits use the widest range of unexpected inputs in order to discover new

and unknown vulnerabilities in the network.

• Backdoor: Backdoor is malware that installs itself as part of an exploit and gets access

to resources at the initial stage.

• Analysis: Attack involves analyzing the system information, details, stats, and other

attacks that follow after this attack.

Although UNSW-NB15 is the recent dataset, it is not a comprehensive representation

of the modern attacks and constitutes only a subset of the attacks. Due to this, recent

benchmark datasets are generated specifically for the group of attacks that exhibit recent

attacks.

2.5.4 CICIDS2018

CICIDS2018 dataset [1] is the recent dataset developed at the Canadian Institute of Cyber-

security (CIC). It presents real-time network behavior and comprises several intrusion states.

It provides 10 days of traffic, from Wednesday, February 14, 2018, to Friday, March 2, 2018,

and is captured on the test bed that consists of 5 different departments of 100 machines and

an attack network of 50 machines as shown in figure 2.8. The dataset is developed using the
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Figure 2.8: Network Topology of CICIDS2018 dataset [1]

concept of profiles where two general classes of profiles i.e., B-profiles are used to generate

the normal traffic, and M-profiles are used for attack scenarios. FTP-Patator and SSH-

Patator tools [100] are primarily used for performing brute force attacks and DDoS attacks

are performed using LOIC and HOIC tools. Network packets are captured and associated

flows are generated using CICFlowMeter-V3 and extracted more than 80 features. In total 7

different types of attacks are captured in the dataset on different dates. The seven different

attacks include brute force (FTP-Patator and SSH-Patator), Denial of Service (slow loris,

SlowHTTPTest, Hulk, GoldenEye), Heartbleed, web attacks (Damn Vulnerable Web App,

XSS, brute-force), infiltration of the network from inside, botnet, and Distributed Denial of

Service with port scanning (Low Orbit Ion Canon).

2.5.5 CICDDoS2019

The CICDDoS2019 dataset is published by the Canadian Institute for Cybersecurity (CIC)

[2] and is publicly available which is specifically for DDoS attacks. It contains different types
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of DDoS attacks that are categorized into Reflection-based and Exploitation-based DDoS

attacks. In reflection-based attacks, the attacker sends the request to the victim as well as

other machines in the network where the request packet carries the spoofed address of the

victim, and hence all other machines reply back to the victim address causing bandwidth

exhaustion. Exploitation-based DDoS attacks are possible due to a variety of vulnerabilities

present in TCP/IP protocols and a set of attackers exploit these vulnerabilities to launch

DDoS attacks.

Figure 2.9: Network Topology of CICDDoS2019 dataset [2]

The test-bed architecture as shown in figure 2.9 consists of two completely separate

networks the Attack-network and the Victim-network. The Victim-Network is secured with

a firewall, router, switches, and several common operating systems however Attack-Network

is a completely separated infrastructure where different attacks are executed. The victim

network also consists of an agent that produces benign behaviors on each computer. The

test-bed produces realistic background traffic and follows the B-Profile approach [101] which

is responsible for generating benign traffic by using abstract behavior of human interactions.

It employs 11 different DoS attack profiles and most of these attacks are at the application

level. The dataset includes raw packets of network traffic in PCAP format and flow-level

records with more than 80 features are extracted using CICFlowMeter-V3 [102].
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2.6 Evaluation Metrics

To measure the effectiveness of different IDSs and machine learning models in general, a

commonly used set of performance metrics has been devised to promote comparison between

solutions. These metrics are used to estimate the performance of the proposed method.

2.6.1 Classification Metrics

Several classification metrics can be used to describe the performance of an IDS. Let us

assume, FP denotes the False Positives, FN denotes the False Negatives, TP denotes the

True Positive and TN denotes the True Negatives then various classification metrics are

represented as follows :

• Precision : This is the percentage of packets detected as attacks out of total outcomes.

For example, for a packet, if 7 out of 10 outcomes are identified as attacks then precision

is 70 percent. This is depicted in the following equation.

Precision =
TP

TP + FP
(2.6)

• Recall or Detection Rate : This is the percentage of packets detected as attacks out

of total attacks. It is the measure of the sensitivity of the system. For example, for a

packet, if 7 out of 10 are identified as True attacks then the detection rate is 70 percent.

This is depicted in the following equation.

Recall =
TP

TP + FN
(2.7)

• F1 Score : This is the harmonic mean of precision and recall computed. A high F1

score identifies low false positives and low false negatives.

F1− Score =
2 ∗ Precision ∗Recall

Precision + Recall
(2.8)

• Accuracy : This metric determined how much accurate the prediction is for the build

model on different classes.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.9)
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2.6.2 Clustering Metrics

To evaluate the clustering method various evaluation metrics have been proposed to estimate

the effectiveness of clusters formed. A brief introduction to these metrics is as follows:

• Silhouette Score : Silhouette score is used to define how well the clusters are formed.

It consists of two parts i.e. Mean distance between the sample and all other points in

the same cluster and, The mean distance between the sample and all other points in

the next nearest cluster. If these distances are represented as a and b then silhouette

score Sscoreis computed as equation (2.10),

Sscore =
(b− a)

max(a, b)
(2.10)

• Purity Score : Purity score is used to identify the cluster quality where the label to each

cluster is assigned based on the most frequent class and the purity is calculated based

on the number of correctly matched class and cluster labels divided by the number of

total data points. Let N is the number of data points, K is the number of clusters, ci

be a cluster in C, and tj is the classification which has the max count for cluster ci

then equation (2.11) represents the purity for computed clusters,

Purity =
1

N

k∑
i=1

maxj|ci ∩ tj|) (2.11)

• Homogeneity Score : The homogeneity score considers that each cluster contains only

members of a single class. This measure can be determined by using conditional en-

tropy which is uncertainty in determining the right cluster given the knowledge of the

class. The homogeneity score is bounded between [0,1]. A higher score denotes better

clustering. Let Ytrue and Ypred are actual and predicted outcomes, and H represents

the estimated entropy values. The equation (2.12) represents the formula to compute

the homogeneity score.

Homogeneity = 1− H(Ytrue|Ypred)

H(Ytrue)
(2.12)
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2.7 Summary

In this chapter, the details on network terminologies like the hierarchical structure of the

TCP/IP layer and associated protocols and the most common related attacks are discussed.

The structure of the network packet is described in terms of attached information at various

stages of transfer and protocol-specific information is attached. The discussion follows with a

brief explanation of supervised learning-based methods devised for intrusion detection and a

detailed explanation of various unsupervised learning-based methods like clustering, outlier,

statistical, and deep learning approaches is presented. Various deep learning-based process-

ing units like MLP, CNN, LSTM, autoencoder, and self-attention networks are explained

in detail and related concepts used in developing IDS are discussed. The introduction to

various datasets used in IDS research is described further and provides a detailed descrip-

tion of features, attacks covered, etc. The chapter concludes with an explanation of various

classification and clustering metrics used for evaluation. In the next chapters, the major

contribution in the area of network-specific attack detection using unsupervised techniques

is presented.

;;=8=<<
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3
Influence of Temporal Context in Network

Intrusion Detection System

3.1 Introduction

The previous chapter discusses about major concepts in computer networks, related attacks

and machine learning algorithms used to build supervised and unsupervised learning-based

Intrusion detection systems. The available datasets used to build the IDS systems are also

discussed. Recent trends have shown that the research is focusing on building unsupervised

learning-based methods for Intrusion detection. The deep learning-based methods have

been utilized to learn the representations from normal data and identify the attack based

on regeneration error. However, most of the proposed methods ignore the effect of decaying

information with time while generating the representation.

In this chapter, the unsupervised learning based approach is proposed to detect the at-

tack in network flows by training the model using only normal traffic and using reconstruc-

tion error as the parameter to classify the attack event. The proposed system is contextual

and is able to consider the influence of temporal context while taking the attack decision.

Various experiments are performed on different recent datasets like CICDDoS2019 [2], and

CICIDS2018 [1] and experimental results exhibit that the proposed model overall provides
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better classification metrics.

3.1.1 Significance of Temporal Context

Temporal context plays a vital role in correctly predicting the attacks due to the sequential

nature of the attack life-cycle. In many of the earlier proposed methods, Long Short term

memory (LSTM) [27, 28] based models have been proposed for attack detection, however

such model does not consider time decay factor explicitly to provide more importance to

recent events. This weight decay factor plays an important role in providing diminishing

weight values for events according to time. LSTM units have also been used to build

autoencoder-based networks which can be used to represent the contextual information in

compressed form and able to re-generate the output same as supplied input. This capability

of regeneration has been used for anomaly detection where the autoencoder is trained first

with normal data and attack identification is confirmed if the regeneration error is higher

than the defined threshold. Some of the earlier proposed solutions using similar concept

like [27] considers unsupervised modeling using an ensemble of autoencoders and utilize

the damped incremental statistics but lacks in considering the temporal context inherently

as various time-specific features are pre-built with different time window length, On the

other hand in solution [28] temporal context is considered using LSTM autoencoder but

an inherent property of LSTM does not allow the effect of weight decay with time. This

motivates us to consider elapsed time (time between consecutive events) information when

predicting current events, and regularize the attribute values to a latent representation

using autoencoder network. This elapsed time information is ultimately used to assign a

weight decay factor to previous events. The main purpose of this research is to address

this by considering the previous context with weighted decay factor using a multi-layer

Time aware LSTM [103] (TLSTM), and regularize the feature and regenerate the input

data using an autoencoder. In TLSTM [103], inherent units are designed to handle data

with variable elapsed time between consecutive elements of the sequence and it uses subspace

decomposition of all memory that enables time decay to discount memory content according

to elapsed time as specified in section 3.3.2.1. TLSTM is proposed earlier to incorporate the

elapsed time information into standard LSTM that enables it to capture temporal dynamics

of sequential data with time irregularities.

TLSTM model has also been used earlier in the medical domain for disease progression
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modeling [104] and patient subtyping [103] where information is generated in the irregular

time interval. It has also been used in business process monitoring tasks as specified in [105].

With these existing implementations of TLSTM, this research propose to utilize TLSTM

based network to estimate the change in data characteristics over time. Further, to mitigate

the problem of generating labeled data under supervised framework, this research consider

an unsupervised framework and use the regeneration error as the criteria for detecting

attacks. The idea is, Given a model trained on a normal traffic to regenerate the input data,

the regeneration error for attack data should be higher. Therefore, a machine learning-based

method is required that utilize normal network traffic data to train with. In practice, it

is easy to obtain the normal traffic flow data by using various utilities like Netflow [106],

CICFlowMeter [102], etc. These normal flow records can be used to learn the characteristics

of normal traffic and with the learned parameters, an attack can be identified based on

estimated error.

The proposed method works by training the TLSTM autoencoder model using extracted

contextual features on normal flow records with low reconstruction error and in case of

attack, the trained model produces a larger reconstruction error to trigger an anomaly. An

Autoencoder [107] is one of the state of the art deep learning based method which is used

for unsupervised anomaly detection [108–110]. It pertains to profiling the normal network

traffic, and identifying any deviation from the normal as an anomaly. It consists of two parts

Encoder and Decoder. With the given input of N dimensional vector, encoder compresses

it into latent vector represented as k where N > k and decoder thereafter reconstructs the

compressed latent vector back to N dimension. An Autoencoder trained with Normal traffic

learns the pattern for reconstruction for normal data and classify input instance as attack

if reconstruction error is larger than predefined threshold.

3.1.2 Contributions

The main contributions of this chapter can be summarized as follows:

• Time aware LSTM based autoencoder is utilized to capture the influence of temporal

context and regularize the features using the TLSTM based autoencoder network.

• The proposed system is based on unsupervised setup to estimate re-construction error,

and identify attacks based on a threshold obtained only from normal traffic.
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• This research work utilize multiple recent benchmark datasets - CICIDS2018, and CICD-

DoS2019 for evaluating the performance of the suggested method for FTP BruteForce

(FTPBrute) and UDP Denial of Service attacks (UDPDoS).

The chapter is organized in different sections as follows. Related works are discussed in

Section 3.2. Section 3.3 explains the proposed method in detail and the components involved

in the processing. The implementation of the proposed approach and experimentation

results are presented and a comparison with existing solutions is discussed in Section 3.4.

In Section 3.5 the summary is presented.

3.2 Related Works

Deep learning models have been predominantly used recently in the area of network intrusion

detection as they can learn the discriminatory features automatically and capture the non-

linearity in a high dimensional dataset. Various deep learning based solutions have been

proposed earlier to capture the spatial and temporal context, mentioned as follows.

3.2.1 Supervised learning based methods

Supervised learning-based solutions like HCRNN [50] is proposed earlier in which the author

has used the concept of utilizing the spatial and temporal features together using convolution

neural network model (CNN) and recurrent neural network (RNN) layers in sequence. It

initially processes the features through the proposed CNN network and later passed through

the RNN network to generate the sequence at each timestep. CNN is mainly used to

capture the local features while temporal features are captured using RNN. To handle the

data imbalance issue, oversampling strategy is utilized and the proposed method achieved

97.75% of accuracy with 10-fold cross-validation on CSE-CIC-IDS2018 dataset.

Another online supervised learning-based method using LSTM for abnormal traffic de-

tection is proposed in DeepWindow [111]. In the proposed method LSTM is used to capture

the previous contextual information and MIMC(Mutual Information and Maximal Informa-

tion) coefficient method is used for feature selection. Features like count packets, count PSH

flag, total time, packet max, average length, etc. are computed for a fixed time window on

the CICIDS2017 dataset.

Being a supervised solution, it desires the data to be revised periodically to detect the
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new attack. The major limitation of these proposed solutions is that it is unable to handle

the irregular time interval between events and assign equal weights to previous events.

3.2.2 Hybrid learning based methods

Anomaly can also be detected by utilizing the concept of regeneration error through au-

toencoders. LSTM-based autoencoder along with One class SVM is proposed in [28] to

detect the anomalous behavior using reconstruction error threshold on InSDN dataset [112]

specifically for attacks in SDN (Software defined networking) environment. It uses a con-

text length of 1 which is not taking into consideration of the previous context and lacks

in capturing the effect in subsequent flows. Another method to capture the spatial con-

text [113] is proposed, which is using a convolutional autoencoder with one class SVM. In

this method, multiple convolutional layers (CNN) are used for representation learning and

the joint optimization framework by defining reconstruction and classification error into a

unified objective function is proposed in this scheme. Another approach based on an en-

semble of autoencoder-based detection systems is proposed in Kitsune [27] that is used to

catch attacks without supervision. It is based on training autoencoders on normal traffic

and performs anomaly detection based on estimated reconstruction error. The proposed

method computes 115 statistical features over 5 last time windows and applies a dampening

effect over time. The method consists of two parts an ensemble layer for training and the

output Layer for producing the final score of anomaly. To reduce the number of features

agglomerative hierarchical clustering is primarily used.

Authors in [114] proposed a sparse autoencoder-based model combined with a kernel

function. The overall optimization in this proposed method is performed using a genetic

algorithm and the method is tested on botnet detection data. DeepStream [115] proposed

an autoencoder-based stream clustering method and identify the anomaly based on distance

and reconstruction error method. Authors in [116] suggested a two-stage autoencoder model

for anomaly detection. Autoencoder in the first stage is used to filter high probability normal

traffic and variational autoencoder(VAE) in the second stage is used to identify attacks using

reconstruction probability. Due to the introduction of VAE, the proposed solution suffers

from high computation time. Most of these hybrid models suffer from high computation

time and complexity.
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3.2.3 Similarity Learning based methods

Attacks can also be detected by comparing the learned representations of normal, attack-

specific scenarios individually and comparing the distance between the pairs. It is expected

that distance is higher in case of anomaly presence. This concept is used to train the special

networks like triplet networks proposed by authors in [117]. In this method autoencoder-

based metric learning for network intrusion detection by combining autoencoders with triplet

networks is proposed. It requires two separate autoencoders to be trained on normal and

attack data. The learned triplet network is used to separate attacks from normal traffic.

Another paper [118] propose training the siamese network to differentiate between class

based on pair similarities using constructive loss. The proposed methods require data seg-

regated into normal and attack classes and it is also unable to capture the temporal context.

In this section, recent research work is studied where autoencoder-based deep learning

models have been used predominantly for detecting various attacks. Some of the proposed

solutions consider the previous context but do not capture the irregular time interval and

does not use the decay function to reduce the effect of prior values with time. With this

motivation, the proposed method overcomes the existing limitations of each method as

specified in table 3.1. The proposed methodology is discussed in detail in the next section

3.3.

3.3 Proposed Methodology

Data regeneration is a well-known unsupervised method used to detect anomalies in given

network traffic records. This re-generation of data can be performed using autoencoder

based models. The proposed method is based on estimating this regeneration error through

autoencoder-based network. After training the proposed network, the threshold θ is deter-

mined which is used at the inference stage to detect if the input traffic is Benign or Attack,

an error is estimated using a learned autoencoder and compared with the learned threshold

values. It is expected that for Benign traffic low regeneration error occurs while in the case

of Attack traffic high regeneration error is estimated through the autoencoder network.

To consider the contextual information from the sequence of traffic records specific con-

text window of size ∆w is pre-selected to process the records. This window represents how

much historical information is to be taken into account to predict the current state. The pro-
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Table 3.1: Comparison of various available methods

Method
Labeled Data
Requirement

Processing
Stages

Complexity
Diminishing

Context

Supervised
Learning based
methods [3.2.1]

Labeled Data is
required to build
models.

Single classifica-
tion model

Low complexity
to build model.

Not consid-
ered.

Hybrid Learning
based methods
[3.2.2]

Labeled data is
not required.

Multiple models
are trained.

High complexity
to train models.

Not consid-
ered.

Similarity Learn-
ing based meth-
ods [3.2.3]

Required data
separated for
Normal and At-
tack traffic.

Separate models
are trained for
each type of data.

High complexity
to train models.

Not consid-
ered.

Proposed Method
[3.3]

Labeled data
is not required.
Only normal traf-
fic is considered.

Single model
trained only on
Benign data.

Low complexity
to train models.

Diminishing
context is
considered.

posed method considers the flow level records, available in the dataset as specified in section

3.4.1, for training the model. These records consist of bi-directional network flow-related

statistical information like total packets, total size, packet rate, byte rate, inter-arrival time,

TCP flag information, etc. that are pre-calculated by flow analysis tools. At the initial

stage, these feature values are normalized on a common scale explained later in section

3.3.1. To capture the temporal context from the incoming flow of records that are ordered

by timestamp, a context of fixed length ∆w is used to capture the temporal propagation

of information. Context length determines how much of the previous context needs to be

captured in processing. Figure 3.1 shows the schematic diagram of the proposed system.

Let X be the sample input data with context of length n. Then, it consists of records

x1, x2, x3, x4 , . . , xn generated at subsequent timestamps t1, t2, t3, t4 , . . tn . Each of the

records (represented with normalized features) is supplied to TLSTM Encoder (discussed at

section 3.3.2). The encoder module consists of multiple layers and each layer is associated

with multiple TLSTM units. The flow of records is processed through each TLSTM unit

where the output of the next unit is based on the previous context. At the last stage

of the encoder, intermediate representation is generated which is provided to the TLSTM

decoder module. The decoder module consists of the same number of stages as specified

in corresponding encoder layer and tries to re-construct the supplied information at the
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Figure 3.1: Processing diagram for T-LSTM based Autoencoder Network

subsequent stage of processing. At the final stage, decoder generates the output as Y which

is of the same dimension as the input X. Now the reconstruction error based on provided

loss metric is estimated as defined in section 3.3.2, which helps us to identify the threshold

θ for normal traffic. Once the threshold is determined, incoming flow is identified to be an

attack specifically if the reconstruction error is larger than threshold θ. All the components

are executed in succession for every incoming flow in ∆w context of flow records to identify

attack activity. The proposed solution consists of Data Preparation and Model Building as

major components as described below:

3.3.1 Data Preparation

Data Preparation is a prerequisite for any modeling task. The available flow level numerical

features as specified in tables 3.2 and 3.3 are utilized. These feature set consists of various

flow level numerical statistics like packet transfer rate, length, inter-arrival times, sub-flow

information, header statistics etc. Since the feature values follow different ranges, so to

avoid the model bias, it is required to transform them to a common scale. For this purpose,

Normalization is used to transform features in with mean and standard deviation as (0, 1)
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respectively. For feature values shown as X, the transformed value is represented as Xt,

mean and standard deviation of X are µ and σ respectively. Equation 3.1 represents the

normalization process.

Xt =
X − µ

σ
(3.1)

After normalizing the dataset, It is required to supply the sequential information for

modeling. The provided context length ∆w is used to process the sequence of flow records.

The specified context length determines how much the previous context is utilized to learn

the temporal information.

Table 3.2: Feature set Information for CICIDS2018 [1] dataset

S.No. Feature Category Feature Description Count
1 Packet Transfer rate Features specific to forward and backward

packet transfer rate
5

2 Packet Length Features specific to forward and backward
packet length information

15

3 Inter-arrival Time Elapsed time information between flows 14
4 Header information Features specific to header information like

flag count, header length etc.
14

5 Segment information Features specific to segment size information 4
6 Transfer rate Features specific to bulk transfer rate 7
7 Subflow related Features specific to sublow information 7
8 Flow activeness Statistical Features specific to flow activeness

information
8
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Table 3.3: Feature set Information for CICDDoS2019 [2] dataset

S.No. Feature Category Feature Description Count
1 Packet Transfer rate Features specific to forward and backward

flow packet transfer rate
5

2 Packet Length Features specific to forward and backward
flow packet length information

16

3 Inter-arrival Time Elapsed time information between flows 14
4 Header information Features specific to header information like

flag count, header length etc.
15

5 Segment information Features specific to segment size information 2
6 Transfer rate Features specific to bulk transfer rate 7
7 Subflow related Features specific to sublow information 4

3.3.2 Model Building

3.3.2.1 Time aware LSTM Model

Figure 3.2: Time Aware LSTM

TLSTM [103] model contains long short term memory unit capable of handling irregular

time intervals in data. It uses elapsed time information between consecutive events and

adjust cell memory inherently. As shown in figure 3.2, Time aware LSTM model unit

consists of two parts Time aware unit (T-LSTM) and Vanilla LSTM unit. Let us assume

for given sequence of inputs x1, x2, . . . . xt, model computes sequence of output as y1

,y2. . . .yt. Let Wf ,Wu,Wo,Wa,Wd,Wc and bf , bu, bo, ba, bd, bc are trainable parameters,

C<t−1> and C<t> represents previous and next cell states respectively. As represented from
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the recurrence in equations (3.2), Time-aware units compute cell states C<t−1>
∗ using the

specified decay function with △t as time interval. This decay functions determines the

amount of information decay with time.



C<t−1>
S = tanh ( Wd C<t−1> + bd)

Ĉ<t−1>
S =C<t−1>

S ∗decay(△t)

C<t−1>
T =C<t−1>−C<t−1>

S

C<t−1>
∗ =C<t−1>

T +Ĉ<t−1>
S

C̃<t>=tanh(Wc xt+ Uc a
<t−1>+ bc)

(3.2)

The modified cell state is C<t−1>
∗ is finally used in Vanilla LSTM part to compute the

forget f<t>
g , update u<t>

g and output gate o<t>
g states and ultimately the final cell state

C<t> and activation values a<t> are computed as shown in equations (3.3).



f<t>
g = sigmoid ( Wf [ a<t−1> , xt ] + bf )

u<t>
g = sigmoid ( Wu [ a<t−1> , xt ] + bu)

o<t>
g = sigmoid ( Wo [ a<t−1> , xt ] + bo)

C<t> = f<t>
g * C<t−1>

∗ + u<t>
g * C̃<t>

a<t> = o<t>
g ∗tanh(C<t>)

(3.3)

3.3.2.2 TLSTM Autoencoder Model Training

The main objective of this stage is to train the TLSTM based autoencoder model. The

pre-defined context length (To use the information from previous timesteps) is selected to

feed into TLSTM based model that is used to define the number of units in the input

layer. The proposed model consists of encoder and decoder stages and each stage consists

of multiple TLSTM units as shown in figure 3.1. Encoder block reduces the dimensions to

an intermediate representation that illustrates the compressed input data. The compressed

format is then fed into decoder blocks for generating the output feature vector and layers

in decoder blocks are arranged in reverse order as encoder layers. The final layer of the

decoder generates an output vector and Mean Square Error (MSE) is used to calculate the

error between input and output vector using equation (3.4). Let X be input sequence with

n feature vectors corresponding to N records and Y be the corresponding output vector
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sequence then mean squared error MSEX can be estimated using equation (3.4).

MSEX =
1

n

n∑
i=1

|Xi − Yi|2 (3.4)

The estimated error helps us to identify the reconstruction error threshold θ, which is

based on the mean of the error values measured for all N records in normal traffic as shown

in equation (3.5). It is expected that reconstruction error for normal traffic data can be less

as compared to that of anomalous traffic data. This behavior help us in detecting anomalous

traffic if it is greater than the defined threshold.

θ =
1

N

N∑
x=1

MSEX (3.5)

The total complexity of the training an autoencoder model for two layers of size N is

O(N2) where N is the number of neurons in each layer. Let us assume there are k layers in

autoencoder network then the overall complexity is O(k * N2). Since k <<<N, therefore

complexity can be assumed as O(N2)

3.4 Experimentation Results

3.4.1 DataSet

Two different publicly available network attack-specific datasets are considered to evaluate

the performance of the proposed method. The features of the datasets are shown in the

Table 3.4

Table 3.4: Information on Dataset parameters used for experimentation

Dataset Attack Features Class Data
length

CICDDoS2019 UDPDoS 63
Normal 30109
Attack 3134645

CICIDS2018 FTP BruteForce 74
Normal 667626
Attack 380949
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3.4.2 Baseline Model

Following two baseline unsupervised models are considered for comparison.

• Multi-layer Perceptron (MLP): Instead of TLSTM unit, MLP units are considered in

the proposed auto-encoder framework with the same deep layer.

• LSTM: Instead of TLSTM unit, LSTM units are considered in the proposed auto-

encoder framework with the same deep layer.

3.4.3 Implementation

The flow level data for normal traffic captured for a specific dataset is utilized and all

the available features are selected to train the TLSTM Autoencoder model. The proposed

scheme is implemented on machine with Mac OS consisting of intel core i7 processor with

16 GB RAM and TensorFlow python package is used for the implementation. The follow-

ing configuration for an autoencoder network is used as shown in Table 3.5. The same

configuration has been used for the baseline models as well.

Table 3.5: Model Configuration. The f indicates input feature vector.

Parameter Values
Total Layers 4
Encoder structure f ,128, 64, 32
Compressed output length 16
Decoder structure 32, 64, 128, f
Optimizer Adam
Learning rate 0.0001
Loss function Mean squared error
Batch size 32
Number of Epochs 20

3.4.4 Results and Analysis

In this section, the detection performance of the proposed method is estimated for vary-

ing context length. The TLSTM and LSTM processing units are utilized respectively with

varying context length (upto 20) and evaluated the performance with metrics like Preci-

sion, Recall, F1-score, and Accuracy as shown in Table 3.6. To estimate the prediction
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performance, 10% of normal data is hold out as testing along with the attack dataset, and

estimate the evaluation metrics between Benign or Attack as classes. From the results, it is

evident that higher context length provides better overall classification metrics at a certain

point. This information can help us to select the optimum value for the context length.

Due to data imbalance, it is analyzed that Recall is very high in both TLSTM and LSTM

as there are fewer overall false negatives.

It is also evident that TLSTM is performing better than LSTM overall in terms of pro-

vided metrics. The best metric values is specified in bold that is obtained in various experi-

ments for different datasets. It is analyzed that percentage of improvement in CICIDS2018

dataset is around 3.2% in F1-score and 5.5% in Accuracy respectively for TLSTM model

but the amount of metrics improvement in CICDDos2019 dataset through TLSTM based

model is not very high (0.3% in F1-score and 1.2% in accuracy), that may be due to less

number of training samples present (Table 3.4) in the dataset and time decay factor is not

able to generalize the attack sequence well.

It is also analyzed that TLSTM model provides high variation in metrics over different

context length. However, the LSTM model provides a very small variations for different

context length, for all dataset. The estimated standard deviation on F1-score and Accuracy

for both the datasets for TLSTM based model is ( for CICDDoS2019 (1.3, 2.6) & for

CICIDS2018 (1.5, 2.3)), and for LSTM based model is ( for CICDDoS2019 (0.3, 0.6) & for

CICIDS2018 (0.5, 0.5)) respectively.
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Table 3.6: Context Length vs Detection Performance

Dataset Context
Length

Precision% Recall% F1-score% Accuracy%

LSTM TLSTM LSTM TLSTM LSTM TLSTM LSTM TLSTM

CICDDoS2019

2 94.6 88.0 100 100 97.2 94.1 95.0 89.2
4 94.6 90.8 100 100 97.2 95.1 95.0 91.2
6 93.6 90.1 100 100 96.7 94.7 94.0 90.4
8 93.9 90.8 100 100 96.9 95.0 94.3 90.8
10 94.3 95.1 100 100 97.1 97.5 94.7 95.6
12 93.0 95.0 100 100 96.3 97.4 93.4 96.0
14 94.7 94.4 100 100 97.2 97.1 95.1 95.4
16 94.8 95.3 100 100 97.3 97.6 95.3 96.2
18 94.8 95.0 100 100 97.3 97.6 95.3 96.2
20 94.9 94.6 100 100 97.3 97.2 95.3 95.6

CICIDS2018

2 88.6 90.4 100 100 93.9 94.5 90.4 92.0
4 89.9 89.9 100 100 94.7 94.8 91.6 91.7
6 89.8 90.0 100 100 94.6 94.8 91.6 91.7
8 88.6 91.3 100 100 93.9 95.4 90.4 92.8
10 89.6 90.7 100 100 94.5 95.2 91.3 92.3
12 88.8 96.1 100 100 94.4 98.0 90.5 96.9
14 89.0 94.1 100 100 95.5 95.2 91.1 92.6
16 89.2 96.3 100 100 95.4 98.1 91.2 97.1
18 90.3 96.1 100 100 94.9 98.0 91.9 96.9
20 89.0 96.7 100 100 95.2 98.3 91.1 97.5

In the previous experiment [119, 120] anomaly has been detected using regeneration er-

ror which describes that One class SVM (OCSVM) is another well known method to detect

network anomalies. It has been analyzed earlier by [28] that utilizing learned representation

from the auto-encoder and providing it to One class SVM (OCSVM) model improves the

overall attack detection performance. This motivates us to utilize the learned intermediate

representation from the auto-encoder (taking encoder output only) and use an outlier de-

tection algorithm i.e OCSVM to find the anomalous points. The results are estimated in

table 3.7. For comparison, the model is selected which is performing the best in terms of

F1-score and Accuracy from table 3.6. It is estimated that the performance of the stan-

dalone OCSVM-based model is improved further after applying proposed model on learned

representations using LSTM and TLSTM models. It can also be seen that the TLSTM

based OCSVM model is performing better than LSTM based OCSVM model for all the

data sets.
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Table 3.7: Performance Comparison for OCSVM based models.

Dataset Method Context Length Precision% Recall% F1-score% Accuracy%

CICDDoS2019
OCSVM - 84.89 100 87.3 87.7
LSTM + OCSVM 20 85.8 100 92.3 85.8
TLSTM + OCSVM 16 87.7 100 93.4 87.9

CICIDS2018
OCSVM - 50.0 90.1 64.3 50.0
LSTM + OCSVM 18 62.1 100 76.6 63.4
TLSTM + OCSVM 20 65.2 100 78.6 65.2

From the tables 3.6 and 3.7, it is evident that the maximum performance of both the

autoencoder models (i.e. LSTM and TLSTM) is achieved at larger context length as more

information is captured. For LSTM based model best f1-score is attained at context length

(20, 14), and for TLSTM based model best f1-score is retreived at (18,20) respectively for

CICDDoS2019 and CICIDS2018 dataset.

Further, this section also investigates the number of flows per second processed by the

trained model against the context length (upto 20), as shown in figure 3.3. The figure shows

that the flow processing rate is reduced by taking a larger context length which happens

due to higher processing overhead. With the proposed results, the optimum context length

can be selected to process the data in an estimated time.

3.4.4.1 Time Interval vs Performance

Time interval △t (as seen in equation ( 3.2)) plays a vital role in the TLSTM model. It

is used to specify the interval across previous contexts that decides how much decay factor

is introduced on previous time values. Time interval is specific to attack as each attack

has different relation to previous context. To decide appropriate time interval for a given

context length, the performance metrics at various values of time intervals is analyzed. The

fixed context length of 10 is considered, and the performance metrics are estimated with

varied time intervals. The best suited time interval △t for each dataset is used for the other

experiments with different context length. Though, there is a possibility that for different

context length the best possible time interval is also slightly different. However, to set the

value uniform over different setup, the context length 10 has been considered. Figure 3.4

shows the performance of TLSTM with context length 10 against different time interval.

Recall is not considered into comparison as it is high in most of the scenarios due to data

imbalance. It is evident from the figure that for ftp brute force attacks in CICIDS2018

dataset the best performance is obtained at 6. For the UDPDoS attacks in CICDDoS2019,
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Figure 3.3: Context Length vs Flows per sec.

this value is identified as 10.

3.4.4.2 Baseline Comparison

In this section the various autoencoder models build with different inherent units are consid-

ered. The performance is estimated for MLP based Autoencoder, LSTM based autoencoder,

and proposed TLSTM autoencoder for comparison. The same model configuration as de-

fined in table 3.5 is used. Only the inherent computation units like MLP, LSTM, and

TLSTM are changed for the individual model. The experimentation is performed with

different context lengths upto 20 records. Different context length reports different perfor-

mance. Table 3.8 shows the performance of model for the best context length. The specified

context length has been selected from table 3.6 for which the highest F1-score and Accu-

racy are obtained. It shows the proposed model outperforms both the MLP and LSTM

auto-encoder for all the datasets. In Table 3.8 the best-performing results are compared for

individual MLP, LSTM, and TLSTM based models on specific datasets and it is estimated

that TLSTM based model performs the best in all the scenarios.
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Figure 3.4: Performance of the proposed model over different Time Interval for different datasets

Table 3.8: Performance Comparison of different auto-encoder models.

Dataset Method Context Length Precision% Recall% F1-score% Accuracy%

CICDDoS2019
MLP - 93.6 100 96.7 94.3
LSTM 20 94.9 100 97.3 95.3
TLSTM 16 95.3 100 97.6 96.2

CICIDS2018
MLP - 89.0 100 94.2 90.7
LSTM 18 90.3 100 94.9 91.9
TLSTM 20 96.7 100 98.3 97.5

3.5 Summary

This research work presents a method for attack detection that requires only Normal traffic

records for training. With the use of the proposed method, labeling every network flow data

for a specific attack can be avoided. The latest and representative flow-level dataset is used

for the implementation. The proposed approach is capable of detecting whether an attack is

present or not based on reconstruction error from a trained autoencoder model. It also tested

the performance of different processing units like MLP, LSTM, and TLSTM in the same

auto-encoder architecture. From various experiments on CICDDoS2019, and CICIDS2018

datasets, it is evident that the proposed model outperforms its baseline counterparts for

various attack types like DoS, DDoS, and BruteForce attacks. The results for various

time interval values specific to each attack type are analyzed. This research work also

analyzes the performance with outlier detection-based OC-SVM models and utilizes the

learned representation from the autoencoder based model into OC-SVM based model to

identify the attack. The next chapter extend this work with protocol specific introduction
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systems.
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4
Protocol Aware Network Intrusion Detection

System

4.1 Introduction

The previous chapter discusses the influence of temporal context in an unsupervised learning-

based network intrusion detection system. Various processing units like MLP, LSTM, and

TLSTM are used to build the autoencoder-based model that is based on an unsupervised

mechanism and can be easily implemented using normal network traffic. Since the behavior

of attacks change with the specific protocol behavior, therefore for better discrimination

and detection of attacks it is important to consider the protocol information while attack

detection and enabling the model to follow protocol-aware decisions. In this direction,

this research work proposed a method of utilizing the protocol-specific information while

determining the attacks and developing a method that is protocol-aware in nature.

4.1.1 Need for Protocol aware IDS

In TCP/IP protocol suite [57], various protocol exists at different layers of networking that

are associated to specific application like SSH(Secure Socket Shell), FTP(File Transfer Pro-

tocol) , HTTP(Hypertext Transfer Protocol) etc. These protocols are inherently vulnerable
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to different types of attacks like Brute Force, Denial of Service (DoS), Distributed Denial

of service (DDoS) etc. Attackers use various available open-source utilities like LOIC [5],

Slowloris [6], Nmap [7], etc. to perform different types of attacks easily. These attacks are

performed by exploiting existing vulnerabilities in these networking protocols.

Over the years IDS systems have been developed using machine learning techniques

[14, 16, 45] that consider building a single machine learning model for a group of attacks

associated with different protocols, however, attack characteristics may be different for dif-

ferent protocols. Further, for some protocols data is in abundance, and for some protocols

very few records exist that can introduce bias for the trained model. Therefore, it is impor-

tant to develop an IDS which is protocol aware and learn the representation of each attack

individually. Further, these representations can be utilized to identify attack activity using

protocol-specific IDS and learn the importance of each protocol channel.

Most of the existing methods have considered protocol specific attack detection in su-

pervised [46] or signature [47] manner. Due to fixed signature, the earlier proposed methods

require labeled data to train with, and fixed signatures are specific to attack type, thus fail-

ing to detect zero-day attacks. And, it also requires huge manual effort for label generation,

and needs data/signature updates over time to incorporate new attacks. This motivates us

to develop an unsupervised machine learning-based method that needs to be protocol aware

and requires only normal data to train with. Since, it is easy to obtain the normal traffic

flow data by using various utilities like Netflow [106], CICFlowMeter [102], etc. and using

these normal flow records, normal traffic characteristics can easily be learned. The proposed

method identify the attack activity if high deviation from the learned normal characteristics

is identified.

Protocol-aware IDS can also provide the additional benefits mentioned as follows.

• Better scalability and load balancing: With protocol-aware IDS resource exhaus-

tion can be avoided by running detection for specific attacks only. On the other hand

for large network, dedicated servers can be easily deployed that may increase system’s

scalability for high speed networks.

• Data imbalance handling: Network traffic distribution is not even for every protocol

therefore amount of data in some protocols is high in volume while others contain few

records. With the protocol aware method model bias towards attack with the high

volume of available data can be avoided.
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• Capture network specific attacks: Without a profile-based solution, detection

system looks for all kinds of attacks on every network packet or group of packets,

irrespective of the fact that some networks never launch them.

Motivated by above mentioned reasons, this research propose the protocol-aware method

for intrusion detection that is based on an unsupervised learning mechanism and can work

without labeled data-set, and is further capable for detecting unseen attacks.

4.1.2 Idea & Contributions

In earlier unsupervised learning-based methods [23, 24], attack detection is proposed by

training the model with normal traffic and learning the characteristics of benign traf-

fic. It employs attack detection in case of a huge deviation from the learned hypothesis.

Autoencoder-based methods are primarily used for this purpose which can be used to learn

the normal traffic characteristics and utilize regeneration error as a measure to estimate the

high deviation in case of attack occurrence. This research consider protocol-aware autoen-

coder framework and employ this concept of regeneration error for attack detection. From

various experiments over CICIDS2018 [1] and CICDDoS2019 [2] datasets, it is evident that

the proposed protocol-aware model outperforms its baseline counterparts for various attack

types like DoS, DDoS, and BruteForce attacks. The main contributions of this chapter can

be summarized as follows:

• Protocol specific unsupervised autoencoder based model is developed to capture time

dependent contextual information and identify specific attacks at protocol level.

• A method to combine protocol specific encoders with attention [95] network to identify

importance for each protocol channel for attack identification is also proposed.

• The proposed system is based on unsupervised setup to estimate re-construction error,

and identify attacks based on a threshold obtained from normal traffic.

• Multiple recent benchmark datasets - CICIDS2018 [1] and CICDDoS2019 [2] are utilized

for evaluating the performance of the proposed model on various attacks.

The rest of the chapter is organized as follows. In section 4.2 various solutions for

protocol-specific methods are discussed. Section 4.3 presents the approach for building

protocol protocol-aware IDS solution. In section 4.4.1 the implementation of the proposed
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scheme is detailed and experimentation results are presented. Finally in section 4.5 the

summary is discussed.

4.2 Related Works

4.2.1 Supervised learning based methods

Most of the existing solutions are built on protocol-specific model development which con-

sider applying filter at the protocol, host, or virtual machine level. Most of these solutions

first apply protocol-specific filters for data reduction and further train the supervised models

on the reduced dataset. These kinds of solutions lack protocol awareness while taking the

decision on attack presence and building the model on protocol-specific datasets alone. For

example, a supervised learning-based solution proposed in this area by Raman [46] includes

alpha Profiling (protocol level) for time complexity reduction and beta Profiling (Clustering

similar profile and pick center) for data size reduction. The proposed detection mechanism

achieves 97.67 % of accuracy with 1.74% of false positive rate for the multi-class NSL-KDD

dataset. Later profile-based IDS solution is proposed [47] that works at Virtual Machine

(VM) level where network traffic is filtered based on VM’s IP address and a VM profile is

created which is matched from existing attack signatures for the attack activity. Another

supervised learning-based Protocol specific IDS is proposed [48] for DoS and DDoS attacks

that work by extracting protocol-specific features and training classifiers at the packet level.

In this scheme incoming traffic is separated based on protocols like TCP, UDP, and ICMP,

further protocol-specific DoS/DDoS features are estimated for classification.

The concept of high deviation of the current profile from the learned normal profile

has also been used for attack detection. Like, the solution proposed by [121] dynamically

and actively profiles, and monitors all networked devices for the detection of IoT attacks,

and any deviation from the defined profile is considered to be an attack. The proposed

solution consists of two main parts i.e. Network Profiling component and IDS Component.

The network profiling component uses rate-informed heuristic profiling to create an expected

throughput pattern for each device on the LAN and generates hourly, daily & weekly profiles

per device. A percentage difference is calculated, comparing the rate profile of the new

capture to each timed profile and if this is above the threshold, an anomaly is detected.

The mentioned IDS Component is a machine learning module that makes use of the Hilbert

space-filling curve as its main clustering algorithm to convert the bytes into a 2D image and
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train the image classification model using the MobileNetV3 [122]. The combination of both

systems results in an accuracy of 99.17%.

The major limitation of these proposed methods is that it is supervised in nature and

build models on filtered datasets that ignore protocol awareness.

4.2.2 Unsupervised learning based methods

On the other hand, autoencoder-based models have also been primarily used for attack de-

tection using unsupervised mechanism, that is based on estimating re-generation error, but

lacks protocol awareness for decisions. For instance, some of the autoencoder-based solutions

proposed by [27,28,113,114] and a few shot learning-based methods utilizing autoencoder

representation, proposed by [117, 118] are used earlier for the group of attacks and are not

protocol aware (does not consider protocol specific information) and most of these models

suffers from high computation time and complexity. The method proposed by [123] for IIoT

networks is based on distributed AI and is implemented using multiple autoencoders trained

for each local processing unit and computations are combined using the Adaboost model

for the final conclusion. The main limitation of this proposed model is that it does not con-

sider temporal context inherently. Another unsupervised solution proposed in [124] works

by training a different ensemble of neural networks on protocol header-specific information

and identifying anomalies based on error threshold. In this proposed method each protocol

is converted to a set of normalized numeric features and processed by 5 different neural

networks: deep autoencoders, deep MLPs, LSTMs, BiLSTMs (Bi-directional LSTM), and

GANs (Generative Adversarial Networks), and the final anomaly score is computed based

on anomaly scores of other protocols which is computationally complex.

The proposed model resolves these issues by introducing a protocol-aware IDS solution

that is based on an unsupervised learning mechanism, is easy to build, and produces results

with lesser complexity. In the next section, the proposed methodology is discussed in detail.

4.3 Proposed Methodology

Given a network traffic data, a commonly used unsupervised approach to detect anomalies

in the data is to regenerate the data using the method like auto-encoder. An autoencoder

is an encoder-decoder model where the encoder takes an input sample and produces an

intermediate representation of the input sample. The decoder takes the intermediate rep-
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resentation and attempts to regenerate the input sample again. In short, given an input

sample x, autoencoder regenerates the input x́ again, and can be defined as follows.

x́ = decoder(encoder(x)) (4.1)

where x́ is the regenerated output of x. For anomaly detection task, the autoecoder is

generally trained using normal data, where the regeneration error (say, e = (x − x́)2) is

expected to be low for normal data, and high for anomalous data.

Majority of the earlier studies of detecting network attack using autoencoder [27,28,113]

consider entire cross-sectional network data (i.e., entire volume of network data received by

a device at a time instance or a window of time range). By considering the entire data,

encoder part of the autoencoder generates a global representation which summarizes the in-

put data into a latent space. The data received by a device at a particular instance in time

may consist of heterogeneous information related to different protocols and anomaly char-

acteristics of different protocol specific attacks may also be different. Capturing differences

in characteristics of different protocols may be important to effectively determine anomalies

present in data. However, a generalized global representation may fail to effectively capture

heterogeneous characteristics of different protocols, which may be important for anomaly

detection effectively. Motivated by the above concerns, the proposed method not only gen-

erates global representation of the entire data, but also generates local representation for

different protocols. If we apply autoencoder only to protocol specific data, then we refer to

this specific representation as protocol specific representation.

Since incoming traffic can contain specific or multiple protocol related information at a

time, the decision of attack requires to be protocol aware (specific input protocol channel

should impart higher weightage in decision) and needs to be independent of input type

(weightage needs to be learnt automatically). In case incoming traffic belongs to particular

protocol, the protocol specific representation requires to represent the information better

(fine representation) and on the other hand if the traffic does not belong to that specific

representation, then it should produce coarse representation.

Figure 4.1 presents the diagram of model training for the proposed protocol aware

scheme. It utilizes training data that is extracted from the flow-level information of net-

work packets. The training data is pre-processed in the first step by applying normalization

on numerical features. In the next stage, the fine representations are learned by training

the protocol-specific auto-encoders on the protocol-specific dataset (FDSn), and the global
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Figure 4.1: Flow Diagram for the proposed protocol aware scheme
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representation is learned by training the autoenoder on global data (DS). Further, these

individual protocol-specific representations are used with specific weight for a final deci-

sion in the regeneration stage and we call this decision as a protocol-aware decision. To

learn the final model whole network requires to be retrained for incoming traffic (DS) using

the regeneration error as a methodology for attack identification. To learn the weighted

decisions of these individual protocol channels on the incoming traffic type, the encoder

representations from each channel is utilized and processed with the attention network with

an additional decoder layer to regenerate the input in the next stage. As described in figure

4.1, the proposed model has three conceptual stages - (i) Preprocessing, (ii) Representation

Learning (global and local), and (iii) Regeneration, explained below.

4.3.1 Preprocessing

Table 4.1: Flow level features used in the proposed protocol and non-protocol aware methods

S.No. Feature Category Feature Description
1 Packet Transfer rate Features related to forward and backward

packet transfer rate
2 Packet Length Features related to forward and backward

packet length information
3 Inter-arrival Time Elapsed time information between flows
4 Header information Features specific to header information like

flag count, header length etc.
5 Segment information Features specific to segment size information
6 Transfer rate Features specific to bulk transfer rate
7 Subflow related Features specific to sublow information

This research work consider set of network flow level records which consist of bi-directional

network flow-related statistical information such as total packets, total size, packet rate, byte

rate, inter-arrival time, TCP flag information, etc. as available in dataset 4.1. These fea-

tures are generally computed using flow analysis tools from the packet level information.

This research utilize the temporal context to derive the features with specific window

length. To capture the temporal context the set of given flow records can be subsequently

divided into fixed context window of size N based on timestamp and network flow level data

can be assumed as a sequence of flow level records capture at different time instance. Let us

assume input data as x which consists of sample records x1, x2, x3, x4, . . xn generated at
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subsequent timestamps t1, t2, t3, t4, . . tn for the given time window of length N . This time

window determines how much of the previous context needs to be captured for deciding the

current state.

For each of these records associated with a particular time window, this research utilize

the available numerical flow level features for each record and perform pre-processing for

Data Preparation. Since the feature values follow different ranges, to avoid the model bias,

it is required to convert them to a common scale. For this purpose, the Normalization is

used to transform features in with mean and standard deviation as (0, 1) respectively. If

feature values are represented in x then the transformed value is x̂, µ is mean and σ is

the standard deviation of x and calculated on whole set of flow records, then equation 4.2

represents the normalization.

x̂ =
x− µ

σ
(4.2)

From now on, a record x represents the transformed x̂. With these given set of flow

records, specific protocol specific filter is applied and data set is prepared for representation

learning.

4.3.2 Representation Learning

Representation learning is the main component to learn the global and local representation

of the data by applying various protocol-specific filters. Multiple representations are com-

bined later to train the protocol-aware model. As shown in figure 4.2, in this stage each

individual protocol-specific auto-encoder model (on protocol specific data FDSi) is trained

along with auto-encoder network without any filter (on global data DS). For Protocol-

specific autoencoder specific data filter is applied and supplied to the autoencoder network

for training. An Autoencoder consists of encoder and decoder module. The encoder module

consists of multiple layers for processing the input data subsequently in multiple stages and

each layer is associated with specific set of LSTM units to process. The flow of records is

processed through each layer where the output of the next layer is based on the previous

layer and dimension of data is reduced at subsequent stages. At the last stage of the en-

coder, an intermediate representation is generated which is provided to the Decoder module.

The decoder module consists of the same number of stages as specified in the corresponding

encoder layer and tries to reconstruct the supplied information at the subsequent stage of
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Figure 4.2: Representation Learning. Each box in the encoder and decoder represent a processing
layer of respective dimension.

processing. At the final stage, Decoder generates the output as y which is of the same

dimension as the input x. The final layer of the decoder generates an output vector and

Mean Square Error (MSE) is used as a loss function to learn the intermediate representation

for provided input. This loss between the input sequence x and output vector sequence y

is represented using equation (4.3). For the provided context length of N the loss value

MSEx is estimated as :

MSEx =
1

N

N∑
n=1

|xn − yn|2 (4.3)

Once these protocol specific models are completely trained, encoder module is extracted

and used for representation for incoming traffic data in next stage for regeneration.

4.3.3 Regeneration

The regeneration stage solves the main purpose of generating the same input as output

and estimating the error values for normal traffic. Protocol-specific encoders trained in the

previous stage are utilized for representation in this stage. In the normal scenario, data may

contain very less records specific to the protocol, hence to handle the data sparsity during
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Figure 4.3: Regeneration stage for the proposed protocol aware method

inference, this research utilize the original data (without any filter) (DS) for training in this

stage and compute the regeneration error. These error values ultimately help to identify

the threshold θ which is used for attack detection.

In the regeneration stage, the proposed method utilize the encoder parts from protocol-

specific auto-encoders trained in the representation learning stage and compute the repre-

sentations (Ri) for supplied input as represented in figure 4.3. Now to learn the weights

(wi) of individual protocol channels for the supplied input, extracted representations are

provided to the attention network consisting of the self-attention layer [125] and multi-head

attention layers [95] in sequence to learn the importance of individual protocol channel and

capture representation from different aspects.

It is expected that individual protocol-specific encoders will re-adjust the weights ac-

cording to supplied input in this stage and provide more weight if input data belongs to

specific protocol type and impose lower weights for others. In this stage learned encoders are

used with attention and added decoder layers to provide improved results with the inclusion

of channel level importance while deciding the kind of attack activity. The sequential input

used in the representation learning stage produces the sequential representations which are

assumed to be generated at subsequent timestamps. The Self-Attention mechanism for the
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Table 4.2: Information on Dataset parameters used in experimentation of Protocol-aware NIDS

Dataset Features Class Data
length

CICIDS2018 74
Normal 667626
FTP-BruteForce 193360
SSH-BruteForce 187589

CICDDoS2019 64

Normal 30109
DrDoS NTP 1202642
DrDoS UDP 3134645
SYN Flood 1582289

time sequential data, earlier specified in [95], is used to learn the effect of different positions

of sequence in time in order to compute the final representation. The self-attention mecha-

nism proposed earlier [125] for sequential data is utilized that consider the context for each

timestamp.

As specified in the study [125], the attention weight between hidden states rt and rt′

(denoted by representations (Ri) in figure 4.3) at timestamps t and t′ respectively for input

xt and xt′ is defined as follows.

αt,t′ = σ(wa. tanh(wg.rt + w′
g.r

′
t + bg) + ba) (4.4)

where σ is element-wise sigmoid function, wg and wg′ is weight matrices corresponding to

their non linear combination. bg and ba are bias vectors. Further attention-focused hidden

space representation lt is computed (equation 4.5) for each respective channel for particular

timestamp t where n is the context length. It quantifies how much to attend to particular

channel at any timestamp on their neighbourhood context.

lt =
n∑

t′=1

αt,t′ .ht′ (4.5)

At the next step Multi-head attention [95] layer is applied to capture the representation

from multiple aspects that combines the knowledge of the same attention pooling via dif-

ferent representation sub-spaces and captures richer representations using multiple heads in

parallel. Let the outcome from self-attention layer is output as l , original input vector is

used as value x. Like in [95], the multi head attention is estimated in equation 4.6 where

Query(Q), Key(K) and Value(V) vectors are represented as l, k, x .
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
Attention(Q,K, V ) = softmax(Q.KT

√
dk

).V

headi = Attention(l.wl
i, l.w

k
i , l.w

x
i )

Mhead(l) = Concat(head1, head2, ...headh).wo

(4.6)

where dk is the dimension of the l, and wl
i, w

k
i , wx

i , and wo
i are learnable weight matrices.

As shown in equation 4.6 first the representation of each headi is computed using input

Query(l), Key(k) and Value(x) vectors and the weights wl
i, w

k
i , wx

i are learned respectively.

The output from these multiple heads is concatenated together to compute multi-head rep-

resentation Mhead(l). Now, Mhead(l) is passed as the input to the decoder layer to regenerate

the input sample x. If x́ is the regenerated output vector sequence, the reconstruction error

is defined as equation 4.7

Errorx =
1

N

N∑
n=1

|xn − x́n|2 (4.7)

As mentioned above, the proposed model is trained with normal samples. While training

the model for an arbitrary sample, the proposed method tests sample as attack or normal

based on a threshold value θ, which is defined as the average of the regeneration error over

M normal samples in the training dataset as in equation 4.8.

θ =
1

M

M∑
x=1

Errorx (4.8)

Once the threshold is determined, incoming flow is identified to be an attack specifically

if the reconstruction error is larger than threshold θ. It is expected that the reconstruction

error for normal traffic data should be less as compared to that of anomalous traffic data.

An example of stage 2 processing is represented for set of Brute force attacks in figure

4.4. In this example, individual encoders trained on SSH, and FTP specific traffic is used

in the first stage where each specific encoder captures the local representations for protocol

specific benign traffic. And global representation is learned by training auto-encoder on

non filtered benign traffic. As represented in figure 4.4 w1, w2, w3 are learned weights for

individual channels (Non-Filtered, FTP,& SSH) using additional self-attention and multi-

head attention layers. For the final model construction, whole network is fine tuned on
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Figure 4.4: Example of regeneration stage in the proposed protocol aware method.

non-filtered benign traffic with additional decoder layers as represented in figure 4.3.

4.4 Experimentation Results

4.4.1 DataSet

To evaluate the performance of the proposed method, this research consider two different,

publicly available, network attack-specific datasets i.e. CICIDS2018 dataset [1] and CI-

CDDoS2019 dataset [2]. These are the recent dataset developed at Canadian Institute for

Cybersecurity, where FTP-Patator and SSH-Patator tools are used for performing brute

force attacks and LOIC tool is used for DDoS attacks. Network Flow records are generated

on traffic data by using CICFlowMeter-V3 tool [102]. The characteristics of the datasets

are shown in the Table 4.2. We utilized the flow level features as specified in table 4.1 for

experimentation purpose where all the available features are used to train the model.

4.4.2 Implementation

This research utilize flow-level data for normal traffic captured for a specific dataset. All

the available features for training as specified in table 4.1 are used for implementation.

The complete implementation is performed on Macbook with 6 core intel core i7 processor

with 16 GB RAM. The TensorFlow python package is used for the implementation and

the self attention method as proposed in [125] is adopted for implementation. The multi-

head attention implementation is used with 3 parallel heads. The configuration for an

autoencoder network is used as shown in figures 4.2 and 4.3. The hyper-parameters used for

autoencoder model is specified in table 4.3. The model performance is evaluated in terms

of classification metrics by taking the timestamps specific to Attack or Benign class from
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Table 4.3: Autoencoder Model Configuration. The f indicates input feature vector.

Parameter Values
Total Layers 7
Encoder structure f ,128, 64, 32
Compressed output length 16
Decoder structure 32, 64, 128, f
Optimizer Adam
Learning rate 0.0001
Loss function Mean squared error
Batch size 32
Number of Epochs 50

the dataset description. The run time performance of model is also evaluated in terms of

number of flows processed per second during inference time.

Since the proposed method requires the two-step process of training the protocol-specific

autoencoders and utilizing the trained encoders in the regeneration stage to construct the

protocol-aware model. To reduce the complexity, we can train the protocol-specific models

in parallel and utilize them in the regeneration stage. The regeneration stage also allows

configuring of the required number of heads in multihead attention to reduce the overall

complexity.

The total complexity of the training an autoencoder model for two layers of size N is

O(N2) where N is the number of neurons in each layer. Let us assume there are k layers in

autoencoder network then the overall complexity is O(k * N2). Since k <<<N, therefore

complexity can be assumed as O(N2) . Since in the proposed methods the autoencoders are

trained in parallel therefore for representation learning stage the complexity can be estimated

as O(N2). For Regeneration stage, the complexity of self attention and multihead attention

(can be computed in parallel) is estimated as O(dk * N2) where dk is the dimension of

Query(Q), Key(K) and Value(V) vectors. Hence the overall complexity can be estimated as

O(N2) + O(dk * N2) .

4.4.3 Results and Analysis

4.4.3.1 Performance Comparison

This research work evaluates the detection performance of the models in terms of precision,

recall, F1-score, and accuracy on different datasets as shown in table 4.4. To estimate the
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Table 4.4: Performance Comparison of Non Protocol Aware and Protocol Aware models.

Dataset Filter Type Attacks Covered
Best Context

Length
Prec.% Rec.% F1% Acc.%

CICIDS2018
None BruteForce attacks 2 92.7 100 96.2 93.8
Proposed 1 BruteForce attacks 2 93.2 100 96.5 94.2
Proposed 2 BruteForce attacks 2 93.5 100 96.6 94.5

CICDDos2019
None DDoS attacks 10 94.7 100 97.3 95.1
Proposed 1 DDoS attacks 4 95.1 98.5 96.8 94.3
Proposed 2 DDoS attacks 4 95.2 99.7 97.4 95.4

Table 4.5: Performance analysis of Protocol specific models.

Dataset Filter Type Attacks Covered
Best Context

Length
Prec.% Rec.% F1% Acc.%

CICIDS2018
FTP FTP-BruteForce 2 93.7 100 96.8 93.8
SSH SSH-BruteForce 10 93.3 100 96.5 93.9

CICDDos2019
UDP Port 123 DrDos NTP 2 95.5 93.5 94.5 90.4
UDP only DrDos UDP 2 95.7 100 97.8 96.1
TCP/SYN SYN Flood 4 95.2 100 97.5 95.6

prediction performance, 10% of normal data is hold out as testing along with the attack

dataset, and estimate the evaluation metrics between Benign or Attack classes. The model

experimentation is performed with different context lengths (up to 10) and report the best

context length where the f1-score and accuracy are highest since different context length

reports different performance figures in Table 4.4. This research estimates the performance

for non-protocol specific, and proposed model (Without and with attention layer inclusion

defined as Proposed 1 and Proposed 2 respectively) in table 4.4 .

From the results, it is evident that the proposed model (Proposed 1 and Proposed 2)

outperforms the model created for global data (with Filter type ’None’) both for CICIDS2018

and CICDDoS2019 dataset. It is also analyzed that performance for the protocol aware

model is higher than non-protocol aware (Filter type ’None’ in table) model as specified in

table 4.4.

This research also estimated the performance by applying specific filters (With spe-

cific filters like FTP, SSH, TCP/SYN, etc.) and training protocol-specific models on the

protocol-specific dataset. It is concluded that the specific model trained on filtered data

alone performs better than the proposed method because of data and complexity reduction.

The performance results for protocol-specific models are mentioned in table 4.5.
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Figure 4.5: Processing rate Vs Context length for CICIDS2018 dataset

4.4.3.2 Context Length vs Processing rate

Further, this section also investigates the processing rate in terms of flow records per second

processed by the trained model against the context length for protocol specific models and

proposed method (with attention network). This research work estimated the results on

specific datasets and the set of attacks as discussed earlier as shown in figure 4.5 and 4.6.

The figure indicates that the flow processing rate is reduced by taking a larger context length

which happens due to higher processing overhead. This analysis can help us to specify an

optimum context length for processing the records in an estimated time.

4.5 Summary

This research work proposed the method for building an intrusion detection solution that

is protocol-aware and unsupervised in nature as it requires only Normal traffic records for

training the model. The proposed system also reduces the overhead of labeling every network

flow data for a specific attack. The implementation of intrusion detection is based on the

latest & representative flow-level dataset available in the open-source community. Various

results by utilizing different processing units in an inherent autoencoder-based network are

presented and further estimated the processed flow per second by these individual units.

From the results, it is evident that the proposed model outperforms the non-protocol-aware
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Figure 4.6: Processing rate Vs Context length for CICDDoS2019 dataset

model. In the next chapter, network packet level data is utilized to generate multiple views

that are used to build an unsupervised learning based IDS solution.

;;=8=<<
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5
Mutliview-based Network Intrusion Detection

System

5.1 Introduction

The previous chapter discusses the approach for building protocol protocol-aware unsuper-

vised intrusion detection systems by using the autoencoder-based model. In the earlier

proposed solution, the flow level information present in existing datasets is considered.

However, IDS can also be built on multiple other representations generated from network

packets. Most of the machine learning-based intrusion detection systems consider training a

model from the extracted network packet information. However, these network packets can

also be transformed into multiple different views like network headers, flow level information,

binary files like images, text, etc. In this chapter, a multi-view-based intrusion detection

method is proposed that is based on self-supervision to detect the attacks from raw network

packets by training the separate auto-encoder models for each view using only normal traf-

fic. Subsequently, utilizing reconstruction error to build the self-supervised model based on

the majority voting of individual view-based autoencoder’s outcome.
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5.2 Need for Multi-view based NIDS

In the recent era, various available open-source utilities like LOIC [5], Slowloris [6], Nmap [7],

etc. are used by attackers to perform multiple different types of network attacks easily that

can hamper the overall communication between the entities and affect the system perfor-

mance. This communication between the hosts depends on the type of protocol used at the

application level. For most of the networking applications, like FTP (File Transport Pro-

tocol), SSH (Secure Socket Shell), etc. which are based on connection-oriented protocol i.e.

TCP (Transmission Control Protocol), the connection is first established and data transfer

takes place later, due to which flow level data is significantly generated and communication

is well represented in the forms of flows. On the other hand for the applications like NTP

(Network Time Protocol), SNMP (Simple Network Management Protocol), etc. which are

based on connection-less protocols i.e. UDP (User Datagram Protocol), the prior connec-

tion establishment process is not required due to which the flow level details are minimally

generated and packet headers are able to describe the connection information well. Hence,

in the Intrusion Detection System (IDS) perspective, the individual view depicts its own

importance depending upon the kind of protocol used for a particular type of application.

On the other hand, today most of the traffic is encrypted and most of the IDS solutions

are not suitable for deep packet inspection. Therefore, to effectively develop an IDS solution

for modern encrypted network traffic, payload information is not sufficient for detecting

attacks and it is required to utilize information from other sources like header and flow

statistics [126] for accurate detection. Several IDS solutions like [67, 127, 128] utilizing the

flow level information have been developed earlier to resolve this problem. From another

perspective, information used for building IDS solutions also plays a vital role in determining

the kind of attack that can be detected by IDS easily like, most of the rule-based IDS

solutions (i.e. Snort [21], and Bro [22] ) consider header fields and payload distributions

details only for attack detection, due to which payload-related attacks are not captured.

In other solutions, header and payload are utilized together but they are unable to detect

low rate attacks. Other proposed solutions like [78, 129, 130] consider only the payload

information and do not utilize the information from header or flow level data due to which

the information from flow sequence is missing and such solutions are unable to detect the

specific attacks. Due to the aforementioned reason, the model built on individual views

can capture different characteristics, and information from multiple representations can
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be combined for the accurate detection of attacks. With the combined knowledge, the

advantage of each view can be utilized for attack determination. Due to these reasons, a

system is required where all the aspects are needed to be looked into for accurate detection.

This research work proposes a method of utilizing the views from different perspectives.

Because of the aforementioned reason, the model built on individual views captures

different characteristics. And predictions from individual views might not overlap with

one another. This property can help us to build a combined model with improved overall

performance and can help us to learn differentiated features by considering the multiple

views together.

5.2.1 Idea & Contributions

This research consider a self-supervised framework that uses the regeneration error from

multiple view-based autoencoder models for automatically labeling the incoming traffic.

The proposed method utilizes the network packet information and multiple views from

packet-level data are first constructed on which individual view-based representations are

learned through unsupervised reconstruction error based mechanism. Now to aggregate the

information from multiple views together, intermediate representations from the trained

models are utilized to classify the input data (i.e. Benign or Attack) based on the view-

specific learned reconstruction error thresholds. These regeneration error thresholds are

dependent on network traffic properties due to which a minimal change in thresholds is

also required to be handled. In order to solve this problem the proposed method has used

the self-supervised learning-based approach by taking the majority voting from individual

view-based models and generating the labelled data with small change in thresholds. The

proposed approach further uses this labeled data in the final stage to train the binary

classification model to predict the outcome as Benign or Attack. From various experiments

over the CICIDS2018 [1] dataset, it is evident that the proposed self-supervised learning-

based multi-view model outperforms its baseline counterparts for attacks like the FTP

BruteForce attack & UDP DDoS attacks. The major contributions of this research can be

summarized as follows:

• This research work presented a mechanism to generate multiple views from raw packet-

level data and proposed multiple view-specific features that are utilized for training

view-specific autoencoder models. The proposed multiple views are captured at a
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given fixed window of time.

• The proposed system is based on a self-supervised learning approach that constructs

labels for the incoming data with a majority voting of trained individual view-specific

encoders.

• The labeled data is ultimately utilized to build a binary classification model, that can be

used to detect attacks in incoming traffic.

• A recent benchmark dataset i.e. CICIDS2018 [1] is used for evaluating the performance of

the proposed model on FTP Bruteforce and UDP DDoS attacks and compare results

for view-specific auto-encoders individually with the proposed method.

The Chapter is organized into different sections as follows. In Section 5.3, the various

solutions proposed on different views derived from network packets for attack detection are

discussed. Section 5.4 describes the proposed methodology and algorithm in detail and the

components involved. Section 5.5 presents the implementation of the proposed approach,

dataset, & experimentation results. In section 5.6 the summary is provided.

5.3 Related Work

As discussed earlier in section 2.1, Network packets consist of two important parts i.e.

Network header (describing the protocol header-specific information) and Network payload

(consisting of the data bytes transferred). These network packets can be further aggregated

based on various parameters, and statistical features like byte per sec, inter-arrival time,

sub-flow information, etc can be computed to build the flow level information. Other rep-

resentations can also be generated similarly with the further transformation of packets to

binary formats like Images [131], Text [132], etc. This research work study various IDS

solutions proposed earlier that consider multiple views like network header 5.3.1, flow 5.3.2,

image 5.3.3, generated from network packets. A brief description of different methods is

presented as follows:

5.3.1 Network view based solutions

Network view-based solutions consider the information extracted from network headers.

Most of the earlier proposed solutions PHAD [133] and SPADE [134] consider building

profiles for network header fields and detecting attack activity by comparing them with
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the pre-determined thresholds. Another proposed method [135] considers the statistical

analysis of packet header data to detect attacks. It is based on analyzing the correlation of

destination IP in outgoing traffic and uses wavelet transforms to study the address and port

number correlation for different timescales. Most of these proposed solutions are based on

outdated datasets and are not relevant to recent attacks.

5.3.2 Flow view based solutions

Most of the Flow-based solutions proposed earlier consider a supervised learning-based ap-

proach like Tomio [136] proposed a multiple flow features-based classification model that

considers different views of MAWIFlow dataset [137] like Nigel, Orunada & Viegas features.

It consists of two main steps of classification with an autonomous model update, where the

classification decision is based on the consensus of random forest models trained for each set

of features using majority voting. Various deep learning-based solutions are also proposed

to mitigate the problems of supervised learning-based models. For instance, autoencoder-

based solutions proposed by [27,28,113,114] and similarity learning-based methods proposed

by [117,118] are discussed earlier that utilize flow level information, but these models suffer

from high computation time and complexity.

5.3.3 Image view based solutions

Most of the other proposed methods also consider representing network packets in binary

format (primarily image) and developing the classification model on the represented infor-

mation. Irina [138] proposed a malware detection method based on binary visualization and

self-organizing incremental neural network (SOINN [139]). The algorithm chosen for binary

representation uses Hilbert space-filling curves [131] for a better imprint of the image. The

proposed method first converts the binary files into an image and then considers 4 parts of

an image as the region of interest to construct the histogram with a feature-length of 1024

and utilized the SOINN model for malware detection. The dataset used for experimentation

consists of 2K benign files from a trusted source and 2K malicious files collected from the

VirusShare website. The detection accuracy of 91.7% and 94.1% is achieved for ransomware

attacks in .pdf and .doc files. Another method for IoT malware traffic detection is proposed

by Robert et. al [140], which considers transforming network traffic into 2D images using

the binvis.io [141] utility and classifying the images using the MobileNet model. In the
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first step network traffic is captured using a sniffer and then to convert the binary file to

2D image data is assumed as a byte string and converted to specific color using an ASCII

table. The proposed approach achieved an accuracy of 91.32%. Another similar method

proposed by Joseph [121] for IoT network attack detection uses a combination of network

traffic profiling and machine learning components. The Network profiling component uses

rate metrics for calculating the deviation from normal profile due to attack and the machine

learning component built on MobileNetV3 [122] classification model uses extracted images

from packet capture (pcap) files for attack detection. The combination of both systems re-

sults in an average accuracy rate per iteration of 99.17%. Most of these proposed solutions

are based on supervised learning mechanisms that require labeled data for training.

5.3.4 Multi aspect based solutions

Various approaches are also studied that consider multiple aspects generated from the same

feature set and build supervised learning-based models for detection. For example, the clas-

sification method proposed by Ming [49] considers spatial and temporal views together. It

consists of 3 layers parallel network structure where the first and third sub-networks con-

sider spatial features using a convolution neural network model (CNN) based model and the

second network simultaneously learns spatial and temporal features using the CNN-LSTM

network. The proposed network learns the network using early fusion technology to improve

the accuracy of network traffic classification. This proposed method is tested on ISCX2012

and CICIDS2017 datasets and provides a classification accuracy of 99.9%. Another solution

HCRNNIDS [50] is proposed earlier to initially process the features through CNN and later

passed through recurrent neural network (RNN) layers to generate the sequence at each

time step. CNN is used to capture the local features while temporal features are captured

using RNN. This method is applied to the CICIDS2018 dataset and detects attacks with an

accuracy of 97.75%.

The major limitation of the earlier proposed methods is that it considers a single view

or set of features at a time and multiple aspects from one type of features are utilized only

in the supervised learning-based solution. To mitigate these issues, our proposed model

considers multiple views together to build an IDS solution that is based on a self-supervised

learning mechanism and avoids the requirement of labeled data for model training. In the
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next section, the proposed methodology is discussed in detail.

5.4 Proposed Methodology

The proposed method considers the raw packets from network communication. Various

packet sniffing tools like Wireshark, tcpdump, [142] etc. can be used to capture these raw

packets from the port in dedicated machine or network switch that is running in promiscuous

mode. These raw packets contain communication information among different hosts. For the

experiment purpose, this research used the raw packets already extracted for specific attacks,

but in the real network, a sniffing module is required to capture the packets consecutively

with a pre-defined time window length.

As shown in the flow diagram 5.1, the extracted network packets are first converted to

multiple different views using the subset of packets captured at fixed time window length

and later the view-specific autoencoder models are trained and view-specific reconstruction

error thresholds are estimated by training the autoencoder models with reconstruction error

as a loss function. These trained encoders (part of autoencoder) are further utilized for

generating representation from the extracted views and used for producing labeled data

with the majority voting on view-specific encoder classification results. This label generation

process also handle the scenario for the slight change on the threshold values to build the

more robust model that can handle the minimal change in learned threshold as the value of

threshold may vary over time due to change in network characteristics. In the final stage

of processing, the prepared labeled data is utilized to build the binary classification model

that is used to predict the outcome as Benign or Attack.

The proposed solution for the intrusion detection system consists of various modules of

processing as shown in the High-level architecture diagram 5.2 for the proposed model train-

ing method. Section 5.4.1 presents how various views are generated from network packets,

Section 5.4.2 discusses the details on training view specific auto-encoders and section 5.4.3

presents the self supervised model training process. Section 5.4.4 discusses the algorithms

for training and inference process in detail.
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Figure 5.1: Flow diagram for Multi-View based IDS model training
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Figure 5.2: High Level Architecture for Model Training

5.4.1 View Generation

Once the packets are captured from the packet sniffing module, various views are extracted

in View generation module. For a pre-defined time window of △t, the proposed method

first extracts the batch of network packets based on generated timestamp and uses these

batches to construct multiple different views as follows:

5.4.1.1 Network View

Network view is constructed from the network header part of the networking packets. The

associated network header consists of information from various protocols from TCP/IP

networking layers. These header details are used to construct network view that consists

of information about protocol headers, aggregated volume statistics, etc. Various protocol

related features are extracted from this information and aggregated values are computed

with pre-defined time window △t as specified in the table 5.1

5.4.1.2 Flow View

Flow view is constructed by using the flow-level information derived from the communica-

tion among the entities in the network. It consists of statistical features computed on overall
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Table 5.1: Feature Information for Network View

S.No. Feature Category Feature Description Count
1 Interface Based Features related to transferred octets incoming and out-

going, incoming and outgoing unicast and non-unicast
packets i.e. interfaceInOctets, interfaceOutOctets, in-
terfaceInNUcastPkts, interfaceOutNUcastPkts, inter-
faceInUcastPkts, interfaceOutUcastPkts

6

2 IP header based Features related to incoming and outgoing IP datagrams
i.e. ipInReceives, ipOutRequests

2

3 ICMP header based Fearures related to number of incoming and outgo-
ing icmp total, echo, destination unreachable mes-
sages i.e. icmpInMsgs, icmpOutMsgs, icmpInDestUn-
reachs, icmpInEchos, icmpOutDestUnreachs, icm-
pOutEchoReps

6

4 TCP header based Features specific to TCP header information like in-
coming and outgoing segments, connection information
i.e. tcpPassiveOpens, tcpOutSegs, tcpOutRsts, tcpCur-
rEstab, tcpActiveOpens, tcpEstabResets.

7

5 UDP header based Features constructed from UDP header information like
input and outgoing datagrams i.e. udpInDatagrams, ud-
pOutDatagrams, udpNoPorts

3

transfer characteristics specific to established connections between hosts. Flow normally de-

notes 5 tuple information i.e. < srcIp, dstIP, srcPort, dstPort, protocol >. These features

can be easily captured by using various utilities like Netflow [106], CICFlowMeter-V3 [102]

etc. CICFlowmeter-V3 utility is used in this work to capture the flow level information.

The generated flow view consists of various statistical features like packet transfer rate,

inter-arrival time, flow activeness etc. as specified in the table 5.2

5.4.1.3 Image View

Image view is constructed by using raw network packets which contain both network header

and payload information together. The proposed method constructs the image view from

captured raw packets at fixed time interval △t by using binvis.io [141] utility. This utility

can also help us to look for suspicious parts in packed or encrypted files like binaries, and to

locate relevant pixel offsets. It provides a visual overview for easier orientation and deeper

insights. This utility internally uses Hilbert Space filling curve [131] for clustering the data

which generates a better imprint of an image. In this algorithm, the image data is divided

into multiple bytes and each byte is assigned to a specific color code depending on its ASCII

86



Proposed Methodology

Table 5.2: Feature information for Flow view

S.No. Feature Category Feature Description Count
1 Packet Transfer rate Features related to forward and backward

packet transfer rate
5

2 Packet Length Features related to forward and backward
packet length information

15

3 Inter-arrival Time Elapsed time information between flows 14
4 Header information Features specific to header information like flag

count, header length etc.
14

5 Segment information Features specific to segment size information 4
6 Transfer rate Features specific to bulk transfer rate 7
7 Subflow related Features specific to sublow information 7
8 Flow activeness Statistical Features specific to flow activeness

information
8

Figure 5.3: Image View for Benign and Attack Scenario

values as follows:

• blue for printable character

• green for control characters

• red for extended characters

• black for the null character

• white for the non-breaking space

It is also observed that images related to attack consist of dense pixel values with red

and blue regions, which is easily distinguishable from normal scenarios where most of the

images consist of sparse black regions as shown in figure 5.3. It also represents that amount

of packets generated during the attack is more due to which dense regions are created.
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Once the views are generated, the information is represented into numerical features.

But, these numerical features can follow a different range of values. So to avoid model

bias, it is required to convert them into a common scale. For this, Normalization is used to

transform features in with mean and standard deviation as (0, 1) respectively. Let us assume

the feature values for a specific view is represented in vector X̂ i then the transformed value

is X i is the normalized representation computed through equation 5.1 where, µ is mean and

σ is the standard deviation of X̂ i. For the Image view, each pixel value is divided by 255

so that values are aligned in the range from [0,1].

X i =
X̂ i − µ

σ
(5.1)

5.4.2 Auto-encoder Model Training

Autoencoder Model Training module first performs the job of training individual view-

specific auto-encoder models for normalized view specific features (X i), and learn the re-

construction error thresholds specific to each view. To build the view-specific auto-encoders

on provided data, this work assumes input data for view is X i which is represented as

a set of N records x1, x2, x3, . . . xN . Each of these input records (represented with

normalized features) is supplied to the Encoder network. The encoder module consists of

multiple layers and each layer is associated with multiple processing units. These units are

selected based on the type of each view. For instance, Multilayer Perceptron (MLP) units

are used for network and flow view (1 dimensional) and CNN units are used for Image view

(2 dimensional). The flow of records is processed through each encoder unit. At the last

stage of the encoder, an intermediate representation is generated which is provided to the

Decoder module. The decoder module consists of the same number of stages as specified

in the corresponding encoder layer and tries to reconstruct the supplied information at the

subsequent stage of processing. At the final stage, Decoder generates the view-specific out-

put as Y i which is of the same dimension as the input X i. The final layer of the decoder

generates an output vector and Mean Square Error (MSE) is used to calculate the error

between the input and output vector using equation (5.2). This error helps us to quantify

the view specific reconstruction error threshold θi for normal traffic which is based on the

mean of the error values as shown in equation (5.3). Once the threshold is determined,

incoming flow is identified to be an attack specifically if the reconstruction error is larger
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than threshold θi. Let D is the feature dimension for view X i and N is the total number of

training records then the error value Errori and threshold θi is estimated as

Errori =
1

D

D∑
d=1

|X i(d)− Y i(d)|2 (5.2)

θi =
1

N

N∑
n=1

Errori(n) (5.3)

After this stage, the set of various thresholds (θ1, θ2, ... θn) are learned for each specific

view, which is used to classify the input records. These individual thresholds are used to

label the individual records Benign or Attack in the next stage.

5.4.3 Self-supervised model training

Automatic data labelling is the next step that delivers self-supervision for the proposed

scheme. It is used to generate the attack or benign labels from the pre-trained view-specific

autoencoder models. This stage utilizes the view-specific thresholds learned in the pre-

vious stage to compute the label for an outcome of each record when passed through a

learned autoencoder. For a given record, multiple views are processed through each view-

specific encoder separately to identify the attack activity. Now the final label specific to

the network event is assigned as the majority vote of the individual encoders. As shown

in figure 5.4 majority of outcome from individual view-based autoencoder is assigned as a

final label (anomaly as True or False) for further training. In this example, loss values and

thresholds for network, flow and image view are defined as (loss nw, loss flow, loss img)

and (threshold nw, threshold flow, threshold img) respectively. This stage also handles the

slight change (θi ± δ) in the values of learned view specific thresholds by estimating the

slightly modified threshold and regenerating the labels. By considering the slight change in

threshold, the trained model becomes more robust towards the minimal changes in network

characteristics.

For the majority voting, Let C1(X), C2(X)... Cn(X) be the predicted classes from n

different view-based encoder models for an input vector X then, final label Cmajor(X) can
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Figure 5.4: Sample of automatic data labeling using majority voting

Table 5.3: Model Configuration for Binary Classifier.

Parameter Values
Additional dense Layers 3
Concatenated Encoder Representation Length 96
Layer Structure 128, 64, 32
Optimizer Adam
Learning rate 1e-4
Loss function Binary cross entropy
Batch size 16
Number of Epochs 50

be computed with equation 5.4

Cmajor(X) = mode(C1(X), C2(X), ...Cn(X)) (5.4)

The data prepared using self-supervision is used now to build the binary classifier. In this

stage, the proposed method utilize pre-trained view-specific encoders from learned autoen-

coders with added deep layers to train the classifier model. View-specific encoders are first

used to encode the incoming view and generate representation. These representations are

further concatenated together and supplied to classifier consisting of fully connected lay-

ers with softmax layer as an output. This binary classifier consists of 3 dense layers with

128,64,32 neurons and utilize binary cross entropy loss function for training the model. More

details on the learning structure of the network can be found in table 5.3

5.4.4 Algorithm

The proposed algorithm involves multiple stages of processing as described earlier in figure

5.2. These stages play a vital role in the overall process. The Pseudo-code for the proposed

model training and inference is represented in algorithm 1 and algorithm 2 respectively.
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5.4.4.1 Model Training

Algorithm 1: Model Training

Input : Time window △T, δ, and collection of raw packets P
Output: Classification Model M , and Autoencoder models Anetwork, Aflow, Aimage

1: Xnetwork, Xflow, X image ← V IEW GENERATION(P,△T )
2: X ← Xnetwork, Xflow, X image

3: for X i ∈ X do
4: Ai, θi ← AUTOENCODER MODEL(Xi)
5: end for
6: Initialize label array as L
7: for P j ∈ P do
8: Initialize class array as C
9: for X i ∈ X do
10: Ci

j ← ENCODER CLASSIFY (θi ± δ, P j)
11: Add Ci

j to C
12: end for
13: Lj ←MAJORITY V OTING(C)
14: end for
15: Model M ← CLASSIFICATION MODEL(P,L)

The algorithm 1 presents the training process in detail. For the pre-selected time window

△T and raw packets P , different views Xnetwork ,Xflow , X image are generated at an initial

stage. The view generation functionality is represented as V IEW GENERATION() which

is used to create multiple views as per sub-section 5.4.1. Later, for each of the views,

separate autoencoder models are trained, and view-specific thresholds θi are determined.

The autoencoder training process is defined as function AUTOENCODER MODEL()

that trains the model on supplied view Xi. Now with each autoencoder, an input record

is predicted as Normal or Benign depending on comparing calculated loss with learned

view-specific threshold. The process of prediction is called ENCODER CLASSIFY ()

that takes the learned thresholds and the variation factor δ as input. Additional records

are generated by including the slight change (δ) in threshold values. Further, the majority

voting is applied on predicted class metrics, and the final label is identified for an input

record. The associated function MAJORITY V OTING() considers the outcome from

each view-specific autoencoder and selects the majority as a final outcome. This information

is generated for all input records. In the final stage, the binary classifier M is trained
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with labeled data and stored for the inference process. The classification model is trained

in function CLASSIFICATION MODEL() by using the final labels generated at the

previous step and using the specified configuration in table 5.3. The whole training process

is explained below in the algorithm 1.

The overall complexity of the training process depends upon the associated functions.

The V IEW GENERATION() function considers calculating the aggregated features for

the set of packets in the specified time window. The specified views can be computed

in parallel with linear complexity therefore for V such views and F features, the total

complexity is O(V ∗ F ). The complexity of training an autoencoder model with a constant

number of layers and with N computation units is around O(N2) and multiple view-specific

autoencoders can be trained in parallel too. Function ENCODER CLASSIFY () also

takes O(N2) time for encoding the view-specific information. The final classifier trained is

a multi-layer perceptron and its complexity is also O(n2) for n computing units. Hence the

overall complexity for the model training process for a particular batch is around O(V ∗F )

+ O(N2) + O(n2).

5.4.4.2 Model Inference

The algorithm 2 represents the execution of the proposed scheme during inference where the

trained models are first loaded from persistent storage. It utilizes the view-specific autoen-

coder models for encoding purpose and uses the classification model directly to classify the

generated view-specific representations as Benign or Attack. In the first step, the packets

captured at a pre-defined time window△T are used to generate the multiple views iteratively

by using the function V IEW GENERATION(). Later these views are processed from the

respective encoders to generate the representations (i.e.Rnetwork,Rflow,Rimage). This encod-

ing is represented as a function ENCODE() that takes a trained autoencoder and view as

an input and generates the view-specific representation. These representations are further

classified from the trained self-supervised model to predict a Benign or Attack scenario and

are represented as a function CLASSIFY ().

The overall complexity of the proposed model inference algorithm depends on the func-

tions V IEW GENERATION() , ENCODE(), and CLASSIFY () functions. For an

incoming set of packets captured at time window △T, V views are generated for F fea-

tures so the complexity is around O(V ∗ F ). The function ENCODE() is used to encode

the view information through autoencoder which is O(N2) for N computation units. and

92



Experimentation Results

CLASSIFY () function generally takes O(n2) for n computing units. Therefore the overall

complexity of algorithm is O(V ∗ F ) + O(N2) + O(n2).

Algorithm 2: Model Inference

Input : Model M, Time window △T, Anetwork,Aflow, Aimage and collection of raw
packets P

Output: Benign Or Attack
1: Load models M , Anetwork, Aflow, Aimage

2: for P i ∈ P do
3: Xnetwork, Xflow, X image ← V IEW GENERATION(P i,△T )
4: Rnetwork ← ENCODE(Anetwork, Xnetwork)
5: Rflow ← ENCODE(Aflow, Xflow)
6: Rimage ← ENCODE(Aimage, X image)
7: Benign or Attack ←CLASSIFY(M, Rnetwork, Rflow, Rimage)
8: end for

5.5 Experimentation Results

5.5.1 DataSet

To evaluate the performance of the proposed method, the CICIDS2018 dataset [1] is consid-

ered which is a publicly available dataset developed at the Canadian Institute for Cyberse-

curity (CIC) where FTP-Patator and SSH-Patator tools [100] are used for performing brute

force attacks and the LOIC, HOIC tools are used for performing DDoS attacks. To prepare

the dataset, network flow records are generated on traffic data by using CICFlowMeter-V3

tool [102] and in total 7 different types of attacks are captured at different dates. It also

contains data in raw network packet files also which is only used for experimentation pur-

pose. The raw packets for which the FTP BruteForce attack and UDP DDoS attack are

performed along with Benign traffic are considered in the experimentation. The raw packet

data specifically for the victim host (IP address: 172.31.69.25) is used on which various

views are constructed to build the model. The selected pcap files consist of 4718327 num-

ber of packets in total for FTP brute force-specific attacks performed on Wed-14-02-2018

date and a total of 91666016 packets for UDP DDoS-specific attacks that was preformed on

Tue-20-02-2018 date.
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Table 5.4: Model Configuration for Network and Flow View. The f indicates input feature vector.

Parameter Values
Total Layers 9
Encoder structure f ,128, 64, 32
Compressed output length 16
Decoder structure 32, 64, 128, f
Optimizer Adam
Learning rate 0.0001
Loss function Mean squared error
Batch size 16
Number of Epochs 50

5.5.2 Implementation

For the implementation purpose, the proposed method extracted data for the Benign sce-

nario specific raw packets by utilizing the timestamp information, when the attack has not

been performed and generated various smaller .pcap files using editcap utility [143] with the

defined time window length. In various experiments, we increase the time window size (from

1 min. upto 4 min.) and analyze how the model performs with the increment as the time

window affects the amount of data generated after aggregation. These binary files (.pcap)

are used further to generate multiple views, where binvis.io [141] is used for image view

generation, CICFlowMeter-v3 [102] is used for preparing flow view and own implemented

code is used for generating network view. Further, view-specific autoencoder models are

trained and view-specific thresholds are identified for each view individually. The complete

implementation is performed on Mac OS with 6 core intel core i7 processor with 16 GB RAM

and utilized the TensorFlow python package for the implementation. The configuration for

autoencoder networks for different views are used as shown in Table 5.4 & 5.5. The model

performance is evaluated in terms of classification metrics by considering the timestamps

specific to Attack or Benign class from the dataset description. The run time performance is

also evaluated for the proposed model in terms of the number of flows processed per second

in run time. The δ = 0.10 is used as a value to consider the change in threshold parameters

while training the self supervised model.
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Table 5.5: Model Configuration for Image View.

Parameter Values
Total Layers 6
Input Dimension 512x512x3
Encoder structure 512x512x32, 256x256x64
Compressed dimension 128x128x64
Decoder structure 256x256x64, 512x512x32
Optimizer Adam
Learning rate 0.0001
Loss function Mean squared error
Batch size 16
Number of Epochs 50

5.5.3 Results and Analysis

5.5.3.1 Performance Comparison

The detection performance of the proposed model is evaluated in terms of precision (Prec.),

recall (Rec.), F1-score (F1), and accuracy (Acc.) for various time windows (1 min, 2 min,

3 min, and 4 min). To estimate the prediction performance, 10% of normal data is hold-

out as testing along with the attack dataset, and estimate the evaluation metrics between

Benign or Attack classes. This research has experimented with the models with different

time window lengths and reports the results for each time window since different values

report different performance figures as shown in table 5.6 & table 5.7 for FTP Brute force

and UDP DDoS attacks respectively. From the results, it is shown that the proposed model

performance varied with time window length.

The detection performance of the proposed model is evaluated in terms of precision,

recall, f1-score, and accuracy for various time windows (1 min, 2 min, 3 min, and 4 min).

To estimate the prediction performance, 10% of normal data is used as testing along with the

attack dataset, and estimated the evaluation metrics between Benign or Attack classes. This

research work experimented the models with different time window lengths and report the

results for each time window since different values exhibits different performance figures as

mentioned in table 5.6 & table 5.7 for FTP Brute force and UDP DDoS attacks respectively.

This research presents results for the two proposed methods, With majority voting and with

self supervised learning separately, defined as Proposed M.V. and Proposed S.S. respectively.

From the results, it is evident that the proposed model performance varied with time window
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Table 5.6: Performance Comparison of different auto-encoder models for FTP Bruteforce attack.

Window
Size △t

Model Prec.% Rec.% F1.% Acc.%

1 min

Network View 93.0 100 96.3 94.1
Flow View 94.9 100 97.3 95.8
Image View 97.3 100 98.2 97.9
Proposed M.V. 96.8 99.4 98.1 97.0
Proposed S.S. 98.7 98.1 98.3 98.5

2 min

Network View 89.5 100 94.4 90.9
Flow View 93.0 100 96.4 94.2
Image View 95.6 100 97.7 95.9
Proposed M.V. 93.9 98.9 96.4 94.2
Proposed S.S. 98.2 96.0 95.9 96.0

3 min

Network View 92.4 98.3 95.3 92.5
Flow View 91.0 98.3 94.5 91.2
Image View 95.1 100 97.5 95.9
Proposed M.V. 93.9 100 96.8 95.0
Proposed S.S. 98.3 90.1 94.0 94.3

4 min

Network View 90.3 100 94.9 91.8
Flow View 97.8 97.8 97.8 96.7
Image View 97.6 100 97.6 96.0
Proposed M.V. 96.0 100 97.9 95.7
Proposed S.S. 98.1 93.1 95.5 96.0
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Table 5.7: Performance Comparison of different auto-encoder models for UDP DDoS attack.

Window
Size △t

Model Prec.% Rec.% F1.% Acc.%

1 min

Network View 90.0 100 94.1 90.2
Flow View 90.0 80 84.9 79.8
Image View 93.0 97.5 95.2 93.6
Proposed M.V. 93.0 100 96.3 94.6
Proposed S.S. 98.5 77.12 86.5 90.8

2 min

Network View 87.2 100 93.1 89.6
Flow View 91.6 80.4 85.7 81.0
Image View 89.3 100 94.3 92.1
Proposed M.V. 93.0 100 94.4 94.7
Proposed S.S. 97.9 91.1 95.4 95.5

3 min

Network View 96.2 100 98.1 97.2
Flow View 91.6 84.6 87.9 83.7
Image View 87.0 100 93.1 90.4
Proposed M.V. 96.2 100 98.1 97.2
Proposed S.S. 100 81.0 90.0 93.2

4 min

Network View 84.3 100 91.3 86.2
Flow View 90.0 95.2 93.0 89.6
Image View 71.4 100 83.3 74.2
Proposed M.V. 90.9 100 95.2 92.8
Proposed S.S. 100 68.0 81.0 87.2

97



Mutliview-based Network Intrusion Detection System

length. It is analyzed from the performance results that the proposed model outperforms

every other individual view in terms of precision and accuracy for most of the time window

values. The best f1-score and accuracy for FTP Brute force attack is attained as 98.3% and

98.5% respectively for a time window of 1 min. And The best f1-score and accuracy results

for UDP DDoS attack is attained as 98.1% and 97.2% respectively for time window of 3

min.

It is also observed that the proposed majority voting based method always performs

better than the flow view and network view separately for both the attacks. The proposed

self-supervised learning-based model also outperforms the majority voting in terms of preci-

sion, f1-score and accuracy for specific time window length. It is estimated that recall values

are lower for the proposed self supervised learning based model due to introduction of the

slight change in threshold and generating data inherently which consists of more records for

normal scenario , However with the proposed self supervised learning based scheme, model

is able to capture the slight change in threshold values and handle the attack scenarios

better.

It is also observed from view-specific results, that flow view and image view are able to

well capture the FTP Brute Attacks because it is based on a connection-oriented protocol

(i.e. TCP) and the performance results for network view are lower. On the other hand for

UDP DDoS attack Network view performs better than flow view and image view because it is

based on connection-less protocol (i.e. UDP) and network view is the best representative to

explain the attack. It is also analyzed that image view performance (f1-score and accuracy)

diminishes for larger window sizes.

5.5.3.2 Baseline Comparison

In this section, the performance evaluation of the proposed framework is discussed and

the comparison with several baseline methods is presented for FTP brute force attack and

UDP DDoS attack detection that are implemented using the CICIDS2018 dataset. The

comparison results are presented in table 5.8 and table 5.9 for both the attacks. From the

results it is evident that the proposed model outperforms most of these supervised learning

based methods for both the attacks except [144] which is based on supervised learning based

scheme and the classification results are better than proposed model.
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Table 5.8: Performance Comparison with earlier proposed methods for FTP Bruteforce attack.

Method Type Prec.% Rec.% F1% Acc.%
[145] Supervised 82.8 42.6 56.3 42.6
[146] Supervised 92.5 97.8 91.8 94.3
[147] Supervised 95.7 95.4 97.5 -
[148] Supervised - - - 98.0

Proposed M.V. Majority Voting 96.8 99.4 98.1 97.0
Proposed S.S. Self-supervised 98.7 98.1 98.3 98.5

Table 5.9: Performance Comparison with earlier proposed methods for UDP DDoS attack.

Method Type Prec.% Rec.% F1% Acc.%
[85] Supervised - - - 95
[149] Supervised 88.0 100 94.11 93
[144] Supervised 95.6 98.8 97.7 -

Proposed M.V. Majority Voting 93.0 100 94.4 94.7
Proposed S.S. Self-supervised 97.9 91.1 95.4 95.5

5.5.3.3 Time Window length vs Processing rate

Further, this section also investigates the processing rate in terms of records per second

processed by the trained model against the provided time window length (in minutes), as

shown in figure 5.5. The figure denotes that the processing rate is independent of selected

time window as minimal change is identified on increasing time window length. This is due

to non-contextual nature of the proposed scheme that process available data for every time

window independently. However, the outcome of IDS is delayed due to higher time window

length as IDS system requires to wait for processing till the data is available.

5.6 Summary

In this work, a novel approach is presented for attack detection that accommodate multiple

types of views together. A multiview representation learning framework is proposed to in-

corporate multiple views together for attack detection. The proposed method relies on the

network view, flow view, and image view of the captured network traffic for detecting the

attacks. From the experimental results, it is evident that the proposed architecture out-

performs the view-based models and chosen views are complimentary and useful to predict
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Figure 5.5: Time window Length vs Processed records per sec.: CICIDS2018 Dataset

the attacks robustly. It also proposed a self-supervised learning-based method for building

an intrusion detection system by combining the multiple different views generated on raw

packet data. The proposed method with the help of self-supervision automatically labels

the input data and finally builds the classifier that can be used in the real network for attack

detection. The proposed model also reduces the overhead of labeling every network packet

for a specific attack and uses self-supervision with the majority voting of individually trained

auto-encoders on a specific view. The implementation of intrusion detection is based on the

latest & representative network packets available in the open-source community. From the

results, it is evident that the proposed model significantly improves the results of combining

the views together and outperforms the view-specific auto-encoder models.

;;=8=<<
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6.1 Introduction

The previous chapters discuss the offline methods for building unsupervised learning-based

methods for intrusion detection. In the first contribution 3, the offline training method is

presented by utilizing the effect of weight decay in representation generation. In the second

contribution 4, the protocol-related information is utilized in the attack detection process

and offline training is performed for the proposed unsupervised learning-based method. A

method to utilize the protocol-aware representations in the attack detection process is also

discussed. In the last chapter 5, an approach utilizing the multiple views of the network

communication information is presented and also introduced a self-supervised learning-based

method for attack detection. In all of these earlier proposed methods, the model is trained

offline on the training dataset and is used to perform prediction on the testing data. In

offline learning-based methods, the model is trained usually once on the batch of data and

continuously used in prediction, due to which it is unable to capture the changing patterns

in data over time. For this purpose online learning-based method is utilized that can adapt

to incoming traffic further. Online learning based methods [150] can be incremental or

non-incremental in nature. Incremental learning based methods modify the trained model

subsequently to consider new patterns for attack detection which is complex in nature. On
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the other hand non-incremental methods learns the new patterns on-the-fly. This research

work proposes an on-the-fly learning based method where model building and attack detec-

tion are performed for the data generated in a given time slot. With this method, the effect

of change in data for every time slot can be integrated. Various experiments using flow-level

information on a recent dataset is performed with varied time window sizes for FTP Brute

Force and HTTP DDoS attacks respectively.

6.2 Need for an online detection system

With the rise of the Internet, attacks like DDoS, BruteForce, Botnet, etc. have become

destructive and pose a great threat to overall security. The number of attacks on computer

networks has been increased a lot over the years. These attacks can hamper the network

performance, cause huge financial loss and overall credibility loss to an enterprise. Various

open-source tools like LOIC [5], Slowloris [6], Nmap [7], Cain & Abel, etc can be used

to perform different types of attacks easily. These attacks are performed against existing

vulnerabilities in various networking protocols like SSH, FTP, HTTP, ICMP, etc. Each

of these different attacks has a varied effect on network parameters. For example, Port

scanning allows a lot of packets generated from one source port to multiple other destination

ports that affect the distribution in destination ports. During high volume DDoS attacks

sudden increase in packet transfer rate is identified. The major challenge is to identify

these malicious activities with changing attack scenarios as model has to be updated with

time. In recent years, several supervised intrusion detection systems have been proposed.

However, these methods require labeled data for training and cannot automatically adapt

to frequently changing network traffic scenarios. It is also required for data to be updated

periodically and requires the model to be retrained to detect new attacks. This emphasizes

the need for the development of unsupervised detection systems that can target zero-day

attacks. Most of these supervised learning-based Intrusion Detection Systems (IDS) require

huge manual effort for label generation and require data update over time to incorporate

new attacks. It further emphasizes the need for an unsupervised learning method that can

identify abnormal behavior automatically.

On the other hand for the continuous network traffic, it is expected that the model is able

to learn the new patterns automatically which is not possible through offline systems. Since

system behavior and applications are changing with respect to time, it is expected from the
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model to update itself and adapt to a frequently changing environment so that it can be

applied in real-time for attack detection. Hence it is required to build the IDS system that

can be operated in an on-the-fly manner using an unsupervised machine learning method.

This research proposed a solution that relies on identifying these anomalies in networking

parameters over the sliding time window. The proposed system process data for each specific

time window and detect the attack activity is present or not.

In this chapter, an unsupervised solution that relies on detecting attacks in a discrete-

time sliding window using the distance between statistical features is proposed. The pro-

posed algorithm utilizes generated cluster profiles and estimates the distance between statis-

tical features to trigger an attack event if it exceeds the predefined threshold. The proposed

solution does not rely on input from the last context and looks into only the current process-

ing window for attack detection. The main contribution of the research can be summarized

as follows:

• An unsupervised algorithm for network attack detection using clustering method is pro-

posed that eliminates the need of labeled data.

• This research work proposed an on-the-fly learning based method for detecting attack

independently for every time slot using flow-level information.

• The proposed system is based on extracting statistical features from the data and using

specific distance threshold for attack detection.

• The recent benchmark dataset from Canadian Institute for Cybersecurity i.e. CICIDS2018

[1] is used to validate the proposed method.

The rest of the chapter is structured in the following way.Section 6.3 describes vari-

ous machine learning-based methods for implementing online learning-based IDS solutions.

Section 6.4 discusses the proposed algorithms to build online method for network attack

detection using unsupervised mechanism. Section 6.5 describes various experimentation

performed for detecting FTP Brute force and HTTP DDoS attacks. Lastly in section 6.6

the summary of the proposed approach is presented.

6.3 Related Work

This research study various machine learning-based online systems to detect network at-

tacks. Most of the solutions devised are based on unsupervised and supervised learning.
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6.3.1 Unsupervised learning based methods

Kitsune, [27] an ensemble of auto-encoders based detection system is proposed that can

detect attacks without supervision. The proposed system is initially trained with normal

traffic and later anomaly is identified based on reconstruction error. It consists of two

parts an ensemble layer for training and an output layer for producing the final score of

anomaly. It uses a total of 115 statistical features computed over 5 last time windows

with damped incremental statistics. Feature reduction is performed using agglomerative

hierarchical clustering. The major limitation is that it expects all traffic to be Benign in the

training phase. Another ensemble framework is discussed in [151] which is using an ensemble

of generative model with weighted average. The proposed model uses Mahalanobis distance

to differentiate the anomaly from benign traffic. It expects Benign data available to train

the ensemble models separately. However, training data can be poisoned with attack data

which is similar to Normal traffic scenario.

ORUNADA system [54] proposes an online and scalable method for detecting network

anomalies. The proposed system uses Incremental Density Grid-based clustering method

with continuous update of feature space for discrete-time windows. It follows Evidence

accumulation (EA4O) technique to identify anomalies. It uses aggregated features on source

IP and destination IP like the number of packets, percentage of packets with different TCP

flags set SYN/ACK/RST/FIN, percentage of different ICMP error related packets, average

Packet Size, etc. Spanish ISP and MAWILab Dataset are used for testing the results.

Another online anomaly detection method for augmented network flows [152] is proposed

that is based on count-min sketch for per-flow, per-node, per-network level statistics. It

proposes SVM based adaptive mechanism and use dynamic input normalization approach

for scaling, that also monitors the range and variance of observed values. Experimentation is

performed on two datasets MAWI and Lawrence Berkeley National Laboratory. [153] discuss

the method for detecting anomalies using traffic feature distributions. It uses entropy as a

summarization tool to estimate the distributional changes in traffic features. Traffic flow

consists of 4 tuples srcIP, dstIP, srcPort, dstPort. Sample Entropy is evaluated using feature

distribution constructed from packet counts. It uses Hierarchical Agglomerative clustering

for and proposes a multi-way subspace method for identifying anomalies across multiple

traffic features and multiple origin-destination flows.
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6.3.2 Supervised learning based methods

Supervised learning based solutions like DeepWindow [154] propose an online supervised

learning-based method using LSTM for abnormal traffic detection using CICIDS2018 Dataset.

It uses Mutual Information and Maximal information coefficient for feature selection. Fea-

tures like count packets, count PSH flag, total time, packet max, average length, etc. are

used with a window size of t periods. Another solution [155] discusses online method for

DDoS attack detection. Being a supervised solution, it expects the data to be updated

periodically to detect the new attack. In this section, major research in the area of Online

attack detection for multiple different attacks have been explored. In the next section, the

proposed solution and algorithm are discussed in detail.

The proposed method resolves these issues by introducing a on-the-fly learning based

solution that is based on an unsupervised learning mechanism and process the results with

lesser time complexity. In the next section, the proposed methodology is discussed in detail.

6.4 Proposed Methodology

6.4.1 Assumptions

1. The proposed method assumes that the flow level records can be generated with re-

quired features for specific attack detection.

2. The proposed method assumes that an individual model is built for specific attack only

to distinguish between Normal and specific attack.

6.4.2 Architecture

The proposed solution for intrusion detection system consists of 3 major stages Data Pre-

processing, Model Building & Attack Detection as specified in figure 6.1. All the stages

are performed in sequence for every incoming flow records in ∆t time period to identify

malicious activity.

1. Data Pre-processing

Data Pre-processing is an initial step that is required for any modeling task. It con-

sists of two main process i.e. Feature Selection and Feature Scaling. Since flow-based
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Figure 6.1: High level architecture diagram for the proposed Online based IDS

records contain a lot of parameters therefore It is needed to select those network pa-

rameters that are relevant for a specific attack. After proper analysis and using domain

knowledge a subset of parameters is selected that can be used to identify the attack.

The parameter set and its description for an individual attack is provided in table 6.1

Table 6.1: Affected Network Parameters for specific attack

Attack Type Parameter
FTP Brute Force Size of packet and flow records like Segment Size,

average Packet size, etc.
Distributed Denial of Ser-
vice

Rate of flow like Packets/s , Bytes/s etc.

Based on the parameter selection corresponding features are identified from the dataset.

Once the feature is selected for specific attack detection it is required to scale the

features in a definite range so that results should not get biased to larger values. For

this, Min-Max Scaling technique is used where features are transformed in the range

[0,1]. If feature values are represented in X then transformed value Xt is,

Xt =
X −Xmin

Xmax −Xmin

(6.1)

2. Model Building

The main objective of this stage is to build the unsupervised model and generate the

statistical features for attack detection. To reduce the search space it is required to

combine similar points of records together into multiple groups. The proposed method

performs the clustering for this purpose and generates optimum cluster by analyzing
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the clustering quality using various evaluation measures like Purity, Homogeneity score,

etc. After final clustering, it can be analyzed that similar flow-level information is com-

bined together. The main objective of this step is to identify the abnormal cluster in

later stages.

Once the clusters are created it is required to analyze the clusters and identify if any

attack cluster exists with differentiating behavior. Profile Generation is executed to

build the statistical insights from clustering which is an important step to compute the

statistical features for every cluster. These statistical features are computed on each

identified cluster and consist of various 1D and 2D features as described in table 6.2.

Let Fi and Fj are two features with value set as X <x1, x2, ...xn >and Y <y1, y2, ...yn >.

After this process, each of the generated features Vi is named as <Si-Fi>Where Si

represents a statistical parameter and Fi represents feature or group of features on

which it is computed as based on statistical feature. Once the statistical features are

computed cluster is represented in vector format as V which is called cluster profile as

represented in table 6.3. In table 6.3 some of the computed cluster profile features are

mentioned where FwdSegSizeMin represents the minimum segment size in the forward

direction, FwdPkts/s and BwdPkts/s represent the packets per second transferred in

the forward and backward direction. Profile generation is an important step that is

used to map the clusters in vector representation which is further used to identify the

attack.

Table 6.2: List of statistical features used for online detection

Dimension Feature Formula

1D Mean µx =
1

n

n∑
i=1

xi

Variance σ2
x =

1

n

n∑
i=1

(xi − µx)2

2D Cosine Distance 1− X · Y
|X||Y |

Correlation Distance 1−
∑n

i=1(xi − µx)(yi − µy)

σx · σy
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Table 6.3: Sample of the generated cluster profiles for online detection method

Cluster No.
Mean-
FwdSegSize
Min

Var-
FwdSegSize
Min

Mean-
FwdPkts/s

Var-
BwdPkts/s

Cor-
FwdSegSizeMin-
FwdPkts/s

Cosine-
FwdSegSizeMin-
FwdPkts/s

1 0.0 0.2 0.007 0.1 0.02 0.2
2 0.62 0.1 0.009 0.2 0.02 0.7

3. Attack Detection

Attack Detection is the main stage to identify if any attack activity is present at the

current time window. Once the cluster profiles are generated attack detection proce-

dure follows to compute the inter-cluster distance among every pair of cluster. These

distances are computed individually among created profile parameters and summed up

together to compute the total distance as represented in the equation 6.2 where K is

total number of generated statistical features and distance Dij is computed between

profile vectors V i and V j.

Dij =
1

K

K∑
k=1

|V i
k − V j

k |) (6.2)

The modulus value of the computed distance is considered because some of the features

affect positively and others affect negatively in terms of statistical distance. For N

different clusters total (N2−N) different distances are computed among every pair of

cluster. The maximum of the computed distance is compared with defined threshold

θ. If the magnitude of distance is greater than θ attack is notified. Threshold value is

adjusted based on administrator input on the outcome of the last N window results. It

can also be updated based on requirement of reducing false positives or false negatives.

6.4.3 Algorithm

The proposed algorithm involves multiple stages of execution as described earlier. These

stages impart a specific role in the overall process. Flow level records at a particular time

window ∆t and distance threshold θ are provided as input to the algorithm. On this subset

of flow records, required features are selected and scaled at an early stage. Further clustering

is performed to represent a group of similar points. At a later stage, statistical features are

computed on each cluster to generate a cluster profile. Now objective is to identify the

maximum distance attained among pairs of clusters. This maximum distance is matched
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with a predefined distance threshold to identify the attack.

The overall complexity of the proposed algorithm is (O(Nlog(N)) + O(C2)) where N is

number of data points in time slot t and C is the number of clusters created from data, if

DBSCAN algorithm is used for clustering which has worst case complexity as O(Nlog(N)).

The whole process is explained as below in the Algorithm 3

Algorithm 3: Algorithm for Online Attack Detection

Input : Dataset at time window T as collection of flow level records with n
attributes Fi where 1 ≤i≤ n , Distance Threshold θ

Output: Attack or Benign
1: Select feature set F for specific attack identification.
2: Fscaled ←MIN-MAX-SCALING(F)
3: Clusters C ←CLUSTERING (Fscaled)
4: Initialize Profile set as V
5: Select 1D and 2D statistical feature set as S
6: for Ci ∈ C do
7: Initialize Profile vector as V i

8: for Sj ∈ S do
9: Vi ←STATISTICAL-FEATURE-COMPUTATION (Fscaled, Sj)
10: end for
11: Append Profile V i ← Vi

12: end for
13: Initialize distance array as D
14: for V i ∈ P do
15: for V j ∈ P do
16: Dij ←DISTANCE-COMPUTATION (V i, V j)
17: Add Dij to D
18: end for
19: end for
20: Dmax ←MAX −DISTANCE(D)
21: if Dmax>θ then

22: return Attack else

23: return Benign

We have also compared the time complexity of existing unsupervised learning based

solutions in table 6.4 that are mentioned in background study 6.3.
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Table 6.4: Comparison of complexity with existing solutions

Solution Model Utilized Time Com-
plexity

Kitsune [27] Ensemble of Autoencoder O(N2)
ORUNADA [54] Density Grid based Clustering O(Nlog(N))
Online adaptive [152] Support Vector Machine O(N2)
Traffic Feature Distribution
[153]

Hierarchical Agglomerative Clus-
tering

O(N3)

Proposed Algorithm DBSCAN Clustering O(Nlog(N))

6.5 Experimentation Results

6.5.1 DataSet

The CICIDS2018 Dataset [1] is used to train and test the proposed attack detection system.

This is the recent dataset developed at the Canadian Institute of Cybersecurity in which

records are collected over testbed with networking infrastructure containing 50 attacking

machines and the victim organization has 5 departments and includes 420 machines and

30 servers. FTP-Patator and SSH-Patator tools [100] are used for performing brute force

attacks and LOIC tool is used for DDoS attack. The generated Flows are captured using

CICFlowMeter-V3 [102] utility. In total 7 different types of attacks are captured at different

dates. The proposed method only selected the data for which FTP BruteForce attack and

HTTP DDOS attack are performed along with Benign traffic as shown in the table 6.5.

Table 6.5: Dataset used for online attack detection

Attack Type Class Number of
Records

FTP BruteForce Benign 667626
Attack 193360

HTTP-DDoS Benign 7372557
Attack 576191

6.5.2 Implementation

The implementation utilized flow level data captured on 14-02-2018 & 20-02-2018 specifically

for FTP brute force attack and Http DDoS attack. The proposed method do not require
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Table 6.6: Attack specific features used for online detection

Attack Feature Explanation

FTP BruteForce

Fwd Seg Size Min Min Segment size in forward direction
Fwd Pkts/s Packets per sec in forward direction
Bwd Pkts/s Packets per sec in backward direction
Pkt Size Avg Average packet size
Fwd Pkt Len Std Standard Deviation of packet length in forward di-

rection
Bwd Pkt Len Std Standard Deviation of packet length in backward

direction

HTTP DDoS

Tot Fwd Pkts Total packets in forward direction
Tot Bwd Pkts Total packets in backward direction
TotLen Fwd Pkts Total length of packets in forward direction
TotLen Bwd Pkts Total length of packets in backward direction
Fwd IAT Tot Total Inter-arrival time in forward direction
Bwd IAT Tot Total Inter-arrival time in backward direction
Fwd Pkts/s Packets per sec in forward direction
Bwd Pkts/s Packets per sec in backward direction

the associated label information to start the process. The complete implementation is

done on Mac OS with 6 core intel core i7 processor with 16 GB RAM. Feature selection is

performed based on attack property as described earlier. Table 6.6 provides the details on

selected features for each type of attack detection. The proposed method used the DBSCAN

Clustering algorithm [156] for the generation of clusters. This helps us to separate out the

noise cluster which can be avoided in distance estimation. The python machine learning

package i.e. scikit-learn [157] is used for the implementation.

6.5.3 Performance Metrics

The performance of the proposed algorithm is estimated in terms of clustering and classifi-

cation. These metrics are computed for various window sizes.

6.5.3.1 Clustering Metrics

The proposed method uses labels from the data set for the computation of clustering mea-

sures. These measures also help us to select the best hyperparameters for clustering. Purity

score and Homogeneity score are used to evaluate the quality of clusters formed as specified

111



Online Network Intrusion Detection System

Table 6.7: Clustering results for both the attacks with varying time window size

Attack Window Size Purity Score Homogeneity Score
FTP BruteForce 2 min. 0.99 0.99

1 min. 0.99 0.97
30 sec. 0.98 0.96
15 sec. 0.98 0.93

HTTP DDoS 2 min. 0.86 0.68
1 min. 0.87 0.71
30 sec. 0.89 0.73
15 sec. 0.93 0.82

in section 2.6. The mean of the mentioned two scores is computed for a group of clusters

identified at a time slot. In the proposed approach it is also required that each cluster has

a single class of examples and a higher purity score.

6.5.3.2 Classification Metrics

To estimate the performance of the algorithm it is needed to estimate classification metrics

in terms of precision, recall, f1-score, and accuracy metrics as specified in section 2.6.

6.5.4 Results and Analysis

6.5.4.1 Detection Performance

The detection performance of proposed method is evaluated for FTP Brute Force and Http

DDoS Attack individually. As per CICIDS2018 dataset, FTP Brute Force attack is per-

formed from 10:32 am till 12:09 pm on 14-02-2018. The data from 10:00 am till 1:00 pm

time considering first 30 min and last 30 min as the Benign traffic is considered. Similarly

another attack Http DDoS is performed on 20-02-2018 from 10:12 am till 11:17 am time

and the data from 9:00 am till 12:30 pm is considered to include the benign traffic before

and after attack. The results are estimated for different time window size of 2 min, 1 min,

30 sec, and 15 sec. DBSCAN algorithm [156] is utilized for clustering with configuration

parameters eps = 0.005 and min-sample = 10 for both the attacks. Clustering evaluation

metrics are attained for various window sizes and shown in table 6.7 for FTP BruteForce

and HTTP DDoS attacks respectively.

To estimate the detection performance the time range is divided into multiple different
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Table 6.8: Classification results for both attacks with varying time window size

Attack Window Size Precision Recall F1-score Accuracy
FTP BruteForce 2 min. 97% 81% 88% 88%

1 min. 98% 85% 91% 91%
30 sec. 98% 93% 95% 95%
15 sec. 95% 87% 91% 90%

HTTP DDoS 2 min. 90% 90% 90% 93%
1 min. 91% 96% 93% 95%
30 sec. 74% 91% 81% 85%
15 sec. 54% 80% 64% 69%

slots based on window size and the results are estimated based on attack time duration.

Overall classification metrics calculations are based on 2-class (Benign or Attack) classi-

fication results. Threshold value 2.5 is used for FTP Brute Force attack detection and

value 47 is used for Http DDoS attack detection to estimate the detection performance.

These respective thresholds are determined after analysis in sub-section 6.5.4.3. The attack

detection results are represented in table 6.8 for both the attacks with varying window size.

6.5.4.2 Time Window Selection

Table 6.9: Window Size vs Response Time

Attack Window Size No. of Batches Total Time(sec.) Response Time(sec.)

FTP BruteForce

2 min. 89 43 0.48
1 min. 177 44 0.24
30 sec. 348 46 0.13
15 sec. 674 59 0.08

HTTP DDoS

2 min. 91 884 9.71
1 min. 181 524 2.89
30 sec. 358 405 1.13
15 sec. 693 404 0.58

A proper time window needs to be selected for processing the results in an estimated time

(i.e. response time) depending upon the flow arrival rate. The proposed method estimated

time taken for each batch to process for varying window size as shown in table 6.9 for

detection of both the attacks individually. It is analyzed that response time is reduced on

taking smaller window size and from the detection performance results, it is evident that

reducing the window size after a certain point reduces the overall classification metrics. This
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Figure 6.2: Threshold Selection for FTP BruteForce attack

can help to select the optimum window size based on flow arrival rate. For HTTP DDoS

attack, processing time is larger than FTP Brute Force because of the higher volume of

traffic generated during the DDoS attack.

6.5.4.3 Threshold Selection

Threshold plays a vital role in getting the good results. To decide the threshold it is

needed to check the performance metrics at various thresholds. The minimum and maximum

distance achieved for a specific time window size of 2 min is used and the metrics are

estimated. The proposed method selects the threshold which results on best performance

metrics identified as 2.5 for FTP Brute Force and 47 for HTTP DDoS attacks as shown in

figure 6.2 & 6.3.

6.6 Summary

This research presented an on-the-fly learning based approach for attack detection that

works in an unsupervised manner. The proposed system reduces the overhead of labeling

every network flow data. The administrator can decide the threshold based on networking

scenarios and the kind of attack that needs to be detected. The implementation of intrusion

detection is based on the latest and representative flow level dataset. The current approach
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Figure 6.3: Threshold Selection for HTTP DDoS attack

does not require the previous context of time windows that allows it to execute independently

for each time step.

;;=8=<<
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7
Conclusions and Future Perspectives

This chapter presents the summary of the work, highlights the contributions, and suggests

the directions for possible future work.

7.1 Summary of the contribution of thesis

This thesis has proposed various unsupervised learning-based methods for Network Intrusion

detection systems. The summary of the various methods presented and the chapter-wise

contributions are as follows:

In Chapter 3, the influence of temporal context in building an unsupervised learning-

based network intrusion detection system is discussed. The concept of regeneration error

is utilized to build the autoencoder-based model by considering the previous context with

a weighted decay factor using a multi-layer Time aware LSTM network. It involves reg-

ularizing the feature and regenerating the input data using an autoencoder-based model.

It is analyzed that consideration of the sequence of records over consequent timestamps

played an important role in determining the attack activity due to the sequential nature

of the attack life-cycle. The proposed system is based on an unsupervised setup to esti-

mate reconstruction error and identify attacks based on a threshold obtained only from

normal traffic. It is also inferred that Time time-aware LSTM-based autoencoder is able
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to capture time-dependent contextual information and comparison with baseline methods

of MLP and LSTM-based autoencoder justifies that diminishing context over time plays

an important role in accurate attack identification. Multiple recent benchmark datasets -

CICIDS2018, and CICDDoS2019 are used for evaluating the performance of the suggested

method for FTP BruteForce and UDPDoS attacks respectively. It is also observed that

the performance of the standalone OCSVM-based model is improved further after utilizing

the intermediate representations from the autoencoder models. It is also analyzed that the

TLSTM-based OCSVM model is performing better than the LSTM-based OCSVM model

for all the data sets.

In Chapter 4, the importance of protocol awareness for generating a better represen-

tation in an unsupervised learning-based mechanism is discussed. To incorporate protocol-

aware information while modeling, a method for protocol-aware unsupervised network in-

trusion detection systems is proposed that can learn the protocol-aware representations

automatically and utilize this information for the final decision. It is described that the

data received by a device at a particular instance of time may consist of heterogeneous

information related to different protocols and anomaly characteristics of different protocol-

specific attacks may also be different. Therefore capturing the differences in characteristics

of different protocols may be important to effectively determine anomalies present in data.

However, a generalized global representation may fail to effectively capture heterogeneous

characteristics of different protocols, which may be important for anomaly detection. The

proposed unsupervised learning-based method not only generates a global representation

of the entire data but also generates local representation for different protocols and learns

the importance of local representation in attack determination by utilizing a self-attention-

based network. It is concluded that the protocol-specific unsupervised autoencoder-based

model is able to capture time-dependent contextual information and identify specific attacks

at the protocol level. The proposed system is based on an unsupervised setup to estimate

reconstruction error and identify attacks based on a threshold obtained from normal traffic.

A method to combine protocol-specific encoders with an attention network is also presented

that utilizes the importance of each protocol channel for attack identification and helps

in improving the results further. Multiple recent benchmark datasets - CICIDS2018 and

CICDDoS2019 are used for evaluating the performance of the proposed model on various

attacks like Brute-Force (FTP Bruteforce and SSH Bruteforce ) and DDoS attacks (SYN

Flood, UDPDoS, and NTP DoS) respectively, and from the results, it is observed that
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the proposed model outperforms the model created for full data for both CICIDS2018 and

CICDDoS2019 datasets.

In Chapter 5, multiple views from network packets are utilized to build an unsupervised

learning-based model. The importance of each different view in identifying the network

attacks is presented, which can help in improving the overall detection performance by

learning differentiated features from the multiple views together. Further, the view-specific

autoencoders are built on extracted view-specific features and proposed majority voting

and self-supervised learning-based models for attack detection. The majority voting-based

method is used to consider the output from view-specific autoencoders and the final outcome

is based on the majority of the individual autoencoder’s decision. On the other hand, a self-

supervised learning-based model is discussed that is based on majority voting results and

considers the minimal change in estimated thresholds. The proposed self-supervised learning

approach utilizes the reconstruction error from each view and labels the incoming data with a

majority voting of individual view-specific encoders. This inherent labeled dataset is finally

used to build the binary classifier and utilize it in attack detection. The recent benchmark

dataset i.e. CICIDS2018 is used for evaluating the performance of the proposed model on

FTP brute force and UDP DDoS attacks and results are compared for view-specific auto-

encoder. The experiments are analyzed with different time window lengths of 1 min, 2 min,

3 min and 4 min. and it is concluded that considering multiple views together improves the

overall metrics.

Finally, in Chapter 6, on-the-fly learning based method for an intrusion detection

system is presented that relies on identifying these anomalies in flow-level network data

over the sliding time window. The proposed system processes data for each specific time

window and detects whether the attack activity is present or not. The proposed solution

does not rely on input from the last context and looks into only the data in the current

processing window for attack detection. The proposed unsupervised learning-based solution

relies on detecting attacks in discrete time sliding windows that first perform clustering

on the extracted subset of data to group similar records together and further create the

cluster profiles by computing the 1D and 2D statistical features on flow-level data. These

cluster profiles are ultimately used to estimate the statistical distance between computed

clusters and trigger an attack if it exceeds the predefined threshold. The recent benchmark

dataset from the Canadian Institute for Cybersecurity i.e. CICIDS2018 is used to validate

the proposed method for FTP Brute Force and HTTPDDoS attacks. The experimental
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results are discussed for computing detection performance in terms of f1-score and accuracy

primarily. From experimentation results it is observed that the f1-score increases on reducing

the window size up to a point and reduces thereafter which helps in determining the suitable

window size. Further attack-specific threshold values are also estimated by looking into the

metrics and estimating minimum and maximum computed distance for various threshold

values.

7.2 Future Perspectives

The work reported in the chapters of this thesis provide ample scope and promulgate several

clear directions for future research endeavors. The following are some possible research

directions.

• The proposed multiview-based unsupervised mechanism ignores the previous context

information while making the decision. Thus the approach can be extended to support

the contextual information by utilizing the LSTM-based autoencoder models.

• As different thresholds are required to be learned while training the model and before

deploying it to production, the effort can be given to developing the scheme to provide

an adaptive threshold mechanism.

• The proposed online scheme to detect attacks can be extended to work on aggregated

flows that can help reduce the complexity of processing every network flow record. The

proposed online method can also be extended to utilize the contextual information to

improve the results further. The proposed methods can further be extended to support

incremental learning that can avoid training the model for every incoming data at a

particular time window.

• As IoT networks are getting popular, and the major challenge is to build a mecha-

nism that consumes fewer resources while inference. The applicability of the proposed

unsupervised learning based solutions may be studied in this domain.
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