
Algorithms for some Steiner tree
problems on Graphs

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by

Parikshit Saikia

Under the guidance of

Dr. Sushanta Karmakar

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
November, 2020

mailto:s.parikshit@iitg.ac.in
http://www.iitg.ac.in/sushantak/
http://www.iitg.ac.in/cse/
http://www.iitg.ernet.in

Copyright c© Parikshit Saikia 2020. All Rights Reserved.

mailto:s.parikshit@iitg.ac.in

Dedicated to

My beloved Grandparents

and

Parents

Who always picked me up on time
and encouraged me to go on every adventure,

specially this one

Declaration

I certify that:

• The work contained in this thesis is original and has been done by myself

and under the general supervision of my supervisor.

• The work reported herein has not been submitted to any other Institute

for any degree or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data,

graphs, diagrams, theoretical analysis, results, etc.) from other sources, I

have given due credit by citing them in the text of the thesis and giving

their details in the references. Elaborate sentences used verbatim from

published work have been clearly identified and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the

best of my knowledge and understanding and take complete responsibility

if any complaint arises.

• I am fully aware that my thesis supervisor is not in a position to check for

any possible instance of plagiarism within this submitted work.

Date: November 15, 2020
Place: Guwahati

(Parikshit Saikia)

mailto:s.parikshit@iitg.ac.in

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my super-

visor Dr. Sushanta Karmakar for his consistent support, inexhaustible patience

and positive guidance during my doctoral research. I am thankful for his ethical

beliefs and philosophy which made me mature not only as a scientific researcher

but also as a human.

I am highly grateful to Prof. Purandar Bhaduri for his invaluable support and

encouragement throughout my Ph.D. I would also like to thank the other mem-

bers of my Doctoral Committee - Dr. Pinaki Mitra and Dr. Gautam K. Das for

their insightful comments and suggestions which made me improve the quality

and clarity of my work.

I would like to thank Prof. Aris T. Pagourtzis for the insightful comments and

suggestions he made in reference to Chapter 5 of this work. I am also thankful to

the anonymous reviewers of my research work in various forums for their critical

comments which helped me to add quality to my work.

I want to thank the heads of the Department of Computer Science and Engi-

neering during my Ph.D. at IITG - Prof. Diganta Goswami and Prof. S. V. Rao

for allowing me to use the facilities and the available resources. I acknowledge

the Technical staff of the Department of Computer Science and Engineering -

Mr. Nanu Alan Kachari, Mr. Bhriguraj Borah, Mr. Hemanta Kumar Nath,

Mr. Pranjitt Talukdar, Mr. Raktajit Pathak and Mr. Nava Kumar Boro for

solving any engineering related issues. I am deeply thankful to - Mr. Monojit

Bhattacharjee, Ms. Gauri Khuttiya Deori and Mr. Prabin Bharali for efficiently

handling the administrative work. I am obliged to all the faculty members, the

staff and security personnel for their constant help and support. I would also

like to thank the satff at the Academic Affairs office who were supportive to

process my applications and grant requests.

I would like to gratefully acknowledge MHRD, Govt. of India for the financial

support rendered throughout my years of Ph.D. without which this research

could not have taken shape. I would also like to acknowledge the department

of Computer Science and Engineering and the Welfare Board of IITG for the

travel grants which helped me to present my research work at the national and

international levels.

I would like to specially mention Dr. Sirumoni Baruah for his persistent support

and guidance from the very beginning of my Ph.D. life. I am indeed thankful

to my fellow lab mates at the Research Lab 2. - Alakesh, Surajit, Arunagshu,

Partha, Subrata, Madhurima, Neelakshi, Pawan, Swarup, Rakesh, Yashdeep,

Hemraj, and Arijit for creating a wonderful experience at my workplace. The

stimulating discussions, brainstorming and sleepless night working together con-

tribute a significant portion towards my development as an independent re-

searcher. I would also like to thank the research scholars of the department of

Computer Science and Engineering at IITG for creating a warm atmosphere of

mutual support and encouragement.

I am fortunate to have good friends - Manojit, Himangshu, Pranab, Kukil,

Himangshu-pratim, Ashis, Dipanka, Dwijasish, Dhriti, Shrutidhara, Preetirekha,

Chandana, Sampreet, Sanjoy, Bibhuti-ranjan, Joyprakash, Alakesh, Ado, and

Pranay with whom I have shared some ineffaceable moments of my life at IITG.

I am thankful to all my colleagues and friends during my journey as a Ph.D.

scholar.

I want to thank the friends from my undergraduate and school days - Hemanta,

Mehbub, Chamok, Mandit, Manash, Ratul, Kiran, and Linton for the beautiful

memories and cherished moments spent with them. I am happy to mention my

childhood friends - Alakesh and Bandana for their encouragement and support.

Finally yet importantly, I would like to thank Almighty God and my family -

Ma, Baba, Kondai, Pehi, Dangarbaba, and my brothers and sisters for their

unconditional love, support, caring, warmth and profound encouragement all

these years. They never doubted my intentions and whole-heartedly supported

me in all my endeavours. I fall short of words to express my gratitude to them.

Certificate

This is to certify that this thesis entitled, “Algorithms for some Steiner

tree problems on Graphs”, being submitted by Parikshit Saikia, to the

Department of Computer Science and Engineering, Indian Institute of Technol-

ogy Guwahati, for partial fulfillment of the award of the degree of Doctor of

Philosophy, is a bonafide work carried out by him under my supervision and

guidance. The thesis, in my opinion, is worthy of consideration for award of the

degree of Doctor of Philosophy in accordance with the regulation of the institute.

To the best of my knowledge, it has not been submitted elsewhere for the award

of the degree.

Date:

Place: Guwahati

..............................

Dr. Sushanta Karmakar

Associate Professor

Department of Computer Science and Engineering

IIT Guwahati

mailto:s.parikshit@iitg.ac.in
http://www.iitg.ernet.in
http://www.iitg.ernet.in
http://www.iitg.ac.in/sushantak/
http://www.iitg.ac.in/cse/

Abstract

The Steiner tree (ST) problem is one of the classical problems in combinatorial optimization.

Given a connected undirected graph with non-negative edge weights and a subset of terminal

nodes, the goal of the ST problem is to find a minimum-cost tree spanning the terminals.

It finds applications in network design, content distribution networks, phylogenetic tree

reconstruction, and many more. In this thesis we study the ST problem in the distributed

setting. In the first contribution we present a deterministic distributed algorithm for the

ST problem (DST algorithm) in the CONGEST model that guarantees an approximation

factor of 2(1− 1/`), where ` is the number of leaf nodes in the optimal ST. It has a round

complexity of O(S+
√
n log∗ n) and a message complexity of O(mS+n3/2) for a graph of n

nodes and m edges, where S is the shortest path diameter of the graph. The DST algorithm

improves the round complexity of the best distributed ST algorithm known so far, which

is Õ(S +
√

min{St, n}) [90], where t is the number of terminal nodes. Note here that Õ(·)
notation hides polylogarithmic factors in n.

The ST problem is a generalized version of the minimum spanning tree (MST) problem.

Until 2016, algorithms were known for the MST problem which are either time-optimal

[38, 87] or message-optimal [5, 50], but not both simultaneously. Recently a few singularly-

optimal distributed algorithms have been proposed for the MST problem [41,62,110] beating

the long standing time-message trade-off. However, such a study has not been carried out

for the ST problem in the distributed setting. In the second contribution of the thesis we

investigate the round-message trade-off in distributed ST construction. We modify the DST

algorithm and show that a 2(1 − 1/`)-approximate ST can be deterministically computed

using Õ(S +
√
n) rounds and Õ(mS) messages in the CONGEST model. This algorithm

improves the message complexity of the DST algorithm by dropping the additive term of

O(n3/2) at the expense of a logarithmic multiplicative factor in the round complexity. In

case of S = O(log n), the round and message complexities of the modified DST algorithm

are Õ(
√
n) and Õ(m) respectively, which almost coincide with the best known singular-

optimality results of distributed MST construction in the CONGEST model due to [41,62,

110] and the approximation ratio of the resultant ST is 2(1− 1/`).

There has been a lot of progress in solving various problems in the CONGESTED

CLIQUE model of distributed computing including MST, facility location, shortest paths

and distances, sorting, routing etc. However, to the best of our knowledge, such a study has

viii

not been carried out for the ST problem till date. In this thesis we study the ST problem in

the CONGESTED CLIQUE model and propose two deterministic distributed algorithms:

STCCM-A and STCCM-B. The first one computes an ST using Õ(n1/3) rounds and Õ(n7/3)

messages. The second one computes an ST using O(S + log log n) rounds and O(Sm+ n2)

messages. Both the algorithms achieve an approximation ratio of 2(1 − 1/`). For graphs

with S = ω(n1/3 log n), the first algorithm performs better than the second one in terms of

the round complexity. On the other hand, for graphs with S = õ(n1/3), the second algorithm

outperforms the first one in terms of the round complexity.

In this thesis we also study a generalized version of the ST problem called prize-collecting

Steiner tree (PCST). Given a connected undirected graph with non-negative edge weights

and a non-negative prize value for each node, the goal of the PCST problem is to find a tree

such that the sum of edge weights in the tree plus the prizes of nodes that are not in the

tree is minimized. Problems such as MST, ST, Steiner forest, etc. which are related to the

PCST, have been widely studied in the distributed setting. However, PCST has seen very

little progress in the distributed setting (the only attempt seems to be a manuscript [122]),

despite the potential applicability of the problem. In particular, distributed algorithms for

PCST would be useful in distributed ad hoc (wireless) networks, such as MANETs and

sensor networks, where typically nodes have small memory and very limited knowledge of

the network.

We present two deterministic distributed algorithms for the PCST problem in the CON-

GEST model: D-PCST and modified D-PCST. Both the algorithms are based on the primal-

dual technique, preserve the dual constraints in a distributed manner, and achieve an ap-

proximation factor of
(
2 − 1

n−1

)
. The D-PCST algorithm computes a PCST using O(n2)

rounds and O(mn) messages. The modified D-PCST algorithm computes a PCST using

O(Dn) rounds and O(mn) messages, where D is the unweighted diameter of the graph.

For graphs with constant or small unweighted diameter (D = o(n)), the modified D-PCST

algorithm performs better than the original D-PCST algorithm in terms of the round com-

plexity. Both the algorithms require O(∆ log n) bits of memory in each node, where ∆ is

the maximum degree of a node in the graph.

[[]X]\\

Contents

1 Introduction 1

1.1 Steiner tree . 2

1.2 Applications . 4

1.3 Motivation . 6

1.4 Objectives . 9

1.5 Contributions . 11

1.5.1 Improved distributed approximation for ST in the CONGEST model 11

1.5.1.1 DST algorithm: A 2(1−1/`)-factor distributed ST algorithm

using O(S +
√
n log∗ n) rounds 11

1.5.1.2 Round-Message Trade-off in distributed ST construction . . 12

1.5.2 Distributed approximation algorithms for ST in the CCM 12

1.5.2.1 STCCM-A: A 2(1− 1/`)-factor ST algorithm using Õ(n1/3)

rounds in the CCM . 13

1.5.2.2 STCCM-B: A 2(1 − 1/`)-factor ST algorithm using O(S +

log log n) rounds in the CCM 13

1.5.3 Primal-dual based distributed approximation algorithm for PCST . . 14

2 Related work 17

2.1 Sequential ST algorithms . 17

2.1.1 Exact algorithms . 17

2.1.2 Approximation algorithms . 18

2.2 Distributed ST algorithms . 21

2.3 Sequential PCST algorithms . 28

2.3.1 GW-algorithm . 31

2.3.2 Perturbation algorithms . 31

x

2.3.3 Memetic and ILP Based algorithms 32

2.4 Distributed PCST algorithms . 33

3 Improved approximation for Steiner tree in the CONGEST model 37

3.1 Model and Notations . 40

3.2 SPF construction . 42

3.2.1 Distributed SPF algorithm. 42

3.2.2 An illustrative example of the SPF algorithm 46

3.2.3 Correctness of the SPF algorithm . 46

3.3 DST algorithm . 51

3.3.1 Preliminaries . 51

3.3.2 Outline of the DST algorithm . 53

3.3.3 An illustrative example of the DST algorithm 56

3.3.4 Correctness of the DST algorithm . 56

3.4 Round-message trade-off in Distributed ST construction 62

3.4.1 Modified DST algorithm . 64

3.5 Summary . 65

4 Distributed approximation for Steiner tree in CONGESTED CLIQUE 67

4.1 Model and notations . 70

4.2 SPF construction . 72

4.2.1 Censor-Hillel et al.’s APSP algorithm in CCM 72

4.2.2 SPF-A algorithm . 73

4.3 STCCM-A algorithm . 75

4.3.1 Outline of the STCCM-A algorithm 76

4.3.2 An illustrative example of the STCCM-A algorithm 79

4.3.3 Proof of the STCCM-A algorithm . 81

4.4 STCCM-B algorithm . 83

4.4.1 SPF-B algorithm . 83

4.4.2 Complexity of the STCCM-B algorithm 88

4.5 Summary . 88

5 Primal-dual based distributed approximation algorithm for PCST 90

5.1 Model and notations . 94

5.2 Problem formulation . 95

5.3 A brief description of the GW-algorithm . 96

5.4 D-PCST algorithm . 98

5.4.1 Outline of the D-PCST algorithm . 100

5.4.2 Phases of D-PCST . 101

5.5 Proof of Correctness . 105

5.5.1 Distributed Preservation of Dual Constraints 112

5.5.2 Performance of the D-PCST Algorithm 116

5.6 Fast PCST construction . 120

5.6.1 Properties of the modified D-PCST algorithm 122

5.7 Summary . 127

5.A An illustrative example of the D-PCST algorithm 127

5.B Pseudo-code of the D-PCST algorithm . 130

6 Conclusions and Future Perspectives 139

6.1 Conclusions . 139

6.2 Future Perspectives . 141

References 144

List of Figures

1.1 An illustrative example of the ST problem 3

1.2 An illustrative example of the PCST problem 4

2.1 An example of the discovery step in the distributed K-SPH 25

3.1 An illustrative example of the SPF algorithm 47

3.2 An illustrative example of the DST algorithm 57

3.3 A state before merging of two shortest path trees in the DST algorithm . . . 58

4.1 An illustrative example of the STCCM-A algorithm 79

5.1 Merging of two components in case of ε(C) = εe < 0 in D-PCST algorithm . 114

5.2 Merging of two components in case of ε(C) = εe ≥ 0 in D-PCST algorithm . 114

5.3 Deactivation of a component C in case of ε(C) = ε2 (C) ≤ 0 in D-PCST

algorithm . 115

5.4 Deactivation of a component C in case of ε(C) = ε2 (C) ≥ 0 in D-PCST

algorithm . 116

5.5 A case of merging of two components in the modified D-PCST algorithm . . 121

5.6 An illustrative example of the D-PCST algorithm: merge operation 128

5.7 An illustrative example of the D-PCST algorithm: deactivation 129

5.8 An illustrative example of the D-PCST algorithm: proceed operation 129

5.9 An illustrative example of the D-PCST algorithm: pruning operation and the

final PCST . 130

xiii

List of Tables

1.1 Summary of contributions of the thesis. 15

2.1 Summary of related work of exact ST algorithms. 18

2.2 Summary of related work of sequential ST algorithms for general graphs. . . 20

2.3 Summary of related work of sequential ST algorithms for special class of graphs 21

2.4 Summary of related work of the ST problem in distributed setting 23

2.5 Summary of related work of the PCST problem in sequential setting 28

xiv

1
Introduction

“You have to dream before your dreams can come true.”

A.P.J. Abdul Kalam (1931 - 2015)

Indian scientist and leader

Network optimization problems are prevalent in computer networks, distributed systems,

and operations research. There are generally two kinds of network optimization problems

in the distributed setting: local and global. Graph coloring [9, 85], maximal independent

set [55,123] etc. are a few examples of the local variety. A network optimization problem is

considered as a global problem if solving it necessitates the collaborative computational effort

of all the nodes, and information must travel to the farthest nodes in the network. In the last

few decades solving network optimization problems has received remarkable attention in the

CONGEST model of distributed computing in which the size of each message is restricted

to O(log n) bits, where n is the number of nodes in the network. A few global problems such

as breadth first search (BFS) tree, spanning tree etc. require Ω(D) time (assuming that

exchanging a message over a single edge costs one unit of time), where D is the unweighted

diameter of the network whereas for some other problems like finding the diameter [47], all-

pairs shortest paths [40,69] etc. it is even hard to achieve round complexities near linear in

n. There is a significant amount of work for many other global problems such as minimum

1

Introduction

spanning tree (MST) [31, 83, 87], Steiner forest [76, 90] etc. in the CONGEST model of

distributed computing.

In this thesis we focus on solving a global optimization problem called Steiner tree in the

distributed setting. The problem is named in the honor of a famous Swiss mathematician

Jacob Steiner (1796-1863), who solved and popularized the problem of joining three villages

by a system of roads having minimum total length [61].

1.1 Steiner tree

The Steiner tree problem is a classical and fundamental problem in combinatorial optimiza-

tion and is defined as follows.

Definition 1.1.1 (Steiner tree (ST) problem). Given a connected undirected graph G =

(V,E) and a weight function w : E → R+, and a set of vertices Z ⊆ V , known as the set of

terminals, the goal of the ST problem is to find a tree T ′ = (V ′, E ′) such that
∑

e∈E′ we is

minimized subject to the conditions that Z ⊆ V ′ ⊆ V and E ′ ⊆ E.

The set V \Z is known as the set of non-terminals or Steiner nodes. Note that if |Z| = 2

then the ST problem reduces to the problem of finding shortest-path between two distinct

nodes in the network. On the other hand if |Z| = |V | then the ST problem becomes the

MST problem. Specifically the ST problem is a generalized version of the MST problem.

It is known that both MST and shortest path problems can be solved in polynomial time

whereas the ST problem is one of the original 21 problems proved NP-complete by Karp [74]

(in the centralized setting).

Example 1.1. An illustrative example of the ST problem on an arbitrary graph is given

in Figure 1.1. The input graph is given in Figure 1.1(a), where Z = {A,C,E} is the

terminal set. There exist many STs (Steiner trees) with the given terminal set Z. Some

of them are T1 = ({A,B,C,E}, {(A,E), (E,B), (B,C)}) as in shown Figure 1.1(b), T2 =

({A,B,C,D,E}, {(A,D), (D,E), (E,B), (B,C)}) as shown in Figure 1.1(c), and T3 = ({A,B
,C,E}, {(A,B), (B,C), (B,E)}) as shown in Figure 1.1(d). The costs of T1, T2, and T3 are

8, 7, and 9 respectively. Among all the possible STs, T2 is the ST with the minimum edge

weights (optimal ST). Note that T2 includes the set {B,D} as the set of Steiner nodes.

There are many variations of the ST problem such as directed Steiner tree, metric Steiner

tree, euclidean Steiner tree, rectilinear Steiner tree, and so on. Hauptmann and Karpinski

2

Steiner tree

E

Terminal node Other node

5
A CB

D F

(a)

2

2

7

41

4
2

E

5

F

A B

D

C

(b)

2

2

7

41

4
2

E

5

F

A B

D

C

(c)

2

2

7

41

4
2

E

5

F

A B

D

C

(d)

2

2

7

41

4
2

Figure 1.1: An illustrating example of the ST problem. (a) a weighted graph G with a terminal
set Z = {A,C,E}. (b), (c), and (d) are some feasible solutions among which (c) is the optimal
solution.

[64] provide a website with continuously updated state of the art results for many variants

of the problem. The ST problem appears as a subproblem or as a special case of many other

problems in network design such as Steiner forest, prize-collecting Steiner tree (PCST) etc.

In this thesis we also study the PCST problem, which is defined as follows.

Definition 1.1.2 (PCST problem). Given a connected undirected weighted graph G =

(V,E, p, w) where V is the set of vertices, E is the set of edges, p : V → R+ is a ver-

tex prize function and w : E → R+ is an edge weight function, the goal is to find a tree

T = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E that minimizes the following quantity:

W (T) =
∑
e∈E′

we +
∑

v∈V \V ′
pv

This minimization problem is known as the unrooted PCST problem. A feasible solution

to the PCST problem partitions the set of nodes into two parts, namely Steiner and Penalty.

A node is in the Steiner part if it is covered by T (i.e. it belongs to V ′), otherwise it is in the

Penalty part. Note that the ST problem is in fact a special case of PCST problem, where

we set the prize of terminals to ∞ and the prize of all other nodes to 0; therefore PCST is

NP-hard and at least as hard to approximate as ST.

3

Introduction

8

8

A

B

5

C8

8 8

(a)

5

5

D

4

8

8

8

A

B

5

C

8 8

(b)

D

4

5

8

8

A

B

5

C

(c)

5 D 8

4

8

8

A

B

5

C

5

5

(d)

D

4

Figure 1.2: An illustrating example of the PCST problem. (a) a weighted graph G in which each
node has a prize value that is shown inside the node. (b), (c), and (d) are some feasible PCSTs of
G among which (d) is the optimal one.

Example 1.2. An illustrative example of the PCST problem is shown in Figure 1.2. An

arbitrary undirected weighted graph G is given in Figure 1.2(a). Each node in G has a

prize value which is shown inside the node. For example node A has a prize value of 8.

There exist many feasible PCSTs of G. Let (Steiner, Penalty) represent a PCST of G.

Some of the PCSTs are T1 =
(
{(A,B), (B,C)}, {D}

)
as in shown Figure 1.2(b), T2 =(

{(A,D), (B,D), (C,D)}, φ
)

as shown in Figure 1.2(c), and T3 =
(
{(A,D), (B,D)}, {C}

)
as shown in Figure 1.2(d). The costs of T1, T2, and T3 are 20, 18, and 15 respectively.

Among all the possible PCSTs, T3 has the minimum cost.

1.2 Applications

The ST problem finds applications in numerous areas such as Very-Large-Scale-Integration

(VLSI) layout design [88], communication networks [72], transportation networks [99], con-

tent distribution (video on demand, streaming multicast) networks [8], phylogenetic tree

4

Applications

reconstruction in computational biology [13] etc. Below we give a brief description of some

of the applications.

VLSI layout design: VLSI design is a process of placing thousands of transistors on a

single chip to create an integrated circuit. From small electronic devices like pen-drive,

cell phone, smart phone, camera to the large ones like super computers have thousands

of functionalities due to VLSI technology. Rapid growth of functionalities and memory

elements inside a single chip demands efficient algorithms and routing policies to route

information from one element to another. Also good positioning of elements are essential

to reduce power consumption, wire components, electronic interference, and heating of the

chip. All these benefits make the chip smaller in size and lower the production costs. The

optimization criteria here is to minimize the wire length, and thereby to reduce the total

circuit area and the amount of production cost. In this case ST can be used to model the

problem.

Communication networks: The ST problem is widely used in modeling communication

networks. Some of the applications are:

• Multicast routing : In a multicast tree, a source and a set of given nodes termed as

destinations are connected with minimum link distances. Information is distributed

efficiently among the group of collaborating nodes (tree nodes). For example, in

teleconferencing the data from one user is to be sent to a selected number of other

users. The minimum connected tree can be constructed by forming an ST among the

collaborating nodes.

• Ad-hoc wireless networks : These networks are dynamic in nature where topology

changes over time. Multi-hop communication, limited resources (bandwidth, CPU,

battery) and limited security are some other properties of such networks. In such net-

works each node participates in routing by forwarding data for other nodes. A message

sent by a node can be received by all of its neighbours. The decision about which node

does the actual forwarding is determined dynamically, based on the network connec-

tivity. Ad-hoc networks are used in areas where network topology is dynamic, rapid

network reconfiguration is needed and wired network is not available or difficult to

setup. For example military battlefield, disaster management, mobile conferencing

etc. are a few areas of applications of ad-hoc network. In all these applications, an ST

5

Introduction

topology can be constructed over the ad-hoc network, making the information sending

and receiving faster with less number of messages.

Computational biology: A phylogenetic tree depicts the evolutionary relationships among

a set of genes, species etc. that are believed to have a common ancestor. The reconstruction

of such a tree is one of the fundamental problems in computational biology. In such a tree

leaves represent species, the length of an edge represents the estimated evolution time, and

each internal node represents an event for which corresponding ancestor has to evolve to

two or more different child species. Forming an ST among these nodes gives the best evolu-

tionary tree to predict the evolution chain of the related species. The detailed description

on the evolutionary tree construction can be found in [45,97].

Similarly the PCST problem has a number of practical applications. Real-world prob-

lems in network design (e.g. optical fiber networks), content distribution networks (video on

demand, streaming multicast) [8], protein-protein interaction networks [33], leakage detec-

tion systems [117], phylogenetic tree reconstruction [97], to name but a few, can be modelled

as cases of the PCST problem. In general, PCST applies in situations where various demand

points (nodes) need to form a structure with minimum total connection cost. Each demand

point has some non-negative prize associated with it. If some of the demand points are

too expensive to connect then it might be better not to include them in the structure and

instead lose their prize—or, equivalently, pay a penalty, equal or proportional to their prize

value.

1.3 Motivation

The LOCAL and the CONGEST are two fundamental models in distributed computing

[114].1 The LOCAL model mainly focuses on locality and ignores the congestion by allowing

messages of unlimited sizes to be transmitted [93, 115]. In distributed computing locality

means to what extent a global solution to a computational problem can be obtained from

locally available data [93]. The main issue of locality is that nodes (processors) are restricted

in collecting data from others which are at a distance of x hops in x time units. The

CONGEST model on the other hand equally considers both congestion (by bounding the

transmitted message size) and locality.

1In this thesis, unless it is specified, CONGEST model means the synchronous CONGEST model.

6

Motivation

Elkin [39] showed that approximating MST within any constant factor on graphs of

small unweighted diameter (D = O(
√
n)) requires Ω(

√
n/B) rounds (assuming B bits can

be sent through each edge in each round).1 Das Sarma et al. [31] achieved an unconditional

lower bound on round complexity of the MST problem and showed that approximating

MST within any constant factor requires Ω(D +
√
n/(B log n)) rounds. The deterministic

lower bounds on round and message complexities of the MST problem in the CONGEST

model are Ω(D +
√
n/ log n) [115] and Ω(m) [86] respectively.2 Since the ST problem is a

generalization of the MST problem, the lower bounds on the round and message complexities

of the MST problem also apply for the ST problem in the CONGEST model of distributed

computing. It is therefore highly desirable to obtain a round or message optimal distributed

algorithm which computes a near optimal ST. The best round complexity known so far

for solving the ST problem in the distributed setting (in the CONGEST model) is due

to Lenzen and Patt-Shamir [90] which takes Õ(S +
√

min{St, n}) rounds and the result is

optimal upto a factor of 2+o(1). Here S and t are the shortest path diameter (the definition

is deferred to Chapter 3, Section 3.1) and the number of terminals respectively in the given

input graph. On the other hand the best deterministic round complexity for solving the

MST problem in the CONGEST model is O(D +
√
n log∗ n) due to Garay, Kutten, and

Peleg (GKP algorithm) [51, 87]. Note that there is quite a gap in the round complexity

between the best known MST algorithm [51,87] and the best known ST algorithm (both in

the CONGEST model). Nevertheless the following interesting question is still open:

Question 1. What is the best approximation factor that can be achieved in solving the ST

problem while incurring a round complexity cost that is close to that of the best known MST

algorithm?

Until 2016, algorithms were known for the MST problem which are either time-optimal

[38, 87] or message-optimal [5, 50], but not both simultaneously. Recently a few singularly-

optimal distributed algorithms have been proposed for the MST problem [41,62,110] beating

the long standing time-message trade-off. Note that a distributed algorithm is said to be

1In literature, round complexity is typically called time complexity. Here we use time and round
interchangeably.

2Kutten et al. [86] established that Ω(m) is the message lower bound for leader election in the KT0 model
(i.e. Knowledge Till radius 0) which holds for both the deterministic as well as randomized (Monte Carlo)
algorithms even if the network parameters D, n, and m are known, and all nodes wake up simultaneously.
Since a distributed MST algorithm can be used to elect a leader, the above message lower bound in the
KT0 model also applies to the distributed MST construction.

7

Introduction

singularly-optimal if it achieves the optimal round and message complexities simultaneously.

It is known that the round and message complexities of the singularly-optimal MST algo-

rithms are Õ(D+
√
n) and Õ(m) (here m is the number edges in the graph) respectively and

both are optimal upto a polylogarithmic factors in n [41, 62, 110]. However, such a study

has not been carried out for the ST problem in the distributed setting. Therefore another

intriguing question is:

Question 2. Can we achieve a distributed algorithm for the ST problem in the CONGEST

model whose round and message complexities coincide with that of the singular optimality

results of the MST algorithms [41,62,110] while maintaining an approximation factor of at

most 2?

In distributed computing one of the special cases of the CONGEST model is the CON-

GESTED CLIQUE model (CCM) that was first introduced by Lotker et al. [96]. This

model takes locality out of the picture and solely focuses on congestion. Specifically, in

CCM, nodes can communicate with each other via an underlying communication network,

which is a clique. Communication happens in synchronous rounds and a pair of nodes can

exchange b bits in a round. Following the convention it is assumed that b = O(log n). Since,

in CCM the hop diameter is one, nodes can directly communicate with each other and in

each round all nodes can together exchange O(n2 log n) bits.

The main motivation behind the study of the CCM is to understand the role of congestion

in distributed computing. There has been a lot of progress in solving various problems in

the CCM including MST [56, 67, 73, 96, 107], facility location [15, 53], shortest paths and

distances [24, 68, 104], subgraph detection [36], triangle finding [34, 36], sorting [89, 112],

routing [89], and ruling sets [15, 67]. Despite the significant progress in solving various

problems in the CCM, to the best of our knowledge, such a study has not been carried out

for the ST problem. Therefore an intriguing question is:

Question 3. What is the best round complexity that can be achieved in solving the ST

problem in the CCM while maintaining an approximation factor of at most 2?

Furthermore, problems such as MST, ST, Steiner forest, etc. which are related to

the PCST, have been widely studied in the distributed setting. However, to the best of our

knowledge, PCST has seen very little progress in distributed setting (the only attempt seems

to be a manuscript [122]), despite the potential applicability of the problem. In particular,

8

Objectives

distributed algorithms for PCST would be useful in distributed ad hoc (wireless) networks,

such as MANETs and sensor networks, where typically nodes have small memory and very

limited knowledge of the network. Therefore the following is an interesting question:

Question 4. Can we design a non-trivial distributed algorithm for the PCST problem while

maintaining a constant approximation factor?

We know that a rooted BFS tree can be computed usingO(D) rounds andO(m) messages

in both LOCAL and CONGEST model [114].1 In LOCAL model one can trivially solve the

PCST problem by simply collecting the entire network topology at the root of the BFS tree,

which takes O(D) rounds, centrally compute the PCST using the best known centralized

PCST algorithm (the algorithm proposed by Aarcher et al. [4]), and finally distribute the

solution in the network using O(D) rounds. However, in this trivial approach, the memory

requirement per node is O(m log n) bits since information concerning all m edges needs to

be stored at the root; note also that a large amount of information must be stored at nodes

close to the root. Similarly in the CONGEST model one can solve the PCST problem

by simply using the gather and solve method leveraging on a rooted BFS tree using O(m)

rounds and the memory requirement per node is again O(m log n) bits. This implies that the

trivial approaches do not work well in resource-constrained networks, specially in networks

where nodes have limited memory space. Therefore, a natural question arises–

Question 5. Can we improve the per node memory requirement for distributed PCST

computation with a guaranteed constant approximation factor?

1.4 Objectives

Recently Bacrach et al. [6] came with a lower bound round complexity for exact ST compu-

tation in the CONGEST model, which is Ω(n2/log2n). On the other hand approximating

(for any constant factor α > 0) MST requires Ω(D +
√
n/ log n) rounds in the CONGEST

model due to Das Sarma et al. [31]. It is also known that the lower bound message com-

plexity for MST construction is Ω(m) [86]. Since the ST problem is a generalized version of

1The LOCAL model allows messages of unlimited size, whereas the CONGEST model allows messages
of size O(log n) bits only. In both LOCAL and CONGEST model it is assumed that the computation time
at a node is negligible in comparison to the message communication delay between any two distinct nodes
in the network.

9

Introduction

the MST problem, we believe that in the approximation sense the lower bound results for

the MST construction also hold for the ST construction. Therefore the first two objectives

of our work are as follows.

Objective I. We will design a deterministic distributed approximation algorithm in

the CONGEST model that computes an ST of a given connected undirected weighted

graph with the round complexity that is close to the lower bound round complexity

for MST construction subject to the condition that the resultant ST maintains an

approximation factor of at most 2.

Objective II. We will investigate the round-message trade-off in distributed ST con-

struction in the CONGEST model.

Regarding the ST problem in the CCM, to the best of our knowledge, no result is known

till date. However, in CCM one can trivially compute an ST that has an approximation

factor of at most 2 using O(n) rounds as follows. One can collect the entire topology of the

input graph in a special node r, which takes O(n) rounds. Then we can compute an ST

(locally) by applying one of the best known centralized ST algorithms [20, 84, 130] whose

approximation factor is at most 2, and finally inform each of the nodes involved with the

resultant ST. Note that the resultant ST can consist of at most n−1 edge information which

can be decomposed into O(n) messages. Therefore r can perform the final step using O(1)

rounds by sending each edge of the resultant ST to a different intermediate node, which will

eventually send to the destined node. Now the third objective of our work is as follows.

Objective III. We will design a non-trivial deterministic distributed approximation

algorithm for the ST problem in the CCM which guarantees the following properties.

• Asymptotically better round complexity than the trivial one.

• No need to collect the entire topology at a special node.

• The approximation factor of the resultant ST is at most 2.

The fourth objective of our work is related to the PCST problem. Note that in literature

there exist a few primal-dual based distributed approximation algorithms for problems like

facility location [102, 109], vertex cover [59, 60], set cover [42] etc. One common aspect

of these algorithms is that they are derived in a systematic fashion from their respective

10

Contributions

sequential primal-dual counterparts. Notably, while there exist many sequential primal-dual

based algorithms for PCST [1,4,44,58,72], to the best of our knowledge, such an attempt is

not known in the distributed setting (the only known manuscript is due to Rossetti [122]).

Therefore the fourth objective of our work is as follows.

Objective IV. We will design a primal-dual based deterministic distributed algorithm

for the PCST problem while maintaining an approximation factor of at most 2.

1.5 Contributions

The contributions of the thesis are summarized in the following subsections.

1.5.1 Improved distributed approximation for ST in the CON-
GEST model

1.5.1.1 DST algorithm: A 2(1−1/`)-factor distributed ST algorithm using O(S+√
n log∗ n) rounds

In this contribution we present a deterministic distributed algorithm for the ST problem

(DST algorithm) in the CONGEST model [114] that guarantees an approximation factor

of 2(1 − 1/`), where ` is the number of leaf nodes in the optimal ST. The DST algorithm

has a round complexity of O(S +
√
n log∗ n), which is better than the round complexity

of the best distributed ST algorithm known so far, which is Õ(S +
√

min{St, n}) [90]. It

also significantly reduces the round complexity gap between solving the ST problem and

the MST problem in the CONGEST model. The message complexity of the DST algorithm

is O(mS + n3/2). We also propose a deterministic distributed shortest path forest (SPF)

algorithm in the CONGEST model that computes a SPF using O(S) rounds and O(Sm)

messages. The SPF algorithm is used as a subroutine in the DST algorithm. The first

contribution of the thesis is stated in the following theorem.

Theorem 1.5.1. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists a deterministic distributed algorithm that computes an ST using

O(S+
√
n log∗ n) rounds in the CONGEST model with an approximation factor of 2(1−1/`),

where ` is the number of leaf nodes in the optimal ST.

11

Introduction

1.5.1.2 Round-Message Trade-off in distributed ST construction

This contribution is related to the investigation of the round-message trade-off in computing

ST in the distributed setting. We modify the DST algorithm which helps us achieve the

round and message complexities of Õ(S+
√
n) and Õ(mS) respectively. The modified DST

algorithm has the same approximation factor as that of the original DST algorithm. The

polylogarithmic factors involved with the round and message complexities of the modified

DST algorithm are O(log n) and O(log2 n) respectively. The modified DST algorithm im-

proves the message complexity of the original DST algorithm by dropping the additive term

of O(n3/2) at the expense of a logarithmic multiplicative factor in the round complexity.

Specifically we prove the following theorem.

Theorem 1.5.2. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists a deterministic distributed algorithm that computes an ST using

Õ(S +
√
n) rounds and Õ(Sm) messages in the CONGEST model with an approximation

factor of 2(1− 1/`).

As a by-product of the above theorem, for networks with constant or sufficiently small

shortest path diameter (S = O(log n)) the following corollary holds.

Corollary 1.5.2.1. If S = O(log n) then a 2(1 − 1/`)-approximate ST can be determinis-

tically computed with the round and message complexities of Õ(
√
n) and Õ(m) respectively

in the CONGEST model.

Note that in case of S = O(log n), the round and message complexities of the modified

DST algorithm are Õ(
√
n) and Õ(m) respectively, which almost coincide with the best

known singular-optimality results of distributed MST construction in the CONGEST model

due to [41,62,110] and the approximation factor of the resultant ST is at most 2(1− 1/`).

1.5.2 Distributed approximation algorithms for ST in the CCM

In this contribution we present two non-trivial deterministic distributed approximation al-

gorithms for the ST problem in the CCM: STCCM-A and STCCM-B. Both the algorithms

perform better than the trivial one in two aspects: (i) asymptotically better round com-

plexity and (ii) no need to collect the entire topology at a special node.

12

Contributions

1.5.2.1 STCCM-A: A 2(1−1/`)-factor ST algorithm using Õ(n1/3) rounds in the
CCM

The STCCM-A algorithm computes a 2(1 − 1/`)-approximate ST using Õ(n1/3) rounds

and Õ(n7/3) messages. We also propose a deterministic distributed SPF algorithm in the

CCM that computes a SPF using O(n1/3 log n) rounds and O(n7/3 log n) messages. The SPF

algorithm is used as a subroutine in the STCCM-A algorithm. Specifically we prove the

following theorem.

Theorem 1.5.3. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists a deterministic distributed algorithm that computes a 2(1 − 1/`)-

approximate ST using Õ(n1/3) rounds and Õ(n7/3) messages in the CCM.

1.5.2.2 STCCM-B: A 2(1−1/`)-factor ST algorithm using O(S+log log n) rounds
in the CCM

We also propose STCCM-B, another deterministic distributed approximation algorithm

for the ST problem in the CCM, that computes a 2(1− 1/`)-approximate ST using O(S +

log log n) rounds andO(Sm+n2) messages. Furthermore, we propose another SPF algorithm

in the CCM that computes a SPF using O(S) rounds and O(Sm) messages. This version of

the SPF algorithm is used as a subroutine in the STCCM-B algorithm. The above results

are summarized in the following theorem.

Theorem 1.5.4. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists a deterministic distributed algorithm that computes a 2(1 − 1/`)-

approximate ST using O(S + log log n) rounds and O(Sm+ n2) messages in the CCM.

As a by-product of the above theorem, for networks with constant or sufficiently small

shortest path diameter (where S = O(log log n)) the following corollary holds.

Corollary 1.5.4.1. If S = O(log log n) then a 2(1 − 1/`)-approximate ST can be deter-

ministically computed using O(log log n) rounds and Õ(n2) messages in the CCM.

Note that in case of S = O(log log n), the round and message complexities of the

STCCM-B algorithm are O(log log n) and Õ(n2) respectively, which almost coincide with

the best known deterministic results for MST construction in the CCM due to Lotker et

al. [96] and the approximation factor of the resultant ST is at most 2(1−1/`) of the optimal.

13

Introduction

1.5.3 Primal-dual based distributed approximation algorithm for
PCST

In this contribution first we present a deterministic distributed algorithm for the PCST

(D-PCST algorithm) problem that computes a
(
2 − 1

n−1

)
-approximate PCST for a given

connected undirected graph of n nodes with non-negative edge weights and a non-negative

prize value for each node. The D-PCST algorithm is inspired by a sequential algorithm

proposed by Goemans and Williamson (GW-algorithm [58]), which is one of the most ele-

gant algorithms for the PCST problem, providing a constant approximation ratio. For an

input graph G = (V,E), the round and message complexities of the D-PCST algorithm in

the CONGEST model are O(n2) and O(mn) respectively, where n = |V | and m = |E|.
Furthermore, we modify the D-PCST algorithm and show that a (2 − 1

n−1
)-approximate

PCST can be deterministically computed using O(Dn) rounds and O(mn) messages in the

CONGEST model. For networks with small unweighted diameter (D = o(n)), the modified

D-PCST algorithm performs better than the original one in terms of the round complexity.

The overall performance of the modified D-PCST algorithm is summarized in the following

theorem.

Theorem 1.5.5. Given a connected weighted graph G = (V,E, p, w) where V is the set of

vertices, E is the set of edges, p : V → R+ is a vertex prize function and w : E → R+ is

an edge weight function, a (2− 1
n−1

)-approximate PCST can be deterministically computed

using O(Dn) rounds and O(mn) messages in the CONGEST model of distributed computing,

where n = |V |, m = |E|, and D is the unweighted diameter of G.

Our PCST algorithms are based on the primal-dual method and uses a technique of

preserving dual constraints in a distributed manner, without relying on knowledge of the

global structure of the network. Both the algorithms require O(∆ log n) bits of memory in

each node, where ∆ is the maximum degree of a node in the graph. In contrast, none of the

earlier primal-dual based distributed approximation algorithms [42, 59, 60, 102, 109] discuss

about the memory efficiency of their proposed solutions. Indeed, one can design a trivial,

essentially centralized, distributed algorithm for the PCST problem by ‘black-box’ use of the

GW-algorithm. In such a case there should be a specified node (leader) to gather the entire

graph information and compute the PCST solution in a centralized manner. Assuming

polynomially bounded edge weights and node prizes, the leader node would need to store

14

Contributions

Table 1.1: Summary of contributions of the thesis. Here CM = CONGEST model, CCM =
CONGESTED CLIQUE model, DT = deterministic, n = |V |, m = |E|, ` is the number of leaf
nodes in the optimal ST, D and S are the unweighted diameter and the shortest path diameter of
a given connected undirected weighted graph G respectively.

Problems Type Model
Round

complexity
Message

complexity
Approximation

ST

DT

CM

O(S +
√
n log∗ n) O(mS + n3/2) 2(1− 1/`)

Õ(S +
√
n) Õ(mS) 2(1− 1/`)

CCM

Õ(n1/3) Õ(n7/3) 2(1− 1/`)

O(S + log log n) O(Sm+ n2) 2(1− 1/`)

PCST CM

O(n2) O(mn) 2− 1
n−1

O(Dn) O(mn) 2− 1
n−1

O(m log n) bits in its memory. In contrast, in our approach only local information is stored

in each node.

The main contributions of the thesis are summarized in Table 1.1.

Road map

The rest of the thesis is organized as follows.

Chapter 2. This chapter provides a survey of the previous related works that are

needed to get the idea of the state-of-art works.

Chapter 3. In this chapter we present two deterministic distributed algorithms

for the ST problem in the CONGEST model. The proof of correctness of both the

algorithms are given. The first one computes a 2(1 − 1/`)-approximate ST using

O(S +
√
n log∗ n) rounds and O(mS + n3/2) messages. The second one is a modified

15

Introduction

version of the first one, which computes a 2(1−1/`)-approximate ST using Õ(S+
√
n)

rounds and Õ(mS) messages.

Chapter 4. This chapter presents two deterministic distributed algorithms for the

ST problem in the CCM. Both the algorithms achieve an approximation factor of

2(1 − 1/`). Proof of correctness are given for both the algorithms. The first one

computes an ST using Õ(n1/3) rounds and Õ(n7/3) messages. The second one does

the same using O(S + log log n) rounds and O(Sm+ n2) messages.

Chapter 5. This chapter presents two deterministic distributed algorithms for

the PCST problem in the CONGEST model. The first one computes a
(
2 − 1

n−1

)
-

approximate PCST using O(n2) rounds and O(mn) messages. The second one com-

putes a
(
2− 1

n−1

)
-approximate PCST using O(Dn) rounds and O(mn) messages. The

proof of correctness of both the algorithms are also given.

Chapter 6. This is the final chapter. It contains the summary of work done, the

highlight of the contributions, and the directions for possible future work.

[[]X]\\

16

2
Related work

In this chapter we present the state of art results for both the Steiner tree (ST) and the

prize-collecting Steiner tree (PCST) in both sequential and distributed settings.

2.1 Sequential ST algorithms

2.1.1 Exact algorithms

An exact algorithm is used to obtain the exact solution of a problem. It is believed

that solving an NP-hard problem exactly (optimally) requires exponential time unless

P = NP . However, some algorithms with exponential running time have been consid-

ered to be acceptable if the size of the problem is not too large. Dreyfus and Wagner [35]

proposed the first exact sequential algorithm for the ST problem with the running time of

O(3tn + 2tn2 + n2 log n + mn), where m, n, and t are the number of edges, the number of

nodes, and the number of terminals respectively in the given input graph. Fuchs et al. [49]

improved the time complexity to O(2.684t · nO(1)) and Mölle et al. [100] improved the time

complexity to O((2 + ε)t · nf(e−1)) for a constant factor ε > 0. Later on Fuchs et al. [48]

improved the exponent to O((ε
−lnε)

−c) for any constant c > 1/2, which has a time complex-

ity of O(2.5tn14.2) or O(2.1tn57.6). By using the subset convolution and MöBius inversion

17

Related work

Bjorklund et al. [17] presented an exact algorithm for computing a minimum ST with the

time complexity of Õ(2tn2 + mn), where Õ(·) notation hides the polylogarthmic factors in

n. The summary of related work of exact ST algorithms is provided in Table 2.1.

Table 2.1: Summary of related work of exact ST algorithms. Here n, m, and t are the number of
nodes, number of edges, and number of terminals respectively in a given graph.

References Time complexity

Dreyfus and Wagner [35] O(3tn+ 2tn2 + n2 logn+mn)

Fuchs et al. [49] O(2.684t · nO(1))

Mölle et al. [100] O((2 + ε)t · nf(e−1))

Fuchs et al. [48] O(2.5tn14.2) or O(2.1tn57.6)

Bjorklund et al. [17] Õ(2tn2 +mn)

2.1.2 Approximation algorithms

As of today, the NP-hard problems can not be solved optimally in polynomial time unless

P = NP . Since the ST problem is also an NP-hard, this also holds for it. Nevertheless, the

ST problem has numerous practical applications. Therefore an efficient algorithm1 which

computes a near-optimal ST is widely accepted. There are numerous ways to compute

a near-optimal ST in polynomial time:– approximation, randomization, parameterization,

heuristics etc. In this section we mainly focus on the approximation algorithms for the

ST problem exist in literature. Note that the goal of an approximation algorithm [126]

is to compute a near-optimal solution of an NP-hard problem as fast as possible. An α-

approximation algorithm is defined as follows.

Definition 2.1.1. An α-approximation algorithm for an optimization problem is a polyno-

mial time algorithm such that for any instances of the problem it computes a solution whose

value is within a factor of α of the value of an optimal solution.

To the best of our knowledge, the first sequential approximation algorithm for the ST

problem was proposed by Edward Forrest Moore (1925-2003) which was published by Gilbert

1Here the efficient algorithm denotes an algorithm which solves a problem in polynomial time.

18

Sequential ST algorithms

and Pollak [57] in the year 1968 (by referring Moore). This algorithm, which is based on

the MST heuristic, has an approximation ratio of 2. A Prim’s based shortest path heuristic

(P-SPH) approximate ST algorithm and a Krushkal’s based shortest path heuristic (K-

SPH) approximate ST algorithm were proposed by Takahashi and Matsuyama [125] in

the year 1980 and Kou et al. [84] in the year 1981 respectively. The approximation ratio

guaranteed by both the algorithms is 2 and remained the best known approximation ratio

until Zelikovsky’s 11/6-approximation algorithm [132] proposed in 1993, which became the

first algorithm to beat the 2-approximation algorithm for the ST problem. The total running

time of this algorithm is O(nm + |Z|4). Berman and Ramaiyer [14] improved Zelikovsky’s

11/6 bound to 16/9 by showing that 3 element subset of Zelikovsky’s consideration can be

further increased to 4 element subset. Based on the Zelikovsky’s central idea, sequence of

improved approximation algorithms appeared in literature. The bound of 16/9 = 1.764

was improved to 1.693 by Zelikovsky in 1996 [133], then to 1.667 by Promel and Steger in

1997 [118], to 1.644 by Karpinski and Zelikovsky in 1997 [75], to 1.598 by Hougardy and

Promel in 1999 [70] and to 1.550 (actually 1 + 1
2

ln 3 + ε for any arbitrary small constant

ε > 0) by Robins and Zelikovsky in 2000 [121].

The sequence of improved approximation ratios for the ST problem in [14, 70, 75, 118,

121, 132, 133] are mainly based on the following idea. A full Steiner component (or full

component for short) of an ST is a subtree whose internal vertices are Steiner vertices, and

whose leaves are terminals. The edge set of any ST can be partitioned into full components

by splitting the tree at terminals. An r-(restricted)-ST is defined to be an ST all of whose

full components have at most r terminals. Borchers and Du [18] showed that in order to

obtain a good approximation factor, it is sufficient to restrict our attention to r-restricted

STs. Let c(opt) and c(optr) denote the costs of the optimal ST and an optimal r-restricted

ST respectively. Then the following theorem holds.

Theorem 2.1.1. ([18]) Let pr be the r-Steiner ratio, i.e. the supremum of the ratio

c(optr)/c(opt). Then qr = (a+1)2a+b
a2a+b

≤ 1 + 1
[log2 r]

, where a and b are non-negative integers

such that r = 2a + b and b < 2a.

Till date, the best known (polynomial time) approximation ratio for solving the ST

problem in the sequential setting is ln(4) + ε ≈ 1.386 + ε, for any constant factor ε > 0

due to Byrka et al. [20]. Byrka et al. achieved this result by using the iterative randomized

rounding technique. It is also known that in general graphs the ST problem can not be

19

Related work

solved in polynomial time with an approximation factor ≤ 96
95

[28] unless P = NP .

Table 2.2: Summary of related work of sequential ST algorithms for general graphs. P-SPH: Prim’s based

shortest path heuristic, K-SPH: Krushkal’s based SPH, LP: linear programming, ε > 0 is any constant, “*”

means particular result is not discussed in that work.

Authors Techniques Approx. Ratio Time Complexity

Gilbert and Pollak [57] Moore Theorem 2 O(nt2)

Takahashi and Matasuyama [125] P-SPH 2 *

Kou et al. [84] K-SPH 2 *

Goemans and Williamson [58] primal-dual 2 O(n2 logn)

Jain [71] Iterative rounding 2 O(n10m7)

Zelikovsky [132] r-restricted ST 1.834 O(mn+ t4)

Berman and Ramaiyer [14] r-restricted ST 1.734 O(n5)

Zelikovsky [133] r-restricted ST 1.694 O(n3)

Promel and Steger [118] r-restricted ST 1.67 O(n3)

Karpinski and Zelikovsky [75] r-restricted ST 1.644 O(n3)

Hougardy and Promel [70] r-restricted ST 1.598 *

Robins and Zelikovsky [121] r-restricted ST 1.55 O(mn2)

Byrka et al. [20] LP and Iterative randomization ln(4) + ε Õ(n6)

One of the known standard approaches to solve the ST problem is the use of proper

LP relaxation. A natural formulation of the problem is undirected cut formulation [58].

In this formulation, a variable is assigned for each edge of the graph and a constraint is

considered for each cut separating the set of terminals. Each constraint helps to pick at least

one edge crossing the corresponding cut. Considering the LP relaxation, 2-approximation

algorithms can be obtained by using the primal-dual framework developed by Goemans and

Williamson [58] or the iterative rounding technique due to Jain [71].

To the best of our knowledge, the best known integrality gap of LP relaxation for the

ST problem in general graphs is 2. However there exists integrality gap better than 2 for

special class of graphs, known as quasi-bipartite graphs.1 For such graphs Rajagopalan

and Vazirani [119] gave an upper bound on the integrality gap, which is 3/2. This was

improved to 4/3 by Chakrabarty et al. [25]. Robins and Zelikovsky [121] showed that a 1.28-

approximate ST can be computed if input graphs are restricted to quasi-bipartite graphs.

With a different LP formulation Könemann et al. [82] showed that for b-quasi-bipartite

1A graph is called quasi-bipartite if all of its Steiner nodes form an independent set.

20

Distributed ST algorithms

graphs1 the integrality gap is upper-bounded by 2b+1
b+1

. Moreover, the best known hardness

result for the ST problem in this class of graphs is 128
127

[28]. For planar graphs Borradaile et

al. [19] proposed a PTAS for ST problem whose running time is O(n log n). Recently Byrka

et al. [21] presented a PTAS for the ST problem which holds for map graphs.2 A summary

of performances of known sequential algorithms in special class of graphs for ST problem is

listed in Table 2.3.

Table 2.3: Summary of related work of sequential ST algorithms for special class of graphs. ε > 0 and

“*” means particular result is not discussed in that work.

Authors Graphs Approx. Ratio Time Complexity

Rajagopalan and Vazirani [119] Quasi-bipartite 3/2 O(1
ε
mn logn)

Chakrabarty et al. [25] Quasi-bipartite 4/3 *

Robins and Zelikovsky [121] Quasi-bipartite 1.28 O(mn2)

Könemann et al. [82] b-quasi-bipartite 2b+1
b+1

*

Borradaile et al. [19] Planar PTAS O(n logn)

Byrka et al. [21] Map PTAS *

2.2 Distributed ST algorithms

In literature many heuristic algorithms for the ST problem have been proposed in the

sequential setting. However only a few of them are suitable to adapt to the distributed

setting. This is because in distributed setting nodes have limited knowledge about the

network topology. Regarding distributed algorithms for the ST problem, there are quite

a few related works in literature which are mainly based on MST heuristic, shortest path

heuristic (SPH), and average distance heuristic (ADH).

In MST heuristic, initially an MST is constructed spanning all the given terminals. After

that a pruning operation is performed to delete all the subtrees from the MST which contain

no terminal node. Basically, there are two types of distributed MST algorithm. One is based

1A graph is b-quasi-bipartite if on deleting all required vertices (terminal nodes), the largest size of any
component is at most b.

2The map graph has edges whenever regions share at least a single point, whereas the planar graph has
edges between two regions if they share a border.

21

Related work

on Prim’s MST algorithm, where the tree is initialized with the source node and then grows

by successively adding the next closest node to the tree, until all nodes are in the tree. The

other type is based on Kruskal’s MST algorithm. This type of algorithm initializes each of

the nodes as a subtree and joins subtrees pairwise repeatedly until all the nodes are in a

single tree.

In SPH based distributed algorithms, it is assumed that each node knows in advance the

distances1 to all other nodes in the network. Basically there are two types of SPH algorithms

namely Prim’s based SPH (P-SPH) and Krushkal’s based SPH (K-SPH). In P-SPH (aka

cheapest insertion heuristic) [81] a single tree grows at a time. At each step a least cost path

is added from the existing partially built tree to the destination node that has not yet been

connected. In K-SPH algorithms [12, 106, 124] on the other hand, initially each multi-cast

member node starts out as a fragment. The leader of each fragment attempts to merge with

its closest neighbouring fragment in parallel.

A more generalized version of the K-SPH is the ADH [129]. The execution of an ADH

based algorithm begins with a set of components, initially each one consists of a terminal

node. In each iteration, two components A and B are merged by a path that crosses a node

that has a minimum average distance to each of the components A and B. The ADH based

algorithm terminates with a single tree, spanning all the terminal nodes. The distributed

version of the ADH was proposed by Gatani et al. [52] whose approximation factor is 2

and its time and message complexities are O(tD) and O(m + tn) respectively, where D is

the unweighted diameter of a graph. Moreover there exist some other algorithms for the

ST problem in the distributed setting which are based on the techniques of tree embedding

(TE) [76], all pairs shortest paths (APSP) [90] construction etc.

To the best of our knowledge, Chen et al. [27] proposed the first distributed algorithm

for the ST problem in the asynchronous CONGEST model and achieved an approximation

factor of 2(1 − 1/`), where ` is the number of leaf nodes in the optimal ST. The round

and message complexities of this algorithm are O(n(n − t)) and O(m + n(n − t + log n))

respectively.

Kompella et al. [81] addressed the ST problem as constrained ST or delay bounded ST

problem. They proposed two distributed algorithms to compute multi-cast trees, in which a

source node and a set of destinations nodes are given as the set of terminals. Such multi-cast

1The distance between two vertices in a graph is the length of the shortest path connecting them.

22

Distributed ST algorithms

Table 2.4: Summary of related work of the ST problem in distributed setting. Here DT: deterministic,
RM: randomized, CM: CONGEST model, LM: LOCAL model, MST: minimum spanning tree, SPH: shortest
path heuristic, P-SPH: Prim’s based SPH, K-SPH: Krushkal’s based SPH, ADH: average distance heuristic,
TE: tree embedding, APSP: all pairs shortest paths, “−” indicates that the corresponding result is verified
by simulation and “*” indicates that the corresponding result is not discussed in that work.

Authors Model Heuristics Type Time Complexity Mess. Complexity Approx.

Chen et al. [27] CM MST DT O(n(n− t)) O(m+ n((n− t) + logn)) 2(1− 1/`)

Kompella et al. [81] LM MST DT O(n3) O(n3) −

Bauer and Varma [12] LM K-SPH DT O(Dn) O(nt) −

Bauer and Varma [12] LM SPH DT O(Dt) O(nt) −

Novak and Rugelj [105] LM SPH DT O(Dt) O(nt) −

Singh and Vellanki [124] LM K-SPH DT O(Dt) O(n log t) ∗

Chalermsook et al. [26] CM MST DT O(n logn) O(tn2) 2

Gatani et al. [52] LM ADH DT O(Dt) O(m+ nt) −

Khan et al. [76] CM TE RM O(S log2 n) O(Sn logn) O(logn)

Lenzen et al. [90] CM APSP
DT Õ(S +

√
min{St, n}) ∗ 2 + o(1)

RM Õ(D +
√
n) ∗ 2 + o(1)

trees are useful in multi-casting multimedia information in bounded delay. The basic idea

of the two algorithms is same; the only difference is in the edge selection criteria they apply

to select edges. Specifically the algorithms are mainly based on the Prim’s based shortest

path heuristic (P-SPH). Usually in distributed MST algorithms the time delay along the

path is not considered. The lack of consideration of time delay may lead to the failure of

meeting the delay bound by a grown tree constructed by usual distributed MST algorithms.

To mitigate this problem Kompella et al. introduce the time delay along with the edge cost

to find more realistic solution for the multi-cast tree construction. The algorithm, which is

based on P-SPH, builds multi-cast tree by selecting the cheapest outgoing edge from the

subtree constructed so far. This ensures that all destinations are either reachable or have

been reached within the bounded delay. The second algorithm focuses on the time delay

by considering the residual delay (largest remaining delay on the path) which improves the

cost of the computed multi-cast tree. Both the algorithms have the same time and message

complexities, which is O(n3). The approximation ratios of both the algorithms are verified

empirically by comparing with the approximation ratio of known centralized algorithms.

Specifically it is shown that the approximation ratio is 15 − 30% better than that of the

23

Related work

centralized algorithms.

One of the drawbacks suffered by the algorithms proposed by Kompella et al. [81] is that

all nodes in the network have to participate in the process of computing the required multi-

cast tree. It has been shown in [127] that the quality of the trees suffer as the participation

of the number of non multi-cast nodes increases. This may be impractical in large networks

with sparse multi-cast groups. Moreover, the theoretical upper bound on competitiveness of

a pruned MST to that of an optimal ST has been shown to be y+ 1, where y is the number

of non-multi-cast nodes [127]. Here the competitiveness is defined as the ratio of the sum

of the edge weights of the tree constructed by the heuristic to that of an optimal tree.

Bauer and Varma [12] proposed two distributed algorithms to construct a multi-cast tree

over a set of nodes using the SPH and the K-SPH. In both the algorithms only the multi-

cast nodes (terminals) participate in the multi-cast tree construction. The K-SPH algorithm

begins in parallel at all the terminals. Subtrees containing at least one terminal are called

fragments. Each fragment contains a fragment leader, which coordinates all the activities

of the fragment. The identity (ID) of a fragment leader is unique and is known to each

of the nodes in the fragment. Initially each fragment consists of one terminal. Fragments

grow by merging (pairwise) with other fragments. The algorithm relies on the shortest

path information available at each node and the information gathered by the fragment

leader. Note here that the shortest path information consists of the next hope and next

to last hope on the path. Whenever two fragments merge, the leader with the smaller ID

between the two fragments becomes the new leader of the resultant fragment. Merging of

two fragments are accomplished in two steps 1) discovery and 2) connection. During the

discovery step, each fragment leader updates the information about the other neighbouring

fragments. The leader node of a fragment finds the closest neighbouring fragment from the

gathered information with whom it merges with. Discovery step is depicted in Figure 2.1.

During the connection step a fragment leader sends a merge request to the leader of

the closest fragment and if the connection request is accepted then the leader node with

the lowest ID of the two fragments initiates the merging operation. After the successful

merging leader with the lowest ID becomes the new fragment leader. The round and message

complexities of the K-SPH based algorithm due to Bauer and Varma [12] are O(Dn) and

O(nt) respectively.

The second distributed algorithm due to Bauer and Varma [12], which is based on the

SPH is a special case of the distributed K-SPH algorithm. The SPH is inherently a sequential

24

Distributed ST algorithms

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��Fragment A

Fragment B

Fragment C

1

3

4

Fragment leader

Fragment node

Non Fragment node

2

Fragment edge

Shortest path

Figure 2.1: An example of the discovery step in the distributed K-SPH due to Bauer and Varma
[12]. In the current state of the algorithm, the leader node of the fragment B believes that fragment
C is the closest fragment. During the discovery step, the leader node of fragment B instructs its
all fragment’s nodes to query those nodes which are closer than the fragment C. The distance
between the fragment B and the fragment C is the distance between node 3 and 4, and it is marked
by dotted circles around each node in fragment B. Since nodes 1 and 2 fall within one such circle,
they receive queries and the leader of the fragment B discovers that the fragment A is the closest
one.

algorithm, since there is only one subtree expanding itself at any time during the execution

of the algorithm and nodes must join the tree serially. The K-SPH, on the other hand, allows

many of the join operations to proceed in parallel. The time and message complexities of

the SPH based algorithm are O(Dt) and O(nt) respectively.

The simulation implemented in [12] showed that both the heuristics, i.e. K-SPH and

SPH, produce multi-cast trees whose quality is within 4% of that of the best solution found

by many other heuristics (both centralized and decentralized) in 90% of the test cases.

Novak and Rugelj [106] improved the algorithms proposed in [12] in terms of the time

and the approximation factor. They showed the correctness of their results by simulation;

however, the worst-case complexities remain the same as that of [12].

Singh and Vellanki [124] studied the distributed algorithms for constructing multi-cast

trees (Steiner trees), and presented a K-SPH based algorithm which improved (by sim-

ulation) the message complexity to O(n log t). Note that all the algorithms proposed

in [12,81,106,124] consider the following system environments.

• The LOCAL model of distributed computing.

• Nodes have the prior information of distances to all other nodes in a network.

25

Related work

Chalermsook et al. [26] proposed a 2-approximate distributed algorithm for the ST prob-

lem which is based on the distributed MST algorithm due to Galleger et al. [50]. Initially

the input graph G is decomposed into clusters containing a terminal as a central node in

each of the clusters. The set of clusters are considered as a set of nodes and the sequence

of edges on a path that connect two clusters is considered as an edge. These set of nodes

and edges form a new weighted graph G′. The weight of an edge in G′ is computed by

considering the distance between the two corresponding terminals in the original graph G.

On graph G′ the algorithm follows the steps of the algorithm due to Gallager et. al. [50]

but starts with clusters instead of single nodes. This constructs an MST spanning all the

clusters which also implies the MST containing the same set of terminals. Also a distance

metric d′ is calculated (which gives a complete graph KZ) on weighted graph G′. It is shown

that the MST on KZ induced by metric space d′ and the MST on the terminal set of G

induced by the metric space d is same. This MST heuristic algorithm has an approximation

ratio of 2 for the ST problem in distributed setting. The round and message complexities

of this algorithm are O(n log n) and O(tn2) respectively.

Gatani et al. [52] proposed a distributed ST algorithm based on ADH in the LOCAL

model. In this work it is assumed that each node i knows the routing table (which is

provided by the network layer protocol) that provides the minimum cost paths to each of

the destinations j and also the next hop in the path from i to j. Using this routing table

a node sends messages via the minimum cost path to any destination. Initially any node

may receive a list of IDs of multi-cast members from the external user. The receiving node

(considered as the root node in the first phase) builds a data structure with the multi-cast

members and their IDs (unique). The root initially constructs a spanning tree of the whole

network. Using this spanning tree root broadcasts the information of multi-cast forest. On

receiving this information from the root and with the locally available routing table, each

node calculates the path distance to each of the external fragments and select the minimum

path distance (denoted as f). Calculated value f is converged cast towards the root node.

After receiving all the f values from its child nodes, the root node selects the minimum

f value and sends it to node say v that computed this value. Whenever node v receives

the message from the root node then node v becomes the most central node and starts the

merging process that connects the closest fragment via the minimum cost path. During the

merging process, the state of each node along the connecting paths and the information

about the multi-cast forest are updated. If all multi-cast nodes are already covered by

26

Distributed ST algorithms

the newly connected fragment then algorithm terminates. Otherwise v becomes new root

and starts the next phase of the algorithm. The round and message complexities of this

algorithm are O(Dt) and O(m + tn) respectively, where D is the unweighted diameter of

the network.

Khan et al. [76] proposed a distributed algorithm in the CONGEST model for a more

generalized version of the ST problem known as the generalized Steiner forest (GSF)1, which

is randomized in nature and based on a probabilistic tree embedding due to Fakcharoenphol,

Rao, and Talwar [43] (FRT embedding). Considering that the nodes are ranked according

to a random order, they gave an almost time-optimal distributed algorithm for comput-

ing least element (LE) lists, which is a distributed data structure. Then using the LE

lists an FRT embedding is implicitly computed. Using this embedding, they obtained an

O(log n)-approximate distributed algorithm for the GSF problem whose round and message

complexities are O(Sk log2 n) and O(Sn log n) respectively, where S is the shortest path

diameter of the graph (the definition is deferred to Chapter 3, Section 3.1) and k is the

number of terminal components (disjoint subsets of terminals) in the input graph. Note

here that if k = 1 then the GSF problem reduces to the ST problem. In this case the round

complexity reduces to O(S log2 n), whereas the message complexity remains the same as

that of the GSF algorithm.

Based on the approximate distributed solutions to the (weighted) all pairs shortest paths

(APSP) problem, Lenzen and Patt-Shamir [90] presented two distributed algorithms for the

Steiner forest problem (a generalized version of the ST problem) in the CONGEST model:

one is deterministic and the other one is randomized. The former one finds, a (2 + o(1))-

approximate Steiner forest using Õ(
√

min{D, k}(D + k) + S +
√

min{St, n}) rounds. The

latter one finds a (2 + o(1))-approximate Steiner forest using Õ(
√

min{D, k}(D+ k) +
√
n)

rounds with high probability. Note that if k = 1 then the Steiner forest problem reduces to

the ST problem. In this case the round complexities of the two algorithms in [90], in which

one is deterministic and the other one is randomized reduce to Õ(S +
√

min{St, n}) and

Õ(D +
√
n) respectively.

Performances of some of the distributed algorithms for the ST problem are summarized

in Table 2.4.

1The GSF problem is defined as follows: given a weighted graph G = (V,E,w), and a collection of k
disjoint subsets (groups) of V : V1, V2, ..., Vk, the goal is to find a minimum weight subgraph in which each
pair of nodes belonging to the same group Vj is connected.

27

Related work

Table 2.5: Summary of related work of the PCST problem in sequential setting. LP: linear pro-
gramming, ILP: integer LP, MA: memetic algorithm, DP: dynamic programming, ES: empirical
study, GW-clustering: Goemans and Williamson clustering [58], “*” indicates that the correspond-
ing parameter is is not discussed in that related work. ε is any constant > 0. c is any constant.

Authors Heuristics Remarks Time Complexity Approx.

Bienstock et al. [16] LP First Work * 3

Goemans et al. [58] LP Rooted PCST O(n2 logn) 2− 1
n−1

Johnson et al. [72] LP and Strong pruning Unrooted PCST O(n2 logn) 2− 1
n

Cole et al. [29] GW-clustering Implementation O(c(n+m) log2 n) (2 + 1
nc

)

Caunto et al. [79] Local Search, Perturbation ES * *

Klau et al. [78] MA and ILP ES * *

Ljubic et al. [95] MA and ILP ES * *

Feofiloff et al. [44] LP Unrooted PCST O(n2 logn) 2− 2
n

Miranda et al. [2] DP 2-tree, Interval Data * 1

Bateni et al. [10] Tree Decomposition Planar Graphs * 1 + ε

Aarcher et al. [4] LP Lagrangian-preserving * 1.9672

Haouari et al. [63] ILP Quota PCST, ES * *

2.3 Sequential PCST algorithms

The first sequential approximation algorithm for PCST was given by Bienstock et al. [16],

although a related problem named prize-collecting travelling salesman problem (PCTSP)

was introduced earlier by Balas [7]. Bienstock et al. achieved an approximation factor of 3

by using linear programming (LP) relaxation technique.

Two years later, based on the work of Agrawal, Klein and Ravi [1], Goemans and

Williamson [58] proposed a primal-dual algorithm using the LP relaxation for the rooted

variant of the PCST problem, which runs in O(n2 log n) time. They presented the algorithm

for the PCST as part of a study on a novel approximation technique that can be applied

to many graph problems based on an Integer Linear Programming (ILP). This algorithm

consists of two phases namely growth and pruning and yields a solution of approximation

factor (2− 1
n−1

) of the optimal. This algorithm is often denoted as GW-algorithm.

The empirical behavior of GW-algorithm was first studied by Johnson et al. [72]. They

28

Sequential PCST algorithms

introduced an improved pruning rule termed as strong pruning, which typically provides

better solutions than the GW-algorithm. On a selection of real-world instances whose

underlying graphs are country street maps, the improvement on the approximation factor

to that of the GW-algorithm is from 1.7% to 9.2%. Moreover they also presented a review of

different PCST related problems. Specifically they studied the unrooted version of the PCST

problem and improved the running time to O(n2 log n) by maintaining an approximation

factor (2− 1
n
) of the optimal. Note that to get a similar guarantee for the unrooted version

of the PCST problem using the original GW-algorithm one might have to run the algorithm

for all n potential roots, yielding a running-time bound of O(n3 log n).

Cole et al. [29] gave an implementation of the clustering procedure proposed by Goemans

and Williamson (GW-clustering) [58]. For graphs with n nodes and m edges, they achieved

an O(c(n + m) log2 n) time approximation algorithm for the PCST problem (as well as for

generalized Steiner tree problem, prize-collecting traveling salesman problem, and 2-edge

connected subgraph problem) which guarantees an approximation factor of (2+ 1
nc

), for any

constant c. This approximation factor has a slight additive degradation of 1
nc

in comparison

to that of the original GW-algorithm, which is (2− 1
n−1

).

Feofiloff et al. [44] introduced a new algorithm for the PCST problem based on the

GW-algorithm having a different LP formulation. They achieved a solution of (2 − 2
n
) ap-

proximation factor for the unrooted version of the PCST whose running time is O(n2 log n).

A branch-and-cut based algorithmic framework for the PCST problem, which is based on

the integer linear programming (ILP) formulation, was developed by Ljubić et al. [95]. This

framework solves many benchmark instances from the literature to optimality, including

some of them for which the optimum was not known.

Bateni et al. [11] presented a PTAS for the PCST problem on planar graphs. Specif-

ically they showed that an α-approximation algorithm for the PCST problem on graphs

of bounded treewidth1 implies an (α + ε)-approximation algorithm for the PCST problem

on planar graphs and also on bounded-genus graphs, for any constant ε > 0. Bateni et

1The basic notion of treewidth was introduced by Robertson and Seymour [120]. To define treewidth,
a graph is represented by a tree structure, called tree decomposition. A tree decomposition of a graph
G = (V,E) is a pair, (T,B) in which T (I, F) is a tree and B = {Bi|i ∈ I} is a family of subsets of V (G)
such that 1) ∪i∈IBi = V ; 2) for each edge e = (u, v) ∈ E , there exists an i ∈ I such that both u and v
belong to Bi; and 3) for every v ∈ V , the set of nodes {i ∈ I|v ∈ Bi} forms a connected subtree of T . Here
each Bi is termed as a bag. The width of a tree decomposition is the maximum size of a bag in B minus 1.
The treewidth of a graph G denoted by tw(G), is the minimum width over all possible tree decomposition
of G.

29

Related work

al. also studied prize-collecting variants of other related problems, namely prize-collecting

traveling salesman (PCTS), prize-collecting stroll (PCS), and prize-collecting Steiner forest

(PCSF). They proved that there exists PTAS for each of the problems PCS and PCTS on

planar graphs and bounded-genus graphs. In contrast, the PCSF is proved APX-hard to

approximate on series-parallel graphs, which are planar graphs of treewidth at most 2.

Archer et al. [4] were the first to provide a (2−ε)-approximation (for any constant ε > 0)

algorithm for the PCST problem. Specifically the approximation ratio of this algorithm is

1.9672. They achieved this by using the ST algorithm of Byrka et al. [20] as a black box in

their algorithm.

The quota version of the PCST problem was studied by Haouari et al. [63]. Given a

root node, edge costs, node prizes, as well as a preset quota, the quota version of the PCST

finds a subtree that includes the root node and collects a total prize not smaller than the

specified quota, while minimizing the sum of the total edge costs of the tree plus the penalties

associated with the nodes that are not included in the subtree. Haouari et al. [63] presented

two valid 0-1 programming formulations and use them to develop preprocessing procedures

for reducing the graph size. By combining preprocessing procedures, effective heuristics,

and tight 0-1 programming formulations they showed that the quota version of the PCST

problem can be solved optimally for many benchmark instances from the literatures.

Miranda et al. [2] studied the PCST problem for a special graph called 2-tree.1 They

also considered that the prizes (node weights) and edge weights belong to a given interval.

They showed that there exists efficient algorithm for PCST on 2-trees. This result is based

on the work of Wald and Colbourn [128] who proved that the ST problem is polynomial

time solvable on 2-trees. Miranda et al. [3] also proposed an algorithm for the robust PCST

problem.

Geunes et al. [54] showed that any LP-based α-approximation algorithm for a covering

problem can be leveraged to a (1
1−e−1/α)-approximation algorithm for the corresponding

prize-collecting problem, and Li et al. [92] extend this result for sub-modular penalties.

Performances of some of the sequential algorithms for the PCST problem are summarized

in Table 2.5.

1In graph theory, a k-tree is an undirected graph formed by starting with a (k + 1)-vertex complete
graph then repeatedly adding vertices in such a way that each added vertex v has exactly k neighbors U
and together the k + 1 vertices formed by v and U form a clique.

30

Sequential PCST algorithms

2.3.1 GW-algorithm

This algorithm is the basis for many other approximate PCST algorithms proposed in litera-

ture [44,72]. Goemans and Williamson [58] proposed a framework based on the primal-dual

method, which can be used to develop approximation algorithms for various network design

problems. They presented an approximation algorithm (the GW-algorithm) for the rooted

variant of the PCST problem as a part of their’s novel approximation technique which works

as follows. It consists of two phases namely growth and pruning. The growth phase main-

tains a forest which contains a set of candidate edges being selected for the construction of

the PCST. Initially the forest is empty and is considered as a connected component contain-

ing a singleton node. The growth phase also maintains a set of components whose possible

states can be either active or inactive. The active state of a component indicates that it is in

a growing state, whereas the inactive state indicates that it stops growing tentatively. The

growth phase proceeds in iterations. In each iteration, either two components are merged

together or one component is deactivated. The algorithm deactivates a component when it

finds that the best move is to pay the penalties of all the nodes in that component. In case

of merging of two components in which one of the merging components contains the root,

the resulting component becomes inactive. The growth phase terminates when there are no

active components left. Because at each iteration the total number of active components

decreases, the growth phase is guaranteed to terminate. In the pruning phase except the

rooted tree, all other trees are pruned from the resulting forest. The algorithm achieves

an approximation ratio of
(
2 − 1

n−1

)
and its running time is O(n2 log n) for a graph of n

vertices.

There exist other approaches in literature to construct PCST in the sequential setting.

We briefly discuss some of them in the following subsections.

2.3.2 Perturbation algorithms

Canuto et al. [22] gave a multi-start local search based algorithm for the PCST problem,

which is termed as the perturbation algorithm. The overall behavior of an iteration of the

algorithm is as follows. A local search is performed on the neighborhood of the result

of the GW-algorithm computed on the input graph. If some requirements are met, the

solution is kept on a list of elite solutions. When the local search produces a new result,

the algorithm randomly selects an elite solution and performs a path-relinking step. The

31

Related work

path-relinking step produces an improved solution by exploring trajectories which merges

the elite solutions. The final step of the iteration is a perturbation algorithm that modifies

the prize of some nodes. Subsequent iteration of the loop feeds the GW-algorithm with

the graph perturbed as in the previous iteration. This algorithm successfully outperforms

the direct use of the GW-algorithm and computes optimal solutions for multiple instances.

Furthermore authors experimented with different variants of the algorithm and established

a benchmark of solved instance with up to 1000 nodes and 25000 edges.

2.3.3 Memetic and ILP Based algorithms

Memetic algorithms can be seen as “evolutionary algorithms which intend to exploit all

available knowledge of the underlying problem” [101] available in the form of greedy heuris-

tics, approximation algorithms, local search, specialized recombination operators, or some

other ways. Klau et al. [78] proposed an algorithmic framework to solve the PCST problem

based on the combination of Memetic algorithm and ILP, and achieved results that compare

positively to the ones of previous publications, showing a significant gain in the running time

for medium and large instances. The algorithm framework given by Klau et al. is divided

in three phases: 1) a preprocessing phase to reduce the size of the problem, 2) the core

Memetic algorithm, and 3) the post-optimization that solves a relaxation of an ILP model

constructed from a model for finding the minimum Steiner arborescence in a directed graph.

Ljubić et al. [94] proposed a Memetic algorithm for the PCST problem. This algo-

rithm first creates a pool of initial candidate solutions and then it performs two operations,

namely recombination and mutation starting from two parents candidates. Each iteration

which consists of initial creation, recombination and mutation, creates a new solution. The

population typically contains different solutions and a newly created one replaces the worst

one from the population. Note that after each of the operations, i.e. initial creation, recom-

bination, and mutation, a local improvement procedure is applied. The local improvement

is an algorithm that computes the optimal solution in case the input graph is a tree. The

three operations of the Mametic algorithm due to Ljubić et al. [94] are discussed bellow.

• Initial creation. The initial candidate solutions are created as follows: Some nodes

with prizes greater than some threshold value are considered as the terminals for the

ST, and the rest of the nodes are considered as Steiner nodes. Now a full connected

subgraph inferred by the terminal set is computed. After that an MST of the full

32

Distributed PCST algorithms

connected subgraph is computed. In this way an ST is computed, which connects all

the terminal nodes. Since the ST computation is an MST heuristic, the approximation

ratio of the resultant ST is 2 of the optimal [57].

• Recombination. The recombination operation is designed to provide the highest

possible heritability. The recombination operation picks two candidate solutions and

creates a new one by performing merging operation. If the two solutions share at least

one vertex, then an spanning tree is constructed over the union of their edge sets.

When the parent solutions are disjoint, a customer vertex from each of the solutions

is randomly chosen and connects them by the minimum weighted path. Furthermore,

in order to avoid premature convergence of the algorithm, the set of edges of the new

candidate is selected by the construction of a random spanning tree among its set of

vertices.

• Mutation. In the mutation operation small changes are made in the current solution.

This is achieved by connecting one or more new customers to the current solution.

2.4 Distributed PCST algorithms

Regarding distributed PCST we were able to find only one manuscript in the literature, by

Rossetti [122], where the following algorithms were proposed: (i) Tree Algorithms that solve

PCST on trees to optimality, (ii) MST based Algorithm that fails to guarantee any constant

approximation ratio, and (iii) Distributed GW-algorithm, which is in essence centralized

and of very limited practical value.

Tree Algorithms. Rossetti proposed three variants of the Tree Algorithm, namely Rooted

Tree Algorithm (RTA), Simple Unrooted Tree Algorithm (SUA), and Unrooted Tree Algo-

rithm (UTA). Note that Tree Algorithms solve the Net Weight Maximization variant of the

PCST problem on trees, which is defined as follows.

Definition 2.4.1 (Net Weight Maximization PCST problem [72]). Given a connected

weighted graph G = (V,E, p, w) where V is the set of vertices, E is the set of edges,

p : V → R+ is a vertex prize function and w : E → R+ is an edge weight function,

the goal is to find a subtree T = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E that maximizes the

33

Related work

following quantity:

NW (T) =
∑
v∈V ′

pv −
∑
e∈E′

we

The RTA is a heuristic algorithm which is similar to the combined form of local search

and post-optimization applied to candidate solutions [72, 94]. The RTA variant works for

the rooted variant of the PCST problem. Specifically the RTA is equivalent to the strong

pruning function introduced by Johnson et al [72]. The distributed RTA works as follows.

The algorithm starts at the leaf nodes of the tree. Let nw(v) denotes the sum of prizes

of all nodes minus the sum of weights of all the edges in a subtree rooted at v. Initially

nw(v) = pv for each node v in the input tree. Each children v sends its nw(v) to its parent

u. Upon receiving nw(v), u evaluates the condition w(u,v) ≥ nw(v). If this condition is true

then u removes the edge (u, v) and the subtree rooted at v from the solution. Otherwise u

updates the value of nw(u) to nw(u)+nw(v)−w(u,v). Once u performs the above procedure

for all of its children, it reports its nw(u) to its parent. This principle is recursively followed

by each node in the tree. Note that in the RTA every node agrees on a single root (r) before

the start of the above procedure. The algorithm terminates once r evaluates nw(r). The

algorithm has a message complexity of O(m). Considering every message arrives in one unit

of time, the total time taken by the algorithm is 2h, where h is the height of the tree.

To solve the unrooted variant of the PCST problem, Rossetti proposed SUA. In this

algorithm it is assumed that every node has a unique integer identifier. The SUA proceeds

in iteration. Each iteration selects a node as a root (starting with the lowest identifier) and

then applies the RTA. At the end of each iteration, the current root knows the Net Weight

value found by the RTA algorithm and every node knows its local solution (i.e. which of

its edges are in the solution). The root node also broadcasts a message containing the Net

Weight value over the tree on which the current RTA is performed. In this way each node

keeps track of the best value and local solution found so far. In the subsequent iterations,

the algorithm selects the node with the next lowest value as the root and proceeds with the

RTA. The time and message complexities of the SUA are O(nh) and O(mn) respectively.

Note that for an input graph of n nodes, the SUA iterates RTA n times. Therefore SUA

does not show a high degree of parallelism on the computation among the nodes. In the

UTA variant of the Tree Algorithm, the RTA needs not be run for each node as a root.

This increases the level of parallelism on the computation among the nodes. In order to

achieve the parallelism, i.e. to perform all the iterations of the RTA algorithm at once,

34

Distributed PCST algorithms

every node of the graph acts as three possible roles at the same time: as root and as both

child and parent of every one of its neighbours. The time and message complexities of the

UTA variant of the Tree Algorithm are O(h) and O(m) respectively.

MST based algorithm. This algorithm works for general graphs. It consists of two

components: MST construction and Tree Algorithm. Initially an MST of the input graph is

constructed by using one of the known distributed MST algorithms. On the computed MST,

one of the Tree Algorithms is applied to compute the Net Weight and the corresponding

PCST.

The time and message complexities of the MST based algorithm depend on the imple-

mentation of its two components. If the implementation uses the distributed algorithm

due to [50] for MST construction and the UTA variant of the Tree Algorithm for PCST

construction then its time and message complexities become O(n log n) and O(m+ n log n)

respectively. Note that this MST based algorithm computes a feasible solution to the Net

Weight maximization variant of the PCST problem, however it can not guarantee a constant

approximation factor.

Distributed GW-algorithm. Rossetti [122] adapted the sequential GW-algorithm [58]

to the distributed setting. He showed that a PCST can be computed in distributed set-

ting with a guaranteed constant approximation ratio, i.e. is (2 − 1
n−1

), which is same as

that of the sequential GW-algorithm. This distributed implementation relies on a directed

spanning tree and consists of two phases namely growth and pruning, similar to the se-

quential GW-algorithm. The growth phase proceeds in iterations that maintains a forest.

Initially the forest consists of components and each component contains a singleton node.

The growth phase also maintains a set of components whose possible states can be either

active or inactive. Initially except the root, all other components are active. Initially the

root component is inactive. Each iteration performs a convergecast operation, followed by a

broadcast operation. At the end of each iteration, all nodes agree on the current candidate

solution for the problem. The convergecast operation finds a global parameter ε among the

one found locally by each node and eventually the root of the directed spanning tree collects

it. The root uses ε value to decide whether two components can be merged or one of them

can be deactivated. The broadcast operation modifies the forest of connected components

by performing a merging or deactivation operation (depending on the value of ε) and also

updates local variables accordingly. During the convergecast operation the directed span-

35

Related work

ning tree is used by the nodes to send messages to their root. The directed spanning tree

is also used by the root to send messages to all the nodes in the broadcast operation. In

each of the iterations of convergecast-broadcast, the directed spanning tree is modified by

the algorithm.

Whenever all the components in the network become inactive, the growth phase termi-

nates. Now on the root component, one of the distributed Tree Algorithms discussed above

is applied to perform the pruning phase. Note that Rossetti does not discuss the time and

message complexities of his distributed GW-algorithm. However from the description of

his algorithm it is apparent that its time and message complexities are O(n2) and O(mn)

respectively.

[[]X]\\

36

3
Improved distributed approximation for

Steiner tree in the CONGEST model

In this chapter we study the Steiner tree (ST) problem in the CONGEST model of dis-

tributed computing, which is already defined in Chapter 1. For the sake of completeness of

this chapter, we restate the definition as follows.

Definition 3.0.2 (ST problem). Given a connected undirected graph G = (V,E) and a

weight function w : E → R+, and a set of vertices Z ⊆ V , known as the set of terminals,

the goal of the ST problem is to find a tree T ′ = (V ′, E ′) such that
∑

e∈E′ we is minimized

subject to the conditions that Z ⊆ V ′ ⊆ V and E ′ ⊆ E.

The best deterministic round complexity known so far for solving the ST problem in the

CONGEST model is Õ(S+
√

min{St, n}) due to Lenzen and Patt-Shamir [90], where S, n,

and t are the shortest path diameter (definition is deferred to Section 3.1), number of nodes,

and number of given terminals respectively in the input graph, and the result is optimal

upto a factor of 2 + o(1). On the other hand, the minimum spanning tree (MST) problem is

a special case of the ST problem and best known deterministic round complexity for MST

construction in the CONGEST model of distributed computing is O(D +
√
n log∗ n) due

to Garay, Kutten, and Peleg [51, 87], where D is the unweighted diameter of the graph.

37

Improved approximation for Steiner tree in the CONGEST model

The deterministic lower bounds on round and message complexities of the MST problem

in the CONGEST model are Ω(D +
√
n/ log n) [115] and Ω(m) [86] respectively. Here m

is the number of edges in the input graph. Since the ST problem is a generalization of the

MST problem, the lower bounds on round and message complexities of the MST problem

also apply for the ST problem in the distributed setting. Therefore it is highly desirable to

obtain a round or message optimal distributed algorithm which computes a near optimal

ST.

In this chapter we present two deterministic distributed algorithms for the ST problem

in the CONGEST model. The first one, which will be denoted as DST algorithm, achieves

an approximation factor of 2(1−1/`), where ` is the number of leaf nodes in the optimal ST.

It has a round complexity of O(S +
√
n log∗ n), which is better than the round complexity

of the best distributed ST algorithm known so far [90]. This algorithm also significantly

reduces the round complexity gap between solving the ST problem and the MST problem

in the CONGEST model. The message complexity of the DST algorithm is O(Sm+ n3/2).

We also propose a deterministic distributed shortest path forest (see Section 3.2 for the

definition) algorithm (SPF algorithm) in the CONGEST model that computes an SPF using

O(S) rounds and O(Sm) messages. The SPF algorithm will be used as a subroutine in the

DST algorithm.

The proposed DST algorithm is inspired by a couple of centralized algorithms. It consists

of four steps (each step is a small distributed algorithm)– the first step is to build an SPF of

the given input graph G = (V,E,w) with a terminal set Z, which is essentially a partition

of G into disjoint trees: Each partition contains exactly one terminal and a subset of non-

terminals. A non-terminal v joins a partition containing the terminal z ∈ Z if ∀x ∈ Z \{z},
d(z, v) ≤ d(x, v). Note here that d(u, v) denotes the (weighted) length of the shortest path

between nodes u and v. In second step, weights of the edges are suitably changed; in third

step, the GKP algorithm (Garay, Kutten, and Peleg [51, 87]) is applied on the modified

graph to build an MST; and finally some edges are pruned from the MST in such a way

that in the remaining tree (which is the required ST) all leaves are terminals.

The overall performance of the DST algorithm is stated in the following theorem.

Theorem 3.0.1. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists a deterministic distributed algorithm that computes an ST using

O(S+
√
n log∗ n) rounds in the CONGEST model with an approximation factor of 2(1−1/`),

where ` is the number of leaf nodes in the optimal ST.

38

The second algorithm, which will be denoted as modified DST, is a modification of the

first one. It shows the round-message trade-off in computing ST in the CONGEST model

of distributed computing. Specifically we replace the third step of the DST algorithm by

the singularly-optimal MST algorithm proposed by Elkin [41] which helps us achieve the

round and message complexities of Õ(S +
√
n) and Õ(Sm) respectively and still achieve an

approximation factor of 2(1−1/`). The polylogarithmic factors involved with the round and

message complexities of the modified DST algorithm are O(log n) and O(log2 n) respectively.

The modified DST algorithm improves the message complexity of the DST algorithm by

dropping the additive term of O(n3/2) at the expense of a logarithmic multiplicative factor

in the round complexity.

The overall performance of the modified DST algorithm is summarized in the following

theorem.

Theorem 3.0.2. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists a deterministic distributed algorithm that computes an ST using

Õ(S +
√
n) rounds and Õ(Sm) messages in the CONGEST model with an approximation

factor of 2(1− 1/`).

As a by-product of the above theorem, for networks with constant or sufficiently small

shortest path diameter (S = O(log n)) the following corollary holds.

Corollary 3.0.2.1. If S = O(log n) then a 2(1 − 1/`)-approximate ST can be determinis-

tically computed with the round and message complexities of Õ(
√
n) and Õ(m) respectively

in the CONGEST model.

Note that in case of S = O(log n), the round and message complexities of the modified

DST algorithm are Õ(
√
n) and Õ(m) respectively, which almost coincide with the best

known singular-optimality results of distributed MST construction in the CONGEST model

due to [41,62,110] and the approximation factor of the resultant ST is at most 2(1− 1/`).

Organization. The rest of the chapter is organized as follows. In Section 3.1 we define

the system model and notations. Section 3.2 contains the description, an illustrating ex-

ample, and the correctness of the SPF algorithm. Section 3.3 contains the description, an

illustrating example, and the correctness of the DST algorithm. Section 3.4 describes the

round-message trade-off in distributed ST construction. Finally Section 3.5 contains some

concluding remarks.

39

Improved approximation for Steiner tree in the CONGEST model

3.1 Model and Notations

System model. We consider the CONGEST model as specified in [114]. A communication

network is modelled as a weighted undirected graph G = (V,E,w), where V is the set of

nodes, E is the set of communication links, and w : E → R+ is a weight function. We

assume that each node has a unique identity (ID) which can be encoded in O(log n) bits.

Each node knows the weight of each edge incident on it. We also assume that the weight of

each edge in G is either a non-negative integer or a non-negative real number which can be

encoded in O(log n) bits and therefore polynomially many sums of weights can be encoded

in O(log n) bits. Nodes communicate and coordinate their actions with their neighbors by

passing messages (of size O(log n) bits) only. In general, a message contains a constant

number of edge weights, node IDs, and arguments (each of them is polynomially bounded

in n).

The algorithm proceeds in synchronous rounds as follows. At the beginning of each

round, each node receives all the messages sent to it. After that each node performs some

local computation based on the messages received in that round. Then each node sends

(possibly different) messages on its incident links, which will be processed in the next round.

The round complexity is measured by the number of rounds required until all the nodes

terminate. The message complexity is measured by the number of messages sent until all

the nodes terminate. It is assumed that nodes and links do not fail. Also, it is considered

that nodes are computationally unbounded.

Formulation of the ST problem in the CONGEST model. The input graph G =

(V,E,w) coincides with the communication network. Each vertex of G is uniquely mapped

to a node (processor) and edges of G are naturally mapped to the links between the corre-

sponding nodes. Each node knows whether the vertex assigned to it is a terminal or not.

All nodes run the same algorithm for the ST problem. Regarding output, whenever an al-

gorithm for the ST problem terminates, each node knows whether the vertex assigned to it

is in the solution or not and which of its incident edges are in the solution. For termination,

each node terminates the algorithm for the ST problem in a finite time.

Notation. We use the following terms and notations.

• we denotes the weight of an edge e.

40

Model and Notations

• δ(v) denotes the set of edges incident on a node v. Similarly δ(C) denotes the set of

edges having exactly one endpoint in a subgraph C.

• h(v) denotes the height of a node v with respect to a tree.

• child(v) denotes the set of child nodes of a node v with respect to a tree.

• s(v) denotes the source node of a node v. Intuitively s(v) denotes the root of a subtree

in which v is a descendant.

• ts(v) denotes the tentative s(v) of a node v.

• d(u, v) denotes the weighted distance1 between nodes u and v.

• d(v) denotes the weighted distance between v and s(v). Similarly td(v) denotes the

(weighted) tentative distance between v and ts(v).

• Let e ∈ δ(v). Then at node v, tdn(e) denotes the tentative distance of a neighbor node

incident on the other end of e. Similarly at node v, idn(e) and tsn(e) denote the ID

and the tentative source respectively of a neighbor node incident on the other end of

e.

• π(v) and tπ(v) denote the predecessor2 and the tentative predecessor respectively of a

node v.

• 〈M〉 denotes the messageM(a1, a2, ...). Here a1, a2, ... are the arguments of the message

M . Note that unless it is necessary, arguments of 〈M〉 will not be shown in it.

• ρ(u, v) denotes the number of edges in a weighted shortest path between u and v. Note

that there may be more than one weighted shortest path between u to v. In this case

ρ(u, v) is the number of edges of the weighted shortest path having the least number

of edges.

• S(G,w) (or S for short) denotes the shortest path diameter of a given undirected

weighted graph G, which was first introduced by Khan and Pandurangan [77]. It is

defined as follows.

S = max
u,v∈V

ρ(u, v)

Note here that 1 ≤ D ≤ S ≤ n− 1.

1The distance between two vertices in a graph is the length of the shortest path connecting them.
2In this thesis we use predecessor and parent interchangeably.

41

Improved approximation for Steiner tree in the CONGEST model

3.2 SPF construction

Definition 3.2.1 (SPF [27]). Let G = (V,E,w) be a connected undirected weighted graph,

where V is the vertex set, E is the edge set, and w : E → R+ is the non-negative weight

function. Given a subset Z ⊆ V , an SPF is a sub-graph GF = (V,EF , w) of G consisting of

disjoint trees Ti = (Vi, Ei, w), i = 1, 2, ..., |Z| such that

• For all i, Vi contains exactly one node zi of Z.

• For all v ∈ Vi, s(v) = zi, where zi ∈ Z

• V1 ∪ V2 ∪ ...V|Z| = V and Vi ∩ Vj = φ for all i 6= j.

• E1 ∪ E2 ∪ ...E|Z| = EF ⊆ E.

• The weighted shortest path between v and s(v) = zi in Ti is one of the weighted shortest

paths between v and s(v) in G.1

Regarding distributed SPF construction in the CONGEST model, Chen et al. [27] pre-

sented a deterministic distributed algorithm to construct an SPF for Z ⊆ V of a graph

G = (V,E,w) with the round and message complexities of O(n(n− t)) and O(m+n(n− t))
respectively, where n = |V |, t = |Z|, and m = |E|. Lenzen and Peleg [91] studied a sim-

ilar problem called source detection. Given an unweighted graph G = (V,E), a subset

Z ⊆ V of source nodes, let L
(∞)
v denote the (ascending) lexicographically ordered list of

pairs (g(s, v), s), where s ∈ Z and g(s, v) is the length of the (unweighted) shortest path

from s to v. The (Z, g′, x)-detection problem requires that each node v ∈ V learns the

first min{x, λg′v } entries of L
(∞)
v , where λg

′
v is the number of sources s ∈ Z satisfying that

g(s, v) ≤ g′. Lenzen and Peleg [91] showed that (Z, g′, x)-detection problem can be solved

using min{g′, D}+ min{x, |Z|} rounds in the CONGEST model.

3.2.1 Distributed SPF algorithm.

In this subsection we give a detailed description of our proposed SPF algorithm that con-

structs an SPF using O(S) rounds and O(Sm) messages in the CONGEST model. The

algorithm will be used later as a subroutine in the DST algorithm. It is inspired by the well

known Bellman-Ford algorithm and computes an SPF GF = (V,EF , w) for a given graph

1Note that there may exist more than one weighted shortest path between v and s(v) in G.

42

SPF construction

G = (V,E,w) and Z ⊆ V . We assume that at the beginning of the algorithm there exists

a breadth first search (BFS) tree of G rooted at a terminal r. Note that a BFS tree can be

computed using O(D) rounds and O(m) messages in the CONGEST model [114].

We also assume that r, the root node, knows the height (denoted as h) of the BFS tree.

Note that the height of a node is the number of edges on the longest path between that node

and a leaf, and the height of a tree is the height of the root node. Intuitively r can compute

h using a broadcast and convergecast procedure as follows. Initially r sends a message called

〈compute height〉 to all of its child nodes in the BFS tree. Upon receiving 〈compute height〉,
each node forwards it to all of its child nodes. Whenever a leaf node v in the BFS tree receives

〈compute height〉, it sets its h(v) to 0 and sends a message called 〈my height(h(v))〉 to its

parent. Upon receiving 〈my height(h(vi))〉 from each of its child nodes vi ∈ child(u), an

internal node u sets h(u) to max{h(vi) | vi ∈ child(u) and 1 ≤ i ≤ |child(u)|}+ 1 and sends

the resulted h(u) to its parent.1 In this way eventually r receives the heights of all of its

child nodes. Then it computes h(r) = max{h(vi) | vi ∈ child(r) and 1 ≤ i ≤ |child(r)|}+ 1,

which is the required height of the BFS tree. It is obvious that r can compute h of the BFS

tree using O(h) rounds and O(n) messages. Since the height of the BFS tree (h(r)) can be

at most D, the round complexity of computing h(r) in the worst-case is O(D).

Input. Each node knows whether it is a terminal or not, and the set of edges incident on

it. Let bfs π(v) denotes the parent of a node v in the BFS tree rooted at r. Except r, all

other nodes in the BFS tree know their parents; for r we assume that bfs π(r) = r . Initially,

tπ(v) = nill , ts(v) = nill , and td(v) =∞ for each node v ∈ V . Note here that the notations

tπ, ts , and td are used to describe the tentative SPF. Furthermore r uses two additional

local variables called height and start flag which are initially set to h and false respectively.

Output. Whenever the algorithm terminates, d(v) = td(v), π(v) = tπ(v), and s(v) = ts(v)

for each node v ∈ V .

Outline of the algorithm. The special node r initiates the algorithm by setting start flag

= true, td(r) = 0 , tπ(r) = r , ts(r) = r , and sending 〈update(r, ts(r), td(r))〉messages on all

of its incident edges. After that if r does not receive any message in a round, it sets height

to height − 1 . Whenever height beomes −1, r sets start flag to false and the algorithm

terminates.

Let U and Y denote the set of 〈update〉 and the set of 〈echo〉 messages respectively

1Here |child(u)| denotes the number of child nodes of u in the BFS tree.

43

Improved approximation for Steiner tree in the CONGEST model

SPF algorithm at node v upon receiving a set of messages or no message.

1: upon receiving no message
2: if v = r and v ∈ Z then . we assume that r ∈ Z
3: if start flag = false then
4: start flag ← true; . spontaneous awaken of the root node
5: ts ← v ; tπ ← v ; td ← 0 ; height ← h; update flag ← false; . update flag(v)

denotes a boolean variable at node v.
6: for each e ∈ δ(v) do
7: send 〈update(v, ts, td)〉 on e
8: end for
9: else

10: height ← height − 1 ;
11: if height = −1 then
12: start flag ← false; . Algorithm terminates
13: end if
14: end if
15: end if

16: upon receiving a set of 〈update〉 or 〈echo〉 messages . U 6= φ or Y 6= φ
17: if v ∈ Z and td =∞ then . for the first time v receives some messages
18: ts ← v ; tπ ← v ; td ← 0 ;
19: if update flag = false then
20: update flag ← true;
21: end if
22: else if v ∈ V \ Z then
23: for each 〈update(idn(e), tsn(e), tdn(e))〉 ∈ U such that e ∈ δ(v) do
24: if tdn(e) + we < td then
25: td ← tdn(e) + we ; tπ ← idn(e); ts ← tsn(e);
26: if update flag = false then
27: update flag ← true;
28: end if
29: end if
30: end for
31: end if
32: if update flag = true then
33: for each e ∈ δ(v) do
34: send 〈update(v , ts , td)〉 on e
35: end for

44

SPF construction

SPF algorithm (continued).

36: send 〈echo〉 to bfs π;
37: update flag ← false;
38: else
39: if v = r then
40: height ← h;
41: else if Y 6= φ then
42: send 〈echo〉 to bfs π;
43: end if
44: end if

received by a node in a round. Upon receiving a set of 〈update〉 or 〈echo〉 messages (U 6= φ

or Y 6= φ) a node v acts as per the following rules.

R1. if v = r then it resets height to h.

R2. if v ∈ Z and td(v) =∞ and for the first time it receives some messages then it sets

ts(v) = v, td(v) = 0, and tπ(v) = v.

R3. if v ∈ V \ Z and U 6= φ then it computes we + tdn(e) for each 〈update(idn(e), tsn(e),

tdn(e))〉 ∈ U and chooses the minimum one, say we′+tdn(e′) resulted by 〈update(idn(e′),

tsn(e′), tdn(e′))〉 ∈ U . If td(v) > we′ + tdn(e′) then it updates td(v) = we′ + tdn(e′),

ts(v) = tsn(e′), and tπ(v) = idn(e′). Otherwise, td(v), ts(v) and tπ(v) remain un-

changed.

R4. if td(v) is updated then

(a) sends 〈update(v, ts(v), td(v))〉 on all of its incident edges.

(b) sends 〈echo〉 to bfs π(v).

R5. if td(v) is not updated and Y 6= φ then v sends 〈echo〉 to bfs π(v).

Termination detection. Termination of an algorithm is a state in which no message is

in transit or sent by any node in the network. The root r of the BFS tree detects the

termination of the SPF algorithm. Whenever r finds that the local variable height becomes

−1, it terminates the algorithm. At the beginning of the algorithm, r sets height to h. If r

does not receive any message in a round, it sets height to height − 1 . During the execution

45

Improved approximation for Steiner tree in the CONGEST model

of the algorithm a node v sends an 〈echo〉 message to bfs π(v) in any one of the following

cases.

1. it updates its local state

2. receives 〈echo〉 message from at least one of its child nodes

Above two cases guarantee that an 〈echo〉 message generated at any node in the network

eventually reaches r. If r receives some messages, it resets height to h. Since h is the height

of the BFS tree, it is guaranteed that from the time of any change of local state in a node

(which generates an 〈echo〉 message), r receives this information (by receiving an 〈echo〉
message) after at most h rounds. This ensures that r resets height to h before it becomes

−1 in at most h rounds from the time of any changes occur in the network. In case r does

not receive any message for h + 1 consecutive rounds, this ensures that no changes have

been occurred at any node in the network in last h + 1 rounds. In this case height becomes

−1 and r terminates the algorithm by setting start flag to false.

3.2.2 An illustrative example of the SPF algorithm

Let us consider the application of the SPF algorithm in a graph G = (V,E,w) as shown in

Figure 3.1(a). The thick edges represent the BFS tree. The set of source nodes (terminals)

is Z = {B,G, J,R} and B is the root of the BFS tree. The initial tentative source, tentative

distance, and tentative predecessor of each node are shown in the table. The root node B

starts the algorithm by sending 〈update〉messages to all of its neighbors. Figure 3.1(b) shows

the states of all the nodes after the second round of the algorithm. Upon receiving 〈update〉
messages, nodes A, C, H and I update their local information. Arrows along the edges

indicate the tentative predecessors (tπ) of the nodes, except for those whose predecessors

are yet undefined. Similarly, Figure 3.1(c) shows the state of the graph after the 6th round

of execution of the algorithm. The final SPF GF = (V,EF , w) (indicated by the thick edges)

for Z of G and a table which contains the lengths of shortest paths of all the nodes to their

respective sources are shown in Figure 3.1(d).

3.2.3 Correctness of the SPF algorithm

In this subsection we discuss some of the properties of the SPF algorithm.

46

SPF construction

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

A B C D E F G H I J K L M N O P Q R

Terminal

Non-terminal

BFS tree edge

8

2

4

10

root

6

9

11

3

7

16

15

6

3

2

4
2

7 5

14

7

2

1

9

3 18

5

4

6

3

14
2

12

10

8

9

5

1

nil nil nil nil nil nil nil nil

nilnilnilnilnilnilnilnilnilnilnilnilnil

∞∞∞∞∞∞∞∞∞∞∞ ∞
nil

B nilnil nilnil

nilnil

∞ ∞ ∞∞ 0 ∞
nil nil nil nilB nilnil

predecessor

distance

source

(a)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

A B C D E F G H I J K L M N O P Q R

B

B

B

B B B

B B

B

8

2

4

10

root

6

9

11

3

7

16

15

6

3

2

4
2

7 5

14

7

2

1

9

3 18

5

4

6

3

14
2

12

10

8

9

5

1

4 6 90 11

B nil nil nil nil nil nil nil nil nil nil nil nil nil

nilnilnilnilnilnilnilnilnilnilnilnilnil

∞∞∞∞∞∞∞∞∞∞∞∞ ∞

predecessor

distance

source

(b)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

A B C D E F G K L M N O P Q R

B

B

8

2

4

10

root

6

9

11

3

7

16

15

6

3

2

4
2

7 5

14

7

2

1

9

3 18

5

4

6

3

14
2

12

10

8

9

5

1

4

B G

0

C G

J

J

BB

C F

G

B I H

J

2 3 0 5

J H M

R

R

G

G M

12 6 5

L

0

B J

0 6 17 20

G R

R

10

J J

H I J

2 8

G R

3

R

source

distance

predecessor

(c)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

A B C D E F G K L M N O P Q R

B

B

8

2

4

10

root

6

9

11

3

7

16

15

6

3

2

4
2

7 5

14

7

2

1

9

3 18

5

4

6

3

14
2

12

10

8

9

5

1

4

G

0

G

J

J

G

B I H

J

2 3 0 5

J H M

R

R

G

G M

6 5

L

0

B J

0

G R

R

10

J J

H I J

2 8

G R

3

R

J

6

R

13

C O C

J

7 8

SPF edge

source

distance

predecessor

(d)

Figure 3.1: (a) A weighted connected graph G = (V,E,w) with the terminal set Z = {B,G, J,R},
and B is the root of the BFS tree. The initial values are shown in the table. (b) After the second
round all neighbors of B receive 〈update〉 and update their local information. The updated values
are shown in the table. (c) After the 6th round of execution of the algorithm. (d) The final SPF
GF = (V,EF , w) for Z of G is indicated by the thick edges.

Lemma 3.2.1. The SPF algorithm terminates after at most S + 2h+ 1 rounds.

Proof. At the beginning of the algorithm, r sends 〈update〉 message to all of its neighbors.

Whenever a node v receives 〈update〉 messages, if applicable, it updates its own states and

then sends 〈update〉 messages including its updated parameters to all of its neighbors and

an 〈echo〉 message to bfs π(v). This guarantees that after h rounds of execution every node

in the network receives at least one 〈update〉 message.

47

Improved approximation for Steiner tree in the CONGEST model

After h rounds of execution, all nodes proceed in parallel and in every subsequent round,

upon receiving 〈update〉 messages, if applicable, each node updates its local state. Since S

is the shortest path diameter, any path in the SPF contains no more than S edges. The

SPF algorithm has a single initiator (the root node r of the BFS tree). This implies that

a leaf node v may be delayed of updating its local information by h rounds; such a node v

converges to its correct d(v) value in at most S additional rounds. Therefore, in the worst-

case, after h + S rounds of execution no local changes occur at any node in the network.

Note that every time local changes occur at a node v, it sends 〈echo〉 message to bfs π(v).

Since after at most h+ S rounds no changes occur at any node in the network, after h+ S

rounds an 〈echo〉 message can not be generated by any node in the network due to any local

changes. However after h + S rounds of execution of the algorithm, some 〈echo〉 messages

can be still in transit in the network which were generated on or before (h+ S)th round. In

this case, upon receiving a set of 〈echo〉 messages, a node v simply sends an 〈echo〉 message

to bfs π(v). Since h is the height of the BFS tree, it is guaranteed that from the time of

any change of local state in a node (which generates an 〈echo〉 message), r receives this

information (by receiving an 〈echo〉 message) after at most h rounds. In case r does not

receive any message for h consecutive rounds, it ensures that no changes have been occurred

at any node in the network in the last h rounds. In this case r terminates the algorithm

in the next subsequent round. Therefore after at most S + 2h + 1 rounds of execution, no

further messages related to the SPF algorithm will be sent or in transit in the network. This

concludes that the SPF algorithm terminates after at most S + 2h+ 1 rounds.

Theorem 3.2.2. The round complexity of the SPF algorithm is O(S).

Proof. Lemma 3.2.1 ensures that the SPF algorithm terminates after at most S + 2h + 1

rounds. We know that h is the height of the BFS tree. Since h ≤ D ≤ S ≤ n−1, the round

complexity of the SPF algorithm is O(S).

Theorem 3.2.3. The message complexity of the SPF algorithm is O(Sm).

Proof. During the execution of the SPF algorithm, a terminal node sends 〈update〉 messages

to all of its neighbors only once. This happens only when a terminal node receives 〈update〉
message for the first time. After that a terminal node never sends any 〈update〉 messages. It

is clear that until the termination of the algorithm, in the worst-case, at most ∆t 〈update〉
messages are generated due to the terminal set Z, where t = |Z| and ∆ is the maximum

48

SPF construction

degree of a vertex in the input graph G. On the other hand every time td(v) is updated

at a non-terminal v, it sends 〈update〉 messages to all of its neighbors. Therefore, in the

worst-case, in each round, the number of 〈update〉 messages generated is at most ∆(n− t)
due to the non-terminal set V \ Z. Since Theorem 3.2.2 ensures that the SPF algorithm

terminates in O(S) rounds, in the worst-case, the number of 〈update〉 messages generated

until the termination of the algorithm is O(∆(n − t)S) due to the non-terminal set V \
Z. Therefore total 〈update〉 messages generated until the termination of the algorithm is

O(∆t+ ∆(n− t)S). We know that ∆t = O(∆n) and ∆(n− t) = O(∆n), and ∆n is upper

bounded by O(m). This implies that O(∆t+ ∆(n− t)S) = O(Sm).

On the other hand during the execution of the algorithm a node v sends an 〈echo〉
message to bfs π(v) in the following cases: (i) it updates its local state, or (ii) receives

〈echo〉 message from at least one of its child nodes. This implies that in a round a node can

generate at most one 〈echo〉 message. Since after h rounds of execution (from the beginning

of the algorithm) all nodes proceed in parallel, in the worst-case, in each round, all nodes

can together generate at most n 〈echo〉 messages. Theorem 3.2.2 ensures that the SPF

algorithm terminates in O(S) rounds. This implies that total 〈echo〉 messages generated

until the termination of the algorithm is O(Sn).

It is clear that total messages generated until the termination of the algorithm is O(Sm+

Sn). Since the input graphG is connected, n ≤ m. Therefore the overall message complexity

of the SPF algorithm is O(Sm).

Lemma 3.2.4. Let tdi(v) be the length of the tentative (weighted) shortest path from node

v to ts(v) after i rounds (i ≥ 0). Suppose the SPF algorithm terminates after X rounds

(X ≤ S + 2h + 1). Then for each node v ∈ V , tdX(v) = d(v, s(v)) and the corresponding

shortest path contains at most S edges.

Proof. The root r of the BFS tree initiates the algorithm by sending an 〈update〉 message to

all of its neighbors. This indicates that a node which is x-hops away from r receives 〈update〉
message for the first time after x rounds of execution of the algorithm. A node remains at its

initial state until it receives some 〈update〉 messages. If a node receives 〈update〉 messages

for the first time, it always updates its local state.

Let xv denotes the round at which a node v ∈ V receives 〈update〉 messages for the first

time. This indicates that a node v starts changing its local state from xthv round onwards.

49

Improved approximation for Steiner tree in the CONGEST model

Therefore we assume that for a node v, Lemma 3.2.4 holds only after xthv round onwards.

It is obvious that after h rounds of execution Lemma 3.2.4 trivially holds for all terminal

nodes. This is because during the execution of the algorithm, terminal nodes do not maintain

distance information to any other node in the network; they keep the record of only their

own local information. Whenever a node v ∈ Z receives 〈update〉 message for the first time,

it updates its s(v) = ts(v) = v, d(v) = td(v) = 0, and these values remain same throughout

the execution of the algorithm. The information s(v) = v and tdh(v) = 0 for a node v ∈ Z
together ensure that the corresponding path contains 0 edges. Therefore after h rounds,

Lemma 3.2.4 always holds ∀v ∈ Z.

Now we prove that after xv+k (k ≥ 0) rounds of execution Lemma 3.2.4 holds ∀v ∈ V \Z.

For the sake of simplicity we divide the proof into two parts. In the first part we show the

correctness for the case of xv + k ≤ S for v ∈ V \ Z . In the second part we show the

correctness for the case of 1 + S ≤ xv + k ≤ S + 2h+ 1 for v ∈ V \ Z .

Case 1: xv + k ≤ S. By induction on k, we show that after xv + k rounds of execution,

tdxv+k(v) is the length of the tentative shortest path from v to ts(v) that contains at most

xv + k edges.

Base case. For a node v ∈ V \ Z , the base case starts only after xv rounds. If k = 0,

it is obvious that first changes occur at node v in the xthv round. Therefore after round xthv ,

ts(v) 6= nill, tdxv(v) is equal to the length of the tentative shortest path from v to ts(v),

and the corresponding tentative shortest path contains at most xv edges.

Inductive step. Suppose, for k > 0, tdxv+k−1(v) is the length of the shortest path from

v to ts(v) and the corresponding path contains at most xv + k − 1 edges.

Let P be the path from v to ts(v) which is formed after xv +k rounds and u be the node

through which v joins P . Let R be the path from u to ts(u). Since v joins P in which u is

the predecessor of v, ts(v) = ts(u). By the induction hypothesis, the path from u to ts(u),

which is R, contains at most xu + k− 1 edges and w(R) = tdxu+k−1(u), where w(R) denotes

the length of R.

After xv +k rounds, v updates tdxv+k(v) = min{tdxv+k−1(v), tdxu+k−1(u) +w(v,u)}. Since

v joins u, w(P) = tdxu+k−1(u)+w(v,u) = w(R)+w(v,u); this implies that tdxv+k(v) = w(P) <

tdxv+k−1(v). Note that v first updated td(v) at xthv round from the beginning of the algorithm

and after that the algorithm executed k subsequent rounds. Therefore it is obvious that P

contains at most xv + k edges.

Therefore, for every node v ∈ V \Z, the claim holds for all k ≥ 0 such that xv + k ≤ S.

50

DST algorithm

Case 2: 1 +S ≤ xv +k ≤ S+ 2h+ 1. The Lemma 3.2.1 shows that algorithm may proceed

upto S+2h+1 rounds. This induces the possibility of further improvement of td(v) for each

node v ∈ V \Z even after S rounds. However, by using the same argument of the induction

step of Case 1, it can be shown that td(v) correctly converges to d(v, s(v)). Since S is the

shortest path diameter, any path in the SPF contains no more than S edges. This implies

that after xv + k rounds, even if xv + k ≥ S + 1, tdxv+k(v) is the length of the shortest path

from v to ts(v) that contains at most S edges.

Therefore we conclude that if the SPF algorithm terminates after X rounds, tdX(v) =

d(v, s(v)) for each node v ∈ V and each shortest path in the SPF contains at most S

edges.

Deadlock freeness. The SPF algorithm is free from deadlock. Deadlock occurs only if a

set of nodes in the network enter into a circular wait state. In the SPF algorithm, a node

sends 〈update〉 messages to its neighbors only to inform about its local changes or sends

〈echo〉 message to its parent node. It never sends resource request message to any other

nodes. This ensures that nodes never create circular waiting (or waiting request) for any

resource during the execution of the algorithm. Furthermore, since we assume that nodes

and links do not fail, the SPF algorithm does not suffer from any deadlock or other problems

like counting-to-infinity etc.

Message size. The SPF algorithm uses two types of messages: 〈update〉 and 〈echo〉. The

〈update〉 message contains three different arguments and each of them can be encoded using

O(log n) bits, whereas 〈echo〉 message contains no arguments. Therefore, the message size

in the SPF algorithm is O(log n) bits.

3.3 DST algorithm

3.3.1 Preliminaries

Definition 3.3.1 (Complete distance graph [84, 130]). A graph KZ is called a complete

distance graph on the node set Z ⊆ V of a connected undirected weighted graph G = (V,E,w)

if for each pair of nodes u, v ∈ Z, there is an edge (u, v) in KZ and the weight of the edge

(u, v) is the length of the shortest path between u and v in G.

Our DST algorithm is inspired by the principles of two centralized algorithms— one is

by Kou et al. [84] (Algorithm H) and the other one is by Wu et al. [130] (Algorithm M).

51

Improved approximation for Steiner tree in the CONGEST model

For the sake of completeness, below we briefly describe the working principles of both the

algorithms.

The worst-case approximation ratio of the DST algorithm follows from the correctness

of the Algorithm H. For a given connected undirected weighted graph G = (V,E,w) and a

set of terminal nodes Z ⊆ V , Algorithm H computes an ST TZ as follows.

1. Construct a complete distance graph KZ .

2. Find an MST TA of KZ .

3. Construct a sub-graph GA of TA by replacing each edge of TA with the corresponding

shortest path in G.

4. Find an MST TB of GA.

5. Construct an ST TZ from TB by deleting edges of TB so that all leaves of TZ are

terminal nodes.

The running time of the Algorithm H is O(tn2). Following the principles of both Prim’s and

Krushkal’s algorithms, Wu at el. [130] proposed a faster algorithm (Algorithm M) which

improves the time complexity to O(m log n), achieving the same approximation ratio as of

the Algorithm H. The speed-up is achieved by computing a so-called generalized MST TZ

for Z of G in one step as opposed to the multiple steps of the Algorithm H. The generalized

MST is defined as follows.

Definition 3.3.2 (Generalized MST [130]). Let G = (V,E,w) be an undirected weighted

graph and Z be a subset of V . Then a generalized MST TZ is a sub-graph of G such that

• there exists an MST TA of the complete distance graph KZ such that for each edge

(u, v) in TA, the length of the unique path between u and v in TZ is equal to the weight

of the edge (u, v) in TA.

• all leaves of TZ are in Z.

It is clear that TZ is an ST for Z in G and is the actual realization of TA. In summary,

the Algorithm M constructs a generalized MST TZ for Z of G as follows.

Initially, the set of nodes in Z are treated as a forest of |Z| separate trees and successively

merge them until all of them are in a single tree TZ . A priority queue Q is used to store the

52

DST algorithm

frontier vertices of paths extended from the trees. Each tree gradually extends its branches

into the node set V \ Z. When two branches belonging to two different trees meet at some

node then they form a path through that node merging these two trees. The algorithm

always guarantees to compute only such paths of minimum length for merging trees.

GKP algorithm. Since we use the GKP algorithm proposed by Garay, Kutten, and

Peleg [51, 87] as a subroutine in the DST algorithm, here we give a high-level description

of the same. Note that GKP algorithm has the best known deterministic round complexity

(O(D +
√
n log∗ n)) for MST construction in the CONGEST model. It is a combination of

two algorithms: the GHS algorithm due to Gallager, Humblet, and Spira [50] and Pipeline

algorithm due to Peleg [113]. The key idea is to apply GHS algorithm on a given graph

until the diameter of each fragment becomes O(
√
n). The GHS algorithm is applied up

to O(log
√
n) phases and at the end it ensures that there are at most

√
n fragments. The

running time of this part is O(
√
n log∗ n). In the second part it uses the Pipeline algorithm to

find at most
√
n−1 MWOE (minimum weight outgoing edges) to connect all the remaining

fragments (≤ √n). In the Pipeline algorithm initially a rooted BFS tree Tr is built. Let r be

the root of Tr. Using the edges of Tr, the information about all the candidate edges which

are inter-fragment tree edges are sent to the root r using pipelining and each intermediate

node v of Tr filters out all candidate edges that have largest weight in a cycle. Eventually

the root r of Tr collects all inter-fragment tree edges with their weights, constructs an MST

(M ′) by considering each fragment as a super node. Then r broadcasts the edges in M ′ to

all the respective nodes by using the edges of Tr. Since the height of Tr is at most D and

each node sends at most
√
n edges upward (in case of the collection of the inter-fragment

tree edges by r) and at most
√
n edges downward (in case of broadcasts), the running time

of the Pipeline algorithm is O(D +
√
n). Therefore the overall round complexity of the

GKP algorithm is O(D +
√
n log∗ n). However the second part of the GKP algorithm is

responsible for its large message complexity which is O(m+ n
3
2).

3.3.2 Outline of the DST algorithm

In this subsection we present the outline of the DST algorithm. It has a round complexity of

O(S+
√
n log∗ n). There are four steps (small distributed algorithms) in the DST algorithm.

The speed-up is achieved due to step 1 and step 3. Step 1 computes an SPF using O(S)

rounds. Step 3 computes an MST using O(D+
√
n log∗ n) rounds due to the application of

53

Improved approximation for Steiner tree in the CONGEST model

the GKP algorithm.

We assume that a BFS tree rooted at some terminal node (r ∈ Z) of G is available at the

start of the algorithm (any node v ∈ V can be considered as the root of the BFS tree). The

root node r initiates the algorithm. Note that an ordered execution of steps is necessary for

the correct working of the DST algorithm. We assume that the root r ensures the ordered

execution of steps (from step 1 to step 4) and initiates step i+ 1 after step i is terminated.

The outline of the DST algorithm is as follows.

Step 1. (SPF construction). Construct an SPF GF = (V,EF , w) for Z in G by applying
the SPF algorithm described in Subsection 3.2.1. This produces |Z| disjoint
shortest path trees. Each subtree contains one terminal, which is the root of
the subtree, and a subset of non-terminals. A non-terminal v is included in a
subtree rooted at z ∈ Z if ∀x ∈ Z \ {z}, d(v, z) ≤ d(v, x). Theorem 3.2.2 and
Theorem 3.2.3 ensure that the round and message complexities of this step are
O(S) and O(Sm) respectively.

The graph GF is the basis for the construction of the generalized MST for Z ⊆ V

of G (denoted as TZ). To construct TZ , the following two steps (Edge Weight

modification and MST construction) (in order) are necessary.

Step 2. (Edge Weight modification). With respect to the SPF (GF = (V,EF , w)), each
edge e ∈ E of the graph G = (V,E,w) is classified as any one of the following
three types.

(a) tree edge: if e ∈ EF .

(b) inter tree edge: if e /∈ EF and end points are incident in two different
trees of the GF .

(c) intra tree edge: if e /∈ EF and end points are incident in the same tree
of the GF .

Now transform G = (V,E,w) into Gc = (V,E,wc). Let wc(e) denotes the cost
of an edge e in Gc. For each edge (u, v) ∈ E, wc(u, v) is computed as follows.

(a) wc(u, v) = 0 if (u, v) is a tree edge.

(b) wc(u, v) =∞ if (u, v) is an intra tree edge.

(c) wc(u, v) = d(u) +w(u,v) + d(v) if (u, v) is an inter tree edge. In this case
wc(u, v) realizes the weight of a path from the source node s(u) to the
source node s(v) in G that contains the inter tree edge (u, v).

54

DST algorithm

The classification of the edges of G and the transformation to Gc can be done as

follows. Each node v of G sends a message called 〈set category(v, s(v), d(v), π(v))〉)
to all of its neighbors. Let a node v receives 〈set category(u, s(u), d(u), π(u))〉 on

an incident edge (v, u). If s(v) 6= s(u) then v sets (v, u) as an inter tree edge and

wc(v, u) to d(v) +w(v,u) + d(u). On the other hand if s(v) = s(u) then (v, u) can be

either a tree edge or an intra tree edge: if v = π(u) or π(v) = u then node v sets

(v, u) as tree edge and wc(v, u) to 0. Otherwise, v sets (v, u) as intra tree edge and

wc(v, u) to ∞.

Assuming that the root (r) of the BFS tree initiates this step, it is clear that step

2 can be performed using O(D) rounds. Also on each edge of G, the message

〈set category〉 is sent exactly twice (once from each end). Therefore, the message

complexity of step 2 is O(m).

Step 3. (MST construction). Construct an MST TM of Gc. TM contains all tree edges
and t − 1 inter tree edges of Gc. Specifically, in this step, we apply the GKP
algorithm to construct the MST TM . The round and message complexities of the
GKP algorithm are O(D +

√
n log∗ n) and O(m+ n3/2) respectively.

Step 4. (Pruning). Construct a generalized MST TZ from TM . This is accomplished by
performing a pruning operation in the TM . The pruning operation deletes edges
from TM until all leaves are terminal nodes. Pruning starts at the non-terminal
leaf nodes. A non-terminal leaf node v prunes itself from TM and instructs
its neighbor u to prune the common edge (v, u) from the TM . This process is
repeated until no further non-terminal leaf nodes remain and we get the final TZ
which contains t − 1 inter tree edges and all leave nodes are in Z. Now edge
weights of the TZ are restored to w.

Since pruning can be started in parallel from all the non-terminal leaf nodes of the

TM and any non-terminal leaf node v can be at most S hops away from its source

s(v) (which is a terminal node), step 4 can be performed using O(S) rounds. Also,

in pruning, at most one message is sent over each edge of the TM . Since the TM has

exactly n− 1 edges, the message complexity of step 4 is O(n).

The DST algorithm terminates with step 4.

55

Improved approximation for Steiner tree in the CONGEST model

3.3.3 An illustrative example of the DST algorithm

Let us consider the application of the DST algorithm in a graph G = (V,E,w) shown in

Figure 3.2(a). The set of terminals (sources) is Z = {B,G, J,R}. An SPF GF = (V,EF , w)

for Z is constructed which is shown in Figure 3.2(b). In GF , each non-terminal node v

is connected to a terminal node s(v) ∈ Z whose distance is minimum to s(v) than any

other terminal node in G which is shown in the table of Figure 3.2(b). The construction of

graph Gc and labelling of the edge weights according to the definition of Gc are shown in

Figure 3.2(c). Figure 3.2(d) shows after the application of the GKP algorithm on Gc which

constructs an MST TM of Gc. The final ST TZ for Z of G, which is a generalized MST

for Z of G is constructed from TM by performing a pruning operation, which is shown in

Figure 3.2(e).

3.3.4 Correctness of the DST algorithm

Theorem 3.3.1. The round complexity of the DST algorithm is O(S +
√
n log∗ n).

Proof. Each of step 1 and step 4 of the DST algorithm takes O(S) rounds. Step 2 and step

3 take O(D) and O(D +
√
n log∗ n) rounds respectively. Since 1 ≤ D ≤ S ≤ n − 1, the

overall round complexity of the DST algorithm is O(S +
√
n log∗ n).

Theorem 3.3.2. The message complexity of the DST algorithm is O(Sm+ n3/2).

Proof. It is clear that the overall message complexity of the DST algorithm is dominated

by step 1 and step 3. By Theorem 3.2.3, the message complexity of step 1 is O(Sm). Also

the message complexity of step 3 is O(m+ n3/2). Combining all steps (step 1 to step 4) we

get that the message complexity of the DST algorithm is O(Sm+ n3/2).

Definition 3.3.3 (Straight path). Given that G = (V,E,w) is a connected undirected

weighted graph and Z ⊆ V . Let u, v ∈ Z. Then a path Puv (may contain only one edge)

between u and v is called straight only if all the intermediate nodes in Puv are in V \ Z.

Definition 3.3.4. Let X be a sub-graph of a graph G = (V,E,w). Then cost(X) denotes

the sum of weights of all the edges in X.

Lemma 3.3.3. Given that G = (V,E,w) is a connected undirected weighted graph and

Z ⊆ V . Let u, v ∈ Z and there exists a straight path Puv between u and v in TM , where TM

56

DST algorithm

32

7

9

6

8

24

15

16

6

6

7

34

11 7

2

14

5

12 12

10

9

5

14

32

1
10

8

A

B C D

E

O

RQ 39P

KJ

H

L

I

NM

4

5

18

G

F

(a)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

A B C D E F G K L M N O P Q R

B

2

4 3

3

2

5

7

2

1

5

3

2

5

1

4

G

0

J GJ

2 3 0 5

RG

6 5 0

B J

0

G R

10

J J

H I J

2 8

G R

3

J

6

R

13

J

7 8

source

distance

(b)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

0

16

8

12

17

∞

12

0

0

0
0

0

0

0

0

17

13

17

10

22

0

0

20

22

11

0

23 0

24

020

23

24

22

∞
29

∞

inter tree edge
intra tree edge

tree edge

(c)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

(d)

A

B C D

E

O

RQP

KJ

H

L

I

NM

G

F

(e)

Figure 3.2: (a) A graph G = (V,E,w) and a terminal set Z = {B,G, J,R}. (b) An SPF
GF = (V,EF , w) for Z of G. The distances of nodes to their respective sources are shown in the
table. (c) The graph Gc = (V,E,wc). (d) An MST TM of the graph Gc. (e) The final ST TZ
(generalized MST) for Z of G.

57

Improved approximation for Steiner tree in the CONGEST model

is a resultant MST constructed after the consecutive applications of step 1, step 2, and step

3 of the DST algorithm on the given graph G. Then Puv in TM is the shortest straight path

between u and v in G.

a′

terminal

e

e′u1
b

b′

Puv

u a

P ′
uv

v

v1

T1

T2

intra treetree inter tree

non terminal

Figure 3.3: A state before merging of two shortest path trees T1 and T2 along a shortest straight
path Puv . The type of the edges in T1 and T2 are shown according to the graph Gc constructed in
step 2 of the DST algorithm.

Proof. By contradiction assume that Puv is not the shortest straight path between u and v

in TM . Let there exists a straight path P ′uv between u and v such that cost(P ′uv) < cost(Puv).

We show that cost(P ′uv) < cost(Puv) does not hold. Since u and v are two different terminals,

they were in different shortest path trees in the SPF, say u ∈ T1 and v ∈ T2 , before they are

included in the TM . Let e = (a, b) ∈ δ(T1) ∩ δ(T2), e ′ = (a ′, b ′) ∈ δ(T1)∩ δ(T2) such that

Puv and P ′uv contain e and e′ respectively as shown in Figure 3.3. Note that the correctness

of the SPF algorithm described in Section 3.2 ensures that Pua, Pua′ , Pvb, and Pvb′ are the

shortest paths between the respective nodes in G as shown in Figure 3.3. In step 2 of

the DST algorithm, the weight of each of the edges in the SPF (which are tree edges as

specified in step 2 of the DST algorithm) is set to 0. This implies that after step 2 of the

DST algorithm cost(Pua) = cost(Pua′) = cost(Pvb) = cost(Pvb′) = 0. Also step 2 of the DST

algorithm ensures that cost(Puv) = wc(e) and cost(P ′uv) = wc(e
′). During the execution of

step 3 of the DST algorithm, which is the MST (TM) construction, a finds e as its minimum

weight outgoing edge (MWOE) and a′ finds e′ as its MWOE. Similarly b and b′ find e and

e′ as their MWOEs respectively. Since during the construction of the TM the fragments

T1 and T2 are merged through e, this indicates that e is the MWOE of at least one of

the fragments T1 or T2 . In other words, wc(e
′) ≥ wc(e). We know that cost(Puv) = wc(e)

58

DST algorithm

and cost(P ′uv) = wc(e
′). This implies that cost(P ′uv) ≥ cost(Puv), contradicting the fact

cost(P ′uv) < cost(Puv). Therefore Puv in TM is the shortest straight path between u and v

in G.

Now we show that the DST algorithm constructs an ST with an approximation factor

of 2(1− 1/`). Towards this we show the following.

• The computed TZ is a generalized MST for Z of G.

• The cost of TZ is at most 2(1 − 1/`) times the cost of the optimal ST (Topt), i.e.,

cost(TZ)/ cost(Topt) ≤ 2(1− 1/`).

Lemma 3.3.4. (Chen et al. [27]). The length of any path containing an inter tree edge

(u, v) between two terminal nodes in G is greater than or equal to wc(u, v).

The detailed proof of the above lemma can be found in [27].

Consider a graph T ∗ = (Z,E∗, w∗) whose vertex set is Z and whose edge set E∗ is defined

from TM as follows. For each inter tree edge (u, v) of TM , there is an edge (s(u), s(v)) in E∗

such that s(u) = a, s(v) = b, and w∗(a, b) = wc(u, v). Then we claim the following lemma.

Lemma 3.3.5. T ∗ is a spanning tree of a complete distance graph KZ for Z ⊆ V of graph

G = (V,E,w).

Proof. To prove T ∗ is a spanning tree of KZ , we need to show the followings.

1. T ∗ is acyclic.

2. T ∗ spans all the nodes of KZ .

Since TM is a tree, each pair of nodes in TM is uniquely connected. This implies that each

edge is a cut edge of TM . A path between two distinct terminal nodes in TM contains at least

one inter tree edge of Gc. According to the definition of T ∗, each edge of E∗ corresponds

to a path which contains exactly one inter tree edge of TM . This implies that each edge

of T ∗ is a cut edge and there exists exactly one unique path for each pair of nodes in T ∗.

Therefore T ∗ contains no cycle.

It is given that the end points of an edge of T ∗ correspond to two terminal nodes of TM .

Since TM has exactly t − 1 number of inter tree edges and all of them are considered to

construct T ∗, T ∗ contains exactly t− 1 edges. The preceding fact plus the acyclic property

of T ∗ ensure that T ∗ spans exactly t nodes, i.e. all the nodes of KZ .

59

Improved approximation for Steiner tree in the CONGEST model

Lemma 3.3.6. T ∗ is an MST of KZ.

Proof. By contradiction let T ∗ is not an MST of KZ and instead of that T ′ is an MST of

KZ . Therefore T ′ is different from T ∗ by at least one edge. For simplicity we consider that

T ′ is different from T ∗ by one edge. Suppose the distinct edges in T ∗ and T ′ are (a∗, b∗)

and (a′, b′) respectively. Recall that w∗(e) denotes the weight of an edge e in KZ . Since by

assumption cost(T ′) < cost(T ∗) and cost(T ′)− w∗(a′, b′) = cost(T ∗)− w∗(a, b), this implies

that w∗(a, b) > w∗(a′, b′). We prove by contradiction that w∗(a, b) > w∗(a′, b′) does not

hold.

Since (a, b) is an edge in T ∗, according to the definition of T ∗, (a, b) corresponds to

an inter tree edge (u, v) of TM such that s(u) = a, s(v) = b and w∗(a, b) = wc(u, v). By

Lemma 3.3.5 T ∗ is a spanning tree of KZ . Note that (a, b) is an edge of KZ . This ensures

that w∗(a, b) corresponds to the weight of the shortest path between a and b in G. Since

the path between a and b in G contains the inter tree edge (u, v), by using Lemma 3.3.4

we get

d(a, b) ≥ wc(u, v) = w∗(a, b) (3.1)

Similarly assuming that the path between a′ and b′ in G contains the inter tree edge

(u′, v′), where s(u′) = a′ and s(v′) = b′, by using Lemma 3.3.4 we get,

d(a′, b′) ≥ wc(u
′, v′) = w∗(a′, b′) (3.2)

Note that (u, v) is an edge of TM . If we remove (u, v) from TM , TM will split into two

subtrees Tu and Tv containing u and v respectively. Since (u, v) is included in the TM , the

distributed MST algorithm (GKP algorithm, step 3 of the DST algorithm) must selected

(u, v) as an MWOE (minimum weight outgoing edge) to merge Tu and Tv instead of selecting

the edge (u′, v′) as an MWOE. This guarantees that wc(u, v) ≤ wc(u
′, v′). Now using (3.1)

and (3.2) we get w∗(a, b) ≤ w∗(a′, b′), a contradiction to the fact that w∗(a, b) > w∗(a′, b′).

Therefore T ∗ is an MST of KZ .

Now by contradiction assume that T ′ is different from T ∗ by multiple edges. Considering

each such edge one by one and using the same logic described above we can show that the

assumption does not hold. This concludes that T ∗ is an MST of KZ .

Note that since TZ is built from TM by pruning all the non-terminal leaf nodes, all the

leaf nodes of TZ are in Z. Furthermore, by Lemma 3.3.6 there exists an MST T ∗ of KZ in

60

DST algorithm

which each edge (a∗, b∗) of T ∗ corresponds to a shortest path between the nodes a∗ and b∗

in G. Therefore we claim the following theorem.

Theorem 3.3.7. The tree TZ computed by the DST algorithm is a generalized MST for

Z ⊆ V of G.

Since TZ is the actual realization of T ∗ for Z of G, cost(TZ) = cost(T ∗). Now if we

substitute TH of the Theorem 1 in Kou et al. [84] by TZ then we get the following Theorem.

Theorem 3.3.8. cost(TZ)/cost(Topt) ≤ 2(1− 1/`) ≤ 2(1− 1/|Z|).

The correctness of the above theorem essentially follows from the correctness of the The-

orem 1 of Kou et al. [84]. For the sake of completeness here we give the outline of the correct-

ness. Let Topt consists of q ≥ 1 edges. Then there exists a loop L = v0, v1, v2, · · · , v2q(= v0)

in Topt in such a way that

• every edge in Topt appears exactly twice in L. This implies that cost(L) = 2×cost(Topt).

• every leaf of Topt appears exactly once in L. If vi and vj are two consecutive leaves in

L then the sub-path connecting vi and vj is a simple path.

Note that the loop L can be decomposed into ` simple sub-paths (recall that ` is the

number of leaf nodes in the Topt), each of them connects two consecutive leaf nodes in L. By

deleting the longest such simple sub-path from L the remaining path (say P) in L satisfies

the followings.

• every edge in Topt appears at least once in P .

• cost(P) ≤ (1− 1/`)× cost(L) = (1− 1/`)× 2× cost(Topt).

Now assume that TZ is a generalized MST for Z of G. We know that TZ realizes the

MST T ∗ of the complete distance graph KZ for Z of G. In other words cost(TZ) = cost(T ∗).

Note that each edge (u, v) in T ∗, where u, v ∈ Z, is a shortest straight path between u and v

in G. This ensures that the weight of an edge (u, v) in T ∗ is at most the length of the path

(say Puv) between nodes u and v in P . In other words, for each edge (u, v) in T ∗, where

u, v ∈ Z, w∗((u, v)) ≤ cost(Puv). If we consider all the edges of TA then cost(TA) ≤ cost(P).

This concludes that cost(TZ) = cost(TA) ≤ cost(P) ≤ 2× (1− 1/`)× cost(Topt).

61

Improved approximation for Steiner tree in the CONGEST model

Deadlock freeness. The DST algorithm is free from deadlock. We have already shown

earlier that step 1 (i.e., the SPF construction) of the DST algorithm is free from deadlock.

In step 2, each node independently sends a message (containing its own state) to all of its

neighbors only once. Upon receiving messages from all of its neighbors, a node performs

some local computation and then terminates itself. Therefore, in step 2 nodes are free from

any possible circular waiting. The correctness of the deadlock freeness of step 3 essentially

follows from the work of [51, 87]. In step 4, the pruning operation is performed on a tree

structure (TM) and a node never requests and waits for resources holding by any other node

in the network. This implies that during the pruning operation, nodes are free from any

possible circular waiting. Therefore, the deadlock freeness of all the four steps together

ensure the deadlock freeness of the DST algorithm.

3.4 Round-message trade-off in Distributed ST con-

struction

There exists a few singularly-optimal distributed algorithms for the MST problem [41,62,110]

which address the long standing time-message trade-off. To the best of our knowledge, till

date, no such algorithm exists for the ST problem. In this section we investigate the round-

message trade-off of ST construction in the CONGEST model. Towards this we show that

a 2(1 − 1/`)-approximate ST can be deterministically computed using Õ(S +
√
n) rounds

and Õ(Sm) messages.

Regarding the singularly-optimal distributed algorithms, Pandurangan et al. [110] pro-

posed a randomized singularly-optimal distributed algorithm for the MST problem with

the round and message complexities of Õ(D +
√
n) and Õ(m) respectively. Note that both

round and message complexities of the algorithm proposed by Pandurangan et al. are

optimal upto a polylogarithmic factors in n and the factors are O(log3 n) and O(log2 n)

respectively.1 Elkin [41] proposed a simple deterministic distributed algorithm for the MST

problem with the near-optimal round and message complexities of O((D +
√
n) log n) and

O(m log n+n log n · log∗ n) respectively. Recently Hauepler et al. [62] proposed a singularly-

optimal distributed algorithm for the MST problem which is deterministic in nature but

they do not explicitly specify the polylogarithmic factors involved with the round and mes-

sage complexities. However, it is apparent from their analysis that the rounds and messages

1 This analysis can be found in [41].

62

Round-message trade-off in Distributed ST construction

incurred by their algorithm are O((D +
√
n) log2 n) and O(m log2 n) respectively.

Elkin’s algorithm [41]. We use Elkin’s algorithm as a subroutine in the modified DST

algorithm (see Subsection 3.4.1). Note that it is the best singularly-optimal deterministic

distributed MST algorithm till date. The algorithm starts with the construction of an

auxiliary BFS tree Tr rooted at some root node r. It consists of two parts. The first part

constructs an (O(n/D), O(D))-MST forest1 which is termed as the base MST forest. In the

second part, the algorithm in [110] is applied on top of the base MST forest to construct

the final MST. Specifically in the second part, the Boruvka’s algorithm is applied in such a

way that merging of any two fragments requires O(D) rounds.

The first part of the algorithm runs for dlogDe phases. At the beginning of a phase

i, (i varies from 0 to dlogDe − 1), the algorithm computes (n/2i−1, O(2i))-MST forest

(Fi). Each node updates its neighbors with the identity of its fragment. This requires

O(1) rounds and O(m) messages. Every fragment F ∈ Fi of diameter O(2i) computes the

MWOE eF . For each eF = (u, v), u ∈ V (F), v ∈ V \ V (F), a message is sent over eF by

u and the receiver v notes down u as a foreign-fragment child of itself. In case the edge

(u, v) is the MWOE for both the neighboring fragments Fu and Fv, the endpoint with the

higher identity fragment becomes the parent of the other endpoint. This defines a candidate

fragment graph G′i = (F′i,Ei), where F′i is the set of fragments whose diameter is O(2i) and

each such fragment is considered as a vertex of G′i and Ei is the set of MWOE edges of all the

fragments in F′i. The computation of the candidate fragment graph G′i requires O(2i) rounds

and O(n) messages. Then a maximal matching of G′i is built by using the Cole-Vishkin’s

3-vertex coloring algorithm [30]. The computation of a maximal matching of G′i requires

O(2i · log∗ n) rounds and O(n · log∗ n) messages. The phase i ends at the computation of a

maximal matching of the candidate fragment graph G′i. Hence the running time of a phase

i is O(2i · log∗ n) which requires O(m + n · log∗ n) messages. Since the first part runs for

dlogDe phases, the overall time and message complexities to construct a base MST forest

are O(D · log∗ n) and O(m logD + n logD · log∗ n) respectively.

In the second part, the algorithm in [110] is applied on top of the (O(n/D), O(D))-MST

forest (F). This part maintains two forests: one is the base MST forest F which is already

computed in the first part of the algorithm and the other one is the MST forest F̂ obtained

by merging some of the base fragments into the fragments of F̂ via Boruvka’s algorithm.

1For a pair of parameters α, β, an (α, β)-MST forest is an MST forest with at most α fragments, each
of diameter at most β.

63

Improved approximation for Steiner tree in the CONGEST model

The second part of the algorithm requires O(log n) phases. In each phase j + 1, it does the

following. In every base fragment F ∈ F, the MWOE e = (u, v) is computed (in parallel in

all base fragments) that crosses between u ∈ V (F) and v ∈ V \ V (F̂), where F̂ ∈ Fj is the

larger fragment that contains F . This step requires O(D) rounds and O(n) messages. Once

all O(n/D) MWOEs are computed, all of these information are sent to r of Tr. This is done

using pipelined convergecast procedure over Tr, in which each vertex u in Tr forwards to

its parent in Tr the lightest edge for each fragment F̂ ∈ Fj. This step requires O(D + |Fj|)
rounds and O(D · |Fj|) messages. Then the root node r does the following: (i) computes

MWOE eF̂ for every F̂ ∈ Fj, (ii) computes a graph whose vertices are fragments of Fj

and edges are the MWOEs, and (iii) computes the MST forest Fj+1. After this r sends |F|
messages over Tr using pipelined broadcast where each message is of the form (F, F̂ ′), and

F ∈ F and F̂ ′ ∈ Fj+1. The root rF of the base fragment F (each base fragment has a root

node) receives this information (F, F̂ ′) and broadcasts the identity of F̂ ′ as the new fragment

identity to all the vertices of F . This takes O(D) rounds and O(n) messages. Finally each

vertex v updates its neighbors in G with the new fragment identity. This requires O(1)

rounds and O(m) messages. Combining both the parts, the overall round and message

complexities of Elkin’s algorithm are O((D +
√
n) log n) and O(m log n + n log n · log∗ n)

respectively.

3.4.1 Modified DST algorithm

Observe that the asymptotic term O(n3/2) involved with the message complexity of the

DST algorithm presented in Subsection 3.3.2 is the bottleneck. To get rid of the asymptotic

term O(n3/2) from the message complexity we modify the DST algorithm. Similar to the

DST algorithm there are four steps (small distributed algorithms) in the modified DST

algorithm namely— step 1 (SPF construction), step 2 (Edge weight modification), step

3 (MST construction), and step 4 (pruning). Specifically we replace step 3 of the DST

algorithm by the singularly-optimal MST algorithm proposed by Elkin [41]. The other steps

of the modified DST algorithm remain the same as that of the original DST algorithm.

The correctness of the modified DST algorithm and its approximation factor, which is

2(1−1/`), directly follows from the correctness of the algorithm proposed by Kou et al. [84].

Round complexity. By Lemma 3.2.2, step 1 of the modified DST algorithm takes O(S)

64

Summary

rounds. Step 2 and step 3 of the modified DST algorithm take O(D) and O((D+
√
n) log n)

rounds respectively. Since step 4 also takes O(S) rounds, the overall round complexity of

the modified DST algorithm is O(S + (D +
√
n) log n). We know that 1 ≤ D ≤ S ≤ n− 1.

Therefore O(S+(D+
√
n) log n) = Õ(S+

√
n). Note that the polylogarithmic factor involved

with the round complexity of the modified DST algorithm is at most log n.

Message complexity. By Lemma 3.2.3, the message complexity of step 1 of the modified

DST algorithm is O(Sm). The message complexities of step 2, step 3, and step 4 are O(m),

O(m log n + n log n · log∗ n), and O(n) respectively. It is clear that the overall message

complexity of the modified DST algorithm is dominated by step 1 and step 3. Combining

these two steps we get that the message complexity of the modified DST algorithm is

O(Sm + m log n + n log n · log∗ n). Note that log∗ n ≤ log n, and since the graph G is

connected, m ≥ n− 1. Therefore we can write O(Sm+m log n+ n log n · log∗ n) = Õ(Sm).

The polylogarithmic factor involved with the message complexity is at most log2 n.

Observe that in case of S = O(log n), the round and message complexities incurred

by the modified DST algorithm are Õ(
√
n) and Õ(m) respectively. This implies that for

sufficiently small values of the shortest path diameter (where S = O(log n)) the round

and message complexities of the modified DST algorithm coincide with the results of the

singularly-optimal MST algorithms proposed in [41, 62, 110] and the cost of the resultant

ST is at most 2(1− 1/`) of the optimal.

3.5 Summary

In this chapter we have proposed DST, a deterministic distributed algorithm for the ST

problem in the CONGEST model that computes a 2(1 − 1/`)-approximate ST with the

round and message complexities of O(S +
√
n log∗ n) and O(Sm + n3/2) respectively. The

round complexity of the DST algorithm is better than the best known round complexity of

the ST construction known so far [90]. We have also investigated the round-message trade-

off in distributed ST construction. Specifically we have proposed a modified DST algorithm

which computes a 2(1 − 1/`)-approximate ST and its round and message complexities are

Õ(S+
√
n) and Õ(Sm) respectively. The polylogarithmic factors involved with the round and

message complexities of the modified DST algorithm are O(log n) and O(log2 n) respectively.

65

Improved approximation for Steiner tree in the CONGEST model

The modified DST algorithm improves the message complexity of the DST algorithm by

dropping the additive term of O(n3/2) at the expense of a logarithmic multiplicative factor

in the round complexity.

[[]X]\\

66

4
Distributed approximation algorithms for

Steiner tree in the CONGESTED CLIQUE

In this chapter we study the Steiner tree (ST) problem in the CONGESTED CLIQUE

model (CCM) of distributed computing that was first introduced by Lotker et al. [96]. To

the best of our knowledge, this is the first work to study the ST problem in the CCM.

The CCM is a special case of the CONGEST model. Note that CONGEST model equally

considers both the congestion (by bounding the transmitted message size) and the locality.

In distributed computing the issue of locality is that nodes (processors) are restricted in

collecting data from others which are at a distance of x hops in x time units. However,

CCM takes locality out of the picture (by restricting the hop diameter of the underlying

communication network to one) and solely focuses on congestion. Specifically, in CCM,

nodes can directly communicate with each other via an underlying communication network,

which is a clique. Communication happens in synchronous rounds and a pair of nodes can

exchange b bits in each round. Therefore, in each round, all nodes in the CCM can together

exchange O(bn2) bits, where n is the number of nodes in the communication network.

Following the convention we assume that b = O(log n).

Consider a scenario in an overlay network where a number of nodes spread over different

parts of the network are running the same distributed algorithm (protocol). These nodes

67

Distributed approximation for Steiner tree in CONGESTED CLIQUE

are not necessarily adjacent in the base network but are instead connected via an overlay in

which there exist point-to-point communications between each pair of nodes. Such overlay

networks can be modelled as CCM. Furthermore, models of processing large-scale graphs

namely, the k-machine [80] and the MapReduce [32,66] are also related to the CCM.

There has been a lot of progress in solving various problems in the CCM including

minimum spanning tree (MST) [56, 67, 73, 96, 107], facility location [15, 53], shortest paths

and distances [24,68,104], sub-graph detection [36], triangle finding [34,36], sorting [89,112],

routing [89], and ruling sets [15, 67]. However to the best of our knowledge, till date, the

ST problem has not been studied in the CCM. Therefore an intriguing question is:

“What is the best round complexity that can be achieved in solving the ST problem in the

CCM while maintaining an approximation factor of at most 2?”

In CCM, one can trivially compute a 2-approximate ST using O(n) rounds as follows.

One can collect the entire topology at a special node using O(n) rounds. Then one can apply

one of the best known centralized ST algorithms [20,84,130] (locally) whose approximation

factor is at most 2. Finally one can distribute the resultant ST among the nodes using O(1)

rounds by applying the deterministic routing scheme of Lenzen [89].

Regarding lower bounds, till date, no result is known for the ST problem in the CCM.

However, there exist lower bound results for other problems in the CCM, namely sub-

graph detection, MST verification, graph connectivity, connected components etc. Drucker

et al. [37] studied the lower bounds on the round complexity of the sub-graph detection

problem in the CCM. They proposed the following lower bound results in the BCCM(b):1

(i) for every fixed p ≥ 4, Kp-sub-graph detection requires Ω(n/b) rounds, where Kp is a

clique of size p, (ii) for every fixed p ≥ 4, Cp-sub-graph detection requires Ω(ex(n,Cp)/nb)

rounds, where Cp is a cycle of size p and ex(n,Cp) denotes the Turán number, (iii) for

any p, q ≥ 1, Kp,q-sub-graph detection requires Ω(
√
n/b) rounds, where Kp,q is a complete

bipartite graph, and (iv) triangle detection requires Ω(n/(beO(
√
n))) rounds. Patt-Shamir

and Perry [111] showed that the deterministic lower bound round complexity for the MST

verification problem in the BCCM(1) is Ω(log n). Recently Pai and Pemmaraju [108] studied

1In literature the CCM is mainly classified into two types namely BROADCAST CONGESTED
CLIQUE model (BCCM) and UNICAST CONGESTED CLIQUE model (UCCM) [37]. In BCCM(b) each
node can only broadcast a single b-bit message over each of its incident links in each round. On the other
hand, the UCCM(b) allows each node to send possibly a different b-bit message over each of its incident
links in each round.

68

the graph connectivity lower bounds in the CCM. Specifically they showed that the lower

bound round complexity for solving the graph connectivity problem in the KT0 version1 of

the BCCM(1) is Ω(log n); this bound holds for both deterministic as well as constant-error

randomized Monte Carlo algorithms. This lower bound is also extended to the KT1 version

of the BCCM(1) and it is proved that the deterministic lower bound round complexity for

solving the graph connectivity problem in the KT1 version of the BCCM(1) is Ω(log n).

Furthermore, it is also shown that Ω(log n) is the lower bound round complexity for the

connected component problem in the KT1 version of the BCCM(1) and this result holds for

both deterministic as well as constant-error randomized Monte Carlo algorithms. Note that

a lower bound of Ω(x) in BCCM(1) immediately translates to a lower bound of Ω(x/b) in

BCCM(b).

In this chapter we propose two non-trivial deterministic distributed approximation algo-

rithms for the ST problem in the CCM: STCCM-A and STCCM-B. They are better than the

trivial one in terms of the round complexity. Both the algorithms achieve an approximation

factor of 2(1− 1/`), where ` is the number of leaf nodes in the optimal ST. The STCCM-A

algorithm computes a 2(1 − 1/`)-approximate ST using Õ(n1/3) rounds and Õ(n7/3) mes-

sages. We also propose a deterministic distributed shortest path forest (SPF) (it is defined

in Section 3.2, Chapter 3) algorithm in the CCM (henceforth it will be denoted by SPF-

A algorithm) that computes a SPF using O(n1/3 log n) rounds and O(n7/3 log n) messages.

The SPF-A algorithm will be used as a subroutine in the STCCM-A algorithm. The overall

performance of the STCCM-A algorithm is summarized in the following theorem.

Theorem 4.0.1. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists an algorithm that computes an ST using Õ(n1/3) rounds and Õ(n7/3)

messages in the CCM with an approximation factor of 2(1− 1/`), where ` is the number of

leaf nodes in the optimal ST.

The STCCM-B algorithm computes a 2(1− 1/`)-approximate ST using O(S+ log log n)

rounds and O(Sm+ n2) messages. Furthermore, we propose another SPF algorithm in the

CCM (henceforth it will be denoted as SPF-B algorithm) that computes a SPF using O(S)

1KT0 (Knowledge Till radius 0) model. Initially each node knows only its own identity and weights of
all the edges incident on it. Nodes do not have initial knowledge of the identifiers of their neighbors and
other nodes.
KT1 (Knowledge Till radius 1) model. Each node has initial knowledge of itself and the identifiers of its
neighbors. Only the knowledge of the identifiers of neighbors is assumed, not other information such as the
incident edges of the neighbors.

69

Distributed approximation for Steiner tree in CONGESTED CLIQUE

rounds and O(Sm) messages. The SPF-B algorithm will be used as a subroutine in the

STCCM-B algorithm. We summarize the overall performance of the STCCM-B algorithm

in the following theorem.

Theorem 4.0.2. Given a connected undirected weighted graph G = (V,E,w) and a terminal

set Z ⊆ V , there exists an algorithm that computes an ST using O(S + log log n) rounds

and O(Sm + n2) messages in the CCM with an approximation factor of 2(1 − 1/`), where

S is the shortest path diameter of G, and ` is the number of leaf nodes in the optimal ST.

As a by-product of the above theorem, for networks with constant or sufficiently small

shortest path diameter (where S = O(log log n)) the following corollary holds.

Corollary 4.0.2.1. If S = O(log log n) then a 2(1 − 1/`)-approximate ST can be deter-

ministically computed using O(log log n) rounds and Õ(n2) messages in the CCM.

Note that in case of S = O(log log n), the round and message complexities of the

STCCM-B algorithm are O(log log n) and Õ(n2) respectively, which almost coincide with

the best known deterministic results for MST construction in the CCM due to Lotker et

al. [96] and the approximation factor of the resultant ST is at most 2(1−1/`) of the optimal.

The STCCM-A algorithm vs. the STCCM-B algorithm. For graphs with S =

ω(n1/3 log n), the STCCM-A algorithm performs better than the STCCM-B algorithm in

terms of the round complexity. On the other hand, for graphs with S = õ(n1/3), the STCCM-

B algorithm outperforms the STCCM-A algorithm in terms of the round complexity.

Organization. The rest of the chapter is organized as follows. In Section 4.1 we define the

system model and notations. The description of the SPF-A algorithm is given in Section 4.2.

The description of the STCCM-A algorithm, an illustrative example, and the proof of the

STCCM-A algorithm are given in Section 4.3. Section 4.4 contains the description as well

as the proof of the STCCM-B algorithm. Section 4.5 contains some concluding remarks.

4.1 Model and notations

System model. We consider the CCM as specified in [96]. This model consists of a

complete network (which is a clique) of n nodes. Each node represents an independent

computing entity (processor). Nodes are connected through a point-to-point network of
(
n
2

)

70

Model and notations

bidirectional communication links. The bandwidth of each of the communication links is

bounded by O(log n) bits.

We assume that each vertex has a unique identity (ID) which can be encoded in O(log n)

bits. We also assume that weight of each edge of G can be encoded in O(log n) bits. Nodes

communicate and coordinate their actions with other nodes by passing messages (of size

O(log n) bits) only. In general, a message contains a constant number of edge weights, node

IDs, and other arguments (each of them is polynomially bounded in n). Note here that each

of the arguments in a message is polynomially bounded in n and therefore polynomially

many sums of arguments can be encoded in O(log n) bits. We assume that nodes and links

do not fail. Also, nodes are considered computationally unbounded.

An execution of the system advances in synchronous rounds. In each round, nodes receive

messages that were sent to them in the previous round, perform finite local computations,

and then sends (possibly different) messages. The time complexity is measured by the

number of rounds required until all nodes terminate. The message complexity is measured

by the number of messages sent until all nodes terminate.

Formulation of the ST problem in the CCM. The input graph G = (V,E,w) is

distributed among the nodes in the network via a vertex partition [56, 67, 73, 96]. In this

partition each vertex of the input graph G is uniquely mapped to a node and the edges

of G are naturally mapped to the links between the corresponding nodes. If an edge does

not exist in G then the weight of the corresponding edge in the CCM is assumed to be ∞.

Each node runs the same algorithm for the ST problem. Also each node knows whether

the vertex assigned to it is a terminal or not. Regarding output, whenever an algorithm

for the ST problem terminates, each node knows whether the vertex assigned to it is in the

solution or not and which of its incident edges are in the solution. For termination, each

node terminates the algorithm for the ST problem in a finite time.

Notations. In this chapter we use some of the terms and notations that are already defined

in Chapter 3, Section 3.1. In addition to that, in this chapter, we also use the following

notations.

• tf(v) denotes the terminal flag of a node v.

• ES (e) denotes the state of an edge e.

71

Distributed approximation for Steiner tree in CONGESTED CLIQUE

• Let Mn×n denotes a matrix of size n × n, where n is a positive integer. Then Mij

denotes the value of an entry located at the ith row and jth column in Mn×n.

4.2 SPF construction

In this section first we give the outline of an all pairs shortest paths (APSP) algorithm in

the CCM due to Censor-Hillel et al. [24]. The resulted APSP will be used as a base in the

proposed SPF-A algorithm to compute an SPF in the CCM. In this section we also give a

brief description of the SPF-A algorithm. Note that the definition of the SPF is already

given in Chapter 3, Section 3.2, Definition 3.2.1.

4.2.1 Censor-Hillel et al.’s APSP algorithm in CCM

Censor-Hillel et al. [24] showed that given a weighted graphG = (V,E,w), an APSP ofG can

be computed via iterated squaring of the weight matrix over the min-plus semiring [46,103].

Let W be the weight matrix of size n × n for a given graph G, where n = |V |. Then the

distance product which is also known as the min-plus product is defined as follows.

(W ?W)uv = W 2
uv = min

x
(Wux +Wxv)

where u, v, x ∈ V . The nth distance product denoted by W n produces the actual dis-

tances in G, i.e., d(u, v) = W n
uv for each pair of vertices u, v ∈ V . The distance product W n

can be computed by iteratively squaring W for dlog ne times. The distributed squaring of a

weight matrix over the min-plus semiring is similar to the parallel 3D matrix multiplication.

The squaring of W over the min-plus semiring involves n3 element wise additions of the

form Wux + Wxv, where u, v, x ∈ V . This can be viewed as a cube of size n× n× n where

each point in the cube represents an addition operation. If we partition the cube of size

n× n× n into n sub-cubes of equal sizes then each of them gets n2/3× n2/3× n2/3 points of

the cube. This indicates that each node v ∈ V needs to perform n2/3× n2/3× n2/3 addition

operations. Note that the weight matrix W has n2 entries corresponding to the edge weights

of the input graph.1 This n2 entries are distributed uniformly among n nodes in such a way

that each node v ∈ V gets two sub-matrices of sizes n2/3 × n2/3. This ensures that each

node needs to compute the min-plus product of matrix size n2/3 × n2/3 only.

Now we briefly describe the APSP algorithm due to Censor-Hillel et al. [24]. Initially

1If an edge (u, v) is not in the input graph G, then w(u,v) is considered equal to ∞.

72

SPF construction

each node u ∈ V knows the edge weights w(u,v) for each v ∈ V . Here it is assumed that n1/3

is a positive integer, where n = |V |. Each node v ∈ V partitions its input into n1/3 blocks,

each one has n2/3 entries. Now each node v ∈ V sends each such block to 2n1/3 nodes in such

a way that each node v ∈ V receives two sub-matrices, each one of size n2/3 × n2/3. Since

the size of each block is n2/3 and there are 2n2/3 recipients, a total of 2n4/3 messages are sent

by each node. This distribution is performed using O(n1/3) rounds and O(n7/3) messages

by using the deterministic routing scheme of Lenzen [89]. Then each node computes the

min-plus product from the two known sub-matrices. After that all the resulting min-plus

products are re-distributed among n nodes in such a way that each node v ∈ V receives n4/3

values. The distribution of the min-plus products is also performed using O(n1/3) rounds

and O(n7/3) messages by using the deterministic routing scheme of Lenzen [89]. From the

received n4/3 entries each node v ∈ V locally computes the row v of the resulting min-

plus product W 2 = W ? W . With this the first iteration ends. Considering that each of

the node IDs and edge weights can be encoded in O(log n) bits, the round and message

complexities of the this iteration are O(n1/3) and O(n7/3) respectively. Repetition of the

above procedure for dlog ne times guarantees the final output W n which is the required

APSP distances for a given graph G. The overall round and message complexities of this

algorithm are O(n1/3 log n) and O(n7/3 log n) respectively.

Routing table construction. The task of routing table construction concerns comput-

ing local tables at all the nodes of a network in which each node u, when given a destination

node v, knows the next hop through which u is connected to v by the distance in the net-

work. Specifically the routing table entry R[u, v] = x ∈ V is a node such that (u, x) ∈ E
and x lies on a shortest path from u to v. Censor-Hillel et al. [24] showed that iterated

squaring of the weight matrix over the min-plus semiring can also be used to construct the

routing table for each node v ∈ V . The min-plus product W ?W provides a witness matrix

Q such that if Quv = x, then (W ? W)uv = Wux + Wxv. Whenever the iterated squaring

algorithm computes the min-plus product W 2i = W i ?W i, then using the witness matrix Q

the routing table R is updated to R[u, v] = R[u,Quv] for each u, v ∈ V with W 2i
uv < W i

uv.

4.2.2 SPF-A algorithm

The SPF-A algorithm is used as a subroutine in the proposed STCCM-A algorithm. It

consists of two parts: the first part constructs an APSP of the input graph G and the

73

Distributed approximation for Steiner tree in CONGESTED CLIQUE

second part constructs the required SPF from the graph formed by the APSP. Specifically,

in the first part we apply the APSP algorithm due to Censor-Hillel et al. [24] as described

in Subsection 4.2.1. Censor-Hillel et al. showed that in the CCM, the iterated squaring

of the weight matrix over the min-plus semiring [46, 103] computes an exact APSP using

O(n1/3 log n) rounds and O(n7/3 log n) messages.1 One of the fundamental applications of

the APSP is the construction of the routing tables in a network. Censor-Hillel et al. also

showed that in the CCM the iterated squaring algorithm can be used to construct the

routing tables of a network as well.

Now we describe the second part of the SPF-A algorithm and show that it requires O(1)

rounds and O(n−t) messages, where t = |Z|. After the application of the first part each node

in V knows the distances to all other nodes in V and its routing table entries R. Therefore,

by using the distance information each node v ∈ V \Z can locally choose the closest terminal

as its s(v). Note that there may be more than one terminal with equal distances for a given

non-terminal. In this case, the non-terminal chooses the one with the smallest ID among all

such terminal nodes. Once a non-terminal v chooses the closest terminal as its source node

s(v) by using its own routing table R, it can also choose its predecessor (parent) node π(v)

with respect to s(v). Whenever a non-terminal v sets its π(v), it also informs π(v) that it

has chosen π(v) as its parent. It is obvious that to establish the parent-child relationship

between a pair of nodes (π(v), v), where s(v) = s(π(v)), it requires O(1) rounds and O(1)

messages. In this way each node v in V \Z is connected to exactly one tree rooted at some

source node s(v). Here each source node is a terminal node. Therefore exactly |Z| number of

shortest path trees are constructed by the above procedure which together form the required

SPF. Since the procedure of choosing predecessors can be started in parallel by all nodes in

V \ Z, for all such pair of nodes it requires O(1) rounds and O(n− t) messages. It is clear

that the overall round and message complexities of the SPF-A algorithm are dominated by

the first part of the algorithm. Therefore the following theorem holds.

Theorem 4.2.1. An SPF can be deterministically computed using Õ(n1/3) rounds and

Õ(n7/3) messages in the CCM.

1Recently Censor-Hillel et al. [23] showed that in CCM, a (2 + ε)-approximate APSP can be determinis-
tically computed using O(log2 /ε) rounds on unweighted undirected graphs, where ε > 0. This also applies
for weighted graphs with a further additive (1 + ε)wuv error in the approximation for any distance value
d(u, v), where wuv is the heaviest edge on the shortest u − v path. This result holds for sparse graphs
only. However, here we use the exact APSP algorithm due to Censor-Hillel et al. [24], which has a round
complexity of Õ(n1/3) and this result also holds for dense graphs.

74

STCCM-A algorithm

The correctness of the SPF-A algorithm directly follows from the correctness of the

algorithm proposed by Censor-Hillel et al. [24].

4.3 STCCM-A algorithm

The proposed STCCM-A algorithm computes a generalized MST TZ for a given terminal

set Z ⊆ V of the input graph G = (V,E,w) in the CCM, which is essentially the required

ST. The definition of the generalized MST can be found in Chapter 3, Subsection 3.3.1.

In particular the TZ realizes an MST (TA) of a complete distance graph KZ for Z ⊆ V of

the input graph G. The STCCM-A algorithm is inspired by an algorithm (DST algorithm)

proposed in Section 3.3, Chapter 3 of this thesis. The DST algorithm, which consists of four

small distributed algorithms, was proposed for the CONGEST model, whereas the STCCM-

A algorithm proposed here is for the CCM. The STCCM-A algorithm also consists of four

small distributed algorithms (step 1 to step 4). However, except step 2, all other steps in

the STCCM-A algorithm are different from the DST algorithm. Step 2 of the STCCM-A

algorithm is an adaptation of step 2 of the DST algorithm tailored to work in CCM.

The approximation factor of the proposed STCCM-A algorithm, which is 2(1 − 1/`),

directly follows from the correctness of a centralized algorithm due to Kou et al. [84]

Lotker et al’s MST algorithm in the CCM. We use the MST algorithm due to Lotker

et al. [96] as a subroutine in the proposed STCCM-A algorithm. Here we give a brief

description of it. It runs in phases. Each phase takes O(1) rounds. In each phase k ≥ 0, it

maintains a set of clusters Fk = {F k
1 ,F

k
2 ,F

k
p },

⋃
i F k

i = V , where V is the vertex set of

the input graph G . For the sake of simplicity it is assumed that at the beginning of phase 1,

the end of the imaginary phase 0, with the cluster set F0 = {F 0
1 ,F

0
2 ,F

0
n} is known, where

F 0
i = {vi} for every 1 ≤ i ≤ n. For each cluster F ∈ Fk, the algorithm selects a spanning

subtree T (F). At the beginning of phase k > 0, the cluster set Fk−1 and the corresponding

subtree collection Tk−1 = {T (F)|F ∈ Fk−1}, including the weights of the edges in those

subtrees, are known to every vertex in the graph. Whenever the algorithm terminates each

node in V knows all the n− 1 edges in the MST of G .

The outline of a phase k > 0 is as follows. Initially each cluster C ∈ Fk−1 is contracted

to a vertex vC . All these contracted vertices together form a smaller logical graph denoted

by Ĝ . The operation of each vertex vC is carried out by a special node called the leader of

75

Distributed approximation for Steiner tree in CONGESTED CLIQUE

C denoted by l(C). Let N be the minimum size cluster in Fk−1. At the beginning of phase

k > 0, N (or more) members of each cluster C ∈ Fk−1 collect N lightest edges connecting

their cluster C to other clusters in Fk−1 \ {C}. Then each cluster in Fk−1 sends these N

(or more) lightest edges to a special node v0 (node with the lowest ID) of the graph by

appropriately sharing the workload among the nodes of the cluster. Now the node v0 has a

partial picture of the logical graph Ĝ , consisting of all the contracted vertices vC but only

some of the edges connecting them, specifically N lightest edges emanating from each node

of Ĝ to N different nodes. On the basis of these received information v0 performs (locally)

fragment merging operations. For that the known edges are sorted in a non decreasing order

of their weights. Then from the non decreasing ordered edge set, add edges to Ĝ to merge

fragments as long as merging is perfectly safe. The safety rule is as follows: It is perfectly

safe to continue merging a fragment F in the logical graph Ĝ as long as the N lightest edges

of each vertex vC in F are not inspected. It is shown that the safety rule allows to grow

each of the fragments to contain at least N + 1 vertices of Ĝ . This ensures that the size of

each of the clusters in the next phase will be at least N 2. This is a quadratic growth of the

clusters. Finally v0 sends out the locally known identities of all the edges that are newly

chosen (the number of such edges can be at most n− 1) by sending each edge to a different

intermediate node, which will broadcast that edge to all other nodes. This requires O(1)

rounds.

It is clear that at the end of phase k > 0, the size of a cluster is at least 22k−1
. Whenever

the algorithm terminates, there exists only one cluster in the cluster set which is the required

MST of G , i.e., |Fk| = 1. Therefore 22k−1
= n ⇒ k = log log n + 1. This ensures that the

algorithm terminates in O(log log n) rounds, whereas the message complexity is O(n2).

4.3.1 Outline of the STCCM-A algorithm

Input. We assume that there is a special node r ∈ V available at the start of the algorithm.

For correctness we assume that r is the node with the smallest ID in the system. Initially

each node v ∈ V knows its unique ID, whether it is a terminal or not, and the weight we of

each edge e ∈ δ(v). Each node in V maintains a boolean variable named steiner flag whose

values can be either true or false. Initially steiner flag(v) is set to false for each v ∈ V \ Z ,

whereas throughout the execution of the algorithm the value of steiner flag(v) is set to

true for each v ∈ Z . Also each node v ∈ V initially sets its local variable ES (e) to basic

76

STCCM-A algorithm

for each e ∈ δ(v). Recall that ES (e) denotes the state of an edge e, which can be either

basic, branch, tree, inter tree, or intra tree. Except step 2 of the STCCM-A algorithm, in

all other steps the state of an edge is either basic or branch. In step 2 the state of an edge

can be either tree, inter tree, or intra tree.

Output. Whenever the algorithm terminates, each node outputs the pair (steiner flag,B).

Here B ⊆ δ(v). steiner flag(v) = false ensures that v does not belong to the final ST; in

this case B = ∅. On the other hand, steiner flag(v) = true ensures that v is a part of the

final ST; in this case B 6= ∅ and for each e ∈ B, ES (e) is set to branch.

The special node r initiates the algorithm. An ordered execution of the steps (step 1 to

step 4) is necessary for the correct working of the STCCM-A algorithm. We assume that r

ensures the ordered execution of the steps and initiates step i+ 1 after step i is terminated.

The outline of the STCCM-A algorithm is as follows.

Step 1. SPF construction. Construct an SPF GF = (V,EF , w) for Z in G by apply-
ing the SPF-A algorithm described in Subsection 4.2.2. Theorem 4.2.1 ensures
that the round and message complexities of this step are Õ(n1/3) and Õ(n7/3)
respectively.

Step 2. Edge Weight modification. With respect to the SPF GF , each edge e ∈ E of
G = (V,E,w) is classified as any one of the following three types.

(a) tree edge: if e ∈ EF .

(b) inter tree edge: if e /∈ EF and end points are incident in two different
trees of GF .

(c) intra tree edge: if e /∈ EF and end points are incident in the same tree
of GF .

Now transform G = (V,E,w) into Gc = (V,E,wc). The cost of each edge
(u, v) ∈ E in Gc (denoted as wc(u, v)) is computed as follows.

(a) wc(u, v) = 0 if (u, v) is a tree edge.

(b) wc(u, v) =∞ if (u, v) is an intra tree edge.

(c) wc(u, v) = d(u, s(u)) + w(u,v) + d(v, s(v)) if (u, v) is an inter tree edge.
In this case wc(u, v) realizes the weight of a path from the source node
s(u) to the source node s(v) in G that contains the inter tree edge (u, v).
Recall that d(u, v) denotes the (weighted) distance between nodes u and
v in G.

77

Distributed approximation for Steiner tree in CONGESTED CLIQUE

The classification of the edges ofG and the transformation toGc can be done as fol-

lows. Each node v of G sends a message (say 〈set category(v, s(v), d(v, s(v)), π(v))〉)
on all of its incident edges with respect to the input graph G . Let a node v receives

〈set category(u, s(u), d(u, s(u)), π(u))〉 on an incident edge (v, u). If s(v) 6= s(u)

then v sets (v, u) as an inter tree edge and wc(v, u) to d(v, s(v))+w(v,u) +d(u, s(u)).

On the other hand if s(v) = s(u) then (v, u) can be either a tree edge or an intra tree

edge: if v = π(u) or π(v) = u then v sets (v, u) as tree edge and wc(v, u) to 0. Oth-

erwise, v sets (v, u) as intra tree edge and wc(v, u) to ∞.

It is clear that step 2 can be performed using O(1) rounds. Also on each edge of G,

the message 〈set category〉 is sent exactly twice (once from each end). Therefore,

the message complexity of step 2 is O(m).

Step 3. MST construction. Construct an MST TM of Gc. This step guarantees that
each node v ∈ V knows which of the edges in δ(v) are in TM and for each such
edge e, it sets ES (e) to branch. On the other hand for each e ∈ δ(v) which is
not in TM , v sets ES (e) to basic.

Specifically, for MST construction, we apply the deterministic MST algorithm due

to Lotker et al. [96]. To the best of our knowledge, till date, it is the only known

deterministic MST algorithm proposed in the CCM. All other existing MST algo-

rithms in the CCM [56, 65, 73, 116] are randomized in nature. Note that the round

and message complexities of the algorithm proposed by Lotker et al. are O(log log n)

and O(n2) respectively.

Step 4. Pruning. Construct a generalized MST TZ by performing a pruning operation
on the MST TM .

For correctness we assume that a node in Z with the smallest ID is the root rt of

the TM . The pruning operation deletes edges from TM until all leaves are terminal

nodes. It is performed as follows. Each v ∈ V sends its parent information (with

respect to the TM rooted at rt) to all other nodes. This requires O(1) rounds and

O(n2) messages. Now each v ∈ V \ Z locally computes the TM rooted at rt from

these received parent information. Then each node in V \ Z can locally decide

whether it should prune itself or not from the TM . Specifically, from the locally

known TM each v ∈ V \ Z finds whether it is an intermediate node in between two

or more terminals in the TM or not. If yes, it does not prune itself from the TM and

78

STCCM-A algorithm

sets its steiner flag to true. Otherwise, it prunes itself. Whenever a node v prunes

itself from the TM , it sets its steiner flag to false and for each e ∈ δ(v) such that

ES (e) 6= basic, it sets its ES (e) to basic. On each such pruned edge e, v asks the

other end of e to prune the common edge e. Now the edge weights of the resultant

ST TZ are restored to the original edge function w. Since each node in V \ Z can

start the pruning operation in parallel and in the worst-case the number of pruned

edges in the network can be at most n− 1, this step requires O(1) rounds and O(n)

messages.

The overall round and message complexities of the pruning step are O(1) and O(n2)

respectively.

The STCCM-A algorithm terminates with the step 4.

6

17

HG
I

C

32

terminal non terminal

F

(a)

7

4
10

14

8
4

168

D

2

15

3

A B

E
E

H

B

F

D

C

I

7

4
14

15

2

2

4

3

8

10

16

17

3

8

G

A

6

(b)

sp
ec
ia
l
no
de

Figure 4.1: (a) An arbitrary graph G = (V,E,w) and a terminal set Z = {B,F,H}. (b) The
input graph G is distributed among the nodes of a complete network K9 via a vertex partition. (c)
An SPF GF = (V,EF , w) for Z of G. The distances of nodes to their respective sources are shown
in the table. (d) The modified graph Gc = (V,E,wc). (e) An MST TM of Gc. (f) The final Steiner
tree TZ (generalized MST) for Z of G.

4.3.2 An illustrative example of the STCCM-A algorithm

Consider the application of the STCCM-A algorithm in an arbitrary graph G = (V,E,w)

and a terminal set Z = {B,F,H} shown in Figure 4.1(a). The input graph G is distributed

79

Distributed approximation for Steiner tree in CONGESTED CLIQUE

E

H

B

F

D

C

I

14

15

8

10

16

17

8

G

A

6

d(v)

s(v)

π(v)

A B C D E F G H I

0 0 0

B

B

F

F

H

H

B

B

7

B

B

4

F

F

2

H

H

4

H

H

3

SPF edge

(c)

7

4

3

4

2

3

sp
ec
ia
l
no
de

H

H

2

2

E

H

B

F

D

C

I

G

A

tree edge
inter tree edge
intra tree edge

0

0

17

21

27

14

0

0

24

22

∞

0

(d)

0

7

8

E

H

B

F

D

C

I

G

A

0

0

21

0

0

0

MST edge

14

24

22

27

17

(e)

0

7

E

H

B

F

D

C

I

G

A

7

4

1510

17

3

4

2

14

6

8

16

3

ST edge

8

2

(f)

Figure 4.1 (continued).

among the nodes of a complete network K9 via vertex partition which is shown in Fig-

ure 4.1(b). Specifically each vertex and its incident edges (with weights) of G are assigned

to a distinct node in the K9. The weight of an edge in K9 which is not in G is considered

equal to ∞. An SPF GF = (V,EF , w) for Z is constructed which is shown in Figure 4.1(c).

80

STCCM-A algorithm

In GF , each non-terminal v is connected to a terminal s(v) ∈ Z whose distance is minimum

to s(v) than any other terminal in G which is shown in the table of Figure 4.1(c). The

modified graph Gc and labelling of the edge weights according to the definition of Gc are

shown in Figure 4.1(d). Figure 4.1(e) shows after the application of the Lotker et al.’s MST

algorithm on Gc which constructs an MST TM of Gc. The final ST TZ for Z of G, which is

a generalized MST for Z of G is constructed from the TM by applying the pruning step of

the STCCM-A algorithm, which is shown in Figure 4.1(f).

4.3.3 Proof of the STCCM-A algorithm

Theorem 4.3.1. The round complexity of the STCCM-A algorithm is Õ(n1/3).

Proof. It is clear that the overall round complexity of the STCCM-A algorithm is dominated

by step 1, which is Õ(n1/3). The polylogarthmic factor involved with this round complexity

is log n.

Theorem 4.3.2. The message complexity of the STCCM-A algorithm is Õ(n7/3).

Proof. By Theorem 4.2.1 the message complexity of step 1 of the STCCM-A algorithm

is Õ(n7/3). Each of step 3 and step 4 requires O(n2) messages. Step 2 requires O(m)

messages. We know that m ≤ n2. All of these ensures that the overall message complexity

of the STCCM-A algorithm is dominated by step 1. Therefore the message complexity of

the STCCM-A algorithm is Õ(n7/3). The polylogarthmic factor involved with this message

complexity is log n.

Note that a path Puv (may contain only one edge) between u and v is called straight if all

the intermediate nodes in Puv are in V \Z (the definition can be found in Subsection 3.3.4,

Chapter 3). Consider a graph T ∗ = (Z,E∗, w∗) whose vertex set Z and edge set E∗ are

defined from TM as follows. For each straight path Puv of TM , let (a, b) be an edge of E∗.

Then the following lemma holds.

Lemma 4.3.3. T ∗ is an MST of KZ for Z ⊆ V of graph G = (V,E,w).

The correctness of the above lemma directly follows from the correctness of the Lemma 3.3.6,

Chapter 3.

It is obvious that if we unfold the tree T ∗ = (Z,E∗, w∗) then it transforms to a resultant

graph TZ , which satisfies the following properties.

81

Distributed approximation for Steiner tree in CONGESTED CLIQUE

• For each straight path between u and v in TZ , there exists an edge e = (u, v) ∈ E∗,
where u, v ∈ Z and the length of the straight path between u and v in TZ is the

shortest one between u and v in G .

• All leaves of TZ are in Z .

Therefore the following theorem holds.

Theorem 4.3.4. The tree TZ computed by the STCCM-A algorithm is a generalized MST

for Z ⊆ V of G = (V,E,w).

Let Topt denotes the optimal ST. Then the following theorem holds.

Theorem 4.3.5. cost(TZ)/cost(Topt) ≤ 2(1− 1/`).

The correctness of the above theorem essentially follows from the correctness of the

Theorem 1 of Kou et al. [84].

Deadlock issue. The STCCM-A algorithm is free from deadlock. Deadlock occurs only if

a set of nodes in the system enter into a circular wait state. In step 1 (the SPF construction)

of the STCCM-A algorithm, a node uniformly distributes its input (a brief description of

the input distribution is given in 4.2.1), which consists of its incident edge weights, among a

subset of nodes and never sends resource request message to any other nodes. This ensures

that nodes never create circular waiting (or waiting request) for any resource during the

execution of the algorithm. In step 2, each node independently sends a message (containing

its own state) to all of its neighbors (w.r.t. the input graph G) only once. Upon receiving

messages from all of its neighbors, a node performs some finite local computations and then

terminates itself. Therefore, in step 2 nodes are free from any possible circular waiting. The

correctness of the deadlock freeness of step 3 essentially follows from the work of Lotker

et al. [96]. In step 4, the pruning operation is performed over a tree structure (TM) and a

node never requests and waits for resources holding by any other node in the system. This

implies that during the pruning operation, nodes are free from any possible circular waiting.

Therefore, the deadlock freeness of all four steps together ensure deadlock freeness of the

STCCM-A algorithm.

82

STCCM-B algorithm

4.4 STCCM-B algorithm

The STCCM-B algorithm is a modified version of the STCCM-A algorithm that computes

an ST using O(S+log log n) rounds and O(Sm+n2) messages in the CCM maintaining the

same approximation factor as that of the STCCM-A algorithm. Similar to the STCCM-

A algorithm, the STCCM-B algorithm also has four steps (small distributed algorithms).

Except step 1, all other steps in STCCM-B algorithm are same as that of the STCCM-A

algorithm. Recall that step 1 of the STCCM-A algorithm constructs an SPF of a given

input graph G = (V,E,w) for a terminal set Z ⊆ V . Step 1 of the STCCM-B algorithm,

which also constructs an SPF, is an adaptation of the SPF algorithm proposed in Section 3.2,

Chapter 3, tailored to work in the CCM. Henceforth the new SPF algorithm will be denoted

as SPF-B algorithm.

The SPF-B algorithm vs. the SPF algorithm. The SPF-B algorithm is designed

for the CCM, whereas the SPF algorithm was proposed for the CONGEST model. The

SPF-B algorithm terminates in S + 4 rounds, whereas the SPF algorithm terminates in

S + 2h + 1 rounds, where h is the height of a breadth first search tree of the given input

graph G. Note here that h ≤ D ≤ S. Both algorithms have the same asymptotic round

complexity, which is O(S). The message complexities of the SPF-B algorithm and the SPF

algorithm are O(S(n − t)∆ + ∆t + n) and O(Sm) respectively, where ∆ is the maximum

degree of a vertex in the input graph G. Asymptotically both the message complexities are

O(Sm).

4.4.1 SPF-B algorithm

Input specification.

• If v ∈ Z then td(v) = 0, tπ(v) = v, ts(v) = v, and tf (v) = true.

• If v ∈ V \ Z then td(v) =∞, tπ(v) = nill, ts(v) = nill, and tf (v) = false.

• Each v ∈ V sets ES (e) to basic for each e ∈ δ(v).

Note here that tf(v) denotes the terminal flag of a node v. For each v ∈ Z , tf(v) is set

to true. On the other hand, for each v ∈ V \ Z , tf(v) is set to false. Recall that td(v),

tπ(v), and ts(v) denotes the tentative distance, tentative predecessor, and tentative source

83

Distributed approximation for Steiner tree in CONGESTED CLIQUE

of a node v respectively (these definitions can be found in Section 3.1, Chapter 3). In the

SPF-B algorithm, the state of an edge, which is denoted by ES (e), can be either basic or

blocked .

Output specification. Whenever the algorithm terminates, d(v) = td(v), π(v) = tπ(v),

and s(v) = ts(v) for each node v ∈ V .

Outline of the SPF-B algorithm. This algorithm is initiated by a special node r by

setting its local variable start flag to true and sending a 〈wakeup〉 message to all the nodes

in V \ {r} and an 〈echo〉 message to itself. We assume that a node can send messages to

itself. Note that upon receiving 〈echo〉 messages r does nothing. Upon receiving 〈wakeup〉
message a node awakes itself by setting its start flag to true, initializes its local variables as

shown in the input specification, and sends an 〈echo〉 message to r. Also each node v ∈ Z

sends 〈update〉 message on each e in δ(v) and sets ES (e) to blocked for each such e. After

that the nodes in Z send or receive no 〈update〉 messages, whereas the nodes in V \ Z may

send or receive 〈update〉 messages or send 〈echo〉 messages to r in each subsequent round

until the termination of the algorithm. Upon receiving a set of 〈update〉 messages (denoted

by U) a node v ∈ V acts as per the following rules.

R1. if an 〈update〉 ∈ U is received through an incident edge e = (v, u) such that u ∈ Z then

it sets ES (e) to blocked .

R2. if v ∈ V \Z then it computes we+tdn(e) for each 〈update(idn(e), tsn(e), tdn(e), tfn(e))〉
∈ U and chooses the minimum one, say we′+tdn(e′) resulted by 〈update(idn(e′), tsn(e′),

tdn(e′), tfn(e′))〉 ∈ U . If td(v) > we′ + tdn(e′) then it updates td(v) = we′ + tdn(e′),

ts(v) = tsn(e′), and tπ(v) = idn(e′). Otherwise, td(v), ts(v) and tπ(v) remain un-

changed.

R3. if the value of td(v) is updated then it sends 〈update(v, ts(v), td(v), tf(v))〉 messages

on all of its incident basic edges and an 〈echo〉 message to r.

Termination detection. For this, we introduce two additional messages: 〈echo〉 and 〈stop〉.
After the first round of the algorithm in which all nodes in the network become awake (after

receiving 〈wakeup〉 messages), the root node r receives at least one 〈echo〉 message in every

subsequent round. Upon receiving 〈echo〉 messages r does nothing. In the second round of

the algorithm r receives an 〈echo〉 message that is sent by itself. After the second round of

84

STCCM-B algorithm

SPF-B algorithm at node v upon receiving a set of messages or no message.

1: upon receiving no message
2: if v = r then
3: if start flag = false then . special node r is sleeping
4: start flag ← true; . spontaneous awaken of r
5: send 〈echo〉 to r . r sends 〈echo〉 message to itself
6: for each u ∈ V \ {r} do
7: send 〈wakeup〉 to u
8: end for
9: else . r is awake but receives no 〈echo〉 message, termination state

10: for each u ∈ V do
11: send 〈stop〉 to u
12: end for
13: end if
14: end if

15: upon receiving 〈wakeup〉
16: start flag ← true; . awaken of node v
17: if v ∈ Z then
18: tf ← true; ts← v; tπ ← v; td← 0;
19: for each e ∈ δ(v) do . δ(v) is the set of incident edges at v w.r.t. the input

graph G
20: send 〈update(v, ts, td, tf)〉 on e
21: ES (e)← blocked ;
22: end for
23: else
24: tf ← false; ts← nill; tπ ← nill; td←∞;
25: for each e ∈ δ(v) do
26: ES (e)← basic;
27: end for
28: end if
29: send 〈echo〉 to r . v sends 〈echo〉 message to r

30: upon receiving a set of 〈update〉 messages . let U 6= φ be the set of 〈update〉
messages

31: for each 〈update(idn(e), tsn(e), tdn(e), tfn(e))〉 ∈ U such that e ∈ δ(v) do
32: if tfn(e) = true then
33: ES(e)← blocked;
34: end if
35: if tdn(e) + we < td then
36: update flag ← true; . update flag is a temporary boolean variable
37: td← tdn(e) + we; tπ ← idn(e); ts← tsn(e);
38: end if
39: end for

85

Distributed approximation for Steiner tree in CONGESTED CLIQUE

SPF-B algorithm (continued).

40: if update flag = true then
41: for each e ∈ δ(v) such that ES(e) 6= blocked do
42: send 〈update(v, ts, td, tf)〉 on e
43: end for
44: send 〈echo〉 to r
45: update flag ← false;
46: end if

47: upon receiving 〈echo〉 . only r receives 〈echo〉 message
48: do nothing;

49: upon receiving 〈stop〉
50: start flag ← false; . v terminates the algorithm

the algorithm, in every subsequent round at least one node in the network updates its local

state and this guarantees the generation of at least one 〈echo〉 message in the network. Note

that a node sends its generated 〈echo〉 message to r. In case no 〈echo〉 message is generated,

it ensures that no changes have been occurred in the network and as a result r does not

receive any 〈echo〉 messages. In this case r sends termination instruction to all nodes in the

network by sending 〈stop〉 messages. Upon receiving 〈stop〉 message, each node terminates

the algorithm by setting its local variable start flag to false. Whenever each node in the

network sets its local variable start flag to false, the algorithm terminates.

Lemma 4.4.1. The SPF-B algorithm terminates after at most S + 4 rounds.

Proof. The special node r initiates the SPF-B algorithm by sending 〈wakeup〉 messages to

all the nodes in V \ {r} and an 〈echo〉 message to itself which takes exactly one round (we

assume that a node can send messages to itself). Upon receiving 〈wakeup〉 message, each

node in v ∈ Z , in parallel, sends 〈update〉 messages to each node in δ(v) and an 〈echo〉
message to r. This takes one round only. After that all nodes in V \ Z proceed in parallel,

and if applicable they update their local states. In each subsequent round at least one node

v ∈ V \ Z must update its local state which generates 〈update〉 and 〈echo〉 messages (v

sends an 〈echo〉 message to r and an 〈update〉 message on each of its basic edges in δ(v));

otherwise algorithm must have reached the state in which no message is generated in the

network. Note that S is the shortest path diameter of the network and therefore any path in

86

STCCM-B algorithm

the SPF contains no more than S edges. Since all nodes in V \ Z update their local states

in parallel, each such node v converges to its correct d(v) value in at most S additional

rounds. After at most S + 2 rounds of execution no local changes occur at any node in the

network. Therefore after at most S + 2 rounds r receives no 〈echo〉 messages. In this state

r initiates the termination of the algorithm by sending 〈stop〉 messages to all the nodes in

the network. In the next round, which is (S + 4)th round in the worst-case, upon receiving

〈stop〉 message, each node terminates the algorithm by setting its local variable start flag

to false. Therefore the SPF-B algorithm terminates after at most S + 4 rounds.

Theorem 4.4.2. The round complexity of the SPF-B algorithm is O(S).

Proof. By Lemma 4.4.1 the SPF-B algorithm terminates after at most S+4 rounds. There-

fore the overall round complexity of the SPF-B algorithm is O(S).

Theorem 4.4.3. The message complexity of the SPF-B algorithm is O(Sm).

Proof. The special node r initiates the SPF-B algorithm by sending 〈wakeup〉 messages to

all the nodes in V \ {r} and an 〈echo〉 message to itself. This generates exactly n messages.

Upon receiving 〈wakeup〉 message each node v in Z , in parallel, sends 〈update〉 messages on

each of its edges in δ(v) and an 〈echo〉 message to r. In the worst-case, this step generates

t(∆+1) messages, where ∆ is the maximum degree of a node in G and t = |Z|. After that no

further messages are generated due to the node set Z . On the other hand in each subsequent

round each node v in V \ Z may update its local variables and sends 〈update〉 message on

each of its basic edges in δ(v) and an 〈echo〉 message to r. In the worst-case, each such

round can generate (n− t)(∆ + 1) messages. By Lemma 4.4.1, after (at most) S + 2 rounds

no 〈echo〉 or 〈update〉 messages are sent or in transit in the network. Therefore, in the worst-

case r receives no 〈echo〉 message in (S+ 3)th round which guarantees that in this round no

message is generated in the network. After that r sends 〈stop〉 messages to all the nodes in

the network. This generates n messages. Since Lemma 4.4.1 guarantees that the algorithm

terminates after at most S+4 rounds, combining all the rounds, the total number of messages

generated, in the worst-case, is n+t(∆+1)+S(n−t)(∆+1)+0+n = O(S(n−t)∆+∆t+n).

Since G = (V,E,w) is connected, each of the terms (n− t)∆ and ∆t is upper bounded by

O(m) and n ≤ m, where m = |E| and we assume that n > t. Therefore the overall message

complexity of the SPF-B algorithm is O(Sm).

87

Distributed approximation for Steiner tree in CONGESTED CLIQUE

Lemma 4.4.4. Let tdi(v) be the length of the tentative shortest path from node v to ts(v)

after i rounds (i ≥ 0). Suppose SPF-B algorithm terminates after X rounds (X ≤ S + 4).

Then for each node v ∈ V , tdX(v) = d(v, s(v)) and the corresponding shortest path contains

at most S edges.

Note here that S is the shortest path diameter of the network. Therefore any path

between a node v and its source s(v) in the SPF contains no more than S edges. The

correctness of the Lemma 4.4.4 directly follows from the correctness of the Lemma 3.2.4,

Chapter 3.

4.4.2 Complexity of the STCCM-B algorithm

Similar to the STCCM-A algorithm, the STCCM-B algorithm also computes a generalized

MST for Z of G . Therefore the approximation factor of the ST computed by the STCCM-B

algorithm is same as that of the STCCM-A algorithm, which is 2(1− 1/`).

Theorem 4.4.5. The round complexity of the STCCM-B algorithm is O(S + log log n).

Proof. We know that the STCCM-B algorithm consists of four steps. By Theorem 4.4.2,

the round complexity of step 1 is O(S). The round complexities of step 2, step 3, and step

4 are O(1), O(log log n), and O(1) respectively. It is clear that the overall round complexity

of the STCCM-B algorithm is dominated by step 1 and step 3, which is O(S+log log n).

Theorem 4.4.6. The message complexity of the STCCM-B algorithm is O(Sm+ n2).

Proof. By Theorem 4.4.3 the message complexity of step 1 of the STCCM-B algorithm is

O(Sm). The message complexities of step 2, step 3, and step 4 of the STCCM-B algorithm

are O(m), O(n2), and O(n2) respectively. We know that m ≤ n2. Therefore the overall

message complexity of the STCCM-B algorithm is O(Sm+ n2).

4.5 Summary

In this chapter we have presented two deterministic distributed approximation algorithms

for the ST problem in the CCM. The first one computes a 2(1− 1/`)-approximate ST using

Õ(n1/3) rounds and Õ(n7/3) messages. The polylogarthmic factor involved with each of the

round and message complexities is log n. The second one computes a 2(1−1/`)-approximate

88

Summary

ST using O(S + log log n) rounds and O(Sm + n2) messages. Note that if a graph has the

property S = ω(n1/3 log n), then the first algorithm exhibits a better performance in terms of

the round complexity than the second one. On the other hand, for graphs with S = õ(n1/3),

the second algorithm outperforms the first one in terms of the round complexity. To the

best of our knowledge, till date, this is the first work to study the ST problem in the CCM.

[[]X]\\

89

5
Primal-dual based distributed approximation

algorithm for prize-collecting Steiner tree

The prize-collecting Steiner tree (PCST) problem is a generalized version of the Steiner tree

(ST) problem. The unrooted version of the PCST problem is defined as follows.

Definition 5.0.1 (PCST problem). Given a connected weighted graph G = (V,E, p, w)

where V is the set of vertices, E is the set of edges, p : V → R+ is a vertex prize function

and w : E → R+ is an edge weight function, the goal is to find a tree T = (V ′, E ′), where

V ′ ⊆ V and E ′ ⊆ E that minimizes the following quantity:

W (T) =
∑
e∈E′

we +
∑

v∈V \V ′
pv

A feasible solution to the PCST problem partitions the node set V into two parts, namely

Steiner and Penalty. A node is in the Steiner part if it is covered by T (i.e. it belongs to

V ′), otherwise it is in the Penalty part. Note that the ST problem is in fact a special case

of PCST, where we set the prize of terminals to ∞ and the prize of all other nodes to 0;

therefore PCST is NP-hard and at least as hard to approximate as ST.

In this chapter we study the rooted variant of the PCST problem in which a given root

node r ∈ V must be included in the resultant PCST. For correctness we assume that pr is

90

equal to ∞. We present two deterministic distributed algorithms for the PCST problem in

the CONGEST model. The first one, which will be denoted as D-PCST algorithm, computes

a PCST using O(n2) rounds and O(mn) messages, where n = |V | and m = |E|. The second

one, which is a modification of the first one, computes a PCST using O(Dn) rounds and

O(mn) messages, where D is the unweighted diameter of G. Both the algorithms achieve

an approximation factor of
(
2− 1

n−1

)
.

The D-PCST algorithm is inspired by a sequential algorithm proposed by Goemans and

Williamson (GW-algorithm [58]), which is one of the most elegant algorithms for the PCST

problem, providing a constant approximation ratio. We make use of the primal-dual tech-

nique, appropriately tailored for the distributed setting, in order to construct a PCST with

a cost at most
(
2− 1

n−1

)
times the optimal.1 The D-PCST algorithm uses the idea of pre-

serving dual constraints in a distributed way in order to achieve the desired approximation

ratio. The main challenge here is to satisfy the dual constraints using local information

instead of global information. To this end we use a careful merging and deactivation of

connected components so that each component always satisfies its dual constraints. The

detailed description of the distributed preservation of the dual constraints is deferred to

Subsection 5.5.1. We believe that our technique is equally applicable in other variants of

the ST problems like Steiner forest, directed ST etc.

Like the D-PCST algorithm, the modified D-PCST algorithm also based on the use of

the primal-dual technique. The main difference is that the modified D-PCST algorithm

leverages on a breadth first search (BFS) tree of the input graph, whereas the D-PCST

algorithm does not leverage on any such precomputed structure. Furthermore, for networks

with D = o(n), the modified D-PCST algorithm performs better than the original D-PCST

algorithm in terms of the round complexity. We summarize the performance of the modified

D-PCST algorithm in the following theorem.

Theorem 5.0.1. Given a connected weighted graph G = (V,E, p, w) where V is the set of

vertices, E is the set of edges, p : V → R+ is a vertex prize function and w : E → R+ is

an edge weight function, a (2− 1
n−1

)-approximate PCST can be deterministically computed

using O(Dn) rounds and O(mn) messages in the CONGEST model of distributed computing,

1Note here that Geunes et al. [54] showed that any LP-based α-approximation algorithm for a covering
problem can be leveraged to a (1

1−e−1/α)-approximation algorithm for the corresponding prize-collecting

problem, and Li et al. [92] extend this result for sub-modular penalties. However the frameworks used
in [4, 54,92], which are sequential in nature, may not be equally applicable in the distributed setting.

91

Primal-dual based distributed approximation algorithm for PCST

where n = |V |, m = |E|, and D is the unweighted diameter of G.

Moreover, both the algorithms have a memory requirement of O(∆ log n) bits for each

node, where ∆ is the maximum degree of a node in G. In contrast, none of the earlier

primal-dual based distributed approximation algorithms [42, 59, 60, 102, 109] discuss about

the memory efficiency of their proposed solutions. Indeed, one can design a trivial, essentially

centralized, distributed algorithm for the PCST problem by ‘black-box’ use of the GW-

algorithm. In such a case there should be a specified node (leader) to gather the entire

graph information and compute the PCST solution in a centralized manner. Assuming

polynomially bounded edge weights and node prizes, the leader node would need to store

O(m log n) bits in its memory. In contrast, in our approach only local information is stored

in each node.

Lower bound results. Regarding lower bounds no immediate result is known for the

PCST problem. Recently Bacrach et al. [6] came with a lower bound round complexity

for exact ST computation in the CONGEST model, which is Ω(n2/log2n). Since the PCST

problem is a generalized version of the ST problem, the exact lower bound round complexity

for ST problem, which is Ω(n2/log2n), also holds for exact PCST computation. However

this does not apply for approximate results. Elkin [39] showed that approximating MST

within any constant factor on graphs of small unweighted diameter (D = O(
√
n)) requires

Ω(
√
n/B) rounds (assuming B bits can be sent through each edge in each round). Das

Sarma et al. [31] achieved an unconditional lower bound on round complexity of the MST

problem and showed that approximating MST within any constant factor requires Ω(D +√
n/(B log n)) rounds. Note that PCST is a more generalized version of the the MST

problem.1 Therefore, in the approximate sense the above lower bound round complexity

of the distributed MST construction also applies to the distributed PCST construction.

Kutten et al. [86] established that Ω(m) is the message lower bound for leader election in

the KT0 model (i.e. Knowledge Till radius 0) which holds for both the deterministic as

well as randomized (Monte Carlo) algorithms even if the network parameters D, n, and m

are known, and all nodes wake up simultaneously. Since a distributed MST algorithm can

be used to elect a leader, the above message lower bound in the KT0 model also applies

to the distributed MST construction. Since the PCST is a more generalized version of the

1If the prize value of each node in the network is equal to ∞ then the PCST problem simply becomes
the MST problem.

92

MST problem the lower bound message complexity for distributed MST construction also

holds for the distributed PCST construction in the CONGEST model.

Prior art in primal-dual based distributed approximation. Moscibroda and Wat-

tenhofer [102] proposed a primal-dual based distributed algorithm in the CONGEST model

that solves the facility location problem using O(x) communication rounds for every con-

stant x with the approximation factor of O
(√

x(fc)1/
√
x log(f + g)

)
, where f and g are the

number of facilities and clients respectively and c is a coefficient that depends on the cost

values of the instance. Pandit and Pemmaraju [109] showed that using primal-dual method

matric facility location problem can be solved using O(x) rounds with the approximation

factor of O(f 2/
√
x · g3/

√
x) of the optimal in the CONGEST model of distributed comput-

ing. Grandoni et al. [59, 60] showed that primal-dual technique can be used to compute a

(2 + ε)-approximate capacitated vertex cover using O(log(nR)/ε) rounds in the CONGEST

model, where ε is any constant > 0, n is the number of nodes in the network, and R is

the ratio of largest to smallest weight. Recently Even et al. [42] presented a primal-dual

based deterministic distributed algorithm for minimum set cover problem that computes a

f ′(1+ ε)-approximate set cover using O(log(f ′Γ)/ log log(f ′Γ)) rounds, where f ′ denotes the

maximum element frequency and Γ denotes the cardinality of the largest set in the given

input instance. Furthermore, distributed primal-dual method is also applied in machine

learning optimization problems [98, 131]. By employing the distributed average consensus

algorithms Yuan et al. [131] proposed a distributed primal-dual subgradient method to pro-

vide approximate saddle points of the Lagrangian function. Ma et al. [98] generalized the

communication-efficient primal-dual framework for distributed optimization.

Organization. The rest of the chapter is organized as follows. In Section 5.1 we define

the system model. In Section 5.2 we introduce the formulation of the PCST problem using

integer programming (IP) and linear programming (LP). A brief description of the central-

ized PCST algorithm proposed by Goemans and Williamson [58] and the key challenge to

make it distributed are given in Section 5.3. The high level description of the proposed

D-PCST algorithm is given in Section 5.4. Section 5.5 contains the proof of properties of

the D-PCST algorithm. The modified D-PCST algorithm and its properties are discussed

in Section 5.6. Section 5.7 contains the concluding remarks. An illustrating example and

the pseudo-code of the D-PCST algorithm are deferred to Appendix 5.A and Appendix 5.B

respectively.

93

Primal-dual based distributed approximation algorithm for PCST

5.1 Model and notations

System model. We consider the CONGEST model as specified in [114]. This model is

briefly described as follows. A communication network is modelled as a weighted undirected

graph G = (V,E, p, w), where V is the set of nodes, E is the set of links, p : V → R+ is

a positive prize function, and w : E → R+ is a positive weight function. We assume that

the weight of each edge e (denoted as we) is polynomially bounded in n and therefore

polynomially many sums of weights can be encoded in O(log n) bits. Similarly the prize of

each vertex (denoted as pv) is polynomially bounded in n. Each node knows its unique ID

(can be represented using O(log n) bits), and the weight of each link incident to it. Each

node executes the same algorithm. The nodes communicate and coordinate their actions

with their neighbors by passing messages (of size O(log n) bits) only. In general a message

contains constant number of edge weights, node IDs, and arguments (each polynomially

bounded in n). We consider that the links deliver messages in FIFO order. A special node

of the network designated as root (r) initiates the algorithm. We consider that pr is equal

to ∞. We assume that nodes and links do not fail.

The algorithm proceeds in synchronous rounds as follows. At the beginning of each

round, each node receives all the messages sent to it. After that each node performs some

local computation. Then each node sends (possibly different) messages on its incident links,

which will be processed in the next round. The time complexity is measured by the number

of rounds required until all the nodes terminate. The message complexity is measured by the

number of messages generated until all the nodes terminate. The memory complexity (aka

space complexity) is measured as the amount of working memory (or Turing machine tape

space) required by a node (computing entity) in order to store messages, sent or received,

and all information needed to perform local computations. We do not count the amount of

memory required to store the input data (node’s ID and prize value, and weights of incident

edges).

Notations. Most of the terms and notions we use in this chapter are already defined in

Section 3.1, Chapter 3 and Section 4.1, Chapter 4. In addition to that, in this chapter, we

also use the following notations.

• A set of nodes C ⊆ V connected by a set of edges is termed as component.

• L(C) denotes the leader node of a component C .

94

Problem formulation

• A component C ′ is called a neighboring component of a component C if δ(C) ∩ δ(C ′) 6= ∅.

• CS (C) denotes the state of a component C .

• W (C) denotes the weight of a component C .

• TP(C) denotes the total prize of a component C .

• EPM(e) denotes edge for prune message which is a boolean variable for an edge e.

At node v ∈ V if EPM(e) is set to true for an edge e ∈ δ(v) then v chooses edge e to

send a message called prune on it; on the other hand, if at node v, EPM(e) is set to

false for an edge e ∈ δ(v) then v never chooses e to send a prune message on it.

5.2 Problem formulation

Following [58] the rooted PCST problem can be formulated as the following integer program

(IP).

Min
∑
e∈E

wexe +
∑

U⊂V ;r/∈U
zU

(∑
v∈U

pv

)
Subject to :

x(δ(C)) +
∑
U⊇C

zU ≥ 1 C ⊂ V ; r /∈ C

xe ∈ {0, 1} e ∈ E
zU ∈ {0, 1} U ⊂ V ; r /∈ U

For each edge e ∈ E there is a variable xe that takes a value in {0, 1}. Here x(δ(C)) =∑
e∈δ(C) xe. For each U ⊂ V : r /∈ U , there is a variable zU that takes values from {0, 1}.

A tree T = (V ′, E ′) rooted at the root node r corresponds to the following integral solution

of the IP: xe = 1 for each e ∈ E ′, zV \V ′ = 1 and all other variables are zero. The integral

constraint says that a subset of nodes C ⊂ V (r /∈ C) is connected to T if there exists at

least one e ∈ δ(C) such that xe = 1 or it is not connected to T if C ⊆ U ⊂ V (r /∈ U),

xe = 0 for all e ∈ δ(C) and zU = 1. Note that we can set pr = ∞ since every feasible tree

is required to include the root node r.

The LP-relaxation of the above IP can be created by replacing xe ∈ {0, 1} and zU ∈ {0, 1}
by xe ≥ 0 and zU ≥ 0 respectively.

95

Primal-dual based distributed approximation algorithm for PCST

The dual of the LP-relaxation is as follows:

Max
∑

C⊆V−{r}
yC

Subject to : ∑
C:e∈δ(C)

yC ≤ we e ∈ E
∑
C⊆U

yC ≤
∑
v∈U

pv U ⊂ V ; r /∈ U

yC ≥ 0 C ⊂ V ; r /∈ C

Here the variable yC corresponds to the primal constraint
∑

e∈δ(C) xe +
∑

U⊇C zU ≥ 1. The

dual objective function indicates that for each C ⊆ V \{r}, the variable yC can be increased

as much as possible without violating the two dual constraints
∑

C:e∈δ(C) yC ≤ we and∑
C⊆U yC ≤

∑
v∈U pv. The constraint

∑
C:e∈δ(C) yC ≤ we is known as edge packing constraint

which is corresponding to the primal variable xe. It says that for each C ⊆ V \ {r} such

that e ∈ δ(C), yC can be increased as much as possible until the edge packing constraint

becomes tight, i.e.
∑

C:e∈δ(C) yC = we. This equality implies the case where the primal

variable xe = 1 for the corresponding edge e, and e is added to the forest being constructed.

The value we contributes to the primal objective value of the PCST. The dual constraint∑
C⊆U yC ≤

∑
v∈U pv is known as penalty packing constraints which is corresponding to

the primal variable zU of the LP relaxation. For each C ⊆ U such that r /∈ U , yC can

be increased as much as possible until the penalty packing constraint becomes tight i.e.∑
C⊆U yC =

∑
v∈U pv. Any positive value of yC can be considered feasible provided it does

not lead to the violation of any of the two dual packing constraints. If we set yC = 0 for

each C ⊆ V \ r then it gives a trivial feasible solution to the dual LP since it satisfies both

packing constraints. The dual LP is feasible at its origin (yC = 0 for each C ⊆ V \ r),
whereas primal LP is not feasible at its origin (xe = 0 for each e ∈ E and zU = 0 for each

U ⊆ V \ r).

5.3 A brief description of the GW-algorithm

The D-PCST algorithm is inspired by the sequential PCST algorithm due to Goemans and

Williamson (GW-algorithm) [58]. Note that apart from the GW-algorithm there exist other

sequential algorithms for PCST [16, 44, 72] with slightly better approximation factor than

96

A brief description of the GW-algorithm

that of the GW-algorithm. Specifically, the sequential PCST algorithm proposed in [4]

achieves an approximation ratio of 1.9672, which is the best known approximation ratio for

PCST till date. However we still choose the GW-algorithm as the starting point to adapt it

to the distributed setting because it is a widely studied fundamental algorithm for PCST in

the sequential setting as well as the basis for all other algorithms proposed in [4,16,44,72].

Now we briefly describe the GW-algorithm. It consists of two phases namely growth and

pruning. The growth phase maintains a forest F which contains a set of candidate edges

being selected for the construction of the PCST. Initially F is empty, each node is unmarked

and is considered as a connected component containing a singleton node. The growth phase

also maintains a set of components whose possible states can be either active or inactive.

The active state of a component indicates that it is in a growing phase, whereas the inactive

state indicates that it stops growing tentatively. If a component C is active then the current

state of C is set to 1, i.e., CS(C) = 1, otherwise CS(C) = 0. The state of the component

containing the root node r is always inactive. Initially, except the root component, all other

components are in active state. Associated with each component C, there is a dual variable

yC , initialized to 0. The algorithm also maintains a deficit value dv for each vertex v ∈ V and

a weight W (C) for each component C. Note that W (C) =
∑

A⊆C yA and du =
∑

A:u∈A yA for

each vertex u. Initially du = 0 for each vertex u ∈ V and W (C) = 0 for each component C

in the system. In each iteration the algorithm finds an edge e = (u, v) with u ∈ Cp, v ∈ Cq,
Cp 6= Cq, that minimizes ε1 = we−dv−du

CS(Cp)+CS(Cq)
and a component C such that CS(C) = 1 which

minimizes ε2 =
∑

v∈C pv −W (C). And then it finds the global minimum ε = min(ε1, ε2). If

ε = ε1 then it merges two distinct components Cp and Cq using the edge e (that gave the

min ε) and adds e to F . On the other hand if ε = ε2 then the corresponding component C is

deactivated. Note that for every decided value of ε, for each active component C, W (C) (as

well as that of the implicit yC) and each dv, where v ∈ C are increased by the value of ε. In

case of merging, if the resulting component contains r then it becomes inactive; otherwise

it remains active. In the other case i.e. deactivation of component C, the algorithm marks

each v ∈ C with the name of the component C. Since in each iteration total number of

components or the number of active components decreases therefore after at most 2n − 1

iterations all components become inactive. In pruning phase the algorithm removes as many

edges as possible from F without violating the two properties: (i) all unmarked vertices must

be connected to the root, as these vertices never appeared in any deactivated components

(ii) if a vertex with mark C is connected to the root then every vertex marked with C ′ ⊇ C

97

Primal-dual based distributed approximation algorithm for PCST

should be connected to the root. The algorithm achieves an approximation ratio of (2− 1
n−1

)

and its running time is O(n2 log n) for a graph of n vertices.

The key challenge to make GW-algorithm distributed. The GW-algorithm is se-

quential in nature and proceeds in iterations. In each iteration a global minimum value of

a special parameter (denoted as ε) is computed and it is used to simultaneously raise the

dual variables of all the active components. However, in the distributed setting a node (or a

component) has limited knowledge of the network structure and also about the components

residing in different parts of the network; as a result simultaneous raising of dual variables

of all the active components is a challenging task. To overcome this, in this chapter we

present an approach which does not depend on any global knowledge of the network and

instead nodes (or components) preserve their dual constraints and update their other state

variables by using only the local information. The local preservation of dual constraints at

each node of the network eventually guarantees the global preservation of dual constraints.

The detailed discussion on the distributed preservation of dual constraints is deferred to

Subsection 5.5.1.

5.4 D-PCST algorithm

This section contains a description of the D-PCST algorithm whose pseudo-code can be

found in Appendix 5.B.

Preliminaries. D-PCST algorithm maintains a set of components and each component C

has a state (denoted by CS (C)) which can be sleeping , active or inactive. Similarly each

edge e has a state (denoted by ES (e)) which can be basic, branch, rejected or refind . It is

possible for the edge states at the two end points of the edge to be temporarily different.

At node v the state of an edge e ∈ δ(v) is branch if e is selected as a candidate branch edge.

Any edge inside a component (between two nodes u, v ∈ C) whose state is not branch is

termed as rejected . If a node v receives a message refind epsilon on some e ∈ δ(v) then

ES (e) = refind . This message aims at recomputing a special value of the component where

v belongs. An edge e which is neither branch nor rejected nor refind has the state named

basic. Each component has a leader node which coordinates all the activities inside the

component. Note that the set of branch edges inside a component C form a tree rooted

at the leader. Each node v ∈ C locally knows the current state as well as the weight of

98

D-PCST algorithm

its component C . Initially W (C) is equal to 0 for each component C . Each node v has a

deficit value dv, initially equal to 0, and is updated by the algorithm following some rules

given in the description of the algorithm. For each node v ∈ V it can be shown by induction

that dv = ΣC :v∈CyC for yC ≥ 0 and this invariant holds throughout the execution of the

algorithm. In addition, the following symbols and terms are used in the description of our

algorithm.

• εe ∈ (−∞,+∞] denotes the estimated remaining cost of an edge e (in fact, apart from

the cases εe = −∞ and εe = +∞, the value of |εe | is polynomially bounded in n).

The following cases are possible.

(i) εe ∈ [0,∞). It indicates that the estimated cost of edge e is feasible.

(ii) εe ∈ (−∞, 0). It indicates that the remaining cost of edge e is overestimated by

an amount of |εe |.

(iii) εe =∞. It indicates that the estimated cost of edge e is not feasible.

• ε1 (v) = min
e∈δ(v)∩δ(C)

{εe}. If δ(v) ∩ δ(C) = ∅ then ε1 (v) =∞.

• ε1 (C) = min
v∈C

{ε1 (v)}

• ε2 (C) =
∑

v∈C pv −W (C).

• MEOE (v) denotes the minimum epsilon outgoing edge incident on node v that gives

ε1 (v). Similarly MEOE (C) denotes the edge e ∈ δ(C) that gives ε1 (C).

Input specification. Initially each node v ∈ V knows its own prize value pv, unique

identity, and weight we of each edge e ∈ δ(v). Before the start of the algorithm, prize flag

is set to true for all v 6= r. If v = r then prize flag is set to false. Also each node v ∈ V
initially sets its local boolean variable labelled flag to false, and EPM (e) to false and ES (e)

to basic for each e ∈ δ(v).

Output specification. Whenever the algorithm terminates, each node v outputs the pair

(prize flag ,Y). Here Y ⊆ δ(v). If prize flag is equal to true then Y = ∅; this ensures that

v belongs to the Penalty part. Otherwise v belongs to the Steiner part and for each e ∈ Y ,

ES (e) is set to branch.

99

Primal-dual based distributed approximation algorithm for PCST

5.4.1 Outline of the D-PCST algorithm

It consists of two phases namely growth and pruning. At the beginning of the algorithm each

component consists of a single node. Initially each component except the root component

(containing the special node r, the root) is in sleeping state. The initial state of the root

component is inactive. The root node r initiates the algorithm. At any point of the time

algorithm maintains a set of components.

At a time only one component grows. The leader of a component C (denoted as L(C))

initiates an operation called proc initiate(). The proc initiate() computes ε1 (C) by using

a broadcast and convergecast procedure. If C is an active component then the L(C)) also

calculates ε2 (C). Now L(C)) computes ε(C) = min(ε1 (C), ε2 (C)). After that any one of

the following operations is performed.

(i) Merging if C is active and ε(C) = ε1 (C). In this case C merges with a neighboring

component C ′ through an edge e, where εe = ε1 (C) and e ∈ δ(C) ∩ δ(C ′).

(ii) Deactivation if ε(C) = ε2 (C). In this case C decides to deactivate itself.

(iii) Proceed if C is inactive and ε(C) = ε1 (C). In this case a 〈proceed〉 message is sent to a

neighboring component C ′ through an edge e, where εe = ε1 (C) and e ∈ δ(C) ∩ δ(C ′).

(iv) Back if C is inactive and all of its neighboring components become inactive. In this

case the leader of C sends a 〈back〉 message to an inactive neighboring component C ′

from which it received the earliest 〈proceed〉 message.

Whenever all components in the network, in which one is the root component, become

inactive, the growth phase terminates and the pruning phase begins. The pruning phase

does the following.

(i) prunes all the non-root components.

(ii) keeps on pruning subcomponents from the root component until no more improvement

of the PCST is possible.

Whenever the algorithm terminates, the root component is the required Steiner part

whereas the set of nodes which are not included in the root component contributes to the

Penalty part of the resultant PCST.

100

D-PCST algorithm

5.4.2 Phases of D-PCST

Growth phase. At any point of time of this phase only one component C calculates its

ε(C). The leader L(C) computes ε(C) = min(ε1 (C), ε2 (C)) using message passing. De-

pending on the value of ε(C), L(C) proceeds with any one of the following actions.

(i) If CS (C) = active then it may decide to merge with one of its neighboring component

C ′ or it may decide to become inactive.

(ii) If CS (C) = inactive then it asks one of its neighboring components, say C ′, to proceed

further. The choice of C ′ depends on the value ε1 (C) computed at C . Note that an

inactive component C never computes ε2 (C) and its ε(C) is equal to ε1 (C).

To compute ε1 (C), the leader L(C) broadcasts 〈initiate〉 over the tree rooted at L(C)

asking each frontier node v ∈ C to find its ε1 (v). A node v ∈ C is called a frontier node if it

has at least one edge e ∈ δ(v) ∩ δ(C). Upon receiving 〈initiate〉, each frontier node v ∈ C

calculates εe for each edge e ∈ δ(v) ∩ δ(C). Note that if an edge e satisfies the condition

e ∈ δ(v) ∩ δ(C) then the state of the edge e at node v is either basic or refind . Let C ′ be

a neighboring component of C such that e ∈ δ(u), e ∈ δ(v), u ∈ C ′, and v ∈ C . Now v

calculates εe as follows.

(i) CS (C) = active and CS (C ′) = active : in this case εe = we−dv−du
2

.

(ii) CS (C) = active and CS (C ′) = inactive : in this case εe = we − dv − du .

(iii) CS (C) = active and CS (C ′) = sleeping : in this case εe = we−dv−du
2

. Here the state of

the component C ′ is sleeping and therefore the deficit value du of the node u ∈ C ′ is

considered to be equal to dv .

(iv) CS (C) = inactive and CS (C ′) = sleeping : in this case εe = we − dv − du . Similar to

the previous case the deficit value du is equal to dv .

(v) CS (C) = inactive and CS (C ′) = inactive : in this case the value of εe for an edge

e ∈ δ(v) calculated by v depends on the state of the edge e. If ES (e) = refind then

εe = we − dv − du . Otherwise, εe =∞.

The algorithm also maintains the following two properties:

101

Primal-dual based distributed approximation algorithm for PCST

Property 1. Whenever an inactive component C is in the state of computing its

ε1 (C) then there can not exist any component C ′ in the neighborhood of C such that

CS(C ′) = active.

Property 2. A component C never computes its ε1 (C) (or ε2 (C)) while it is in the

sleeping state.

Following these conditions each frontier node v ∈ C (C is essentially a tree formed by

the branch edges rooted at the leader node) locally computes the value of εe for each edge

e of its incident basic or refind edges and among all of them the minimum one is selected

as its ε1 (v). Note that if none of the edges of δ(v) is neither basic nor refind then ε1 (v) is

equal to ∞. If v is a leaf node then it reports its ε1 (v) to its parent using 〈report〉. On the

other hand if v is an intermediate node then it waits to arrive ε1 (u) from each of its children

u. Among all of these values (its own computed value ε1 (v) and all of the received values

from its children) an intermediate node v locally selects the minimum one and reports it

to its parent using 〈report〉. During this convergecast process overall ε1 (C) survives and

eventually reaches L(C). Also during the convergecast process each node v ∈ C reports the

total prize value of all the nodes in the subtree rooted at v. Therefore, eventually the total

prize of the component C (denoted as TP(C)) is also known to L(C). If CS (C) = active

then L(C) also calculates ε2 (C) =
∑

v∈C pv −W (C) = TP(C)−W (C).

The L(C) now computes ε(C) = min(ε1 (C), ε2 (C)). If ε(C) = ε2 (C) then C decides to

deactivate itself. This indicates that the dual penalty packing constraint
∑

A⊆C yA ≤∑
v∈C pv becomes tight for the component C . On the other hand, if ε(C) = ε1 (C) then it in-

dicates that the dual edge packing constraint
∑

A:e∈δ(A) yA ≤ we becomes tight for the MEOE

e such that e ∈ δ(C)∩ δ(C ′), where C ′ is a neighboring component of C . In this case L(C)

sends a 〈merge(ε(C))〉 to a frontier node v ∈ C which resulted the ε(C) = ε1 (C) = ε1 (v).

Upon receiving 〈merge(ε(C))〉 the node v sends 〈connect(v ,W (C), dv)〉 over the MEOE to

C ′ to merge with it. Whenever a node u ∈ C ′ receives 〈connect(v ,W (C), dv)〉 on an edge

e ∈ δ(u) then depending on the state of C ′ following actions are taken.

(i) CS (C ′) = inactive : in this case the node u ∈ C ′ sends 〈accept〉 to v ∈ C . This

confirms the merging of two components C ′ and C .

(ii) CS (C ′) = sleeping : in this case it is obvious that C ′ is a single node component

{u}. The state of C ′ becomes active and each of its local variables du and W (C ′) is

initialized to dv (received in the 〈connect〉). After that the leader of the component

102

D-PCST algorithm

C ′ (u itself) computes εe for edge e and ε2 (C ′). If εe < ε2 (C ′) then the component

C ′ sends 〈accept〉 to the component C which confirms the merging of two components

C ′ and C . On the other hand if ε2 (C ′) ≤ εe then C ′ decides to deactivate itself and

sends 〈refind epsilon〉 to the component C .

Whenever a node v ∈ C receives 〈refind epsilon〉 in response to a 〈connect〉 on an edge

e ∈ δ(v) then the state of its local variable ES (e) becomes refind . The node v also reports

the 〈refind epsilon〉 to the leader of C . Upon receiving 〈refind epsilon〉 the leader node of

C proceeds to calculate its ε(C) once again.

Whenever a component C decides to merge or deactivate (only an active component can

decide to deactivate itself) then each node v ∈ C updates its dv and W (C) to dv + ε(C)

and W (C) + ε(C) respectively. Note that for each component C there is an implicit dual

variable yC which we want to maximize subject to dual constraints. Whenever the local

variables of a component C are updated by ε(C), yC is also implicitly updated. Also note

that at any point of the time of execution of the algorithm yC ≥ 0 for any component C in

the graph.

If two components C and C ′ decide to merge through an edge e = (v , u) such that

e ∈ δ(C) ∩ δ(C ′)) then the dual edge packing constraint
∑

A:e∈δ(A) yA ≤ we becomes tight

for the edge e. Both nodes v and u set their local variables ES (e) to branch. The

weight of the resulting component C ∪ C ′ is the sum of the weights of C and C ′, i.e.

W (C ∪ C ′) = W (C) + W (C ′). If C ∪ C ′ contains the root node r then it becomes inactive

(root component is always inactive) and r remains the leader of the new component C ∪ C ′.

In addition, whenever a component C ′ merges with the root component then each v ∈ C ′

sets its local variable prize flag to false and there exists at least one edge e ∈ δ(v) such that

ES (e) is set to branch. On the other hand if none of the merging components C or C ′ is

the root component then the resulting component C ∪ C ′ becomes active. In this case the

node with the higher ID between the two adjacent nodes of the merging edge becomes the

new leader of C ∪ C ′ and for each node v ∈ C ∪ C ′ the boolean variable prize flag remains

true.

In case of deactivation of a component C , each node v ∈ C sets its labelled flag to true.

Whenever an active component C becomes inactive and there exists no active component

in its neighborhood then the leader of C decides to send either 〈proceed〉 or 〈back〉 to

one of its neighboring component C ′. For this, first of all the leader of C computes its

ε(C) (recall that an inactive component C never computes its ε2 (C) and its ε(C) is equal

103

Primal-dual based distributed approximation algorithm for PCST

to ε1 (C)). The value of ε(C) may be some finite real number or ∞. If C has at least

one neighboring component C ′ such that CS (C ′) = sleeping ; or CS (C ′) = inactive for each

neighboring component C ′ of C and ∃e : e ∈ δ(C) ∧ ES (e) = refind then the value of ε(C)

is guaranteed to be a finite real number. Otherwise, the value of ε(C) is equal to ∞. If

ε(C) is a finite real number then the leader L(C) ∈ C sends 〈proceed〉 on (L(C), u) (to

node u from which it receives ε(C)). Whenever a node v sends a 〈proceed〉 message on

e ∈ δ(v) then it sets its local variable EPM (e) to true. The 〈proceed〉 message propagate

along the path in such a way that finally it reaches the node v ∈ C , where ε(C) = ε1 (v).

Then v sends 〈proceed〉 over the MEOE e ∈ δ(C) ∩ δ(C ′). Upon receiving 〈proceed〉, the

component C ′ starts computing its ε(C ′) for taking further actions. If the value of ε(C) is

equal to ∞ then the leader of the component C sends 〈back〉 to a neighboring component

C ′′ from which it received a 〈proceed〉 in some early stages of the algorithm. Note that as

component grows by merging with different components it is possible to receive more than

one 〈proceed〉 message over time by a component C ; however, a node v in a component C

receives at most one 〈proceed〉 message at a time. In this case the leader of C sends 〈back〉
message to the frontier node which received the earliest 〈proceed〉 message in C . Eventually

whenever the leader of the root component Cr finds that the value of ε(Cr) is equal to ∞
then it indicates that all components in the network become inactive. This ensures the

termination of the growth phase. After the termination of the growth phase, the root node

initiates the pruning phase.

Pruning phase. In this phase following operations are performed.

• Each node v ∈ C , where C is a non-root component, sets its ES (e) to basic for each

edge e ∈ δ(v) if ES (e) 6= basic.

• In the root component Cr , pruning starts in parallel at each leaf node of the tree

rooted at the root node r and is repeatedly applied at every leaf node v ∈ Cr at any

stage as long as the following two conditions hold.

– labelled flag = true at node v.

– There exists exactly one edge e ∈ δ(v) such that ES (e) = branch.

Each pruned node v ∈ Cr sets its local variables prize flag to true, labelled flag to

false, and ES (e) to basic for each edge e ∈ δ(v) if ES (e) 6= basic. Note that once a

104

Proof of Correctness

node v sets its ES (e) to basic for an edge e = (v, u) ∈ δ(v) then the node u also does

the same. Finally for each of the non-pruned nodes u ∈ Cr , prize flag = false and

there exists at least one edge e ∈ δ(u) such that ES (e) is set to branch.

5.5 Proof of Correctness

The pseudo-code of the D-PCST algorithm is deferred to Appendix 5.B. It has many proce-

dures. One of the procedures is proc initiate(). A round of proc initiate() in a component

C means the time from the beginning of the execution of proc initiate() till the completion

of finding ε(C). By action of an event A we mean the triggering of event A.

Lemma 5.5.1. If the leader of an inactive component C finds ε1 (C) =∞ then for each

neighboring component Ck of C , CS (Ck) = inactive.

Proof. Suppose by contradiction the leader of C finds ε1 (C) =∞ and there exists a neigh-

boring component Ck of C such that CS (Ck) 6= inactive. Therefore either CS (Ck) = sleeping

or CS (Ck) = active. Since it is given that the leader of the component C is in a state of

finding its ε1 (C), and CS (C) = inactive therefore Property 1 ensures that CS (Ck) 6= active

for each neighboring component Ck of C .

Consider the case of CS (Ck) = sleeping . To find ε1 (C) the leader starts the procedure

proc initiate() which in turn sends 〈initiate〉 on each of its branch edges in the component

C . Upon receiving 〈initiate〉 each node v ∈ C forwards it on its outbound branch edges and

if v is a frontier node then it also sends 〈test〉 on each edge e if state of e is neither branch

nor rejected . In response to each 〈test〉, v receives either 〈status(CS (Ck), du)〉 on an edge e

from a node u ∈ Ck 6= C if Ck is a neighboring component of C or 〈reject〉 if e = (v, u) such

that v , u ∈ C . The 〈reject〉 is simply discarded by v. In case of 〈status(CS (Ck), du)〉, v
calculates the εe for edge e. Since CS (Ck) = sleeping therefore the frontier node v computes

εe = we − dv − du . Note that the state of Ck is sleeping and the value of du is equal to the

value of dv. In this case the computed value εe is a finite real number, since we, dv and du

are finite real numbers. Each frontier node v ∈ C sends its computed ε1 (v) to its parent in

the rooted tree of the component C and eventually the leader of C finds the value of ε1 (C)

to be a finite real number, a contradiction to the fact that ε1 (C) =∞. This completes the

proof.

Lemma 5.5.2. A round of proc initiate() generates at most 6|V |+ 2|E| − 4 messages.

105

Primal-dual based distributed approximation algorithm for PCST

Proof. In D-PCST algorithm in each round of proc initiate(), the following messages are

possibly generated: 〈initiate〉, 〈test〉, 〈status〉, 〈reject〉, 〈report〉, 〈merge〉, 〈connect〉,
〈update info〉, 〈back〉, 〈proceed〉, 〈accept〉, and 〈refind epsilon〉. Since the maximum num-

ber of branch edges in a component is at most |V | − 1, at most |V | − 1 number of messages

are exchanged for each kind of 〈initiate〉, 〈report〉, 〈merge〉, and 〈update info〉 in each

round of proc initiate(). Similarly in each round of proc initiate(), at most |E| number of

〈test〉 messages are sent and in response at most |E| number of 〈status〉 or 〈reject〉 mes-

sages are generated. The 〈proceed〉 and 〈back〉 are exchanged between the leaders of two

different components. Therefore, for each kind of 〈proceed〉 and 〈back〉 in the worst-case at

most |V | − 1 number of messages are generated in each round of proc initiate(). For each

〈connect〉, either an 〈accept〉 or a 〈refind epsilon〉 is generated. Therefore in each round of

proc initiate() either the pair (〈connect〉, 〈accept〉) or (〈connect〉, 〈refind epsilon〉) is gen-

erated. Therefore the total number of messages exchanged in each round of proc initiate()

is at most 4(|V | − 1) + 2|E|+ 2(|V | − 1) + 2 = 6|V |+ 2|E| − 4.

Claim 5.5.1. D-PCST algorithm generates the action of 〈proceed〉 at most |V | − 1 times.

Proof. During the execution of the D-PCST algorithm an inactive component may send

〈proceed〉 more than once to different components, however a component receives 〈proceed〉
at most once. In addition the root component is always inactive and never receives 〈proceed〉.
Since there are at most |V | components and the root component never receives any 〈proceed〉,
therefore at most |V | − 1 number of 〈proceed〉 is generated.

Claim 5.5.2. D-PCST algorithm generates the action of 〈back〉 at most |V | − 1 times.

Proof. A non-root component C decides to take the action of 〈back〉 only if CS (C) = inactive

and it finds its ε(C) =∞. Lemma 5.5.1 proves that if CS (C) = inactive and ε1 (C) =∞
then CS (Ck) = inactive for each neighboring component Ck of C . Also while the leader of

C generates the action of 〈back〉 then ES (e) 6= refind for each edge e ∈ δ(C). These facts

indicate that all neighboring components of C are explored and therefore action of 〈back〉
is taken by the leader node in search of a component whose state is still sleeping . The

component C sends 〈back〉 to a neighboring component say C ′ which sent 〈proceed〉 to C

or to a subcomponent of C in some early stages of the algorithm. Since for each action of

〈proceed〉 at most one 〈back〉 action is generated and by Claim 5.5.1 the D-PCST algorithm

generates the action of 〈proceed〉 at most |V | − 1 times, therefore the D-PCST algorithm

generates the action of 〈back〉 at most |V | − 1 times.

106

Proof of Correctness

Claim 5.5.3. If none of the four consecutive rounds of proc initiate() initiates the action

of sending 〈back〉 then any one of the following two events is guaranteed to happen: (i) the

number of components decrease (ii) the number of sleeping or active components decreases

by one.

Proof. In the D-PCST algorithm the leader of a component C starts finding its ε(C) by

executing the procedure proc initiate(). Depending on the current state of C i.e. CS (C)

and its computed value ε(C), the leader of C decides to take any one of the following actions:

(i) merging (ii) deactivation (iii) sending 〈proceed〉, (iv) sending 〈back〉, and (v) pruning.

If the action of sending 〈back〉 is not taken by any one of the four consecutive rounds of

proc initiate() then within those rounds of proc initiate() any one of the events mentioned

in the Claim 5.5.3 is guaranteed to happen.

First consider the action of merging. Before the action of merging, the leader of the

component C computes its ε(C) in one round of proc initiate(). After that it sends a

〈merge〉 to the corresponding component say C ′. If CS (C ′) = inactive then C ′ immediately

merges with C and in this case merge happens in one round of proc initiate(). As a

result one of the components decreases in the graph. If CS (C ′) = sleeping then C ′ takes

one round of proc initiate() to decide whether to merge with C or deactivate itself. If it

decides to merge with C then the number of component decreases by one in the graph. On

the other hand if it decides to deactivate itself then a sleeping component vanishes in the

graph. Therefore whenever the action of merging takes place then in at most two rounds of

proc initiate() any one of the events mentioned in the Claim 5.5.3 is guaranteed to happen.

We know that only an active component can decide to deactivate itself. In this case a

component C finds its ε(C) = ε2 (C) in exactly one round of proc initiate(). As a result in

exactly one round of proc initiate() one active component decreases in the graph.

A component C initiates the action of sending 〈proceed〉 only if it is in inactive state. For

this action, first the leader of C computes its ε1 (C) which takes one round of proc initiate().

After that it sends 〈proceed〉 to the corresponding neighboring component say C ′. Upon

receiving 〈proceed〉 from C , depending on its current state, the component C ′ does the

followings.

(i) CS (C ′) = sleeping . C ′ starts finding its ε(C ′) to decide whether to merge with some

other component or deactivate itself. In case of merging, it takes at most two additional

rounds of proc initiate() and as a result one component decreases, i.e. from the point

107

Primal-dual based distributed approximation algorithm for PCST

of the time of finding ε1 (C) at C upto the merging of the component C ′ with a

neighboring component it takes at most three rounds of proc initiate(). In case of

deactivation, C ′ takes one round of proc initiate() for which one sleeping component

decreases and overall it takes two rounds of proc initiate() from the point of the time

of finding ε1 (C) at C upto the deactivation of C ′.

(ii) CS (C ′) = inactive. In this case C ′ receives 〈proceed〉 because there exists an edge e

such that e ∈ δ(C ′) ∩ δ(C) and the state the edge e ∈ δ(v) at some node v ∈ C must

be refind . This is because in some early stages of the algorithm the component C

or a sub-component of C sent a 〈connect〉 to C ′ and in response to that, C ′ became

inactive and as a result C ′ sent back a 〈refind epsilon〉 to C or to a sub-component of

C . Now there should be at least one component C ′′ such that CS (C ′′) = sleeping in

the neighborhood of C ′. Otherwise C ′ has to take the action of sending 〈back〉 which

is not possible according to our assumption. Since CS (C ′) = inactive, C ′ takes one

round of proc initiate() to compute its ε1 (C ′) to take the action of sending 〈proceed〉
to a neighboring component C ′′ such that CS (C ′′) = sleeping . After that C ′′ follows at

most two rounds of proc initiate() to decide the action of either merging or deactivation

which guarantees the occurring of any one of the mentioned events. Therefore from

the point of finding ε1 (C) at C upto any one of the events to be happened takes at

most four rounds of proc initiate().

(iii) CS (C ′) = active. The Property 1 ensures that this condition does not hold.

In case of the action of pruning, before the start of the pruning phase the root component

Cr takes exactly one round of proc initiate() to compute ε(Cr) which must be equal to ∞.

After that the growth phase terminates and the round proc initiate() is never initiated by

any node in the network. Hence the claim holds.

Lemma 5.5.3. The growth phase of the D-PCST algorithm terminates after at most 9|V |−7

rounds of proc initiate().

Proof. Initially the state of the root component Cr is inactive and it takes one round

of proc initiate() to compute its ε1 (Cr) (an inactive component C never computes its

ε2 (C)). After that Cr sends 〈proceed〉 to a neighboring component to take further ac-

tions of the algorithm. Claim 5.5.3 ensures that in the worst-case at most 4(|V | − 1)

108

Proof of Correctness

rounds of proc initiate() is required to decrease the number of components and becomes

one or at most 4(|V | − 1) rounds of proc initiate() is required to change the state of each

sleeping or active component to inactive state. Claim 5.5.2 ensures that the action of

〈back〉 is generated at most |V | − 1 times. If the root node r ∈ Cr finds that ε1 (Cr) =∞
then instead of taking the action of 〈back〉 the root component starts the pruning phase

which indicates the termination of the growth phase. Before the termination of the growth

phase additionally one round of proc initiate() is required to find ε1 (Cr) =∞. Summing

for all the cases we get that the total number of rounds of proc initiate() is equal to

1 + 4(|V | − 1) + 4(|V | − 1) + (|V | − 1) + 1 = 9|V | − 7. Therefore it is guaranteed that

after at most 9|V | − 7 rounds of proc initiate() the initiation of a round of proc initiate()

stops. Once the initiation of proc initiate() stops, no more messages related to the growth

phase are exchanged in the network. This ensures that the growth phase eventually termi-

nates after at most 9|V | − 7 rounds of proc initiate().

Lemma 5.5.4. Pruning phase of the D-PCST algorithm eventually terminates after gener-

ating at most 3(|V | − 1) messages.

Proof. In the pruning phase two types of messages are generated namely 〈prune〉 and

〈backward prune〉. A node v sends 〈prune〉 on an edge e ∈ δ(v) if ES (e) = branch or

EPM (e) = true. We know that the number of branch edges of a component C is exactly

|C | − 1. Whenever the growth phase terminates then the total number of branch edges

of all the components in the graph is at most |V | − 1. It follows that the total number

of 〈prune〉 messages generated is at most |V | − 1. Similarly at node v, the local boolean

variable EPM (e) is set to true if it sends a 〈proceed〉 on e. Since the Claim 5.5.1 ensures

that the total number of 〈proceed〉 sent in the D-PCST algorithm is at most |V | − 1 and for

each edge e on which 〈proceed〉 is sent the variable EPM (e) is set to true. This ensures that

with respect to the variable EPM the total number of 〈prune〉 generated is at most |V |− 1.

Therefore the total number of 〈prune〉 generated in the pruning phase is at most 2|V | − 2.

A 〈backward prune〉 is exchanged within the root component only. Upon receiving

〈prune〉 a leaf node (which has exactly one incident branch edge) of the root component

sends a 〈backward prune〉 on the branch edge to its parent if it decides to prune itself. This

is continued by every leaf node of the tree rooted at the root node until no more prune is

possible. Since the possible number of nodes in the root component is at most |V | and the

root node never sends a 〈backward prune〉, at most |V | − 1 number of 〈backward prune〉 is

109

Primal-dual based distributed approximation algorithm for PCST

generated in the pruning phase. It follows that the pruning phase terminates after at most

3(|V | − 1) messages.

Theorem 5.5.5. The D-PCST algorithm eventually terminates.

Proof. Together Lemma 5.5.3 and Lemma 5.5.4 prove that the D-PCST algorithm eventually

terminates.

Theorem 5.5.6. The message complexity of the D-PCST algorithm is O(mn).

Proof. Both Lemma 5.5.2 and Lemma 5.5.3 ensure that growth phase generates at most

(9|V | − 7)(6|V | + 2|E| − 4) messages. Similarly Lemma 5.5.4 ensures that pruning phase

generates at most 3(|V | − 1) messages. Therefore total number of messages generated until

the termination of the D-PCST algorithm is at most (9|V |−7)(6|V |+ 2|E|−4) + 3(|V |−1)

which is equivalent to O(|V |2 + |V ||E|). Since the graph is connected, |V |2 ≤ |V ||E|.
Therefore the overall message complexity of the D-PCST algorithm is O(mn), where n = |V |
and m = |E|.

Theorem 5.5.7. The round complexity of the D-PCST algorithm is O(n2).

Proof. The round complexity of the D-PCST algorithm is O(n2) and can be shown as

follows. The leader of a component C initiates the proc initiate() method to compute

ε(C). A proc initiate() method computes ε(C) using O(|V |) rounds. In every operation of

proc initiate(), the leader node broadcasts 〈initiate〉 over the component C (C is essentially

a tree structure rooted at the leader node). We know that the height of a component C can

be at most |V |−1 and therefore after at most |V |−1 rounds all leaf nodes in C must receive

〈initiate〉. Upon receiving 〈initiate〉 a frontier node v ∈ C sends a 〈test〉 independently on

each edge e ∈ δ(v) if ES (e) = basic or ES (e) = refind . This takes one unit of time to arrive

〈test〉 at all the receivers. Upon receiving 〈test〉 on an incident edge e ∈ δ(u), the node u

immediately replies with 〈status〉 if u /∈ C or with 〈reject〉 if u ∈ C . Within one unit of time

a frontier node receives all 〈status〉 and 〈reject〉 and after that it computes its ε1 (v) locally

in constant time units. After that if v is a leaf node then it immediately reports ε1 (v) to its

parent. On the other hand if v is an intermediate node it waits to arrive ε1 (u) from each of

its child nodes u. Among all of these values (its own computed value ε1 (v) and all received

values from its children) the minimum one is reported to its parent. This is followed by every

intermediate node in a component C . In this way after O(|V |) rounds ε1 (C) survives and

110

Proof of Correctness

reaches the leader of C . Then the leader computes ε(C) = min(ε1 (C), ε2 (C)). Therefore a

round of proc initiate() takes O(|V |) rounds to compute ε(C) in any component C.

The completion of a round of proc initiate() is immediately followed by any one of the

procedures merging, deactivation, proceed, back, and pruning, each of which takes O(|V |)
units of time in the worst-case. Note that the pruning procedure is performed only once and

the termination of the pruning phase implies the termination the D-PCST algorithm. Since

Lemma 5.5.3 ensures that the growth phase of the D-PCST algorithm terminates after at

most 9|V |−7 rounds of proc initiate(), and therefore in the worst-case growth phase takes at

most (9|V |−7)O(|V |) rounds. Similarly Lemma 5.5.4 ensures that pruning phase terminates

in O(|V |) rounds. Therefore in the worst-case the total number of rounds required by the

D-PCST algorithm is at most (9|V | − 7)O(|V |) +O(|V |) = O(|V |2) = O(n2).

Memory efficiency. We measure the memory complexity of the D-PCST algorithm as

follows. Each node in the network executes the same D-PCST algorithm. Each node

maintains its own set of variables, consisting of its state (denoted by SN , with possible

values find and found), the state of its component (denoted by CS, with possible values

sleeping, inactive, and active), the state of the adjacent edges (two variables denoted by

ES and EPM : the possible values of ES are basic, branch, reject , and refind ; the possible

values of EPM are true and false), and a constant number of other variables, each of which

is polynomially bounded in n. Note that except the state variables of the incident edges,

the number of other state variables is constant. Regarding the incident edges, since ES

has four possible states, two bits suffice to represent them. Similarly, one bit is sufficient

to represent all states of the boolean variable EPM . Therefore, three bits are required to

store all state values of an incident edge. This implies that O(∆) bits are sufficient to store

all state values for all incident edges (assuming ∆ is the maximum degree of a node in the

network). Furthermore during the execution of the algorithm large degree nodes may receive

messages from all of their neighbors in a round. This ensures that the memory requirement

is O(∆ log n) bits per node. As usual we do not count the amount of memory required to

store the input data (node’s ID and prize value, and weights of incident edges). Regarding

message size, each message consists of at most four parameters, each of which is either a

node ID or an edge weight or a combination of a constant number of IDs and weights, or a

boolean variable; each can be represented by O(log n) bits. Since the number of parameters

in each message is constant, the maximum message size is O(log n) bits. Therefore, the

111

Primal-dual based distributed approximation algorithm for PCST

overall amount of working memory required by a node is O(∆ log n) bits.

Deadlock freeness. The D-PCST algorithm does not suffer from any deadlock. Consider

the case of merging of two neighboring components, say C and C ′. This is the only case

where a component needs to wait for another component to proceed further. Assume that

the component C sends 〈connect〉 to a neighboring component C ′ for merging. Upon

receiving 〈connect〉, if CS (C ′) = inactive then C ′ immediately replies back 〈accept〉 to C .

If CS (C ′) = sleeping , then it first changes CS (C ′) to active and then finds its ε(C ′) and

depending on ε(C ′) it replies back 〈accept〉 or 〈refind epsilon〉 to C . Since C ′ does not

depend on any event for finding its ε(C ′), C ′ can response to C within a finite units of time.

This guarantees that there is no communication deadlock between C ′ and C . Furthermore,

in the D-PCST algorithm, parallel merging is not allowed; at a time at most one merging

happens between two distinct components. This ensures the deadlock freeness of D-PCST

algorithm.

5.5.1 Distributed Preservation of Dual Constraints

During the execution of the D-PCST algorithm whenever an active component Ca merges

with an inactive component Ci then only the dual variable yCa is updated and yCi remains

the same. In this case the preservation of dual packing constraints is obvious since yCa is

effected by the value |ε(Ca)| only which is computed by the component yCa itself. Similar

argument holds whenever an active component decides to deactivate itself. However, there

is a more involvement of how a sleeping component computes the values of its dual variables

whenever it receives a connect or proceed request from a neighboring component and still

preserves dual packing constraints in distributed way. Towards this we prove the following

lemma.

Lemma 5.5.8. If CS (C) = sleeping and it receives a 〈connect(v ,W (C ′), dv)〉 or 〈proceed(dv)〉
over an edge e from a node v ∈ C ′ where C ′ is a neighboring component of C then both

C and C ′ correctly compute their local variables without violating any of the dual packing

constraints.

Proof. Since CS (C) = sleeping , C is a single node component. Let it be {u}. If u receives

〈connect(v ,W (C ′), dv)〉 from a node v ∈ C ′ over the edge e then first C becomes active

and then u initializes each of its local variables du and W (C) to dv . W (C) = dv indicates

112

Proof of Correctness

that the implicit variable yC is temporarily initialized to dv. After that u computes ε(C) as

follows:

εe =
we − du − dv

2
ε2 (C) =TP(C)−W (C) = pu −W (C)

and ε(C) = min(εe , ε2 (C)). Now there are four possible cases we discuss below. For each

case, with the help of the local information we show that dual packing constraints are pre-

served in distributed way without having the global knowledge of the graph.

Case 1: ε(C) = εe < 0. This condition indicates that the dual edge packing constraint∑
A:e∈δ(A) yA ≤ we is violated on edge e. More specifically dual variables yC and yC ′ are

excessively increased by |ε(C)| = |ε(C ′)|. To ensure that the dual edge packing constraint

remains tight while C and C ′ merge, the excess value |ε(C)| must be deducted from each of

the dual variables yC and yC ′ . The implicit variables yC and yC ′ are updated to yC − |ε(C)|
and yC ′ − |ε(C ′)| respectively. Also each node v ∈ C ∪ C ′ updates its local variables dv and

W (C ∪ C ′) to dv − |ε(C)| and W (C) + W (C ′)− 2 |ε(C)| respectively. Case 1 is pictorially

shown in Figure 5.1.

Case 2: ε(C) = εe and ε(C) ≥ 0. This ensures that at most ε(C) can be added to

both the dual variables yC and yC ′ without violating the dual edge packing constraint∑
A:e∈δ(A) yA ≤ we for edge e. Therefore the components C and C ′ merge through the edge

e and form a bigger component C ∪ C ′. Each node v ∈ C ∪ C ′ updates its local variables dv

and W (C ∪ C ′) to dv + ε(C) and W (C) + W (C ′) + 2 ε(C) respectively. Also the implicit

variables yC and yC ′ are updated to yC + ε(C) and yC ′ + ε(C ′) respectively. Note that here

ε(C) = ε(C ′). Case 2 is pictorially shown in Figure 5.2.

Case 3: ε(C) = ε2 (C) and ε(C) < 0. In this case the dual variable yC for the component C

is excessively increased by |ε(C)| and this indicates that the dual penalty packing constraint∑
A⊆C yA ≤

∑
v∈C pv is violated at C . Therefore yC = yC − |ε2 (C)| and it ensures that the

dual penalty packing constraint for the component C is not violated and becomes tight.

Node u ∈ C updates its local variables du and W (C) to du − |ε(C)| and W (C)− |ε(C)|
respectively. The values of all the variables in C ′ remain the same. Case 3 is pictorially

shown in Figure 5.3.

113

Primal-dual based distributed approximation algorithm for PCST

vv2 u

v3

v1

e

C ′

C

yC ′

yC

dv du

|ǫ(C)| |ǫ(C ′)|

branch edge
active or sleeping component

(a)

vv2 u

v3

v1

e

C

C ′

yC ′ yC
du

dv

(b)

Figure 5.1: A case of ε(C) = εe < 0. (a) state before merging of components C ′ and C . C ′

sends a connection request to C (a sleeping component) to merge with it. A lightly dotted circle
depicts the current values of some variables corresponding to a component or a sub-component.
The initial values of the dual variables yC and y ′C are du and dv respectively. (b) state after
merging. The dual variables yC and y ′C are updated to yC − |ε(C)| and yC ′ − |ε(C ′)| respec-
tively. Also each node v ∈ C ∪ C ′ updates its local variables dv and W (C ∪ C ′) to dv − |ε(C)|
and W (C) + W (C ′)− 2 |ε(C)| respectively.

v2 v u

v3

v1

e

C ′

dv

ǫ(C)ǫ(C ′)

du

yCyC ′

C

(a)

v2 v u

v3

v1

C ′

e

C

yC

dv du

ǫ(C)ǫ(C ′)

yC ′

(b)

Figure 5.2: A case of ε(C ′) = ε(C) ≥ 0. (a) state before merging of components C ′ and C . C ′

sends a connection request to C to merge with it. The initial values of the dual variables yC and
y ′C are du and dv respectively. (b) state after merging. The dual variables yC and y ′C are updated
to yC + ε(C) and yC ′ + ε(C ′) respectively. Also each node v ∈ C ∪ C ′ updates its local variables
dv and W (C ∪ C ′) to dv + ε(C) and W (C) + W (C ′) + 2 ε(C) respectively.

114

Proof of Correctness

v2 v u

v3

v1

e

C ′

du

|ǫ2(C)|

|ǫ1(C)|

|ǫ1(C ′)|
yC

dv

yC ′

C

p(u)

(a)

v2 v u

v3

v1

C ′

C

yC

du

inactive component

dv

yC ′

e

p(u)

(b)

Figure 5.3: A case of ε(C) = ε2 (C) ≤ 0. (a) state before the deactivation of components C .
C ′ sends a connection request to C to merge with it. The initial values of the dual variables yC
and y ′C are equal to the values of du and dv respectively. (b) state after deactivation. The dual
variables yC is updated to yC − |ε(C)|, and y ′C and dv remain the same. Also du is updated to
du = du − |ε(C)|.

Case 4 : ε(C) = ε2 (C) ≥ 0 . This indicates that at most ε(C) can be added to the

dual variable yC in component C without violating the dual penalty packing constraint∑
A⊆C yA ≤

∑
v∈C pv . The node u ∈ C updates its local variables du and W (C) to du + ε(C)

and W (C) + ε(C) respectively. The values of all the variables in C ′ remain the same. This

case is pictorially shown in Figure 5.4.

Therefore whenever an active component C ′ sends a connect request to a sleeping com-

ponent C then both C ′ and C correctly compute their local variables in a distributed way

without violating any of the dual packing constraints.

Similarly if a node u receives 〈proceed(dv)〉 from a node v ∈ C ′ over an edge e then first

C = {u} becomes active and then u initializes each of its local variables du and W (C) to dv .

Note that if a component receives a 〈proceed〉 then by Property 1 the state of each component

in its neighborhood is either sleeping or inactive. This implies that CS (C ′) = inactive. Let

e ′ ∈ δ(C) be the MEOE of C which connects to a node w ∈ Cp 6= C . Considering dw = du ,

115

Primal-dual based distributed approximation algorithm for PCST

v2 v u

v3

v1

C ′

yC

du

ǫ1(C
′)

ǫ2(C)

ǫ1(C)
dv

yC ′

C
e

p(u)

(a)

v2 v u

v3

v1

C ′

du

yC

ǫ2(C)

C

dv

yC ′

e

p(u)

(b)

Figure 5.4: A case of ε(C) = ε2 (C) ≥ 0. (a) state before the deactivation of components C . C ′

sends a connection request to C to merge with it. The initial values of the dual variables yC and
y ′C are du and dv respectively. (b) state after the deactivation. yC is updated to yC + ε2 (C), and
y ′C and dv remain the same. Also du is updated to du = du + ε2 (C).

C computes its ε(C) as follows:

ε1(C) =

{
we′−du−dw

2
, if CS (Cp) = sleeping

we′ − du − dw , if CS (Cp) = inactive

ε2 (C) = TP(C)−W (C) = pu −W (C)

and ε(C) = min(ε1 (C), ε2 (C)). Now following the same way as we have shown for the

case of receiving 〈connect〉, it can be shown that upon receiving 〈proceed(dv)〉, C correctly

computes each of its local variables without violating any of the dual packing constraints.

5.5.2 Performance of the D-PCST Algorithm

We claim that the approximation factor achieved by the D-PCST algorithm is (2 − 1
n−1

)

of the optimal (OPT). This can be proved from the facts that dv =
∑

A:v∈A yA for each

node v ∈ V and W (C) =
∑

A⊆C yA for each component C. Let OPTLP and OPTIP be the

optimal solutions to (LP) and (IP) of the PCST problem respectively. Then it is obvious

that
∑

A⊂V yA ≤ OPTLP ≤ OPTIP . We claim the following theorem for the approximation

factor.

116

Proof of Correctness

Theorem 5.5.9. D-PCST algorithm selects a set of edges F ′ and a set of vertices X such

that ∑
e∈F ′

we +
∑
v∈X

pv ≤
(

2− 1

n− 1

)∑
A⊂V

yA ≤
(

2− 1

n− 1

)
OPTIP (5.1)

where n = |V | and OPTIP is the optimal solution to the IP of the PCST.

Proof. The proof of the above theorem is inspired by the proof of the approximation ratio of

the GW-algorithm [58]. Note that the GW-algorithm is a sequential algorithm and achieved

an approximation ratio
(
2− 1

n−1

)
of the optimal. However, in our proposed algorithm certain

modifications have been made in order to preserve dual packing constraints in a distributed

way as it is shown in Lemma 5.5.8 and still we achieve the same approximation factor as

that of the GW-algorithm.

In the construction of F ′ if a node v ∈ V is not covered by F ′ then v must be-

long to some component deactivated at some point of execution of the algorithm. Let

K = {D1 ,D2 , ...,Dz} is the set of deactivated components whose nodes are not covered by

F ′. Therefore K can be considered as a set of disjoint subsets of vertices and each subset

is some Dj for j : 1 ≤ j ≤ z. Since each Dj is a deactivated component, it follows that∑
A⊆Dj

yA =
∑

v∈Dj
pv . For each edge e ∈ F ′ it also follows that

∑
A:e∈δ(A) yA = we and this

implies
∑

e∈F ′ we =
∑

e∈F ′
∑

A:e∈δ(A) yA. Putting these in the inequality (5.1) we get

∑
e∈F ′

∑
A:e∈δ(A)

yA +
∑
j

∑
A⊆Dj

yA ≤
(

2− 1

n− 1

)∑
A⊂V

yA (5.2)

The first and second terms in the left hand side of the above inequality correspond

to the Steiner part and Penalty part of the PCST respectively. Note that the pruning

phase of the algorithm enhances the PCST result computed in the growth phase of the D-

PCST-algorithm. Therefore pruning phase, if possible, improves the approximation factor

and in the worst-case it would be same as that of the result of the PCST computed in

the growth phase. These facts ensures that the approximation factor computed just after

the termination of the growth phase is the overall approximation factor of the D-PCST

algorithm. Note that the termination of the pruning phase ensures the overall termination

of the D-PCST algorithm.

Let F = {Cr,C1,C2, . . . ,Ck} be the set of components when the growth phase of the

algorithm terminates; here Cr is the root component and all others are non-root components.

Also assume that F is the set of branch edges in F. Note that after the termination of the

117

Primal-dual based distributed approximation algorithm for PCST

pruning phase, F ′ ⊆ F is the set of branch edges finally remains in the Steiner part of the

PCST. Let C = (V,E) be any component in F. During the growth phase C consists of a

set of disjoint sub-components, say {C1 ,C2 , . . . ,Cb}. Then the following inequality always

holds for any component C ∈ F.

∑
e∈E

∑
A:e∈δ(A)

yA +
∑
j

∑
A⊆Cj

yA ≤
(

2− 1

n− 1

)∑
A⊆C

yA (5.3)

Where Cj ∈ C is some component deactivated at some point of the time of execution

and later joined the component C. Now it can be shown by the method of induction that

for each ε(C) ≥ 0 computed by an active component C ∈ C, the inequality (5.3) always

holds. Note that if ε(C) ≥ 0 then we assume that each of the dual variables yC for C ⊆ C is

implicitly increased by an amount of ε(C). On the other hand ε(C) < 0 indicates that the

value |ε(C)| is infeasible and is not considered as a value for any dual variable. However in

case of ε(C) < 0, the value of |ε(C)| is used to preserve the dual variables associated with

it in distributed way as we have shown in the Subsection 5.5.1.

At the beginning of the growth of the component C the inequality (5.3) holds since E = ∅,
yC = 0 for each single node component C in C. Now we prove the induction hypothesis for

any instance of the growth phase of the component C. Before that the sub-components of

C are categorized into two types of components namely type A and type I as follows:

• A component C ∈ C is of type A if CS (C) = active or CS (C) = sleeping .

• A component C ∈ C is of type I if CS (C) = inactive.

The type of a component C is denoted by type(C).

Consider an instance of the growth phase in which C ⊆ C is an active sub-component.

At this point of execution of the algorithm the leader of the component C computes its

ε(C) to take further actions of the algorithm. Now we construct a special graph termed as

H = (V ′, E ′) as follows. The set of sub-components of C is considered as the set of vertices

V ′ of H. The set of edges is E ′ = {e ∈ δ(C ′) ∩ E : C ′ ⊆ C ∧ type(C ′) = A}. All isolated

vertices of type I are discarded from the graph H. Let NA denotes the set of vertices of

type A, NI denotes the set of vertices of type I, and ψv denotes the degree of a vertex v in

graph H. For ε(C) > 0, maximum increment in the left hand side of the inequality (5.3) is∑
v∈NA

ε(C)ψv. On the other hand, the maximum increment in the right hand side of the

inequality is (2− 1
n−1

)
∑

v∈NA
ε(C). Therefore we can write,

118

Proof of Correctness

∑
v∈NA

ε(C)ψv ≤
(

2− 1

n− 1

)∑
v∈NA

ε(C)

Rewriting the left hand side of the above inequality in terms of NA and NI we get∑
v∈NA

ψv ≤
∑

v∈NA∪NI

ψv −
∑
v∈NI

ψv (5.4)

We know that the sum of degrees of all the vertices of a graph of m edges is 2 ×m. Since

H is a tree, the total number of edges in H is |NA ∪ NI | − 1. Furthermore, since all the

vertices in graph H are connected, therefore the sum of degrees of type I vertices in H is

at least |NI |. Using these facts in the inequality (5.4) we get∑
v∈NA

ψv ≤ 2
(
|NA ∪ NI | − 1

)
− |NI |

=2
(
|NA|+ |NI | − |NA ∩ NI | − 1

)
− |NI |

Since NA and NI are disjoint, |NA ∩NI | = |∅| = 0. Therefore,∑
v∈NA

ψv ≤ 2
(
|NA|+ |NI | − 1

)
− |NI |

= 2
(
|NA| − 1

)
+ |NI |

Again note that if C 6= Cr then the number of components of type I can be zero, i.e.,

|NI | = 0. In this case all nodes in graph H are of type A which indicates that each of the

degrees of vertices in graph H is increased by an amount of ε(C). Therefore the following

inequality holds.

∑
v∈NA

ψv ≤ 2(|NA| − 1) =

(
2− 2

|NA|

)
|NA| ≤

(
2− 2

n− 1

)
|NA| (5.5)

The inequality (5.5) holds since the total number of type A components in graph H is at

most n− 1 for a graph with n nodes, i.e. |NA| ≤ n− 1. On the other hand if C = Cr then

C contains at least one component of type I. Therefore we get

∑
v∈NA

ψv ≤ 2|NA| − 1 =

(
2− 1

|NA|

)
|NA| ≤

(
2− 1

n− 1

)
|NA| (5.6)

119

Primal-dual based distributed approximation algorithm for PCST

The inequalities (5.5) and (5.6) together guarantee the correctness of the inequality (5.3)

for any component C ∈ F. If we sum up the inequalities of all the components in F then

it is clear that (5.2) always holds in G. Note that after the termination of the growth

phase the application of the pruning phase on F enhances the PCST result producing the

final PCST (F ′,X). Therefore the D-PCST-algorithm achieves an approximation factor of(
2− 1

n−1

)
.

5.6 Fast PCST construction

In this section we modify the D-PCST algorithm and show that the modified algorithm

can compute a (2 − 1
n−1

)-approximate PCST using O(Dn) rounds and O(mn) messages

with a memory requirement of O(∆ log n) bits per node. For networks with constant or

small unweighted diameter (D = o(n)), the modified D-PCST algorithm performs better

than the original D-PCST algorithm in terms of the round complexity. The correctness

of the approximation factor of the modified D-PCST algorithm directly follows from the

correctness of the original D-PCST algorithm.

In the modified D-PCST algorithm we assume that there exists a BFS tree Tr of the

input graph G rooted at r, the root of the PCST (here any node can be considered as a root

of the BFS tree, however for simplicity we assume r). Note that such a tree is not considered

in the original D-PCST algorithm. Also note that a rooted BFS tree can be deterministically

computed using O(D) rounds and O(m) messages in the CONGEST model [114].

Overview of the modified D-PCST algorithm. Similar to the original D-PCST algo-

rithm, the modified D-PCST algorithm also consists of two phases: growth and pruning.

Recall that the growth phase of the original D-PCST algorithm performs a number of calls

to proc initiate() method. The proc initiate() method is essentially a combination of broad-

cast and convergecast. Using an improved broadcast and convergecast technique, we achieve

an improved proc initiate() method which is used by the modified D-PCST algorithm. The

pruning phase of the modified D-PCST algorithm is performed by applying a procedure

called strong pruning due to Johnson et al. [72].

Each proc initiate() method computes ε(C) and MEOE (C) for a component C and

performs one of the operations: merging, deactivation, proceed, back. By leveraging on Tr,

the modified D-PCST algorithm performs a proc initiate() method using O(D) rounds. The

leader of a component C initiates the proc initiate() method by sending an 〈initiate〉 to r

120

Fast PCST construction

by using Tr. Upon receiving an 〈initiate〉 message, r applies a broadcast and convergecast

over Tr to compute ε(C) and MEOE (C). Since the height of Tr is at most D, a broadcast

and convergecast takes O(D) rounds. Based on the state of C and the value of ε(C), r

decides to perform one of the operations: merging, deactivation, proceed, back. Node r can

perform each such operation by applying a broadcast over Tr using O(D) rounds. Therefore

it is clear that the overall round complexity of a proc initiate() method in the modified

D-PCST algorithm is O(D).

Size of C2 is O(n)

Component edge
Graph edge

C1

C2

BFS edge

h
ei
g
h
t
of

th
e
B
F
S
tr
ee

r

Size of C1 is O(n)

Figure 5.5: A case of merging of two components C1 and C2 where each component has a size of
O(n); the original D-PCST algorithm takes O(n) rounds for merging whereas the modified D-PCST
algorithm performs the same using O(h) rounds.

On the other hand a proc initiate() method in the original D-PCST algorithm may

require O(n) rounds. For clarity consider a pictorial representation of a merging operation

which is depicted in Figure 5.5. The component C1 (of size O(n)) decides to merge with a

neighboring component C2 (of sizeO(n)). After merging, the size of the resultant component

C1 ∪ C2 becomes O(n). In merging operation, each node in C1 ∪ C2 updates its local

information as per the new component C1 ∪ C2 . Note that C1 ∪ C2 is a tree structure

whose height can be O(n). The original D-PCST algorithm applies a broadcast using

the tree embedding of C1 ∪ C2 to update the local information in each node of C1 ∪ C2 .

Therefore for components with size O(n), the merging operation in the original D-PCST

algorithm requires O(n) rounds. However the modified D-PCST algorithm can perform the

same using O(h) rounds by leveraging on a BFS tree Tr as shown in Figure 5.5, where h is

the height of the BFS tree and h ≤ D. Similarly we claim that each of the other operations

121

Primal-dual based distributed approximation algorithm for PCST

of the proc initiate() method in the modified D-PCST algorithm can be performed using

O(h) rounds.

5.6.1 Properties of the modified D-PCST algorithm

Let Tv denotes a subtree of Tr rooted at v. In addition to the notations defined in section 5.4,

in this subsection, we use the following notation.

• bfs child(v) denotes the set of child nodes of a node v w.r.t. Tr.

• bfs π(v) denotes the parent of a node v in Tr.

• ε1 (Tv) = min{ε1 (v),min{ε1 (Tu) | u ∈ bfs child(v)}}.

• MEOE (Tv) denotes the edge which gives ε1 (Tv).

• P(Tv) =
∑

v∈Tv∩C
pv . If Tv ∩ C = φ, P(Tv) =0.

Lemma 5.6.1. Let Tr be a BFS tree of the input graph G rooted at the special node r. Then

for a component C , r can compute ε(C) and MEOE (C) using O(D) rounds and O(m)

messages.

Proof. In the modified D-PCST algorithm, the leader L(C) of the component C trig-

gers a proc initiate() method by sending an 〈initiate(L(C),W (C), CS(C))〉 message to

bfs π(L(C)). Upon receiving 〈initiate(L(C),W (C), CS(C))〉, a node v simply forwards it to

bfs π(v). In this way eventually node r receives 〈initiate(L(C),W (C), CS(C))〉. Now node

r broadcasts the message 〈initiater(L(C),W (C), CS(C))〉 over Tr (〈initiater〉 indicates that

the message is sent by r). Whenever a leaf node v in Tr receives 〈initiater(L(C),W (C),

CS(C))〉, it performs the following.

• if v ∈ C then it computes ε1 (v) as described in Subsection 5.4.2 and sends a message

called 〈report(v , pv , ε1 (v),MEOE (v)〉 to bfs π(v). Note that each v ∈ C knows L(C)

and bfs π(v).

• if v /∈ C then it simply sends 〈report(v , 0 ,∞, nill〉 to bfs π(v).

Each internal node in Tr waits to arrive 〈report(u,P(Tu), ε1 (Tu),MEOE (Tu))〉 from

each node u in bfs child(v). If v ∈ C is an internal node in Tr then it computes ε1 (v),

122

Fast PCST construction

P(Tv) = pv +
∑

u∈bfs child(v) P(Tu), and MEOE (v). On the other hand if v /∈ C is an inter-

nal node in Tr then ε1 (v) =∞, P(Tv) =
∑

u∈bfs child(v) P(Tu), and MEOE (v) = nill. After

receiving 〈report〉 from all of its child nodes, an internal node v computes ε1 (Tv) = min{ε1 (v),

min{ε1 (Tu) | u ∈ bfs child(v)}} and P(Tv) and then sends a 〈report(v ,P(Tv), ε1 (Tv),

MEOE (Tv))〉 message to bfs π(v). In this way r eventually receives 〈report〉 messages from

all of its child nodes and computes ε1 (C) and MEOE (C). Now node r can also compute

ε2 (C) = P(Tr)−W (C) and ε(C) = min{ε1 (C), ε2 (C)}. Since the height of Tr can be at

most D, for a component C , r can compute ε(C) and MEOE (C) using O(D) rounds.

Note that during the computation of ε1 (v) and MEOE (v), each node v sends one 〈test〉
message and receives either 〈status〉 or 〈reject〉 on each of the edges in δ(v) ∩ δ(C) (the

detailed description can be found in Subsection 5.4.2). If we consider all the edges in δ(C)

then |δ(C)| = O(m) in the worst-case. Therefore O(m) messages are generated due to

〈test〉, 〈status〉, and 〈reject〉. Other messages, which are related to the computation of

ε(C) and MEOE (C) are 〈initiate〉 and 〈report〉. These two messages are sent over the

edges of Tr only. On each edge e of Tr, 〈initiate〉 message is sent at least once and at most

twice. It is at least once because r broadcasts 〈initiate〉 message over Tr. If e is on the path

between L(C) and r then another 〈initiate〉 message is sent over e. The 〈report〉 message

is used for convergecast process over Tr. During the computation of ε(C) and MEOE (C)

exactly one convergecast of 〈report〉 message is performed. This ensures that exactly one

〈report〉 message is sent over each edge in Tr. Since Tr has n − 1 edges, in the worst-case,

O(n) messages are generated due to 〈initiate〉 and 〈report〉 during the computation of ε(C)

and MEOE (C). Therefore total messages generated during the computation of ε(C) and

MEOE (C) is O(m+ n). Since the given input graph G is connected, m ≥ n− 1. Therefore

O(m+ n) = O(m).

Based on the state of C and the value of ε(C), node r triggers one of the following

operations.

• Merging: if CS (C) = active and ε(C) = ε1 (C).

• Deactivation: if CS (C) = active and ε(C) = ε2 (C).

• Proceed: if CS (C) = inactive and there exists at least one active neighboring compo-

nent of C .

• Back: if CS (C) = inactive and there exists no active neighboring component of C .

123

Primal-dual based distributed approximation algorithm for PCST

Claim 5.6.1. Let the root r of the BFS tree Tr knows MEOE (C) = (u, v), where u ∈ C , v ∈ C ′

and C 6= C ′. Then node r can find CS (C ′), W (C ′), and L(C ′) using O(D) rounds and O(n)

messages.

Lemma 5.6.2. Let Tr be a BFS tree of the input graph G rooted at the special node r. Then

the merging operation can be performed using O(D) rounds and O(n) messages.

Proof. Since it is a merging operation, CS (C) = active and ε(C) = ε1 (C). Suppose C

merges with C ′ through MEOE (C) = (u, v). Now node r performs the followings.

• It selects the node with the larger ID between u and v as the leader L(C ′′) of the

resultant component C ′′ = C ∪ C ′.

• If C ′ is active then W (C ′′) = W (C) + W (C ′) + 2ε(C). On the other hand if C ′ is

inactive then W (C ′′) = W (C) + W (C ′) + ε(C).

After that node r broadcasts a message called 〈merge(L(C),L(C ′),L(C ′′), ε(C),W (C ′′),

MEOE (C))〉 over Tr. From the received message 〈merge(L(C),L(C ′),L(C ′′), ε(C),W (C ′′),

MEOE (C)), a node can easily verify whether it belongs to C ′′ or not. A node verifies it

by comparing its current leader ID with the received parameters L(C) and L(C ′). Upon

receiving 〈merge(L(C),L(C ′),L(C ′′), ε(C),W (C ′′),MEOE (C)), a node v forwards 〈merge〉
to all of its child nodes (if any) in the Tr. However if v ∈ C ′′ then it also performs the

following operations.

• it joins the new component C ′′ by updating the leader information to L(C ′′).

• it updates the local variables dv and Wv as per the rules described in the original

D-PCST algorithm.

• if MEOE (C) ∈ δ(v) then it sets ES (MEOE (C)) to branch.

• if v ∈ C ′ and the local variable CS = inactive then v locally sets CS to active.

Since the broadcast of 〈merge〉 message over Tr takes h rounds, where h is the height of

Tr and h ≤ D , the round complexity of merging operation is O(D). Similarly since 〈merge〉
message is sent once on each edge of Tr, the message complexity of the merging operation

is O(n).

124

Fast PCST construction

By leveraging on Tr, the deactivation of a component C can be performed as follows.

• node r broadcasts a message called 〈deactivate(L(C), ε(C))〉 over Tr.

• if v ∈ C then it performs the following.

– it updates the local variables dv to dv + ε(C) and Wv to Wv + ε(C).

– it sets the local variable CS to inactive.

Since the height of Tr can be at most D, the deactivation requires O(D) rounds. Fur-

thermore the 〈deactivate〉 message is sent once on each edge of Tr. This ensures that the

message complexity of a deactivation of a component is O(n). Therefore we claim the

following lemma.

Lemma 5.6.3. Let Tr be a BFS tree of the input graph G rooted at the special node r. Then

the deactivation of a component can be performed using O(D) rounds and O(n) messages.

Note that if CS (C) is inactive and ε1 (C) 6=∞ then r performs a proceed operation. In

proceed operation r sends a 〈proceed〉 message to a node L(C ′), where MEOE (C) = (u, v),

u ∈ C and v ∈ C ′ such that C 6= C ′. It is obvious that by leveraging on Tr, node r can

send 〈proceed〉 to L(C ′) using O(D) rounds and O(D) messages. Therefore the following

lemma holds.

Lemma 5.6.4. Let Tr be a BFS tree of the input graph G rooted at the special node r. Then

the proceed operation can be performed using O(D) rounds and O(D) messages.

If C 6= Cr (Cr is the root component) is an inactive component and ε1 (C) = ∞ then

r performs a back operation. In back operation r sends a 〈back〉 message to a node which

sends a 〈proceed〉 to C or a subcomponent of C . Whenever a node sends a 〈proceed〉 message

to a node, it remembers the time of sending by using a time stamp. By applying a broadcast

and convergecast over Tr, r can find the node v with the earliest time stamp in the network.

This can be performed using O(D) rounds and O(n) messages. After that r can send 〈back〉
to v by using Tr. This can be performed using O(D) rounds. It is obvious that the back

operation can be performed using O(D) rounds and O(n) messages. Therefore we claim the

following lemma.

Lemma 5.6.5. Let Tr be a BFS tree of the input graph G rooted at the special node r. Then

the back operation can be performed using O(D) rounds and O(n) messages.

125

Primal-dual based distributed approximation algorithm for PCST

Note that each proc initiate() method consists of finding ε(C), MEOE (C) and one of

the operations: merging, deactivation, proceed, back. Lemma 5.6.1 ensures that finding of

ε(C) and MEOE (C) can be accomplished using O(D) rounds and O(m) messages. It is

obvious from Lemma 5.6.2, Lemma 5.6.3, Lemma 5.6.4, and Lemma 5.6.5 that each of the

operations (merging, deactivation, proceed, and back) can be performed using O(D) rounds

and O(n) messages. Therefore the following theorem holds.

Theorem 5.6.6. The modified D-PCST algorithm performs a proc initiate() method using

O(D) rounds and O(m) messages.

Theorem 5.6.7. The growth phase of the modified D-PCST algorithm can be performed

using O(Dn) rounds and O(mn) messages.

Proof. Until the termination of the growth phase, the modified D-PCST algorithm generates

the same number of calls to the proc initiate() method as that of the original D-PCST

algorithm. Therefore by using the Lemma 5.5.3 we claim that in the worst-case, the modified

D-PCST algorithm generates O(n) number of proc initiate() method. Theorem 5.6.6 ensures

that each such proc initiate() method can be performed using O(D) rounds and O(m)

messages. Since the modified D-PCST algorithm generates O(n) number of proc initiate()

method, this guarantees that the overall round and message complexities of the growth

phase of the modified D-PCST algorithm are O(Dn) and O(mn) respectively.

If ε1 (Cr) = ∞ then r performs a pruning operation. Node r can perform the pruning

operation by broadcasting a 〈prune〉 message over Tr. Note that each node in the network

receives a 〈prune〉message after O(h) rounds. This generates n−1 messages. Upon receiving

a 〈prune〉 message, a node v /∈ Cr prunes itself by setting all of its incident edges to basic.

Such a node is included in the Penalty part of the PCST.

Note that Cr is a tree structure rooted at r. Therefore in Cr pruning can be performed

by applying a procedure called strong pruning introduced by Johnson et al. [72]. The strong

pruning works as follows. It starts at the leaf nodes of the tree rooted at r. Suppose nw(v)

denotes the sum of prizes of all nodes minus the sum of weights of all the edges in a subtree

rooted at v. Initially nw(v) = pv for each node v in the input tree. At the beginning each

leaf node v sends its nw(v) to its parent u. Upon receiving nw(v), u evaluates the condition

w(u,v) ≥ nw(v). If this condition holds then u removes the edge (u, v) and the subtree rooted

at v from the Steiner part. The prizes of all the nodes in the subtree rooted at v contribute

126

Summary

to the Penalty part of the PCST. On the other hand if w(u,v) < nw(v) then u updates nw(u)

to nw(u) + nw(v) − w(u,v). Once u performs the above procedure for all of its children, it

reports the resultant nw(u) to its parent. This principle is recursively followed by each node

in the tree. In the worst-case, strong pruning generates at most n− 1 messages. Therefore

it has a message complexity of O(n). Considering every message arrives in one unit of time,

the total time taken by the strong pruning is the height of the tree. Since the height of a

tree can be at most n − 1, the round complexity of the strong pruning is O(n). Therefore

the following theorem holds.

Theorem 5.6.8. The pruning phase of the modified D-PCST algorithm can be performed

using O(n) rounds and O(n) messages.

Recall that the modified D-PCST algorithm consists of two phases: growth and prun-

ing. It is clear from the Theorem 5.6.7 and Theorem 5.6.8 that the overall round and

the message complexities of the modified D-PCST algorithm are dominated by the growth

phase. Therefore we claim that the modified D-PCST algorithm deterministically computes

a (2− 1
n−1

)-approximate PCST using O(Dn) rounds and O(mn) messages in the CONGEST

model of distributed computing.

5.7 Summary

In this chapter we have proposed two algorithms for the PCST problem in the CONGEST

model. First we have proposed D-PCST, a deterministic distributed algorithm that com-

putes a PCST using O(n2) rounds and O(mn) messages. The second one is a modification of

the first one which computes a PCST using O(Dn) rounds and O(mn) messages. Both the

algorithms achieve an approximation factor of
(
2− 1

n−1

)
. The proposed algorithms are based

on the idea of preserving dual constraints in a distributed manner without relying on the

knowledge of the global structure of the network. Both the algorithms require O(∆ log n)

bits of memory in each node.

5.A An illustrative example of the D-PCST algorithm

In this section we explain the working principle of the D-PCST algorithm with an example.

Figure 5.6 illustrates the merging of two components. Each node has a prize value

that is shown next to the node. For example, the prize of node v1 is 10. Similarly each

127

Primal-dual based distributed approximation algorithm for PCST

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36
40

30

4050
12

10

20

20

40

W1 = 0 W3 = 0 W4 = 0

W7 = 0

d3 = 0 d4 = 0d1 = 0

d9 = 4

d7 = 0 d8 = 0

d10 = 6

4

W8 = 24

W9 = 24d11 = 0

d6 = 14

W10 = 24 W11 = 0

W6 = 24

20

d2 = 7

d5 = 7 W5 = 14

W2 = 14

v2
10

∗

∗

14 35

sleeping component
inactive component
active component

root componentroot

branch edge

∗ : leader node

(a)

〈C〉 : 〈connect(2, 14, 7)〉

〈C〉

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36
40

30
4050

12

14
10

20

20

40

root component

W3 = 0 W4 = 0

W7 = 0

d3 = 0 d4 = 0

d9 = 4

d7 = 0 d8 = 0

d10 = 6

4

W8 = 24

W9 = 24d11 = 0

d6 = 14

W10 = 24 W11 = 0

W6 = 24

20

v2

d1 = 6 d2 = 6

d5 = 6

W1 = 19

W5 = 19

W2 = 19

10

∗

∗

35

(b)

Figure 5.6: A case of merging operation. (a) state before merging of components {v2, v5} and
{v1}. (b) state after merging.

edge is labelled with an weight. Figure 5.6(a) shows the graph before the merging of two

neighboring components C = {v2 , v5} which is in active state and C ′ = {v1} which is in

sleeping state. The MEOE of the component C is (v2, v1) which gives ε1 (C) = −1 (recall

that ε1 (C) = min
v∈C

{ε1 (v)}). The leader node v5 also computes ε2 (C) = 6 (recall again

that ε2 (C) =
∑

v∈C pv −W (C)). Hence ε(C) = min(ε1 (C), ε2 (C)) = ε1 (C). So v2 sends

〈connect(v2, 14, 7)〉 on the MEOE to merge with C ′. Upon receiving 〈connect(v2, 14, 7)〉, C ′

becomes active and finds ε1 (C ′) = −1, ε2 (C ′) = 3, and (v1, v2) is the MEOE. Therefore

ε(C ′) = ε1 (C ′) = −1 and it decides to merge with C. The new active component {v1, v2, v3}
is shown in Figure 5.6(b). The rectangular box below the graph shows the values of local

variables di and Wi for each vi ∈ V . Here Wi denotes W (C) at node vi ∈ C .

Figure 5.7 shows the deactivation of an active component C = {v7 , v11}. In Figure 5.7(a)

the leader of C finds that its MEOE is (v7, v3) which gives ε1 (C) = 7.5. C also computes its

ε2 (C) which is equal to 3. Since ε(C) = min(ε1 (C), ε2 (C)) = ε2 (C), therefore the compo-

nent C deactivates itself. Each node of C sets its local boolean variable labelled flag = true.

The graph after the deactivation of C is shown in Fig 5.7(b).

Figure 5.8 shows the case of proceed operation. Since the state of the component

C = {v3} is inactive therefore it has to send 〈proceed〉 to one of the neighboribg com-

ponents to take further actions of the algorithm. The MEOE of C is (v3, v4) for which

ε1 (C) = 10. Since C is an inactive component, therefore by Property 2 of the algorithm

it never computes its ε2 (C). The component C sends 〈proceed(15)〉 (denoted by 〈P (15)〉

128

An illustrative example of the D-PCST algorithm

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36
40

30

4050
12

10

20

20

40

root component

W4 = 0d4 = 0

d9 = 4

d8 = 0

d10 = 6

4

W8 = 24

W9 = 24

d6 = 14 W6 = 24

20

v2
10

W5 = 30

W2 = 30W1 = 30d1 = 17 d2 = 17

d5 = 17

5014

∗

∗

∗

d3 = 15 W3 = 15

d7 = 7.5

d11 = 7.5

W7 = 15

W10 = 24 W11 = 15

∗

35

(a)

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36
40

4050
12

10

20

20

40

root component

W4 = 0d4 = 0

d9 = 4 d10 = 6

4

W8 = 24

W9 = 24

d6 = 14 W6 = 24

20

v2
10

W5 = 30

W2 = 30W1 = 30d1 = 17 d2 = 17

d5 = 17

5014

∗

∗

∗

d3 = 15 W3 = 15

W10 = 24

∗

W7 = 18

W11 = 18d11 = 10.5

30

d7 = 10.5 d8 = 0

35

(b)

〈B〉

〈B〉 : 〈back〉

Figure 5.7: A case of deactivation. (a) state before the deactivation of the active component
{v7, v11}. (b) state after the deactivation .

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36
40

4050
12

10

20

20

40

root component

W4 = 0d4 = 0

d9 = 4 d10 = 6

4

W8 = 24

W9 = 24

d6 = 14 W6 = 24

20

v2
10

W5 = 30

W2 = 30W1 = 30d1 = 17 d2 = 17

d5 = 17

5014

∗

∗

∗

d3 = 15 W3 = 15

W10 = 24

∗

W7 = 18

W11 = 18d11 = 10.5

30

d7 = 10.5 d8 = 0

35

(a)

〈P (15)〉 : 〈proceed(15)〉

〈P (15)〉
v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36
40

4050
12

10

20

20

40

root component

d9 = 4 d10 = 6

4

W8 = 24

W9 = 24

d6 = 14 W6 = 24

20

v2
10

W5 = 30

W2 = 30W1 = 30d1 = 17 d2 = 17

d5 = 17

5014

∗

∗

∗

d3 = 15

W10 = 24

∗

W7 = 18

W11 = 18d11 = 10.5

30

d7 = 10.5 d8 = 0

∗

35

(b)

〈C〉 : 〈connect(4, 15, 15)〉

〈C〉

W3 = 15d4 = 15 W4 = 15

Figure 5.8: A case of proceed operation. (a) state of sending 〈proceed(15)〉 by the inactive
component {v3}. (b) state after the component {v4} receives 〈proceed〉.

in the figure) on its MEOE to the component C ′ = {v4} which is shown in Figure 5.8(a).

Upon receiving 〈P 〉, the sleeping component C ′ becomes active and initializes its each of the

local variables d4 and W4 to 15. Since ε(C ′) = ε1 (C ′) = 10, therefore C ′ sends a connection

request to C which is shown in Figure 5.8(b).

Figure 5.9 shows the case of pruning operation performed in all components of the

graph. In Figure 5.9(a), inside each of the non-root inactive components the state of each

branch edge changes to basic. In the root component Cr , nodes v7 and v11 are pruned. The

component C = {v7 , v11} was deactivated at some early stage of the growth phase of the

algorithm. At v11 the local variable prize flag is set to true and ES (v11 , v7) is set to basic.

129

Primal-dual based distributed approximation algorithm for PCST

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36

4050
12

10

20

20

40

root component

d9 = 4 d10 = 6

4

d6 = 14

20

v2
10

d1 = 17 d2 = 17

d5 = 17

5014

∗

∗

30

35

40

d8 = 0d7 = 12

d11 = 12

d3 = 21 d4 = 31

W5 = 30

W2 = 30W1 = 30 W3 = 88 W4 = 88

W6 = 88 W7 = 88 W8 = 88

W9 = 88W10 = 88 W11 = 88

(a)

v4

v1

v3

v5 v6

v7

v8 v9

10

15

15

50

40
5020

10

50 30

10

8
v10
15

80
v11

60

36

4050
12

10

20

20

40

4

20

v2
10

5014

30

35

40

Final PCST :

Steiner part : {(v8, v9), (v9, v10), (v6, v10), (v3, v6), (v3, v4)}
Prize part : {v1, v2, v5, v7, v11}

(b)

Figure 5.9: A case of pruning phase. (a) state before pruning. (b) state after pruning phase
which is the final solution to the PCST. The pruned components are {v1, v2, v5} and {v7, v11}.

Similarly the node v7 and its corresponding adjacent branch edges are also pruned from the

root component. Figure 5.9(b) shows the state of the graph after the completion of the

pruning phase which is the final solution to the PCST.

5.B Pseudo-code of the D-PCST algorithm

D-PCST algorithm for node v upon receiving a message on e ∈ δ(v) or no message

1: upon receiving no message
2: call initialization()
3: if v = r then . Spontaneous awaking of the root node
4: CS ← inactive; root flag ← true; prize flag ← false;
5: call proc initiate()
6: else
7: CS ← sleeping; root flag ← false; prize flag ← true;
8: end if

9: procedure initialization()
10: for each e ∈ δ(v) do
11: ES(e)← basic;EPM(e)← false; . EPM : Edge for Prune Message
12: end for
13: dv ← 0;W ← 0; leader flag ← false; labelled flag ← false;

130

Pseudo-code of the D-PCST algorithm

14: prune msg count ← 0; proceed flag ← false; received ts ←
∞; proceed in edge← ∅;

15: end procedure

16: procedure proc initiate()
17: SN ← find; find count← 0; best epsilon←∞; best edge← ∅;
18: L← v;TP ← 0;PF ← false; back edge← ∅;TS ←∞; . L: Leader node
19: for each e ∈ δ(v) do
20: if ES(e) = branch then
21: send 〈initiate(L, SN)〉 on e
22: find count← find count+ 1; . Count number of 〈initiate〉 that are sent
23: end if
24: end for
25: if SN = find then
26: call proc test()
27: end if
28: end procedure

29: upon receiving 〈initiate(L, S)〉 on edge e
30: SN ← S; find count← 0; best epsilon←∞; best edge← ∅;L← L;
31: TP ← 0;PF ← false; back edge← ∅; in branch← e;
32: for each e′ ∈ δ(v) : e′ 6= e do
33: if ES(e′) = branch then
34: send 〈initiate(L, S)〉 on e′

35: find count← find count+ 1; . Count the number of 〈initiate〉 that are sent
36: end if
37: end for
38: if S = find then
39: call proc test()
40: end if

41: procedure proc test()
42: test count← 0;
43: for each e ∈ δ(v) do
44: if ES(e) = basic or ES(e) = refind then
45: send 〈test(L)〉 on e
46: test count← test count+ 1; . Count the number of 〈test〉 that are sent
47: end if
48: end for
49: end procedure

131

Primal-dual based distributed approximation algorithm for PCST

50: upon receiving 〈test(L′)〉 on edge e
51: if L = L′ then
52: send 〈reject〉 on e
53: else
54: send 〈status(CS, dv)〉 on e.
55: end if

56: upon receiving 〈status(NS, du)〉 on edge e
57: test count← test count− 1;
58: if CS = active and NS = sleeping then
59: ε1 ← we−2dv

2
;

60: else if CS = active and NS = inactive then
61: ε1 ← we − dv − du;
62: else if CS = inactive and NS = sleeping then
63: ε1 ← we − 2dv;
64: else if CS = inactive and NS = inactive then
65: if ES(e) = refind then
66: ε1 ← we − dv − du;
67: else
68: ε1 ←∞;
69: end if
70: end if
71: if ε1 < best epsilon then
72: best epsilon← ε1; best edge← e;
73: end if
74: call proc report()

75: upon receiving 〈reject〉 on edge e
76: test count← test count− 1;
77: ES(e)← rejected;
78: if proceed in edge = e then . The edge e becomes a rejected edge
79: proceed in edge← ∅; proceed flag ← false;
80: end if
81: call proc report()

82: procedure proc report()
83: if find count = 0 and test count = 0 then . Receives responses for each
〈initiate〉 and 〈test〉

84: SN ← found;
85: if CS = active then
86: TP ← TP + pv . TP : (Total Prize) of the subtree rooted at v
87: end if
88: if proceed flag = true then
89: PF ← true;

132

Pseudo-code of the D-PCST algorithm

90: if TS > received ts then
91: TS ← received ts; back edge← ∅;
92: end if
93: end if
94: if in branch 6= ∅ then
95: send 〈report(best epsilon, TP, PF, TS)〉 on in branch
96: else . leader/root node of the component
97: call proc merge or deactivate or proceed()
98: end if
99: end if
100: end procedure

101: upon receiving 〈report(ε1, T, P, temp ts)〉 on edge e
102: find count = find count− 1;
103: if P = true then
104: PF ← true;
105: if TS > temp ts then
106: TS ← temp ts; back edge← e;
107: end if
108: end if
109: if CS = active then
110: TP ← TP + T ;
111: end if
112: if ε1 < best epsilon then
113: best epsilon← ε1; best edge← e;
114: end if
115: call proc report()

116: procedure proc merge or deactivate or proceed()
117: ε1 ← best epsilon
118: if root flag = false and CS = active then
119: ε2 ← TP −W ;
120: if ε1 < ε2 then
121: best epsilon← ε1
122: else
123: best epsilon← ε2
124: end if
125: if best epsilon = ε2 then
126: CS ← inactive; dv ← dv + ε2;W ← W + ε2; labelled flag ← true;
127: deactivate flag ← true; . deactivate flag is a temporary variable
128: send 〈update info(ε2, root flag, deactivate flag,W)〉 on all e ∈ δ(v) such

that ES(e) = branch
129: call proc initiate() . Compute ε1 to send 〈proceed〉

133

Primal-dual based distributed approximation algorithm for PCST

130: else . Start the merge procedure at the leader node
131: if ES(best edge) = branch then
132: send 〈merge(best epsilon)〉 on best edge
133: else
134: send 〈connect(v,W, dv)〉 on best edge;
135: end if
136: end if
137: else if CS = inactive then
138: if (ε1 =∞) then
139: if TS =∞ then
140: if v = r then . Starts of pruning phase at the root node r.
141: for each e ∈ δ(v) do
142: if ES(e) = branch or EPM(e) = true then
143: send 〈prune〉 on e
144: end if
145: if ES(e) = branch then
146: prune msg count← prune msg count+ 1;
147: end if
148: end for
149: end if
150: else . Start of sending 〈back〉
151: if back edge 6= ∅ then
152: send 〈back〉 on back edge
153: else if back edge = ∅ and proceed flag = true then
154: send 〈back〉 on proceed in edge
155: proceed in edge← ∅; proceed flag = false;
156: end if
157: end if
158: else if (ε1 6=∞) then
159: send 〈proceed(dv)〉 on best edge
160: if ES(best edge) = basic then
161: EPM(best edge)← true;
162: end if
163: if ES(best edge) = refind then
164: ES(best edge)← basic;
165: end if
166: end if
167: end if
168: end procedure

169: upon receiving 〈merge(ε)〉 on edge e
170: if ES(best edge) = branch then . Receiving node is an intermediate node
171: send 〈merge(ε)〉 on best edge

134

Pseudo-code of the D-PCST algorithm

172: else . Receiving node is a frontier node
173: send 〈connect(v,W, dv)〉 on best edge;
174: end if

175: upon receiving 〈back〉 on edge e
176: if back edge 6= ∅ then
177: send 〈back〉 on back edge
178: else if back edge = ∅ and proceed flag = true then
179: send 〈back〉 on proceed in edge
180: proceed in edge← ∅; proceed flag = false;
181: else if back edge = ∅ and in branch 6= ∅ then
182: send 〈back〉 on in branch
183: else
184: call proc initiate()
185: end if

186: upon receiving 〈proceed(dk)〉 on edge e
187: if ES(e) = branch and in branch = e then
188: send 〈proceed(dk)〉 on best edge
189: if ES(best edge) = basic then
190: EPM(best edge)← true;
191: end if
192: if ES(best edge) = refind then
193: ES(best edge)← basic;
194: end if
195: else if ES(e) = basic then
196: proceed flag ← true; proceed in edge← e;
197: if CS = sleeping then
198: call wakeup(dk)
199: else if CS = inactive then
200: if in branch 6= ∅ then
201: send 〈proceed(dk)〉 on in branch
202: end if
203: end if
204: else if ES(e) = branch and in branch 6= e then
205: if in branch 6= ∅ then
206: send 〈proceed(dk)〉 on in branch
207: else . Receiving node is the leader node
208: call proc initiate()
209: end if
210: end if

211: procedure wakeup(dk)
212: CS ← active; dv ← dk;W ← dk;

135

Primal-dual based distributed approximation algorithm for PCST

213: call proc initiate()
214: end procedure

215: upon receiving 〈connect(NID,WN, dk)〉 on edge e . NID: Neighbor’s ID,
WN : Weight of Neighboring component

216: if CS = sleeping then
217: CS ← active; dv ← dk;W ← dk;
218: ε1 ← we−dv−dk

2
; ε2 ← pv −W ;

219: if ε1 < ε2 then
220: if v > NID then
221: leader flag ← true;
222: else
223: leader flag ← false;
224: end if
225: dv ← dv + ε1;W ← W +WN + 2× ε1;ES(e)← branch;
226: send 〈accept(leader flag, root flag,W)〉 on e
227: if leader flag ← true then
228: call proc initiate()
229: end if
230: else . ε1 ≥ ε2
231: CS ← inactive;W ← W + ε2; dv ← dv + ε2; labelled flag ← true;
232: send 〈refind epsilon〉 on e
233: end if
234: else if CS = inactive then
235: if root flag = true then
236: leader flag ← true;
237: else
238: CS ← active;
239: if v > NID then
240: leader flag ← true;
241: else
242: leader flag ← false;
243: end if
244: end if
245: ε1 = we − dv − dk;W ← W +WN + ε1;
246: deactivate flag = false; . deactivate flag is a temporary variable
247: send 〈update info(0, root flag, deactivate flag,W)〉 on all e′ ∈ δ(v) : e′ 6= e

and ES(e′) = branch
248: ES(e)← branch;
249: send 〈accept(leader flag, root flag,W)〉 on e;
250: if (leader flag = true) then
251: call proc initiate()
252: end if
253: end if

136

Pseudo-code of the D-PCST algorithm

254: upon receiving 〈refind epsilon〉 on edge e
255: if ES(e) = basic then
256: ES(e)← refind;
257: else
258: if in branch 6= ∅ then
259: send 〈refind epsilon〉 on in branch
260: else
261: call proc initiate()
262: end if
263: end if

264: upon receiving 〈accept(LF,RF, TW)〉 on edge e . TW : Total Weight
265: ES(e)← branch; root flag ← RF ; dv ← dv + best epsilon;W ← TW ;
266: if RF = true then
267: CS ← inactive; prize flag = false;
268: else
269: CS ← active;
270: end if
271: if proceed in edge = e and proceed flag = true then
272: proceed in edge← ∅; proceed flag ← false;
273: end if
274: deactivate flag = false; . deactivate flag is a temporary variable
275: send 〈update info(best epsilon, root flag, deactivate flag, TW)〉 on all e′ ∈ δ(v) :

e′ 6= e and ES(e′) = branch
276: if LF = false then
277: call proc initiate()
278: end if

279: upon receiving 〈update info(EV,RF,DF, TW)〉 on edge e
280: if RF = true and DF = false then
281: CS ← inactive; prize flag ← false;
282: else if RF = false and DF = true then
283: CS ← inactive; labelled flag ← true;
284: else if RF = false and DF = false then
285: CS ← active;
286: end if
287: root flag ← RF ; dv ← dv + EV ;W ← TW ;
288: send 〈update info(EV,RF,DF, TW)〉 on all e′ ∈ δ(v) : e′ 6= e and ES(e′) = branch
289: if v = r then . r is the root node
290: call proc initiate()
291: end if
292: ES(e)← basic;

137

Primal-dual based distributed approximation algorithm for PCST

293: upon receiving 〈prune〉 on edge e
294: if root flag = true then . Pruning inside the root component
295: if (labelled flag = true) and (ES(e′) = basic for each e′ ∈ δ(v) : e′ 6= e) then
296: prize flag ← true; root flag ← false;
297: send 〈backward prune〉 on e
298: else
299: for each e′ ∈ δ(v) : e′ 6= e do
300: if ES(e′) = branch or EPM(e′) = TRUE then
301: send 〈prune〉 on e′

302: if ES(e′) = branch then
303: prune msg count← prune msg count+ 1;
304: end if
305: end if
306: end for
307: end if
308: else . Pruning inside a non-root inactive component
309: for each e′ ∈ δ(v) : e′ 6= e do
310: if ES(e′) = branch or EPM(e′) = TRUE then
311: send 〈prune〉 on e′

312: if ES(e′) = branch then
313: ES(e′)← basic;
314: end if
315: end if
316: end for
317: end if

318: upon receiving 〈backward prune〉 on edge e
319: prune msg count← prune msg count− 1;ES(e)← basic;
320: if labelled flag = true and prune msg count = 0 then
321: if in branch 6= ∅ then
322: prize flag ← true; root flag ← false;
323: send 〈backward prune〉 on in branch
324: ES(in branch)← basic;
325: end if
326: end if

[[]X]\\

138

6
Conclusions and Future Perspectives

In this chapter we summarize the work done, highlight the contributions, and suggest the

directions for possible future work.

6.1 Conclusions

In this thesis we have proposed a set of distributed algorithms for two combinatorial opti-

mization problems: the Steiner tree (ST) and the prize-collecting Steiner tree (PCST). In

particular we have proposed the following algorithms.

1. DST. A deterministic distributed algorithm for ST in the CONGEST model.

2. Modified DST. It is a modified version of the DST algorithm.

3. STCCM-A. A deterministic distributed algorithm for ST in the CONGESTED CLIQUE

model.

4. STCCM-B. A modified version of the STCCM-A algorithm.

5. D-PCST. A primal-dual based deterministic distributed algorithm for PCST in the

CONGEST model.

139

Conclusions and Future Perspectives

6. Modified D-PCST. A modified version of the D-PCST algorithm.

In Chapter 3 we presented the DST and the modified DST. The DST algorithm computes

a 2(1− 1/`)-approximate ST with the round and message complexities of O(S +
√
n log∗ n)

and O(Sm + n3/2) respectively. The round complexity of the DST algorithm is better

than the best known round complexity of the ST construction known so far [90]. The

modified DST algorithm computes a 2(1−1/`)-approximate ST with the round and message

complexities of Õ(S +
√
n) and Õ(Sm) respectively. The polylogarithmic factors involved

with the round and message complexities of the modified DST algorithm are O(log n) and

O(log2 n) respectively. The modified DST algorithm improves the message complexity of

the DST algorithm by dropping the additive term of O(n3/2) at the expense of a logarithmic

multiplicative factor in the round complexity. We also provided the proof of correctness for

both the algorithms.

In Chapter 4 we studied the ST problem in the CONGESTED CLIQUE model of

distributed computing and presented two algorithms: STCCM-A and STCCM-B. The

STCCM-A algorithm computes a 2(1 − 1/`)-approximate ST using Õ(n1/3) rounds and

Õ(n7/3) messages. The polylogarthmic factor involved with each of the round and message

complexities is log n. The STCCM-B algorithm computes a 2(1 − 1/`)-approximate ST

using O(S + log log n) rounds and O(Sm + n2) messages. Proof of correctness are given

for both the algorithms. For graphs with S = ω(n1/3 log n), the STCCM-A algorithm per-

forms better than the STCCM-B algorithm in terms of the round complexity. On the other

hand, for graphs with S = õ(n1/3), the STCCM-B algorithm outperforms the STCCM-A

algorithm in terms of the round complexity. To the best of our knowledge, till date, this is

the first work to study the ST problem in the CONGESTED CLIQUE model of distributed

computing.

Finally, in Chapter 5 we presented two deterministic distributed algorithms for the PCST

in the CONGEST model: D-PCST and modified D-PCST. Both the algorithms are based

on the primal-dual technique, appropriately tailored for the distributed setting to achieve

an approximation factor of
(
2 − 1

n−1

)
. The D-PCST algorithm computes a PCST using

O(n2) rounds and O(mn) messages. The modified D-PCST algorithm computes a PCST

using O(Dn) rounds and O(mn) messages. For networks with constant or small unweighted

diameter (D = o(n)), the modified D-PCST algorithm performs better than the original

D-PCST algorithm in terms of the round complexity. Moreover both the algorithms pre-

serve the dual constraints in a distributed manner without relying on the knowledge of the

140

Future Perspectives

global structure of the network. Furthermore both the algorithms require O(∆ log n) bits

of memory in each node, where ∆ is the maximum degree of a node in the graph. We also

provided the proof of correctness for both the algorithms.

6.2 Future Perspectives

The work reported in the chapters of this thesis provide ample scope and promulgate several

clear directions for future research endeavors. For instance one can think of designing a

randomized version of each of the algorithms proposed in this thesis to improve the round

and message complexities without compromising the approximation factor. We note that

all the algorithms proposed in this thesis are deterministic in nature.

Elkin [39] showed that approximating MST within any constant factor on graphs of

small unweighted diameter (D = O(
√
n)) requires Ω(

√
n/B) rounds (assuming B bits can

be sent through each edge in each round). Das Sarma et al. [31] achieved an unconditional

lower bound on round complexity of the MST problem and showed that approximating MST

within any constant factor requires Ω(D +
√
n/(B log n)) rounds. The well-known lower

bound on message complexity to find an exact MST is Ω(m) [86]. Since the ST problem

is a generalization of the MST problem, the above lower bounds of the MST problem are

also applicable to the ST problem. Recently Byrka et al. [20] showed that in the centralized

setting, the ST problem can be approximated upto a factor of ln(4) + ε ≈ 1.386 + ε (for any

constant ε > 0) of the optimal. Therefore, there are open research directions of improvement

of the approximation factor, the round complexity, and the message complexity of the ST

construction in the CONGEST model of distributed computing.

For special class of graphs, the ST problem has been extensively studied in the centralized

setting [19, 21, 28, 121]. In particular, for planar graphs, Borradaile et al. [19] proposed a

PTAS for ST problem whose running time is O(n log n). Recently Byrka et al. [21] presented

a PTAS for the ST problem which holds for map graphs. However these results hold for

centralized setting only. Therefore it will be interesting to investigate the technique that

we used in the DST algorithm, in a direction of obtaining a distributed version of PTAS of

Borradaile et al. [19] for planar graphs or Byrka et al. [21] for map graphs.

The work presented in Chapter 4 of this thesis is the first one to study the ST problem

in the CONGESTED CLIQUE model and is still in nascent form. The best known deter-

ministic and randomized round complexities for MST construction in the CONGESTED

141

Conclusions and Future Perspectives

CLIQUE model are O(log log n) [96] and O(1) [73] respectively. Pemmaraju and Sardesh-

mukh [116] showed that in the CONGESTED CLIQUE model, an MST can be computed

using o(m) messages with the round complexity of O(log∗ n) with high probability. Since

the ST problem is a generalized version of the MST problem, we believe that it is also

possible to achieve the above results for ST construction in the CONGESTED CLIQUE

model. Therefore there are ample scopes on further improvement of the approximation

factor, the round and message complexities of the ST construction in the CONGESTED

CLIQUE model of distributed computing.

The work in Chapter 5 of this thesis presented two algorithms for the PCST problem in

the CONGEST model of distributed computing, which are based on the techniques of primal-

dual and distributed preservation of the dual constraints. We believe that our techniques can

find further applications in obtaining memory-efficient distributed versions of primal-dual

based algorithms for other tree problems. In addition, our algorithms, being distributed in

nature, can possibly be adapted to tolerate local changes (node or link additions or deletions,

weight changes), yielding algorithms of low incremental complexities for the fully dynamic

setting. Since no algorithm is known so far for that setting this might be a meaningful

approach. Finally, we believe that D-PCST and the modified D-PCST can serve as a first

step and a basis for further improvements of round complexity, message complexity, as

well as of the approximation ratio for distributed PCST. In particular, we would like to

investigate the applicability of our techniques in the direction of obtaining a distributed

version of the PTAS of Bateni et al. [11] for PCST in planar graphs; such a result would be

of great theoretical and practical interest.

[[]X]\\

142

Disseminations out of this Work

Journals

1. Parikshit Saikia and Sushanta Karmakar. “Distributed approximation algorithms

for Steiner tree in the CONGESTED CLIQUE”, International Journal of Foundations

of Computer Science (IJFCS), Vol. 31, No. 7, 2020.

2. Parikshit Saikia, Sushanta Karmakar, and Aris Pagourtzis. “Primal-Dual based

distributed approximation algorithm for prize-collecting Steiner tree”, Discrete Math-

ematics, Algorithms and Applications (DMAA). [Accepted on August 6, 2020, Online

ready]

3. Parikshit Saikia and Sushanta Karmakar. “Improved distributed approximation for

Steiner tree in the CONGEST model”, Journal of Parallel and Distributed Computing

(JPDC). [Under Review]

Conferences

1. Parikshit Saikia and Sushanta Karmakar, “A Simple 2(1 − 1/`)-factor Distributed

Approximation Algorithm for Steiner Tree in the CONGEST model”, Proceedings of

the 20th International Conference on Distributed Computing and Networking (ICDCN),

January 2019, Bangalore, India.

2. Parikshit Saikia and Sushanta Karmakar, “2(1 − 1/`)-factor Steiner tree approxi-

mation in Õ(n1/3) rounds in the CONGESTED CLIQUE”, The Seventh International

Symposium on Computing and Networking (CANDAR), November 2019, Nagasaki,

Japan. [Best Paper Award]

3. Parikshit Saikia and Sushanta Karmakar, “Round-Message Trade-off in Distributed

Steiner Tree Construction in the CONGEST model”, 16th International Conference on

Distributed Computing and Internet Technology (ICDCIT), January 2020, Bhubaneswar,

India.

[[]X]\\

143

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algo-

rithm for the generalized Steiner problem on networks. SIAM journal of Computing,

24(3):440–456, 1995. [Pg.11], [Pg.28]

[2] E. Álvarez Miranda, A. Candia, X. Chen, X. Hu, and B. Li. Efficient Algorithms for the

Prize Collecting Steiner Tree Problems with Interval Data. International Conference

on Algorithmic Applications in Management, pages 13–24, 2010. [Pg.28], [Pg.30]

[3] E. Álvarez Miranda, I. Ljubić, and P. Toth. Exact approaches for solving robust

prize-collecting Steiner tree problems. European Journal of Operational Research,

229(3):599–612, 2013. [Pg.30]

[4] A. Archer, M. H. Bateni, and M. T. Hajiaghayi. Improved Approximation Algorithms

for Prize-Collecting Steiner Tree and TSP. SIAM Journal on Computing, 40(2):309–

332, 2011. [Pg.9], [Pg.11], [Pg.28], [Pg.30], [Pg.91], [Pg.97]

[5] B. Awerbuch, O. Goldreich, R. Vainish, and D. Peleg. A trade-off between information

and communication in broadcast protocols. Journal of the ACM (JACM), 37(2):238–

256, 1990. [Pg.viii], [Pg.7]

[6] N. Bacrach, K. Censor-Hillel, M. Dory, Y. Efron, D. Leitersdorf, and A. Paz. Hardness

of distributed optimization. In Proceedings of the 2019 ACM Symposium on Principles

of Distributed Computing, PODC ’19, pages 238–247, 2019. [Pg.9], [Pg.92]

[7] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636,

1989. [Pg.28]

[8] R. Bar-Yehuda, E. Kantor, S. Kutten, and D. Rawitz. Growing Half-Balls: Minimizing

Storage and Communication Costs in CDNs. pages 416–427, 2012. [Pg.4], [Pg.6]

144

REFERENCES

[9] L. Barenboim, M. Elkin, and F. Kuhn. Distributed (δ + 1)-coloring in linear (in δ)

time. SIAM J. Comput., 43(1):72–95, 2014. [Pg.1]

[10] M. Bateni, C. Chekuri, A. Ene, M. Hajiaghayi, N. Korula, and D. Marx. Improved

combinatorial algorithms for facility location problems. ACM-SIAM symposium on

Discrete Algorithms, pages 1028–1049, 2011. [Pg.28]

[11] M. Bateni, C. Chekuri, A. Ene, M. T. Hajiaghayi, N. Korula, and D. Marx. Prize-

collecting Steiner problems on planar graphs. In Proceedings of the Twenty-second

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1028–1049,

2011. [Pg.29], [Pg.142]

[12] F. Bauer and A. Varma. Distributed Algorithms for Multicast Path Setup in Data

Networks. IEEE/ACM Transaction Networks, 4(2):181–191, 1996. [Pg.22], [Pg.23],

[Pg.24], [Pg.25]

[13] M. Bauer, G. W. Klau, and K. Reinert. Accurate multiple sequence-structure align-

ment of RNA sequences using combinatorial optimization. BMC Bioinformatics,

8(271), 2007. [Pg.5]

[14] P. Berman and V. Ramaiyer. Improved Approximation for the Steiner Problem. Jour-

nal of Algorithms, 9:381–408, 1994. [Pg.19], [Pg.20]

[15] A. Berns, J. Hegeman, and S. V. Pemmaraju. Super-fast Distributed Algorithms

for Metric Facility Location. In Proceedings of the 39th International Colloquium on

Automata, Languages, and Programming, ICALP’12, pages 428–439, 2012. [Pg.8],

[Pg.68]

[16] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the

prize collecting traveling salesman problem. Mathematical Programming, 59:413–420,

1993. [Pg.28], [Pg.96], [Pg.97]

[17] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: Fast

subset convolution. In Proceedings of the Thirty-ninth Annual ACM Symposium on

Theory of Computing, STOC ’07, pages 67–74, 2007. [Pg.18]

145

REFERENCES

[18] A. Borchers and D. Du. The k-Steiner ratio in graphs. In Proceedings of the Twenty-

seventh Annual ACM Symposium on Theory of Computing, STOC ’95, pages 641–649,

1995. [Pg.19]

[19] G. Borradaile, C. Kenyon-Mathieu, and P. Klein. A polynomial-time approximation

scheme for Steiner tree in planar graphs. In Proceedings of the Eighteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 1285–1294, 2007.

[Pg.21], [Pg.141]

[20] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An Improved LP-based Approxima-

tion for Steiner Tree. In Proceedings of the Forty-second ACM Symposium on Theory

of Computing, STOC ’10, pages 583–592, 2010. [Pg.10], [Pg.19], [Pg.20], [Pg.30],

[Pg.68], [Pg.141]

[21] J. Byrka, M. Lewandowski, S. M. Meesum, J. Spoerhase, and S. Uniyal. PTAS for

Steiner tree on map graphs. https://arxiv.org/abs/1912.00717, Dec 2019. [Pg.21],

[Pg.141]

[22] S. Canuto, M. Resende, and C. Ribeiro. Local search with perturbation for prize-

collecting Sreiner tree problem in graphs. Networks, 38(1):50–58, 2001. [Pg.31]

[23] K. Censor-Hillel, M. Dory, J. H. Korhonen, and D. Leitersdorf. Fast approximate

shortest paths in the congested clique. In Proceedings of the 2019 ACM Symposium

on Principles of Distributed Computing, PODC ’19, pages 74–83, 2019. [Pg.74]

[24] K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz, and J. Suomela. Alge-

braic Methods in the Congested Clique. In Proceedings of the 2015 ACM Symposium

on Principles of Distributed Computing, PODC ’15, pages 143–152, 2015. [Pg.8],

[Pg.68], [Pg.72], [Pg.73], [Pg.74], [Pg.75]

[25] D. Chakrabarty, N. R. Devanur, and V. V. Vazirani. New Geometry-Inspired Relax-

ations and Algorithms for the Metric Steiner Tree Problem. Integer Programming and

Combinatorial Optimization (IPCO), pages 344–358, 2008. [Pg.20], [Pg.21]

[26] P. Chalermsook and J. Fakcharoenphol. Simple Distributed Algorithms for Approx-

imating Minimum Steiner Trees. In Proceedings of the 11th Annual International

146

REFERENCES

Conference on Computing and Combinatorics, COCOON’05, pages 380–389, 2005.

[Pg.23], [Pg.26]

[27] G. H. Chen, M. E. Houle, and M. T. Kuo. The Steiner problem in distributed com-

puting systems. Information Sciences, 74(1-2):73–96, 1993. [Pg.22], [Pg.23], [Pg.42],

[Pg.59]

[28] M. Chleb́ık and J. Chleb́ıková. The Steiner tree problem on graphs: Inapproximabil-

ity results. Theoretical Computer Science, 406(3):207 – 214, 2008. [Pg.20], [Pg.21],

[Pg.141]

[29] R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. A Faster Implementation of

the Goemans-Williamson Clustering Algorithm. In Proceedings of the Twelfth An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA’01, pages 17–25, 2001.

[Pg.28], [Pg.29]

[30] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal

parallel list ranking. Information and Control, 70(1):32–53, July 1986. [Pg.63]

[31] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Pe-

leg, and R. Wattenhofer. Distributed verification and hardness of distributed approx-

imation. In Proceedings of the Forty-third Annual ACM Symposium on Theory of

Computing, STOC ’11, pages 363–372, 2011. [Pg.2], [Pg.7], [Pg.9], [Pg.92], [Pg.141]

[32] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, Jan. 2008. [Pg.68]

[33] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Muller. Identify-

ing functional modules in protein-protein interaction networks: an integrated exact

approach. Intelligent Systems for Molecular Biology (ISMB), 24(13):119–141, 2008.

[Pg.6]

[34] D. Dolev, C. Lenzen, and S. Peled. “Tri, Tri Again”: Finding Triangles and Small Sub-

graphs in a Distributed Setting. In Proceedings of the 26th International Conference

on Distributed Computing, DISC’12, pages 195–209, 2012. [Pg.8], [Pg.68]

[35] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195–207,

1971. [Pg.17], [Pg.18]

147

REFERENCES

[36] A. Drucker, F. Kuhn, and R. Oshman. The communication complexity of distributed

task allocation. In Proceedings of the 2012 ACM Symposium on Principles of Dis-

tributed Computing, PODC ’12, pages 67–76, 2012. [Pg.8], [Pg.68]

[37] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model.

In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,

PODC ’14, pages 367–376, 2014. [Pg.68]

[38] M. Elkin. A faster distributed protocol for constructing a minimum spanning tree.

Journal of Computer and System Sciences, 72(8):1282 – 1308, 2006. [Pg.viii], [Pg.7]

[39] M. Elkin. An unconditional lower bound on the time-approximation trade-off for the

distributed minimum spanning tree problem. SIAM Journal of Computing, 36(2):433–

456, 2006. [Pg.7], [Pg.92], [Pg.141]

[40] M. Elkin. Distributed exact shortest paths in sublinear time. In Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing, STOC ’17, pages

757–770, 2017. [Pg.1]

[41] M. Elkin. A simple deterministic distributed MST algorithm, with near-optimal time

and message complexities. In Proceedings of the ACM Symposium on Principles of Dis-

tributed Computing, PODC ’17, pages 157–163, 2017. [Pg.viii], [Pg.7], [Pg.8], [Pg.12],

[Pg.39], [Pg.62], [Pg.63], [Pg.64], [Pg.65]

[42] G. Even, M. Ghaffari, and M. Medina. Distributed set cover approximation: Primal-

dual with optimal locality. In 32nd International Symposium on Distributed Comput-

ing, DISC 2018, pages 22:1–22:14, 2018. [Pg.10], [Pg.14], [Pg.92], [Pg.93]

[43] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary

metrics by tree metrics. Journal of Computer and System Sciences, 69(4):485–497,

2004. [Pg.27]

[44] P. Feofiloff, C. G. Fernandes, C. E. Ferreira, and J. C. de Pina. Primal-Dual Ap-

proximation Algorithms for the Prize-Collecting Steiner Tree Problem. Information

Processing Letter, 103(5):195–202, 2007. [Pg.11], [Pg.28], [Pg.29], [Pg.31], [Pg.96],

[Pg.97]

148

REFERENCES

[45] D. Fernandez-Baca. The Perfect Phylogeny Problem. Combinatorial Optimization,

11:203–234, 2004. [Pg.6]

[46] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive closure.

In Proceedings of the 12th Annual Symposium on Switching and Automata Theory,

SWAT ’71, pages 129–131, 1971. [Pg.72], [Pg.74]

[47] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks cannot compute their di-

ameter in sublinear time. In Proceedings of the Twenty-third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’12, pages 1150–1162, 2012. [Pg.1]

[48] B. Fuchs, W. Kern, D. Mölle, S. Richter, P. Rossmanith, and X. Wang. Dynamic

Programming for Minimum Steiner Trees. Theory of Computing Systems, 41(3):493–

500, 2007. [Pg.17], [Pg.18]

[49] B. Fuchs, W. Kern, and X. Wang. Speeding up the Dreyfus–Wagner algorithm for

minimum Steiner trees. Mathematical Methods of Operations Research, 66(1):117–125,

2007. [Pg.17], [Pg.18]

[50] R. G. Gallager, P. A. Humblet, and P. M. Spira. A Distributed Algorithm for

Minimum-Weight Spanning Trees. ACM Transactions on Programming Languages

and Systems, 1:66–77, 1983. [Pg.viii], [Pg.7], [Pg.26], [Pg.35], [Pg.53]

[51] J. A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for

minimum-weight spanning trees. SIAM Journal of Computing, 27(1):302–316, 1998.

[Pg.7], [Pg.37], [Pg.38], [Pg.53], [Pg.62]

[52] L. Gatani, G. Lo Re, and S. Gaglio. An efficient distributed algorithm for generating

and updating multicast trees. Parallel Computing, 32(11-12):777–793, 2006. [Pg.22],

[Pg.23], [Pg.26]

[53] J. Gehweiler, C. Lammersen, and C. Sohler. A Distributed O(1)-Approximation Algo-

rithm for the Uniform Facility Location Problem. Algorithmica, 68(3):643–670, 2014.

[Pg.8], [Pg.68]

[54] J. Geunes, R. Levi, H. E. Romeijn, and D. B. Shmoys. Approximation algorithms

for supply chain planning and logistics problems with market choice. Mathematical

Programming, 130(1):85–106, Nov 2011. [Pg.30], [Pg.91]

149

REFERENCES

[55] M. Ghaffari. An improved distributed algorithm for maximal independent set. In

Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA ’16, pages 270–277, 2016. [Pg.1]

[56] M. Ghaffari and M. Parter. MST in Log-Star Rounds of Congested Clique. In Pro-

ceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC

’16, pages 19–28, 2016. [Pg.8], [Pg.68], [Pg.71], [Pg.78]

[57] E. N. Gilbert and H. O. Pollak. Steiner Minimal Trees. SIAM Journal on Applied

Mathematics, 16(1):1–29, 1968. [Pg.19], [Pg.20], [Pg.33]

[58] M. X. Goemans and D. E. Williamson. A general approximation technique for con-

strained forest problems. SIAM Journal on Applied Mathematics, 24(2):296–317, 1995.

[Pg.11], [Pg.14], [Pg.20], [Pg.28], [Pg.29], [Pg.31], [Pg.35], [Pg.91], [Pg.93], [Pg.95],

[Pg.96], [Pg.117]

[59] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. Primal-dual based distributed

algorithms for vertex cover with semi-hard capacities. In Proceedings of the Twenty-

fourth Annual ACM Symposium on Principles of Distributed Computing, PODC ’05,

pages 118–125, 2005. [Pg.10], [Pg.14], [Pg.92], [Pg.93]

[60] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-dual bicriteria

distributed algorithm for capacitated vertex cover. SIAM J. Comput., 38(3):825–840,

May 2008. [Pg.10], [Pg.14], [Pg.92], [Pg.93]

[61] S. Gueron and R. Tessler. The Fermat-Steiner Problem. The American Mathematical

Monthly (May, 2002), 109(5):443–451, 2002. [Pg.2]

[62] B. Haeupler, D. E. Hershkowitz, and D. Wajc. Round- and message-optimal dis-

tributed graph algorithms. In Proceedings of the 2018 ACM Symposium on Principles

of Distributed Computing, PODC ’18, pages 119–128, 2018. [Pg.viii], [Pg.7], [Pg.8],

[Pg.12], [Pg.39], [Pg.62], [Pg.65]

[63] M. Haouari, S. B. Layeb, and H. D. Sherali. Algorithmic expedients for the Prize

Collecting Steiner Tree Problem. Discrete Optimization, 7:32–47, 2010. [Pg.28], [Pg.30]

150

REFERENCES

[64] M. Hauptmann and M. Karpinski. A Compendium on Steiner Tree Prob-

lems. http://theory.cs.uni-bonn.de/info5/steinerkompendium/netcompendium.html,

2015. [Pg.3]

[65] J. W. Hegeman, G. Pandurangan, S. V. Pemmaraju, V. B. Sardeshmukh, and M. Sc-

quizzato. Toward Optimal Bounds in the Congested Clique: Graph Connectivity

and MST. In Proceedings of the 2015 ACM Symposium on Principles of Distributed

Computing, PODC ’15, pages 91–100, 2015. [Pg.78]

[66] J. W. Hegeman and S. V. Pemmaraju. Lessons from the Congested Clique Applied

to MapReduce. Theoretical Computer Science, 608(P3):268–281, 2015. [Pg.68]

[67] J. W. Hegeman, S. V. Pemmaraju, and V. B. Sardeshmukh. Near-constant-time

distributed algorithms on a congested clique. In Proceedings of the 28th International

Conference on Distributed Computing, DISC’14, pages 514–530, 2014. [Pg.8], [Pg.68],

[Pg.71]

[68] S. Holzer and N. Pinsker. Approximation of Distances and Shortest Paths in the

Broadcast Congest Clique. In 19th International Conference on Principles of Dis-

tributed Systems (OPODIS 2015), volume 46, pages 1–16, 2016. [Pg.8], [Pg.68]

[69] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and ap-

plications. In Proceedings of the 2012 ACM Symposium on Principles of Distributed

Computing, PODC ’12, pages 355–364, 2012. [Pg.1]

[70] S. Hougardy and H. J. Prömel. 1.598 Approximation Algorithm for the Steiner Prob-

lem in Graph. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’99, pages 448–453, 1999. [Pg.19], [Pg.20]

[71] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network

Problem. In Proceedings of the 39th Annual Symposium on Foundations of Computer

Science, FOCS ’98, pages 448–457, 1998. [Pg.20]

[72] D. S. Johnson, M. Minkoff, and S. Phillips. The Prize Collecting Steiner Tree Problem:

Theory and Practice. In Proceedings of the Eleventh Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA ’00), pages 760–769, 2000. [Pg.4], [Pg.11], [Pg.28],

[Pg.31], [Pg.33], [Pg.34], [Pg.96], [Pg.97], [Pg.120], [Pg.126]

151

REFERENCES

[73] T. Jurdziński and K. Nowicki. MST in O(1) Rounds of Congested Clique. In Pro-

ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’18, pages 2620–2632, 2018. [Pg.8], [Pg.68], [Pg.71], [Pg.78], [Pg.142]

[74] R. M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a Sym-

posium on the Complexity of Computer Computations, pages 85–103, 1972. [Pg.2]

[75] M. Karpinski and A. Zelikovsky. New Approximation Algorithm for Steiner Tree

Problem. Journal of Combinatorial Optimization, 1(1):47–65, 1997. [Pg.19], [Pg.20]

[76] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar. Efficient distributed

approximation algorithms via probabilistic tree embeddings. In Proceedings of the

Twenty-seventh ACM Symposium on Principles of Distributed Computing, PODC ’08,

pages 263–272, 2008. [Pg.2], [Pg.22], [Pg.23], [Pg.27]

[77] M. Khan and G. Pandurangan. A fast distributed approximation algorithm for mini-

mum spanning trees. Distributed Computing, 20(6):391–402, 2008. [Pg.41]

[78] G. W. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and

R. Weiskircher. Combining a memetic algorithm with integer programming to solve

the prize-collecting Steiner tree problem. In Genetic and Evolutionary Computation,

GECCO ’04, pages 1304–1315, 2004. [Pg.28], [Pg.32]

[79] G. W. Klau, I. Ljubić, P. Mutzel, U. Pferschy, and R. Weiskircher. The Fractional

Prize-Collecting Steiner Tree Problem on Trees. In European Symposium on Algo-

rithms - ESA’03, pages 691–702, 2003. [Pg.28]

[80] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson. Distributed computation

of large-scale graph problems. In Proceedings of the Twenty-sixth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’15, pages 391–410, 2015. [Pg.68]

[81] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Two Distributed Algorithms

for Multicasting Multimedia Information. IEEE/ACM Transaction on Networking,

1:286–292, 1993. [Pg.22], [Pg.23], [Pg.24], [Pg.25]

[82] J. Könemann, D. Pritchard, and K. Tan. A Partition-based Relaxation for Steiner

Trees. Math. Program., 127(2):345–370, Apr. 2011. [Pg.20], [Pg.21]

152

REFERENCES

[83] L. Kor, A. Korman, and D. Peleg. Tight bounds for distributed minimum-weight

spanning tree verification. Theory of Computing Systems, 53(2):318–340, 2013. [Pg.2]

[84] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta

Informatica, 15(2):141–145, 1981. [Pg.10], [Pg.19], [Pg.20], [Pg.51], [Pg.61], [Pg.64],

[Pg.68], [Pg.75], [Pg.82]

[85] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In

Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed

Computing, PODC ’06, pages 7–15, 2006. [Pg.1]

[86] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. On the complexity

of universal leader election. Journal of the ACM, 62(1):7:1–7:27, 2015. [Pg.7], [Pg.9],

[Pg.38], [Pg.92], [Pg.141]

[87] S. Kutten and D. Peleg. Fast distributed construction of small k-dominating sets

and applications. Journal of Algorithms, 28(1):40 – 66, 1998. [Pg.viii], [Pg.2], [Pg.7],

[Pg.37], [Pg.38], [Pg.53], [Pg.62]

[88] T. Lengaue. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chich-

ester, England, 1990. [Pg.4]

[89] C. Lenzen. Optimal deterministic routing and sorting on the congested clique. In

Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing,

PODC ’13, pages 42–50, 2013. [Pg.8], [Pg.68], [Pg.73]

[90] C. Lenzen and B. Patt-Shamir. Fast partial distance estimation and applications.

In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,

PODC ’15, pages 153–162, 2015. [Pg.viii], [Pg.2], [Pg.7], [Pg.11], [Pg.22], [Pg.23],

[Pg.27], [Pg.37], [Pg.38], [Pg.65], [Pg.140]

[91] C. Lenzen and D. Peleg. Efficient distributed source detection with limited bandwidth.

In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing,

PODC ’13, pages 375–382, 2013. [Pg.42]

[92] Y. Li, D. Du, N. Xiu, and D. Xu. Improved approximation algorithms for the facility

location problems with linear/submodular penalties. Algorithmica, 73(2):460–482,

Oct. 2015. [Pg.30], [Pg.91]

153

REFERENCES

[93] N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,

21(1):193–201, 1992. [Pg.6]

[94] I. Ljubić. Exact and memetic algorithms for two network design problems (unpub-

lished doctoral dissertation). Faculty of Computer Science, Technische Universität

Wien, 2004. [Pg.32], [Pg.34]

[95] I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An

Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree

Problem. Mathematical Programming, Series B(105):427–449, 2006. [Pg.28], [Pg.29]

[96] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-Weight Spanning Tree

Construction in O(Log Log N) Communication Rounds. SIAM Journal on Computing,

35(1):120–131, July 2005. [Pg.8], [Pg.13], [Pg.67], [Pg.68], [Pg.70], [Pg.71], [Pg.75],

[Pg.78], [Pg.82], [Pg.142]

[97] C. L. Lu, C. Y. Tang, and R. C. Lee. The full Steiner tree problem in phylogeny. In

International Computing and Combinatorics Conference (COCOON), pages 107–116,

2002. [Pg.6]

[98] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč. Adding

vs. Averaging in Distributed Primal-dual Optimization. In Proceedings of the 32nd

International Conference on International Conference on Machine Learning - Volume

37, ICML’15, pages 1973–1982, 2015. [Pg.93]

[99] T. L. Magnanti and R. T. Wong. Network design and transportation planning: models

and algorithms. Transportation Science, 18:1–55, 1984. [Pg.4]

[100] D. Mölle, S. Richter, and P. Rossmanith. A Faster Algorithm for the Steiner Tree

Problem. In Symposium on Theoretical Aspects of Computer Science, pages 561–570,

2006. [Pg.17], [Pg.18]

[101] P. Moscato. Memetic algorithms: A short introduction. New Ideas in Optimization,

pages 219–234, 1999. [Pg.32]

[102] T. Moscibroda and R. Wattenhofer. Facility location: Distributed approximation.

In Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Dis-

tributed Computing, PODC ’05, pages 108–117, 2005. [Pg.10], [Pg.14], [Pg.92], [Pg.93]

154

REFERENCES

[103] I. Munro. Efficient determination of the transitive closure of a directed graph. Infor-

mation Processing Letters, 1(2):56–58, 1971. [Pg.72], [Pg.74]

[104] D. Nanongkai. Distributed approximation algorithms for weighted shortest paths.

In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing,

STOC ’14, pages 565–573, 2014. [Pg.8], [Pg.68]

[105] R. Novak and J. Rugelj. Distribution of Constrained Steiner Tree Computation in

Shortest-Delay Networks. In: MELECON’96, 8th Mediterranean Electrotechnical

Conference, 2:0–3, 1996. [Pg.23]

[106] R. Novak, J. Rugelj, and G. Kandus. A note on distributed multicast routing in

point-to-point networks. Computers and Operation Research, 28(12):1149–1164, 2001.

[Pg.22], [Pg.25]

[107] K. Nowicki. A Deterministic Algorithm for the MST Problem in Constant Rounds of

Congested Clique. https://arxiv.org/abs/1912.04239, 2020. [Pg.8], [Pg.68]

[108] S. Pai and S. V. Pemmaraju. Connectivity lower bounds in broadcast congested clique.

In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,

PODC ’19, pages 256–258, 2019. [Pg.68]

[109] S. Pandit and S. Pemmaraju. Return of the primal-dual: Distributed metric facility

location. In Proceedings of the 28th ACM Symposium on Principles of Distributed

Computing, PODC ’09, pages 180–189, 2009. [Pg.10], [Pg.14], [Pg.92], [Pg.93]

[110] G. Pandurangan, P. Robinson, and M. Scquizzato. A time- and message-optimal

distributed algorithm for minimum spanning trees. In Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, STOC ’17, pages 743–756, 2017.

[Pg.viii], [Pg.7], [Pg.8], [Pg.12], [Pg.39], [Pg.62], [Pg.63], [Pg.65]

[111] B. Patt-Shamir and M. Perry. Proof-labeling schemes: Broadcast, unicast and in

between. In Stabilization, Safety, and Security of Distributed Systems, pages 1–17,

2017. [Pg.68]

[112] B. Patt-Shamir and M. Teplitsky. The round complexity of distributed sorting: Ex-

tended abstract. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Sympo-

155

REFERENCES

sium on Principles of Distributed Computing, PODC ’11, pages 249–256, 2011. [Pg.8],

[Pg.68]

[113] D. Peleg. Distributed matroid basis completion via elimination upcast and distributed

correction of minimum-weight spanning trees. In Proceedings of the 25th International

Colloquium on Automata, Languages, and Programming, ICALP’98, pages 164–175,

1998. [Pg.53]

[114] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM : Discrete

Mathematics and Applications, 2000. [Pg.6], [Pg.9], [Pg.11], [Pg.40], [Pg.43], [Pg.94],

[Pg.120]

[115] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of dis-

tributed minimum-weight spanning tree construction. SIAM Journal on Computing,

30(5):1427–1442, 2000. [Pg.6], [Pg.7], [Pg.38]

[116] S. V. Pemmaraju and V. B. Sardeshmukh. Super-Fast MST Algorithms in the Con-

gested Clique Using o(m) Messages. In 36th IARCS Annual Conference on Foun-

dations of Software Technology and Theoretical Computer Science (FSTTCS 2016),

pages 47:1–47:15, 2016. [Pg.78], [Pg.142]

[117] A. Prodon, S. DeNegre, and T. M. Liebling. Locating leak detecting sensors in a

water distribution network by solving prize-collecting Steiner arborescence problems.

Mathematical Programming, 124(1):119–141, 2010. [Pg.6]

[118] H. J. Promel and A. Steger. A New Approximation Algorithm for the Steiner Tree

Problem with Performance Ratio 5
2
. Journal of Algorithms, 36(1):89–101, 1997.

[Pg.19], [Pg.20]

[119] S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric

Steiner tree problem. In Proceedings of the Tenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’99, pages 742–751, 1999. [Pg.20], [Pg.21]

[120] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms, 7(3):309 – 322, 1986. [Pg.29]

156

REFERENCES

[121] G. Robins and A. Zelikovsky. Improved Steiner Tree Approximation in Graphs. In

Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’00, pages 770–779, 2000. [Pg.19], [Pg.20], [Pg.21], [Pg.141]

[122] N. G. Rossetti. A First Attempt on the Distributed Prize-Collecting Steiner Tree

Problem. In M.Sc. thesis, University of Iceland, Reykjavik, 2015. [Pg.ix], [Pg.8],

[Pg.11], [Pg.33], [Pg.35]

[123] J. Schneider and R. Wattenhofer. An optimal maximal independent set algorithm for

bounded-independence graphs. Distributed Computing, 22(5):349–361, 2010. [Pg.1]

[124] G. Singh and K. Vellanki. A distributed protocol for constructing multicast trees.

In 2nd International Conference On Principles Of Distributed Systems, OPODIS ’98,

pages 61–76, 1998. [Pg.22], [Pg.23], [Pg.25]

[125] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem

in graphs. Mathematics, 24:573–577, 1980. [Pg.19], [Pg.20]

[126] V. V. Vazirani. Approximation Algorithms. Sringer, 2004. [Pg.18]

[127] S. Voß. Steiners problem in graphs: heuristic methods. Discrete Applied Mathematics,

40:45–72, 1992. [Pg.24]

[128] J. A. Wald and C. J. Colbourn. Steiner trees, partial 2trees, and minimum IFI net-

works. Networks, 13:159–167, 1983. [Pg.30]

[129] P. Winter and J. S. MacGregor. Path-distance heuristics for the Steiner problem in

undirected networks. Algorithmica, 7(1):309–327, 1992. [Pg.22]

[130] Y. F. Wu, P. Widmayer, and C. K. Wong. A faster approximation algorithm for the

Steiner problem in graphs. Acta Informatica, 23(2):223–229, 1986. [Pg.10], [Pg.51],

[Pg.52], [Pg.68]

[131] D. Yuan, S. Xu, and H. Zhao. Distributed Primal-Dual Subgradient Method for

Multiagent Optimization via Consensus Algorithms. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 41(6):1715–1724, 2011. [Pg.93]

157

REFERENCES

[132] A. Zelikovsky. An 11/6-Approximation Algorithm for the Network Steiner Problem.

Algorithmica, 9:463–470, 1993. [Pg.19], [Pg.20]

[133] A. Zelikovsky. Better approximation bounds for the network and Euclidean Steiner

tree problems. Technical report, CS-96-06, University of Virginia., 1995. [Pg.19],

[Pg.20]

158

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India

	1 Introduction
	1.1 Steiner tree
	1.2 Applications
	1.3 Motivation
	1.4 Objectives
	1.5 Contributions
	1.5.1 Improved distributed approximation for ST in the CONGEST model
	1.5.1.1 DST algorithm: A 2(1 - 1/)-factor distributed ST algorithm using O(S + nlog* n) rounds
	1.5.1.2 Round-Message Trade-off in distributed ST construction

	1.5.2 Distributed approximation algorithms for ST in the CCM
	1.5.2.1 STCCM-A: A 2(1 - 1/)-factor ST algorithm using (n1/3) rounds in the CCM
	1.5.2.2 STCCM-B: A 2(1 - 1/)-factor ST algorithm using O(S + loglogn) rounds in the CCM

	1.5.3 Primal-dual based distributed approximation algorithm for PCST

	2 Related work
	2.1 Sequential ST algorithms
	2.1.1 Exact algorithms
	2.1.2 Approximation algorithms

	2.2 Distributed ST algorithms
	2.3 Sequential PCST algorithms
	2.3.1 GW-algorithm
	2.3.2 Perturbation algorithms
	2.3.3 Memetic and ILP Based algorithms

	2.4 Distributed PCST algorithms

	3 Improved approximation for Steiner tree in the CONGEST model
	3.1 Model and Notations
	3.2 SPF construction
	3.2.1 Distributed SPF algorithm.
	3.2.2 An illustrative example of the SPF algorithm
	3.2.3 Correctness of the SPF algorithm

	3.3 DST algorithm
	3.3.1 Preliminaries
	3.3.2 Outline of the DST algorithm
	3.3.3 An illustrative example of the DST algorithm
	3.3.4 Correctness of the DST algorithm

	3.4 Round-message trade-off in Distributed ST construction
	3.4.1 Modified DST algorithm

	3.5 Summary

	4 Distributed approximation for Steiner tree in CONGESTED CLIQUE
	4.1 Model and notations
	4.2 SPF construction
	4.2.1 Censor-Hillel et al.'s APSP algorithm in CCM
	4.2.2 SPF-A algorithm

	4.3 STCCM-A algorithm
	4.3.1 Outline of the STCCM-A algorithm
	4.3.2 An illustrative example of the STCCM-A algorithm
	4.3.3 Proof of the STCCM-A algorithm

	4.4 STCCM-B algorithm
	4.4.1 SPF-B algorithm
	4.4.2 Complexity of the STCCM-B algorithm

	4.5 Summary

	5 Primal-dual based distributed approximation algorithm for PCST
	5.1 Model and notations
	5.2 Problem formulation
	5.3 A brief description of the GW-algorithm
	5.4 D-PCST algorithm
	5.4.1 Outline of the D-PCST algorithm
	5.4.2 Phases of D-PCST

	5.5 Proof of Correctness
	5.5.1 Distributed Preservation of Dual Constraints
	5.5.2 Performance of the D-PCST Algorithm

	5.6 Fast PCST construction
	5.6.1 Properties of the modified D-PCST algorithm

	5.7 Summary
	5.A An illustrative example of the D-PCST algorithm
	5.B Pseudo-code of the D-PCST algorithm

	6 Conclusions and Future Perspectives
	6.1 Conclusions
	6.2 Future Perspectives

	References

