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ABSTRACT

The Internet of Things (IoT) revolution has ushered huge technological benefits and
has made future communication and human lives easier. However, the rapid proliferation of
IoT introduces numerous security challenges. IoT systems have been shown vulnerable to
device-level attacks. Also indubitably, there exists a multitude of network-level attacks that
make IoT systems vulnerable due to lack of secure provisions in place. At the device-level,
secure IoT devices can be heavily compromised to various side-channel attacks. There
exists scan-based side-channel attacks for which the proposed countermeasures are either
insufficient, or compromise on testability, or of high-overhead. At the network-level, IoT-
specific protocols are prone to varied internal DDOS attacks at each layer. Given the
resource-constrained environment, lightweight, accurate and malicious node identification
schemes are highly demanding among attack mitigation techniques. For genuine reasons,
Intrusion Detection Systems (IDS), a software or hardware component monitoring host or
network threats, are widely used to secure IoT systems and deemed suitable for most of
such detection or prevention scenarios. The two most popular IDS-based design techniques
are Signature based IDS, which use known signatures, and Anomaly-based IDS that use
statistical features. However, there exists no known signatures or features in attacks like
RPL rank attack, RPL version number attack, 6LoWPAN based fragmentation attacks,
CoAP request spoofing and CoAP response spoofing attacks, rendering Signature-based and
Anomaly-based methods futile. Basically they generate lots of false positives since the IoT
network traffic, operational under attack, cannot be differentiated from the normal traffic.
This dissertation presents few novel attack mitigation and attack node location identification
mechanisms for IoT security, utilizing controller and IDS implementations, while using
various Discrete Event System (DES) based formalisms. DES models are designed for the
IoT systems under normal and abnormal conditions. DES based formalisms ensure proofs of
correctness and completeness which are preferable. DES security and Fault Detection and

Diagnosis (FDD) theoretic properties in Finite State Automata are leveraged for the proofs.

The thesis work comprises four contribution chapters. In the first chapter, we show
an Opacity preserving countermeasure using a novel hardware controller unit design that
circumvents all state-of-the-art differential scan attacks including a proposed co-relation scan
attack that is more effective on an IoT device having AES implementation. The controller
uses a mask determination algorithm to selectively allow bit-flipped scan outputs. Our
scheme incurs nominal overhead and maintains full testability. Opacity, a security notion
in the DES community, is used to formally prove the security of our system modeled in
DES. Diagnosability is a property used in classical DES approaches for performing FDD

of complex control systems. For the subsequent network-level attack countermeasures, we



adopt this approach in our DES based IDS framework, since faults and attacks have similar
properties. In the second chapter, we present a RPL version number attack detection
and rank attacker detection as well as identification mechanism that utilizes an intelligent
active probing technique and DES based IDS. Our proposed architecture is centralized
with inputs from sensing at the RPL leaf nodes. Active probing helps create differentiating
sequences of events in normal and attacker specific conditions. I-diagnosis framework of
DES is extended to model rank attacker node behaviour incorporating the controllable
events (probes). In the third chapter, we present a novel 6LoWPAN fragmentation attacker
identification mechanism that utilizes fabricated fragments as active probes. Such attacks
are low overhead with an eavesdropping attacker capable of exploiting nodes which are just
a single hop away. Consequently, a decentralized DES based IDS is proposed. Decentralized
I-diagnosis helps globally diagnose an attack node based on the response generated from the
forwarded spoofed fragments. Global I-diagnosability is ensured from the local I-diagnosis.
Lastly, we present a CoAP request spoofing attacker identification mechanism using crafted
request and response messages. [-diagnosis framework is successfully adapted for detecting
an attack node that has launched the request spoofing attack in IoT application layer.
However, proposed technique is limiting while detecting an response spoofing attack node,
since correctly crafted fragments need to be ensured. Consequently, we adapt and extend the
I%-diagnosis framework of DES to model the crafted fragment indicator event (active probe)
along with an empowering event. All the countermeasures are experimentally analysed both
in simulation and real testbed. Results show that our schemes are accurate and lightweight
compared to existing approaches. Furthermore, we prove the correctness and completeness

of our proposed mechanisms.

X1l



Table of Contents

Page

List of Figures vi
List of Tables xi
List of Algorithms xiii
List of Acronyms XV
List of Symbols Xix
Introduction 1
1.1 ToT Applications . . . . . . . . . . . 2
1.2 IoT Technologies and Protocols . . . . . . . ... ... ... ... ...... 3
1.3 Context . . . . . . . . e 7
1.3.1 Device-level attacks . . . . . . . ... 0oL 7
1.3.2 Network-level attacks. . . . . . . .. .. ... oL 9
1.3.3 Application-level attacks . . . . . . . . . ... .. ... ... ... .. 10
1.3.4 IoT Security Challenges . . . . . . . ... ... .. .. ... ..... 11
1.3.5 Intrusion Detection System (IDS) . . . . . .. ... ... ... .... 13

1.4 Motivation . . . . . . . . . e 15
1.5 Preliminaries of Discrete Event System (DES) . . . . .. .. ... ... ... 17
1.5.1 DES Security . . . . . ... 17
1.5.2  Failure Diagnosis and Diagnosability (FDD) of DES and IDS . . . . 18

1.6 Research Questions . . . . . . . . . . . . ... ... 19
1.7 Contributions . . . . . . . . .. 20
1.7.1 Scan-based Side-channel Attack . . . . . . ... ... ... ... ... 20
1.7.2 RPL Version Number Attack and RPL Rank Attack . ... ... .. 24
1.7.3 6LoWPAN Fragmentation Attack . . . . . . ... . ... ... .... 26
1.7.4 CoAP Request and Response Spoofing Attack . . . . .. .. ... .. 28



TABLE OF CONTENTS

1.8 Organization of the Thesis . . . . . . . . . ... ... ... ... ... ..

2 Mitigation of Differential Scan Attacks

2.1 Background . . . ...
2.1.1  AES . e,
2.1.2 Differential Scan Attacks. . . . . . . . . . ...

2.1.3  Preliminaries of Discrete Event System and Opacity in Security . . .

2.2 Proposed Defense Scheme . . . . . .. .. ... .. ... .. ... ... ...
2.2.1 Threat model . . . . . . . . ...
2.2.2 State based Attack Model . . . . . . ... ... oL,
2.2.3 State based defense model . . . . . ... ..o
2.2.4 Architecture . . . . . ...
2.2.5  Mask Determination Algorithm . . . . . . ... ... ... ... ...
2.2.6 Discussion . . . . . . ...
2.2.7 Complexity Analysis . . . . . .. .. .. ..
2.2.8 Testability . . . . . . . ..

2.3 Security Proof . . . . . ...
2.3.1 Verifying current-state opacity . . . . . . ... ... oL
2.3.2  Why differential scan attacks will fail . . . . . . . ... .. ... ...
2.3.3  Security considerations for generalized input differences . . . . . ..

2.4 Case Study . . . . . . . e
2.4.1 Experimental Results . . . .. .. .. .. ... . 0.
2.4.2 Performance analysis . . . . . . .. ... L 0L

2.5 Comparison with other works . . . . . . . ... ... ... ... ... ....

2.6 Conclusion and Future Directions . . . . . .. .. .. ... ... ... ....

Mitigation of RPL-based Attacks

3.1 Related Work . . . . . . .
3.2 Background . . . ...
3.2.1 RPL Protocol . . . . . . . . .. .
3.2.2 Rank and version number attack . . . ... ... ...
3.2.3 Increased rank attack timeline. . . . . ... .. ... ...
3.2.4 Intrusion Detection Systems . . . . . . . . .. ... ...

ii



TABLE OF CONTENTS

3.3 Proposed Rank Attacker Identification Scheme . . . . . . . ... ... ... 72
331 I-DESbasedIDS . . . .. . .. . . ... 72
3.3.2  Overview of proposed attacker identification procedure . . . . . . . . 73
333 IDSSetup . . . . . . . 76
3.3.4 Intimation . . . . . . . ... 77
3.3.5 RQST RSP _HANDLER() . . . . . . ... 78
3.3.6 I-DES Model and I-Diagnoser . . . . ... ... ... .. ...... 81
3.3.7 Basics of Discrete Event Systems . . . . . .. .. ... ... ... .. 81
3.3.8 An example of rank attacker node identification using DES Diagnoser 92
3.3.9 Correctness and Completeness . . . . . . ... ... ... ... ... 92
3.3.10 Overhead analysis . . . . . . .. .. ... ... ... ... ... 96

3.4 Experiments, results, and discussion . . . . . . ... .. ... ... ... .. 97
3.4.1 Experiment 1: Non-rank attack scenario . . . .. ... ... ... .. 98
3.4.2 Experiment 2: Increased rank and version number attack scenario . 99
3.4.3 Experiment 3: Attack scenario with proposed solution . . . . . . .. 100
3.4.4 Comparison with the existing works . . . . . ... ... ... ... .. 103
3.4.5 Discussion . . . . ... L 104

3.5 Conclusion . . . . . .. .. 109

Mitigation of 6LoWPAN Fragmentation Attacks 111

4.1 Preliminaries . . . . . . . .. L Lo 113
4.1.1 6LoWPAN Fragmentation mechanism . . . ... ... ... ... .. 113
4.1.2  Fragment Duplication Attack . . . . . . ... ... ... ... ... 114

4.2 Related Work . . . . . . .. 116

4.3 Proposed Defense Scheme . . . . . . ... ... 0oL 117
4.3.1 Design Overview . . . . . . . . . . 117
4.3.2 Setup . . ... 120
4.3.3 Attack Inference . . . . . ... o 121
4.3.4 Active probing . . . . ... 124
4.3.5 I-DES Model and local I-Diagnoser . . . . . ... ... ... .... 125
4.3.6  An example of fragment duplication attacker node identification using

DES Diagnoser . . . . . . . . 134
4.3.7 Correctness and Completeness . . . . . .. ... ... ... ... .. 135

iii



TABLE OF CONTENTS

4.4  Performance evaluation . . . . . .. ... 0oL 138
4.4.1 Experiment 1: Non-FDA scenario . . . . . . ... . ... ... .... 139
4.4.2 Experiment 3: FDA scenario with proposed solution . . . . .. . .. 140
4.4.3 Comparison with the existing works . . . . ... .. ... ...... 143

4.5 Conclusion. . . . . . . . 144

5 Mitigation of CoAP request/response spoofing attacks 147

5.1 Background . . . ... 149
51.1 CoAP . . . . . 149
5.1.2 CoAP Message Format . . . . . . .. ... ... ... .. ... .. 149
5.1.3 CoAP - IP address spoofing attack . . . . ... ... ... ... ... 150

5.2 Proposed Scheme . . . . . . ... 151
52.1 I?-DESbased IDS . ... ... ... ... ... 151
5.2.2 Design Overview . . . . . . . . .. 152
5.2.3 Setup . . . ... 155
5.2.4 Inference . . . . . .. ... 156
5.25 Probing . . . . .. 157
5.2.6 I?-DESmodeling . . . . . . .. ... ... 160
5.2.7 An example of CoAP spoofing attacker node identification using DES

Diagnoser . . . . . . . . 170
5.2.8 Correctness . . . . . . . ..o 172

5.3 Experiments, results, and discussion . . . . . .. ... ... ... ... .. 174
5.3.1 Network Performance under non-attack scenarios . . . . . . . .. .. 175
5.3.2 Network Performance under DoS attack scenarios . . . . . . . .. .. 175
5.3.3 Network Performance with the proposed approach: . . . . .. .. .. 175

5.4 Conclusion . . . . . . . . .. 176

6 Conclusions and Future Work 177

6.1 Summary of Thesis Contributions . . . . . . . . ... .. .. ... ...... 178
6.1.1 Contributions of Chapter 2: . . . . . . ... . ... ... ....... 179
6.1.2 Contributions of Chapter 3: . . . . . . .. ... ... ... ...... 180
6.1.3 Contributions of Chapter 4: . . . . . . .. .. .. ... ... ..... 181
6.1.4 Contributions of Chapter 5: . . . . . . . . ... ... ... .. .... 182

6.2 Scope of Future Work . . . . . . ... o 183

iv



TABLE OF CONTENTS

Bibliography

Appendix
A Discrete Event System Definitions

B DES Diagnosability . . . . . .. ... ... ..
C  Diagnosability Definitions . . . . . . . .. ..

List of Publications

187

207






List of Figures

1.1

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.11

Page
Overview of contributions in the IoT architecture . . . . . . . . ... .. .. 30
AES round operation . . . . .. ..o 37
Hamming weight distribution (original) corresponding to 0z01 plaintext
difference . . . . . L 39
Proposed DES attack model G with 2 plaintext pairs . . . . . . . . ... .. 46
Proposed defense model H with 2 plaintext pairs . . . . . . ... ... ... 47
Architecture . . . . . . .. 49
Block diagram of the controlled system S/H . . . ... ... ... ... ... 50
Estimator automaton for DES H . . . . . . . . ... ... ... ... ... 55
Hamming weight distributions . . . . . . . .. .. .. ... 0. o7
Signature Matches . . . . . . . ..o 57
Correct and incorrect key distribution in co-relation scan attack . . . . . . . 57
RPL DODAG . . . . . 69
Rank Attack Timeline . . . . . . . . . .. ... ... ... 71
[oT network DODAG representation with IDS and agents deployed . . . . . 74
Architecture of proposed IDS . . . . . . ... 75
Workflow of proposed scheme . . . . . .. ... ... ... 0. 75
A DODAG instance (left) and path TPATH? (right). IDS nodes are
denoted as gray circles, non-attack nodes are denoted in blue circles,
suspected attack nodes are denoted in red green circles . . . . . . . . .. 77
DESmodel H . . . . . . . . . . 82
Diagnoser O for DESmodel H . . . . . . . . ... ... ... ... ..... 90
Normal and attack configurations . . . . . . . .. ... ... ... .. ... 93
Topology considered for testbed and simulation experiments . . . . . . . . . 97
DODAG of the IoT ecosystem . . . . . . . . ... .. ... .. ... ..... 99

vil



LisT oF FIGURES

3.12

3.13

3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

4.12

4.13

5.1
5.2
5.3

Average Energy, Throughput, Node Power over run time (nodes=64) (without

malicious node) . . . . .. L 100

Average Energy, Throughput, Node Power over run time (nodes=64) (with

malicious node) . . . . ... 101

Average Energy, Throughput, Node Power over run time (nodes=64) (after

solution implementation) . . . . . . .. ..o Lo 101
Power and Energy for 50 min network execution with proposed solution . . 101

PDR and Throughput for 50 min network execution with proposed solution 101

Node Power comparison with related works . . . . . . ... ... ... ... 105
Energy comparison with related works . . . . .. ... ... 000 105
PDR comparison with related works . . . . . . ... ... ... ... .. 105
Throughput comparison with related works . . . . . ... . ... ... ... 106
TPR and TNR comparison with related works . . . . . . . .. ... ... .. 106
Fragmentation Process Overview . . . . . .. .. ... ... .. ... .... 114
Attack Scenario for Fragment Duplication Attack . . . . . . ... ... ... 115
An example of 6LoOWPAN deployment . . . . . ... ... ... ... .... 117
IDS architecture . . . . . . . .. ... 118
Flow of DES based IDS scheme . . . . . . .. .. ... ... ... ...... 119
DES model H; . . . . . . . . . e 125
Diagnoser O for DES model H; . . . . . . . . . .. ... ... ... ..... 131
An arrangement of IDS and non-IDS 6LoWPAN nodes . . . . . . .. .. .. 135
Topology considered for testbed and simulation experiments . . . . . . . .. 138
Analysis of average PDR, EC, EED, and THP over different packet size with

64 node (non-FDA scenario) . . . . . . . . . . . ... 140
Analysis of average PDR, EC, EED, and THP over different packet size with

64 node (During FDA scenario) . . . . . . . ... ... ... ... .. 141
Analysis of average PDR, EC, EED, and THP over different packet size with

64 node (After solution implementation) . . . . . .. .. ... ... ... .. 143
Analysis of ACC and FDA over different packet size with 64 node (Topology

1 and Topology 2 used) . . . . . . . . . ... 143
CoAP message format . . . . . . ... 149
CoAP address spoofed attack timeline . . . . ... ... ... ... ..... 150
An example of IDS deployment . . . . . . ... ... 152



LisT OF FIGURES

5.4
5.5
5.6
5.7
5.8
5.9

Architecture of the proposed IDS . . . . . . . . ... 153
Role of IDS . . . . . . . e 154
Flow of proposed scheme . . . . . . . . .. ... ... . . 156
DES model H; . . . . . . . . . e 158
Diagnoser O for DES model H; . . . . . . . .. . ... .. .. ... ..... 167
Snapshot of Non attack and DDoS attack scenario in IoT Ecosystem . . . . 175

X






List of Tables

2.1
2.2

2.3

3.1
3.2
3.3
3.4

3.5
3.6

3.7

3.8

4.1
4.2
4.3

4.4
4.5
4.6

4.7

5.1
5.2

Notations . . . . . . . . . e 43

RTL Components Summary for AES Implementation With and Without the

Proposed Countermeasure . . . . . . . . . . . . .. ... 58
Comparison of Different Designs . . . . . .. . .. ... ... ... ..., 60
NOTATIONS . . . . . e e e e s 73
Table for TPATH? . . . . ... .. e 7
LIST OF SYMBOLS . . . . . . . . e 83
TRANSITIONS & IN H CORRESPONDING TO NETWORK PACKET

FRAMES . . . . . e 86
Contiki Cooja and FIT IoT-LAB experimental parameters . . . . . . . . .. 98

Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosys-

tem (During attack and after solution implementation in Contiki Cooja) . . 99

Energy, Node Power, Throughput, and Packet Delivery Ratio for IoT ecosys-
tem (During attack and after the solution implementation in FIT IoT-Lab) 99

Comparison of the proposed scheme with the closely related works . . . . . 106
FRAME NOTATIONS . . . . . . . e 118
LIST OF SYMBOLS . . . . . . . e 127
TRANSITIONS & IN H; CORRESPONDING TO NETWORK PACKET

FRAMES . . . . . 129
Simulation and real-time test-bed parameters . . . . .. .. ... ... ... 139
PDR, EC,EED and THP values for IoT ecosystem (During attack) . . . . . 142
PDR, EC,EED and THP values for IoT ecosystem (After solution Implemen-

tation) . . ... 144
Comparison of the proposed scheme with the closely related works . . . . . 144
TRANSITIONS & IN H; CORRESPONDING TO CoAP PACKETS . . . . 160
TRANSITIONS & IN H; CORRESPONDING TO CoAP PACKETS . . . . 161

xi



LisT oF TABLES

5.3 Notations used

5.4 Throughput, Accuracy, and Response Time During DoS and after implemen-

tation of Intended Approach . . . . . . . ... ...

5.5 Comparison between closely related works and proposed approach . . . . . .

xii



List of Algorithms

Tt = W N =

[«

10
11
12
13

14

S-box Input Pairs . . . . . ... 40
Plaintext Pairs . . . . . . . . . . . . .. 41
Key Guessing Algorithm . . . . . . ... . ... ... 42
Key Recovery Procedure . . . . . . . . . ... 45
Computing a modified HW distribution and Mask value . . . . . .. .. . .. 52
Agent Intimation Procedure . . . . . . . . . . . ... 78
RQST RSP _HANDLER() . . . . . . o oo 79
FRAG_RCV _HANDLER()of I; . . ... ... ... ... ......... 121
FRAG_SND HANDLER()of Z; . . . . o o 126
CoAP _REQ HANDLER()ofZ; . . ... .. ... ... ... 159
CoAP _REQ HANDLER() Probing Module of Z; . . . . . ... ... ... 162
CoAP RSP HANDLER() Probing Module of Z; . . . . . ... ... ... 162
CoAP RSP HANDLER()ofZ;. . . . . .. ... . .. 163
Diagnoser construction O for DESmodel H . . . . . . ... ... ... .... 209

xiii






List of Acronyms

Acronym

6BR
6LoWPAN
ACC
ACK
AES
API
ATPG
CIA
COAP
CON
CONMO
COSA
CSO
CUT
DAO
DDOS
DES
DES
DFT
DIO

DIS
DODAG
DOS
DTLS

Expansion

6LoWPAN Border Router

IPv6 over Low-power Wireless Personal Area Networks
Accuracy

Acknowledgement

Advanced Encryption Standard
Application Programmable Interface
Advanced Test Pattern Generator
Confidentiality Integraity Availability
Constrained Appplication Protocol
Confirmable Message

Control Message Overhead
Co-relation Scan Attack
Current-State Opacity

Circuit Under Test

DODAG Advertisement Object
Distributed Denial of Service

Data Encryption Standard

Discrete Event System

Design for Tesatbility

DODAG Information Object
DODAG Information Solicitation
Destination Oriented Directed Acyclic Graphs
Denial of Service

Datagram Transport Layer Security

XV



LisT OF ACRONYMS

DUT
ECC
EU
FDD
FRAG1
FRAGN
GIS
GPS
HTTP
IC
ICMPV6
ICT
IDS
IIoT
IoT

P

IPv4
IPv6
JTAG
LFSR
LLN
LR-WPAN
MAC
MITM
MKR
MQTT
MTU
MUX
NON
NTA
OoCP

Device Under Test

Energy Consumption

Energy Utilization

Fault Detection and Diagnosis
Fragment Header

Fragment

Geographic Information System
Global Positioning System

Hypertext Transfer Protocol
Integrated Circuit

Internet Control Message Protocol version 6
Internet and Communication Technology
Intrusion Detection System

Industrial Internet of Things

Internet of Things

Internet Protocol

Internet Protocol version 4

Internet Protocol version 6

Joint Test Action Group

Linear Feedback Shift Register
Low-power and Lossy Networks

Low Rate Wireless Personal Area Networks
Message Authentication Code
Man-in-The-Middle

Mirror Key Register

Message Queuing Telemetry Transport
Maximum Transmission Unit
Multiplexer

Non Confirmable Message

Network Traffic Analysis

Objective Code Point

Xvi



LiST OF ACRONYMS

OF
PAN
PDR
PRNG
QOS
RAD
RAI
RAM
REST
RFID
ROM
RPL
RSA
RST
RTOS
SCAL
SDN
SIB
SMQTT
SSL
TCP
THP
TKL
TLS
TNR
TPM
TPR
UDP
VNAD
WI-FI
WSN

Objective Function

Personal Area Network

Packet Delivery Ratio
Pseudorandom Number Generator
Quality of Service

Rank Attack Detection

Rank Attack Identification
Random Access Memory
REpresentational State Transfer
Radio Frequency Identification
Read Only Memory

IPv6 Routing Protocol

Rivest Shamir Adleman

Reset Message

Real Time Operating System
Scalability

Software defined Networking
Segment Insertion Bit

Secure Message Queuing Telemetry Transport
Secure Socket Layer

Transmission Control Protocol
Throughput

Token Length

Transport Layer Security

True Negative Rate
Tamper-Proof Memory

True Positive Rate

User Datagram Protocol

Version Number Attack Detection
Wireless Fidelity

Wireless Sensor Network

Xvil



LisT OF ACRONYMS

xviil



List of Symbols

Symbol

Description

DES model

Set of events of the DES model H

Set of observable (unobservable) events of the DES model H
Set of model variables of the DES model H

Set of transitions of the DES model H

A transition 7 € §

Set of states of the DES model H

Set of initial states of the DES model H

Event on which a transition is enabled

Set of all traces generated in H

Set of secret (non-secret) states of the DES model H

An S-box input pair

A plaintext input pair

Round output value obtained from applying plaintext p
Vector of S-box input pairs generating Hamming weight ¢

A mask computation function

Flip Enable (Disable) event

XixX






CHAPTER

Introduction

The idea behind Kevin Ashton’s 1999 promotional slogan, ‘Internet of Things’, has evolved
into a revolutionary technical paradigm today, more than twenty years down the line [1].
With a plethora of technologies, Ashton’s vision of everyday goods, home appliances and
mobile devices being interconnected via the Internet, industrial machineries communicating
seamlessly aiding production, and deployed sensors helping in setting up smart cities, has
now come to practice. The traditional Internet has emerged as the Internet of Things (IoT)
and has touched every nook and corner of our globe, easing human living incredibly [2, 3].

The IoT is more often described as a system of interconnected heterogeneous entities.
The term entity applies to uniquely addressable ‘things’ (or smart objects), people and the
environment. Therefore, IoT vision can be broadly understood as service provisioning for
humans and things by enabling their communication over the Internet. The IoT hinges
upon a conglomerate of different technologies starting from radio frequency identification
(RFID) and wireless sensor devices to Bluetooth, Wireless Fidelity (Wi-Fi), Zigbee, Low-
rate Wireless Personal Area Networks (LR-WPANSs) and advanced ones like Big-data,
Blockchains, and Cloud Computing [4]. Nonetheless, IoT encompasses a large heterogeneity
in devices which communicate as per the various standardized protocols and primarily caters
to harvesting and exchanging data for collection and analysis without the need for human
intervention. Furthermore, IoT has been widely acclaimed as one of the cornerstones of the
21st century Information and Communication Technology (ICT) development.

By enabling smooth connectivity, [oT has benefited people technologically, economically
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and on a societal level. It has brought in a dramatic change to communities with ‘things’
ranging from implantable medical devices, merchandise tags, smart thermostats to drones
and automobiles with sensors built-in. IoT is helping us live more comfortably, automating
tasks such as turning lights on, adjusting thermostats and even turning off equipment when
unnecessary, thereby saving time and energy. Smart devices like wearables, alarms, camera
systems, smart home appliances offer various functionalities that improve the quality of life
[1]. Physical boundaries have dissolved with IoT that has made us stay connected even

from far away places, eventually becoming an indispensable component in our lives.

1.1 IoT Applications

10T offers a wide array of applications that has boosted productivity and made us more
informed with weather forecasts, traffic tracking, etc. IoT applications such as monitoring
security systems, detecting fire or calling for help in emergencies has improved the overall

safety of mankind. A few examples of IoT applications include:

e Smart home: IoT devices (such as smart locks, baby monitors, and fire detectors) can
be deployed at home and communicate with each other wirelessly. These devices can

also be accessed remotely through a home gateway [5].

e Smart healthcare: IoT devices can be used to collect, transmit, and store patient data,
such as heart rate. This data can then be sent to a hospital server for diagnosis and

tracking [6].

e Smart transportation: Smart vehicles can communicate with each other (vehicle-to-
vehicle), with external infrastructure (vehicle-to-infrastructure), and with pedestrians
(vehicle-to-pedestrian) over wireless networks. This allows smart vehicles to detect
traffic conditions, manage their speed, and exchange data to improve safety and

efficiency [5].

e Smart agriculture: IoT sensors can be used to remotely monitor and control tempera-
ture, humidity, irrigation, soil moisture, and micro-climate conditions in agricultural

settings. This can help to increase production and quality while reducing costs.
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e Smart industry and Mission-Critical Systems: Industrial IoT (IIoT) uses machine-
to-machine technology to automate manufacturing processes with minimal human
intervention. IIoT aims to improve production efficiency and reliability while reducing

costs and quality issues.

e Smart retail: IoT sensors can be attached to retail products to track their status
and location. This information can be used to develop smart shopping systems that

provide improved services to customers and attract new customers.

e Smart grid: Smart grids use IoT devices to measure, monitor, and manage electricity
consumption. This enables more efficient and reliable electricity management, reduces

energy costs, and improves grid reliability [7].

1.2 IoT Technologies and Protocols

The Internet of Things (IoT) is embedded with sensors, software, and other technologies for
the purpose of connecting and exchanging data with other devices and systems over the

internet. A number of technologies facilitate and enable the IoT, including;:

e [Pv6: It is the next generation of the internet protocol (IP), the underlying protocol
that powers the internet. IPv6 was developed to address the limitations of the current
IP protocol, IPv4. One of the main limitations of IPv4 is that it has a limited address
space, which means that there are not enough IPv4 addresses to accommodate all
of the devices that are being connected to the internet. IPv6 solves this problem by
providing a much larger address space. IPv6 also has a number of other features that
make it well-suited for the IoT. For example, IPv6 supports auto-configuration, which
means that IoT devices can automatically configure themselves with IP addresses
when they are connected to the network. This is important for the IoT because it can
be difficult or impossible to manually configure IP addresses on large numbers of IoT

devices.

e RFID: It is a technology that uses radio waves to identify and track tags attached to
objects. RFID tags can be used to track the movement of goods, people, and animals,

and to collect data from sensors [8]. RFID tags are made up of two main components:
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a microchip and an antenna. The microchip stores the tag’s unique identifier and
other data. The antenna transmits and receives radio signals. RFID readers are used
to read data from RFID tags. RFID readers emit radio waves that power the tag’s
microchip and cause it to transmit its data. The RFID reader then receives the tag’s
data and decodes it. RFID is a widely used technology in the IoT. For example, RFID
tags are used to track the movement of goods in supply chains, to track the location

of patients in hospitals, and to track the movement of animals in farms.

WSN: They are a network of small, low-power devices that can sense and collect
data from the environment. WSNs are often used in IoT applications to monitor
environmental conditions, such as temperature, humidity, and air quality. WSN nodes
are typically equipped with sensors, a microcontroller, and a radio transceiver. The
sensors collect data from the environment, the microcontroller processes the data,
and the radio transceiver transmits the data to other nodes in the network. WSNs
are well-suited for IoT applications because they are low-cost, energy-efficient, and
scalable. WSNs can be deployed in a variety of environments, including remote and

hazardous areas.

IEEE 802.15.4: It is a protocol standard that specifies the physical layer and media
access control (MAC) requirements for low-power wireless personal area networks
(PANSs). It is designed for low-speed, low-cost communication between devices. The
IEEE 802.15.4 standard can be used with the IPv6-based Low Power Wireless Personal
Area Network (6LoWPAN) protocol to build wireless embedded networks for the
Internet of Things (IoT) [4]. The basic communication range is 10 metres with a
transfer rate of 250 Kbit/s. The higher layers of the protocol stack are not defined in

the standard.

In addition to the core technologies, other enabling technologies for the IoT include:

e Cloud computing: Cloud computing provides a scalable and cost-effective platform

for storing, processing, and analyzing data from IoT devices.

e Global Positioning Systems (GPS): GPS can be used to track the location of IoT

devices, which is essential for many applications, such as asset tracking and vehicle

management.
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e Service-oriented architectures (SOAs): SOAs provide a flexible and scalable way to

develop and integrate IoT applications.

e Geographic information systems (GIS): GIS can be used to visualize and analyze
data from IoT devices, which can help businesses and organizations to make better

decisions.

e Cellular devices (3G/4G/5G): Cellular networks provide a reliable and ubiquitous way

to connect IoT devices to the internet.

The Internet is essential for the operation of IoT systems. Therefore, a TCP/IP protocol
stack similar to the one used for the Internet is used for IoT systems. Some of the standard

protocols defined for IoT ecosystems include:

e RPL: Routing Protocol for Low-Power and Lossy Networks (RPL) is a distance-vector
routing protocol designed for low-power and lossy networks (LLNs) [9]. LLNs are
mostly IoT networks that consist of devices with limited resources, such as power,
bandwidth, and processing power. RPL is designed to be scalable, efficient, and

reliable, even in challenging network conditions.

e 6LoWPAN Protocol: 6LoWPAN stands for IPv6 Low-Power Wireless Personal Area
Network. It is a protocol that allows IPv6 packets to be transmitted over low-
power wireless networks, such as IEEE 802.15.4. 6LoWPAN is designed to meet the
requirements of low-power consumption devices and weak computing capabilities nodes
and sensors [10, 11]. It works by compressing IPv6 packets to make them smaller
and easier to transmit over low-power wireless networks. 6LoWPAN also provides
a number of other features such as header compression, fragmentation, neighbour

discovery that makes it suitable for IoT applications.

e Constrained Application Protocol (CoAP): CoAP is a specialized web transfer protocol
for use with resource-constrained devices [12]. It is designed to be lightweight and
efficient, and to support the same basic operations as HT'TP, such as GET, POST,
PUT, and DELETE. CoAP is well-suited for IoT applications because it can operate
over low-bandwidth and unreliable networks, and it has a small memory footprint.

It is based on a subset of the HT'TP protocol, making it interoperable with HTTP.
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CoAP runs over UDP, which reduces bandwidth requirements and supports multicast

and unicast communication.

Message Queue Telemetry Transport (MQTT): MQTT is another lightweight appli-
cation layer protocol designed for machine-to-machine (M2M) communication. It
runs over TCP and is based on the publish/subscribe model. MQTT is designed to

minimize bandwidth and power consumption, making it ideal for IoT applications.

The basic architecture of the IoT ecosystem can be broadly categorized into device-level

(or perception layer), network-level and application-level. The categorization of the IoT

ecosystem into device-level, network-level, and application-level provides a useful framework

for understanding the different components and layers involved in IoT implementations. We

here give an overview of each level:

e Device-Level: At the device level, IoT focuses on the physical objects or things that

are equipped with sensors, actuators, and connectivity capabilities. These devices
collect data from the surrounding environment through sensors and interact with the
physical world through actuators. They can include various types of devices such as
sensors, wearables, industrial machinery, vehicles, and consumer devices. Device-level
considerations involve hardware design, sensor integration, power management, and

firmware development.

Network-Level: The network-level in IoT refers to the communication infrastructure
that enables connectivity and data exchange between devices. This layer encompasses
the protocols, connectivity technologies, and network architecture required to establish
reliable and secure connections. Wireless technologies like Wi-Fi, Bluetooth, Zigbee,
cellular networks (3G, 4G, 5G), and low-power wide-area networks (LPWAN) play a
crucial role in connecting devices. The network-level also involves considerations such
as data transmission, bandwidth, latency, scalability, and network protocols to ensure

seamless connectivity and efficient data transfer.

e Application-Level: The application-level in [oT encompasses the software, protocols

and services that utilize the data collected from devices to deliver specific functionalities

and value-added services. This layer involves data processing, analytics, and application
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development. IoT applications can range from simple data visualization and monitoring
dashboards to complex analytics platforms that leverage machine learning and artificial
intelligence to derive insights and enable intelligent decision-making. Application-level
considerations involve data storage, processing capabilities, protocol security, user

interfaces, and integration with other systems.

1.3 Context

As correctly hinted by Moore’s law, the number of transistors in a given IC has increased by
at least three-folds thereby reducing costs and catalyzing the miniaturization of integrated
circuits (ICs) to their tiniest possible orders [13]. With the ubiquitous growth of IoT, the
future is shaping towards quantification and digitalization of the physical world. If we go by
Gartner’s prediction, the number of IoT devices is expected to globally reach 75 billion by
2030 [14]. But with such growth, enormous challenges cloud IoT as well. An exponential
increase in the number of IoT devices indicates a proportional scale up of the possible
vulnerabilities.

The three levels of the IoT architecture are interconnected and interdependent. Each
of these levels are susceptible to unique array of attacks as demonstrated in multiple studies.
Device-level threats address the security attacks made to IoT devices and sensors. Network-
level attacks concern the vulnerabilities of the IoT communication protocols. Application-

level threats comprise of attacks pertaining to end-user applications and softwares.

1.3.1 Device-level attacks

Device-level attacks have their primary motif to compromise the hardware elements of a
device, with a focus on its ports, memory, power source, and other components. These
attacks have the potential to disrupt the device’s operation and modify its behavior. They
are typically categorized as physical attacks, firmware attacks, and encryption attacks.
Physical attacks necessitate physical access to the target devices and encompass various

tactics, including:

e Radio Frequency Interference or Jamming: This involves creating and transmitting

disruptive signals over radio frequencies, mainly causing Denial of Service (DoS)
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attacks.

e Physical Penetration: Adversaries exploit exposed device interfaces like JTAG to gain
direct access to memory, sensitive keys, passwords, configuration data, and other

critical parameters [15].

e Physical Damage or Tampering: Attackers inflict physical harm on the device to

disrupt its service availability.

Firmware attacks, on the other hand, revolve around manipulating the software installed

on IoT devices, leading to:

e Backdoors: Attackers modify device firmware to insert code that grants them remote

access when the device connects to the network [16, 17].

e Unencrypted Information: Attackers reverse engineer firmware to uncover encrypted
data like passwords, API keys, and public-key certificates. This information enables

them to intercept device communication and access sensitive user data [17, 18|.

e Malicious Firmware: In addition to creating backdoors, attackers may modify firmware

to launch various attacks, including Distributed Denial of Service (DDoS) attacks.

Encryption attacks specifically target encryption mechanisms utilized within IoT net-

works [19], including:

Side Channel Attack: Attackers eavesdrop on side channel emissions to bypass device

encryption by intercepting encryption keys during device access.

e Cryptanalysis Attacks: These attacks focus on breaking the encryption scheme by
analyzing ciphertext or plaintext. Examples include Known-plaintext attacks, Chosen-

plaintext attacks, Chosen Cipher-text attacks, and Ciphertext-only attacks.

e Ciphertext Only Attack: This approach allows attackers to access ciphertext and

determine the corresponding plaintext.

e Known Plaintext Attack: Attackers exploit knowledge of plaintext and partial cipher-

text to decrypt the remaining ciphertext.
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1.3.2 Network-level attacks

Network-based attacks within IoT ecosystems can be executed remotely from anywhere in

the world, without the need for physical access to the devices. These attacks encompass:

e Passive Traffic Analysis: Adversaries passively monitor network activity to intercept
sensitive user data, collecting information by observing network traffic [20]. They can

also disrupt traffic flow, a technique known as Man-in-the-Middle (MITM) attacks.

e Spoofing: Attackers impersonate legitimate devices to make malicious entities appear

as genuine ones, facilitating the launch of attacks [21].

e Rank or Sinkhole: A compromised device lures network traffic by broadcasting fake

routing updates. These attacks can be exploited to launch additional attacks [22].

e Denial of Service (DoS) and Distributed Denial of Service (DDoS): These are the most
prevalent attacks in IoT networks, capable of reducing, interrupting, or completely
disabling network communications |23, 24]. Ranging from simple jamming to sophisti-
cated assaults, they can be initiated remotely and are challenging to detect until the

network or service becomes unavailable.

e Sleep Deprivation: In IoT networks, devices can enter power-saving modes to conserve
energy. This attack aims to prevent devices from entering these modes by continually

sending traffic, depleting their battery resources.

e Man-in-the-Middle (MiTM) Attack: This involves an attacker establishing independent
connections with victims B and C, deceiving them into believing they are communi-
cating directly [25]. The attacker intercepts messages between B and C, rerouting

them in the process.

e Eavesdropping Attack: Also known as sniffing or snooping cyberattacks, this exploit
takes advantage of unsecured network communication to intercept data transmitted
over the network. Attackers can implement this type of attack by leveraging weak
network connections and using sniffer software on a server or connected client computer

to capture network data.
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1.3.3 Application-level attacks

e Man-in-the-Middle (MiTM) attacks pose a significant threat to the security of the

application layer protocols: (a) CoAP Protocol: Datagram TLS (DTLS) was intro-
duced to provide confidentiality, authentication, and integrity for CoAP. However, the
limitations of DTLS can be considered security weaknesses in the CoAP protocol. (b)
MQTT Protocol: To secure data transfer using MQTT, the Secure Socket Layer (SSL)
was introduced, employing asymmetric cryptographic techniques for data encryption

and decryption. Despite this, SSL remains vulnerable to MiTM attacks.

Lack of Standardization: Secure MQTT (SMQTT), an extension of MQTT, aims
to enhance data transfer security. SMQTT relies on secret keys for encryption and

decryption, but key generation and encryption algorithms lack standardization.

DDoS Attacks: DDoS attacks target IoT networks by exploiting protocol behaviors,
overwhelming target servers with traffic to prevent processing legitimate requests.
These attacks infiltrate the application layer and flood web servers with HTTP requests,
typically at lower rates to evade detection. Examples include DNS service-based attacks

and HTTP flooding.

Software Attacks: Software attacks involve invading network software programs to
compromise network devices [17, 26]. Attackers exploit software vulnerabilities and
may impersonate or manipulate legitimate users to gain access to IoT systems. The
absence of robust user authentication has led to notable IoT attacks like Bashlite and

Mirai.

Securing [oT hence requires securing each of the levels. Moreover, most IoT platforms

need to satisfy resource-constrained requirements of devices, like sensors and actuators,

and use low-energy communication technologies. The primary objective therefore lies in

managing the complexity of the interconnecting infrastructure of these devices without

making any compromise to security. As IoT devices are becoming more accessible and

affordable with various zero-day attacks on the rise, the need for security and reliability is

therefore naturally demanding [27]. Securing industrial infrastructures and mission critical

systems become more challenging since malicious entities can gain access to personal and/or

10
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private information about people, vehicles, and systems. Moreover, life saving and emergency
infrastructures may face serious breakdown. Notwithstanding the growing research to secure
these levels, securing IoT remains a daunting task due to several vulnerabilities and challenges

that are typically posed.

1.3.4 10T Security Challenges

There lies three primary reasons for the vulnerability of IoT devices to cyber attacks:

e Heterogeneity of devices: The wide variety of IoT devices having different shapes and
sizes, with different operating systems, hardware capabilities, and security features,
makes it difficult to implement security mechanisms that are fit for all aspects. For
example, a security measure that is effective for a smart thermostat may not be

effective for a security camera.

e Limited computational resources: IoT devices often have limited computational power,
memory, and battery life, which restricts their ability to run complex security measures
[28]. For example, a security measure that requires encryption or decryption may be
too computationally expensive for an [oT device with limited resources. It is infeasible

for IoT devices to execute computationally heavy and delay-prone security tasks.

e Difficulty in updating software: It can be difficult or impossible to update the software
on IoT devices or apply patches, especially those that are deployed in remote or

inaccessible locations [29].

Although ongoing research provides meaningful insights in improving the security of
IoT systems, they are also faced with several intrinsic challenges that require attention and

efforts:

e High requirements of emerging technologies: Some emerging technologies and ap-
proaches, such as blockchain, homomorphic encryption, searchable encryption, and
machine learning algorithms, require high processing and storage capabilities. This
makes it challenging to trade-off between security and performance in IoT infrastruc-

ture.

11
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Dynamic and heterogeneous environment: IoT environments are dynamic, hetero-
geneous, and large-scale. This requires adaptive trust models to enable devices to
recognize trustworthy nodes. Fog computing can be used to achieve different security
requirements in [oT environments by providing real-time and latency-sensitive services.
However, it is challenging to ensure that all joining fog nodes are trusted, as fog nodes
do not have any information about each other. Additionally, it is important to select
trustworthy fog nodes, as users often have multiple fog nodes available to cooperate

for guaranteeing IoT services.

Scalability of centralized SDN architecture: The centralized SDN architecture cannot
deal with a large number of IoT devices. Additionally, SDN-based solutions are not
efficient in highly dynamic IoT environments, such as vehicular networks. Therefore,

it is necessary to enforce scalability in SDN networks.

Privacy and security of data transmission: IoT devices generate and exchange a massive
amount of data, including sensitive data. Blockchain technology can efficiently address
the scalability issue due to its distributed architecture. However, the blockchain does
not ensure the privacy of transactions and is prone to data leakage. Additionally, fog
nodes in fog computing-based architectures are responsible for forwarding data to the
cloud. If fog nodes are not trustworthy or compromised by an adversary, they can

disclose personal information.

Key management in scalable IoT environments: Data transmission can be secured
using encryption techniques. Encryption of transmitted data prevents intruders from
revealing the content of messages. This approach can be applied when the commu-
nication parties share encryption/decryption keys. In symmetric encryption (i.e.,
block ciphers, stream ciphers, and hash functions), the key must be pre-distributed or
securely communicated. However, key management, including distribution, agreement,

update, and revocation, remains a significant challenge in scalable IoT environments.

To address the challenges discussed in the previous subsection, it is therefore necessary

to develop security solutions that are tailored to the specific needs of IoT ecosystems.

Solutions must also be lightweight and efficient, designed such that it is easy to deploy and

maintain. Additionally, it is also important to develop mechanisms for securely updating

12
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the software on IoT devices, even those that are deployed in remote or inaccessible locations.
To this end, Intrusion Detection Systems (IDS) have been one of the most efficient and

valued security solutions for the detection of malicious network behaviour [30, 31].

1.3.5 Intrusion Detection System (IDS)

An IDS is a software application or hardware appliance that monitors network traffic and
alerts the system administrator if suspicious activity is found. Designing an IDS requires
a data collection module, an analysis module for processing of the collected data, and a
reporting mechanism to notify network administrators.

IDSs can be classified into several categories based on their deployment, detection
methods, architectures, and deployment time. Based on the nature of their deployment,

there are three main types of IDSs:

e Host-based IDS: This type of IDS is installed on individual devices, such as computers

and servers.

e Network-based IDS: This type of IDS is installed on a network and monitors all traffic

flowing through the network.

e Hybrid IDS: This type of IDS combines the features of host-based and network-based
IDSs.

IDSs can also be classified based on their detection methods as:

e Signature-based IDS (or, specification-based): This type of IDS uses a database of

known attack signatures to identify malicious traffic.

e Anomaly-based IDS: This type of IDS monitors network traffic and identifies anomalies,

which are deviations from normal behavior.

e Hybrid IDS: This type of IDS combines the features of signature-based and anomaly-
based IDSs.

IDSs can be classified based on their deployment architecture as:

e Centralized IDS: This type of IDS is deployed on a single server and monitors all

traffic flowing through the network.

13
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e Distributed IDS: This type of IDS is deployed on multiple servers and monitors

different segments of the network.

Finally, IDSs can be classified into two main categories based on their deployment time:

e Real-time IDS: The IDS detects attacks in real time as they are happening.

e Offline IDS: The IDS analyzes historical network traffic data to detect attacks that

may have occurred in the past.

Proposed security solutions range from user-level solutions, protocol modifications,
cryptographic solutions, machine learning. Still, given the context of loT, chosen security
standards also suffer from some demerits. For example, machine learning and deep learning
based solutions sometimes require extensive training and DL model fitting time, and are
greedy in terms of computation and storage [32, 33|. Cryptography based techniques are
highly resource exhaustive while using heavy encryption algorithms [34, 35]. Authentication
based techniques and using digital certificates also incur significantly high resource overhead
due to authentication, may need protocol modifications and face issues with certificate
management [36, 37]. Solutions that are protocol based require modification of the protocol
policies [38, 39, 40|. User level solution methods sometimes need proprietary hardware
support too [41]. IDS based solutions are less heavy and are naturally chosen for intrusion
detection purposes that generate alert on attack detection or identification. However, tradi-
tional IDSs are not well-suited for IoT environments. This is because IoT environments are
highly dynamic and heterogeneous, with a wide range of devices and protocols. Traditional
IDSs need to adapt to the unique security challenges of IoT devices, such as their limited
resources and their susceptibility to physical attacks.

A security solution needs to restore the compromised CIA security requirement namely,
confidentiality, integrity and availability. Furthermore, standard security implementations
of IoT can be overwhelmed by attacks since a single malicious bot node can be equipped
enough to disrupt a whole network infrastructure. Despite significant research advancements
in IoT security, given the growth of the loT industry, it is still nascent. There exist several
attacks that pose serious threats to IoT devices and networks, either without a solution or

having further scope of an improved mitigation or detection methodology. More research is

14
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therefore essential to strengthen IoT security; this dissertation aims to close the growing

gap by proposing solutions for resource-constrained environments.

1.4 Motivation

IoT devices popularly consist of scan chains for testing purposes. As a result enhanced
observability and controllability of the internal register contents of the device is induced.
There exists a class of intrusive (non-invasive) device-level attacks on cryptographic IoT
devices that makes use of this testability-induced vulnerability to leak out confidential
contents. In a scan-based side-channel attack, the secret key values can be easily differentiated
from the non-secret ones, inflicting loss. On the contrary, there exist a class of non-intrusive
network-level attacks and application-level attacks where the attack traffic resembles the
normal traffic and cannot be differentiated, making attack detection challenging. Two

characteristic properties of these attacks that make them subtle are:

e They are low overhead attacks; they either make use of the protocol-induced update
mechanism in which regular control packets are fabricated to misuse the feature
or require just a single fragment or application packet to be launched, while other
network traffic statistical properties are left intact. So an anomaly is unnoticeable on

occurrence of such attacks.

e The sequence of fragment-level or packet-level communication traffic across attack
and normal scenarios are indifferentiable. So development of a signature pattern or

anomaly pattern is not only difficult but also high-false positives may ensue.

These attacks either create differentiable characteristics that make it challenging to
preserve a secret, or adversely affect the network or device performance in spite of generating
attack behaviour that is indistinguishable from the normal making detection challenging.
This is our first motivation; proposing a countermeasure for such attacks overcoming the
discussed challenges.

Existing scan chain protection methods employ encryption methods or obfuscation
techniques which either hamper full testability or are of high overhead. Moreover, there

exists a class of recently proposed scan-based attacks with no solutions proposed in the
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literature. Existing solutions to mitigate the discussed network-level and application-level
attacks mostly use encryption techniques, machine learning based approaches, protocol
based approach, all of which have their inherent limitations like high overhead, change in
protocol policies, extensive training time in an IoT environment. IDS based solutions are
more preferable in this regard. But given a resource constrained environment, they do not
all comply with all the desired parameters like QoS, response time, scalability, mobility
that a solution needs to guarantee. Hence, applicability of such solutions are limited.
Therefore designing more resource friendly and energy-efficient techniques suitable for the
IoT ecosystem forms the second motivation of our work.

Signature-based IDS works by using a database which stores knowledge sets of attack
patterns (or signatures) and compares them with monitored network (or system) activity.
On finding a match, it generates an alert to signal malicious activity detection. Though
signature based IDS do not generate excessive false alarms and prove effective in attack
detection, yet it suffices to detect known attacks only. Hence such IDS require constant
updation with new attack signatures. Moreover, there exist many such IDS that use fixed
signatures in their design, making them not capable enough to detect attack variants. It is
noteworthy here that IoT attacks with newer attack surfaces are cropping up on a per-day
basis. On the other hand, anomaly based IDS have attack detection ability without having
acquired knowledge of attack behaviour specifications. It produces information which helps
define signatures for detection by misuse detectors. However it generates increased false
alarms due to the unpredictability induced by networks and users. Though anomaly based
IDS use statistical learning approaches, characterizing a normal behaviour pattern requires
them to use training sets of network events extensively, which is not an easy task. The above
mentioned attacks in IoT ecosystem, namely differential scan attack, co-relation scan attack
(COSA), RPL rank attack, RPL version attack, 6LoOWPAN fragmentation attacks, CoAP
request and response spoofing attacks evade detection by such IDS or are not accurate
enough, leaving scope of improvement. Moreover, mostly proposed IDS schemes resort
to attack detection only. Attack node identification helps minimize chances of launching
fresh attacks. This is our third motivation; proposing near accurate IDS solutions that
also help identify attack node location for the discussed non-intrusive network-level and

application-level attack vulnerabilities.
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DES is a suitably abstracted modeling paradigm where complex system dynamics can
be naturally modeled as a set of discrete states and event driven transitions occurring
asynchronously over time. DES has found much success in aspects of failure detection
and diagnosis (FDD) and security. It involves modeling the system behavior under normal
and abnormal (fault or attack) conditions. Opacity is a security notion coined in the DES
community and can be used to perform security analysis of systems. A state estimator is
constructed that helps perform security analysis of attack mitigation techniques or generate
alerts on attack detection or identification. Formal verification of IDS approaches is also
lacking in IoT literature. As a third motivation, intelligent techniques using DES are used to
formally verify security and prove correctness and completeness of our proposed strategies.
Evaluation of proposed approach and comparison is also performed to show the applicability

of our work. We next discuss the preliminaries of DES.

1.5 Preliminaries of Discrete Event System (DES)

1.5.1 DES Security

There is a strict rise in security and privacy concerns today with the emergence of cyber-
physical systems, shared online services and shared infrastructures. Security attacks can be
classified broadly into two categories based on the nature of intrusion: one that depends on
potentiality of the intruder and the other that does not. The second category, Information
flow, sometimes includes a passive attacker who observes information through some infor-
mation leakage path. Various different information flow properties like anonymity, secrecy,
privacy, and non-interference have been studied.

Opacity is a security notion based on the property of Information flow [42], [43] . The
opacity problem was first studied in the context of labeled transition system and then adapted
to Petri Nets and finite automata models. It has also been studied in the probabilistic
setting. Opacity enforcing mechanisms has been studied in the light of supervisory control,
and has also been applied to different security problems of location based services, coverage
analysis of mobile agent trajectory, ship information systems and pseudo-random generators.

Opacity in DES modeled in the framework of non-deterministic finite state automata is

defined as a property over system states or executions where the truth value of a predicate
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is to be kept secret from a malicious adversary (or multiple adversaries) who observes the
system through some projection map, let P. An opaque system is such that the attacker
is never able to infer the predicate truth. That is, after having observed an execution of
the system, the intruder cannot determine if the state of the system belongs to the secret
state. In current-state opacity the secret is defined as a subset of system states. Given
a secret, a system is current-state opaque if the malicious observer (or intruder) is not
able to determine if the current system state is a member of the secret states. Therefore,
current-state opacity requires that any estimate of the intruder about system’s current state
lies outside the secret states. In other words, given an observer projection mapping on the
system events or states, whenever the system enters a secret state, there exists another

equivalent state that belongs to the non-secret states.

1.5.2 Failure Diagnosis and Diagnosability (FDD) of DES and IDS

The problems of opacity and diagnosability are related. Whereas opacity requires information
to be hidden from an external malicious agent such that intended secret information is
protected, diagnosbaility requires the diagnoser to be provided with enough information.

A fault in a system results in an undesirable deviation of one or more of its components
from their intended or normal functioning. The deviation is sometimes within tolerable
limits. In case the deviation is critical, then there is system breakdown or failure. Fault
diagnosis comprises of three objectives, fault detection, isolation and identification. Fault
diagnosis techniques generally rely upon system being modeled as per their normal behaviour
and also as per their faulty behaviour. Also, depending on the types of faults, they can be
partitioned into failure modes. Faults are typically used as an additional input (event) for
system modeling purposes. In discrete event systems, faults can be treated as permanent,
intermittent or incipient depending on their nature. The diagnosis problem is essentially
concerned with determination of fault type (a particular unobservable or unmeasurable
event) from observed sequence of events depending on the model under consideration [44],
[45]. Thus fault diagnosis needs to construct a diagnoser and is directly related to state
observability, which requires building an observer automaton. The diagnoser helps to
determine if the system under operation is normal, faulty or uncertain.

Classical DES theory has been largely adopted in systems for Fault Detection and
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Diagnosis (FDD) [46, 44, 45]. Motivated from fault diagnosis, DES based IDSs have been
successfully used in network attack detection [47, 48]. The characteristic similarities of
network attacks and faults in DES literature is what motivates its usage. The basic idea is
to develop a model for the normal functioning of the network and another for attack (fault)
behavior. Additionally, multiple fault types in DES literature are diagnosed by developing
exclusive fault DES models corresponding to each fault type. Each fault type leads to unique
deviations from the normal behavior. Analogously, we augment traditional DES based IDS
with attack types in our work here. It may be noted that an attack type corresponds to
behavior of the network under the influence of a particular attacker. Attack type DES
models corresponding to the location of the attacker are modeled. In DES based IDS a DES
diagnoser is used as our IDS engine. It is a state estimator automaton which is constructed
from the knowledge of normal and attack type DES models. The diagnoser observes system
event traces and gives a decision on the system condition being normal or under attack by
generating alerts. To summarize, by using DES based IDS, and given all possible attack
instances, it can be ascertained if an attack can always be exclusively identified, correctly

and completely.

1.6 Research Questions

This dissertation work was carried out with the objective of providing feasible answers to

these following questions:

e Are there attacks where a cryptographic IoT device leaks secret since secret values
of internal register contents differ from the non-secret values making the device

vulnerable?

e What are some of the IoT attacks where attack behaviour is same as normal and can

not be differentiated?

e Can the above attacks be detected using certain mechanisms that create differences
between normal and attack behaviour or help secure values resemble the non-secure
values in a cryptographic IoT device? Can such a controller using such mechanisms

be synthesised or IDS be designed using Discrete Event System (DES)?
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o Will DES notions of diagnosability or opacity notions hold true in such solution

techniques?

e Are the solutions of low overhead and cost-effective? How good are the performance

results compared to state-of-the-art solutions?

1.7 Contributions

Throughout this dissertation, various DES paradigms are adapted for the design and
verification of lightweight strategies for mitigation of IoT attacks. Though the paradigms
vary, still the fundamental DES philosophies are almost same: 1) designing a normal DES
model for the system normal behaviour 2) designing an attack DES model or a flipped
DES model for the system abnormal behaviour 3) designing a state estimator using the
normal model and attack or flipped model. The state estimator observes system values to
determine the system dynamics to be of normal or abnormal behaviour. Additionally, using
DES based framework ensures formal verifiability, which means it can be ascertained if all
of the possible attack cases are detectable, thereby making the schemes robust.

We discuss scan-chain based side-channel attack, RPL version and RPL rank attacks,
6LoWPAN fragmentation attacks and CoAP request/response spoofing attacks. We briefly
describe the related literature that prevent/detect such attacks and any issue/shortcoming
of them. We then demonstrate how our scheme uses effective mechanisms and lightweight
strategies leveraging DES frameworks for mitigation, detection and identification of these
attacks without requiring to modify protocols standards, encryption, installing proprietary
hardware or extensive training. The contributory chapters are summarized sequentially in

the following subsections.

1.7.1 Scan-based Side-channel Attack

Testing of manufacturing defects has seen a surge recently with growing demands in micron
and sub-micron IoT devices in the semiconductor industry. Among the techniques prevalent
in the industry, scan-based DfT is the most popular one. The internal scan chain comprising
of serially connected flip-flops (scan cells) is made more observable and controllable, which

effectively facilitates testing. While in test mode, a designated tester provides a relevant
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input to stimulate the internal nodes and observes corresponding output responses. Again,
attackers look out for various means to gain access to the internal scan elements. This
hands them an opportunity to leak sensitive information embedded within a cryptographic
IC of an IoT device. Side-channel attacks can be precisely classified to be scan-based if the
above inherent vulnerability is made use of.

Universal standard cipher, AES, was shown to be vulnerable to scan-based attacks [49]
after it was already reported to be effective on a DES cipher implementation [50]. Switching
a crypto-chip to test mode after having run the chip in normal mode for a few cycles was
shown to be effective in the retrieval of the secret embedded key. A differential analysis
technique applied on a set of related plaintext input and cipher output pairs helped infer the
secret information. This could be realized due to observing the internal scan cell contents
corresponding to controlled input pairs applied beforehand. Most of these discussed attacks
exploit only the unique Hamming weights corresponding to one round output Hamming
weight distribution by applying all possible input pairs with a fixed input difference targeting
a particular AES input byte. Subsequently, this style of attack was extended to public
key cryptosystems such as elliptic curve cryptography (ECC) [51], Rivest-Shamir-Adleman
(RSA) [52] circuits, and in lattice-based public key cryptosystems [53].

These attacks are limited in the way that only the unique hamming weights are the
prime target of the attackers. Having established a correct mapping between words and
scan cells and algorithmically determining the correspondence between scan cells and bytes,
differential scan attack will be easy to launch. Non-unique hamming weight input pairs are
also susceptible to attacks with a much trivial complexity. We present a new class of scan
attack, Co-relation scan attack (COSA), that can work on non-unique hamming weights
which removes the constraints of the attacker to look for only unique hamming distances. A
comprehensive attack analysis is performed on all possible hamming weights by exploiting
the scan functionality of AES crypto-system. We also show the theoretical limits of the
proposed attack along with extensive simulation results on AES for validation.

Numerous countermeasures have been proposed to prevent scan-based side-channel
attacks in the recent past. In [54, 49|, a mode reset countermeasure was proposed to flush
all sensitive data contained in a scan chain during a switch from normal to test mode.

Still, it remains vulnerable to test-mode-only attack [55, 56, 57|. A concept of Mirror Key
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Registers (MKRs) was introduced by the authors in [49], where the actual key is isolated
in the test mode, and the testing is performed using a user-provided key. But, it does
not provide support for online testing with the actual key. In [58, 59, 60, 61, 62|, the
ordering of the sub-chains in multiple scan chain designs was manipulated by obfuscation
with the help of Segment Insertion Bits (SIB), which limits the attacker from observing
the actual states [63]. Since scan-based attacks do not depend on the ordering of the scan
chain, hence the access to the complete set of states induces a vulnerability. Advanced DFT
structures, such as X-masking [64], and de-compressors [65], which were once considered
secure against scan-based attacks [66], have also been shown to be insecure against advanced
differential scan attacks [67, 68]. In [69], the obfuscation techniques discussed, both static
and dynamic, draw inspiration from the lock-and-key scheme. However, a delay in the test
process is imbibed from the user authentication process, which requires the test key to be
loaded. Also, the dynamic obfuscation is vulnerable to [70]. The above countermeasures
mainly protect the secret key of a cipher embedded inside the crypto-chip against scan
attacks. There is a parallel stream of research work aimed at protecting the hardware IP
against reverse engineering, thus restricting counterfeiting or overproduction of chips [71].
A dynamic obfuscation based scan design, proposed in [72| and [73], protects the IP by
restricting scan access using dynamic scan obfuscation. This technique obfuscates scan data
dynamically, using a protected obfuscation key generated by an LFSR. These obfuscation
keys are XORed with the scan data using XOR gates inserted between the scan cells in
the scan chain. Such designs are resistant to existing scan-based attacks due to dynamic
obfuscation, though recently, the technique in [72] has been shown to be susceptible to
ScanSAT [74]. In the scan protection technique proposed in [75], key gates are inserted
in the scan chain, which is controlled by a static secret key stored in a tamper-proof
memory (TPM), when a user applies the same secret key as a test key. Testing must be
performed with an obfuscated pattern, where the test patterns are obfuscated using the
same static secret key. If the test key applied does not match the secret key, the key gates
are controlled by dynamic keys generated by a pseudo random number generator (PRNG),
obfuscating the scan data dynamically in each clock cycle. The technique is vulnerable
to the DynUnlock attack [76]. The defense mechanism proposed in [77] is an enhanced

version of [78, 73], where the combinational logic of the circuit is additionally protected
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with functional obfuscation. In functional obfuscation, additional authentication is required
to gain access to the correct functionality of the circuit via an additional functional key.
Although the proposed technique [77| provides additional security against scan attacks, while
not compromising on testability, their hardware overhead is large. A cryptographic hash
function is shown to modify the test response in [79], though the cost of implementation is
dependent on a hash module that is made available inside the chip. In [80], the proposed
countermeasure performs an encryption of the test data, which again requires additional
modules for encryption/decryption, essentially incurring significant overhead in area, delay,
and power.

We emphasize on the security of our proposed countermeasure in the context of Discrete
Event Systems (DES) [81, 82]. There exist areas where security threats can be mitigated
by ensuring that the Opacity property holds true for a system modeled as DES. Moreover,
the opaque property is verifiable, hence the correctness of a defense model can be formally
proved by constructing an estimator automaton.

The existing literature on defense techniques relies on partial scan design, data ob-
fuscation, and scan chain encryption. Though these countermeasures are effective in the
prevention of traditional scan attacks and signature attacks, they are ineffective as far as
COSA [83] [84] are concerned.

Our major contributions in this work are outlined as follows:

1. A novel design of a security scheme using a hardware controller unit is presented. We
show to circumvent differential scan attacks by allowing selective bit-flipped outputs,

deterministically, using pre-computed mask values, without hampering testability.

2. A mask determination algorithm is presented that helps compute secret states and

determines the controller action across a setpoint.

3. Security of our scheme is proved by theoretically modeling the cryptosystem in the
framework of Discrete Event Systems and analyzing using the notion of Opacity.
Moreover, the entropy of the secret key is preserved. The proof of correctness is

guaranteed by constructing a state estimator automaton.

4. A theoretical analysis of the ineffectiveness of attacks launched from exploiting the

Hamming weight distribution obtained at the output is performed. A case study
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performed shows our approach is resilient to such attacks at a nominal extra overhead

of 1.78%.

1.7.2 RPL Version Number Attack and RPL Rank Attack

To enable efficient and reliable communication, IETF has standardized IPv6 Routing
protocol for Low Power and Lossy Networks (RPL) [9]. The design of RPL is tailored for
low-power IoT devices. RPL maintains loop-free Destination Oriented Directed Acyclic
Graphs (DODAG). A DODAG is created and maintained using control messages, primarily,
DODAG Information Object (DIO) for upward paths, DODAG Advertisement Object
(DAO) for downward paths and DODAG Information Solicitation (DIS) for node joining.
RPL ensures cost-optimized topologies by ordering participating nodes on the basis of an
integer cost function, rank. Individual rank of a node determines its position in the DODAG,
relative to a 6BR sink node (root). Also, a single version number prevalent in the DODAG
is maintained in DIO for consistency. Though RPL provisions various mechanisms and is
secure enough from external attackers, yet the resource constrained nature of IoT devices,
the typical characteristics of IoT networks such as lossy links, lacunas in infrastructure,
dynamic topology, etc., can render [oT-RPL susceptible to internal attacks [85, 11, 86, 87].

Various internal attacks have been shown in the literature, of late, that make illicit use
of RPL. Puppet attacks [88], advanced vampire attacks [89] make use of forged source routes,
while attacks like energy depletion attack [90] and vampire attacks [91] drain resources by
repeatedly sending useless data packets. Sybil attacks [92] and spam DIS attacks [93]| have
been shown to make use of DIS messages with counterfeit identities, essentially causing denial
of service. DIO suppression attacks eavesdrop DIO messages for replaying it repeatedly in
fixed intervals [94]. Out of the various DIO-specific attacks explored, proposed rank and
version attacks continue to be of paramount importance since they are of low overhead
and are realizable using DIO only. To launch such attacks, the rank and version number
fields of a DIO message are fabricated causing formation of loops, sub-optimal routes, traffic
redirection and network partitioning. Significant path delay is incurred since a large number
of control messages are exchanged in the DODAG, resulting in energy depletion of the
constrained nodes and disruption of network services. Moreover, rank attacks may be

combined with other cross-layer attacks like selective forwarding attacks to alleviate the
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damage caused.

Proposed methods for securing IoT networks against RPL rank and version attacks have
their own typical limitations[95, 96, 97, 98, 99, 100, 101, 102, 103, 32, 104]. Cryptography-
based mitigation schemes are resource exhaustive and computationally heavy, especially
in a network of resource constrained devices. Machine learning-based approaches require
investment of extensive training time, as per the system under consideration. Protocol-based
approaches require modifying the protocol policies. IDS based approaches do not suffer
from these above limitations, but the implementation of these schemes for rank attack
detection is challenging since attack behaviour resembles normal behaviour. Hence, use
of signature-based IDS and anomaly-based IDS schemes in the context of IoT attacks
generate a large number of false positives. Furthermore, there exists many variants of rank
attacks which present complex characteristics to evade detection capabilities of IDS. Formal
verification of IDS schemes are also lacking.

This chapter presents an intelligent probing based scheme for the detection of rank and
version attacks that also identifies location of malicious nodes. The probing mechanism
helps differentiate the normal and attack behaviour. Our scheme incorporates a centralized
I-Discrete Event System (DES) based IDS [47, 105, 48] and a set of agents with event
monitoring enabled, that make use of probe packets [106, 107|, judiciously. System failures
and network attacks involve analogous behavioural deviations from the normal system
functioning, which motivates the use of DES based IDS. Deploying our IDS does not require
a change in protocol policies, encryption, extensive training time or any need for proprietary
hardware support. Using our IDS also helps ensure a formally verifiable proof of correctness
of our approach. As opposed to Opacity, the property of DES Diagnosability holds if an
abnormal network behaviour can be differentiated from normal network behaviour. Since we
require to identify a pure attack behaviour, we restrict ourselves to FDD theory of DES. But
traditional DES diagnosability cannot help detect the attack node behaviour. An indicator
event is required such that diagnosis is possible only in those states where such an event
follows the attack event. I-diagnosability offers a relaxed definition of Diagnosability and is
applicable to partial diagnosis problems. Probe packets that are sent correspond to indicator
events. Attack detection is tested in only those paths where an indicator event follows the

attack. The major contributions in this chapter are enumerated as follows:
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e We propose a novel rank attacker identification scheme that also detects version attacks
in IoT-RPL. Our scheme makes use of an intelligent active probing technique that
helps create a deviation of attack traffic and normal traffic [106]. Our proposed scheme

is centralized and uses an I-DES based IDS.

e We extend the power of traditional I-DES based IDS framework with attack type

modeling for attacker identification.

e We prove the correctness and completeness of our approach by enumerating all the

attack cases.

e The performance of our scheme is tested through simulations and real testbed. The
experimental results highlight the applicability of our approach. Comparison of our
scheme to state-of-the-art countermeasures shows our approach is energy-efficient with
less packet overhead. The proposed solution is scalable, has minimum false positives

and achieves more than 99% accuracy in identifying the malicious nodes.

1.7.3 6LoWPAN Fragmentation Attack

Recently, a significant portion in the network usage of Internet of Things (IoT) [5, 108, 109]
in healthcare to home automation, industrial control systems to agriculture and smart
cities, mostly employ 6LoWPAN, an IETF-standardized adaptation layer, for IPv6 based
communication [110]. With the surge in the number of resource constrained devices
constituting the IoT, the need for a huge address space as well as IP-connectivity over low
power and lossy networks (LLN), including Wireless Sensor Networks (WSN), are facilitated
using 6LoWPAN [111, 10]. Fragmentation is therefore essential at this layer, since IEEE
802.15.4 limits the frame size to 127 bytes and hence does not permit transmission of IPv6
packets with MTU 1280 bytes. Consequently, the adaptation layer is proposed to forward,
buffer and process the fragments of the transmitted packets.

Malicious nodes make use of the challenges due to the proposed implementation and
exploit the fragmentation and reassembly procedures to launch various Denial-of-Service
(DoS) attacks. Lack of mechanisms to verify authenticity of the sender and the fragment
helps mount spoofing attacks. A malicious entity that is overhearing a communication

requires just a mere fragment to illegitimately occupy the buffer of a resource constrained
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node, or to disrupt the integrity of the packet by slipping in duplicate fragments. In both
the cases, since 6LoWPAN does not have means to verify fragment ingenuity, the buffer is
freed and the packet needs to be resent. The security aspect of availability is at stake due
to the trumped-up buffer reservation. The spurious occupancy also exhausts huge memory
and time, since the fragments need to be kept in the constrained memory of the nodes till
timeout. Moreover, the impact of the attack is unbound if the attacker drops fragments
and replaces them with fragments containing spoofed content, since 6LoWPAN processes
out-of-order fragments. Thus the services of the receiver node are blocked as fresh fragments
wait on its buffer while the network performance as a whole is hindered.

Approaches to secure 6LoWPAN from fragmentation attacks have been mostly cryp-
tography based [112, 113, 37|, which are resource unfriendly, since they generate packet
overhead. Thus, energy efficient schemes to save the resources of the constrained battery-
powered low power devices are required. Moreover, the countermeasure techniques against
IoT attacks have attempted attack detection mostly and not isolation, which leaves ample
opportunities for a malicious entity to launch fresh attacks. With the advancements in ad-
versarial machine learning techniques, complex attack characteristics and distributed attacks
are also severely threatening. In this chapter, we investigate the fragment duplication attack
from the topology perspective and by analysing the possible attack space. The centralized
I-DES framework discussed in the earlier chapter cannot be used successfully here. Rather,
we present here an intrusion detection scheme that is based on decentralized I-Discrete
Event System (DES) framework. Decentralized I-diagnosis helps globally diagnose an
attack node based on the response generated from the forwarded spoofed fragments. Global
I-diagnosability is ensured from the local I-diagnosis. Also, due to the analogous behaviours
posed between a system fault and a malfunctioning network node, DES based IDS have
been in use of late. We also overcome the plausible issues mentioned above. Broadly, our

contributions in this work can be summarised as follows:

e We propose a novel fragment duplication attacker identification scheme in 6LoWPAN.
Our scheme makes use of an intelligent active probing technique that helps create a de-
viation of attack traffic and normal traffic [106]. Our proposed scheme is decentralized

and uses I-DES based IDS.

e We extend the power of traditional decentralized DES based IDS with attack type
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modeling for attacker identification.

e We prove the correctness and completeness of our approach by enumerating all the

attack cases.

e The performance of our scheme is tested through simulations and real testbed. The
experimental results highlight the applicability of our approach. Results show our
approach is more energy-efficient and has less response time. The proposed solution
has minimum false positives and achieves more than 99% accuracy in identifying the

malicious nodes.

1.7.4 CoAP Request and Response Spoofing Attack

The Internet of Things (IoT) technology has revolutionised the outlook of connected devices
and IP-connected smart objects. A significant portion of such interconnected heterogeneous
devices are being extensively deployed to perform mission-critical tasks in areas such as
the health sector, energy management, industrial process control systems, etc. [4] For
uninterrupted services over the internet, a reliable end-to-end communication is demanding
for the family of constrained devices. The IoT protocol stack has been designed and adopted
with an aim of achieving such a standard [10].

IETF has standardized CoAP as an Application layer web transfer protocol to provision
for usage of Internet services in M2M applications constituting resource-constrained devices
across lossy, low-power networks [114]. Specially designed for provisioning web interoperabil-
ity, applications that make use of constrained sensing or actuating devices, having limited
power, memory and processing capabilities, render them fragile to various external threats
and DoS attacks. CoAP uses UDP as the transport protocol, which is unreliable and is
devoid of handshaking mechanism between client and server. CoAP is susceptible to various
attacks like Cross-Protocol attacks, Amplification attacks, Man-in-The-Middle (MiTM),
etc. [115] Amongst these, IP address spoofed DoS attacks can be launched at ease and
is the focus of our work here. Moreover, it can help mount stealthier attacks when used
in combination, such as amplification attacks. Availability of devices and accessibility to
services can be immensely compromised by a malicious endpoint that is exercising read and

write access.
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Research works reported in the literature have proposed numerous countermeasures to
effectively mitigate DoS attacks in general. Mostly, the adopted approaches either employ
host-based, router-based or hybrid techniques [116]. Adaptive solutions employing frequency
based approaches have been successfully used to detect mixed-rate IP spoofed DDoS attacks
[117]. Off-path response spoofing attacks in TCP and DNS have been analyzed thoroughly
in the literature [118, 119]. A countermeasure based on source-port randomization has been
proposed for an off-path attack on TCP [120]. In [121], researchers launch an off-path attack
by analyzing the remote server access support in CoAP and a request spoofing vulnerability.
Request spoofing is further shown to be mitigated using machine learning based approaches.

The proposed schemes, except a few, do not address mitigation techniques for request
spoofing attack in 6LoWPAN applications using CoAP. None of the reported works have
attempted identification of malicious or misconfigured endpoints in the past. Owing to the
similarity between diagnosis of faults and detection of network attacks in DES, we employ
here an I2-DES based IDS (Induced I-DES) [122, 48]. The I-diagnosability framework
discussed in the earlier chapters is limiting and cannot be used successfully for detection and
identification. Active probing based indicator events do not suffice since the generated probe
responses are same in number across normal and attack scenarios. Hence, an empowering
event is required here, justifying the use of traditional I2-DES framework.

Enumerated below are our contributions in this work:

1. We design an IDS scheme using I2-DES that identifies the attacker when an IP spoofed
DoS attack is launched in 6LoWPAN applications employing CoAP without DTLS

support.

2. Malicious network behaviour is detected from comprehensive analysis of network event
dynamics. Attacker is successfully identified by constructing a I?-DES diagnoser,
which serves as our IDS engine. Proof of correctness can be guaranteed using formal

verification.

3. The results demonstrate an energy efficient and scalable solution at considerably lesser

response times compared to related state-of-art solutions.
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1.8 Organization of the Thesis

This dissertation aims to provide lightweight DES-based countermeasures for mitigation
of IoT attacks that either have differentiable or they have indistinguishable normal and
abnormal characteristics. The considered IoT attacks can be categorized as a device-level
or a network-level or an application-level attack, namely scan-chain based side-channel
attack, RPL version and RPL rank attacks, 6LoOWPAN fragmentation attacks and CoAP

request /response spoofing attacks. An overview of our contributions is shown using Figure

1.1.
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Device-level

Scan-based side-channel attacks
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Figure 1.1: Overview of contributions in the IoT architecture

In the device-level attack, scan-based side-channel attack on cryptographic IoT devices,
the secret contents are leaked by an adversary who gets hold of the device. The secret
key values are differentiable from the non-secret values at the scan out pin that aids the
attacker motif. A proposed solution idea needs a mechanism such that secret and non-secret
values are indistinguishable while incurring minimal overhead and retaining full testability.
On the contrary, in case of each of the network-level IoT attacks and application-level IoT
attacks, the IoT network behaviour during attack is non-differentiable from the normal
network behaviour. A signature or anomaly profile is naturally lacking. Generation of
signature pattern or anomaly observation results in increased false positives. Consequently,

depending on the attack, a suitable mechanism and solution design needs to be chosen such
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that attack behaviour can be made out from the normal, accurately with minimal overhead.
This has motivated the study of applicability of the main idea of the dissertation, i.e., “using
DES paradigm to develop lightweight strategies” for different levels of attack in the IoT
ecosystem. Each attack mitigation technique requires a different DES paradigm for our
solution strategies. The characteristic features of attack, the solution architecture and the
detection philosophy are significantly different in each of the chapters. The chapter wise

thesis organization is given as follows:

e Chapter 2: In this chapter, we propose a DES opacity-based low overhead controller
framework that thwarts most of the scan-based side-channel attacks on a cryptographic
IoT device, namely differential scan attack, co-relation scan attack and signature

attacks.

e Chapter 3: In this chapter, an I-Diagnosability based DES framework is proposed.
This framework is used to propose an active I-DES-based centralized IDS scheme that
uses an intelligent probing technique to not only detect RPL version and RPL rank

attacks but also identifies the rank attack node location.

e Chapter 4: In this chapter, an active I-Diagnosability based decentralized IDS
scheme is proposed that detects 6LOWPAN fragmentation attacks using fabricated

probe fragments and also identifies the malicious node.

e Chapter 5: In this contribution chapter, a novel I?-Diagnosability based DES
framework is proposed. An active I>-DES based IDS scheme is presented that uses
empowering events apart from request or response probe packets to detect and identify

attack node location when a CoAP request/response spoofing attack is launched.

e Chapter 6: The concluding chapter highlights the findings of our study and summa-

rizes the thesis contributions. Future scope of research is also discussed.
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CHAPTER

Mitigation of Differential Scan Attacks

Testing of manufacturing defects has seen a surge recently with growing demands in micron
and sub-micron Internet of Things (IoT) devices in the semiconductor industry. Among the
techniques prevalent in the industry, scan-based Design-for-Testability (DfT) is the most
popular one. The internal scan chain comprising of serially connected flip-flops (scan cells)
is made more observable and controllable, which effectively facilitates testing. A designated
tester may provide a relevant input to stimulate the internal nodes during test mode, and
observe the corresponding output responses. Again, attackers look out for various means to
gain access to the internal scan elements. This hands them an opportunity to leak sensitive
information embedded within an IoT device containing a cryptographic IC. Side-channel
attacks can be precisely classified to be scan-based if the above inherent vulnerability is
made use of.

Universal standard cipher, Advanced Encryption Standard (AES), was shown to be
vulnerable to scan-based attacks [49] after it was already reported to be effective on a Data
Encryption Standard (DES) cipher implementation [50]. Switching a crypto-chip to test
mode after having run the chip in normal mode for a few cycles was shown to be effective
in the retrieval of the secret embedded key. A differential analysis technique applied on a
set of related plaintext input and cipher output pairs helped infer the secret information.
This could be realized due to observing the internal scan cell contents corresponding to
controlled input pairs applied beforehand. Most of these discussed attacks exploit only the

unique Hamming weights corresponding to one round output Hamming weight distribution



by applying all possible input pairs with a fixed input difference targeting a particular AES
input byte. Subsequently, this style of attack was extended to public key cryptosystems
such as elliptic curve cryptography (ECC) [51], Rivest-Shamir-Adleman (RSA) [52] circuits,
and in lattice-based public key cryptosystems [53].

Numerous countermeasures have been proposed to prevent scan-based side-channel
attacks in the recent past. In [54, 49|, a mode reset countermeasure was proposed to flush
all sensitive data contained in a scan chain during a switch from normal to test mode.
Still, it remains vulnerable to test-mode-only attack [55, 56, 57|. A concept of Mirror Key
Registers (MKRs) was introduced by the authors in [49], where the actual key is isolated
in the test mode, and the testing is performed using a user-provided key. But, it does
not provide support for online testing with the actual key. In [58, 59, 60, 61, 62], the
ordering of the sub-chains in multiple scan chain designs was manipulated by obfuscation
with the help of Segment Insertion Bits (SIB), which limits the attacker from observing
the actual states [63]. Since scan-based attacks do not depend on the ordering of the scan
chain, hence the access to the complete set of states induces a vulnerability. Advanced DFT
structures, such as X-masking |64], and de-compressors |65], which were once considered
secure against scan-based attacks [66], have also been shown to be insecure against advanced
differential scan attacks [67, 68]. In [69], the obfuscation techniques discussed, both static
and dynamic, draw inspiration from the lock-and-key scheme. However, a delay in the test
process is imbibed from the user authentication process, which requires the test key to be
loaded. Also, the dynamic obfuscation is vulnerable to [70]. The above countermeasures
mainly protect the secret key of a cipher embedded inside the crypto-chip against scan
attacks. There is a parallel stream of research work aimed at protecting the hardware IP
against reverse engineering, thus restricting counterfeiting or overproduction of chips [71].
A dynamic obfuscation based scan design, proposed in [72| and [73], protects the IP by
restricting scan access using dynamic scan obfuscation. This technique obfuscates scan data
dynamically, using a protected obfuscation key generated by an LFSR. These obfuscation
keys are XORed with the scan data using XOR gates inserted between the scan cells in
the scan chain. Such designs are resistant to existing scan-based attacks due to dynamic
obfuscation, though recently, the technique in [72| has been shown to be susceptible to

ScanSAT [74]. In the scan protection technique proposed in [75], key gates are inserted
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in the scan chain, which is controlled by a static secret key stored in a tamper-proof
memory (TPM), when a user applies the same secret key as a test key. Testing must be
performed with an obfuscated pattern, where the test patterns are obfuscated using the
same static secret key. If the test key applied does not match the secret key, the key gates
are controlled by dynamic keys generated by a pseudo random number generator (PRNG),
obfuscating the scan data dynamically in each clock cycle. The technique is vulnerable
to the DynUnlock attack [76]. The defense mechanism proposed in [77] is an enhanced
version of [78, 73|, where the combinational logic of the circuit is additionally protected
with functional obfuscation. In functional obfuscation, additional authentication is required
to gain access to the correct functionality of the circuit via an additional functional key.
Although the proposed technique [77] provides additional security against scan attacks, while
not compromising on testability, their hardware overhead is large. A cryptographic hash
function is shown to modify the test response in [79], though the cost of implementation is
dependent on a hash module that is made available inside the chip. In [80], the proposed
countermeasure performs an encryption of the test data, which again requires additional
modules for encryption/decryption, essentially incurring significant overhead in area, delay,
and power.

We emphasize on the security of our proposed countermeasure in the context of Discrete
Event Systems (DES) [81, 82]. DES broadly refers to the class of systems whose dynamics
can naturally be modeled as a set of discrete events occurring asynchronously over time. Over
the years, DES has been successfully applied to the theory of Fault Detection and Diagnosis
(FDD). It involves modeling the system behavior under normal and failure conditions.
In recent years, the DES community has highlighted security properties pertaining to
confidentiality, integrity, and availability of data. Opacity is a security notion that is
concerned with the confidentiality of a system secret. A system can be shown to be opaque
if a well-defined secret (expressed through states) can be kept hidden from an external
adversary. Therefore, there exist areas where security threats can be mitigated by ensuring
that the opacity property holds true for a system modeled as DES. Moreover, the opaque
property is verifiable, hence the correctness of a defense model can be formally proved by
constructing an estimator automaton.

The existing literature on defense techniques relies on partial scan design, data ob-
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fuscation, and scan chain encryption. Though these countermeasures are effective in the
prevention of traditional scan attacks and signature attacks, they are ineffective as far as
co-relation scan attacks [83] [84] are concerned.

Our major contributions in this work are outlined as follows:

1. A novel design of a security scheme using a hardware controller unit is presented. We
show to circumvent differential scan attacks by allowing selective bit-flipped outputs,

deterministically, using pre-computed mask values, without hampering testability.

2. A mask determination algorithm is presented that helps compute secret states and

determines the controller action across a setpoint.

3. Security of our scheme is proved by theoretically modeling the cryptosystem in the
framework of Discrete Event Systems and analyzing using the notion of Opacity.
Moreover, the entropy of the secret key is preserved. The proof of correctness is

guaranteed by constructing a state estimator automaton.

4. A theoretical analysis of the ineffectiveness of attacks launched from exploiting the
Hamming weight distribution obtained at the output is performed. A case study
performed shows our approach is resilient to such attacks at a nominal extra overhead

of 1.78%.

The rest of the chapter is organized as follows: Section 2 presents the background
and prerequisites. The design of our proposed scheme is presented in Section 3. Section
4 demonstrates the proof of security. Experimental results and performance analysis are
summarised using a case study in Section 5. We compare our work and discuss the relevance

of our countermeasure in Section 6. We finally conclude with Section 7.

2.1 Background

In this section, we briefly discuss AES and scan attacks, followed by the preliminaries of

DES and Opacity.
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Figure 2.1: AES round operation
2.1.1 AES

AES is a symmetric block cipher that encrypts fixed size data blocks of 128 bits using key
sizes of 128, 192, or 256 bits consisting of 10, 12, and 14 round operations, respectively.

Each round operation consists of the below mentioned operations:

1. SubBytes: This constitutes of a non-linear substitution operation taking 8-bit input

and producing 8-bit output.
2. ShiftRows: It produces a byte-wise permutation of the state.
3. MizColumns: 1t is a 4 byte mixing operation.

4. AddRoundKey: Tt XORs the round key with the state.

A key schedule in AES-128 generates the round key for each round for all of the 10
rounds. In addition to this, prior to the first round, the plaintext is XORed with the
user-specified key as shown in Figure 2.1, and during the last round, the MixColumns
operation is not used.

To start with, a 128 bit plaintext input is arranged in the form of a 4 x 4 matrix, where
each byte can be represented as a; ; (0 <4,j < 3). Initially in the key whitening phase, a

bitwise xor operation is performed on plaintext input with RK0 showing as follows:

bm‘ =a;; D RKOZ‘J (2.1)

SubBytes is the transformation that is based on the S-box. In this non-linear operation,
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S-box substitutes each byte of the plaintext data arranged as a state matrix, b; j, with a

byte c; ; as obtained from the lookup table as follows:

Ciyj =5- bOZL'(bLj) (2.2)

The third step constitutes the ShiftRow operation where the bytes in each row of the

4 x 4 matrix are left shifted, in the following cyclic manner.

(doo, do,1,do2,do,3) = (0,0, 0,15 C0,2,C0,3)

(dio,di1,d12,d13) = (c1,1,¢1,2,€1,3,€1,0)

(doy0,d2,1,d22,d23) = (c2,2,C2,3,C2,0,C2,1)

(ds0,ds31,d32,d33) = (c3,3,¢3,0,C3,1,C3,2) (2.3)

MixColumn is a column-wise operation where every 4 bytes in each column obtained after
the ShiftRow are multiplied by a polynomial of the form m(x) =" 03’23+’ 01'22+' 01"z +' 02/,

and 4 bytes are generated in corresponding output column as follows:
(€04, €15, €24, 3,5) = (doj, duj, daj, ds j) @ m(x) (24)

Finally, before the intermediate register R is loaded, a xor operation is performed using

round key RK1 on the MixColumn output as follows:

fij =¢€i; ®RK1;; (2.5)

2.1.2 Differential Scan Attacks
Fundamental Scan Attack

In fundamental (differential) scan attack [49], intermediate round outputs stored in round
registers are scanned out and analysed to find the key byte. The attacker applies pairs of
plaintexts, having a difference in the least significant bit (LSB) of a byte, and derives a
Hamming weight from the difference in observed outputs. Then the attacker searches for

a Hamming weight that corresponds to a unique input pair. For example, the Hamming
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Figure 2.2: Hamming weight distribution (original) corresponding to 0201 plaintext difference

weight 9, as shown in Fig. 2.2, corresponds to one input pair. Now, if the attacker observes
Hamming weight 9, he can infer the key by XORing the plaintext byte with the corresponding
input byte.

Signature Attack

In signature attack [123, 124], an ordered tuple of plaintext input pairs with 1 bit difference,

= {I1,...,1128} is used to generate an ordered tuple of Hamming weights, HW; =
{HWh,...,HWi9g} with key K;, 1 < i < 256. The HW; is generated for all possible keys
K; using all plaintext input pairs in I, which is the signature of that corresponding key
stored in the signature table. The attacker uses the same plaintext input pairs to generate
the signature in the target device that gives HW' = {HW/, ..., HW{y}. To compare HW’
with all HW;, he needs to match Hamming weight by Hamming weight from left to right.
If all the 128 Hamming weights match, he then recovers the key.

Proposed Co-relation scan attack (COSA)

The designer can easily overcome the existing attack by not allowing unique hamming
weights to the attacker. Attackers aim is to increase the attack surface and launch a more
lethal form of attack. In this respect, one natural choice for the attacker here is to look for
a possible attack using non-unique hamming weights.

In the proposed attack, the attacker can use a simulated version of the DUT which the

attacker has a complete control over. The attack consists of three steps :
1. Determining S-box input pair in offline phase: The attacker needs to determine the set
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I ={(Ip,lo®9), (11,11 ®6),.... In—1,In—1 B 0)} of the S-box input pairs for which
the output vectors after one round of AES have a hamming weight A between them.
The values of A and § are chosen by the attacker, where 0 < ¢ < 255 and 0 < n < 19.
We will only require 19 pairs because in case of 1 bit difference, there are 19 input

pairs possible for hamming weight of 18.

2. Determining input plaintext pairs in online phase: The attacker needs to determine
the set P = {(Po, Po®9), (P1,PL ®0), ..., (Pn—1, Ph—1 ® 9)} of the plaintext pairs for
which the output vectors after one round of AES have a hamming weight A between

them.

3. Determining the key byte value : The attacker has to determine the key byte value
using the sets P and I.

ALGORITHM 1: S-box Input Pairs
input :A — Hamming Weight, 6 — Input difference

output: A set I of the S-box input pairs

I=90

for p + 0 to 255 do
ppdo
0+ AESy(p)

o'+ AESy(p')
if Hamming weight between o and o' is A then

L I+ 1TU(p,p)

return [

Determining the S-box Input Pairs (Offline)

To determine all of the S-box input pairs generating a hamming weight of A between
the output vectors, the attacker needs to try every possible plaintext pairs of the form
(p,p @ d). The attacker would also have to use a modified version of AES, in which the
plaintext is not XORed with the key before the first round. Algorithm 1 illustrates this. The
algorithm iteratively generates all possible pairs of the form (p,p @ §) where 0 < p < 255.
The algorithm uses the method AESy() to obtain the one round output of the modified
version of AES. It then checks for the hamming weight between the output vectors if it is

equal to A or not. In case it is, the algorithm then adds the pair to the set I, otherwise the
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pair is discarded and the algorithm continues until all possible pairs have been exhausted.
This algorithm will add both the pairs (p,p ® §) and (p @ J,p) to the set I. The attacker
can either discard the second pair after the algorithm has terminated or define the set
such that it is a set of unordered pairs.

Determining the Plaintext Pairs (Online)

Algorithm 2 illustrates the process of determining the required plaintext pairs. In
addition to the values of hamming weight A and input difference ¢ the algorithm also needs
to know the position of the byte which the attacker wishes to determine. This is because
the plaintext pairs will change based on the value of the key byte. In Algorithm 2, we have
used the method AFESy() representing DUT with first round operation. It returns the round
output after one round of AES.

The algorithm generates all pairs of the form (p,p @ 0) where 0 < p < 255. The
two plaintexts ppl and pp2 are produced by setting the i byte in them as p and p @ 6,
respectively. The algorithm sets the other bytes to zero. It then checks whether the hamming
weight between the output vectors produced by one round of AES on the two plaintexts is
A or not. If it is, then the algorithm adds the pair (p,p @ §) to the set P, otherwise it is
discarded and the algorithm moves on to the next pair. As in Algorithm 1, this algorithm
too adds both the pairs (p,p @ ) and (p @ d,p) to the set P, and one of these pairs is
discarded.

ALGORITHM 2: Plaintext Pairs
input :A — Hamming Weight, § — Input difference, i — Key byte position
output : A set P of the plaintext pairs

P=90
for p + 0 to 255 do
p—pdd
ppl  it" byte set to p, rest all zeroes
pp2 < it" byte set to p’, rest all zeroes
0 <~ AESOneRound(plaintext,)
o' «+ AESOneRound(plaintexts)
if Hamming weight between o and o' is A then
| P+~ PU(p,p)
return P

Determining a Valid Mapping (Offline)
Algorithm 3 iterates through all 256 possible key byte values and checks if XORing them

41



2.1. BACKGROUND

with the elements of set P produces a permutation of the set I. The possible key byte value is
denoted by Kg. The value of K is XORed with each element of the set P, and the algorithm
next searches for the resultant value in the set I. If the resultant value is not present in I, then
that value of K¢ is not a valid key byte. However, if all values generated by XORing K with
the elements of set P are present in the set I, then that value of K is a possible key byte value

and the algorithm prints it. The worst case time complexity of this algorithm is O(nlogn).

ALGORITHM 3: Key Guessing Algorithm
input :No Input

output : Possible key bytes

for Ko < 0 to 255 do

valid = true

for p € P do

s+—pd Kg

if s ¢ I then
valid = false

break

2.1.3 Preliminaries of Discrete Event System and Opacity in Security

A Discrete Event System (DES) is characterized by discrete state space. The occurrence
of a system event causes a transition from one state to another. System dynamics, where
the state space can be described as a discrete set, {0,1,2, ...}, and events occur at discrete
points in time, can be naturally modeled as a DES. Systems such as circuit networks, digital
controllers, etc., are discrete event systems by nature. Hybrid systems like motors, power
systems, etc., can also be discretized at some level of abstraction for modeling purposes.
Therefore, non-DES systems or analog systems, by abstraction, based on the usage of some
logic variables, can be modeled as DES. In the context of this work, we restrict ourselves to
the framework of Finite State Automata, while discussing the DES modeling. The symbols
used, along with their meanings, are listed in Table 2.1.

Let ¥ represent an alphabet of symbols (also called elements or events), and ¥* denotes

the set of all finite-length strings composed of symbols from ¥, including the empty string €
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Table 2.1: Notations

Symbol Definition

H DES model

DM Set of events of the DES model H

Yo (Zuo) Set of observable (unobservable) events of the DES model H
\%4 Set of model variables of the DES model H

Q3 Set of transitions of the DES model H

T A transition 7 € &

Y Set of states of the DES model H

Yo Set of initial states of the DES model H

o Event on which a transition is enabled

L(H) Set of all traces generated in H

Ys(Yns) Set of secret (non-secret) states of the DES model H
(1,1 An S-box input pair

(P, P A plaintext input pair

R(p) Round output value obtained from applying plaintext p
0 A plaintext input difference

ITHW; Vector of S-box input pairs generating Hamming weight ¢
HW; Vector of plaintext pairs generating Hamming weight ¢
1DT Hamming distribution table of S-box input pairs

DT Hamming distribution table of plaintext pairs
Mask(P,z) | A mask computation function

A A hexadecimal mask value

RK; it" round key

FE(FD) Flip Enable (Disable) event

(of length zero). A language L C ¥* can be described as some subset of all finite-length
strings from X*.

Our DES model is represented as a 5-tuple H = (V, Y, 3,3, Yy), where V- = {v1, ve, ..., v,}
is the finite set of model variables with each v; assuming values from its respective domain
set, Dom(v;), Y is the finite set of states, ¥ is the event set, & represents the set of
transitions, and Y} is the set of initial states of the automaton, so Yy € 2¥. A state y € Y’
is of the form {vy,vs,..., vk}, k < n, with each associated variable assuming values from
their respective domain sets. A transition 7 € , represented as an ordered pair [y, o,y ™|
from y (initial(7)), the initial state of the transition, to the final state of the transition, y*
(final(T)), occurs because of an input symbol o € 3.

Now the language generated in DES H is represented as L(H) = {s € ¥*|3(y,y") €
Y :[y,s,y7] € S}. A trace of a DES model H is a string of events in H and is denoted as

{71, 72, 73,...}, where initial(m) is an initial state in Yy and by the consecution property
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initial(m;41) = final(r;), for i > 1 holds. Considering that only a subset of the events can
be observed and monitored by the attacker, we assume that ¥ can be partitioned into two
disjoint subsets sets, ¥, and X,,, where X, signifies the set of observable events and X,
represents the set of unobservable events. We take a natural projection mapping, Py, on
the system H which is defined as Py : ¥* — ¥%. It is used to map any trace executed in
the system to the sequence of observable transitions associated with it. The projection
operation is defined recursively as: (a) Py(e) =€, (b) Py(c) =cif 0 € X, (¢) Py(o) =€
if 0 € Xyo, (d) Pu(s-o0) = Py(s)Pu(o),s € ¥*,0 € ¥, where € represents the empty trace.
Furthermore, the state set can also be partitioned based on a defined secret as a set of
secret states, Yg and a set of non-secret states, Yyg. Yg refers to states that contain secret
information. All other states belong to Yng. So, YsUYys =Y and Yo NYng = ©.

Opacity is a security notion used in the DES community [43]. Given a system behavior
represented as a non-deterministic automaton, opacity is a system property that can be
verified to hold true using model-checking algorithms. It will be used to verify the security
of our proposed defense model against scan attacks.

Definition 1 (Current-state opacity (CSO)) [125, 42]: Given a DES system model
H = (VY,$,%,Y)), a projection P, a set of secret states Yg C Y, and a set of non-
secret states Yyg C Y, Yg # Yng, H is current-state opaque (or, (Ys, Pm, 0)-opaque),
if, Vt € L(H),3s € {L(H) \ {t}}, such that, final(t) € Ys = [final(s) € Yng and
Py (t) = Pg(s)].

The above definition means that if we are given any finite trace in the language of
H, and such a trace ends in a secret state, the system is CSO if and only if there exists
another different trace which is observably equivalent to the first trace, but terminates in
a non-secret state. It implies that if such two traces exist, then the current state of the
system cannot be estimated with certainty if it belongs to a subset of secret states. With
the knowledge of H from its observations, if the attacker is not able to infer the current
state of the system, the secret can be said to be opaque. In this chapter, we restrict to CSO,
where the secret is defined in terms of the current state of the system.

Verifier Construction : Verifying current-state opacity involves the construction of
the current-state estimator (CSE). Given a system modeled as a DES H and an observed

sequence of input symbols in its language, CSE converts H into an equivalent deterministic
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estimator automaton, H,, which consists of estimates of the system state when H is
simulated on any trace in L(H) [46, 43]. The estimator automaton is defined here as a
5-tuple H, = (Vy, Y5, S0, Lo, Y0,0). Let Yg, be the set of all states whose current estimate
contains at least one secret state from Yg, then Yg, is the set of secret state estimates
of the estimator automaton. Similarly, let Yyg, be the set of all states whose current
estimate contains at least one non-secret state € Yxg, then, Yyg, is the set of non-secret
state estimates of the estimator. If none of the estimator states reveal the current system
estimate to purely contain states from Yg, then the system H can be said to be opaque to

an observer who observes through some projection mapping Pp.

ALGORITHM 4: Key Recovery Procedure
Input :IDT, PP

/* IDT is the Hamming distribution table of S-box input pair vectors for §

difference, THW;,i € {1,2,...,31} and PP is the set of plaintext pairs

{(Plapll)a(P27P2/)7"-7(P1287P1/28)}; */
Output: key
/* key is one byte of Round Key, RK| */

CP « CPU{(P},Pj)lj € {1,2,...,128}}; /* Plaintext pairs are added inductively to
set of chosen plaintext pairs, CP */

R(P) + AES(P); /* AES() computes the AES first round output and (P,P’') € CP
*/

R(P'") «+ AES(P');

ITHW; < HWT(R(P)® R(P'"));/* HWT() computes the Hamming weight */

CI+ CIu{(I,IN|(I,I") e IHW;};/* S-box input pairs are added inductively to
set of chosen plaintext pairs, CIT */

key < CP & CI,;

2.2 Proposed Defense Scheme

2.2.1 Threat model

Assuming that the attacker obtains control of the crypto-chip running the AES implemen-
tation, a general procedure for launching differential scan attacks, typically, is shown in
Algorithm 4. The attacker applies chosen plaintext pairs and computes the Hamming

weights between response pairs after one AES round, depending on some fixed value of
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Figure 2.3: Proposed DES attack model G with 2 plaintext pairs

difference, 6. The Hamming distribution table for §, IDT, is checked for the Hamming
weight that is obtained. Round key value, RKj, can be lastly recovered from solving a
system of equations involving the chosen S-box input pair set, CI, and chosen-plaintext pair
set, C'P. Identification of the correct Hamming weight is, therefore, a primer to retrieve a
correct key byte. We consider the following set of assumptions from the perspective of the

attacker:

1. For the sake of simplicity, we assume that the attacker applies only a 0x01 difference

between plaintext pairs.

2. As already mentioned, the attacker has the crypto-chip running the AES implementa-

tion at hand.

3. The attacker is not able to perform invasive attacks like de-packaging of the chip for

probing the internal signals.

2.2.2 State based Attack Model

DES representation of the attack model is demonstrated using an example automaton as
shown in Fig. 2.3. In this modeling, we consider two differential plaintext pairs and their
corresponding round register outputs. The plaintexts are represented using the transitions,
while the states represent the round outputs in our automaton G. Each state is represented

using a variable v. Here, the domain of the variable v, Dom(v) = { Ry, Rq, Ra/, Rp, Ry }-
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Figure 2.4: Proposed defense model H with 2 plaintext pairs

Thus, each state assumes values from Dom(v) and is symbolic of 128-bit values of the
intermediate round register output. Similarly, in the case of transitions, the input symbols
are test vectors, each of length 16 bytes. The state set of the DES G consists of Y; =
{00, To1, 02, 03, Tos }. We assume that the correspondence between round register cells
to scan cells has been correctly established by the attacker. One having access to the scan
chain can observe its contents by performing n shift out operations at SO pin, where n
represents the number of cells in the round register. The series of above mentioned scan out
operations are implicitly considered to be a part of each of the transitions that correspond
to test vectors being applied at the chip primary inputs. We consider that input test vectors
form the alphabet set ¥ = {a,d’,b,b'}. Amongst these (a,a’) and (b,b’) are the differential

plaintext pairs. Self transitions have been omitted for simplicity purposes.

2.2.3 State based defense model

The proposed DES defense model H is shown in Fig. 2.4 and consists of two subma-
chines, one normal machine and another flipped submachine. The attack model, G,
shown in Fig. 2.3, is extended by incorporating Flip Enable and Flip Disable events.
States of the flipped submachine are appended to the state set of G. Therefore, ¥ =
{00,%01,202,203,704,£10,X11,L12,T13,14 } - Since each state corresponds to a round register

output, a flipped machine consists of states where a subset of the round register output

47



2.2. PROPOSED DEFENSE SCHEME

bits may be flipped (i.e., 0 if 1 and vice versa). The input test vectors are observable
and belong to the alphabet set ¥, = {a,d’,b,b'}, while X, = {FE, FD} consists of the
unobservable events. Events in ¥, are associated with transitions from the normal model
to states in the flipped model and vice versa. While F'E is the event associated with the
Flip Enable signal set to HIGH, F'D corresponds to the Flip Enable signal being set to
LOW. A transition with FE event that takes a state y in the normal model to a state y™ in
the flipped model is therefore represented as [y, FE,y"]. Such a transition is unobservable
in the eye of the attacker, who observes H through a projection Pp. Suppose a state, x, is
reached by applying a test vector at the primary input. Then, the transitions containing
the events F'E and F' D, at state z, i.e., may be enabled and disabled depending on x. This
is maintained by the controller throughout the system operation time. States in the normal
machine are of the form z; and states belonging to the flipped model are represented as
x1j. This is shown in the Fig. 2.4.

From the modeling perspective, it is assumed that the following properties hold in our

DES model H:

1. Any state in H is reachable from an initial state.

2. H is alive with respect to observable events. This means there exists an observable

transition defined at each state y € H.

3. H contains a secret information defined within the states. We designate such states

as secret states.

4. Attacker is an observer having extensive knowledge of H and also the controller but

only observes H through a projection Pg.

In our example, we have designated the state xgo as the secret state. All other
states, namely, {zoo, Zo1, T03, To4, T10, T11, T12, 13, T14} are the non-secret states. The set
of states, {xo0, o1, 02, T03, Toa}, belong to the normal machine, while the set of states,
{10,211, 212, 213, 14}, belong to the flipped machine. Suppose x(; and z1; have the same
round register value. Then they are said to be equivalent states and may be expressed as
xojExq;. Therefore, xooEx10, x01 211, To3E213 and xos Ex14, since in each case the round

output values of the pairs of states are the same. But, xg2Ez12 does not hold true since
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Figure 2.5: Architecture

Ry # RZ:,, i.e., the round register output at state xgo differs from round register output at

state x19.

2.2.4 Architecture

The architecture of our proposed scheme is shown in Fig. 4.4. The controller is placed
at the scan out pin. After the key whitening phase, the input to the S-box is also fed
to the controller. A tamper-proof memory (TPM) is used to store the masks computed
using Algorithm 5, which is a novel mask determination algorithm, discussed in the next
subsection. The controller controls the application of the mask, where the input to the S-box
for the first round determines the mask value for its round output. For each byte of S-box
input, a 32-bit mask value can be retrieved from the mask memory. For a 16-byte input, 16
different 32-bit masks are combined to generate a 128-bit mask. Due to the MixColumns
operation of AES, a difference in one byte affects 4 bytes of a round output, which justifies
using 32-bit mask values. If the Flip Enable signal is SET, then the 128-bit mask is selected
at the MUX output and added (XORed) with the round output, bit by bit. When the Flip
Enable signal is RESET, 0 is selected instead of the mask value. An overview of the Flip

Enable signal is discussed below:

Flip Enable signal

The Flip Enable signal is SET by the controller and is associated with the F'E event. Such

an event is taken in the system model when the controller enables it, depending on the
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Controlled System S/H
External Stimuli
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Figure 2.6: Block diagram of the controlled system S/H

plaintext input. The controller sets the SELECT signal for the 2x1 MUX. Accordingly, the
Flip Disable event is associated with the RESET of the MUX signal. The MUX output is
connected to the controller output pin. As a result, the pre-computed mask value or a 0
value is selected, respectively. The F'E events in our system model shown in Fig. 2.4 are
associated with transitions that are unobservable. The controller is minimally restrictive.
Depending on the state visited, it enables a minimum set of transitions consisting of the
events F'E or F'D.

A block diagram of the feedback network of the controlled system S/H is shown in
Fig. 2.6. The controller measures ¢, the plaintext input, which is the current variable of the
monitored system, and uses a mask determination algorithm to pre-compute mask values
that help manipulate the system behavior across a set point. The intended behavior of
the system is to prevent leakage of the secret key. Here, S(t) denotes enabling or disabling
of certain F'/E, F'D events of the system model from observing . When the system state
makes a transition to a secret state, the pre-computed mask value from the specification
is selected at the controller output. The external stimuli indicates accessing the chip by
an external agent, which might be an adversary or a tester. Before going into the actual
algorithm, an outline of the mask determination algorithm and the concept of the secret

state is discussed as follows:

Mask determination algorithm

It is the specification provided to the controller. Since the differential scan attacks target
the particular nature of the hamming weight obtained at output when differential plaintexts

are applied, a modified Hamming weight distribution is chosen which we also refer to as an
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intended Hamming weight distribution. The algorithm uses an original and an intended
Hamming weight distribution. Given these distributions, a mask value A is computed for a
plaintext pair (p,p’) so as to make (R(p) ® R(p’) ® A) map to a Hamming weight in the
intended distribution which is different from the original one. The intended distribution is

meant to resist differential scan attacks.

Secret States

The set of states designated as the secret states are the ones whose contents are sensitive,
since such a state includes information about the secret key that needs to be prevented
from leakage. These states are therefore meant to be kept secret from an adversary. If the
contents of such states are disclosed, then it aids in the retrieval of the key. The specification
is provided by the mask determination algorithm to the controller so that system behaves

such as to keep the information hidden.

2.2.5 Mask Determination Algorithm

Algorithm 5 computes M DT and a mask value corresponding to a plaintext pair. Mask((P,
x)) is a function that takes plaintext, P, as input and returns a hexadecimal number such
that R(P) and R(P’) differ in z bits. Only one plaintext pair retains its actual position
while others are mapped to a different Hamming weight such that the distribution is
uniformly spread. The difference between their original and modified Hamming weight is

the hexadecimal mask value, A.

2.2.6 Discussion

The Hamming weight distribution is modified such that it is resistant to differential scan
attacks. The attacker may even guess the correct key by selecting the one with the
maximum frequency from all possible key distributions. To mitigate such a scenario, we
modify our Hamming weight distribution with the objective to make the distribution
uniform. Such uniformity means there would be no Hamming weight containing a single
input pair, as is the case with Hamming weights of 9, 12, 23, and 24 in the actual Hamming
weight distribution. Moreover, any correct key value frequency which is greater than

incorrect key repetitions will be prone to attacks. Except for a few, many of the keys in
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a particular Hamming weight distribution are repeated twice, and the rest appear just
once. We propose an extra layer of security by devising our transform function such that a
correct key after the transformation occurs just once. On top of that, since our algorithm
distributes the key uniformly over the distribution, the chances of guessing the correct key
are minimized. Any key hypothesis value of 10 or more, for one key byte, would suffice to
prevent the attack. For 16 bytes of the keys, this occurs because the attacker lands with
a huge complexity for key hypothesis while guessing the keys which can be computed as
1010 = (10%)® x 10 = (2'%)% x 10 = 2% x 10/8 > 2. There exists (') possible ways of
transforming the Hamming weight distribution. This is the number of possible non-integral
solutions to X7 + Xo + - -+ + X9 = 128, where 128 is the total number of Hamming weights
in the distribution, X indicates the number of plaintext pairs mapped to a specific Hamming
weight, and index of X ranges from 1 to 20, since the spread lies between Hamming weights

5 to 24.

ALGORITHM 5: Computing a modified HW distribution and Mask value
Input :DT, Range (HW,, HW,)
Output: M DT, (P, P') and Mask(P, z)

/* DT and M DT are the original and modified distribution table; */
1 Uni(HW) ={9,12,23,24};
2 for All HW; in HW and Size(HW;) > 2 do
3 L Move one (P, P’) in P; from DT[HW;] to M DT[HW;];

4 for All HW; in HW do

5 for All (P, P’) in P; do

6 HWC « (i+1); /* HWC is a Hamming weight counter */
7 Set [tCount to 1 , rtCount to 2;
8

9

if HW(C =i then
if {tCount = rtCount then
10 HWC « i+ ltCount,

11 Increment [tCount;

12 else

13 HWC + i+ rtCount;
14 L Increment rtCount;
15 j=HWC;

16 Move (P, P") from DT[HW;] to MDT[HW;,];
17 Mask(P,j —1);

18 if tCount = rtCount then

19 HWC « i+ ltCount;

20 Increment [tCount;

21 else

22 HWC <+ i+ rtCount;

23 L Increment rtCount;
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2.2.7 Complexity Analysis
Attack complexity

In case of any number of bit flips, to successfully launch the co-relation scan attack at a
targeted hamming weight, HW;, consisting of n S-Box input pairs, a correct mapping can be
128
n

established at a complexity of ( ) xn! x n for recovering 1 key byte value. In a modified

distribution with 11 input pairs per Hamming weight on an average, the complexity is (11218)

x11! x 11 x 16, which is a huge number.

Model Complexity

The actual discrete event system model implementation consists of (256 + 1) x 2 states,
that is (2% + 1) x 2 ~ 2 states. Since a one-bit change in plaintext affects 32 bits (1
word) at the output, mask values can range between 0 to (232 — 1). Because of 256
plaintexts, F'/E and F'D, the alphabet size is 256 + 2 = 258. The size of transition set is
(256 x 256 + 1 x 256 + 2 x 256) x 2 = (259 x 256) x 2 ~ 2'7. The number of secret states
are 115 out of 256 possible round register output states.

Since there could be 232

mask values, the probability of guessing an output is 1/(232).
Let us suppose that the information that & outputs are not flipped is known to the attacker.
Among 128 possible output pairs, then the probability of guessing a correct distribution of
non-flipped outputs is (128) -(1/(232))128=F_If k is not known, the probability of identifying
the correct distribution is 1/(232)128 ~ 1/24900. 257 different states including a start state

belong to each of the normal as well as the flipped submachine in our proposed defense

model H, explained in Section 2.2.3.

2.2.8 Testability

Testability is not compromised due to masking. This is because there exist non-secret states
that the designer knows and through which it is possible to observe and test faults. In our
model automaton, the secret states are minimally chosen, i.e., a maximum of 128 states
out of 256. So, at least half of the states can always be utilized to test the faults directly.
Full testing can also be performed, including secret states, as we can have pre-computed

mask values for each input with the prior knowledge of the AES key. Test patterns can be
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modified by adding this mask to the test output. Functional testing can be performed using
modified test patterns, by ATPG or traditional testing procedures without modifying the
test interface. Furthermore, the test time is also not much compromised. Faults in the cipher
module can be tested through the non-secret states only. The controller uses additional logic,
the correctness of which can be tested using the secret states afterward. Also, plaintexts
can be applied exhaustively, in any order, independent of any input difference. Since the
designated secret states and non-secret states for our proposed technique do not depend on
the order of applied plaintexts, thus, application of any plaintext would essentially maintain

testability.

2.3 Security Proof

2.3.1 Verifying current-state opacity

The verification is shown here in a simplified manner using the estimator automaton, H,,
obtained from our DES defense model, H. Given an observable string of input symbols, the
problem of verifying current-state opacity can be reduced to checking if the current state
estimate belongs solely to a subset of secret states.

Given an initial set of states, Y[, a set of secret states, Yg, a set of non-secret states,
Yns, an adversary projection mapping Py and X, = {a,b,a’,b'}, the estimator automaton
H, is constructed as shown in Fig. 2.7, where V =V, Here, Y, = {2y, Z1, Z2, Z3, Z4} are
the state estimates after having observed a sequence of transitions in H. Yy, = {Zp} =
{200,210} = {Ro} is the initial state estimate which is actually the unobservable reach ! of
the states in the initial state set of H. xgp and xg; belong to the set of non-secret states
and are pairwise equivalent. Given a string of input symbols, the current-state estimate
obtained by simulating H, on w is Z3 = {{z02}, {z12}}, where w € ¥, and w = a’. Since
the estimate set consists of {{ Ry}, {R£ ,}}, the attacker cannot ascertain if the actual state
belongs to a secret state or a non-secret state, since xg2 € Yg and x12 € Yyg.

The controller deterministically enables or disables the flip enabling transitions [126,
127]. In our state based model shown in Fig. 2.4, R, is the round output value corresponding

to a secret state. Since this state needs to be kept confidential from the attacker, the controller

!Unobservable reach of a state T is a set of states which are reachable from T using unobservable
transitions
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Figure 2.7: Estimator automaton for DES H

enables the flip enabling transition on reaching g2, such that the attacker is never able to
determine the actual contents of the intermediate register. The attacker essentially would
get a round output value of RC{, from its observations of the system. The system is, therefore,
CSO as there exists a non-secret state, 12, which is not equivalent and yet reached via an

equivalent trace.

2.3.2 Why differential scan attacks will fail

We aim to prove here that a target Hamming weight is opaque. If this can be proved, then
it would imply that if plaintexts are incorrectly mapped to the original Hamming weight
distribution, then the key cannot be retrieved. The attack procedure shown in Algorithm
4 needs to compute the actual S-box inputs from the modified distribution, correctly, to
retrieve the key.

Let us consider the Hamming weight distribution of plaintext pairs when mapped to
round outputs, T . The plaintext pairs that map to a specific Hamming weight, w, are

added inductively to the set Thw (w). Now, the difference in outputs corresponding to
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(p1,p}) is R(p1) ® R(p)) @ Mask,, # R(p1) ® R(p)). Suppose DES H is CSO on having
applied plaintext input p; or plaintext input pj. In our DES model, the system was CSO on
reaching state xg2, where Rf (a) = (R(a) ® Mask,). Hence, R (a) was opaque. Now, since
any one of the states reached via plaintext inputs p; or p; can belong to the set of secret
states, hence, either Rf(p1)(# R(p1)) or R/ (p})(# R(p})) is obtained. Given any of these
may occur, it implies Rf (p1) & R(pll) is opaque to the adversary, since either Rf (p1) or
R (p}) is opaque. Therefore, Dgl is opaque, where R/ (p1) @ R/ (p}) = D,,. Consequently,
H W(Dgl) is opaque to the adversary.

Suppose, there exists plaintext inputs pi, pi, p2, ph, ps and p4, which when applied
in any given order, generate round outputs R(p1), R(p}), R(p2), R(p,), R(ps) and R(p}),
respectively. Now, T (5) consists of plaintext pairs such that the Hamming weight of
their observed differences is all equal to 5. Considering that R, , R,, and R, belong to Yg
and the corresponding mask values are Mask,,, Mask,, and Mask,,, respectively, then
H W(Dgl), H W(D};Q) and H W(D};S) are opaque and all these Hamming weight values are
equal to 5. Nonetheless, the system is Ty (5) opaque (there exist actual Hamming weights
16, 17, and 18 when computed originally without the masks), since the attacker is unable to

infer the correct S-box input pair mappings corresponding to Hamming weight Try (5).

2.3.3 Security considerations for generalized input differences

The security of the countermeasure is dependent on the mask values. 256 possible mask
values are necessary for pre-computation in our scheme using our mask determination
algorithm, depending on the intended modification of the Hamming weight distribution.
Given any input difference § applied between the plaintext pairs, 256 mask values will be
required. A 0x01 difference is considered while computing a secure Hamming distribution
for the same. In case of any general instances of the Hamming distribution, a different
mask determination algorithm can instead be devised, with some logical modifications, for
computing an updated set of 256 mask values. Depending on the distribution of the Hamming
weight for a specific input difference in one byte of input, any different transformation
function then needs to be used, such that 256 mask values are computed out of 232 possible,
considering that the mask values are of 32 bits. The modified Hamming weight distribution

essentially requires the mask values to be applied only on different occasions, for any given
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Figure 2.9: Signature Matches

input difference. This is because the original distributions specific to input differences vary
from one another. Consequently, more secret states can be used based on the occasion at
hand. There is no extra overhead due to such change since no changes are needed to be
made to the hardware. The proof of the countermeasure can be guaranteed in the same
manner as proposed in the manuscript. The number of secret states will increase on such

pretexts.

2.4 Case Study

Our defense procedure is tested against simulated attacks, written in C language, on a 64-bit
x86-64 Intel Core i7-6700 CPU at 2.6GHz, consisting of 8 virtual processors, 16 GB of RAM
and running Ubuntu 18.04 OS. We test our defense while using 6 = 0x01. Mentor Graphics
Leonardo Spectrum Level 3 (Version 2018a.2) is used to evaluate the cost of implementation

in terms of the extra number of gates, using the library fse0a _d_generic_core ff1plvm4Qc.
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Figure 2.10: Correct and incorrect key distribution in co-relation scan attack
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Table 2.2: RTL Components Summary for AES Implementation With and Without the
Proposed Countermeasure

. uantit
Component fnput |- Size Original AES (gecure XES Difference
Adders 2 4 bit 5 5 0
3 32 bit | 4 4 0
2 33 bit 2 2 0
4 34 bit | 2 2 0
XORs 2 8 bit 166 160 -6
4 9 bit 12 0 -12
5! 10 bit 4 32 28
9 11 bit | 16 16 0
128 bit | 3 3 0
32 bit 10 10 0
Registers 8 bit 64 64 0
4 bit 5 5 0
1 bit 0
RAM 1K bit | 1 1 0
2 32 bit | 8 8 0
2 8 bit 32 48 16
2 4 bit 2 2 0
Muxes 3 4 bit 1 1 0
2 3 bit 1 1 0
2 1 bit 2 2 0
3 1 bit 1 1 0
LUT 256x8 | 2 2 0
Block RAM 256x8 | 39 39 0
Area Overhead 1.78%

2.4.1 Experimental Results

In our scheme, the DES model has 115 secret states. However, for experimental purposes,
we have considered 128 secret states, with none of the plaintext pairs retaining their original
Hamming weight. A 32-bit mask is used that requires a memory of 32x256 bits. The
proposed defense is implemented on an iterative implementation of AES [128] similar
to [69], in Verilog using Xilinx Spartan-7 xc7s100fgga676-2. The extra logic required for our
implementation is given in Table 2.2. The area overhead is 1.78% in terms of equivalent gate
counts. The simulation is done with Xilinx Vivado in the system configuration mentioned

in the introduction of this section to evaluate our results.
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2.4.2 Performance analysis

Our scheme is (Yg, Py, 0) - opaque since 115 plaintext pairs are shifted. The analysis of our

proposed countermeasure to scan-based attacks is discussed below:

Differential scan attack

In the modified distribution, all the plaintext pairs corresponding to an unique Hamming
weight belong to another non-unique Hamming weight. So the attacker is unable to find
an unique plaintext to XOR with a S-box input pair, for example, OxE2 in the case of a 9
Hamming weight. Fig. 2.8 shows that all the unique Hamming weights, 9, 12, 23, and 24,

no more contain actual unique plaintext pairs.

Signature attack

Here, all 128 Hamming weights need to match to recover the key. Since the Hamming
weights are shifted, a change in the Hamming weight of at least one of the input pair changes
the signature. As a result a match is not found with any of the signature HW;. Fig. 2.9

shows the Hamming weight matching results with actual signature.

Co-relation scan attack

Because of the modified distribution, which contains only one correct plaintext pair in each
Hamming weight, XORing the S-box inputs with the plaintexts gives incorrect keys with
one correct key. Fig. 2.10 shows the frequency of incorrect keys is always greater than the

correct key’s frequency. Hence, the co-relation scan attacks fail.

2.5 Comparison with other works

A comparison of our proposed mask determination algorithm based countermeasure against
some existing state-of-the-art defense schemes is presented in Table 2.3. The schemes
SOSD-64, SOSD-64, DOSD-64, DOSD-128 [69] and HBSD [79] are used to evaluate our
area overhead, security attack vulnerabilities, and impacts on testability. The iterative
implementation of SOSD and DOSD has been considered while comparing. SOSD and

DOSD refer to scan designs that perform static and dynamic obfuscation of scan data as
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Table 2.3: Comparison of Different Designs

Design Area Overhead (%) Security Vulnerability Testability
SOSD-64 1.52 - . . _ 1| 64 clocks before testing
SOSD-128 2.81 TMOSA, Reverse Engineering Attacks 128 clocks before testing
DOSD-64 2.08 64 clocks before testing
DOSD-128 3.91 Reverse Engineering Attacks 128 clocks before testing
HBSD 2.42
DOSC 4.6 .
DOSC + Functional Obfuscation 5.7 SAT attack Nil
Encrypt Flip-flop 5 (approx) DynUnlock
Proposed Scheme 1.78 None Nil

reported in [69], where 64 or 128 scan cells may be controlled. SOSD-64 and SOSD-128 are
susceptible to Test Mode Only Signature Attack (TMOSA). Moreover, all of the compared
schemes have been shown to be vulnerable to reverse engineering attacks [129]. In terms
of testability, the CUT is testable with no significant impact except that a fault in the
additional hardware circuitry is rendered non-testable. We show that our scheme is secure,
and there is a significant improvement on the area overhead measure with no compromise
made to testability compared to other schemes. In [69, 79|, authors show a detailed
comparison of their works to other countermeasures in the literature.

Static and dynamic obfuscation techniques as discussed in |75, 77] protect the Intellectual
Property (IP). The technique discussed in [75] suffers from DynUnlock attack [76]. The
preliminary version of |77] is |73], which is shown to be vulnerable to ScanSAT attack
[74]. Hence, the security of [77] still remains doubtful, as shown in ScanSAT [74]|. The
LFSR design can be reverse-engineered and the key update frequency p can be obtained by
repeatedly applying the same test vector again and again [129]. As the LFSR’s design can
be recovered using reverse engineering, the LF'SR seed can be obtained with the information
of LFSR key sequences. Therefore, DOSC in |77] may be vulnerable. However, oracle access
to design, if available, may render DOSC + Functional Obfuscation susceptible [74, 76].

We do not resort to IP protection and leave the scan chain as it is. Since we do not
perform logic locking, such attacks are not effective against our countermeasure. Thus,
our proposed countermeasure is resilient to reverse engineering and SAT attacks, with a
lower area overhead of 1.78% compared to DOSC and DOSC + Functional Obfuscation in
[77], which have area overheads of 4.6% and 5.7%, respectively, for the AES Core. Encrypt
Flip-flop [75] reports an area overhead of approximately 5% on average and ranges from 1%

to as high as 40% across various ISCAS’89 and ITC’99 benchmarks. As a result, it makes
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2. MITIGATION OF DIFFERENTIAL SCAN ATTACKS

our proposed countermeasure a preferable choice for the designer.

Our proposed scheme is not vulnerable to reverse engineering attacks since the pre-
computed mask value considers performing multiple bit flips in one round output. This mask
value is stored in tamper-resistant memory. Our proposed approach does not employ any
additional circuitry involving logic gates except an XOR gate at the scan output. Therefore,
reverse engineering the gate-level netlist design will not be beneficial in recovering the secret
key. Attackers having the capability of creating stuck-at-faults by obtaining control of the
flip-enable signal may be successful in launching various fault-injection or probing attacks.
However, in real life, the chances of launching such attacks are very low since injecting
faults through a probing attack or by using laser beam techniques is difficult and not easy
to implement. Moreover, the flip-enable signal, or rather the MUX could be replaced in
our design by directly feeding the mask memory to the XOR operation at the scan out pin.
In that case, we need to use 256 secret states instead, yet have no impact on testability
and with negligible overhead. We have employed the MUX and Flip-enable so that the

controller is minimally restrictive.

2.6 Conclusion and Future Directions

In this chapter, we have proposed a simple yet effective countermeasure against scan-based
attacks on IoT devices running an AES implementation. A security scheme using a controller
hardware unit is presented that uses a mask determination algorithm to pre-compute mask
values. The cryptocircuit implementation has been modeled in the framework of Discrete
Event Systems. Our scheme ensures security without hampering testability. Using a proof
of security, we show the resilience of the transformed Hamming weight distribution to
differential scan attacks as well as attacks based on key frequencies.

To guarantee the proof of our countermeasure, the security analysis in this work using
Opacity considers a particular instance of Hamming weight distribution (for example, when
a plaintext difference 0z01 is applied). In our future work, our objective would be to
analyze the security aspects of our countermeasure irrespective of any given instance of a
Hamming distribution. We would also further investigate our defense scheme in the presence
of advanced DfT structures as well as on other ciphers.

In the following chapter, we look into RPL attacks, namely, rank and version attacks,
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a class of network-level IoT attacks launched by an internal attacker using irregular RPL
DIO control packets. Unoptimized network performance, resource exhaustion, network
partitioning and DoS occur as a result of such attacks. These RPL attacks exploit the
topology induced vulnerability of IoT-RPL networks. The network behaviour under the
influence of such attacks pose no change from the normal. A mechanism is therefore necessary
to create differentiating network characteristics for diagnosing these attacks. Moreover,
directly incorporating the network packet information in states and transitions will effect in
the state-space explosion problem. Also, a solution needs to be energy-efficient, scalable and
accurate for successful implementation in IoT networks. Furthermore, detection of attack is
not enough on this occasion since with the advent of botnet attacks and mobility, a malicious
node might easily launch fresh attacks. Intrusion detection systems are naturally chosen
for securing networks. Yet since signatures or known anomalies are naturally lacking in
such attacks, signature or anomaly based IDS have limited success and generate lots of false
postives. We analyze the attack from topology perspective to devise a novel countermeasure
scheme, to not only detect rank and version attack but also identify a rank attacker node.
Our proposed scheme utilises a centralised I-DES based IDS and a set of agents deployed
at the leaf levels and is presented in the next chapter. Our proposed I-Diagnosability DES
framework is adopted and extended to identify an attacker and uses extended finite state
automata formalisms for the modeling and design of our IDS. Faults and network attacks
create analogous deviations from the normal, which makes the classical Fault Detection and
Diagnosis (FDD) theory naturally applicable to network attack detection. Moreover, our
intelligent probing mechanism ensue differentiable attack characteristics due to generated
responses. Employing I-DES based IDS does not require extensive training, protocol
modifications, or encryption, etc. Furthermore, this being a software countermeasure that
runs in a host, it does not require any upgradation or patching. The proposed scheme is
validated in simulation and on a testbed with sufficiently large number of nodes. Results

obtained show effectiveness of our technique in most aspects than state-of-the-art schemes.
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CHAPTER

Mitigation of RPL-based Attacks

The Internet of Things (IoT) system is witnessing a rapid evolution, due to the ever
increasing number of connected smart and pervasive devices [5]. Consisting of a multitude
of connected heterogeneous objects, which we rather call as things, the IP-connected IoT is
spread over diverse domains like smart cities, autonomous vehicles, industrial cyber-physical
systems, smart homes, e-health sector, etc [108, 109]. IoT networks are typically Low power
and Lossy Networks (LLN), comprising mostly of embedded sensors and actuators. Not only
do such networks require to uniquely address billions of these connected devices, but also
support embedded technologies for sensing and gathering data from the environment. With
the mighty responsibilities in hand, IoT-connected resource constrained devices suffer from
major operational challenges like constrained processing capabilities, inadequate memory
and limited power. Hence, IoT remains vulnerable to a wide array of attacks because of
insecure LLNs, device limitations, varying technologies, etc.

To enable efficient and reliable communication, IETF has standardized IPv6 Routing
protocol for Low Power and Lossy Networks (RPL) [9]. The design of RPL is tailored for
low-power IoT devices. RPL maintains loop-free Destination Oriented Directed Acyclic
Graphs (DODAG). A DODAG is created and maintained using control messages, primarily,
DODAG Information Object (DIO) for upward paths, DODAG Advertisement Object
(DAO) for downward paths and DODAG Information Solicitation (DIS) for node joining.
RPL ensures cost-optimized topologies by ordering participating nodes on the basis of an
integer cost function, rank. Individual rank of a node determines its position in the DODAG,

relative to a 6BR sink node (root). Also, a single version number prevalent in the DODAG



is maintained in DIO for consistency. Though RPL provisions various mechanisms and is
secure enough from external attackers, yet the resource constrained nature of IoT devices,
the typical characteristics of IoT networks such as lossy links, lacunas in infrastructure,
dynamic topology, etc., can render IoT-RPL susceptible to internal attacks [85, 11, 86, 87].

Various internal attacks have been shown in the literature, of late, that make illicit use
of RPL. Puppet attacks [88], advanced vampire attacks [89] make use of forged source routes,
while attacks like energy depletion attack [90] and vampire attacks [91] drain resources by
repeatedly sending useless data packets. Sybil attacks [92] and spam DIS attacks [93| have
been shown to make use of DIS messages with counterfeit identities, essentially causing denial
of service. DIO suppression attacks eavesdrop DIO messages for replaying it repeatedly in
fixed intervals [94]. Out of the various DIO-specific attacks explored, proposed rank and
version attacks continue to be of paramount importance since they are of low overhead
and are realizable using DIO only. To launch such attacks, the rank and version number
fields of a DIO message are fabricated causing formation of loops, sub-optimal routes, traffic
redirection and network partitioning. Significant path delay is incurred since a large number
of control messages are exchanged in the DODAG, resulting in energy depletion of the
constrained nodes and disruption of network services. Moreover, rank attacks may be
combined with other cross-layer attacks like selective forwarding attacks to alleviate the
damage caused.

Proposed methods for securing IoT networks against RPL rank and version attacks have
their own typical limitations[95, 96, 97, 98, 99, 100, 101, 102, 103, 32, 104]. Cryptography-
based mitigation schemes are resource exhaustive and computationally heavy, especially
in a network of resource constrained devices. Machine learning-based approaches require
investment of extensive training time, as per the system under consideration. Protocol-based
approaches require modifying the protocol policies. IDS based approaches do not suffer
from these above limitations, but the implementation of these schemes for rank attack
detection is challenging since attack behaviour resembles and normal behaviour. Hence,
use of signature-based IDS and anomaly-based IDS schemes in the context of IoT attacks
generate a large number of false positives. Furthermore, there exists many variants of rank
attacks which present complex characteristics to evade detection capabilities of IDS. Formal

verification of IDS schemes are also lacking.
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This chapter presents an intelligent probing based scheme for the detection of rank and
version attacks that also identifies location of malicious nodes. The probing mechanism
helps differentiate the normal and attack behaviour. Our scheme incorporates I (Indicator)-
Discrete Event System (DES) based IDS [47, 105, 48] and a set of agents with event
monitoring enabled, that make use of probe packets [106, 107], judiciously. System failures
and network attacks involve analogous behavioural deviations from the normal system
functioning, which motivates the use of I-DES based IDS. Deploying our IDS does not
require a change in protocol policies, encryption, extensive training time or any need for
proprietary hardware support. Using our IDS also helps ensure a formally verifiable proof
of correctness of our approach. The major contributions in this chapter are enumerated as

follows:

o We propose a novel rank attacker identification scheme that also detects version attacks
in IoT-RPL. Our scheme makes use of an intelligent active probing technique that
helps create a deviation of attack traffic and normal traffic [L06]. Our proposed scheme

is centralized and uses a I-DES based IDS.

e We extend the power of traditional I-DES based IDS with attack type modeling for

attacker identification.

e We prove the correctness and completeness of our approach by enumerating all the

attack cases.

e The performance of our scheme is tested through simulations and real testbed. The
experimental results highlight the applicability of our approach. Comparison of our
scheme to state-of-the-art countermeasures shows our approach is energy-efficient with
less packet overhead. The proposed solution is scalable, has minimum false positives

and achieves more than 99% accuracy in identifying the malicious nodes.

The rest of this chapter is organized as follows: We discuss the related works and
motivation in Section II. Section III is background. The design of our proposed scheme
using a DES based IDS is presented in Section IV. Experimental results are summarised in
Section V, highlighting the performance of our scheme, and we finally conclude with Section

VI
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3.1 Related Work

We here discuss the various schemes proposed in the literature. The existing methods
either employ mitigation techniques [130, 95, 96] using cryptographic solutions [35, 97, 98|,
acknowledgement based schemes [36], trust based methods [99, 100, 101], recent machine
learning approaches [102, 103, 32, 104|, or IDS based approaches [131, 132] using specifica-
tions and mathematical (statistical) methods to make DODAG secure. One of the primary
works, VeRA [35], suggested the use of one-way hash functions generated by RPL root,
where each of the nodes authenticate neighbours’ rank by repeated usage of the function.
TRAIL [36] improved upon VeRA by abstaining from a fully cryptographic technique. Newer
attack vectors are also identified. Their proposed approach detects and mitigates topological
inconsistencies in the network by checking for upward routes. They make use of encryption
chain authentication as opposed to MAC authentication, thus ensuring backward secrecy.
Their scheme lacks in scalability and requires maintaining state information. Nikravan et.al
[97] utilise an identity based offline-online signature. Their solution is scalable compared
to VeRA and TRAIL, requiring the size of signature to be independent of the network
size. The above approaches to mitigate rank attacks however are resource exhaustive or
computationally heavy.

Trust based methods have also been largely used in this direction [100, 101, 133].
They mostly resort to reputation score calculations and trust values for attack detection.
SecTrust-RPL [99], a time-based trust-aware routing protocol, used a trust based principle
that computes reliability, gained from message exchanges. They also validate their approach,
however, it required each node to be run in promiscuous mode for sniffing packets. Later, a
dynamic hierarchical trust model is proposed in DCTM-RPL [134]. Secure communication
is shown to have been achieved by building up trust above a threshold value in their
approach. Among the various protocols proposed [96, 40], a secure protocol, SRPL-RP
[38], mitigates rank and version number attacks. It uses a timestamp threshold to validate
a legitimate sender node. Though their approach improves upon overhead and average
energy consumption, energy is wasted in the absence of any attacker. Furthermore it may
be noted that protocol based approaches modify the protocol policies. There has also been
significant contributions, of late, that use machine learning based methods. Specifically,

deep learning based [33, 32| and artificial neural network based approaches [104] have been
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applied to detect rank and other routing attacks. However, it is worth mentioning that such
approaches require investment of extensive training time and further improvements in their
accuracy can be achieved by better dataset.

Usage of IDS has received considerable attention over the years in the security research
community. Network based Intrusion Detection Systems (NIDS) have been largely employed
to secure the IoT network against attacks [135, 136, 132, 131]. NIDS for IoT are mostly
signature-based (or, knowledge-based), anomaly-based, specification-based or hybrid [137,
138, 139]. SVELTE [132], one of the notably important proposal has shown the use of
real-time intrusion detection in IoT. A specification-based IDS with hybrid placement
that detects blackhole, sinkhole and selective forwarding attack, SVELTE used a mix of
both signature based and anomaly based methods. While an IDS module runs on the
root node, the firewall and response model runs on every node, which is again resource
intensive. Some of the other limitations of the scheme are false detection and the lack
of DIO synchronisation. Recently, FORCE [138], a specification based IDS that exploits
the parent-child relationship is proposed and performs better than SVELTE in terms of
detection rates and energy consumption. A version attack detection scheme using temporal
logic based IDS [140] is shown, but a comparison of their scheme is lacking. A few works
[141, 142, 130] improve upon SVELTE in terms of false positives. Version attack is mitigated
and attacker is identified using trust-based distributed IDS [143] and also by distributed
monitoring mechanisms [144|. A sink-based IDS is proposed in [139], but the scheme suffers
from high computational overhead and average power consumption.

Few approaches in the literature have performed malicious node identification and
isolation [145, 130, 143, 144]. In IoT networks, control packets are exchanged in the RPL
for maintenance and a rank update legitimacy cannot be directly verified, since they are not
differentiable across normal and spoofed conditions. An increased rank may be advertised
due to various genuine reasons like a node gone off or not running, node services interrupted,
etc. Moreover, variations of rank attacks lack direct anomalies or known signatures. In this
regard, signature-based and anomaly-based IDS approaches in turn result in an increased
number of false positives when generating relevant signatures or statistics. We overcome
the discussed shortcomings by developing an energy-efficient and formally verifiable probing

based scheme. Probing helps differentiate the attack characteristics from the normal network
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characteristics. Analyzing the topological changes due to rank attacks aid our development
of probing techniques for malicious node identification. We not only detect but also identify
the location of the malicious node with enhanced precision, lower false positives and lower
detection time. Our scheme is centralized and uses an I-DES based IDS, correctness of
which can be formally verified. I-DES based IDS are accurate and generate minimal false
positives [47, 105, 48, 146]. Moreover, using our proposed IDS does not require a change in
protocol policies, extensive training time, encryption or a need for proprietary hardware

support.

3.2 Background

In this section, we discuss the preliminaries of RPL protocol, DODAG creation and RPL

attacks, namely, increased rank and version attacks, in particular.

3.2.1 RPL Protocol

RPL is inspired from distance-vector routing protocol, source routing protocol and DAG.
It is the de-facto routing protocol that operates on top of IEEE 802.15.4 MAC layer
while supporting multipoint-to-point traffic using upward routes, point-to-multipoint traffic
using downward routes and a combination of the above routes to facilitate multipoint-
to-multipoint traffic. Independent downward routes and upward routes are established
in DODAG. Depending on the mode of operation, downward routes may be optionally
supported. RPL supports three node types, namely, (i) Low Power and Lossy Border
Routers (LBRs) which acts rather as gateway between LLNs and the Internet, (ii) Routers
which can forward as well as generate traffic and (iii) Hosts that can generate but not
forward traffic. Nodes are organized in the form of DODAG tree with a provision for parallel
execution of multiple RPL instances, as shown in Figure 3.1. An RPL instance is uniquely
characterized using RPL Instance ID and a DODAG using DODAG ID. The DODAG root
is a special kind of node that acts as an LBR or a destination sink. The root determines
and maintains the DODAG configuration parameters and starts disseminating DIOs [147].

In RPL, an ICMPv6 control message can be any one of these following types: (i)
DODAG Information Solicitation (DIS) (ii) DODAG Information Object (DIO) (iii) DODAG
Advertisement Object (DAO) (iv) DODAG Advertisement Object Acknowledgement (DAO-
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ACK).

Rank is an integer value assigned to each node in the DODAG. All the nodes conforming
to the inclusion policy in the DODAG instance are ordered on the basis of these values as
per an instance defined metric. They are a measure of the position of the node relative
to the sink node. A higher rank value pertaining to a node means it is more distant from
the sink compared to another node with a lower rank value. Objective Functions (OF) are
used for topology optimization depending on a set of goals that need to be met, such as
link quality, hop count, energy consumption, etc. OF is used by the RPL to select the best
routing path. Instances use OFs to determine the rank. The OF determines metrics that are
included in the DIO messages. OF is realized using Objective Code Point (OCP) included

in the DIO configuration options.

Instance 2

1 \
Instance 1 W 12b 130

Figure 3.1: RPL DODAG

DODAG Creation and Maintenance

Creation and maintenance of an RPL DODAG is done using the DODAG control messages.
When a DODAG is built, the root link local multicasts DIO messages for building upward

paths. The rank value, objective code point and node ID are included in the DIO messages
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[148]. DIO messages are periodically disseminated downwards, where the period is decided
by the Trickle algorithm [149]. From the received DIO messages from neighbours, each node
has the decision on selection of its parent set among its neighbours. Among its parent set, it
selects a preferred parent from the best advertised rank value. Thus, when a node forwards
a message to the DODAG root, the preferred parent is chosen by default. The received DIO
message is then updated at the node and forwarded to its neighbours. On completion of
DIO message exchanges till the leaf node, the upward route is created upto the DODAG
root, consisting of preferred parents from each node. A node uses DIS broadcast messages

to join a DODAG. DAO messages are used by the nodes for building downward paths.

3.2.2 Rank and version number attack

Alteration/Spoofing attacks in RPL have been widely investigated. Rank and version attacks
in RPL are identified as misappropriation or alteration attacks where the ranking scheme is
exploited, indirectly, making false advertisements using DODAG control packets [86, 95].
Version number attack: RPL incorporates versioning in DODAG to prevent loop
formation and to ensure updated topologies. A malicious node makes use of the version
number field to attract descendant nodes. False version number updation in the DIO
advertisements practically actuate a DODAG tree rebuilding operation affecting the network
performance, indirectly. As a result, energy exhaustion, loop formation, increased overheads
ensue. Moreover, it provides avenues for launching more serious combined forms of attack.
Increased rank attack: One or more node(s) may misbehave in the network by
increasing the rank values. We here restrict ourselves to the case where the network
has a single misbehaving node. The malfunctioning node suddenly multicasts a DODAG
Information Object (DIO) message to its neighbor nodes with an incremented rank value.
The neighbor nodes, then, does the same, recursively, till the network upward routes are
updated. Hence, there is a huge burst in control packet traffic in the network. The nodes
being resource constrained illicitly face exhaustion of their battery. As a result of this type
of attack, the network may even include loops that may not be mitigated using local repair
mechanisms in RPL. Otherwise, the node simply joins at a lower rank in the network (i.e.,
more distant from the DODAG root) and such behavior may be primarily intended to starve

a targeted node by disrupting communication.
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Figure 3.2: Rank Attack Timeline

3.2.3 Increased rank attack timeline

The increased rank attack timeline is shown in Figure 3.2. The time-slots T'1 through T4 are
briefly explained. [T'1:] R is the root of the RPL DODAG while other nodes are numbered
{A,N1,...,N6}. Node, A is rendered vulnerable. [T2:] The vulnerable node probes rank
values of the neighbouring nodes. [T'3:] On having chosen a rank value, A now multicasts
DIO messages with its updated rank value. [T7'4:] DIO messages are exchanged till leaf
nodes update the upward route. The DODAG topology is modified at A.

3.2.4 Intrusion Detection Systems

Intrusion Detection Systems (IDS) are identified as one of the basic tools that are employed
to protect networks and data. An alert is raised to the system administrator if any suspicious
activity is detected by the IDS. An IDS can be software or hardware that are built to
monitor and analyze the network packets that are sniffed or the events that occur in the
host machine. Designing an IDS requires considering the processing ability and memory
capacity of the nodes where they may be deployed. The primary components of an IDS are
sensors that collect data, and an IDS engine that analyzes the collected data and reports to
a network administrator for suitable actions. IDS are classified in the literature depending
on the source of the data being monitored, depending upon the strategy it takes, and also
depending on the monitoring techniques. Source of monitoring the data classifies IDSs

into NIDS, HIDS and Hybrid. Based upon the strategy of detection, IDSs are classified
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as signature-based, anomaly-based, specification-based, and hybrid. Depending on the
monitoring technique, IDS are classified into active and passive monitoring which are further

subdivided into centralized, decentralized and hybrid monitoring techniques.

3.3 Proposed Rank Attacker Identification Scheme

Here, we present the different aspects of our proposed scheme for RPL attack detection
and identification. We introduce I-DES based IDSs followed by an overview of the detec-
tion methodology using our proposed IDS. We then discuss the employed techniques and
algorithms to identify the attacker. The construction of normal, attack models and DES
diagnoser that are indispensable for attacker identification are described next. Proof of
correctness and completeness is presented subsequently. We assume that an attacker is

unable to differentiate probe packets from normal packets and hence responses to them.

3.3.1 I-DES based IDS

Classical DES theory has been largely adopted in systems for Fault Detection and Diagnosis
(FDD) [46, 44, 45]. Motivated from fault diagnosis, DES based IDSs have been successfully
used in network attack detection [47, 48|. The characteristic similarities of network attacks
and faults in DES literature is what motivates its usage. The basic idea is to develop a
model for the normal functioning of the network and another for attack (fault) behavior.
Additionally, multiple fault types in DES literature are diagnosed by developing exclusive
fault DES models corresponding to each fault type. Each fault type leads to unique deviations
from the normal behavior. Analogously, we augment traditional I (Indicator)-DES based
IDS with attack types in our work here. It may be noted that an attack type corresponds
to behavior of the network under the influence of a particular attacker. Attack type I-DES
models corresponding to the location of the attacker are modeled. In I-DES based IDS an
I-diagnoser is used as our IDS engine. It is a state estimator automaton which is constructed
from the knowledge of normal and attack type DES models. The I-diagnoser observes
system event traces and gives a decision on the system condition being normal or under
attack by generating alerts. Attackers are identified only through the states that lie on
the path after an indicator event has occurred. To summarize, by using I-DES based 1DS,

and given all possible attack instances, it can be ascertained if an attack can always be
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exclusively identified, correctly and completely.

3.3.2 Overview of proposed attacker identification procedure

The primary research challenges in detection of rank attacks are as follows: (i) Nodes with
rank values lower than the malfunctioning node, including the 6BR root, remain unaware
of the inconsistency created in any subtree (ii) Normal scenario cannot be differentiated
from the attack scenario by monitoring network traffic or topological changes. Sensing of
network events at the leaf level using agents helps overcome the first challenge, while an
intelligent probing technique helps overcome the second challenge discussed above. Active
probe packets generate distinguishable packet sequences between normal and attack scenario.
The system we consider consists of an [oT network of resource constrained devices using
RPL. We use a centralised IDS, functioning at the network layer, working in a distributed
manner with the help of agent nodes. An example of a DODAG with our IDS and agents
deployed is demonstrated using Figure 3.3. The 6BR root (ng) is software controlled and
IDS handles communication for this node. The set of agents, T = {ni,na,...,n:}, with
event monitoring enabled are deployed at the leaves. Henceforth, the IDS node is designated

as nr. The notations used are listed in Table 4.1.

Table 3.1: NOTATIONS

Notation Meaning

DIORQP Rank Update Packet

DIOINMP | DIO Rank Update Intimation Packet
DIOvINMP | DIO Version Update Intimation Packet

PRQDP Probe Request Data Packet

PRSDP Probe Response Data Packet
PRSDP* Delayed Probe Response Data Packet
PR TO Probe Timeout Event

URDES Unreachable Destination Message

Components in the IDS: The block diagram of our proposed IDS with the basic

components is shown in Figure 3.4 and are discussed here as follows:

e Packet Sniffer: It captures control and data packets in the network while working
in promiscuous mode. Relevant packets are sniffed and others are dropped. It then

forwards the sniffed packets to the “RQST RSP HANDLER()" component.
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Figure 3.3: IoT network DODAG representation with IDS and agents deployed

¢ RQST RSP HANDLER(): Its prime responsibility is to extract vital informa-
tion from the control or data packets like source client’s IP address, MAC address,
Transaction identifier, etc. It also makes note of rank and version value attributes and
generates the events DIOINMP, DIOvINMP, URDES, PRQDP, PRSDP, PR _TO,
PRSDP*. The generated events are passed to the DES diagnoser. The working

procedure of this handler is described in Section 3.3.5.

e [-DES Diagnoser: This component diganoses the attacker node and is implemented
as a software module. Given the knowledge of the DES model specifications per-
taining to normal and attack type conditions, the diagnoser can be constructed.
RQST RSP HANDLER() passes information regarding network events to the diag-
noser. Based on the event parameters that are shared, the diagnoser generates an alert
on attack detection or identification of malicious nodes. The usage and construction

of the diagnoser is described in Section 5.2.6.

Attack detection and identification is sequentially carried out in phases. Version attack
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Figure 3.4: Architecture of proposed IDS
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detection phases are setup, intimation and diagnosis, whereas, rank attack detection
consists of setup, intimation, active probing and diagnosis. The working principle of
our proposed scheme is demonstrated next. The flow of our scheme is shown using Figure
3.5. Prior to attack, network traffic is monitored and data is logged to setup the IDS as
shown in the initial module. This forms the setup phase. IDS performs all the normal
functionalities besides gathering and analysing the sniffed data in this phase. Considering
there are t agents deployed, ¢ tables (TPATH) are maintained and updated during this phase.
Each table consists of round-trip time (RTT) values and information of the intermediate
nodes between nr and an agent. The table elements are ordered on rank values. After

the IDS is setup, suppose an irregular DIO is received by an agent, n;, where n; € T
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and 1 < j < t. It then intimates this information as obfuscated application data to ng
after a random delay. This is the intimation phase. In case a version inconsistency is
intimated, the diagnoser (IDS engine) validates the report and declares the status to be
normal or a version attack, which is the diagnosis phase. On the other hand, on receipt of
an irregular rank update intimation from an agent n;, a 4 table is chosen. Subsequently,
the RQST RSP _HANDLER() on behalf of ng sends ICMPv6 request packets to the nodes
in this table, one by one, to probe for topological inconsistencies in the DODAG. This forms
the active probing phase. An acknowledgement (ACK) response is generated for a probe
request packet when received at a destination node. Now, a probe ACK response may not
be received at all at ng, genuinely, if any node has gone off, or if a link is broken, or a
loop is present, and falsely if an attacker is present. So a missing ACK probe response
cannot be directly marked as a suspicious activity. We hence characterize the received
responses based on RTT values. RTT for a destination that is probed is computed and
compared with RT'T computed before intimation. Depending upon the learnt characteristics
of RTT wvalues from the sequence of probe packets sent, further probing is continued or a
decision is taken by the diagnoser. The latter validates the probe responses against the
DES model specifications provided at the start corresponding to normal as well as attacker
specific behavior. Our normal and attack modeling capture the characteristic differences.
The RTT values computed using the probing technique for a parent and child pair pose
unique characteristics that help differentiate a normal and attack scenario. Moreover, the
RTT characteristics for the sequence of nodes probed in the chosen table, i.e., j* here, are
differentiable in case of a specific attack node. The phases in our detection procedure are

now sequentially demonstrated.

3.3.3 IDS Setup

This phase consists of administrator intervention for parameter setup. Traffic is monitored,
relevant data is collected and parameters are measured for Network Traffic Analysis (NTA)
purposes. Regular monitoring and sniffing yield to our detection procedure by maintaining
tables and computing essential parameters, respectively. An array of table pointers, TPATH,
is used for storing the intermediate node information. TPAT H? in the example DODAG of
Figure 4.3 is shown in Table 4.2. An element of the array, TPATH/, stores the IP, MAC,
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RANK and RTT values of the intermediate nodes along the path connecting the IDS, ng to
an agent n;. (TPATH7) g1 75 represents the size of TPATHY, i.e., the number of nodes
along the path ngn;, excluding the root node. Values such as maximum RTT and maximum
round-trip delay for 1-hop are computed and continuously updated. Variables A,,,, and
A, hold the maximum delay and admissible delay values, respectively. Sniffers deployed at
ng capture the traffic of underlying network as demonstrated in the Figure 3.3. The sniffing
component retrieves general information from the packets communicated. The retrieved
information from the control and data packets consist of DODAG ID, packet type (i.e.,
DIO, DAO, DIS, DAO-ACK, application), sender IP, destination IP address, and forwarding
path information. Rank and version number values are also looked into and stored when

necessary. The agent intimation phase is demonstrated in the following subsection.

Table 3.2: Table for TPAT H?

Node Link-local IPv6 address MAC address Rank RTT

B fe80::2ca:3fIf:fed6:8d56 00:ca:3f:d6:8d:56 1 1.23s

C fe80::3340:701F:fedf:71f1 31:40:70:df:71:41 2 4.15s

D fe80::f6eb:3MIf:fe92:3cd2 f4:eb:31:92:3c:d2 3 5.7s

FE fe80::6fbf:351f:fec6: 1Id 6d:bf:35:¢6:1f:fd 4 7.68s

N9 fe80::a68d:befl:fe6c:89d4 a4:8d:bc:6¢:89:d4 5 9.84s
nR

E
r%

Figure 3.6: A DODAG instance (left) and path TPATH? (right). IDS nodes are denoted
as gray circles, non-attack nodes are denoted in blue circles, suspected attack nodes
are denoted in red green circles

3.3.4 Intimation

Our scheme consists of pieces of software, which are small programs, as agents for reporting

any suspicious activity to the IDS, np. Based on their reports, version and rank attacks
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are detected by the IDS using DES implemented at the root. The agents are event driven
and perform minimally at leaf level in the monitored RPL-IoT network. They have no
extra duties other than sensing suspicious activity and reporting. On receipt of an irregular
DIO, the piggybacked information is obfuscated and reported to nr. To prevent an attacker
from profiling, the agents send the intimation packet with a random delay. Function of this
component is explained using Algorithm 6. On receipt of a DIO packet DIORQP with
an increased version number, an agent node n; reports an intimation packet to ng. If the
DIO is a trickle timer update, with an used version number and incremented rank value,
the DIO is marked suspicious. A DIO is also marked suspicious if update is trickle timer
inconsistent with an increased rank value. Information regarding such DIO receipts are
also reported to ng. Active probing and diagnosis phases are demonstrated through the

RQST RSP _ Handler and I-DES diagnoser, respectively, in the following subsections.

ALGORITHM 6: Agent Intimation Procedure

Local Variables: rank, currVerNum

Input: Received DIO packet DIORQP

Output: Intimate received DIO packets DIOINM P, DIOvINMP
1 if (ipd(DIS) = ips(DIORQP)) and (macd(DIS) = macs(DIORQP)) then
2 if verNo(DIORQP) > currVerNum then

3 L Send DIO receipt intimation DIOvINMP to ng;

4 if DIORQP 1is Trickle Inconsistent then

5 if rank(DIORQP) > rank then

6 L Send DIO receipt intimation DIOINMP to ng;

<
)

Ise if DIORQP is Trickle Consistent then
8 if verNo(DIORQP) = currVerNum and rank(DIORQP) > rank then
9 L Send DIO receipt intimation DIOINM P to ng;

3.3.5 RQST RSP HANDLER()
The working our algorithm is described as follows. The input it takes are:

e DIO intimation packets that are reported from agents on receipt of irregular DIO

packets.

e Probe request packets from the buffer that are yet to be sent (this becomes possible

as RQST RSP HANDLER() is part of the modified RPL).

e Probe response packets.
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ALGORITHM 7: RQST RSP _HANDLER()

Data: cl, ver, rcvd, flag = FALSE, Apaz, Aq, lastSend, rtd, j, rch
Input: DIO intimation packets, Probe response packets, TEST FLAG
Output: Events: PRQDP, DIOINMP, DIOvINMP, PRSDP, PR _TO, PRSDP*, URDES

while A,ya2 and A, are not NULL do

if Version update is reported then

while (TEST FLAG == 1) do
L Generate event DIOvIN M P;

if Rank update is reported then
Generate event DIOIN M P;

j < {iln;. IP == DIOINMPrps};
Generate event PRQDP;

Start clock timer c1();
lastSend = 0;

if Received packet is a probe response then
rtd < TPATHI[lastSend].RTT;
Increment lastSend;

if (c1() < rtd+ Aq) then

Generate event PRSDP;

rch < lastSend — 1;

Stop clock timer c1();

Generate event PRQDP;

Start clock timer ¢1();

else if (c1() > rtd + Agy) then

if (flag == FALSE) then
Generate event PRSDP*;
Stop clock timer ¢1();

else if (flag == TRUEFE) then
Generate event PRSDP*;
Stop clock timer ¢1();
Generate event PRQDP;

Start clock timer ¢1();
flag = FALSE;

Generate event PR_TO;
Stop clock timer ¢1();
Increment lastSend;

if (flag == TRUE) then
Generate event PRQDP;

Start clock timer c1();

Generate event PRQDP;

Start clock timer c1();

Generate event PRQDP;

Start clock timer c1();
| flag=TRUE;

Send ICMPv6 probe packet to TPAT H7[0] via stored downward route R;

Send ICMPv6 probe packet to TPAT H [lastSend] via stored downward route R;

Send ICMPv6 probe packet to TPAT HI[rch] via DAO advertised downward route R’;

if (c1() > Amaaz) AND (No response packet is received) then

Send ICMPv6 probe packet to TPAT H[lastSend] via DAO advertised downward route R’;

else if (flag == FALSE) AND (lastSend < TPATHY,, ) then

Send ICMPv6 probe packet to TPAT H[lastSend] via stored downward route R;

else if (flag == FALSE) AND (lastSend == TPATHY,, ) then

Send ICMPv6 probe packet to TPAT H[lastSend] via DAO advertised downward route R’;
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e TEST FLAG indicates when to detect and identify the attack by sending probe

packets to intended nodes.

If the values A4, and A,, have been computed, the diagnoser sets TEST FLAG
= 1 (Line 1). The two values are pre-computed during non-attack condition in the RPL
instance in use as discussed in Section 4.3.2. The handler outputs events, namely, PRQDP,
PRSDP, DIOINMP, DIOvINMP, PR_TO, PRSDP*, URDES, which are all passed
to the DES diagnoser. The model variables used are cl, flag, Amaz, Da, J, lastSend,
rtd and rch. They are shared among the handler and the I-DES diagnoser. When the
TEST FLAG is set by the diagnoser, it means that the attack detection and identification
phase can be started. The algorithm is now explained step-wise. The I-DES diagnoser
gets executed and remains so till the DODAG remains operational. Diagnoser sets the
TEST FLAG = 1 which is its initial transition.

If a version update intimation is reported, it checks if TEST FLAG = 1 (Line 3).
The event DIOvINMP is sent to the diagnoser (Line 4). Diagnoser sets TEST FLAG
= 0 until a decision on the version inconsistency is made. If an irregular rank update is
intimated, the event DIOINMP is passed to the diagnoser (Line 8). Model variable j
stores the index of the TPATH array used. The variable is shared with the diagnoser (Line
9). PRQDP event is passed to the diagnoser and a probe packet is sent to the node at
1-hop distance from the root in the table TPATH’ (Line 11). TPATH/ stores a saved
route R for agent node n;. lastSend stores the index of the node in TPATH’ to which
the last probe request packet is sent. A clock timer is started to maintain a record of the
transmission time of the packet that can be uniquely identified using a transaction identifier
value, transid.

The module described through lines 15 to 37 is taken on receipt of a probe response
packet. Variable rtd is set to the round-trip delay of the node to which the probe packet
was last sent. The variable lastSend is incremented (Line 16). The total response time it
takes for a particular node is computed using the clock variable, ¢1 and is compared against
a pre-computed RTT (old). We use A, to characterise the admissible delay while awaiting
a probe response. In case a response packet is not received at ng after a A, time period
beyond the expected RTT, we consider it as delayed response. If ¢1 does not exceed rtd+ A,
the generated event PRSDP is passed to the diagnoser (Line 18). The variable rch is set to
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point to the last node whose packet is received before delay timeout occurs (Line 19). The
clock timer is then stopped and another request packet is sent to a subsequent node (Line
21). Consequently, the event PRQDP is passed to the diagnoser. Clock timer is restarted to
count the RT'T via the stored route (Line 23). If ¢l exceeds rtd+ A,, then a flag variable is
checked (Line 25). It is set equal to FALSE during the algorithm initialization. In case flag
= FALSE and TEST FLAG = 1, a delayed response received event PRSDP* is passed
to the diagnoser which sets it to 0 (Line 27). The clock timer is stopped. On the other
hand, if flag is TRUE and a probe response packet is received from some node, suppose x,
beyond rtd + A, then the event PRSDP* is generated and passed to the diagnoser and
clock timer stopped (Line 32). A request packet is sent via current downward route R’ to
node z, clock timer is restarted and flag is set to FALSE (Lines 33-36).

The module described through lines 40 to 59 checks if ¢1 counts beyond a maximum
probe timeout period and no response packet is received at ng. We use A4 to characterise
the maximum delay after next probe request is made. Consequently, a probe timeout
event generated here is PR_TO which is passed to the DES diagnoser while the clock
timer is stopped and lastSend is incremented by 1 (Line 42). Three conditions over the
variables flag and lastSend are checked if they are met. If flag is determined to hold
TRUE, then event PRQDP is passed to the diagnoser and an ICMPv6 probe packet is
sent to TPAT H7[lastSend] via a current downward route R’ and clock timer cl is started
(Lines 45-47). On the other hand, if flag is found to be false while lastSend is less than the
size of TPATHY, then event PRQDP is passed to the diagnoser and an ICMPv6 probe
packet is sent to TPAT H7[lastSend)] via the stored downward route R and clock timer
cl is started (Lines 50-52). If flag is found to be false while lastSend equals the size of
TPATHY, then event PRQDP is passed to the diagnoser and an ICMPv6 probe packet is
sent to TPAT H[lastSend] via a current downward route R/, clock timer cl is started and

variable flag is set to TRUE (Lines 55-58).

3.3.6 I-DES Model and /-Diagnoser
3.3.7 Basics of Discrete Event Systems

This subsection presents the prerequisites of our proposed DES framework. Using the

knowledge and demonstration of this section, we later show that the framework can be
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Figure 3.7: DES model H

used to diagnose attacks in wireless sensor networks containing resource constrained nodes

[150, 146, 151].

I-DES Model

The I-DES model H is formally defined as a 6-tuple H = (X, Xo, %, V,C, ) [46, 152, 153,
154, 45|. Here, X is the set of states and is finite, Xy C X is the set of initial states, X is
the finite set of events, V is the finite set of model variables, C is the finite set of clock
variables and < is the finite set of transitions. Elements of the set of model variables assume
values from their respective domain sets. Suppose if V' = {vq, va,...,v,} is the set of model

variables (for some finite value of n) where each element v; takes some values from its
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Table 3.3: LIST OF SYMBOLS

Symbol Definition

H DES model

b)) Set of events of the DES model H

Ym Set of measurable events of the DES model H
Yum Set of unmeasurable events of the DES model H
\% Set of model variables of the DES model H

& Set of transitions of the DES model H

T A transition 7 € &

Y Set of states of the DES model H

Yo Set of initial states of the DES model H

o Event on which a transition is enabled

check(V) | Condition(s) on a subset of model variables, V'
assign(V') | Assignment(s) on a subset of model variables, V'

L(H) Set of all traces generated in H

A; ith attacker

Yy Set of normal states of the DES model H

Yr Set of faulty states of the DES model H for fault type F

Yy, Set of attacker states of the DES model H for attacker A;

oA, Event corresponding to attack launched by attacker A;

0] Diagnoser of DES H

Z Set of states of the diagnoser, O, also called O-states

Zy Set of initial nodes of the diagnoser, O

A Set of transitions of the diagnoser, O, also called O-transitions

domain set Dom,;. The domain of each of the clock variables is the set of non-negative reals,
R. A transition 7 € $ is defined as a 7-tuple (z,2", 0, ¢(V), ®(C), Reset(C), Assign(V)),
where x, 27 are the source state and destination state of transition 7 respectively. Due
to the occurrence of the event o € ¥, the transition 7 is enabled. ¢(V') is defined as a
boolean conjunction of equalities over some subset of the model variables, V', and which
needs to hold true overall for a transition to be taken. ®(C') is an invariant condition over
some subset of the clock variables C. Reset(C) is a subset of clock variables to be reset
and Assign(V') is a subset of model variables along with an assignment of values from their
corresponding domains. Some of the fields in the tuple representing a transition maybe be
denoted by "-". For example, if "-" is used for ¢(V') or Assign(V'), then it would mean that
no condition needs to be met (i.e., the condition is implicitly TRUE) or NO assignment is
required respectively.

The I-DES modeling of the loT-RPL network is demonstrated here. The principle of

detection and identification by the diagnoser is discussed. We later show that an attacker,
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if present, is correctly located in the DODAG.

Assumptions in the normal condition: After receiving an intimation from an agent
nj, a node is sent probe request packet along TPATH J. Subsequent probes are then sent
depending upon the measured RTT. During the normal condition, two cases can arise here.
(i) While awaiting a probe RSP packet, destination unreachable message is received. (ii)
After the rank update intimation is received, if a RSP packet is received after the delay
timeout period, for a probe packet sent via current DAO advertised downward route. Both
of these cases can occur due to a local repair operation and has been modeled as a normal
DES.

Assumptions in the attack condition: In the presence of an attacker advertising
illegitimate rank or version values, inconsistencies occur in the upward and downward routes.
As a result, two cases can arise here as well. (i) Version inconsistency is intimated by agent
node. (ii) A probe request packet sent to a child node of the attacker node along T PAT H’
(considering the reporting agent node to be n;) responses with delay. Given an attack
behavior due to node A, the above cases are modeled as attacker A type I-DES model. Since
attacker can be located at multiple positions in the DODAG, there are multiple attacker
type models. The diagnoser is constructed from the I-DES models. In both of these cases,
since the diagnosability condition (Definition 6, Appendix B) is satisfied each time because
there are no uncertain states (Definition 11, Appendix C), an attacker location is identified.
The attack as well as the attacker type behavior are different from the normal or other
attacker type behavior, respectively.

We consider the model of a networked system consisting of resource constrained IoT
nodes arranged in a RPL DODAG. The notations used are listed in Table 3.3 and definitions
of the various DES terminologies can be seen in Appendix A. The I-DES model which has
been used to represent the Probe Request Response sequence during normal and rank or
version attack conditions is drawn using Figure 3.7. The various components of the I-DES
model H = (X, Xy, I',V,C, %) for the Request Response sequence after an irregular DIO
intimation is received are discussed.

The state set X with initial set of states Xy (Xo C X) symbolise the control states of
the RQST RSP_HANDLER() component of the IDS. The normal I-DES model states

and attacker type model states together constitute the state set X = {x1, 22, ..., 28, x1’,
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22, 0 29 21", 22" .. 29"} In our model, the set of model variables, V' = {ips, ipd,
transid, j, flag, lastSend, rtd, ver, rch, {ipsi, ipsse, ..., ips;}}. The model variables
correspond to program and data variables that are internal to the IDS. Certain program
variables are designated as the clock variables, C' which are absolute values of clock timer
that can is SET and RESET using commands. In real-time applications, timing constraints
are expressed by satisfying the conditions on the clock variables. We use a single clock
variable in the set of clock variables, i.e., C' = {cl}. Event set ¥ contains the packet
communication events. In our model, the set of events, ¥ = {DIOINMP, DIOvINMP,
URDES, PRQDP, PRSDP, PR_TO, PRSDP*, attack’, attack”}. A transition is enabled
if the conditions are satisfied and is said to be taken on the occurrence of the associated
event. The transitions set I consists of transitions {70, 71, ..., 713, 71’, 72/, ..., 714/, 71",
2" ..., 714"}

Considering that there is one attack node among n nodes, i.e., {A1, A, ..., Ay}, in the
IoT network, the state set, X, can be partitioned into disjoint sets Xy, Xa,, X4,, ..., X4,
where, Xy represents the set of states belonging to the normal behavior of the network,
while states of the form X4,, 1 <i <mn, i € N, represent the behavior of the network if
A; is the attack node. For simplicity, we model using 2 nodes, A; and As, among which
one is an attack node, hence X = Xy U X4, U X4,. In Figure 3.7, the non-primed states
are the states when the system behaves normally while the single and double primed states
represent the system under attack by the nodes A; and As, respectively. The events of the

system is disjoint union of measurable events and unmeasurable events 3, and >,.

I-DES behavior under normal circumstances

The behavior of H under normal circumstances is shown in Figure 3.7. The system, when
functioning normally, is represented using the states {x1, 22, ..., 28} and the transitions
{70, 71, ..., 713}. The initial state of X is 1. We next discuss the transitions in normal

condition as follows:

e 70, the initial transition leads to the initial state x1 as shown in Figure 3.7. It
is assumed while modeling that the constant timeout values, A;,q. and A,, have
been computed and then 70 takes place. There is no explicit event that triggers 70.

Occurrence of 70 implies that the DES model is invoked when the timeout values
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Table 3.4: TRANSITIONS & IN H CORRESPONDING TO NETWORK PACKET

Event(o) Transition (V) Assign(V) #(C) Reset(C)
DIOINMP  (zl,22),(z1’,22") (x1”, x2") ipsj = DIOINMPpg - - -

ipd = DIOINMPrpp - - -

DIOVINMP (z1’,29") (x1",x9") ips; = DIOvVINMPrpgs - - -
ipd = DIOVINMP; pp - B -
ver < DIOvINM Py gprNnumM - - -
PRQDP (22, 23),(x2', 23") ,(x2" , 23"") - ips « PRQDPrpg - -
(x4, x3) (x4’ 23'),(z4" , 23") - ipd <~ PRQDPrpp - -
- transid < PRQDPrrANSID - -
- TEST_FLAG + 0 - -

- lastSend < lastSend + 1 - cl+0
PRQDP (z7,28) (x7, 28") (xT", z8"") - ips < PRQDPrps - -
. ipd < PRQDPrpp . -
- transid < PRQDPrrANSID - -
- TEST _FLAG <+ 0 - -

- flag= FALSE - cl+0
PRQDP (x5, 26), (x5’ 26'),(x5", 26") - ips < PRQDPrps - -
. ipd — PRQDPpp - .
- transid < PRQDPrransID - -

- flag=TRUE - cl 0
PRSDP (23, 22),(x3', 22'),(x3", 22") ips = PRSDPrpp - - -
ipd = PRSDP;ps TEST FLAG « 1 - B
transid = PRSDPrraNsID rch < PRSDPrpg cl < ipd.RTT + A, -
PR_TO (26, z5),(x6’, 25"),(x6" , © - - cl > Amaae -
PR_TO (23, z4) (23’ x4") (x3", x4" lastSend < M7 TEST _FLAG «+ 1 cl > Amaz -
PR_TO (23, b),(x3’, z5"),(x3", x5"" lastSend = M7 TEST FLAG + 1 cl > Amaz -
PRSDP* (26, 27),(x6', x7'),(x6", 27" ips = PRSDP}p - - -
ipd = PRSDP}pg - - -
transid = PRSDPy, RANSID - - -
rch! = NUL - - -
flag= TRUE . el > ipd. RTT + A, .
PRSDP* (26, 1) ips = PRSDP}p ) - - -
ipd = PRSDP}pg - - -
transid = PRSDPpangsip - - -
rch = NULL - - -
flag=TRUE - cl > ipd. RTT + A, -
PRSDP* (x3',29") (x3", 9") ips = PRSDP}pp, - - -
(8, 29"),(x8", z9"") ipd = PRSDPjpq - - -
transid = PRSDPTRAN.SID - - -
rch = nip’ - - -
flag = FALSE TEST FLAG « 1 el > ipd.RTT + A B
URDES (23, 21),(x8, z1) ips = URDESipp - - -
transid = URDESTRANSID TEST FLAG « 1 B -
attack’ (z1,21’) - - - -

are both not NULL. Table 5.2 shows initial(70) = ——, i.e., there are no initial

states and final(70) = x1. 0 = TRUE means that transition 70 is always enabled
and x1 is automatically reached at the start of the model. check(V) = —— implies
that no condition over the model variables are checked and the condition is always
satisfiable for the transition. Value 1 is assigned to variable TEST FLAG as implied
by Assign(V) = {TEST FLAG < 1}, which in turn means that the detection of

rank attacker can be started.

o 71: (1 — 22) - DIOINMP : Since we model the rank attack scenario, the focus
remains on DIO updates across the DODAG. So when the model is started and the
current state is at x1, inconsistent DIO reports are looked into and is modeled using
the transition 71. Here, initial(71) = x1 and final(7l) = 22. ¢ = DIOINMP

implies that transition 71 is enabled when RQST RSP HANDLER() generates

86



3. MITIGATION OF RPL-BASED ATTACKS

event DIOINMP (i.e., after an inconsistent rank update is reported from an agent).
check(V') = {ips; = DIOIN M Prpg,ipd = DIOINMPrpp} and Assign(V) = ——.
The parameters that validate a DIO packet intimation from an agent are source and
destination IP. It is checked if the parameters equal the value stored in the model
variables, ips; and ipd, both of which are initialized to hold the IP address of agent

node n; and ng, respectively, at the model start.

72 : (22 — 23) - PRQDP : At state x2, the transition 72 implies that a probe
request ICMPv6 packet is sent. ¢ = PRQDP implies that 72 is enabled when the
RQST RSP HANDLER() generates the event PRQDP (i.e., after a RQST packet is
sent). check(V) = —— meaning that no condition need to be satisfied and Assign(V)
= {ips < PRQDP;pg, ipd < PRQDP;pp, transid < PRQDPrransip, TEST _

FLAG « 0, lastSend <+ lastSend+1}. The parameters that uniquely identify a probe
RQST packet are source IP, destination IP and a transaction identifier. Consequently,
all the parameters that correspond to the RQST packet that is sent are stored in
the model variables, ips, ipd and transid. TEST FLAG is set to 0 such that no
new probe packets are to be sent until a decision on normal or rank attacker can
be ascertained. The model variable lastSend is incremented, keeping a note of the
number of probe packets that are sent. The destination IP of the probe request packet,
i.e., PRQDP;pp, is the first IP address that is looked up in the table TPAT H7. The
clock variable ¢l is RESET to make note of the transmission time of the sent RQST

packet.

73 : (23 <= 22) - PRSDP : At state x3, the transition 73 implies that a probe RSP
packet has arrived from a node for some sent RQST packet. Here, initial(73) = 3
and final(73) = x2. ¢ = PRSDP corresponds to enabling transition 73 after the
RQST RSP HANDLER() generates the event PRSDP implying that a probe RSP
packet has arrived and the condition on the model variables in check(V') are satisfied.
check(V') = {ips = PRSDP;pp,ipd = PRSDP;pg,transid = PRSDPrraNSID}-
The conditions over the model variables, ips, ipd and transid, ensure that the
RSP packet is a response to the probe request packet sent in 72. Assign(V) =
{TEST FLAG < 1,rch + PRSDP;ps}. TEST FLAG is set to 1 meaning that

rank attacker detection can be started. The model variable rch holds the IP address
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of the latest node that responses to the probe packet before the delay timeout period
is over, which again is ensured if the condition over cl, ®(cl) = {cl < ipd. RTT + A, },

is satisfied.

74 : (23 — x4) - PR_TO : At state 23, the transition 74 corresponds to probe
timeout period being reached while waiting for a probe RSP packet for a probe
RQST packet sent. ¢ = PR_TO implies that the transition 74 is enabled when the
RQST RSP HANDLER() generates the event PR_TO. check(V) = {lastSend <
M7}, Assign(V) = {TEST FLAG <« 1} and ®(cl) = {cl > A4z }. The condition
over the model variable lastSend ensures that the number of probes sent is lesser
than the size of TPATH/. TEST FLAG is set to 1 meaning that rank attacker
detection can be started. The condition over cl ensures that it exceeds the probe

timeout period.

711 (28 — x1) - URDES : At state x8, the transition 711 implies that a destina-
tion unreachable message is received in response to a probe packet sent from ng
to the last reachable node along the current DAO advertised downward route. It
rules out the presence of any loop created. ¢ = URDES implies that the transi-
tion is enabled when the RQST RSP HANDLER() generates the event URDES.
check(V') = {ips = URDES1pp,transid = URDESTransip}. The condition check
on the model variables ips and transid are used to ensure that the destination un-
reachability packet is a reply to the probe request packet sent in 710. Assign(V)
makes TEST FLAG =1 which means that the attack detection phase can restart,
i.e., RQST RSP HANDLER() can again receive inconsistent DIO version or rank

updates from agents.

I-DES behavior under attack circumstances

The I-DES model under rank or version attack condition launched by attacker A; is shown

using the states in X4, = {z1’, 22/, ..., 29’} and transitions, {71’, 72/, ..., 714’}. Similarly

for attacker type As, states and transitions are represented using double prime notation,

Xa, = {x1”, 22", ..., 29"} and transitions, {r1”, 72", ..., 714"} as shown in Figure

3.7. The DES model behavior under different attackers are mostly identical except a few

transitions that differentiate them which are discussed.
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e At state x1, the system reaches an attacker type state x1’ or z1” following an

unmeasurable attack transition (Definition 1, Appendix A)70" or 70", respectively.

o 711" (28 — 29') - PRSDP* : At state 28, the transition 711’ corresponds to probe
RSP packet that is received beyond the maximum 1-hop delay, i.e., ipd. RTT + A, for
a sent probe request packet. o = PRSDP* implies that the transition is enabled when
the RQST RSP HANDLER() generates the event PRSDP*. check(V') = {ips =
PRSDPipp,ipd = PRSDP[pg,transid = PRSDP}pangip, flag = FALSE, rch =
nip'}. The conditions over the model variables, ips, ipd and transid, ensure that the
RSP packet is a response to the probe request packet sent in 710’. The condition over
variable flag ensures that it is set to FALSE. The model variable rch holds the IP
address of the last node that replied to the probe packet before the delay timeout
period was over. 711" ensures that rch holds the IP address of attacker node A;. A
probe response beyond the delay period for probe packet meant for a node with IP
address stored in rch via the currently advertised DAO route R’ is a rank attack.
Assign(V) = {TEST FLAG <« 1}. TEST FLAG is set to 1 meaning that rank
attacker detection can be started. ®(cl) = {cl > ipd. RTT + A,} means that cl

exceeds the delay timeout period.

o 713 (21" — 29') - DIOVINMP : At state x1’, the transition 713" corresponds
to the receipt of DIO version inconsistent intimation from an agent leaf node. o =
DIOvIN M P implies that the transition is enabled when the RQST RSP HANDLER()
generates the event DIOVINMP. check(V) = {ver < DIOvINM PygrNvuM,
ipsj = DIOvINM Prpg, ipd = DIOvINMPpp} and Assign(V) = ——. The
parameters that validate a DIO packet intimation from an agent are source and
destination IP. It is checked if the parameters equal the value stored in the model
variables, ips; and ipd, both of which are initialized to hold the IP address of agent
node n; and ng, respectively, at the model start. The model variable ver stores the
latest version number advertised. The condition over ver ensures that it is lesser than
the DIO version number reported by the source agent node. It may be noted that a
DIO broadcast in the DODAG with a version number higher than already advertised
by the DODAG root is a version number attack.

89



3.3. PROPOSED RANK ATTACKER IDENTIFICATION SCHEME

a20: z12
al7: als: {r13} x1
{r14' 114"} {r14} “_l' a19:
als: {r12}
Z9 z10 all: {ri1y| 2z8 z7
{r11}
x9',x9" x9" x8,x8',x8" X7,X7" X7
A A alo: -['l'l(]1 r'y
al: . 110,110}
- 16: alz: '
{10,10,10"} ath: 1117}
71 {113",113"} _ - 711 alg:
ald: v 14"
{r127} {127} {T147} a9: {19,
al: {r1,

Figure 3.8: Diagnoser O for DES model H

I-Diagnoser

A key property relating to fault diagnosis in I-DES; I-diagnosability [44, 45], is discussed here.
I-DES Diagnosability is a property related to event diagnosis where the earlier occurrence
of certain events (faults) of interest are diagnosed depending on the occurrence of indicator
transitions (Definition 13, Appendix C). An I-diagnoser, constructed from I-DES models,
tracks the system behavior and gives a decision on the diagnosis of monitored events. Details
of the diagnoser construction procedure and definitions pertaining to diagnosability are
highlighted in Appendix B. Now, a fault is I-diagnosable in finite time, if the I-diagnosability
condition is met (F;-I-Diagnosability property is satisfied). Since fault occurrence and attack
events exhibit identical deviations from the normal behaviour and in both scenarios they are
unmeasurable, taking place without the knowledge of the system administrator, hence fault
diagnosis has been successfully applicable in attack detection and attack type identification
too. A lemma on the I-diagnosability property states that lack of attack A;-indeterminate
cycles (Definition 14, Appendix C) having an embedded indicator transition guarantees
I-diagnosability. It means that the diagnoser is able to give a decision in finite time on the

occurrence of the event diagnosed. Satisfaction of the I-diagnosability property, considering
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the limitations in measurement, ensures efficient attack detection as well as diagnosis of the
attacker type [150].

The I-DES diagnoser is basically an observer automaton. Given a measurable trace
executed on the model, the diagnoser gives an estimate of membership of the current system
state in the model among normal or any attacker type state from H. An alert is generated
when it can be ascertained that the current state belongs to an attacker type. It is also
notified in case it belongs to a set of attacker types.

Figure 4.7 shows the constructed diagnoser for our I-DES model H, considered in
Figure 3.7. The working mechanism of our diagnoser is summarised here by showing one or

more executions of sequences of measured events (transitions) as follows:

1. The initial state of the model H, x1, and states x1’ and x1” reachable via unmeasurable

attack transitions, 70" and 70", form the initial state of the diagnoser, z1.

2. Let §,1, = {71,71’, 71"}, i.e., the outgoing transitions from model states {z1,z1", 21"} €
z1. All the transitions in 1, are equivalent (Definition 2, Appendix A) and hence
cannot be further subdivided and hence justifies O-transition al. The O-state corre-

sponding to the transition al is 22 = {z2, 22/, 22"}.

3. Let $.1, = {713/, 713"}, i.e., the outgoing transitions from model states {z1’, 21"} €
z1. All the transitions in 3,1, are equivalent and hence cannot be partitioned further
and hence justifies O-transition a16. The O-state corresponding to the transition a16
is 29 = {29, 29"}. Since, 29 consists exclusively of attacker type states only, it is an

attack-certain O-state.

4. Let S0 = {72,72', 72"}, i.e., the outgoing transitions from model states {z2, x2', 22"} €
z2. All of outgoing transitions in &, are measurement equivalent belonging to one
measurement equivalence class of transitions, hence cannot be further partitioned.
Therefore, it justifies O-transition a2. The O-state corresponding to the transition a2
is 23 = {«3,23',23"}. In a similar manner, the diagnoser states {z4, 25, 26, 27} can
be constructed using the corresponding O-transitions {a4,a6,a7,a9}. The principle

can be safely extended.

5. From the definition, we can compute the attacker;-certain O-states and the Normal-

certain O-states. In our example, when ¢ = 1 the attackeri-certain O-state may be

91



3.3. PROPOSED RANK ATTACKER IDENTIFICATION SCHEME

computed as 210 = {29} since it exclusively consists of states only belonging to
attacker 1. Similarly, attackers-certain O-state may be computed as z11 = {z9”} and

the normal-certain O-state can be computed as 212 = {z1}.

3.3.8 An example of rank attacker node identification using DES Diag-

noser

Suppose the following events occur in the DODAG chronologically due to packets received
or sent from the DODAG root: DIOINMP, PRQDP, PRSDP, PRQDP, PRSDP,
PRQDP, PRSDP*.

The diagnoser starts from the O-state z1 and on occurrence of the DIOIN M P event,
the diagnoser moves to O-state 22 via O-transition al. The transition al might have
been taken by the diagnoser due to the occurrence of any of the H-transitions (Definition
4, Appendix A), 71, 71’ or 71”. Since the transitions 71, 71’ and 71” are measurement
equivalent, it cannot be certainly said at this point if an attack has occurred. A probe
request data packet is sent due to which the event PRQD P occurs and the diagnoser moves
to O-state 23 via O-transition a2. Now, the response to the probe is received and the event
PRSDP passed to diagnoser and O-state 22 is reached via a3. The O-states are then
revisited due to the events PRQDP, PRSDP and PRQDP and the diagnoser reaches the
O-state z3. Eventually, when the PRSDP* event occurs, suppose the diagnoser moves
from O-state 23 to O-state 210 = {29’} via O-transition a14 due to the model transition
712'. Since the O-state 210 reached by the diagnoser is an Attacker;-certain O-state, it is
ascertained that the system is under attack condition due to attacker node 1. Moreover,
since there are no A;-indeterminate cycles [46, 45|, along all paths of the DES diagnoser, an
unique malicious node ¢, when present, can be identified correctly. On each such occasion
when the diagnoser reaches an Attacker;-certain state due to an event trace, an alert is

generated.

3.3.9 Correctness and Completeness

DES modeling aids in formalizing a system to check correctness and completeness [44].
We demonstrate correctness and completeness of our proposed IDS here, by taking into

consideration all possible cases of rank attack. For each case considered, we show that
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Figure 3.9: Normal and attack configurations

attacker node is correctly identified. We use the DODAG instance shown in Figure 4.3 for
our proof, where ng is the 6BR root and the set of agents T = {ni,ns,n3,n4}. B and C
are the two suspected rank attack nodes and can be related to nodes A; and As used in
our I-DES model. Since there are no A;-indeterminate cycles in the diagnoser O, therefore
the I-diagnosability condition is satisfied. This means that location of an attacker A; in
the DODAG, having launched a rank or version attack, is always diagnosable. We show
using analysis that B or C' is correctly identified as attack node when the corresponding
attacker-certain state is reached in the diagnoser.

We now prove the completeness by justifying why all attack cases can be detected from
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the traces in H. An irregular increased rank advertisement can be classified as a normal
network condition if a local repair operation is undertaken, otherwise can be classified as an
attack. As shown in Figure 3.9(a), we assume that nodes C' and D undertake local repair
operations due to the parent node being down, or link with the parent goes off or as part
of loop avoidance. On the other hand, as shown in Figure 3.9(b), an attack might have
been launched by node B or C'. Though, the effects of attack mimics the normal scenario,
however, there lies unique inconsistencies in the resulting topologies which can be made out
from the probe response characteristics of nodes. We discuss the normal cases here first.

Case I: Node C undertakes local repair due to parent node B being down.

As shown in Figure 3.9(c) and 3.9(d), node C chooses alternate parent node B’ for
upward routing. Depending on the newly advertised rank, a successor node may conform
to the update by not changing its preferred parent or may choose a better route instead.
It may be noted that since B is down, any upward or downward path between the pairs
(ng, B) and (B, C) cease to exist. Our proposed procedure utilises the above facts. Firstly,
n9 reports the DIO update to ng. On receipt of such intimation, the diagnoser moves from
state z1 to z2. Now, a probe RQST packet PRQDP is sent to node B via stored downward
route TPAT H? while the diagnoser reaches state z3. Since no response packets are received,
event PR_TO is generated and the diagnoser consequently reaches state z4. Next, a probe
request packet PRQDP is sent to C via TPATH? with the diagnoser reaching state z3.
Again, no RSP packet is received before A4, since the request packet itself is not delivered
via B. This behavior is repeated for the subsequent probe request packets sent to D and E
with the diagnoser reaching state z4. Now ne is sent the probe request packet and Aj,qz iS
again exceeded while waiting for a response. The diagnoser reaches state z5 this time, since
all the nodes in TPAT H? are probed. Now, a probe packet is sent to the first unreachable
node via a currently advertised downward path. Since B is down, no routing information is
updated for node B. Since C' had chosen a path via B’, a downward path from the root
exists. On a request packet PRQDP being sent to C via B’, the diagnoser reaches z6. As
route through B’ is longer, so delay is incurred while receiving the response. As a result, the
delay timeout is exceeded. Consequently the diagnoser moves to state z12, since no node
was reachable without delay prior to C' which is a normal-certain O-state. So, a normal

condition of local repair in the DODAG is correctly identified.
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Case II: Node C undertakes local repair due to link (B, C) going down.

As in the situation discussed in Case I, the sequences of events are similar, except the
fact that response from node B arrives before RTT(B) 4+ A,. So, when the diagnoser moves
to state 22, the model variable rch is set. Therefore, at state 26, when a delay timeout
occurs, the diagnoser reaches state 27 instead of z1. A probe request packet is then sent to
node B via node C' along the current DAO advertised route. The diagnoser accordingly
moves to state 28. A destination unreachable message is then received by ng, and the
diagnoser moves to normal-certain O-state z12 and it is ascertained that situation is normal,
since a local repair operation was initiated as shown in Figure 3.9(e) and 3.9(f).

An attack launched by an attacker can be of the two following types: (i) The attacker
illegitimately chooses a parent node that has higher rank, but does not lie in TPATH? (ii)
the attacker illegitimately chooses a parent node that has higher rank, and is a successor
node in TPATH?. Type (i) is discussed as case III and type (ii) is discussed as Case IV.

Case III: Node C undertakes local repair due to loop detection while forwarding to B.

While forwarding packet upwards, suppose C' detects a loop and initiates a local repair
while forwarding through alternate parent node B’. Now, node B might be a direct attacker
that chooses a successor node as its parent, fueling a loop creation. In that case, B must be
a node in the subtree at C'. As in the situation discussed in the normal scenario, B and
C are probed. B responds before delay timeout occurs while C' is unreachable. All the
nodes successor to C' are also unreachable. Consequently, the diagnoser node reaches state
z5 after a probe timeout occurs while a probe packet is sent to the last node ny. Now, a
delay timeout occurs when a probe packet is sent to C' via the current downward route. The
diagnoser reaches z8 following the event PRQDP. The only difference arises when node
B is sent a RQST packet via B, and a delayed response is received. The event PRSDP*
is generated and the diagnoser reaches state z10 depending on the value of the variable
rch, which is the IP address of B, the last node that replies without delay. It is therefore
ascertained that B is an attack node here since it lies in the subtree of node C. As shown in
Figure 3.9(g) and 3.9(h), the red line indicates that the attacker has chosen E as its parent.
If a URDES packet is received, the diagnoser again moves to normal-certain O-state z12,
which is the case shown using the green line indicating the choice of B.

Case IV: Node C is an attack node that does not advertise DAO
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In this case, C' chooses a different parent in spite of an existing better parent for upward
route. This situation is shown using the Figures 3.9(i) and 3.9(j). While probing nodes in
TPATH?, nodes B and C, both reply to the probe packets and the diagnoser reaches state
z3 when a PRQDP packet is sent to D. Now, if a delay timeout occurs while awaiting the
response, the diagnoser reaches state z11 depending on the value of the variable rch which
holds the IP address of C'. Consequently, it can be ascertained that the attacker node is C'
and the diagnoser correctly detects the attack since z11 is an As-certain node.

So, all the possible cases of attack by specific attacker nodes are analyzed. The I-
diagnoser correctly reports the network condition by identifying the corresponding attacker

type states, for each case.

3.3.10 Overhead analysis

The extra communication overhead is added in our detection scheme due to probe requests
and generated responses. The overhead is minimum when only 2 probe requests are sufficient
to identify the malicious node. Such a scenario occurs if a probe request packet is sent to
a node which responses in time and another probe packet sent subsequently to the child
of this node is acknowledged beyond the admissible delay. We now discuss the scenario
when maximum overhead is incurred in our solution. Suppose probe request packets are
sent sequentially to nodes in TPATH’. Now, the node with the lowest rank responses
to the probe request in time. For, the subsequent probe requests sent, responses are not
generated. Based on the DAO messages received after the IDS is setup, nodes with missing
acknowledgements are sent probe requests through alternate routes. Only the node farthest
from the root responses after an admissible delay. Hence, assuming that the height of the
tree is equal to the number of nodes in the RPL, n, then a total of (1+2(n—2)+1) ~ O(n)
probe requests will be required here (1 for node with lowest rank, 2(n — 2) for subsequent
(n — 2) nodes that are probed twice and 1 for confirmation). Considering a balanced tree of
n nodes, depth = log;, n, for a branching factor k. In such cases, the number of probes that

will be required in the worst case is 2logn ~ O(logn).
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3.4 Experiments, results, and discussion

Three experiments are executed in Contiki Cooja [155] and one in a real testbed at FIT
IoT-LAB [156]. Cooja is a network simulator explicitly developed to cater for IoT networks
while the simulator builds on C base libraries of sensors and RFID chips, the FIT IoT-LAB
is an open testbed and comprises of 117 mobile robots and 2728 low-power sensor nodes
that are made available for conducting experiments in the heterogeneous environment (e.g.,
standardized protocol, OS, topologies, and hardware). Having unique hardware and node
capabilities, interconnected locations are installed across France in FIT IoT-LAB and made
available for experiments via a web portal. We used three different types of topology, as
shown in Figure 4.9. In topology 1, the IoT nodes are distributed very densely, while
a sparse distribution is used in topology 2. In topology 3, nodes are distributed in a
mixed fashion. Furthermore, the hop count is more in topology 2 as compared to topology
1. We consider a OF0 implementation with hop count (HC) metric. The simulation or
experimental parameters of Contiki Cooja and FIT IoT-LAB are presented in Table 3.5.
To examine the performance of our proposed solution, three scenarios are designed as part
of the experimental setup, namely, the non-rank attack scenario, increased rank attack
scenario, and the increased rank attack scenario with the proposed solution, comprehensive

analysis of which are demonstrated below.

S NR NR
(b) Topology 2é

(a) Topology 1 nR

(c) Topology 3

Figure 3.10: Topology considered for testbed and simulation experiments
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Table 3.5: Contiki Cooja and FIT IoT-LAB experimental parameters

Parameter name Value
Operating system Contiki 3.0, Contiki 4.5
Simulator Cooja
Testbed FIT IoT-LAB, Grenoble
Network size 8, 16, 32, 64 nodes
Radio Environment UDGM
Node Type Tmote Sky , IoT-Lab A8
Routing Protocol RPL
MAC/adaptation layer ContikiMAC/6LoWPAN
Transmitter output power (dBm) 0 to -25
Receiver sensitivity (dBm) -94
Radio frequency 2.4 GHz
Attack Modeled Rank and version number attack
Simulation Duration Variable

3.4.1 Experiment 1: Non-rank attack scenario

All the external and internal nodes demand the IoT services (i.e., temperature and humidity)
using the Sky- Websense server. The experiment has been executed on 8, 16, 32, and 64
nodes. The flow of IoT network packets and their behavioural changes are noted. Figure
3.11a shows an RPL DODAG with 16 nodes. The node having Node ID 65 is the 6BR root
running our IDS. Nodes with IDs 16, 13, 30, 52 and 62 are the 5 agents deployed as leaves and
behave like regular nodes. Wireshark and power trace tool are used during simulations for
network traffic analysis. In the testbed setup, we have used A8-type nodes utilizing various
topologies with Grenoble areas. A8 is a TT SITARA AM3505 (Arm Cortex A8) combined
with STM32 microcontroller and a radio interface. It is one of the powerful IoT-LAB node
which allows running RIOT, Contiki, and FreeRTOS. The adopted parameters during the
testbed experiments are specified in Table 3.5. Figure 3.11a shows the DODAG topology in
a non-attack scenario. Throughput, energy usage of the network, and the average power
consumption on a per-node basis with their respective run times are shown in Figures 3.12
(a) and (b), analysed using 64 nodes in Contiki Cooja and FIT IoT-LAB, respectively. Our
analysis shows average throughput within 86.45% to 94.89%, average network energy usage
ranging from 27854 mJ to 33648 mJ, and average power consumption lying within 1.2 mW
to 1.46 mW in this scenario. The values are moderately good because during the non-rank

attack scenarios, RPL control messages, Objective Function (OF), and Rank computation
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module are executed correctly with the required number of RPL control messages.

Table 3.6: Energy, Node Power, Throughput, and Packet Delivery Ratio for [oT ecosystem
(During attack and after solution implementation in Contiki Cooja)

IoT Scenario Energy (mJ) Node Power (mW) Throughput (Kbps) Packet Delivery Ratio (%)
During 8N 16N 32N 64N 8N 16N | 32N | 64N 8N 16N | 32N | 64N 8N 16N | 32N 64N
attack 86615 | 10216 | 14425 17098 | 0.490 | 60.52 | 1.351 | 1.692 | 0.573 | 0.596 | 0.574 | 0.556 | 89.17 | 88.63 | 86.69 | 84.61

After solution 8N 16N 32N 64N 8N | 16N | 32N | 64N | 8N | 16N | 32N | 64N | 8N | 16N | 32N 64N
implementation | 8261.4 | 8898.6 | 12129.5 | 16229.5 | 0.31 | 0.49 | 0.92 | 1.36 | 0.662 | 0.661 | 0.657 | 0.654 | 98.76 | 98.65 | 98.42 | 98.34

Table 3.7: Energy, Node Power, Throughput, and Packet Delivery Ratio for [oT ecosystem
(During attack and after the solution implementation in FIT IoT-Lab)

IoT Scenario Energy (mJ) Node Power (mW) Throughput (Kbps) Packet Delivery Ratio (%)
During 8N 16N 32N 64N 8N | 16N | 32N | 64N | 8N 16N | 32N | 64N 8N 16N | 32N 64N
attack 9527.5 | 12259.2 | 17454.3 | 20176.6 | 0.59 | 0.74 | 1.54 | 1.81 | 0.463 | 0.504 | 0.487 | 0.478 | 80.31 | 78.11 | 73.12 | 73.92

After solution 8N 16N 32N 64N 8N | 16N | 32N | 64N | 8N 16N | 32N | 64N 8N 16N | 32N 64N

implementation | 7269.7 | 7919.2 | 10552.2 | 13307.8 | 0.27 | 0.49 | 0.83 | 1.19 | 0.559 | 0.543 | 0.572 | 0.552 | 91.58 | 90.88 | 88.86 | 87.12
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Figure 3.11: DODAG of the IoT ecosystem

3.4.2 Experiment 2: Increased rank and version number attack scenario

An increased rank attack is performed with 8, 16, 32, and 64 IoT nodes. The attack nodes,
incorporated during our experiments, generate malicious RPL control messages and create
falsified non-optimal routes. The IoT network behavioural changes are examined with
different malicious nodes while varying node density. Figure 3.11b shows IDS node at root
with ID 65 and the node ID 64 is the malicious node. Among the remaining nodes, nodes
with ID 30, 16, 43, 50, 52 and 62 are the agents deployed that perform sensing at the
leaf levels. Traffic generated from the attack is analysed using collect view modules for
analysis purposes in simulation. Consequently, we use Sysstat [157] and iperf tool [158]

for real testbed analysis. We additionally perceive the average power consumption per node,
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Figure 3.12: Average Energy, Throughput, Node Power over run time (nodes=64) (without
malicious node)

and the energy usage of the complete RPL DODAG. Figure 3.13 (a) exhibits a considerable
increase in the complete network’s average energy usage and power consumption per node,
i.e., 28.8% to 35.7% and 31.7% to 43.3%, respectively, in Contiki Cooja simulations. Figure
3.13 (b) shows similar outcomes in FIT IoT-LAB, i.e., 38.7% to 43.9% average energy
usage and 36.5% to 52.4% power consumption per node. In both, the throughput graph
can be seen to be going down significantly. The average throughput value is reduced and
ranges from 37.3% to 43.5% in the attack scenario, both in simulation and real testbed.
All experiments show huge network energy and node power consumption with reduced
throughput because of a massive number of RPL control messages, malicious OF for routing,
and unknown loop formations due to attack. During attack, the performance metrics that
significantly affect RPL performance are listed in Tables 3.6 and 3.7 for Contiki Cooja and
FIT IoT-Lab, respectively. The findings also demonstrate that a rise in the number of IoT
nodes results in a significant increase in the amount of malicious RPL control messages,
which consumes additional network energy due to node power and consumption. In addition,
network performance and packet delivery ratio is shown to suffer and produce inferior

outcomes.

3.4.3 Experiment 3: Attack scenario with proposed solution

Experiment 2 is executed with the proposed solution, both in simulation and real testbed.
The performance of our proposed solution is illustrated in Figure 3.14. Both during
simulation and in real testbed, we have considered 8, 16, 32, and 64 IoT nodes, while the

experiments are run for 1000 sec. We consider the values A, and A, to be 13 seconds
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Figure 3.13: Average Energy, Throughput, Node Power over run time (nodes=64) (with
malicious node)
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Figure 3.14: Average Energy, Throughput, Node Power over run time (nodes=64) (after
solution implementation)
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Figure 3.15: Power and Energy for 50 min network execution with proposed solution
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Figure 3.16: PDR and Throughput for 50 min network execution with proposed solution
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and 3.8 seconds, respectively (discussed in Section 4.3.2). The trickle timer is of 10 seconds
duration. Each experiment is conducted by varying the number of nodes, i.e., from 8 to
64 nodes and hop counts. The performance analysis of all the experiments is based on
various metrics like True Positive Rate (TPR) (also known as sensitivity), True Negative
Rate (TNR) (also known as specificity), Accuracy (ACC), Energy usage (EU), Throughput,
Packet delivery ratio (PDR), and scalability. The performance analysis metrics are defined

as follows:

e True Positive Rate (TPR) is the ratio of accurately identified attacker nodes to all of

the attacker nodes and is estimated by:

TPR= -2 _ (3.1)

P+q

e True Negative Rate (TNR) is the ratio of wrongly identified genuine nodes to all of

the genuine nodes and is estimated by

r
r+s

TNR =

(3.2)

where, p=Attacker nodes identified accurately q=Attacker nodes not identified correctly

r=Genuine nodes identified accurately s=Genuine nodes not identified correctly.

o Accuracy (ACC): It calculates the overall rates of attacker nodes identification and
false alarms. This result signifies the success rate of the proposed approach; it is

estimated by
p+r

ACC = ———
pP+qg+r+s

(3.3)

o Energy Usage (EU): The amount of energy utilized for the proposed solution throughout

its execution.

During the execution of our proposed approach, we consider three topologies, as shown
in Figure 4.9. Figures 3.15(a) and 3.15(b) illustrate the node power consumption per node
and network energy consumption after our solution is implemented for 50 minutes across
various topologies and varying IoT nodes. The findings suggest that our proposed solution

has a higher average total energy usage and node power consumption per node in topology
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1 in comparison with other topologies and standard RPL with rank and version number
attacks in place. When compared to the other possible topologies for this work, topology 2
has a lower average overall energy use and node power per node. The amount of energy
consumed is proportional to the density of the individual nodes and DODAG configuration.

Figures 3.16(a) and 3.16(b) compare the proposed work’s packet delivery ratio and
throughput across three topologies with varying IoT nodes. As per the results, our proposed
security approach has the lowest throughput (0.652 Kbps) and packet delivery ratio (98.4%) in
topology 1 as compared to others. The performance of the suggested technique demonstrates
promise in topologies 2 and 3, respectively. Topologies 2 and 3 have throughput of 0.664
Kbps, and 0.653 Kbps and packet delivery ratios of 98.55%, and 98.38%, respectively.
Topology 1 has lower results than RPL with rank and version attacks due to packet loss
and retransmission.

Figures 3.14(a) and 3.14(b) show the performance analysis of our proposed solution
during simulation and in real testbed, respectively. A reduction in network energy usage and
node power by 24.9% to 33.6% and 22.6% to 41%, respectively, can be noted. Throughput
graph can be seen to significantly progressing upwards. The average throughput value was
improved by 32.9% to 36.7% on the implementation of our solution in the IoT ecosystem.
Tables 3.6 and 3.7 present the performance analysis during the recursive execution of our
proposed solution across the various possible topologies involving the attack node. Based on
the outcome, it can be noticed that different topologies take an unique amount of network
energy and node power; it also varies with the number of nodes. It can be further observed
that our solution requires minimum amount of network energy and node power. This is not
only because we use only one centralized IDS node in our approach, but also because rank

and version attacks are detected and identified accurately in lesser time.

3.4.4 Comparison with the existing works

This subsection presents the comparative analysis of the proposed rank and version number
attack detection approach with state-of-the-art solutions. Experiments are fairly repeated
multiple times to create tight confidence intervals. In general, we compare our real-time
testbed results obtained across the different topologies to the simulation results. We observe

that both executions provide reliable results (approximately 10% - 30% over/under estimated
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experimental results). A comparison of our scheme is shown through Table 4.7 and graphs
provided in Figures 3.17, 3.18, 3.19, 3.20 and 3.21. To measure the performance metrics,
we use collect view modules, Sysstat, and iperf tool. Ten different performance
metrics: Energy Usage (EU), Node Power, Throughput (THP), PDR, Control Message
Overhead (CONMO), TPR, TNR, ACC, RAD for rank attack detection accuracy, VNAD
for version number attack detection accuracy, RAI for rank attack node identification
accuracy) and Scalability (SCAL) are considered. State-of-the-art methods [99, 159, 160]
consume enormous energy, node power, and control message overhead. Hence they are not
as suitable for a constrained IoT ecosystem. Figure 3.18 shows that our proposed approach
takes 13759mJ, 12962mJ, and 14872mJ total energy with the 3 respective topologies. The
state-of-the-art methods [161, 139, 97, 99, 38, 162, 160| consume more node power, energy,
and have higher control message overhead, as shown in Figures 3.17, 3.18, and Table 4.7,
respectively.

Basically, for comparison, we judiciously consider metrics that are maximum common
with the state-of-the-art schemes. Further we consider those approaches that have maximum
reported QoS metrics. We consider the derived parameters from the reported parameters,
wherever required. Though DETONAR [145] achieves full accuracy in attack node iden-
tification, but achieves 80% in case of version attacks. Version attack detection accuracy
using our proposed scheme fares better than DETONAR. Also, our approach is scalable
while DETONAR is applicable to small networks only. The packet overhead (CONMO) in
DETONAR is also significantly higher than our proposed scheme. InDReS [130] considers
the QoS metrics but does not report the false positives, false negatives or accuracy of their
algorithmic procedure. The results show that our proposed approach achieves comparatively
better results overall with performance parameters, as shown in Figures 3.19, 3.20, and 3.21.
The accuracy of our proposed approach is calculated based on TPR and TNR values shown

in Figure 3.21, while a comparison of results is shown in Table 4.7.

3.4.5 Discussion

In our scheme, attack is detected and the attacker, that launches the attack, is identified
at the same time. Accurate identification of node implies that attack is also detected

accurately. Conversely, attack is detected implies some node is identified as an attack node.
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Table 3.8: Comparison of the proposed scheme with the closely related works

®/@ | EU | POWCPN PDR | CONMO | TPR | TNR ACC (%)

RAI ACC

References EN | md) | W) | 2P| (%) | (nPke) | (%) | (%) [RAD|VNAD| (%) SCAL
A. Le et al. (2011) [161] [©) 11479 1.36 N/A | N/A N/A 93.50 | 94.41 | 94.32 N/A 94.32 X
S. Usman et al. (2018) [139] [©) 15479 1.48 N/A N/A N/A 94.75 | 94.70 | 95.20 N/A 95.20 X
M. Nikravan et al. (2018) [97] N/A | 13938 1.89 0.667 | N/A N/A N/A | N/A | 90.11 | 90.11 N/A v
D. Airchrour et al. (2019) [99] [©) 22580 1.52 0.738 | 93.97 5045 94.70 | 95.62 | 94.89 N/A N/A X
ZA. Almusaylim et al. (2020) [163] ® 18953 1.69 0.717 | 93.45 1095 94.46 | 95.12 | 94.82 98.30 94.82 v
S. Sharma et al. (2020) [162] [©) 13890 1.57 0.694 | 94.13 1012 N/A N/A N/A N/A N/A v
R. Sahay et al. (2020) [164] S | 1738 N/A N/A | N/A 2068 933 | 94.12 | 9450 | N/A 94.50 X
S. Nayak et al. (2021) [159] S. @ | N/A N/A N/A | NJA | NJ/A | 9345 | 93.60 | 9358 | 704 N/A x
S. Thrahim et al. (2022) [160] S | 18839 1.62 0.718 | 97.98 950 N/A | N/A | 99.01 | 99.00 N/A 7
A. Mayzaud ot al. (2017) [144] S | NA N/A N/A | N/A N/A | 9728 | N/A | 9853 | 9853 N/A 7
A Zecshan ct. al (2017)[143] S | N/ N/A N/A | N/A N/A | 95.00 | 89.00 | N/A | 92.00 N/A 7
A Andrea ot. al (2021) [145] D | N/A N/A N/A | N/JA | 15430 | N/A | NJA | 100 | 80.00 100 X
M. Surendar et. al (2016) [130] [©) 12492 N/A 0.949 | 95.41 750 N/A | N/JA | N/A N/A N/A v
Proposed solution O, D | 14872 1.41 0.743 | 99.34 680 98.43 | 99.73 | 99.1 99.1 99.1 v

(S): Simulation, (D: Testbed, POWCPN: POWer Consumption Per Node, THP: Throughput, PDR: Packet delivery ratio, CONMO: CONtrol Message Overhead

SCAL: Scalability, ACC: Accuracy, RAD: Rank Attack detection, VAD: Version Attack detection, RAI: Rank attack Identification, N/A: Not available
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A detection accuracy of 99.1% for our proposed solution, as shown in Table 4.7, means
identification accuracy is also 99%. Our proposed design is inspired from intrusion detection
using probing techniques that have been successfully applied to wired and wireless network
security solutions [165, 166, 48]. The applicability of our approach in the IoT context has
been shown through 6LoWPAN fragmentation [151] and CoAP request/response spoofing
attack detection [146].

ICMPv6 probe request packets are sent with random payload. But, the receipt of
an acknowledgement and the time of receipt of the acknowledgement only matter. Since
the payload information is not of our interest, alteration of packets does not affect the
detection procedure. A probe response transition is taken only if it is received from the
same node to whom the probe was sent. Hence, spoofing will not help the attack motive.
Probe packets may be communicated concurrently via different downward paths. To avoid
self-identification, the attack node reports truly. Communication lags due to the underlying
RPL-IoT network conditions will uniformly affect every node along a path in the DODAG.
Response delay is an attack characteristic in our detection procedure. If a malicious node
delays a packet, then it is identified more easily. If an attack node holds the packet for
indefinitely long and does not forward it, then such a case is also an attack behavior. So
delay or not responding does not deter the detection process. Furthermore, a DIO multicast
simultaneously affects in route updation and inference of suspicious activity by multiple
leaf agents. Hence, due to multiple leaf agents present, if any agent misses reporting, it
does not hinder our identification mechanism. The case of malfunctioning leaf agents, if
compromised, is not explicitly dealt with in this chapter.

Studies in the literature have analyzed variants of rank attacks. In Le et.al [167], the
authors propose few variants. Their impact on the DODAG topology from the perspective
of end-to-end delay and packet delivery ratio is highlighted. Their work shows that there
exists unique threats to RPL that evade regular detection techniques. This is so because
such attacks do not consider changing the advertised rank value; rather, they create un-
optimized paths, silently. These types of attacks pose a different nature to the traditional
threats making it complex enough to be defended, for example, the blackhole attacks that
add delay to transmissions. They have specifically considered four types of rank attack

variations, namely, 1) Permanently and updates about the rank change to its neighbors, 2)
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Non-permanently (flipping between its choices between normal and abnormal) and updates
about the rank change to its neighbors, 3) Permanently and does not update about the
rank change to its neighbors and 4) Non-permanently and does not update about the rank
change to its neighbors.

We show to detect version attacks apart from rank attack identification. As per
knowledge, this is the first-of-a-kind attempt to mitigate RPL routing attacks using finite
state automata based DES based IDS. State-of-the-art attacks that produce the same
consequences as the increased rank attacks, can be also detected and malicious nodes can
be uniquely located using our procedure, as it is. Attacks such as the worst parent attack,
neighbour attack, etc., that result in similar consequences as covered in our rank attack
procedure will also be detected in our scheme. Though we explicitly do not model these
attacks, yet a class of worst parent attack with update, i.e., the worst parent choice is passed
on to child nodes, falsely, is one of the attack cases that we consider. Hence, such an attack
will be detected. Also, a class of neighbour attacks where the advertised parent node is out
of range of the DIO recipient, and the attack results in a post-attack topology as dealt in our
scheme will also be detected. Further, cross-layer attacks that use increased rank attacks are
also detected using our scheme. RPL analysis on the packet exchange dynamics due to other
attacks is thereby necessary. Decreased rank attacks, sinkhole attacks and blackhole attacks
are also DIO specific attacks launched in a similar manner, i.e., a lower rank value is falsely
advertised in DIO to attract nodes. The effects of these attacks are analogous to increased
rank attack. DES based IDS can be extended to detect other attacks by adding relevant
states and transitions for control or data packet communication behavior in the monitored
RPL-IoT. As it is, decreased rank attack or sinkhole that are manifested towards increased
rank attack can also be detected using our scheme with minimum customisation, even
when combined with selective forwarding attack. This would require careful but minimum
modifications to be made to our algorithm and extending our model for detection. Other
forms of attacks, which directly map to an increased rank attack scenario, will also be
detected using our scheme with minor changes. Moreover, one advantage of using DES based
IDS is that false positives are minimal. A non-zero false positive in our experiments can be
related to reasons such as, packet loss if considered as a missing acknowledgement response

and network lags beyond the estimated values of A4 and A,.The current solution can be
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further improved with generation of optimized sequences of probes for more early detection
and also thereby reducing complexity. The placement of the agents can be improved such

that the overhead is further reduced.

3.5 Conclusion

A novel RPL rank attacker identification scheme that also detects version attack is presented.
Our proposed scheme is centralized and uses an intelligent probing technique and DES based
IDS. We augment traditional DES based IDS such that attacker type is also diagnosed.
Using our scheme location of attack node is identified accurately. Active probe packets
are used judiciously to capture a deviation of attack behavior from the normal behavior
which is normally lacking. A DES diagnoser serves as our IDS engine that generates an
alert when an attack node is identified. The correctness and completeness of our approach
is also proved.

The performance analysis of our proposed scheme in simulation and real testbed considers
both attack and non-attack behavior patterns, with a sufficiently large number of IoT
devices. The average energy usage and accuracy of our proposed approach are 14872m.J
and 99.1%, respectively. The observed results show our approach is energy-efficient with
lowest packet overhead than existing works. It is scalable, achieves minimum false positives,
and higher accuracy with lower detection time.

In the following chapter, we delve into IoT adaptation layer fragmentation attacks
which are also low overhead network-level attacks launched by an eavesdropping attacker
node. Buffer fragmentation and reassembly procedures are easily exploited since 6LoWPAN
lacks mechanisms to verify authenticity of the sender and the fragment ingenuity. Due to
such attacks, services of the receiver node are blocked as fresh fragments wait on its buffer
while the network performance as a whole is hindered. As opposed to the RPL attacks that
have network-wide effects, 6LoOWPAN fragmentation attacks make nodes at 1-hop distance
vulnerable, exhausting memory and resources. Hence, centralised IDS schemes are not
suitable to deal with such attacks. We propose a 6LoWPAN fragmentation attack detection
and attacker identification scheme utilising decentralised I-DES based IDS and active
probing mechanism in the next chapter. Duplicate fragments with random payloads are used

on part of probes. Our proposed decentralised I-Diagnosability DES framework is adopted
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and extended to identify an attack node, with local I-diagnosers acting independently. Our
proposed mechanism is successfully validated in simulation and on a testbed with varying
topologies and nodes. The results illustrate energy-efficiency, high accuracy, least false

positives and quicker response times compared to other schemes.
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CHAPTER

Mitigation of 6LoWPAN Fragmentation
Attacks

Recently, a significant portion in the network usage of Internet of Things (IoT) [5, 108, 109)
in healthcare to home automation, industrial control systems to agriculture and smart
cities, mostly employ 6LoWPAN, an [ETF-standardized adaptation layer, for IPv6 based
communication [110]. With the surge in the number of resource constrained devices
constituting the IoT, the need for a huge address space as well as [P-connectivity over low
power and lossy networks (LLN), including Wireless Sensor Networks (WSN), are facilitated
using 6LoWPAN [111, 10|. Fragmentation is therefore essential at this layer, since IEEE
802.15.4 limits the frame size to 127 bytes and hence does not permit transmission of [Pv6
packets with MTU 1280 bytes. Consequently, the adaptation layer is proposed to forward,
buffer and process the fragments of the transmitted packets.

Malicious nodes make use of the challenges due to the proposed implementation and
exploit the fragmentation and reassembly procedures to launch various Denial-of-Service
(DoS) attacks. Lack of mechanisms to verify authenticity of the sender and the fragment
helps mount spoofing attacks. A malicious entity that is overhearing a communication
requires just a mere fragment to illegitimately occupy the buffer of a resource constrained
node, or to disrupt the integrity of the packet by slipping in duplicate fragments. In both
the cases, since 6LoWPAN does not have means to verify fragment ingenuity, the buffer is
freed and the packet needs to be resent [110, 37, 34, 112]. The security aspect of availability
is at stake due to the trumped-up buffer reservation. The spurious occupancy also exhausts

huge memory and time, since the fragments need to be kept in the constrained memory of



the nodes till timeout. Moreover, the impact of the attack is unbound if the attacker drops
fragments and replaces them with fragments containing spoofed content, since 6LoWPAN
processes out-of-order fragments. Thus the services of the receiver node are blocked as fresh
fragments wait on its buffer while the network performance as a whole is hindered.
Approaches to secure 6LoWPAN from fragmentation attacks have been mostly cryptog-
raphy based [112, 113, 37], which are resource unfriendly. Since such attacks are launched by
replaying a fragment at pre-computed intervals, such approaches incur significant overhead.
Moreover, the proposed countermeasures to tackle IoT-6LoWPAN attacks have attempted
attack detection mostly. Also, buffer quarantine strategies that perform logical isolation only,
leaves ample opportunities for a malicious entity to launch fresh attacks. A node may be
isolated and not included in the packet forwarding path but may still start a communication
or launch an attack since it still has ability to send fragments. Furthermore, with the
advancements in adversarial machine learning techniques, complex attack characteristics
and distributed attacks are also severely threatening. Therefore, energy efficient schemes
that save resources of the constrained battery-powered low power devices are primarily
necessary. We investigate the fragment duplication attack from the topology perspective and
by analysing the possible attack space. To this regard, in this chapter an intrusion detection
scheme is presented that identifies a 6LoOWPAN attacker node accurately, and is based on
the decentralized I-diagnosability framework of Discrete Event System (DES). Due to the
analogous behaviours posed between a system fault and a malfunctioning network node, DES
based IDSs are often chosen of late [150]. We also overcome the plausible issues that make
the current solutions unsuitable. We perform node elimination apart from identification
which is more powerful than mitigation based approaches because the network remains
secured from further attacks by the same malicious node. Broadly, our contributions in this

work can be summarised as follows:

e We propose a novel fragment duplication attacker identification scheme in 6LoWPAN.
Our scheme makes use of an intelligent active probing technique that helps create a
deviation of attack traffic and normal traffic [106]. Our proposed scheme is decentral-
ized that incorporates decision making capabilities distributed over the set of local
I-DES based IDSs each have local I-diagnosers performing independently and in a

parallel manner. An alert is generated to the system administrator when any of the
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local I-diagnosers reach a conclusion. Global diagnosis is ascertained when any local

diagnoser is successful [169].

e We extend the power of traditional I-DES based IDS with attack type modeling for

identification of malicious node.

o We perform node elimination which is more powerful than mitigation based approaches.

Kill switches are employed to kill a particular node when identified.

e We prove the correctness and completeness of our approach by enumerating all the

attack cases.

e The performance of our scheme is tested through simulations and real testbed. The
experimental results highlight the applicability of our approach. Results show our
approach is energy-efficient and has less response time. Our proposed solution has
minimum false positives and achieves more than 99.8% accuracy in identifying the

malicious nodes.

The rest of the chapter is organized as follows. Section II presents the preliminaries of
6LoWPAN. Section III presents the related work. We demonstrate our proposed scheme in
Section IV. Experimental results and performance analysis of our scheme are presented in

Section V. We conclude in Section VI.

4.1 Preliminaries

4.1.1 6LoWPAN Fragmentation mechanism

Owing to the limited path MTU size of the 802.15.4 links, 6LoWPAN needs to do fragmen-
tation of IPv6 packets. 6LoOWPAN splits an IP packet into multiple fragments so as to fit in
a 802.15.4 MAC frame. In conventional IP fragmentation, all the fragments contain the
header information. 6LoWPAN provisions functionalities for fragmentation and reassembly
of IPv6 packets. In 6LoWPAN, each fragmented packet consists of fragment headers for
carrying information to facilitate in-place reassembly. Two different types of fragment
headers are defined, FRAG1, for the first fragment and FRAGN for all the subsequent

fragments. They consist of the following subfields: (1) Dispatch type or Dispatch value bit
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pattern (5 bits) is 11000 for the initial fragment (FRAG1) and 11100 for all subsequent
ones (FRAGNS). It helps differentiate FRAG1 from FRAGNSs. (2) The datagram size (11
bits) encodes the size of the original IPv6 datagram, with header and payload. (3) The
datagram tag field of 16 bits is used to uniquely identify all fragments that belong to the
same IPv6 packet. The above discussed fields constitute FRAG1. The initial fragment
header is therefore 32 bits (or, 4 bytes). FRAGN contains an extra field, the datagram offset
(8 bits) to determine the relative position of the fragments in the IPv6 packet. This value is
incremented by 8 bytes for each fragment. This is crucial during reassembly to process out
of order fragment sequence. In conventional IP fragmentation, all the fragments contain the
header information, while in 6LoWPAN fragmentation only FRAG1 carries the compressed
IPv6 Header information. End-to-end routing information is therefore present in FRAG1
only. The compressed IPv6 header can range between 2 to 20 bytes depending on different
scenarios, while the IPv6 header is originally 40 bytes long. As shown in Figure 4.1, the
compressed IPv6 header is added to the first fragment of the packet [168].

IPv6 Header Payload |
\ J
FRAG1 (“"“WW Payload FRAGN Payload FRAGN Payload
Dispatch 7 Dispatch .
11000 Size | Tag ‘ 11100 Size Tag Offset

5 bits 11 bits 16 bits 5 bits 11 bits 16 bits 8 bits

Figure 4.1: Fragmentation Process Overview

4.1.2 Fragment Duplication Attack

Various IP fragmentation attacks have been long discussed in the literature. Analogously,
fragmentation attacks have been identified in 6LoOWPAN and are further classified at
the design-level based on their attack procedure. Fragment duplication attacks belong
to a class of attacks that use duplicate fragments to deny a successful IPv6 datagram
transmission between two communicating pair of nodes. Suppose that a sender S wants to

communicate a datagram D to the receiver node R, and in the process, a fragment header,
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FRAGI1(S,R,5) € D is sent to R. Independent on the routing scheme in use, the fragment
header, if acknowledged, contains the end-to-end routing information and ensures a buffer
reservation at R for the ensuing fragments from S. A malicious node A that is overhearing
this communication just needs a single fragment to carry out the attack. Considering that
the fragments belonging to D are n in number, i.e., FRAGN(S,R,i) € D,1<i<n, A
need not disclose its identity and yet replay a fragment in D before the buffer reservation
period gets over at the reassembling node. This is possible because the spoofed fragment,

containing curated data, conforms to fragment header of packet D.

Genuine Fragment Fragment ‘ l ‘ ' Fragment
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Figure 4.2: Attack Scenario for Fragment Duplication Attack

Furthermore, 6LoWPAN layer has no way of divining if the fragment came from S, since
it lacks means to verify the authenticity of the sender. Moreover, the receiver buffer is not
able to ascertain as to which of the redundant fragment is the original. Confirming this would
require support from the upper layers, which it avoids and discards the packet. A malicious
node at an intermediate hop has heightened capabilities of launching more severe forms of the
attack. It can drop selective fragments and replace them with illegitimate ones such that the
receiver cannot determine originality of the fragments. Possible attack timelines are shown in
Figure 4.2. Here, the green dotted squares indicate dropped fragment while the red coloured
squares indicate a spoofed fragment from an attacker node. In a resource constrained
environment, application services can be fiercely hit due to a fragment duplication attack.
Compromised are node energy and resources that face chances of exhaustion. Moreover, all
secure connection setups are disrupted causing a DoS attack. Throughput of the network

goes significantly down and the network services are compromised, partially or totally.

115



4.2. RELATED WORK

4.2 Related Work

Various schemes to protect the 6LoWPAN against fragmentation attacks have been suggested
in the literature. One of the very first study addressing this issue is proposed in [113]. The
authors present a security threat analysis from the point of view of IP fragmentation and
Replay attacks. The proposed protection mechanism makes use of Timestamp and Nonce
options to be added to packets at the adaptation layer. Fragmented packets between a
pair of nodes, if unidirectional, is added with Timestamp option whereas Nonce option
is added in case of bidirectional transfer. In the corresponding manner the newly formed
packet formats are redefined. The work does not report of measures to be taken if the fields
themselves may be spoofed as well to launch 6LoOWPAN attacks.

A content chaining scheme is proposed in [112|. The scheme uses cryptographic
techniques to bind the packet content to the fragment header. The output of a cryptographic
hash function is appended to the end of the previous fragment in their scheme. The receiver
node in turn recomputes and verifies these hash values, which helps it to identify the
legitimate ones from the duplicate ones. However, since such attacks are launched by
replaying a fragment at pre-computed intervals, such approach incurs significant overhead.
Also, there is a lack of confidentiality in this scheme since encryption is not performed.
Moreover, processing of out-of-order fragments is challenging.

In SecuPAN |[34], authors show to mitigate a wide range of fragmentation attacks
including the buffer reservation attack in 6LoWPAN. Spoofing attack mitigation is tackled
using cryptographic address generation scheme whereas they propose using a nonce field
in packet fragment header as a protection against replay attacks. Fragment fabrication
vulnerability is handled using Message Authentication Code (MAC) in their scheme.

Nikravan et. al [37] propose a scheme that uses per-fragment Offline-Online Signeryption
between communicating nodes to counter fragment duplication attack. The scheme is capable
of processing out of order fragments and is suitable for resource constrained environment
as they do not require point multiplication operation and certificate based verification of
public key for authentication. However, the scheme is computationally costly with a packet
overhead of almost 1.2 times the original packet. The scheme generates more fragments due

to an increased payload.
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4.3 Proposed Defense Scheme

In this section we demonstrate our defense scheme that wends off 6LoOWPAN duplication
attack. I-DES based IDS was introduced in the previous chapter (see details in Section 3.3.1).
We start with an overview of the detection methodology using our proposed IDS scheme
here. We then discuss the employed techniques and algorithms to identify the attacker.
The construction of normal, attack models and DES diagnoser that are indispensable for
attacker identification are described next. Proof of correctness and completeness is presented

subsequently.

IDS nodes

Figure 4.3: An example of 6LoWPAN deployment

4.3.1 Design Overview

The primary research challenges in the detection of fragment duplication attack are (i)
resource constrained nodes (ii) normal node cannot be distinguished from attack node
due to lack of sender authenticity verification in 6LoWPAN. To overcome the discussed
challenges, we propose a decentralized approach with a set of IDS 7 distributed across
the monitored 6LoWPAN. Each of the IDS Z; € 7 work in a similar manner and perform
diagnosis independent of each other. Furthermore, we use intelligent probe datagram with
overlapping fragments. Active probing helps generate unique responses such that an attack
node can be differentiated from a normal node. A demo example of our IDS setup in an
arrangement of RPL-6LoWPAN nodes is shown in Figure 4.3. The normal network nodes
are coloured yellow while deployed IDS nodes are designated in blue. The node numbered 1

is the RPL root node. We show 3 IDS nodes for the sake of understanding only, while in
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actual setup the arrangement may vary. The frame notations we use henceforth are listed

in Table 4.1.

Table 4.1: FRAME NOTATIONS

Notation | Meaning

FRGHD Datagram Header Fragment FFRAG1

BRNACK | Buffer Reservation No Acknowledgement Packet
BRACK Buffer Reservation Acknowledgement Packet
FRG Datagram Fragment FRAGN

PRDACK | Packet Receipt Acknowledgement Packet
DPNACK | Duplicate Fragment No ACK Packet

RTO Retransmission Timeout Event

6LOWPAN

\

X

RPL Control * FRGHD
and Data * ;’?g
Packets « DPNACK

4

FRAG_SND_HANDLER() Events with Status

parameters DES » Attack node A;
Diagnoser

FRAG_RCV_HANDLER() INormal

Figure 4.4: IDS architecture

Components in an IDS Z;: The block diagram of proposed IDS with the basic

components is shown in Figure 4.4 and are discussed here as follows:

e FRAG RCV_ HANDLER(): It monitors communication data packets from IDS
nodes and extracts information such as IP address, MAC address and datagram tags.
It reports a source IDS node if the packets contain overlapping fragments. The working

procedure of this handler is described in Section 5.2.4.
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e FRAG SND HANDLER(): Its prime responsibility is to extract vital informa-
tion such as source IP address, MAC address and datagram tags from 6LoWPAN pack-
ets. It generates events such as FRGHD, BRACK, BRNACK, FRG, DPNACK,
PRDACK and RTO. The generated events are passed to the DES diagnoser com-
ponent. The working procedure of this handler is described in Sections 5.2.4 and

5.2.5.

e Local I-DES Diagnoser: This component diganoses the attacker node and is
implemented as a software module. Given the knowledge of the I-DES model specifi-
cations pertaining to normal and attack type conditions, the local I-diagnoser can
be constructed. FRAG _SND HANDLER() passes information regarding network
events to the diagnoser. Based on the event parameters that are shared, the diagnoser
generates an alert on attack detection or identification of malicious nodes. The usage

and construction of the diagnoser is described in Section 5.2.6.

Attack node
o |:| @) O
1 O
O|:| © O:I ®
)
O I; O =3
Tracking activity Duplicate Probe
Compute RTT, datagram Response
Ploss probe Validation
Retransmissions
| Attack I1 - Activelll | s IV
Setup oo e > : » Diagnosis
inference Probing
TIDS; ND; L

specifications

Figure 4.5: Flow of DES based IDS scheme

Attack detection and identification is sequentially carried out in phases. They are
namely, setup, inference, active probing and diagnosis. The working methodology

of our proposed scheme is demonstrated next. A schematic of the detection timeline is
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shown using Figure 4.5. Prior to attack, network traffic is monitored and data is logged to
setup the IDS as shown in the initial module. During this setup phase, the IDS perform
all the normal functionalities of a 6LoWPAN node besides analysis. Tables used to store
IDS and neighbour node related information are maintained and updated throughout. A
fragment duplication attack is inferred in our scheme by an IDS source if the following
two situations arise: (i) a packet needs to be retransmitted beyond a predetermined limit
(ii) an intermediate or receiver IDS detects duplicate fragments during reassembly. In the
latter scenario, the FRAG _RCV _HANDLER() component of the IDS intimates about
the duplication to the source IDS as obfuscated application data at random delay, to prevent
an attacker or bot from profiling. The source IDS therefore conducts active probing if any
of the above situations are recorded. The FRAG_SND HANDLER() on behalf of the
source IDS sends fabricated IPv6 probe datagrams with random payload. Its diagnoser
component (IDS engine) then validates the responses against I-DES modeled normal and
attack behaviour specifications. An alert is generated to the system administrator if an
attack behaviour is detected. This constitutes the diagnosis phase. Basically, a response
to a probe datagram helps differentiate attack behaviour from the normal. Essentially, a
malicious node behaviour is distinguishable if the crafted datagram is forwarded, as opposed
to the fact that the datagram must be discarded in normal conditions. The phases in our

detection procedure are now sequentially demonstrated.

4.3.2 Setup

This phase consists of administrator intervention for parameter setup. Traffic is monitored,
relevant data is collected and parameters are measured for Network Traffic Analysis (NTA)
purposes. At each IDS node, tables and variables corresponding to IDS as well as neighbour
nodes are maintained and updated in this phase. An IDS node Z; uses table TIDS;,
represented as an array of structures, for storing the other IDS information. An element
of the array, TIDS;/ stores the IP address, MAC address for an IDS Z; and a round-trip
time (RTT) value, AZ |T1DS;| signifies the size of TIDS;, i.e., the number of IDS nodes
reachable from Z;. RTT between a pair of communicating IDS nodes, let Z; and Z; can be
found at the j** and i*" table entries of TIDS; and TT DSj, respectively. Essentially, Ag is

computed as,
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Ag = TZ{PAC}C o TZJP (4.1)

where, TZPACK is the time instant when an ACK due for packet P, P 4cx is received at

Z; from Z; and TZ{P represents the time instant when the packet P got transmitted from Z;
to Z;. Also, a variable A; is used at Z; to hold the maximum round trip time (RTT) value,
ie., man{Ag } and is continuously updated. Besides, T1DS;, a table NDj is maintained at
Z; to store requisite parameters and information of its next-hop neighbour nodes. |N D]
signifies the size of ND;, i.e., the number of next-hop neighbour nodes of Z;. Each element
of the array of the form ND;/ in IDS Z; holds the IP address, MAC address of a node j

indicating the probability of packet losses using the link Z;j. Pl s

J
and a value P i loss

i,loss

calculated from the history of packets sent from Z; and ACKs received. We calculate Pij loss

as,

(4.2)

where, nﬁT represents the number of due ACKs received at Z; via node j and nf s
represents the number of packets sent from Z; via node j. Correspondingly, a variable P; ;545
is used at Z; to hold the packet loss probability of the link which is the minimum, i.e.,
}. An IDS utilises the communication history in the subsequent phases. The

min; {Pi,loss

attack inference phase is demonstrated in the following subsection.

ALGORITHM 8: FRAG_RCV _HANDLER) of I;

Local Variables: TIDS;

Input: Datagram D

Output: Fragment duplication NACK
while Ju, v|(Fy, F,) € DA (u =v) do
L if D.sourcel P € TIDS;(IP) then

L Intimate NACK to D.sourcel P;

4.3.3 Attack Inference

As a prerequisite, IDS are assumed to be setup from monitoring network activities. An attack
then takes place in the monitored 6LoWPAN. Attack detection and node identification
relies on the inference of a fragment duplication attack activity by IDS nodes. Specifically,

a source IDS node infers an attack while sending a datagram, let us suppose D, as part
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of its regular communication. Firstly, a suspicious duplication activity might be reported
by an intermediate IDS node or a receiver IDS, or secondly, an attack might be inferred
due to failed retransmissions. To understand the first scenario, let us consider that D is
sent from an IDS Z;. Now, as D gets reassembled and forwarded hop-by-hop, suppose
an eavesdropping attack node passes a spoofed fragment of D towards a reassembling
node. If this current reassembling node is an IDS node, let us suppose Z;, it not only
discards D, but also intimates a negative acknowledgement to Z;, since it is an IDS source.
The FRAG _RCV _HANDLER() component handles communication on behalf of the
reassembling IDS Z;. Piggybacked information is obfuscated and reported to Z;. To
prevent an attacker from profiling, the agents send the intimation packet with a random
delay. Function of the FRAG _RCV _HANDLER() component of Z; is explained using
Algorithm 8. On receipt of the NACK from Z;, Z; infers a fragmentation attack on D.
The second attack inference situation occurs when a datagram, say D, needs to be
retransmitted beyond a certain limit. We look into how retransmissions are characterized in
our scheme. Suppose Z; waits for an ACK after having sent datagram D. Now, if an ACK
is not received before a set ACK timeout expiry, then D is retransmitted. Consequently, a
counter variable that keeps track of the retransmission count is incremented. If the number
of retransmissions exceeds the retransmission limit, then Z; refrains from retransmitting and
marks the activity as a suspicious attack. The ACK timeout value and retransmission limit
are realized from round-trip delay and the probability of packet loss, respectively, in our
scheme. Variable A;, computed in the setup phase, that stores the maximum of RTT from
Z; is used to quantify the ACK timeout period. Since a packet or ACK may be delayed
in the network due to varied reasons, and to avoid inferring from such delay unreasonably,
we consider the maximum timeout period. The retransmission limit used by Z; depends
upon the next-hop node. A set, ©; = {©},02,...}, is maintained to this purpose. The
number of elements of set ©; is equal to the number of next-hop neighbours of Z; (size of
table ND;). A value @g stores the retransmission limit that is used if the next-hop node is

J. It can be computed as,

1
1P’

i,loss

ol = 1 (43)

We characterize the retransmission limit using the probability of successful packet
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delivery (1 — P’

> 10ss)s Which is justified because an ACK timeout beyond the retransmission

limit can be inferred to be occurring due to reasons beyond normal network behaviour.

In both of the situations discussed above, attack inference by Z; is handled due to the
FRAG_SND HANDLER() component, shown in Algorithm 9. Outlined below is the
FRAG _SND _ HANDLER() whose inputs are as follows:

e Duplicate Fragment Intimation NACK that are reported due to the FRAG _RCV _
HANDLFER() on behalf of host IDS on receipt of duplicated fragments.

e Probe datagram from the buffer that are yet to be sent (this becomes possible as

FRAG SND HANDLERY() is part of the modified 6LoWPAN).
e Datagram receipt ACK.

e TEST FLAG indicates when to detect and identify the attack by sending probe

packets to intended nodes.

The FRAG_SND_ HANDLER() component and our local I-diagnoser work in
communion for attack detection and node identification in our scheme. Initially, on the
values ©; and A; being computed, the diagnoser sets TEST FLAG — 1 (Line 1). The two
values are pre-computed during non-attack condition as discussed in Section 4.3.2. The
outputs events of the handler, namely, FRGHD, BRACK, BRNACK, FRG, DPNACK,
PRDACK and RTO, are all passed to the DES diagnoser. The handler and diagnoser
share the model variables ¢;, A;, éi, N;, 75, macd and ipd between them. When the
TEST FLAG is set by the diagnoser, it means that the attack diagnosis phase can be
started. The DES diagnoser gets executed and remains so till the monitored 6LoWPAN is
operational. Diagnoser setting the TEST FLAG = 1 is also the initial transition in the
DES diagnoser graph discussed later. On receipt of a fragment duplication NACK, the
first if then module is invoked and attack is inferred. The FRAG SND HANDLER()
generates event DPN ACK and passes it to the diagnoser. A variable N;, used to keep track
of the number of retransmissions, is initialized to 0 at the model start and is incremented
when a buffer reservation ACK is received by Z; (event BRACK is generated and N; is
shared with diagnoser). If an ACK timeout occurs, i.e., clock timer variable ¢; counts

beyond A;, consecutively, for a @;”"“Cd time, the third if then module is invoked. This is
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how attack is inferred from the number of retransmissions. Consequently, the event RTO
is shared with diagnoser. Z; on inferring a possible fragmentation attack conducts active
probing. FRAG SND HANDLER() of Z; generates events during active probing that

are key to diagnosis of attack node, as will be demonstrated in the subsequent sections.

4.3.4 Active probing

In 6LoWPAN based fragmentation attacks, attack specific signatures are naturally lacking.
Moreover, devices are resource constrained and there are no in-place sender authenticity
mechanism in 6LoWPAN. Hence, it is challenging to differentiate between a normal node
behaviour and an attack behaviour, which generally appear same. We use an active probing
technique, intelligently, to generate responses that make an attack behaviour distinguishable
from normal. An IPv6 datagram with random payload, sent by an inferring node, are
the active probes in our proposed scheme. This probe datagram, let D', is fabricated in
a way such that a randomly chosen fragment in D’ (using RN D1) is duplicated. The
duplicate fragment replaces a genuine fragment in D’ (also randomly chosen using RN D2).
As demonstrated, FRAG _SND HANDLER() sends a probe fragment header on behalf
of Z;, after an attack is inferred. Event FRGHD is generated here and passed to the
diagnoser. Furthermore, an IDS node from T'1DJS; is chosen as the destination IP for probe
datagram D', and assigned to model variable ipd and shared. A boolean variable 7; is set
to 1 to flag the probe datagram, and is also shared with the diagnoser. On receipt of a
buffer reservation ACK for D’ the second if then module is invoked. If a fragment is sent,
event FRG is generated and subsequently shared. Probe fragments in D’ are sent such
that duplicate fragments are received at the next-hop node. Meanwhile, diagnoser sets
TEST FLAG to 0 until a response due for D’ is received. While waiting on response, table
TIDS; is consulted, and RTT specific to the destination IDS node is considered for timeout
calculation. Because of the receiver of D' being an IDS node, a probe datagram ACK
or duplicate fragment NACK might be received, or a response timeout gets clocked over.
Consequently, an event among PRDACK, DPNACK or RTO is generated and passed
to the diagnoser. It then validates the received events against DES-modeled normal and
attack behaviour specifications, and from the model parameters that are shared. Depending

on the response characteristics, a decision is made on the next-hop node to be normal or
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attack, or further probing is continued. An alert is generated to the system administrator if
an attack behaviour is diagnosed. This constitutes the diagnosis phase and is discussed in

the following subsection.

TZ‘ t5l Tll‘ Tld‘
BRMACK FRG . . BRMNACK B B FRG

LU LSt T3
DPNACK, RTO

LETAN ¢

DPMACK, PRDACK

1, ) '
RTO , PRDACK

RTO , PRDACK

Figure 4.6: DES model H;

4.3.5 [-DES Model and local /-Diagnoser

The I-DES model H is formally defined as a 6-tuple H; = (X, Xy, %, V,C, ). Here, X
is the set of states and is finite, Xy C X is the set of initial states, X is the finite set of
events, V is the finite set of model variables, C' is the finite set of clock variables and < is
the finite set of transitions. Elements of the set of model variables assume values from their
respective domain sets. Suppose if V' = {vy,v9,...,v,} is the set of model variables (for
some finite value of n) where each element v; takes some values from its domain set Dom,;.
The domain of each of the clock variables is the set of non-negative reals, R. A transition
7 € Q is defined as a 7-tuple (z,z1,0,¢(V), ®(C), Reset(C), Assign(V)), where z, 2T are
the source state and destination state of transition 7 respectively. Due to the occurrence of
the event o € X, the transition 7 is enabled. ¢(V) is defined as a boolean conjunction of
equalities over some subset of the model variables, V', and which needs to hold true overall
for a transition to be taken. ®(C') is an invariant condition over some subset of the clock
variables C'. Reset(C') is a subset of clock variables to be reset and Assign(V') is a subset

of model variables along with an assignment of values from their corresponding domains.
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ALGORITHM 9: FRAG_SND_HANDLER() of I,

Data: c¢;, A;, ©;, N;, 7;, macd, ipd
Input: Duplicate Fragment Intimation NACK, Datagram receipt ACK, Buffer ACK, TEST FLAG
Output: Events: FRGHD, BRACK, BRNACK, FRG, DPNACK, PRDACK, RTO

1 while ©; and A; are not NULL do

2 if (TEST FLAG == 1) then
3 L Generate RN D1 and RN D2;
4 if Duplicate Fragment NACK then
5 Generate event DPNACK;
6 N; < 0;
7 if (¢; < Aj) A(F; =0) then
8 Generate event FRGHD;
9 ipd < FRGHD.destIP;
10 Send datagram probe FFRAGI;
11 Stop ¢;();
12 i +— 1
13 if Buffer ACK then
14 Generate event BRACK;
15 N; + +;
16 Start ¢;();
17 if ¥; =0 then
18 macd < BRACK.source M AC;
19 foreach FRAGN of D do
20 Generate event F'RG;
21 Send probe fragment FRAGN;
22 else if 7; = 1 then
23 foreach FRAGN of D do
24 if FRAGN.of fset = RND2 x 8 then
25 L FRAGN.of fset <+ 8 x RN D1,
26 Generate event FRG;
27 Send probe fragment FRAGN;
28 TEST FLAG + 0;
29 if ((Cz Z A7) A (7‘1 = 0)) then
30 Generate event RTO;
31 Stop ¢ ();
32 Generate event FRGH D;
33 Send datagram probe FFRAGI;
34 if (N; = ©macd) then
35 ipd < FRGHD.destlP;
36 N; < 0;
37 T 15
38 else if ((¢; > APY) A (r; = 1) A (N; < |ND;|)) then
39 Generate event RTO;
40 Stop ¢ ();
41 TEST FLAG < 1;
42 Generate event FRGH D;
43 ipd < FRGHD .destlP;
44 Send datagram probe FFRAGI;
45 if Datagram receipt ACK then
46 Generate event PRDACK;
a7 Stop ¢;();
48 if (Ci < Az) A (7"2‘ = O) then
49 L N; + 0
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Some of the fields in the tuple representing a transition maybe be denoted by "-". For
example, if "-" is used for ¢(V') or Assign(V'), then it would mean that no condition needs
to be met (i.e., the condition is implicitly TRUE) or NO assignment is required respectively.

The I-DES modeling of a networked system of IoT-6LoWPAN nodes is demonstrated
here. The I-DES model H;, drawn in Figure 4.6, has been used to represent the Fragment
Send Receive sequences during normal and fragment duplication attack conditions. The
principle of detection and identification by the local I-diagnoser is discussed later. We
will then show that location of an attacker, if present, is accurately identified. The DES
notations used are listed in Table 4.2 and the definitions of the various DES terminologies

have been presented in Appendix A. The various components of H; are discussed.

Table 4.2: LIST OF SYMBOLS

Symbol Definition

H; DES model

by Set of events of the DES model H;

Yim Set of measurable events of the DES model H;
Yium Set of unmeasurable events of the DES model H;
%4 Set of model variables of the DES model H;

Ry Set of transitions of the DES model H;

T A transition 7 € &

X Set of states of the DES model H;

Xo Set of initial states of the DES model H;

o Event on which a transition is enabled

check(V') | Condition(s) on a subset of model variables, V'
assign(V') | Assignment(s) on a subset of model variables, V'

L(H) Set of all traces generated in H;

Ay, kth attacker

XN Set of normal states of the DES model H;

Xr Set of faulty states of the DES model H; for fault type F

X4, Set of attacker states of the DES model H; for attacker Ay
oA, Event corresponding to attack launched by attacker Ay

@) Diagnoser of DES H;

A Set of states of the diagnoser, O, also called O-states

Zy Set of initial nodes of the diagnoser, O

A Set of transitions of the diagnoser, O, also called O-transitions

The state set X with initial set of states Xy (Xo C X) symbolise the control states of
the FRAG_SND _ HANDLER() component of the IDS. The normal DES model states
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and attacker type model states together constitute the state set X = {z1, z2, ..., 28, 21/,
22, o 29 21" 22" .00 29"}, In our model, the set of model variables, V' = {ips, ipd,
macs, macd, dtag, N;, id}. The model variables correspond to program and data variables
that are internal to the IDS. Certain program variables are designated as the clock variables,
C, which are absolute values of clock timer that can be SET and RESET using commands.
In real-time applications, timing constraints are expressed by satisfying the conditions on
the clock variables. We use a single clock variable in the set of clock variables, i.e., C = {¢;}.
Event set ¥ contains the packet communication events. In our model, the set of events, ¥
= {FRGHD, BRNACK, BRACK, FRG, DPNACK, RTO, PRDACK, attack’, attack”}. A
transition is enabled if the conditions are satisfied and is said to be taken on the occurrence
of the associated event. The transitions set I' consists of transitions {70, 71, ..., 716, 71/,
(N R o K L S A

Considering that there is one attack node among n nodes in the network, the state set,
X, can be partitioned into disjoint sets Xy, Xa,, Xa,, ..., Xa,, where, X represents the
set of states belonging to the normal behavior of the network, while states of the form X4, ,
1 <k <mn, ke N, represent the behavior of the network if A is an attack node. For the
sake of brevity, we model using 2 nodes, A; and A,, among which one is an attack node,
hence X = Xy U X4, UX4,. In Figure 4.6, the non-primed states are the states when the
system behaves normally while the single and double primed states represent the system
under attack by the nodes A; and As, respectively. The events of the system is disjoint

union of measurable events and unmeasurable events ¥, and >,.

I-DES behavior under normal circumstances

The behavior of H; under normal circumstances is shown in Figure 4.6. The system, when
functioning normally, is represented using the states {x1, 22, ..., 28} and the transitions
{70, 71, ..., 716}. The initial state of X is 1. We next discuss the transitions in normal

condition as follows:

e 70, the initial transition leads to the initial state x1 as shown in Figure 4.6. It is
assumed while modeling that the constant timeout values, A; and O, have been
computed and then 70 takes place. There is no explicit event that triggers 70.

Occurrence of 70 implies that the DES model is invoked when the timeout values
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Table 4.3: TRANSITIONS

S IN H; CORRESPONDING TO NETWORK PACKET

FRAMES
Event (o) Transition (V) Assign(V) P(C) Reset(C)

,FRGHD  (z1,22) (21, 22'),(z1", x2" - ips <+ FRGHD|pgs - -
(x5, x6),(x5', 26") (x5, 26"") - ipd <~ FRGHDpp - -
- macd < FRGHDy acD - -
- dtag <~ FRGHDpDATAGRAM _TAG - -
BRNACK  (22,z1),(x2',21") (x2",21") ips = BRNACKpp - - -
dtag = BRNACKDATATGRAM _TAG - - -

BRACK (22, 23) (22, 23'),(x2", 23") ips = BRACK|pp N; «+ N; +1 - ¢+ 0
dtag = BRACK pATAGRAM _TAG - - -

BRACK (26, 27),(x6', 27') ,(x6", x7") ips = BRACKpp N;+ N; +1 - ¢+ 0
dtag = BRACKDATAGRAM _TAG - - -
- TEST _FLAG <0 - -
FRG (23, 24) (23, 24") ,(x3", 24"") ips = FRG1ps - - -
ipd = FRG1pp B } B
dtag = FRGDATAGRAM _TAG - - -
FRG (27, 28) (x7, 28"),(x7", 28") ips = FRG1ps FRGorrspT <+ RND1 - -
ipd = FRGrpp - - -
dtag = FRGDATAGRAM TAG - -
FRG (28, z8),(x8’, z8'),(x8", 28" ips = FRGps - - -
ipd= FRGpp N N .
dtag = FRGDATAGRAM _TAG - - -
RND2 # FRGorpseT B B -
DPNACK  (z4,z5),(x4’,25") (x4", x5") ips = DPNACKpp - i <Ay -
dtag = DPNACKpATAGRAM _TAG - - -
DPNACK (28, 29") ips = DPNACKpp - ci < APl -
ipd = DPNACK ps B } .
dtag = DPNACKpDATAGRAM TAG - - -
macd = mac’ - - -
PRDACK  (z4,zl),(z4’,z1’) (4", z1") ips = PRDACK|pp N; <0 - -
ipd = PRDACK pg B B, B
dtag = PRDACKpATAGRAM _TAG - c <A -
PRDACK (28", 29" ips = PRDACK pp N; <0 - -
ipd = PRDACK pg , - ,
dtag = PRDACKpDATAGRAM _TAG - ¢ < A;Pe -
macd = mac - - - -
RTO (z4, x1) (x4’ 21") (zd" , z1") N; < @;macd - i > A -
RTO (x4, x5) (x4’ z5") (x4" | £5"") N; = @;macd - i >N -
RTO (28, 25),(x8', 25'), (8", 25") N; < |ND;| TEST FLAG « 1 ¢ > Ayird -
RTO (28, z1) N; = |[NDj| TEST_FLAG « 1 ¢ > Agird B
attack’ (z1,x1") - id = mac’ - -

are not NULL. Table 5.2 shows initial(70) = ——, i.e., there are no initial states

and final(70) = 1. ¢ = TRUFE means that transition 70 is always enabled and
x1 is automatically reached at the start of the model. check(V) = —— implies
that no condition over the model variables are checked and the condition is always
satisfiable for the transition. Value 1 is assigned to variable TEST FLAG as implied
by Assign(V) = {TEST FLAG < 1}, which in turn means that the detection of

fragmentation attacker can be started.

71 : (21 — 22) When the model is started and the current state is at z1, the
transition 71 implies that an IPv6 packet fragment of FRAG1 header type is sent.
Here, initial(t1) = z1 and final(7l) = 22. ¢ = FRGHD implies that transi-
tion 71 is enabled when FRAG_SND_ HANDLER() generates event FRGHD
(i.e., after a FRAGI is sent). check(V) = —— meaning that no condition need to
be satisfied and Assign(V) = {ips <+ FRGHDjpg,ipd < FRGHD;pp,macd <+

FRGHDacp,dtag < FRGHDparacram 1A} The parameters that uniquely
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identify a fragment header of a datagram are source IP, destination IP, destination
MAC and datagram tag. Consequently, all the parameters that correspond to the

header are stored in the model variables, ips, ipd, macd and dtag.

72 : (22 — z1) At state 22, the transition 72 implies that a negative buffer ac-
knowledgement is received. ¢ = BRNACK implies that 72 is enabled when the
FRAG SND _ HANDLER() generates the event BRNACK (i.e., after a buffer
NACK is received). check(V) = {ips = BRNACKpp, dtag = BRNACK prac}
and Assign(V) = ——. Satisfaction of the conditions over the model variables, ips
and dtag, ensure that the buffer NACK is a response to the header fragment sent in

71. No assignments are done in this transition.

73 : (22 + 23) At state 22, the transition 73 implies that a buffer acknowledgement
has arrived from a next hop node for some sent FRAGI1 type fragment. Here,
initial(73) = 22 and final(73) = x3. 0 = BRACK corresponds to enabling transition
73 after the FRAG SND HANDLER() generates the event BRACK implying
that a buffer ACK has arrived and the condition on the model variables in check(V)
are satisfied. check(V) = {ips = BRACKpp,dtag = BRACK pATAGRAM TAG}-
Similar to the situation described for 72, the conditions over the model variables, ips
and dtag, ensure that the ACK packet is a response to 71. Assign(V) = {N; < N;+1}.
The counter variable, IV, used to keep track of the buffer allocations, is incremented.
Reset(C) = {c¢; + 0} indicates that the retransmission timer, modeled using the clock

variable ¢;, is started.

74 : (x3 — x4) At state x3, the transition 74 corresponds to sending an IPv6
packet fragment of FRAGN header type. ¢ = FRG implies that the transition
74 is enabled when the FRAG SND HANDLER() generates the event FRG.
check(V) = {ips = FRGps,ipd = FRGpp,dtag = FRGparacram Tac}. The
conditions over the model variables if satisfied ensure that the FRAGN belongs to the
same datagram and bears the same source and destination address. No conditions on

the clock variables need to be satisfied here.

78 (x4 — x5) At state x4, the transition 78 implies that a duplicate NACK intimation

message is received. ¢ = DPNACK implies that the transition is enabled when
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the FRAG _SND_ HANDLER() generates the event DPNACK. check(V) =
{ips = DPNACK|pp, dtag = DPNACKDATAGRAM_TAg}. The condition check on
the model variables ips, and dtag are used to ensure that the intimation is received as

a response to the datagram sent in 71.

715 : (8 — x5) At state x8, the transition 715 corresponds to a retransmis-
sion timeout. ¢ = RTO implies that the transition 715 is enabled when the
FRAG SND HANDLER() generates the event RT'O. check(V) = {N; < |ND;|},
Assign(V) = {TEST _FLAG « 1} and ®(C) = {¢; > A;*?}. The condition over
the model variable NV; is checked to send datagram probes via other next-hop nodes.
Assign(V) makes TEST FLAG = 1 which means that the attack detection phase
can restart, i.e., FRAG_SND HANDLER() can again receive acknowledgements
on sent datagrams from receiver nodes and duplicate intimation from other IDS nodes.
®(C') implies that 715 is enabled when the clock variable overshoots the retransmission

timeout.

as: {1515 15"

all: {Ty0.T10" Tag 't

a1l Tt Tt 5 {13T13'Tas™

al5: {1y T35 Ty5

ad: {1315, 13"} aldk «{1“.114‘;:14"

a2: {T15".15"}

ab: {15,175, 15"
a7: {14,77'17"}

71 al: {ty 1y 1"} i

al: {1,,1," 1, "}

Figure 4.7: Diagnoser O for DES model H;
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I-DES behavior under attack circumstances

The DES model under rank or version attack condition launched by attacker A; is shown
using the states in X4, = {z1’, 22/, ..., 29’} and transitions, {71’, 72/, ..., 717'}. Similarly
for attacker type As, states and transitions are represented using double prime notation,
Xa, = {21”, 22", ..., 29"} and transitions, {r1”, 72" ..., 717"} as shown in Figure
4.6. The DES model behavior under different attackers are mostly identical except two

transitions that differentiate them which are discussed.

e At state x1, the system reaches an attacker type state z1’ or z1” following an

unmeasurable attack transition ((Definition 1, Appendix A)) 70’ or 70", respectively.

o 716" : (28 — x9') At state x8', the transition 716’ corresponds to duplicate fragment in-
timation for the datagram probe sent via a known 1-hop node. ¢ = DPN ACK implies
that the transition is enabled when the FRAG _SND HANDLER() generates the
event DPNACK. check(V) = {ips = DPNACKpp,ipd = DPNACK|pg,dtag =
DPN ACK gtq4, macd = mac’}. The conditions over the model variables, ips, ipd and
dtag, ensure that the duplicate NACK intimation is a response to the datagram probe
header fragment in 710’. The model variable macd holds the MAC address of the
next-hop node via which the probe was sent. 716" ensures that macd holds the IP
address of attack node A;. An intimation for probe sent via a node with MAC address
stored in macd is a fragment duplication attack. ®(C) = {¢; < A;P?} means that ¢;

does not exceed the retransmission timeout period.

Local I-Diagnoser

The property of I-diagnosability pertaining to fault diagnosis in I-DES has been discussed
in Section 5.2.6 of the previous chapter. Here we use a set of IDS each consisting of a local
I-diagnoser. Each of the local I-diagnosers are basically observer automatons. Given a
measurable trace executed on the model, the diagnosers, constructed from corresponding
I-DES models, give an estimate of membership of the current system state in the model
among normal or any attacker type state from H;, locally. An alert is generated when it
can be ascertained that the current state belongs to an attacker type. It is also notified as

to which attacker type the corresponding belongs. Details of the diagnoser construction
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procedure and definitions pertaining to diagnosability are highlighted in Appendix B. Now,
an attack node is I-diagnosable in finite time, if the I-diagnosability condition is met
(Fi-1-Diagnosability property is satisfied, see Definition 6, Appendix B). A lemma on the
I-diagnosability property states that lack of attack A;-indeterminate cycles (Definition
14, Appendix C) having an embedded indicator transition (Definition 13, Appendix C)
guarantees I-diagnosability. Global I-diagnosis is guaranteed due to local I-diagnosis across
any of the IDSs [169].

Figure 4.7 shows the constructed diagnoser for our DES model H;, considered in Figure
4.7. The working mechanism of our diagnoser is summarised here by showing one or more

executions of sequences of measured events (transitions) as follows:

1. The initial state of the model H;, z1, and states 1’ and 21” reachable via unmeasurable

attack transitions, 70’ and 70", form the initial state of the diagnoser, z1.

2. Let §,1 = {r1,71', 71"}, i.e., the outgoing transitions from model states {1, 21’, 21"} €
z1. All the transitions in &1 are equivalent ((Definition 2, Appendix A)) and hence
cannot be further subdivided and hence justifies O-transition al. The O-state corre-

sponding to the transition al is 22 = {x2, 22", 22"}.

3. Let S, = {72,72/, 72"}, i.e., the outgoing transitions from model states {22, 22’ 22"} €
z2. All of outgoing transitions in &, are measurement equivalent belonging to one
measurement equivalence class of transitions, hence cannot be further partitioned.
Therefore, it justifies O-transition a2. The O-state reached corresponding to the

transition a2 is z1 = {z1, 21", 21"}.

4. Let S0, = {73,73/,73"}, i.e., the outgoing transitions from model states {x2, z2', 22"} €
z2. All the transitions in J,2, are equivalent and hence cannot be partitioned fur-
ther, justifying O-transition a3. The O-state corresponding to the transition a3 is
23 = {x3,23,23"}. In a similar manner, the diagnoser states {z4, 25, 26, 27, 28}
can be constructed using the corresponding O-transitions {a4, a6,a7,a9,al0}. The

principle can be safely extended.

5. From the definition, we can compute the Attacker; certain O-states and the Normal

certain O-states. In our example, the Attacker; certain O-state may be computed
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as 210 = {29’} since it exclusively consists of states only belonging to attacker Aj.
Similarly, Attackers certain O-state may be computed as z11 = {29”} and the normal

certain O-state can be computed as 29 = {z1}.

4.3.6 An example of fragment duplication attacker node identification

using DES Diagnoser

©;"%4 = 1 and the following events occur chronologically in the monitored RPL-

Suppose
6LoWPAN due to packets received or sent from the IDS node: FRGHD, BRACK, FRG,
FRG, FRG, RTO, FRGHD, BRACK, FRG, FRG, FRG, DPNACK.

The diagnoser starts from the O-state z1 and on occurrence of the FRGHD event,
the diagnoser moves to O-state 22 via O-transition al. The event occurs when a datagram
fragment header is sent. Now, the transition al might have been taken by the diagnoser
due to the occurrence of any of the Hj-transitions, 71, 71’ or 71”. Since the transitions
71, 71’ and 71” are measurement equivalent, it cannot be certainly said at this point if
an attack has occurred. A buffer reservation ACK is received next due to which the event
BRACK is passed to the diagnoser. The latter moves to O-state z3 via O-transition
a2. Now, a fragment of FRAGI1 header type is sent to the receiver and the event FRG
occurs. Consequently, the diagnoser reaches O-state z4 via a4. Subsequent fragments of the
same [Pv6 datagram on being sent, the diagnoser stays in the same O-state z4 due to the
self-loop transition a5. At this point, if no ACK is received before timeout, the event RT'O
is passed to the diagnoser. Since the retransmission limit, ©,7% is set to 1 at the model
start, and the model variable N; = 1, hence the diagnoser moves to O-state z5 via the
O-transition a6. The transition a6 is taken in the diagnoser due to the occurrence of any of
the H;-transitions, 76, 76’ or 76” which are measurement equivalent. The header fragment
FRAGI of a datagram probe is sent via an alternate next-hop node due to which the event
FRGHD occurs and the diagnoser moves to O-state z6. Analogously, the diagnoser O-state
evolves to 28 via the O-transitions a9 and 10 when a buffer ACK is received and fragments
are subsequently sent. Eventually, when the DPN AC'K event occurs, suppose the diagnoser
moves from O-state 28 to O-state 210 = {29’} via O-transition a13 due to the model
transition 712". Since the O-state 210 reached by the diagnoser is an Attacker;-certain

O-state, it is ascertained that the system is under attack condition due to attacker node Aj.
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Moreover, since there are no Ag-indeterminate cycles [46, 45], along all paths of the DES
diagnoser, an unique malicious node Ay, when present, can be identified correctly. On each
such occasion when the diagnoser reaches an Attackery-certain state due to an event trace,

an alert is generated.

Figure 4.8: An arrangement of IDS and non-IDS 6LoWPAN nodes

4.3.7 Correctness and Completeness

DES modeling aids in formalizing a system to check correctness and completeness [44].
We demonstrate correctness and completeness of our proposed IDS here, by taking into
consideration all possible cases of fragment duplication attack. We show that an attacker
node is correctly identified. We use the RPL-6LoWPAN instance shown in Figure 4.3 for our
proof, where T4, Zp and Z¢ are the IDS nodes. Among R, S, T, U and V, let us suppose
R and S are the two suspected attack nodes and can be related to nodes A; and A, used
in our DES model. Since there are no Attackeri-indeterminate cycles in the diagnoser O
shown in Figure 4.7, therefore the diagnosability condition is satisfied [45]. This means that
location of an attacker Ay in the monitored network is always diagnosable.

We now prove the completeness by justifying why all attack cases can be detected from

the traces in H;. We show that R and V are always correctly identified as attack node
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when the corresponding attacker certain state is reached in the diagnoser. An arrangement
of nodes as shown in Figure 4.8 is considered, where an attack might have been launched
by node R, S or V. T is not considered an attacker for demonstration of the following
proof. For simplicity we assume ©;7%? = 1 and datagram D has only 2 fragments, F'1
and F2. Suppose Z4 sends a datagram D to U. While D is reassembled and forwarded
at the intermediate hops, namely, T', S, and Z¢, the packet is eavesdropped. As a result,
overlapping fragments are reported to Z4 by Z¢o. All the attack cases where R and V' are
attack nodes are enumerated below. Identification of S can be carried out in the same
procedure as demonstrated.

Case I: R, S, V are attack nodes In this case, we consider all three, R, S and V,
are attack nodes. Suppose, a datagram D is to be sent from Z4 to U. Accordingly, it is
forwarded to the next-hop node T'. In the diagnoser O, this can be understood as O-states
evolving from z1 to z4 due to O-transitions al, a3, a4, and a5. It may be noted that we do
not consider explicit packet drops for our demonstration, unless dropped due to an attack
activity. So T is forwarded to S in the next-hop. Since S and V are both attack nodes
and S lies in the range of V', so overlapping fragments are present during reassembly at
S due to V or R. Accordingly, since S is also an attack node, hence D with overlapping
fragments are forwarded to Zc. Now, FRAG _RCV _HANDLER() at Zc on its behalf
sends an intimation to the source node, Z4. The FRAG SND HANDLER() at Z4 on
receipt of the intimation packet generates event D PN AC K which is passed to the diagnoser.
Consequently, it updates its O-state and moves to z5 due to O-transitions a6. Next, a
datagram probe D’ with overlapping fragment, let F'1, is sent via R to Zg. Also note that
R lies in the range of S and outside the radio range of V. Now, the current state of the
diagnoser reaches O-state z8. Since R is an attack node, it refrains from discarding the
packet and forwards it to Zg. In turn, Zp comes to know about the fragment duplication and
intimates Z4. Again, the FRAG SND HANDLER() at Z4 on receipt of this intimation
packet generates event DPNAC K. When this event is passed to the diagnoser, O moves
from 28 to 210 which is Attackeri-certain O-state (A; can be related to R, and Az to V).
This is because the fabricated probe datagram was sent via next-hop node, R. Therefore,
attack node R is correctly identified.

Case II: R, S are attack nodes and V' is non-attack node Since R and S are the
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attack nodes here, the attack characteristics are similar to the situation described above
with the only difference that D is infiltrated due to R or S, a forwarding node, itself. Here
again, the diagnoser reaches Attackeri-certain O-state z10 and R is correctly identified as
an attack node.

Case III: R, V are attack nodes and S is non-attack node Considering R and
V' are the only attack nodes, attack characteristics are similar except that D is discarded
by S when duplicated by R or V. Hence, instead of a duplicate fragment intimation, event
RTO is invoked by the FRAG _SND_ HANDLER() at T4 due to clock timer exceeding
retransmission timeout A; while waiting on an acknowledgement. The diagnoser consequently

©;m% = 1. Again

moves to state z5 due to the shared event, RT'O, and since we assume
D’ is forwarded to next-hop R. R being an attacker refrains from discarding the packet
and forwards it to Zg in the manner similar to descriptions above. The diagnoser reaches
Attackeri-certain O-state z10 confirming that R is an attack node, correctly.

Case IV: R is an attack node while S, V' are non-attack nodes The situation
here is again analogous to the situation described above. When D and D’ are both sent,
the network event occurrences are all similar here except that R is the only eavesdropping
attacker in both of the scenario. The diagnoser reaches z10 here as well and attack node R
is correctly identified.

Case V: S, V are attack nodes and R is non-attack node Since S and V are the
attack nodes here, in the first phase an intimation is received from Zs and the diagnoser
reaches O-state z5. Subsequently, D’ is sent by the FRAG_SND HANDLER() (on
behalf of Z4) to next-hop node R. The datagram is eavesdropped and .S supposedly times the
attack and sends a overlapping fragment, F'2. Diagnoser O consequently moves to O-state
z8. R notices a duplication during reassembly and discards the packet, since it is a normal
node. On retransmission period clocked over, the event RT'O is invoked and the diagnoser
reaches z5. Now, the datagram D’ is sent to next-hop node V' with destination address of
Zc in FRAGI. Since V' is an attack node, it follows the same procedure as described for the
case of R and S as attacker in Case I. Consequently, due to events generated, the diagnoser
reaches O-state z11 which is an Attackera-certain O-state. V' (is same as Ag) is therefore
correctly identified.

Case VI: S is an attack node while R, V are non-attack nodes The situation
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here is similar to the situation described above with the only difference that V' is not an
attack node this time. Therefore, at z5, when datagram D’ is sent via next-hop node V, V
discards it and consequently the diagnoser reaches O-state z5 on ¢ exceeding A;. Since R
and V are not attack nodes, no decision is accordingly arrived at the diagnoser.

Case VII: V is an attack node while R, S are non-attack nodes The situation
is similar to the one described in Case IV with V playing a similar role as R. Accordingly,
the diagnoser reaches O-state z11 and V is correctly identified as an attack node.

So, all the possible cases of attack by R and V are analyzed. The diagnoser correctly
reports the network condition by identifying the corresponding attacker type states, for each

case.

4.4 Performance evaluation

We have executed three experiments in Contiki cooja [155] and one on a real testbed at
FIT IoT-LAB [156]. Cooja and FIT IoT-LAB have been already introduced in Section 3.4.
We have used two types of topology T'1 and 72, as shown in Figure 4.9. In topology 1 (7'1),
IoT nodes are distributed very densely, whereas in topology 2 (7'2) nodes are distributed
sparsely. The hop count is more in T2 as compared to T'1. The simulation/ experimental
parameters of Contiki cooja and FIT IoT-LAB are presented in Table 4.4. To examine the
experimental performance of our proposed solution, three types of scenarios are designed as
part of the experimental setup: 1) Non-FDA scenario, 2) FDA scenario, and 3) FDA with

the proposed solution. The comprehensive analysis of all the scenarios are given below.

RPL Root node RPL Root node

(a) Topology 1 (b) Topology 2

Figure 4.9: Topology considered for testbed and simulation experiments
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Table 4.4: Simulation and real-time test-bed parameters

Parameter name Simulation Real time testbed
Operating system %?)rrllfclillili i%’ Contiki-NG
Simulator/Testbed Cooja Cooja FIT IoT-LAB
Network size 32, 64, 128 nodes

Radio Environment UDGM

Node Type Tmote Sky ToT-Lab A8
Routing Protocol RPL RPL Lite
RPL Objective Function MRH%I;E) ETX, MRHOF - ETX
MAC/adaptation layer Contiki MAC/6LoWPAN
Transmitter output power (dBm) 0 to -25

Receiver sensitivity (dBm) -94

Radio frequency 2.4 GHz

Attack Modeled Fragment duplication attack (FDA)
Experiment Duration 60 minutes

4.4.1 Experiment 1: Non-FDA scenario

This experiment is conducted with varying number of IoT nodes (i.e., 32, 64, and 128 nodes)
and it is noted as to how the IoT network parameter performances change. Similar to
the non-rank attack scenario experiment outlined in Section 3.4.1, Wireshark and power
trace tools are used for network traffic analysis and A8-type nodes with Grenoble areas
are used in real testbed. The adopted parameters while running the testbed experiments
are specified in Table 4.4. Figure 4.10 shows packet delivery ratio (PDR), average energy
consumption (AEC), average end to end delay (AEED), and throughput (THP) with the
respective different packet size (i.e., 128 byte, 256 byte, and 512 byte). Figure 4.10 (a) and
(b) show experimental analysis with topology 1 (dense) topology 2 (sparse) in Contiki cooja
and FIT IoT-LAB. This analysis shows PDR, (83.82% — 98.30%), AEC (68mJ — 298.3m.J),
AEED (19% — 26%) and THP is (84.23% — 97.63%) in a non-FDA scenario. This is due
to the reason that in non-FDA scenario, packet delay, packet reordering, packet alteration,
and dropping of legitimate packets are a minimum. Hence in a FDA scenario, this analysis

shows that average THP, EED, EC and PDR is moderately good.

Experiment 2: FDA scenario

The FDA scenario is executed with IoT nodes ranging from 32 to 128 nodes, i.e., 32, 64,
and 128. We incorporate attack nodes during our experiments. These nodes generate

duplicate packet fragments and alter packets. We examine the PDR, EED, EC, and
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Figure 4.10: Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (non-FDA scenario)

THP with different malicious nodes and by varying node density. Traffic generated from
FDA scenario is analyzed using collect view modules for simulation analysis purposes.
Similarly, we use Sysstat [157] and iperf tool [158| for real testbed analysis. Figure 4.11
(a) exhibits a considerable degradation in PDR, EC, EED, and THP, i.e., (34.3% — 52.2%),
(114.3mJ — 308.9m.J), (44.3% — 55.9%) and (33.79% — 51.87%), respectively in Contiki
cooja simulations. Figure 4.11 (b) also shows similar types of outcomes i.e., (29.8% — 48.5%),
(124.3mJ — 321.9m.J), (49.8% — 59.3%) and (37.52% — 54.27%) in FIT IoT-LAB. Figures
4.11 (a) and (b) show the PDR and THP graph to be going down significantly. The average
PDR and THP value are reduced in the FDA scenario, both in simulation and real testbed.
All experiments show huge AEC with reduced PDR, and THP. The reason is that the FDA
is launched using duplicate fragment, packet drop, and packet alterations. Table 4.5 presents
the performance parameters (i.e., PDR, EC, EED, and THP) that significantly affect the
IoT ecosystem performance. Based on the tabulated results presented in Table 4.5, it can be
observed that increased IoT node count incurs a huge number of duplicate fragments. Hence
it consumes extra network energy, due to usage, and node power. Table 4.5 also highlights

the performance analysis with three different sizes of a packet and different node densities.

4.4.2 Experiment 3: FDA scenario with proposed solution

In this scenario, experiment 2 is executed with a proposed solution in simulation and a real
testbed, several times. We consider 32, 64, and 128 IoT nodes, and experiments run for
3600 Sec with the proposed approach. The performance analysis of all experiments is based

on the following metrics:
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Figure 4.11: Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (During FDA scenario)

e Packet delivery ratio (PDR): It is the ratio between the number of packets received
Precyi at the receiver node and the total number of packets sent Pse,g from sender

node. The PDR is estimated using the following Eq. (4.4).
Precvi

send

PDR = x 100 (4.4)

e Average energy consumption (AEC): In general, it is calculated by taking the total
amount of energy required for delivering packets during an experiment and dividing
it by the number of packets delivered Pp. The energy consumption estimated using
Eqn (4.5).

Energy(mJ) = [(CPU x 1.8mA) + (LPM x 0.0545mA)
+ (Transmit x 19.5mA) (4.5)
+ (Receive x 21.8mA)] x 3V/Rtimer x 8

Energy (mJ) (4.6)

AEC (mJ) = 2
D

e Average end to end delay (AEED): It defines the average time it takes to deliver

packets under an experiment. The formula to calculate it is as follows.

Total EED
ABED = Total Packets Delivered (4.7)

o Throughput (THP): This metric measures the ratio of the network throughput in the
presence of FDAs with respect to the observed network throughput in the absence of

FDAs.
THP — throughput in F'DAs scenario

= x 100 4.8
throughput in normal scenario (4.8)

e Accuracy (ACC): It denotes the percentage of correctly classified flows as true attack
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Table 4.5: PDR, EC,EED and THP values for IoT ecosystem (During attack)

PDR (%) EC (mJ) EED (%) THP (%)
Packet size 128 bytes
Packet Size 32N 64N 128N 32N 64N 128N 32N 64N 128N 32N 64N 128N
T1 69.8 64.2 609 982 118 199 19.5 22.7 28.6 61.8 584 50.7
T2 73.5 689 64.1 110 132 221 224 259 327 64.6 622 555
Packet size 256 bytes
T1 62.4 60.6 51.7 109 139 227 23,6 279 33.8 683 61.5 44.1
T2 67.3 63.2 584 125 176 289 27.3 383 447 769 69  48.7
Packet size 512 bytes
T1 56.2 38.9 373 189 289 477 335 543 582 419 39.7 333
T2 59.2 41.7 379 209 302 498 374 59.5 61.3 485 442 379

or true legitimate flows with respect to total number of flows. Accuracy is given by:

ptr

ACC = —————
ptq+r+s

x 100 (4.9)

where, p = Attacker nodes identified accurately q = Attacker nodes identified wrongly

r = Genuine nodes identified accurately s = Genuine nodes identified wrongly.

e Memory Consumption (MEMC): It shows the percentage of memory utilization of the

IoT devices to run proposed solution, throughout the experimentation.

o Attack Detection Time: This performance metric shows the time taken to identify the

attack.

Figures 4.12 (a) and (b) show the performance analysis of our proposed solution during
the simulation and real testbed, respectively. Figures 4.12 (a) and (b) show outstanding
results like PDR (94.6% — 98.7%) , AEC (112 mj — 314 mj), AEED (19.3% — 26.4%), and
THP (96.5% — 98.7%). In Figures 4.12 (a) and (b), the PDR and THP graph can be seen
to significantly progressing upward. The average PDR and THP value were improved by
(42.6% — 56.2%) and (38.8% — 48.4%), respectively. Figures 4.13 (a) and (b) also show
ACC and FDA detection time graphs with topologies, T'1 and T2. Table 4.6 presents the
performance analysis during the recursive execution of our proposed solution in Contiki
cooja and FIT-IoT LAB, by varying the count of IoT nodes and with different sizes of
packets. Based on Table 4.6 outcome, we noticed that different size of network and packet
sizes (i.e., 128, 256, and 512) give the distinct value of network performance metrics. Based

on Tables 4.5 and 4.6, we observed that our solution takes the minimum amount of AEC
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and AEED. The reason is that the proposed solution with probing identifies the malicious

node and minimizes duplicate packet fragments, and modifies genuine packets.
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Figure 4.12: Analysis of average PDR, EC, EED, and THP over different packet size with
64 node (After solution implementation)
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Figure 4.13: Analysis of ACC and FDA over different packet size with 64 node (Topology 1
and Topology 2 used)

4.4.3 Comparison with the existing works

This subsection presents the comparative analysis of the proposed FDA detection approach
with state-of-the-art solutions. To achieve fair results, we conducted simulation and real
testbed experiments. All experiments were repeated many times to create tight confidence
intervals. In general, the results did not show much variance between simulation and
real testbed. To measure the performance metrics, we have used collect view modules,

Sysstat, and iperf tool for simulation and real testbed analysis. We consider seven different
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Table 4.6: PDR, EC,EED and THP values for IoT ecosystem (After solution Implementation)

PDR (%) EC (mJ) EED (%) THP (%)
Packet size 128 bytes
Packet Size 32N 64N 128N 32N 64N 128N 32N 64N 128N 32N 64N 128N
T1 69.8 64.2 609 982 118 199 19.5 22.7 28.6 61.8 584 50.7
T2 73.5 689 64.1 110 132 221 224 259 327 64.6 622 555
Packet size 256 bytes
T1 62.4 60.6 51.7 109 139 227 23,6 279 33.8 683 61.5 44.1
T2 67.3 63.2 584 125 176 289 27.3 383 447 769 69  48.7
Packet size 512 bytes
T1 56.2 38.9 373 189 289 477 335 543 582 419 39.7 333
T2 59.2 41.7 379 209 302 498 374 59.5 61.3 485 442 379

Table 4.7: Comparison of the proposed scheme with the closely related works

References SIM/TB PDR AEC AEED THP ACC MEMC (RAM/ROM) SCAL ADT (msec.)
Hummen [1] Contiki cooja 98%  289.5mJ N/A N/A  N/A 41750/9502 byte No (500-640) msec.
SecuPan|2] Contiki cooja  97.6% 280 mJ 80 % 96.4% N/A N/A Yes (130-160) msec.
Nikarvan|3] Testbed N/A 2514mJ] N/A N/A  N/A 46381/10211 byte No (3053-3330) msec.
[4]
Proposed Approach Cofl:t;;lbj;)‘]a 99.2% 139 mJ 92%  97.8% 99.8% 32568/7845 byte Yes (98-128) msec.

SIM: Simulation, TB: Testbed, SCAL: Scalability, ADT: Attack detection time, N/A:Not available

performance metrics, namely, PDR, AEC, AEED, THP, ACC, and ADT. State-of-the-art
methods [112] [34], consume enormous AEC, and take AEED. Hence these solutions are
very hard to implement in a constrained IoT ecosystem. Some closely related approaches
[37] detect FDA, but the deficiency of these approaches are non-scalability and increased
ADT. The performed comparative analysis is shown in Table 4.7. It can be observed that

our security solution is energy-aware, highly accurate, and yet scalable.

4.5 Conclusion

A novel 6LoOWPAN fragment duplication attacker identification scheme is presented. The
scheme proposed is decentralized and uses an intelligent probing technique and I-DES
based IDS. Traditional I-DES based IDS have been augmented, such that attacker type is
also diagnosed. Active probe packets are used judiciously to differentiate an attack node
from a normal node, which is normally lacking otherwise. Using this scheme, location of
attack node can be identified accurately. Each I-diagnoser serves as a local IDS engine that
generates an alert when an attack node is identified. Global I-diagnosis is achieved from

local I-diagnosers. We perform node elimination using kill switch such that fresh avenues of
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attack from same node is nullified. The correctness and completeness of our approach is
also proved.

The performance analysis of our proposed scheme in simulation and real testbed considers
both attack and non-attack behavior patterns, with a sufficiently large number of 6LoWPAN
nodes. The average throughput, accuracy, and response times in our proposed approach are
97.8%, 99.8%, and 98 — 128 msec., respectively. The observed results show our approach is
energy-efficient than existing works. It is scalable, achieves minimum false positives, and
higher accuracy with lower detection time.

The network and adaptation layer attacks have been mitigated successfully using
centralized I-DES and decentralized I-DES frameworks. In the proposed I-diagnosability
based DES frameworks, indicator events are used to identify the attack node. Suitable active
probe packets are sent while the generated responses are validated to test the ingenuinity of
network traffic. However, there exists a class of spoofing attacks that exploit the application
layer IoT protocol, CoAP, to make target either server or client nodes vulnerable, and
cause Denial of Service (DoS). For CoAP request/response spoofing attacks, active probe
packets are not sufficient for deterministic diagnosis, since spoofed CoAP probe request
or response packets resemble the original ones. Moreover, attacker may be on-path which
further complicates detection, since the original packet may be dropped. Hence, there
exists paths in the I-DES model which lead to attack uncertain states, making I-diagnosis
frameworks incapable to guarantee identification. To deal with such scenario, decentralized
I’-diagnosability based DES frameworks are adopted and extended to detect and identify
CoAP request /response spoofing attacker. Our proposed scheme utilises I2-DES based IDS,
empowering events and indicator events. The probe packets injected are spoofed CoAP
request /response packets. Attacker diagnosis is tested only through those paths that contain
an empowering event and indicator event after an attack has been launched. The proposed
identification scheme is successfully verified in simulation with variable number of nodes.
The results show effectiveness of our technique with achieved accuracy of more than 99%

and response times as low as 6 seconds.
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CHAPTER

Mitigation of CoAP request/response
spoofing attacks

The Internet of Things (IoT) technology has revolutionised the outlook of connected devices
and IP-connected smart objects. A significant portion of such interconnected heterogeneous
devices are being extensively deployed to perform mission-critical tasks in areas such as
the health sector, energy management, industrial process control systems, etc. [4] For
uninterrupted services over the internet, a reliable end-to-end communication is demanding
for the family of constrained devices. The IoT protocol stack has been designed and adopted
with an aim of achieving such a standard [10].

IETF has standardized CoAP as an Application layer web transfer protocol to provision
for usage of Internet services in M2M applications constituting resource-constrained devices
across lossy, low-power networks [114]. Specially designed for provisioning web interoperabil-
ity, applications that make use of constrained sensing or actuating devices, having limited
power, memory and processing capabilities, render them fragile to various external threats
and DoS attacks. CoAP uses UDP as the transport protocol, which is unreliable and is
devoid of handshaking mechanism between client and server. CoAP is susceptible to various
attacks like Cross-Protocol attacks, Amplification attacks, Man-in-The-Middle (MiTM),
etc. [115] Amongst these, IP address spoofed DoS attacks can be launched at ease and
is the focus of our work here. Moreover, it can help mount stealthier attacks when used
in combination, such as amplification attacks. Availability of devices and accessibility to
services can be immensely compromised by a malicious endpoint that is exercising read and

write access.



Research works reported in the literature have undertaken numerous countermeasures
to effectively mitigate DoS attacks in general. Mostly, the adopted approaches either employ
host-based, router-based or hybrid techniques [116]. Adaptive solutions employing frequency
based approaches have been successfully used to detect mixed-rate IP spoofed DDoS attacks
[117]. Off-path response spoofing attacks in TCP and DNS have been analyzed thoroughly
in the literature [118, 119]. A countermeasure based on source-port randomization has
been proposed for an off-path attack on TCP [120]. In, they launch an off-path attack by
analyzing the remote server access support in CoAP and a request spoofing vulnerability.
Request spoofing is also shown to be mitigated using machine learning based approaches
[121].

The proposed schemes, except a few, do not address mitigation techniques for request
spoofing attack in LoWPAN applications using CoAP. None of the reported works have
attempted identification of malicious or misconfigured endpoints in the past. Owing to
the similarity between diagnosis of faults and detection of network attacks in DES, we
employ DES based IDS [122, 48]. However, I-diganosability frameworks are not sufficient
to generate responses such that an attacker can be identified. We employ I?-Diagnosability
based DES framework that uses empowering events along with indicator transitions.

Enumerated below are our contributions in this work:

1. We design a novel request /response spoofing attack detection and attacker identification
scheme in LoOWPAN applications employing CoAP without DTLS support. Our scheme

utilises decentralized DES based IDS, empowering events and indicator events.

2. We extend the power of traditional I2-DES based IDS with attack type modeling for

identification of malicious node.

3. We prove the correctness and completeness of our approach by enumerating all the

attack cases.

4. The results demonstrate an energy efficient and scalable solution at considerably lesser

response times compared to the related state-of-art solutions.
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5.1 Background

5.1.1 CoAP

Similar to HyperText Transport Protocol (HTTP), CoAP realizes a subset of REpresen-
tational State Transfer (REST) architecture that is meant to be suitable for constrained
systems. It defines a request/response model for communicating endpoints while supporting
POST, GET, PUT and DELETE methods. CoAP defines four message types, namely,
confirmable messages (CON), Non-confirmable messages (NON), Acknowledgment messages

(ACK) and Reset messages (RST).

5.1.2 CoAP Message Format

Ver| T | TKL Code Message ID
@] @ ® (16)
Token (if any)
Options (if any)
11111111 Payload (if any)

Figure 5.1: CoAP message format

The CoAP message format is shown in Figure 5.1. Messages in CoAP are binary
encoded with a fixed size header of 4 bytes. The variable length Token value can range
between 0 and 8 bytes. The header fields and their meanings are: Version (Ver): A 2-bit
integer (unsigned) binary value that indicates the CoAP version in use. Type (T): It is used
to specify type of messages (00) Confirmable (01) Non-confirmable (10) Acknowledgement
(11) Reset. Code: An integer of 8-bits of the format "c.dd". 0.00 indicates an empty
message. Message ID: An integer value of 16-bits used in duplicate detection and message
type matching. Token Length (TKL): This 4-bit integer indicates length of the Token
field (variable).
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Figure 5.2: CoAP address spoofed attack timeline

5.1.3 CoAP - IP address spoofing attack

Though CoAP supports stop-and-wait mechanism for retransmission and NON/CON du-
plicate detection, there are occasions which can be evasive and require stricter measures
to ensure security. The attack can be launched by an on-path attacker or an off-path
attacker. An on-path attacker lies on the path connecting the client to the server node
while an off-path attacker lies somewhere except the legitimate CoAP message delivery path.
We discuss the off-path attack here. Irrespective of any cryptographic implementation,the
attacker mimics the target node using address spoofing and sends identical forged packets.
RFC 7252 discusses the various ways that response and multicast request spoofing may
be performed. We here discuss the network event dynamics pertaining to non-confirmable
messages. Figure 5.2(a) shows the network of resource constrained devices with an off-path

internal attacker, A, a client node C, server node S and the root node (or, 6BR), R.

150



5. MITIGATION OF COAP REQUEST/RESPONSE SPOOFING ATTACKS

Response spoofing

The timeline of events arising from response spoofing are shown in Figure 5.2(b) and Figure
5.2(c). In the first case, C legitimately sends NON message each time to S. A times the
attack and sends a spoofed RST message to C, thus, mimicing the server. C' is deceived
and each time retransmits the packet essentially resulting in DoS. In the second case, due to
rightly received illegitimate packet, S sends back a RST message to C'. Since A has already
conveyed a RST message to C, duplicate detection capabilities of CoAP can help identify
the forgery.

Request spoofing

The request spoofing attack timeline is shown through the Figures 5.2 (d)-(f). In the first
instance, A keeps on sending NON messages using C’s identity, illegitimately, and floods
the server. The second case shows a fake NON message from A is delivered each time
before C' delivers one to S. The overhead is same as the previous scenario, but C' never
gets to know about the attack. In the third case, a RST is received by C due to the fake

message sent from A behaving to be C.

5.2 Proposed Scheme

In this section our countermeasure scheme against CoAP request/response spoofing attack
is presented. We introduce I?-DES based IDS followed by an overview of the detection
methodology using our proposed IDS. We then discuss the techniques used and algorithms
devised to identify the attacker. The construction of DES normal and DES attack models
and the diagnoser are discussed next. The correctness and completeness proof is presented

subsequently.

5.2.1 I?-DES based IDS

We introduce I-DES based IDS in Section 3.3.1. In I-DES based IDS an I-diagnoser is
used as the IDS engine, constructed from the knowledge of normal and attack type I-DES
models. Consequently, attacker location is identified only through the states that lie on

the path after an indicator event has occurred. To summarize, by using I-DES based IDS,

151



5.2. PROPOSED SCHEME

and given all possible attack instances, it can be ascertained if an attack can always be
exclusively identified, correctly and completely. However, there exists avenues when using
I-DES based IDS does not suffice in attack detection or attacker location identification in
spite of indicator events. Correspondingly, to overcome such limitations, I2-DES based
IDS is proposed in this work to identify an attack node location. Analogously, we augment
traditional I (Induced)-I-DES based IDS with attack types in our work here. In I?-DES
based IDS, an I?-diagnoser is used as our IDS engine. Empowering events are used along
with indicator events for this DES based detection methodology. To summarize, by using our
proposed I2-DES based IDSs, and given all possible attack instances, it can be ascertained

if an attack can always be exclusively identified, correctly and completely.

%0, Wireless Medium
25, —
> __ﬁ__r____ﬁ_———ﬂ“_ for LR-WPANs

. - CoAP Clients

Host-based
IDS A

— I?-DES based IDS

Standard
Ethernet 802.3
(Wired)

O Host-based

O IDS B

Figure 5.3: An example of IDS deployment

5.2.2 Design Overview

Main challenges in CoAP spoofing attack detection are (i) nodes and IoT network is resource
constrained (ii) communication sequences across normal and attack conditions are same (iii)
eavesdropping attacker may be off-path as well as on-path. Moreover an on-path attacker
can delay or drop messages making attacker localisation cumbersome. To overcome these
challenges, a decentralized approach is proposed in this work with a set of IDS, I, that are
distributed across the monitored network of IoT nodes. Each IDS, I; € I, works analogously
and independently. Besides the regular 802.15.4 communication, the set of IDS are also

connected via a wired network for reserved communication (between IDS nodes only), e.g.,
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intimation packets. Moreover, in our proposed countermeasure, the following is established
as a general rule; a CoAP packet exchange between a pair of IDS nodes, via the wireless
network, must always be preceded by a prior intimations via the wired network. The IDS
make use of this wired intimation and an intelligent probing mechanism. The probe packets
are basically crafted CoAP packets. Due to active probing, unique responses are generated
that makes an attack node differentiable from a normal node. Table 1 lists the notations
that will be used throughout. Figure 5.3 shows an example of IDS deployment in our scheme.

For simplicity we show the wired and 802.15.4 connections with 2 IDS nodes.

IoT network

CREQ,
CREQR
PFLAGS’S,
PFLAG&R
CACKRSP_
RTO

CoAP
Messages

L CoAP_REQ_Handler()
¥ Events with
CoAP_RSP_Handler() parameters | I2-DES . Attacker

Diagnoser " node

h 4

Sniffer

Host |

Figure 5.4: Architecture of the proposed IDS

Components of an IDS: The block diagram of proposed IDS with the basic compo-

nents is shown in Figure 4.4 and are discussed here as follows:

e Sniffer: It captures control and data packets in the network while working in
promiscuous mode. Relevant packets are sniffed and others are dropped. It then
forwards the sniffed packets to the components, “CoAP REQ HANDLFER()" and
“CoAP RSP _HANDLER()".

e CoAP REQ HANDLER(): The following handler module in IDS nodes are used
to process client requests and plays the server role. It monitors communication data
packets from IDS nodes and extracts information such as IP address, MAC address,

etc. It intimates a source IDS node if the requests are proved. The working procedure
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of this handler is described in Sections 5.2.4 and 5.2.5. A brief demonstration of their

role can be seen in Figure 5.5

CoAP RSP HANDLER(): The following handler module in IDS nodes are used
to process server and plays the client role. Its prime responsibility is to extract vital
information such as source IP address, MAC address from CoAP packets. It generates
events such as CREQgs, CPREQgs, FLAGg, PFFLAGg. The generated events are
passed to the DES diagnoser component. The working procedure of this handler is

described in Sections 5.2.4 and 5.2.5.

I’-DES Diagnoser: This component diganoses the attacker node and is imple-
mented as a software module. Given the knowledge of the DES model specifications
pertaining to normal and attack type conditions, the diagnoser can be constructed.
CoAP REQ HANDLER() and CoAP RSP HANDLER() pass information
regarding network events to the local I?>-diagnoser. Based on the event parameters
that are shared, the diagnoser generates an alert on attack detection or identification

of malicious nodes. The usage and construction of the diagnoser is described in Section

CoAP IDS node ‘[I
c/

", ‘o

5.2.6.

ROLE: -l
”/I \'\.‘
CoAP_REQ_Handler() CoAP_RSP_Handler()

Figure 5.5: Role of IDS

Our identification procedure consists of four phases, namely, setup, intimation, active

probing and diagnosis. We demonstrate the working methodology of our scheme here. A

pictorial representation of the workflow can be seen in Figure 4. Initially, the set of IDS

are setup using network traffic monitoring and logs relevant data. Otherwise the IDS node

behaves as any other node in the network during this stage. Each IDS will locally store the
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relevant detection parameters in array data structures, which are updated and maintained
throughout. Each IDS node contains separate client and server module for role specific tasks.
When a CoAP request or response spoofing attack is underway, an IDS server or client
module, i.e., COAP _REQ HANDLER() or CoAP RSP HANDLER(), respectively,
infers it from the following situations: (i) more than one request or response is received from
an IDS (ii) a request or response is received from an IDS without a wired intimation. On
inference, the receiver IDS will send active probe packets. On behalf of the IDS, the handler
module will send a probe intimation followed by a probe response or request packet with
dummy application data to the source IDS. The generated response to the probe packets
are validated by the I2-DES diagnoser of the receiver IDS against the DES normal and
attack specifications. The diagnoser generates an alert to the network admin if an attacker
node is identified. This concludes the diagnosis phase. Essentially, the probe response
characteristics separates an attack specific behaviour from the normal. The normal scenario
corresponds to the receipt of only one probe response with matching application data or no
response. The phases of our detection methodology are discussed below and is shown using

Figure 5.6.

5.2.3 Setup

This phase requires administrator intervention for parametrized setup of IDS. For the purpose
of Network Traffic Analysis (NTA), IDS monitors network traffic, collects the relevant data
and stores them. Essential parameters are measured, the required information is stored in ar-
rays and global constants are set during this stage. A variable ¢;7, stores the inter-frame spac-
ing with inputs from the lower layers. Each IDS maintains 2 arrays, TRES and A. A CoAP
client request embeds information, namely host IP address, port number of the URI (Unified
Resource Identifier), absolute path and URI-query, directed to intended resources. A resource
URI is a string of the form “coap://<host>[:<port>|<path>[?<query>|". Some examples of
resource URI are coap://example.com:5682/ sensors/readings.xml, coap://FF05::FD:5682/
.well-known/core, coaps://127.0.0.1/.well-known/core?rt=corel.ps, etc. Each IDS shares
and maintains a record of resource URI and client nodes depending on the history of
access requests. TRES is an array of linked list pointers used by an IDS to store resource

URI information of its associated nodes. Each array element points to a memory address
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where the list of strings, each corresponding to an unique resource URI for a particular
associated node, can be accessed. An element of the array, TRES?, therefore points to
a list of resource uris for node j. ]TRAES | signifies the size of TRES, i.e., the number of
nodes in the monitored network that have an association with it. A stores the transmission
timeout values between pairs of IDS nodes. Given an IDS node I;, A; contains the average
transmission time taken for a CoAP packet to reach IDS I; from IDS I;. Again, |A|, the

size of A, is equal to one less than the number of IDS nodes.

m CoAP handlers *-DES diagnoser

oy
- A
Maonitoring
Attacker
Setup I * intimation (RIS *| Diagnosis 11 — identified
Probing

Figure 5.6: Flow of proposed scheme

5.2.4 Inference

We discuss how a CoAP request/response spoofing attack is inferred after the IDS has
been setup. Correct inference of the attack is vital to the detection and identifica-
tion of the malicious node. Our proposed IDSs consist of two handler components,
CoAP REQ HANDLER() and CoAP RSP HANDLER(). The former plays the
role of a server module while CoAP RSP _HANDLER() plays the client role. The for-
mer handles the requests of clients on behalf of the host IDS, processes the information and
sends the appropriate responses. They are responsible for request spoofing attack inference
as well as detection in our scheme. The latter handles server responses and is responsible
for response spoofed attack inference and detection. Furthermore, these modules share the
generated events with the DES diagnoser. As already mentioned, these handler components
issue an intimation via the wired network, i.e., Channel2 (referred as C'h2), before sending
a CoAP packet via the wireless network, Channell (referred as Chl), to any IDS node.
For a CoAP receiver IDS to infer an attack in our scheme, it is a prerequisite that

the spoofed requests or responses are sent from an IDS source. For a receiver IDS, let us
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suppose I, the following four cases occur.

a request from a source IDS, let I, is received without intimation

e two successive identical requests are received from I within the distributed inter-frame

spacing
e a response from I, is received without intimation

e two successive identical responses are received from I; within the distributed inter-

frame spacing

Cases 1 and 2 are handled by CoAP _REQ HANDLER() on behalf of I,,. Cases 3
and 4 are handled by CoAP RSP HANDLER() on behalf of I,. Since a source IDS
intimation is not received apriori, it can be safely inferred from Cases 1 and 3 that the
request or responses received are spoofed. Also, since two consecutive identical requests
or responses are received within ¢;¢, it can be also concluded from Cases 2 and 4 that
one of the request or response packet is spoofed. These are shown through the lines of the

Algorithms 10 and 13.

5.2.5 Probing

In CoAP request /response spoofing attacks, due to lack of authentication mechanism and
because of unreliability in transmission, it becomes challenging to verify the ingenuity of
CoAP packets. In case only one spoofed request or response is received, there are no means to
know sender authenticity. Moreover, devices are mostly resource constrained and verification
of per packet originality is detrimental to network performance. Furthermore, even when
more than two identical packets are received, consecutively, there are no mechanisms to
judge as to which one is original. Packets therefore need to be retransmitted in such a
scenario. Again, it does not hinder the attacker from launching fresh attacks. Therefore it
becomes quintessential to identify the malicious node and also create distinguishable traffic.
In our scheme, wired intimation helps infer an attack with surety. We use an intelligent
active probing technique that helps issue differentiable responses which are passed to the
diagnoser. Given DES attack and normal models, the I2-DES diagnoser helps generate an

alert and identify the attacker.
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As soon as attack is inferred by an IDS, I,., it sends active probe packets to the source

IDS. First, I, intimates I, via Ch2. Particulars of a possible attack node is shared with
I, via this intimation. If the attack was inferred by CoAP REQ HANDLER() of I,,

then it sends a normal CoAP response RST or ACK packet to I after some random delay.
These are probe packets that the CoAP RSP HANDLER() of I understands due to
the probe intimation received beforehand. Accordingly, CoAP RSP HANDLER() on

behalf of I; will send probe response intimation packet to I, via C'h2, which it expects.

Random application data is piggybacked with the intimation. I, will set the requisite flag

and pflag variables on receipt of this intimation. Meanwhile, diagnoser sets TEST FLAG

to 0 until a response is received. While waiting on a response, array Ag is consulted for

timeout calculation.
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Figure 5.7: DES model H;
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ALGORITHM 10: CoAP _REQ HANDLER() of Z;

Data: ¢;, A, éi, N;, 7, macd, ipd
Input: Client flag, Client probe flag, CoAP request packet, CoAP probe request packet, TEST FLAG
Output: Events CREQg, FLAGR, FLAGs, CPREQg, CPRSPs, PFLAGR, PFLAGg

1 while ©; and A are not NULL do

2 if (TEST FLAG ==1) then

3 L Generate RND1 and RN D2;

4 if Flag received then

5 if probing® = false then

6 Generate event FLAGR;

7 Jj° < FLAGRps;

8 B flagfyj — 1

9 if probing® = true then

10 Generate event FLAGR;

11 if ipd®* = FLAGRrpg then

12 L d(ltCLS:FLAGRPAYLOAD;

13 flagfyipd —1;

14 else if ipd® # FLAGRpg then

15 j® < FLAGRps;

16 L flagfyj — 1
17 if pFlag received N probed® = false then

18 Generate event PFLAGR;

// Set client flag

19 probed® = true;
20 ips® < PFLAGRpgs;
21 CSidS(*PFLAGRSESSION ID5
22 if Probe Request received A probed® = true N probing® = false then
23 Generate event CPREQR;
24 if ips® = CPREQR;pg N csid® = CPREQRrsgssion 1p then
25 Generate event FLAGg; B
26 SELECT random(hez) and assign to FLAGspayroap;
27 Send flag variable status as SET to ips®;
28 Generate event CPRS Pg;
29 Send CoAP ACK response to ips®; probed® = false;
30 if Probe Request received N probed® = false N\ probing® = true then
31 Generate event CPREQR;
32 probing® = false;
33 TEST FLAG <+ 0;
34 if Request received then
35 Generate event CREQR;
36 j® < CREQRps;
37 if j5 € Z and flagfyj =1 then
38 Ni ;T
39 if Nf,j =1 then

40 L Start clock timer c§();
41 if NP> 1A c5() <tifs then

L // Function call to probing module
42 if j° € 7T and fla,gf’j =0 then
L // Function call to probing module
43 if ((ci() =2 Aj) then
44 Stop clock timer ¢ ();
// Function call to probing module

159



5.2. PROPOSED SCHEME
Table 5.1: TRANSITIONS <& IN H; CORRESPONDING TO CoAP PACKETS
Event (o) Transition P(V) Assign(V) o(C) Reset(C)
FLAGR (a3, 94) (a5, 44) (a5, alf ips® = FLAGRps flagf ;s <1 - -
macs® = FLAGRyacs - - -
csid® = FLAGRsEssIONID - - -
FLAGR (4155 d16) (a5 41s) ips® = FLAGR1ps flagf,v:ps —1 - -
macs® = FLAGRracs data® <~ FLAGRpAyLOAD - -
sid® = FLAGRsESSIONID TEST FLAG + 0 - -
probing® = true - - -
CRSPg (aa,q1),(dy, 41) (a4 ips® = CRSPRrps - cf <AF, 30
macs® = CRSPRryacs - - -
csid® = CRSPrspssioN 1D - - -
flagjiw = true - - -
CRSPr (a1, d13).(a), a5 ips® = CRSPRr;pg - cf <AL, -
macs® = CRSPryacs - cg <tifs -
csid® = CRSPRrsgssioN 1D - - -
fla.gf’yzpS = false - - -
PFLAGR (q1,q11) - ips© < PFLAGRps - .
- macs® <— PFLAGRracs - -
- csid® < PFLAGRsESSION ID - -
- z¢ < PFLAGRA1p - -
- probed® <+ true - -
CPRSPg (@17, 918)+(a1'7 as) ips® = CPRSPrrps - < Adps i
<q{5, Q;3>7<(IY67 {1{’3> macs® = CPRSPRryacs - - -
csid® = CPRSPRsgssION ID - - -
probing® = true B - - -
data® = CPRSPRpAyLOAD - - -
CPRSP}, (d16: 917):(016> 218) ips® = CPRSP}, ¢ - f < Af, -
macs® = CPRSPE, 1 cg - - -
csid® = CPRSPESESSIONJD - - N
probing® = true - - -
data® # CPRSP}p 1y 1oap - - -
ips® = ipl - - -
FLAGs (a1, a2),(a1, a5) (a7, 5 - ips® < FLAGs1pp - -
- macs® < FLAGg yacD - -
- csid® < FLAGsspssioN 1D - -
- flag,ﬁws «— false - -
CREQs (a2, a3) (a5, a3).(a3, a5 ) ips® = CREQs pp - - -
macs® = CREQS yracp - - -
csid® = CREQsspssioN 1D - - -
PFLAGs (d13, d1a)-(at's: ais) ips¢ = PFLAGspp Ki+ Ki+1 - -
macs® = PFLAGg v acD - - -
csid® = PFLAGSsgssSION 1D - - -
z¢ = PFLAGs z1p - -
- probing® = true - -
CPREQs  {q13,q1),(d14, 915),(a1 41'5) ips® = CPREQs;pp - - cp <0

macs® = CPREQS yracp
csid® = CPREQsspssion 1D
data® = CPREQs pay LOAD

5.2.6 I?-DES modeling

We model the LoOWPAN of our interest as an I? (Induced I)-DES H;, shown in Figure

5.7. The networked system model represents the CoAP request response event dynamics

occurring during normal as well as attack scenario. We formally define H; as a 6-tuple,

H;=(Q,Q0,%,V,C,). Q designates the set of finite states while a subset of ) designating

the initial set of states is represented using Qy (Qo C Q). X is used to represent the event

set, V is the finite set of model variables, C represents a set of clock variables and S is

the set of finite transitions in H;. The notion of final state is dropped, since the LoOWPAN

is assumed to be always up with frame exchanges being continuously monitored. The

definitions of the DES terminologies are presented in Appendix A. The various components
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Table 5.2: TRANSITIONS & IN H; CORRESPONDING TO CoAP PACKETS

Event (o) Transition (V) Assign(V) 9(C) Reset(C)

FLAGR (q1,45),(d}, q5),(dY  aF) - ips® <~ FLAGRps - -
- macs® < FLAGRyacs - -
- flangJS «—1 - -

FLAGR (49, 410) (a8 alo) ipd® = FLAGRps flagi ;pe <1 - -
macd® = FLAGRyacs data® <~ FLAGRpAy L,OAD - -
csid® = FLAGRSpsS1ONID TEST _FLAG + 0 B B
probing® = true - - -
CREQRr  (g5,96),(a5,95)-(a 4§ ips®* = CREQRps - ] <Ajs <0

macs® = CREQRyAcs -

csid® = CREQRsEssION 1D - - -

flagfyips = false - -
CREQR (96, 97)-(qq » 4% ips® = CREQRpg - cf < Afps -
macs® = CREQRyAcs - c§ < tifs -
csid® = CREQRsEssIOoN 1D - - -
flagfyws =true - - -
PFLAGR (q1,9s) - ips® < PFLAGRpg - -
- macs® < PFLAGRyAcs - -
- csid® < PFLAGRSESSION ID - -
- 2%« PFLAGRA;p - -
- probed® <+ true -
CPREQRr (a1, 412)5(a) 1> 4) ips® = CPREQR|ps - o <A -
(d10-97)(alo, 47) macs® = CPREQR acs - - -
csid® = CPREQRrspssioN 1D - - -
probing® = true B - - -
data® = CPREQRp Ay LOAD - - -
CPREQy  (dfo, a1} {alos ) ips* = CPREQg g - of < Ads -
macs® = CPREQR 1 405 - B -
esid® = CPREQLspssron 1p - - -
probing® = true B - - -
data® = CPREQR payroaD - - -
ips® = ipl! - - -
FLAGs (g6,q7) ips® = FLAGsps - - -
macs® = FLAGs yracs - - -
csid® = FLAGSspssioN 1D - - -
- B fl(zg;/,fymS < false - -

CRSPg (g7, q1) ips® = CRSPs pg -

macs® = CRSPsracs - - -
csid® = CRSPsspssion 1D - - -
PFLAGg (dh,a%) (d¥ a8 ips® = PFLAGspp K, + K;+1 - -
macs® = PFLAGs yjacp - - -
csid® = PFLAGSsESSION ID - - -
25 = PFLAGs A1p - -

CPRSPs (10, q1),(a%, 5)-(ag , a5 z® = CPRSPs1pp
macs® = CPRSPs yracD - - -

csid® = CPRSPgspssroN 1D - - -

data® = CPREQs payr.oAD - - -

RTOUT (910, 97):{a10, 97) Ki<M B ] )
(die> T13)- {0060 91') - - - -

of H; are discussed here.

There exist domain sets of variables from which each model variable assumes values. If
the set of model variables, V', is {v1, v, ..., v,}, then each v;, where i is a positive integer
and i € [1,n], takes some value from D;, the domain set. The clock variables assume values
from the set of non-negative real numbers, R (R = Rt U{0}). Let 7 be a transition in H;,
7 €. We define it as a 7-tuple, 7 = (z, 27, 0, ¢(V), ®(C), Reset(C), Assign(V)), where
x is the source state and x™ denotes the destination state. The occurrence of event o,
o € 3, enables transition 7. ¢(V') denotes a boolean conjunction of equality or non-equality

conditions defined over a subset of the model variables. It needs to be TRUE for a transition
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5.2. PROPOSED SCHEME

ALGORITHM 11: CoAP _REQ_ HANDLER() Probing Module of Z;

Generate event PFLAGg;

SELECT random(z), and assign © to PFLAGg o;p, * € IPLIST;
Send probe flag to j°;

N7, = 0; Wait();

Generate event C PRS Pg;

Zpds — CPRSPSIPD7

csid® < CPRSPsipp;

probing® = true;

Send CoAP probe response to j°; Start clock timer ¢§();

ALGORITHM 12: CoAP RSP HANDLER() Probing Module of Z;

Generate event PFFLAGg;

SELECT random(z), and assign © to PFLAGg o;p, * € IPLIST}
Send probe flag to j¢;

Nf; = 0; Wait();

Generate event CPREQg;

ipd® < CPREQspp;

csid® <+~ CPREQsipp;

probing® = true;

Send CoAP request to j¢; Start clock timer c§();

Stop clock timer c§();

to fire. An invariance condition defined over a subset of the clock variables, C' is denoted
using ®(C) while Reset(C) denotes reset of a subset of clock variables. A subset of model
variables are assigned values, and a set of such assignments is represented using Assign(V).

"' it might mean that a

If in some transition, 7, ¢(V') or Assign(V) is denoted using
condition need not be met (i.e., implicitly TRUE) or an assignment is not required.

Communication in the LoOWPAN is modeled using the below mentioned variables:

V= {A, ©;, Ni, ¥i, macd, ipd, ipl, ip/'} is the set of model variables.

C = {c§, cf, §, c5} is the set of clock variables.

The domain of the model variables {ips, ipd, ip!, iptt} is of the form {z.z.x.x}, where
x denotes an integer value in the range [0, 255]. The state set, @, including the initial set
of states in @, is disjointly partitioned into sets Qn, Qa, and @4, as shown in Figure
5.7. Qn refers to the set of states visited during normal operation of the LoWPAN at the
Application layer, while the states of the form Q4,, 1 <1i < 2 (designated here using primed
states), belong to the network operation when under attack launched from actual node, A;,
independently. Tables 5.1 and 5.2 list elements from the event set, 3, with their associated
transitions. There exists events occurring in the system, which we model here, that may be

unmeasurable. Hence event set can be expressed as a disjoint union of measurable events

and unmeasurable events X, and X, respectively. That is, ¥ = ¥, U Xym.

162



5. MITIGATION OF COAP REQUEST/RESPONSE SPOOFING ATTACKS

ALGORITHM 13: CoAP_RSP_HANDLER() of I,

Data: c¢;, A, ©;, N, 7;, macd, ipd
Input: Server flag, Server probe flag, CoAP response packet, CoAP probe response packet, TEST FLAG
Output: Events CRSPr, FLAGRr, FLAGgs, CPRSPgr, CPREQs, PFLAGR, PFLAGg

1 while 6; and A are not NULL do

2 if (TEST FLAG == 1) then

3 L Generate RN D1 and RN D2;

4 if Flag received then

5 if probing® = false then

6 Generate event FLAGR;

7 J¢ 4 FLAGRps;

8 | flagfﬂj +— 1

9 if probing® = true then

10 Generate event FFLAGR;

11 if ipd® = FLAGRpg then

12 L dataC:FLAGRPAYLOAD;

13 flagfyipd «— 1;

14 else if ipd® # FLAGR;pg then

15 ]C<—.FL.AC;RIPS7

16 L flagf’j —1;
17 if pFlag received N probed® = false then
18 Generate event PFLAGR;

// Set client flag
19 probed® = true;
20 ipSC%PFLAGijs;
21 CSidc%PFLAGRSESS[ON ID:
22 if Probe Response received A probed® = true A probing® = false then
23 Generate event CPRSPg;
24 if ipSC = CPRSPRIPS A csid® = CPRSPRSESSION ID then
25 Generate event FLAGg; B
26 SELECT random/(hez) and assign to FLAGs payLoAD;
27 Send flag variable status as SET to ips©;
28 Generate event CPREQg;
29 Send CoAP request to ips®; probed® = false;
30 if Probe Response received A probed® = false A probing® = true then
31 Generate event CPRS Pg;
32 probing® = false;
33 TEST _FLAG <+ 0;
34 if Response received then
35 Generate event C' RS PrR;
36 ]C<—C’1{S,PRIPS7
37 if j° €7 and flagicyj =1 then
38 NEs 4+
39 if N7, =1 then
40 L Start clock timer c§();
41 if Nf;>1Ac5() <tifs then
L // Function call to probing module
42 if j¢€Z and flagf’j =0 then
L // Function call to probing module
43 if ((cf() = A%) then
44 Stop clock timer ¢§();
// Function call to probing module
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Table 5.3: Notations used

Notation Explanation

CREQgR, CREQg CoAP request packet received, sent
CRSPRr, CRSPg CoAP response packet received, sent
FLAGR, FLAGg Flag intimation packet received, sent

PFLAGR, PFLAGg | Probe flag intimation packet received, sent
CPREQRr, CPREQgs | CoAP probe request packet received, sent
CPRSPr, CPRSPs | CoAP probe response packet received, sent
RTOUT Retransmission timeout

I2-DES behaviour under normal circumstances

The behavior of H; under normal circumstances is shown in Figure 5.7. The system, when

functioning normally, is represented using the states {qi, q2, ..., ¢i3} and the transitions

{70, 11, ..., T17}. The initial state of Qg is ¢;. The transitions are listed in Tables 5.2 and

5.1. We next discuss the transitions in normal condition as follows:

e 70, the initial transition leads to the initial state ¢; as shown in Figure 5.7. It is assumed

while modeling that the constant timeout values, A and O, have been computed and
then 7y takes place. There is no explicit event that triggers 79. Occurrence of 7
implies that the DES model is invoked when the timeout values are not NULL. Hence,
initial(T9) = ——, i.e., there are no initial states and final(7y) = z1. o = true means
that transition 7y is always enabled and ¢; is automatically reached at the start of
the model. check(V) = —— implies that no condition over the model variables are
checked and the condition is always satisfiable for the transition. Value 1 is assigned
to variable TEST FLAG as implied by Assign(V) = {TEST FLAG < 1}, which

in turn means that the detection of fragmentation attacker can be started.

71 : (@1 — ¢2) When the model is started and the current state is at ¢, the transition
71 implies that client intimates about its future communication through wired channel
(Ch2) by setting a flag variable . Here, initial(71) = ¢1 and final(1) = q2. 0 =
FLAGg implies that transition 71 is enabled when CoAP RSP HANDLER()
generates event FFLAGg (i.e., after status is flagged). check(V) = —— meaning that
no condition need to be satisfied and Assign(V') = {ips® « FLAGgpp, macs® «
FLAGsyacD, csid® < FLAGsspssion 1p}- The parameters that uniquely identify

a flag status packet are destination IP, destination MAC and a session ID. Consequently,
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all the parameters that correspond to the header are stored in the model variables,

ips®, macs® and csid€.

e 7 : (g2 < q3) At state ¢o, the transition 7o implies that now a CoAP request
packet is sent by the host client to the same server node to which the flag sta-
tus was communicated earlier. It is sent via the 802.15.4 network (Chl). Here,
initial(m2) = g2 and final(m) = q3. 0 = CREQg corresponds to enabling transi-
tion 79 after the CoAP RSP HANDLER() generates the event CREQg implying
that a request is sent on the condition over the model variables in check(V') be-
ing satisfied. check(V) = {ips® = CREQsipp, macs® = CREQgsyacp,csid® =
CREQsgspssion 1p}- Assign(V) = ——, meaning that no assignments are done in

this transition.

e 74 : (g3 — q4) At state g3, the transition 74 implies that a flag status intimation
is received from the server node, via C'h2, to which the request packet was sent in
To. 0 = FLAGR implies that 74 is enabled when the CoAP RSP HANDLER()
generates the event FLAGR (i.e., after flag SET status is received). check(V) =
{ips® = FLAGRps,macs® = FLAGRyacs,csid® = FLAGrgspssion rp} and
Assign(V) = {flagg ;s < 1}. Satisfaction of the conditions over the model variables,
ips€, macs® and csid®, ensure that the flag status is received from the same IDS node
to which request was sent. The flag variable corresponding to the source IDS node is

SET.

e 75: (g1 — q1) At state g4, the transition 75 corresponds to the receipt of a response due
to the request packet sent. 0 = C'RS Pg implies that the transition 75 is enabled when
the CoAP RSP HANDLER() generates the event CRSPg. check(V') = {ips® =
CRSPrips, macs® = CRSPryacs, csid® = CRSPrspssion _1ps flag ;,s = true}.
The conditions over the model variables if satisfied ensure that the CoAP response
is due to the request packet sent in transition 75. Furthermore, the clock variable c{
ensures that response is received before the retransmission timeout window expires

and variable c§, modeling the timer that checks inter-frame spacing, is started.

Similarly, the other states and transitions pertaining to the CoAP RSP HANDLER()

with their implications are briefly discussed as follows:
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e 7140 (¢1 — q11) At state ¢p, this transition corresponds to the receipt of probing

intimation by the host node via Ch2. Accordingly the CoAP RSP HANDLER()
generates the event PFLAGR and the packet parameters received are assigned to the

variables ips€, macs®, csid®, probed® and z€.

T15: (q11 — q12) At state 11, this transition corresponds to the receipt of a CoAP probe
response packet by the host node via Chl. Accordingly the CoAP RSP _HAN —
— DLER() generates the event CPRSPr and the packet parameters received are

checked against variables ¢ps®, macs® and csid®.

7170 (13 — q1) At state g3, this transition is taken on sending a CoAP probe

request packet via Chl. Accordingly the CoAP RSP HANDLER() generates the

event CPREQg and the packet parameters received are checked against variables
C

ips®, macs®, csid® and data®. data® is checked to ensure that the random payload

communicated is same across Chl and Ch2.

Next, the states and transitions corresponding to the CoAP REQ HANDLFER() in

the normal behaviour are discussed as follows:

e 77: (g5 — qg) At state ¢s, this transition is taken on receipt of a CoAP request packet

via C'hl following a flag status receipt. Accordingly here, the event CREQ R is gen-
erated after the CoAP REQ HANDLFER() is invoked and the packet parameters
received are checked against the variables ips®, macs®, csid®. flag;,, is ensured to

be true.

T11: (g8 — qo) At state gg, this transition implies that CoAP probe request packet via
Chl is received following a probe flag status update. Accordingly the event CPREQR
is generated by the CoAP REQ HANDLER() and the packet parameters that
are received are checked against variables ips®, macs®, csid® to ensure that they are
received from the same client IDS node that communicated the probe flag status.

probed® status is checked such that it holds true.

T13: (q10 — q1) At state qip, this transition implies sending a CoAP probe response
packet via Chl. This is sent in response to the probe request packet that is received

in transition 77;. The CoAP REQ HANDLER() generates the event CPRS Pg
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and the packet parameters received are checked against variables x°, macs®, csid® and

data®.
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Figure 5.8: Diagnoser O for DES model H;

I2-DES behaviour under attack circumstances

The DES model under CoAP spoofing attack condition launched by attacker Ay is shown
using the states in Qa, = {q}, ¢5, ..., ¢ig} and transitions, {7{, 79, ..., T9g}. Similarly for
attacker type Asg, states and transitions are represented using double prime notation, Q4, =
{d].d5, ..., ¢y} and transitions, {r{', 74/, ..., 755} as shown in Figure 5.7. The DES model
behavior under different attackers are identical except four transitions that differentiate

them which are discussed.

o At state g1, the system reaches an attacker type state ¢} or ¢{ following an unmeasurable

attack transition 7} or 7{, respectively.

o 71y (¢l — di7s dis — dis) At state gj4, the transition 77, corresponds to a spoofed
CoAP response packet. 0 = CPRSP}, implies that the transition is enabled when the
CoAP_RSP_HANDLER() generates the event CPRSP};,. check(V) = {ips® =
CPRSP; pg,macs® = CPRSPR, 4 g, c51d° = CPRSPLgposion 1pyi05¢ = ipl}.
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The conditions over the model variables, ips®, macs® and dtag, ensure that the
duplicate NACK intimation is a response to the datagram probe header fragment
in 710’. The model variable macd holds the MAC address of the next-hop node via
which the probe was sent. 716" ensures that macd holds the IP address of attack node
Aj. An intimation for probe sent via a node with MAC address stored in macd is a
fragment duplication attack. ®(C) = {c{ < A, .} means that ¢f does not exceed the

retransmission timeout period.

o 7o (qdfy — 41, 4y — i) At state ¢f,, the transition 75 corresponds to dupli-
cate fragment intimation for the datagram probe sent via a known 1-hop node. o =
CPREQ7, implies that the transition is enabled when the CoAP _REQ_HANDLER()
generates the event CPREQY,. check(V) = {ips = DPNACKpp,ipd =
DPNACK|pg,dtag = DPNACK 444, macd = mac’'}. The conditions over the model
variables, ips, ipd and dtag, ensure that the duplicate NACK intimation is a response to
the datagram probe header fragment in 710’. The model variable macd holds the MAC
address of the next-hop node via which the probe was sent. 716" ensures that macd
holds the IP address of attack node A;. An intimation for probe sent via a node with
MAC address stored in macd is a fragment duplication attack. ®(C) = {c] < A7 }

means that ¢i does not exceed the retransmission timeout period.

I’-Diagnoser

As discussed earlier, for a system to be DES diagnosable, no fault indeterminate cycles should
be present. The stringency of this requirement makes a lot of systems non-diagnosable.
Hence, to render a large class of such non-diagnosable systems to be diagnosable, a weaker
and relaxed notion, I-diagnosability was proposed (see Section 5.2.6). I-diagnosability
associates failures with indicator events. An I-DES modeled system is I-diagnosable if
there exists an indicator event following a failure and the occurrence of the failure can be
detected only by testing system through paths after the indicator event occurs. There still
exists system failures that cannot be diagnosed by the I-diagnosability framework as well in
spite of observable indicator events after the failure. To overcome this limitation, a notion
of I?-diagnosability is proposed in this work. Under I2-diagnosability framework, given

indicator events and the DES model, an empowering event ensures that an indicator event
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actually sensitizes the failure. Here we use a set of IDS each consisting of a local I?-diagnoser.
Each of the local I?-diagnosers are basically observer automatons. They track the local
system behavior and gives a decision on the diagnosis of monitored events. Details of the
diagnoser construction procedure and definitions pertaining to diagnosability are highlighted
in Appendix B. Now, an attack type I?>-diagnosable in finite time, if the I?-diagnosability
condition is met (Fj-I?-Diagnosability property is satisfied, see Definition 7, Appendix
B). Since fault occurrence and attack events exhibit identical deviations from the normal
behaviour and in both scenarios they are unmeasurable, taking place without the knowledge
of the system administrator, hence fault diagnosis has been successfully applicable in attack
detection and attack type identification too. A lemma on the I?-diagnosability property
states that lack of attack A;-indeterminate cycles (Definition 14, Appendix C) having an
embedded indicator transition (Definition 13, Appendix C) guarantees I*-diagnosability.
It means that the diagnoser is able to give a decision in finite time on the occurrence of
the attack event type. Satisfaction of the I?-diagnosability property locally, considering
the limitations in measurement, ensures efficient attack detection as well as attack node
location diagnosis globally [169].

Figure 5.8 shows the constructed diagnoser for our DES model H;, considered in Figure
5.7. The working mechanism of our diagnoser is summarised here by showing one or more

executions of sequences of measured events (transitions) as follows:

1. The initial state of the model H;, ¢1, and states ¢} and ¢} that are reachable via
unmeasurable attack transitions, 7 and 7, form the initial state, z; of the diagnoser

0.

2. Let $,1, = {1, 7,7/}, i.e., the outgoing transitions from model states {q1, ¢}, ¢]} € =1.
All of outgoing transitions in 3,1, are measurement equivalent (Definition 2, Appendix
A) belonging to one measurement equivalence class of transitions, hence cannot be
further partitioned. Therefore, it justifies O-transition a;. The O-state reached

corresponding to the transition ay is 2o = {q2,¢5, ¢4 }-

3. Let S.1, = {76, 71, T15}, 1-€., the outgoing transitions from model states {q1,¢}, ¢/} €
z1. All the transitions in 31, are equivalent and hence cannot be partitioned

further, justifying O-transition agg. The O-state corresponding to the transition agg
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3 — / 1
15 25 = {q57q57Q5 .

. Let $31, = {7f, 7}, i.e., the outgoing transitions from model states {q},¢}} € z1.

All the transitions in Q,;, are also measurement equivalent and hence cannot be
partitioned further, justifying O-transition ag. The O-state corresponding to the
transition ag is z21 = {q}3,¢{3}. Since z9; consists of states only from the attack types

1 and 2, hence it is an Attack certain O-state (Definition 9, Appendix C).

. Let S21, = {119, 715}, i.e., the outgoing transitions from model states {¢},q]} € z1.

All the transitions in 3,1, are also measurement equivalent and hence cannot be
partitioned further, justifying O-transition ass. The O-state corresponding to the
transition ags is z7 = {q%, ¢¥ }. Since z7 consists of states only from the attack types 1

and 2, hence it is an Attack certain state.

In a similar manner, the diagnoser states {24, 25, 26, 27, 28} can be constructed using
the corresponding O-transitions {a4,a6,a7,a9,a10}. The principle can be safely

extended.

. From the definition, we can compute the Ag-certain O-states and the Normal certain

O-states. In our example, the A; certain O-state may be computed as 210 = {29}
since it exclusively consists of states only belonging to attacker A;. Similarly, Ao
certain O-state may be computed as z11 = {£9”} and the normal certain O-state can

be computed as 29 = {z1}.

5.2.7 An example of CoAP spoofing attacker node identification using

DES Diagnoser

Suppose A, tirs and TRES , IPLIST are computed and the following pair of event sequences

occur chronologically in the monitored network due to CoAP packets received or sent from
an IDS node: (i) FLAGs, CREQs, CRSPr, PFLAGs, CPREQs, FLAGR, CPRSP},
(ii) CREQR, PFLAGg, CPRSPs, FLAGR, CPREQ},, CPREQR.

In case (i), the diagnoser starts from the O-state z; and on occurrence of the FLAGg

event, the diagnoser moves to O-state zo via O-transition a;. The event occurs when a

flag status update is sent by IDS node Z; to another IDS node, suppose Z;. Now, the

transition a; might have been taken by the diagnoser due to the occurrence of any of the
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H-transitions, 71, 71 or 7. Since the transitions 71, 7] and 7{" are measurement equivalent,
it cannot be certainly said at this point if an attack has occurred. Following this, a CoAP
request packet is sent by Z; to Z; due to which the event CREQg is passed to the diagnoser.
The diagnoser of Z; moves to O-state z3 via O-transition as. Now when a C RS Pg packet
is received with flagj; = false, the event C RS Pp is recorded and the diagnoser reaches
O-state zo91 via O-transition ag, which is an Attack-certain state. Therefore, at state zo1, a
probe flag status packet, PF'LAG g, with attacker node information is passed via Ch2 to Z;
by the CoAP RSP HANDLER() component of behalf of Z;. The diagnoser moves to
state zo9 via O-transition ag on the event PFLAGg being passed to it. Consequently, a
CoAP probe request packet is sent to Z; via C'hl. The event generated is CPREQ s and the
diagnoser moves to state z93 via ag. On receipt of a flag status update from Z; with dummy
data, the event FFLAGR is passed to the diagnoser which now moves to zo4. Here, a CoAP
probe response packet is received by Z; such that the payload does not match the data
intimated in O-transition ajg. Therefore, C PRSP}, event is generated. No further packet is
received by Z; from Z; until timeout A; occurs and the diagnoser moves to state zg6 or zo7,
both of which are Aj-certain states. Hence, it is ascertained that the system is under attack
condition due to attacker node A; or As. Moreover, since there are no Aj-indeterminate
cycles [46, 45|, along all paths of the I2-DES diagnoser, an unique malicious node Ay, when
present, can be identified correctly. On each such occasion when the diagnoser reaches an
Aj-certain state due to an event trace, an alert is generated.

Whereas in case (ii), the diagnoser starts from the O-state z; and on receipt of
a CoAP request packet with flagi; = false, the event CREQR is generated by the
CoAP REQ HANDLER() and passed to the diagnoser. The diagnoser reaches O-state
z7 via O-transition ags which is an Attack-certain state consisting of states from attack
models ¢4 and ¢7. As a consequence, a probe flag status packet, PFLAGg, with attacker
node information is passed via Ch2 to Z; by the CoAP_REQ_HANDLER() component
of behalf of Z;. Therefore, the diagnoser reaches O-state z15 via O-transition as4 from
O-state z7 on the event PF'LAGg being passed to it. Vis-a-vis, a CoAP probe response
packet is sent to Z; via Chl. The event generated is C PRSPs and the diagnoser moves to
state z1g via ags. Next, when a flag status update is received at Z;, the event PFLAGR is

generated and passed to the diagnoser while the payload is locally stored. The diagnoser
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moves correspondingly to state zi7 via transition asg. Eventually, when two CoAP response
packets with varying payloads are received within the retransmission timeout period, the
events CPREQ} and CPREQR are passed to the diagnoser. The diagnoser moves finally
to O-states z19 or zoy depending on the transitions a4g or a4 that may be taken due to
value of attacker node IP address is ip/ or ip//. Both z19 and z99 are Ajg-certain states.
Hence, it can be ascertained that the system is under attack condition due to attacker node

either A; or As.

5.2.8 Correctness

DES modeling helps in system level formalisms for checking correctness and completeness.
Our proposed IDS correctness is demonstrated here by considering all possible CoAP
spoofing attack cases. The aim is to show that a malicious node is correctly identified
each time. For our proof, we assume a network fragment consisting of 2 IDS nodes, I, and
I, and 4 non-IDS nodes, A, B, X and Y. Let us suppose that A is a request spoofing
attacker node and X, a response spoofing attacker node. They are relatable to A; and
Ay nodes in our DES modeling. Since our diagnoser O lacks Ap-indeterminate cycles,
diagnosability condition is hence satisfied, meaning that Ay is always identifiable (unique
Ay is diagnosable). To prove completeness, we justify that all possible attack scenarios are
detected by simulating traces in H;. We show A and X are always correctly identified on
reaching the corresponding Ay certain state in the diagnoser. We consider the following
situations to occur; a CoAP request packet, Q, is received at I, on one occasion (Case 1)
and on another, a CoAP response packet, P, is received (Case 2). We also assume that X
lies on-path node that forwards P.

Case 1.1 (I, receives Q on Chl without any prior intimation): This can be
fairly understood as a CoAP request spoofing attack inference. Consequently, the current
O-state of the diagnoser evolves from z; to z7 via O-transition ase. At this point it cannot
be concluded that which one among A, B, X and Y had sent the spoofed packet, Q. Now,
a probe intimation is accordingly sent by the CoAP RFEQ HANDLER() on behalf of
1. with AIP of A. The event PFLAGg is generated and passed to the diagnoser which
reaches O-state z15 by this time. A probe response packet, CPRSPg, is sent by I, to I

and diagnoser reaches z14 via ags. Next, a flag intimation is received from I;. The event
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FLAGR is generated and passed to O. Relevant application data is stored in the variable
data®. The diagnoser current O-state is z17. Now, I will send a response with the intimated
application data with spoofed IP of the attack node A. The CoAP packet requests for a
resource uri that A contains. A eavesdrops the packet and sends a spoofed request packet
to deny node I,. Hence, the events CPREQT}, and CPREQR are generated and on being
passed to the diagnoser, O-state 19 is reached via O-transition a43. This is an attacker
Aq-certain state. Hence, attack node A is correctly identified.

Case 1.2 (I, receives a duplicate Q on Chl with intimation): This is also a
CoAP request spoofing attack inference. In this case the current O-state of the diagnoser
evolves from z1, z5, zg to ultimately z7 via O-transitions asg, a1 and agg. Again it cannot
be concluded that which one among A, B, X and Y had sent a spoofed packet, @. This
time, a probe intimation is accordingly sent by the CoAP REQ HANDLER() on behalf
of I, with AIP of B. Probing is carried out similar to the scenario discussed in Case 1.1. The
only difference arises is when a probe request is expected and the diagnoser is at state z17,
only the probe request from I; with matching application data is received on this occasion.
The event CPREQR is generated and passed to the diagnoser which moves back to O-state
z7. Now, another probe intimation packet is sent by I, with AIP of A. The events that
follow are similar to the sequence of Case 1.1. Hence attack node A is correctly identified.

Case 2.1 (I, receives P on Chl without any prior intimation): This is a CoAP
response spoofing attack inference. Consequently, the current O-state of the diagnoser will
now evolve from z7 to z91 via O-transition ag. At this point it cannot be concluded that
which one among A, B, X and Y had sent the spoofed packet, P. A probe intimation is
accordingly sent by the CoAP RSP HANDLER() on behalf of I,, with AIP of X. The
event PFLAGg is generated and passed to the diagnoser which reaches O-state zo0 by
this time. A probe request packet, CPRFEQg, is sent by I. to I; and diagnoser reaches
293 via ag. Next, a flag intimation is received from I;. The event FLAGER is generated
and passed to O. Relevant application data is stored in the variable data®. The diagnoser
current O-state is z94. Now, I will send a response with the intimated application data
with spoofed IP of the attack node X. The CoAP packet response is regarding a resource
uri that X contains. X eavesdrops the packet and sends a spoofed response packet to deny

node I;. Hence, the events CPRSPp, and CPRSPr are generated and on being passed to
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the diagnoser, O-state o7 is reached via O-transition a14. This is an attacker As-certain
state. Hence, attack node X is correctly identified.

Case 2.2 (I, receives a duplicate P on Chl with intimation): This is again a
CoAP response spoofing attack inference. In this case the current O-state of the diagnoser
evolves from z1, 29, z3 to ultimately z91 via O-transitions a1, as and a7. Again it cannot be
concluded that which one among A, B, X and Y had sent a spoofed packet, P. This time,
a probe intimation is accordingly sent by the CoAP RSP HANDLFER() on behalf of I,
with AIP of Y. Probing is carried out similar to the scenario discussed in Case 2.1. The
only difference arises is when a probe response is expected and the diagnoser is at state zo4,
only the probe response from I, with matching application data is received on this occasion.
The event CPRS Pr, is generated and passed to the diagnoser which moves back to O-state
z21. Now, another probe intimation packet is sent by I, with AIP of X. The events that
follow are similar to the sequence of Case 2.1. Hence attack node X is correctly identified.

So, all possible attack cases by A and X are analyzed. Each time it can be seen that
diagnoser reports the network condition and attack node correctly. Each time a correct

attacker is concluded when an Aj-certain state is reached.

Table 5.4: Throughput, Accuracy, and Response Time During DoS and after implementation
of Intended Approach

N/W Parameter During DoS Attack Execution After Implementation of Intended Approach

No. of IoT Node 8N 16N | 32N | 64N | 128N 8N 16N 32N 64N 128N
Throughput 87.6% | 84.3% | 9% | 74% | 69.3% | 98.3% | 95.6% | 92.5% 83.9% 80.6%
Accuracy (%) NA NA NA | NA NA 99.7% | 99.4% | 99,2% | 98.7% 93%

Response Time (Sec.) | NA NA NA | NA NA | 4.3 Sec | 4.7Sec. | 5.7 Sec. | 6.4 Sec. 9.3 Sec.

5.3 Experiments, results, and discussion

In this section, we analyze network performance with the help of three types of experiments

as follows:

Table 5.5: Comparison between closely related works and proposed approach

Refrences Aotr;t?c(lzlgn?i?itc‘:;tiloo: Energy Usage (mJ) | RAM/ROM (in Byte) | Scalability I,I{‘?:):r(l:f AC((:;:)a Y
Bhale et al. (2018) [117] Detection 94753 9883/56713 N 34.2-68.9 99.7%
Roselin et al.(2019) [121] Both NA 12785/61292 Y NA 93.5%
JerryJohn et al (2020) [170] Detection 79920 NA N 28.9- 38.5 99.4%
Prahlad et al. (2021) [171] Detection NA 13478/58952 Y 94.7-198 97.8%
Proposed Approach Both 84282 5250/34955 Y 6.1-10.7 99.2%
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5.3.1 Network Performance under non-attack scenarios

In the non-attack scenario, we analyze the network performance with 8, 16, 32, 64, 128 nodes,
as shown in Fig 5.9. All these nodes are legitimate and send requests to the skywebsence
web server for getting their aids (e.g., temperature, intensity, and light values). We use
WireShark to monitor the packet arrival time and flow count. The power consumption, and
RAM/ROM in non-attack scenarios are 7834mJ, 4873/32785 (in bytes), respectively. These

parameter values are consistently disseminated over an experimental period.

A) Non Attack with Dummy Node B) DoS Attack with Dummy Node

Figure 5.9: Snapshot of Non attack and DDoS attack scenario in IoT Ecosystem

5.3.2 Network Performance under DoS attack scenarios

Several tools like libcoap, hping, XOIC, HULK, HOIC, and Contiki Cooja are utilized to
insert DoS attacks. Traffic generated based on these tools limit the web-server’s liveliness
by forming recurring CoAP connections. Network parameters like power consumption,
and RAM/ROM values in DoS attack scenarios are shown in Table 5.5 . The exhibited
throughput of the system drops as compared to the non-attack scenarios, due to recurring

CoAP connections, are listed in Table 5.4.

5.3.3 Network Performance with the proposed approach:

Table 5.4 shows throughput, accuracy, and response time with the multiple numbers of IoT
nodes. Based on the experimental results, the intended approach is energy-efficient and

scalable. It also gives comparable energy usage, RAM/ROM utilization, response times,
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and accuracy. Table 5.5 shows an average energy consumption, RAM/ROM, response time,

and accuracy are 84282 mJ, 5250B/34955B, 6.1-10.7 (s), and 99.2%, respectively.

5.4 Conclusion

In this chapter, a novel I>-DES based IDS scheme is presented that detects as well as
identifies an TP address spoofing attacker in CoAP based LoWPAN scenario. We show using
the notion of diagnosability that an attacker can be correctly identified from analysing the
characteristic network dynamics by using empowering events and a one of a kind probing
schema design. The security solution we propose is an energy-efficient approach that achieves
99.2% accuracy with response time as low as 6.1 seconds, thus, mitigating both request and
response spoofing.

The experimental results are illustrative of both attacked and non-attacked IoT ecosys-
tem behavioural patterns. In future, we would like to extend our approach to MQTT
security and further venture into distributed denial-of-service attack mitigation schemes

using lightweight solutions.
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CHAPTER

Conclusions and Future Work

The world has already witnessed a paradigm shift in modern day communication and
connectivity with the phenomenal and speedy growth of IoT and the heavy reliance of
modern day lifestyle on it. IoT services, made available to the tiniest of devices and sensors,
are being vastly applied and used in mission-critical systems, healthcare, manufacturing
systems, smart homes, smart cities, electricity meters, etc. A majority of the IoT networks
and devices are lossy and constrained in nature, making them an easy target for malicious
entities. Moreover, authentication capabilities are lacking in IoT systems with resource
limitations also making strong cryptography and encryption inapplicable. An attacker that
gets hold of the device, or is functioning as a regular node in an IoT network, can easily
target insecure side-channels or launch various internal attacks exploiting the inherent IoT
protocol vulnerabilities on battery-powered devices that can be easily compromised.

IoT devices popularly consist of scan chains for testing purposes. As a result enhanced
observability and controllability of the internal register contents of the device is induced.
There exists a class of intrusive (non-invasive) device-level attacks on cryptographic IoT
devices that makes use of this testability-induced vulnerability to leak out confidential
contents. In a scan-based side-channel attack, the secret key values can be easily differentiated
from the non-secret ones, inflicting loss. These attacks create differentiable characteristics
that make it challenging to preserve a secret. Also, an IDS is deployed nowadays in
most [oT networks as the fundamental network security component. Task of an IDS is to

monitor the host network for infiltration or malicious activities and raise an alarm to the
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network administrator when found. Thus, alarm generation provides an opportunity for the
administrator to take corrective measures, such that effects of the threat are quarantined
or mitigated so as not to prevent further damage. IDS can be broadly categorized into
signature based and anomaly based depending on the working procedure. Signature-based
IDS uses fixed signatures (or patterns) while anomaly-based IDS is mathematical/statistical
based. However, we identify there exist certain types of attacks on IoT protocols for which
such IDS fail to generate alarms as effectively. Specifically, a large number of false positives
ensue. Examples of such attacks at the network level are version attacks, rank attacks,
fragmentation attacks and request/response spoofing attacks. Due to such attacks, the
sequence of network events and semantics remain the same, hence attack patterns cannot
be written. Furthermore, these attacks do not change the system behaviour considerably
enough for anomaly-based IDS to be accurate.

Existing methods to protect scan-based side channel attacks are mostly LFSR or
obfuscation based. Moreover, we devise a certain class of attacks for which there are no
known effective countermeasures. Also present methods either compromise to testability
or are resource consuming. Also network and application layer attacks are defended in
the research community using user level, cryptographic level, protocol based or machine
learning based. Each of these approaches suffer from drawbacks like costly deployment and
setup, protocol modifications, lacking formalism, lacking scalability, or extensive training
time. Each of the attacks portray unique characteristics that require hardware and software
countermeasures to be minute and tuned in.

With the exponential growth in complex dynamic systems, Discrete Event System (DES)
framework is being widely used to model these systems in avenues such as embedded systems,
networked systems, communication systems, manufacturing plants, chemical processes, traffic
systems, cyber physical systems, etc. The theory of FDD of DES finds wide applicability in

determining a system to be functioning in faulty or normal condition.

6.1 Summary of Thesis Contributions

In this thesis, we have developed lightweight countermeasure strategies/mechanisms to secure
the IoT ecosystem from different types of device-level, network-level and application-level

attacks. For modeling and verification purposes, we use DES security notion of Opacity
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to prevent device-level attacks. Analogously, the FDD theory of DES is used to detect
and identify an attacker node that has launched various attacks on the IoT network and
application layer protocols. The corresponding contributions of each chapter of the chapters

are presented below:

6.1.1 Contributions of Chapter 2:

Scan chain is the de facto standard for testing manufacturing defects of cryptographic ICs
in the semiconductor industry. As a result of scan chains, sequential elements are more
observable and controllable. Hence, an attacker who gets access to [oT devices having a
cryptographic implementation can launch various differential scan based attacks to reveal
the embedded secret user key of such devices. To launch such attacks, the attacker just needs
to apply plaintext inputs and observe the ciphertext output. The key can then be retrieved
from offline computation. In this contribution, we propose a novel differential scan attack,
namely co-relation scan attack (COSA) and a hardware controller based countermeasure
that thwarts differential scan-based attacks in general. Our proposed COSA attack belongs
to the class of differential scan attacks and is more comprehensive and effective than the
existing differential scan attack that is launched by targeting unique hamming weight pairs
only. The motivation behind this attack is that the existing attacks can be easily defended
by carefully crafting additional bits in order to convert a unique hamming weight to non
unique one. Our proposed attack can work using any possible hamming weight model
necessitating protection of the circuit under test (CUT) from a relatively larger attack
surface.

Next, we devise a countermeasure that preserves the secrecy of an embedded key
in a cryptographic integrated circuit of an IoT device running an Advanced Encryption
Standard (AES) implementation. A novel design involving a hardware unit is illustrated that
circumvents all differential scan attacks by essentially performing bit flips deterministically,
using a pre-computed mask value. This helps secure the chip while retaining full testability.
The controller logic directly depends on a mask determination algorithm that can defend
against any scan attack with O(1) theoretical complexity. Security analysis of our proposed
defense procedure is performed in the framework of Discrete Event Systems (DES). The

sequential scan circuit of an AES cryptosystem during normal operation and flipped operation

179



6.1. SUMMARY OF THESIS CONTRIBUTIONS

is modeled as a DES using Finite State Automata. A security notion, Opacity, is used to
quantify and formally verify the security aspects of our controlled system, which shows that
the entropy of the secret key is preserved. A case study is performed that shows to mitigate

state-of-the-art differential scan attacks successfully at a nominal extra overhead of 1.78%.

6.1.2 Contributions of Chapter 3:

Rank and version value fields are used in RPL control packets for its efficient operation.
RPL participating nodes are ordered as an acyclic tree, DODAG, and these values help in
their creation and maintenance. A malicious node internal to the RPL DODAG may falsely
modify these values to create unoptimized paths and loops essentially degrading performance
of the IoT network. In this contribution we propose a novel software countermeasure that
not only detects RPL rank and version attacks but also identifies the attacker node. As
compared to the differential scan attacks that jeopardize a secret user key, rank and version
attacks are non-invasive. Adverse effects of such low overhead IoT network attacks mostly go
unnoticed since they do not change the network operations much. Hence, the normal network
behaviour cannot be differentiated from attack type behaviour directly. Therefore, RPL
rank and version attacks cannot be detected just by passively observing the RPL control
and data packets that are exchanged in the IoT network. For these attacks, the DES states
belonging to the attack behaviour cannot be deterministically diagnosed because of the
inherent uncertainties of the genuinity of DIO packets disseminated by the attacker. So there
exists paths in the DES that lead to indeterminate cycles. A mechanism is therefore required
to generate distinguishable behaviour during an attack than when operating normally, such
that an attack certain state can be reached in finite time.

Our countermeasure utilises active probing mechanism and / (Indicator)-DES based
IDS. Probe packets sent by the IDS helps create differentiable attack behaviour from the
normal. They are normal RPL data packets that signify the indicator events that are
necessary for successful identification in our scheme. The identification principle is based on
the RPL control and data packets exchanged between IDS root, agent nodes and all of the
other nodes participating in the DODAG instance.The packet sequences are analyzed to
generate the intelligent probing mechanism. A rank attacker node is ascertained from the

history of probe response times measured by the IDS. Further, I-DES based IDS framework
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is adopted and extended to model the normal and attacker type specifications, such that
an attacker (attack type) can be identified. An I-diagnoser, constructed from the I-DES
models, generates an alert when a malicious node is identified (corresponding attackery
certain state is reached). We also prove the correctness and completeness of our scheme.
The DES framework is implemented only at the root node, therefore using our IDS does not
require any heavy deployment, protocol modifications, or training. To assess the performance
of our solution, we implement our proposed method in simulation as well as real testbed
experiments with varying numbers of IoT nodes. The results show that our solution is
scalable, has least false positives, energy-efficient and more accurate compared to most

state-of-the-art schemes.

6.1.3 Contributions of Chapter 4:

IoT-LLNs mostly employ 6LoWPAN, an IETF-standardized adaptation layer, for IPv6 based
communication. Secure mechanisms protect 6LoWPAN from external attackers, yet, lack
of authentication capabilities and the scarcity of resources render it susceptible to various
designed internal attacks. Especially, the 6LoWPAN fragmentation mechanism is easily
exploited by replaying spoofed fragments, timely slipped in by an eavesdropping attacker.
In a constrained environment, neither the original fragment nor the sender node authenticity
is differentiable here making solution techniques challenging. In this contribution, we devise
a 6LoPWAN fragment duplication attack detection and attacker localisation scheme that
utilises an intelligent active probing mechanism for 6LoWPAN attacker localisation and
I-DES based IDS. As compared to rank and version attacks that have far reaching effects
across the RPL network, fragmentation attacks exploit nodes that are at 1-hop distance
only. Moreover, as opposed to control packets, fragmentation attacks exploit the reassembly
mechanism during regular end-to-end transmission and an attacker may be located on the
forwarding path or can be off-path as well. So, a centralized IDS scheme is not suitable
here and closer monitoring is necessary. Consequently, our proposed scheme is decentralized,
utilizing a set of I-DES based IDS. Also, IDS sends fabricated IPv6 datagrams with random
payload as part of active probing, which signify the indicator events. Basically, a response to
the probe datagram helps differentiate attack behaviour from the normal. A malicious node

behaviour is distinguishable if the crafted datagram is forwarded, as opposed to the fact
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that the datagram must be discarded in normal condition. Further, a decentralized I-DES
based IDS framework is proposed to model the normal and attacker type specifications,
such that an attacker (attack type) can be identified. Local I-diagnosers are constructed
from the local I-DES models. They generate an alert when a malicious node is identified
(corresponding attacker-k certain state is reached in the local diagnoser). Global I-diagnosis
is ascertained when an attackery certain state is reached by any local I-diagnoser. Moreover,
we eliminate the localised node using the kill switch mechanism to secure the 6LoOWPAN.
Correctness and completeness of our solution is proved and we implement it in simulation
as well as real testbed with a large number of 6LOWPAN nodes. The results are observed
to be superior to existing works. Our scheme achieves minimum false positives and achieves
more than 99.8% accuracy in identifying the malicious nodes. The scheme is energy efficient

and takes lower detection time for attacker identification.

6.1.4 Contributions of Chapter 5:

CoAP is a web transfer protocol similar to HTTP that is specially designed to facilitate
IoT-LLN. It uses User Datagram Protocol (UDP) as the transport layer protocol which is
unreliable and lacks a handshaking mechanism. A malicious endpoint with read and write
access may just spoof requests or responses and launch low overhead IP address spoofing
attacks. Moreover, it even helps mount other complex Distributed Denial-of-Service (DDoS)
attacks like amplification attacks. In the previous two contributions discussed, active probe
packets are sent to differentiate the attack type behaviour from the normal behaviour.
Accordingly, I-diagnosability framework has been successfully adopted and extended to
guarantee identification on each of these occasions. But, to identify an IP spoofing attacker,
using just a probe response is insufficient. In this contribution, we adopt and extend the I?
(Induced I)-diagnosability framework where we define empowering and indicator events. A
CoAP request /response IP spoofing attack detection and identification scheme is devised
that utilizes active probing and I2-DES based IDS in this contribution. Our scheme uses a
decentralized architecture with each IDS functioning independently. IDS use empowering
events and an intelligent probing technique that together help distinguish normal and attack
behaviour. Wired network intimation is used as the empowering events. Also, probe packets

are spoofed CoAP request/response packets with random payload and contain resource Uri
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information that is relevant only to a malfunctioning node. Our proposed mechanism ensures
that an attacker is identified as soon as it responds to probe packet after a wired intimation
has been communicated between IDS nodes. Attack node identification is based on the
principle that a true attacker node will respond or behave such as to protect its resource
content. Our IDS is capable of detecting all instances of request/response spoofing. Further,
I?-DES is used to model the normal and attack specifications. An I?-DES diagnoser,
constructed from the I2-DES models, generates an alert when a malicious node is identified.
We consequently prove the correctness and completeness of our scheme. Proposed method is
implemented in Contiki Cooja, with a sufficiently large number of IoT nodes. On comparing
our scheme to state-of-the-art approaches, our performance is found to be energy-efficient,
having minimal false positives and achieving more than 99.2% accuracy with response time

of approx 6 sec.

6.2 Scope of Future Work

In this dissertation, the countermeasures presented successfully detect certain classes of
attacks prevalent in the device-level, network-level and application-level of the IoT ecosys-
tem. Various DES notions and paradigms like Opacity, I-Diagnosability, decentralized
I-diagnosability and I?-Diagnosability have been utilised depending on the corresponding
attack characteristics. The mechanisms demonstrated are effective in securing IoT systems
against attacks and can well be applied and extended to secure cyber physical systems,

softwares, etc. Listed below are some possible future research directions:

e In Chapter 2, we proposed an effective countermeasure against scan-based attacks on
crypto-chips running an AES implementation. As part of the security analysis, we
used Opacity while also considering only a particular instance of Hamming weight
distribution (for example, when a plaintext difference 0x01 is applied), which is a
limitation of this work. It would be very interesting to analyze the security aspects
of our countermeasure irrespective of any given instance of a Hamming distribution
in the future. An implementation of multi-bit flip controller ensuring opacity might
then suffice to thwart all state of the art differential scan attacks. We would also like

to further investigate our defense countermeasure in the presence of advanced DfT
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structures with test compression as well as on other block or stream ciphers in use.

Chapter 3 deals with identification of attacker nodes that launch network layer attacks
by illegitimately increasing RPL rank field and falsifying version field. Our scheme
uses a 6BR root node IDS, a set of leaf agents and incorporates an intelligent probing
technique using ICMPv6 packets to achieve the desired objective. However, it would
be worth exploring techniques to strengthen our security countermeasure in cases
when malfunctioning leaf agents are compromised. Our current solution can be further
improved with the generation of optimal probe sequences. It would not only guarantee
more improved response times but would also reduce complexity. Another field of
considerable research is to improve on the placement of the agent leaf nodes which
will ensure that the overhead is further reduced. Furthermore, our current solution
as demonstrated in this thesis is good at circumventing the worst parent attack and
decreased rank attack as well with some minor modifications. Among our future works,
we plan to devise an improved solution that can identify the malicious node in the
presence of other RPL attacks as well, such as the DODAG Information Solicitation

attack, Black Hole attack and Distributed Denial-of-Service attack.

Chapter 3, 4 and 5 presents DES-based IDS techniques that guarantee attacker
identification in the IoT ecosystem. Our approach can be further strengthened by
improving on parameter inference and selection of active nodes. IoT devices are
characterized by their heterogeneity and dynamic connections, requiring adaptive
security measures to effectively counter evolving cyber threats. The integration
of machine learning techniques alongside the Discrete Event System (DES)-based
Intrusion Detection Systems (IDS) framework is one avenue that is worth exploring
towards strengthening IoT security. While leveraging DES models allows for precise
simulation and control of IoT network behavior, ensuring efficient resource utilization
and robust security, using machine learning can help to dynamically infer optimal
parameters and identify key nodes for active monitoring by analyzing historical and
real-time data. This will enhance the IDS’s ability to detect and respond to anomalies

swiftly.

e In Chapter 5, we present an I2-DES based IDS framework that makes use of empow-
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ering events along with indicator probe packets to identify a CoAP request response
spoofing attacker, thereby providing IoT application layer security against such types
of attacks. However, there remains a wide variety of CoAP attacks such as, the
selective blocking attack, request delay attack, response delay and mismatch attacks
that make use of UDP which is unreliable and is effective yet when DTLS is present.
Such attacks cannot be prevented with our countermeasure as it is. In the future, we

plan to come up with a Timed I?-DES framework to resist such attacks.

Industrial IoT (IIoT) is a major enablement in Cyber Physical Systems (CPS). Securing
IToT is crucial to the smooth functioning of various applications across domains like
healthcare, manufacturing, aircraft maintenance, and other mission critical systems.
Devices in IToT do not suffer much from resource constrainment, yet security is
critical in such systems with necessity for more quicker and accurate approaches.
Message Queue Telemetry Transport (MQTT) is one of the most important application
layer data protocols of IoT networks, especially for Industrial IoT environments.
It is based on the publish-subscribe model with three participants, namely client
(publisher), broker, client (subscriber). MQTT 5.0 protocol security is challenging
since it implements authentication methods like SCRAM or Kerberos. It is worth
exploring the normal and attack event sequences when MQTT is in place, to identify
a malfunctioning node uniquely. DES frameworks can be extended to ensure secure
operation of CPS under the IloT Ecosystem when a MQTT attack is in place. In
future, we would like to extend our approaches to MQTT security and further venture

into distributed denial-of-service attack mitigation schemes using lightweight solutions.

In Chapters 3, 4 and 5, we discuss IoT layer-specific attack countermeasures that
incorporate techniques suitable to identify an attack node, given a particular attack
type and a protocol. However, a comprehensive IDS-based framework is necessary
to mitigate cross layer IoT attacks, that is any loT attacker node can be identified
correctly irrespective of the layer and protocol. However, designing such an unified
DES-based IDS framework will be fairly challenging since it would result in a vast
number of states and transitions. The future work in this direction can be fruitful if
modular DES-based IDS frameworks are considered to handle the state-space explosion

problem.
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Appendix

A Discrete Event System Definitions

Due to certain measurement limitations, some events cannot be measured. Such events
are called unmeasurable events. The event set can be expressed as a disjoint union of
measurable and unmeasurable events. In notation, ¥ = X, U Xm.

Definition 1. Measurable and Unmeasurable transitions A transition, 7, that
is enabled under the influence of an event ¢ is said to be measurable if the corresponding
event, o, is measurable. Similarly, a transition associated with an unmeasurable event is
said to be an unmeasurable transition. <, and $y,, denote the set of measurable and
unmeasurable transitions.

Definition 2. Measurement equivalent transitions (states) A pair of transitions
1 = (z1, 2], o1, ¢1(V), ®1(C), Reset1(C), Assign1(V)) and 7o = (2, 23, 02, ¢o(V),
D9(C), Reseta(C), Assigna(V)) are said to be measurement equivalent iff o1 = o9, p1(V) =
d2(V), ®1(C) = ®o(C), Reset1(C) = Reseta(C) and Assigni (V) = Assigna(V). If a pair
of transitions are equivalent, then their source states and destination states are equivalent
states pair-wise. In simple terms, if the system current state is an initial state of a transition
that has at least one more equivalent state, then the final states reached, from each of these
states due to an equivalent transition, are also equivalent.

Definition 3. Projection and Inverse Projection Operator A projection operator
P :3* — QF, is defined as: P(e) = € (null string); P(7) =7 if 7 € Sy P(7) = € if 7 € Sum;
P(st) = P(s)P(7), where s € Ly(H),7 € 3. The function P erases the unmeasurable
transitions from the argument finite trace. P(s) is termed as the measurable finite trace
corresponding to the finite trace s.

Definition 4. Normal H-state (H-transition) and Faulty (Attack) H-state
(H-transition) States that are traversed by the system when operating without any fault
(attack) are known as Normal H-states. Xy denotes the set of all normal states. A H-
transition (z,x") is called a normal H-transition if z, 27 € X). States that are traversed
by the system when operating under faulty (attack) circumstances are known as faulty
H-states (attack H-states). Xp. denotes the set of all faulty states. A H-transition (z,z™)
is called a faulty H-transition if z, 2" € Xp.. Analogously, X 4, denotes the set of all attack
states. A H-transition (z,z") is called an attack H-transition if z,z" € X4,.

B DES Diagnosability
Definition 5. Fj-Diagnosability Let V(Xp,) = {s|s € Ly(H) and final(s) € X, and s
ends in a measurable transition}. A DES model H is said to be diagnosable for fault F; iff

the following holds:
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(3nj € N)[Vs € U(XR)|(VE € Li(G)/9)[|t] = nj) = D] (1)

where, D is Vo € {P~L[P(st)]}, final(z) € Xp,.

Definition 6. Fj;-I-Diagnosability Let ¥(Xg) = {s|s € Ly(H) and final(s) € XF,
and s ends in a measurable transition}. A I-DES model H is said to be I-diagnosable for
fault F; iff the following holds:

(3n; € N)[¥s € W(XR,)|(Vit € Lp(G)/s)[lt] = nj) = D] (2)

where, D is Vo € {P71[P(sit)]}, final(z) € Xp,.

Suppose s is a finite trace in H containing a F; state and ¢ is an indicator transition
and t is continuation of trace si that is sufficiently long. To satisfy the I-Diagnosability
condition D then requires every trace that is measurement equivalent to sit to end in a Fj
state. This implies that in absence of Fj-I-indeterminate cycles (A;-I-indeterminate cycles),
along every continuation it of s, occurrence of a fault F; (attacker A;) can be detected
within at most n system transitions following si.

Definition 7. F;-1>-Diagnosability Let U(Xp,) = {s|s € L{(H) and final(s) € Xp,
and s ends in a measurable transition}. A I?-DES model H is said to be I2-diagnosable for
fault F; iff the following holds:

(3nj € N)IVs € W(XF)|(Vejit € L(G)/s)[|t] = n;) = D] (3)

where, D is Vo € {P~1[P(sejitt)]}, final(z) € Xp,.

Implications of s,i,t are the same as in Definition 6. e denotes a transition consisting
of an empowering event and j is an optional trace that occurs after e and till indicator
transition 7. To satisfy the I’>-diagnosability condition requires e to ensure that i sensitizes
the fault F; (attacker A;) occurrence within at most n system transitions following the trace
seji.

Construction of the diagnoser:

DES diagnosers give estimates of system states that are modeled using a DES. Con-
sequently, DES I-diagnosers and DES I?-diagnosers are modeled from I-DES consisting
of indicator transitions and I?-DES consisting of empowering events apart from indicator
transitions. Each of these diagnosers are represented as a directed graph, O = (Z, A, Zp).
Here, Z is the set consisting of the states of the diagnoser O, called O-states, Zy is the set
of initial O-states of the diagnoser and A is the set consisting of the transitions (edges) of
the diagnoser, called O-transitions, where A C Z x Z. Each O-state z is an estimate of the
actual system state and consists of one or more states of DES H, z € 2%, the power set of
X, signifying membership uncertainty. On a similar note, each of the O-transition a consists
of one or more measurement equivalent transition of modeled DES H and represents an
uncertainty in the actual measurable transition that takes place. They are of the form
(2i, zf). We denote the unmeasurable successor set of a state set X as U(X) and is defined
as U(X) = U ex{zT|r = (z,27) € Sy}, The unmeasurable reach of a state set X, U*(X),
is the reflexive-transitive closure of U (X).

The sets we consider are finite sets. To construct the diagnoser, transitions and states
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are appended to the diagnoser based on the measurable system traces from the initial set of
states. The set of states contained in an initial O-state are the initial states of DES H and
the states that are reachable from each of those initial states using sequences of unmeasurable
transitions, i.e., {XoUU(Xo)}. The initial O-state thus comprises of states that belong
to normal state set or any attacker type state from H, because an attack transition is
inherently unmeasurable. Consequently, any O-state may comprise of equivalent states
from normal as well as attacker type states. Hence, all states included in O are measurable
equivalent. The O-transitions on the other hand are a set of equivalent H-transitions which
are directed from a set of equivalent source states to a set of equivalent destination states.
Any O-transition can therefore take either of these following forms:

o ((wq,2)), (xb,xa'» if (24,24,04,04(V),@a(C),Assigng(V),Reset,(C)) = (xj,a:;,aﬁ,
¢a+(v)a Q4+ (C)vASSigntﬁ' (V)vResetcﬁ' (C)>

o ((ayxf), (1)), (T, ), (@) i (Ta,20,00,0a(V),Pa(C),Assigna(V),Resetq(C)) #
(xf ) ogr pa+ (V),@ot (C),Assigng+ (V),Reset,+ (C)) and z, = 2

o ((za), (z)){(x), (z;)), otherwise.

In Algorithm 14, the step-wise procedure for a DES diagnoser construction is shown.
Their construction procedure remains the same irrespective of indicator transitions or
empowering transitions in the corresponding DES model.

ALGORITHM 14: Diagnoser construction O for DES model H

Input: DES model H
Output: DES Diagnoser
/* PARTITION Xo — Measurement equivalent classes, Xo1, Xo02, .- > Xom */
for alli, 1 <i<m do

| 20 « U*(Xos)
Zo 201 U - Uzom
Z Zo
A ¢
for all z € Z do
/* Find the set of measurable H-transitions (SQy,.) outgoing from z */
Smz  {7|7 € Sm Ainitial(r) € 2}
/* Find the set of all measurement equivalent classes A, of Sz */
for alla € A, do

24 = {final(7)|7 € a}

2T =U(2q)
Z <+ ZU{zt}
A=AU{a}

C Diagnosability Definitions

Fj-certain O-state (Aj;-certain O-state) and Fj-uncertain O-state (A;-uncertain O-state) are
two types of diagnoser states that relate to occurrence of a fault type F; (attacker type A;).
Following are some of the definitions that pertain to the diagnoser:
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Definition 8. Normal certain O-state A O-state that consists of states in H, all of
which only belong to X .

Definition 9. Fault certain O-state (Attack certain O-state) Given n fault
(attacker) types, a O-state that consists of states in H, all of which only belong to ., F;
(Uien A, purely.

Definition 10. Fj-certain O-state (A;-certain O-state) A O-state that consists of
states in H, all of which only belong to Xr, (X4,).

Definition 11. Fj-uncertain O-state (A4;-uncertain O-state) A O-state that
consists of states that may belong to F;-H-states as well as states of DES H other than the
fault type F; (attacker type A;).

Definition 12. Fj-uncertain cycle (A;-uncertain cycle) It is defined as a cycle of

1EN

O-states in which there are no Fj-certain O-state (A;-certain O-state).

Definition 13. Indicator transition (/-transition) A transition containing a
measurable event, called an indicator event, that sensitizes a fault (attack).

Definition 14. Fj-indeterminate cycle (A4;-indeterminate cycle) It is defined as a
cycle of Fi-uncertain O-states (A;-uncertain O-states) such that the transitions constituting
this cycle also form a cycle in H using only non-Fj-states (non-A;-states). A Fj-indeterminate
cycle (A;-indeterminate cycle) is therefore a special case of Fj-uncertain cycle (A;-uncertain
cycle).

Lemma: Existence of a Fj-indeterminate cycle (A;-indeterminate cycle) renders non-
diagnosability

Proof: Existence of a Fj-indeterminate cycle (A;-indeterminate cycle) in diagnoser O
implies the presence of at least two measurement equivalent traces in H, one consisting of only
F;-states (A;-states) and another comprising of non-Fj-states (non-A;-states). Therefore,
system traces executed while in a Fj-indeterminate cycle (A;-indeterminate cycle) imply
that variables measured are identical in both normal and fault (attack) conditions. Hence,
the estimates of the diagonser while entering and moving along such a cycle means non-
diagnosability of fault F; (attack A;), since throughout the cycle transitions it remains
uncertain if F; (A;) or non-F; (non-A;) occurs each time and as it is assumed that the faults

(attacks) are permanent, the cycle may thus never be exited.
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