
Modeling and Verification of Lightweight
Defense Strategies in IoT Security: A
Discrete Event System Approach

Dipojjwal Ray

Modeling and Verification of Lightweight
Defense Strategies in IoT Security: A

Discrete Event System Approach

Thesis submitted in partial fulfilment
of the requirements for the degree of

in

Computer Science and Engineering

by

Dipojjwal Ray

Under the supervision of

Dr. Pinaki Mitra
&

Dr. Santosh Biswas

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

October 2024

Copyright © Dipojjwal Ray, 2024. All Rights Reserved.

This thesis is dedicated to my Mother, Father and my Wife
- whose blessings, inspiration, unconditional love and support made my path of success.

Declaration

I hereby certify that

a. The work contained in this thesis is original and has been done by myself and the
general supervision of my supervisor.

b. The work has not been submitted to any other Institute for any degree or diploma.

c. Whenever I have used materials (data, theoretical analysis, results) from other sources,
I have given due credit by citing them in the text of the thesis and giving their details
in the references. Elaborate sentences used verbatim from published work have been
clearly identified and quoted.

d. No part of this thesis can be considered plagiarism to the best of my knowledge and
understanding and take complete responsibility if any complaint arises.

Date : / / Dipojjwal Ray

Place: Guwahati, India

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati - 781039, Assam, India

Dr. Pinaki Mitra
Associate Professor
Ph: +91-361-2582352

Email: pinaki@iitg.ac.in

Dr. Santosh Biswas
Professor

Ph: +91-9957561026

Email: santosh@iitbhilai.ac.in

Thesis Certificate

This is to certify that the thesis entitled “Modeling and Verification of
Lightweight Defense Strategies in IoT Security: A Discrete Event System
Approach” being submitted by Dipojjwal Ray to the Department of Computer
Science and Engineering, Indian Institute of Technology Guwahati, is a record of
bonafide research work carried out by him under my supervision and is worthy
of consideration for the award of the degree of Doctor of Philosophy of the Institute.

To the best of my knowledge, no part of the work reported in this thesis has
been presented for the award of any degree at any other institution.

Date : / /

Place: Guwahati, India Dr. Pinaki Mitra

Date : / /

Place: Bhilai, India Dr. Santosh Biswas

(Thesis Supervisors)

Acknowledgments

First and foremost, I express my sincerest gratitude and thanks to my supervisors
Dr. Pinaki Mitra and Dr. Santosh Biswas. It has been my honour and pride to be their
student. I wholeheartedly appreciate their contributions and ideas. It is because of their
help, patience, belief towards me, their efforts and valuable suggestions that my Ph.D.
experience has been joyous and worthwhile.

I would also like to express my thankfulness to Prof. Sukumar Nandi for his immense
help and guidance which has helped me strive to be a better researcher. I must thank
my respected doctoral committee members Prof. Jatindra Kumar Deka, Prof. Hemangee
Kapoor and Dr. Aryabartta Sahu for their insightful suggestions and comments that have
helped me improve the quality of my thesis work.

I would also like to express my gratitude and thankfulness to Prof. Purandar Bhaduri
and Dr. Arnab Sarkar. Without their help and guidance, this journey would have been
incomplete. I would also like to thank Dr. Chandan Karfa whose moral support and
valuable ideas have helped me overcome tough times. I am also thankful to Dr. Sukanta
Bhattacharya for his help every time and his friendly suggestions. I would like to thank
heads of the Department of Computer Science and Engineering, Prof. Diganta Goswami
and Prof. T. Venkatesh for allowing me use the department facilities and available resources.
My first inspiration in the department was Dr. Vijaya Saradhi and I would like to thank
him for his invaluable guidance. My research work has also been partially supported by
ICPS, Department of Science & Technology (DST), Govt. of India for my involvement in
the project entitled “Formal Methods for Modeling and Verification of Intrusion Detection
System in Wireless Networks", and I would like to express my thankfulness to them.

Thanks to my adorable seniors who had made this journey fulfilling, who had been
with me throughout their stay at IIT Guwahati, namely Dr. Awnish Kumar, Dr. Akash
Anil, Dr. Vasudevan, Dr. Sandeep Vidyapu, Dr. Rakesh Pandey, Dr. Rajesh, Dr. Piyoosh,
Dr. Surajit Das, Dr. Hema, Dr. Ranajit Senko, Dr. Saptarshi Pyne and Pradeep Sharma.
I will also cherish the long tea time chats with my friends, Sameer, Bhargav, Deepankar,
Subrata Tikadar, Subrata Nandi, Pradeep Bhale, Ujjwal Biswas, Arijit, Sumita, Partha Pati,
Palash, Soumen, Mishra and Akshay. I have spent short yet sweet time with my juniors
Nilotpal, Saurav and Soumya. Apart from my department friends, I have cherished long
talks and support from Amritava, Saptarshi, Bandhan, Anirban, Ankan and Niloy. Special
thanks to my childhood friends, Sanjeeban, Arko, Kunal and Debango who have all mentally
supported me throughout. It goes without mentioning the help and assistance I received
each time from office staffs, especially Ms. Gauri, Mr. Monojit and Nanu da, whom I would
also express my thanks for.

The moments spent will be long cherished and will be ingrained in my memory for
a long time. It has been a enjoyable yet tough time. Above all, without the blessings of
Almighty and my parents, this journey would never have been possible. Their belief and
perseverance has helped me reach this stage. All through the PhD journey, there needed to
be decision making at every stage which has helped me grow in not only research but also
in life. Lastly, I would like to thank my loving wife for the infinite favours and unwavering
support, without whom this journey would have been incomplete. I am truly indebted to
all of them.

Guwahati, August 2024 Dipojjwal Ray

x

Abstract

The Internet of Things (IoT) revolution has ushered huge technological benefits and
has made future communication and human lives easier. However, the rapid proliferation of
IoT introduces numerous security challenges. IoT systems have been shown vulnerable to
device-level attacks. Also indubitably, there exists a multitude of network-level attacks that
make IoT systems vulnerable due to lack of secure provisions in place. At the device-level,
secure IoT devices can be heavily compromised to various side-channel attacks. There
exists scan-based side-channel attacks for which the proposed countermeasures are either
insufficient, or compromise on testability, or of high-overhead. At the network-level, IoT-
specific protocols are prone to varied internal DDOS attacks at each layer. Given the
resource-constrained environment, lightweight, accurate and malicious node identification
schemes are highly demanding among attack mitigation techniques. For genuine reasons,
Intrusion Detection Systems (IDS), a software or hardware component monitoring host or
network threats, are widely used to secure IoT systems and deemed suitable for most of
such detection or prevention scenarios. The two most popular IDS-based design techniques
are Signature based IDS, which use known signatures, and Anomaly-based IDS that use
statistical features. However, there exists no known signatures or features in attacks like
RPL rank attack, RPL version number attack, 6LoWPAN based fragmentation attacks,
CoAP request spoofing and CoAP response spoofing attacks, rendering Signature-based and
Anomaly-based methods futile. Basically they generate lots of false positives since the IoT
network traffic, operational under attack, cannot be differentiated from the normal traffic.
This dissertation presents few novel attack mitigation and attack node location identification
mechanisms for IoT security, utilizing controller and IDS implementations, while using
various Discrete Event System (DES) based formalisms. DES models are designed for the
IoT systems under normal and abnormal conditions. DES based formalisms ensure proofs of
correctness and completeness which are preferable. DES security and Fault Detection and
Diagnosis (FDD) theoretic properties in Finite State Automata are leveraged for the proofs.

The thesis work comprises four contribution chapters. In the first chapter, we show
an Opacity preserving countermeasure using a novel hardware controller unit design that
circumvents all state-of-the-art differential scan attacks including a proposed co-relation scan
attack that is more effective on an IoT device having AES implementation. The controller
uses a mask determination algorithm to selectively allow bit-flipped scan outputs. Our
scheme incurs nominal overhead and maintains full testability. Opacity, a security notion
in the DES community, is used to formally prove the security of our system modeled in
DES. Diagnosability is a property used in classical DES approaches for performing FDD
of complex control systems. For the subsequent network-level attack countermeasures, we

adopt this approach in our DES based IDS framework, since faults and attacks have similar
properties. In the second chapter, we present a RPL version number attack detection
and rank attacker detection as well as identification mechanism that utilizes an intelligent
active probing technique and DES based IDS. Our proposed architecture is centralized
with inputs from sensing at the RPL leaf nodes. Active probing helps create differentiating
sequences of events in normal and attacker specific conditions. I-diagnosis framework of
DES is extended to model rank attacker node behaviour incorporating the controllable
events (probes). In the third chapter, we present a novel 6LoWPAN fragmentation attacker
identification mechanism that utilizes fabricated fragments as active probes. Such attacks
are low overhead with an eavesdropping attacker capable of exploiting nodes which are just
a single hop away. Consequently, a decentralized DES based IDS is proposed. Decentralized
I-diagnosis helps globally diagnose an attack node based on the response generated from the
forwarded spoofed fragments. Global I-diagnosability is ensured from the local I-diagnosis.
Lastly, we present a CoAP request spoofing attacker identification mechanism using crafted
request and response messages. I-diagnosis framework is successfully adapted for detecting
an attack node that has launched the request spoofing attack in IoT application layer.
However, proposed technique is limiting while detecting an response spoofing attack node,
since correctly crafted fragments need to be ensured. Consequently, we adapt and extend the
I2-diagnosis framework of DES to model the crafted fragment indicator event (active probe)
along with an empowering event. All the countermeasures are experimentally analysed both
in simulation and real testbed. Results show that our schemes are accurate and lightweight
compared to existing approaches. Furthermore, we prove the correctness and completeness
of our proposed mechanisms.

xii

Table of Contents

Page

List of Figures vi

List of Tables xi

List of Algorithms xiii

List of Acronyms xv

List of Symbols xix

1 Introduction 1

1.1 IoT Applications . 2

1.2 IoT Technologies and Protocols . 3

1.3 Context . 7

1.3.1 Device-level attacks . 7

1.3.2 Network-level attacks . 9

1.3.3 Application-level attacks . 10

1.3.4 IoT Security Challenges . 11

1.3.5 Intrusion Detection System (IDS) . 13

1.4 Motivation . 15

1.5 Preliminaries of Discrete Event System (DES) 17

1.5.1 DES Security . 17

1.5.2 Failure Diagnosis and Diagnosability (FDD) of DES and IDS 18

1.6 Research Questions . 19

1.7 Contributions . 20

1.7.1 Scan-based Side-channel Attack . 20

1.7.2 RPL Version Number Attack and RPL Rank Attack 24

1.7.3 6LoWPAN Fragmentation Attack . 26

1.7.4 CoAP Request and Response Spoofing Attack 28

i

Table of Contents

1.8 Organization of the Thesis . 30

2 Mitigation of Differential Scan Attacks 33

2.1 Background . 36

2.1.1 AES . 37

2.1.2 Differential Scan Attacks . 38

2.1.3 Preliminaries of Discrete Event System and Opacity in Security . . . 42

2.2 Proposed Defense Scheme . 45

2.2.1 Threat model . 45

2.2.2 State based Attack Model . 46

2.2.3 State based defense model . 47

2.2.4 Architecture . 49

2.2.5 Mask Determination Algorithm . 51

2.2.6 Discussion . 51

2.2.7 Complexity Analysis . 53

2.2.8 Testability . 53

2.3 Security Proof . 54

2.3.1 Verifying current-state opacity . 54

2.3.2 Why differential scan attacks will fail 55

2.3.3 Security considerations for generalized input differences 56

2.4 Case Study . 57

2.4.1 Experimental Results . 58

2.4.2 Performance analysis . 59

2.5 Comparison with other works . 59

2.6 Conclusion and Future Directions . 61

3 Mitigation of RPL-based Attacks 63

3.1 Related Work . 66

3.2 Background . 68

3.2.1 RPL Protocol . 68

3.2.2 Rank and version number attack . 70

3.2.3 Increased rank attack timeline . 71

3.2.4 Intrusion Detection Systems . 71

ii

Table of Contents

3.3 Proposed Rank Attacker Identification Scheme 72

3.3.1 I-DES based IDS . 72

3.3.2 Overview of proposed attacker identification procedure 73

3.3.3 IDS Setup . 76

3.3.4 Intimation . 77

3.3.5 RQST_RSP_HANDLER() . 78

3.3.6 I-DES Model and I-Diagnoser . 81

3.3.7 Basics of Discrete Event Systems . 81

3.3.8 An example of rank attacker node identification using DES Diagnoser 92

3.3.9 Correctness and Completeness . 92

3.3.10 Overhead analysis . 96

3.4 Experiments, results, and discussion . 97

3.4.1 Experiment 1: Non-rank attack scenario 98

3.4.2 Experiment 2: Increased rank and version number attack scenario . 99

3.4.3 Experiment 3: Attack scenario with proposed solution 100

3.4.4 Comparison with the existing works 103

3.4.5 Discussion . 104

3.5 Conclusion . 109

4 Mitigation of 6LoWPAN Fragmentation Attacks 111

4.1 Preliminaries . 113

4.1.1 6LoWPAN Fragmentation mechanism 113

4.1.2 Fragment Duplication Attack . 114

4.2 Related Work . 116

4.3 Proposed Defense Scheme . 117

4.3.1 Design Overview . 117

4.3.2 Setup . 120

4.3.3 Attack Inference . 121

4.3.4 Active probing . 124

4.3.5 I-DES Model and local I-Diagnoser 125

4.3.6 An example of fragment duplication attacker node identification using
DES Diagnoser . 134

4.3.7 Correctness and Completeness . 135

iii

Table of Contents

4.4 Performance evaluation . 138

4.4.1 Experiment 1: Non-FDA scenario . 139

4.4.2 Experiment 3: FDA scenario with proposed solution 140

4.4.3 Comparison with the existing works 143

4.5 Conclusion . 144

5 Mitigation of CoAP request/response spoofing attacks 147

5.1 Background . 149

5.1.1 CoAP . 149

5.1.2 CoAP Message Format . 149

5.1.3 CoAP - IP address spoofing attack 150

5.2 Proposed Scheme . 151

5.2.1 I2-DES based IDS . 151

5.2.2 Design Overview . 152

5.2.3 Setup . 155

5.2.4 Inference . 156

5.2.5 Probing . 157

5.2.6 I2-DES modeling . 160

5.2.7 An example of CoAP spoofing attacker node identification using DES
Diagnoser . 170

5.2.8 Correctness . 172

5.3 Experiments, results, and discussion . 174

5.3.1 Network Performance under non-attack scenarios 175

5.3.2 Network Performance under DoS attack scenarios 175

5.3.3 Network Performance with the proposed approach: 175

5.4 Conclusion . 176

6 Conclusions and Future Work 177

6.1 Summary of Thesis Contributions . 178

6.1.1 Contributions of Chapter 2: . 179

6.1.2 Contributions of Chapter 3: . 180

6.1.3 Contributions of Chapter 4: . 181

6.1.4 Contributions of Chapter 5: . 182

6.2 Scope of Future Work . 183

iv

Table of Contents

Bibliography 187

Appendix 207

A Discrete Event System Definitions . 207

B DES Diagnosability . 207

C Diagnosability Definitions . 209

List of Publications 211

v

List of Figures

Page

1.1 Overview of contributions in the IoT architecture 30

2.1 AES round operation . 37

2.2 Hamming weight distribution (original) corresponding to 0x01 plaintext
difference . 39

2.3 Proposed DES attack model G with 2 plaintext pairs 46

2.4 Proposed defense model H with 2 plaintext pairs 47

2.5 Architecture . 49

2.6 Block diagram of the controlled system S/H 50

2.7 Estimator automaton for DES H . 55

2.8 Hamming weight distributions . 57

2.9 Signature Matches . 57

2.10 Correct and incorrect key distribution in co-relation scan attack 57

3.1 RPL DODAG . 69

3.2 Rank Attack Timeline . 71

3.3 IoT network DODAG representation with IDS and agents deployed 74

3.4 Architecture of proposed IDS . 75

3.5 Workflow of proposed scheme . 75

3.6 A DODAG instance (left) and path TPATH2 (right). IDS nodes are
denoted as gray circles, non-attack nodes are denoted in blue circles,
suspected attack nodes are denoted in red green circles 77

3.7 DES model H . 82

3.8 Diagnoser O for DES model H . 90

3.9 Normal and attack configurations . 93

3.10 Topology considered for testbed and simulation experiments 97

3.11 DODAG of the IoT ecosystem . 99

vii

List of Figures

3.12 Average Energy, Throughput, Node Power over run time (nodes=64) (without
malicious node) . 100

3.13 Average Energy, Throughput, Node Power over run time (nodes=64) (with
malicious node) . 101

3.14 Average Energy, Throughput, Node Power over run time (nodes=64) (after
solution implementation) . 101

3.15 Power and Energy for 50 min network execution with proposed solution . . 101

3.16 PDR and Throughput for 50 min network execution with proposed solution 101

3.17 Node Power comparison with related works 105

3.18 Energy comparison with related works . 105

3.19 PDR comparison with related works . 105

3.20 Throughput comparison with related works 106

3.21 TPR and TNR comparison with related works 106

4.1 Fragmentation Process Overview . 114

4.2 Attack Scenario for Fragment Duplication Attack 115

4.3 An example of 6LoWPAN deployment . 117

4.4 IDS architecture . 118

4.5 Flow of DES based IDS scheme . 119

4.6 DES model Hi . 125

4.7 Diagnoser O for DES model Hi . 131

4.8 An arrangement of IDS and non-IDS 6LoWPAN nodes 135

4.9 Topology considered for testbed and simulation experiments 138

4.10 Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (non-FDA scenario) . 140

4.11 Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (During FDA scenario) . 141

4.12 Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (After solution implementation) . 143

4.13 Analysis of ACC and FDA over different packet size with 64 node (Topology
1 and Topology 2 used) . 143

5.1 CoAP message format . 149

5.2 CoAP address spoofed attack timeline . 150

5.3 An example of IDS deployment . 152

viii

List of Figures

5.4 Architecture of the proposed IDS . 153

5.5 Role of IDS . 154

5.6 Flow of proposed scheme . 156

5.7 DES model Hi . 158

5.8 Diagnoser O for DES model Hi . 167

5.9 Snapshot of Non attack and DDoS attack scenario in IoT Ecosystem 175

ix

List of Tables

Page

2.1 Notations . 43

2.2 RTL Components Summary for AES Implementation With and Without the
Proposed Countermeasure . 58

2.3 Comparison of Different Designs . 60

3.1 NOTATIONS . 73

3.2 Table for TPATH2 . 77

3.3 LIST OF SYMBOLS . 83

3.4 TRANSITIONS ℑ IN H CORRESPONDING TO NETWORK PACKET
FRAMES . 86

3.5 Contiki Cooja and FIT IoT-LAB experimental parameters 98

3.6 Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosys-
tem (During attack and after solution implementation in Contiki Cooja) . . 99

3.7 Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosys-
tem (During attack and after the solution implementation in FIT IoT-Lab) 99

3.8 Comparison of the proposed scheme with the closely related works 106

4.1 FRAME NOTATIONS . 118

4.2 LIST OF SYMBOLS . 127

4.3 TRANSITIONS ℑ IN Hi CORRESPONDING TO NETWORK PACKET
FRAMES . 129

4.4 Simulation and real-time test-bed parameters 139

4.5 PDR, EC,EED and THP values for IoT ecosystem (During attack) 142

4.6 PDR, EC,EED and THP values for IoT ecosystem (After solution Implemen-
tation) . 144

4.7 Comparison of the proposed scheme with the closely related works 144

5.1 TRANSITIONS ℑ IN Hi CORRESPONDING TO CoAP PACKETS 160

5.2 TRANSITIONS ℑ IN Hi CORRESPONDING TO CoAP PACKETS 161

xi

List of Tables

5.3 Notations used . 164

5.4 Throughput, Accuracy, and Response Time During DoS and after implemen-
tation of Intended Approach . 174

5.5 Comparison between closely related works and proposed approach 174

xii

List of Algorithms

1 S-box Input Pairs . 40

2 Plaintext Pairs . 41

3 Key Guessing Algorithm . 42

4 Key Recovery Procedure . 45

5 Computing a modified HW distribution and Mask value 52

6 Agent Intimation Procedure . 78

7 RQST_RSP_HANDLER() . 79

8 FRAG_RCV _HANDLER() of Ij . 121

9 FRAG_SND_HANDLER() of Ii . 126

10 CoAP_REQ_HANDLER() of Ii . 159

11 CoAP_REQ_HANDLER() Probing Module of Ii 162

12 CoAP_RSP_HANDLER() Probing Module of Ii 162

13 CoAP_RSP_HANDLER() of Ii . 163

14 Diagnoser construction O for DES model H 209

xiii

List of Acronyms

Acronym Expansion

6BR

6LoWPAN

ACC

ACK

AES

API

ATPG

CIA

COAP

CON

CONMO

COSA

CSO

CUT

DAO

DDOS

DES

DES

DFT

DIO

DIS

DODAG

DOS

DTLS

6LoWPAN Border Router

IPv6 over Low-power Wireless Personal Area Networks

Accuracy

Acknowledgement

Advanced Encryption Standard

Application Programmable Interface

Advanced Test Pattern Generator

Confidentiality Integraity Availability

Constrained Appplication Protocol

Confirmable Message

Control Message Overhead

Co-relation Scan Attack

Current-State Opacity

Circuit Under Test

DODAG Advertisement Object

Distributed Denial of Service

Data Encryption Standard

Discrete Event System

Design for Tesatbility

DODAG Information Object

DODAG Information Solicitation

Destination Oriented Directed Acyclic Graphs

Denial of Service

Datagram Transport Layer Security

xv

List of Acronyms

DUT

ECC

EU

FDD

FRAG1

FRAGN

GIS

GPS

HTTP

IC

ICMPV6

ICT

IDS

IIoT

IoT

IP

IPv4

IPv6

JTAG

LFSR

LLN

LR-WPAN

MAC

MITM

MKR

MQTT

MTU

MUX

NON

NTA

OCP

Device Under Test

Energy Consumption

Energy Utilization

Fault Detection and Diagnosis

Fragment Header

Fragment

Geographic Information System

Global Positioning System

Hypertext Transfer Protocol

Integrated Circuit

Internet Control Message Protocol version 6

Internet and Communication Technology

Intrusion Detection System

Industrial Internet of Things

Internet of Things

Internet Protocol

Internet Protocol version 4

Internet Protocol version 6

Joint Test Action Group

Linear Feedback Shift Register

Low-power and Lossy Networks

Low Rate Wireless Personal Area Networks

Message Authentication Code

Man-in-The-Middle

Mirror Key Register

Message Queuing Telemetry Transport

Maximum Transmission Unit

Multiplexer

Non Confirmable Message

Network Traffic Analysis

Objective Code Point

xvi

List of Acronyms

OF

PAN

PDR

PRNG

QOS

RAD

RAI

RAM

REST

RFID

ROM

RPL

RSA

RST

RTOS

SCAL

SDN

SIB

SMQTT

SSL

TCP

THP

TKL

TLS

TNR

TPM

TPR

UDP

VNAD

WI-FI

WSN

Objective Function

Personal Area Network

Packet Delivery Ratio

Pseudorandom Number Generator

Quality of Service

Rank Attack Detection

Rank Attack Identification

Random Access Memory

REpresentational State Transfer

Radio Frequency Identification

Read Only Memory

IPv6 Routing Protocol

Rivest Shamir Adleman

Reset Message

Real Time Operating System

Scalability

Software defined Networking

Segment Insertion Bit

Secure Message Queuing Telemetry Transport

Secure Socket Layer

Transmission Control Protocol

Throughput

Token Length

Transport Layer Security

True Negative Rate

Tamper-Proof Memory

True Positive Rate

User Datagram Protocol

Version Number Attack Detection

Wireless Fidelity

Wireless Sensor Network

xvii

List of Acronyms

xviii

List of Symbols

Symbol Description

H

Σ

Σo

V

ℑ

τ

Y

Y0

σ

L(H)

YS(YNS)

(I, I ′)

(P, P ′)

R(p)

IHWi

Mask(P, x)

FE(FD)

DES model

Set of events of the DES model H

Set of observable (unobservable) events of the DES model H

Set of model variables of the DES model H

Set of transitions of the DES model H

A transition τ ∈ ℑ

Set of states of the DES model H

Set of initial states of the DES model H

Event on which a transition is enabled

Set of all traces generated in H

Set of secret (non-secret) states of the DES model H

An S-box input pair

A plaintext input pair

Round output value obtained from applying plaintext p

Vector of S-box input pairs generating Hamming weight i

A mask computation function

Flip Enable (Disable) event

xix

1
C h a p t e r

Introduction

The idea behind Kevin Ashton’s 1999 promotional slogan, ‘Internet of Things’, has evolved

into a revolutionary technical paradigm today, more than twenty years down the line [1].

With a plethora of technologies, Ashton’s vision of everyday goods, home appliances and

mobile devices being interconnected via the Internet, industrial machineries communicating

seamlessly aiding production, and deployed sensors helping in setting up smart cities, has

now come to practice. The traditional Internet has emerged as the Internet of Things (IoT)

and has touched every nook and corner of our globe, easing human living incredibly [2, 3].

The IoT is more often described as a system of interconnected heterogeneous entities.

The term entity applies to uniquely addressable ‘things’ (or smart objects), people and the

environment. Therefore, IoT vision can be broadly understood as service provisioning for

humans and things by enabling their communication over the Internet. The IoT hinges

upon a conglomerate of different technologies starting from radio frequency identification

(RFID) and wireless sensor devices to Bluetooth, Wireless Fidelity (Wi-Fi), Zigbee, Low-

rate Wireless Personal Area Networks (LR-WPANs) and advanced ones like Big-data,

Blockchains, and Cloud Computing [4]. Nonetheless, IoT encompasses a large heterogeneity

in devices which communicate as per the various standardized protocols and primarily caters

to harvesting and exchanging data for collection and analysis without the need for human

intervention. Furthermore, IoT has been widely acclaimed as one of the cornerstones of the

21st century Information and Communication Technology (ICT) development.

By enabling smooth connectivity, IoT has benefited people technologically, economically

1.1. IoT Applications

and on a societal level. It has brought in a dramatic change to communities with ‘things’

ranging from implantable medical devices, merchandise tags, smart thermostats to drones

and automobiles with sensors built-in. IoT is helping us live more comfortably, automating

tasks such as turning lights on, adjusting thermostats and even turning off equipment when

unnecessary, thereby saving time and energy. Smart devices like wearables, alarms, camera

systems, smart home appliances offer various functionalities that improve the quality of life

[1]. Physical boundaries have dissolved with IoT that has made us stay connected even

from far away places, eventually becoming an indispensable component in our lives.

1.1 IoT Applications

IoT offers a wide array of applications that has boosted productivity and made us more

informed with weather forecasts, traffic tracking, etc. IoT applications such as monitoring

security systems, detecting fire or calling for help in emergencies has improved the overall

safety of mankind. A few examples of IoT applications include:

• Smart home: IoT devices (such as smart locks, baby monitors, and fire detectors) can

be deployed at home and communicate with each other wirelessly. These devices can

also be accessed remotely through a home gateway [5].

• Smart healthcare: IoT devices can be used to collect, transmit, and store patient data,

such as heart rate. This data can then be sent to a hospital server for diagnosis and

tracking [6].

• Smart transportation: Smart vehicles can communicate with each other (vehicle-to-

vehicle), with external infrastructure (vehicle-to-infrastructure), and with pedestrians

(vehicle-to-pedestrian) over wireless networks. This allows smart vehicles to detect

traffic conditions, manage their speed, and exchange data to improve safety and

efficiency [5].

• Smart agriculture: IoT sensors can be used to remotely monitor and control tempera-

ture, humidity, irrigation, soil moisture, and micro-climate conditions in agricultural

settings. This can help to increase production and quality while reducing costs.

2

1. Introduction

• Smart industry and Mission-Critical Systems: Industrial IoT (IIoT) uses machine-

to-machine technology to automate manufacturing processes with minimal human

intervention. IIoT aims to improve production efficiency and reliability while reducing

costs and quality issues.

• Smart retail: IoT sensors can be attached to retail products to track their status

and location. This information can be used to develop smart shopping systems that

provide improved services to customers and attract new customers.

• Smart grid: Smart grids use IoT devices to measure, monitor, and manage electricity

consumption. This enables more efficient and reliable electricity management, reduces

energy costs, and improves grid reliability [7].

1.2 IoT Technologies and Protocols

The Internet of Things (IoT) is embedded with sensors, software, and other technologies for

the purpose of connecting and exchanging data with other devices and systems over the

internet. A number of technologies facilitate and enable the IoT, including:

• IPv6: It is the next generation of the internet protocol (IP), the underlying protocol

that powers the internet. IPv6 was developed to address the limitations of the current

IP protocol, IPv4. One of the main limitations of IPv4 is that it has a limited address

space, which means that there are not enough IPv4 addresses to accommodate all

of the devices that are being connected to the internet. IPv6 solves this problem by

providing a much larger address space. IPv6 also has a number of other features that

make it well-suited for the IoT. For example, IPv6 supports auto-configuration, which

means that IoT devices can automatically configure themselves with IP addresses

when they are connected to the network. This is important for the IoT because it can

be difficult or impossible to manually configure IP addresses on large numbers of IoT

devices.

• RFID: It is a technology that uses radio waves to identify and track tags attached to

objects. RFID tags can be used to track the movement of goods, people, and animals,

and to collect data from sensors [8]. RFID tags are made up of two main components:

3

1.2. IoT Technologies and Protocols

a microchip and an antenna. The microchip stores the tag’s unique identifier and

other data. The antenna transmits and receives radio signals. RFID readers are used

to read data from RFID tags. RFID readers emit radio waves that power the tag’s

microchip and cause it to transmit its data. The RFID reader then receives the tag’s

data and decodes it. RFID is a widely used technology in the IoT. For example, RFID

tags are used to track the movement of goods in supply chains, to track the location

of patients in hospitals, and to track the movement of animals in farms.

• WSN: They are a network of small, low-power devices that can sense and collect

data from the environment. WSNs are often used in IoT applications to monitor

environmental conditions, such as temperature, humidity, and air quality. WSN nodes

are typically equipped with sensors, a microcontroller, and a radio transceiver. The

sensors collect data from the environment, the microcontroller processes the data,

and the radio transceiver transmits the data to other nodes in the network. WSNs

are well-suited for IoT applications because they are low-cost, energy-efficient, and

scalable. WSNs can be deployed in a variety of environments, including remote and

hazardous areas.

• IEEE 802.15.4: It is a protocol standard that specifies the physical layer and media

access control (MAC) requirements for low-power wireless personal area networks

(PANs). It is designed for low-speed, low-cost communication between devices. The

IEEE 802.15.4 standard can be used with the IPv6-based Low Power Wireless Personal

Area Network (6LoWPAN) protocol to build wireless embedded networks for the

Internet of Things (IoT) [4]. The basic communication range is 10 metres with a

transfer rate of 250 Kbit/s. The higher layers of the protocol stack are not defined in

the standard.

In addition to the core technologies, other enabling technologies for the IoT include:

• Cloud computing: Cloud computing provides a scalable and cost-effective platform

for storing, processing, and analyzing data from IoT devices.

• Global Positioning Systems (GPS): GPS can be used to track the location of IoT

devices, which is essential for many applications, such as asset tracking and vehicle

management.

4

1. Introduction

• Service-oriented architectures (SOAs): SOAs provide a flexible and scalable way to

develop and integrate IoT applications.

• Geographic information systems (GIS): GIS can be used to visualize and analyze

data from IoT devices, which can help businesses and organizations to make better

decisions.

• Cellular devices (3G/4G/5G): Cellular networks provide a reliable and ubiquitous way

to connect IoT devices to the internet.

The Internet is essential for the operation of IoT systems. Therefore, a TCP/IP protocol

stack similar to the one used for the Internet is used for IoT systems. Some of the standard

protocols defined for IoT ecosystems include:

• RPL: Routing Protocol for Low-Power and Lossy Networks (RPL) is a distance-vector

routing protocol designed for low-power and lossy networks (LLNs) [9]. LLNs are

mostly IoT networks that consist of devices with limited resources, such as power,

bandwidth, and processing power. RPL is designed to be scalable, efficient, and

reliable, even in challenging network conditions.

• 6LoWPAN Protocol: 6LoWPAN stands for IPv6 Low-Power Wireless Personal Area

Network. It is a protocol that allows IPv6 packets to be transmitted over low-

power wireless networks, such as IEEE 802.15.4. 6LoWPAN is designed to meet the

requirements of low-power consumption devices and weak computing capabilities nodes

and sensors [10, 11]. It works by compressing IPv6 packets to make them smaller

and easier to transmit over low-power wireless networks. 6LoWPAN also provides

a number of other features such as header compression, fragmentation, neighbour

discovery that makes it suitable for IoT applications.

• Constrained Application Protocol (CoAP): CoAP is a specialized web transfer protocol

for use with resource-constrained devices [12]. It is designed to be lightweight and

efficient, and to support the same basic operations as HTTP, such as GET, POST,

PUT, and DELETE. CoAP is well-suited for IoT applications because it can operate

over low-bandwidth and unreliable networks, and it has a small memory footprint.

It is based on a subset of the HTTP protocol, making it interoperable with HTTP.

5

1.2. IoT Technologies and Protocols

CoAP runs over UDP, which reduces bandwidth requirements and supports multicast

and unicast communication.

• Message Queue Telemetry Transport (MQTT): MQTT is another lightweight appli-

cation layer protocol designed for machine-to-machine (M2M) communication. It

runs over TCP and is based on the publish/subscribe model. MQTT is designed to

minimize bandwidth and power consumption, making it ideal for IoT applications.

The basic architecture of the IoT ecosystem can be broadly categorized into device-level

(or perception layer), network-level and application-level. The categorization of the IoT

ecosystem into device-level, network-level, and application-level provides a useful framework

for understanding the different components and layers involved in IoT implementations. We

here give an overview of each level:

• Device-Level: At the device level, IoT focuses on the physical objects or things that

are equipped with sensors, actuators, and connectivity capabilities. These devices

collect data from the surrounding environment through sensors and interact with the

physical world through actuators. They can include various types of devices such as

sensors, wearables, industrial machinery, vehicles, and consumer devices. Device-level

considerations involve hardware design, sensor integration, power management, and

firmware development.

• Network-Level: The network-level in IoT refers to the communication infrastructure

that enables connectivity and data exchange between devices. This layer encompasses

the protocols, connectivity technologies, and network architecture required to establish

reliable and secure connections. Wireless technologies like Wi-Fi, Bluetooth, Zigbee,

cellular networks (3G, 4G, 5G), and low-power wide-area networks (LPWAN) play a

crucial role in connecting devices. The network-level also involves considerations such

as data transmission, bandwidth, latency, scalability, and network protocols to ensure

seamless connectivity and efficient data transfer.

• Application-Level: The application-level in IoT encompasses the software, protocols

and services that utilize the data collected from devices to deliver specific functionalities

and value-added services. This layer involves data processing, analytics, and application

6

1. Introduction

development. IoT applications can range from simple data visualization and monitoring

dashboards to complex analytics platforms that leverage machine learning and artificial

intelligence to derive insights and enable intelligent decision-making. Application-level

considerations involve data storage, processing capabilities, protocol security, user

interfaces, and integration with other systems.

1.3 Context

As correctly hinted by Moore’s law, the number of transistors in a given IC has increased by

at least three-folds thereby reducing costs and catalyzing the miniaturization of integrated

circuits (ICs) to their tiniest possible orders [13]. With the ubiquitous growth of IoT, the

future is shaping towards quantification and digitalization of the physical world. If we go by

Gartner’s prediction, the number of IoT devices is expected to globally reach 75 billion by

2030 [14]. But with such growth, enormous challenges cloud IoT as well. An exponential

increase in the number of IoT devices indicates a proportional scale up of the possible

vulnerabilities.

The three levels of the IoT architecture are interconnected and interdependent. Each

of these levels are susceptible to unique array of attacks as demonstrated in multiple studies.

Device-level threats address the security attacks made to IoT devices and sensors. Network-

level attacks concern the vulnerabilities of the IoT communication protocols. Application-

level threats comprise of attacks pertaining to end-user applications and softwares.

1.3.1 Device-level attacks

Device-level attacks have their primary motif to compromise the hardware elements of a

device, with a focus on its ports, memory, power source, and other components. These

attacks have the potential to disrupt the device’s operation and modify its behavior. They

are typically categorized as physical attacks, firmware attacks, and encryption attacks.

Physical attacks necessitate physical access to the target devices and encompass various

tactics, including:

• Radio Frequency Interference or Jamming: This involves creating and transmitting

disruptive signals over radio frequencies, mainly causing Denial of Service (DoS)

7

1.3. Context

attacks.

• Physical Penetration: Adversaries exploit exposed device interfaces like JTAG to gain

direct access to memory, sensitive keys, passwords, configuration data, and other

critical parameters [15].

• Physical Damage or Tampering: Attackers inflict physical harm on the device to

disrupt its service availability.

Firmware attacks, on the other hand, revolve around manipulating the software installed

on IoT devices, leading to:

• Backdoors: Attackers modify device firmware to insert code that grants them remote

access when the device connects to the network [16, 17].

• Unencrypted Information: Attackers reverse engineer firmware to uncover encrypted

data like passwords, API keys, and public-key certificates. This information enables

them to intercept device communication and access sensitive user data [17, 18].

• Malicious Firmware: In addition to creating backdoors, attackers may modify firmware

to launch various attacks, including Distributed Denial of Service (DDoS) attacks.

Encryption attacks specifically target encryption mechanisms utilized within IoT net-

works [19], including:

• Side Channel Attack: Attackers eavesdrop on side channel emissions to bypass device

encryption by intercepting encryption keys during device access.

• Cryptanalysis Attacks: These attacks focus on breaking the encryption scheme by

analyzing ciphertext or plaintext. Examples include Known-plaintext attacks, Chosen-

plaintext attacks, Chosen Cipher-text attacks, and Ciphertext-only attacks.

• Ciphertext Only Attack: This approach allows attackers to access ciphertext and

determine the corresponding plaintext.

• Known Plaintext Attack: Attackers exploit knowledge of plaintext and partial cipher-

text to decrypt the remaining ciphertext.

8

1. Introduction

1.3.2 Network-level attacks

Network-based attacks within IoT ecosystems can be executed remotely from anywhere in

the world, without the need for physical access to the devices. These attacks encompass:

• Passive Traffic Analysis: Adversaries passively monitor network activity to intercept

sensitive user data, collecting information by observing network traffic [20]. They can

also disrupt traffic flow, a technique known as Man-in-the-Middle (MITM) attacks.

• Spoofing: Attackers impersonate legitimate devices to make malicious entities appear

as genuine ones, facilitating the launch of attacks [21].

• Rank or Sinkhole: A compromised device lures network traffic by broadcasting fake

routing updates. These attacks can be exploited to launch additional attacks [22].

• Denial of Service (DoS) and Distributed Denial of Service (DDoS): These are the most

prevalent attacks in IoT networks, capable of reducing, interrupting, or completely

disabling network communications [23, 24]. Ranging from simple jamming to sophisti-

cated assaults, they can be initiated remotely and are challenging to detect until the

network or service becomes unavailable.

• Sleep Deprivation: In IoT networks, devices can enter power-saving modes to conserve

energy. This attack aims to prevent devices from entering these modes by continually

sending traffic, depleting their battery resources.

• Man-in-the-Middle (MiTM) Attack: This involves an attacker establishing independent

connections with victims B and C, deceiving them into believing they are communi-

cating directly [25]. The attacker intercepts messages between B and C, rerouting

them in the process.

• Eavesdropping Attack: Also known as sniffing or snooping cyberattacks, this exploit

takes advantage of unsecured network communication to intercept data transmitted

over the network. Attackers can implement this type of attack by leveraging weak

network connections and using sniffer software on a server or connected client computer

to capture network data.

9

1.3. Context

1.3.3 Application-level attacks

• Man-in-the-Middle (MiTM) attacks pose a significant threat to the security of the

application layer protocols: (a) CoAP Protocol: Datagram TLS (DTLS) was intro-

duced to provide confidentiality, authentication, and integrity for CoAP. However, the

limitations of DTLS can be considered security weaknesses in the CoAP protocol. (b)

MQTT Protocol: To secure data transfer using MQTT, the Secure Socket Layer (SSL)

was introduced, employing asymmetric cryptographic techniques for data encryption

and decryption. Despite this, SSL remains vulnerable to MiTM attacks.

• Lack of Standardization: Secure MQTT (SMQTT), an extension of MQTT, aims

to enhance data transfer security. SMQTT relies on secret keys for encryption and

decryption, but key generation and encryption algorithms lack standardization.

• DDoS Attacks: DDoS attacks target IoT networks by exploiting protocol behaviors,

overwhelming target servers with traffic to prevent processing legitimate requests.

These attacks infiltrate the application layer and flood web servers with HTTP requests,

typically at lower rates to evade detection. Examples include DNS service-based attacks

and HTTP flooding.

• Software Attacks: Software attacks involve invading network software programs to

compromise network devices [17, 26]. Attackers exploit software vulnerabilities and

may impersonate or manipulate legitimate users to gain access to IoT systems. The

absence of robust user authentication has led to notable IoT attacks like Bashlite and

Mirai.

Securing IoT hence requires securing each of the levels. Moreover, most IoT platforms

need to satisfy resource-constrained requirements of devices, like sensors and actuators,

and use low-energy communication technologies. The primary objective therefore lies in

managing the complexity of the interconnecting infrastructure of these devices without

making any compromise to security. As IoT devices are becoming more accessible and

affordable with various zero-day attacks on the rise, the need for security and reliability is

therefore naturally demanding [27]. Securing industrial infrastructures and mission critical

systems become more challenging since malicious entities can gain access to personal and/or

10

1. Introduction

private information about people, vehicles, and systems. Moreover, life saving and emergency

infrastructures may face serious breakdown. Notwithstanding the growing research to secure

these levels, securing IoT remains a daunting task due to several vulnerabilities and challenges

that are typically posed.

1.3.4 IoT Security Challenges

There lies three primary reasons for the vulnerability of IoT devices to cyber attacks:

• Heterogeneity of devices: The wide variety of IoT devices having different shapes and

sizes, with different operating systems, hardware capabilities, and security features,

makes it difficult to implement security mechanisms that are fit for all aspects. For

example, a security measure that is effective for a smart thermostat may not be

effective for a security camera.

• Limited computational resources: IoT devices often have limited computational power,

memory, and battery life, which restricts their ability to run complex security measures

[28]. For example, a security measure that requires encryption or decryption may be

too computationally expensive for an IoT device with limited resources. It is infeasible

for IoT devices to execute computationally heavy and delay-prone security tasks.

• Difficulty in updating software: It can be difficult or impossible to update the software

on IoT devices or apply patches, especially those that are deployed in remote or

inaccessible locations [29].

Although ongoing research provides meaningful insights in improving the security of

IoT systems, they are also faced with several intrinsic challenges that require attention and

efforts:

• High requirements of emerging technologies: Some emerging technologies and ap-

proaches, such as blockchain, homomorphic encryption, searchable encryption, and

machine learning algorithms, require high processing and storage capabilities. This

makes it challenging to trade-off between security and performance in IoT infrastruc-

ture.

11

1.3. Context

• Dynamic and heterogeneous environment: IoT environments are dynamic, hetero-

geneous, and large-scale. This requires adaptive trust models to enable devices to

recognize trustworthy nodes. Fog computing can be used to achieve different security

requirements in IoT environments by providing real-time and latency-sensitive services.

However, it is challenging to ensure that all joining fog nodes are trusted, as fog nodes

do not have any information about each other. Additionally, it is important to select

trustworthy fog nodes, as users often have multiple fog nodes available to cooperate

for guaranteeing IoT services.

• Scalability of centralized SDN architecture: The centralized SDN architecture cannot

deal with a large number of IoT devices. Additionally, SDN-based solutions are not

efficient in highly dynamic IoT environments, such as vehicular networks. Therefore,

it is necessary to enforce scalability in SDN networks.

• Privacy and security of data transmission: IoT devices generate and exchange a massive

amount of data, including sensitive data. Blockchain technology can efficiently address

the scalability issue due to its distributed architecture. However, the blockchain does

not ensure the privacy of transactions and is prone to data leakage. Additionally, fog

nodes in fog computing-based architectures are responsible for forwarding data to the

cloud. If fog nodes are not trustworthy or compromised by an adversary, they can

disclose personal information.

• Key management in scalable IoT environments: Data transmission can be secured

using encryption techniques. Encryption of transmitted data prevents intruders from

revealing the content of messages. This approach can be applied when the commu-

nication parties share encryption/decryption keys. In symmetric encryption (i.e.,

block ciphers, stream ciphers, and hash functions), the key must be pre-distributed or

securely communicated. However, key management, including distribution, agreement,

update, and revocation, remains a significant challenge in scalable IoT environments.

To address the challenges discussed in the previous subsection, it is therefore necessary

to develop security solutions that are tailored to the specific needs of IoT ecosystems.

Solutions must also be lightweight and efficient, designed such that it is easy to deploy and

maintain. Additionally, it is also important to develop mechanisms for securely updating

12

1. Introduction

the software on IoT devices, even those that are deployed in remote or inaccessible locations.

To this end, Intrusion Detection Systems (IDS) have been one of the most efficient and

valued security solutions for the detection of malicious network behaviour [30, 31].

1.3.5 Intrusion Detection System (IDS)

An IDS is a software application or hardware appliance that monitors network traffic and

alerts the system administrator if suspicious activity is found. Designing an IDS requires

a data collection module, an analysis module for processing of the collected data, and a

reporting mechanism to notify network administrators.

IDSs can be classified into several categories based on their deployment, detection

methods, architectures, and deployment time. Based on the nature of their deployment,

there are three main types of IDSs:

• Host-based IDS: This type of IDS is installed on individual devices, such as computers

and servers.

• Network-based IDS: This type of IDS is installed on a network and monitors all traffic

flowing through the network.

• Hybrid IDS: This type of IDS combines the features of host-based and network-based

IDSs.

IDSs can also be classified based on their detection methods as:

• Signature-based IDS (or, specification-based): This type of IDS uses a database of

known attack signatures to identify malicious traffic.

• Anomaly-based IDS: This type of IDS monitors network traffic and identifies anomalies,

which are deviations from normal behavior.

• Hybrid IDS: This type of IDS combines the features of signature-based and anomaly-

based IDSs.

IDSs can be classified based on their deployment architecture as:

• Centralized IDS: This type of IDS is deployed on a single server and monitors all

traffic flowing through the network.

13

1.3. Context

• Distributed IDS: This type of IDS is deployed on multiple servers and monitors

different segments of the network.

Finally, IDSs can be classified into two main categories based on their deployment time:

• Real-time IDS: The IDS detects attacks in real time as they are happening.

• Offline IDS: The IDS analyzes historical network traffic data to detect attacks that

may have occurred in the past.

Proposed security solutions range from user-level solutions, protocol modifications,

cryptographic solutions, machine learning. Still, given the context of IoT, chosen security

standards also suffer from some demerits. For example, machine learning and deep learning

based solutions sometimes require extensive training and DL model fitting time, and are

greedy in terms of computation and storage [32, 33]. Cryptography based techniques are

highly resource exhaustive while using heavy encryption algorithms [34, 35]. Authentication

based techniques and using digital certificates also incur significantly high resource overhead

due to authentication, may need protocol modifications and face issues with certificate

management [36, 37]. Solutions that are protocol based require modification of the protocol

policies [38, 39, 40]. User level solution methods sometimes need proprietary hardware

support too [41]. IDS based solutions are less heavy and are naturally chosen for intrusion

detection purposes that generate alert on attack detection or identification. However, tradi-

tional IDSs are not well-suited for IoT environments. This is because IoT environments are

highly dynamic and heterogeneous, with a wide range of devices and protocols. Traditional

IDSs need to adapt to the unique security challenges of IoT devices, such as their limited

resources and their susceptibility to physical attacks.

A security solution needs to restore the compromised CIA security requirement namely,

confidentiality, integrity and availability. Furthermore, standard security implementations

of IoT can be overwhelmed by attacks since a single malicious bot node can be equipped

enough to disrupt a whole network infrastructure. Despite significant research advancements

in IoT security, given the growth of the IoT industry, it is still nascent. There exist several

attacks that pose serious threats to IoT devices and networks, either without a solution or

having further scope of an improved mitigation or detection methodology. More research is

14

1. Introduction

therefore essential to strengthen IoT security; this dissertation aims to close the growing

gap by proposing solutions for resource-constrained environments.

1.4 Motivation

IoT devices popularly consist of scan chains for testing purposes. As a result enhanced

observability and controllability of the internal register contents of the device is induced.

There exists a class of intrusive (non-invasive) device-level attacks on cryptographic IoT

devices that makes use of this testability-induced vulnerability to leak out confidential

contents. In a scan-based side-channel attack, the secret key values can be easily differentiated

from the non-secret ones, inflicting loss. On the contrary, there exist a class of non-intrusive

network-level attacks and application-level attacks where the attack traffic resembles the

normal traffic and cannot be differentiated, making attack detection challenging. Two

characteristic properties of these attacks that make them subtle are:

• They are low overhead attacks; they either make use of the protocol-induced update

mechanism in which regular control packets are fabricated to misuse the feature

or require just a single fragment or application packet to be launched, while other

network traffic statistical properties are left intact. So an anomaly is unnoticeable on

occurrence of such attacks.

• The sequence of fragment-level or packet-level communication traffic across attack

and normal scenarios are indifferentiable. So development of a signature pattern or

anomaly pattern is not only difficult but also high-false positives may ensue.

These attacks either create differentiable characteristics that make it challenging to

preserve a secret, or adversely affect the network or device performance in spite of generating

attack behaviour that is indistinguishable from the normal making detection challenging.

This is our first motivation; proposing a countermeasure for such attacks overcoming the

discussed challenges.

Existing scan chain protection methods employ encryption methods or obfuscation

techniques which either hamper full testability or are of high overhead. Moreover, there

exists a class of recently proposed scan-based attacks with no solutions proposed in the

15

1.4. Motivation

literature. Existing solutions to mitigate the discussed network-level and application-level

attacks mostly use encryption techniques, machine learning based approaches, protocol

based approach, all of which have their inherent limitations like high overhead, change in

protocol policies, extensive training time in an IoT environment. IDS based solutions are

more preferable in this regard. But given a resource constrained environment, they do not

all comply with all the desired parameters like QoS, response time, scalability, mobility

that a solution needs to guarantee. Hence, applicability of such solutions are limited.

Therefore designing more resource friendly and energy-efficient techniques suitable for the

IoT ecosystem forms the second motivation of our work.

Signature-based IDS works by using a database which stores knowledge sets of attack

patterns (or signatures) and compares them with monitored network (or system) activity.

On finding a match, it generates an alert to signal malicious activity detection. Though

signature based IDS do not generate excessive false alarms and prove effective in attack

detection, yet it suffices to detect known attacks only. Hence such IDS require constant

updation with new attack signatures. Moreover, there exist many such IDS that use fixed

signatures in their design, making them not capable enough to detect attack variants. It is

noteworthy here that IoT attacks with newer attack surfaces are cropping up on a per-day

basis. On the other hand, anomaly based IDS have attack detection ability without having

acquired knowledge of attack behaviour specifications. It produces information which helps

define signatures for detection by misuse detectors. However it generates increased false

alarms due to the unpredictability induced by networks and users. Though anomaly based

IDS use statistical learning approaches, characterizing a normal behaviour pattern requires

them to use training sets of network events extensively, which is not an easy task. The above

mentioned attacks in IoT ecosystem, namely differential scan attack, co-relation scan attack

(COSA), RPL rank attack, RPL version attack, 6LoWPAN fragmentation attacks, CoAP

request and response spoofing attacks evade detection by such IDS or are not accurate

enough, leaving scope of improvement. Moreover, mostly proposed IDS schemes resort

to attack detection only. Attack node identification helps minimize chances of launching

fresh attacks. This is our third motivation; proposing near accurate IDS solutions that

also help identify attack node location for the discussed non-intrusive network-level and

application-level attack vulnerabilities.

16

1. Introduction

DES is a suitably abstracted modeling paradigm where complex system dynamics can

be naturally modeled as a set of discrete states and event driven transitions occurring

asynchronously over time. DES has found much success in aspects of failure detection

and diagnosis (FDD) and security. It involves modeling the system behavior under normal

and abnormal (fault or attack) conditions. Opacity is a security notion coined in the DES

community and can be used to perform security analysis of systems. A state estimator is

constructed that helps perform security analysis of attack mitigation techniques or generate

alerts on attack detection or identification. Formal verification of IDS approaches is also

lacking in IoT literature. As a third motivation, intelligent techniques using DES are used to

formally verify security and prove correctness and completeness of our proposed strategies.

Evaluation of proposed approach and comparison is also performed to show the applicability

of our work. We next discuss the preliminaries of DES.

1.5 Preliminaries of Discrete Event System (DES)

1.5.1 DES Security

There is a strict rise in security and privacy concerns today with the emergence of cyber-

physical systems, shared online services and shared infrastructures. Security attacks can be

classified broadly into two categories based on the nature of intrusion: one that depends on

potentiality of the intruder and the other that does not. The second category, Information

flow, sometimes includes a passive attacker who observes information through some infor-

mation leakage path. Various different information flow properties like anonymity, secrecy,

privacy, and non-interference have been studied.

Opacity is a security notion based on the property of Information flow [42], [43] . The

opacity problem was first studied in the context of labeled transition system and then adapted

to Petri Nets and finite automata models. It has also been studied in the probabilistic

setting. Opacity enforcing mechanisms has been studied in the light of supervisory control,

and has also been applied to different security problems of location based services, coverage

analysis of mobile agent trajectory, ship information systems and pseudo-random generators.

Opacity in DES modeled in the framework of non-deterministic finite state automata is

defined as a property over system states or executions where the truth value of a predicate

17

1.5. Preliminaries of Discrete Event System (DES)

is to be kept secret from a malicious adversary (or multiple adversaries) who observes the

system through some projection map, let P . An opaque system is such that the attacker

is never able to infer the predicate truth. That is, after having observed an execution of

the system, the intruder cannot determine if the state of the system belongs to the secret

state. In current-state opacity the secret is defined as a subset of system states. Given

a secret, a system is current-state opaque if the malicious observer (or intruder) is not

able to determine if the current system state is a member of the secret states. Therefore,

current-state opacity requires that any estimate of the intruder about system’s current state

lies outside the secret states. In other words, given an observer projection mapping on the

system events or states, whenever the system enters a secret state, there exists another

equivalent state that belongs to the non-secret states.

1.5.2 Failure Diagnosis and Diagnosability (FDD) of DES and IDS

The problems of opacity and diagnosability are related. Whereas opacity requires information

to be hidden from an external malicious agent such that intended secret information is

protected, diagnosbaility requires the diagnoser to be provided with enough information.

A fault in a system results in an undesirable deviation of one or more of its components

from their intended or normal functioning. The deviation is sometimes within tolerable

limits. In case the deviation is critical, then there is system breakdown or failure. Fault

diagnosis comprises of three objectives, fault detection, isolation and identification. Fault

diagnosis techniques generally rely upon system being modeled as per their normal behaviour

and also as per their faulty behaviour. Also, depending on the types of faults, they can be

partitioned into failure modes. Faults are typically used as an additional input (event) for

system modeling purposes. In discrete event systems, faults can be treated as permanent,

intermittent or incipient depending on their nature. The diagnosis problem is essentially

concerned with determination of fault type (a particular unobservable or unmeasurable

event) from observed sequence of events depending on the model under consideration [44],

[45]. Thus fault diagnosis needs to construct a diagnoser and is directly related to state

observability, which requires building an observer automaton. The diagnoser helps to

determine if the system under operation is normal, faulty or uncertain.

Classical DES theory has been largely adopted in systems for Fault Detection and

18

1. Introduction

Diagnosis (FDD) [46, 44, 45]. Motivated from fault diagnosis, DES based IDSs have been

successfully used in network attack detection [47, 48]. The characteristic similarities of

network attacks and faults in DES literature is what motivates its usage. The basic idea is

to develop a model for the normal functioning of the network and another for attack (fault)

behavior. Additionally, multiple fault types in DES literature are diagnosed by developing

exclusive fault DES models corresponding to each fault type. Each fault type leads to unique

deviations from the normal behavior. Analogously, we augment traditional DES based IDS

with attack types in our work here. It may be noted that an attack type corresponds to

behavior of the network under the influence of a particular attacker. Attack type DES

models corresponding to the location of the attacker are modeled. In DES based IDS a DES

diagnoser is used as our IDS engine. It is a state estimator automaton which is constructed

from the knowledge of normal and attack type DES models. The diagnoser observes system

event traces and gives a decision on the system condition being normal or under attack by

generating alerts. To summarize, by using DES based IDS, and given all possible attack

instances, it can be ascertained if an attack can always be exclusively identified, correctly

and completely.

1.6 Research Questions

This dissertation work was carried out with the objective of providing feasible answers to

these following questions:

• Are there attacks where a cryptographic IoT device leaks secret since secret values

of internal register contents differ from the non-secret values making the device

vulnerable?

• What are some of the IoT attacks where attack behaviour is same as normal and can

not be differentiated?

• Can the above attacks be detected using certain mechanisms that create differences

between normal and attack behaviour or help secure values resemble the non-secure

values in a cryptographic IoT device? Can such a controller using such mechanisms

be synthesised or IDS be designed using Discrete Event System (DES)?

19

1.7. Contributions

• Will DES notions of diagnosability or opacity notions hold true in such solution

techniques?

• Are the solutions of low overhead and cost-effective? How good are the performance

results compared to state-of-the-art solutions?

1.7 Contributions

Throughout this dissertation, various DES paradigms are adapted for the design and

verification of lightweight strategies for mitigation of IoT attacks. Though the paradigms

vary, still the fundamental DES philosophies are almost same: 1) designing a normal DES

model for the system normal behaviour 2) designing an attack DES model or a flipped

DES model for the system abnormal behaviour 3) designing a state estimator using the

normal model and attack or flipped model. The state estimator observes system values to

determine the system dynamics to be of normal or abnormal behaviour. Additionally, using

DES based framework ensures formal verifiability, which means it can be ascertained if all

of the possible attack cases are detectable, thereby making the schemes robust.

We discuss scan-chain based side-channel attack, RPL version and RPL rank attacks,

6LoWPAN fragmentation attacks and CoAP request/response spoofing attacks. We briefly

describe the related literature that prevent/detect such attacks and any issue/shortcoming

of them. We then demonstrate how our scheme uses effective mechanisms and lightweight

strategies leveraging DES frameworks for mitigation, detection and identification of these

attacks without requiring to modify protocols standards, encryption, installing proprietary

hardware or extensive training. The contributory chapters are summarized sequentially in

the following subsections.

1.7.1 Scan-based Side-channel Attack

Testing of manufacturing defects has seen a surge recently with growing demands in micron

and sub-micron IoT devices in the semiconductor industry. Among the techniques prevalent

in the industry, scan-based DfT is the most popular one. The internal scan chain comprising

of serially connected flip-flops (scan cells) is made more observable and controllable, which

effectively facilitates testing. While in test mode, a designated tester provides a relevant

20

1. Introduction

input to stimulate the internal nodes and observes corresponding output responses. Again,

attackers look out for various means to gain access to the internal scan elements. This

hands them an opportunity to leak sensitive information embedded within a cryptographic

IC of an IoT device. Side-channel attacks can be precisely classified to be scan-based if the

above inherent vulnerability is made use of.

Universal standard cipher, AES, was shown to be vulnerable to scan-based attacks [49]

after it was already reported to be effective on a DES cipher implementation [50]. Switching

a crypto-chip to test mode after having run the chip in normal mode for a few cycles was

shown to be effective in the retrieval of the secret embedded key. A differential analysis

technique applied on a set of related plaintext input and cipher output pairs helped infer the

secret information. This could be realized due to observing the internal scan cell contents

corresponding to controlled input pairs applied beforehand. Most of these discussed attacks

exploit only the unique Hamming weights corresponding to one round output Hamming

weight distribution by applying all possible input pairs with a fixed input difference targeting

a particular AES input byte. Subsequently, this style of attack was extended to public

key cryptosystems such as elliptic curve cryptography (ECC) [51], Rivest-Shamir-Adleman

(RSA) [52] circuits, and in lattice-based public key cryptosystems [53].

These attacks are limited in the way that only the unique hamming weights are the

prime target of the attackers. Having established a correct mapping between words and

scan cells and algorithmically determining the correspondence between scan cells and bytes,

differential scan attack will be easy to launch. Non-unique hamming weight input pairs are

also susceptible to attacks with a much trivial complexity. We present a new class of scan

attack, Co-relation scan attack (COSA), that can work on non-unique hamming weights

which removes the constraints of the attacker to look for only unique hamming distances. A

comprehensive attack analysis is performed on all possible hamming weights by exploiting

the scan functionality of AES crypto-system. We also show the theoretical limits of the

proposed attack along with extensive simulation results on AES for validation.

Numerous countermeasures have been proposed to prevent scan-based side-channel

attacks in the recent past. In [54, 49], a mode reset countermeasure was proposed to flush

all sensitive data contained in a scan chain during a switch from normal to test mode.

Still, it remains vulnerable to test-mode-only attack [55, 56, 57]. A concept of Mirror Key

21

1.7. Contributions

Registers (MKRs) was introduced by the authors in [49], where the actual key is isolated

in the test mode, and the testing is performed using a user-provided key. But, it does

not provide support for online testing with the actual key. In [58, 59, 60, 61, 62], the

ordering of the sub-chains in multiple scan chain designs was manipulated by obfuscation

with the help of Segment Insertion Bits (SIB), which limits the attacker from observing

the actual states [63]. Since scan-based attacks do not depend on the ordering of the scan

chain, hence the access to the complete set of states induces a vulnerability. Advanced DFT

structures, such as X-masking [64], and de-compressors [65], which were once considered

secure against scan-based attacks [66], have also been shown to be insecure against advanced

differential scan attacks [67, 68]. In [69], the obfuscation techniques discussed, both static

and dynamic, draw inspiration from the lock-and-key scheme. However, a delay in the test

process is imbibed from the user authentication process, which requires the test key to be

loaded. Also, the dynamic obfuscation is vulnerable to [70]. The above countermeasures

mainly protect the secret key of a cipher embedded inside the crypto-chip against scan

attacks. There is a parallel stream of research work aimed at protecting the hardware IP

against reverse engineering, thus restricting counterfeiting or overproduction of chips [71].

A dynamic obfuscation based scan design, proposed in [72] and [73], protects the IP by

restricting scan access using dynamic scan obfuscation. This technique obfuscates scan data

dynamically, using a protected obfuscation key generated by an LFSR. These obfuscation

keys are XORed with the scan data using XOR gates inserted between the scan cells in

the scan chain. Such designs are resistant to existing scan-based attacks due to dynamic

obfuscation, though recently, the technique in [72] has been shown to be susceptible to

ScanSAT [74]. In the scan protection technique proposed in [75], key gates are inserted

in the scan chain, which is controlled by a static secret key stored in a tamper-proof

memory (TPM), when a user applies the same secret key as a test key. Testing must be

performed with an obfuscated pattern, where the test patterns are obfuscated using the

same static secret key. If the test key applied does not match the secret key, the key gates

are controlled by dynamic keys generated by a pseudo random number generator (PRNG),

obfuscating the scan data dynamically in each clock cycle. The technique is vulnerable

to the DynUnlock attack [76]. The defense mechanism proposed in [77] is an enhanced

version of [78, 73], where the combinational logic of the circuit is additionally protected

22

1. Introduction

with functional obfuscation. In functional obfuscation, additional authentication is required

to gain access to the correct functionality of the circuit via an additional functional key.

Although the proposed technique [77] provides additional security against scan attacks, while

not compromising on testability, their hardware overhead is large. A cryptographic hash

function is shown to modify the test response in [79], though the cost of implementation is

dependent on a hash module that is made available inside the chip. In [80], the proposed

countermeasure performs an encryption of the test data, which again requires additional

modules for encryption/decryption, essentially incurring significant overhead in area, delay,

and power.

We emphasize on the security of our proposed countermeasure in the context of Discrete

Event Systems (DES) [81, 82]. There exist areas where security threats can be mitigated

by ensuring that the Opacity property holds true for a system modeled as DES. Moreover,

the opaque property is verifiable, hence the correctness of a defense model can be formally

proved by constructing an estimator automaton.

The existing literature on defense techniques relies on partial scan design, data ob-

fuscation, and scan chain encryption. Though these countermeasures are effective in the

prevention of traditional scan attacks and signature attacks, they are ineffective as far as

COSA [83] [84] are concerned.

Our major contributions in this work are outlined as follows:

1. A novel design of a security scheme using a hardware controller unit is presented. We

show to circumvent differential scan attacks by allowing selective bit-flipped outputs,

deterministically, using pre-computed mask values, without hampering testability.

2. A mask determination algorithm is presented that helps compute secret states and

determines the controller action across a setpoint.

3. Security of our scheme is proved by theoretically modeling the cryptosystem in the

framework of Discrete Event Systems and analyzing using the notion of Opacity.

Moreover, the entropy of the secret key is preserved. The proof of correctness is

guaranteed by constructing a state estimator automaton.

4. A theoretical analysis of the ineffectiveness of attacks launched from exploiting the

Hamming weight distribution obtained at the output is performed. A case study

23

1.7. Contributions

performed shows our approach is resilient to such attacks at a nominal extra overhead

of 1.78%.

1.7.2 RPL Version Number Attack and RPL Rank Attack

To enable efficient and reliable communication, IETF has standardized IPv6 Routing

protocol for Low Power and Lossy Networks (RPL) [9]. The design of RPL is tailored for

low-power IoT devices. RPL maintains loop-free Destination Oriented Directed Acyclic

Graphs (DODAG). A DODAG is created and maintained using control messages, primarily,

DODAG Information Object (DIO) for upward paths, DODAG Advertisement Object

(DAO) for downward paths and DODAG Information Solicitation (DIS) for node joining.

RPL ensures cost-optimized topologies by ordering participating nodes on the basis of an

integer cost function, rank. Individual rank of a node determines its position in the DODAG,

relative to a 6BR sink node (root). Also, a single version number prevalent in the DODAG

is maintained in DIO for consistency. Though RPL provisions various mechanisms and is

secure enough from external attackers, yet the resource constrained nature of IoT devices,

the typical characteristics of IoT networks such as lossy links, lacunas in infrastructure,

dynamic topology, etc., can render IoT-RPL susceptible to internal attacks [85, 11, 86, 87].

Various internal attacks have been shown in the literature, of late, that make illicit use

of RPL. Puppet attacks [88], advanced vampire attacks [89] make use of forged source routes,

while attacks like energy depletion attack [90] and vampire attacks [91] drain resources by

repeatedly sending useless data packets. Sybil attacks [92] and spam DIS attacks [93] have

been shown to make use of DIS messages with counterfeit identities, essentially causing denial

of service. DIO suppression attacks eavesdrop DIO messages for replaying it repeatedly in

fixed intervals [94]. Out of the various DIO-specific attacks explored, proposed rank and

version attacks continue to be of paramount importance since they are of low overhead

and are realizable using DIO only. To launch such attacks, the rank and version number

fields of a DIO message are fabricated causing formation of loops, sub-optimal routes, traffic

redirection and network partitioning. Significant path delay is incurred since a large number

of control messages are exchanged in the DODAG, resulting in energy depletion of the

constrained nodes and disruption of network services. Moreover, rank attacks may be

combined with other cross-layer attacks like selective forwarding attacks to alleviate the

24

1. Introduction

damage caused.

Proposed methods for securing IoT networks against RPL rank and version attacks have

their own typical limitations[95, 96, 97, 98, 99, 100, 101, 102, 103, 32, 104]. Cryptography-

based mitigation schemes are resource exhaustive and computationally heavy, especially

in a network of resource constrained devices. Machine learning-based approaches require

investment of extensive training time, as per the system under consideration. Protocol-based

approaches require modifying the protocol policies. IDS based approaches do not suffer

from these above limitations, but the implementation of these schemes for rank attack

detection is challenging since attack behaviour resembles normal behaviour. Hence, use

of signature-based IDS and anomaly-based IDS schemes in the context of IoT attacks

generate a large number of false positives. Furthermore, there exists many variants of rank

attacks which present complex characteristics to evade detection capabilities of IDS. Formal

verification of IDS schemes are also lacking.

This chapter presents an intelligent probing based scheme for the detection of rank and

version attacks that also identifies location of malicious nodes. The probing mechanism

helps differentiate the normal and attack behaviour. Our scheme incorporates a centralized

I-Discrete Event System (DES) based IDS [47, 105, 48] and a set of agents with event

monitoring enabled, that make use of probe packets [106, 107], judiciously. System failures

and network attacks involve analogous behavioural deviations from the normal system

functioning, which motivates the use of DES based IDS. Deploying our IDS does not require

a change in protocol policies, encryption, extensive training time or any need for proprietary

hardware support. Using our IDS also helps ensure a formally verifiable proof of correctness

of our approach. As opposed to Opacity, the property of DES Diagnosability holds if an

abnormal network behaviour can be differentiated from normal network behaviour. Since we

require to identify a pure attack behaviour, we restrict ourselves to FDD theory of DES. But

traditional DES diagnosability cannot help detect the attack node behaviour. An indicator

event is required such that diagnosis is possible only in those states where such an event

follows the attack event. I-diagnosability offers a relaxed definition of Diagnosability and is

applicable to partial diagnosis problems. Probe packets that are sent correspond to indicator

events. Attack detection is tested in only those paths where an indicator event follows the

attack. The major contributions in this chapter are enumerated as follows:

25

1.7. Contributions

• We propose a novel rank attacker identification scheme that also detects version attacks

in IoT-RPL. Our scheme makes use of an intelligent active probing technique that

helps create a deviation of attack traffic and normal traffic [106]. Our proposed scheme

is centralized and uses an I-DES based IDS.

• We extend the power of traditional I-DES based IDS framework with attack type

modeling for attacker identification.

• We prove the correctness and completeness of our approach by enumerating all the

attack cases.

• The performance of our scheme is tested through simulations and real testbed. The

experimental results highlight the applicability of our approach. Comparison of our

scheme to state-of-the-art countermeasures shows our approach is energy-efficient with

less packet overhead. The proposed solution is scalable, has minimum false positives

and achieves more than 99% accuracy in identifying the malicious nodes.

1.7.3 6LoWPAN Fragmentation Attack

Recently, a significant portion in the network usage of Internet of Things (IoT) [5, 108, 109]

in healthcare to home automation, industrial control systems to agriculture and smart

cities, mostly employ 6LoWPAN, an IETF-standardized adaptation layer, for IPv6 based

communication [110]. With the surge in the number of resource constrained devices

constituting the IoT, the need for a huge address space as well as IP-connectivity over low

power and lossy networks (LLN), including Wireless Sensor Networks (WSN), are facilitated

using 6LoWPAN [111, 10]. Fragmentation is therefore essential at this layer, since IEEE

802.15.4 limits the frame size to 127 bytes and hence does not permit transmission of IPv6

packets with MTU 1280 bytes. Consequently, the adaptation layer is proposed to forward,

buffer and process the fragments of the transmitted packets.

Malicious nodes make use of the challenges due to the proposed implementation and

exploit the fragmentation and reassembly procedures to launch various Denial-of-Service

(DoS) attacks. Lack of mechanisms to verify authenticity of the sender and the fragment

helps mount spoofing attacks. A malicious entity that is overhearing a communication

requires just a mere fragment to illegitimately occupy the buffer of a resource constrained

26

1. Introduction

node, or to disrupt the integrity of the packet by slipping in duplicate fragments. In both

the cases, since 6LoWPAN does not have means to verify fragment ingenuity, the buffer is

freed and the packet needs to be resent. The security aspect of availability is at stake due

to the trumped-up buffer reservation. The spurious occupancy also exhausts huge memory

and time, since the fragments need to be kept in the constrained memory of the nodes till

timeout. Moreover, the impact of the attack is unbound if the attacker drops fragments

and replaces them with fragments containing spoofed content, since 6LoWPAN processes

out-of-order fragments. Thus the services of the receiver node are blocked as fresh fragments

wait on its buffer while the network performance as a whole is hindered.

Approaches to secure 6LoWPAN from fragmentation attacks have been mostly cryp-

tography based [112, 113, 37], which are resource unfriendly, since they generate packet

overhead. Thus, energy efficient schemes to save the resources of the constrained battery-

powered low power devices are required. Moreover, the countermeasure techniques against

IoT attacks have attempted attack detection mostly and not isolation, which leaves ample

opportunities for a malicious entity to launch fresh attacks. With the advancements in ad-

versarial machine learning techniques, complex attack characteristics and distributed attacks

are also severely threatening. In this chapter, we investigate the fragment duplication attack

from the topology perspective and by analysing the possible attack space. The centralized

I-DES framework discussed in the earlier chapter cannot be used successfully here. Rather,

we present here an intrusion detection scheme that is based on decentralized I-Discrete

Event System (DES) framework. Decentralized I-diagnosis helps globally diagnose an

attack node based on the response generated from the forwarded spoofed fragments. Global

I-diagnosability is ensured from the local I-diagnosis. Also, due to the analogous behaviours

posed between a system fault and a malfunctioning network node, DES based IDS have

been in use of late. We also overcome the plausible issues mentioned above. Broadly, our

contributions in this work can be summarised as follows:

• We propose a novel fragment duplication attacker identification scheme in 6LoWPAN.

Our scheme makes use of an intelligent active probing technique that helps create a de-

viation of attack traffic and normal traffic [106]. Our proposed scheme is decentralized

and uses I-DES based IDS.

• We extend the power of traditional decentralized DES based IDS with attack type

27

1.7. Contributions

modeling for attacker identification.

• We prove the correctness and completeness of our approach by enumerating all the

attack cases.

• The performance of our scheme is tested through simulations and real testbed. The

experimental results highlight the applicability of our approach. Results show our

approach is more energy-efficient and has less response time. The proposed solution

has minimum false positives and achieves more than 99% accuracy in identifying the

malicious nodes.

1.7.4 CoAP Request and Response Spoofing Attack

The Internet of Things (IoT) technology has revolutionised the outlook of connected devices

and IP-connected smart objects. A significant portion of such interconnected heterogeneous

devices are being extensively deployed to perform mission-critical tasks in areas such as

the health sector, energy management, industrial process control systems, etc. [4] For

uninterrupted services over the internet, a reliable end-to-end communication is demanding

for the family of constrained devices. The IoT protocol stack has been designed and adopted

with an aim of achieving such a standard [10].

IETF has standardized CoAP as an Application layer web transfer protocol to provision

for usage of Internet services in M2M applications constituting resource-constrained devices

across lossy, low-power networks [114]. Specially designed for provisioning web interoperabil-

ity, applications that make use of constrained sensing or actuating devices, having limited

power, memory and processing capabilities, render them fragile to various external threats

and DoS attacks. CoAP uses UDP as the transport protocol, which is unreliable and is

devoid of handshaking mechanism between client and server. CoAP is susceptible to various

attacks like Cross-Protocol attacks, Amplification attacks, Man-in-The-Middle (MiTM),

etc. [115] Amongst these, IP address spoofed DoS attacks can be launched at ease and

is the focus of our work here. Moreover, it can help mount stealthier attacks when used

in combination, such as amplification attacks. Availability of devices and accessibility to

services can be immensely compromised by a malicious endpoint that is exercising read and

write access.

28

1. Introduction

Research works reported in the literature have proposed numerous countermeasures to

effectively mitigate DoS attacks in general. Mostly, the adopted approaches either employ

host-based, router-based or hybrid techniques [116]. Adaptive solutions employing frequency

based approaches have been successfully used to detect mixed-rate IP spoofed DDoS attacks

[117]. Off-path response spoofing attacks in TCP and DNS have been analyzed thoroughly

in the literature [118, 119]. A countermeasure based on source-port randomization has been

proposed for an off-path attack on TCP [120]. In [121], researchers launch an off-path attack

by analyzing the remote server access support in CoAP and a request spoofing vulnerability.

Request spoofing is further shown to be mitigated using machine learning based approaches.

The proposed schemes, except a few, do not address mitigation techniques for request

spoofing attack in 6LoWPAN applications using CoAP. None of the reported works have

attempted identification of malicious or misconfigured endpoints in the past. Owing to the

similarity between diagnosis of faults and detection of network attacks in DES, we employ

here an I2-DES based IDS (Induced I-DES) [122, 48]. The I-diagnosability framework

discussed in the earlier chapters is limiting and cannot be used successfully for detection and

identification. Active probing based indicator events do not suffice since the generated probe

responses are same in number across normal and attack scenarios. Hence, an empowering

event is required here, justifying the use of traditional I2-DES framework.

Enumerated below are our contributions in this work:

1. We design an IDS scheme using I2-DES that identifies the attacker when an IP spoofed

DoS attack is launched in 6LoWPAN applications employing CoAP without DTLS

support.

2. Malicious network behaviour is detected from comprehensive analysis of network event

dynamics. Attacker is successfully identified by constructing a I2-DES diagnoser,

which serves as our IDS engine. Proof of correctness can be guaranteed using formal

verification.

3. The results demonstrate an energy efficient and scalable solution at considerably lesser

response times compared to related state-of-art solutions.

29

1.8. Organization of the Thesis

1.8 Organization of the Thesis

This dissertation aims to provide lightweight DES-based countermeasures for mitigation

of IoT attacks that either have differentiable or they have indistinguishable normal and

abnormal characteristics. The considered IoT attacks can be categorized as a device-level

or a network-level or an application-level attack, namely scan-chain based side-channel

attack, RPL version and RPL rank attacks, 6LoWPAN fragmentation attacks and CoAP

request/response spoofing attacks. An overview of our contributions is shown using Figure

1.1.

Device-level

Network-level

Ch3:
Scan-based side-channel attacks

Ch4:
RPL Rank Attack and RPL

Version Number Attack

Ch5:
6LoWPAN Fragmentation Attack

Application-level Ch6:
CoAP Request and

Response Spoofing Attack

Figure 1.1: Overview of contributions in the IoT architecture

In the device-level attack, scan-based side-channel attack on cryptographic IoT devices,

the secret contents are leaked by an adversary who gets hold of the device. The secret

key values are differentiable from the non-secret values at the scan out pin that aids the

attacker motif. A proposed solution idea needs a mechanism such that secret and non-secret

values are indistinguishable while incurring minimal overhead and retaining full testability.

On the contrary, in case of each of the network-level IoT attacks and application-level IoT

attacks, the IoT network behaviour during attack is non-differentiable from the normal

network behaviour. A signature or anomaly profile is naturally lacking. Generation of

signature pattern or anomaly observation results in increased false positives. Consequently,

depending on the attack, a suitable mechanism and solution design needs to be chosen such

30

1. Introduction

that attack behaviour can be made out from the normal, accurately with minimal overhead.

This has motivated the study of applicability of the main idea of the dissertation, i.e., “using

DES paradigm to develop lightweight strategies” for different levels of attack in the IoT

ecosystem. Each attack mitigation technique requires a different DES paradigm for our

solution strategies. The characteristic features of attack, the solution architecture and the

detection philosophy are significantly different in each of the chapters. The chapter wise

thesis organization is given as follows:

• Chapter 2: In this chapter, we propose a DES opacity-based low overhead controller

framework that thwarts most of the scan-based side-channel attacks on a cryptographic

IoT device, namely differential scan attack, co-relation scan attack and signature

attacks.

• Chapter 3: In this chapter, an I-Diagnosability based DES framework is proposed.

This framework is used to propose an active I-DES-based centralized IDS scheme that

uses an intelligent probing technique to not only detect RPL version and RPL rank

attacks but also identifies the rank attack node location.

• Chapter 4: In this chapter, an active I-Diagnosability based decentralized IDS

scheme is proposed that detects 6LoWPAN fragmentation attacks using fabricated

probe fragments and also identifies the malicious node.

• Chapter 5: In this contribution chapter, a novel I2-Diagnosability based DES

framework is proposed. An active I2-DES based IDS scheme is presented that uses

empowering events apart from request or response probe packets to detect and identify

attack node location when a CoAP request/response spoofing attack is launched.

• Chapter 6: The concluding chapter highlights the findings of our study and summa-

rizes the thesis contributions. Future scope of research is also discussed.

31

2
C h a p t e r

Mitigation of Differential Scan Attacks

Testing of manufacturing defects has seen a surge recently with growing demands in micron

and sub-micron Internet of Things (IoT) devices in the semiconductor industry. Among the

techniques prevalent in the industry, scan-based Design-for-Testability (DfT) is the most

popular one. The internal scan chain comprising of serially connected flip-flops (scan cells)

is made more observable and controllable, which effectively facilitates testing. A designated

tester may provide a relevant input to stimulate the internal nodes during test mode, and

observe the corresponding output responses. Again, attackers look out for various means to

gain access to the internal scan elements. This hands them an opportunity to leak sensitive

information embedded within an IoT device containing a cryptographic IC. Side-channel

attacks can be precisely classified to be scan-based if the above inherent vulnerability is

made use of.

Universal standard cipher, Advanced Encryption Standard (AES), was shown to be

vulnerable to scan-based attacks [49] after it was already reported to be effective on a Data

Encryption Standard (DES) cipher implementation [50]. Switching a crypto-chip to test

mode after having run the chip in normal mode for a few cycles was shown to be effective

in the retrieval of the secret embedded key. A differential analysis technique applied on a

set of related plaintext input and cipher output pairs helped infer the secret information.

This could be realized due to observing the internal scan cell contents corresponding to

controlled input pairs applied beforehand. Most of these discussed attacks exploit only the

unique Hamming weights corresponding to one round output Hamming weight distribution

by applying all possible input pairs with a fixed input difference targeting a particular AES

input byte. Subsequently, this style of attack was extended to public key cryptosystems

such as elliptic curve cryptography (ECC) [51], Rivest-Shamir-Adleman (RSA) [52] circuits,

and in lattice-based public key cryptosystems [53].

Numerous countermeasures have been proposed to prevent scan-based side-channel

attacks in the recent past. In [54, 49], a mode reset countermeasure was proposed to flush

all sensitive data contained in a scan chain during a switch from normal to test mode.

Still, it remains vulnerable to test-mode-only attack [55, 56, 57]. A concept of Mirror Key

Registers (MKRs) was introduced by the authors in [49], where the actual key is isolated

in the test mode, and the testing is performed using a user-provided key. But, it does

not provide support for online testing with the actual key. In [58, 59, 60, 61, 62], the

ordering of the sub-chains in multiple scan chain designs was manipulated by obfuscation

with the help of Segment Insertion Bits (SIB), which limits the attacker from observing

the actual states [63]. Since scan-based attacks do not depend on the ordering of the scan

chain, hence the access to the complete set of states induces a vulnerability. Advanced DFT

structures, such as X-masking [64], and de-compressors [65], which were once considered

secure against scan-based attacks [66], have also been shown to be insecure against advanced

differential scan attacks [67, 68]. In [69], the obfuscation techniques discussed, both static

and dynamic, draw inspiration from the lock-and-key scheme. However, a delay in the test

process is imbibed from the user authentication process, which requires the test key to be

loaded. Also, the dynamic obfuscation is vulnerable to [70]. The above countermeasures

mainly protect the secret key of a cipher embedded inside the crypto-chip against scan

attacks. There is a parallel stream of research work aimed at protecting the hardware IP

against reverse engineering, thus restricting counterfeiting or overproduction of chips [71].

A dynamic obfuscation based scan design, proposed in [72] and [73], protects the IP by

restricting scan access using dynamic scan obfuscation. This technique obfuscates scan data

dynamically, using a protected obfuscation key generated by an LFSR. These obfuscation

keys are XORed with the scan data using XOR gates inserted between the scan cells in

the scan chain. Such designs are resistant to existing scan-based attacks due to dynamic

obfuscation, though recently, the technique in [72] has been shown to be susceptible to

ScanSAT [74]. In the scan protection technique proposed in [75], key gates are inserted

34

2. Mitigation of Differential Scan Attacks

in the scan chain, which is controlled by a static secret key stored in a tamper-proof

memory (TPM), when a user applies the same secret key as a test key. Testing must be

performed with an obfuscated pattern, where the test patterns are obfuscated using the

same static secret key. If the test key applied does not match the secret key, the key gates

are controlled by dynamic keys generated by a pseudo random number generator (PRNG),

obfuscating the scan data dynamically in each clock cycle. The technique is vulnerable

to the DynUnlock attack [76]. The defense mechanism proposed in [77] is an enhanced

version of [78, 73], where the combinational logic of the circuit is additionally protected

with functional obfuscation. In functional obfuscation, additional authentication is required

to gain access to the correct functionality of the circuit via an additional functional key.

Although the proposed technique [77] provides additional security against scan attacks, while

not compromising on testability, their hardware overhead is large. A cryptographic hash

function is shown to modify the test response in [79], though the cost of implementation is

dependent on a hash module that is made available inside the chip. In [80], the proposed

countermeasure performs an encryption of the test data, which again requires additional

modules for encryption/decryption, essentially incurring significant overhead in area, delay,

and power.

We emphasize on the security of our proposed countermeasure in the context of Discrete

Event Systems (DES) [81, 82]. DES broadly refers to the class of systems whose dynamics

can naturally be modeled as a set of discrete events occurring asynchronously over time. Over

the years, DES has been successfully applied to the theory of Fault Detection and Diagnosis

(FDD). It involves modeling the system behavior under normal and failure conditions.

In recent years, the DES community has highlighted security properties pertaining to

confidentiality, integrity, and availability of data. Opacity is a security notion that is

concerned with the confidentiality of a system secret. A system can be shown to be opaque

if a well-defined secret (expressed through states) can be kept hidden from an external

adversary. Therefore, there exist areas where security threats can be mitigated by ensuring

that the opacity property holds true for a system modeled as DES. Moreover, the opaque

property is verifiable, hence the correctness of a defense model can be formally proved by

constructing an estimator automaton.

The existing literature on defense techniques relies on partial scan design, data ob-

35

2.1. Background

fuscation, and scan chain encryption. Though these countermeasures are effective in the

prevention of traditional scan attacks and signature attacks, they are ineffective as far as

co-relation scan attacks [83] [84] are concerned.

Our major contributions in this work are outlined as follows:

1. A novel design of a security scheme using a hardware controller unit is presented. We

show to circumvent differential scan attacks by allowing selective bit-flipped outputs,

deterministically, using pre-computed mask values, without hampering testability.

2. A mask determination algorithm is presented that helps compute secret states and

determines the controller action across a setpoint.

3. Security of our scheme is proved by theoretically modeling the cryptosystem in the

framework of Discrete Event Systems and analyzing using the notion of Opacity.

Moreover, the entropy of the secret key is preserved. The proof of correctness is

guaranteed by constructing a state estimator automaton.

4. A theoretical analysis of the ineffectiveness of attacks launched from exploiting the

Hamming weight distribution obtained at the output is performed. A case study

performed shows our approach is resilient to such attacks at a nominal extra overhead

of 1.78%.

The rest of the chapter is organized as follows: Section 2 presents the background

and prerequisites. The design of our proposed scheme is presented in Section 3. Section

4 demonstrates the proof of security. Experimental results and performance analysis are

summarised using a case study in Section 5. We compare our work and discuss the relevance

of our countermeasure in Section 6. We finally conclude with Section 7.

2.1 Background

In this section, we briefly discuss AES and scan attacks, followed by the preliminaries of

DES and Opacity.

36

2. Mitigation of Differential Scan Attacks

Figure 2.1: AES round operation

2.1.1 AES

AES is a symmetric block cipher that encrypts fixed size data blocks of 128 bits using key

sizes of 128, 192, or 256 bits consisting of 10, 12, and 14 round operations, respectively.

Each round operation consists of the below mentioned operations:

1. SubBytes: This constitutes of a non-linear substitution operation taking 8-bit input

and producing 8-bit output.

2. ShiftRows: It produces a byte-wise permutation of the state.

3. MixColumns: It is a 4 byte mixing operation.

4. AddRoundKey: It XORs the round key with the state.

A key schedule in AES-128 generates the round key for each round for all of the 10

rounds. In addition to this, prior to the first round, the plaintext is XORed with the

user-specified key as shown in Figure 2.1, and during the last round, the MixColumns

operation is not used.

To start with, a 128 bit plaintext input is arranged in the form of a 4× 4 matrix, where

each byte can be represented as ai,j (0 ≤ i, j ≤ 3). Initially in the key whitening phase, a

bitwise xor operation is performed on plaintext input with RK0 showing as follows:

bi,j = ai,j ⊕RK0i,j (2.1)

SubBytes is the transformation that is based on the S-box. In this non-linear operation,

37

2.1. Background

S-box substitutes each byte of the plaintext data arranged as a state matrix, bi,j , with a

byte ci,j as obtained from the lookup table as follows:

ci,j = S − box(bi,j) (2.2)

The third step constitutes the ShiftRow operation where the bytes in each row of the

4× 4 matrix are left shifted, in the following cyclic manner.

(d0,0, d0,1, d0,2, d0,3) = (c0,0, c0,1, c0,2, c0,3)

(d1,0, d1,1, d1,2, d1,3) = (c1,1, c1,2, c1,3, c1,0)

(d2,0, d2,1, d2,2, d2,3) = (c2,2, c2,3, c2,0, c2,1)

(d3,0, d3,1, d3,2, d3,3) = (c3,3, c3,0, c3,1, c3,2) (2.3)

MixColumn is a column-wise operation where every 4 bytes in each column obtained after

the ShiftRow are multiplied by a polynomial of the form m(x) =′ 03′x3+′ 01′x2+′ 01′x+′ 02′,

and 4 bytes are generated in corresponding output column as follows:

(e0,j , e1,j , e2,j , e3,j) = (d0,j , d1,j , d2,j , d3,j)⊗m(x) (2.4)

Finally, before the intermediate register R is loaded, a xor operation is performed using

round key RK1 on the MixColumn output as follows:

fi,j = ei,j ⊕RK1i,j (2.5)

2.1.2 Differential Scan Attacks

Fundamental Scan Attack

In fundamental (differential) scan attack [49], intermediate round outputs stored in round

registers are scanned out and analysed to find the key byte. The attacker applies pairs of

plaintexts, having a difference in the least significant bit (LSB) of a byte, and derives a

Hamming weight from the difference in observed outputs. Then the attacker searches for

a Hamming weight that corresponds to a unique input pair. For example, the Hamming

38

2. Mitigation of Differential Scan Attacks

Figure 2.2: Hamming weight distribution (original) corresponding to 0x01 plaintext difference

weight 9, as shown in Fig. 2.2, corresponds to one input pair. Now, if the attacker observes

Hamming weight 9, he can infer the key by XORing the plaintext byte with the corresponding

input byte.

Signature Attack

In signature attack [123, 124], an ordered tuple of plaintext input pairs with 1 bit difference,

I = {I1, . . . , I128} is used to generate an ordered tuple of Hamming weights, HWi =

{HW1, . . . ,HW128} with key Ki, 1 ≤ i ≤ 256. The HWi is generated for all possible keys

Ki using all plaintext input pairs in I, which is the signature of that corresponding key

stored in the signature table. The attacker uses the same plaintext input pairs to generate

the signature in the target device that gives HW ′ = {HW ′1, . . . ,HW ′128}. To compare HW ′

with all HWi, he needs to match Hamming weight by Hamming weight from left to right.

If all the 128 Hamming weights match, he then recovers the key.

Proposed Co-relation scan attack (COSA)

The designer can easily overcome the existing attack by not allowing unique hamming

weights to the attacker. Attackers aim is to increase the attack surface and launch a more

lethal form of attack. In this respect, one natural choice for the attacker here is to look for

a possible attack using non-unique hamming weights.

In the proposed attack, the attacker can use a simulated version of the DUT which the

attacker has a complete control over. The attack consists of three steps :

1. Determining S-box input pair in offline phase: The attacker needs to determine the set

39

2.1. Background

I = {(I0, I0 ⊕ δ), (I1, I1 ⊕ δ), ..., (In−1, In−1 ⊕ δ)} of the S-box input pairs for which

the output vectors after one round of AES have a hamming weight ∆ between them.

The values of ∆ and δ are chosen by the attacker, where 0 ≤ δ ≤ 255 and 0 ≤ n ≤ 19.

We will only require 19 pairs because in case of 1 bit difference, there are 19 input

pairs possible for hamming weight of 18.

2. Determining input plaintext pairs in online phase: The attacker needs to determine

the set P = {(P0, P0 ⊕ δ), (P1, P1 ⊕ δ), ..., (Pn−1, Pn−1 ⊕ δ)} of the plaintext pairs for

which the output vectors after one round of AES have a hamming weight ∆ between

them.

3. Determining the key byte value : The attacker has to determine the key byte value

using the sets P and I.

ALGORITHM 1: S-box Input Pairs
input :∆→ Hamming Weight, δ → Input difference

output :A set I of the S-box input pairs

1 I = ∅

2 for p← 0 to 255 do

3 p′ ← p⊕ δ

4 o← AES0(p)

5 o′ ← AES0(p
′)

6 if Hamming weight between o and o′ is ∆ then

7 I ← I ∪ (p, p′)

8 return I

Determining the S-box Input Pairs (Offline)

To determine all of the S-box input pairs generating a hamming weight of ∆ between

the output vectors, the attacker needs to try every possible plaintext pairs of the form

(p, p ⊕ δ). The attacker would also have to use a modified version of AES, in which the

plaintext is not XORed with the key before the first round. Algorithm 1 illustrates this. The

algorithm iteratively generates all possible pairs of the form (p, p⊕ δ) where 0 ≤ p ≤ 255.

The algorithm uses the method AES0() to obtain the one round output of the modified

version of AES. It then checks for the hamming weight between the output vectors if it is

equal to ∆ or not. In case it is, the algorithm then adds the pair to the set I, otherwise the

40

2. Mitigation of Differential Scan Attacks

pair is discarded and the algorithm continues until all possible pairs have been exhausted.

This algorithm will add both the pairs (p, p⊕ δ) and (p⊕ δ, p) to the set I. The attacker

can either discard the second pair after the algorithm has terminated or define the set I

such that it is a set of unordered pairs.

Determining the Plaintext Pairs (Online)

Algorithm 2 illustrates the process of determining the required plaintext pairs. In

addition to the values of hamming weight ∆ and input difference δ the algorithm also needs

to know the position of the byte which the attacker wishes to determine. This is because

the plaintext pairs will change based on the value of the key byte. In Algorithm 2, we have

used the method AES0() representing DUT with first round operation. It returns the round

output after one round of AES.

The algorithm generates all pairs of the form (p, p ⊕ δ) where 0 ≤ p ≤ 255. The

two plaintexts pp1 and pp2 are produced by setting the ith byte in them as p and p ⊕ δ,

respectively. The algorithm sets the other bytes to zero. It then checks whether the hamming

weight between the output vectors produced by one round of AES on the two plaintexts is

∆ or not. If it is, then the algorithm adds the pair (p, p⊕ δ) to the set P , otherwise it is

discarded and the algorithm moves on to the next pair. As in Algorithm 1, this algorithm

too adds both the pairs (p, p ⊕ δ) and (p ⊕ δ, p) to the set P , and one of these pairs is

discarded.

ALGORITHM 2: Plaintext Pairs
input :∆→ Hamming Weight, δ → Input difference, i→ Key byte position
output :A set P of the plaintext pairs

1 P = ∅
2 for p← 0 to 255 do
3 p′ ← p⊕ δ

4 pp1← ith byte set to p, rest all zeroes
5 pp2← ith byte set to p′, rest all zeroes
6 o← AESOneRound(plaintext1)
7 o′ ← AESOneRound(plaintext2)
8 if Hamming weight between o and o′ is ∆ then
9 P ← P ∪ (p, p′)

10 return P

Determining a Valid Mapping (Offline)

Algorithm 3 iterates through all 256 possible key byte values and checks if XORing them

41

2.1. Background

with the elements of set P produces a permutation of the set I. The possible key byte value is

denoted by KG. The value of KG is XORed with each element of the set P , and the algorithm

next searches for the resultant value in the set I. If the resultant value is not present in I, then

that value of KG is not a valid key byte. However, if all values generated by XORing KG with

the elements of set P are present in the set I, then that value of KG is a possible key byte value

and the algorithm prints it. The worst case time complexity of this algorithm is O(nlogn).
ALGORITHM 3: Key Guessing Algorithm
input :No Input

output :Possible key bytes

1 for KG ← 0 to 255 do

2 valid = true

3 for p ∈ P do

4 s← p⊕KG

5 if s /∈ I then

6 valid = false

7 break

8 if valid then

9 print(KG)

2.1.3 Preliminaries of Discrete Event System and Opacity in Security

A Discrete Event System (DES) is characterized by discrete state space. The occurrence

of a system event causes a transition from one state to another. System dynamics, where

the state space can be described as a discrete set, {0, 1, 2, ...}, and events occur at discrete

points in time, can be naturally modeled as a DES. Systems such as circuit networks, digital

controllers, etc., are discrete event systems by nature. Hybrid systems like motors, power

systems, etc., can also be discretized at some level of abstraction for modeling purposes.

Therefore, non-DES systems or analog systems, by abstraction, based on the usage of some

logic variables, can be modeled as DES. In the context of this work, we restrict ourselves to

the framework of Finite State Automata, while discussing the DES modeling. The symbols

used, along with their meanings, are listed in Table 2.1.

Let Σ represent an alphabet of symbols (also called elements or events), and Σ∗ denotes

the set of all finite-length strings composed of symbols from Σ, including the empty string ϵ

42

2. Mitigation of Differential Scan Attacks

Table 2.1: Notations

Symbol Definition
H DES model
Σ Set of events of the DES model H
Σo(Σuo) Set of observable (unobservable) events of the DES model H
V Set of model variables of the DES model H
ℑ Set of transitions of the DES model H
τ A transition τ ∈ ℑ
Y Set of states of the DES model H
Y0 Set of initial states of the DES model H
σ Event on which a transition is enabled
L(H) Set of all traces generated in H
YS(YNS) Set of secret (non-secret) states of the DES model H
(I, I ′) An S-box input pair
(P, P ′) A plaintext input pair
R(p) Round output value obtained from applying plaintext p
δ A plaintext input difference
IHWi Vector of S-box input pairs generating Hamming weight i
HWi Vector of plaintext pairs generating Hamming weight i
IDT Hamming distribution table of S-box input pairs
DT Hamming distribution table of plaintext pairs
Mask(P, x) A mask computation function
∆ A hexadecimal mask value
RKi ith round key
FE(FD) Flip Enable (Disable) event

(of length zero). A language L ⊆ Σ∗ can be described as some subset of all finite-length

strings from Σ∗.

Our DES model is represented as a 5-tuple H = (V, Y,Σ,ℑ, Y0), where V = {v1, v2, . . . , vn}

is the finite set of model variables with each vi assuming values from its respective domain

set, Dom(vi), Y is the finite set of states, Σ is the event set, ℑ represents the set of

transitions, and Y0 is the set of initial states of the automaton, so Y0 ∈ 2Y . A state y ∈ Y

is of the form {v1, v2, . . . , vk}, k ≤ n, with each associated variable assuming values from

their respective domain sets. A transition τ ∈ ℑ, represented as an ordered pair [y, σ, y+]

from y (initial(τ)), the initial state of the transition, to the final state of the transition, y+

(final(τ)), occurs because of an input symbol σ ∈ Σ.

Now the language generated in DES H is represented as L(H) = {s ∈ Σ∗|∃(y, y+) ∈

Y : [y, s, y+] ∈ ℑ}. A trace of a DES model H is a string of events in H and is denoted as

{τ1, τ2, τ3, . . . }, where initial(τ1) is an initial state in Y0 and by the consecution property

43

2.1. Background

initial(τi+1) = final(τi), for i ≥ 1 holds. Considering that only a subset of the events can

be observed and monitored by the attacker, we assume that Σ can be partitioned into two

disjoint subsets sets, Σo and Σuo, where Σo signifies the set of observable events and Σuo

represents the set of unobservable events. We take a natural projection mapping, PH , on

the system H which is defined as PH : Σ∗ → Σ∗o. It is used to map any trace executed in

the system to the sequence of observable transitions associated with it. The projection

operation is defined recursively as: (a) PH(ϵ) = ϵ, (b) PH(σ) = σ if σ ∈ Σo, (c) PH(σ) = ϵ

if σ ∈ Σuo, (d) PH(s · σ) = PH(s)PH(σ), s ∈ Σ∗, σ ∈ Σ, where ϵ represents the empty trace.

Furthermore, the state set can also be partitioned based on a defined secret as a set of

secret states, YS and a set of non-secret states, YNS . YS refers to states that contain secret

information. All other states belong to YNS . So, YS ∪ YNS = Y and YS ∩ YNS = Φ.

Opacity is a security notion used in the DES community [43]. Given a system behavior

represented as a non-deterministic automaton, opacity is a system property that can be

verified to hold true using model-checking algorithms. It will be used to verify the security

of our proposed defense model against scan attacks.

Definition 1 (Current-state opacity (CSO)) [125, 42]: Given a DES system model

H = (V, Y,ℑ,Σ, Y0), a projection PH , a set of secret states YS ⊆ Y , and a set of non-

secret states YNS ⊆ Y , YS ̸= YNS , H is current-state opaque (or, (YS , PH , 0)-opaque),

if, ∀t ∈ L(H), ∃s ∈ {L(H) \ {t}}, such that, final(t) ∈ YS ⇒ [final(s) ∈ YNS and

PH(t) = PH(s)].

The above definition means that if we are given any finite trace in the language of

H, and such a trace ends in a secret state, the system is CSO if and only if there exists

another different trace which is observably equivalent to the first trace, but terminates in

a non-secret state. It implies that if such two traces exist, then the current state of the

system cannot be estimated with certainty if it belongs to a subset of secret states. With

the knowledge of H from its observations, if the attacker is not able to infer the current

state of the system, the secret can be said to be opaque. In this chapter, we restrict to CSO,

where the secret is defined in terms of the current state of the system.

Verifier Construction : Verifying current-state opacity involves the construction of

the current-state estimator (CSE). Given a system modeled as a DES H and an observed

sequence of input symbols in its language, CSE converts H into an equivalent deterministic

44

2. Mitigation of Differential Scan Attacks

estimator automaton, Ho, which consists of estimates of the system state when H is

simulated on any trace in L(H) [46, 43]. The estimator automaton is defined here as a

5-tuple Ho = (Vo, Yo,ℑo,Σo, Y0,o). Let YS,o be the set of all states whose current estimate

contains at least one secret state from YS , then YS,o is the set of secret state estimates

of the estimator automaton. Similarly, let YNS,o be the set of all states whose current

estimate contains at least one non-secret state ∈ YNS , then, YNS,o is the set of non-secret

state estimates of the estimator. If none of the estimator states reveal the current system

estimate to purely contain states from YS , then the system H can be said to be opaque to

an observer who observes through some projection mapping PH .
ALGORITHM 4: Key Recovery Procedure
Input : IDT , PP

/* IDT is the Hamming distribution table of S-box input pair vectors for δ

difference, IHWi, i ∈ {1, 2, . . . , 31} and PP is the set of plaintext pairs

{(P1, P
′
1), (P2, P

′
2), . . . , (P128, P

′
128)}; */

Output : key

/* key is one byte of Round Key, RK0 */

1 CP ← CP ∪ {(Pj , P
′
j)|j ∈ {1, 2, . . . , 128}}; /* Plaintext pairs are added inductively to

set of chosen plaintext pairs, CP */

2 R(P)← AES(P); /* AES() computes the AES first round output and (P, P ′) ∈ CP

*/

3 R(P ′)← AES(P ′);

4 IHWi ← HWT (R(P)⊕R(P ′));/* HWT () computes the Hamming weight */

5 CI ← CI ∪ {(I, I ′)|(I, I ′) ∈ IHWi};/* S-box input pairs are added inductively to

set of chosen plaintext pairs, CI */

6 key ← CP ⊕ CI;

2.2 Proposed Defense Scheme

2.2.1 Threat model

Assuming that the attacker obtains control of the crypto-chip running the AES implemen-

tation, a general procedure for launching differential scan attacks, typically, is shown in

Algorithm 4. The attacker applies chosen plaintext pairs and computes the Hamming

weights between response pairs after one AES round, depending on some fixed value of

45

2.2. Proposed Defense Scheme

Figure 2.3: Proposed DES attack model G with 2 plaintext pairs

difference, δ. The Hamming distribution table for δ, IDT , is checked for the Hamming

weight that is obtained. Round key value, RK0, can be lastly recovered from solving a

system of equations involving the chosen S-box input pair set, CI, and chosen-plaintext pair

set, CP . Identification of the correct Hamming weight is, therefore, a primer to retrieve a

correct key byte. We consider the following set of assumptions from the perspective of the

attacker:

1. For the sake of simplicity, we assume that the attacker applies only a 0x01 difference

between plaintext pairs.

2. As already mentioned, the attacker has the crypto-chip running the AES implementa-

tion at hand.

3. The attacker is not able to perform invasive attacks like de-packaging of the chip for

probing the internal signals.

2.2.2 State based Attack Model

DES representation of the attack model is demonstrated using an example automaton as

shown in Fig. 2.3. In this modeling, we consider two differential plaintext pairs and their

corresponding round register outputs. The plaintexts are represented using the transitions,

while the states represent the round outputs in our automaton G. Each state is represented

using a variable v. Here, the domain of the variable v, Dom(v) = {R0, Ra, Ra′ , Rb, Rb′}.

46

2. Mitigation of Differential Scan Attacks

Figure 2.4: Proposed defense model H with 2 plaintext pairs

Thus, each state assumes values from Dom(v) and is symbolic of 128-bit values of the

intermediate round register output. Similarly, in the case of transitions, the input symbols

are test vectors, each of length 16 bytes. The state set of the DES G consists of Yt =

{x00, x01, x02, x03, x04}. We assume that the correspondence between round register cells

to scan cells has been correctly established by the attacker. One having access to the scan

chain can observe its contents by performing n shift out operations at SO pin, where n

represents the number of cells in the round register. The series of above mentioned scan out

operations are implicitly considered to be a part of each of the transitions that correspond

to test vectors being applied at the chip primary inputs. We consider that input test vectors

form the alphabet set Σ = {a, a′, b, b′}. Amongst these (a, a′) and (b, b′) are the differential

plaintext pairs. Self transitions have been omitted for simplicity purposes.

2.2.3 State based defense model

The proposed DES defense model H is shown in Fig. 2.4 and consists of two subma-

chines, one normal machine and another flipped submachine. The attack model, G,

shown in Fig. 2.3, is extended by incorporating Flip Enable and Flip Disable events.

States of the flipped submachine are appended to the state set of G. Therefore, Y =

{x00,x01,x02,x03,x04,x10,x11,x12,x13,x14}. Since each state corresponds to a round register

output, a flipped machine consists of states where a subset of the round register output

47

2.2. Proposed Defense Scheme

bits may be flipped (i.e., 0 if 1 and vice versa). The input test vectors are observable

and belong to the alphabet set Σo = {a, a′, b, b′}, while Σuo = {FE,FD} consists of the

unobservable events. Events in Σuo are associated with transitions from the normal model

to states in the flipped model and vice versa. While FE is the event associated with the

Flip Enable signal set to HIGH, FD corresponds to the Flip Enable signal being set to

LOW. A transition with FE event that takes a state y in the normal model to a state y+ in

the flipped model is therefore represented as [y, FE, y+]. Such a transition is unobservable

in the eye of the attacker, who observes H through a projection PH . Suppose a state, x, is

reached by applying a test vector at the primary input. Then, the transitions containing

the events FE and FD, at state x, i.e., may be enabled and disabled depending on x. This

is maintained by the controller throughout the system operation time. States in the normal

machine are of the form x0j and states belonging to the flipped model are represented as

x1j . This is shown in the Fig. 2.4.

From the modeling perspective, it is assumed that the following properties hold in our

DES model H:

1. Any state in H is reachable from an initial state.

2. H is alive with respect to observable events. This means there exists an observable

transition defined at each state y ∈ H.

3. H contains a secret information defined within the states. We designate such states

as secret states.

4. Attacker is an observer having extensive knowledge of H and also the controller but

only observes H through a projection PH .

In our example, we have designated the state x02 as the secret state. All other

states, namely, {x00, x01, x03, x04, x10, x11, x12, x13, x14} are the non-secret states. The set

of states, {x00, x01, x02, x03, x04}, belong to the normal machine, while the set of states,

{x10, x11, x12, x13, x14}, belong to the flipped machine. Suppose x0j and x1j have the same

round register value. Then they are said to be equivalent states and may be expressed as

x0jEx1j . Therefore, x00Ex10, x01Ex11, x03Ex13 and x04Ex14, since in each case the round

output values of the pairs of states are the same. But, x02Ex12 does not hold true since

48

2. Mitigation of Differential Scan Attacks

Figure 2.5: Architecture

Ra′ ̸= Rf
a′ , i.e., the round register output at state x02 differs from round register output at

state x12.

2.2.4 Architecture

The architecture of our proposed scheme is shown in Fig. 4.4. The controller is placed

at the scan out pin. After the key whitening phase, the input to the S-box is also fed

to the controller. A tamper-proof memory (TPM) is used to store the masks computed

using Algorithm 5, which is a novel mask determination algorithm, discussed in the next

subsection. The controller controls the application of the mask, where the input to the S-box

for the first round determines the mask value for its round output. For each byte of S-box

input, a 32-bit mask value can be retrieved from the mask memory. For a 16-byte input, 16

different 32-bit masks are combined to generate a 128-bit mask. Due to the MixColumns

operation of AES, a difference in one byte affects 4 bytes of a round output, which justifies

using 32-bit mask values. If the Flip Enable signal is SET, then the 128-bit mask is selected

at the MUX output and added (XORed) with the round output, bit by bit. When the Flip

Enable signal is RESET, 0 is selected instead of the mask value. An overview of the Flip

Enable signal is discussed below:

Flip Enable signal

The Flip Enable signal is SET by the controller and is associated with the FE event. Such

an event is taken in the system model when the controller enables it, depending on the

49

2.2. Proposed Defense Scheme

Figure 2.6: Block diagram of the controlled system S/H

plaintext input. The controller sets the SELECT signal for the 2x1 MUX. Accordingly, the

Flip Disable event is associated with the RESET of the MUX signal. The MUX output is

connected to the controller output pin. As a result, the pre-computed mask value or a 0

value is selected, respectively. The FE events in our system model shown in Fig. 2.4 are

associated with transitions that are unobservable. The controller is minimally restrictive.

Depending on the state visited, it enables a minimum set of transitions consisting of the

events FE or FD.

A block diagram of the feedback network of the controlled system S/H is shown in

Fig. 2.6. The controller measures t, the plaintext input, which is the current variable of the

monitored system, and uses a mask determination algorithm to pre-compute mask values

that help manipulate the system behavior across a set point. The intended behavior of

the system is to prevent leakage of the secret key. Here, S(t) denotes enabling or disabling

of certain FE, FD events of the system model from observing t. When the system state

makes a transition to a secret state, the pre-computed mask value from the specification

is selected at the controller output. The external stimuli indicates accessing the chip by

an external agent, which might be an adversary or a tester. Before going into the actual

algorithm, an outline of the mask determination algorithm and the concept of the secret

state is discussed as follows:

Mask determination algorithm

It is the specification provided to the controller. Since the differential scan attacks target

the particular nature of the hamming weight obtained at output when differential plaintexts

are applied, a modified Hamming weight distribution is chosen which we also refer to as an

50

2. Mitigation of Differential Scan Attacks

intended Hamming weight distribution. The algorithm uses an original and an intended

Hamming weight distribution. Given these distributions, a mask value ∆ is computed for a

plaintext pair (p, p′) so as to make (R(p)⊕R(p′)⊕∆) map to a Hamming weight in the

intended distribution which is different from the original one. The intended distribution is

meant to resist differential scan attacks.

Secret States

The set of states designated as the secret states are the ones whose contents are sensitive,

since such a state includes information about the secret key that needs to be prevented

from leakage. These states are therefore meant to be kept secret from an adversary. If the

contents of such states are disclosed, then it aids in the retrieval of the key. The specification

is provided by the mask determination algorithm to the controller so that system behaves

such as to keep the information hidden.

2.2.5 Mask Determination Algorithm

Algorithm 5 computes MDT and a mask value corresponding to a plaintext pair. Mask((P,

x)) is a function that takes plaintext, P , as input and returns a hexadecimal number such

that R(P) and R(P ′) differ in x bits. Only one plaintext pair retains its actual position

while others are mapped to a different Hamming weight such that the distribution is

uniformly spread. The difference between their original and modified Hamming weight is

the hexadecimal mask value, ∆.

2.2.6 Discussion

The Hamming weight distribution is modified such that it is resistant to differential scan

attacks. The attacker may even guess the correct key by selecting the one with the

maximum frequency from all possible key distributions. To mitigate such a scenario, we

modify our Hamming weight distribution with the objective to make the distribution

uniform. Such uniformity means there would be no Hamming weight containing a single

input pair, as is the case with Hamming weights of 9, 12, 23, and 24 in the actual Hamming

weight distribution. Moreover, any correct key value frequency which is greater than

incorrect key repetitions will be prone to attacks. Except for a few, many of the keys in

51

2.2. Proposed Defense Scheme

a particular Hamming weight distribution are repeated twice, and the rest appear just

once. We propose an extra layer of security by devising our transform function such that a

correct key after the transformation occurs just once. On top of that, since our algorithm

distributes the key uniformly over the distribution, the chances of guessing the correct key

are minimized. Any key hypothesis value of 10 or more, for one key byte, would suffice to

prevent the attack. For 16 bytes of the keys, this occurs because the attacker lands with

a huge complexity for key hypothesis while guessing the keys which can be computed as

1016 = (103)5 × 10 = (210)5 × 10 = 253 × 10/8 > 253. There exists
(
147
19

)
possible ways of

transforming the Hamming weight distribution. This is the number of possible non-integral

solutions to X1 +X2 + · · ·+X20 = 128, where 128 is the total number of Hamming weights

in the distribution, X indicates the number of plaintext pairs mapped to a specific Hamming

weight, and index of X ranges from 1 to 20, since the spread lies between Hamming weights

5 to 24.

ALGORITHM 5: Computing a modified HW distribution and Mask value
Input :DT , Range (HWa, HWb)
Output :MDT , (P, P ′) and Mask(P, x)

/* DT and MDT are the original and modified distribution table; */
1 Uni(HW) = {9, 12, 23, 24};
2 for All HWi in HW and Size(HWi) > 2 do
3 Move one (P, P ′) in Pi from DT [HWi] to MDT [HWi];

4 for All HWi in HW do
5 for All (P, P ′) in Pi do
6 HWC ← (i+ 1); /* HWC is a Hamming weight counter */
7 Set ltCount to 1 , rtCount to 2;
8 if HWC = i then
9 if ltCount = rtCount then

10 HWC ← i+ ltCount;
11 Increment ltCount;
12 else
13 HWC ← i+ rtCount;
14 Increment rtCount;

15 j = HWC;
16 Move (P, P ′) from DT [HWi] to MDT [HWj];
17 Mask(P, j − i);
18 if ltCount = rtCount then
19 HWC ← i+ ltCount;
20 Increment ltCount;
21 else
22 HWC ← i+ rtCount;
23 Increment rtCount;

52

2. Mitigation of Differential Scan Attacks

2.2.7 Complexity Analysis

Attack complexity

In case of any number of bit flips, to successfully launch the co-relation scan attack at a

targeted hamming weight, HWi, consisting of n S-Box input pairs, a correct mapping can be

established at a complexity of
(
128
n

)
×n!× n for recovering 1 key byte value. In a modified

distribution with 11 input pairs per Hamming weight on an average, the complexity is
(
128
11

)
×11!× 11× 16, which is a huge number.

Model Complexity

The actual discrete event system model implementation consists of (256 + 1) × 2 states,

that is (28 + 1) × 2 ≈ 29 states. Since a one-bit change in plaintext affects 32 bits (1

word) at the output, mask values can range between 0 to (232 − 1). Because of 256

plaintexts, FE and FD, the alphabet size is 256 + 2 = 258. The size of transition set is

(256× 256 + 1× 256 + 2× 256)× 2 = (259× 256)× 2 ≈ 217. The number of secret states

are 115 out of 256 possible round register output states.

Since there could be 232 mask values, the probability of guessing an output is 1/(232).

Let us suppose that the information that k outputs are not flipped is known to the attacker.

Among 128 possible output pairs, then the probability of guessing a correct distribution of

non-flipped outputs is
(
128
k

)
·(1/(232))128−k. If k is not known, the probability of identifying

the correct distribution is 1/(232)128 ≈ 1/24000. 257 different states including a start state

belong to each of the normal as well as the flipped submachine in our proposed defense

model H, explained in Section 2.2.3.

2.2.8 Testability

Testability is not compromised due to masking. This is because there exist non-secret states

that the designer knows and through which it is possible to observe and test faults. In our

model automaton, the secret states are minimally chosen, i.e., a maximum of 128 states

out of 256. So, at least half of the states can always be utilized to test the faults directly.

Full testing can also be performed, including secret states, as we can have pre-computed

mask values for each input with the prior knowledge of the AES key. Test patterns can be

53

2.3. Security Proof

modified by adding this mask to the test output. Functional testing can be performed using

modified test patterns, by ATPG or traditional testing procedures without modifying the

test interface. Furthermore, the test time is also not much compromised. Faults in the cipher

module can be tested through the non-secret states only. The controller uses additional logic,

the correctness of which can be tested using the secret states afterward. Also, plaintexts

can be applied exhaustively, in any order, independent of any input difference. Since the

designated secret states and non-secret states for our proposed technique do not depend on

the order of applied plaintexts, thus, application of any plaintext would essentially maintain

testability.

2.3 Security Proof

2.3.1 Verifying current-state opacity

The verification is shown here in a simplified manner using the estimator automaton, Ho,

obtained from our DES defense model, H. Given an observable string of input symbols, the

problem of verifying current-state opacity can be reduced to checking if the current state

estimate belongs solely to a subset of secret states.

Given an initial set of states, Y0, a set of secret states, YS , a set of non-secret states,

YNS , an adversary projection mapping PH and Σo = {a, b, a′, b′}, the estimator automaton

Ho is constructed as shown in Fig. 2.7, where V = Vo. Here, Yo = {Z0, Z1, Z2, Z3, Z4} are

the state estimates after having observed a sequence of transitions in H. Y0,o = {Z0} =

{x00, x10} = {R0} is the initial state estimate which is actually the unobservable reach 1 of

the states in the initial state set of H. x00 and x01 belong to the set of non-secret states

and are pairwise equivalent. Given a string of input symbols, the current-state estimate

obtained by simulating Ho on ω is Z3 = {{x02}, {x12}}, where ω ∈ ℑyo and ω = a′. Since

the estimate set consists of {{Ra′}, {Rf
a′}}, the attacker cannot ascertain if the actual state

belongs to a secret state or a non-secret state, since x02 ∈ YS and x12 ∈ YNS .

The controller deterministically enables or disables the flip enabling transitions [126,

127]. In our state based model shown in Fig. 2.4, Ra′ is the round output value corresponding

to a secret state. Since this state needs to be kept confidential from the attacker, the controller

1Unobservable reach of a state T is a set of states which are reachable from T using unobservable
transitions

54

2. Mitigation of Differential Scan Attacks

Figure 2.7: Estimator automaton for DES H

enables the flip enabling transition on reaching x02, such that the attacker is never able to

determine the actual contents of the intermediate register. The attacker essentially would

get a round output value of Rf
a′ from its observations of the system. The system is, therefore,

CSO as there exists a non-secret state, x12, which is not equivalent and yet reached via an

equivalent trace.

2.3.2 Why differential scan attacks will fail

We aim to prove here that a target Hamming weight is opaque. If this can be proved, then

it would imply that if plaintexts are incorrectly mapped to the original Hamming weight

distribution, then the key cannot be retrieved. The attack procedure shown in Algorithm

4 needs to compute the actual S-box inputs from the modified distribution, correctly, to

retrieve the key.

Let us consider the Hamming weight distribution of plaintext pairs when mapped to

round outputs, THW . The plaintext pairs that map to a specific Hamming weight, w, are

added inductively to the set THW (w). Now, the difference in outputs corresponding to

55

2.3. Security Proof

(p1, p
′
1) is R(p1) ⊕ R(p′1) ⊕Maskp1 ̸= R(p1) ⊕ R(p′1). Suppose DES H is CSO on having

applied plaintext input p1 or plaintext input p′1. In our DES model, the system was CSO on

reaching state x02, where Rf (a) = (R(a)⊕Maska). Hence, Rf (a) was opaque. Now, since

any one of the states reached via plaintext inputs p1 or p1 can belong to the set of secret

states, hence, either Rf (p1)(̸= R(p1)) or Rf (p′1)(̸= R(p′1)) is obtained. Given any of these

may occur, it implies Rf (p1) ⊕ R(p′1) is opaque to the adversary, since either Rf (p1) or

Rf (p′1) is opaque. Therefore, Df
p1 is opaque, where Rf (p1)⊕Rf (p′1) = Dp1 . Consequently,

HW (Df
p1) is opaque to the adversary.

Suppose, there exists plaintext inputs p1, p′1, p2, p′2, p3 and p′3, which when applied

in any given order, generate round outputs R(p1), R(p′1), R(p2), R(p′2), R(p3) and R(p′3),

respectively. Now, THW (5) consists of plaintext pairs such that the Hamming weight of

their observed differences is all equal to 5. Considering that Rp1 , Rp2 and Rp3 belong to YS

and the corresponding mask values are Maskp1 , Maskp2 and Maskp3 , respectively, then

HW (Df
p1), HW (Df

p2) and HW (Df
p3) are opaque and all these Hamming weight values are

equal to 5. Nonetheless, the system is THW (5) opaque (there exist actual Hamming weights

16, 17, and 18 when computed originally without the masks), since the attacker is unable to

infer the correct S-box input pair mappings corresponding to Hamming weight THW (5).

2.3.3 Security considerations for generalized input differences

The security of the countermeasure is dependent on the mask values. 256 possible mask

values are necessary for pre-computation in our scheme using our mask determination

algorithm, depending on the intended modification of the Hamming weight distribution.

Given any input difference δ applied between the plaintext pairs, 256 mask values will be

required. A 0x01 difference is considered while computing a secure Hamming distribution

for the same. In case of any general instances of the Hamming distribution, a different

mask determination algorithm can instead be devised, with some logical modifications, for

computing an updated set of 256 mask values. Depending on the distribution of the Hamming

weight for a specific input difference in one byte of input, any different transformation

function then needs to be used, such that 256 mask values are computed out of 232 possible,

considering that the mask values are of 32 bits. The modified Hamming weight distribution

essentially requires the mask values to be applied only on different occasions, for any given

56

2. Mitigation of Differential Scan Attacks

Figure 2.8: Hamming weight distributions

Figure 2.9: Signature Matches

input difference. This is because the original distributions specific to input differences vary

from one another. Consequently, more secret states can be used based on the occasion at

hand. There is no extra overhead due to such change since no changes are needed to be

made to the hardware. The proof of the countermeasure can be guaranteed in the same

manner as proposed in the manuscript. The number of secret states will increase on such

pretexts.

2.4 Case Study

Our defense procedure is tested against simulated attacks, written in C language, on a 64-bit

x86-64 Intel Core i7-6700 CPU at 2.6GHz, consisting of 8 virtual processors, 16 GB of RAM

and running Ubuntu 18.04 OS. We test our defense while using δ = 0x01. Mentor Graphics

Leonardo Spectrum Level 3 (Version 2018a.2) is used to evaluate the cost of implementation

in terms of the extra number of gates, using the library fse0a_d_generic_core_ff1p1vm40c.

Figure 2.10: Correct and incorrect key distribution in co-relation scan attack

57

2.4. Case Study

Table 2.2: RTL Components Summary for AES Implementation With and Without the
Proposed Countermeasure

Component Input Size Quantity
Original AES Secure AES Difference

Adders 2 4 bit 5 5 0

XORs

3 32 bit 4 4 0
2 33 bit 2 2 0
4 34 bit 2 2 0
2 8 bit 166 160 -6
4 9 bit 12 0 -12
5 10 bit 4 32 28
9 11 bit 16 16 0

Registers

128 bit 3 3 0
32 bit 10 10 0
8 bit 64 64 0
4 bit 5 5 0
1 bit 6 6 0

RAM 1K bit 1 1 0

Muxes

2 32 bit 8 8 0
2 8 bit 32 48 16
2 4 bit 2 2 0
3 4 bit 1 1 0
2 3 bit 1 1 0
2 1 bit 2 2 0
3 1 bit 1 1 0

LUT 256x8 2 2 0
Block RAM 256x8 39 39 0
Area Overhead 1.78%

2.4.1 Experimental Results

In our scheme, the DES model has 115 secret states. However, for experimental purposes,

we have considered 128 secret states, with none of the plaintext pairs retaining their original

Hamming weight. A 32-bit mask is used that requires a memory of 32×256 bits. The

proposed defense is implemented on an iterative implementation of AES [128] similar

to [69], in Verilog using Xilinx Spartan-7 xc7s100fgga676-2. The extra logic required for our

implementation is given in Table 2.2. The area overhead is 1.78% in terms of equivalent gate

counts. The simulation is done with Xilinx Vivado in the system configuration mentioned

in the introduction of this section to evaluate our results.

58

2. Mitigation of Differential Scan Attacks

2.4.2 Performance analysis

Our scheme is (YS , PH , 0) - opaque since 115 plaintext pairs are shifted. The analysis of our

proposed countermeasure to scan-based attacks is discussed below:

Differential scan attack

In the modified distribution, all the plaintext pairs corresponding to an unique Hamming

weight belong to another non-unique Hamming weight. So the attacker is unable to find

an unique plaintext to XOR with a S-box input pair, for example, 0xE2 in the case of a 9

Hamming weight. Fig. 2.8 shows that all the unique Hamming weights, 9, 12, 23, and 24,

no more contain actual unique plaintext pairs.

Signature attack

Here, all 128 Hamming weights need to match to recover the key. Since the Hamming

weights are shifted, a change in the Hamming weight of at least one of the input pair changes

the signature. As a result a match is not found with any of the signature HWi. Fig. 2.9

shows the Hamming weight matching results with actual signature.

Co-relation scan attack

Because of the modified distribution, which contains only one correct plaintext pair in each

Hamming weight, XORing the S-box inputs with the plaintexts gives incorrect keys with

one correct key. Fig. 2.10 shows the frequency of incorrect keys is always greater than the

correct key’s frequency. Hence, the co-relation scan attacks fail.

2.5 Comparison with other works

A comparison of our proposed mask determination algorithm based countermeasure against

some existing state-of-the-art defense schemes is presented in Table 2.3. The schemes

SOSD-64, SOSD-64, DOSD-64, DOSD-128 [69] and HBSD [79] are used to evaluate our

area overhead, security attack vulnerabilities, and impacts on testability. The iterative

implementation of SOSD and DOSD has been considered while comparing. SOSD and

DOSD refer to scan designs that perform static and dynamic obfuscation of scan data as

59

2.5. Comparison with other works

Table 2.3: Comparison of Different Designs

Design Area Overhead (%) Security Vulnerability Testability
SOSD-64 1.52 TMOSA, Reverse Engineering Attacks 64 clocks before testing
SOSD-128 2.81 128 clocks before testing
DOSD-64 2.08

Reverse Engineering Attacks
64 clocks before testing

DOSD-128 3.91 128 clocks before testing
HBSD 2.42

NilDOSC 4.6 SAT attackDOSC + Functional Obfuscation 5.7
Encrypt Flip-flop 5 (approx) DynUnlock
Proposed Scheme 1.78 None Nil

reported in [69], where 64 or 128 scan cells may be controlled. SOSD-64 and SOSD-128 are

susceptible to Test Mode Only Signature Attack (TMOSA). Moreover, all of the compared

schemes have been shown to be vulnerable to reverse engineering attacks [129]. In terms

of testability, the CUT is testable with no significant impact except that a fault in the

additional hardware circuitry is rendered non-testable. We show that our scheme is secure,

and there is a significant improvement on the area overhead measure with no compromise

made to testability compared to other schemes. In [69, 79], authors show a detailed

comparison of their works to other countermeasures in the literature.

Static and dynamic obfuscation techniques as discussed in [75, 77] protect the Intellectual

Property (IP). The technique discussed in [75] suffers from DynUnlock attack [76]. The

preliminary version of [77] is [73], which is shown to be vulnerable to ScanSAT attack

[74]. Hence, the security of [77] still remains doubtful, as shown in ScanSAT [74]. The

LFSR design can be reverse-engineered and the key update frequency p can be obtained by

repeatedly applying the same test vector again and again [129]. As the LFSR’s design can

be recovered using reverse engineering, the LFSR seed can be obtained with the information

of LFSR key sequences. Therefore, DOSC in [77] may be vulnerable. However, oracle access

to design, if available, may render DOSC + Functional Obfuscation susceptible [74, 76].

We do not resort to IP protection and leave the scan chain as it is. Since we do not

perform logic locking, such attacks are not effective against our countermeasure. Thus,

our proposed countermeasure is resilient to reverse engineering and SAT attacks, with a

lower area overhead of 1.78% compared to DOSC and DOSC + Functional Obfuscation in

[77], which have area overheads of 4.6% and 5.7%, respectively, for the AES Core. Encrypt

Flip-flop [75] reports an area overhead of approximately 5% on average and ranges from 1%

to as high as 40% across various ISCAS’89 and ITC’99 benchmarks. As a result, it makes

60

2. Mitigation of Differential Scan Attacks

our proposed countermeasure a preferable choice for the designer.

Our proposed scheme is not vulnerable to reverse engineering attacks since the pre-

computed mask value considers performing multiple bit flips in one round output. This mask

value is stored in tamper-resistant memory. Our proposed approach does not employ any

additional circuitry involving logic gates except an XOR gate at the scan output. Therefore,

reverse engineering the gate-level netlist design will not be beneficial in recovering the secret

key. Attackers having the capability of creating stuck-at-faults by obtaining control of the

flip-enable signal may be successful in launching various fault-injection or probing attacks.

However, in real life, the chances of launching such attacks are very low since injecting

faults through a probing attack or by using laser beam techniques is difficult and not easy

to implement. Moreover, the flip-enable signal, or rather the MUX could be replaced in

our design by directly feeding the mask memory to the XOR operation at the scan out pin.

In that case, we need to use 256 secret states instead, yet have no impact on testability

and with negligible overhead. We have employed the MUX and Flip-enable so that the

controller is minimally restrictive.

2.6 Conclusion and Future Directions

In this chapter, we have proposed a simple yet effective countermeasure against scan-based

attacks on IoT devices running an AES implementation. A security scheme using a controller

hardware unit is presented that uses a mask determination algorithm to pre-compute mask

values. The cryptocircuit implementation has been modeled in the framework of Discrete

Event Systems. Our scheme ensures security without hampering testability. Using a proof

of security, we show the resilience of the transformed Hamming weight distribution to

differential scan attacks as well as attacks based on key frequencies.

To guarantee the proof of our countermeasure, the security analysis in this work using

Opacity considers a particular instance of Hamming weight distribution (for example, when

a plaintext difference 0x01 is applied). In our future work, our objective would be to

analyze the security aspects of our countermeasure irrespective of any given instance of a

Hamming distribution. We would also further investigate our defense scheme in the presence

of advanced DfT structures as well as on other ciphers.

In the following chapter, we look into RPL attacks, namely, rank and version attacks,

61

2.6. Conclusion and Future Directions

a class of network-level IoT attacks launched by an internal attacker using irregular RPL

DIO control packets. Unoptimized network performance, resource exhaustion, network

partitioning and DoS occur as a result of such attacks. These RPL attacks exploit the

topology induced vulnerability of IoT-RPL networks. The network behaviour under the

influence of such attacks pose no change from the normal. A mechanism is therefore necessary

to create differentiating network characteristics for diagnosing these attacks. Moreover,

directly incorporating the network packet information in states and transitions will effect in

the state-space explosion problem. Also, a solution needs to be energy-efficient, scalable and

accurate for successful implementation in IoT networks. Furthermore, detection of attack is

not enough on this occasion since with the advent of botnet attacks and mobility, a malicious

node might easily launch fresh attacks. Intrusion detection systems are naturally chosen

for securing networks. Yet since signatures or known anomalies are naturally lacking in

such attacks, signature or anomaly based IDS have limited success and generate lots of false

postives. We analyze the attack from topology perspective to devise a novel countermeasure

scheme, to not only detect rank and version attack but also identify a rank attacker node.

Our proposed scheme utilises a centralised I-DES based IDS and a set of agents deployed

at the leaf levels and is presented in the next chapter. Our proposed I-Diagnosability DES

framework is adopted and extended to identify an attacker and uses extended finite state

automata formalisms for the modeling and design of our IDS. Faults and network attacks

create analogous deviations from the normal, which makes the classical Fault Detection and

Diagnosis (FDD) theory naturally applicable to network attack detection. Moreover, our

intelligent probing mechanism ensue differentiable attack characteristics due to generated

responses. Employing I-DES based IDS does not require extensive training, protocol

modifications, or encryption, etc. Furthermore, this being a software countermeasure that

runs in a host, it does not require any upgradation or patching. The proposed scheme is

validated in simulation and on a testbed with sufficiently large number of nodes. Results

obtained show effectiveness of our technique in most aspects than state-of-the-art schemes.

<<=8=;;

62

3
C h a p t e r

Mitigation of RPL-based Attacks

The Internet of Things (IoT) system is witnessing a rapid evolution, due to the ever

increasing number of connected smart and pervasive devices [5]. Consisting of a multitude

of connected heterogeneous objects, which we rather call as things, the IP-connected IoT is

spread over diverse domains like smart cities, autonomous vehicles, industrial cyber-physical

systems, smart homes, e-health sector, etc [108, 109]. IoT networks are typically Low power

and Lossy Networks (LLN), comprising mostly of embedded sensors and actuators. Not only

do such networks require to uniquely address billions of these connected devices, but also

support embedded technologies for sensing and gathering data from the environment. With

the mighty responsibilities in hand, IoT-connected resource constrained devices suffer from

major operational challenges like constrained processing capabilities, inadequate memory

and limited power. Hence, IoT remains vulnerable to a wide array of attacks because of

insecure LLNs, device limitations, varying technologies, etc.

To enable efficient and reliable communication, IETF has standardized IPv6 Routing

protocol for Low Power and Lossy Networks (RPL) [9]. The design of RPL is tailored for

low-power IoT devices. RPL maintains loop-free Destination Oriented Directed Acyclic

Graphs (DODAG). A DODAG is created and maintained using control messages, primarily,

DODAG Information Object (DIO) for upward paths, DODAG Advertisement Object

(DAO) for downward paths and DODAG Information Solicitation (DIS) for node joining.

RPL ensures cost-optimized topologies by ordering participating nodes on the basis of an

integer cost function, rank. Individual rank of a node determines its position in the DODAG,

relative to a 6BR sink node (root). Also, a single version number prevalent in the DODAG

is maintained in DIO for consistency. Though RPL provisions various mechanisms and is

secure enough from external attackers, yet the resource constrained nature of IoT devices,

the typical characteristics of IoT networks such as lossy links, lacunas in infrastructure,

dynamic topology, etc., can render IoT-RPL susceptible to internal attacks [85, 11, 86, 87].

Various internal attacks have been shown in the literature, of late, that make illicit use

of RPL. Puppet attacks [88], advanced vampire attacks [89] make use of forged source routes,

while attacks like energy depletion attack [90] and vampire attacks [91] drain resources by

repeatedly sending useless data packets. Sybil attacks [92] and spam DIS attacks [93] have

been shown to make use of DIS messages with counterfeit identities, essentially causing denial

of service. DIO suppression attacks eavesdrop DIO messages for replaying it repeatedly in

fixed intervals [94]. Out of the various DIO-specific attacks explored, proposed rank and

version attacks continue to be of paramount importance since they are of low overhead

and are realizable using DIO only. To launch such attacks, the rank and version number

fields of a DIO message are fabricated causing formation of loops, sub-optimal routes, traffic

redirection and network partitioning. Significant path delay is incurred since a large number

of control messages are exchanged in the DODAG, resulting in energy depletion of the

constrained nodes and disruption of network services. Moreover, rank attacks may be

combined with other cross-layer attacks like selective forwarding attacks to alleviate the

damage caused.

Proposed methods for securing IoT networks against RPL rank and version attacks have

their own typical limitations[95, 96, 97, 98, 99, 100, 101, 102, 103, 32, 104]. Cryptography-

based mitigation schemes are resource exhaustive and computationally heavy, especially

in a network of resource constrained devices. Machine learning-based approaches require

investment of extensive training time, as per the system under consideration. Protocol-based

approaches require modifying the protocol policies. IDS based approaches do not suffer

from these above limitations, but the implementation of these schemes for rank attack

detection is challenging since attack behaviour resembles and normal behaviour. Hence,

use of signature-based IDS and anomaly-based IDS schemes in the context of IoT attacks

generate a large number of false positives. Furthermore, there exists many variants of rank

attacks which present complex characteristics to evade detection capabilities of IDS. Formal

verification of IDS schemes are also lacking.

64

3. Mitigation of RPL-based Attacks

This chapter presents an intelligent probing based scheme for the detection of rank and

version attacks that also identifies location of malicious nodes. The probing mechanism

helps differentiate the normal and attack behaviour. Our scheme incorporates I (Indicator)-

Discrete Event System (DES) based IDS [47, 105, 48] and a set of agents with event

monitoring enabled, that make use of probe packets [106, 107], judiciously. System failures

and network attacks involve analogous behavioural deviations from the normal system

functioning, which motivates the use of I-DES based IDS. Deploying our IDS does not

require a change in protocol policies, encryption, extensive training time or any need for

proprietary hardware support. Using our IDS also helps ensure a formally verifiable proof

of correctness of our approach. The major contributions in this chapter are enumerated as

follows:

• We propose a novel rank attacker identification scheme that also detects version attacks

in IoT-RPL. Our scheme makes use of an intelligent active probing technique that

helps create a deviation of attack traffic and normal traffic [106]. Our proposed scheme

is centralized and uses a I-DES based IDS.

• We extend the power of traditional I-DES based IDS with attack type modeling for

attacker identification.

• We prove the correctness and completeness of our approach by enumerating all the

attack cases.

• The performance of our scheme is tested through simulations and real testbed. The

experimental results highlight the applicability of our approach. Comparison of our

scheme to state-of-the-art countermeasures shows our approach is energy-efficient with

less packet overhead. The proposed solution is scalable, has minimum false positives

and achieves more than 99% accuracy in identifying the malicious nodes.

The rest of this chapter is organized as follows: We discuss the related works and

motivation in Section II. Section III is background. The design of our proposed scheme

using a DES based IDS is presented in Section IV. Experimental results are summarised in

Section V, highlighting the performance of our scheme, and we finally conclude with Section

VI.

65

3.1. Related Work

3.1 Related Work

We here discuss the various schemes proposed in the literature. The existing methods

either employ mitigation techniques [130, 95, 96] using cryptographic solutions [35, 97, 98],

acknowledgement based schemes [36], trust based methods [99, 100, 101], recent machine

learning approaches [102, 103, 32, 104], or IDS based approaches [131, 132] using specifica-

tions and mathematical (statistical) methods to make DODAG secure. One of the primary

works, VeRA [35], suggested the use of one-way hash functions generated by RPL root,

where each of the nodes authenticate neighbours’ rank by repeated usage of the function.

TRAIL [36] improved upon VeRA by abstaining from a fully cryptographic technique. Newer

attack vectors are also identified. Their proposed approach detects and mitigates topological

inconsistencies in the network by checking for upward routes. They make use of encryption

chain authentication as opposed to MAC authentication, thus ensuring backward secrecy.

Their scheme lacks in scalability and requires maintaining state information. Nikravan et.al

[97] utilise an identity based offline-online signature. Their solution is scalable compared

to VeRA and TRAIL, requiring the size of signature to be independent of the network

size. The above approaches to mitigate rank attacks however are resource exhaustive or

computationally heavy.

Trust based methods have also been largely used in this direction [100, 101, 133].

They mostly resort to reputation score calculations and trust values for attack detection.

SecTrust-RPL [99], a time-based trust-aware routing protocol, used a trust based principle

that computes reliability, gained from message exchanges. They also validate their approach,

however, it required each node to be run in promiscuous mode for sniffing packets. Later, a

dynamic hierarchical trust model is proposed in DCTM-RPL [134]. Secure communication

is shown to have been achieved by building up trust above a threshold value in their

approach. Among the various protocols proposed [96, 40], a secure protocol, SRPL-RP

[38], mitigates rank and version number attacks. It uses a timestamp threshold to validate

a legitimate sender node. Though their approach improves upon overhead and average

energy consumption, energy is wasted in the absence of any attacker. Furthermore it may

be noted that protocol based approaches modify the protocol policies. There has also been

significant contributions, of late, that use machine learning based methods. Specifically,

deep learning based [33, 32] and artificial neural network based approaches [104] have been

66

3. Mitigation of RPL-based Attacks

applied to detect rank and other routing attacks. However, it is worth mentioning that such

approaches require investment of extensive training time and further improvements in their

accuracy can be achieved by better dataset.

Usage of IDS has received considerable attention over the years in the security research

community. Network based Intrusion Detection Systems (NIDS) have been largely employed

to secure the IoT network against attacks [135, 136, 132, 131]. NIDS for IoT are mostly

signature-based (or, knowledge-based), anomaly-based, specification-based or hybrid [137,

138, 139]. SVELTE [132], one of the notably important proposal has shown the use of

real-time intrusion detection in IoT. A specification-based IDS with hybrid placement

that detects blackhole, sinkhole and selective forwarding attack, SVELTE used a mix of

both signature based and anomaly based methods. While an IDS module runs on the

root node, the firewall and response model runs on every node, which is again resource

intensive. Some of the other limitations of the scheme are false detection and the lack

of DIO synchronisation. Recently, FORCE [138], a specification based IDS that exploits

the parent-child relationship is proposed and performs better than SVELTE in terms of

detection rates and energy consumption. A version attack detection scheme using temporal

logic based IDS [140] is shown, but a comparison of their scheme is lacking. A few works

[141, 142, 130] improve upon SVELTE in terms of false positives. Version attack is mitigated

and attacker is identified using trust-based distributed IDS [143] and also by distributed

monitoring mechanisms [144]. A sink-based IDS is proposed in [139], but the scheme suffers

from high computational overhead and average power consumption.

Few approaches in the literature have performed malicious node identification and

isolation [145, 130, 143, 144]. In IoT networks, control packets are exchanged in the RPL

for maintenance and a rank update legitimacy cannot be directly verified, since they are not

differentiable across normal and spoofed conditions. An increased rank may be advertised

due to various genuine reasons like a node gone off or not running, node services interrupted,

etc. Moreover, variations of rank attacks lack direct anomalies or known signatures. In this

regard, signature-based and anomaly-based IDS approaches in turn result in an increased

number of false positives when generating relevant signatures or statistics. We overcome

the discussed shortcomings by developing an energy-efficient and formally verifiable probing

based scheme. Probing helps differentiate the attack characteristics from the normal network

67

3.2. Background

characteristics. Analyzing the topological changes due to rank attacks aid our development

of probing techniques for malicious node identification. We not only detect but also identify

the location of the malicious node with enhanced precision, lower false positives and lower

detection time. Our scheme is centralized and uses an I-DES based IDS, correctness of

which can be formally verified. I-DES based IDS are accurate and generate minimal false

positives [47, 105, 48, 146]. Moreover, using our proposed IDS does not require a change in

protocol policies, extensive training time, encryption or a need for proprietary hardware

support.

3.2 Background

In this section, we discuss the preliminaries of RPL protocol, DODAG creation and RPL

attacks, namely, increased rank and version attacks, in particular.

3.2.1 RPL Protocol

RPL is inspired from distance-vector routing protocol, source routing protocol and DAG.

It is the de-facto routing protocol that operates on top of IEEE 802.15.4 MAC layer

while supporting multipoint-to-point traffic using upward routes, point-to-multipoint traffic

using downward routes and a combination of the above routes to facilitate multipoint-

to-multipoint traffic. Independent downward routes and upward routes are established

in DODAG. Depending on the mode of operation, downward routes may be optionally

supported. RPL supports three node types, namely, (i) Low Power and Lossy Border

Routers (LBRs) which acts rather as gateway between LLNs and the Internet, (ii) Routers

which can forward as well as generate traffic and (iii) Hosts that can generate but not

forward traffic. Nodes are organized in the form of DODAG tree with a provision for parallel

execution of multiple RPL instances, as shown in Figure 3.1. An RPL instance is uniquely

characterized using RPL Instance ID and a DODAG using DODAG ID. The DODAG root

is a special kind of node that acts as an LBR or a destination sink. The root determines

and maintains the DODAG configuration parameters and starts disseminating DIOs [147].

In RPL, an ICMPv6 control message can be any one of these following types: (i)

DODAG Information Solicitation (DIS) (ii) DODAG Information Object (DIO) (iii) DODAG

Advertisement Object (DAO) (iv) DODAG Advertisement Object Acknowledgement (DAO-

68

3. Mitigation of RPL-based Attacks

ACK).

Rank is an integer value assigned to each node in the DODAG. All the nodes conforming

to the inclusion policy in the DODAG instance are ordered on the basis of these values as

per an instance defined metric. They are a measure of the position of the node relative

to the sink node. A higher rank value pertaining to a node means it is more distant from

the sink compared to another node with a lower rank value. Objective Functions (OF) are

used for topology optimization depending on a set of goals that need to be met, such as

link quality, hop count, energy consumption, etc. OF is used by the RPL to select the best

routing path. Instances use OFs to determine the rank. The OF determines metrics that are

included in the DIO messages. OF is realized using Objective Code Point (OCP) included

in the DIO configuration options.

Figure 3.1: RPL DODAG

DODAG Creation and Maintenance

Creation and maintenance of an RPL DODAG is done using the DODAG control messages.

When a DODAG is built, the root link local multicasts DIO messages for building upward

paths. The rank value, objective code point and node ID are included in the DIO messages

69

3.2. Background

[148]. DIO messages are periodically disseminated downwards, where the period is decided

by the Trickle algorithm [149]. From the received DIO messages from neighbours, each node

has the decision on selection of its parent set among its neighbours. Among its parent set, it

selects a preferred parent from the best advertised rank value. Thus, when a node forwards

a message to the DODAG root, the preferred parent is chosen by default. The received DIO

message is then updated at the node and forwarded to its neighbours. On completion of

DIO message exchanges till the leaf node, the upward route is created upto the DODAG

root, consisting of preferred parents from each node. A node uses DIS broadcast messages

to join a DODAG. DAO messages are used by the nodes for building downward paths.

3.2.2 Rank and version number attack

Alteration/Spoofing attacks in RPL have been widely investigated. Rank and version attacks

in RPL are identified as misappropriation or alteration attacks where the ranking scheme is

exploited, indirectly, making false advertisements using DODAG control packets [86, 95].

Version number attack: RPL incorporates versioning in DODAG to prevent loop

formation and to ensure updated topologies. A malicious node makes use of the version

number field to attract descendant nodes. False version number updation in the DIO

advertisements practically actuate a DODAG tree rebuilding operation affecting the network

performance, indirectly. As a result, energy exhaustion, loop formation, increased overheads

ensue. Moreover, it provides avenues for launching more serious combined forms of attack.

Increased rank attack: One or more node(s) may misbehave in the network by

increasing the rank values. We here restrict ourselves to the case where the network

has a single misbehaving node. The malfunctioning node suddenly multicasts a DODAG

Information Object (DIO) message to its neighbor nodes with an incremented rank value.

The neighbor nodes, then, does the same, recursively, till the network upward routes are

updated. Hence, there is a huge burst in control packet traffic in the network. The nodes

being resource constrained illicitly face exhaustion of their battery. As a result of this type

of attack, the network may even include loops that may not be mitigated using local repair

mechanisms in RPL. Otherwise, the node simply joins at a lower rank in the network (i.e.,

more distant from the DODAG root) and such behavior may be primarily intended to starve

a targeted node by disrupting communication.

70

3. Mitigation of RPL-based Attacks

A

...

...

R

N1

N2

N3

N4

N5

N6

A

...

...

R

N1

N2

N3

N4

N5

N6

A

...

...

R

N1

N2

N3

N4

N5

N6
DIO

DIO

A

...

...

R

N1

N2

N3

N4

N5

N6

DIO
DIO

DIO
DIO

Decreasing
Rank

Time

T1 T2 T3 T4

Messages delayed/
Messages dropped

Sense the DODAG

E E E E

Figure 3.2: Rank Attack Timeline

3.2.3 Increased rank attack timeline

The increased rank attack timeline is shown in Figure 3.2. The time-slots T1 through T4 are

briefly explained. [T1:] R is the root of the RPL DODAG while other nodes are numbered

{A,N1, . . . , N6}. Node, A is rendered vulnerable. [T2:] The vulnerable node probes rank

values of the neighbouring nodes. [T3:] On having chosen a rank value, A now multicasts

DIO messages with its updated rank value. [T4:] DIO messages are exchanged till leaf

nodes update the upward route. The DODAG topology is modified at A.

3.2.4 Intrusion Detection Systems

Intrusion Detection Systems (IDS) are identified as one of the basic tools that are employed

to protect networks and data. An alert is raised to the system administrator if any suspicious

activity is detected by the IDS. An IDS can be software or hardware that are built to

monitor and analyze the network packets that are sniffed or the events that occur in the

host machine. Designing an IDS requires considering the processing ability and memory

capacity of the nodes where they may be deployed. The primary components of an IDS are

sensors that collect data, and an IDS engine that analyzes the collected data and reports to

a network administrator for suitable actions. IDS are classified in the literature depending

on the source of the data being monitored, depending upon the strategy it takes, and also

depending on the monitoring techniques. Source of monitoring the data classifies IDSs

into NIDS, HIDS and Hybrid. Based upon the strategy of detection, IDSs are classified

71

3.3. Proposed Rank Attacker Identification Scheme

as signature-based, anomaly-based, specification-based, and hybrid. Depending on the

monitoring technique, IDS are classified into active and passive monitoring which are further

subdivided into centralized, decentralized and hybrid monitoring techniques.

3.3 Proposed Rank Attacker Identification Scheme

Here, we present the different aspects of our proposed scheme for RPL attack detection

and identification. We introduce I-DES based IDSs followed by an overview of the detec-

tion methodology using our proposed IDS. We then discuss the employed techniques and

algorithms to identify the attacker. The construction of normal, attack models and DES

diagnoser that are indispensable for attacker identification are described next. Proof of

correctness and completeness is presented subsequently. We assume that an attacker is

unable to differentiate probe packets from normal packets and hence responses to them.

3.3.1 I-DES based IDS

Classical DES theory has been largely adopted in systems for Fault Detection and Diagnosis

(FDD) [46, 44, 45]. Motivated from fault diagnosis, DES based IDSs have been successfully

used in network attack detection [47, 48]. The characteristic similarities of network attacks

and faults in DES literature is what motivates its usage. The basic idea is to develop a

model for the normal functioning of the network and another for attack (fault) behavior.

Additionally, multiple fault types in DES literature are diagnosed by developing exclusive

fault DES models corresponding to each fault type. Each fault type leads to unique deviations

from the normal behavior. Analogously, we augment traditional I (Indicator)-DES based

IDS with attack types in our work here. It may be noted that an attack type corresponds

to behavior of the network under the influence of a particular attacker. Attack type I-DES

models corresponding to the location of the attacker are modeled. In I-DES based IDS an

I-diagnoser is used as our IDS engine. It is a state estimator automaton which is constructed

from the knowledge of normal and attack type DES models. The I-diagnoser observes

system event traces and gives a decision on the system condition being normal or under

attack by generating alerts. Attackers are identified only through the states that lie on

the path after an indicator event has occurred. To summarize, by using I-DES based IDS,

and given all possible attack instances, it can be ascertained if an attack can always be

72

3. Mitigation of RPL-based Attacks

exclusively identified, correctly and completely.

3.3.2 Overview of proposed attacker identification procedure

The primary research challenges in detection of rank attacks are as follows: (i) Nodes with

rank values lower than the malfunctioning node, including the 6BR root, remain unaware

of the inconsistency created in any subtree (ii) Normal scenario cannot be differentiated

from the attack scenario by monitoring network traffic or topological changes. Sensing of

network events at the leaf level using agents helps overcome the first challenge, while an

intelligent probing technique helps overcome the second challenge discussed above. Active

probe packets generate distinguishable packet sequences between normal and attack scenario.

The system we consider consists of an IoT network of resource constrained devices using

RPL. We use a centralised IDS, functioning at the network layer, working in a distributed

manner with the help of agent nodes. An example of a DODAG with our IDS and agents

deployed is demonstrated using Figure 3.3. The 6BR root (nR) is software controlled and

IDS handles communication for this node. The set of agents, T = {n1, n2, . . . , nt}, with

event monitoring enabled are deployed at the leaves. Henceforth, the IDS node is designated

as nR. The notations used are listed in Table 4.1.

Table 3.1: NOTATIONS

Notation Meaning
DIORQP Rank Update Packet
DIOINMP DIO Rank Update Intimation Packet
DIOvINMP DIO Version Update Intimation Packet
PRQDP Probe Request Data Packet
PRSDP Probe Response Data Packet
PRSDP ∗ Delayed Probe Response Data Packet
PR_TO Probe Timeout Event
URDES Unreachable Destination Message

Components in the IDS: The block diagram of our proposed IDS with the basic

components is shown in Figure 3.4 and are discussed here as follows:

• Packet Sniffer: It captures control and data packets in the network while working

in promiscuous mode. Relevant packets are sniffed and others are dropped. It then

forwards the sniffed packets to the “RQST_RSP_HANDLER()" component.

73

3.3. Proposed Rank Attacker Identification Scheme

Figure 3.3: IoT network DODAG representation with IDS and agents deployed

• RQST_RSP_HANDLER(): Its prime responsibility is to extract vital informa-

tion from the control or data packets like source client’s IP address, MAC address,

Transaction identifier, etc. It also makes note of rank and version value attributes and

generates the events DIOINMP, DIOvINMP, URDES, PRQDP, PRSDP, PR_TO,

PRSDP ∗. The generated events are passed to the DES diagnoser. The working

procedure of this handler is described in Section 3.3.5.

• I-DES Diagnoser: This component diganoses the attacker node and is implemented

as a software module. Given the knowledge of the DES model specifications per-

taining to normal and attack type conditions, the diagnoser can be constructed.

RQST_RSP_HANDLER() passes information regarding network events to the diag-

noser. Based on the event parameters that are shared, the diagnoser generates an alert

on attack detection or identification of malicious nodes. The usage and construction

of the diagnoser is described in Section 5.2.6.

Attack detection and identification is sequentially carried out in phases. Version attack

74

3. Mitigation of RPL-based Attacks

RPL Control
and Data
Packets

Sniffer DES
Diagnoser

IoT network

Events with
parameters Status

Attack/Normal

DELTO
DIOINMP

DIOvINMP
PRQDP
PRSDP
PRTO

RPL Module

RQST_RSP_HANDLER()

IPv6 Host

Figure 3.4: Architecture of proposed IDS

Agent Deployment,
Sniffing and Monitoring

RTT calculation,
Compute ∆max and ∆a

Irregular DIO version
update received at

agent ni

Irregular DIO rank
update received at

agent ni

ni INTIMATES root nR

Dummy application
data

Select route R for
probing based on
reporting agent ni

 TPATH

Version
number

validation

ni INTIMATES root nR

Dummy application
data

nR sends ETX
probe packets

to TPATHi(x) via
R

Status
NORMAL / ATTACK

Probe
Response
validation

Specification-
Rule

Status
NORMAL / ATTACKER node

(R',TPATHi(x'))

6BR (Setup) Sensors (Intimation)

Sensors (Intimation) IDS (Active Probing)

IDS (Diagnosis)

Figure 3.5: Workflow of proposed scheme

detection phases are setup, intimation and diagnosis, whereas, rank attack detection

consists of setup, intimation, active probing and diagnosis. The working principle of

our proposed scheme is demonstrated next. The flow of our scheme is shown using Figure

3.5. Prior to attack, network traffic is monitored and data is logged to setup the IDS as

shown in the initial module. This forms the setup phase. IDS performs all the normal

functionalities besides gathering and analysing the sniffed data in this phase. Considering

there are t agents deployed, t tables (TPATH) are maintained and updated during this phase.

Each table consists of round-trip time (RTT) values and information of the intermediate

nodes between nR and an agent. The table elements are ordered on rank values. After

the IDS is setup, suppose an irregular DIO is received by an agent, nj , where nj ∈ T

75

3.3. Proposed Rank Attacker Identification Scheme

and 1 ≤ j ≤ t. It then intimates this information as obfuscated application data to nR

after a random delay. This is the intimation phase. In case a version inconsistency is

intimated, the diagnoser (IDS engine) validates the report and declares the status to be

normal or a version attack, which is the diagnosis phase. On the other hand, on receipt of

an irregular rank update intimation from an agent nj , a jth table is chosen. Subsequently,

the RQST_RSP_HANDLER() on behalf of nR sends ICMPv6 request packets to the nodes

in this table, one by one, to probe for topological inconsistencies in the DODAG. This forms

the active probing phase. An acknowledgement (ACK) response is generated for a probe

request packet when received at a destination node. Now, a probe ACK response may not

be received at all at nR, genuinely, if any node has gone off, or if a link is broken, or a

loop is present, and falsely if an attacker is present. So a missing ACK probe response

cannot be directly marked as a suspicious activity. We hence characterize the received

responses based on RTT values. RTT for a destination that is probed is computed and

compared with RTT computed before intimation. Depending upon the learnt characteristics

of RTT values from the sequence of probe packets sent, further probing is continued or a

decision is taken by the diagnoser. The latter validates the probe responses against the

DES model specifications provided at the start corresponding to normal as well as attacker

specific behavior. Our normal and attack modeling capture the characteristic differences.

The RTT values computed using the probing technique for a parent and child pair pose

unique characteristics that help differentiate a normal and attack scenario. Moreover, the

RTT characteristics for the sequence of nodes probed in the chosen table, i.e., jth here, are

differentiable in case of a specific attack node. The phases in our detection procedure are

now sequentially demonstrated.

3.3.3 IDS Setup

This phase consists of administrator intervention for parameter setup. Traffic is monitored,

relevant data is collected and parameters are measured for Network Traffic Analysis (NTA)

purposes. Regular monitoring and sniffing yield to our detection procedure by maintaining

tables and computing essential parameters, respectively. An array of table pointers, TPATH,

is used for storing the intermediate node information. TPATH2 in the example DODAG of

Figure 4.3 is shown in Table 4.2. An element of the array, TPATHj , stores the IP, MAC,

76

3. Mitigation of RPL-based Attacks

RANK and RTT values of the intermediate nodes along the path connecting the IDS, nR to

an agent nj . ⟨TPATHj⟩SIZE represents the size of TPATHj , i.e., the number of nodes

along the path nRnj , excluding the root node. Values such as maximum RTT and maximum

round-trip delay for 1-hop are computed and continuously updated. Variables ∆max and

∆a hold the maximum delay and admissible delay values, respectively. Sniffers deployed at

nR capture the traffic of underlying network as demonstrated in the Figure 3.3. The sniffing

component retrieves general information from the packets communicated. The retrieved

information from the control and data packets consist of DODAG ID, packet type (i.e.,

DIO, DAO, DIS, DAO-ACK, application), sender IP, destination IP address, and forwarding

path information. Rank and version number values are also looked into and stored when

necessary. The agent intimation phase is demonstrated in the following subsection.

Table 3.2: Table for TPATH2

Node Link-local IPv6 address MAC address Rank RTT
B fe80::2ca:3fff:fed6:8d56 00:ca:3f:d6:8d:56 1 1.23s
C fe80::3340:70ff:fedf:71f1 31:40:70:df:71:f1 2 4.15s
D fe80::f6eb:3fff:fe92:3cd2 f4:eb:3f:92:3c:d2 3 5.7s
E fe80::6fbf:35ff:fec6:1ffd 6d:bf:35:c6:1f:fd 4 7.68s
n2 fe80::a68d:bcff:fe6c:89d4 a4:8d:bc:6c:89:d4 5 9.84s

nR

B

C

D
n1

A

n3 n4

F
G

H

I

J

E

n2

nR

B

C

D

E

n2

Figure 3.6: A DODAG instance (left) and path TPATH2 (right). IDS nodes are denoted
as gray circles, non-attack nodes are denoted in blue circles, suspected attack nodes
are denoted in red green circles

3.3.4 Intimation

Our scheme consists of pieces of software, which are small programs, as agents for reporting

any suspicious activity to the IDS, nR. Based on their reports, version and rank attacks

77

3.3. Proposed Rank Attacker Identification Scheme

are detected by the IDS using DES implemented at the root. The agents are event driven

and perform minimally at leaf level in the monitored RPL-IoT network. They have no

extra duties other than sensing suspicious activity and reporting. On receipt of an irregular

DIO, the piggybacked information is obfuscated and reported to nR. To prevent an attacker

from profiling, the agents send the intimation packet with a random delay. Function of this

component is explained using Algorithm 6. On receipt of a DIO packet DIORQP with

an increased version number, an agent node nj reports an intimation packet to nR. If the

DIO is a trickle timer update, with an used version number and incremented rank value,

the DIO is marked suspicious. A DIO is also marked suspicious if update is trickle timer

inconsistent with an increased rank value. Information regarding such DIO receipts are

also reported to nR. Active probing and diagnosis phases are demonstrated through the

RQST_RSP_Handler and I-DES diagnoser, respectively, in the following subsections.

ALGORITHM 6: Agent Intimation Procedure
Local Variables : rank, currVerNum
Input: Received DIO packet DIORQP
Output: Intimate received DIO packets DIOINMP , DIOvINMP

1 if (ipd(DIS) = ips(DIORQP)) and (macd(DIS) = macs(DIORQP)) then
2 if verNo(DIORQP) > currV erNum then
3 Send DIO receipt intimation DIOvINMP to nR;

4 if DIORQP is Trickle Inconsistent then
5 if rank(DIORQP) > rank then
6 Send DIO receipt intimation DIOINMP to nR;

7 else if DIORQP is Trickle Consistent then
8 if verNo(DIORQP) = currV erNum and rank(DIORQP) > rank then
9 Send DIO receipt intimation DIOINMP to nR;

3.3.5 RQST_RSP_HANDLER()

The working our algorithm is described as follows. The input it takes are:

• DIO intimation packets that are reported from agents on receipt of irregular DIO

packets.

• Probe request packets from the buffer that are yet to be sent (this becomes possible

as RQST_RSP_HANDLER() is part of the modified RPL).

• Probe response packets.

78

3. Mitigation of RPL-based Attacks

ALGORITHM 7: RQST_RSP_HANDLER()
Data : c1, ver, rcvd, flag = FALSE, ∆max, ∆a, lastSend, rtd, j, rch
Input: DIO intimation packets, Probe response packets, TEST_FLAG
Output: Events: PRQDP , DIOINMP , DIOvINMP , PRSDP , PR_TO, PRSDP ∗, URDES

1 while ∆max and ∆a are not NULL do
2 if Version update is reported then
3 while (TEST_FLAG == 1) do
4 Generate event DIOvINMP ;

5 if Rank update is reported then
6 Generate event DIOINMP ;
7 j ← {i|ni.IP == DIOINMPIPS};
8 Generate event PRQDP ;
9 Send ICMPv6 probe packet to TPATHj [0] via stored downward route R;

10 Start clock timer c1();
11 lastSend = 0;

12 if Received packet is a probe response then
13 rtd← TPATHj [lastSend].RTT ;
14 Increment lastSend;
15 if (c1() ≤ rtd+∆a) then
16 Generate event PRSDP ;
17 rch← lastSend− 1;
18 Stop clock timer c1();
19 Generate event PRQDP ;
20 Send ICMPv6 probe packet to TPATHj [lastSend] via stored downward route R;
21 Start clock timer c1();

22 else if (c1() > rtd+∆a) then
23 if (flag == FALSE) then
24 Generate event PRSDP ∗;
25 Stop clock timer c1();

26 else if (flag == TRUE) then
27 Generate event PRSDP ∗;
28 Stop clock timer c1();
29 Generate event PRQDP ;
30 Send ICMPv6 probe packet to TPATHj [rch] via DAO advertised downward route R′;
31 Start clock timer c1();
32 flag = FALSE;

33 if (c1() > ∆max) AND (No response packet is received) then
34 Generate event PR_TO;
35 Stop clock timer c1();
36 Increment lastSend;
37 if (flag == TRUE) then
38 Generate event PRQDP ;
39 Send ICMPv6 probe packet to TPATHj [lastSend] via DAO advertised downward route R′;
40 Start clock timer c1();

41 else if (flag == FALSE) AND (lastSend < TPATHj
SIZE) then

42 Generate event PRQDP ;
43 Send ICMPv6 probe packet to TPATHj [lastSend] via stored downward route R;
44 Start clock timer c1();

45 else if (flag == FALSE) AND (lastSend == TPATHj
SIZE) then

46 Generate event PRQDP ;
47 Send ICMPv6 probe packet to TPATHj [lastSend] via DAO advertised downward route R′;
48 Start clock timer c1();
49 flag = TRUE;

79

3.3. Proposed Rank Attacker Identification Scheme

• TEST_FLAG indicates when to detect and identify the attack by sending probe

packets to intended nodes.

If the values ∆max and ∆a, have been computed, the diagnoser sets TEST_FLAG

= 1 (Line 1). The two values are pre-computed during non-attack condition in the RPL

instance in use as discussed in Section 4.3.2. The handler outputs events, namely, PRQDP ,

PRSDP , DIOINMP , DIOvINMP , PR_TO, PRSDP ∗, URDES, which are all passed

to the DES diagnoser. The model variables used are c1, flag, ∆max, ∆a, j, lastSend,

rtd and rch. They are shared among the handler and the I-DES diagnoser. When the

TEST_FLAG is set by the diagnoser, it means that the attack detection and identification

phase can be started. The algorithm is now explained step-wise. The I-DES diagnoser

gets executed and remains so till the DODAG remains operational. Diagnoser sets the

TEST_FLAG = 1 which is its initial transition.

If a version update intimation is reported, it checks if TEST_FLAG = 1 (Line 3).

The event DIOvINMP is sent to the diagnoser (Line 4). Diagnoser sets TEST_FLAG

= 0 until a decision on the version inconsistency is made. If an irregular rank update is

intimated, the event DIOINMP is passed to the diagnoser (Line 8). Model variable j

stores the index of the TPATH array used. The variable is shared with the diagnoser (Line

9). PRQDP event is passed to the diagnoser and a probe packet is sent to the node at

1-hop distance from the root in the table TPATHj (Line 11). TPATHj stores a saved

route R for agent node nj . lastSend stores the index of the node in TPATHj to which

the last probe request packet is sent. A clock timer is started to maintain a record of the

transmission time of the packet that can be uniquely identified using a transaction identifier

value, transid.

The module described through lines 15 to 37 is taken on receipt of a probe response

packet. Variable rtd is set to the round-trip delay of the node to which the probe packet

was last sent. The variable lastSend is incremented (Line 16). The total response time it

takes for a particular node is computed using the clock variable, c1 and is compared against

a pre-computed RTT (old). We use ∆a to characterise the admissible delay while awaiting

a probe response. In case a response packet is not received at nR after a ∆a time period

beyond the expected RTT, we consider it as delayed response. If c1 does not exceed rtd+∆a,

the generated event PRSDP is passed to the diagnoser (Line 18). The variable rch is set to

80

3. Mitigation of RPL-based Attacks

point to the last node whose packet is received before delay timeout occurs (Line 19). The

clock timer is then stopped and another request packet is sent to a subsequent node (Line

21). Consequently, the event PRQDP is passed to the diagnoser. Clock timer is restarted to

count the RTT via the stored route (Line 23). If c1 exceeds rtd+∆a, then a flag variable is

checked (Line 25). It is set equal to FALSE during the algorithm initialization. In case flag

= FALSE and TEST_FLAG = 1, a delayed response received event PRSDP ∗ is passed

to the diagnoser which sets it to 0 (Line 27). The clock timer is stopped. On the other

hand, if flag is TRUE and a probe response packet is received from some node, suppose x,

beyond rtd+∆a, then the event PRSDP ∗ is generated and passed to the diagnoser and

clock timer stopped (Line 32). A request packet is sent via current downward route R′ to

node x, clock timer is restarted and flag is set to FALSE (Lines 33-36).

The module described through lines 40 to 59 checks if c1 counts beyond a maximum

probe timeout period and no response packet is received at nR. We use ∆max to characterise

the maximum delay after next probe request is made. Consequently, a probe timeout

event generated here is PR_TO which is passed to the DES diagnoser while the clock

timer is stopped and lastSend is incremented by 1 (Line 42). Three conditions over the

variables flag and lastSend are checked if they are met. If flag is determined to hold

TRUE, then event PRQDP is passed to the diagnoser and an ICMPv6 probe packet is

sent to TPATHj [lastSend] via a current downward route R′ and clock timer c1 is started

(Lines 45-47). On the other hand, if flag is found to be false while lastSend is less than the

size of TPATHj , then event PRQDP is passed to the diagnoser and an ICMPv6 probe

packet is sent to TPATHj [lastSend] via the stored downward route R and clock timer

c1 is started (Lines 50-52). If flag is found to be false while lastSend equals the size of

TPATHj , then event PRQDP is passed to the diagnoser and an ICMPv6 probe packet is

sent to TPATHj [lastSend] via a current downward route R′, clock timer c1 is started and

variable flag is set to TRUE (Lines 55-58).

3.3.6 I-DES Model and I-Diagnoser

3.3.7 Basics of Discrete Event Systems

This subsection presents the prerequisites of our proposed DES framework. Using the

knowledge and demonstration of this section, we later show that the framework can be

81

3.3. Proposed Rank Attacker Identification Scheme

Figure 3.7: DES model H

used to diagnose attacks in wireless sensor networks containing resource constrained nodes

[150, 146, 151].

I-DES Model

The I-DES model H is formally defined as a 6-tuple H = ⟨X,X0,Σ, V, C,ℑ⟩ [46, 152, 153,

154, 45]. Here, X is the set of states and is finite, X0 ⊆ X is the set of initial states, Σ is

the finite set of events, V is the finite set of model variables, C is the finite set of clock

variables and ℑ is the finite set of transitions. Elements of the set of model variables assume

values from their respective domain sets. Suppose if V = {v1, v2, . . . , vn} is the set of model

variables (for some finite value of n) where each element vi takes some values from its

82

3. Mitigation of RPL-based Attacks

Table 3.3: LIST OF SYMBOLS

Symbol Definition
H DES model
Σ Set of events of the DES model H
Σm Set of measurable events of the DES model H
Σum Set of unmeasurable events of the DES model H
V Set of model variables of the DES model H
ℑ Set of transitions of the DES model H
τ A transition τ ∈ ℑ
Y Set of states of the DES model H
Y0 Set of initial states of the DES model H
σ Event on which a transition is enabled
check(V) Condition(s) on a subset of model variables, V
assign(V) Assignment(s) on a subset of model variables, V
L(H) Set of all traces generated in H
Ai ith attacker
YN Set of normal states of the DES model H
YF Set of faulty states of the DES model H for fault type F
YAi Set of attacker states of the DES model H for attacker Ai

σAi Event corresponding to attack launched by attacker Ai

O Diagnoser of DES H
Z Set of states of the diagnoser, O, also called O-states
Z0 Set of initial nodes of the diagnoser, O
A Set of transitions of the diagnoser, O, also called O-transitions

domain set Domi. The domain of each of the clock variables is the set of non-negative reals,

R. A transition τ ∈ ℑ is defined as a 7-tuple ⟨x, x+, σ, ϕ(V),Φ(C), Reset(C), Assign(V)⟩,

where x, x+ are the source state and destination state of transition τ respectively. Due

to the occurrence of the event σ ∈ Σ, the transition τ is enabled. ϕ(V) is defined as a

boolean conjunction of equalities over some subset of the model variables, V , and which

needs to hold true overall for a transition to be taken. Φ(C) is an invariant condition over

some subset of the clock variables C. Reset(C) is a subset of clock variables to be reset

and Assign(V) is a subset of model variables along with an assignment of values from their

corresponding domains. Some of the fields in the tuple representing a transition maybe be

denoted by "-". For example, if "-" is used for ϕ(V) or Assign(V), then it would mean that

no condition needs to be met (i.e., the condition is implicitly TRUE) or NO assignment is

required respectively.

The I-DES modeling of the IoT-RPL network is demonstrated here. The principle of

detection and identification by the diagnoser is discussed. We later show that an attacker,

83

3.3. Proposed Rank Attacker Identification Scheme

if present, is correctly located in the DODAG.

Assumptions in the normal condition: After receiving an intimation from an agent

nj , a node is sent probe request packet along TPATHj . Subsequent probes are then sent

depending upon the measured RTT. During the normal condition, two cases can arise here.

(i) While awaiting a probe RSP packet, destination unreachable message is received. (ii)

After the rank update intimation is received, if a RSP packet is received after the delay

timeout period, for a probe packet sent via current DAO advertised downward route. Both

of these cases can occur due to a local repair operation and has been modeled as a normal

DES.

Assumptions in the attack condition: In the presence of an attacker advertising

illegitimate rank or version values, inconsistencies occur in the upward and downward routes.

As a result, two cases can arise here as well. (i) Version inconsistency is intimated by agent

node. (ii) A probe request packet sent to a child node of the attacker node along TPATHj

(considering the reporting agent node to be nj) responses with delay. Given an attack

behavior due to node A, the above cases are modeled as attacker A type I-DES model. Since

attacker can be located at multiple positions in the DODAG, there are multiple attacker

type models. The diagnoser is constructed from the I-DES models. In both of these cases,

since the diagnosability condition (Definition 6, Appendix B) is satisfied each time because

there are no uncertain states (Definition 11, Appendix C), an attacker location is identified.

The attack as well as the attacker type behavior are different from the normal or other

attacker type behavior, respectively.

We consider the model of a networked system consisting of resource constrained IoT

nodes arranged in a RPL DODAG. The notations used are listed in Table 3.3 and definitions

of the various DES terminologies can be seen in Appendix A. The I-DES model which has

been used to represent the Probe Request Response sequence during normal and rank or

version attack conditions is drawn using Figure 3.7. The various components of the I-DES

model H = ⟨X,X0,Γ, V, C,Σ⟩ for the Request Response sequence after an irregular DIO

intimation is received are discussed.

The state set X with initial set of states X0 (X0 ⊆ X) symbolise the control states of

the RQST_RSP_HANDLER() component of the IDS. The normal I-DES model states

and attacker type model states together constitute the state set X = {x1, x2, . . . , x8, x1′,

84

3. Mitigation of RPL-based Attacks

x2′, . . . , x9′, x1′′, x2′′, . . . , x9′′}. In our model, the set of model variables, V = {ips, ipd,

transid, j, flag, lastSend, rtd, ver, rch, {ips1, ips2, . . . , ipst}}. The model variables

correspond to program and data variables that are internal to the IDS. Certain program

variables are designated as the clock variables, C which are absolute values of clock timer

that can is SET and RESET using commands. In real-time applications, timing constraints

are expressed by satisfying the conditions on the clock variables. We use a single clock

variable in the set of clock variables, i.e., C = {c1}. Event set Σ contains the packet

communication events. In our model, the set of events, Σ = {DIOINMP, DIOvINMP,

URDES, PRQDP, PRSDP, PR_TO, PRSDP ∗, attack′, attack′′}. A transition is enabled

if the conditions are satisfied and is said to be taken on the occurrence of the associated

event. The transitions set Γ consists of transitions {τ0, τ1, . . . , τ13, τ1′, τ2′, . . . , τ14′, τ1′′,

τ2′′, . . . , τ14′′}.

Considering that there is one attack node among n nodes, i.e., {A1, A2, . . . , An}, in the

IoT network, the state set, X, can be partitioned into disjoint sets XN , XA1 , XA2 , . . . , XAn ,

where, XN represents the set of states belonging to the normal behavior of the network,

while states of the form XAi , 1 ≤ i ≤ n, i ∈ N , represent the behavior of the network if

Ai is the attack node. For simplicity, we model using 2 nodes, A1 and A2, among which

one is an attack node, hence X = XN ∪XA1 ∪XA2 . In Figure 3.7, the non-primed states

are the states when the system behaves normally while the single and double primed states

represent the system under attack by the nodes A1 and A2, respectively. The events of the

system is disjoint union of measurable events and unmeasurable events Σm and Σum.

I-DES behavior under normal circumstances

The behavior of H under normal circumstances is shown in Figure 3.7. The system, when

functioning normally, is represented using the states {x1, x2, . . . , x8} and the transitions

{τ0, τ1, . . . , τ13}. The initial state of X0 is x1. We next discuss the transitions in normal

condition as follows:

• τ0, the initial transition leads to the initial state x1 as shown in Figure 3.7. It

is assumed while modeling that the constant timeout values, ∆max and ∆a, have

been computed and then τ0 takes place. There is no explicit event that triggers τ0.

Occurrence of τ0 implies that the DES model is invoked when the timeout values

85

3.3. Proposed Rank Attacker Identification Scheme

Table 3.4: TRANSITIONS ℑ IN H CORRESPONDING TO NETWORK PACKET
FRAMES

Event(σ) Transition ϕ(V) Assign(V) ϕ(C) Reset(C)

DIOINMP ⟨x1, x2⟩,⟨x1′, x2′⟩,⟨x1′′, x2′′⟩ ipsj ≡ DIOINMPIPS - - -
ipd ≡ DIOINMPIPD - - -

DIOvINMP ⟨x1′, x9′⟩,⟨x1′′, x9′′⟩ ipsj ≡ DIOvINMPIPS - - -
ipd ≡ DIOvINMPIPD - - -

ver < DIOvINMPV ERNUM - - -
PRQDP ⟨x2, x3⟩,⟨x2′, x3′⟩,⟨x2′′, x3′′⟩ - ips← PRQDPIPS - -

⟨x4, x3⟩,⟨x4′, x3′⟩,⟨x4′′, x3′′⟩ - ipd← PRQDPIPD - -
- transid← PRQDPTRANSID - -
- TEST_FLAG← 0 - -
- lastSend← lastSend+ 1 - c1← 0

PRQDP ⟨x7, x8⟩,⟨x7′, x8′⟩,⟨x7′′, x8′′⟩ - ips← PRQDPIPS - -
- ipd← PRQDPIPD - -
- transid← PRQDPTRANSID - -
- TEST_FLAG← 0 - -
- flag ≡ FALSE - c1← 0

PRQDP ⟨x5, x6⟩,⟨x5′, x6′⟩,⟨x5′′, x6′′⟩ - ips← PRQDPIPS - -
- ipd← PRQDPIPD - -
- transid← PRQDPTRANSID - -
- flag ≡ TRUE - c1← 0

PRSDP ⟨x3, x2⟩,⟨x3′, x2′⟩,⟨x3′′, x2′′⟩ ips ≡ PRSDPIPD - - -
ipd ≡ PRSDPIPS TEST_FLAG← 1 - -

transid ≡ PRSDPTRANSID rch← PRSDPIPS c1 < ipd.RTT +∆a -
PR_TO ⟨x6, x5⟩,⟨x6′, x5′⟩,⟨x6′′, x5′′⟩ - - c1 ≥ ∆max -
PR_TO ⟨x3, x4⟩,⟨x3′, x4′⟩,⟨x3′′, x4′′⟩ lastSend < Mj TEST_FLAG← 1 c1 ≥ ∆max -
PR_TO ⟨x3, x5⟩,⟨x3′, x5′⟩,⟨x3′′, x5′′⟩ lastSend = Mj TEST_FLAG← 1 c1 ≥ ∆max -
PRSDP* ⟨x6, x7⟩,⟨x6′, x7′⟩,⟨x6′′, x7′′⟩ ips ≡ PRSDP ∗

IPD - - -
ipd ≡ PRSDP ∗

IPS - - -
transid ≡ PRSDP ∗

TRANSID - - -
rch! = NULL - - -
flag ≡ TRUE - c1 ≥ ipd.RTT +∆a -

PRSDP* ⟨x6, x1⟩ ips ≡ PRSDP ∗
IPD - - -

ipd ≡ PRSDP ∗
IPS - - -

transid ≡ PRSDP ∗
TRANSID - - -

rch = NULL - - -
flag ≡ TRUE - c1 ≥ ipd.RTT +∆a -

PRSDP* ⟨x3′, x9′⟩,⟨x3′′, x9′′⟩ ips ≡ PRSDP ∗
IPD - - -

⟨x8′, x9′⟩,⟨x8′′, x9′′⟩ ipd ≡ PRSDP ∗
IPS - - -

transid ≡ PRSDP ∗
TRANSID - - -

rch ≡ nip′ - - -
flag ≡ FALSE TEST_FLAG← 1 c1 ≥ ipd.RTT +∆a -

URDES ⟨x3, x1⟩,⟨x8, x1⟩ ips ≡ URDESIPD - - -
transid ≡ URDESTRANSID TEST_FLAG← 1 - -

attack’ ⟨x1, x1′⟩ - - - -

are both not NULL. Table 5.2 shows initial(τ0) = −−, i.e., there are no initial

states and final(τ0) = x1. σ = TRUE means that transition τ0 is always enabled

and x1 is automatically reached at the start of the model. check(V) = −− implies

that no condition over the model variables are checked and the condition is always

satisfiable for the transition. Value 1 is assigned to variable TEST_FLAG as implied

by Assign(V) = {TEST_FLAG ← 1}, which in turn means that the detection of

rank attacker can be started.

• τ1 : (x1→ x2) - DIOINMP : Since we model the rank attack scenario, the focus

remains on DIO updates across the DODAG. So when the model is started and the

current state is at x1, inconsistent DIO reports are looked into and is modeled using

the transition τ1. Here, initial(τ1) = x1 and final(τ1) = x2. σ = DIOINMP

implies that transition τ1 is enabled when RQST_RSP_HANDLER() generates

86

3. Mitigation of RPL-based Attacks

event DIOINMP (i.e., after an inconsistent rank update is reported from an agent).

check(V) = {ipsj = DIOINMPIPS , ipd = DIOINMPIPD} and Assign(V) = −−.

The parameters that validate a DIO packet intimation from an agent are source and

destination IP. It is checked if the parameters equal the value stored in the model

variables, ipsj and ipd, both of which are initialized to hold the IP address of agent

node nj and nR, respectively, at the model start.

• τ2 : (x2 → x3) - PRQDP : At state x2, the transition τ2 implies that a probe

request ICMPv6 packet is sent. σ = PRQDP implies that τ2 is enabled when the

RQST_RSP_HANDLER() generates the event PRQDP (i.e., after a RQST packet is

sent). check(V) = −− meaning that no condition need to be satisfied and Assign(V)

= {ips← PRQDPIPS , ipd← PRQDPIPD, transid← PRQDPTRANSID, TEST_

FLAG← 0, lastSend← lastSend+1}. The parameters that uniquely identify a probe

RQST packet are source IP, destination IP and a transaction identifier. Consequently,

all the parameters that correspond to the RQST packet that is sent are stored in

the model variables, ips, ipd and transid. TEST_FLAG is set to 0 such that no

new probe packets are to be sent until a decision on normal or rank attacker can

be ascertained. The model variable lastSend is incremented, keeping a note of the

number of probe packets that are sent. The destination IP of the probe request packet,

i.e., PRQDPIPD, is the first IP address that is looked up in the table TPATHj . The

clock variable c1 is RESET to make note of the transmission time of the sent RQST

packet.

• τ3 : (x3← x2) - PRSDP : At state x3, the transition τ3 implies that a probe RSP

packet has arrived from a node for some sent RQST packet. Here, initial(τ3) = x3

and final(τ3) = x2. σ = PRSDP corresponds to enabling transition τ3 after the

RQST_RSP_HANDLER() generates the event PRSDP implying that a probe RSP

packet has arrived and the condition on the model variables in check(V) are satisfied.

check(V) = {ips = PRSDPIPD, ipd = PRSDPIPS , transid = PRSDP TRANSID}.

The conditions over the model variables, ips, ipd and transid, ensure that the

RSP packet is a response to the probe request packet sent in τ2. Assign(V) =

{TEST_FLAG ← 1, rch ← PRSDPIPS}. TEST_FLAG is set to 1 meaning that

rank attacker detection can be started. The model variable rch holds the IP address

87

3.3. Proposed Rank Attacker Identification Scheme

of the latest node that responses to the probe packet before the delay timeout period

is over, which again is ensured if the condition over c1, Φ(c1) = {c1 < ipd.RTT +∆a},

is satisfied.

• τ4 : (x3 → x4) - PR_TO : At state x3, the transition τ4 corresponds to probe

timeout period being reached while waiting for a probe RSP packet for a probe

RQST packet sent. σ = PR_TO implies that the transition τ4 is enabled when the

RQST_RSP_HANDLER() generates the event PR_TO. check(V) = {lastSend <

M j}, Assign(V) = {TEST_FLAG← 1} and Φ(c1) = {c1 ≥ ∆max}. The condition

over the model variable lastSend ensures that the number of probes sent is lesser

than the size of TPATHj . TEST_FLAG is set to 1 meaning that rank attacker

detection can be started. The condition over c1 ensures that it exceeds the probe

timeout period.

• τ11 (x8 → x1) - URDES : At state x8, the transition τ11 implies that a destina-

tion unreachable message is received in response to a probe packet sent from nR

to the last reachable node along the current DAO advertised downward route. It

rules out the presence of any loop created. σ = URDES implies that the transi-

tion is enabled when the RQST_RSP_HANDLER() generates the event URDES.

check(V) = {ips = URDESIPD, transid = URDESTRANSID}. The condition check

on the model variables ips and transid are used to ensure that the destination un-

reachability packet is a reply to the probe request packet sent in τ10. Assign(V)

makes TEST_FLAG = 1 which means that the attack detection phase can restart,

i.e., RQST_RSP_HANDLER() can again receive inconsistent DIO version or rank

updates from agents.

I-DES behavior under attack circumstances

The I-DES model under rank or version attack condition launched by attacker A1 is shown

using the states in XA1 = {x1′, x2′, . . . , x9′} and transitions, {τ1′, τ2′, . . . , τ14′}. Similarly

for attacker type A2, states and transitions are represented using double prime notation,

XA2 = {x1′′, x2′′, . . . , x9′′} and transitions, {τ1′′, τ2′′, . . . , τ14′′} as shown in Figure

3.7. The DES model behavior under different attackers are mostly identical except a few

transitions that differentiate them which are discussed.

88

3. Mitigation of RPL-based Attacks

• At state x1, the system reaches an attacker type state x1′ or x1′′ following an

unmeasurable attack transition (Definition 1, Appendix A)τ0′ or τ0′′, respectively.

• τ11′ (x8′ → x9′) - PRSDP ∗ : At state x8′, the transition τ11′ corresponds to probe

RSP packet that is received beyond the maximum 1-hop delay, i.e., ipd.RTT + ∆a for

a sent probe request packet. σ = PRSDP ∗ implies that the transition is enabled when

the RQST_RSP_HANDLER() generates the event PRSDP ∗. check(V) = {ips =

PRSDP ∗IPD, ipd = PRSDP ∗IPS , transid = PRSDP ∗TRANSID, f lag = FALSE, rch =

nip′}. The conditions over the model variables, ips, ipd and transid, ensure that the

RSP packet is a response to the probe request packet sent in τ10′. The condition over

variable flag ensures that it is set to FALSE. The model variable rch holds the IP

address of the last node that replied to the probe packet before the delay timeout

period was over. τ11′ ensures that rch holds the IP address of attacker node A1. A

probe response beyond the delay period for probe packet meant for a node with IP

address stored in rch via the currently advertised DAO route R′ is a rank attack.

Assign(V) = {TEST_FLAG ← 1}. TEST_FLAG is set to 1 meaning that rank

attacker detection can be started. Φ(c1) = {c1 ≥ ipd.RTT + ∆a} means that c1

exceeds the delay timeout period.

• τ13′ (x1′ → x9′) - DIOvINMP : At state x1′, the transition τ13′ corresponds

to the receipt of DIO version inconsistent intimation from an agent leaf node. σ =

DIOvINMP implies that the transition is enabled when the RQST_RSP_HANDLER()

generates the event DIOvINMP . check(V) = {ver < DIOvINMPV ERNUM ,

ipsj = DIOvINMPIPS , ipd = DIOvINMPIPD} and Assign(V) = −−. The

parameters that validate a DIO packet intimation from an agent are source and

destination IP. It is checked if the parameters equal the value stored in the model

variables, ipsj and ipd, both of which are initialized to hold the IP address of agent

node nj and nR, respectively, at the model start. The model variable ver stores the

latest version number advertised. The condition over ver ensures that it is lesser than

the DIO version number reported by the source agent node. It may be noted that a

DIO broadcast in the DODAG with a version number higher than already advertised

by the DODAG root is a version number attack.

89

3.3. Proposed Rank Attacker Identification Scheme

Figure 3.8: Diagnoser O for DES model H

I-Diagnoser

A key property relating to fault diagnosis in I-DES, I-diagnosability [44, 45], is discussed here.

I-DES Diagnosability is a property related to event diagnosis where the earlier occurrence

of certain events (faults) of interest are diagnosed depending on the occurrence of indicator

transitions (Definition 13, Appendix C). An I-diagnoser, constructed from I-DES models,

tracks the system behavior and gives a decision on the diagnosis of monitored events. Details

of the diagnoser construction procedure and definitions pertaining to diagnosability are

highlighted in Appendix B. Now, a fault is I-diagnosable in finite time, if the I-diagnosability

condition is met (Fi-I-Diagnosability property is satisfied). Since fault occurrence and attack

events exhibit identical deviations from the normal behaviour and in both scenarios they are

unmeasurable, taking place without the knowledge of the system administrator, hence fault

diagnosis has been successfully applicable in attack detection and attack type identification

too. A lemma on the I-diagnosability property states that lack of attack Ai-indeterminate

cycles (Definition 14, Appendix C) having an embedded indicator transition guarantees

I-diagnosability. It means that the diagnoser is able to give a decision in finite time on the

occurrence of the event diagnosed. Satisfaction of the I-diagnosability property, considering

90

3. Mitigation of RPL-based Attacks

the limitations in measurement, ensures efficient attack detection as well as diagnosis of the

attacker type [150].

The I-DES diagnoser is basically an observer automaton. Given a measurable trace

executed on the model, the diagnoser gives an estimate of membership of the current system

state in the model among normal or any attacker type state from H. An alert is generated

when it can be ascertained that the current state belongs to an attacker type. It is also

notified in case it belongs to a set of attacker types.

Figure 4.7 shows the constructed diagnoser for our I-DES model H, considered in

Figure 3.7. The working mechanism of our diagnoser is summarised here by showing one or

more executions of sequences of measured events (transitions) as follows:

1. The initial state of the model H, x1, and states x1′ and x1′′ reachable via unmeasurable

attack transitions, τ0′ and τ0′′, form the initial state of the diagnoser, z1.

2. Let ℑz11 = {τ1, τ1′, τ1′′}, i.e., the outgoing transitions from model states {x1, x1′, x1′′} ∈

z1. All the transitions in ℑz11 are equivalent (Definition 2, Appendix A) and hence

cannot be further subdivided and hence justifies O-transition a1. The O-state corre-

sponding to the transition a1 is z2 = {x2, x2′, x2′′}.

3. Let ℑz12 = {τ13′, τ13′′}, i.e., the outgoing transitions from model states {x1′, x1′′} ∈

z1. All the transitions in ℑz12 are equivalent and hence cannot be partitioned further

and hence justifies O-transition a16. The O-state corresponding to the transition a16

is z9 = {x9′, x9′′}. Since, z9 consists exclusively of attacker type states only, it is an

attack-certain O-state.

4. Let ℑz2 = {τ2, τ2′, τ2′′}, i.e., the outgoing transitions from model states {x2, x2′, x2′′} ∈

z2. All of outgoing transitions in ℑz2 are measurement equivalent belonging to one

measurement equivalence class of transitions, hence cannot be further partitioned.

Therefore, it justifies O-transition a2. The O-state corresponding to the transition a2

is z3 = {x3, x3′, x3′′}. In a similar manner, the diagnoser states {z4, z5, z6, z7} can

be constructed using the corresponding O-transitions {a4, a6, a7, a9}. The principle

can be safely extended.

5. From the definition, we can compute the attackeri-certain O-states and the Normal-

certain O-states. In our example, when i = 1 the attacker1-certain O-state may be

91

3.3. Proposed Rank Attacker Identification Scheme

computed as z10 = {x9′} since it exclusively consists of states only belonging to

attacker 1. Similarly, attacker2-certain O-state may be computed as z11 = {x9′′} and

the normal-certain O-state can be computed as z12 = {x1}.

3.3.8 An example of rank attacker node identification using DES Diag-

noser

Suppose the following events occur in the DODAG chronologically due to packets received

or sent from the DODAG root: DIOINMP , PRQDP , PRSDP , PRQDP , PRSDP ,

PRQDP , PRSDP ∗.

The diagnoser starts from the O-state z1 and on occurrence of the DIOINMP event,

the diagnoser moves to O-state z2 via O-transition a1. The transition a1 might have

been taken by the diagnoser due to the occurrence of any of the H-transitions (Definition

4, Appendix A), τ1, τ1′ or τ1′′. Since the transitions τ1, τ1′ and τ1′′ are measurement

equivalent, it cannot be certainly said at this point if an attack has occurred. A probe

request data packet is sent due to which the event PRQDP occurs and the diagnoser moves

to O-state z3 via O-transition a2. Now, the response to the probe is received and the event

PRSDP passed to diagnoser and O-state z2 is reached via a3. The O-states are then

revisited due to the events PRQDP , PRSDP and PRQDP and the diagnoser reaches the

O-state z3. Eventually, when the PRSDP ∗ event occurs, suppose the diagnoser moves

from O-state z3 to O-state z10 = {x9′} via O-transition a14 due to the model transition

τ12′. Since the O-state z10 reached by the diagnoser is an Attacker1-certain O-state, it is

ascertained that the system is under attack condition due to attacker node 1. Moreover,

since there are no Ai-indeterminate cycles [46, 45], along all paths of the DES diagnoser, an

unique malicious node i, when present, can be identified correctly. On each such occasion

when the diagnoser reaches an Attackeri-certain state due to an event trace, an alert is

generated.

3.3.9 Correctness and Completeness

DES modeling aids in formalizing a system to check correctness and completeness [44].

We demonstrate correctness and completeness of our proposed IDS here, by taking into

consideration all possible cases of rank attack. For each case considered, we show that

92

3. Mitigation of RPL-based Attacks

nR

B

C

D

E

n2

B'

nR

B

C

D

E

n2

C'

B'

nR

B

C

D

E

n2

B'

nR

C

D

E

n2

C'

B'
B

nR

B

C

D

E

n2

B'

nR

C

D

E

n2

C'

B'
B

nR

B

C

D

E

n2

B'

nR

C

D

E

n2

C'

B'
B

(c) (d) (e) (f)

(g) (h) (i) (j)

(a) (b)

nR

B

C

D

E

n2

nR

B

C

D

E

n2

node down local repair

link down

local repair

attack

attack

Figure 3.9: Normal and attack configurations

attacker node is correctly identified. We use the DODAG instance shown in Figure 4.3 for

our proof, where nR is the 6BR root and the set of agents T = {n1, n2, n3, n4}. B and C

are the two suspected rank attack nodes and can be related to nodes A1 and A2 used in

our I-DES model. Since there are no Ai-indeterminate cycles in the diagnoser O, therefore

the I-diagnosability condition is satisfied. This means that location of an attacker Ai in

the DODAG, having launched a rank or version attack, is always diagnosable. We show

using analysis that B or C is correctly identified as attack node when the corresponding

attacker-certain state is reached in the diagnoser.

We now prove the completeness by justifying why all attack cases can be detected from

93

3.3. Proposed Rank Attacker Identification Scheme

the traces in H. An irregular increased rank advertisement can be classified as a normal

network condition if a local repair operation is undertaken, otherwise can be classified as an

attack. As shown in Figure 3.9(a), we assume that nodes C and D undertake local repair

operations due to the parent node being down, or link with the parent goes off or as part

of loop avoidance. On the other hand, as shown in Figure 3.9(b), an attack might have

been launched by node B or C. Though, the effects of attack mimics the normal scenario,

however, there lies unique inconsistencies in the resulting topologies which can be made out

from the probe response characteristics of nodes. We discuss the normal cases here first.

Case I: Node C undertakes local repair due to parent node B being down.

As shown in Figure 3.9(c) and 3.9(d), node C chooses alternate parent node B′ for

upward routing. Depending on the newly advertised rank, a successor node may conform

to the update by not changing its preferred parent or may choose a better route instead.

It may be noted that since B is down, any upward or downward path between the pairs

(nR, B) and (B,C) cease to exist. Our proposed procedure utilises the above facts. Firstly,

n2 reports the DIO update to nR. On receipt of such intimation, the diagnoser moves from

state z1 to z2. Now, a probe RQST packet PRQDP is sent to node B via stored downward

route TPATH2 while the diagnoser reaches state z3. Since no response packets are received,

event PR_TO is generated and the diagnoser consequently reaches state z4. Next, a probe

request packet PRQDP is sent to C via TPATH2 with the diagnoser reaching state z3.

Again, no RSP packet is received before ∆max since the request packet itself is not delivered

via B. This behavior is repeated for the subsequent probe request packets sent to D and E

with the diagnoser reaching state z4. Now n2 is sent the probe request packet and ∆max is

again exceeded while waiting for a response. The diagnoser reaches state z5 this time, since

all the nodes in TPATH2 are probed. Now, a probe packet is sent to the first unreachable

node via a currently advertised downward path. Since B is down, no routing information is

updated for node B. Since C had chosen a path via B′, a downward path from the root

exists. On a request packet PRQDP being sent to C via B′, the diagnoser reaches z6. As

route through B′ is longer, so delay is incurred while receiving the response. As a result, the

delay timeout is exceeded. Consequently the diagnoser moves to state z12, since no node

was reachable without delay prior to C which is a normal-certain O-state. So, a normal

condition of local repair in the DODAG is correctly identified.

94

3. Mitigation of RPL-based Attacks

Case II: Node C undertakes local repair due to link (B,C) going down.

As in the situation discussed in Case I, the sequences of events are similar, except the

fact that response from node B arrives before RTT (B)+∆a. So, when the diagnoser moves

to state z2, the model variable rch is set. Therefore, at state z6, when a delay timeout

occurs, the diagnoser reaches state z7 instead of z1. A probe request packet is then sent to

node B via node C along the current DAO advertised route. The diagnoser accordingly

moves to state z8. A destination unreachable message is then received by nR, and the

diagnoser moves to normal-certain O-state z12 and it is ascertained that situation is normal,

since a local repair operation was initiated as shown in Figure 3.9(e) and 3.9(f).

An attack launched by an attacker can be of the two following types: (i) The attacker

illegitimately chooses a parent node that has higher rank, but does not lie in TPATH2 (ii)

the attacker illegitimately chooses a parent node that has higher rank, and is a successor

node in TPATH2. Type (i) is discussed as case III and type (ii) is discussed as Case IV.

Case III: Node C undertakes local repair due to loop detection while forwarding to B.

While forwarding packet upwards, suppose C detects a loop and initiates a local repair

while forwarding through alternate parent node B′. Now, node B might be a direct attacker

that chooses a successor node as its parent, fueling a loop creation. In that case, B must be

a node in the subtree at C. As in the situation discussed in the normal scenario, B and

C are probed. B responds before delay timeout occurs while C is unreachable. All the

nodes successor to C are also unreachable. Consequently, the diagnoser node reaches state

z5 after a probe timeout occurs while a probe packet is sent to the last node n2. Now, a

delay timeout occurs when a probe packet is sent to C via the current downward route. The

diagnoser reaches z8 following the event PRQDP . The only difference arises when node

B is sent a RQST packet via B, and a delayed response is received. The event PRSDP ∗

is generated and the diagnoser reaches state z10 depending on the value of the variable

rch, which is the IP address of B, the last node that replies without delay. It is therefore

ascertained that B is an attack node here since it lies in the subtree of node C. As shown in

Figure 3.9(g) and 3.9(h), the red line indicates that the attacker has chosen E as its parent.

If a URDES packet is received, the diagnoser again moves to normal-certain O-state z12,

which is the case shown using the green line indicating the choice of B.

Case IV: Node C is an attack node that does not advertise DAO

95

3.3. Proposed Rank Attacker Identification Scheme

In this case, C chooses a different parent in spite of an existing better parent for upward

route. This situation is shown using the Figures 3.9(i) and 3.9(j). While probing nodes in

TPATH2, nodes B and C, both reply to the probe packets and the diagnoser reaches state

z3 when a PRQDP packet is sent to D. Now, if a delay timeout occurs while awaiting the

response, the diagnoser reaches state z11 depending on the value of the variable rch which

holds the IP address of C. Consequently, it can be ascertained that the attacker node is C

and the diagnoser correctly detects the attack since z11 is an A2-certain node.

So, all the possible cases of attack by specific attacker nodes are analyzed. The I-

diagnoser correctly reports the network condition by identifying the corresponding attacker

type states, for each case.

3.3.10 Overhead analysis

The extra communication overhead is added in our detection scheme due to probe requests

and generated responses. The overhead is minimum when only 2 probe requests are sufficient

to identify the malicious node. Such a scenario occurs if a probe request packet is sent to

a node which responses in time and another probe packet sent subsequently to the child

of this node is acknowledged beyond the admissible delay. We now discuss the scenario

when maximum overhead is incurred in our solution. Suppose probe request packets are

sent sequentially to nodes in TPATHj . Now, the node with the lowest rank responses

to the probe request in time. For, the subsequent probe requests sent, responses are not

generated. Based on the DAO messages received after the IDS is setup, nodes with missing

acknowledgements are sent probe requests through alternate routes. Only the node farthest

from the root responses after an admissible delay. Hence, assuming that the height of the

tree is equal to the number of nodes in the RPL, n, then a total of (1+2(n− 2)+1) ≈ O(n)

probe requests will be required here (1 for node with lowest rank, 2(n− 2) for subsequent

(n− 2) nodes that are probed twice and 1 for confirmation). Considering a balanced tree of

n nodes, depth = logk n, for a branching factor k. In such cases, the number of probes that

will be required in the worst case is 2 log n ≈ O(log n).

96

3. Mitigation of RPL-based Attacks

3.4 Experiments, results, and discussion

Three experiments are executed in Contiki Cooja [155] and one in a real testbed at FIT

IoT-LAB [156]. Cooja is a network simulator explicitly developed to cater for IoT networks

while the simulator builds on C base libraries of sensors and RFID chips, the FIT IoT-LAB

is an open testbed and comprises of 117 mobile robots and 2728 low-power sensor nodes

that are made available for conducting experiments in the heterogeneous environment (e.g.,

standardized protocol, OS, topologies, and hardware). Having unique hardware and node

capabilities, interconnected locations are installed across France in FIT IoT-LAB and made

available for experiments via a web portal. We used three different types of topology, as

shown in Figure 4.9. In topology 1, the IoT nodes are distributed very densely, while

a sparse distribution is used in topology 2. In topology 3, nodes are distributed in a

mixed fashion. Furthermore, the hop count is more in topology 2 as compared to topology

1. We consider a OF0 implementation with hop count (HC) metric. The simulation or

experimental parameters of Contiki Cooja and FIT IoT-LAB are presented in Table 3.5.

To examine the performance of our proposed solution, three scenarios are designed as part

of the experimental setup, namely, the non-rank attack scenario, increased rank attack

scenario, and the increased rank attack scenario with the proposed solution, comprehensive

analysis of which are demonstrated below.

(a) Topology 1 (b) Topology 2

(c) Topology 3

nR nR

nR

Figure 3.10: Topology considered for testbed and simulation experiments

97

3.4. Experiments, results, and discussion

Table 3.5: Contiki Cooja and FIT IoT-LAB experimental parameters

Parameter name Value
Operating system Contiki 3.0, Contiki 4.5

Simulator Cooja
Testbed FIT IoT-LAB, Grenoble

Network size 8, 16, 32, 64 nodes
Radio Environment UDGM

Node Type Tmote Sky , IoT-Lab A8
Routing Protocol RPL

MAC/adaptation layer ContikiMAC/6LoWPAN
Transmitter output power (dBm) 0 to -25

Receiver sensitivity (dBm) -94
Radio frequency 2.4 GHz
Attack Modeled Rank and version number attack

Simulation Duration Variable

3.4.1 Experiment 1: Non-rank attack scenario

All the external and internal nodes demand the IoT services (i.e., temperature and humidity)

using the Sky-Websense server. The experiment has been executed on 8, 16, 32, and 64

nodes. The flow of IoT network packets and their behavioural changes are noted. Figure

3.11a shows an RPL DODAG with 16 nodes. The node having Node ID 65 is the 6BR root

running our IDS. Nodes with IDs 16, 13, 30, 52 and 62 are the 5 agents deployed as leaves and

behave like regular nodes. Wireshark and power trace tool are used during simulations for

network traffic analysis. In the testbed setup, we have used A8-type nodes utilizing various

topologies with Grenoble areas. A8 is a TI SITARA AM3505 (Arm Cortex A8) combined

with STM32 microcontroller and a radio interface. It is one of the powerful IoT-LAB node

which allows running RIOT, Contiki, and FreeRTOS. The adopted parameters during the

testbed experiments are specified in Table 3.5. Figure 3.11a shows the DODAG topology in

a non-attack scenario. Throughput, energy usage of the network, and the average power

consumption on a per-node basis with their respective run times are shown in Figures 3.12

(a) and (b), analysed using 64 nodes in Contiki Cooja and FIT IoT-LAB, respectively. Our

analysis shows average throughput within 86.45% to 94.89%, average network energy usage

ranging from 27854 mJ to 33648 mJ, and average power consumption lying within 1.2 mW

to 1.46 mW in this scenario. The values are moderately good because during the non-rank

attack scenarios, RPL control messages, Objective Function (OF), and Rank computation

98

3. Mitigation of RPL-based Attacks

module are executed correctly with the required number of RPL control messages.

Table 3.6: Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosystem
(During attack and after solution implementation in Contiki Cooja)

IoT Scenario Energy (mJ) Node Power (mW) Throughput (Kbps) Packet Delivery Ratio (%)
During
attack

8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N
86615 10216 14425 17098 0.490 60.52 1.351 1.692 0.573 0.596 0.574 0.556 89.17 88.63 86.69 84.61

After solution
implementation

8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N
8261.4 8898.6 12129.5 16229.5 0.31 0.49 0.92 1.36 0.662 0.661 0.657 0.654 98.76 98.65 98.42 98.34

Table 3.7: Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosystem
(During attack and after the solution implementation in FIT IoT-Lab)

IoT Scenario Energy (mJ) Node Power (mW) Throughput (Kbps) Packet Delivery Ratio (%)
During
attack

8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N
9527.5 12259.2 17454.3 20176.6 0.59 0.74 1.54 1.81 0.463 0.504 0.487 0.478 80.31 78.11 73.12 73.92

After solution
implementation

8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N 8N 16N 32N 64N
7269.7 7919.2 10552.2 13307.8 0.27 0.49 0.83 1.19 0.559 0.543 0.572 0.552 91.58 90.88 88.86 87.12

29

54

19

60

52 62

65

7

59
9

5033

16
30

43

13

(a) Without Malicious node

29

54

19

60

52 62

65

7
49

9

50
16

30

43

13
64

(b) With Malicious node

Figure 3.11: DODAG of the IoT ecosystem

3.4.2 Experiment 2: Increased rank and version number attack scenario

An increased rank attack is performed with 8, 16, 32, and 64 IoT nodes. The attack nodes,

incorporated during our experiments, generate malicious RPL control messages and create

falsified non-optimal routes. The IoT network behavioural changes are examined with

different malicious nodes while varying node density. Figure 3.11b shows IDS node at root

with ID 65 and the node ID 64 is the malicious node. Among the remaining nodes, nodes

with ID 30, 16, 43, 50, 52 and 62 are the agents deployed that perform sensing at the

leaf levels. Traffic generated from the attack is analysed using collect view modules for

analysis purposes in simulation. Consequently, we use Sysstat [157] and iperf tool [158]

for real testbed analysis. We additionally perceive the average power consumption per node,

99

3.4. Experiments, results, and discussion

200 400 600 800 1000
6.0k
8.0k

10.0k
12.0k
14.0k
16.0k
18.0k
20.0k
22.0k
24.0k

 Network Energy Usage (mJ)
 Throughput (Kbps)
 Node Power (mW)

Run Time (Sec.)

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) Contiki Cooja

200 400 600 800 1000
6.0k
8.0k

10.0k
12.0k
14.0k
16.0k
18.0k
20.0k
22.0k
24.0k

 Network Energy Usage (mJ)
 Throughput (Kbps)
 Node Power (mW)

Run Time (Sec.)

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) FIT-IoT-LAB

Figure 3.12: Average Energy, Throughput, Node Power over run time (nodes=64) (without
malicious node)

and the energy usage of the complete RPL DODAG. Figure 3.13 (a) exhibits a considerable

increase in the complete network’s average energy usage and power consumption per node,

i.e., 28.8% to 35.7% and 31.7% to 43.3%, respectively, in Contiki Cooja simulations. Figure

3.13 (b) shows similar outcomes in FIT IoT-LAB, i.e., 38.7% to 43.9% average energy

usage and 36.5% to 52.4% power consumption per node. In both, the throughput graph

can be seen to be going down significantly. The average throughput value is reduced and

ranges from 37.3% to 43.5% in the attack scenario, both in simulation and real testbed.

All experiments show huge network energy and node power consumption with reduced

throughput because of a massive number of RPL control messages, malicious OF for routing,

and unknown loop formations due to attack. During attack, the performance metrics that

significantly affect RPL performance are listed in Tables 3.6 and 3.7 for Contiki Cooja and

FIT IoT-Lab, respectively. The findings also demonstrate that a rise in the number of IoT

nodes results in a significant increase in the amount of malicious RPL control messages,

which consumes additional network energy due to node power and consumption. In addition,

network performance and packet delivery ratio is shown to suffer and produce inferior

outcomes.

3.4.3 Experiment 3: Attack scenario with proposed solution

Experiment 2 is executed with the proposed solution, both in simulation and real testbed.

The performance of our proposed solution is illustrated in Figure 3.14. Both during

simulation and in real testbed, we have considered 8, 16, 32, and 64 IoT nodes, while the

experiments are run for 1000 sec. We consider the values ∆max and ∆a to be 13 seconds

100

3. Mitigation of RPL-based Attacks

200 400 600 800 1000
10k
20k
30k
40k
50k
60k
70k
80k

 Network Energy Usage (mJ)
 Throughput (Kbps)
 Node power (mW)

Run time (Sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.5

1.0

1.5

2.0

2.5

(a) Contiki Cooja

200 400 600 800 1000
10k
20k
30k
40k
50k
60k
70k
80k

 Network Energy Usage (mJ)
 Throughput (Kbps)
 Node power (mW)

Run time (Sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.5

1.0

1.5

2.0

2.5

(b) FIT IoT-Lab

Figure 3.13: Average Energy, Throughput, Node Power over run time (nodes=64) (with
malicious node)

200 400 600 800 1000
6.0k
8.0k

10.0k
12.0k
14.0k
16.0k
18.0k
20.0k
22.0k
24.0k

 Network Energy Usage (mJ)
 Throughput (Kbps)
 Node Power (mW)

Run Time (Sec.)

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) Contiki Cooja

200 400 600 800 1000
6.0k
8.0k

10.0k
12.0k
14.0k
16.0k
18.0k
20.0k
22.0k
24.0k

 Network Energy Usage (mJ)
 Throughput (Kbps)
 Node Power (mW)

Run Time (Sec.)

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) FIT-IoT-Lab

Figure 3.14: Average Energy, Throughput, Node Power over run time (nodes=64) (after
solution implementation)

(a) Node Power comparison across topologies (b) Total energy comparison across topologies

Figure 3.15: Power and Energy for 50 min network execution with proposed solution

(a) PDR comparison across topologies (b) Throughput comparison across topologies

Figure 3.16: PDR and Throughput for 50 min network execution with proposed solution

101

3.4. Experiments, results, and discussion

and 3.8 seconds, respectively (discussed in Section 4.3.2). The trickle timer is of 10 seconds

duration. Each experiment is conducted by varying the number of nodes, i.e., from 8 to

64 nodes and hop counts. The performance analysis of all the experiments is based on

various metrics like True Positive Rate (TPR) (also known as sensitivity), True Negative

Rate (TNR) (also known as specificity), Accuracy (ACC), Energy usage (EU), Throughput,

Packet delivery ratio (PDR), and scalability. The performance analysis metrics are defined

as follows:

• True Positive Rate (TPR) is the ratio of accurately identified attacker nodes to all of

the attacker nodes and is estimated by:

TPR =
p

p+ q
(3.1)

• True Negative Rate (TNR) is the ratio of wrongly identified genuine nodes to all of

the genuine nodes and is estimated by

TNR =
r

r + s
(3.2)

where, p=Attacker nodes identified accurately q=Attacker nodes not identified correctly

r=Genuine nodes identified accurately s=Genuine nodes not identified correctly.

• Accuracy (ACC): It calculates the overall rates of attacker nodes identification and

false alarms. This result signifies the success rate of the proposed approach; it is

estimated by

ACC =
p+ r

p+ q + r + s
(3.3)

• Energy Usage (EU): The amount of energy utilized for the proposed solution throughout

its execution.

During the execution of our proposed approach, we consider three topologies, as shown

in Figure 4.9. Figures 3.15(a) and 3.15(b) illustrate the node power consumption per node

and network energy consumption after our solution is implemented for 50 minutes across

various topologies and varying IoT nodes. The findings suggest that our proposed solution

has a higher average total energy usage and node power consumption per node in topology

102

3. Mitigation of RPL-based Attacks

1 in comparison with other topologies and standard RPL with rank and version number

attacks in place. When compared to the other possible topologies for this work, topology 2

has a lower average overall energy use and node power per node. The amount of energy

consumed is proportional to the density of the individual nodes and DODAG configuration.

Figures 3.16(a) and 3.16(b) compare the proposed work’s packet delivery ratio and

throughput across three topologies with varying IoT nodes. As per the results, our proposed

security approach has the lowest throughput (0.652 Kbps) and packet delivery ratio (98.4%) in

topology 1 as compared to others. The performance of the suggested technique demonstrates

promise in topologies 2 and 3, respectively. Topologies 2 and 3 have throughput of 0.664

Kbps, and 0.653 Kbps and packet delivery ratios of 98.55%, and 98.38%, respectively.

Topology 1 has lower results than RPL with rank and version attacks due to packet loss

and retransmission.

Figures 3.14(a) and 3.14(b) show the performance analysis of our proposed solution

during simulation and in real testbed, respectively. A reduction in network energy usage and

node power by 24.9% to 33.6% and 22.6% to 41%, respectively, can be noted. Throughput

graph can be seen to significantly progressing upwards. The average throughput value was

improved by 32.9% to 36.7% on the implementation of our solution in the IoT ecosystem.

Tables 3.6 and 3.7 present the performance analysis during the recursive execution of our

proposed solution across the various possible topologies involving the attack node. Based on

the outcome, it can be noticed that different topologies take an unique amount of network

energy and node power; it also varies with the number of nodes. It can be further observed

that our solution requires minimum amount of network energy and node power. This is not

only because we use only one centralized IDS node in our approach, but also because rank

and version attacks are detected and identified accurately in lesser time.

3.4.4 Comparison with the existing works

This subsection presents the comparative analysis of the proposed rank and version number

attack detection approach with state-of-the-art solutions. Experiments are fairly repeated

multiple times to create tight confidence intervals. In general, we compare our real-time

testbed results obtained across the different topologies to the simulation results. We observe

that both executions provide reliable results (approximately 10% - 30% over/under estimated

103

3.4. Experiments, results, and discussion

experimental results). A comparison of our scheme is shown through Table 4.7 and graphs

provided in Figures 3.17, 3.18, 3.19, 3.20 and 3.21. To measure the performance metrics,

we use collect view modules, Sysstat, and iperf tool. Ten different performance

metrics: Energy Usage (EU), Node Power, Throughput (THP), PDR, Control Message

Overhead (CONMO), TPR, TNR, ACC, RAD for rank attack detection accuracy, VNAD

for version number attack detection accuracy, RAI for rank attack node identification

accuracy) and Scalability (SCAL) are considered. State-of-the-art methods [99, 159, 160]

consume enormous energy, node power, and control message overhead. Hence they are not

as suitable for a constrained IoT ecosystem. Figure 3.18 shows that our proposed approach

takes 13759mJ, 12962mJ, and 14872mJ total energy with the 3 respective topologies. The

state-of-the-art methods [161, 139, 97, 99, 38, 162, 160] consume more node power, energy,

and have higher control message overhead, as shown in Figures 3.17, 3.18, and Table 4.7,

respectively.

Basically, for comparison, we judiciously consider metrics that are maximum common

with the state-of-the-art schemes. Further we consider those approaches that have maximum

reported QoS metrics. We consider the derived parameters from the reported parameters,

wherever required. Though DETONAR [145] achieves full accuracy in attack node iden-

tification, but achieves 80% in case of version attacks. Version attack detection accuracy

using our proposed scheme fares better than DETONAR. Also, our approach is scalable

while DETONAR is applicable to small networks only. The packet overhead (CONMO) in

DETONAR is also significantly higher than our proposed scheme. InDReS [130] considers

the QoS metrics but does not report the false positives, false negatives or accuracy of their

algorithmic procedure. The results show that our proposed approach achieves comparatively

better results overall with performance parameters, as shown in Figures 3.19, 3.20, and 3.21.

The accuracy of our proposed approach is calculated based on TPR and TNR values shown

in Figure 3.21, while a comparison of results is shown in Table 4.7.

3.4.5 Discussion

In our scheme, attack is detected and the attacker, that launches the attack, is identified

at the same time. Accurate identification of node implies that attack is also detected

accurately. Conversely, attack is detected implies some node is identified as an attack node.

104

3. Mitigation of RPL-based Attacks

Figure 3.17: Node Power comparison with related works

Figure 3.18: Energy comparison with related works

Figure 3.19: PDR comparison with related works

105

3.4. Experiments, results, and discussion

Figure 3.20: Throughput comparison with related works

Figure 3.21: TPR and TNR comparison with related works

Table 3.8: Comparison of the proposed scheme with the closely related works

References
S○/T○
EN

EU
(mJ)

POWCPN
(mW) THP PDR

(%)
CONMO
(in Pkt.)

TPR
(%)

TNR
(%)

ACC (%) RAI ACC
(%) SCALRAD VNAD

A. Le et al. (2011) [161] S○ 11479 1.36 N/A N/A N/A 93.50 94.41 94.32 N/A 94.32 ✗

S. Usman et al. (2018) [139] S○ 15479 1.48 N/A N/A N/A 94.75 94.70 95.20 N/A 95.20 ✗

M. Nikravan et al. (2018) [97] N/A 13938 1.89 0.667 N/A N/A N/A N/A 90.11 90.11 N/A ✓

D. Airehrour et al. (2019) [99] T○ 22580 1.52 0.738 93.97 5045 94.70 95.62 94.89 N/A N/A ✗

ZA. Almusaylim et al. (2020) [163] S○ 18953 1.69 0.717 93.45 1095 94.46 95.12 94.82 98.30 94.82 ✓

S. Sharma et al. (2020) [162] S○ 13890 1.57 0.694 94.13 1012 N/A N/A N/A N/A N/A ✓

R. Sahay et al. (2020) [164] S○ 17385 N/A N/A N/A 2068 93.3 94.12 94.50 N/A 94.50 ✗

S. Nayak et al. (2021) [159] S○, T○ N/A N/A N/A N/A N/A 93.45 93.60 93.58 70.4 N/A ✗

S. Ibrahim et al. (2022) [160] S○ 18839 1.62 0.718 97.98 950 N/A N/A 99.01 99.00 N/A ✓

A. Mayzaud et al. (2017) [144] S○ N/A N/A N/A N/A N/A 97.28 N/A 98.53 98.53 N/A ✓

A. Zeeshan et. al (2017)[143] S○ N/A N/A N/A N/A N/A 95.00 89.00 N/A 92.00 N/A ✓

A. Andrea et. al (2021) [145] T○ N/A N/A N/A N/A 15430 N/A N/A 100 80.00 100 ✗

M. Surendar et. al (2016) [130] S○ 12492 N/A 0.949 95.41 750 N/A N/A N/A N/A N/A ✓

Proposed solution S○, T○ 14872 1.41 0.743 99.34 680 98.43 99.73 99.1 99.1 99.1 ✓

S○: Simulation, T○: Testbed, POWCPN: POWer Consumption Per Node, THP: Throughput, PDR: Packet delivery ratio, CONMO: CONtrol Message Overhead
SCAL: Scalability, ACC: Accuracy, RAD: Rank Attack detection, VAD: Version Attack detection, RAI: Rank attack Identification, N/A: Not available

106

3. Mitigation of RPL-based Attacks

A detection accuracy of 99.1% for our proposed solution, as shown in Table 4.7, means

identification accuracy is also 99%. Our proposed design is inspired from intrusion detection

using probing techniques that have been successfully applied to wired and wireless network

security solutions [165, 166, 48]. The applicability of our approach in the IoT context has

been shown through 6LoWPAN fragmentation [151] and CoAP request/response spoofing

attack detection [146].

ICMPv6 probe request packets are sent with random payload. But, the receipt of

an acknowledgement and the time of receipt of the acknowledgement only matter. Since

the payload information is not of our interest, alteration of packets does not affect the

detection procedure. A probe response transition is taken only if it is received from the

same node to whom the probe was sent. Hence, spoofing will not help the attack motive.

Probe packets may be communicated concurrently via different downward paths. To avoid

self-identification, the attack node reports truly. Communication lags due to the underlying

RPL-IoT network conditions will uniformly affect every node along a path in the DODAG.

Response delay is an attack characteristic in our detection procedure. If a malicious node

delays a packet, then it is identified more easily. If an attack node holds the packet for

indefinitely long and does not forward it, then such a case is also an attack behavior. So

delay or not responding does not deter the detection process. Furthermore, a DIO multicast

simultaneously affects in route updation and inference of suspicious activity by multiple

leaf agents. Hence, due to multiple leaf agents present, if any agent misses reporting, it

does not hinder our identification mechanism. The case of malfunctioning leaf agents, if

compromised, is not explicitly dealt with in this chapter.

Studies in the literature have analyzed variants of rank attacks. In Le et.al [167], the

authors propose few variants. Their impact on the DODAG topology from the perspective

of end-to-end delay and packet delivery ratio is highlighted. Their work shows that there

exists unique threats to RPL that evade regular detection techniques. This is so because

such attacks do not consider changing the advertised rank value; rather, they create un-

optimized paths, silently. These types of attacks pose a different nature to the traditional

threats making it complex enough to be defended, for example, the blackhole attacks that

add delay to transmissions. They have specifically considered four types of rank attack

variations, namely, 1) Permanently and updates about the rank change to its neighbors, 2)

107

3.4. Experiments, results, and discussion

Non-permanently (flipping between its choices between normal and abnormal) and updates

about the rank change to its neighbors, 3) Permanently and does not update about the

rank change to its neighbors and 4) Non-permanently and does not update about the rank

change to its neighbors.

We show to detect version attacks apart from rank attack identification. As per

knowledge, this is the first-of-a-kind attempt to mitigate RPL routing attacks using finite

state automata based DES based IDS. State-of-the-art attacks that produce the same

consequences as the increased rank attacks, can be also detected and malicious nodes can

be uniquely located using our procedure, as it is. Attacks such as the worst parent attack,

neighbour attack, etc., that result in similar consequences as covered in our rank attack

procedure will also be detected in our scheme. Though we explicitly do not model these

attacks, yet a class of worst parent attack with update, i.e., the worst parent choice is passed

on to child nodes, falsely, is one of the attack cases that we consider. Hence, such an attack

will be detected. Also, a class of neighbour attacks where the advertised parent node is out

of range of the DIO recipient, and the attack results in a post-attack topology as dealt in our

scheme will also be detected. Further, cross-layer attacks that use increased rank attacks are

also detected using our scheme. RPL analysis on the packet exchange dynamics due to other

attacks is thereby necessary. Decreased rank attacks, sinkhole attacks and blackhole attacks

are also DIO specific attacks launched in a similar manner, i.e., a lower rank value is falsely

advertised in DIO to attract nodes. The effects of these attacks are analogous to increased

rank attack. DES based IDS can be extended to detect other attacks by adding relevant

states and transitions for control or data packet communication behavior in the monitored

RPL-IoT. As it is, decreased rank attack or sinkhole that are manifested towards increased

rank attack can also be detected using our scheme with minimum customisation, even

when combined with selective forwarding attack. This would require careful but minimum

modifications to be made to our algorithm and extending our model for detection. Other

forms of attacks, which directly map to an increased rank attack scenario, will also be

detected using our scheme with minor changes. Moreover, one advantage of using DES based

IDS is that false positives are minimal. A non-zero false positive in our experiments can be

related to reasons such as, packet loss if considered as a missing acknowledgement response

and network lags beyond the estimated values of ∆max and ∆a.The current solution can be

108

3. Mitigation of RPL-based Attacks

further improved with generation of optimized sequences of probes for more early detection

and also thereby reducing complexity. The placement of the agents can be improved such

that the overhead is further reduced.

3.5 Conclusion

A novel RPL rank attacker identification scheme that also detects version attack is presented.

Our proposed scheme is centralized and uses an intelligent probing technique and DES based

IDS. We augment traditional DES based IDS such that attacker type is also diagnosed.

Using our scheme location of attack node is identified accurately. Active probe packets

are used judiciously to capture a deviation of attack behavior from the normal behavior

which is normally lacking. A DES diagnoser serves as our IDS engine that generates an

alert when an attack node is identified. The correctness and completeness of our approach

is also proved.

The performance analysis of our proposed scheme in simulation and real testbed considers

both attack and non-attack behavior patterns, with a sufficiently large number of IoT

devices. The average energy usage and accuracy of our proposed approach are 14872mJ

and 99.1%, respectively. The observed results show our approach is energy-efficient with

lowest packet overhead than existing works. It is scalable, achieves minimum false positives,

and higher accuracy with lower detection time.

In the following chapter, we delve into IoT adaptation layer fragmentation attacks

which are also low overhead network-level attacks launched by an eavesdropping attacker

node. Buffer fragmentation and reassembly procedures are easily exploited since 6LoWPAN

lacks mechanisms to verify authenticity of the sender and the fragment ingenuity. Due to

such attacks, services of the receiver node are blocked as fresh fragments wait on its buffer

while the network performance as a whole is hindered. As opposed to the RPL attacks that

have network-wide effects, 6LoWPAN fragmentation attacks make nodes at 1-hop distance

vulnerable, exhausting memory and resources. Hence, centralised IDS schemes are not

suitable to deal with such attacks. We propose a 6LoWPAN fragmentation attack detection

and attacker identification scheme utilising decentralised I-DES based IDS and active

probing mechanism in the next chapter. Duplicate fragments with random payloads are used

on part of probes. Our proposed decentralised I-Diagnosability DES framework is adopted

109

3.5. Conclusion

and extended to identify an attack node, with local I-diagnosers acting independently. Our

proposed mechanism is successfully validated in simulation and on a testbed with varying

topologies and nodes. The results illustrate energy-efficiency, high accuracy, least false

positives and quicker response times compared to other schemes.

<<=8=;;

110

4
C h a p t e r

Mitigation of 6LoWPAN Fragmentation
Attacks

Recently, a significant portion in the network usage of Internet of Things (IoT) [5, 108, 109]

in healthcare to home automation, industrial control systems to agriculture and smart

cities, mostly employ 6LoWPAN, an IETF-standardized adaptation layer, for IPv6 based

communication [110]. With the surge in the number of resource constrained devices

constituting the IoT, the need for a huge address space as well as IP-connectivity over low

power and lossy networks (LLN), including Wireless Sensor Networks (WSN), are facilitated

using 6LoWPAN [111, 10]. Fragmentation is therefore essential at this layer, since IEEE

802.15.4 limits the frame size to 127 bytes and hence does not permit transmission of IPv6

packets with MTU 1280 bytes. Consequently, the adaptation layer is proposed to forward,

buffer and process the fragments of the transmitted packets.

Malicious nodes make use of the challenges due to the proposed implementation and

exploit the fragmentation and reassembly procedures to launch various Denial-of-Service

(DoS) attacks. Lack of mechanisms to verify authenticity of the sender and the fragment

helps mount spoofing attacks. A malicious entity that is overhearing a communication

requires just a mere fragment to illegitimately occupy the buffer of a resource constrained

node, or to disrupt the integrity of the packet by slipping in duplicate fragments. In both

the cases, since 6LoWPAN does not have means to verify fragment ingenuity, the buffer is

freed and the packet needs to be resent [110, 37, 34, 112]. The security aspect of availability

is at stake due to the trumped-up buffer reservation. The spurious occupancy also exhausts

huge memory and time, since the fragments need to be kept in the constrained memory of

the nodes till timeout. Moreover, the impact of the attack is unbound if the attacker drops

fragments and replaces them with fragments containing spoofed content, since 6LoWPAN

processes out-of-order fragments. Thus the services of the receiver node are blocked as fresh

fragments wait on its buffer while the network performance as a whole is hindered.

Approaches to secure 6LoWPAN from fragmentation attacks have been mostly cryptog-

raphy based [112, 113, 37], which are resource unfriendly. Since such attacks are launched by

replaying a fragment at pre-computed intervals, such approaches incur significant overhead.

Moreover, the proposed countermeasures to tackle IoT-6LoWPAN attacks have attempted

attack detection mostly. Also, buffer quarantine strategies that perform logical isolation only,

leaves ample opportunities for a malicious entity to launch fresh attacks. A node may be

isolated and not included in the packet forwarding path but may still start a communication

or launch an attack since it still has ability to send fragments. Furthermore, with the

advancements in adversarial machine learning techniques, complex attack characteristics

and distributed attacks are also severely threatening. Therefore, energy efficient schemes

that save resources of the constrained battery-powered low power devices are primarily

necessary. We investigate the fragment duplication attack from the topology perspective and

by analysing the possible attack space. To this regard, in this chapter an intrusion detection

scheme is presented that identifies a 6LoWPAN attacker node accurately, and is based on

the decentralized I-diagnosability framework of Discrete Event System (DES). Due to the

analogous behaviours posed between a system fault and a malfunctioning network node, DES

based IDSs are often chosen of late [150]. We also overcome the plausible issues that make

the current solutions unsuitable. We perform node elimination apart from identification

which is more powerful than mitigation based approaches because the network remains

secured from further attacks by the same malicious node. Broadly, our contributions in this

work can be summarised as follows:

• We propose a novel fragment duplication attacker identification scheme in 6LoWPAN.

Our scheme makes use of an intelligent active probing technique that helps create a

deviation of attack traffic and normal traffic [106]. Our proposed scheme is decentral-

ized that incorporates decision making capabilities distributed over the set of local

I-DES based IDSs each have local I-diagnosers performing independently and in a

parallel manner. An alert is generated to the system administrator when any of the

112

4. Mitigation of 6LoWPAN Fragmentation Attacks

local I-diagnosers reach a conclusion. Global diagnosis is ascertained when any local

diagnoser is successful [169].

• We extend the power of traditional I-DES based IDS with attack type modeling for

identification of malicious node.

• We perform node elimination which is more powerful than mitigation based approaches.

Kill switches are employed to kill a particular node when identified.

• We prove the correctness and completeness of our approach by enumerating all the

attack cases.

• The performance of our scheme is tested through simulations and real testbed. The

experimental results highlight the applicability of our approach. Results show our

approach is energy-efficient and has less response time. Our proposed solution has

minimum false positives and achieves more than 99.8% accuracy in identifying the

malicious nodes.

The rest of the chapter is organized as follows. Section II presents the preliminaries of

6LoWPAN. Section III presents the related work. We demonstrate our proposed scheme in

Section IV. Experimental results and performance analysis of our scheme are presented in

Section V. We conclude in Section VI.

4.1 Preliminaries

4.1.1 6LoWPAN Fragmentation mechanism

Owing to the limited path MTU size of the 802.15.4 links, 6LoWPAN needs to do fragmen-

tation of IPv6 packets. 6LoWPAN splits an IP packet into multiple fragments so as to fit in

a 802.15.4 MAC frame. In conventional IP fragmentation, all the fragments contain the

header information. 6LoWPAN provisions functionalities for fragmentation and reassembly

of IPv6 packets. In 6LoWPAN, each fragmented packet consists of fragment headers for

carrying information to facilitate in-place reassembly. Two different types of fragment

headers are defined, FRAG1, for the first fragment and FRAGN for all the subsequent

fragments. They consist of the following subfields: (1) Dispatch type or Dispatch value bit

113

4.1. Preliminaries

pattern (5 bits) is 11000 for the initial fragment (FRAG1) and 11100 for all subsequent

ones (FRAGNs). It helps differentiate FRAG1 from FRAGNs. (2) The datagram size (11

bits) encodes the size of the original IPv6 datagram, with header and payload. (3) The

datagram tag field of 16 bits is used to uniquely identify all fragments that belong to the

same IPv6 packet. The above discussed fields constitute FRAG1. The initial fragment

header is therefore 32 bits (or, 4 bytes). FRAGN contains an extra field, the datagram offset

(8 bits) to determine the relative position of the fragments in the IPv6 packet. This value is

incremented by 8 bytes for each fragment. This is crucial during reassembly to process out

of order fragment sequence. In conventional IP fragmentation, all the fragments contain the

header information, while in 6LoWPAN fragmentation only FRAG1 carries the compressed

IPv6 Header information. End-to-end routing information is therefore present in FRAG1

only. The compressed IPv6 header can range between 2 to 20 bytes depending on different

scenarios, while the IPv6 header is originally 40 bytes long. As shown in Figure 4.1, the

compressed IPv6 header is added to the first fragment of the packet [168].

Figure 4.1: Fragmentation Process Overview

4.1.2 Fragment Duplication Attack

Various IP fragmentation attacks have been long discussed in the literature. Analogously,

fragmentation attacks have been identified in 6LoWPAN and are further classified at

the design-level based on their attack procedure. Fragment duplication attacks belong

to a class of attacks that use duplicate fragments to deny a successful IPv6 datagram

transmission between two communicating pair of nodes. Suppose that a sender S wants to

communicate a datagram D to the receiver node R, and in the process, a fragment header,

114

4. Mitigation of 6LoWPAN Fragmentation Attacks

FRAG1(S,R, 5) ∈ D is sent to R. Independent on the routing scheme in use, the fragment

header, if acknowledged, contains the end-to-end routing information and ensures a buffer

reservation at R for the ensuing fragments from S. A malicious node A that is overhearing

this communication just needs a single fragment to carry out the attack. Considering that

the fragments belonging to D are n in number, i.e., FRAGN(S,R, i) ∈ D, 1 ≤ i ≤ n, A

need not disclose its identity and yet replay a fragment in D before the buffer reservation

period gets over at the reassembling node. This is possible because the spoofed fragment,

containing curated data, conforms to fragment header of packet D.

Buffer
Reservation

ACK (X)

Buffer
Deallocation

Buffer
Reservation

ACK (X)

Buffer
Deallocation

Fragment
Header (X)

Attacker Node

Target Node

Genuine
Sender Node

Fragment
Header (X)

6LoWPAN Event Time Slots

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Fragment
Header (X)

Timeout Period Timeout Period

Frag1 Frag2 Frag3

Frag1

Frag4 Frag5 Frag3 Frag1

Frag1

Frag4 Frag2 Frag5

Buffer
Reservation

ACK (X)

Buffer
Deallocation

Buffer
Reservation

ACK (X)

Buffer
Deallocation

Fragment
Header (X)

Fragment
Header (X)

Fragment
Header (X)

Timeout Period Timeout Period

Frag1Frag2 Frag3

Frag1

Frag4 Frag5 Frag3 Frag1

Frag1

Frag4 Frag2 Frag5

t12 t13 t14 t15 t16 t17 t18 t19

Attacker Node

Target Node

Genuine
Sender Node

Figure 4.2: Attack Scenario for Fragment Duplication Attack

Furthermore, 6LoWPAN layer has no way of divining if the fragment came from S, since

it lacks means to verify the authenticity of the sender. Moreover, the receiver buffer is not

able to ascertain as to which of the redundant fragment is the original. Confirming this would

require support from the upper layers, which it avoids and discards the packet. A malicious

node at an intermediate hop has heightened capabilities of launching more severe forms of the

attack. It can drop selective fragments and replace them with illegitimate ones such that the

receiver cannot determine originality of the fragments. Possible attack timelines are shown in

Figure 4.2. Here, the green dotted squares indicate dropped fragment while the red coloured

squares indicate a spoofed fragment from an attacker node. In a resource constrained

environment, application services can be fiercely hit due to a fragment duplication attack.

Compromised are node energy and resources that face chances of exhaustion. Moreover, all

secure connection setups are disrupted causing a DoS attack. Throughput of the network

goes significantly down and the network services are compromised, partially or totally.

115

4.2. Related Work

4.2 Related Work

Various schemes to protect the 6LoWPAN against fragmentation attacks have been suggested

in the literature. One of the very first study addressing this issue is proposed in [113]. The

authors present a security threat analysis from the point of view of IP fragmentation and

Replay attacks. The proposed protection mechanism makes use of Timestamp and Nonce

options to be added to packets at the adaptation layer. Fragmented packets between a

pair of nodes, if unidirectional, is added with Timestamp option whereas Nonce option

is added in case of bidirectional transfer. In the corresponding manner the newly formed

packet formats are redefined. The work does not report of measures to be taken if the fields

themselves may be spoofed as well to launch 6LoWPAN attacks.

A content chaining scheme is proposed in [112]. The scheme uses cryptographic

techniques to bind the packet content to the fragment header. The output of a cryptographic

hash function is appended to the end of the previous fragment in their scheme. The receiver

node in turn recomputes and verifies these hash values, which helps it to identify the

legitimate ones from the duplicate ones. However, since such attacks are launched by

replaying a fragment at pre-computed intervals, such approach incurs significant overhead.

Also, there is a lack of confidentiality in this scheme since encryption is not performed.

Moreover, processing of out-of-order fragments is challenging.

In SecuPAN [34], authors show to mitigate a wide range of fragmentation attacks

including the buffer reservation attack in 6LoWPAN. Spoofing attack mitigation is tackled

using cryptographic address generation scheme whereas they propose using a nonce field

in packet fragment header as a protection against replay attacks. Fragment fabrication

vulnerability is handled using Message Authentication Code (MAC) in their scheme.

Nikravan et. al [37] propose a scheme that uses per-fragment Offline-Online Signcryption

between communicating nodes to counter fragment duplication attack. The scheme is capable

of processing out of order fragments and is suitable for resource constrained environment

as they do not require point multiplication operation and certificate based verification of

public key for authentication. However, the scheme is computationally costly with a packet

overhead of almost 1.2 times the original packet. The scheme generates more fragments due

to an increased payload.

116

4. Mitigation of 6LoWPAN Fragmentation Attacks

4.3 Proposed Defense Scheme

In this section we demonstrate our defense scheme that wends off 6LoWPAN duplication

attack. I-DES based IDS was introduced in the previous chapter (see details in Section 3.3.1).

We start with an overview of the detection methodology using our proposed IDS scheme

here. We then discuss the employed techniques and algorithms to identify the attacker.

The construction of normal, attack models and DES diagnoser that are indispensable for

attacker identification are described next. Proof of correctness and completeness is presented

subsequently.

12 9 6 3

11 8 5 2

10 7 4 1

Root

IDS nodes

Figure 4.3: An example of 6LoWPAN deployment

4.3.1 Design Overview

The primary research challenges in the detection of fragment duplication attack are (i)

resource constrained nodes (ii) normal node cannot be distinguished from attack node

due to lack of sender authenticity verification in 6LoWPAN. To overcome the discussed

challenges, we propose a decentralized approach with a set of IDS Î distributed across

the monitored 6LoWPAN. Each of the IDS Ii ∈ Î work in a similar manner and perform

diagnosis independent of each other. Furthermore, we use intelligent probe datagram with

overlapping fragments. Active probing helps generate unique responses such that an attack

node can be differentiated from a normal node. A demo example of our IDS setup in an

arrangement of RPL-6LoWPAN nodes is shown in Figure 4.3. The normal network nodes

are coloured yellow while deployed IDS nodes are designated in blue. The node numbered 1

is the RPL root node. We show 3 IDS nodes for the sake of understanding only, while in

117

4.3. Proposed Defense Scheme

actual setup the arrangement may vary. The frame notations we use henceforth are listed

in Table 4.1.

Table 4.1: FRAME NOTATIONS

Notation Meaning
FRGHD Datagram Header Fragment FRAG1
BRNACK Buffer Reservation No Acknowledgement Packet
BRACK Buffer Reservation Acknowledgement Packet
FRG Datagram Fragment FRAGN
PRDACK Packet Receipt Acknowledgement Packet
DPNACK Duplicate Fragment No ACK Packet
RTO Retransmission Timeout Event

Figure 4.4: IDS architecture

Components in an IDS Ii: The block diagram of proposed IDS with the basic

components is shown in Figure 4.4 and are discussed here as follows:

• FRAG_RCV_HANDLER(): It monitors communication data packets from IDS

nodes and extracts information such as IP address, MAC address and datagram tags.

It reports a source IDS node if the packets contain overlapping fragments. The working

procedure of this handler is described in Section 5.2.4.

118

4. Mitigation of 6LoWPAN Fragmentation Attacks

• FRAG_SND_HANDLER(): Its prime responsibility is to extract vital informa-

tion such as source IP address, MAC address and datagram tags from 6LoWPAN pack-

ets. It generates events such as FRGHD, BRACK, BRNACK, FRG, DPNACK,

PRDACK and RTO. The generated events are passed to the DES diagnoser com-

ponent. The working procedure of this handler is described in Sections 5.2.4 and

5.2.5.

• Local I-DES Diagnoser: This component diganoses the attacker node and is

implemented as a software module. Given the knowledge of the I-DES model specifi-

cations pertaining to normal and attack type conditions, the local I-diagnoser can

be constructed. FRAG_SND_HANDLER() passes information regarding network

events to the diagnoser. Based on the event parameters that are shared, the diagnoser

generates an alert on attack detection or identification of malicious nodes. The usage

and construction of the diagnoser is described in Section 5.2.6.

Figure 4.5: Flow of DES based IDS scheme

Attack detection and identification is sequentially carried out in phases. They are

namely, setup, inference, active probing and diagnosis. The working methodology

of our proposed scheme is demonstrated next. A schematic of the detection timeline is

119

4.3. Proposed Defense Scheme

shown using Figure 4.5. Prior to attack, network traffic is monitored and data is logged to

setup the IDS as shown in the initial module. During this setup phase, the IDS perform

all the normal functionalities of a 6LoWPAN node besides analysis. Tables used to store

IDS and neighbour node related information are maintained and updated throughout. A

fragment duplication attack is inferred in our scheme by an IDS source if the following

two situations arise: (i) a packet needs to be retransmitted beyond a predetermined limit

(ii) an intermediate or receiver IDS detects duplicate fragments during reassembly. In the

latter scenario, the FRAG_RCV _HANDLER() component of the IDS intimates about

the duplication to the source IDS as obfuscated application data at random delay, to prevent

an attacker or bot from profiling. The source IDS therefore conducts active probing if any

of the above situations are recorded. The FRAG_SND_HANDLER() on behalf of the

source IDS sends fabricated IPv6 probe datagrams with random payload. Its diagnoser

component (IDS engine) then validates the responses against I-DES modeled normal and

attack behaviour specifications. An alert is generated to the system administrator if an

attack behaviour is detected. This constitutes the diagnosis phase. Basically, a response

to a probe datagram helps differentiate attack behaviour from the normal. Essentially, a

malicious node behaviour is distinguishable if the crafted datagram is forwarded, as opposed

to the fact that the datagram must be discarded in normal conditions. The phases in our

detection procedure are now sequentially demonstrated.

4.3.2 Setup

This phase consists of administrator intervention for parameter setup. Traffic is monitored,

relevant data is collected and parameters are measured for Network Traffic Analysis (NTA)

purposes. At each IDS node, tables and variables corresponding to IDS as well as neighbour

nodes are maintained and updated in this phase. An IDS node Ii uses table TIDSi,

represented as an array of structures, for storing the other IDS information. An element

of the array, TIDSi
j stores the IP address, MAC address for an IDS Ij and a round-trip

time (RTT) value, ∆j
i . |TIDSi| signifies the size of TIDSi, i.e., the number of IDS nodes

reachable from Ii. RTT between a pair of communicating IDS nodes, let Ii and Ij can be

found at the jth and ith table entries of TIDSi and TIDSj , respectively. Essentially, ∆j
i is

computed as,

120

4. Mitigation of 6LoWPAN Fragmentation Attacks

∆j
i = T j

i,PACK
− T j

i,P (4.1)

where, T j
i,PACK

is the time instant when an ACK due for packet P , PACK is received at

Ii from Ij and T j
i,P represents the time instant when the packet P got transmitted from Ii

to Ij . Also, a variable ∆i is used at Ii to hold the maximum round trip time (RTT) value,

i.e., maxj{∆j
i} and is continuously updated. Besides, TIDSi, a table NDi is maintained at

Ii to store requisite parameters and information of its next-hop neighbour nodes. |NDi|

signifies the size of NDi, i.e., the number of next-hop neighbour nodes of Ii. Each element

of the array of the form NDi
j in IDS Ii holds the IP address, MAC address of a node j

and a value P j
i,loss indicating the probability of packet losses using the link Iij. P j

i,loss is

calculated from the history of packets sent from Ii and ACKs received. We calculate P j
i,loss

as,

P j
i,loss = 1−

nj
i,r

nj
i,s

(4.2)

where, nj
i,r represents the number of due ACKs received at Ii via node j and nj

i,s

represents the number of packets sent from Ii via node j. Correspondingly, a variable Pi,loss

is used at Ii to hold the packet loss probability of the link which is the minimum, i.e.,

minj{P j
i,loss}. An IDS utilises the communication history in the subsequent phases. The

attack inference phase is demonstrated in the following subsection.

ALGORITHM 8: FRAG_RCV _HANDLER() of Ij
Local Variables : TIDSj

Input: Datagram D
Output: Fragment duplication NACK

1 while ∃u, v|(Fu, Fv) ∈ D ∧ (u = v) do
2 if D.sourceIP ∈ TIDSj(IP) then
3 Intimate NACK to D.sourceIP ;

4.3.3 Attack Inference

As a prerequisite, IDS are assumed to be setup from monitoring network activities. An attack

then takes place in the monitored 6LoWPAN. Attack detection and node identification

relies on the inference of a fragment duplication attack activity by IDS nodes. Specifically,

a source IDS node infers an attack while sending a datagram, let us suppose D, as part

121

4.3. Proposed Defense Scheme

of its regular communication. Firstly, a suspicious duplication activity might be reported

by an intermediate IDS node or a receiver IDS, or secondly, an attack might be inferred

due to failed retransmissions. To understand the first scenario, let us consider that D is

sent from an IDS Ii. Now, as D gets reassembled and forwarded hop-by-hop, suppose

an eavesdropping attack node passes a spoofed fragment of D towards a reassembling

node. If this current reassembling node is an IDS node, let us suppose Ij , it not only

discards D, but also intimates a negative acknowledgement to Ii, since it is an IDS source.

The FRAG_RCV _HANDLER() component handles communication on behalf of the

reassembling IDS Ij . Piggybacked information is obfuscated and reported to Ii. To

prevent an attacker from profiling, the agents send the intimation packet with a random

delay. Function of the FRAG_RCV _HANDLER() component of Ij is explained using

Algorithm 8. On receipt of the NACK from Ij , Ii infers a fragmentation attack on D.

The second attack inference situation occurs when a datagram, say D, needs to be

retransmitted beyond a certain limit. We look into how retransmissions are characterized in

our scheme. Suppose Ii waits for an ACK after having sent datagram D. Now, if an ACK

is not received before a set ACK timeout expiry, then D is retransmitted. Consequently, a

counter variable that keeps track of the retransmission count is incremented. If the number

of retransmissions exceeds the retransmission limit, then Ii refrains from retransmitting and

marks the activity as a suspicious attack. The ACK timeout value and retransmission limit

are realized from round-trip delay and the probability of packet loss, respectively, in our

scheme. Variable ∆i, computed in the setup phase, that stores the maximum of RTT from

Ii is used to quantify the ACK timeout period. Since a packet or ACK may be delayed

in the network due to varied reasons, and to avoid inferring from such delay unreasonably,

we consider the maximum timeout period. The retransmission limit used by Ii depends

upon the next-hop node. A set, Θ̂i = {Θ1
i ,Θ

2
i , . . . }, is maintained to this purpose. The

number of elements of set Θ̂i is equal to the number of next-hop neighbours of Ii (size of

table NDi). A value Θj
i stores the retransmission limit that is used if the next-hop node is

j. It can be computed as,

Θj
i = ⌈

1

1− P j
i,loss

⌉ (4.3)

We characterize the retransmission limit using the probability of successful packet

122

4. Mitigation of 6LoWPAN Fragmentation Attacks

delivery (1− P j
i,loss), which is justified because an ACK timeout beyond the retransmission

limit can be inferred to be occurring due to reasons beyond normal network behaviour.

In both of the situations discussed above, attack inference by Ii is handled due to the

FRAG_SND_HANDLER() component, shown in Algorithm 9. Outlined below is the

FRAG_SND_HANDLER() whose inputs are as follows:

• Duplicate Fragment Intimation NACK that are reported due to the FRAG_RCV _

HANDLER() on behalf of host IDS on receipt of duplicated fragments.

• Probe datagram from the buffer that are yet to be sent (this becomes possible as

FRAG_SND_HANDLER() is part of the modified 6LoWPAN).

• Datagram receipt ACK.

• TEST_FLAG indicates when to detect and identify the attack by sending probe

packets to intended nodes.

The FRAG_SND_HANDLER() component and our local I-diagnoser work in

communion for attack detection and node identification in our scheme. Initially, on the

values Θ̂i and ∆i being computed, the diagnoser sets TEST_FLAG = 1 (Line 1). The two

values are pre-computed during non-attack condition as discussed in Section 4.3.2. The

outputs events of the handler, namely, FRGHD, BRACK, BRNACK, FRG, DPNACK,

PRDACK and RTO, are all passed to the DES diagnoser. The handler and diagnoser

share the model variables ci, ∆i, Θ̂i, Ni, ṙi, macd and ipd between them. When the

TEST_FLAG is set by the diagnoser, it means that the attack diagnosis phase can be

started. The DES diagnoser gets executed and remains so till the monitored 6LoWPAN is

operational. Diagnoser setting the TEST_FLAG = 1 is also the initial transition in the

DES diagnoser graph discussed later. On receipt of a fragment duplication NACK, the

first if then module is invoked and attack is inferred. The FRAG_SND_HANDLER()

generates event DPNACK and passes it to the diagnoser. A variable Ni, used to keep track

of the number of retransmissions, is initialized to 0 at the model start and is incremented

when a buffer reservation ACK is received by Ii (event BRACK is generated and Ni is

shared with diagnoser). If an ACK timeout occurs, i.e., clock timer variable ci counts

beyond ∆i, consecutively, for a Θmacd
i time, the third if then module is invoked. This is

123

4.3. Proposed Defense Scheme

how attack is inferred from the number of retransmissions. Consequently, the event RTO

is shared with diagnoser. Ii on inferring a possible fragmentation attack conducts active

probing. FRAG_SND_HANDLER() of Ii generates events during active probing that

are key to diagnosis of attack node, as will be demonstrated in the subsequent sections.

4.3.4 Active probing

In 6LoWPAN based fragmentation attacks, attack specific signatures are naturally lacking.

Moreover, devices are resource constrained and there are no in-place sender authenticity

mechanism in 6LoWPAN. Hence, it is challenging to differentiate between a normal node

behaviour and an attack behaviour, which generally appear same. We use an active probing

technique, intelligently, to generate responses that make an attack behaviour distinguishable

from normal. An IPv6 datagram with random payload, sent by an inferring node, are

the active probes in our proposed scheme. This probe datagram, let D′, is fabricated in

a way such that a randomly chosen fragment in D′ (using RND1) is duplicated. The

duplicate fragment replaces a genuine fragment in D′ (also randomly chosen using RND2).

As demonstrated, FRAG_SND_HANDLER() sends a probe fragment header on behalf

of Ii, after an attack is inferred. Event FRGHD is generated here and passed to the

diagnoser. Furthermore, an IDS node from TIDSi is chosen as the destination IP for probe

datagram D′, and assigned to model variable ipd and shared. A boolean variable ṙi is set

to 1 to flag the probe datagram, and is also shared with the diagnoser. On receipt of a

buffer reservation ACK for D′ the second if then module is invoked. If a fragment is sent,

event FRG is generated and subsequently shared. Probe fragments in D′ are sent such

that duplicate fragments are received at the next-hop node. Meanwhile, diagnoser sets

TEST_FLAG to 0 until a response due for D′ is received. While waiting on response, table

TIDSi is consulted, and RTT specific to the destination IDS node is considered for timeout

calculation. Because of the receiver of D′ being an IDS node, a probe datagram ACK

or duplicate fragment NACK might be received, or a response timeout gets clocked over.

Consequently, an event among PRDACK, DPNACK or RTO is generated and passed

to the diagnoser. It then validates the received events against DES-modeled normal and

attack behaviour specifications, and from the model parameters that are shared. Depending

on the response characteristics, a decision is made on the next-hop node to be normal or

124

4. Mitigation of 6LoWPAN Fragmentation Attacks

attack, or further probing is continued. An alert is generated to the system administrator if

an attack behaviour is diagnosed. This constitutes the diagnosis phase and is discussed in

the following subsection.

Figure 4.6: DES model Hi

4.3.5 I-DES Model and local I-Diagnoser

The I-DES model H is formally defined as a 6-tuple Hi = ⟨X,X0,Σ, V, C,ℑ⟩. Here, X

is the set of states and is finite, X0 ⊆ X is the set of initial states, Σ is the finite set of

events, V is the finite set of model variables, C is the finite set of clock variables and ℑ is

the finite set of transitions. Elements of the set of model variables assume values from their

respective domain sets. Suppose if V = {v1, v2, . . . , vn} is the set of model variables (for

some finite value of n) where each element vi takes some values from its domain set Domi.

The domain of each of the clock variables is the set of non-negative reals, R. A transition

τ ∈ ℑ is defined as a 7-tuple ⟨x, x+, σ, ϕ(V),Φ(C), Reset(C), Assign(V)⟩, where x, x+ are

the source state and destination state of transition τ respectively. Due to the occurrence of

the event σ ∈ Σ, the transition τ is enabled. ϕ(V) is defined as a boolean conjunction of

equalities over some subset of the model variables, V , and which needs to hold true overall

for a transition to be taken. Φ(C) is an invariant condition over some subset of the clock

variables C. Reset(C) is a subset of clock variables to be reset and Assign(V) is a subset

of model variables along with an assignment of values from their corresponding domains.

125

4.3. Proposed Defense Scheme

ALGORITHM 9: FRAG_SND_HANDLER() of Ii
Data : ci, ∆i, Θ̂i, Ni, ṙi, macd, ipd
Input: Duplicate Fragment Intimation NACK, Datagram receipt ACK, Buffer ACK, TEST_FLAG
Output: Events: FRGHD, BRACK, BRNACK, FRG, DPNACK, PRDACK, RTO

1 while Θ̂i and ∆i are not NULL do
2 if (TEST_FLAG == 1) then
3 Generate RND1 and RND2;

4 if Duplicate Fragment NACK then
5 Generate event DPNACK;
6 Ni ← 0;
7 if (ci < ∆i) ∧ (ṙi = 0) then
8 Generate event FRGHD;
9 ipd← FRGHD.destIP ;

10 Send datagram probe FRAG1;
11 Stop ci();
12 ṙi ← 1;

13 if Buffer ACK then
14 Generate event BRACK;
15 Ni ++;
16 Start ci();
17 if ṙi = 0 then
18 macd← BRACK.sourceMAC;
19 foreach FRAGN of D do
20 Generate event FRG;
21 Send probe fragment FRAGN ;

22 else if ṙi = 1 then
23 foreach FRAGN of D do
24 if FRAGN.offset = RND2× 8 then
25 FRAGN.offset← 8×RND1;

26 Generate event FRG;
27 Send probe fragment FRAGN ;

28 TEST_FLAG← 0;

29 if ((ci ≥ ∆i) ∧ (ṙi = 0)) then
30 Generate event RTO;
31 Stop ci();
32 Generate event FRGHD;
33 Send datagram probe FRAG1;
34 if (Ni = Θmacd

i) then
35 ipd← FRGHD.destIP ;
36 Ni ← 0;
37 ṙi ← 1;

38 else if ((ci ≥ ∆ipd
i) ∧ (ṙi = 1) ∧ (Ni < |NDi|)) then

39 Generate event RTO;
40 Stop ci();
41 TEST_FLAG← 1;
42 Generate event FRGHD;
43 ipd← FRGHD.destIP ;
44 Send datagram probe FRAG1;

45 if Datagram receipt ACK then
46 Generate event PRDACK;
47 Stop ci();
48 if (ci ≤ ∆i) ∧ (ṙi = 0) then
49 Ni ← 0;

126

4. Mitigation of 6LoWPAN Fragmentation Attacks

Some of the fields in the tuple representing a transition maybe be denoted by "-". For

example, if "-" is used for ϕ(V) or Assign(V), then it would mean that no condition needs

to be met (i.e., the condition is implicitly TRUE) or NO assignment is required respectively.

The I-DES modeling of a networked system of IoT-6LoWPAN nodes is demonstrated

here. The I-DES model Hi, drawn in Figure 4.6, has been used to represent the Fragment

Send Receive sequences during normal and fragment duplication attack conditions. The

principle of detection and identification by the local I-diagnoser is discussed later. We

will then show that location of an attacker, if present, is accurately identified. The DES

notations used are listed in Table 4.2 and the definitions of the various DES terminologies

have been presented in Appendix A. The various components of Hi are discussed.

Table 4.2: LIST OF SYMBOLS

Symbol Definition
Hi DES model
Σ Set of events of the DES model Hi

Σm Set of measurable events of the DES model Hi

Σum Set of unmeasurable events of the DES model Hi

V Set of model variables of the DES model Hi

ℑ Set of transitions of the DES model Hi

τ A transition τ ∈ ℑ
X Set of states of the DES model Hi

X0 Set of initial states of the DES model Hi

σ Event on which a transition is enabled
check(V) Condition(s) on a subset of model variables, V
assign(V) Assignment(s) on a subset of model variables, V
L(H) Set of all traces generated in Hi

Ak kth attacker
XN Set of normal states of the DES model Hi

XF Set of faulty states of the DES model Hi for fault type F
XAk

Set of attacker states of the DES model Hi for attacker Ak

σAk
Event corresponding to attack launched by attacker Ak

O Diagnoser of DES Hi

Z Set of states of the diagnoser, O, also called O-states
Z0 Set of initial nodes of the diagnoser, O
A Set of transitions of the diagnoser, O, also called O-transitions

The state set X with initial set of states X0 (X0 ⊆ X) symbolise the control states of

the FRAG_SND_HANDLER() component of the IDS. The normal DES model states

127

4.3. Proposed Defense Scheme

and attacker type model states together constitute the state set X = {x1, x2, . . . , x8, x1′,

x2′, . . . , x9′, x1′′, x2′′, . . . , x9′′}. In our model, the set of model variables, V = {ips, ipd,

macs, macd, dtag, Ni, id}. The model variables correspond to program and data variables

that are internal to the IDS. Certain program variables are designated as the clock variables,

C, which are absolute values of clock timer that can be SET and RESET using commands.

In real-time applications, timing constraints are expressed by satisfying the conditions on

the clock variables. We use a single clock variable in the set of clock variables, i.e., C = {ci}.

Event set Σ contains the packet communication events. In our model, the set of events, Σ

= {FRGHD, BRNACK, BRACK, FRG, DPNACK, RTO, PRDACK, attack′, attack′′}. A

transition is enabled if the conditions are satisfied and is said to be taken on the occurrence

of the associated event. The transitions set Γ consists of transitions {τ0, τ1, . . . , τ16, τ1′,

τ2′, . . . , τ17′, τ1′′, τ2′′, . . . , τ17′′}.

Considering that there is one attack node among n nodes in the network, the state set,

X, can be partitioned into disjoint sets XN , XA1 , XA2 , . . . , XAn , where, XN represents the

set of states belonging to the normal behavior of the network, while states of the form XAk
,

1 ≤ k ≤ n, k ∈ N , represent the behavior of the network if Ak is an attack node. For the

sake of brevity, we model using 2 nodes, A1 and A2, among which one is an attack node,

hence X = XN ∪XA1 ∪XA2 . In Figure 4.6, the non-primed states are the states when the

system behaves normally while the single and double primed states represent the system

under attack by the nodes A1 and A2, respectively. The events of the system is disjoint

union of measurable events and unmeasurable events Σm and Σum.

I-DES behavior under normal circumstances

The behavior of Hi under normal circumstances is shown in Figure 4.6. The system, when

functioning normally, is represented using the states {x1, x2, . . . , x8} and the transitions

{τ0, τ1, . . . , τ16}. The initial state of X0 is x1. We next discuss the transitions in normal

condition as follows:

• τ0, the initial transition leads to the initial state x1 as shown in Figure 4.6. It is

assumed while modeling that the constant timeout values, ∆i and Θ̂i have been

computed and then τ0 takes place. There is no explicit event that triggers τ0.

Occurrence of τ0 implies that the DES model is invoked when the timeout values

128

4. Mitigation of 6LoWPAN Fragmentation Attacks

Table 4.3: TRANSITIONS ℑ IN Hi CORRESPONDING TO NETWORK PACKET
FRAMES

Event (σ) Transition ϕ(V) Assign(V) ϕ(C) Reset(C)

, FRGHD ⟨x1, x2⟩,⟨x1′, x2′⟩,⟨x1′′, x2′′⟩ - ips← FRGHDIPS - -
⟨x5, x6⟩,⟨x5′, x6′⟩,⟨x5′′, x6′′⟩ - ipd← FRGHDIPD - -

- macd← FRGHDMACD - -
- dtag ← FRGHDDATAGRAM_TAG - -

BRNACK ⟨x2, x1⟩,⟨x2′, x1′⟩,⟨x2′′, x1′′⟩ ips ≡ BRNACKIPD - - -
dtag ≡ BRNACKDATATGRAM_TAG - - -

BRACK ⟨x2, x3⟩,⟨x2′, x3′⟩,⟨x2′′, x3′′⟩ ips ≡ BRACKIPD Ni ← Ni + 1 - ci ← 0
dtag ≡ BRACKDATAGRAM_TAG - - -

BRACK ⟨x6, x7⟩,⟨x6′, x7′⟩,⟨x6′′, x7′′⟩ ips ≡ BRACKIPD Ni ← Ni + 1 - ci ← 0
dtag ≡ BRACKDATAGRAM_TAG - - -

- TEST_FLAG← 0 - -
FRG ⟨x3, x4⟩,⟨x3′, x4′⟩,⟨x3′′, x4′′⟩ ips ≡ FRGIPS - - -

ipd ≡ FRGIPD - - -
dtag ≡ FRGDATAGRAM_TAG - - -

FRG ⟨x7, x8⟩,⟨x7′, x8′⟩,⟨x7′′, x8′′⟩ ips ≡ FRGIPS FRGOFFSET ← RND1 - -
ipd ≡ FRGIPD - - -

dtag ≡ FRGDATAGRAM_TAG - - -
FRG ⟨x8, x8⟩,⟨x8′, x8′⟩,⟨x8′′, x8′′⟩ ips ≡ FRGIPS - - -

ipd ≡ FRGIPD - - -
dtag ≡ FRGDATAGRAM_TAG - - -

RND2 ̸= FRGOFFSET - - -
DPNACK ⟨x4, x5⟩,⟨x4′, x5′⟩,⟨x4′′, x5′′⟩ ips ≡ DPNACKIPD - ci < ∆i -

dtag ≡ DPNACKDATAGRAM_TAG - - -
DPNACK ⟨x8′, x9′⟩ ips ≡ DPNACKIPD - ci < ∆i

ipd -
ipd ≡ DPNACKIPS - - -

dtag ≡ DPNACKDATAGRAM_TAG - - -
macd ≡ mac′ - - -

PRDACK ⟨x4, x1⟩,⟨x4′, x1′⟩,⟨x4′′, x1′′⟩ ips ≡ PRDACKIPD Ni ← 0 - -
ipd ≡ PRDACKIPS - - -

dtag ≡ PRDACKDATAGRAM_TAG - ci < ∆i -
PRDACK ⟨x8′′, x9′′⟩ ips ≡ PRDACKIPD Ni ← 0 - -

ipd ≡ PRDACKIPS - - -
dtag ≡ PRDACKDATAGRAM_TAG - ci < ∆i

ipd -
macd ≡ mac′′ - - -

RTO ⟨x4, x1⟩,⟨x4′, x1′⟩,⟨x4′′, x1′′⟩ Ni < Θi
macd - ci ≥ ∆i -

RTO ⟨x4, x5⟩,⟨x4′, x5′⟩,⟨x4′′, x5′′⟩ Ni = Θi
macd - ci ≥ ∆i -

RTO ⟨x8, x5⟩,⟨x8′, x5′⟩,⟨x8′′, x5′′⟩ Ni < |NDi| TEST_FLAG← 1 ci ≥ ∆i
ipd -

RTO ⟨x8, x1⟩ Ni = |NDi| TEST_FLAG← 1 ci ≥ ∆i
ipd -

attack’ ⟨x1, x1′⟩ - id ≡ mac′ - -

are not NULL. Table 5.2 shows initial(τ0) = −−, i.e., there are no initial states

and final(τ0) = x1. σ = TRUE means that transition τ0 is always enabled and

x1 is automatically reached at the start of the model. check(V) = −− implies

that no condition over the model variables are checked and the condition is always

satisfiable for the transition. Value 1 is assigned to variable TEST_FLAG as implied

by Assign(V) = {TEST_FLAG ← 1}, which in turn means that the detection of

fragmentation attacker can be started.

• τ1 : (x1 → x2) When the model is started and the current state is at x1, the

transition τ1 implies that an IPv6 packet fragment of FRAG1 header type is sent.

Here, initial(τ1) = x1 and final(τ1) = x2. σ = FRGHD implies that transi-

tion τ1 is enabled when FRAG_SND_HANDLER() generates event FRGHD

(i.e., after a FRAG1 is sent). check(V) = −− meaning that no condition need to

be satisfied and Assign(V) = {ips ← FRGHDIPS , ipd ← FRGHDIPD,macd ←

FRGHDMACD, dtag ← FRGHDDATAGRAM_TAG}. The parameters that uniquely

129

4.3. Proposed Defense Scheme

identify a fragment header of a datagram are source IP, destination IP, destination

MAC and datagram tag. Consequently, all the parameters that correspond to the

header are stored in the model variables, ips, ipd, macd and dtag.

• τ2 : (x2 → x1) At state x2, the transition τ2 implies that a negative buffer ac-

knowledgement is received. σ = BRNACK implies that τ2 is enabled when the

FRAG_SND_HANDLER() generates the event BRNACK (i.e., after a buffer

NACK is received). check(V) = {ips = BRNACKIPD, dtag = BRNACKDTAG}

and Assign(V) = −−. Satisfaction of the conditions over the model variables, ips

and dtag, ensure that the buffer NACK is a response to the header fragment sent in

τ1. No assignments are done in this transition.

• τ3 : (x2← x3) At state x2, the transition τ3 implies that a buffer acknowledgement

has arrived from a next hop node for some sent FRAG1 type fragment. Here,

initial(τ3) = x2 and final(τ3) = x3. σ = BRACK corresponds to enabling transition

τ3 after the FRAG_SND_HANDLER() generates the event BRACK implying

that a buffer ACK has arrived and the condition on the model variables in check(V)

are satisfied. check(V) = {ips = BRACKIPD, dtag = BRACKDATAGRAM_TAG}.

Similar to the situation described for τ2, the conditions over the model variables, ips

and dtag, ensure that the ACK packet is a response to τ1. Assign(V) = {Ni ← Ni+1}.

The counter variable, N , used to keep track of the buffer allocations, is incremented.

Reset(C) = {ci ← 0} indicates that the retransmission timer, modeled using the clock

variable ci, is started.

• τ4 : (x3 → x4) At state x3, the transition τ4 corresponds to sending an IPv6

packet fragment of FRAGN header type. σ = FRG implies that the transition

τ4 is enabled when the FRAG_SND_HANDLER() generates the event FRG.

check(V) = {ips = FRGIPS , ipd = FRGIPD, dtag = FRGDATAGRAM_TAG}. The

conditions over the model variables if satisfied ensure that the FRAGN belongs to the

same datagram and bears the same source and destination address. No conditions on

the clock variables need to be satisfied here.

• τ8 (x4→ x5) At state x4, the transition τ8 implies that a duplicate NACK intimation

message is received. σ = DPNACK implies that the transition is enabled when

130

4. Mitigation of 6LoWPAN Fragmentation Attacks

the FRAG_SND_HANDLER() generates the event DPNACK. check(V) =

{ips = DPNACKIPD, dtag = DPNACKDATAGRAM_TAG}. The condition check on

the model variables ips, and dtag are used to ensure that the intimation is received as

a response to the datagram sent in τ1.

• τ15 : (x8 → x5) At state x8, the transition τ15 corresponds to a retransmis-

sion timeout. σ = RTO implies that the transition τ15 is enabled when the

FRAG_SND_HANDLER() generates the event RTO. check(V) = {Ni < |NDi|},

Assign(V) = {TEST_FLAG ← 1} and Φ(C) = {ci ≥ ∆i
ipd}. The condition over

the model variable Ni is checked to send datagram probes via other next-hop nodes.

Assign(V) makes TEST_FLAG = 1 which means that the attack detection phase

can restart, i.e., FRAG_SND_HANDLER() can again receive acknowledgements

on sent datagrams from receiver nodes and duplicate intimation from other IDS nodes.

Φ(C) implies that τ15 is enabled when the clock variable overshoots the retransmission

timeout.

Figure 4.7: Diagnoser O for DES model Hi

131

4.3. Proposed Defense Scheme

I-DES behavior under attack circumstances

The DES model under rank or version attack condition launched by attacker A1 is shown

using the states in XA1 = {x1′, x2′, . . . , x9′} and transitions, {τ1′, τ2′, . . . , τ17′}. Similarly

for attacker type A2, states and transitions are represented using double prime notation,

XA2 = {x1′′, x2′′, . . . , x9′′} and transitions, {τ1′′, τ2′′, . . . , τ17′′} as shown in Figure

4.6. The DES model behavior under different attackers are mostly identical except two

transitions that differentiate them which are discussed.

• At state x1, the system reaches an attacker type state x1′ or x1′′ following an

unmeasurable attack transition ((Definition 1, Appendix A)) τ0′ or τ0′′, respectively.

• τ16′ : (x8′→ x9′) At state x8′, the transition τ16′ corresponds to duplicate fragment in-

timation for the datagram probe sent via a known 1-hop node. σ = DPNACK implies

that the transition is enabled when the FRAG_SND_HANDLER() generates the

event DPNACK. check(V) = {ips = DPNACKIPD, ipd = DPNACKIPS , dtag =

DPNACKdtag,macd = mac′}. The conditions over the model variables, ips, ipd and

dtag, ensure that the duplicate NACK intimation is a response to the datagram probe

header fragment in τ10′. The model variable macd holds the MAC address of the

next-hop node via which the probe was sent. τ16′ ensures that macd holds the IP

address of attack node A1. An intimation for probe sent via a node with MAC address

stored in macd is a fragment duplication attack. Φ(C) = {ci < ∆i
ipd} means that ci

does not exceed the retransmission timeout period.

Local I-Diagnoser

The property of I-diagnosability pertaining to fault diagnosis in I-DES has been discussed

in Section 5.2.6 of the previous chapter. Here we use a set of IDS each consisting of a local

I-diagnoser. Each of the local I-diagnosers are basically observer automatons. Given a

measurable trace executed on the model, the diagnosers, constructed from corresponding

I-DES models, give an estimate of membership of the current system state in the model

among normal or any attacker type state from Hi, locally. An alert is generated when it

can be ascertained that the current state belongs to an attacker type. It is also notified as

to which attacker type the corresponding belongs. Details of the diagnoser construction

132

4. Mitigation of 6LoWPAN Fragmentation Attacks

procedure and definitions pertaining to diagnosability are highlighted in Appendix B. Now,

an attack node is I-diagnosable in finite time, if the I-diagnosability condition is met

(Fi-I-Diagnosability property is satisfied, see Definition 6, Appendix B). A lemma on the

I-diagnosability property states that lack of attack Ai-indeterminate cycles (Definition

14, Appendix C) having an embedded indicator transition (Definition 13, Appendix C)

guarantees I-diagnosability. Global I-diagnosis is guaranteed due to local I-diagnosis across

any of the IDSs [169].

Figure 4.7 shows the constructed diagnoser for our DES model Hi, considered in Figure

4.7. The working mechanism of our diagnoser is summarised here by showing one or more

executions of sequences of measured events (transitions) as follows:

1. The initial state of the model Hi, x1, and states x1′ and x1′′ reachable via unmeasurable

attack transitions, τ0′ and τ0′′, form the initial state of the diagnoser, z1.

2. Let ℑz1 = {τ1, τ1′, τ1′′}, i.e., the outgoing transitions from model states {x1, x1′, x1′′} ∈

z1. All the transitions in ℑz1 are equivalent ((Definition 2, Appendix A)) and hence

cannot be further subdivided and hence justifies O-transition a1. The O-state corre-

sponding to the transition a1 is z2 = {x2, x2′, x2′′}.

3. Let ℑz21 = {τ2, τ2′, τ2′′}, i.e., the outgoing transitions from model states {x2, x2′, x2′′} ∈

z2. All of outgoing transitions in ℑz2 are measurement equivalent belonging to one

measurement equivalence class of transitions, hence cannot be further partitioned.

Therefore, it justifies O-transition a2. The O-state reached corresponding to the

transition a2 is z1 = {x1, x1′, x1′′}.

4. Let ℑz22 = {τ3, τ3′, τ3′′}, i.e., the outgoing transitions from model states {x2, x2′, x2′′} ∈

z2. All the transitions in ℑz22 are equivalent and hence cannot be partitioned fur-

ther, justifying O-transition a3. The O-state corresponding to the transition a3 is

z3 = {x3, x3′, x3′′}. In a similar manner, the diagnoser states {z4, z5, z6, z7, z8}

can be constructed using the corresponding O-transitions {a4, a6, a7, a9, a10}. The

principle can be safely extended.

5. From the definition, we can compute the Attackerk certain O-states and the Normal

certain O-states. In our example, the Attacker1 certain O-state may be computed

133

4.3. Proposed Defense Scheme

as z10 = {x9′} since it exclusively consists of states only belonging to attacker A1.

Similarly, Attacker2 certain O-state may be computed as z11 = {x9′′} and the normal

certain O-state can be computed as z9 = {x1}.

4.3.6 An example of fragment duplication attacker node identification

using DES Diagnoser

Suppose Θi
macd = 1 and the following events occur chronologically in the monitored RPL-

6LoWPAN due to packets received or sent from the IDS node: FRGHD, BRACK, FRG,

FRG, FRG, RTO, FRGHD, BRACK, FRG, FRG, FRG, DPNACK.

The diagnoser starts from the O-state z1 and on occurrence of the FRGHD event,

the diagnoser moves to O-state z2 via O-transition a1. The event occurs when a datagram

fragment header is sent. Now, the transition a1 might have been taken by the diagnoser

due to the occurrence of any of the Hi-transitions, τ1, τ1′ or τ1′′. Since the transitions

τ1, τ1′ and τ1′′ are measurement equivalent, it cannot be certainly said at this point if

an attack has occurred. A buffer reservation ACK is received next due to which the event

BRACK is passed to the diagnoser. The latter moves to O-state z3 via O-transition

a2. Now, a fragment of FRAG1 header type is sent to the receiver and the event FRG

occurs. Consequently, the diagnoser reaches O-state z4 via a4. Subsequent fragments of the

same IPv6 datagram on being sent, the diagnoser stays in the same O-state z4 due to the

self-loop transition a5. At this point, if no ACK is received before timeout, the event RTO

is passed to the diagnoser. Since the retransmission limit, Θi
macd is set to 1 at the model

start, and the model variable Ni = 1, hence the diagnoser moves to O-state z5 via the

O-transition a6. The transition a6 is taken in the diagnoser due to the occurrence of any of

the Hi-transitions, τ6, τ6′ or τ6′′ which are measurement equivalent. The header fragment

FRAG1 of a datagram probe is sent via an alternate next-hop node due to which the event

FRGHD occurs and the diagnoser moves to O-state z6. Analogously, the diagnoser O-state

evolves to z8 via the O-transitions a9 and a10 when a buffer ACK is received and fragments

are subsequently sent. Eventually, when the DPNACK event occurs, suppose the diagnoser

moves from O-state z8 to O-state z10 = {x9′} via O-transition a13 due to the model

transition τ12′. Since the O-state z10 reached by the diagnoser is an Attacker1-certain

O-state, it is ascertained that the system is under attack condition due to attacker node A1.

134

4. Mitigation of 6LoWPAN Fragmentation Attacks

Moreover, since there are no Ak-indeterminate cycles [46, 45], along all paths of the DES

diagnoser, an unique malicious node Ak, when present, can be identified correctly. On each

such occasion when the diagnoser reaches an Attackerk-certain state due to an event trace,

an alert is generated.

IA

IB

IC

R

S

T

U

V

Figure 4.8: An arrangement of IDS and non-IDS 6LoWPAN nodes

4.3.7 Correctness and Completeness

DES modeling aids in formalizing a system to check correctness and completeness [44].

We demonstrate correctness and completeness of our proposed IDS here, by taking into

consideration all possible cases of fragment duplication attack. We show that an attacker

node is correctly identified. We use the RPL-6LoWPAN instance shown in Figure 4.3 for our

proof, where IA, IB and IC are the IDS nodes. Among R, S, T , U and V , let us suppose

R and S are the two suspected attack nodes and can be related to nodes A1 and A2 used

in our DES model. Since there are no Attackerk-indeterminate cycles in the diagnoser O

shown in Figure 4.7, therefore the diagnosability condition is satisfied [45]. This means that

location of an attacker Ak in the monitored network is always diagnosable.

We now prove the completeness by justifying why all attack cases can be detected from

the traces in Hi. We show that R and V are always correctly identified as attack node

135

4.3. Proposed Defense Scheme

when the corresponding attacker certain state is reached in the diagnoser. An arrangement

of nodes as shown in Figure 4.8 is considered, where an attack might have been launched

by node R, S or V . T is not considered an attacker for demonstration of the following

proof. For simplicity we assume Θi
macd = 1 and datagram D has only 2 fragments, F1

and F2. Suppose IA sends a datagram D to U . While D is reassembled and forwarded

at the intermediate hops, namely, T , S, and IC , the packet is eavesdropped. As a result,

overlapping fragments are reported to IA by IC . All the attack cases where R and V are

attack nodes are enumerated below. Identification of S can be carried out in the same

procedure as demonstrated.

Case I: R, S, V are attack nodes In this case, we consider all three, R, S and V ,

are attack nodes. Suppose, a datagram D is to be sent from IA to U . Accordingly, it is

forwarded to the next-hop node T . In the diagnoser O, this can be understood as O-states

evolving from z1 to z4 due to O-transitions a1, a3, a4, and a5. It may be noted that we do

not consider explicit packet drops for our demonstration, unless dropped due to an attack

activity. So T is forwarded to S in the next-hop. Since S and V are both attack nodes

and S lies in the range of V , so overlapping fragments are present during reassembly at

S due to V or R. Accordingly, since S is also an attack node, hence D with overlapping

fragments are forwarded to IC . Now, FRAG_RCV _HANDLER() at IC on its behalf

sends an intimation to the source node, IA. The FRAG_SND_HANDLER() at IA on

receipt of the intimation packet generates event DPNACK which is passed to the diagnoser.

Consequently, it updates its O-state and moves to z5 due to O-transitions a6. Next, a

datagram probe D′ with overlapping fragment, let F1, is sent via R to IB. Also note that

R lies in the range of S and outside the radio range of V . Now, the current state of the

diagnoser reaches O-state z8. Since R is an attack node, it refrains from discarding the

packet and forwards it to IB . In turn, IB comes to know about the fragment duplication and

intimates IA. Again, the FRAG_SND_HANDLER() at IA on receipt of this intimation

packet generates event DPNACK. When this event is passed to the diagnoser, O moves

from z8 to z10 which is Attacker1-certain O-state (A1 can be related to R, and A2 to V).

This is because the fabricated probe datagram was sent via next-hop node, R. Therefore,

attack node R is correctly identified.

Case II: R, S are attack nodes and V is non-attack node Since R and S are the

136

4. Mitigation of 6LoWPAN Fragmentation Attacks

attack nodes here, the attack characteristics are similar to the situation described above

with the only difference that D is infiltrated due to R or S, a forwarding node, itself. Here

again, the diagnoser reaches Attacker1-certain O-state z10 and R is correctly identified as

an attack node.

Case III: R, V are attack nodes and S is non-attack node Considering R and

V are the only attack nodes, attack characteristics are similar except that D is discarded

by S when duplicated by R or V . Hence, instead of a duplicate fragment intimation, event

RTO is invoked by the FRAG_SND_HANDLER() at IA due to clock timer exceeding

retransmission timeout ∆i while waiting on an acknowledgement. The diagnoser consequently

moves to state z5 due to the shared event, RTO, and since we assume Θi
macd = 1. Again

D′ is forwarded to next-hop R. R being an attacker refrains from discarding the packet

and forwards it to IB in the manner similar to descriptions above. The diagnoser reaches

Attacker1-certain O-state z10 confirming that R is an attack node, correctly.

Case IV: R is an attack node while S, V are non-attack nodes The situation

here is again analogous to the situation described above. When D and D′ are both sent,

the network event occurrences are all similar here except that R is the only eavesdropping

attacker in both of the scenario. The diagnoser reaches z10 here as well and attack node R

is correctly identified.

Case V: S, V are attack nodes and R is non-attack node Since S and V are the

attack nodes here, in the first phase an intimation is received from IC and the diagnoser

reaches O-state z5. Subsequently, D′ is sent by the FRAG_SND_HANDLER() (on

behalf of IA) to next-hop node R. The datagram is eavesdropped and S supposedly times the

attack and sends a overlapping fragment, F2. Diagnoser O consequently moves to O-state

z8. R notices a duplication during reassembly and discards the packet, since it is a normal

node. On retransmission period clocked over, the event RTO is invoked and the diagnoser

reaches z5. Now, the datagram D′ is sent to next-hop node V with destination address of

IC in FRAG1. Since V is an attack node, it follows the same procedure as described for the

case of R and S as attacker in Case I. Consequently, due to events generated, the diagnoser

reaches O-state z11 which is an Attacker2-certain O-state. V (is same as A2) is therefore

correctly identified.

Case VI: S is an attack node while R, V are non-attack nodes The situation

137

4.4. Performance evaluation

here is similar to the situation described above with the only difference that V is not an

attack node this time. Therefore, at z5, when datagram D′ is sent via next-hop node V , V

discards it and consequently the diagnoser reaches O-state z5 on c exceeding ∆i. Since R

and V are not attack nodes, no decision is accordingly arrived at the diagnoser.

Case VII: V is an attack node while R, S are non-attack nodes The situation

is similar to the one described in Case IV with V playing a similar role as R. Accordingly,

the diagnoser reaches O-state z11 and V is correctly identified as an attack node.

So, all the possible cases of attack by R and V are analyzed. The diagnoser correctly

reports the network condition by identifying the corresponding attacker type states, for each

case.

4.4 Performance evaluation

We have executed three experiments in Contiki cooja [155] and one on a real testbed at

FIT IoT-LAB [156]. Cooja and FIT IoT-LAB have been already introduced in Section 3.4.

We have used two types of topology T1 and T2, as shown in Figure 4.9. In topology 1 (T1),

IoT nodes are distributed very densely, whereas in topology 2 (T2) nodes are distributed

sparsely. The hop count is more in T2 as compared to T1. The simulation/ experimental

parameters of Contiki cooja and FIT IoT-LAB are presented in Table 4.4. To examine the

experimental performance of our proposed solution, three types of scenarios are designed as

part of the experimental setup: 1) Non-FDA scenario, 2) FDA scenario, and 3) FDA with

the proposed solution. The comprehensive analysis of all the scenarios are given below.

RPL Root node RPL Root node

(a) Topology 1 (b) Topology 2

Figure 4.9: Topology considered for testbed and simulation experiments

138

4. Mitigation of 6LoWPAN Fragmentation Attacks

Table 4.4: Simulation and real-time test-bed parameters

Parameter name Simulation Real time testbed

Operating system Contiki 3.0,
Contiki 4.5 Contiki-NG

Simulator/Testbed Cooja Cooja FIT IoT-LAB
Network size 32, 64, 128 nodes
Radio Environment UDGM
Node Type Tmote Sky IoT-Lab A8
Routing Protocol RPL RPL Lite

RPL Objective Function MRHOF - ETX,
OF0 MRHOF - ETX

MAC/adaptation layer Contiki MAC/6LoWPAN
Transmitter output power (dBm) 0 to -25
Receiver sensitivity (dBm) -94
Radio frequency 2.4 GHz
Attack Modeled Fragment duplication attack (FDA)
Experiment Duration 60 minutes

4.4.1 Experiment 1: Non-FDA scenario

This experiment is conducted with varying number of IoT nodes (i.e., 32, 64, and 128 nodes)

and it is noted as to how the IoT network parameter performances change. Similar to

the non-rank attack scenario experiment outlined in Section 3.4.1, Wireshark and power

trace tools are used for network traffic analysis and A8-type nodes with Grenoble areas

are used in real testbed. The adopted parameters while running the testbed experiments

are specified in Table 4.4. Figure 4.10 shows packet delivery ratio (PDR), average energy

consumption (AEC), average end to end delay (AEED), and throughput (THP) with the

respective different packet size (i.e., 128 byte, 256 byte, and 512 byte). Figure 4.10 (a) and

(b) show experimental analysis with topology 1 (dense) topology 2 (sparse) in Contiki cooja

and FIT IoT-LAB. This analysis shows PDR (83.82%− 98.30%), AEC (68mJ − 298.3mJ),

AEED (19%− 26%) and THP is (84.23%− 97.63%) in a non-FDA scenario. This is due

to the reason that in non-FDA scenario, packet delay, packet reordering, packet alteration,

and dropping of legitimate packets are a minimum. Hence in a FDA scenario, this analysis

shows that average THP, EED, EC and PDR is moderately good.

Experiment 2: FDA scenario

The FDA scenario is executed with IoT nodes ranging from 32 to 128 nodes, i.e., 32, 64,

and 128. We incorporate attack nodes during our experiments. These nodes generate

duplicate packet fragments and alter packets. We examine the PDR, EED, EC, and

139

4.4. Performance evaluation

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0

EC
 in

 (m
J)

 P D R i n (%)
 E C (m j)
 E E D i n (%)
 T H P (%)

P a c k e t s i z e (b y t e s)

1 8

2 0

2 2

2 4

2 6

9 1

9 2

9 3

9 4

9 5

9 6

9 7

PD
R

an
d T

HP
 in

 (%
)

(a) Contiki Cooja

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0

EC
 in

 (m
J)

 P D R (%)
 E C (m j)
 E E D (%)
 T H P (%)

P a c k e t s i z e (b y t e s)

1 8

2 0

2 2

2 4

2 6

9 1

9 2

9 3

9 4

9 5

9 6

9 7

PD
R

an
d T

HP
 in

 (%
)

(b) FIT-IoT-Lab

Figure 4.10: Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (non-FDA scenario)

THP with different malicious nodes and by varying node density. Traffic generated from

FDA scenario is analyzed using collect view modules for simulation analysis purposes.

Similarly, we use Sysstat [157] and iperf tool [158] for real testbed analysis. Figure 4.11

(a) exhibits a considerable degradation in PDR, EC, EED, and THP, i.e., (34.3%− 52.2%),

(114.3mJ − 308.9mJ), (44.3% − 55.9%) and (33.79% − 51.87%), respectively in Contiki

cooja simulations. Figure 4.11 (b) also shows similar types of outcomes i.e., (29.8%−48.5%),

(124.3mJ − 321.9mJ), (49.8%− 59.3%) and (37.52%− 54.27%) in FIT IoT-LAB. Figures

4.11 (a) and (b) show the PDR and THP graph to be going down significantly. The average

PDR and THP value are reduced in the FDA scenario, both in simulation and real testbed.

All experiments show huge AEC with reduced PDR, and THP. The reason is that the FDA

is launched using duplicate fragment, packet drop, and packet alterations. Table 4.5 presents

the performance parameters (i.e., PDR, EC, EED, and THP) that significantly affect the

IoT ecosystem performance. Based on the tabulated results presented in Table 4.5, it can be

observed that increased IoT node count incurs a huge number of duplicate fragments. Hence

it consumes extra network energy, due to usage, and node power. Table 4.5 also highlights

the performance analysis with three different sizes of a packet and different node densities.

4.4.2 Experiment 3: FDA scenario with proposed solution

In this scenario, experiment 2 is executed with a proposed solution in simulation and a real

testbed, several times. We consider 32, 64, and 128 IoT nodes, and experiments run for

3600 Sec with the proposed approach. The performance analysis of all experiments is based

on the following metrics:

140

4. Mitigation of 6LoWPAN Fragmentation Attacks

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

EC
 in

 (m
j) P D R (%)

 E C (m j)
 E E D (%)
 T H P (%)

P a c k e t s i z e (b y t e s)

3 6
3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4
5 6
5 8

3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4
5 6
5 8

PD
R

an
d T

HP
 in

 (%
)

(a) Contiki Cooja

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

EC
 in

 (m
J)

 P D R (%)
 E C (m j)
 E E D (%)
 T H P (%)

P a c k e t s i z e (b y t e s)

4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4
5 6
5 8
6 0

3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4
5 6

PD
R

an
d T

HP
 in

 (%
)

(b) FIT-IoT-Lab

Figure 4.11: Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (During FDA scenario)

• Packet delivery ratio (PDR): It is the ratio between the number of packets received

Precvi at the receiver node and the total number of packets sent Psend from sender

node. The PDR is estimated using the following Eq. (4.4).

PDR =
Precvi

Psend
× 100 (4.4)

• Average energy consumption (AEC): In general, it is calculated by taking the total

amount of energy required for delivering packets during an experiment and dividing

it by the number of packets delivered PD. The energy consumption estimated using

Eqn (4.5).
Energy(mJ) = [(CPU × 1.8mA) + (LPM × 0.0545mA)

+ (Transmit× 19.5mA)

+ (Receive× 21.8mA)]× 3V/Rtimer × 8

(4.5)

AEC (mJ) =
Energy (mJ)

PD
(4.6)

• Average end to end delay (AEED): It defines the average time it takes to deliver

packets under an experiment. The formula to calculate it is as follows.

AEED =
Total EED

Total Packets Delivered
(4.7)

• Throughput (THP): This metric measures the ratio of the network throughput in the

presence of FDAs with respect to the observed network throughput in the absence of

FDAs.
THP =

throughput in FDAs scenario

throughput in normal scenario
× 100 (4.8)

• Accuracy (ACC): It denotes the percentage of correctly classified flows as true attack

141

4.4. Performance evaluation

Table 4.5: PDR, EC,EED and THP values for IoT ecosystem (During attack)

PDR (%) EC (mJ) EED (%) THP (%)
Packet size 128 bytes

Packet Size 32N 64N 128N 32N 64N 128N 32N 64N 128N 32N 64N 128N
T1 69.8 64.2 60.9 98.2 118 199 19.5 22.7 28.6 61.8 58.4 50.7
T2 73.5 68.9 64.1 110 132 221 22.4 25.9 32.7 64.6 62.2 55.5

Packet size 256 bytes
T1 62.4 60.6 51.7 109 139 227 23.6 27.9 33.8 68.3 61.5 44.1
T2 67.3 63.2 58.4 125 176 289 27.3 38.3 44.7 76.9 69 48.7

Packet size 512 bytes
T1 56.2 38.9 37.3 189 289 477 33.5 54.3 58.2 41.9 39.7 33.3
T2 59.2 41.7 37.9 209 302 498 37.4 59.5 61.3 48.5 44.2 37.9

or true legitimate flows with respect to total number of flows. Accuracy is given by:

ACC =
p+ r

p+ q + r + s
× 100 (4.9)

where, p = Attacker nodes identified accurately q = Attacker nodes identified wrongly

r = Genuine nodes identified accurately s = Genuine nodes identified wrongly.

• Memory Consumption (MEMC): It shows the percentage of memory utilization of the

IoT devices to run proposed solution, throughout the experimentation.

• Attack Detection Time: This performance metric shows the time taken to identify the

attack.

Figures 4.12 (a) and (b) show the performance analysis of our proposed solution during

the simulation and real testbed, respectively. Figures 4.12 (a) and (b) show outstanding

results like PDR (94.6%− 98.7%) , AEC (112 mj − 314 mj), AEED (19.3%− 26.4%), and

THP (96.5%− 98.7%). In Figures 4.12 (a) and (b), the PDR and THP graph can be seen

to significantly progressing upward. The average PDR and THP value were improved by

(42.6% − 56.2%) and (38.8% − 48.4%), respectively. Figures 4.13 (a) and (b) also show

ACC and FDA detection time graphs with topologies, T1 and T2. Table 4.6 presents the

performance analysis during the recursive execution of our proposed solution in Contiki

cooja and FIT-IoT LAB, by varying the count of IoT nodes and with different sizes of

packets. Based on Table 4.6 outcome, we noticed that different size of network and packet

sizes (i.e., 128, 256, and 512) give the distinct value of network performance metrics. Based

on Tables 4.5 and 4.6, we observed that our solution takes the minimum amount of AEC

142

4. Mitigation of 6LoWPAN Fragmentation Attacks

and AEED. The reason is that the proposed solution with probing identifies the malicious

node and minimizes duplicate packet fragments, and modifies genuine packets.

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
EC

 in
 (m

J)
 P D R (%)
 E C (m j)
 E E D (%)
 T H P (%)

P a c k e t s i z e (b y t e s)
1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

EE
D

in
(%

)
9 4

9 5

9 6

9 7

9 8

9 9

PD
R

an
d T

HP
 in

 (%
)

(a) Contiki Cooja

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

EC
 in

 (m
J)

 P D R (%)
 E C (m j)
 E E D (%)
 T H P (%)

P a c k e t s i z e (b y t e s)

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

EE
D

in
(%

)

9 4

9 5

9 6

9 7

9 8

9 9

PD
R

an
d T

HP
 in

 (%
)

(b) FIT-IoT-Lab

Figure 4.12: Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (After solution implementation)

1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

2 0

4 0

6 0

8 0

1 0 0

AC
C

an
d F

DA
 de

tec
tio

n i
n (

%)

P a c k e t s i z e (b y t e s)

 A C C i n T 1
 A C C i n T 2
 F D A d e t e c t i o n t i m e i n T 1
 F D A d e t e c t i o n t i m e i n T 2

Figure 4.13: Analysis of ACC and FDA over different packet size with 64 node (Topology 1
and Topology 2 used)

4.4.3 Comparison with the existing works

This subsection presents the comparative analysis of the proposed FDA detection approach

with state-of-the-art solutions. To achieve fair results, we conducted simulation and real

testbed experiments. All experiments were repeated many times to create tight confidence

intervals. In general, the results did not show much variance between simulation and

real testbed. To measure the performance metrics, we have used collect view modules,

Sysstat, and iperf tool for simulation and real testbed analysis. We consider seven different

143

4.5. Conclusion

Table 4.6: PDR, EC,EED and THP values for IoT ecosystem (After solution Implementation)

PDR (%) EC (mJ) EED (%) THP (%)
Packet size 128 bytes

Packet Size 32N 64N 128N 32N 64N 128N 32N 64N 128N 32N 64N 128N
T1 69.8 64.2 60.9 98.2 118 199 19.5 22.7 28.6 61.8 58.4 50.7
T2 73.5 68.9 64.1 110 132 221 22.4 25.9 32.7 64.6 62.2 55.5

Packet size 256 bytes
T1 62.4 60.6 51.7 109 139 227 23.6 27.9 33.8 68.3 61.5 44.1
T2 67.3 63.2 58.4 125 176 289 27.3 38.3 44.7 76.9 69 48.7

Packet size 512 bytes
T1 56.2 38.9 37.3 189 289 477 33.5 54.3 58.2 41.9 39.7 33.3
T2 59.2 41.7 37.9 209 302 498 37.4 59.5 61.3 48.5 44.2 37.9

Table 4.7: Comparison of the proposed scheme with the closely related works

References SIM/TB PDR AEC AEED THP ACC MEMC (RAM/ROM) SCAL ADT (msec.)
Hummen [1] Contiki cooja 98% 289.5 mJ N/A N/A N/A 41750/9502 byte No (500-640) msec.
SecuPan[2] Contiki cooja 97.6% 280 mJ 80 % 96.4% N/A N/A Yes (130-160) msec.
Nikarvan[3] Testbed N/A 251.4 mJ N/A N/A N/A 46381/10211 byte No (3053-3330) msec.

[4]

Proposed Approach Contiki cooja
Testbed 99.2% 139 mJ 92% 97.8% 99.8% 32568/7845 byte Yes (98-128) msec.

SIM: Simulation, TB: Testbed, SCAL: Scalability, ADT: Attack detection time, N/A:Not available

performance metrics, namely, PDR, AEC, AEED, THP, ACC, and ADT. State-of-the-art

methods [112] [34], consume enormous AEC, and take AEED. Hence these solutions are

very hard to implement in a constrained IoT ecosystem. Some closely related approaches

[37] detect FDA, but the deficiency of these approaches are non-scalability and increased

ADT. The performed comparative analysis is shown in Table 4.7. It can be observed that

our security solution is energy-aware, highly accurate, and yet scalable.

4.5 Conclusion

A novel 6LoWPAN fragment duplication attacker identification scheme is presented. The

scheme proposed is decentralized and uses an intelligent probing technique and I-DES

based IDS. Traditional I-DES based IDS have been augmented, such that attacker type is

also diagnosed. Active probe packets are used judiciously to differentiate an attack node

from a normal node, which is normally lacking otherwise. Using this scheme, location of

attack node can be identified accurately. Each I-diagnoser serves as a local IDS engine that

generates an alert when an attack node is identified. Global I-diagnosis is achieved from

local I-diagnosers. We perform node elimination using kill switch such that fresh avenues of

144

4. Mitigation of 6LoWPAN Fragmentation Attacks

attack from same node is nullified. The correctness and completeness of our approach is

also proved.

The performance analysis of our proposed scheme in simulation and real testbed considers

both attack and non-attack behavior patterns, with a sufficiently large number of 6LoWPAN

nodes. The average throughput, accuracy, and response times in our proposed approach are

97.8%, 99.8%, and 98− 128 msec., respectively. The observed results show our approach is

energy-efficient than existing works. It is scalable, achieves minimum false positives, and

higher accuracy with lower detection time.

The network and adaptation layer attacks have been mitigated successfully using

centralized I-DES and decentralized I-DES frameworks. In the proposed I-diagnosability

based DES frameworks, indicator events are used to identify the attack node. Suitable active

probe packets are sent while the generated responses are validated to test the ingenuinity of

network traffic. However, there exists a class of spoofing attacks that exploit the application

layer IoT protocol, CoAP, to make target either server or client nodes vulnerable, and

cause Denial of Service (DoS). For CoAP request/response spoofing attacks, active probe

packets are not sufficient for deterministic diagnosis, since spoofed CoAP probe request

or response packets resemble the original ones. Moreover, attacker may be on-path which

further complicates detection, since the original packet may be dropped. Hence, there

exists paths in the I-DES model which lead to attack uncertain states, making I-diagnosis

frameworks incapable to guarantee identification. To deal with such scenario, decentralized

I2-diagnosability based DES frameworks are adopted and extended to detect and identify

CoAP request/response spoofing attacker. Our proposed scheme utilises I2-DES based IDS,

empowering events and indicator events. The probe packets injected are spoofed CoAP

request/response packets. Attacker diagnosis is tested only through those paths that contain

an empowering event and indicator event after an attack has been launched. The proposed

identification scheme is successfully verified in simulation with variable number of nodes.

The results show effectiveness of our technique with achieved accuracy of more than 99%

and response times as low as 6 seconds.

145

4.5. Conclusion

<<=8=;;

146

5
C h a p t e r

Mitigation of CoAP request/response
spoofing attacks

The Internet of Things (IoT) technology has revolutionised the outlook of connected devices

and IP-connected smart objects. A significant portion of such interconnected heterogeneous

devices are being extensively deployed to perform mission-critical tasks in areas such as

the health sector, energy management, industrial process control systems, etc. [4] For

uninterrupted services over the internet, a reliable end-to-end communication is demanding

for the family of constrained devices. The IoT protocol stack has been designed and adopted

with an aim of achieving such a standard [10].

IETF has standardized CoAP as an Application layer web transfer protocol to provision

for usage of Internet services in M2M applications constituting resource-constrained devices

across lossy, low-power networks [114]. Specially designed for provisioning web interoperabil-

ity, applications that make use of constrained sensing or actuating devices, having limited

power, memory and processing capabilities, render them fragile to various external threats

and DoS attacks. CoAP uses UDP as the transport protocol, which is unreliable and is

devoid of handshaking mechanism between client and server. CoAP is susceptible to various

attacks like Cross-Protocol attacks, Amplification attacks, Man-in-The-Middle (MiTM),

etc. [115] Amongst these, IP address spoofed DoS attacks can be launched at ease and

is the focus of our work here. Moreover, it can help mount stealthier attacks when used

in combination, such as amplification attacks. Availability of devices and accessibility to

services can be immensely compromised by a malicious endpoint that is exercising read and

write access.

Research works reported in the literature have undertaken numerous countermeasures

to effectively mitigate DoS attacks in general. Mostly, the adopted approaches either employ

host-based, router-based or hybrid techniques [116]. Adaptive solutions employing frequency

based approaches have been successfully used to detect mixed-rate IP spoofed DDoS attacks

[117]. Off-path response spoofing attacks in TCP and DNS have been analyzed thoroughly

in the literature [118, 119]. A countermeasure based on source-port randomization has

been proposed for an off-path attack on TCP [120]. In, they launch an off-path attack by

analyzing the remote server access support in CoAP and a request spoofing vulnerability.

Request spoofing is also shown to be mitigated using machine learning based approaches

[121].

The proposed schemes, except a few, do not address mitigation techniques for request

spoofing attack in LoWPAN applications using CoAP. None of the reported works have

attempted identification of malicious or misconfigured endpoints in the past. Owing to

the similarity between diagnosis of faults and detection of network attacks in DES, we

employ DES based IDS [122, 48]. However, I-diganosability frameworks are not sufficient

to generate responses such that an attacker can be identified. We employ I2-Diagnosability

based DES framework that uses empowering events along with indicator transitions.

Enumerated below are our contributions in this work:

1. We design a novel request/response spoofing attack detection and attacker identification

scheme in LoWPAN applications employing CoAP without DTLS support. Our scheme

utilises decentralized DES based IDS, empowering events and indicator events.

2. We extend the power of traditional I2-DES based IDS with attack type modeling for

identification of malicious node.

3. We prove the correctness and completeness of our approach by enumerating all the

attack cases.

4. The results demonstrate an energy efficient and scalable solution at considerably lesser

response times compared to the related state-of-art solutions.

148

5. Mitigation of CoAP request/response spoofing attacks

5.1 Background

5.1.1 CoAP

Similar to HyperText Transport Protocol (HTTP), CoAP realizes a subset of REpresen-

tational State Transfer (REST) architecture that is meant to be suitable for constrained

systems. It defines a request/response model for communicating endpoints while supporting

POST, GET, PUT and DELETE methods. CoAP defines four message types, namely,

confirmable messages (CON), Non-confirmable messages (NON), Acknowledgment messages

(ACK) and Reset messages (RST).

5.1.2 CoAP Message Format

Ver
(2)

T
(2)

TKL
(4)

Code
(8)

Message ID
(16)

Token (if any)

Options (if any)

Payload (if any)1 1 1 1 1 1 1 1

Figure 5.1: CoAP message format

The CoAP message format is shown in Figure 5.1. Messages in CoAP are binary

encoded with a fixed size header of 4 bytes. The variable length Token value can range

between 0 and 8 bytes. The header fields and their meanings are: Version (Ver): A 2-bit

integer (unsigned) binary value that indicates the CoAP version in use. Type (T): It is used

to specify type of messages (00) Confirmable (01) Non-confirmable (10) Acknowledgement

(11) Reset. Code: An integer of 8-bits of the format "c.dd". 0.00 indicates an empty

message. Message ID: An integer value of 16-bits used in duplicate detection and message

type matching. Token Length (TKL): This 4-bit integer indicates length of the Token

field (variable).

149

5.1. Background

A CS

NON

NON

NON

A CS

NON

NON

NON

NON

NON

A CS

NON

NON

NON

NON

NON

RST

RST

(d) (e) (f)

T0

t

ACS

(b) (c)

NON

NON

NON

RST

RST

ACS

NON

NON

NON

RST

RST

RST

RST

t

INTERNET

A

S

C

R

(a)

Figure 5.2: CoAP address spoofed attack timeline

5.1.3 CoAP - IP address spoofing attack

Though CoAP supports stop-and-wait mechanism for retransmission and NON/CON du-

plicate detection, there are occasions which can be evasive and require stricter measures

to ensure security. The attack can be launched by an on-path attacker or an off-path

attacker. An on-path attacker lies on the path connecting the client to the server node

while an off-path attacker lies somewhere except the legitimate CoAP message delivery path.

We discuss the off-path attack here. Irrespective of any cryptographic implementation,the

attacker mimics the target node using address spoofing and sends identical forged packets.

RFC 7252 discusses the various ways that response and multicast request spoofing may

be performed. We here discuss the network event dynamics pertaining to non-confirmable

messages. Figure 5.2(a) shows the network of resource constrained devices with an off-path

internal attacker, A, a client node C, server node S and the root node (or, 6BR), R.

150

5. Mitigation of CoAP request/response spoofing attacks

Response spoofing

The timeline of events arising from response spoofing are shown in Figure 5.2(b) and Figure

5.2(c). In the first case, C legitimately sends NON message each time to S. A times the

attack and sends a spoofed RST message to C, thus, mimicing the server. C is deceived

and each time retransmits the packet essentially resulting in DoS. In the second case, due to

rightly received illegitimate packet, S sends back a RST message to C. Since A has already

conveyed a RST message to C, duplicate detection capabilities of CoAP can help identify

the forgery.

Request spoofing

The request spoofing attack timeline is shown through the Figures 5.2 (d)-(f). In the first

instance, A keeps on sending NON messages using C’s identity, illegitimately, and floods

the server. The second case shows a fake NON message from A is delivered each time

before C delivers one to S. The overhead is same as the previous scenario, but C never

gets to know about the attack. In the third case, a RST is received by C due to the fake

message sent from A behaving to be C.

5.2 Proposed Scheme

In this section our countermeasure scheme against CoAP request/response spoofing attack

is presented. We introduce I2-DES based IDS followed by an overview of the detection

methodology using our proposed IDS. We then discuss the techniques used and algorithms

devised to identify the attacker. The construction of DES normal and DES attack models

and the diagnoser are discussed next. The correctness and completeness proof is presented

subsequently.

5.2.1 I2-DES based IDS

We introduce I-DES based IDS in Section 3.3.1. In I-DES based IDS an I-diagnoser is

used as the IDS engine, constructed from the knowledge of normal and attack type I-DES

models. Consequently, attacker location is identified only through the states that lie on

the path after an indicator event has occurred. To summarize, by using I-DES based IDS,

151

5.2. Proposed Scheme

and given all possible attack instances, it can be ascertained if an attack can always be

exclusively identified, correctly and completely. However, there exists avenues when using

I-DES based IDS does not suffice in attack detection or attacker location identification in

spite of indicator events. Correspondingly, to overcome such limitations, I2-DES based

IDS is proposed in this work to identify an attack node location. Analogously, we augment

traditional I (Induced)-I-DES based IDS with attack types in our work here. In I2-DES

based IDS, an I2-diagnoser is used as our IDS engine. Empowering events are used along

with indicator events for this DES based detection methodology. To summarize, by using our

proposed I2-DES based IDSs, and given all possible attack instances, it can be ascertained

if an attack can always be exclusively identified, correctly and completely.

Figure 5.3: An example of IDS deployment

5.2.2 Design Overview

Main challenges in CoAP spoofing attack detection are (i) nodes and IoT network is resource

constrained (ii) communication sequences across normal and attack conditions are same (iii)

eavesdropping attacker may be off-path as well as on-path. Moreover an on-path attacker

can delay or drop messages making attacker localisation cumbersome. To overcome these

challenges, a decentralized approach is proposed in this work with a set of IDS, Î, that are

distributed across the monitored network of IoT nodes. Each IDS, Ii ∈ Î, works analogously

and independently. Besides the regular 802.15.4 communication, the set of IDS are also

connected via a wired network for reserved communication (between IDS nodes only), e.g.,

152

5. Mitigation of CoAP request/response spoofing attacks

intimation packets. Moreover, in our proposed countermeasure, the following is established

as a general rule; a CoAP packet exchange between a pair of IDS nodes, via the wireless

network, must always be preceded by a prior intimations via the wired network. The IDS

make use of this wired intimation and an intelligent probing mechanism. The probe packets

are basically crafted CoAP packets. Due to active probing, unique responses are generated

that makes an attack node differentiable from a normal node. Table 1 lists the notations

that will be used throughout. Figure 5.3 shows an example of IDS deployment in our scheme.

For simplicity we show the wired and 802.15.4 connections with 2 IDS nodes.

Figure 5.4: Architecture of the proposed IDS

Components of an IDS: The block diagram of proposed IDS with the basic compo-

nents is shown in Figure 4.4 and are discussed here as follows:

• Sniffer: It captures control and data packets in the network while working in

promiscuous mode. Relevant packets are sniffed and others are dropped. It then

forwards the sniffed packets to the components, “CoAP_REQ_HANDLER()" and

“CoAP_RSP_HANDLER()".

• CoAP_REQ_HANDLER(): The following handler module in IDS nodes are used

to process client requests and plays the server role. It monitors communication data

packets from IDS nodes and extracts information such as IP address, MAC address,

etc. It intimates a source IDS node if the requests are proved. The working procedure

153

5.2. Proposed Scheme

of this handler is described in Sections 5.2.4 and 5.2.5. A brief demonstration of their

role can be seen in Figure 5.5

• CoAP_RSP_HANDLER(): The following handler module in IDS nodes are used

to process server and plays the client role. Its prime responsibility is to extract vital

information such as source IP address, MAC address from CoAP packets. It generates

events such as CREQS , CPREQS , FLAGS , PFLAGS . The generated events are

passed to the DES diagnoser component. The working procedure of this handler is

described in Sections 5.2.4 and 5.2.5.

• I2-DES Diagnoser: This component diganoses the attacker node and is imple-

mented as a software module. Given the knowledge of the DES model specifications

pertaining to normal and attack type conditions, the diagnoser can be constructed.

CoAP_REQ_HANDLER() and CoAP_RSP_HANDLER() pass information

regarding network events to the local I2-diagnoser. Based on the event parameters

that are shared, the diagnoser generates an alert on attack detection or identification

of malicious nodes. The usage and construction of the diagnoser is described in Section

5.2.6.

Figure 5.5: Role of IDS

Our identification procedure consists of four phases, namely, setup, intimation, active

probing and diagnosis. We demonstrate the working methodology of our scheme here. A

pictorial representation of the workflow can be seen in Figure 4. Initially, the set of IDS

are setup using network traffic monitoring and logs relevant data. Otherwise the IDS node

behaves as any other node in the network during this stage. Each IDS will locally store the

154

5. Mitigation of CoAP request/response spoofing attacks

relevant detection parameters in array data structures, which are updated and maintained

throughout. Each IDS node contains separate client and server module for role specific tasks.

When a CoAP request or response spoofing attack is underway, an IDS server or client

module, i.e., CoAP_REQ_HANDLER() or CoAP_RSP_HANDLER(), respectively,

infers it from the following situations: (i) more than one request or response is received from

an IDS (ii) a request or response is received from an IDS without a wired intimation. On

inference, the receiver IDS will send active probe packets. On behalf of the IDS, the handler

module will send a probe intimation followed by a probe response or request packet with

dummy application data to the source IDS. The generated response to the probe packets

are validated by the I2-DES diagnoser of the receiver IDS against the DES normal and

attack specifications. The diagnoser generates an alert to the network admin if an attacker

node is identified. This concludes the diagnosis phase. Essentially, the probe response

characteristics separates an attack specific behaviour from the normal. The normal scenario

corresponds to the receipt of only one probe response with matching application data or no

response. The phases of our detection methodology are discussed below and is shown using

Figure 5.6.

5.2.3 Setup

This phase requires administrator intervention for parametrized setup of IDS. For the purpose

of Network Traffic Analysis (NTA), IDS monitors network traffic, collects the relevant data

and stores them. Essential parameters are measured, the required information is stored in ar-

rays and global constants are set during this stage. A variable tifs stores the inter-frame spac-

ing with inputs from the lower layers. Each IDS maintains 2 arrays, ˆTRES and ∆̂. A CoAP

client request embeds information, namely host IP address, port number of the URI (Unified

Resource Identifier), absolute path and URI-query, directed to intended resources. A resource

URI is a string of the form “coap://<host>[:<port>]<path>[?<query>]". Some examples of

resource URI are coap://example.com:5682/ sensors/readings.xml, coap://FF05::FD:5682/

.well-known/core, coaps://127.0.0.1/.well-known/core?rt=core1.ps, etc. Each IDS shares

and maintains a record of resource URI and client nodes depending on the history of

access requests. ˆTRES is an array of linked list pointers used by an IDS to store resource

URI information of its associated nodes. Each array element points to a memory address

155

5.2. Proposed Scheme

where the list of strings, each corresponding to an unique resource URI for a particular

associated node, can be accessed. An element of the array, TRESj , therefore points to

a list of resource uris for node j. | ˆTRES| signifies the size of ˆTRES, i.e., the number of

nodes in the monitored network that have an association with it. ∆̂ stores the transmission

timeout values between pairs of IDS nodes. Given an IDS node Ii, ∆j contains the average

transmission time taken for a CoAP packet to reach IDS Ii from IDS Ij . Again, |∆̂|, the

size of ∆̂, is equal to one less than the number of IDS nodes.

Figure 5.6: Flow of proposed scheme

5.2.4 Inference

We discuss how a CoAP request/response spoofing attack is inferred after the IDS has

been setup. Correct inference of the attack is vital to the detection and identifica-

tion of the malicious node. Our proposed IDSs consist of two handler components,

CoAP_REQ_HANDLER() and CoAP_RSP_HANDLER(). The former plays the

role of a server module while CoAP_RSP_HANDLER() plays the client role. The for-

mer handles the requests of clients on behalf of the host IDS, processes the information and

sends the appropriate responses. They are responsible for request spoofing attack inference

as well as detection in our scheme. The latter handles server responses and is responsible

for response spoofed attack inference and detection. Furthermore, these modules share the

generated events with the DES diagnoser. As already mentioned, these handler components

issue an intimation via the wired network, i.e., Channel2 (referred as Ch2), before sending

a CoAP packet via the wireless network, Channel1 (referred as Ch1), to any IDS node.

For a CoAP receiver IDS to infer an attack in our scheme, it is a prerequisite that

the spoofed requests or responses are sent from an IDS source. For a receiver IDS, let us

156

5. Mitigation of CoAP request/response spoofing attacks

suppose Ir, the following four cases occur.

• a request from a source IDS, let Is, is received without intimation

• two successive identical requests are received from Is within the distributed inter-frame

spacing

• a response from Is is received without intimation

• two successive identical responses are received from Is within the distributed inter-

frame spacing

Cases 1 and 2 are handled by CoAP_REQ_HANDLER() on behalf of Ir. Cases 3

and 4 are handled by CoAP_RSP_HANDLER() on behalf of Ir. Since a source IDS

intimation is not received apriori, it can be safely inferred from Cases 1 and 3 that the

request or responses received are spoofed. Also, since two consecutive identical requests

or responses are received within tifs, it can be also concluded from Cases 2 and 4 that

one of the request or response packet is spoofed. These are shown through the lines of the

Algorithms 10 and 13.

5.2.5 Probing

In CoAP request/response spoofing attacks, due to lack of authentication mechanism and

because of unreliability in transmission, it becomes challenging to verify the ingenuity of

CoAP packets. In case only one spoofed request or response is received, there are no means to

know sender authenticity. Moreover, devices are mostly resource constrained and verification

of per packet originality is detrimental to network performance. Furthermore, even when

more than two identical packets are received, consecutively, there are no mechanisms to

judge as to which one is original. Packets therefore need to be retransmitted in such a

scenario. Again, it does not hinder the attacker from launching fresh attacks. Therefore it

becomes quintessential to identify the malicious node and also create distinguishable traffic.

In our scheme, wired intimation helps infer an attack with surety. We use an intelligent

active probing technique that helps issue differentiable responses which are passed to the

diagnoser. Given DES attack and normal models, the I2-DES diagnoser helps generate an

alert and identify the attacker.

157

5.2. Proposed Scheme

As soon as attack is inferred by an IDS, Ir, it sends active probe packets to the source

IDS. First, Ir intimates Is via Ch2. Particulars of a possible attack node is shared with

Is via this intimation. If the attack was inferred by CoAP_REQ_HANDLER() of Ir,

then it sends a normal CoAP response RST or ACK packet to Is after some random delay.

These are probe packets that the CoAP_RSP_HANDLER() of Is understands due to

the probe intimation received beforehand. Accordingly, CoAP_RSP_HANDLER() on

behalf of Is will send probe response intimation packet to Ir via Ch2, which it expects.

Random application data is piggybacked with the intimation. Ir will set the requisite flag

and pflag variables on receipt of this intimation. Meanwhile, diagnoser sets TEST_FLAG

to 0 until a response is received. While waiting on a response, array ∆s is consulted for

timeout calculation.

q1 q2 q3 q4

q1'

Normal FLAGS CREQS FLAGR

A�ack
Type 2

τ0

τ1 τ2

τ3

A1

τ4
τ7

τ9

τ10

τ8

q2' q3' q13'

q5

FLAGR

q6

CREQR
q7

FLAGS

CRSPS

q5'

q8

PFLAGR

q11
PFLAGR

q9

q12

CPREQR
q10

FLAGS

q13
FLAGSCPRSPR

CPRSPS

CPREQS

q6' q7'

q14' q15' q16' q17' q18'

q8' q9' q10' q11' q12'

τ11 τ12
τ13

τ14 τ15 τ16 τ17

q1''

A2

q2'' q3''
FLAGS CREQS

q13''
CRSPR

q5''
FLAGR

q6'' q7''
CREQR CREQR

CREQR

q14'' q15'' q16'' q17''
PFLAGS CPREQS FLAGR CPRSPR

*
q18''

CPRSPR

q8'' q9'' q10'' q11'' q12''
PFLAGS CPRSPS FLAGR CPREQR

* CPREQR

RTOUT , CPREQR

RTOUT , CPRSPR

CPREQR
*

CPRSPR
*

τ1'' τ2''

τ14''

τ15''

τ16'' τ17'' τ18''

τ12'' τ13''

τ23'' τ24''

τ25''

τ4''

τ3''

τ5''

τ6'' τ7''

τ10''

τ8''

τ11''

TRUE

A�ack
Type 1

τ0''

τ0'

TRUE

τ26''

CRSPR

RTOUT

CRSPRτ5

τ6

τ19''

τ20'' τ21''

FLAGS CREQS CRSPR

FLAGR CREQR CREQR

CREQR

PFLAGS CPREQS FLAGR CPRSPR
* CPRSPR

PFLAGS CPRSPS FLAGR CPREQR
* CPREQR

RTOUT , CPREQR

RTOUT , CPRSPR

CPREQR
*

CPRSPR
*

τ1' τ2'

τ16' τ17' τ18'

τ19'

τ20'

τ14'

τ15'

τ25' τ26'

τ27'

τ5'

τ6' τ7' τ8' τ9' τ12'

τ10', τ11'

τ13'

TRUE

TRUE
τ28'

CRSPR

τ21' τ22'

τ23', τ24'

q4''

FLAGR

CRSPR

τ9''

τ22''

τ27''

τ28''

τ4'

τ3'
q4'

FLAGR

CRSPR

Figure 5.7: DES model Hi

158

5. Mitigation of CoAP request/response spoofing attacks

ALGORITHM 10: CoAP_REQ_HANDLER() of Ii
Data : ci, ∆̂, Θ̂i, Ni, ṙi, macd, ipd
Input: Client flag, Client probe flag, CoAP request packet, CoAP probe request packet, TEST_FLAG
Output: Events CREQR, FLAGR, FLAGS , CPREQR, CPRSPS , PFLAGR, PFLAGS

1 while Θ̂i and ∆ are not NULL do
2 if (TEST_FLAG == 1) then
3 Generate RND1 and RND2;

4 if Flag received then
5 if probings = false then
6 Generate event FLAGR;
7 js ← FLAGRIPS ;
8 flagsi,j ← 1;

9 if probings = true then
10 Generate event FLAGR;
11 if ipds = FLAGRIPS then
12 datas = FLAGRPAY LOAD;
13 flagsi,ipd ← 1;

14 else if ipds ̸= FLAGRIPS then
15 js ← FLAGRIPS ;
16 flagsi,j ← 1;

17 if pF lag received ∧ probeds = false then
18 Generate event PFLAGR;

// Set client flag
19 probeds = true;
20 ipss ← PFLAGRIPS ;
21 csids ← PFLAGRSESSION_ID;

22 if Probe Request received ∧ probeds = true ∧ probings = false then
23 Generate event CPREQR;
24 if ipss = CPREQRIPS ∧ csids = CPREQRSESSION_ID then
25 Generate event FLAGS ;
26 SELECT random(hex) and assign to FLAGSPAY LOAD;
27 Send flag variable status as SET to ipss;
28 Generate event CPRSPS ;
29 Send CoAP ACK response to ipss; probeds = false;

30 if Probe Request received ∧ probeds = false ∧ probings = true then
31 Generate event CPREQR;
32 probings = false;
33 TEST_FLAG← 0;

34 if Request received then
35 Generate event CREQR;
36 js ← CREQRIPS ;
37 if js ∈ I and flagsi,j = 1 then
38 Ns

i,j ++;
39 if Ns

i,j = 1 then
40 Start clock timer cs2();

41 if Ns
i,j > 1 ∧ cs2() < tifs then
// Function call to probing module

42 if js ∈ I and flagsi,j = 0 then
// Function call to probing module

43 if ((cs1() ≥ ∆s
j) then

44 Stop clock timer cs1();
// Function call to probing module

159

5.2. Proposed Scheme

Table 5.1: TRANSITIONS ℑ IN Hi CORRESPONDING TO CoAP PACKETS

Event (σ) Transition ϕ(V) Assign(V) ϕ(C) Reset(C)

FLAGR ⟨q3, q4⟩,⟨q′3, q′4⟩,⟨q′′3 , q′′4 ⟩ ipsc ≡ FLAGRIPS flagci,ips ← 1 - -
macsc ≡ FLAGRMACS - - -

csidc ≡ FLAGRSESSIONID - - -
FLAGR ⟨q′15, q′16⟩,⟨q′′15, q′′16⟩ ipsc ≡ FLAGRIPS flagci,ips ← 1 - -

macsc ≡ FLAGRMACS datac ← FLAGRPAY LOAD - -
csidc ≡ FLAGRSESSIONID TEST_FLAG← 0 - -

probingc ≡ true - - -
CRSPR ⟨q4, q1⟩,⟨q′4, q′1⟩,⟨q′′4 , q′′1 ⟩ ipsc ≡ CRSPRIPS - cc1 < ∆c

ips cc2 ← 0

macsc ≡ CRSPRMACS - - -
csidc ≡ CRSPRSESSION_ID - - -

flagci,ipsc

≡ true - - -
CRSPR ⟨q′1, q′13⟩,⟨q′′1 , q′′13⟩ ipsc ≡ CRSPRIPS - cc1 < ∆c

ips -
macsc ≡ CRSPRMACS - cc2 < tifs -

csidc ≡ CRSPRSESSION_ID - - -
flagci,ipsc

≡ false - - -
PFLAGR ⟨q1, q11⟩ - ipsc ← PFLAGRIPS - -

- macsc ← PFLAGRMACS - -
- csidc ← PFLAGRSESSION_ID - -
- xc ← PFLAGRAIP - -
- probedc ← true - -

CPRSPR ⟨q′17, q′18⟩,⟨q′′17, q′′18⟩ ipsc ≡ CPRSPRIPS - cc1 < ∆c
ips -

⟨q′16, q′13⟩,⟨q′′16, q′′13⟩ macsc ≡ CPRSPRMACS - - -
csidc ≡ CPRSPRSESSION_ID - - -

probingc ≡ true - - -
datac ≡ CPRSPRPAY LOAD - - -

CPRSP ∗
R ⟨q′16, q′17⟩,⟨q′16, q′18⟩ ipsc ≡ CPRSP ∗

RIPS
- cc1 < ∆c

ips -
macsc ≡ CPRSP ∗

RMACS
- - -

csidc ≡ CPRSP ∗
RSESSION_ID

- - -
probingc ≡ true - - -

datac ̸= CPRSP ∗
RPAY LOAD

- - -
ipsc ≡ ip′ - - -

FLAGS ⟨q1, q2⟩,⟨q′1, q′2⟩,⟨q′′1 , q′′2 ⟩ - ipsc ← FLAGSIPD - -
- macsc ← FLAGSMACD - -
- csidc ← FLAGSSESSION_ID - -
- flagci,ipsc

← false - -
CREQS ⟨q2, q3⟩,⟨q′2, q′3⟩,⟨q′′2 , q′′3 ⟩ ipsc ≡ CREQSIPD - - -

macsc ≡ CREQSMACD - - -
csidc ≡ CREQSSESSION_ID - - -

PFLAGS ⟨q′13, q′14⟩,⟨q′′13, q′′14⟩ ipsc ≡ PFLAGSIPD Ki ← Ki + 1 - -
macsc ≡ PFLAGSMACD - - -

csidc ≡ PFLAGSSESSION_ID - - -
xc ≡ PFLAGSAIP - -

- probingc ≡ true - -
CPREQS ⟨q13, q1⟩,⟨q′14, q′15⟩,⟨q′′14, q′′15⟩ ipsc ≡ CPREQSIPD - - cc1 ← 0

macsc ≡ CPREQSMACD - - -
csidc ≡ CPREQSSESSION_ID - - -
datac ≡ CPREQSPAY LOAD - - -

5.2.6 I2-DES modeling

We model the LoWPAN of our interest as an I2 (Induced I)-DES Hi, shown in Figure

5.7. The networked system model represents the CoAP request response event dynamics

occurring during normal as well as attack scenario. We formally define Hi as a 6-tuple,

Hi=⟨Q,Q0,Σ, V, C,ℑ⟩. Q designates the set of finite states while a subset of Q designating

the initial set of states is represented using Q0 (Q0 ⊆ Q). Σ is used to represent the event

set, V is the finite set of model variables, C represents a set of clock variables and ℑ is

the set of finite transitions in Hi. The notion of final state is dropped, since the LoWPAN

is assumed to be always up with frame exchanges being continuously monitored. The

definitions of the DES terminologies are presented in Appendix A. The various components

160

5. Mitigation of CoAP request/response spoofing attacks

Table 5.2: TRANSITIONS ℑ IN Hi CORRESPONDING TO CoAP PACKETS

Event (σ) Transition ϕ(V) Assign(V) ϕ(C) Reset(C)

FLAGR ⟨q1, q5⟩,⟨q′1, q′5⟩,⟨q′′1 , q′′5 ⟩ - ipss ← FLAGRIPS - -
- macss ← FLAGRMACS - -
- flagsi,ips ← 1 - -

FLAGR ⟨q′9, q′10⟩,⟨q′′9 , q′′10⟩ ipds ≡ FLAGRIPS flagsi,ips ← 1 - -
macds ≡ FLAGRMACS datas ← FLAGRPAY LOAD - -

csids ≡ FLAGRSESSIONID TEST_FLAG← 0 - -
probings ≡ true - - -

CREQR ⟨q5, q6⟩,⟨q′5, q′6⟩,⟨q′′5 , q′′6 ⟩ ipss ≡ CREQRIPS - cs1 < ∆s
ips cs2 ← 0

macss ≡ CREQRMACS - - -
csids ≡ CREQRSESSION_ID - - -

flagsi,ipss

≡ false - - -
CREQR ⟨q′6, q′7⟩,⟨q′′6 , q′′7 ⟩ ipss ≡ CREQRIPS - cs1 < ∆s

ips -
macss ≡ CREQRMACS - cs2 < tifs -

csids ≡ CREQRSESSION_ID - - -
flagsi,ipss

≡ true - - -
PFLAGR ⟨q1, q8⟩ - ipss ← PFLAGRIPS - -

- macss ← PFLAGRMACS - -
- csids ← PFLAGRSESSION_ID - -
- xs ← PFLAGRAIP - -
- probeds ← true - -

CPREQR ⟨q′11, q′12⟩,⟨q′′11, q′′12⟩ ipss ≡ CPREQRIPS - cs1 < ∆s
ips -

⟨q′10, q′7⟩,⟨q′′10, q′′7 ⟩ macss ≡ CPREQRMACS - - -
csids ≡ CPREQRSESSION_ID - - -

probings ≡ true - - -
datas ≡ CPREQRPAY LOAD - - -

CPREQ∗
R ⟨q′′10, q′′11⟩,⟨q′′10, q′′12⟩ ipss ≡ CPREQ∗

RIPS
- cs1 < ∆s

ips -
macss ≡ CPREQ∗

RMACS
- - -

csids ≡ CPREQ∗
RSESSION_ID

- - -
probings ≡ true - - -

datas ≡ CPREQ∗
RPAY LOAD

- - -
ipss ≡ ip′′ - - -

FLAGS ⟨q6, q7⟩ ipss ≡ FLAGSIPS - - -
macss ≡ FLAGSMACS - - -

csids ≡ FLAGSSESSION_ID - - -
- flagsi,ipss

← false - -
CRSPS ⟨q7, q1⟩ ipss ≡ CRSPSIPS - - -

macss ≡ CRSPSMACS - - -
csids ≡ CRSPSSESSION_ID - - -

PFLAGS ⟨q′7, q′8⟩,⟨q′′7 , q′′8 ⟩ ipss ≡ PFLAGSIPD Ki ← Ki + 1 - -
macss ≡ PFLAGSMACD - - -

csids ≡ PFLAGSSESSION_ID - - -
xs ≡ PFLAGSAIP - -

- probings ≡ true - -
CPRSPS ⟨q10, q1⟩,⟨q′8, q′9⟩,⟨q′′8 , q′′9 ⟩ xs ≡ CPRSPSIPD - - cs1 ← 0

macss ≡ CPRSPSMACD - - -
csids ≡ CPRSPSSESSION_ID - - -
datas ≡ CPREQSPAY LOAD - - -

RTOUT ⟨q′10, q′7⟩,⟨q′′10, q′′7 ⟩ Ki < M - - -
⟨q′16, q′13⟩,⟨q′′16, q′′13⟩ - - - -

of Hi are discussed here.

There exist domain sets of variables from which each model variable assumes values. If

the set of model variables, V , is {v1, v2, . . . , vn}, then each vi, where i is a positive integer

and i ∈ [1, n], takes some value from Di, the domain set. The clock variables assume values

from the set of non-negative real numbers, R (R = R+ ∪ {0}). Let τ be a transition in Hi,

τ ∈ ℑ. We define it as a 7-tuple, τ = ⟨x, x+, σ, ϕ(V),Φ(C), Reset(C), Assign(V)⟩, where

x is the source state and x+ denotes the destination state. The occurrence of event σ,

σ ∈ ℑ, enables transition τ . ϕ(V) denotes a boolean conjunction of equality or non-equality

conditions defined over a subset of the model variables. It needs to be TRUE for a transition

161

5.2. Proposed Scheme

ALGORITHM 11: CoAP_REQ_HANDLER() Probing Module of Ii
1 Generate event PFLAGS ;
2 SELECT random(x), and assign x to PFLAGSAIP , x ∈ IPLIST ;
3 Send probe flag to js;
4 Ns

i,j = 0; Wait();
5 Generate event CPRSPS ;
6 ipds ← CPRSPSIPD;
7 csids ← CPRSPSIPD;
8 probings = true;
9 Send CoAP probe response to js; Start clock timer cs1();

ALGORITHM 12: CoAP_RSP_HANDLER() Probing Module of Ii
1 Generate event PFLAGS ;
2 SELECT random(x), and assign x to PFLAGSAIP , x ∈ IPLIST ;
3 Send probe flag to jc;
4 Nc

i,j = 0; Wait();
5 Generate event CPREQS ;
6 ipdc ← CPREQSIPD;
7 csidc ← CPREQSIPD;
8 probingc = true;
9 Send CoAP request to jc; Start clock timer cc1();

10 Stop clock timer cc2();

to fire. An invariance condition defined over a subset of the clock variables, C is denoted

using Φ(C) while Reset(C) denotes reset of a subset of clock variables. A subset of model

variables are assigned values, and a set of such assignments is represented using Assign(V).

If in some transition, τ , ϕ(V) or Assign(V) is denoted using "-", it might mean that a

condition need not be met (i.e., implicitly TRUE) or an assignment is not required.

Communication in the LoWPAN is modeled using the below mentioned variables:

V = {∆̂, Θ̂i, Ni, ṙi, macd, ipd, ip′, ip′′} is the set of model variables.

C = {cc1, cs1, cc2, cs2} is the set of clock variables.

The domain of the model variables {ips, ipd, ip′, ip′′} is of the form {x.x.x.x}, where

x denotes an integer value in the range [0, 255]. The state set, Q, including the initial set

of states in Q0, is disjointly partitioned into sets QN , QA1 and QA2 as shown in Figure

5.7. QN refers to the set of states visited during normal operation of the LoWPAN at the

Application layer, while the states of the form QAi , 1 ≤ i ≤ 2 (designated here using primed

states), belong to the network operation when under attack launched from actual node, Ai,

independently. Tables 5.1 and 5.2 list elements from the event set, Σ, with their associated

transitions. There exists events occurring in the system, which we model here, that may be

unmeasurable. Hence event set can be expressed as a disjoint union of measurable events

and unmeasurable events Σm and Σum, respectively. That is, Σ = Σm ∪ Σum.

162

5. Mitigation of CoAP request/response spoofing attacks

ALGORITHM 13: CoAP_RSP_HANDLER() of Ii
Data : ci, ∆, Θ̂i, Ni, ṙi, macd, ipd
Input: Server flag, Server probe flag, CoAP response packet, CoAP probe response packet, TEST_FLAG
Output: Events CRSPR, FLAGR, FLAGS , CPRSPR, CPREQS , PFLAGR, PFLAGS

1 while Θ̂i and ∆ are not NULL do
2 if (TEST_FLAG == 1) then
3 Generate RND1 and RND2;

4 if Flag received then
5 if probingc = false then
6 Generate event FLAGR;
7 jc ← FLAGRIPS ;
8 flagci,j ← 1;

9 if probingc = true then
10 Generate event FLAGR;
11 if ipdc = FLAGRIPS then
12 datac = FLAGRPAY LOAD;
13 flagci,ipd ← 1;

14 else if ipdc ̸= FLAGRIPS then
15 jc ← FLAGRIPS ;
16 flagci,j ← 1;

17 if pF lag received ∧ probedc = false then
18 Generate event PFLAGR;

// Set client flag
19 probedc = true;
20 ipsc ← PFLAGRIPS ;
21 csidc ← PFLAGRSESSION_ID;

22 if Probe Response received ∧ probedc = true ∧ probingc = false then
23 Generate event CPRSPR;
24 if ipsc = CPRSPRIPS ∧ csidc = CPRSPRSESSION_ID then
25 Generate event FLAGS ;
26 SELECT random(hex) and assign to FLAGSPAY LOAD;
27 Send flag variable status as SET to ipsc;
28 Generate event CPREQS ;
29 Send CoAP request to ipsc; probedc = false;

30 if Probe Response received ∧ probedc = false ∧ probingc = true then
31 Generate event CPRSPR;
32 probingc = false;
33 TEST_FLAG← 0;

34 if Response received then
35 Generate event CRSPR;
36 jc ← CRSPRIPS ;
37 if jc ∈ I and flagci,j = 1 then
38 Nc

i,j ++;
39 if Nc

i,j = 1 then
40 Start clock timer cc2();

41 if Nc
i,j > 1 ∧ cc2() < tifs then
// Function call to probing module

42 if jc ∈ I and flagci,j = 0 then
// Function call to probing module

43 if ((cc1() ≥ ∆c
j) then

44 Stop clock timer cc1();
// Function call to probing module

163

5.2. Proposed Scheme

Table 5.3: Notations used

Notation Explanation
CREQR, CREQS CoAP request packet received, sent
CRSPR, CRSPS CoAP response packet received, sent
FLAGR, FLAGS Flag intimation packet received, sent
PFLAGR, PFLAGS Probe flag intimation packet received, sent
CPREQR, CPREQS CoAP probe request packet received, sent
CPRSPR, CPRSPS CoAP probe response packet received, sent
RTOUT Retransmission timeout

I2-DES behaviour under normal circumstances

The behavior of Hi under normal circumstances is shown in Figure 5.7. The system, when

functioning normally, is represented using the states {q1, q2, . . . , q13} and the transitions

{τ0, τ1, . . . , τ17}. The initial state of Q0 is q1. The transitions are listed in Tables 5.2 and

5.1. We next discuss the transitions in normal condition as follows:

• τ0, the initial transition leads to the initial state q1 as shown in Figure 5.7. It is assumed

while modeling that the constant timeout values, ∆ and Θ̂i have been computed and

then τ0 takes place. There is no explicit event that triggers τ0. Occurrence of τ0

implies that the DES model is invoked when the timeout values are not NULL. Hence,

initial(τ0) = −−, i.e., there are no initial states and final(τ0) = x1. σ = true means

that transition τ0 is always enabled and q1 is automatically reached at the start of

the model. check(V) = −− implies that no condition over the model variables are

checked and the condition is always satisfiable for the transition. Value 1 is assigned

to variable TEST_FLAG as implied by Assign(V) = {TEST_FLAG← 1}, which

in turn means that the detection of fragmentation attacker can be started.

• τ1 : (q1 → q2) When the model is started and the current state is at q1, the transition

τ1 implies that client intimates about its future communication through wired channel

(Ch2) by setting a flag variable . Here, initial(τ1) = q1 and final(τ1) = q2. σ =

FLAGS implies that transition τ1 is enabled when CoAP_RSP_HANDLER()

generates event FLAGS (i.e., after status is flagged). check(V) = −− meaning that

no condition need to be satisfied and Assign(V) = {ipsc ← FLAGSIPD,macsc ←

FLAGSMACD, csid
c ← FLAGSSESSION_ID}. The parameters that uniquely identify

a flag status packet are destination IP, destination MAC and a session ID. Consequently,

164

5. Mitigation of CoAP request/response spoofing attacks

all the parameters that correspond to the header are stored in the model variables,

ipsc, macsc and csidc.

• τ2 : (q2 ← q3) At state q2, the transition τ2 implies that now a CoAP request

packet is sent by the host client to the same server node to which the flag sta-

tus was communicated earlier. It is sent via the 802.15.4 network (Ch1). Here,

initial(τ2) = q2 and final(τ2) = q3. σ = CREQS corresponds to enabling transi-

tion τ2 after the CoAP_RSP_HANDLER() generates the event CREQS implying

that a request is sent on the condition over the model variables in check(V) be-

ing satisfied. check(V) = {ipsc = CREQSIPD,macsc = CREQSMACD, csid
c =

CREQSSESSION_ID}. Assign(V) = −−, meaning that no assignments are done in

this transition.

• τ4 : (q3 → q4) At state q3, the transition τ4 implies that a flag status intimation

is received from the server node, via Ch2, to which the request packet was sent in

τ2. σ = FLAGR implies that τ4 is enabled when the CoAP_RSP_HANDLER()

generates the event FLAGR (i.e., after flag SET status is received). check(V) =

{ipsc = FLAGRIPS ,macsc = FLAGRMACS , csid
c = FLAGRSESSION_ID} and

Assign(V) = {flagci,ips ← 1}. Satisfaction of the conditions over the model variables,

ipsc, macsc and csidc, ensure that the flag status is received from the same IDS node

to which request was sent. The flag variable corresponding to the source IDS node is

SET.

• τ5 : (q4 → q1) At state q4, the transition τ5 corresponds to the receipt of a response due

to the request packet sent. σ = CRSPR implies that the transition τ5 is enabled when

the CoAP_RSP_HANDLER() generates the event CRSPR. check(V) = {ipsc =

CRSPRIPS ,macsc = CRSPRMACS , csid
c = CRSPRSESSION_ID, f lag

c
i,ips = true}.

The conditions over the model variables if satisfied ensure that the CoAP response

is due to the request packet sent in transition τ2. Furthermore, the clock variable cc1

ensures that response is received before the retransmission timeout window expires

and variable cc2, modeling the timer that checks inter-frame spacing, is started.

Similarly, the other states and transitions pertaining to the CoAP_RSP_HANDLER()

with their implications are briefly discussed as follows:

165

5.2. Proposed Scheme

• τ14: (q1 → q11) At state q1, this transition corresponds to the receipt of probing

intimation by the host node via Ch2. Accordingly the CoAP_RSP_HANDLER()

generates the event PFLAGR and the packet parameters received are assigned to the

variables ipsc, macsc, csidc, probedc and xc.

• τ15: (q11 → q12) At state q11, this transition corresponds to the receipt of a CoAP probe

response packet by the host node via Ch1. Accordingly the CoAP_RSP_HAN −

− DLER() generates the event CPRSPR and the packet parameters received are

checked against variables ipsc, macsc and csidc.

• τ17: (q13 → q1) At state q13, this transition is taken on sending a CoAP probe

request packet via Ch1. Accordingly the CoAP_RSP_HANDLER() generates the

event CPREQS and the packet parameters received are checked against variables

ipsc, macsc, csidc and datac. datac is checked to ensure that the random payload

communicated is same across Ch1 and Ch2.

Next, the states and transitions corresponding to the CoAP_REQ_HANDLER() in

the normal behaviour are discussed as follows:

• τ7: (q5 → q6) At state q5, this transition is taken on receipt of a CoAP request packet

via Ch1 following a flag status receipt. Accordingly here, the event CREQR is gen-

erated after the CoAP_REQ_HANDLER() is invoked and the packet parameters

received are checked against the variables ipss, macss, csids. flagsi,ips is ensured to

be true.

• τ11: (q8 → q9) At state q8, this transition implies that CoAP probe request packet via

Ch1 is received following a probe flag status update. Accordingly the event CPREQR

is generated by the CoAP_REQ_HANDLER() and the packet parameters that

are received are checked against variables ipss, macss, csids to ensure that they are

received from the same client IDS node that communicated the probe flag status.

probeds status is checked such that it holds true.

• τ13: (q10 → q1) At state q10, this transition implies sending a CoAP probe response

packet via Ch1. This is sent in response to the probe request packet that is received

in transition τ11. The CoAP_REQ_HANDLER() generates the event CPRSPS

166

5. Mitigation of CoAP request/response spoofing attacks

and the packet parameters received are checked against variables xs, macss, csids and

datas.

z1:
{q1,q1',q1''}

z5:
{q5,q5',q5''}

z8:
q7

z20:
q12''

z6:
{q6,q6',q6''}

z2:
{q2,q2',q2''}

z3:
{q3,q3',q3''}

z4:
{q4,q4',q4''}

z7:{q7',q7''}

z9:
q8

z12:
q11

z13:
q12

z14:
q13

z10:
q9

z11:
q10

z15:
{q8',q8''}

z16:
{q9',q9''}

z17:
{q10',q10''}

z18:
{q11',q11''}

z19:
q12'

z21:
{q13',q13''}

z22:
{q14',q14''}

z23:
{q15',q15''}

z24:
{q16',q16''}

z25:
{q17',q17''}

z27:
q18''

z26:
q18'

a1

a2
a5

a35a34 a36

a37, a38

a3

a4

a20

a21

a32

a33 a39
a40 a41

a44

a30
a29a31

a6

a17

a45
a43

a28

a27

a7

a16
a14

a42

a22

a26 a25

a8

a15

a23

a24

a9 a10

a11, a12

a13

a19

a18

Figure 5.8: Diagnoser O for DES model Hi

I2-DES behaviour under attack circumstances

The DES model under CoAP spoofing attack condition launched by attacker A1 is shown

using the states in QA1 = {q′1, q′2, . . . , q′18} and transitions, {τ ′1, τ ′2, . . . , τ ′28}. Similarly for

attacker type A2, states and transitions are represented using double prime notation, QA2 =

{q′′1 , q′′2 , . . . , q′′18} and transitions, {τ ′′1 , τ ′′2 , . . . , τ ′′28} as shown in Figure 5.7. The DES model

behavior under different attackers are identical except four transitions that differentiate

them which are discussed.

• At state q1, the system reaches an attacker type state q′1 or q′′1 following an unmeasurable

attack transition τ ′0 or τ ′′0 , respectively.

• τ ′12 : (q′16 → q′17, q′16 → q′18) At state q′16, the transition τ ′12 corresponds to a spoofed

CoAP response packet. σ = CPRSP ∗R implies that the transition is enabled when the

CoAP_RSP_HANDLER() generates the event CPRSP ∗R. check(V) = {ipsc =

CPRSP ∗RIPS ,macsc = CPRSP ∗RMACS , csid
c = CPRSP ∗RSESSION_ID, ips

c = ip′}.

167

5.2. Proposed Scheme

The conditions over the model variables, ipsc, macsc and dtag, ensure that the

duplicate NACK intimation is a response to the datagram probe header fragment

in τ10′. The model variable macd holds the MAC address of the next-hop node via

which the probe was sent. τ16′ ensures that macd holds the IP address of attack node

A1. An intimation for probe sent via a node with MAC address stored in macd is a

fragment duplication attack. Φ(C) = {cc1 < ∆c
ips} means that cc1 does not exceed the

retransmission timeout period.

• τ ′′25 : (q′′10 → q′′11, q′′10 → q′′12) At state q′′10, the transition τ ′′25 corresponds to dupli-

cate fragment intimation for the datagram probe sent via a known 1-hop node. σ =

CPREQ∗R implies that the transition is enabled when the CoAP_REQ_HANDLER()

generates the event CPREQ∗R. check(V) = {ips = DPNACKIPD, ipd =

DPNACKIPS , dtag = DPNACKdtag,macd = mac′}. The conditions over the model

variables, ips, ipd and dtag, ensure that the duplicate NACK intimation is a response to

the datagram probe header fragment in τ10′. The model variable macd holds the MAC

address of the next-hop node via which the probe was sent. τ16′ ensures that macd

holds the IP address of attack node A1. An intimation for probe sent via a node with

MAC address stored in macd is a fragment duplication attack. Φ(C) = {cs1 < ∆s
ips}

means that cs1 does not exceed the retransmission timeout period.

I2-Diagnoser

As discussed earlier, for a system to be DES diagnosable, no fault indeterminate cycles should

be present. The stringency of this requirement makes a lot of systems non-diagnosable.

Hence, to render a large class of such non-diagnosable systems to be diagnosable, a weaker

and relaxed notion, I-diagnosability was proposed (see Section 5.2.6). I-diagnosability

associates failures with indicator events. An I-DES modeled system is I-diagnosable if

there exists an indicator event following a failure and the occurrence of the failure can be

detected only by testing system through paths after the indicator event occurs. There still

exists system failures that cannot be diagnosed by the I-diagnosability framework as well in

spite of observable indicator events after the failure. To overcome this limitation, a notion

of I2-diagnosability is proposed in this work. Under I2-diagnosability framework, given

indicator events and the DES model, an empowering event ensures that an indicator event

168

5. Mitigation of CoAP request/response spoofing attacks

actually sensitizes the failure. Here we use a set of IDS each consisting of a local I2-diagnoser.

Each of the local I2-diagnosers are basically observer automatons. They track the local

system behavior and gives a decision on the diagnosis of monitored events. Details of the

diagnoser construction procedure and definitions pertaining to diagnosability are highlighted

in Appendix B. Now, an attack type I2-diagnosable in finite time, if the I2-diagnosability

condition is met (Fi-I2-Diagnosability property is satisfied, see Definition 7, Appendix

B). Since fault occurrence and attack events exhibit identical deviations from the normal

behaviour and in both scenarios they are unmeasurable, taking place without the knowledge

of the system administrator, hence fault diagnosis has been successfully applicable in attack

detection and attack type identification too. A lemma on the I2-diagnosability property

states that lack of attack Ai-indeterminate cycles (Definition 14, Appendix C) having an

embedded indicator transition (Definition 13, Appendix C) guarantees I2-diagnosability.

It means that the diagnoser is able to give a decision in finite time on the occurrence of

the attack event type. Satisfaction of the I2-diagnosability property locally, considering

the limitations in measurement, ensures efficient attack detection as well as attack node

location diagnosis globally [169].

Figure 5.8 shows the constructed diagnoser for our DES model Hi, considered in Figure

5.7. The working mechanism of our diagnoser is summarised here by showing one or more

executions of sequences of measured events (transitions) as follows:

1. The initial state of the model Hi, q1, and states q′1 and q′′1 that are reachable via

unmeasurable attack transitions, τ ′0 and τ ′′0 , form the initial state, z1 of the diagnoser

O.

2. Let ℑz11 = {τ1, τ ′1, τ ′′1 }, i.e., the outgoing transitions from model states {q1, q′1, q′′1} ∈ z1.

All of outgoing transitions in ℑz11 are measurement equivalent (Definition 2, Appendix

A) belonging to one measurement equivalence class of transitions, hence cannot be

further partitioned. Therefore, it justifies O-transition a1. The O-state reached

corresponding to the transition a1 is z2 = {q2, q′2, q′′2}.

3. Let ℑz12 = {τ6, τ ′16, τ ′′16}, i.e., the outgoing transitions from model states {q1, q′1, q′′1} ∈

z1. All the transitions in ℑz12 are equivalent and hence cannot be partitioned

further, justifying O-transition a20. The O-state corresponding to the transition a20

169

5.2. Proposed Scheme

is z5 = {q5, q′5, q′′5}.

4. Let ℑz13 = {τ ′5, τ ′′5 }, i.e., the outgoing transitions from model states {q′1, q′′1} ∈ z1.

All the transitions in ℑz13 are also measurement equivalent and hence cannot be

partitioned further, justifying O-transition a6. The O-state corresponding to the

transition a6 is z21 = {q′13, q′′13}. Since z21 consists of states only from the attack types

1 and 2, hence it is an Attack certain O-state (Definition 9, Appendix C).

5. Let ℑz14 = {τ ′19, τ ′′19}, i.e., the outgoing transitions from model states {q′1, q′′1} ∈ z1.

All the transitions in ℑz14 are also measurement equivalent and hence cannot be

partitioned further, justifying O-transition a32. The O-state corresponding to the

transition a32 is z7 = {q′7, q′′7}. Since z7 consists of states only from the attack types 1

and 2, hence it is an Attack certain state.

In a similar manner, the diagnoser states {z4, z5, z6, z7, z8} can be constructed using

the corresponding O-transitions {a4, a6, a7, a9, a10}. The principle can be safely

extended.

6. From the definition, we can compute the Ak-certain O-states and the Normal certain

O-states. In our example, the A1 certain O-state may be computed as z10 = {x9′}

since it exclusively consists of states only belonging to attacker A1. Similarly, A2

certain O-state may be computed as z11 = {x9′′} and the normal certain O-state can

be computed as z9 = {x1}.

5.2.7 An example of CoAP spoofing attacker node identification using

DES Diagnoser

Suppose ∆̂, tifs and ˆTRES, IPLIST are computed and the following pair of event sequences

occur chronologically in the monitored network due to CoAP packets received or sent from

an IDS node: (i) FLAGS , CREQS , CRSPR, PFLAGS , CPREQS , FLAGR, CPRSP ∗R

(ii) CREQR, PFLAGS , CPRSPS , FLAGR, CPREQ∗R, CPREQR.

In case (i), the diagnoser starts from the O-state z1 and on occurrence of the FLAGS

event, the diagnoser moves to O-state z2 via O-transition a1. The event occurs when a

flag status update is sent by IDS node Ii to another IDS node, suppose Ij . Now, the

transition a1 might have been taken by the diagnoser due to the occurrence of any of the

170

5. Mitigation of CoAP request/response spoofing attacks

Hi-transitions, τ1, τ ′1 or τ ′′1 . Since the transitions τ1, τ ′1 and τ ′′1 are measurement equivalent,

it cannot be certainly said at this point if an attack has occurred. Following this, a CoAP

request packet is sent by Ii to Ij due to which the event CREQS is passed to the diagnoser.

The diagnoser of Ii moves to O-state z3 via O-transition a2. Now when a CRSPR packet

is received with flagci,j = false, the event CRSPR is recorded and the diagnoser reaches

O-state z21 via O-transition a6, which is an Attack-certain state. Therefore, at state z21, a

probe flag status packet, PFLAGS , with attacker node information is passed via Ch2 to Ij

by the CoAP_RSP_HANDLER() component of behalf of Ii. The diagnoser moves to

state z22 via O-transition a8 on the event PFLAGS being passed to it. Consequently, a

CoAP probe request packet is sent to Ij via Ch1. The event generated is CPREQS and the

diagnoser moves to state z23 via a9. On receipt of a flag status update from Ij with dummy

data, the event FLAGR is passed to the diagnoser which now moves to z24. Here, a CoAP

probe response packet is received by Ii such that the payload does not match the data

intimated in O-transition a10. Therefore, CPRSP ∗R event is generated. No further packet is

received by Ii from Ij until timeout ∆j occurs and the diagnoser moves to state z26 or z27,

both of which are Ak-certain states. Hence, it is ascertained that the system is under attack

condition due to attacker node A1 or A2. Moreover, since there are no Ak-indeterminate

cycles [46, 45], along all paths of the I2-DES diagnoser, an unique malicious node Ak, when

present, can be identified correctly. On each such occasion when the diagnoser reaches an

Ak-certain state due to an event trace, an alert is generated.

Whereas in case (ii), the diagnoser starts from the O-state z1 and on receipt of

a CoAP request packet with flagci,j = false, the event CREQR is generated by the

CoAP_REQ_HANDLER() and passed to the diagnoser. The diagnoser reaches O-state

z7 via O-transition a32 which is an Attack-certain state consisting of states from attack

models q′7 and q′′7 . As a consequence, a probe flag status packet, PFLAGS , with attacker

node information is passed via Ch2 to Ij by the CoAP_REQ_HANDLER() component

of behalf of Ii. Therefore, the diagnoser reaches O-state z15 via O-transition a34 from

O-state z7 on the event PFLAGS being passed to it. Vis-a-vis, a CoAP probe response

packet is sent to Ij via Ch1. The event generated is CPRSPS and the diagnoser moves to

state z16 via a35. Next, when a flag status update is received at Ii, the event PFLAGR is

generated and passed to the diagnoser while the payload is locally stored. The diagnoser

171

5.2. Proposed Scheme

moves correspondingly to state z17 via transition a36. Eventually, when two CoAP response

packets with varying payloads are received within the retransmission timeout period, the

events CPREQ∗R and CPREQR are passed to the diagnoser. The diagnoser moves finally

to O-states z19 or z20 depending on the transitions a40 or a41 that may be taken due to

value of attacker node IP address is ip′ or ip′′. Both z19 and z20 are Ak-certain states.

Hence, it can be ascertained that the system is under attack condition due to attacker node

either A1 or A2.

5.2.8 Correctness

DES modeling helps in system level formalisms for checking correctness and completeness.

Our proposed IDS correctness is demonstrated here by considering all possible CoAP

spoofing attack cases. The aim is to show that a malicious node is correctly identified

each time. For our proof, we assume a network fragment consisting of 2 IDS nodes, Ir and

Is, and 4 non-IDS nodes, A, B, X and Y . Let us suppose that A is a request spoofing

attacker node and X, a response spoofing attacker node. They are relatable to A1 and

A2 nodes in our DES modeling. Since our diagnoser O lacks Ak-indeterminate cycles,

diagnosability condition is hence satisfied, meaning that Ak is always identifiable (unique

Ak is diagnosable). To prove completeness, we justify that all possible attack scenarios are

detected by simulating traces in Hi. We show A and X are always correctly identified on

reaching the corresponding Ak certain state in the diagnoser. We consider the following

situations to occur; a CoAP request packet, Q, is received at Ir on one occasion (Case 1)

and on another, a CoAP response packet, P, is received (Case 2). We also assume that X

lies on-path node that forwards P.

Case 1.1 (Ir receives Q on Ch1 without any prior intimation): This can be

fairly understood as a CoAP request spoofing attack inference. Consequently, the current

O-state of the diagnoser evolves from z1 to z7 via O-transition a32. At this point it cannot

be concluded that which one among A, B, X and Y had sent the spoofed packet, Q. Now,

a probe intimation is accordingly sent by the CoAP_REQ_HANDLER() on behalf of

Ir with AIP of A. The event PFLAGS is generated and passed to the diagnoser which

reaches O-state z15 by this time. A probe response packet, CPRSPS , is sent by Ir to Is

and diagnoser reaches z16 via a35. Next, a flag intimation is received from Is. The event

172

5. Mitigation of CoAP request/response spoofing attacks

FLAGR is generated and passed to O. Relevant application data is stored in the variable

datas. The diagnoser current O-state is z17. Now, Is will send a response with the intimated

application data with spoofed IP of the attack node A. The CoAP packet requests for a

resource uri that A contains. A eavesdrops the packet and sends a spoofed request packet

to deny node Is. Hence, the events CPREQ∗R and CPREQR are generated and on being

passed to the diagnoser, O-state 19 is reached via O-transition a43. This is an attacker

A1-certain state. Hence, attack node A is correctly identified.

Case 1.2 (Ir receives a duplicate Q on Ch1 with intimation): This is also a

CoAP request spoofing attack inference. In this case the current O-state of the diagnoser

evolves from z1, z5, z6 to ultimately z7 via O-transitions a20, a21 and a30. Again it cannot

be concluded that which one among A, B, X and Y had sent a spoofed packet, Q. This

time, a probe intimation is accordingly sent by the CoAP_REQ_HANDLER() on behalf

of Ir with AIP of B. Probing is carried out similar to the scenario discussed in Case 1.1. The

only difference arises is when a probe request is expected and the diagnoser is at state z17,

only the probe request from Is with matching application data is received on this occasion.

The event CPREQR is generated and passed to the diagnoser which moves back to O-state

z7. Now, another probe intimation packet is sent by Ir with AIP of A. The events that

follow are similar to the sequence of Case 1.1. Hence attack node A is correctly identified.

Case 2.1 (Ir receives P on Ch1 without any prior intimation): This is a CoAP

response spoofing attack inference. Consequently, the current O-state of the diagnoser will

now evolve from z1 to z21 via O-transition a6. At this point it cannot be concluded that

which one among A, B, X and Y had sent the spoofed packet, P. A probe intimation is

accordingly sent by the CoAP_RSP_HANDLER() on behalf of Ir with AIP of X. The

event PFLAGS is generated and passed to the diagnoser which reaches O-state z22 by

this time. A probe request packet, CPREQS , is sent by Ir to Is and diagnoser reaches

z23 via a9. Next, a flag intimation is received from Is. The event FLAGR is generated

and passed to O. Relevant application data is stored in the variable datac. The diagnoser

current O-state is z24. Now, Is will send a response with the intimated application data

with spoofed IP of the attack node X. The CoAP packet response is regarding a resource

uri that X contains. X eavesdrops the packet and sends a spoofed response packet to deny

node Is. Hence, the events CPRSP ∗R and CPRSPR are generated and on being passed to

173

5.3. Experiments, results, and discussion

the diagnoser, O-state 27 is reached via O-transition a14. This is an attacker A2-certain

state. Hence, attack node X is correctly identified.

Case 2.2 (Ir receives a duplicate P on Ch1 with intimation): This is again a

CoAP response spoofing attack inference. In this case the current O-state of the diagnoser

evolves from z1, z2, z3 to ultimately z21 via O-transitions a1, a2 and a7. Again it cannot be

concluded that which one among A, B, X and Y had sent a spoofed packet, P. This time,

a probe intimation is accordingly sent by the CoAP_RSP_HANDLER() on behalf of Ir

with AIP of Y . Probing is carried out similar to the scenario discussed in Case 2.1. The

only difference arises is when a probe response is expected and the diagnoser is at state z24,

only the probe response from Is with matching application data is received on this occasion.

The event CPRSPR is generated and passed to the diagnoser which moves back to O-state

z21. Now, another probe intimation packet is sent by Ir with AIP of X. The events that

follow are similar to the sequence of Case 2.1. Hence attack node X is correctly identified.

So, all possible attack cases by A and X are analyzed. Each time it can be seen that

diagnoser reports the network condition and attack node correctly. Each time a correct

attacker is concluded when an Ak-certain state is reached.

Table 5.4: Throughput, Accuracy, and Response Time During DoS and after implementation
of Intended Approach

N/W Parameter During DoS Attack Execution After Implementation of Intended Approach
No. of IoT Node 8N 16N 32N 64N 128N 8N 16N 32N 64N 128N

Throughput 87.6% 84.3% 79% 74% 69.3% 98.3% 95.6% 92.5% 83.9% 80.6%
Accuracy (%) NA NA NA NA NA 99.7% 99.4% 99,2% 98.7% 93%

Response Time (Sec.) NA NA NA NA NA 4.3 Sec 4.7Sec. 5.7 Sec. 6.4 Sec. 9.3 Sec.

5.3 Experiments, results, and discussion

In this section, we analyze network performance with the help of three types of experiments

as follows:

Table 5.5: Comparison between closely related works and proposed approach

Refrences Attack Detection
or Identification Energy Usage (mJ) RAM/ROM (in Byte) Scalability Response

Time (s)
Accuracy

(%)
Bhale et al. (2018) [117] Detection 94753 9883/56713 N 34.2-68.9 99.7%
Roselin et al.(2019) [121] Both NA 12785/61292 Y NA 93.5%

JerryJohn et al (2020) [170] Detection 79920 NA N 28.9- 38.5 99.4%
Prahlad et al. (2021) [171] Detection NA 13478/58952 Y 94.7-198 97.8%

Proposed Approach Both 84282 5250/34955 Y 6.1-10.7 99.2%

174

5. Mitigation of CoAP request/response spoofing attacks

5.3.1 Network Performance under non-attack scenarios

In the non-attack scenario, we analyze the network performance with 8, 16, 32, 64, 128 nodes,

as shown in Fig 5.9. All these nodes are legitimate and send requests to the skywebsence

web server for getting their aids (e.g., temperature, intensity, and light values). We use

WireShark to monitor the packet arrival time and flow count. The power consumption, and

RAM/ROM in non-attack scenarios are 7834mJ, 4873/32785 (in bytes), respectively. These

parameter values are consistently disseminated over an experimental period.

A) Non Attack with Dummy Node B) DoS Attack with Dummy Node

Figure 5.9: Snapshot of Non attack and DDoS attack scenario in IoT Ecosystem

5.3.2 Network Performance under DoS attack scenarios

Several tools like libcoap, hping, XOIC, HULK, HOIC, and Contiki Cooja are utilized to

insert DoS attacks. Traffic generated based on these tools limit the web-server’s liveliness

by forming recurring CoAP connections. Network parameters like power consumption,

and RAM/ROM values in DoS attack scenarios are shown in Table 5.5 . The exhibited

throughput of the system drops as compared to the non-attack scenarios, due to recurring

CoAP connections, are listed in Table 5.4.

5.3.3 Network Performance with the proposed approach:

Table 5.4 shows throughput, accuracy, and response time with the multiple numbers of IoT

nodes. Based on the experimental results, the intended approach is energy-efficient and

scalable. It also gives comparable energy usage, RAM/ROM utilization, response times,

175

5.4. Conclusion

and accuracy. Table 5.5 shows an average energy consumption, RAM/ROM, response time,

and accuracy are 84282 mJ, 5250B/34955B, 6.1-10.7 (s), and 99.2%, respectively.

5.4 Conclusion

In this chapter, a novel I2-DES based IDS scheme is presented that detects as well as

identifies an IP address spoofing attacker in CoAP based LoWPAN scenario. We show using

the notion of diagnosability that an attacker can be correctly identified from analysing the

characteristic network dynamics by using empowering events and a one of a kind probing

schema design. The security solution we propose is an energy-efficient approach that achieves

99.2% accuracy with response time as low as 6.1 seconds, thus, mitigating both request and

response spoofing.

The experimental results are illustrative of both attacked and non-attacked IoT ecosys-

tem behavioural patterns. In future, we would like to extend our approach to MQTT

security and further venture into distributed denial-of-service attack mitigation schemes

using lightweight solutions.

<<=8=;;

176

6
C h a p t e r

Conclusions and Future Work

The world has already witnessed a paradigm shift in modern day communication and

connectivity with the phenomenal and speedy growth of IoT and the heavy reliance of

modern day lifestyle on it. IoT services, made available to the tiniest of devices and sensors,

are being vastly applied and used in mission-critical systems, healthcare, manufacturing

systems, smart homes, smart cities, electricity meters, etc. A majority of the IoT networks

and devices are lossy and constrained in nature, making them an easy target for malicious

entities. Moreover, authentication capabilities are lacking in IoT systems with resource

limitations also making strong cryptography and encryption inapplicable. An attacker that

gets hold of the device, or is functioning as a regular node in an IoT network, can easily

target insecure side-channels or launch various internal attacks exploiting the inherent IoT

protocol vulnerabilities on battery-powered devices that can be easily compromised.

IoT devices popularly consist of scan chains for testing purposes. As a result enhanced

observability and controllability of the internal register contents of the device is induced.

There exists a class of intrusive (non-invasive) device-level attacks on cryptographic IoT

devices that makes use of this testability-induced vulnerability to leak out confidential

contents. In a scan-based side-channel attack, the secret key values can be easily differentiated

from the non-secret ones, inflicting loss. These attacks create differentiable characteristics

that make it challenging to preserve a secret. Also, an IDS is deployed nowadays in

most IoT networks as the fundamental network security component. Task of an IDS is to

monitor the host network for infiltration or malicious activities and raise an alarm to the

6.1. Summary of Thesis Contributions

network administrator when found. Thus, alarm generation provides an opportunity for the

administrator to take corrective measures, such that effects of the threat are quarantined

or mitigated so as not to prevent further damage. IDS can be broadly categorized into

signature based and anomaly based depending on the working procedure. Signature-based

IDS uses fixed signatures (or patterns) while anomaly-based IDS is mathematical/statistical

based. However, we identify there exist certain types of attacks on IoT protocols for which

such IDS fail to generate alarms as effectively. Specifically, a large number of false positives

ensue. Examples of such attacks at the network level are version attacks, rank attacks,

fragmentation attacks and request/response spoofing attacks. Due to such attacks, the

sequence of network events and semantics remain the same, hence attack patterns cannot

be written. Furthermore, these attacks do not change the system behaviour considerably

enough for anomaly-based IDS to be accurate.

Existing methods to protect scan-based side channel attacks are mostly LFSR or

obfuscation based. Moreover, we devise a certain class of attacks for which there are no

known effective countermeasures. Also present methods either compromise to testability

or are resource consuming. Also network and application layer attacks are defended in

the research community using user level, cryptographic level, protocol based or machine

learning based. Each of these approaches suffer from drawbacks like costly deployment and

setup, protocol modifications, lacking formalism, lacking scalability, or extensive training

time. Each of the attacks portray unique characteristics that require hardware and software

countermeasures to be minute and tuned in.

With the exponential growth in complex dynamic systems, Discrete Event System (DES)

framework is being widely used to model these systems in avenues such as embedded systems,

networked systems, communication systems, manufacturing plants, chemical processes, traffic

systems, cyber physical systems, etc. The theory of FDD of DES finds wide applicability in

determining a system to be functioning in faulty or normal condition.

6.1 Summary of Thesis Contributions

In this thesis, we have developed lightweight countermeasure strategies/mechanisms to secure

the IoT ecosystem from different types of device-level, network-level and application-level

attacks. For modeling and verification purposes, we use DES security notion of Opacity

178

6. Conclusions and Future Work

to prevent device-level attacks. Analogously, the FDD theory of DES is used to detect

and identify an attacker node that has launched various attacks on the IoT network and

application layer protocols. The corresponding contributions of each chapter of the chapters

are presented below:

6.1.1 Contributions of Chapter 2:

Scan chain is the de facto standard for testing manufacturing defects of cryptographic ICs

in the semiconductor industry. As a result of scan chains, sequential elements are more

observable and controllable. Hence, an attacker who gets access to IoT devices having a

cryptographic implementation can launch various differential scan based attacks to reveal

the embedded secret user key of such devices. To launch such attacks, the attacker just needs

to apply plaintext inputs and observe the ciphertext output. The key can then be retrieved

from offline computation. In this contribution, we propose a novel differential scan attack,

namely co-relation scan attack (COSA) and a hardware controller based countermeasure

that thwarts differential scan-based attacks in general. Our proposed COSA attack belongs

to the class of differential scan attacks and is more comprehensive and effective than the

existing differential scan attack that is launched by targeting unique hamming weight pairs

only. The motivation behind this attack is that the existing attacks can be easily defended

by carefully crafting additional bits in order to convert a unique hamming weight to non

unique one. Our proposed attack can work using any possible hamming weight model

necessitating protection of the circuit under test (CUT) from a relatively larger attack

surface.

Next, we devise a countermeasure that preserves the secrecy of an embedded key

in a cryptographic integrated circuit of an IoT device running an Advanced Encryption

Standard (AES) implementation. A novel design involving a hardware unit is illustrated that

circumvents all differential scan attacks by essentially performing bit flips deterministically,

using a pre-computed mask value. This helps secure the chip while retaining full testability.

The controller logic directly depends on a mask determination algorithm that can defend

against any scan attack with O(1) theoretical complexity. Security analysis of our proposed

defense procedure is performed in the framework of Discrete Event Systems (DES). The

sequential scan circuit of an AES cryptosystem during normal operation and flipped operation

179

6.1. Summary of Thesis Contributions

is modeled as a DES using Finite State Automata. A security notion, Opacity, is used to

quantify and formally verify the security aspects of our controlled system, which shows that

the entropy of the secret key is preserved. A case study is performed that shows to mitigate

state-of-the-art differential scan attacks successfully at a nominal extra overhead of 1.78%.

6.1.2 Contributions of Chapter 3:

Rank and version value fields are used in RPL control packets for its efficient operation.

RPL participating nodes are ordered as an acyclic tree, DODAG, and these values help in

their creation and maintenance. A malicious node internal to the RPL DODAG may falsely

modify these values to create unoptimized paths and loops essentially degrading performance

of the IoT network. In this contribution we propose a novel software countermeasure that

not only detects RPL rank and version attacks but also identifies the attacker node. As

compared to the differential scan attacks that jeopardize a secret user key, rank and version

attacks are non-invasive. Adverse effects of such low overhead IoT network attacks mostly go

unnoticed since they do not change the network operations much. Hence, the normal network

behaviour cannot be differentiated from attack type behaviour directly. Therefore, RPL

rank and version attacks cannot be detected just by passively observing the RPL control

and data packets that are exchanged in the IoT network. For these attacks, the DES states

belonging to the attack behaviour cannot be deterministically diagnosed because of the

inherent uncertainties of the genuinity of DIO packets disseminated by the attacker. So there

exists paths in the DES that lead to indeterminate cycles. A mechanism is therefore required

to generate distinguishable behaviour during an attack than when operating normally, such

that an attack certain state can be reached in finite time.

Our countermeasure utilises active probing mechanism and I (Indicator)-DES based

IDS. Probe packets sent by the IDS helps create differentiable attack behaviour from the

normal. They are normal RPL data packets that signify the indicator events that are

necessary for successful identification in our scheme. The identification principle is based on

the RPL control and data packets exchanged between IDS root, agent nodes and all of the

other nodes participating in the DODAG instance.The packet sequences are analyzed to

generate the intelligent probing mechanism. A rank attacker node is ascertained from the

history of probe response times measured by the IDS. Further, I-DES based IDS framework

180

6. Conclusions and Future Work

is adopted and extended to model the normal and attacker type specifications, such that

an attacker (attack type) can be identified. An I-diagnoser, constructed from the I-DES

models, generates an alert when a malicious node is identified (corresponding attackerk

certain state is reached). We also prove the correctness and completeness of our scheme.

The DES framework is implemented only at the root node, therefore using our IDS does not

require any heavy deployment, protocol modifications, or training. To assess the performance

of our solution, we implement our proposed method in simulation as well as real testbed

experiments with varying numbers of IoT nodes. The results show that our solution is

scalable, has least false positives, energy-efficient and more accurate compared to most

state-of-the-art schemes.

6.1.3 Contributions of Chapter 4:

IoT-LLNs mostly employ 6LoWPAN, an IETF-standardized adaptation layer, for IPv6 based

communication. Secure mechanisms protect 6LoWPAN from external attackers, yet, lack

of authentication capabilities and the scarcity of resources render it susceptible to various

designed internal attacks. Especially, the 6LoWPAN fragmentation mechanism is easily

exploited by replaying spoofed fragments, timely slipped in by an eavesdropping attacker.

In a constrained environment, neither the original fragment nor the sender node authenticity

is differentiable here making solution techniques challenging. In this contribution, we devise

a 6LoPWAN fragment duplication attack detection and attacker localisation scheme that

utilises an intelligent active probing mechanism for 6LoWPAN attacker localisation and

I-DES based IDS. As compared to rank and version attacks that have far reaching effects

across the RPL network, fragmentation attacks exploit nodes that are at 1-hop distance

only. Moreover, as opposed to control packets, fragmentation attacks exploit the reassembly

mechanism during regular end-to-end transmission and an attacker may be located on the

forwarding path or can be off-path as well. So, a centralized IDS scheme is not suitable

here and closer monitoring is necessary. Consequently, our proposed scheme is decentralized,

utilizing a set of I-DES based IDS. Also, IDS sends fabricated IPv6 datagrams with random

payload as part of active probing, which signify the indicator events. Basically, a response to

the probe datagram helps differentiate attack behaviour from the normal. A malicious node

behaviour is distinguishable if the crafted datagram is forwarded, as opposed to the fact

181

6.1. Summary of Thesis Contributions

that the datagram must be discarded in normal condition. Further, a decentralized I-DES

based IDS framework is proposed to model the normal and attacker type specifications,

such that an attacker (attack type) can be identified. Local I-diagnosers are constructed

from the local I-DES models. They generate an alert when a malicious node is identified

(corresponding attacker-k certain state is reached in the local diagnoser). Global I-diagnosis

is ascertained when an attackerk certain state is reached by any local I-diagnoser. Moreover,

we eliminate the localised node using the kill switch mechanism to secure the 6LoWPAN.

Correctness and completeness of our solution is proved and we implement it in simulation

as well as real testbed with a large number of 6LoWPAN nodes. The results are observed

to be superior to existing works. Our scheme achieves minimum false positives and achieves

more than 99.8% accuracy in identifying the malicious nodes. The scheme is energy efficient

and takes lower detection time for attacker identification.

6.1.4 Contributions of Chapter 5:

CoAP is a web transfer protocol similar to HTTP that is specially designed to facilitate

IoT-LLN. It uses User Datagram Protocol (UDP) as the transport layer protocol which is

unreliable and lacks a handshaking mechanism. A malicious endpoint with read and write

access may just spoof requests or responses and launch low overhead IP address spoofing

attacks. Moreover, it even helps mount other complex Distributed Denial-of-Service (DDoS)

attacks like amplification attacks. In the previous two contributions discussed, active probe

packets are sent to differentiate the attack type behaviour from the normal behaviour.

Accordingly, I-diagnosability framework has been successfully adopted and extended to

guarantee identification on each of these occasions. But, to identify an IP spoofing attacker,

using just a probe response is insufficient. In this contribution, we adopt and extend the I2

(Induced I)-diagnosability framework where we define empowering and indicator events. A

CoAP request/response IP spoofing attack detection and identification scheme is devised

that utilizes active probing and I2-DES based IDS in this contribution. Our scheme uses a

decentralized architecture with each IDS functioning independently. IDS use empowering

events and an intelligent probing technique that together help distinguish normal and attack

behaviour. Wired network intimation is used as the empowering events. Also, probe packets

are spoofed CoAP request/response packets with random payload and contain resource Uri

182

6. Conclusions and Future Work

information that is relevant only to a malfunctioning node. Our proposed mechanism ensures

that an attacker is identified as soon as it responds to probe packet after a wired intimation

has been communicated between IDS nodes. Attack node identification is based on the

principle that a true attacker node will respond or behave such as to protect its resource

content. Our IDS is capable of detecting all instances of request/response spoofing. Further,

I2-DES is used to model the normal and attack specifications. An I2-DES diagnoser,

constructed from the I2-DES models, generates an alert when a malicious node is identified.

We consequently prove the correctness and completeness of our scheme. Proposed method is

implemented in Contiki Cooja, with a sufficiently large number of IoT nodes. On comparing

our scheme to state-of-the-art approaches, our performance is found to be energy-efficient,

having minimal false positives and achieving more than 99.2% accuracy with response time

of approx 6 sec.

6.2 Scope of Future Work

In this dissertation, the countermeasures presented successfully detect certain classes of

attacks prevalent in the device-level, network-level and application-level of the IoT ecosys-

tem. Various DES notions and paradigms like Opacity, I-Diagnosability, decentralized

I-diagnosability and I2-Diagnosability have been utilised depending on the corresponding

attack characteristics. The mechanisms demonstrated are effective in securing IoT systems

against attacks and can well be applied and extended to secure cyber physical systems,

softwares, etc. Listed below are some possible future research directions:

• In Chapter 2, we proposed an effective countermeasure against scan-based attacks on

crypto-chips running an AES implementation. As part of the security analysis, we

used Opacity while also considering only a particular instance of Hamming weight

distribution (for example, when a plaintext difference 0x01 is applied), which is a

limitation of this work. It would be very interesting to analyze the security aspects

of our countermeasure irrespective of any given instance of a Hamming distribution

in the future. An implementation of multi-bit flip controller ensuring opacity might

then suffice to thwart all state of the art differential scan attacks. We would also like

to further investigate our defense countermeasure in the presence of advanced DfT

183

6.2. Scope of Future Work

structures with test compression as well as on other block or stream ciphers in use.

• Chapter 3 deals with identification of attacker nodes that launch network layer attacks

by illegitimately increasing RPL rank field and falsifying version field. Our scheme

uses a 6BR root node IDS, a set of leaf agents and incorporates an intelligent probing

technique using ICMPv6 packets to achieve the desired objective. However, it would

be worth exploring techniques to strengthen our security countermeasure in cases

when malfunctioning leaf agents are compromised. Our current solution can be further

improved with the generation of optimal probe sequences. It would not only guarantee

more improved response times but would also reduce complexity. Another field of

considerable research is to improve on the placement of the agent leaf nodes which

will ensure that the overhead is further reduced. Furthermore, our current solution

as demonstrated in this thesis is good at circumventing the worst parent attack and

decreased rank attack as well with some minor modifications. Among our future works,

we plan to devise an improved solution that can identify the malicious node in the

presence of other RPL attacks as well, such as the DODAG Information Solicitation

attack, Black Hole attack and Distributed Denial-of-Service attack.

• Chapter 3, 4 and 5 presents DES-based IDS techniques that guarantee attacker

identification in the IoT ecosystem. Our approach can be further strengthened by

improving on parameter inference and selection of active nodes. IoT devices are

characterized by their heterogeneity and dynamic connections, requiring adaptive

security measures to effectively counter evolving cyber threats. The integration

of machine learning techniques alongside the Discrete Event System (DES)-based

Intrusion Detection Systems (IDS) framework is one avenue that is worth exploring

towards strengthening IoT security. While leveraging DES models allows for precise

simulation and control of IoT network behavior, ensuring efficient resource utilization

and robust security, using machine learning can help to dynamically infer optimal

parameters and identify key nodes for active monitoring by analyzing historical and

real-time data. This will enhance the IDS’s ability to detect and respond to anomalies

swiftly.

• In Chapter 5, we present an I2-DES based IDS framework that makes use of empow-

184

6. Conclusions and Future Work

ering events along with indicator probe packets to identify a CoAP request response

spoofing attacker, thereby providing IoT application layer security against such types

of attacks. However, there remains a wide variety of CoAP attacks such as, the

selective blocking attack, request delay attack, response delay and mismatch attacks

that make use of UDP which is unreliable and is effective yet when DTLS is present.

Such attacks cannot be prevented with our countermeasure as it is. In the future, we

plan to come up with a Timed I2-DES framework to resist such attacks.

• Industrial IoT (IIoT) is a major enablement in Cyber Physical Systems (CPS). Securing

IIoT is crucial to the smooth functioning of various applications across domains like

healthcare, manufacturing, aircraft maintenance, and other mission critical systems.

Devices in IIoT do not suffer much from resource constrainment, yet security is

critical in such systems with necessity for more quicker and accurate approaches.

Message Queue Telemetry Transport (MQTT) is one of the most important application

layer data protocols of IoT networks, especially for Industrial IoT environments.

It is based on the publish-subscribe model with three participants, namely client

(publisher), broker, client (subscriber). MQTT 5.0 protocol security is challenging

since it implements authentication methods like SCRAM or Kerberos. It is worth

exploring the normal and attack event sequences when MQTT is in place, to identify

a malfunctioning node uniquely. DES frameworks can be extended to ensure secure

operation of CPS under the IIoT Ecosystem when a MQTT attack is in place. In

future, we would like to extend our approaches to MQTT security and further venture

into distributed denial-of-service attack mitigation schemes using lightweight solutions.

• In Chapters 3, 4 and 5, we discuss IoT layer-specific attack countermeasures that

incorporate techniques suitable to identify an attack node, given a particular attack

type and a protocol. However, a comprehensive IDS-based framework is necessary

to mitigate cross layer IoT attacks, that is any IoT attacker node can be identified

correctly irrespective of the layer and protocol. However, designing such an unified

DES-based IDS framework will be fairly challenging since it would result in a vast

number of states and transitions. The future work in this direction can be fruitful if

modular DES-based IDS frameworks are considered to handle the state-space explosion

problem.

185

6.2. Scope of Future Work

<<=8=;;

186

Bibliography

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A

vision, architectural elements, and future directions,” Future generation computer

systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] O. Vermesan and P. Friess, Internet of things: converging technologies for smart

environments and integrated ecosystems. River publishers, 2013.

[3] S. Madakam, V. Lake, V. Lake, V. Lake et al., “Internet of things (iot): A literature

review,” Journal of Computer and Communications, vol. 3, no. 05, p. 164, 2015.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet

of things: A survey on enabling technologies, protocols, and applications,” IEEE

communications surveys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[5] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer

networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing towards pervasive

healthcare,” in 2012 Sixth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing. IEEE, 2012, pp. 922–926.

[7] M. Yun and B. Yuxin, “Research on the architecture and key technology of internet of

things (iot) applied on smart grid,” in 2010 international conference on advances in

energy engineering. IEEE, 2010, pp. 69–72.

[8] X. Jia, Q. Feng, T. Fan, and Q. Lei, “Rfid technology and its applications in inter-

net of things (iot),” in 2012 2nd international conference on consumer electronics,

communications and networks (CECNet). IEEE, 2012, pp. 1282–1285.

[9] T. Winter, P. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

J.-P. Vasseur, R. K. Alexander et al., “RPL: IPv6 Routing Protocol for Low power

and Lossy Networks,” rfc, vol. 6550, pp. 1–157, 2012.

187

Bibliography

[10] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia,

and M. Dohler, “Standardized protocol stack for the internet of (important) things,”

IEEE communications surveys & tutorials, vol. 15, no. 3, pp. 1389–1406, 2012.

[11] L. Wallgren, S. Raza, and T. Voigt, “Routing Attacks and Countermeasures in the

RPL-Based Internet of Things,” International Journal of Distributed Sensor Networks,

vol. 9, no. 8, pp. 1–11, 2013.

[12] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol (coap),”

2014.

[13] P. J. Denning and T. G. Lewis, “Exponential laws of computing growth,” Communica-

tions of the ACM, vol. 60, no. 1, pp. 54–65, 2016.

[14] A. Lohachab and B. Karambir, “Critical analysis of ddos—an emerging security threat

over iot networks,” Journal of Communications and Information Networks, vol. 3, pp.

57–78, 2018.

[15] B. Russell and D. Van Duren, Practical Internet of Things Security: Design a security

framework for an Internet connected ecosystem. Packt Publishing Ltd, 2018.

[16] V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, and Y. Elovici, “Let the

cat out of the bag: A holistic approach towards security analysis of the internet of

things,” in Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust,

and Security, 2017, pp. 3–10.

[17] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demystifying

iot security: An exhaustive survey on iot vulnerabilities and a first empirical look on

internet-scale iot exploitations,” IEEE Communications Surveys & Tutorials, vol. 21,

no. 3, pp. 2702–2733, 2019.

[18] M. B. Barcena and C. Wueest, “Insecurity in the internet of things,” Security response,

symantec, vol. 20, 2015.

[19] M. Zulkifli and Z. W. Mohd, “Attack on cryptography,” Comput. Secur, vol. 12, no. 5,

pp. 33–45, 2008.

188

Bibliography

[20] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher,

and Y. Elovici, “N-baiot—network-based detection of iot botnet attacks using deep

autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018.

[21] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and S. Shieh,

“Iot security: ongoing challenges and research opportunities,” in 2014 IEEE 7th

international conference on service-oriented computing and applications. IEEE, 2014,

pp. 230–234.

[22] E. C. Ngai, J. Liu, and M. R. Lyu, “On the intruder detection for sinkhole attack in

wireless sensor networks,” in 2006 IEEE international conference on communications,

vol. 8. IEEE, 2006, pp. 3383–3389.

[23] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the internet of things:

perspectives and challenges,” Wireless Networks, vol. 20, pp. 2481–2501, 2014.

[24] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of things: Security vulner-

abilities and challenges,” in 2015 IEEE symposium on computers and communication

(ISCC). IEEE, 2015, pp. 180–187.

[25] P. N. Mahalle, N. R. Prasad, and R. Prasad, “Threshold cryptography-based group

authentication (tcga) scheme for the internet of things (iot),” in 2014 4th International

Conference on Wireless Communications, Vehicular Technology, Information Theory

and Aerospace & Electronic Systems (VITAE). IEEE, 2014, pp. 1–5.

[26] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding linux

malware,” in 2018 IEEE symposium on security and privacy (SP). IEEE, 2018, pp.

161–175.

[27] A. Mangino, M. S. Pour, and E. Bou-Harb, “Internet-scale insecurity of consumer

internet of things: An empirical measurements perspective,” ACM Transactions on

Management Information Systems (TMIS), vol. 11, no. 4, pp. 1–24, 2020.

[28] E. Anthi, A. Javed, O. Rana, and G. Theodorakopoulos, “Secure data sharing and

analysis in cloud-based energy management systems,” in Cloud Infrastructures, Ser-

vices, and IoT Systems for Smart Cities: Second EAI International Conference, IISSC

189

Bibliography

2017 and CN4IoT 2017, Brindisi, Italy, April 20–21, 2017, Proceedings 2. Springer,

2018, pp. 228–242.

[29] A. K. Simpson, F. Roesner, and T. Kohno, “Securing vulnerable home iot devices with

an in-hub security manager,” in 2017 IEEE International Conference on Pervasive

Computing and Communications Workshops (PerCom Workshops). IEEE, 2017, pp.

551–556.

[30] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A

comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1,

pp. 16–24, 2013.

[31] M. F. Elrawy, A. I. Awad, and H. F. Hamed, “Intrusion detection systems for iot-based

smart environments: a survey,” Journal of Cloud Computing, vol. 7, no. 1, pp. 1–20,

2018.

[32] F. Y. Yavuz, Ü. Devrim, and G. Ensar, “Deep Learning for Detection of Routing

Attacks in the Internet of Things,” International Journal of Computational Intelligence

Systems, vol. 12, no. 1, pp. 39–58, 2018.

[33] A. A. Diro and N. Chilamkurti, “Distributed Attack Detection Scheme using Deep

Learning Approach for Internet of Things,” Future Generation Computer Systems,

vol. 82, pp. 761–768, 2018.

[34] M. Hossain, Y. Karim, and R. Hasan, “Secupan: A security scheme to mitigate

fragmentation-based network attacks in 6lowpan,” in Proceedings of the Eighth ACM

Conference on Data and Application Security and Privacy. ACM, 2018, pp. 307–318.

[35] A. Dvir, L. Buttyan et al., “VeRA - Version Number and Rank Authentication in

RPL,” in 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor

Systems. IEEE, 2011, pp. 709–714.

[36] H. Perrey, M. Landsmann, O. Ugus, M. Wählisch, and T. C. Schmidt, “TRAIL:

Topology Authentication in RPL,” in Proceedings of the 2016 International Conference

on Embedded Wireless Systems and Networks, ser. EWSN ’16. Junction Publishing,

2016, p. 59–64.

190

Bibliography

[37] M. Nikravan, A. Movaghar, and M. Hosseinzadeh, “A lightweight signcryption scheme

for defense against fragment duplication attack in the 6LoWPAN networks,” Peer-to-

Peer Networking and Applications, vol. 12, no. 1, pp. 209–226, 2019.

[38] Z. A. Almusaylim, A. Alhumam, and N. Jhanjhi, “Proposing a Secure RPL based

Internet of Things Routing Protocol: A Review,” Ad Hoc Networks, vol. 101, pp. 1–17,

2020.

[39] A. Bang and U. P. Rao, “Embof-rpl: Improved rpl for early detection and isolation of

rank attack in rpl-based internet of things,” Peer-to-Peer Networking and Applications,

pp. 1–24, 2022.

[40] A. Seyfollahi, M. Moodi, and A. Ghaffari, “MFO-RPL: A secure RPL-based routing

protocol utilizing moth-flame optimizer for the IoT applications,” Computer Standards

& Interfaces, vol. 82, pp. 1–19, 2022.

[41] S. J. Johnston, M. Scott, and S. J. Cox, “Recommendations for securing Internet

of Things devices using commodity hardware,” in 2016 IEEE 3rd World Forum on

Internet of Things (WF-IoT). IEEE, 2016, pp. 307–310.

[42] F. Lin, “Opacity of discrete event systems and its applications,” Automatica, vol. 47,

no. 3, pp. 496–503, 2011. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0005109811000173

[43] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in discrete event

systems,” in 2007 46th IEEE Conference on Decision and Control, 2007, pp. 5056–5061.

[44] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis,

“Diagnosability of Discrete-Event Systems,” IEEE Transactions on automatic control,

vol. 40, no. 9, pp. 1555–1575, 1995.

[45] S. H. Zad, R. H. Kwong, and W. M. Wonham, “Fault Diagnosis in Discrete-Event

Systems: Framework and Model Reduction,” IEEE Transactions on Automatic Control,

vol. 48, no. 7, pp. 1199–1212, 2003.

[46] C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis.

CRC, 1993.

191

https://www.sciencedirect.com/science/article/pii/S0005109811000173
https://www.sciencedirect.com/science/article/pii/S0005109811000173

Bibliography

[47] N. Hubballi, S. Biswas, S. Roopa, R. Ratti, and S. Nandi, “LAN attack detection

using Discrete Event Systems,” ISA transactions, vol. 50, no. 1, pp. 119–130, 2011.

[48] M. Agarwal, S. Biswas, and S. Nandi, “Discrete event system framework for fault diag-

nosis with measurement inconsistency: case study of rogue dhcp attack,” IEEE/CAA

Journal of Automatica Sinica, vol. 6, no. 3, pp. 789–806, 2017.

[49] B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test architecture for crypto

chips,” vol. 25, 07 2005, pp. 135– 140.

[50] ——, “Scan based side channel attack on dedicated hardware implementations of data

encryption standard,” in 2004 International Conferce on Test, 2004, pp. 339–344.

[51] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and I. Verbauwhede, “A

scan-based attack on elliptic curve cryptosystems in presence of industrial design-for-

testability structures,” in 2012 IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFT), 2012, pp. 43–48.

[52] R. Nara, K. Satoh, M. Yanagisawa, T. Ohtsuki, and N. Togawa, “Scan-based side-

channel attack against rsa cryptosystems using scan signatures,” IEICE Transactions,

vol. 93-A, pp. 2481–2489, 12 2010.

[53] A. A. Kamal and A. M. Youssef, “A scan-based side channel attack on the ntruencrypt

cryptosystem,” in 2012 Seventh International Conference on Availability, Reliability

and Security, 2012, pp. 402–409.

[54] D. Hely, F. Bancel, M. Flottes, and B. Rouzeyre, “Test control for secure scan designs,”

in European Test Symposium (ETS’05), 2005, pp. 190–195.

[55] S. S. Ali, S. M. Saeed, O. Sinanoglu, and R. Karri, “Scan attack in presence of mode-

reset countermeasure,” in 2013 IEEE 19th International On-Line Testing Symposium

(IOLTS), 2013, pp. 230–231.

[56] S. S. Ali, O. Sinanoglu, and R. Karri, “Test-mode-only scan attack using the boundary

scan chain,” in 2014 19th IEEE European Test Symposium (ETS), 2014, pp. 1–6.

[57] S. S. Ali, S. M. Saeed, O. Sinanoglu, and R. Karri, “Novel test-mode-only scan attack

and countermeasure for compression-based scan architectures,” IEEE Transactions on

192

Bibliography

Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 5, pp. 808–821,

2015.

[58] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs against scan-

based side-channel attacks,” IEEE Transactions on Dependable and Secure Computing,

vol. 4, no. 4, pp. 325–336, 2007.

[59] M. T. Rahman, D. Forte, and M. Tehranipoor, Protection of Assets from Scan Chain

Vulnerabilities Through Obfuscation, 01 2017, pp. 135–158.

[60] Y. Atobe, Y. Shi, M. Yanagisawa, and N. Togawa, “Secure scan design with dynamically

configurable connection,” in 2013 IEEE 19th Pacific Rim International Symposium

on Dependable Computing, 2013, pp. 256–262.

[61] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton, “Don’t forget

to lock your sib: hiding instruments using p1687,” in 2013 IEEE International Test

Conference (ITC), 2013, pp. 1–10.

[62] J. Dworak, Z. Conroy, A. Crouch, and J. Potter, “Board security enhancement using

new locking sib-based architectures,” in 2014 International Test Conference, 2014, pp.

1–10.

[63] Y. Sao, A. Riaz, S. Ahlawat, and S. S. Ali, “Evaluating security of new locking

sib-based architectures,” in 2022 IEEE European Test Symposium (ETS), 2022, pp.

1–6.

[64] A. Das, B. Ege, S. Ghosh, L. Batina, and I. Verbauwhede, “Security analysis of

industrial test compression schemes,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 32, no. 12, pp. 1966–1977, 2013.

[65] T. Yu, A. Cui, M. Li, and A. Ivanov, “A new decompressor with ordered parallel

scan design for reduction of test data and test time,” in 2015 IEEE International

Symposium on Circuits and Systems (ISCAS), 2015, pp. 641–644.

[66] C. Liu and Y. Huang, “Effects of embedded decompression and compaction archi-

tectures on side-channel attack resistance,” in 25th IEEE VLSI Test Symposium

(VTS’07), 2007, pp. 461–468.

193

Bibliography

[67] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “New security threats against

chips containing scan chain structures,” in 2011 IEEE International Symposium on

Hardware-Oriented Security and Trust, 2011, pp. 110–110.

[68] Y. Sao, K. Soundra Pandian, and S. Subidh Ali, “Revisiting the security of static

masking and compaction: Discovering new vulnerability and improved scan attack on

aes,” in 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST),

2020, pp. 1–6.

[69] A. Cui, Y. Luo, and C.-H. Chang, “Static and dynamic obfuscations of scan data

against scan-based side-channel attacks,” IEEE Transactions on Information Forensics

and Security, vol. 12, no. 2, pp. 363–376, 2017.

[70] Y. Sao and S. S. Ali, “Security analysis of state-of-the-art scan obfuscation technique,”

in 2021 IEEE 39th International Conference on Computer Design (ICCD), 2021, pp.

599–602.

[71] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “From cryptography to logic

locking: A survey on the architecture evolution of secure scan chains,” IEEE Access,

vol. 9, pp. 73 133–73 151, 2021.

[72] D. Zhang, M. He, X. Wang, and M. Tehranipoor, “Dynamically obfuscated scan for

protecting ips against scan-based attacks throughout supply chain,” in 2017 IEEE

35th VLSI Test Symposium (VTS), 2017, pp. 1–6.

[73] X. Wang, D. Zhang, M. He, D. Su, and M. Tehranipoor, “Secure scan and test using

obfuscation throughout supply chain,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 37, no. 9, pp. 1867–1880, 2018.

[74] L. Alrahis, M. Yasin, N. Limaye, H. Saleh, B. Mohammad, M. Al-Qutayri, and

O. Sinanoglu, “Scansat: Unlocking static and dynamic scan obfuscation,” IEEE

Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 1867–1882, 2021.

[75] R. Karmakar, S. Chattopadhyay, and R. Kapur, “A scan obfuscation guided design-for-

security approach for sequential circuits,” IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 67, no. 3, pp. 546–550, 2020.

194

Bibliography

[76] N. Limaye and O. Sinanoglu, “Dynunlock: Unlocking scan chains obfuscated using

dynamic keys,” in Design, Automation Test in Europe Conference Exhibition (DATE),

2020, pp. 270–273.

[77] M. S. Rahman, A. Nahiyan, F. Rahman, S. Fazzari, K. Plaks, F. Farahmandi,

D. Forte, and M. Tehranipoor, “Security assessment of dynamically obfuscated scan

chain against oracle-guided attacks,” ACM Trans. Des. Autom. Electron. Syst., vol. 26,

no. 4, pp. 1–27, mar 2021. [Online]. Available: https://doi.org/10.1145/3444960

[78] Z. Zhang, S. Reddy, I. Pomeranz, X. Lin, and J. Rajski, “Scan tests with multiple

fault activation cycles for delay faults,” in 24th IEEE VLSI Test Symposium, 2006,

pp. 6 pp.–348.

[79] A. Cui, M. Li, G. Qu, and H. Li, “A guaranteed secure scan design based on test data

obfuscation by cryptographic hash,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4524–4536, 2020.

[80] M. Da Silva, M.-L. Flottes, G. Di Natale, and B. Rouzeyre, “Preventing scan attacks on

secure circuits through scan chain encryption,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 38, no. 3, pp. 538–550, 2019.

[81] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, 2nd ed.

New York: Springer, 2008.

[82] P. Ramadge and W. Wonham, “The control of discrete event systems,” Proceedings of

the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[83] D. Ray, S. Singh, S. S. Ali, and S. Biswas, “Co-relation scan attack analysis (cosaa) on

aes: A comprehensive approach,” in 2019 IEEE International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1–6.

[84] Y. Sao, S. S. Ali, D. Ray, S. Singh, and S. Biswas, “Co-relation scan attack analysis

(cosaa) on aes: A comprehensive approach,” Microelectronics Reliability, vol. 123, p.

114216, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0026271421001827

195

https://doi.org/10.1145/3444960
https://www.sciencedirect.com/science/article/pii/S0026271421001827
https://www.sciencedirect.com/science/article/pii/S0026271421001827

Bibliography

[85] P. Pongle and G. Chavan, “A survey: Attacks on RPL and 6LoWPAN in IoT,” in

2015 International conference on pervasive computing (ICPC). IEEE, 2015, pp. 1–6.

[86] A. Mayzaud, R. Badonnel, and I. Chrisment, “A Taxonomy of Attacks in RPL-based

Internet of Things,” International Journal of Network Security, vol. 18, no. 3, pp.

459–473, 2016.

[87] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder, “A Study

of RPL DODAG Version Attacks,” in IFIP international conference on autonomous

infrastructure, management and security. Springer, 2014, pp. 92–104.

[88] C. Pu and L. Carpenter, “Digital Signature Based Countermeasure Against Puppet

Attack in the Internet of Things,” in 2019 IEEE 18th International Symposium on

Network Computing and Applications (NCA). IEEE, 2019, pp. 1–4.

[89] C. Pu, J. Brown, and L. Carpenter, “A Theil Index-Based Countermeasure Against

Advanced Vampire Attack in Internet of Things,” in 2020 IEEE 21st International

Conference on High Performance Switching and Routing (HPSR). IEEE, 2020, pp.

1–6.

[90] C. Pu and B. Groves, “Energy Depletion Attack in Low Power and Lossy Networks:

Analysis and Defenses,” in 2019 2nd International Conference on Data Intelligence

and Security (ICDIS). IEEE, 2019, pp. 14–21.

[91] E. Y. Vasserman and N. Hopper, “Vampire Attacks: Draining Life from Wireless Ad

Hoc Sensor Networks,” IEEE transactions on mobile computing, vol. 12, no. 2, pp.

318–332, 2011.

[92] C. Pu and K.-K. R. Choo, “Lightweight Sybil Attack Detection in IoT based on Bloom

Filter and Physical Unclonable Function,” computers & security, vol. 113, p. 102541,

2022.

[93] C. Pu, “Spam DIS Attack Against Routing Protocol in the Internet of Things,” in 2019

International Conference on Computing, Networking and Communications (ICNC).

IEEE, 2019, pp. 73–77.

196

Bibliography

[94] C. Pu and X. Zhou, “Suppression Attack Against Multicast Protocol in Low Power

and Lossy Networks: Analysis and Defenses,” Sensors, vol. 18, no. 10, p. 3236, 2018.

[95] A. Raoof, A. Matrawy, and C.-H. Lung, “Routing Attacks and Mitigation Methods for

RPL-Based Internet of Things,” IEEE Communications Surveys & Tutorials, vol. 21,

no. 2, pp. 1582–1606, 2018.

[96] G. Glissa, A. Rachedi, and A. Meddeb, “A Secure Routing Protocol Based on RPL for

Internet of Things,” in 2016 IEEE Global Communications Conference (GLOBECOM).

IEEE, 2016, pp. 1–7.

[97] M. Nikravan, A. Movaghar, and M. Hosseinzadeh, “A Lightweight Defense Approach

to Mitigate Version Number and Rank Attacks in Low-Power and Lossy Networks,”

Wireless Personal Communications, vol. 99, no. 2, pp. 1035–1059, 2018.

[98] M. Zaminkar, F. Sarkohaki, and R. Fotohi, “DSH-RPL: A Method based on Encryp-

tion and Node Rating for Securing the RPL protocol Communications in the IoT

Ecosystem,” International Journal of Communication Systems, vol. 34, no. 3, pp. 1–24,

2021.

[99] D. Airehrour, J. A. Gutierrez, and S. K. Ray, “SecTrust-RPL: A secure trust-aware

RPL routing protocol for Internet of Things,” Future Generation Computer Systems,

vol. 93, pp. 860–876, 2019.

[100] K. Iuchi, T. Matsunaga, K. Toyoda, and I. Sasase, “Secure Parent Node Selection

Scheme in Route Construction to Exclude Attacking Nodes From RPL Network,” in

2015 21st Asia-Pacific Conference on Communications (APCC). IEEE, 2015, pp.

299–303.

[101] N. Djedjig, D. Tandjaoui, F. Medjek, and I. Romdhani, “Trust-aware and cooperative

routing protocol for IoT security,” Journal of Information Security and Applications,

vol. 52, pp. 1–25, 2020.

[102] M. Osman, J. He, F. M. M. Mokbal, N. Zhu, and S. Qureshi, “ML-LGBM: A Machine

Learning Model Based on Light Gradient Boosting Machine for the Detection of Version

Number Attacks in RPL-Based Networks,” IEEE Access, vol. 9, pp. 83 654–83 665,

2021.

197

Bibliography

[103] S. Cakir, S. Toklu, and N. Yalcin, “RPL Attack Detection and Prevention in the

Internet of Things Networks Using a GRU Based Deep Learning,” IEEE Access, vol. 8,

pp. 183 678–183 689, 2020.

[104] M. Osman, J. He, F. M. M. Mokbal, and N. Zhu, “Artificial Neural Network Model

for Decreased Rank Attack Detection in RPL Based on IoT Networks,” International

Journal of Network Security, vol. 23, no. 3, pp. 496–503, 2021.

[105] F. Barbhuiya, M. Agarwal, S. Purwar, S. Biswas, and S. Nandi, “Application of

Stochastic Discrete Event System Framework for Detection of Induced Low Rate TCP

Attack,” Isa Transactions, vol. 58, pp. 474–492, 2015.

[106] V. Ramachandran and S. Nandi, “Detecting ARP Spoofing: An Active Technique,” in

Information Systems Security: First International Conference, ICISS 2005, Kolkata,

India, December 19-21, 2005. Proceedings 1. Springer, 2005, pp. 239–250.

[107] F. A. Barbhuiya, S. Biswas, and S. Nandi, “An active host-based intrusion detection

system for ARP-related attacks and its verification,” arXiv preprint arXiv:1306.1332,

2013.

[108] M. Humayun, N. Jhanjhi, and M. Alamri, “Smart Secure and Energy Efficient Scheme

for E-Health Applications using IoT: A Review,” International Journal of Computer

Science and Network Security, vol. 20, no. 4, pp. 55–74, 2020.

[109] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of

Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,”

IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[110] G. Montenegro, N. Kushalnagar, J. Hui, D. Culler et al., “Transmission of ipv6 packets

over ieee 802.15. 4 networks,” Internet proposed standard RFC, vol. 4944, p. 130, 2007.

[111] E. Kim, D. Kaspar, and J. Vasseur, “Design and application spaces for ipv6 over

low-power wireless personal area networks (6lowpans),” RFC6568, 2012.

[112] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, and K. Wehrle, “6lowpan

fragmentation attacks and mitigation mechanisms,” in Proceedings of the sixth ACM

198

Bibliography

conference on Security and privacy in wireless and mobile networks. ACM, 2013, pp.

55–66.

[113] H. Kim, “Protection against packet fragmentation attacks at 6lowpan adaptation

layer,” in 2008 International Conference on Convergence and Hybrid Information

Technology. IEEE, 2008, pp. 796–801.

[114] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for

billions of tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62–67,

2012.

[115] F. Maggi, R. Vosseler, and D. Quarta, “The fragility of industrial iot’s data backbone,”

Trend Micro Inc, 2018.

[116] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic using hop-count

filtering,” IEEE/ACM Transactions on networking, vol. 15, no. 1, pp. 40–53, 2007.

[117] P. Bhale, S. Biswas, and S. Nandi, “An adaptive and lightweight solution to detect

mixed rate ip spoofed ddos attack in iot ecosystem,” in 2018 15th IEEE India Council

International Conference (INDICON). IEEE, 2018, pp. 1–6.

[118] Y. Gilad and A. Herzberg, “Off-path attacking the web.” in WOOT, 2012, pp. 41–52.

[119] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illusion of challenge-

response authentication,” IEEE Security & Privacy, vol. 12, no. 5, pp. 68–77, 2013.

[120] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home

applications,” in 2016 IEEE symposium on security and privacy (SP). IEEE, 2016,

pp. 636–654.

[121] A. G. Roselin, P. Nanda, S. Nepal, X. He, and J. Wright, “Exploiting the remote

server access support of coap protocol,” IEEE Internet of Things Journal, vol. 6, no. 6,

pp. 9338–9349, 2019.

[122] C. G. Cassandras, S. Lafortune et al., Introduction to discrete event systems. Springer,

2008, vol. 2.

199

Bibliography

[123] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A Scan-Based Attack Based

on Discriminators for AES Cryptosystems,” IEICE Transactions on Fundamentals of

Electronics Communications and Computer Sciences, vol. 92, no. 12, pp. 3229–3237,

Jan. 2009.

[124] H. Kodera, M. Yanagisawa, and N. Togawa, “Scan-based attack against des cryptosys-

tems using scan signatures,” in 2012 IEEE Asia Pacific Conference on Circuits and

Systems, 2012, pp. 599–602.

[125] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity in security

applications of des,” in 2008 9th International Workshop on Discrete Event Systems,

2008, pp. 328–333.

[126] B. Zhang, S. Shu, and F. Lin, “Maximum information release while ensuring opacity

in discrete event systems,” in 2014 IEEE International Conference on Robotics and

Automation (ICRA), 2014, pp. 3285–3290.

[127] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for opacity,” IEEE

Transactions on Automatic Control, vol. 55, no. 5, pp. 1089–1100, 2010.

[128] “AES IP Core,” Dec 2020, https://opencores.org/projects/aes_core.

[129] L. Alrahis, M. Yasin, H. Saleh, B. Mohammad, M. Al-Qutayri, and O. Sinanoglu,

“Scansat: Unlocking obfuscated scan chains,” in ASPDAC. ACM, 2019, pp. 352–357.

[130] M. Surendar and A. Umamakeswari, “InDReS: An Intrusion Detection and response

system for Internet of Things with 6LoWPAN,” in 2016 International Conference on

Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE,

2016, pp. 1903–1908.

[131] A. Le, J. Loo, K. K. Chai, and M. Aiash, “A Specification-Based IDS for Detecting

Attacks on RPL-Based Network Topology,” Information, vol. 7, no. 2, pp. 1–19, 2016.

[132] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the

internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[133] T. ul Hassan, M. Asim, T. Baker, J. Hassan, and N. Tariq, “CTrust-RPL: A control

layer-based trust mechanism for supporting secure routing in routing protocol for low

200

https://opencores.org/projects/aes_core

Bibliography

power and lossy networks-based Internet of Things applications,” Transactions on

Emerging Telecommunications Technologies, vol. 32, no. 3, p. e4224, 2021.

[134] S. Y. Hashemi and F. Shams Aliee, “Dynamic and comprehensive trust model for

IoT and its integration into RPL,” The Journal of Supercomputing, vol. 75, no. 7, pp.

3555–3584, 2019.

[135] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey

of intrusion detection in Internet of Things,” Journal of Network and Computer

Applications, vol. 84, pp. 25–37, 2017.

[136] N. Mishra and S. Pandya, “Internet of Things Applications, Security Challenges,

Attacks, Intrusion Detection, and Future Visions: A Systematic Review,” IEEE

Access, vol. 9, pp. 59 353–59 377, 2021.

[137] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a Lightweight Intrusion

Detection System for the Internet of Things,” IEEE Access, vol. 7, pp. 42 450–42 471,

2019.

[138] A. Althubaity, T. Gong, K.-K. Raymond, M. Nixon, R. Ammar, and S. Han,

“Specification-based Distributed Detection of Rank-related Attacks in RPL-based

Resource-Constrained Real-Time Wireless Networks,” in 2020 IEEE Conference on

Industrial Cyberphysical Systems (ICPS), vol. 1. IEEE, 2020, pp. 168–175.

[139] U. Shafique, A. Khan, A. Rehman, F. Bashir, and M. Alam, “Detection of rank attack

in routing protocol for Low Power and Lossy Networks,” Annals of Telecommunications,

vol. 73, no. 7, pp. 429–438, 2018.

[140] A. D. Seth, S. Biswas, and A. K. Dhar, “LDES: Detector Design for Version Number

Attack Detection using Linear Temporal Logic based on Discrete Event System,”

International Journal of Information Security, pp. 1–25, 2023.

[141] H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri, “A Lightweight Anomaly Detection

Technique for Low-Resource IoT Devices: A Game-Theoretic Methodology,” in 2016

IEEE international conference on communications (ICC). IEEE, 2016, pp. 1–6.

201

Bibliography

[142] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of Sinkhole At-

tacks for Supporting Secure Routing on 6LoWPAN for Internet of Things,” in 2015

IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE,

2015, pp. 606–611.

[143] Z. A. Khan and P. Herrmann, “A Trust Based Distributed Intrusion Detection Mecha-

nism for Internet of Things,” in 2017 IEEE 31st International Conference on Advanced

Information Networking and Applications (AINA). IEEE, 2017, pp. 1169–1176.

[144] A. Mayzaud, R. Badonnel, and I. Chrisment, “A Distributed Monitoring Strategy for

Detecting Version Number Attacks in RPL-Based Networks,” IEEE Transactions on

Network and Service Management, vol. 14, no. 2, pp. 472–486, 2017.

[145] A. Agiollo, M. Conti, P. Kaliyar, T.-N. Lin, and L. Pajola, “DETONAR: Detection

of Routing Attacks in RPL-Based IoT,” IEEE Transactions on Network and Service

Management, vol. 18, no. 2, pp. 1178–1190, 2021.

[146] D. Ray, P. Bhale, S. Biswas, S. Nandi, and P. Mitra, “DAISS: Design of an Attacker

Identification Scheme in CoAP Request/Response Spoofing,” in TENCON 2021-2021

IEEE Region 10 Conference (TENCON). IEEE, 2021, pp. 941–946.

[147] J. Yi, T. Clausen, and Y. Igarashi, “Evaluation of Routing Protocol for Low Power and

Lossy Networks: LOADng and RPL,” in 2013 IEEE Conference on wireless sensor

(ICWISE). IEEE, 2013, pp. 19–24.

[148] J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, “Routing Metrics Used for

Path Calculation in Low-Power and Lossy Networks,” in RFC 6551. IETF, 2012, pp.

1–30.

[149] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle Algorithm,” Internet

Engineering Task Force, RFC6206, 2011.

[150] D. Ray, P. Bhale, S. Biswas, P. Mitra, and S. Nandi, “A novel energy-efficient scheme

for rpl attacker identification in iot networks using discrete event modeling,” IEEE

Access, vol. 11, pp. 77 267–77 291, 2023.

202

Bibliography

[151] D. Ray, P. Bhale, S. Biswas, S. Nandi, and P. Mitra, “ArsPAN: Attacker Revelation

Scheme using Discrete Event System in 6LoWPAN based Buffer Reservation Attack,”

in 2020 IEEE International Conference on Advanced Networks and Telecommunications

Systems (ANTS). IEEE, 2020, pp. 1–6.

[152] K.-T. Cheng and A. S. Krishnakumar, “Automatic Functional Test Generation Using

The Extended Finite State Machine Model,” in 30th ACM/IEEE Design Automation

Conference. IEEE, 1993, pp. 86–91.

[153] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast Automaton-Based Method

for Detecting Anomalous Program Behaviors,” in Proceedings 2001 IEEE Symposium

on Security and Privacy. S&P 2001. IEEE, 2000, pp. 144–155.

[154] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou,

“Specification-based Anomaly Detection: A New Approach for Detecting Network In-

trusions,” in Proceedings of the 9th ACM conference on Computer and communications

security, 2002, pp. 265–274.

[155] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and Flexible Operating

System for Tiny Networked Sensors,” in International conference on local computer

networks, 2004, pp. 455–462.

[156] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,

F. Saint-Marcel, G. Schreiner, J. Vandaele et al., “FIT IoT-LAB: A large scale open

experimental IoT testbed,” in World Forum on Internet of Things (WF-IoT), 2015,

pp. 459–464.

[157] S. C. R. or Save System Activity Information, Feb. 2019. [Online]. Available:

https://dx.doi.org/10.21227/fesz-dm97

[158] A. Tirumala, “Iperf: The TCP/UDP bandwidth measurement tool,”

http://dast.nlanr.net/Projects/Iperf/, 1999.

[159] S. Nayak, N. Ahmed, and S. Misra, “Deep Learning-Based Reliable Routing Attack

Detection Mechanism for Industrial Internet of Things,” Ad Hoc Networks, vol. 123,

pp. 1–11, 2021.

203

https://dx.doi.org/10.21227/fesz-dm97

Bibliography

[160] I. S. Alsukayti and A. Singh, “A Lightweight Scheme for Mitigating RPL Version

Number Attacks in IoT Networks,” IEEE Access, 2022.

[161] A. Le, J. Loo, Y. Luo, and A. Lasebae, “Specification-based IDS for securing RPL

from topology attacks,” in 2011 IFIP Wireless Days (WD). IEEE, 2011, pp. 1–3.

[162] S. Sharma and V. K. Verma, “Security explorations for routing attacks in low power

networks on internet of things,” The Journal of Supercomputing, pp. 1–35, 2020.

[163] Z. A Almusaylim, N. Jhanjhi, and A. Alhumam, “Detection and Mitigation of RPL

Rank and Version Number Attacks in the Internet of Things: SRPL-RP,” Sensors,

vol. 20, no. 21, pp. 1–25, 2020.

[164] R. Sahay, G. Geethakumari, and B. Mitra, “A novel blockchain based framework to

secure IoT-LLNs against routing attacks,” Computing, vol. 102, no. 11, pp. 2445–2470,

2020.

[165] H. Neminath, S. Biswas, S. Roopa, R. Ratti, S. Nandi, F. Barbhuiya, A. Sur, and

V. Ramachandran, “A DES approach to Intrusion Detection System for ARP Spoofing

Attacks,” in 18th Mediterranean Conference on Control and Automation, MED’10.

IEEE, 2010, pp. 695–700.

[166] F. A. Barbhuiya, S. Biswas, N. Hubballi, and S. Nandi, “A Host Based DES Approach

for Detecting ARP Spoofing,” in 2011 IEEE Symposium on Computational Intelligence

in Cyber Security (CICS). IEEE, 2011, pp. 114–121.

[167] A. Le, J. Loo, A. Lasebae, A. Vinel, Y. Chen, and M. Chai, “The Impact of Rank

Attack on Network Topology of Routing Protocol for Low-Power and Lossy Networks,”

IEEE Sensors Journal, vol. 13, no. 10, pp. 3685–3692, 2013.

[168] Z. Shelby and C. Bormann, 6LoWPAN: The wireless embedded Internet. John Wiley

& Sons, 2011, vol. 43.

[169] H.-x. Hu, A.-l. Gehin, and M. Bayart, “A state-based approach for decentralized fault

diagnosis in discrete-event systems,” IFAC Proceedings Volumes, vol. 40, no. 1, pp.

142–147, 2007.

204

Bibliography

[170] J. J. Kponyo, J. O. Agyemang, G. S. Klogo, and J. O. Boateng, “Lightweight and host-

based denial of service (dos) detection and defense mechanism for resource-constrained

iot devices,” Internet of Things, vol. 12, p. 100319, 2020.

[171] P. Kumar, H. Bagga, B. S. Netam, and V. Uduthalapally, “Sad-iot: Security analysis

of ddos attacks in iot networks,” Wireless Personal Communications, pp. 1–22, 2021.

205

Appendix

A Discrete Event System Definitions

Due to certain measurement limitations, some events cannot be measured. Such events
are called unmeasurable events. The event set can be expressed as a disjoint union of
measurable and unmeasurable events. In notation, Σ = Σm ∪ Σum.

Definition 1. Measurable and Unmeasurable transitions A transition, τ , that
is enabled under the influence of an event σ is said to be measurable if the corresponding
event, σ, is measurable. Similarly, a transition associated with an unmeasurable event is
said to be an unmeasurable transition. ℑm and ℑum denote the set of measurable and
unmeasurable transitions.

Definition 2. Measurement equivalent transitions (states) A pair of transitions
τ1 = ⟨x1, x+1 , σ1, ϕ1(V), Φ1(C), Reset1(C), Assign1(V)⟩ and τ2 = ⟨x2, x+2 , σ2, ϕ2(V),
Φ2(C), Reset2(C), Assign2(V)⟩ are said to be measurement equivalent iff σ1 = σ2, ϕ1(V) =

ϕ2(V), Φ1(C) = Φ2(C), Reset1(C) = Reset2(C) and Assign1(V) = Assign2(V). If a pair
of transitions are equivalent, then their source states and destination states are equivalent
states pair-wise. In simple terms, if the system current state is an initial state of a transition
that has at least one more equivalent state, then the final states reached, from each of these
states due to an equivalent transition, are also equivalent.

Definition 3. Projection and Inverse Projection Operator A projection operator
P : ℑ∗ → ℑ∗m is defined as: P (ϵ) = ϵ (null string); P (τ) = τ if τ ∈ ℑm; P (τ) = ϵ if τ ∈ ℑum;
P (sτ) = P (s)P (τ), where s ∈ Lf (H), τ ∈ ℑ. The function P erases the unmeasurable
transitions from the argument finite trace. P (s) is termed as the measurable finite trace
corresponding to the finite trace s.

Definition 4. Normal H-state (H-transition) and Faulty (Attack) H-state
(H-transition) States that are traversed by the system when operating without any fault
(attack) are known as Normal H-states. XN denotes the set of all normal states. A H-
transition ⟨x, x+⟩ is called a normal H-transition if x, x+ ∈ XN . States that are traversed
by the system when operating under faulty (attack) circumstances are known as faulty
H-states (attack H-states). XFi denotes the set of all faulty states. A H-transition ⟨x, x+⟩
is called a faulty H-transition if x, x+ ∈ XFi . Analogously, XAi denotes the set of all attack
states. A H-transition ⟨x, x+⟩ is called an attack H-transition if x, x+ ∈ XAi .

B DES Diagnosability

Definition 5. Fi-Diagnosability Let Ψ(XFi) = {s|s ∈ Lf (H) and final(s) ∈ XFi and s

ends in a measurable transition}. A DES model H is said to be diagnosable for fault Fi iff
the following holds:

207

B. DES Diagnosability

(∃nj ∈ N)[∀s ∈ Ψ(XFi)](∀t ∈ Lf (G)/s)[|t| ≥ nj)⇒ D] (1)

where, D is ∀x ∈ {P−1[P (st)]}, final(x) ∈ XFi .
Definition 6. Fi-I-Diagnosability Let Ψ(XFi) = {s|s ∈ Lf (H) and final(s) ∈ XFi

and s ends in a measurable transition}. A I-DES model H is said to be I-diagnosable for
fault Fi iff the following holds:

(∃nj ∈ N)[∀s ∈ Ψ(XFi)](∀it ∈ Lf (G)/s)[|t| ≥ nj)⇒ D] (2)

where, D is ∀x ∈ {P−1[P (sit)]}, final(x) ∈ XFi .
Suppose s is a finite trace in H containing a Fi state and i is an indicator transition

and t is continuation of trace si that is sufficiently long. To satisfy the I-Diagnosability
condition D then requires every trace that is measurement equivalent to sit to end in a Fi

state. This implies that in absence of Fi-I-indeterminate cycles (Ai-I-indeterminate cycles),
along every continuation it of s, occurrence of a fault Fi (attacker Ai) can be detected
within at most n system transitions following si.

Definition 7. Fi-I2-Diagnosability Let Ψ(XFi) = {s|s ∈ Lf (H) and final(s) ∈ XFi

and s ends in a measurable transition}. A I2-DES model H is said to be I2-diagnosable for
fault Fi iff the following holds:

(∃nj ∈ N)[∀s ∈ Ψ(XFi)](∀ejit ∈ Lf (G)/s)[|t| ≥ nj)⇒ D] (3)

where, D is ∀x ∈ {P−1[P (sejitt)]}, final(x) ∈ XFi .
Implications of s,i,t are the same as in Definition 6. e denotes a transition consisting

of an empowering event and j is an optional trace that occurs after e and till indicator
transition i. To satisfy the I2-diagnosability condition requires e to ensure that i sensitizes
the fault Fi (attacker Ai) occurrence within at most n system transitions following the trace
seji.

Construction of the diagnoser:
DES diagnosers give estimates of system states that are modeled using a DES. Con-

sequently, DES I-diagnosers and DES I2-diagnosers are modeled from I-DES consisting
of indicator transitions and I2-DES consisting of empowering events apart from indicator
transitions. Each of these diagnosers are represented as a directed graph, O = ⟨Z,A,Z0⟩.
Here, Z is the set consisting of the states of the diagnoser O, called O-states, Z0 is the set
of initial O-states of the diagnoser and A is the set consisting of the transitions (edges) of
the diagnoser, called O-transitions, where A ⊆ Z × Z. Each O-state z is an estimate of the
actual system state and consists of one or more states of DES H, z ∈ 2X , the power set of
X, signifying membership uncertainty. On a similar note, each of the O-transition a consists
of one or more measurement equivalent transition of modeled DES H and represents an
uncertainty in the actual measurable transition that takes place. They are of the form
⟨zi, zf ⟩. We denote the unmeasurable successor set of a state set X as U(X) and is defined
as U(X) =

⋃
x∈X{x+|τ = ⟨x, x+⟩ ∈ ℑu}. The unmeasurable reach of a state set X, U∗(X),

is the reflexive-transitive closure of U(X).
The sets we consider are finite sets. To construct the diagnoser, transitions and states

208

Bibliography

are appended to the diagnoser based on the measurable system traces from the initial set of
states. The set of states contained in an initial O-state are the initial states of DES H and
the states that are reachable from each of those initial states using sequences of unmeasurable
transitions, i.e., {X0 ∪ U(X0)}. The initial O-state thus comprises of states that belong
to normal state set or any attacker type state from H, because an attack transition is
inherently unmeasurable. Consequently, any O-state may comprise of equivalent states
from normal as well as attacker type states. Hence, all states included in O are measurable
equivalent. The O-transitions on the other hand are a set of equivalent H-transitions which
are directed from a set of equivalent source states to a set of equivalent destination states.
Any O-transition can therefore take either of these following forms:

• ⟨(xa, x+a), (xb, x+b)⟩ if ⟨xa,xb,σa,ϕa(V),Φa(C),Assigna(V),Reseta(C)⟩ ≡ ⟨x+a ,x+b ,σa+ ,
ϕa+(V), Φa+(C),Assigna+(V),Reseta+(C)⟩

• ⟨(xa, x+a), (xb)⟩, ⟨(xa, x+a), (x+b)⟩ if ⟨xa,xb,σa,ϕa(V),Φa(C),Assigna(V),Reseta(C)⟩ ̸≡
⟨x+a ,x+b ,σa+ ,ϕa+(V),Φa+(C),Assigna+(V),Reseta+(C)⟩ and xa ≡ x+a

• ⟨(xa), (xb)⟩⟨(x+a), (x+b)⟩, otherwise.

In Algorithm 14, the step-wise procedure for a DES diagnoser construction is shown.
Their construction procedure remains the same irrespective of indicator transitions or
empowering transitions in the corresponding DES model.

ALGORITHM 14: Diagnoser construction O for DES model H
Input: DES model H
Output: DES Diagnoser
/* PARTITION X0 → Measurement equivalent classes, X01, X02, . . . , X0m */

1 for all i, 1 ≤ i ≤ m do
2 z0i ← U∗(X0i)

3 Z0 ← z01 ∪ · · · ∪ z0m
4 Z ← Z0

5 A← ϕ
6 for all z ∈ Z do

/* Find the set of measurable H-transitions (ℑmz) outgoing from z */
7 ℑmz ← {τ |τ ∈ ℑm ∧ initial(τ) ∈ z}

/* Find the set of all measurement equivalent classes Az, of ℑmz */
8 for all a ∈ Az do
9 z+a = {final(τ)|τ ∈ a}

10 z+ = U∗(z+a)

11 Z ← Z ∪ {z+}
12 A = A ∪ {a}

C Diagnosability Definitions

Fi-certain O-state (Ai-certain O-state) and Fi-uncertain O-state (Ai-uncertain O-state) are
two types of diagnoser states that relate to occurrence of a fault type Fi (attacker type Ai).
Following are some of the definitions that pertain to the diagnoser:

209

C. Diagnosability Definitions

Definition 8. Normal certain O-state A O-state that consists of states in H, all of
which only belong to XN .

Definition 9. Fault certain O-state (Attack certain O-state) Given n fault
(attacker) types, a O-state that consists of states in H, all of which only belong to

⋃
i∈n Fi

(
⋃

i∈nAi), purely.
Definition 10. Fi-certain O-state (Ai-certain O-state) A O-state that consists of

states in H, all of which only belong to XFi (XAi).
Definition 11. Fi-uncertain O-state (Ai-uncertain O-state) A O-state that

consists of states that may belong to Fi-H-states as well as states of DES H other than the
fault type Fi (attacker type Ai).

Definition 12. Fi-uncertain cycle (Ai-uncertain cycle) It is defined as a cycle of
O-states in which there are no Fi-certain O-state (Ai-certain O-state).

Definition 13. Indicator transition (I-transition) A transition containing a
measurable event, called an indicator event, that sensitizes a fault (attack).

Definition 14. Fi-indeterminate cycle (Ai-indeterminate cycle) It is defined as a
cycle of Fi-uncertain O-states (Ai-uncertain O-states) such that the transitions constituting
this cycle also form a cycle in H using only non-Fi-states (non-Ai-states). A Fi-indeterminate
cycle (Ai-indeterminate cycle) is therefore a special case of Fi-uncertain cycle (Ai-uncertain
cycle).

Lemma: Existence of a Fi-indeterminate cycle (Ai-indeterminate cycle) renders non-
diagnosability

Proof : Existence of a Fi-indeterminate cycle (Ai-indeterminate cycle) in diagnoser O

implies the presence of at least two measurement equivalent traces in H, one consisting of only
Fi-states (Ai-states) and another comprising of non-Fi-states (non-Ai-states). Therefore,
system traces executed while in a Fi-indeterminate cycle (Ai-indeterminate cycle) imply
that variables measured are identical in both normal and fault (attack) conditions. Hence,
the estimates of the diagonser while entering and moving along such a cycle means non-
diagnosability of fault Fi (attack Ai), since throughout the cycle transitions it remains
uncertain if Fi (Ai) or non-Fi (non-Ai) occurs each time and as it is assumed that the faults
(attacks) are permanent, the cycle may thus never be exited.

210

List of Publications

Publications from Thesis Work:

Refereed Journals

1. Dipojjwal Ray*, Pradeepkumar Bhale, Santosh Biswas, Pinaki Mitra and Sukumar
Nandi, “A Novel Energy-Efficient Scheme for RPL Attacker Identification in IoT
Networks Using Discrete Event Modeling”, IEEE Access, vol. 11, pp. 77267-77291,
2023.
DOI: 10.1109/ACCESS.2023.3296558

2. Dipojjwal Ray*, Yogendra Sao, Santosh Biswas, and Sk Subidh Ali, “On Securing
Cryptographic ICs against Scan-based Attacks: A Hamming Weight Distribution
Perspective”, ACM Journal of Emerging Technologies and Computing Systems (JETC),
vol 19, Issue 2, Article 10 (April2023).
DOI: https://doi.org/10.1145/35772152

Refereed Conferences

3. Dipojjwal Ray*, Pradeepkumar Bhale, Santosh Biswas, Sukumar Nandi and
Pinaki Mitra, “DAISS: Design of an Attacker Identification Scheme in CoAP Re-
quest/Response Spoofing”, IEEE Region 10 Conference (TENCON 2021), Auckland,
NewZealand, 2021, pp.941-946. DOI: 10.1109/TENCON54134.2021.9707405

4. Dipojjwal Ray*, Pradeepkumar Bhale, Santosh Biswas, Sukumar Nandi and Pinaki
Mitra, “ArsPAN: Attacker Revelation Scheme using Discrete Event System in 6LoW-
PAN based Buffer Reservation Attack”, 2020 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 2020,
pp.1-6.
DOI: 10.1109/ANTS50601.2020.9342842

5. Dipojjwal Ray*, Siddharth Singh, Sk Subidh Ali and Santosh Biswas, “Co-relation
Scan Attack Analysis(COSAA) on AES: A Comprehensive Approach”, 2019 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS), Noordwijk, Netherlands, 2019, pp.1-6.
DOI: 10.1109/DFT.2019.8875272

Journal Submission Under Review

6. Dipojjwal Ray*, Pradeepkumar Bhale, Santosh Biswas, Pinaki Mitra, Sukumar
Nandi, “Fragment duplication attacker identification in 6LoWPAN using an energy-
efficient probing scheme”, Wiley Transactions on Emerging Telecommunication Tech-
nolgies (TOETT).

211

7. Dipojjwal Ray*, Santosh Biswas, Pinaki Mitra, “Design of an Attacker Identification
Scheme in CoAP Request/Response Spoofing using CON messages”, IEEE IoT journal.

212

Publications other than Thesis Work:

1. Yogendra Sao, Sk Subidh Ali, Dipojjwal Ray*, Siddharth Singh, Santosh Biswas,
“Co-relation scan attack analysis(COSAA) on AES: A comprehensive approach”, Mi-
croelectronics Reliability, Elsevier, Volume 123, 2021, 114216.

2. Pradeepkumar Bhale, Dipojjwal Ray, Santosh Biswas and Sukumar Nandi, “WOMN:
WOrMhole Attack DetectioN and Mitigation Using Lightweight Distributed IDS in
IoT Network”, 2023 IEEE Guwahati Subsection Conference (GCON), Guwahati, India,
2023, pp. 01-06.
DOI: 10.1109/GCON58516.2023.10183505

213

Doctoral Committee

Chairperson: Prof. Jatindra Kumar Deka
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Research Advisors: Dr. Pinaki Mitra
Associate Professor
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Prof. Santosh Biswas
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Bhilai

Members: Prof. Hemangee Kapoor
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Dr. Aryabartta Sahu
Associate Professor
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

215

Vitae

Dipojjwal Ray joined the Dual (M.Tech + Ph.D.) pro-
gramme in the Department of Computer Science and Engi-
neering at Indian Institute of Technology (IIT) Guwahati,
India in July 2015. Prior to joining IIT Guwahati, he
was with Tata Consultancy Services as a Windows Phone
Application Developer and later as a research fellow in
Big Data at the Department of Computer Science and
Engineering, Indian Institute of Technology (IIT) Bom-
bay, Mumbai, Maharashtra, India. He earlier received a
B.Tech. degree in Electronics and Communication Engi-

neering from Institute of Engineering and Management (IEM), Kolkata, West Bengal, India
in 2010. His domains of expertise are Formal Verification, Discrete Event Systems, Network
Security, Hardware Security. His current research interests include but are not limited
to Security Verification, Formal Verification of Learning-enabled Cyber Physical Systems,
Game theoretic controller design, Combinatorial Optimization, Artificial Intelligence and
Reactive Synthesis. He enjoys playing football, lawn tennis, cricket, badminton, table tennis,
and traveling to new places.

Contact Information

E-mail: dipojjwal@iitg.ac.in

ray.dipojjwal@gmail.com

Address: S/o: Dr. Subrata Ray, 40 Pirtala, Baburbag,
Burdwan, West Bengal - 713104, India

<<=8=;;

217

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Symbols
	Introduction
	IoT Applications
	IoT Technologies and Protocols
	Context
	Device-level attacks
	Network-level attacks
	Application-level attacks
	IoT Security Challenges
	Intrusion Detection System (IDS)

	Motivation
	Preliminaries of Discrete Event System (DES)
	DES Security
	Failure Diagnosis and Diagnosability (FDD) of DES and IDS

	Research Questions
	Contributions
	Scan-based Side-channel Attack
	RPL Version Number Attack and RPL Rank Attack
	6LoWPAN Fragmentation Attack
	CoAP Request and Response Spoofing Attack

	Organization of the Thesis

	Mitigation of Differential Scan Attacks
	Background
	AES
	Differential Scan Attacks
	Preliminaries of Discrete Event System and Opacity in Security

	Proposed Defense Scheme
	Threat model
	State based Attack Model
	State based defense model
	Architecture
	Mask Determination Algorithm
	Discussion
	Complexity Analysis
	Testability

	Security Proof
	Verifying current-state opacity
	Why differential scan attacks will fail
	Security considerations for generalized input differences

	Case Study
	Experimental Results
	Performance analysis

	Comparison with other works
	Conclusion and Future Directions

	Mitigation of RPL-based Attacks
	Related Work
	Background
	RPL Protocol
	Rank and version number attack
	Increased rank attack timeline
	Intrusion Detection Systems

	Proposed Rank Attacker Identification Scheme
	I-DES based IDS
	Overview of proposed attacker identification procedure
	IDS Setup
	Intimation
	RQST_RSP_HANDLER()
	I-DES Model and I-Diagnoser
	Basics of Discrete Event Systems
	An example of rank attacker node identification using DES Diagnoser
	Correctness and Completeness
	Overhead analysis

	Experiments, results, and discussion
	Experiment 1: Non-rank attack scenario
	Experiment 2: Increased rank and version number attack scenario
	Experiment 3: Attack scenario with proposed solution
	Comparison with the existing works
	Discussion

	Conclusion

	Mitigation of 6LoWPAN Fragmentation Attacks
	Preliminaries
	6LoWPAN Fragmentation mechanism
	Fragment Duplication Attack

	Related Work
	Proposed Defense Scheme
	Design Overview
	Setup
	Attack Inference
	Active probing
	I-DES Model and local I-Diagnoser
	An example of fragment duplication attacker node identification using DES Diagnoser
	Correctness and Completeness

	Performance evaluation
	Experiment 1: Non-FDA scenario
	Experiment 3: FDA scenario with proposed solution
	Comparison with the existing works

	Conclusion

	Mitigation of CoAP request/response spoofing attacks
	Background
	CoAP
	CoAP Message Format
	CoAP - IP address spoofing attack

	Proposed Scheme
	I2-DES based IDS
	Design Overview
	Setup
	Inference
	Probing
	I2-DES modeling
	An example of CoAP spoofing attacker node identification using DES Diagnoser
	Correctness

	Experiments, results, and discussion
	Network Performance under non-attack scenarios
	Network Performance under DoS attack scenarios
	Network Performance with the proposed approach:

	Conclusion

	Conclusions and Future Work
	Summary of Thesis Contributions
	Contributions of Chapter 2:
	Contributions of Chapter 3:
	Contributions of Chapter 4:
	Contributions of Chapter 5:

	Scope of Future Work

	Bibliography
	Appendix
	Discrete Event System Definitions
	DES Diagnosability
	Diagnosability Definitions

	List of Publications

