
Test Pattern Generation and Fault
Localization for Some Fault Models

in Reversible Circuits

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy

in

Computer Science and Engineering

by

Mousum Handique

Under the guidance of

Prof. Jantindra Kumar Deka and Prof. Santosh Biswas

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
August, 2019

mailto:mousum@iitg.ac.in
http://www.iitg.ac.in/jatin/
http://www.iitg.ac.in/santosh_biswas/
http://www.iitg.ernet.in/cse/
http://www.iitg.ernet.in

Declaration

I certify that:

a. The work contained in this thesis is original and has been
done by me under the guidance of my supervisors.

b. The work has not been submitted to any other Institute for
any degree or diploma.

c. I have followed the guidelines provided by the Institute in
preparing the thesis.

d. I have conformed to the norms and guidelines given in the
Ethical Code of Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis,
figures, and text) from other sources, I have given due credit
to them by citing them in the text of the thesis and giving
their details in the references.

f. Whenever I have quoted from the work of others, the source
is always given.

Mousum Handique

mailto:mousum@iitg.ac.in

Copyright

Attention is drawn to the fact that the copyright of this thesis rests with

its author. This copy of the thesis has been supplied on the condition that

anyone who consults it is understood to recognise that its copyright rests

with its author and that no quotation from the thesis and no information

derived from it may be published without the prior written consent of the

author.

This thesis may be made available for consultation within the Indian Institute

of Technology Library and may be photocopied or lent to other libraries for

the purposes of consultation.

Signature of Author..

Mousum Handique

mailto:mousum@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “Test Pattern Gen-
eration and Fault Localization for Some Fault Models in
Reversible Circuits”, being submitted by Mousum Hand-
ique, to the Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, for partial fulfillment
of the award of the degree of Doctor of Philosophy, is a bonafide
work carried out by him under our supervision and guidance.
The thesis, in our opinion, is worthy of consideration for the
award of the degree of Doctor of Philosophy in accordance with
the regulation of the institute. To the best of our knowledge, it
has not been submitted elsewhere for the award of the degree.

........................

Jantindra Kumar Deka

Department of Computer Science and Engineering

IIT Guwahati

........................

Santosh Biswas

Department of Computer Science and Engineering

IIT Guwahati

mailto:mousum@iitg.ac.in
mailto:mousum@iitg.ac.in
http://www.iitg.ernet.in
http://www.iitg.ac.in/jatin/
http://www.iitg.ernet.in/cse/
http://www.iitg.ac.in/santosh_biswas/
http://www.iitg.ernet.in/cse/

Dedicated to
My inspirational ‘Maa’Aruna Handique

Although, I cannot hear her voice or see her smile no more. She walks

beside me still just as did before

Acknowledgments

The work presented in this thesis would not have been possible without my

close association with many people. It gives me immense pleasure to write

down the acknowledgment for my Ph.D. thesis.

First and foremost, I would like to extend my sincere gratitude and respect

to my thesis supervisor Prof. Jantindra Kumar Deka for his dedicated help,

advice, inspiration, encouragement, and continuous support throughout my

Ph.D. His regular critical reviews, constructive criticism, and unfailing co-

operation greatly benefited me during the entire period of my research and

writing of this thesis. Working under him has been really a great experience

which I believed will help me throughout my entire life for pursuing not only

better work but being a better human being as well. I am really glad to be

associated with a person like Prof. Jantindra Kumar Deka in my life.

My special words of thanks should also go to my other thesis supervisor

Prof. Santosh Biswas from the core of my heart. His constant guidance,

cooperation, and support have always kept me going ahead. The kind of

freedom he gave me during the period of my research is unbelievable. I owe

a lot of gratitude to him for his timely and invaluable suggestions which have

aided in making this work better and I feel privileged to be associated with

a person like him.

I am grateful to Dr. Kamalika Datta from National Institute of Technology

(NIT), Meghalaya, India and Prof. Indranil Sengupta from Indian Institute

of Technology (IIT), Kharagpur for their valuable suggestion and cooperation

during my research work.

My sincerest thank goes to the rest of my thesis committee members: Prof.

Diganta Goswami, Prof. Arnab Sarkar, and Prof. Kanduru V. Krishna for

their insightful comments and encouragement.

I am also thankful to all faculty members of the Department of Computer

Science and Engineering, IIT Guwahati for their valuable suggestions. I must

convey my heartfelt thanks to the staff members of the Department for their

kind cooperation.

I would like to express my gratitude to the Director, the Deans and other

managements of IIT Guwahati.

I would like to thanks the competent authority of Assam University, Silchar

for giving me the leave for doing my Ph.D. at IIT Guwahati.

My heartfelt regard goes to my Deuta Purna Kanta Handique for his moral

support and blessings.

I owe my deepest gratitude towards my wife Smriti for her external support

and understanding of my work. Her patience and scarifies will remain my

inspiration throughout my life. Her constant encouragement and faith have

enabled me to overpower tough situations. I am thankful to my sons, Neelabh

and Moumon for giving me happiness during my studies.

A big thank goes to Narayan Kalita, Sr. Superintendent, Hostel Affairs Bord

(HAB), IITG for providing the Hostel accommodation whenever I needed

during my research period. I am also grateful to all my friends and juniors

(especially Mr. Awnish Kumar) for their kind help and support.

Date:

(Mousum Handique)
Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati
Guwahati, India

Abstract

Due to the advancements of sub-micron/nanotechnology in semiconductors,

computing platforms involve complex micro-architectural designs with multi-

millions gates per chip with smaller sizes to meet the computation and perfor-

mance demands. The complex design and smaller size are always associated

with side-effects such as high energy dissipation, an increase in the proba-

bility of faults, etc. In conventional digital logic gates, the number of inputs

and outputs lines can be different, which typically results in loss of infor-

mation and heat dissipation. In 1973, Charles H. Bennett postulated that

the information is lossless if the computation is reversible. Reversible func-

tions are used in reversible computing. The applicability of the reversible

computation can be used in the various types of reversible logic gates such

as quantum computing, Quantum Cellular Automata (QCA), trapped-ion

technology, optical computing, etc. Therefore, researchers have explored the

reversible logic as a circuit design alternative, which is gaining popularity in

recent times.

In the circuit design domain, the presence of manufacturing faults is a major

concern that may lead to physical failure of the system. Even a single fault

can cause a large deviation in the expected performance of a system. Fault

detection and fault localization are two important phases in the field of circuit

testing. With the increasing importance of the use of reversible logic circuits,

testing of the reversible circuit is necessary to ensure their reliability. In this

thesis, we consider some of the fault models to generate the test patterns to

detect these faults in reversible circuits.

A reversible circuit realizes a reversible function and it is implemented by

a linear cascade of reversible gates, where fan-out and feedback connections

are not allowed. Due to the nature of the cascade connection, the circuit

consists of several levels from input to output and fault may occur at any

level. In the first phase of our work, we consider the bridging faults at the

input level. We identify a test set to detect all possible input bridging faults

in a reversible circuit and establish that the test set is minimal and complete.

It is also indicated that by adding one particular test vector to this test set,

input stuck-at fault can also be detected.

In the next work, we consider intra-level bridging faults, i.e., single and

multiple bridging faults that may occur at any level of the reversible circuits.

The concept of path-level expression is introduced in this work to generate the

test set to detect all possible intra-level bridging faults. It is also established

that the generated test set is complete and minimal.

Stuck-at and bridging fault models are also used in conventional digital cir-

cuits to detect faults. There are some special fault models which are appli-

cable for reversible circuits only. One such fault model is the missing gate

fault model and in the third work we consider the missing gate fault model.

We propose a method to generate the test set to detect single missing gate

faults in a reversible circuit. Next, we enhance the test set to detect multiple

missing gate faults. The generated test set is not a minimal one, so we use

Integer Linear Programming (ILP) techniques to find the minimal test set.

It is also established that the generated test set is complete. In this work, a

correlation of other fault models is shown with missing gate fault model.

Since the missing gate fault model is specific to reversible circuits, so in our

last work, we propose a method to locate the missing gate faults in reversible

circuits. The test set generated to detect the missing gate faults is used to

construct a fault localization tree and with the help of fault location tree, a

method is proposed to locate the fault positions of missing gate faults.

We also perform the complexity analysis for all the proposed methods in this

thesis and the computational complexities of the proposed methods are rea-

sonable. The experiments are performed for all the proposed methods with

benchmark circuits and comparisons are shown with some of the published

works. It is observed that our proposed methods perform better than the

existing schemes and fault coverage of our proposed methods is nearly 100%.

Contents

1 Introduction 1

1.1 Preliminaries . 5

1.1.1 Reversible Logic Function . 5

1.1.2 Reversible Logic Gates and Libraries 5

1.1.3 Reversible Circuits . 9

1.1.4 Fault Models in Reversible Circuit 10

1.1.4.1 Stuck-at Fault Model (SAF) 11

1.1.4.2 Bridging Fault Model (BF) 12

1.1.4.3 Missing-gate Fault Model 13

1.1.4.4 Crosspoint Fault Model 16

1.2 Motivation and Objectives of the Work 17

1.3 Related Work . 18

1.4 Summary of Contributions . 21

1.4.1 Test Generation for Input Stuck-at and Bridging Faults in Re-

versible Circuits . 21

1.4.2 Test Generation for Bridging Faults in Reversible Circuits Using

Path-Level Expressions . 21

1.4.3 Test Generation for Multiple Missing-Gate Faults in Reversible

Circuits . 22

1.4.4 Fault Localization for Missing Gate Faults in Reversible Circuits . 23

1.5 Organization of the Thesis . 24

1.6 Conclusion . 25

xiii

CONTENTS

2 Test Generation for Input Stuck-at and Bridging Faults in Reversible

Circuits 27

2.1 Introduction . 27

2.2 Related Work . 28

2.3 Proposed Method . 30

2.3.1 Test Generation for Single Input Bridging Fault 31

2.3.2 Test Set Generation for Single Input Stuck-at Fault 35

2.4 Experimental results and Discussions . 38

2.5 Conclusion . 42

3 Test Generation for Bridging Faults in Reversible Circuits Using Path-

Level Expressions 45

3.1 Introduction . 45

3.2 Related Work . 46

3.3 Proposed Method . 47

3.3.1 Local Test Pattern Generation Method 51

3.3.2 Path Generation Method . 52

3.3.3 Complete Test Set Generation Method 55

3.3.4 Complexity of the Proposed Method 61

3.4 Experimental Results and Discussions . 62

3.5 Conclusion . 69

4 Test Generation for Multiple Missing-Gate Faults in Reversible Cir-

cuits 71

4.1 Introduction . 71

4.2 Related Work . 72

4.3 Proposed Method . 74

4.3.1 Detection Technique for Single Missing Gate Fault 75

4.3.2 Complete Test Set Generation for Single Missing Gate Fault . . . 76

4.3.3 Complexity Analysis of complete test set generation 78

4.3.4 Complete Test Set Generation for Multiple Missing Gate Fault . . 78

4.3.5 Complexity Analysis of complete test set TS generation 81

4.3.6 Determination of Minimal Complete Test Set 81

xiv

CONTENTS

4.3.6.1 Complexity Analysis of ILP formulation 83

4.3.7 Fault Coverage Evaluation with other Faults Models 84

4.4 Experimental Results and Discussions . 86

4.5 Conclusions . 92

5 Fault Localization for Missing Gate Faults in Reversible Circuits 95

5.1 Introduction . 95

5.2 Related Work . 96

5.3 Proposed Technique of Fault localization 100

5.3.1 Module 1: Complete Test Set Generation 100

5.3.2 Module 2: Test Response Generation for Fault Localization 101

5.3.2.1 Enumeration of SMGFs and MMGFs 103

5.3.2.2 Construction of Fault Analysis Table 104

5.3.2.3 Evaluating Equivalent Faults 105

5.3.3 Module 3: Construction of Fault Localization Tree 105

5.3.3.1 Reduction Process for Fault Localization Tree 110

5.3.4 Module 4: Traversal Process for Fault Localization 111

5.4 Experimental Results and Discussions . 115

5.5 Conclusions . 120

6 Conclusion and Future Work 121

6.1 Summarization . 121

6.2 Future Work . 124

References 127

Appendix A: Summary of Publications 135

xv

CONTENTS

xvi

List of Figures

1.1 Reversible Gates and their Gate Operation. 7

1.2 Reversible Circuit Structure. 9

1.3 Illustration of NCT and GT based Reversible Circuit 10

1.4 k-CNOT Reversible Circuit comprising of two 1-CNOT, one 2-CNOT,

and one 3-CNOT gate . 10

1.5 Illustration of Reversible ham3 tc benchmark circuit: (a) Fault-free cir-

cuit, (b) SSF, (c) MSF, (d) SBF, and (e) MBF 12

1.6 Illustration of Reversible Circuit nth Prime3 inc for various fault condi-

tions under missing-gate fault model . 14

1.7 Illustration of Crosspoint faults in Reversible Circuit 16

2.1 Test set for detecting single input bridging faults 32

2.2 Demonstration of single input bridging faults for N=8 and N=9 32

2.3 3 17tc tfc benchmark circuit . 34

2.4 4b15g 2 benchmark circuit . 34

2.5 Comparison of the proposed work with the work of [1] 41

2.6 Comparison of the proposed work with the work of [2] 42

3.1 Demonstration of Reversible Circuit nth Prime3 inc for various bridging

fault conditions . 49

3.2 Test set generation for detecting input bridging faults 52

3.3 Illustration of path generation for the circuit nth Prime3 inc using back-

tracking . 53

xvii

LIST OF FIGURES

3.4 Demonstration of Complete Test Set generation for the circuit nth Prime3 inc 59

3.5 Plot of CPU time vs. Number of input lines 64

3.6 Plot of CPU time vs. Number of gates 65

3.7 Plot of CPU time vs. Number of faults 66

4.1 Demonstration of Algorithm 2 for the circuit rd32 v0 66 77

4.2 Toffoli double 4 benchmark circuit . 80

4.3 ham3tc benchmark circuit . 83

5.1 Block diagram of Fault Localization Method 99

5.2 Miller 11 benchmark circuit . 102

5.3 Enumeration Process for the circuit Miller 11: (a) one gate (b) consecu-

tive two gates (c) consecutive three gates (d) consecutive four gates, and

(e) consecutive five gates . 104

5.4 Fault Localization Tree for the circuit Miller 11 108

5.5 Reduction Process of a given tree . 109

5.6 Unit vertices of a fault localization tree for the circuit Miller 11 during

the reduction process . 111

5.7 Fault localization tree after the reduction Process for the circuit Miller 11112

5.8 Reduced fault location tree for the circuit Miller 11 with test vectors in

binary form . 113

5.9 Traversal process of fault f
(l1,l2)
g2 for the circuit Miller 11 115

5.10 Traversal process of fault f
(l1,l2)
g2 for the circuit Miller 11 116

5.11 Performance analysis of Number of faults vs. CPU time 119

5.12 Performance analysis of Number of test patterns vs. CPU time 119

xviii

List of Tables

1.1 Reversible function f . 6

1.2 Permutation matrix of reversible function f 6

1.3 Faulty and fault-free outputs for ham3 tc benchmark circuit of Figure 1.5 13

2.1 Bridging fault coverage for the circuit 3 17tc tfc 34

2.2 Bridging fault coverage for the circuit 4b15g 2 35

2.3 Stuck-at fault coverage for the circuit 3 17tc tfc 37

2.4 Stuck-at fault coverage for the circuit 4b15g 2 37

2.5 Detection of input bridging and stuck-at faults (S = Stuck-at faults and

B = Bridging faults) with CPU time (sec) for benchmark circuits 39

2.6 Comparison of the test vectors with [1] 40

2.7 Comparison of the test vectors with [2] 40

3.1 Truth Table for the nth Prime3 inc circuit of Figure 3.1 with fault-free

and faulty outputs . 50

3.2 Meta Characters and Interpretation . 56

3.3 Fault coverage table for the circuit nth Prime3 inc with 2 test vectors . . 60

3.4 Complete test set for detection of bridging faults with simulation CPU

time (sec) for the benchmark circuits . 63

3.5 Comparison of the complete test set with [3] 67

3.6 Comparison of the complete test set with [4] 67

3.7 Comparison of the complete test set with [2] 68

4.1 Row and Column fault coverage table of the ham3tc benchmark circuit . 84

xix

LIST OF TABLES

4.2 Complete and Minimal test set for detection of SMGFs and MMGFS with

CPU time (sec) for the benchmark Circuits 87

4.3 Comparison of the complete test set with [5], [6], [7], [8], [9] 89

4.4 Fault coverage range with SAF, PMGF and Crosspoint Fault Models by

the proposed complete test set TS . 91

5.1 Truth Table of the circuit Miller 11 . 102

5.2 Input and corresponding output responses for the fault-free circuit Miller 11103

5.3 Fault analysis table for the circuit Miller 11 106

5.4 Evaluation of equivalent faults for the circuit Miller 11 107

5.5 Experimental results for the fault localization of SMGFs and MMGFs

with CPU time (sec) for the benchmark circuits 117

xx

List of Algorithms

1 Path generation algorithm . 55

2 Complete test set TSSMGF generation for detecting the SMGFs. 76

3 Complete test set generation for MMGFs 80

4 Fault localization algorithm. 114

xxi

Abbreviations

ATPG Automatic Test Pattern Generation
BDD Binary Decision Diagram

CNOT Controlled NOT Gate
CFLTS Complete Fault Location Test Set

DFT Design for Testability
DTPG Diagnostic Test Pattern Generation

EDA Electronic Design Automation
ETG Extended Toffoli gates
FEF Functionally Equivalent Fault
GT Generalized (n-bit) Toffoli gate Library
ILP Integer Linear Programming

k-CNOT k-Controlled NOT Gate; k is the integer
MCT Multiple-control Toffoli Gate
MSF Multiple Stuck-at fault
MBF Multiple Bridging fault

MIBF Multiple Input Bridging faults
MIRBF Multiple Intra-level Bridging faults

MGF Missing Gate fault
MMGF Multiple Missing Gate fault

NCT NOT, CNOT, and Toffoli gate Library
NCTF NOT, CNOT, Toffoli, and FREDKIN gate Library

OTS Optimal Test Set
PMGF Partial Missing Gate fault

RGF Reduced Gate fault
SAF Stuck-at fault
SSF Single Stuck-at fault
SBF Single Bridging fault

SIBF Single Input Bridging faults
SIRBF Single Intra-level Bridging faults
SMGF Single Missing Gate fault

UTS Universal Test Set

xxiii

Chapter 1
Introduction

Advancements of sub-micron/nanotechnology in semiconductors have led to massive

growth in the electronics circuit design domain. New breakthroughs in semiconductor

design and manufacturing enable to fabricate a complex circuit with more components

in a small silicon area. Moore’s law [10], which states that the density of the integrated

circuits roughly doubles every two years, has withstood the test of time for the last

three decades. Shrinking transistor dimensions and lower power voltages result in higher

sensitivity and leading to significantly higher error rate. Smaller interconnect features

and higher operating frequencies increase the number of errors in a circuit. The higher

levels of integration and newly developed fabrication processes are capable of reducing

the size of the chips and increasing the speed and package density. Also, the problem

of power dissipation is increasing rapidly. Though several methods have been evolved

for low power design, still power dissipation of semiconductor electronic devices is a

major issue. Due to these difficulties that appear in the semiconductor technologies,

researchers are exploring alternative ways to implement the computational functions in

computing devices.

In conventional digital logic gates, number of inputs and outputs lines can be dif-

ferent, which typically results in loss of information or change of bit information. The

amount of energy required to change of one bit of information, known as Landauer

limit [11], is KTln2 Joules, where K is the Boltzmann constant (approximately 1.38×
(10−23)J/K) and T is the temperature of the system in Kelvins. In 1973, Charles H.

1

1. INTRODUCTION

Bennett [12] postulated that the information is lossless if the computation is reversible.

Reversible functions are used in reversible computing. A function is called a reversible

function if the number of outputs is equal to the number of inputs and a particular

input always produces a unique output, i.e., the reversible functions are bijective in

nature. This property allows us to deduce the inputs from the outputs [13]. In other

words, reversible function involves operations that can be easily and exactly reversed

or undone [14, 15]. Furthermore, the applicability of the reversible computation can

be used in the various types of reversible logic gates such as quantum computing [16],

Quantum Cellular Automata [17], trapped-ion technology [8], optical computing [18],

etc. Therefore, researchers explore the reversible logic as a circuit design alternative,

which is gaining popularity in recent times.

The reversible logic functions are implemented by the reversible logic operations,

which are called reversible gates. Therefore, a set of reversible gates is required to imple-

ment the reversible circuits. Some of the basic reversible gates are NOT gate, CNOT or

FEYNMAN gate [19], TOFFOLI gate [20], multiple-control Toffoli gate (MCT) [20], also

known as k-CNOT gates, FREDKIN gate [21], PERES gate [22] and SWAP gate [23].

The collection of different reversible gates forms the gate libraries [24, 25], such as the

NCT library (NOT, CNOT and TOFFOLI gate), GT library (n-bit TOFFOLI gate),

NCTF library (NOT,CNOT, TOFFOLI, and FREDKIN gate), etc. To maintain the re-

versibility, the reversible circuit should satisfy certain conditions: n-input and n-output

bijective function, no fan-out and no feedback connections [16]. These conditions leave

the reversible circuit as a linear cascade network structure of reversible gates [26], i.e., if

the ith gate in a reversible circuit is gate Gi, then the gate Gi is active if and only if the

gate G(i−1) has produced an output and the output of G(i−1) is considered as an input

of gate Gi. The reversible circuits can be implemented with quantum gates [27–30].

In the circuit design domain, the presence of manufacturing faults is a major concern

that may lead to physical failure of the system. Even a single fault can cause a large

deviation in the expected performance of a system. Fault detection and fault localization

are two important phases in the field of circuit testing. The first phase involves detecting

2

the presence of faults in the circuit and later phase involves finding the exact location

of these faults. With the increasing importance of the use of reversible logic circuits,

testing of the reversible circuit is necessary for the proper functioning of reversible logic

circuits. The different performance parameters that have been considered for testing of

reversible circuits are Test size, Quantum cost, Execution Time, Gate count, Number of

inputs and outputs, Garbage outputs, Fault coverage, etc. For evaluating the physical

defects in reversible circuits, we also need some abstract representations of these physical

defects. These abstract representations have been formulated based on the mathematical

model called a fault model. More precisely, a fault model is generally used to abstract

the effects of physical failures and also helps to simplify the complexity of the testing

mechanism during circuit testing [31]. Hence, various fault models for reversible logic

circuits have been proposed, where some of them are common to the conventional logic

circuits [32]. In the stuck-at fault model, a stuck-at fault causes some of the inputs or

output lines (signals) of a gate to be fixed at either 0 (stuck-at-0) or 1 (stuck-at-1) [31,33].

In the bridging fault model, a bridging fault occurs when two or more signal lines in the

circuit are unintentionally or accidentally shorted together to create a wired logic that

gives a faulty output of the circuit [34]. Bridging faults can occur at input, output and

intermediate levels of the circuits, which are commonly referred to as intra-level bridging

faults. Apart from these classical fault models, several other fault models in reversible

circuits are introduced in the literature [7,8,35]. In the missing-gate fault model, a single

missing-gate fault (SMGF) [7] occurs when any one of the reversible gates has completely

disappeared from the circuit. Whereas the multiple missing-gate faults (MMGF) causes

the complete removal of two or more consecutive reversible gates. A repeated-gate

fault (RGF) under the missing-gate fault model is due to an unwanted replacement of

a reversible gate by multiple instantiations of the same gate. The partial missing-gate

fault (PMGF) is also considered under the missing-gate fault model in reversible circuits.

A PMGF occurs in the circuit when one or more control connections are missing. In

the crosspoint fault model, two types of faults exist in reversible circuits [35]. If the one

or more control point is missing, then it is called disappearance crosspoint fault, and

3

1. INTRODUCTION

where one or more additional control point(s) is erroneously added, then it is referred

to as appearance crosspoint faults.

The test generation process for detecting the faults in reversible circuits is relatively

simpler than conventional logic circuits because of the property of reversibility ensures

high controllability and observability [33]. An input test vector is capable of detecting

the fault if the input test vector produces different outputs for the faulty and fault-free

circuits. In general, a test set is complete if all the possible faults are covered in a given

reversible circuit. Such a test set is called a minimal complete test set if it contains the

minimum number of test vectors [33]. Various testing approaches for reversible logic

circuits have been proposed in the literature that address the generation of the complete

test set based on some classical fault models [1, 1, 3, 4, 6, 33, 36–39] which are used in

the conventional circuits also and some fault models [5–9, 40–43] which are specifically

applicable for the reversible circuits.

In the present thesis, we focus on efficient test set generation for single bridging

faults at first. We formally prove that the generated test set is minimal. Next, a

minimal test set is derived to compute the fault detection for single stuck-at faults in

the reversible circuit. This work is extended for obtaining the minimal complete test set

for single and multiple intra-level bridging faults. Moreover, we propose a method for

generating the test set for the SMGF based on the concept of reversibility (controllability

and observability) such that the searching mechanism and computational cost are low.

Later on, using the complete test set for SMGF and dependency of the gates information,

we extract the complete test set for MMGF in reversible circuit with low computation

cost and 100% fault coverage. Finally, we propose a fault localization technique for

evaluating the exact faulty location for SMGF and MMGF in a given reversible circuit.

This chapter is organized as: Section 1.1 provides the basic introduction on reversible

logic function, reversible gates and libraries, reversible circuit structure and fault models.

Section 1.2 discusses the main motivation and objectives of our thesis work. Some of

the previous works which are relevant to our thesis have been discussed in Section 1.3.

Section 1.4 explains the detail contribution of the present thesis work. The organization

4

1.1 Preliminaries

track of the thesis work is explained in Section 1.5. Finally, concluding remarks are

presented in Section 1.6.

1.1 Preliminaries

1.1.1 Reversible Logic Function

A logic function f(x1, x2, . . . , xn) with n Boolean variables is called a reversible logic

function if it realizes a bijective function. The bijective function f : Bn ⇒ Bm allows

a permutation on the set of input vectors to produce an output vector such that each

possible input vector can uniquely determine an output vector and vice versa, where the

number of input vectors should be equal to the number of output vectors (i.e., n = m).

To briefly illustrate a reversible function, we consider the reversible function with three

variables as depicted in Table 1.1. Here, the function f(2, 3, 0, 1, 5, 6, 4, 7) is permuted

over (0, 1, 2, 3, 4, 5, 6, 7) such that there exists a one-to-one mapping from input vectors

to output vectors i.e., f(0) = 2, f(1) = 3, f(2) = 0, f(3) = 1, f(4) = 5, f(5) = 6,

f(6) = 4, and f(7) = 7. The function f satisfied the surjective (onto) and injective

(one-to-one) conditions. As a result, the function f is considered as a bijective function.

Moreover, the bijective function can also be represented by a permutation matrix. The

permutation matrix of this function f is shown in Table 1.2. The entries values of the

permutation matrix are denoted as 1-entry and 0-entry, where 1-entry is represented

as an input pattern (row) is mapped to an output pattern (column), and if there is no

mapping between the input and output pattern, then it is denoted as a 0-entry. Table 1.2

has shown that each row and column have only one 1-entry in the permutation matrix of

function f . Therefore, the output pattern is uniquely determined by the input pattern

and also from the output pattern; the input pattern can be retrievable. Hence, the

Boolean function f is called a reversible function.

1.1.2 Reversible Logic Gates and Libraries

The reversible logic functions are implemented by the reversible logic operations, which

are called reversible gates. The formulation of a reversible gate consists of k-input and k-

5

1. INTRODUCTION

Table 1.1: Reversible function f

Function
f

Input
Vectors

Output
Vectors

Permutation
of f

x y z x′ y′ z′

0 0 0 0 0 1 0 2

1 0 0 1 0 1 1 3

2 0 1 0 0 0 0 0

3 0 1 1 0 0 1 1

4 1 0 0 1 0 1 5

5 1 0 1 1 1 0 6

6 1 1 0 1 0 0 4

7 1 1 1 1 1 1 7

Table 1.2: Permutation matrix of reversible function f .

Inputs Outputs

000 001 010 011 100 101 110 111

000 0 0 1 0 0 0 0 0

001 0 0 0 1 0 0 0 0

010 1 0 0 0 0 0 0 0

011 0 1 0 0 0 0 0 0

100 0 0 0 0 0 1 0 0

101 0 0 0 0 0 0 1 0

110 0 0 0 0 1 0 0 0

111 0 0 0 0 0 0 0 1

6

1.1 Preliminaries

output wires; it is called as a reversible k×k gate [33]. The reversible gates maintain the

bijective property and have an equal number of inputs and outputs. For the construction

of the reversible circuit, several gates have been proposed over the past decades, some

of the classical reversible logic gates and libraries are discussed as below.

Figure 1.1: Reversible Gates and their Gate Operation.

i) NOT gate consists of 1-input and 1-output, i.e., 1×1 gate. The input A determines

the output A. In other words, the NOT gate maps A → A ⊕ 1. The symbolic

representation of a reversible NOT gate is depicted in Figure 1.1 (a).

ii) Controlled-NOT (CNOT or FEYNMAN) [19] is a 2×2 gate. The formulation of

the CNOT gate is the combination of one positive control line (•) and target line

(⊕). Here, the output of the control line remains the same as the input control

line and the value of the target line output is inverted if and only if the control

7

1. INTRODUCTION

line input is activated as logic value 1. The operation of the CNOT gate realizes

the bijective function which is represented as (A,B)→ (A,A⊕B). The symbolic

representation and gate operation of a CNOT gate are shown in Figure 1.1 (b).

iii) TOFFOLI [20] is a 3×3 gates. The output of the control lines remain the

same as the input of the control lines and the target line output is inverted if

both the control lines are logic value 1; otherwise, output remains unchanged. It

has the bijection relation with the input and output combination represented as

(A,B,C) → (A,B,AB ⊕ C). The symbolic representation and gate operation of

a TOFFOLI gate are shown in Figure 1.1 (c).

iv) Multiple-control TOFFOLI (MCT) gate [20] is the logical extension of TOF-

FOLI gate is also known as k-CNOT gate. Here, k is number of control lines

x1, x2, . . . , xn−1 and there is one target line xn. Therefore, k-CNOT gate has

k+1-inputs and k+1-outputs. The reversible logic function of k-CNOT gate is

expressed as (x1, x2, . . . , xn−1, xn) → (x1, x2, . . . , xn−1, x1.x2 . . . xn−1 ⊕ xn). In

k-CNOT gate operation, all the outputs of the positive control (denoted as •)
lines remain the same as the input and the logic value of the target line t (denoted

as ⊕) is only inverted if all the positive control input lines are at logic value 1.

The symbolic representation and gate operation of a TOFFOLI gate are shown in

Figure 1.1 (d).

v) FREDKIN [21] is a 3×3 gate that has one control line and two target lines. The

control input remains unchanged and the output of the other two target inputs

are swapped if the control input is logic value 1. The symbolic representation and

gate operation of a TOFFOLI gate are shown in Figure 1.1 (e).

vi) PERES [22] is also a 3×3 gate. The output of the control input remains same and

the output of the target input for the first gate is inverted if the control input is

set as logic value 1. The output of the target input for the second gate is inverted

if both control inputs are set as logic value 1. The symbolic representation and

gate operation of a PERES gate are shown in Figure 1.1 (f).

8

1.1 Preliminaries

vii) SWAP [23] has 2×2 gates which exchange the inputs. Figure 1.1 (g) shows the

symbolic representation and gate operation of a SWAP gate.

1.1.3 Reversible Circuits

A reversible logic circuit realizes the reversible logic function and it can be implemented

by a linear cascade of reversible gates [26], where fan-out and feedback connections are

not directly allowed [16]. Consider a reversible circuit C=g1, g2, . . . , gd, where d is the

total number of reversible gates, and also it is considered the circuit length. Suppose,

gate gi is the ith gate, for 1 ≤ i ≤ d, then gate gi is only active when the gate gi−1 has

completed the gate operation. In a reversible circuit, each gate is categorized by the

level, and the number of levels depending on the circuit length. The general structure

of the reversible circuit with the cascade of d reversible gates is shown in Figure. 1.2.

Figure 1.2: Reversible Circuit Structure.

Example 1.1.1. Figure 1.3 (a) and (b) show the reversible circuit based on NCT library
and GT library, respectively. In Figure 1.3 (a), the first, second, and third gates are
NOT, CNOT and TOFFOLI gate, respectively. and these gates form the NCT library.
Figure 1.3 (b) contains only multiple-control Toffoli (MCT) gates and these gates form
the generalized Toffoli gate (GT) library.

Example 1.1.2. Figure 1.4 illustrates the propagation of input vector “1010” to the
primary output vector “ 1100”. Since all the k-CNOT gates are reversible, so each gate
produces a unique output at each level during the gate operation. Here, the output
vector “1110” is generated by gate g3, which lies between levels 3 and 4, when the input
vector “1010” is applied. Furthermore, if any gate produces different vector at their
corresponding level, then a different output vector is produced in place of “1100” at the
primary output level in the circuit.

9

1. INTRODUCTION

MCT

GT Library (b)

a
1

a
2

a
n-1

a
n

a'
1

a'
2

a'
n-1

a'
n

a
2

a
n

(a
1
.a

2
....a

n-1
)

.

.

.

a
1

.

.

.

a
1

a
2

.

.

a
n-1

(a
1
.a

2
....a

n-2
)

c'= a.b (a c')

NOT CNOT TOFFOLI

NCT Library (a)

a

b

c
a c'c'

a
a'= a

b
b'= b

Figure 1.3: Illustration of NCT and GT based Reversible Circuit

Figure 1.4: k-CNOT Reversible Circuit comprising of two 1-CNOT, one 2-CNOT, and one
3-CNOT gate

1.1.4 Fault Models in Reversible Circuit

In a circuit design domain, there is a massive number of physical defects in a chip, and

also it is impossible to count and analyze all possible faults. For evaluating the physical

defects, we can not directly apply the mathematical treatment of testing. Thus, we need

some abstract representations of these physical defects. These abstract representations

have been formulated based on the mathematical model called a fault model. More

precisely, a fault model is a mathematical model that describes the different levels of

abstraction of physical fault in a system. The level of abstraction can be defined as

behavioral, functional, structural, and geometric [31]. Based on the process of developing

the mathematical mechanisms, the fault model can be applied to evaluate the faults and

also helps to reduce the complexity of detecting the faults. Therefore, the fault model

is an abstract representation of the physical defects in the system.

10

1.1 Preliminaries

Let us assume that FM is the fault model that abstracts the faults in a way such

that gates are assumed to be fault-free; however, the interconnection of gate netlist is

faulty. Let Z(x) be the logic function of a circuit C, where x represents an input vector

assigned by the input lines of the circuit. Here, fault f denotes the faulty interconnection

of the gate netlist. Due to the presence of fault f , the function Z(x) of the circuit C

transforms to the new function Zf (x), which is realized by the new circuit Cf . More

precisely: FM={Z(x)
f

=⇒ Zf (x) | Z(x) ∈ C and Zf (x) ∈ Cf , ∃ x where, Z(x) 6= Zf (x)}
represents the fault f in the circuit.

Depending on the reversible gate operations and structure of the circuit, few more

fault models are required in addition to traditional fault models which are needed for

detecting all faults in reversible circuits. Several fault models are applied to the NCT

and GT libraries. Some of the fault models for reversible circuits are Stuck-at Fault

(SAF) [33], Bridging Fault (BF) [3], Missing Gate Fault [7, 8], etc. In this section, we

discuss these fault models in details.

1.1.4.1 Stuck-at Fault Model (SAF)

The structural behavior of stuck-at fault model as described for the conventional logic

circuit is also used in the reversible circuit testing. The stuck-at faults occur in a circuit

when one of its inputs or outputs are fixed at either logic value 0 (stuck-at-0) or logic

value 1 (stuck-at-1) [31, 44]. If occurrence of a stuck-at fault is limited only to one line

in the circuit, then it is called as the single stuck-at fault (SSF) and if the stuck-at fault

is involved with more than one line, then it is called as multiple stuck-at fault (MSF).

Patel et al. [33] stated that any test set is complete for detecting the stuck-at faults, if

and only if each line at every level can be set to both 0 and 1 by the test sets.

Example 1.1.3. Figure 1.5 (b) and (c) show the effect of the single stuck-at faults
and multiple stuck-at faults in ham3 tc benchmark reversible circuit, respectively. In
Figure 1.5 (b), stuck-at 0 fault occurs at input line ’a’ at level 1 and the effect of this
fault is propagated to the primary output of the circuit. The test vector required to
detect this fault is 〈0 1 1〉 or 〈1 0 0〉 or 〈1 0 1〉 or 〈1 1 0〉, as depicted in Column 1
of Table 1.3. In Figure 1.5 (c), let multiple stuck-at fault (MSF), i.e., stuck-at 0 and
stuck-at 1 occur at line ’a’ and ’c’, respectively at level 1. Here, if we apply the test
vector 〈0 1 0〉 to the circuit, the fault-free output would be 〈0 0 1〉, as shown in column 2
(Fault-Free output) of Table 1.3. However, in the presence of the MSF fault, the output

11

1. INTRODUCTION

will be 〈0 1 1〉 (marked as bold), as depicted in Column 4 of Table 1.3. Hence, the test
vector 〈0 1 0〉 is capable of detecting all the MSF faults as shown in Figure 1.5. All other
error outputs for the MSF are demonstrated in Column 4 (marked as bold for faulty
outputs) of Table 1.3.

Level

S-a-0a

b

c

a'

b'

c'

Level 0 1 2 3 4 5Level

a

b

c

a'

b'

c'

0 1 2 3 4 5

S-a-0a

b

c

a'

b'

c'

0 1 2 3 4 5

S-a-1

a

b

c

a'

b'

c'

0 1 2 3 4 5

(a)

a

b

c

a'

b'

c'

0 1 2 3 4 5Level

Level

(b)

(c) (d)

(e)

Figure 1.5: Illustration of Reversible ham3 tc benchmark circuit: (a) Fault-free circuit, (b)
SSF, (c) MSF, (d) SBF, and (e) MBF

1.1.4.2 Bridging Fault Model (BF)

The bridging fault is considered as a structural fault model in the reversible circuit

similar to the conventional circuit. A bridging fault occurs when two or more signal

lines (wires) in the circuit are unintentionally or accidentally shorted together to create

a wired logic that gives a faulty output of the circuit [34]. More precisely, the logic value

on a signal line can be effected by the logic value of the other signal lines which are

coupled or shorted together. The connection between the two lines, the logical effects of

this fault are categorized by wired-OR and wired-AND bridging faults [31]. The bridging

12

1.1 Preliminaries

Table 1.3: Faulty and fault-free outputs for ham3 tc benchmark circuit of Figure 1.5

Inputs Fault-Free
output Faulty outputs

SSF MSF SBF MBF

a b c a′ b′ c′ a′ b′ c′ a′ b′ c′ a′ b′ c′ a′ b′ c′

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0

0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0

1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1

1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0

1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0

fault develops by shorted of two or more lines. The single bridging faults (SBF) refers to

when only one pair of input lines exist. If more than two input lines are involved, then it

is referred to as multiple bridging faults (MBF). In 2007, Rahaman et al. [3] stated that

if a test set is capable to generate the opposite logic value to every pair of lines lying at

the same level, then the test set is capable of detecting all the faults in that level.

Example 1.1.4. Figure 1.5 (d) shows that the two input lines ’a’ and ’b’ are connected
together at level 3. The effect of this fault is represented by the truth table as shown
in column 5 (mark as bold for faulty outputs) of Table 1.3. By comparing the fault-free
with faulty output, the test vector 〈0 0 1〉 or 〈0 1 0〉 or 〈0 1 1〉 or 〈1 0 0〉 is able to detect
the fault as mentioned in Figure 1.5 (d). Similarly, for the case of multiple bridging
fault, the input lines ’a’, ’b’ and ’c’ are connected with each other at level 3, as shown in
Figure 1.5 (e). Column 6 (Faulty outputs) in Table 1.3 shows the possible test vectors
as 〈0 0 1〉, 〈0 1 0〉, 〈0 1 1〉, 〈1 0 0〉, 〈1 0 1〉, or 〈1 1 1〉.

1.1.4.3 Missing-gate Fault Model

Apart from the traditional fault models, few more types of fault models need to be

considered for describing the different kind of faults that occur in the k-CNOT based

reversible circuit. These specific kind of faults are Single Missing-Gate Fault (SMGF) [7,

8], Multiple Missing-Gate Faults (MMGF) [8], Repeated-Gate Fault (RGF) [8], and

13

1. INTRODUCTION

Partial Missing-Gate Fault (PMGF) [8].

Figure 1.6: Illustration of Reversible Circuit nth Prime3 inc for various fault conditions
under missing-gate fault model

i) Single Missing-Gate Fault (SMGF): A single missing gate fault occurs when

any one of the k-CNOT gates is completely disappeared from the circuit. The

physical justification of a SMGF is that the generated signal(s) for operating the

gate is (are) short, missing, misaligned, or mistuned [7, 8]. The removal of a k-

CNOT gate gives direct influences on the circuit functionality. Here, the total

number of SMGFs is equal to the total number of gates N present in the circuit.

In Figure 1.6.(a), g2 gate is missing which is marked by a dotted box. If we apply

input test vector 〈0 1 1〉 to the faulty circuit, the output would be 〈1 1 1〉 instead

of normal primary output 〈0 0 1〉. Based on the k-CNOT gate operation, the

SMGF can be detected by applying logic value 1 to the all positive control line

(•). Unconnected and target lines will be set as logic value 0 or 1 in the missing

k-CNOT gate [8].

ii) Multiple Missing-Gate Faults (MMGF): Multiple missing gate faults (MMGF)

14

1.1 Preliminaries

cause the complete removal of two or more consecutive k-CNOT gates. According

to the authors in [8], the assumption of physical justification for the MMGF is that

the gate operations implemented using laser is more likely to be disturbed for a

period of time exceeding one gate operation. Hence, always consecutive gates are

missing. Figure 1.6.(b) shows that g2 and g3 gates are missing which is marked

by the dotted box. After applying the input test vector 〈0 1 1〉 the output vector

would be 〈1 1 1〉 instead of 〈0 0 1〉. Furthermore, every SMGF is a subset of

MMGFs [8].

iii) Repeated-gate Fault (RGF): A repeated-gate fault occurs when an unwanted

k-CNOT gate replaced by multiple instantiations of the same gate. The physical

justification for an RGF is the occurrence of long or duplicate pulses [8]. The

effect of RGF is shown in Figure 1.6 (c), where g2 gate is repeated once more in

the circuit. If we apply the input test vector 〈0 1 1〉 to the circuit, then the output

of the fault-free circuit is 〈0 0 1〉, but due to the presence of RGF, the output

would be 〈1 1 1〉. Based on the RGF model, if the repeated gate occurs in even

numbers of instances, then its effect is similar to the impact of SMGF; otherwise,

the fault is redundant [8].

iv) Partial Missing-Gate Fault (PMGF): A partial missing-gate fault occurs in

the circuit when one or more control connections are missing. The physical justi-

fication of a PMGF is defined as partially misaligned or mistuned gate pulse [8].

If in any k-CNOT gate, the control connection is missing only once (k=1), then it

is called as the first-order PMGF, and control connections are missing more than

once (k > 1), then its referred to as higher-order PMGF. Figure 1.6.(d) shows

a first-order PMGF where the second control of gate g3 is missing. If we apply

input test vector 〈1 0 1〉 then the faulty output would be 〈1 0 1〉 instead of normal

output 〈1 0 0〉 due to the presence of PMGF at gate g3. It has been shown [8] that

for the detection of a PMGF (first or higher order), the logic value 0 is set at least

one of the affected control connections and the logic value 1 is applied to all other

control connections. Remaining unconnected lines and target connections are set

15

1. INTRODUCTION

as logic value 0 or, 1.

Figure 1.7: Illustration of Crosspoint faults in Reversible Circuit

1.1.4.4 Crosspoint Fault Model

The Crosspoint fault model is developed based on Programmable logic array (PLAs) [35].

Though a reversible circuit is a very different structure from a PLA, they are both based

on a regular array design. The structure of the gate netlist in the reversible circuit is

formed based on the regular array. Thus, this fault model may be effective to analyze

the faults in reversible circuits. The Crosspoint fault consists of two types of faults. In

k-CNOT gate netlist, when one or more additional control points are added erroneously,

it leads to appearance faults. On the other hand, when one or more control points

are removed erroneously, then it is called disappearance faults. The PMGF under the

missing-gate fault model is the subset of the Crosspoint fault model [35]. Figure 1.7 (b)

illustrates the functionality effects of appearance crosspoint fault where the first control

point is erroneously added (marked as dotted box) at gate g2. Thus, if we apply the

test vector 〈0 1 0〉 to the circuit as shown in Figure 1.7 (b), then faulty output 〈0 1 0〉
generates instead of fault-free output 〈0 1 1〉. Similarly, Figure 1.7 (c) demonstrates

the functionality effects of disappearance fault that is first control point of gate g1 is

erroneously removed (marks dotted box), due to that faulty output 〈0 1 0〉 generates

instead of fault-free output 〈0 1 1〉.

16

1.2 Motivation and Objectives of the Work

1.2 Motivation and Objectives of the Work

The use of reversible circuits is gaining importance in the research community due to its

reversible nature and lossless computation [12,14,15]. The information loss is related to

the power dissipation [11] and reversibility ensures the identification of an input for a

given output [13]. To ensure the reliability of a system, one needs to give the guarantee

of a fault free system. To identify the fault in a circuit, it is essential to generate the

required test vectors to identify the faults.

Exhaustive search technique is used to find a minimal complete test set [45], but the

computational cost is high when the circuit size is large. Reversible circuits are built with

cascading of reversible gates, so fault may occur at input, output and intermediate levels.

Depending on the number of signal lines and number of gates of a reversible circuit, there

is a possibility to get a large number of faults in a reversible circuit. Therefore several

approximate and heuristic search techniques are being proposed to generate the test set

for reversible circuits and these methods have their own merits and demerits. Most of

the proposed methods in the literature mainly considered a particular fault model to

get the set of test vectors. Generally, it is observed that while trying to reduce the size

of test set, the percentage of fault coverage is less. On the otherhand, while trying to

cover more faults the size of test set increases. Also, if more numbers of faults are being

tried to consider by a method, then the complexity of computation increases.

By considering all these issues of test set generation for reversible circuits, we try

to generate the minimal complete test sets for some fault models in reversible circuits.

First, we consider the bridging fault models at the input level of reversible circuits and

identify a minimal complete test to detect the bridging faults at the input level for any

reversible circuit. It is also established that by adding a particular test vector to the test

set, stuck-at faults can also be detected. Next, we extend the work to find the minimal

complete test set to find intra-level single and multiple bridging faults, which may be

extended to find intra-level stuck-at faults also. Moreover, the complexity for generating

the complete test set for an intra-gate level fault is high, because the reversible gate at

each level is dependent on its previous level of the circuit. Our next work is related

17

1. INTRODUCTION

to find the test set to detect multiple missing gate faults. Fault localization is also an

important problem in circuit testing domain and finally, a method has been proposed

for localization of faults for missing gate fault model.

The main objectives of this thesis are summarized as follows:

• Test set generation to identify the bridging faults and stuck-at faults at input level

of reversible circuits. The generated test set is a minimal complete test set.

• Test set generation for identifying input and intra-level bridging faults in reversible

circuits. Both single and multiple bridging faults are being covered by the proposed

method.

• Test set generation for identifying multiple missing gate faults.

• Determination of the location of a missing gate fault in reversible circuits.

• Exploring to get efficient methods for generating minimum test sets with low com-

putational complexity so that methods are scalable also.

1.3 Related Work

The generation of complete test for a traditional circuit and as well as the reversible

circuit with a minimal test set is an NP-hard problem [6]. For extracting a minimal

complete test set, the exhaustive search technique is required [45]. Various testing ap-

proaches have been proposed previously in reversible circuits which are governed by the

two main different methodologies for offline testing. The exact automatic test pattern

generation (ATPG) provides the minimal complete test set, but the computational cost

is high when the circuit size is large, and the randomized (heuristic) approaches for

ATPG provide the complete test set, but that may not give a minimal solution [6]. On

the other hand, the design for testability (DFT) methodology also generates the minimal

complete test set with an additional burden of extra circuitry (i.e., DFT circuitry) [39].

The computation cost for generating the complete test set for intra-level faults is high,

18

1.3 Related Work

because the reversible gate at each level is dependent on its previous level of the cir-

cuit. Suppose, in the stuck-at and bridging fault model, the fault may appear in the

initial level or primary output level or maybe intra-gate level. Due to this, the size of

generated complete test size may have exponential growth [43]. Therefore, generating

the efficient minimal complete test set is the challenging task to detect all the possible

faults in each level of the circuit. In 2004, Patel et al. [33] proposed an Integer Linear

Programming (ILP) based deterministic approach with binary decision variables to con-

struct the minimal test set for detecting stuck-at faults as well as cell-faults in reversible

circuits consisting of gates from the NCT library. Because of its computational com-

plexity, the method is applicable only for small circuits. To handle larger circuits, the

authors suggested a circuit decomposition approach. The authors in [36,37,46] proposed

an ATPG with DFT for detecting stuck-at faults in a k-CNOT reversible circuit. How-

ever, all these methods required an additional extra circuitry overhead, which leads to

an increase in the quantum cost of a testable circuit. In 2007, Bubna et al. [4] proposed a

Design-For-Test (DFT) methodology for detecting bridging faults in reversible circuits.

This method required (dlog2ne+3) test vectors for n input wires. Additional input wires

are added to Toffoli gates to realize the DFT circuit. Rahaman et al. [3] showed that a

test set of cardinality (d log2 n) is sufficient to detect all intra-level bridging faults, where

d is the levels of the circuit and n is the number of input lines. In 2008, Sarkar et al. [1]

presented a polynomial time algorithm for generating a set of universal test vectors for

detecting all single and multiple input bridging faults of reversible circuits.

In 2004, Hayes et al. [7] showed that all Single Missing Gate Faults (SMGFs) (con-

sidered one gate missing at a time) in an N -gate k-CNOT based circuit can be detected

with a maximum of dN/2e test vectors. Also, it is shown that Missing Gate Faults

(MGFs) are detectable by a Design For Testability (DFT) method with one wire, and

several 1-CNOT gates using a single test vector. In 2008, Rahaman et al. [40] proposed

an augmented k-CNOT circuit by adding only one extra line along with duplication of

each k-CNOT gate. It is also shown that a universal test set of size (n+1) is sufficient to

detect all SMGFs along with fault models, viz., RGFs and PMGFs. In 2016, Nagamani

19

1. INTRODUCTION

et al. [6] proposed exact ATPG algorithms for generating the complete test set which can

detect the single and multiple stuck-at faults, single and multiple missing gate faults, re-

peated gate faults, and partial missing gate faults. The proposed algorithms provide the

optimal solution, but the complexities of these algorithms are exponential with respect

to the gate count and the number of lines of the circuit. In 2017, Prakash Surhonne

et al. [5] has generated Automatic test patterns for MMGFs detection; however, they

considered that only two gates are missing. Based on the generated SMGFs which are

stored in a Binary Decision Diagram (BDD) and the scheme generates the test patterns

to cover all MMGFs by dependency analysis between two gates.

Another important area of testing of the reversible circuit is fault localization. Very

few works are found in literature for fault localization based on the different fault models

for reversible circuits. The authors in [47] proposed an adaptive tree-based approach for

fault localization to detect and locate stuck-at faults in a reversible circuit. To speed up

the computation of symmetric adaptive tree method, the authors also proposed a new

greedy direct tree generation algorithm that eliminates the fault table generation and dy-

namically creates the adaptive fault tree without generating all test patterns. However,

both approaches are applicable to small circuits because the simulation size of the fault

table increases exponentially for large circuits. In 2005, Pierce et al. [48] also proposed

a method to generate the fault table using all the possible vectors in the circuit. Based

on the fault table, the fault localization tree is constructed with additional constraints

for identifying the faulty behavior of the circuit. In 2011, Zhang et al. [49] proposed a

new fault diagnosis approach for single missing control fault model in reversible circuits.

This approach provided new methods for Diagnostic Test Pattern Generation (DTPG).

Rahaman et al. [50] proposed a fault diagnosis technique in k-CNOT based reversible

circuit using the missing gate fault model. The proposed technique required a univer-

sal test set (UTS) of size (n+1) that detects all single missing-gate faults (SMGFs),

repeated-gate faults (RGFs), and partial missing-gate faults (PMGFs). This method re-

quires one extra control line along with duplication of each k-CNOT gate of the original

(n × n) k-CNOT based reversible circuit resulting in high area overhead.

20

1.4 Summary of Contributions

1.4 Summary of Contributions

The main emphasis of this thesis is to generate the test patterns under various fault

models and develop fault localization schemes for reversible circuits. This thesis has

four major contributions which are discussed in the subsequent subsections.

1.4.1 Test Generation for Input Stuck-at and Bridging Faults
in Reversible Circuits

In the first work of the thesis, the test pattern generation for single input bridging and

stuck-at fault is considered. This work discusses a scheme for minimal test generation

to detect all input bridging and stuck-at faults in reversible circuits. A method has

been proposed to find the minimal test set to detect all single input bridging faults

and formally prove that dlog2Ne number of test vectors is necessary and sufficient for

detection of all the input bridging faults of a reversible circuit with N inputs. A simple

scheme to identify the input stuck-at faults with the generated test set of bridging faults

is also explored. It is established that addition of a particular test vector is sufficient to

cover all the stuck-at faults at the input. Experimental results showed that the generated

test set of the proposed scheme covers 100% faults and the test set size is much smaller

as compared to the existing methods.

1.4.2 Test Generation for Bridging Faults in Reversible Cir-
cuits Using Path-Level Expressions

The second work of this thesis is related to the generation of the test patterns to detect

input and intra-level bridging faults. In this work the method of the first work of the the-

sis is extended to find the test patterns to detect intra-level bridging faults in reversible

circuits. Reversible circuits are constructed by cascading connection of reversible gates.

Fault may occur in signal lines at any level. Most of the possible intra-level bridg-

ing faults, namely, Single Input Bridging Faults (SIBF), Multiple Input bridging faults

(MIBF), Single Intra-level Bridging Faults (SIRBF) and Multiple Intra-level Bridging

Faults (MIRBF) are addressed in this work. The test patterns generated for single in-

put bridging faults are applied as local test patterns at each level. With the help of the

21

1. INTRODUCTION

local test patterns, a path is generated from each level to input level using backtrack-

ing method. This method is based on the reversible property– “for every vector at the

output of a reversible gate; there exists a unique vector at the input.” After generating

the paths, if some paths are not complete then complete path is generated with forward

simulation method. A path is said to be complete if it traces from output to input level.

Moreover, the path-level expression is introduced in the work to generate the complete

test set. The path-level expression has the ability to capture the level-wise information

on a given reversible circuit. After collecting all the path-level expressions, a matching

process is applied to collect the required paths, which are used to generate the test set.

It is also established that the generated test is the minimal and complete one. The com-

putational complexity of the proposed method is found to be in logarithm order of the

number of inputs and linear to the number of gates of a reversible circuit. The algorithm

of the proposed complete test set generation method has been implemented and applied

to various benchmark circuits based on NCT (NOT, C-NOT and TOFFOLI) and GT

(Generalized TOFFOLI) gate libraries [24] and [25]. Based on the experimental results,

it is evident that the number of test vectors generated by our proposed method is less

or equal to the existing methods. Moreover, the proposed method covers more types of

fault as compared to existing methods and achieves 100% fault coverage. Extension of

this work to detect the intra-level stuck-at faults is straight forward, similar to the first

work of this thesis.

1.4.3 Test Generation for Multiple Missing-Gate Faults in Re-
versible Circuits

The problem of identifying Multiple Missing Gates Faults (MMGF) is considered as the

third work and Missing Gate Fault model is specific to reversible circuits only. This work

presents a scheme for generating the complete test set to detect single and any number

of consecutive multiple missing-gate faults in the reversible k-CNOT based circuits.

The complete test set generation method is twofold. First, the test vectors for SMGFs

(Single Missing Gate Faults) are generated by applying the local test pattern to all the

gates of reversible circuits using the reverse simulation method. Secondly, based on the

22

1.4 Summary of Contributions

complete test set for SMGFs and the structure of the k-CNOT based circuit, the test

set for detecting all the MMGFs is constructed. This phase of the proposed method

generates the complete test set which can detect the multiple missing gate faults, but

the test set is not minimal. For achieving the minimality, a table is constructed covering

the row and column faults, which is formulated as an ILP problem. The experimental

results demonstrate that the minimized test set size is smaller or similar as compared

to existing methods and attains 100% fault coverage. Empirically it is also established

that the generated test vectors of this method also contributes the fault detection for

the SAFs (Stuck-At Faults), PMGFs (Partial Missing Gate Faults), and appearance of

crosspoint faults, but the fault coverage is not 100%. The fault coverage analysis has

been done without modification of the generated complete test set. The correlations

of these fault models indicates that there is a possibility to reconstruct the generated

complete test set to cover all the possible faults in reversible circuits.

1.4.4 Fault Localization for Missing Gate Faults in Reversible
Circuits

In this work, the fault localization method is presented to obtain the exact location of

single and multiple missing gate faults in reversible logic circuits. The primary focus of

this proposed method is to extract the unique test pattern for each missing gate faults

in the k-CNOT based reversible circuit. The test set generated in the third work of

the thesis is used to generate the test sequence or response for each single and multiple

missing gate faults, and the unique sequence of test patterns are used for identifying the

exact location of the faults. Based on these unique test patterns, a fault localization

tree is constructed. Next, the traversal process is applied to the fault localization tree

to determine the presence and location of the faults. Moreover, the proposed method

is also capable of evaluating the equivalent faults in a given reversible circuit. Finally,

we provide our experimental results that are validated on several reversible benchmark

circuits [25]. From this proposed method, it is evident that the complete test set for

detecting faults can be used further for fault localization of reversible circuits.

23

1. INTRODUCTION

1.5 Organization of the Thesis

This thesis consists of six chapters including this introduction chapter. The remaining

part of the thesis is organized as follows:

• Chapter 2: Test Generation for Input Stuck-at and Bridging Faults in Reversible

Circuits

– In this chapter, a minimal complete test set generation method is proposed

which is capable of detecting all the possible single input bridging and single

input stuck-at faults in reversible circuits. The existing research work related

to this problem is also included in this chapter.

• Chapter 3: Test Generation for Bridging Faults in Reversible Circuits Using

Path-Level Expressions

– This chapter presents an ATPG method to determine the minimal complete

test set for detecting the Single Input Bridging Faults (SIBF), Multiple In-

put Bridging Faults (MIBF), Single Intra-level Bridging Faults (SIRBF), and

Multiple Intra-level Bridging Faults (MIRBF). Related work for this problem

is also briefly introduced in this chapter.

• Chapter 4: Test Generation for Multiple Missing-Gate Faults in Reversible Cir-

cuits

– This chapter proposes a scheme for generating the complete test set to de-

tect single and any number of consecutive multiple missing-gate faults in the

reversible k-CNOT based circuits. The correlation of Missing Gate Faults

with other fault models such as SAFs, PMGFs and crosspoint faults is also

included in this chapter. Related research work is also presented.

• Chapter 5: Fault Localization for Missing Gate Faults in Reversible Circuits

– This chapter presents a novel fault localization method to obtain the exact

location of single and multiple missing gate faults in reversible circuits.

24

1.6 Conclusion

• Chapter 6: Conclusion and Future Work

– This chapter concludes the thesis by summarizing the main contributions and

highlighting some important areas for future research.

1.6 Conclusion

In this introductory chapter, we explained the overview of the thesis with some necessary

basic background of the reversible logic circuits. The main motivation and objectives

are also reported therein. A brief summary of the main contributions is reported in this

chapter. In the next chapter, we present our first contribution which is related to single

input stuck-at and bridging faults in reversible circuits.

25

1. INTRODUCTION

26

Chapter 2
Test Generation for Input Stuck-at and
Bridging Faults in Reversible Circuits

2.1 Introduction

In this chapter, we consider the problem of testing of reversible circuit for NCT or GT

library-based reversible circuits, specifically targeting test pattern generation for input

stuck-at and bridging fault models in reversible circuits. The concept of stuck-at and

bridging fault model as described for conventional logic is also used in the reversible

circuit testing. In this present work, we consider particularly the single input stuck-at

faults and bridging faults, where the fault occurs at the input level of the reversible

circuits. The bridging faults between two lines at the same level can be detected by

a test vector that sets the two lines to opposite logic values, i.e., 01 or 10, which was

reported in [31]. Stuck-at faults at any particular level also require lines to be set to 0

or 1 to detect the faults at that level. We first generate the test patterns to detect single

input bridging faults, and then subsequently reconstruct the test vectors for detecting

single input stuck-at faults. The method produces a complete test set, which is also the

minimal test set for detecting both single input bridging faults and single input stuck-at

faults, of reversible circuits.

At first, a method is proposed to generate the test vectors to detect all input bridging

faults of reversible circuits and formally we prove that the minimal test set contains

dlog2Ne test vectors to detect all single input bridging faults of a reversible circuit with

27

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

N input-lines. Next, we show that by adding only one test vector to the generated test

set of single input bridging faults can also detect all single input stuck-at faults. Based

on the evidence of the proposed method, it is established that there is a correlation

that allows the possibility for targeting at bridging fault model can also be applied for

detecting faults under the stuck-at fault model. The experimental results show that the

test set size is smaller as compared to some of the existing methods and covers 100%

faults. Moreover, it has been observed that the proposed method is scalable to large

circuits based on NCT and GT library.

This chapter is organized as follows: Section 2.2 provides an overview of related works

which are relevant to our present work. Section 2.3 describes our proposed method for

generating a complete minimal test set to detect input bridging and stuck-at faults in

the reversible circuits. The experimental results and discussions of the proposed method

are presented in Section 2.4. The concluding remarks are presented in Section 2.5.

2.2 Related Work

Some of the previous works that are relevant to the present work are briefly reviewed in

this section. In 2004, Patel et al. [33] proposed an Integer Linear Programming (ILP)

based approach with binary decision variables to construct the minimal test set for

detecting stuck-at faults as well as cell-faults in reversible circuits with gates from the

NCT library. Because of its computational complexity, the method is applicable only for

small circuits. To handle larger circuits, the authors suggested a circuit decomposition

approach. Patel et al. [33] stated that any test set is complete for detecting the stuck-at

faults, if and only if each line at every level can be set to both 0 and 1 by the test sets.

Also, the authors showed that if any test set is complete for the single stuck-at faults,

then the same test set is also complete for multiple stuck-at faults.

In 2005, a method was proposed [46] for detecting all stuck-at faults that reduce the

number of test vectors required to 3; however, an additional line and one extra control

in every gate are required as overhead. In 2008, Ibrahim et al. [36] proposed a method

for offline testing of multiple stuck-at faults in reversible circuits with only 2 test vectors

28

2.2 Related Work

by adding a maximum of two input lines. In this method some K-CNOT gates are

replaced by (K + 1)-CNOT gates and some are replaced by (K + 2)-CNOT gates. In

2011, Nayeem et al. [51] proposed a technique to convert an ESOP-generated reversible

circuit into an online testable circuit. Here one needs to add some CNOT gates and

replace the Toffoli gates with the extended Toffoli gates (ETG). Overall, this method

required double the number of CNOT gates.

In 2007, Bubna et al. [4] proposed a Design-For-Test (DFT) methodology for detect-

ing bridging faults in reversible circuits. The proposed method required (d log2Ne)+3

test vectors for N input wires. Additional input wires are added to Toffoli gates to

realize the DFT circuit. In 2018, Gaur et al., [38] presented a test methodology for

the detection of stuck-at faults in reversible circuits based on multiple controlled toffoli

gates. The circuit is modified by adding extra k-CNOT gates for those gates where the

input test vector is likely to be inverted in the circuit. This DFT method showed that

the (n+ 1) dimensional general test set containing only two test vectors which are capa-

ble of detecting all the single and multiple stuck-at faults in k-CNOT based reversible

circuits. Further, this DFT method is extended to identify the location of stuck-at faults

in the circuit.

In 2007, Rahaman et al. [3] showed that a test set of cardinality (d log2 n) is sufficient

to detect all intra-level bridging faults in an n-input and n-output reversible circuit with

d levels. In 2008, Sarkar et al. [1] presented a polynomial time algorithm for generating a

set of universal test vectors for detecting all single and multiple input bridging faults of

the reversible circuit. In 2011, Sarkar et al. [2] proposed a polynomial time algorithm to

generate the universal test vectors for detecting the single and multiple input bridging

faults in reversible circuits. The universal test generation method is based on the shift

operation of the unitary matrix, where unitary matrix is mapped to the identify matrix

by the shift operation. This method shows that d n/2 e number of test vectors is sufficient

to detect all the input bridging faults in a given reversible circuit.

It is observed from the literature that while trying to reduce the number of test

vectors for complete fault coverage, there is an additional burden of extra circuitry in

29

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

the form of additional input lines or control connections for reversible gates.

In this work, we propose a method to find the minimal set of test vectors to detect

all possible input bridging faults without any additional hardware. Also, we show that

by adding one more test vector, we can also detect all possible input stuck-at faults.

2.3 Proposed Method

In this section, we first present a method to find the minimum set of test vector to detect

all input bridging faults in a reversible circuit. Next, we show that this test set can be

enhanced by adding one more test vector to detect all the input stuck-at faults. Some

definitions are presented, which are used in subsequent discussions.

Definition 2.3.1. A test vector (TV) is a set of binary inputs that is applied to a
reversible circuit for the purpose of testing. Binary inputs 〈b1 b2 . . . bN〉 are provided
to the input lines L = {L1, L2, . . . , LN}, where N is the number of input lines. Let the
test set be TS = {TV1, TV2..., TVl}, for 1 ≤ j ≤ l, TVj = 〈b1j b2j . . . bNj〉, where bij
is the ith bit of jth test vector and bij ∈ {0, 1}. For the test vector TVj, at least one bit
bij must be different from some other bit bkj, where k 6= i.

Definition 2.3.2. The set FB is the set consisting of all single input bridging faults in a
given N-input reversible circuit. The single input bridging fault F(i,j) involves the pair of
input lines {Li, Lj}, where {Li, Lj} ⊆ L, and is denoted by {Li ↔ Lj}. In other words,
FB = {F(i,j) ∈ {Li, Lj}|{Li, Lj} ⊆ L, F(i,j) ⇒ {Li ↔ Lj}}.

Example 2.3.1. For a reversible circuit with N input lines, the number of possible
single bridging faults in any level will be NC2 or C(N, 2). For example, if N = 3, the
number of single bridging faults will be C(3,2) = 3, corresponding to the pairs {L1, L2},
{L1, L3} and {L2, L3}. The corresponding fault set will be FB = {F(1,2), F(1,3), F(2,3)}.

Definition 2.3.3. The test vector TVk is capable of detecting the bridging fault F(i,j) if
and only if bik 6= bjk.

Example 2.3.2. For the set of input lines L = {L1, L2, L3}, the test vector TV1 =
〈0 0 1〉 is capable of applying opposite logic values to the pair of input lines {L1, L3}
and {L2, L3}. Thus, TV1 detects the faults F(1,3) and F(2,3).

Definition 2.3.4. The test set TSS is the minimal complete test set to detect all the
single input stuck-at faults. Let TVt=(〈b1t b2t . . . bNt〉) be a test vector in TSS, where
bit is the ith bit of the tth test vector and bit ∈ {0,1}. If bit=0 then TVt is capable of
detecting stuck-at-1, otherwise, it detects stuck-at-0.

Definition 2.3.5. Let FS denote the set of all single input stuck-at faults in a given
N-input reversible circuit. Here, we are using the notation SA-bi-Li for single input

30

2.3 Proposed Method

stuck-at fault, which denotes a stuck-at fault of ith bit bi at the ith input line Li. The
stuck-at fault, SA-bi-Li / SA-bi-Li can only be detected when input line Li is set to bi /
bi. In other words, FS={SA-bi-Li, SA-bi-Li | SA-bi-Li ⇒ bi and SA-bi-Li ⇒ bi where,
bi ∈ Li}.

To compute FS for each input line Li, bi can be set to either 0 or 1. For N lines, the

number of single input stuck-at faults will be 2N .

2.3.1 Test Generation for Single Input Bridging Fault

In this section, we discuss the proposed method to generate a minimal test set for

detecting all single input bridging faults in a given reversible circuit.

As discussed earlier, a test vector is able to detect a single bridging fault between

two lines if it sets the two lines to opposite logic values. The proposed method generates

a test set where this property is satisfied for every pair of lines and is hence complete.

It is also established that the generated test set is minimal.

The basic idea behind the test generation method is explained below. Let us consider

the test set TSB = {TV1, TV2, . . . , TVdlog2 Ne}. Let the first test vector TV1 consist of

alternating 0’s and 1’s. The second test vector TV2 consists of an alternate sequence

of two consecutive 0’s and two consecutive 1’s. Similarly, the nth test vector consists

of 2n−1 consecutive 0’s followed by 2n−1 consecutive 1’s at the N-input lines LN , where

1 ≤ n ≤ dlog2Ne. This process continues, till we get the last test vector TVdlog2 Ne. This

is shown diagrammatically in Figure 2.1.

Example 2.3.3. The process of test set generation with the help of examples are shown
next. For N=8, the test set TSB will consist of three test vectors:TV1=(〈0 1 0 1 0 1 0 1〉),
TV2=(〈0 0 1 1 0 0 1 1〉), and TV3=(〈0 0 0 0 1 1 1 1〉). The total number of bridging
faults at the input is |FB| = C(8, 2) = 28. We observe that TV1 detects the faults F(i,j),
where |j − i| = 1, 3, 5, 7. Similarly, TV2 detects the faults F(i,j), where |j − i| = 2, 3, 6, 7.
Finally, TV3 detects the faults F(i,j), where |j − i| = 4, 5, 6, 7.

For N = 9, TSB will have four test vectors as dlog2 9e = 4. The four test vectors
are, TV1=(〈0 1 0 1 0 1 0 1 0〉), TV2=(〈0 0 1 1 0 0 1 1 0〉), TV3=(〈0 0 0 0 1 1 1 1 0〉) and
TV4=(〈0 0 0 0 0 0 0 0 1〉). The complete list of single input bridging faults for N = 8
and N = 9 of this example is shown in Figure 2.2.

We now present two lemmas with proof that establishes the completeness and mini-

mality of the test set.

31

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

TV1

TV2

TVn

TV log2N

=

=
0 1 0 1 0 1.......... N-bits

20 consecutive 0's followed by 20 consecutive 1's

 0 0 1 1 0 0............ N-bits

21 consecutive 0's followed by 21 consecutive 1's

...

=

...

 0 0 0 0 1 1 1 1 N-bits

2n-1 consecutive 0's followed by 2n-1 consecutive 1's

=

 0 0 0....0 1 1 1....1.......... N-bits

2 log2N -1 consecutive 0's followed by 2 log2N -1 consecutive 1's

Figure 2.1: Test set for detecting single input bridging faults

Figure 2.2: Demonstration of single input bridging faults for N=8 and N=9

Lemma 2.3.1. The test set generated using the proposed method detects all single input
bridging faults in a given N-input reversible circuit.

Proof. Let us consider the test set for single input bridging faults TSB={TV1, TV2, . . . ,
TVdlog2 Ne}, where the size of any test vector (TV) is N ; the number of input line is
LN for the given reversible circuit. The number of test vectors is dlog2Ne. We know
that all the single input bridging faults F(i,j) occur for all possible distance k = |i− j|,

32

2.3 Proposed Method

where 1 ≤ k ≤ N − 1. The total number of test vectors generated by the proposed
method is n = dlog2Ne. The nth test vector TVn=(〈0 0 0 0 . . . 1 1 1 1 . . .〉), contains
2n−1 consecutive 0’s followed by 2n−1 consecutive 1’s. By this test vector, input 0 is
provided to the first N/2 lines and input 1 is provided to the last N/2 lines. The
distance between first input line L1 having input 0 and first input line L(N/2)+1 having
input 1 is N/2 and these two input test bits can detect the single input bridging fault
F(1,(N/2)+1). By this analogy, it is observed that the test vector TVn can detect all the
single input bridging faults F(i,j) where (N/2) ≤ |i − j| ≤ N − 1. It is also observed
that the fault F((N/2),(N/2)+1) between the input lines L(N/2) and L(N/2)+1, which is one
distance apart can also be detected by the test vector TVn. But the fault F(i,i+1) where
1 ≤ i ≤ (N/2) − 1 cannot be detected by the test vector TVn. So, the test vector
TVn can detect all possible single input bridging faults F(i,j) where the distance between
input lines Li and Lj lies in the range [(N/2), . . . , (N − 1)]. Now consider the (n− 1)th

test vector TVn−1 = (〈0 0 0 0 . . . 1 1 1 1 . . . 0 0 0 0 . . . 1 1 1 1 . . .〉), which contains
alternate sequence of 2n−2 consecutive 0’s and 2n−2 consecutive 1’s. In this test vector
the entire test bits are divided into two parts and the bit pattern of first part is similar
to the second part. First part contains the input bits for the lines from L1 to L(N/2)

and the second part contains the input bits for the lines from L(N/2)+1 to LN . With the
similar reasoning, it can be stated that the test vectors TVn−1 can detect all possible
single input bridging faults F(i,j) where the distance between input lines Li and Lj lies in
the range [(N/4), . . . , ((N/2)−1)]. Similarly, the test vectors TV2 can detect all possible
single input bridging faults F(i,j) where the distance between input lines Li and Lj lies
in the range [2, 3] and test vector TV1 can detect all the single input bridging faults
between adjacent lines. It is also observed that the test vector TV1 can detect all faults
F(i,j) where |i − j| is an odd number. So, all faults are covered by some test vectors.
Therefore, the test set TSB is the complete test set for detecting all the single input
bridging faults in a given reversible circuit.

Lemma 2.3.2. The test set TSB is a necessary minimal test set for detecting all single
input bridging faults in a given N-input reversible circuit.

Proof. In Lemma 2.3.1, it is established that test set TSB can detect all single input
bridging faults of a given reversible circuit. The number of test vectors in TSB is
dlog2Ne. Consider the kth test vector TVk that contains an alternate sequence of 2k−1

consecutive 0’s and 2k−1 consecutive 1’s. This test vector can detect all the faults F(i,j),
where the distance between input lines Li and Lj lies in the range [(N/2n−k+1), . . . ,
(N/2n−k − 1)]. It is observed that every test vector TVi of TSB can detect all the faults
F(i,j) where the distant between lines Li and Lj belongs to a binary division of the entire
range. So, if we remove any one test vector, then that binary division cannot be covered
by the rest of the test vectors of TSB and bound to miss some single input bridging
faults. Also, if we replace the test vector TVi by any other random test vector then
some of the faults between some pairs of the input lines whose distance lies in the range
[(N/2n−k+1) . . . (N/2n−k − 1)] are bound to be missed. So, the test vector TVk must be
present in the test set TSB, where 1 ≤ k ≤ dlog2Ne.

Example 2.3.4. Consider the reversible benchmark circuit 3 17tc tfc consisting of six
gates as shown in Figure 2.3. The number of single input bridging faults is |FB| =

33

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

C(3, 2) = 3, and the required number of test vectors is 2. The two test vectors are:
TV1=(〈0 1 0〉) and TV2=(〈0 0 1〉). Table 2.1 shows that TSB is indeed capable of
detecting all input bridging faults in the circuit.

Figure 2.3: 3 17tc tfc benchmark circuit

Table 2.1: Bridging fault coverage for the circuit 3 17tc tfc

Single input
bridging fault Test Set (TSB) Fault-free Output Output Output

F(i,j) AND-bridging OR-bridging

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

F(1,2) 0 1 0 0 0 1 1 1 1 1 1 0

F(1,3) 0 0 1 0 0 0 1 1 1 0 1 0

F(2,3) 0 1 0 0 0 1 1 1 1 0 1 1

Example 2.3.5. Similarly, the reversible benchmark 4b15g 2 consists of 15 gates as
shown in Figure 2.4. The number of single input bridging faults for this circuit is |FB| =
C(4, 2) = 6. Two test vectors are generated as: TV1=(〈0 1 0 1〉) and TV2=(〈0 0 1 1〉).
Table 2.2 shows that the test set detects all single input bridging faults in the circuit.

Figure 2.4: 4b15g 2 benchmark circuit

34

2.3 Proposed Method

Table 2.2: Bridging fault coverage for the circuit 4b15g 2

Single input
bridging fault Test Set (TSB) Fault-free Output Output Output

F(i,j) AND-bridging OR-bridging

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

F(1,2) 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1

F(1,3) 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1

F(1,4) 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1

F(2,3) 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1

F(2,4) 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1

F(3,4) 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1

2.3.2 Test Set Generation for Single Input Stuck-at Fault

We shall now show how a test set for detecting single stuck-at faults can be derived

from the bridging fault test set as generated using the method explained in the previous

subsection. We note that if a test set applies opposite logic values 0 and 1 to each of

the input lines, then it can detect all single input stuck-at faults. The test set TSB

as discussed in the previous subsection may not satisfy this property for all cases, and

hence it is unable to guarantee the detection of all single stuck-at faults.

Here we discuss how we can augment TSB to generate a test set TSS that can detect

all single input stuck-at faults. Actually, we add one additional test vector to get the

required test set as TSS={TV1, TV2, . . . , TVdlog2 Ne, TVdlog2 Ne+1}. The extra test vector

is generated as TVdlog2 Ne+1=(〈b1q b2q . . . bNq〉), where the first bit b1q=1 and the last bit

bNq=0, while the remaining bits position can be arbitrarily filled up with 0 or 1. This

is required because of the first bit b1i of the ith (1 ≤ i ≤ dlog2Ne) test vector in TSS is

always 0, while the last bit bni of the ith (1 ≤ i ≤ dlog2Ne) test vector is always 1.

Example 2.3.6. For N = 8, the test set TSS will contain four test vectors as: TV1=
(〈0 1 0 1 0 1 0 1〉), TV2=(〈0 0 1 1 0 0 1 1〉), TV3=(〈0 0 0 0 1 1 1 1〉), and last test vector
TV4=(〈1 0 0 0 1 1 1 0〉). The total number of single input stuck-at faults is |FS|=16.
It is observed that the fault SA-0-L1 cannot be detected by any of the test vectors of
TSB. Similarly, the fault SA-1-L8 cannot be detected by the test vectors of TSB. So,
it is essential to include the test vector TV4 in the test set TSS, which can detect both
the faults SA-0-L1 and SA-1-L8.

35

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

The following two results are established for the proposed algorithms for minimality

and completeness.

Lemma 2.3.3. The test set TSS detects all single input bridging faults and single input
stuck-at faults in a given reversible circuit.

Proof. In Lemma 2.3.1, it is established that all the single input bridging faults are
detected by the test set generated by the proposed method. Let us consider the test set
TSS={TV1, TV2, . . . , TVp, TVq}, where p = dlog2Ne, q = dlog2Ne + 1. It is observed
that the test vectors TV1 to TVp apply 0 for input line L1. Similarly, 0 is applied to
input line L2 with respect to test vector TV1 to TVp−1, and 1 is applied to L2 by the test
vector TVp. Similarly, a 1 is applied to LN with respect to test vectors TV1 to TVp. Due
to this binary encoding pattern, the first line L1 always gets a 0 as input and the last
line LN gets a 1 as input. Due to this reason, these test vectors are capable of detecting
all the single input faults SA-0-Li and SA-1-Li except the faults SA-0-L1 and SA-1-LN .
However, the fault SA-1-LN cannot be detected by the test set TSB if N = 2x for some
integer x ≥ 2. Due to the inclusion of the test vector TVq in the test set TSS, it is
possible to detect the faults SA-0-L1 and SA-1-LN . Hence, we can conclude that TSS
detects all single input stuck-at as well as all single input bridging faults.

Lemma 2.3.4. TSS is a minimal test set for detecting all single input bridging faults
and single input stuck-at faults in a given reversible circuit.

Proof. In Lemma 2.3.2, it is established that all the test vectors of the test set TSB
are essential to detect all single input bridging faults in the circuit. Also it is shown
that the test set TSB is minimal. In Lemma 3, it is proved that the test set TSS=
{TV1, TV2, . . . , TVp, TVq} is the complete set of test vectors for detecting all single
input stuck-at faults. Since TV1 to TVp are essential for detecting single input bridging
faults, none of these can be removed from TSS. Since all the single input stuck-at faults
cannot be detected by the test set TSB, so, the requirement of additional test vector is
unavoidable. Since only one additional test vector has been added to the test set, so it
establishes the minimality of the test set TSS. Hence, the test set TSS is a necessary
and minimal test set for detecting all the single input bridging faults and single input
stuck-at faults for a given reversible circuit.

Example 2.3.7. Consider the reversible benchmark circuit 3 17tc tfc as shown in Fig-
ure 2.3. The number of single input stuck-at faults in this circuit is |FS|=6. Ac-
cording to the proposed method for generating the test set, the generated test set is
TSS={TV1, TV2, TV3}, where TV1=(〈0 1 0〉), TV2=(〈0 0 1〉) and TV3=(〈1 0 0〉). Ta-
ble 2.3 shows that the test set TSS can detect all the single input stuck-at faults in the
circuit.

Example 2.3.8. Consider the reversible benchmark circuit 4b15g 2 which is shown in
Figure 2.4. The number of single input stuck-at faults of this circuit is |FS|=8. According
to the proposed test set generation method, the test set is TSS={TV1, TV2, TV3}, where
TV1=(〈0 1 0 1〉), TV2=(〈0 0 1 1〉) and TV3=(〈1 0 1 0〉). Table 2.4 shows that the test
set TSS is capable of detecting all the single input stuck-at faults in the circuit.

36

2.3 Proposed Method

Table 2.3: Stuck-at fault coverage for the circuit 3 17tc tfc

Single input
stuck-at fault Test Set (TSS) Fault-free Output Output Output

SA-bi-Li SA-0-Li SA-1-Li

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

SA-0-L1 1 0 0 1 0 0 1 1 1 not required

SA-1-L1 0 1 0 0 0 1 not required 1 1 0

SA-0-L2 0 1 0 0 0 1 1 1 1 not required

SA-1-L2 0 0 1 0 0 0 not required 0 1 1

SA-0-L3 0 0 1 0 0 0 1 1 1 not required

SA-1-L3 1 0 0 1 0 0 not required 0 1 0

Table 2.4: Stuck-at fault coverage for the circuit 4b15g 2

Single input
stuck-at fault Test Set (TSS) Fault-free Output Output Output

SA-bi-Li SA-0-Li SA-1-Li

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

SA-0-L1 1 0 1 0 0 0 0 1 0 1 0 1 not required

SA-1-L1 0 1 0 1 1 0 1 0 not required 0 0 1 1

SA-0-L2 0 1 0 1 1 0 1 0 1 1 0 0 not required

SA-1-L2 0 0 1 1 1 1 1 0 not required 1 0 1 1

SA-0-L3 0 0 1 1 1 1 1 0 1 1 0 0 not required

SA-1-L3 0 1 0 1 1 0 1 0 not required 1 0 1 1

SA-0-L4 0 0 1 1 1 1 1 0 0 1 0 1 not required

SA-1-L4 1 0 1 0 0 0 0 1 not required 0 1 1 1

37

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

2.4 Experimental results and Discussions

The algorithms for the proposed test generation approach has been implemented and

evaluated on several benchmark circuits. The reversible benchmark circuits, based on

the NCT and GT gate libraries, have been considered [24]. The experimental results

are reported in Table 2.5. The first five columns in Table 2.5 show the name of the

benchmark circuit, gate model is used to implement the reversible circuit, the number

of input lines/output lines (without garbage lines), the total number of input stuck-at

faults, and the number of input bridging faults, respectively. Column 6, 7 and 8 in

Table 2.5 represent the number of test vectors required for detecting both the input

stuck-at and bridging faults, fault coverage range in percentage, and CPU time for

generating the test set, respectively. We have experimented with circuits having up to

40 lines. The number of single input bridging faults in a circuit with 40 lines is more

than 20,000, and our proposed approach is able to detect all the faults.

The experimental results are also compared with some of the previous works carried

out for input stuck-at and bridging faults [1,2]. The authors in [1] proposed a polynomial-

time algorithm to generate the universal test set for detecting the single and multiple

input bridging faults and also input stuck-at faults. The comparison of our result with

the result of [1] is reported in Table 2.6. Column 6, 7 and 8 of Table 2.6 indicate the

number of test vectors generated by [1], the number of test vectors generated by the

proposed method and the differences in the number of test vectors generated by the

method of [1] in comparison to our proposed method, respectively. The performance

analysis of the proposed work and the work of [1] is demonstrated by plotting of the

graph as shown in Figure 2.5. Here, the horizontal axis shows the name of the benchmark

circuit, and the vertical axis shows the number of test vectors to detect the faults. The

solid black line and the solid red line indicate the size of the test set produced by the

existing work [1] and the proposed work, respectively. In Figure 2.5, it is observed that

the red line is far below the black line, specifically when the circuit size is large in terms of

the number of inputs present in the circuit. Consider the circuit mod1048576adder where

the total number of input stuck-at faults and bridging faults 80 and 21222, respectively.

38

2.4 Experimental results and Discussions

Table 2.5: Detection of input bridging and stuck-at faults (S = Stuck-at faults and B =
Bridging faults) with CPU time (sec) for benchmark circuits

Benchmark
Circuit

Gate
Model

No. of
Input/
Output

No. of
input Stuck-at

faults

No. of
input Bridging

faults

No. of
Test Vectors

% Fault
Coverage

CPU Time
(sec)

B+S B+S

ham3 NCT 3/3 6 8 3 100 0.1101

3 17 NCT 3/3 6 8 3 100 0.1134

nth prime3 inc NCT 3/3 6 8 3 100 0.1045

4b15g 2 NCT 4/4 8 22 3 100 1.0351

hwb4\design#1 GT 4/4 8 22 3 100 1.0157

hwb4\design#3 NCT 4/4 8 22 3 100 1.0269

2of5 NCT 5/1 10 48 4 100 2.4590

Xor5 NCT 5/1 10 48 4 100 2.2533

mod5\design#1 NCT 5/1 10 48 4 100 2.2782

6sym NCT 6/1 12 90 4 100 4.1121

hwb6 GT 6/6 12 90 4 100 3.9943

hwb7 GT 7/7 14 152 4 100 6.0333

rd73 NCT 7/3 14 152 4 100 6.1893

ham7 GT 7/7 14 152 4 100 6.1508

rd84 NCT 8/4 16 238 4 100 10.1319

9sym NCT 9/1 18 352 5 100 11.2843

ham15 GT 15/15 30 1848 5 100 21.0351

mod1024adder GT 20/20 40 4598 6 100 31.3244

mod1048576
adder GT 40/40 80 21222 7 100 67.0073

39

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

Table 2.6: Comparison of the test vectors with [1]

Benchmark
Circuit

Gate
Model

No. of
Input/
Output

No. of
input Stuck-at

faults

No. of
input Bridging

faults

No. of
Test Vectors

[1]

No. of
Test Vectors
[Proposed]

Difference
[1] &

[proposed]

B+S B+S B+S

6sym NCT 6/1 12 90 6 4 2

9sym NCT 9/1 18 352 9 5 4

hwb7 GT 7/7 14 152 7 4 3

hwb8 GT 8/8 16 238 8 4 4

hwb6 GT 6/6 12 90 6 4 2

rd73 NCT 7/3 14 152 7 4 3

rd84 NCT 8/4 16 238 8 4 4

ham7 GT 7/7 14 152 7 4 3

ham15 GT 15/15 30 1848 15 5 10

mod1024adder GT 20/20 40 4598 20 6 14

mod1048576
adder GT 40/40 80 21222 40 7 33

Table 2.7: Comparison of the test vectors with [2]

Benchmark
Circuit

Gate
Model

No. of
Input/
Output

No. of
input Stuck-at

faults

No. of
input Bridging

faults

No. of
Test Vectors

[2]

No. of
Test Vectors
[Proposed]

Difference
[2] &

[proposed]

B+S B+S B+S

6sym NCT 6/1 12 90 3 4 1

9sym NCT 9/1 18 352 5 5 0

hwb7 GT 7/7 14 152 4 4 0

hwb8 GT 8/8 16 238 4 4 0

hwb6 GT 6/6 12 90 3 4 1

rd73 NCT 7/3 14 152 4 4 0

rd84 NCT 8/4 16 238 4 4 0

ham7 GT 7/7 14 152 4 4 0

ham15 GT 15/15 30 1848 8 5 3

mod1024adder GT 20/20 40 4598 10 6 4

mod1048576
adder GT 40/40 80 21222 20 7 13

40

2.4 Experimental results and Discussions

15

30

45

Benchmark Circuits
ha

m
15

m
od

10
24

ad
de

r

N
o.

 o
f T

es
t V

ec
to

rs

 Existing
 Proposed

6s
ym

9s
ym

hw
b7

hw
b8

hw
b6

rd
73

rd
84

ha
m

7

m
od

10
48

57
6a

dd
er

Figure 2.5: Comparison of the proposed work with the work of [1]

The proposed method efficiently produces less number of test vectors (7 test vectors) as

compared to the number of test vectors (40 test vectors) by the method presented in [1].

Therefore, it is clear that the number of test vectors generated by our proposed method

is less in comparison to the number of test vectors generated by the method of [1], and

still our proposed method provides 100% fault coverage.

The result of the proposed method is also compared with the work of [2], and the

comparison result is shown in Table 2.7 and the column entries are similar to Table 2.6.

The authors in [2] proposed the universal test set generation method to detect all single

and multiple input bridging faults based on the shift operation on the unitary matrix.

The performance analysis of the proposed method in comparison with the method of [2]

is illustrated in Figure 2.6. In Figure 2.6, it is observed that the line corresponding to

the proposed work (solid red line) and the work of [2] (solid black line) are overlapping

for some of the benchmark circuits. It means that the number of test vectors for both

41

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

0

10

20

 Existing
 Proposed

Benchmark Circuits

N
o.

 o
f T

es
t V

ec
to

rs

6s
ym

9s
ym

hw
b7

hw
b8

hw
b6

rd
73

rd
84

ha
m

7

ha
m

15

m
od

10
24

ad
de

r

m
od

10
48

57
6a

dd
er

Figure 2.6: Comparison of the proposed work with the work of [2]

methods are equal. But, when circuit size is gradually increasing, then the proposed

method generates less number of test vectors for detecting the faults as compared to the

method of [2], which is shown in Figure 2.6. Finally, based on the reported experimental

results, it is evident that the proposed method is better compared to the existing works

in terms of number of test vectors for the detection of input stuck-at and bridging faults.

2.5 Conclusion

This chapter discussed a scheme for minimal test set generation to detect single input

stuck-at and bridging faults in reversible circuits. It is proved formally that the required

number of test vectors is dlog2Ne for the detection of input bridging faults of a reversible

circuit with N inputs. Then it is illustrated that just another additional test vector is

sufficient to cover all the input stuck at faults. Experimental results show that the

test size of the proposed scheme is much smaller as compared to existing methods, yet

42

2.5 Conclusion

maintaining 100% fault coverage. In the next chapter, we discuss a test set generation

method using the path-level expression that can detect the intra-level bridging faults in

reversible circuits.

43

2. TEST GENERATION FOR INPUT STUCK-AT AND BRIDGING
FAULTS IN REVERSIBLE CIRCUITS

44

Chapter 3
Test Generation for Bridging Faults in
Reversible Circuits Using Path-Level
Expressions

3.1 Introduction

In the previous chapter, we proposed a method to generate the test set to detect single

input bridging faults and stuck-at faults for reversible circuits. In this chapter, we extend

the work to generate the test set to detect multiple input and intra-level bridging faults of

reversible circuits. We consider the problem of testing for bridging faults in a reversible

circuit designed with NOT, CNOT, Toffoli gates (NCT library) and generalized (n-

bit) Toffoli gates (GT library). We propose an Automatic Test Pattern Generation

(ATPG) method for generating the minimal complete test set for detecting the Single

Input Bridging Faults (SIBF), Multiple Input bridging faults (MIBF), Single Intra-

level Bridging Faults (SIRBF) and Multiple Intra-level Bridging Faults (MIRBF). Our

proposed ATPG scheme is based on the reversible property– “for every vector at the

output of a reversible gate, there exists a unique vector at the input.” To generate

the test set, we introduce the notion of path-level expression and the generated test set

is minimal. The proposed method is implemented and experiments are performed on

various benchmark circuits with NCT and GT library. The analysis of the experimental

results shows that the proposed method has 100% fault coverage, and the test set size

is smaller than the existing methods.

45

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

In this work, the test patterns generated for single input bridging faults, as mentioned

in the previous chapter, is considered as a local test pattern and applied in each level of

the reversible circuit. With the help of the local test patterns, a path is generated from

each level to the input level of the circuit using the backtracking method. For generating

the complete test set for different types of bridging faults, the path-level expression is

introduced, which indicates the level-wise information of each path on a given reversible

circuit. Finally, generated path-level expressions are applied for the matching process

to extract the minimal complete test set for detecting different types of bridging faults

in reversible circuits.

The rest of this chapter is organized as follows. The related work on detection

of bridging faults in the reversible circuits is given in Section 3.2. In Section 3.3, we

describe our proposed method for generating the minimal complete test set to detect the

bridging faults with the detailed illustrations. The experimental results and analysis of

comparison with existing test pattern generation methods are presented in Section 3.4.

Finally, concluding remarks are presented in Section 3.5.

3.2 Related Work

Some of the existing works on testing of Bridging Faults that is briefly reviewed in this

section. In 2007, the authors in [4] have proposed a Design-For-Test (DFT) methodol-

ogy for detecting the single intra-level bridging faults in a reversible circuit with n-bit

TOFFOLI gates. The proposed DFT method generates the test set of size (dlog2Ne)+3

and it is sufficient to detect single intra-level bridging and single stuck-at fault. How-

ever, this scheme requires an additional input wire to the n-bit TOFFOLI gates (as the

DFT circuit.) In 2008, Rahaman et al. [3] showed that a test set of cardinality (d log2 n)

is sufficient for detecting all intra-level bridging faults in an n-input and n-output re-

versible circuit with d levels. In 2008, Sarkar et al. [1] presented a polynomial time

algorithm, which generates a set of test vectors of size n for detecting all single and

multiple input bridging faults and all input stuck-at faults in any n-input and n-output

reversible circuit. In 2011, the authors in [2] have proposed a universal test set gener-

46

3.3 Proposed Method

ation method of a reversible logic circuit based on the shift operation on the unitary

matrix. The test set size by this scheme involves (dn/2e) test vectors, which is sufficient

to detect all single and multiple input bridging faults. In 2015, Nagamani et al. [39]

proposed a deterministic ATPG algorithm to generate the complete test set for single

and multiple intra-level bridging faults in a reversible circuit designed with the family

of Toffoli, Peres and Fredkin gates. The complexity of the ATPG algorithm is O(2n),

where n is the number of inputs in the reversible circuit.

In 2010, Chakraborty [52] proposed a design for testability approach for detecting

the bridging faults in reversible circuits. The conventional AND-EXOR gates are used to

represent the k-CNOT gates, i.e., the k-CNOT based reversible circuits are decomposed

in the corresponding irreversible AND-EXOR network. The generated output function

of the decomposed circuit resembles Positive Polarity Reed Mullar (PRRM) expressions

consists of positive product term k ≥ 1. This method required 3n + log2p + 2 number

of test vectors for detecting all the intra-level bridging faults, where n is the number of

gates, p is the number of input lines for each gate.

From the literature review, we observe that while trying to reduce the number of

test vectors for complete bridging fault coverage, there is an additional burden of extra

circuitry (i.e, DFT circuitry). The heuristic approaches for ATPG provide the complete

test set but, that may not give a minimal solution. Though by applying exact methods,

ATPG technique can produce a minimal test set, but computational cost is high.

In this present work, an ATPG algorithm is proposed to generate the minimal com-

plete test set for detecting the bridging faults of types SIBF, SIRBF, MIBF and MIRBF.

This scheme does not require any additional hardware for DFT. The computational com-

plexity of the scheme is analyzed and found to be in the logarithmic order in the number

of inputs.

3.3 Proposed Method

A reversible circuit structure is a linear cascade structure [26] of reversible gates and

bridging faults may occur in the lines (wires) at the levels between gates of the circuit.

47

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

Depending on the structure of the reversible circuit, there are several possibilities of

intra-level bridging faults in reversible circuits.

1. Single input bridging Faults: If the bridging fault occurs between the two

input lines at the initial level (input level), then it is called a single Input Bridging

Fault (SIBF). The number of single input bridging faults is C(N, 2), where N

is the number of input lines in a given reversible circuit. If we consider both

AND-Bridging Fault and OR-Bridging Fault then the total number of single input

bridging faults is {2 × C(N, 2)}. Figure 3.1 (b) shows the single input bridging

faults.

2. Multiple input bridging Faults: If the bridging fault occurs between more than

two input lines at the input level then, it is considered as a Multiple Input Bridging

Fault (MIBF), which is shown in Figure 3.1 (c). The number of multiple inputs

bridging faults is {NC3 +N C4 + . . . +N Ci + . . . +N CN}, where 3 < i < N . The

total number of multiple input bridging faults (considering both AND-Bridging

Fault and OR-Bridging Fault) is {2× (NC3 +N C4 + . . . +N Ci + . . . +N CN)}.

3. Single intra-level bridging Faults: The Single Intra-Level Bridging Fault

(SIRBF) occurs when the two shorted lines are at the same level in a given

reversible circuit. However, the single input bridging faults are the subset of

single intra-level bridging faults. The number of intra-level bridging faults is

|LS| ×C(N, 2), where LS is the set of levels, excluding the input level. The single

intra-level bridging fault is shown in Figure 3.1 (d).

4. Multiple intra-level bridging Faults: The Multiple Intra-Level Bridging Fault

(MIRBF) is represented by more than two lines getting shorted at the same level

in the given reversible circuit, which is shown in Figure 3.1 (e). Here, the multiple

input bridging faults are the subset of multiple intra-level bridging faults. The

number of multiple intra-level bridging faults is {|LS|× (NC3 +N C4 + . . .+N Ci +

. . . +N CN)}. If we consider both AND-Bridging and OR-Bridging faults, then

multiple intra-level bridging faults are just the double.

48

3.3 Proposed Method

a

b

c

a'

b'

c'

G2 G3G1 G4

L0 L2L1 L3 L4

a

b

c

a'

b'

c'

G2 G3G1 G4

L0 L2L1 L3
L4

(a) Fault-free circuit (b) SIBF

a

b

c

a'

b'

c'

G2 G3G1 G4

L0
L2L1 L3 L4

a

b

c

a'

b'

c'

G2 G3G1 G4

L0 L2L1 L3 L4

(c) MIBF
(d) SIRBF

a

b

c

a'

b'

c'

G2 G3G1
G4

L0 L2L1
L3 L4

(e) MIRBF

0

1

1

0

1

1

00

1

0 0

0

1

0

0

1

0

1

1

0

0

1

0

0

1

0

1

1

0

1

1

0/1

1

0/1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1/0

0

1

1

0

1

1

0

0

1

0

0

1

0

0

0

0

0

1/0

0

1

1

0

1

1

0

0

1

0

0

1

0

0

0

0

0

1/0

Figure 3.1: Demonstration of Reversible Circuit nth Prime3 inc for various bridging fault
conditions

49

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

Table 3.1: Truth Table for the nth Prime3 inc circuit of Figure 3.1 with fault-free and faulty
outputs

Inputs Fault-Free
output Faulty outputs

SIBF MIBF SIRBF MIRBF

a b c a′ b′ c′ a′ b′ c′ a′ b′ c′ a′ b′ c′ a′ b′ c′

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0

1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0

1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0

We consider the nth Prime3 inc reversible benchmark circuit as depicted in Fig-

ure 3.1 (a) and show the various bridging faults with the help of AND-Bridging fault

model in the subsequent figures of Figure 3.1. Figure 3.1 (b) shows that an input line

‘a’ is shorted with the input line ‘b’ at the input level L0. The effect of this fault is

represented by the truth table as shown in Table 3.1. We have extracted the test vectors

by comparing the fault-free output with the faulty output. Therefore, the test vector 010

or 011 or 100 or 101 is required to test this fault. Similarly, for multiple input bridging

fault, the input lines ‘a’, ‘b’ and ‘c’ are shorted with each other at the input level L0. As

shown in Table 3.1, the possible test vectors are 001, 010, 011, 100, 101, and 110 and

any one of these test vectors is capable of detecting the multiple input bridging fault as

shown in Figure 3.1 (c).

For single intra-level bridging faults, the input line ’a’ is shorted with the input line

’c’ at the 3rd level L3 as depicted in Figure 3.1 (d). As mentioned in Table 3.1, the test

vectors 001 or 011 or 101 or 111 is capable of detecting the single intra-level bridging

faults, which is shown in Figure 3.1 (d). Figure 3.1 (e) shows the multiple intra-level

bridging faults. For detecting these faults, the test vector 001 or 010 or 011 or 101 or

50

3.3 Proposed Method

110 or 111 is needed.

In this section, we first present a method to find the minimum set of test vectors to

detect all the single input bridging faults at the initial level in a given reversible circuit.

After that, this test set is applied as local test patterns to all the levels (excluding the

initial level) of a given reversible circuit. Next, we generate the paths between the levels

of the circuit using a local test pattern with the help of backtracking. After generating all

the possible paths, some paths are selected by the path-level expression. Here, the path-

level expression is capable of producing a unique path for each level in the reversible

circuit. Finally, generated path-level expressions are matched to obtain the minimal

complete test set for detecting all the possible bridging faults in the reversible circuit.

The detailed discussion of the proposed method is given in the following subsections.

Before discussing the proposed method, we present some definitions, which are used in

subsequent discussions.

Definition 3.3.1. A test vector TV is a set of binary inputs 〈b1 b2 . . . bN〉 that provides
test inputs to the input lines {l1, l2, . . . lN} for1 ≤ i ≤ N , where bi ∈ {0, 1} and N is the
number of input lines. The test vector (TV) is applied to a reversible circuit for testing.

Definition 3.3.2. A test set TS is the collection of all possible test vectors that detect
the faults in F , where F is the fault set in a given reversible circuit. Let the test set TS
= {TV1, TV2..., TVl}, for 1 ≤ j ≤ l, TVj = 〈b1j b2j . . . bNj〉, where bij is the ith bit of
jth test vector. In the binary inputs for the test vector TVj, at least one-bit bij must be
different from some other bit bkj to detect the bridging fault between line i and k, where
i 6= k. Let the test set TSLi

be the set of all local test patterns that are applied at level
Li during test pattern generation.

Definition 3.3.3. A test set TS is called a complete test set in n-input reversible circuit
that detects all the faults in F . A complete test set that contains the minimum possible
test vectors, which are capable of detecting all the faults in F , is called a minimal complete
test set.

3.3.1 Local Test Pattern Generation Method

If a test is capable of applying opposite logic values to every pair of lines lying at the

same level, it is capable of detecting all the bridging faults in that level. Based on this

concept, we generate the minimal complete test set at the initial level and later on,

these test vectors of the minimal test set are considered as local test patterns, which are

applied to the other levels of the reversible circuit. The basic idea for generating the

51

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

local test patterns for detecting the single input bridging faults in the reversible circuits

is explained below.

TV1

TV2

TVn

TV log2N

=

=
0 1 0 1 0 1.......... N-bits

20 consecutive 0's followed by 20 consecutive 1's

 0 0 1 1 0 0............ N-bits

21 consecutive 0's followed by 21 consecutive 1's

...

=

...

 0 0 0 0 1 1 1 1 N-bits

2n-1 consecutive 0's followed by 2n-1 consecutive 1's

=

 0 0 0....0 1 1 1....1.......... N-bits

2 log2N -1 consecutive 0's followed by 2 log2N -1 consecutive 1's

Figure 3.2: Test set generation for detecting input bridging faults

Here, we assume that the test set is denoted by TS and the test vector by TVi,

where i ∈ N. Let us consider the test set TS={TV1, TV2, . . . , TVdlog2Ne}, where N is

the number of input lines in a given reversible circuit. Let the first test vector TV1 consist

of alternating 0’s and 1’s. The second test vector TV2 consists of an alternating sequence

of two consecutive 0’s and two consecutive 1’s. Similarly, the nth test vector consists

of 2n−1 consecutive 0’s followed by 2n−1 consecutive 1’s at the N-input lines, where

1 ≤ n ≤ dlog2Ne. This process continues until we get the last test vector TVdlog2Ne.

Figure 3.2 illustrates the above process.

Example 3.3.1. : If we consider N=5, the test set TS consists of three test vectors,
viz., TV1=〈0 1 0 1 0〉, TV2=〈0 0 1 1 0〉, and TV3=〈0 0 0 0 1〉. We observe that due to
the presence of opposite logic values of each test vector, the test set TS is capable of
detecting all the bridging faults at the initial level (L0) in a reversible circuit.

3.3.2 Path Generation Method

After generating the set TS, it is applied as a local test pattern to all the levels in a

reversible circuit. A reversible circuit with N gates has (N+1) levels. Input to the

circuit is termed as level L0, and the final output of the circuit is termed as level LN .

Level Li lies between the gates Gi and Gi+1. Faults basically occur in the signal wire

52

3.3 Proposed Method

at any level and gates are assumed to be fault free. So the distinction of level from the

gate is necessary. Some definitions are presented, which are used in the path generation

method.

Definition 3.3.4. A level set LS is a set of all the levels in a reversible circuit to
maintain the linear cascade structure. Let the level set be LS={L0, L1, L2, . . . , LGC},
where each gate Gi lies between (i− 1)th and ith level, for 1 ≤ i ≤ GC. Gi ∈ {NCT or
GT library} and GC is the total number of gates present in the reversible circuit.

Definition 3.3.5. We define a path Pk, which is generated by the interaction of levels
(Lj, Lj−1), where k ∈ N. The path Pk is derived using the concept of backtracking. The
backtracking is applied on local test pattern from level Lj to Lj−1. In other words, Pk={〈
TVi(Lj), TVi−1(Lj−1 〉} | TVi ∈ TSLj

and TVi−1 ∈ TSLj−1
}. TVi(Lj) means test vector

TVi ∈ TSLj
is applied at level Lj. Here, the total number of Pk is equal to the total

number of test vectors present at the input level L0.

The path Pk is generated between the two contiguous levels of the circuit. Initially,

we apply all the local test patterns TVi ∈ TS in each level (excluding the initial level

L0) of the circuit. Let gate Gj lies between L(j−1) and Lj level and the local test pattern

TVi is applied at level Lj that contains the gate Gj. We back propagate (say also

backtracking) TVi to obtain the corresponding input test vector TVj ∈ TSLj
at the

input of the gate Gj, i.e., TVj is generated at level Lj−1. Since the reversible gate is

bijective, for a given TVi, the corresponding TVj is unique. Here, the path Pk is created

between the two levels Lj and Lj−1 through the test vector TVi and TVj, respectively.

Definition 3.3.6. The path is said to be a complete path in a reversible circuit if
TVi(LGC) is capable of tracing the TVj(L0). The path may start at any level Lp, where
0 < p < GC and formulate this path to be complete when TVi(Lp) traces the TVj(LGC)
using the forward simulation.

Figure 3.3: Illustration of path generation for the circuit nth Prime3 inc using backtracking

53

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

The detail illustration of the above definitions is as represented in Figure 3.3. Here,

the set of levels LS = {L1, L2, L3, L4} (excluding the initial level L0) and the total number

of gates GC = 4 as per Definition 3.3.4. Let us consider the gate G3, which lies between

level L2 and L3. According to Definition 3.3.5, if we consider the path P1 at level L3,

then this path is derived from level L3 to L2 by applying the local test pattern ’010’ and

the derived path P1 generates the test vector ’010’ at level L2. Using the backtracking,

the path P1 at level L3 generates the test vector ’010’ at the input level L0. The

derived paths are P1, P2, P3 and P4. Therefore, four test vectors {010, 001, 011, 100} are

generated at the initial level L0 as shown in Figure 3.3. In this case, the path P1 is not

derived from the primary output level L4, so it is not the complete path. For the path

P1 to be complete, we use the forward simulation from level L3 to L4. As mentioned in

Definition 3.3.6, the paths P3 and P4 are complete.

Now, we present the algorithm for the path generation method in Algorithm 1.

Example 3.3.2. : We illustrate the path generation algorithm with an example in
Figure 3.3. At first, we extract the required parameters LS={L1, L2, L3, L4}, TS={010,
001} and consider a fault-free truth table as FaultFree Table for the nth Prime3 inc
reversible circuit as shown in Table 3.1. As mentioned in the algorithm, we initialize the
variable L0 and Pk to empty values. Here, Pk provides the information of tracing a path
between level L4 and L0, where L0 is the input level of a given circuit and stores the test
vectors which are generated by the derived path Pk. Initially, Lj=L1 and Lj−1=L0 and
the variable j is incremented to 4 (i.e., GC=4). We consider the test vector 〈 0 1 0 〉
in TS and apply it to the first level L1. Using the backtracking method (called as
BackTracing), the test vector 〈 0 1 0 〉 at level L1 extracts the test vector 〈 0 1 0 〉
at level L0 with the help of FaultFree Table. Therefore, level L0 is updated with the
newly assigned test vector (010), which is generated by the path P1 and it is derived
from L1 to L0. Again, we consider the next test vector 〈 0 0 1 〉 in TS and apply it to
the first level L1. Using the BackTracing function, the test vector 〈 0 0 1 〉 extracts
the same test vector 〈 0 0 1 〉 at level L0 and produces the new path P2, which is also
derived from level L1 to L0. The next iteration is level L2 and the test vector 〈 0 1 0 〉
extracts the test vector 〈 0 1 0 〉 at level L1. In this case, the same path P1 is considered
from level L2 to L1 due to the same test vector 〈 0 1 0 〉 being available in level L1.
There is no need to update the input level L0 if the same path exists in the previous
iteration. But, when we apply the test vector 〈 0 0 1 〉 at level L2, then new test vector
〈 0 1 1 〉 is generated at level L1 with the help of FaultFree Table. Thus, the new path
P3 is created, which is derived from L2 to L0 and we update the input level L0 with
the test vector 〈 0 1 1 〉. It is observed that the level L0 is only updated when a new
path is formed, otherwise we create the path between the current pair of levels. The
same process is continued up to level L4. In Figure 3.3, we have observed that four test
vectors viz. 〈 0 1 0 〉, 〈 0 0 1 〉, 〈 0 1 1 〉 and 〈 1 0 0 〉 are available at the input level

54

3.3 Proposed Method

Algorithm 1: Path generation algorithm

Input: A level set LS={L1, L2, . . . , LGC} of levels, set “TS” and
“FaultFree Table” in a reversible circuit

Output: Pk is the generated path for each level present in LS
1 L0 ← ∅
2 Pk ← ∅
3 for j ← 1 to GC do
4 Applied TVi ∈ TS to Lj

5 BackTracing (TVi, Lj, Lj−1)
6 Update the level L0
7 Pk ← Path from Lj to L0

8 return Pk

9 Function BackTracing (TS, Lj, Lj−1)
10 FaultFree Table← level-wise Truth table for fault-free circuit
11 for each level Lj ∈ LS do
12 for each test vector TVi(Lj) do
13 TVk(Lj−1) extracts from TVi(Lj) using FaultFree Table
14 if TVk(Lj−1) 6= TVi(Lj) then
15 return BackTracing (TVi, Lj, L0)

16 else
17 return BackTracing (TVi, Lj, Lj−1)

18 ConnectLevel (TVi(Lj−1), TVi(Lj))

19 Function ConnectLevel (TV1, TV2)
20 TV1 ← test vector of Lj−1
21 TV2 ← test vector of Lj

22 TV1 ← TV2 and TV2 ← TV1
23 Update the level Lj−1 with newly assigned TV1

L0 and these test vectors are generated by the paths P1, P2, P3, and P4, respectively.
Moreover, the test vector 〈 0 1 0 〉 and 〈 0 0 1 〉 at level L4 produce the complete paths
P3 and P4, which are shown in Figure 3.3.

3.3.3 Complete Test Set Generation Method

In this section, the proposed method is described to generate a complete test set for

detecting all bridging faults in a given reversible circuit. The path generation method

provides the level-wise interaction with the help of backtracking, and all the paths that

are associated with the test vectors at their respective levels. The path-level expression

is introduced for selecting a path Pk such that it covers the maximum number of bridging

faults.

55

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

The validity of a path Pk in between the levels implies that there must exist derivation

paths in a reversible circuit from the initial level L0 to the last level LGC and vice versa.

Derivation paths can be expressed as an expression, termed as a path-level expression.

A path-level expression consists of test vectors and metacharacters are used to describe

some of the characteristics. Table 3.2 shows the metacharacters considered in this work.

Table 3.2: Meta Characters and Interpretation

Meta Character Meaning

Pk[] Set of test vectors, characters and
metacharacters used in path Pk

{n} Repetition of n times

{Lj} Specify the particular level Lj

(Lk – Lj) Specify the level Lk to Lj

. Specify the connection

+ Proceed to previous level

Definition 3.3.7. The path level expression PKE related to path Pk is defined as
Pk

∑0
i=GC [TVi(Li).{1} ∨ TVj(Li–Lj).{|i − j + 1|}], where j < i, TVj(Li–Lj) indicates

the presence of same test vector from level Li to level Lj.

The path-level expressions are used for selecting the proper paths such that selected

paths provide the complete test set for detecting all the bridging faults. Let us consider

the complete paths generated by the path-level expression PlE and PmE, which are de-

scribed as follows:

PlE: Pl [TVi(LGC–Lk).{|GC − k + 1|}+ TVj(Lk−1–L0).{|k|}]

PmE: Pm [TVj(LGC–Lk+1).{|GC − k|}+ TVi(Lk).{1}+ TVi(Lk−1–L0).{|k|}]

Consider two complete paths from the level LGC , which are defined by the path-level

56

3.3 Proposed Method

expression PlE and PmE. These two path-level expressions are matched to validate the

derived path.

The path-level expression stores the unique test vector along with the corresponding

level and repetition of the test vector to the previous levels. The path-level expressions

PlE and PmE have GC + 1 levels, where LGC is the primary output level, and L0 is the

input level. The path-level expression PlE indicates that the test vector TVi is present

from LGC to Lk and the number of occurrences of TVi is |GC−k+1|. Also, the test vec-

tor TVj is associated with level Lk−1 to L0 and number of occurrence is |k|. Similarly, in

path-level expression PmE, the test vector TVj is associated with levels LGC to Lk+1, the

test vector TVi is associated with level Lk and the test vector TVi is associated with level

Lk−1 to L0. The occurrences of the test vectors TVj, TVi and TVi are |GC−k|, 1 and |k|,
respectively. If the path-level expression PlE is matched with PmE, it is observed that the

test vector TVi is the complement form at level Lk. To cover all the faults at level Lk, we

need another path-level expression which is generated from the same level Lk. Suppose,

the new form of path-level expression PPE is derived from level Lk, which is expressed as:

PPE: PP [TVj(Lk–L1).{|k|}+ TVi(L0).{1}]

A complete path is required to cover all the levels of a given reversible circuit ac-

cording to Property 1 and Property 2. The path-level expression PPE does not generate

a complete path because the process starts from level Lk. For extracting the complete

path from the path-level expression PPE, the test vector TVj(Lk) traces the test vector of

primary output level LGC with forward simulation. The following path-level expression

is generated from the path-level expression PPE which eventually gives a complete path.

P ′PE: P ′P [TVi(LGC).{1} + TVk(LGC−1–Lk+1).{|GC − k − 1|} + TVj(Lk–L1).{|k|} +

TVi(L0).{1}]

This path-level expression P ′PE is matched with the path-level expression PlE and

57

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

PmE. The path-level expression P ′PE assures that the test vector TVj is present at level

Lk. If we consider the path-level expression PmE and P ′PE, then generated test vectors

TVi and TVi fail to detect the faults at the initial level L0. Similarly, the path-level

expressions PlE and P ′PE generate the test vector TVi and TVi, respectively, which are

unable to detect the faults at level LGC . Therefore, for detecting all the faults at each

level along with satisfying Property 3.3.1 and Property 3.3.2, all the three path-level

expressions are needed. The test vectors TVj, TVi, and TVi are produced by the path-

level expressions PlE, PmE and P ′PE, respectively at the input level L0.

Selection and matching of the path-level expressions are based on the following prop-

erties:

Property 3.3.1. Each level present in the level set LS produces the unique test vectors
which are generated by the derivation path. As a result, the same test vector cannot be
present at the same level.

Proof. According to the controllability property of reversibility, any test vector of a
particular level generates the unique test vector at the previous level using backtracking.
The derivation path for each level is the interaction between the two test vectors of their
corresponding levels. Therefore, each derivation path generates a unique test vector at
a given level. Hence, the same test vector cannot occur at the same level, which is
generated by the derivation path.

Property 3.3.2. The generated test vectors for each level must be capable of producing
opposite logic values to capture all possible bridging faults. So, some test vectors must
exist to represent all the bridging faults in each level.

Proof. The local test patterns are applied for each level in LS for extracting the test
vector at the previous level using backtracking. These local test patterns are capable for
producing the opposite logic values for each level as depicted in Figure 3.2. Furthermore,
the derived path is created based on these local test patterns which are applied for each
individual level in a given reversible circuit. Therefore, each level contains the local test
patterns along with the test vectors which are generated by the derived paths. Hence,
there exist some test vectors in each level which are capable of detecting all the bridging
faults in a given reversible circuit.

Example 3.3.3. The complete test generation process is illustrated with an example.
Consider the reversible benchmark circuit nth Prime3 inc as shown in Figure 3.4.

Consider the complete paths which occur at level L4. The following path-level ex-
pressions express the complete path.

P4E: P4[010.(L4).{1}+ 110.(L3).{1}+ 111.(L2).{1}+ 101.(L1).{1}+ 100.(L0).{1}]
P3E: P3[001.(L4–L2).{3}+ 011.(L1–L0).{2}]
After matching the two expressions, it is observed that test vectors 001 and 110 are

complement to each other at level L3 and as a result it is not possible to detect the
bridging faults at level L3. According to the proposed method, the other path at level

58

3.3 Proposed Method

Figure 3.4: Demonstration of Complete Test Set generation for the circuit nth Prime3 inc

L3 is considered as shown in Figure 3.4. The new path-level expression is

P1E: P1[010.(L3–L0).{4}]
The backtracking process of the path-level expression P1E starts at level L3. There-

fore, the generated path by the path-level expression P1E is not complete. For construct-
ing the complete path from the path-level expression P1E, the method of the forward
simulation at level L3 is used. The complete path generated by the path-level expression
P ′1E is

P ′1E: P ′1[110.(L4).{1}+ 010.(L3–L0).{4}]
After matching the path-level expressions P3E and P ′1E, it is observed that the gener-

ated test vector 001 and 110 are not capable of detecting the bridging faults at level L4
due to complement form of each other. For detecting the bridging faults at level L4, we
need the path-level expressions P4E and P3E. If we consider the path-level expressions
P4E and P ′1E then the generated test vectors 010 and 111 are not able to detect the
faults at level L2, because the test vector 111 does not consist of opposite logic values.
So, it is essential to consider all the path-level expressions P4E, P3E and P ′1E to gener-
ate the test vectors 100, 011 and 010 at L0, respectively. Moreover, by matching these
path expressions Property 3.3.1 and Property 3.3.2 are satisfied. Hence, the test set
{100, 011, 010} is the complete test set to detect all the bridging faults at each level in
the nth Prime3 inc reversible circuit.

As explained in Example 3.3.3, three test vectors are sufficient for detecting all the

59

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

Table 3.3: Fault coverage table for the circuit nth Prime3 inc with 2 test vectors

Test set size=2 Faults covered % faults coverage

(000, 001) 08 53.33

(000, 010) 10 66.66

(000, 011) 10 66.66

(000, 100) 08 53.33

(000, 101) 10 66.66

(000, 110) 08 53.33

(000, 111) 06 40.00

(001, 010) 14 93.33

(001, 011) 14 93.33

(001, 100) 13 86.66

(001, 101) 13 86.66

(001, 110) 12 80.00

(001, 111) 12 80.00

(010, 011) 14 93.33

(010, 100) 13 86.66

(010, 101) 14 93.33

(010, 110) 12 80.00

(010, 111) 13 86.66

(011, 100) 13 86.66

(011, 101) 14 93.33

(011, 110) 14 93.33

(011, 111) 12 80.00

(100, 101) 14 93.33

(100, 110) 12 80.00

(100, 111) 12 80.00

(101, 110) 14 93.33

(101, 111) 12 80.00

(110, 111) 12 80.00

60

3.3 Proposed Method

bridging faults in nth Prime3 inc benchmark circuit according to the proposed path-

level expression method. As an empirical study, we consider all the possible test sets

with size 2 and apply to the circuit. The total number of single bridging faults for

nth Prime3 inc benchmark circuit is 15. The fault coverage for all possible test sets

with two test vectors is reported in Table 3.3. It is observed that two test vectors are

not sufficient to detect all the possible bridging faults. As per the path-level expression

method, 3 test vectors are generated which are sufficient to detect all the single bridging

faults in nth Prime3 inc reversible circuit.

Lemma 3.3.1. Proposed path-level expression method generates the minimal complete
test set for detecting the bridging faults with 100% fault coverage in a given NCT or GT
based reversible circuit.

Proof. Let us assume that the path-level expression PlE and PmE are capable of gener-
ating the complete minimal test set at the initial level L0 in a given reversible circuit.
Hence, as per our proposed method, these expressions generate the complete path from
level LGC and are also able to satisfy Property 3.3.1 and Property 3.3.2. For proving
this lemma, a counter example is considered. Let us consider that the path-level expres-
sions PlE and PmE are not capable of generating the complete minimal test set. Then,
we have to choose another path, which is expressed by the path-level expression PPE
at level LGC−1 to the initial level L0. Therefore, path-level expression PPE is unable
to generate the complete path. To construct the complete path, we have derived the
path-level expression PPE from level LGC−1 to level LGC using the forward simulation.
The newly derived path-level expression is named as P ′PE. Now, we have three path-level
expressions as PlE, PmE, and P ′PE. Each pair of path-level expressions are matched to
validate the derived path. The matching of the path-level expressions appears based on
the occurrence of the generated path. Suppose we consider that all the pairs of path-
level expressions satisfy both the properties and, each path-level expression is capable
of generating the complete path. It means that any pair of path-level expressions is
capable of generating the complete test set at the initial level L0. However, according
to the proposed method, path-level expressions PlE and PmE are matched before the
matching of the path-level expressions PlE and P ′PE or PmE and P ′PE. Hence, the path-
level expressions PlE and PmE are capable of generating the complete minimal test set.
So, there is a contradiction.

3.3.4 Complexity of the Proposed Method

Consider an N -input reversible circuit with a total number of levels L + 1. According

to the local test pattern generation method explained, we need O(dlog2Ne) number of

test vectors at the initial level. Therefore, the total number of test vectors required for

L + 1 levels is O((L + 1)dlog2Ne). According to the proposed method, the maximum

number of paths that is generated using backtracking is dlog2Ne and the complexity

61

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

for generating these paths is O(dlog2Ne(L + 1)dlog2Ne). To evaluate the test vectors

at each level, we generates the path expression for (L + 1) levels. For constructing the

path expression, the time complexity is O(L + 1) because each path expression directly

depends on the levels in the path. Hence, the total time complexity of our proposed

method is O((L + 1)2(dlog2Ne)2).

3.4 Experimental Results and Discussions

The algorithm of the proposed complete test set generation method has been imple-

mented and applied to various benchmark circuits based on NCT and GT gate li-

braries [24] and [25]. A tool is implemented to generate the complete test set for fault

models such as Stuck-at fault model, Bridging fault model, Missing gate fault model and

Crosspoint fault model. The experimental result in Table 3.4 shows the total number of

test vectors that is required for the detection of bridging faults (SIBF , MIBF , SIRBF ,

and MIRBF) with the CPU simulation time in seconds. The first five columns in Ta-

ble 3.4 provide the benchmark circuit name, number of inputs: N + C (inputs + constant

inputs), number of outputs: m + g (outputs + garbage outputs), number of gates, and

the total number of bridging faults, respectively. Column 6 and 7 in Table 3.4 present

the total number of test vectors that are required for detecting all possible bridging

faults and the CPU simulation time, respectively.

Based on the experimental results as shown in Table 3.4, the analysis is provided for

three parameter such as (i) CPU time vs. Input lines, (ii) CPU time vs. Gate count

and (iii) CPU time vs. Number of faults. It is observed that the proposed method can

handle reasonably large circuits.

(i) CPU time vs. Input lines: In Figure 3.5, it is observed that the variation in

CPU time against the input lines is similar for some of the benchmark circuits,

which is noticed by the persistent straight line in the initial part of the graph.

For the circuits considered in this part of the graph, the number of gates and

the number of total faults in those circuits are less and so the CPU time taken

is also significantly low. Consider the circuits hwb8 614, hwb9 1544, and rd73d2

62

3.4 Experimental Results and Discussions

Table 3.4: Complete test set for detection of bridging faults with simulation CPU time (sec)
for the benchmark circuits

Benchmark Circuit No. of Inputs No. of Outputs No. of
Gates

No. of Total
Detectable Faults

No. of Test
Vectors

CPU Time
(sec)

n + C m + g SIBF+MIBF+SIRBF+MIRBF

Peres 9 3 + 0 3 + 0 2 24 2 0.034

Fredkin 6 3 + 0 3 + 0 3 32 2 0.166

nth prime3 3 + 0 3 + 0 4 40 3 0.203

Miller 11 3 + 0 3 + 0 5 48 2 0.213

ham3d1 3 + 0 3 + 0 5 48 2 0.234

3 17 13 3 + 0 3 + 0 6 56 2 0.257

3 17 14 3 + 0 3 + 0 6 56 3 0.283

Toffoli double 4 4 + 0 4 + 0 2 66 2 0.302

rd32d1 3 + 1 2 + 2 4 110 3 1.223

mini-alu 167 4 + 0 2 + 2 6 154 2 2.167

decode24 v0 38 2 + 2 4 + 0 6 154 4 3.834

mod10 171 4 + 0 4 + 0 10 242 4 4.157

hwb4-11-23 4 + 0 4 + 0 11 264 4 4.333

mspk hwb4 12 4 + 0 4 + 0 12 286 4 4.712

4 49d3 4 + 0 4 + 0 12 286 4 4.017

mspk 4 49 13 4 + 0 4 + 0 13 308 4 3.477

mspk 4b15g 1 4 + 0 4 + 0 15 352 4 5.197

4 49d1 4 + 0 4 + 0 16 374 4 5.364

hwb4d1 4 + 0 4 + 0 17 396 3 5.002

4gt11 84 4 + 1 1 + 4 3 208 3 2.839

4gt11-v1 85 4 + 1 1 + 4 4 260 4 4.156

xor5d1 5 + 0 1 + 4 4 260 3 3.821

mod5d4 4 + 1 1 + 4 5 312 3 4.528

alu-v0 26 5 + 0 4 + 1 6 364 4 6.001

mod5d1 63 5 + 0 5 + 0 7 416 4 6.226

4mod7-v1 96 4 + 1 3 + 2 7 416 4 6.283

mod5d1 4 + 1 1 + 4 8 468 3 6.828

mod5d2 4 + 1 1 + 4 9 520 4 7.139

hwb5d1 5 + 0 5 + 0 55 2912 5 22.410

graycode6 47 6 + 0 6 + 0 5 684 4 6.936

ex3 229 5 + 1 6 + 0 7 912 4 8.036

mod5adder 128 6 + 0 6 + 0 15 1824 4 16.822

hwb6d3 6 + 0 6 + 0 42 4902 4 28.023

hw6d1 6 + 0 6 + 0 126 14478 7 61.044

ham7d1 7 + 0 7 + 0 23 5760 4 66.331

hwb7d1 7 + 0 7 + 0 289 69600 3 43.871

hwb8 614 8 + 0 8 + 0 614 303810 7 403.412

hwb9 1544 9 + 0 9 + 0 1544 780610 7 867.318

rd73d2 7 + 3 7 + 3 20 42546 4 215.971

6symd2 6 + 4 1 + 9 20 42546 3 286.909

hwb10-3631 10 + 0 10 + 0 3631 7358432 7 1197.964

hwb11-9314 11 + 0 11 + 0 9314 37930680 7 2960.651

cycle10 2d1 12 + 0 12 + 0 19 163320 5 128.948

9symd2 9 + 3 1 + 11 28 236814 5 717.283

rd84d1 8 + 7 4 + 11 28 1899616 4 2351.187

ham15d1 15 + 0 15 + 0 132 8712032 8 4547.57

cycle17 3d1 20 + 0 20 + 0 48 102758390 8 7002.426

mod1024adder1 20 + 0 20 + 0 55 117438160 7 9161.228

63

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

with number of input lines 8, 9 and 10, respectively. It is observed that the

circuit hwb9 1544 with 9-input lines takes significantly higher time (867.318secs)

to generate the test vectors with reference to the circuits hwb8 614 (403.412secs)

and rd73d2 (215.971secs). For the circuit hwb9 1544, the number of gates and a

number of faults are relatively large, and so the time is taken to generate the test

vectors is also more. Similar relationships between the number of gates and the

number of faults of the circuits are observed where there is a transient response in

the graph of Figure 3.5 (e.g., hwb10-3631, hwb11-9314 and cycle10 2d1).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 7 7 8 9

1
0

1
0

1
0

1
1

1
2

1
2

1
5

1
5

2
0

2
0

Time w.r.t Input Lines

Input Lines

C
P

U
 T

im
e
 (

se
cs

)

Figure 3.5: Plot of CPU time vs. Number of input lines

(ii) CPU time vs. Gate count: In Figure 3.6, we can perceive that there is a

random increase and decrease in CPU time in the graph. High escalations can be

observed for benchmark circuits cycle17 3d1 and mod1024adder1 with gate counts

of 48 and 55, and take 7002.426 secs and 9161.228 secs CPU time to generate the

test vector, respectively. The circuit hwb11-9314 has 9314 gates, but the CPU time

taken to generate the test vectors is 2960.651secs. The gate count of the circuit

mod1024adder1 is 55, which takes more CPU time to generate the test vectors

compared to the circuit hwb11-9314 with 9314 gates. This happens due to more

64

3.4 Experimental Results and Discussions

number of inputs in mod1024adder1 (20 input lines) than hwb11-9314 (11 input

lines).Therefore, the impact of the number of input lines is more significant than

the number of gates present in the circuit.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

2 2 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 8 9

1
0

1
1

1
2

1
2

1
3

1
5

1
5

1
6

1
7

1
9

2
0

2
0

2
3

2
8

2
8

4
2

4
8

5
5

5
5

1
2
6

1
3
2

2
8
9

6
1
4

1
5
4
4

3
6
3
1

9
3
1
4

Time w.r.t Gates

Gates

C
P

U
 T

im
e

(s
e
cs

)

Figure 3.6: Plot of CPU time vs. Number of gates

(iii) CPU time vs. Number of faults: In Figure 3.7, we observe that there is

an escalation in CPU time with the increase in the total number of faults for

most of the benchmark circuits, but there is a reduction of CPU time for some

circuits with more number of faults. Consider the circuit hwb11-9314 with total

number of faults 37930680 and the circuit ham15d1 with total number of faults

8712032. The CPU time required to generate the test vectors are 2960.651secs and

4547.57secs, respectively. Though the number of faults in ham15d1 is less than

the number of faults in hwb11-9314, but to generate the test vectors, the circuit

ham15d1 takes more CPU time compared to the circuit hwb11-9314. This effect

is due to the presence of more number of input lines in ham15d1 (15 input lines)

compared to hwb11-9314 (11 input lines). It is also observed that ham15d1 has

less number of gates (132 gates) than hwb11-9314 (9314 gates). Similar pattern

is also observed in the graph for the circuit hwb10-3631 (10 inputs, 3631 gates,

65

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

7358432 faults, 1197.964 secs CPU time) and rd84d1 (15 inputs, 28 gates, 1899616

faults, 2351.187 CPU time).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500
2
4

3
2

4
0

4
8

4
8

5
6

5
6

6
6

1
1
0

1
5
4

1
5
4

2
0
8

2
4
2

2
6
0

2
6
0

2
6
4

2
8
6

2
8
6

3
0
8

3
1
2

3
5
2

3
6
4

3
7
4

3
9
6

4
1
6

4
1
6

4
6
8

5
2
0

6
8
4

9
1
2

1
8
2
4

2
9
1
2

4
9
0
2

5
7
6
0

1
4
4
7
8

4
2
5
4
6

4
2
5
4
6

6
9
6
0
0

1
6
3
3
2
0

2
3
6
8
1
4

3
0
3
8
1
0

7
8
0
6
1
0

1
8
9
9
6
1
6

7
3
5
8
4
3
2

8
7
1
2
0
3
2

3
7
9
3
0
6
8
0

1
0
2
7
5
8
3
9
0

1
1
7
4
3
8
1
6
0

C
P

U
 T

im
e
 (

se
cs

)

Faults

Time w.r.t Faults

Figure 3.7: Plot of CPU time vs. Number of faults

Our experimental results are compared with [3], [4] , [2] and these are reported in

Table 3.5, Table 3.6 and Table 3.7, respectively. The authors in [3] proposed an optimal

test set generation method for all possible SIBF and SIRBF. In the proposed work, the

SIBF, MIBF, SIRBF and MIRBF are considered. The total number of faults detected

by the proposed scheme for AND and OR bridging faults are given in Column 4 in the

tables. It is observed that the required number of test vectors to detect all the bridging

faults by the proposed scheme is less compared to other techniques ([3], [4], [2]) for

all the benchmark circuits. The maximum reduction of test vector size is 81.82% for

Ham7 benchmark reversible circuit when compared to technique proposed in [3] which

is tabulated in Table 3.5. The authors in [4] used the DFT method for generating the

test vectors to detect the SIRBF and single stuck-at faults. In contrast, our proposed

method generates the test vectors for detecting SIRBF with additional bridging faults

such as SIBF, MIBF, and MIRBF. It is found that the number of test vectors required

in case of our proposed method is almost similar to [4], however, with no extra circuit

66

3.4 Experimental Results and Discussions

Table 3.5: Comparison of the complete test set with [3]

Benchmark
Circuit

No. of
Inputs/Outputs

No. of Total
Detectable
Faults [3]

No. of Total
Detectable

Faults [Proposed]

No. of
test vectors

[3]

No. of
test vectors
[Proposed]

SIBF+SIRBF SIBF+MIBF+SIRBF+MIRBF

Ham3\Design#1 3/3 18 48 3 2

Graycode6 6/6 90 684 9 3

4 49\design#3 4/4 78 286 5 4

Ham7\Design#1 7/7 504 5760 22 4

rd32\design#1 4/4 30 110 6 3

Xor\Design#1 5/5 50 260 8 3

Table 3.6: Comparison of the complete test set with [4]

Benchmark
Circuit

No. of
Inputs/Gates

No. of Total
Detectable
Faults [4]

No. of Total
Detectable

Faults [Proposed]

No. of
Test Vectors

[4]

No. of
Test Vectors
[Proposed]

SIBF+SIRBF SIBF+MIBF+SIRBF+MIRBF

ham3tc 3/5 24 48 4 2

graycode6 6/5 126 684 5 4

hwb4-11-23 4/11 120 264 4 4

4 49-12-32 4/12 130 286 4 4

mod5adder-15 6/15 336 1824 5 4

ham7tc 7/23 672 5760 5 4

cycle17-3 20/48 10290 102758390 7 8

mod1024adder 20/55 11760 117438160 7 7

ham15tc1 15/132 15960 8712032 6 8

hwb9-1544 9/1544 69525 780610 6 7

hwb10-3631 10/3631 199760 7358432 6 7

hwb11-9314 11/9314 614790 37930680 6 6

67

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

Table 3.7: Comparison of the complete test set with [2]

Benchmark
Circuit

No. of
Inputs/Outputs

No. of Total
Detectable
Faults [2]

No. of Total
Detectable

Faults [Proposed]

No. of
Test Vectors

[2]

No. of
Test Vectors
[Proposed]

SIBF+MIBF SIBF+MIBF+SIRBF+MIRBF

6symd2 6/1 90 42546 3 3

9symd2 9/1 352 236814 5 5

hwb7 7/7 152 69600 4 3

hwb8 8/8 238 303810 4 7

hwb6 6/6 90 21736 3 3

rd73 7/3 152 42546 4 4

rd84 8/4 238 1899616 4 4

ham7 7/7 152 5760 4 4

ham15 15/15 1848 8712032 8 8

mod1024adder 20/20 4598 117438160 10 7

overhead due to the non-adaptation of DFT method. The comparison of the proposed

work with [4] is reported in Table 3.6. The work in [2] specifically targets generating

the universal test set for both SIBF and MIBF and also for input stuck-at faults based

on the shift operation on unitary matrix. It is found that the number of test vectors

generated by our proposed method is equal when compared to the method of Sarkar et

al. [2], but the proposed method covers more types of fault, which is clearly visible in

Table 3.7.

Finally, according to the experimental results reported, it is evident that the number

of test vectors generated by our proposed method is less or equal to the existing methods.

Moreover, the proposed method covers more types of fault as compared to existing

methods and achieves 100% fault coverage.

68

3.5 Conclusion

3.5 Conclusion

In this chapter, we discussed a scheme for minimal complete test set generation to detect

all the bridging faults, which includes SIBF, SIRBF, MIBF, and MIRBF, in reversible

circuits. The concept of path-level expression is introduced in this work to generate the

complete test set. The path-level expression has the ability to capture the level-wise

information on a given reversible circuit. After collecting all the path-level expression, a

matching process is applied to collect the required paths which are used to generate the

test set. It is also established that the generated test is the minimal one. The reversible

circuits that consist of NCT and GT gate libraries are used in this work to carry out the

experiments. The generated test set is capable for 100% fault coverage, which is shown

with experimental results. The next chapter presents the test set generation methods

for single and multiple missing gate faults. We also discuss the correlation of missing

gate fault model with other fault models in reversible circuits.

69

3. TEST GENERATION FOR BRIDGING FAULTS IN REVERSIBLE
CIRCUITS USING PATH-LEVEL EXPRESSIONS

70

Chapter 4
Test Generation for Multiple Missing-Gate
Faults in Reversible Circuits

4.1 Introduction

In this chapter, we consider the problem of testing in reversible circuits with respect to

Missing Gate Fault (MGF) Model, which is used explicitly for reversible circuits. The

detail discussion of different types of faults under MGF is provided in Chapter 1. The

present chapter provides an ATPG method to generate the complete test set for detect-

ing the single and consecutive multiple missing gate faults (MMGFs) in the reversible

circuits.

The proposed complete test set generation method is twofold. Firstly, the local test

pattern is applied to each level of the k-CNOT gate and the reverse simulation method

is used for identifying all the possible Single Missing Gate Faults (SMGFs). Secondly,

using the complete test set for SMGFs and based on the structure of the k-CNOT

based circuit, a test set is formulated. The generated test set is capable of detecting all

the MMGFs and as well as the SMGFs in reversible circuits. However, the generated

complete test set is not minimal. For achieving the minimality, a table is constructed

covering row and column faults and an Integer Linear Programming (ILP) problem is

formulated to achieve the minimality of the test set. The proposed method is designed

for the k-CNOT based reversible circuit structure and it gives the minimal complete test

set with nearly 100% fault coverage. Moreover, the correlation with other fault models

like stuck-at faults, appearance crosspoint faults and partial missing gate faults to the

71

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

MMGF model is also established. The experimental results demonstrate that the size

of the generated minimized test set is smaller or similar as compared to the existing

methods and attains 100% fault coverage.

The rest of this chapter is organized as follows: Section 4.2 provides related works

of fault detection under the missing gate fault model of reversible circuits. Section 4.3

describes the proposed ATPG algorithms for generating the complete and minimal test

set to detect the SMGFs and MMGFs in reversible circuits. The comparison with other

fault models is also included in this section. The experimental results of the proposed

test set generation method and comparison with other fault models are reported in

Section 4.4. Finally, concluding remarks are presented in Section 4.5.

4.2 Related Work

Some of the existing research works that are compatible with our work are briefly re-

viewed in this section. In 2004, Hayes et al. [7] showed that dN/2e test vectors detect all

Missing Gate Faults (MGFs) in an N -gate k-CNOT circuit. Here, the MGF considers

one gate missing at a time. Also, this method proposed that a single vector is capable

of detecting all the MGFs of a given k-CNOT circuit by adding one wire and several

1-CNOT gates. The proposed DFT method inverts the values that correspond to the

undetectable faults such that all detection conditions can be satisfied simultaneously.

Based on the concept of the previous work, the authors in [8] proposed a different type

of fault that occurs under the Missing-Gate Fault model. This work presented a method

to generate the optimal test sets computed by integer linear programming (ILP) to de-

tect the various types of MGFs such as Single Missing Gate Fault (SMGF), Repeated

Gate Fault (RGF), Multiple Missing Gate Fault (MMGF), and Partial Missing Gate

Fault (PMGF). Also, this work showed that the complete test set of SMGFs is not ca-

pable of detecting all the MMGFs. The total number of MMGFs in an N -gate circuit

is N(N + 1)/2. In 2008, authors in [53] proposed a scheme that divides the circuit into

sub-circuits to get the complete test. The division of the circuit is based on the dom-

inant and independent relationship of the gates. If the consecutive k-CNOT gates are

72

4.2 Related Work

dominant, then they are divided into the same sub-circuit; otherwise, these gates belong

to different sub-circuits. This work generated the test vectors for each sub-circuits to

obtain the complete test set. However, the generated complete test set by dividing the

sub-circuit method is not minimal. The authors proposed the set covering method to

get the minimal test set for detecting the SMGFs and MMGFs in k-CNOT circuits.

The methodology proposed by them does not cover all the MMGFs and several addi-

tional test vectors are required to detect all the MMGFs. In 2008, Rahaman et al. [40]

proposed a DFT method by adding only one extra line along with duplication of each

k-CNOT gate to get a universal test set of size (n + 1), which is sufficient to detect all

SMGFs along with other faults like RGFs and PMGFs. However, this approach may

not be suited for MMGFs, and for that additional test vectors are required. Further

augmentation in the circuit is needed. In 2010, Kole et al. [54] proposed an algorithm

for detecting SMGFs, MMGFs and RGFs. The proposed algorithm derived an optimal

test set (OTS), where each gate is represented by a gate Id and each Id is used as a key

to represent the permutation produced by the k-CNOT corresponding gate. Here, all

permutations of size n for each gate Id are generated in a given an n-input reversible

circuit and N(N + 1)/2 sets are constructed where circuit depth is N . The minimal set

cover is used to derive an OTS from these sets. It is observed that if the circuit size is

large in terms of a number of gates, then the construction of permutations for each gate

Id is complex. In 2011, Zamani et al. [41] proposed a technique named as Ping-Pong

testing that provided a test vector to the circuit and generated output is considered as

the next vector to detect the SMGFs and RGFs. This technique showed 100% fault

coverage for SMGF as well as single RGF. But, for the multiple MGF (MMGFs) fault

coverage is 86% on an average. In 2014, Mondal et al. [9] proposed a Boolean generator

which is developed by the Boolean difference method to derive the test set. The derived

test is in the form of Boolean expression only, and it is capable of detecting all the SMGF

in k-CNOT based reversible circuits. In 2016, Nagamani et al. [6] proposed an ATPG

algorithm using the exact approach for generating the complete test set which can detect

the single and multiple stuck-at faults, single and multiple missing gate faults, repeated

73

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

gate faults, and partial missing gate faults. These algorithms provided an optimal so-

lution, but the complexity of these algorithms is exponential to the gate count and the

number of lines in the circuit, which is not suitable for large circuits. In 2017, Prakash

Surhonne et al. [5] provided a method to generate Automatic test patterns for MMGFs

detection (considered only two gates are missing). It is based on the generated SMGFs

which are stored in a Binary Decision Diagram (BDD) and test patterns to detect all

MMGFs are generated by dependency analysis between the two gates.

It is observed that many of the approaches considered the DFT methodology for

generating the test vectors to cover all the faults. In DFT methodology, there is an

additional circuit overhead which is incorporated by additional input lines or control

lines and additional gates. Moreover, by using an exact approach, the minimal complete

test set can be generated, but the computational complexity grows exponentially for large

reversible circuits. The proposed ATPG method to determine the complete test set for

detecting all SMGFs and MMGFs using the reversible circuit properties (controllability

and observability) without changing the structure of the circuit. Moreover, the proposed

complete test set generation method has reasonable complexity and it can be applied to

any large k-CNOT based reversible circuits.

4.3 Proposed Method

In this section, a method is proposed for k-CNOT reversible circuit to generate the

complete test set which can detect the SMGFs and MMGFs. The proposed method

starts with the generation of the complete test set for detecting all the SMGFs. A local

test pattern is applied to each gate of the circuit and by using the reverse simulation

technique, the complete test set is generated to detect the SMGFs of the given k-CNOT

based reversible circuits. After analysis of the complete test set for SMGF, it is observed

that the generated complete test set for SMGF is unable to detect all the possible

MMGFs in a given reversible circuit. Therefore, a solution is formulated to generate

the complete test set for detecting all the MMGFs considering the structure of the k-

CNOT circuit and the complete test set for detecting SMGFs. The generated complete

74

4.3 Proposed Method

test set is able to detect all the SMGFs and MMGFs. The generated test set to detect

SMGF and MMGF is not minimal. To obtain the minimality, a table is constructed by

using fault simulation with the generated test set. Integer Linear Programming (ILP) is

formulated by using the fault simulation table and the minimal test set is obtained for

a given circuit by the Branch and Bound technique of ILP.

Some terms are defined formally which are used to describe the proposed solution.

Definition 4.3.1. A test vector TVi is a combination of binary inputs that are applied
to a reversible circuit for testing. The binary inputs 〈b1 b2 . . . bn〉 are assigned to the
input lines, where bi is the ith bit that refers to the ith line of the reversible circuit.

Definition 4.3.2. The test set TS is the set of test vectors that are required to test all
the possible faults (SMGFs and MMGFs) in the reversible circuit. Let the test set be
TS={TV1, TV2..., TVk}, for 1 ≤ i ≤ k, then the test vector is TVi=〈b1i b2i . . . bni〉,
where bji is the jth bit of ith test vector and bji ∈ {0, 1}.

Definition 4.3.3. A local test pattern TVlp is a combination of binary inputs that are
applied to each k-CNOT gate of the reversible circuit to activate the gate for detecting
any faults therein. Let the local test pattern be TVlp=〈b1 b2 . . . bn〉, where bi is ith bit
that refers to the ith line for 1 ≤ i ≤ n and bi = 1.

Definition 4.3.4. The test set TSSMGF is the complete test set to detect all the single
missing gate faults (SMGFs) in a given reversible circuit. In other words, the test set
TSSMGF is capable of detecting all the SMGFs, which occur at any level in the reversible
circuit and TSSMGF ⊂ TS.

Definition 4.3.5. The test set TSMIN is the minimal complete test set to detect all the
single and multiple missing gate faults in a given reversible circuit.

Definition 4.3.6. FSMGF and FMMGF are the sets consisting of all single and multiple
missing gate faults, respectively in a given n-input reversible circuit.

The notation fgi for SMGF is used to denote a single missing gate fault of the ith

gate for 1 ≤ i ≤ N . The multiple missing gate fault for missing of q number of gates is

denoted as fg1,g2 ...gq .

4.3.1 Detection Technique for Single Missing Gate Fault

Consider a reversible circuit consisting of N gates {g1, g2, . . . , gN}. For every gate gi,

i=1 to N , there are some control line(s) (denoted as •), some unconnected line(s) and a

target line (denoted as ⊕). To generate the test set for SMGFs, the gates are scanned

from left to right. To activate the gate gi for detecting any faults therein, a local test

75

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

vector is applied to the gate gi by assigning the logic value 1 on the lines where control

connections are present, and randomly we set the logic value to either 0 or 1 on all other

lines (unconnected and target lines). In this work, the logic value 1’s is considered for

all lines in a given k-CNOT based circuit, and a local test pattern TVlp represents it.

With the applied local test pattern TVlp to the gate gi, the back propagation toward

the input side is used to obtain the required test vector (TVi) to detect the missing gate

fault for gate gi. We carry out fault simulation with test vector TVi to detect SMGFs,

and then we remove the faults that are detected by TVi. These detected faults need

not be considered for further iteration and we repeat this process until all the faults are

covered for the fault set FSMGF .

4.3.2 Complete Test Set Generation for Single Missing Gate
Fault

In this section, the proposed method to generate a complete test set for detecting all

single missing gate faults in a given reversible circuit is described. The complete test set

generation method for single missing gate faults is presented in Algorithm 2.

Algorithm 2: Complete test set TSSMGF generation for detecting the SMGFs.

Input: Reversible Circuit C with n input-lines and N -gates.
Output: The complete test set TSSMGF for detecting the SMGFs.

1 Extract the required parameters n and N from circuit C comprising of N gates
g1, g2, . . . , gN with n input lines. Construct the local test vector TVlp =
〈b1 b2 . . . bn〉, bi = 1 and i= 1 to n

2 Generate the fault set FSMGF consisting of all SMGFs in a given n-input
reversible circuit.

3 Back propagate TVlp for each gate gi to obtain the corresponding input test
vector TVi (occur at input level) and TSSMGF ← TVi. Since every gate gi is
reversible, for a given TVlp, the test vector TVi is unique.

4 Carry out fault simulation with test vector TVi to determine the faults in fault set
FSMGF that get detected.

5 Construct the complete test set TSSMGF after eliminating the all duplicate test
vector TVi.

Example 4.3.1. The complete flow of Algorithm 2 for generating the test set TSSMGF
of the reversible benchmark circuit rd32-v0 66 is represented in Figure 4.1.

Let the benchmark circuit rd32-v0 66 be provided as input to Algorithm 2 having
n-lines and N -gates. In Step 1, the required parameters n = 4 and N = 4 are extracted
from the given circuit. Now, we construct the local test pattern TVlp=〈b1 b2 b3 b4〉, where

76

4.3 Proposed Method

0 1 2 3 4

b

c

g
1

g
2 g

3
g

4

d

a'

d'

c'

b'

a

Level:

Gate:

N = 4, n = 4,

TV
lp
= <b

1
b

2
...b

n
> = <1111>

InputStep 1

Construct Fault Set

F
SMGF

= {f
g1

, f
g2

, f
g3

, f
g4

}

Generate all SMGFs faultsStep 2

Fault Simulation for

each fault f
gi

in F
SMGF

While i � N
True

Each gate g
i
considered as each level

g
1

g
2 g

3
g

4

a'

d'

c'

b'

0 1 2 3 4

TV
lp
={1111}

Apply TV
lp

to each gate g
i

1

1

1

1

1

1

1

0

1

1

1

1

1

0

1

1

1 1

1

1

1

1

0

1

0

1

1

1

1

1

0

0

1

T
V

1

T
V

2

T
V

3

T
V

4

T
V

1

�

f g
1

T
V

2

�

f g
2

T
V

3

�

f g
3

T
V

4

�

f g
4

Step 4

Step 3

Complete Test Set

TS
SMGF

= {1110, 1011, 1010, 1001}

Output
Step 5

False

Figure 4.1: Demonstration of Algorithm 2 for the circuit rd32 v0 66

77

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

bit bi is assigned to logic value 1, where i = 1 to 4. In Step 2, the fault set FSMGF =
{fg1, fg2, fg3, fg4} is generated based on the connections of N gates. In Step 3, we apply
and back propagate TVlp = 〈1 1 1 1〉 to the gate g4 and obtain the corresponding test
vector TV4 = 〈1 0 0 1〉 at the input level. Similarly, the same process is repeated for the
remaining gates g3, g2, and g1 and the corresponding test vectors are TV3 = 〈1 0 1 0〉,
TV2 = 〈1 0 1 1〉, and TV1 = 〈1 1 1 0〉, respectively. In Step 4, the fault simulation
process for each fault fgi in the fault set FSMGF is carried out with the help of each
test vector TVi at the input level. For this example, the faults fg1, fg2, fg3, and fg4 are
identified by test vectors TV1 = 〈1 1 1 0〉, TV2 = 〈1 0 1 1〉, TV3 = 〈1 0 1 0〉, and TV4 =
〈1 0 0 1〉, respectively. Finally, complete test set TSSMGF = {1110, 1011, 1010, 1001}
is constructed for the benchmark circuit rd32-v0 66 as mentioned in Step 5.

Lemma 4.3.1. The test set, TSSMGF , generated using the proposed method detects all
single missing gate faults in a given reversible circuit with N-gates.

Proof. Let us consider the k-CNOT circuit C consisting of gates {g1, g2, . . . , gN}. To
activate the SMGF at gate gi (i=1 to N), the local test pattern TVlp=〈b1 b2 . . . bn〉
= 〈1 1 . . . 1〉 is applied at the output level of gate gi. The controllability property
ensures that on backtracking from any gate gi with local test pattern TVlp it is always
possible to generate a unique vector (say TVi) at the input gate-level. The observability
property ensures that the generated test vector TVi for each gate gi produces fault-free
output and the same test vector TVi produces faulty output at the primary gate-level,
if a fault occurs. Therefore, each test vector TVi ∈ TSSMGF detects all the individual
faults in the fault set FSMGF . Hence, the test set TSSMGF is the complete test set for
detecting all the single missing gate faults in a given reversible circuit.

4.3.3 Complexity Analysis of complete test set generation

For an n-input reversible circuit with N number of gates, the local test pattern TVlp

is applied for each gate gi for detecting the SMGFs in the circuit. The generated test

vector TVi at the input level for each gate gi is simulated N number of times (i.e.,

|FSMGF |=N). Therefore, back propagation and fault simulation for N number of gates

require linear time. Hence, the time complexity is O(N) for generating the complete

test set TSSMGF .

4.3.4 Complete Test Set Generation for Multiple Missing Gate
Fault

The generated test set TSSMGF obtained by Algorithm 2 is sufficient for detecting

all the single missing gate faults (SMGFs) in a reversible circuit, but the test vector

TVi ∈ TSSMGF is not capable of detecting all the multiple missing gate faults (MMGFs).

78

4.3 Proposed Method

Moreover, a complete test set for SMGFs does not cover all the MMGFs [8]. For ev-

ery gate gi of a reversible circuit, there are some control line(s) (denoted as •), some

unconnected line(s) and a target line (denoted as ⊕).

In k-CNOT circuit structure, some of the lines contain only target connections, and

in some lines both target and control connections are available. If only the target

connections are present in a line, then some of the multiple missing gate faults can not

be detected by the test set for detecting SMGFs. Consider the case that two consecutive

gates are missing whose targets are in the same line, then the single missing gate fault

of the first gate is nullified by the missing of the second gate and so missing of two

gates cannot be detected by the test set of SMGFs. Therefore, for this category of

circuits, the test vector TVi ∈ TSSMGF cannot detect all the MMGFs in a given k-

CNOT based circuit. For detecting all the MMGFs, some additional test vectors are

included in the test set TSSMGF . For this purpose, the test set TS is constructed

as: TS=
N⋃
i=1

S(gi) ∪ TSSMGF , S(gi) represents all the possible test vectors TVi for the

corresponding SMGFs in gate gi. In the other case, target and control connections are

present on the same line. Consider a case where a control point is followed by a target

point is a line. That is, gate gi is connected as target point and gate gj is connected as

a control point in the line l. So, the missing of gate gi effects the control connections of

gate gj which eventually effects the output of gate gj. Missing of both the gates gi and

gj effect the control connects of the next gate. The absence of the control and target

in these gates directly effect the control and target connection of the next consecutive

gates, and as a result, the primary output of fault-free circuit gets effected. Therefore,

the generated test set TSSMGF for detecting SMGFs is capable of detecting all the

MMGFs in a given k-CNOT circuit for this category of circuits. The construction of the

complete test set TS for detecting all MMGFs is given in Algorithm 3.

Example 4.3.2. Consider the benchmark circuit Toffoli double 4 as illustrated in Fig-
ure 4.2. The circuit consists of two k-CNOT gates (i.e., N=2) and four input lines (i.e.,
n=4). Based on the circuit structure, as shown in Figure 4.2, there is an occurrence
of two consecutive target connections on the same line ’d’. Hence, the generation of
the complete test set TS is according to the Step:4 of Algorithm 3. The complete test
set for SMGFs is TSSMGF={1110, 1111} for the reversible circuit Toffoli double 4 ac-
cording to Algorithm 2. In the circuit of Figure 4.2, if the gate g1 is missing then all

79

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

Algorithm 3: Complete test set generation for MMGFs

Input: k-CNOT based reversible Circuit.
N : Number of gates of the circuit.
n: Number of input lines of the circuit.
TSSMGF : The complete test set for SMGFs.
S(gi): All the possible test vectors TVi for SMGFs in gate gi.
Output: The complete test set TS for detecting MMGFs

1 TS=TSSMGF
2 flag=false
3 for i← 1 to n do
4 if line li contains only target connection then
5 flag=true

6 if (flag) then
7 for j ← 1 to N do
8 TS=TS ∪ S(gj)

9 return TS

possible test vectors to detect the missing gate g1 is S(g1) = {1010, 1011, 1110, 1111}
and similarly all possible test vectors to detect the missing gate g2 is S(g2) = {1100,
1101, 1110, 1111}. Now, the required test set to detect all MMGFs is TS={S(g1) ∪
S(g2)}∪TSSMGF={1010, 1011, 1110, 1100, 1101, 1111}. The obtained test set TS is ca-
pable of detecting all the faults in fault sets FSMGF and FMMGF . Thus, the test set TS
is complete but not minimal to detect all MMGFs in the reversible benchmark circuit
Toffoli double 4.

Figure 4.2: Toffoli double 4 benchmark circuit

Lemma 4.3.2. The test set TS generated using the proposed method detects all single
and multiple missing gate faults in a given n-input k-CNOT based reversible circuit.

Proof. Let us consider that the target connections of the gates gi and gi+1 which are in
the same line. It means that the operation of the gate gi does not effect the gate gi+1 if
they are missing together, i.e., fault-free and faulty output are indistinguishable, since
the missing of two consecutive target connections does not effect the functional behavior
of the circuit. If the generated test vector TVi ∈ TSSMGF is applied, then missing
of even number of consecutive gates shows the similar functional effect as compared

80

4.3 Proposed Method

to the fault-free circuit. Due to this, the test set TSSMGF is unable to detect all the
MMGFs. In this case, all the possible test vectors S(gi) for all possible occurrence
of SMGFs are considered. However, each single missing gate fault is also a multiple
missing gate fault [8]. Thus, any test vector in S(gi) involves detecting two or more
multiple missing gate faults where the target connection is in the same line for each

gate. Hence, the generated test set TS=
N⋃
i=1

S(gi) ∪ TSSMGF is capable of detecting all

multiple missing gate faults in a given k-CNOT based circuit. In another case, the
control connection of gate gi is the target connection of the gate gi+1 and vice versa;
then control connection of gate gi directly effects the gate gi+1. The complete removal
of two gates gi and gi+1 generate the faulty responses at primary output of the circuit,
which is distinguishable with fault-free primary output responses. The multiple missing
gate faults in this scenario are detected by the test vector TVi ∈ TSSMGF . Since the
back propagation of each gate produces different vectors in subsequent levels, thus, at
least one generated test vector TVi ∈ TSSMGF can detect the multiple missing gates gi
and gi+1. In the similar analogy, it can be stated that the test set TS (TS = TSSMGF)
is capable of detecting more than two multiple missing gate faults.

4.3.5 Complexity Analysis of complete test set TS generation

The generation of the complete test set TS for all possible SMGFs and MMGFs is

dependent on the number of input lines n and the number of gates N in the circuit.

All the lines in the circuit are scanned to identify the type of connections (target and

control) present in a line for each gate, and for checking the type of connection in a line

requires constant time (C1). The time complexity for checking the type of connections is

N ×n×C1. Evaluation of the test vectors for each gate also requires constant time (C2)

and time complexity for evaluation of the test set for all the gates is N × C2. Hence,

the time complexity for generating the test set TS is N ×n×C1 +N ×C2 = O(N ×n).

The time complexity in the worst case is O(N2), where n = N .

4.3.6 Determination of Minimal Complete Test Set

The complete test set TS generated by Algorithm 3 to detect all MMGFs is not a

minimal one. A method is proposed to derive the minimal complete test set TSMin.

For this purpose, firstly, a row and column fault covering table is constructed with the

help of the complete test set TS and all possible faults present in FSMGF and FMMGF

in a given reversible circuit. Secondly, Integer Linear Programming (ILP) Problem is

formulated from the constructed row and column fault covering table. Finally, using

81

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

Branch and Bound technique of ILP, the test set TSMIN is obtained for detecting all

SMGFs and MMGFs. The following steps are carried out to generate TSMIN :

(i) Using fault simulation with each test vector TVi ∈ TS, the corresponding faults

in FSMGF and FMMGF are determined. The row and column fault covering table

is constructed in the form of a matrix Mr×c, where r is the number of test vectors

present in TS and c is the number of all possible faults in a given reversible

circuit. The value m(i,j)=1 denotes that the test vector TVi in the ith row detects

the corresponding jth fault; otherwise, the fault is undetectable by the test vector

TVi of the ith row.

(ii) Formulate the ILP model with binary decision variables ti associated with each

test vector TVi. Let us consider |TS| = d, then there are d variables ti, where i =

0 to d − 1 and ti ∈ {0, 1}. The variable ti is represented as ith row of Mr×c and,

T = [t0, t1, . . . , td−1]
T . Here, we define:

Mr×c.T =
[d−1∑

i=0

mi1ti,
d−1∑
i=0

mi2ti, . . .
d−1∑
i=0

miN(N+1)/2ti

]T

where,
d−1∑
i=0

mij for all 1 ≤ j ≤ N(N + 1)/2 and if ti=1, then corresponding test

vector TVi is able to detect the faults of jth row of Mr×c.

The Objective function for ILP is formulated as follows:

min f(t0, t1, . . . , td−1)= t0+t1+ . . .+td−1

subject to the constraints Mr×c.T ≥ [1,1, . . . ,1]T

(iii) All the constraints
d−1∑
i=0

mijti ≥ 1 are applied in LINGO 17.0 [55] and shows that at

least one test vector TVi ∈ TS is able to detect any fault in a given circuit.

82

4.3 Proposed Method

Figure 4.3: ham3tc benchmark circuit

Example 4.3.3. Consider the benchmark circuit ham3tc as shown in Figure 4.3. The to-
tal number of faults in the circuit ham3tc is 15. According to Algorithm 3, the extracted
complete test set TS={011, 101, 110, 100} for the reversible benchmark circuit ham3tc.
Using the fault simulation with each test vector TVi ∈ TS with the fault-free and faulty
circuit, the corresponding faults are extracted for the circuit ham3tc. Based on this in-
formation, the row and column fault covering table is constructed according to the Step
(i) to generate TSMIN . Table 4.1 shows the fault coverage by each test vector TVi. Next,
we formulate the ILP model as mentioned in Step (ii): min f(t0, t1, t2, t3)=t0+t1+t2+t3,
subject to the generated constraints as indicated in Table 4.1. In Step (iii), all the con-
straints generated by the ILP formulation are applied to the LINGO 17.0, and it gives
t0=1 and t1=1. The respective test vectors for the binary decision variables t0 and t1
are 011 and 101, respectively. Therefore, the minimal test set is TSMIN={011, 101} for
the reversible benchmark circuit ham3tc.

4.3.6.1 Complexity Analysis of ILP formulation

For the determination of a complete minimal test set TSMin, we consider 0-1 ILP, where

each binary decision variable t0, t1, . . . , td−1 can assume binary value either 0 or 1.

Suppose, consider the number of constraints is k, and all the constraints are lower

bound constraints. For the state space, let us consider all possible 2d assignments of

binary decision variables t0, t1, . . . , td−1 in a non-deterministic manner. Based on the

ILP formulation, the time taken for checking the feasible solution for each assignment

is O(d × k). The minimized objective function is solved using the Branch and Bound

technique of ILP and computing the value of the objective function for each feasible

assignment needs O(d) time.

Lemma 4.3.3. The test set TSMIN is a minimal complete test set for detecting all
the single and multiple missing gate faults in a given n-input k-CNOT based reversible
circuit.

Proof. In Lemma 4.3.2, it is established that the test set TS can detect all single and
multiple missing gate faults of a given reversible circuit. Moreover, each possible fault can
be detected by one of the test vector TVi ∈ TS because of each TVi satisfies the condition

83

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

Table 4.1: Row and Column fault coverage table of the ham3tc benchmark circuit

TVi FSMGF FMMGF

fg1 fg2 fg3 fg4 fg5 fg1,g2 fg2,g3 fg3,g4 fg4,g5 fg1,g2,g3 fg2,g3,g4 fg3,g4,g5 fg1,g2,g3,g4 fg2,g3,g4,g5 fg1,g2,g3,g4,g5

011 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

101 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0

110 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0

100 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1

following constraints are generated from the fault coverage table

d−1∑
i=0

mijti ≥ 1 =⇒M =

1 0 0 0
1 1 0 0
0 1 1 0
1 1 1 1
0 1 0 1
1 1 0 0
1 1 1 0
1 0 0 1
1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 1
1 1 0 1
1 0 0 1
1 0 0 1

·

t0t1t2
t3

 ≥

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

constraints
=⇒

t0 ≥ 1
t0 + t1 ≥ 1
t1 + t2 ≥ 1

t0 + t1 + t2 + t3 ≥ 1
t1 + t3 ≥ 1

t0 + t1 + t2 ≥ 1
t0 + t3 ≥ 1

t0 + t1 + t3 ≥ 1

Mr×c.T ≥ [1,1, . . . ,1]T. Based on the ILP formulation, the objective function min
f(t0, t1, . . . , td−1) provides the smallest number of binary variable(s) which is associated
with their corresponding test vector TVi in the test set TS under the condition Mr×c.T ≥
[1,1, . . . ,1]T. Thus, all the constraints of a given condition are applied to optimal
software that gives least number of variables, which are assigned to TSMIN . Hence,
TSMIN is a minimal complete test set for detecting all single and multiple missing gate
faults.

4.3.7 Fault Coverage Evaluation with other Faults Models

The fault coverage is defined as the ratio of the actual number of detected faults to the

total number of faults that occur in a circuit. Several fault models are used to detect

different kind of faults. In this work, methods are proposed to generate the complete

test set to detect SMGFs and MMGFs in a reversible circuit. There exists a correlation

84

4.3 Proposed Method

between different fault models and it is also a good exercise to check the fault coverage

of other fault models by the generated test set of another fault model. Therefore, the

minimal test set generated by our proposed method to detect SMGFs and MMGFs is

applied for detecting the faults in other fault models such as stuck-at fault (SAF), partial

missing gate fault (PMGF), and appearance crosspoint fault. The correlation between

different fault models are explained briefly.

(a) Missing gate fault and Stuck-at fault model: According to Patel et al. [33],

the stuck-at faults (SAFs) can be detected by test vector such that each wire at

every level of the circuit can be set to both logic value 0 and 1, while SMGFs

and MMGFs are detected by setting the control connections to logic value 1 and

other connections (the target and unconnected) are set arbitrarily to logic values

0 and 1. In the proposed method, a local test pattern to each k-CNOT gate gi

is applied and we traverse back towards input to obtain the test vector TVi at

the input level. During back propagation through the gates present in the circuit,

the operations performed in each gate changes the local test patterns at each level

and are set to logic value 0 or 1, which are capable of detecting stuck-at 1 (SA1)

and stuck-at 0 (SA0), respectively. Thus, the complete test set TS for SMGFs

and MMGFs satisfies the requirement for detecting most of the SAFs in a given

reversible circuit.

(b) Missing gate fault and PMGF model: The detection criteria for a PMGFs is

that the missing control input is set to logic value 0 and we assign the logic value

1 to all other control inputs. The remaining input lines are assigned arbitrarily

to logic value 0 and 1. As per our proposed method, when we apply a local test

pattern to a particular k-CNOT gate lying at a particular level in the circuit, then

the test vectors get changed due to propagation through various gates at different

levels. Therefore, there is a possibility to get some test vectors which satisfy the

criteria for detecting the PMGFs. It may happen that all PMGFs can not be

detected by the generated test set TS by our proposed method, then the test set

can be reconstructed to cover all PMGFs.

85

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

(c) Missing gate fault and Crosspoint fault model: As described above, to detect

the SMGFs and MMGFs, we apply a logic value 1 where control connections are

present in the gate and we randomly fill by logic value either 0 or 1 for all other

lines. To detect for appearance crosspoint faults, we apply a logic value 1 to all

control connections of the gate and set logic value 0 to all other lines. Therefore,

it is observed that the test set for detecting both SMGFs and MMGFs is capable

of covering appearance crosspoint faults. In our proposed method, the complete

test set TS is generated by a local test pattern for each gate with the help of back-

propagating through various levels in the circuit. Therefore, some test vectors

TVi in the test set TS satisfies the testing criteria for detecting the appearance

crosspoint faults. Moreover, the PMGFs are same as the disappearance crosspoint

faults.

4.4 Experimental Results and Discussions

The algorithms for the test set generation for single and multiple missing gate faults

have been implemented in Python 3.4 and run on a Core-i5 machine with an Intel

Pentium (R) CPU-8250U@ 1.60GHz × 8 system, running Ubuntu v16.04 (64-bit) with

8 GB RAM. The minimal test set generation method has been implemented in LINGO

Extended 17.00 software and running on the same core-i5 machine. The reversible

benchmark circuits based on the k-CNOT gates have been considered [25] to perform

the experiments. The number of test vectors required for the detection of SMGFs

and MMGFs before and after minimization along with the CPU time taken as per our

proposed method are reported for the experimental results. The experimental results

are compared with some of the previous works performed on SMGF and MMGF [5–9].

The fault coverage range with other fault models such as stuck-at fault (SAF), partial

Missing gate fault (PMGF) and crosspoint fault (appearance) in reversible circuits are

also reported.

The experimental results are reported in Table 4.2. The first four columns in Table 4.2

provide the name of the benchmark circuit, number of input lines (n), number of gates

86

4.4 Experimental Results and Discussions

Table 4.2: Complete and Minimal test set for detection of SMGFs and MMGFS with CPU
time (sec) for the benchmark Circuits

Benchmarks
Circuit n N Total No.

Faults TS Time
(sec) TSMIN

Time
(sec) % Difference

(SMGF+MMGF) (SMGF+MMGF) TS (SMGF+MMGF) TSMIN (TS & TSMIN)

Peres 9 3 2 3 2 0.00 1 0.02 50

Fredkin 6 3 3 6 3 0.00 2 0.02 33.33

nth Prime 3 4 10 4 0.00 1 0.04 75

ex 1 166 3 4 10 3 0.00 2 0.04 33.33

ham 3 3 5 15 4 0.00 2 0.02 50

3 17 13 3 6 21 4 0.00 2 0.07 50

rd32 v0 66 4 4 10 4 0.00 2 0.06 50

mini alu 167 4 6 21 5 0.00 3 0.04 40

mod10 171 4 10 55 6 0.00 3 0.11 50

hwb4 52 4 11 66 8 0.00 2 0.09 75

4-49d3 4 12 78 8 0.00 3 0.11 62.50

4 49 16 4 16 136 7 0.00 4 0.17 42.85

hwb4tc 4 17 153 7 0.00 3 0.13 57.14

4gt11 84 5 3 6 3 0.00 2 0.06 33.33

Xor5d1 5 4 10 4 0.00 1 0.06 75

mod5d4 5 5 15 4 0.00 2 0.03 50

alu-v0 26 5 6 21 5 0.00 2 0.07 60

mod5d1 63 5 7 28 5 0.00 2 0.08 60

mod5d1 5 8 36 28 0.00 4 0.05 85.71

mod5d2 5 9 45 8 0.00 2 0.10 75

mod8-1- 177 5 14 105 8 0.00 3 0.12 62.50

rd32 273 5 20 210 15 0.00 7 0.06 53.33

hwb5 55 5 24 300 14 0.00 4 0.15 71.42

hwb5 53 5 55 1540 19 0.00 5 0.19 73.68

hwb5tc 5 56 1596 19 0.00 5 0.26 73.68

graycode6 47 6 5 15 5 0.00 1 0.06 80

ex3 229 6 7 28 7 0.00 3 0.05 57.14

Xor5-254 6 7 28 6 0.00 2 0.04 66.67

majority-239 6 8 36 6 0.00 3 0.06 50

mod5adder-128 6 15 120 7 0.00 3 0.16 57.14

2of5d1 6 18 171 15 0.00 5 0.05 66.67

mod5adder 6 21 231 10 0.00 4 0.06 60

hwb6tc 6 126 8001 40 0.03 8 0.67 80

rd53d1 7 12 78 11 0.00 2 0.11 81.81

2of5d2 7 12 78 12 0.00 2 0.13 83.33

ham7 105 7 21 231 15 0.00 3 0.13 80

ham7tc 7 24 300 15 0.01 4 0.17 73.33

rd53rcmg 7 30 465 23 0.01 4 0.11 82.60

rd53d2 8 12 78 12 0.00 2 0.10 83.33

cm82a-208 8 22 253 16 0.01 4 0.09 75

rd73-140 10 20 210 20 0.04 3 0.14 85

6symd2 10 20 210 19 0.04 3 0.15 84.21

9symd2 12 28 406 28 0.23 3 0.15 89.28

adr4-197 13 55 1540 47 0.82 6 0.11 87.23

0410184-169 14 46 1081 40 1.11 2 0.19 95

rd84-142 15 28 406 28 1.57 3 0.17 89.28

ham15-108 15 70 2485 53 3.60 8 0.20 84.90

87

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

(N), and the total number of faults for both SMGFs and MMGFs, respectively. Columns

5 and 7 in Table 4.2 present the number of test vectors required for detecting both

SMGFs and MMGFs before and after minimization, respectively. The CPU time (sec) to

generate the complete test set TS and minimal test set TSMIN for the benchmark circuits

are presented in Columns 6 and 8, respectively. Column 9 indicates the percentage

of difference between the test set generated by the proposed method before and after

minimization. From the reported results in Table 4.2, it is observed that the test set is

minimized by more than or equal to 50% by the proposed minimization method for about

88% of the circuits, but still 100% fault coverage is retained. The maximum reduction of

95% of the test set for the reversible benchmark circuit 0410184-169 is achieved by our

reduction technique. The minimum reduction of 33% of test set is observed for circuits

Fredkin-6, ex-1-166, and 4gt11-84.

The results of our proposed method are compared with the work of [5] and the

comparison is shown in Columns 4, 5 and 11 of Table 4.3. The value ’-’ indicates that

the results in the corresponding work [5] are not available. The authors in [5] proposed a

greedy and BDD based covering method for generating the minimal test set for detecting

all possible cases of two consecutive missing gate faults. The number of test patterns

obtained in our proposed method is found to be less than the test patterns reported

in [5]. Moreover, the method proposed in [5] can detect only two consecutive missing

gate faults, whereas our proposed method can detect any number of consecutive missing

gate faults. So, the fault coverage of our proposed method for multiple missing gate

faults is more than that of [5]. The reduction of test set by our proposed test pattern

generation method to detect MMGFs is more than or equal to 50% for more than 77%

of the benchmark circuits that are used in the experiment. For the circuits hwb6tc and

0410184-169, the test sets are reduced by 81.39% and 77.77%, respectively. For the

circuits, ex3 229 and rd32-v0 66, the size of test sets are small [5] and so the scope of

reducing the test set is less.

The authors in [6] proposed an ATPG algorithm to generate the complete test set

using an exact approach for detecting missing gate faults along with single and multiple

88

4.4 Experimental Results and Discussions

Table 4.3: Comparison of the complete test set with [5], [6], [7], [8], [9]

Circuit n N Number of Test Patterns

Gr.
[5]

BDD
[5] [6] Gr.

[7]
B&B

[7] [8] [9] Proposed

MMGF MMGF SMGF MMGF SMGF SMGF+MMGF

ham3 102 3 5 4 4 2 2 2 2 3 or 4 2

3 17 13 3 6 4 4 2 2 2 2 2 2

rd32 v0 66 4 4 2 2 2 2 2 2 6 2

mini alu 167 4 6 5 5 - - - - - 3

mod10 171 4 10 6 6 - - - - - 3

hwb4 52 4 11 6 6 - - - - - 2

4-49d3 4 12 - - - - - - 4 3

4-49tc1 4 16 - - 3 3 3 3 - 4

hwb4tc 4 17 - - 4 2 2 4 7 3

Xor5d1 5 4 - - 1 1 1 1 2 1

mod5d4 5 5 - - - - - - 4 2

mod5d1-63 5 7 4 4 - - - - - 2

mod5d1 5 8 - - 4 1 1 4 4 4

mod5d2 5 9 - - 2 1 1 2 2 2

mod18-10-177 5 14 6 6 - - - - - 3

hwb5-55 5 24 12 11 - - - - - 4

hwb5-53 5 55 21 21 - - - - - 5

hwb5tc 5 56 - - 5 5 5 5 - 5

graycode6 47 6 5 4 3 - - - - - 1

ex3 229 6 7 3 3 - - - - - 3

Xor5-254 6 7 3 3 - - - - - 2

majority 239 6 8 4 4 - - - - - 3

mod5adder 128 6 15 8 7 - - - - - 3

5mod5tc 6 17 - - 6 1 1 6 - 6

2of5d1 6 18 - - 5 4 4 5 - 5

mod5adders 6 21 - - 4 3 3 4 - 4

hwb6tc 6 126 43 43 9 9 8 8 - 8

2of5d2 7 12 - - 2 2 2 2 - 2

rd53d1 7 12 - - 3 2 2 3 - 2

rd53 137 7 16 9 8 - - - - - 3

ham7 105 7 21 9 5 - - - - - 3

ham7tc 7 24 - - 4 4 4 4 - 4

rd53rcmg 7 30 - - 4 4 3 4 - 4

hwb7tc 7 291 - - 14 15 4 14 - 12

rd53d2 8 12 - - 2 2 2 2 - 2

cma82a 208 8 22 9 8 - - - - - 4

6symd2 10 20 - - 3 2 2 2 - 3

rd73d2 10 20 6 - 3 3 3 3 - 3

9symd2 12 28 - - 3 3 3 3 - 3

addr 197 13 55 13 - - - - - - 6

0410184 169 14 46 9 - - - - - - 2

rd84-142 15 28 8 - 3 3 3 3 - 3

ham15 108 15 70 26 - 8 - - - - 8

89

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

stuck-at faults, repeated gate faults, and partial missing gate faults. The exact ap-

proaches aim to provide the optimal solution, but these approaches are computationally

expensive (exponential complexity) for large circuits. Our proposed method generates

a minimal test for covering all the single and multiple missing gate faults. From a com-

putational point of view, our method requires linear time for obtaining the minimal test

set. The comparison of our results with the results of [6] is shown in Columns 6 and

11 of Table 4.3. It is observed that the size of the test set generated by our proposed

method is same as the size of test set generated by the method of [6] for most of the

circuits, but the computational complexity of our proposed method is less.

The authors of the work [7] proposed two approaches, the first one is the greedy

heuristic and the second one is based on exact branch and bound algorithm for generating

the test vectors to detect the SMGFs. The method used for generating the test set in [7]

is a DFT based approach which requires incorporation of additional testing circuits,

so there is extra overhead in the hardware. The experiment results are presented and

compared in Columns 7, 8 and 11, respectively of Table 4.3. It is observed that due

to the use of DFT method, several gates are added to each circuit to detect the faults.

Also, the work reported in [7] can detect only SMGFs, but our proposed method can

detect both SMGFs and MMGFs. For most of the circuits, the size of test set produced

by our method is comparable to the size of test given by the method of [7].

The authors in [8] used an exact automatic test patterns generation method for de-

tecting SMGFs and MMGFs based on the integer linear programming. The comparison

of our result with the result of [8] is reported in Columns 9 and 11 of Table 4.3. It is

observed that size of test set is same in both the methods for most of the circuits, but

the computational complexity of an exact automatic test pattern generation method is

always more.

The experimental result in Columns 10 and 11 of Table 4.3 shows the comparison of

the proposed work with the work done in [9]. The authors in [9] targeted for generating

the test set for detecting only SMGFs using the method of Boolean difference generator.

It is observed that the size of the generated test set is less in our proposed method

90

4.4 Experimental Results and Discussions

Table 4.4: Fault coverage range with SAF, PMGF and Crosspoint Fault Models by the proposed
complete test set TS

Circuit n N No. of
Faults

No. of
Faults

No. of
Faults

Faults Coverage
by TS [Proposed]

Faults Coverage
by TS [Proposed]

Faults Coverage
by TS [Proposed]

SAF PMGF Crosspoint SAF PMGF Crosspoint

4gt11 84 5 3 24 4 8 79.16% 50% 12.5%

xor5d1 5 4 26 4 12 76.92% 50% 58.33%

graycode6 47 6 5 32 5 20 87.50% 80% 50%

2of5d2 7 12 76 19 53 96.05% 89.47% 58.49%

3 17 13 3 6 32 7 5 100% 100% 100%

3 17 14 3 6 32 7 5 100% 71.42% 100%

fredkin 6 3 3 24 6 0 83.33% 50% 0

rd32 v0 66 4 4 28 6 6 89.28% 66.67% 50%

decode24 vo 38 4 6 36 8 10 94.44% 87.50% 40%

miller 11 3 5 32 8 2 100% 100% 100%

ham3 102 3 5 28 6 4 92.85% 83.30% 25%

ex 1 166 3 4 22 4 4 90.90% 75% 25%

nth Prime3 3 4 24 5 3 100% 100% 100%

peres 9 3 2 16 3 1 50% 33.33% 0

decode24 v2 43 4 6 34 7 11 100% 100% 90.90%

mini alu 167 4 6 52 16 2 100% 93.75% 100%

mod10 171 4 10 64 18 12 100% 94.40% 91.67%

4gt11-v1 85 5 4 26 4 12 80.76% 50% 16.67%

4mod5v1 24 5 5 32 6 14 87.50% 50% 42.85%

alu-v0 26 5 6 38 8 16 86.84% 50% 50%

91

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

for most of the benchmark circuits as compared to the method of [9]. The maximum

reduction of 66.67% for the size of test set is found for the circuit rd32d1.

Finally, experiments are performed to check the fault coverage range of other fault

models such as stuck-at faults (SAFs), partial missing gate faults (PMGFs) and cross-

point faults using the complete test set TS generated by our proposed method.

The total number of SAFs (SA0 and SA1) in a reversible circuit is given by 2(n

+
N∑
i=1

gi) [33], where gi is the size of N gate of the circuit, and n is the total number

of input wires. For determining the fault coverage range of PMGF fault model, the

first-order PMGF is considered, i.e., only one control connection is missing at a time.

The appearance crosspoint faults are considered in our experiments for crosspoint fault

model. Table 4.4 presents the experiment results. The total number of SAFs, PMGFs

and crosspoint faults are shown in Columns 4, 5 and 6, respectively. In Table 4.4, it is

observed that SAFs, PMGFs and crosspoint faults coverage is 100% for the reversible

benchmark circuits 3 17 13, miller 11, and nth prime3 by the test set TS generated by

our proposed method.

A total of 20 benchmark circuits are considered, out of these, only for the circuit

peres 9 fault coverage of SAFs is 50%, and the fault coverage of SAFs is more than 75%

for rest of the circuits. The fault coverage for PMGFs is 50% for 30% of the circuits

and the fault coverage is more than 65% for rest of the circuits. In the crosspoint fault

model, the highest deterioration of fault coverage is 12.50% for the circuit 4gt11 84, and

for the circuit peres 9, the test set TS is unable to detect any faults.

4.5 Conclusions

This work presented a scheme to generate the complete test set for detecting single and

any number of consecutive multiple missing gate faults in the k-CNOT based reversible

circuits. Experimental results show that the size of test set TSMIN generated by our pro-

posed method is smaller or similar as compared to the methods available in the literature

and covers more faults by maintaining 100% fault coverage. The fault coverage range

for the SAFs, PMGFs and appearance crosspoint faults with our generated complete

92

4.5 Conclusions

test set are also analyzed and checked using experimental results. In the next chapter,

a fault localization method is presented to find the locations of missing gate faults by

using the generated complete test set in this work to detect the missing gate faults.

93

4. TEST GENERATION FOR MULTIPLE MISSING-GATE FAULTS IN
REVERSIBLE CIRCUITS

94

Chapter 5
Fault Localization for Missing Gate Faults in
Reversible Circuits

5.1 Introduction

In this chapter, the fault localization method is presented to obtain the exact location

of single and multiple missing gate faults in reversible logic circuits. The primary focus

of the proposed method is to extract the unique test pattern for each missing gate faults

in the k-CNOT based reversible circuit. The complete test set generation methods to

detect single and multiple missing gate faults are presented in the previous chapter. With

the help of this generated complete test set, the unique test patterns are constructed

for fault localization. The unique sequences of test patterns are used for identifying the

exact location of the faults. Based on these unique set of test patterns a fault localization

tree is constructed. Next, the traversal process is applied to the fault localization tree

to determine the presence and location of the faults. Moreover, the proposed method

is also capable of evaluating the equivalent faults in a given reversible circuit. Finally,

we provide our experimental results that are verified on several reversible benchmark

circuits.

At first, we generate the complete test set for detecting the missing gate faults and

the input test set is derived from the complete test set which is applied to the circuit for

obtaining the output responses of the fault-free and the faulty circuit. Now, the fault

analysis table is constructed with the help of the output responses of each possible faults

that may occur in the circuit. Based on the fault analysis table, the fault localization

95

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

tree is built, and the reduction process is applied to obtain the final fault localization

tree which contains the exact unique output responses for each of the single and multiple

missing gate faults along with the output responses of the fault-free circuit. Finally, the

traversal process is applied to the fault localization tree to identify the location of faults

in the reversible circuit. The traversal process of the fault localization tree is simple yet

effective, and takes linear time to identify the exact location of the fault.

The rest of the chapter is organized as follows: Section 5.2 provides a discussion on

related work on fault localization in reversible circuits. In Section 5.3, we describe our

proposed fault localization method with the help of detailed illustrations. The experi-

mental results and concluding remarks are presented in Section 5.4 and 5.5, respectively.

5.2 Related Work

Some of the prior works that are relevant to the work presented in this chapter are

briefly reviewed in this section. In 2004, Ramasamy et al. [47] proposed an adaptive

tree-based approach on functional test based fault localization to detect and locate

stuck-at faults in a reversible circuit. In the proposed method, the symmetric adaptive

tree is constructed by generating a standard complete and static fault table using all

possible input vectors, which help to detect the reason of faulty behavior in the circuit.

To speed up the computation of the symmetric adaptive tree method, the authors also

proposed a new greedy direct tree generation algorithm that eliminates the fault table

generation and dynamically creates the adaptive fault tree without generating all tests.

However, both approaches are applied to small circuits because the simulation size of

the fault table increases exponentially for large circuits. In 2005, Pierce et al. [48]

also proposed a method to generate the fault table using all the possible vectors in the

circuit and based on the fault table. The fault localization tree is constructed with

adding some constraints for identifying the faulty behavior of the circuit. To handle

the larger index fault table, the authors suggested a method of storing a fault table

with decision diagrams which required less amount of memory as compared to storing

a fault table as an array. In 2009, Wille et al. [56] proposed the first approach for

96

5.2 Related Work

automatic debugging of TOFFOLI network based reversible circuit and the proposed

debugging approach was formulated based on Boolean satisfiability. In this approach,

given an erroneous circuit and a set of counter-examples describing the error(s) of the

circuit, it returns a set of gates in the form of the error candidates, which are replaced

with other gates to fixed the counter-examples. In 2010, Jung et al. [57] introduced

another debugging method for multiple missing control errors in reversible circuits. The

scheme used the concepts of the previous method [56] i.e., correction-based debugging

and hitting set-based debugging. In the hitting set-based approach, a new notion of

error candidates is introduced, and this notion is applied to encode the determination

of error candidates. The authors also proposed that the combination of correction-

based and hitting set-based approaches reduces the number of error candidates that

lead to a improvement in the accuracy of an error location. In 2011, Zamani et al. [58]

introduced the fault masking technique using the two majority voters with different

error masking capabilities. These majority voters provide the information about the

location of the fault for online and as well as offline diagnosis. In 2011, Zhang et

al. [49] proposed a new fault diagnosis approach for single missing control fault model

in reversible circuits. This approach provided new methods for Diagnostic Test Pattern

Generation (DTPG) and fault equivalent checking. Again, in 2011, Rahaman et al. [50]

proposed a fault diagnosis technique for k-CNOT based reversible circuit for the missing

gate fault model. The proposed technique requires a universal test set (UTS) of size

(n+1) that detects all single missing-gate faults (SMGFs), repeated-gate faults (RGFs),

and partial missing-gate faults (PMGFs) with the addition of one extra control line

along with duplication of each k-CNOT gate of the original (n× n) k-CNOT reversible

circuit. Furthermore, the single missing gate fault (SMGF) is identified for each gate

using a single test vector that is applied to an augmented circuit. In 2014, Mondal et

al. [59] proposed a fault diagnosis technique in reversible circuits to extract the unique

fault signature for each missing control fault. Based on the unique fault signature, a

unique fault diagnosis tree is constructed, and the proposed fault diagnosis algorithm

is applied to traverse the fault diagnosis tree for identifying the location of the fault.

97

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

In 2014, the authors in [60] proposed a fault diagnosis technique for single missing

gate fault (SMGF), multiple missing gate fault (MMGF), and partial missing gate fault

(PMGF) using the Multi-Input Signature Analyzer (MISA) in the form of successive tree

structure. Pseudorandom test vectors are applied to the fault-free and faulty circuit for

generating the output responses to generate the one-dimensional fault signature. The

verification of the signature with the help of the circuit under test is performed for

fault diagnosis. In 2016, Mondal et al. [61] developed a scheme to detect and localize

the faulty zone for single missing gate fault (SMGF) and partial missing control fault

(PMGF). The proposed scheme scanned the entire augmented circuit, block-wise from

left to right and compared the input and output vector in a block-wise manner. If the

input and output vectors do not match in a given block, then the faulty gate is present

in that block. In 2017, the authors in [62] have proposed a similar approach for finding

the location of fault as mentioned in [61], but the proposed approach is applied for

new types of faults such as gate appearance fault and control appearance fault in the

k-CNOT based reversible circuit.

Based on the discussion of the above literature review, we observe that most of the

existing fault diagnosis methodologies have considered the diagnostic tree using the fault

table generation with or without generating all test patterns. The scope of the efficient

input test vectors from the complete test set (for detecting the faults) to build the

fault diagnostic tree is limited in reversible circuits. Moreover, many of the approaches

use a single test vector with additional circuit overhead to detect the location of the

fault. In this work, we target both single and multiple missing gate fault localization

in a reversible circuit designed with k-CNOT reversible gates without any additional

circuit overhead, and fault localization tree is built by the unique output response of

the complete test set for SMGF and MMGF instead of using all possible test vectors or

pseudorandom test patterns.

98

5.2 Related Work

Figure 5.1: Block diagram of Fault Localization Method

99

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

5.3 Proposed Technique of Fault localization

In this section, we provide a fault localization technique to determine the exact location

of faults under the missing gate fault model in reversible circuits. The proposed fault

localization method that has four modules. The first module involves generating the

complete test set for SMGF and MMGF in the reversible circuit. The second module

describes the construction of a fault analysis table using the complete test set for SMGF

and MMGF as a sequence of input test patterns in a given reversible circuit. The

sequence of input test patterns are fed to the fault-free circuit, and the corresponding

output test patterns are collected and stored. Then, the fault is injected to the fault-

free circuit, and the same sequence of input test patterns are applied to the faulty

circuit of each enumerated fault. The generated sequence of output test patterns for

each enumerated fault in the faulty circuit is compared to the output test responses of

the fault-free circuit. The comparison process provides the information of unique output

responses for each enumerated fault in a given reversible circuit. The entire information is

stored in the fault analysis table. The fault analysis table helps to detect if any equivalent

faults are present in the circuit. In the third module, based on the fault analysis table,

we construct the fault localization tree, and the reduction process is applied to obtain

the minimized final fault localization tree. The minimized fault localization tree provides

the exact unique identification of the sequence of output test patterns for each possible

enumerated fault along with the sequence of output test patterns in the fault-free circuit.

In the fourth module, the traversal process is applied to the final fault localization tree

to identify the location of single and multiple missing gate faults. Figure 5.1 shows the

modules of the proposed scheme and the detail discussion of each module is presented

in the following sections.

5.3.1 Module 1: Complete Test Set Generation

In this section, we first consider the complete test set TS for detecting the single and

multiple missing gate faults, as mentioned in Chapter 4. In our fault localization scheme,

the unique output response is required for identifying the location of faults in a given

100

5.3 Proposed Technique of Fault localization

reversible circuit. For this purpose, the generated complete test set TS referred to as

an input test set which is applied to the circuit for obtaining the output responses of

the fault-free and the faulty circuit. Later on, these generated unique output responses

are used to extract the location of single and multiple missing gate faults in reversible

circuits.

5.3.2 Module 2: Test Response Generation for Fault Localiza-
tion

Test pattern generation is an essential phase to distinguish among all the possible faults

in a given reversible circuit. In our fault localization method, we consider the input test

patterns that are fed to the reversible circuit and the generated corresponding output

test responses are used to determine the fault location.

Definition 5.3.1. The set of input patterns Tin={TV1, TV2 . . . , TVk} is obtained from
the complete test set TS that is applied to the faulty (fault-free) circuit for observing the
faulty (fault-free) output responses. For simplicity purpose, we order each test vector
TVi ∈ Tin corresponding to the decimal values varying from 0 to 2n-1.

It may be the case that Tin is not sufficient to distinguish all faults uniquely. In

that situation, Tin is appended by remaining p number of test vectors, where p=|Tin| for

n-input lines, one by one in sequential order until the generation of the unique sequence

of output test patterns for all possible faults is completed. Considering this, the upper

bound on input test set Tin size becomes |TS|+ p.

Definition 5.3.2. The set of output test patterns Tout={TVo1, TVo2 . . . , TVok} is gener-
ated by applying in test set Tin in a given reversible circuit. More precisely, TVi ⇒ TVoi,
where 1 ≤ i ≤ k, TVi ∈ Tin, and TVoi ∈ Tout. The set Tout determines the unique
fault location of a particular fault present in the circuit. Similarly, we consider each test
vector TVoi ∈ Tout corresponding to the decimal values varying from 0 to 2n-1.

Consider a reversible benchmark circuit Miller 11 as shown in Figure 5.2 and the

truth table of this circuit is shown in Table 5.1. As per Algorithm 3 in Chapter 4, the

complete test set of the Miller 11 circuit is TS={101, 110, 001, 111}. Thus, the TS is

considered as the set of input test patterns Tin={001, 101, 110, 111}. Now, we apply

the Tin to the fault-free Miller 11 circuit and the corresponding output responses Tout

are obtained, as illustrated in Table 5.2.

101

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Figure 5.2: Miller 11 benchmark circuit

Table 5.1: Truth Table of the circuit Miller 11

Input Output

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 0 0 1

1 1 1 1 1 1

102

5.3 Proposed Technique of Fault localization

Table 5.2: Input and corresponding output responses for the fault-free circuit Miller 11

Tin
Decimal equivalent

form of Tin

Tout for
fault free condition

Decimal equivalent
form of Tout

001, 101, 110, 111 1, 5, 6, 7 011, 101, 001, 111 6, 5, 1, 7

5.3.2.1 Enumeration of SMGFs and MMGFs

Here, we consider the enumerated value as faultfree in a given fault-free circuit. Based

on a given circuit structure, we enumerate all single and multiple missing gate faults.

Next, we assign the enumerated value to all the possible single and multiple missing

gates at their corresponding levels in the circuit. Suppose, a reversible circuit consist of

a linear cascade of k gates {g1, g2, . . . , gk} and the levels are {l0, l1, . . . , lk}, for every

gate gi, where i = 1 to k. The assigned value f
(li−1,li)
gi for single missing gate fault is

denoted as the ith faulty gate (missing) lies between the (i − 1)th and ith level in the

circuit. For two consecutive multiple missing gates fault, the assigned value f
(li−1,lj)

(gi,gj)
is

denoted for faulty gate gi and gj (i < j) are in between the (i − 1)th and jth level in

the circuit. The enumeration process for various consecutive gate(s) is missing of the

Miller 11 benchmark circuit is depicted in Figure 5.3.

103

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Figure 5.3: Enumeration Process for the circuit Miller 11: (a) one gate (b) consecutive two
gates (c) consecutive three gates (d) consecutive four gates, and (e) consecutive five gates

5.3.2.2 Construction of Fault Analysis Table

For the construction of fault analysis table, we apply the set of input test patterns Tin

for all individual enumerated faults one by one present in the circuit and store the set

of output test patterns Tout. The fault analysis table determines the unique output

responses for each fault from the output responses of a given fault-free circuit. If Tin

of a given circuit generates the same output test patterns contained in set Tout for

the two or more faults that may occur in the faulty circuit, then the remaining test

vectors are appended one by one by maintaining a sequential order until the generation

of the unique sequence for all the possible faults is complete. This process also leads

104

5.3 Proposed Technique of Fault localization

to evaluation of functionally equivalent faults. The fault analysis table for Miller 11

benchmark circuit is shown in Table 5.3. The left and right column in Table 5.3 present

all possible enumerated faults and set of output test patterns Tout, respectively.

5.3.2.3 Evaluating Equivalent Faults

Two faults fi and fj are functionally equivalent if the applied test sequence of input

test patterns produces the same test sequence of output test patterns by the two faulty

circuits. In another word, there is no sequence of input test patterns that can distinguish

between two faults fi and fj with their respective output responses. In this work, we

consider the functional equivalent faults to imply equivalence under the input test set

Tin.

Definition 5.3.3. The faults fi and fj are said to be functionally equivalent faults
(FEFs) under an input test set Tin iff fi(TVi)=fj(TVi) for every test vector TVi ∈ Tin.

In Table 5.3, it is observed that the fault set {f (l2,l3)
g3 , f

(l1,l4)
(g2,g3,g4)

, f
(l0,l5)
(g1,g2,g3,g4,g5)

} produces

the same output test patterns Tout={1,5,6,7}. Similarly, the fault set {f (l1,l3)
(g2,g3)

, f
(l2,l4)
(g3,g4)

}
and {f (l0,l4)

(g1,g2,g3,g4)
, f

(l1,l5)
(g2,g3,g4,g5)

} produce the same output test patterns Tout={1,6,5,7} and

Tout={3,7,6,5}, respectively. As per the fault analysis table, by appending the remaining

test vectors {0,2,3,4} one by one to the set of input test patterns Tin={1,5,6,7} we obtain

the unique output test patterns. The evaluation of equivalent fault process is shown in

Table 5.4. Since the output responses match the respective fault set while considering

the input test patterns {1,5,6,7,0,2,3,4}, therefore the above-mentioned fault sets are

taken as the functionally equivalent faults in the Miller 11 benchmark circuit.

5.3.3 Module 3: Construction of Fault Localization Tree

The fault localization tree is a simple directed graph. The fault localization tree gener-

ates the unique path for the occurrence of each fault in a circuit, and also provides the

unique path of a fault-free circuit. The fault localization tree is constructing with the

help of a fault localization table. The construction process of a tree starts from the root

vertex denoted as V0. To create the new vertices in the next level, we are considering

the output test pattern TVoi as the weight of the directed edge for each row of the first

105

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Table 5.3: Fault analysis table for the circuit Miller 11

Enumerated fault-free/faulty value Decimal equivalent form of Tout

faultfree 6, 5, 1,7

f
(l0,l1)
g1 3, 7, 1, 5

f
(l1,l2)
g2 6, 1, 5, 7

f
(l2,l3)
g3 1, 5, 6, 7

f
(l3,l4)
g4 5, 6, 1,7

f
(l4,l5)
g5 6, 7, 3, 5

f
(l0,l2)
(g1,g2)

3, 7, 5, 1

f
(l1,l3)
(g2,g3)

1, 6, 5, 7

f
(l2,l4)
(g3,g4)

1, 6, 5, 7

f
(l3,l5)
(g4,g5)

7, 6, 3, 5

f
(l0,l3)
(g1,g2,g3)

3, 7, 5, 6

f
(l1,l4)
(g2,g3,g4)

1, 5, 6, 7

f
(l2,l5)
(g3,g4,g5)

3, 6, 7, 5

f
(l0,l4)
(g1,g2,g3,g4)

3, 7, 6, 5

f
(l1,l5)
(g2,g3,g4,g5)

3, 7, 6, 5

f
(l0,l5)
(g1,g2,g3,g4,g5)

1, 5, 6, 7

106

5.3 Proposed Technique of Fault localization

Table 5.4: Evaluation of equivalent faults for the circuit Miller 11

Tin Equivalent faults Tout

f
(l2,l3)
g3 1, 5, 6, 7, 0, 2, 3, 4

f
(l1,l4)
(g2,g3,g4)

1, 5, 6, 7, 0, 2, 3, 4

f
(l0,l5)
(g1,g2,g3,g4,g5)

1, 5, 6, 7, 0, 2, 3, 4

1, 5, 6, 7, 0, 2, 3, 4
f
(l1,l3)
(g2,g3)

1, 6, 5, 7, 0, 2, 3, 4

f
(l2,l4)
(g3,g4)

1, 6, 5, 7, 0, 2, 3, 4

f
(l0,l4)
(g1,g2,g3,g4)

3, 7, 6, 5, 0, 2, 3, 4

f
(l1,l5)
(g2,g3,g4,g5)

3, 7, 6, 5, 0, 2, 3, 4

entries of the second column in the fault localization table. For each internal vertices,

including with the root vertex, stores the input test pattern TVi ∈ Tin based on their

corresponding output test pattern. Similarly, this process continues until all the other

subsequent entries are covered from the second column in the fault localization table to

form the new vertices of their weighted edges. In fault localization tree, the root vertex

and internal vertices are represented by circles, where squares represent the leaf nodes

attached with enumerated fault-free and faulty values for identifying the exact location

of the faulty or fault-free circuit.

The fault localization tree for Miller 11 benchmark circuit is shown in Figure 5.4.

Here, Table 5.3 shows the total number of fifteen output test patterns for each corre-

sponding fault. Due to the presence of equivalent faults, we obtain only twelve unique

output test patterns including the fault-free circuit for constructing the fault localization

tree. The first entries of the output test patterns of the second column in Table 5.3 are

1, 3, 5, 6, and 7 which are considered as weighted directed edges to form the new vertices

namely V1, V2, V3, V4, and V5, respectively in the next level of the fault localization tree.

Here, the root vertex V0 stores the input test pattern 1 (denoted as V0:1) and it helps

107

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Figure 5.4: Fault Localization Tree for the circuit Miller 11

to keep track of all possible output test patterns as a weighted edge. Now, consider the

subsequent output test patterns of each row in the fault localization table to create new

vertices and weighted directed edge in the next level of the fault localization tree. As a

result, the new vertices are V6, V7, V8, V9, V10, V11, V12, V13, and V14 and the corresponding

output test patterns as directed with weighted values are 5, 6, 6, 7, 6, 1, 5, 7, and 6,

respectively. Similarly, based on the unique output test patterns of the fault localization

table, the entire tree is constructed with 38 vertices.

108

5.3 Proposed Technique of Fault localization

Figure 5.5: Reduction Process of a given tree

109

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

5.3.3.1 Reduction Process for Fault Localization Tree

The reduction process of fault localization tree involves removing all the unit vertex

presence in the tree. If the number of edges incident out of a vertex Vi is only one, then

it is called a unit vertex. More precisely, the vertex Vi is called unit vertex if it contains

d+(Vi)=1. Let us consider the directed edge ei that connects the vertex Vi to Vj, and

vertex Vj to Vd is connected through the directed edge ed. Thus, the unit vertex Vj

and the edge ed incident out of a vertex Vj are deleted and the process establishes the

connection of Vi to Vd through the edge ei.

Example 5.3.1. To explain the reduction process, we consider the fault localization tree
as depicted in Figure 5.5. The tree contains 12 vertices including the root vertex. Here,
each incident edges Wi represent the output test patterns. In Figure 5.5, we observed
that the in-degree and out-degree of the vertices V1, V2 and V5 are only 1. Thus, we
considered these vertices are unit vertices and are represented by dotted circles. After
detecting the unit vertices, we remove all the unit vertices, and now, the adjacent vertex
for V0 is V7 through the incident edge W1. Similarly, the adjacent vertex for V0 is V6
through the incident edge W2. Hence, the total number of vertices is 9, and the number
of levels of the tree is reduced by 2 after the reduction process.

As per our fault localization technique, the reduction process is not required when

no unit vertices are present in the fault localization tree. In fault localization tree for

Miller 11 benchmark circuit, there are unit vertices namely V3, V5, V6, V7, V8, V10, V11,

V12, V13, V14, V15, V16, V17, V18, V20, V21, V22, V23, V24 and V25, which are represented

as dotted circles in Figure 5.6. Using the reduction process the vertex V3 is deleted in

level-1 and subsequently the vertices V10, and V21 are also deleted. Then, the incoming

weighted edge of V3 is directly connected to vertex V33. Thus, two vertices V0 and V33 are

adjacent. Similarly, the same reduction process applies to the remaining unit vertices.

After the reduction process, the fault localization tree of the Miller 11 circuit contains

only 18 vertices as depicted in Figure 5.7. The reduced fault localization tree of the

Miller 11 circuit with test vectors in binary form is shown in Figure 5.8.

110

5.3 Proposed Technique of Fault localization

Figure 5.6: Unit vertices of a fault localization tree for the circuit Miller 11 during the
reduction process

Property 5.3.1. The reduction process of fault localization tree is only possible if the
sequence of vertices is monotonically increasing.

Proof. Let us assume that the sequence of vertices {V0, V1, . . . , Vk} is monotonically
increasing and terminating in leaf node Vk. To maintain the monotonically increasing
sequence of vertices, at least one vertex Vi for 0 < i < k must have in-degree and out-
degree of 1 (i.e., d+(Vi) = d−(Vi)=1). Therefore, the vertex Vi is considered as unity
vertex. If unity vertex is present, then the reduction process can be applied to the fault
localization tree.

5.3.4 Module 4: Traversal Process for Fault Localization

The reduced fault localization tree is sufficient enough to identify the exact location

of the presence of fault(s) based on the applied input sequence of test patterns in the

111

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Figure 5.7: Fault localization tree after the reduction Process for the circuit Miller 11

reversible circuit. At first, we consider the root vertex V0 in level-0 at the reduced fault

localization tree. The next vertex (Vi) in level-1 is visited through the least weighted

valued directed edge (Wk) as an output test pattern TVoi. This output test pattern TVoi

is generated by the input test pattern TVi of root vertex V0 such that TVi determines

the Wk that is matched with the output test pattern TVoi of a given circuit. If we find

that the vertex Vi in level-1 is a leaf vertex then the attached value indicates the location

of the fault/fault-free gate in a given circuit. If Vi is not leaf vertex then we move to the

adjacent vertex Vj in level-2 through the least weight valued of directed edge (Wk) such

that TVi of vertex Vi determines the Wk that matches with the output test pattern TVoi

of a given circuit. The same process continues until we get the leaf vertex of a reduced

fault localization tree.

Example 5.3.2. Let us consider that the gate g2 is missing in the Miller 11 circuit

112

5.3 Proposed Technique of Fault localization

Figure 5.8: Reduced fault location tree for the circuit Miller 11 with test vectors in binary
form

and the enumerated value of this fault is f
(l1,l2)
g2 i.e., the gate g2 is missing between level

l1 and l2 as shown in Figure 5.3 (a). Figure 5.9 illustrates the traversal process in bold
lines. At first, we start the root vertex V0 which has 5 incident edges. Now, we choose
the least weighted valued incident edge, i.e., 001, and it determines by the input test
pattern 001 that is associated with the root vertex V0. Here, the input test pattern 001
does not match with the output test pattern 001 (001 ; 001) as the 2nd gate is missing.
Therefore, we choose the next least weighted valued incident edge 011, and it also does
not match with the output test pattern (001 ; 011) of the faulty Miller 11 circuit.
Similarly, the 3rd least weight valued incident edge 101 does not match with the output
test pattern (001 ; 101) in the faulty circuit. Then, we choose the 4th least weighted
valued incident edge 110 and the input test pattern 001 matches with the output test
pattern 110 (001⇒ 110) of the faulty Miller 11 circuit. So, the adjacent vertex of V0 is
V4 through the incident edge 110. The vertex V4 has 3 incident edges. Again, we choose
the least weight valued incident edge 001 of V4, and it is determined by the input test
pattern 101 associated with the vertex V4. Here, the input test pattern 101 matches with
the output test pattern 001 (101 ⇒ 001) of a given faulty circuit. Next, the adjacent
vertex of V4 is V34, and it is the leaf vertex. Thus, we extract the enumerated value

113

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Algorithm 4: Fault localization algorithm.

1 Visit the root vertex V0.
2 Initially, choose the least weighted valued incident edge (Wk) of V0, which

determines by the input test pattern TVi of V0.
3 Repeat step 4 until Wk=0.
4 If TVi ⇒ Wk matched with the output test pattern of a given circuit then visit

adjacent vertex Vi and set Wk=0.
Else choose the next least weighted valued incident edge (Wm) of V0 such that
Wm > Wk and set Wk=Wm.

5 If Vi is the leaf vertex then write attached enumerated value of Vi & exit.
6 Choose the least weighted value incident edge (Wk) of Vi, which determines by

the input test pattern TVi of Vi.
7 Repeat step 8 until Wk=0.
8 If TVi ⇒ Wk matched with the output test pattern of a given circuit then visit

adjacent vertex Vj and set Wk=0.
Else choose the next least weighted valued directed edge (Wm) of Vi such that
Wm > Wk and set Wk=Wm.

9 Set Vi=Vj and goto step 5.

f
(l1,l2)
g2 attached with vertex V34 which determines that gate g2 is missing in between

level l1 and l2.

Example 5.3.3. Consider the gate g3 and g4 are missing in Miller 11 circuit as shown
in Figure 5.3 (b). The bold lines in Figure 5.10 show the traversal process. We start with
the root vertex V0, and the least weighted valued incident edge is 001. The corresponding
input test pattern 001 matches with the output test pattern 001 (001 ⇒ 001) of a
given faulty circuit. Therefore, we visit the adjacent vertex V1 and the vertex V1 has
2 incident edges. Now, we choose the least weight valued incident edge 101, but the
input test pattern 101 of the vertex V1 does not match with the output test pattern 101
(101 ; 101) in the faulty circuit. Next, we choose the next least weight valued incident
edge 110, where the input test pattern 101 matches with the output test pattern 110
(101 ⇒ 110) in the faulty circuit. Therefore, we visit the adjacent vertex V27 which is
the leaf vertex, and this stops the traversing process. The enumerated fault values are

f
(l1,l3)
(g2,g3)

or f
(l2,l4)
(g3,g4)

, and they are functionally equivalent faults by the input test set Tin.

Definition 5.3.4. The input test set Tin is to be considered as a complete fault location
test set (CFLTS) if it can distinguish among all the distinguishable faults and identify
the functionally equivalent faults (FEFs) under the test set Tin in the circuit.

Example 5.3.4. A CFLTS of the Miller 11 circuit in Figure 5.2 is {001, 101, 110, 111}.

Property 5.3.2. The generated path of the weighted incident edge from root vertex
(V0) to the leaf vertex uniquely identifies the exact location of the fault.

Proof. In fault localization tree, the outgoing edges from the root vertex (V0) represent
the output responses for each fault. The sequence of output responses is unique for each
fault (except FEFs) as per the fault localization table. Each pair of vertices includes

114

5.4 Experimental Results and Discussions

Figure 5.9: Traversal process of fault f
(l1,l2)
g2 for the circuit Miller 11

only one directed edge and the weight valued incident edge is generated the path from
the root to leaf vertex, which maintains the uniqueness of the output test patterns for
each fault. If any fault occurs, then any one of the incident edge of a root vertex V0
generates the path that identifies the location of their corresponding fault at the leaf
node.

5.4 Experimental Results and Discussions

The proposed fault localization method is implemented and tested with several reversible

benchmark circuits based on the k-CNOT gates [25]. Python 3.4 is used to implement the

algorithm and executed on a Core-i5 machine with an Intel Pentium (R) CPU-8250U@

1.60GHz× 8 system, running Ubuntu v16.04 (64-bit) with 8 GB RAM. The experimental

results are presented in Table 5.5. The first four columns describe the benchmark circuit

115

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

Figure 5.10: Traversal process of fault f
(l1,l2)
g2 for the circuit Miller 11

name, number of input lines (n), number of gates (N) and the total number of missing

gate faults, respectively. The last four columns provide the number of test vectors in the

complete tests for detecting the faults, number of functionally equivalent faults (FEFs),

required number of test patterns (Tin) for finding the location for all the possible faults,

and run-time in seconds, respectively. The experimental results show that the proposed

fault localization method efficiently identifies the location of both SMGFs and MMGFs

with 100% fault location coverage, and also identifies the equivalent faults present in the

circuit. The complete test set TS obtained by the complete test set generation method

of Chapter 4 is used in the proposed fault localization method.

Based on the experimental results as shown in Table 5.5, the analysis is provided for

two parameters: (i) Number of faults Vs. CPU time and (ii) Number of test patterns

116

5.4 Experimental Results and Discussions

Table 5.5: Experimental results for the fault localization of SMGFs and MMGFs with CPU
time (sec) for the benchmark circuits

Benchmark
Circuit n N No. of Faults

(SMGF+MMGF) TS FEF Tin
CPU Time

(sec)

Peres 9 3 2 3 2 0 3 0.0156

Toffoli double 4 4 2 3 4 0 4 0.0378

fredkin 6 3 3 6 3 2 3 0.0943

nth Prime3 3 4 10 4 0 8 1.1627

ex 1 166 3 4 10 3 0 5 1.0097

rd32 V0 66 4 4 10 4 0 7 1.1268

4gt11-v1 85 5 4 10 4 0 4 1.0189

ham3 102 3 5 15 4 2 7 2.1608

miller 11 3 5 15 4 3 4 1.6045

4gt4-v0 80 5 5 15 4 1 6 1.8293

graycode6 47 6 5 15 5 0 10 2.3391

alu-v0 26 5 6 21 5 0 9 3.6311

3 17 13 3 6 21 4 0 8 3.0512

3 17 14 3 6 21 5 2 8 3.2788

mini-alu 167 4 6 21 5 2 7 2.9715

4 49 16 4 16 136 7 0 7 4.8218

rd73-140 10 20 210 20 0 12 6.3548

ham7 105 7 21 231 15 4 11 7.6219

cm82a-208 8 22 253 16 0 15 8.1131

hwb6tc 6 126 8001 40 0 18 11.9943

117

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

(Tin) Vs. CPU time. The detailed observations are as follows:

1. Number of faults vs. CPU time: In Figure 5.11, it is observed that there

is an escalation in CPU time with the increase in the total number of faults for

the benchmark circuits. The time required for fault localization is directly propor-

tionate to the number of missing gate faults in the circuit. Consider the circuit

rd73-140 with a total number of faults 210 and the circuit ham7-105 with a total

number of faults 231. The CPU time required to generate the test patterns and

for identifying the location of the faults for the circuit rd73-140 is 6.3548 secs

and for the circuit ham7-105, it takes 7.6219 secs. Though the number of test

patterns in ham7-105 (11 test patterns) is less than the number of test patterns

in rd73-140 (12 test patterns), but to identify the location of the faults, the time

required for the circuit ham7-105 is more as compared to the circuit rd73-140.

This effect is due to the presence of more number faults in the circuit ham7-105.

Based on the experimental results, it is also observed that the circuit 3 17 14 takes

more time (3.2788 secs) to identify the location of the faults as compared to the

circuit mini-alu 167 (2.9715 secs). Both the circuits have the same number of

faults (21 faults), but the circuit 3 17 14 requires more number of test patterns (8

test patterns) for identifying the faults as compared to the number of test patterns

for the circuit mini-alu 167 (7 test patterns). It is also observed that the circuit

3 17 13 and the circuit 3 17 14 are having the same number of faults (21 faults)

and also having the same number of test patterns (8 test patterns). But to identify

the location of faults, the circuit 3 17 14 requires more CPU time (3.2788 secs)

as compared to the circuit 3 17 13 (3.0512 secs) for fault localization due to the

presence of equivalent faults in 3 17 14 (2 equivalent faults).

2. Number of test patterns vs. CPU time: In Figure 5.12, it is observed that

if the number of test pattern increases, the CPU time also increases for most of

the benchmark circuits to identify the location of the fault. Consider the circuits

nth Prime3, ex 1 166, and rd32 V 0 66 with the same number of faults (10 faults).

But, the nth Prime3 circuit requires more CPU time (1.1627 secs) for identifying

118

5.4 Experimental Results and Discussions

10
0

10
1

10
2

10
3

10
4

No. of Faults

0

2

4

6

8

10

12

C
P

U
 T

im
e

 (
s

e
c

)

Time w.r.t Faults

Figure 5.11: Performance analysis of Number of faults vs. CPU time

2 4 6 8 10 12 14 16 18

No. of Test Patterns (Tin)

0

2

4

6

8

10

12

C
P

U
 T

im
e

 (
s

e
c

)

Time w.r.t. Test Patterns

Figure 5.12: Performance analysis of Number of test patterns vs. CPU time

119

5. FAULT LOCALIZATION FOR MISSING GATE FAULTS IN
REVERSIBLE CIRCUITS

the location of the faults and this is due to the presence of more number of test

patterns (8 test patterns) in the circuit as compared to the other two circuits.

Also, it is noticed that the circuit rd32 V 0 66 and the circuit 4 49 16 require equal

number of test patterns (7 test patterns), but the circuit 4 49 16 takes more CPU

time (4.8218 secs) as compared to the circuit rd32 V 0 66 (1.1268 secs) to locate

the faults. This happens due to the more number of faults in the circuit 4 49 16

(136 faults). As illustrated in Figure 5.12, the circuit 4 49 16 needs more time

(4.8218 secs) as compared to the circuit nth Prime3 (1.1627 secs) to identify the

location of faults. This is due to the presence of more number of faults in the circuit

4 49 16 (136 faults) as compared to the circuit nth Prime3 (10 faults), though the

number of generated test patterns for the circuit 4 49 16 (7 test patterns) is less

than that of the circuit nth Prime3 (8 test patterns). Similar pattern is also

observed in the graph for the circuit ham7 105 (11 inputs, 231 faults, 7.6219 secs)

and the circuit rd73 140 (12 inputs, 210 faults, 6.3548 secs). Therefore, the impact

of the number of faults is more significant than the number of test patterns in the

circuit.

5.5 Conclusions

This chapter discussed a fault localization method for finding the location of single and

multiple missing gate faults in the reversible k-CNOT based circuit. This method not

only detects the faults but also distinguishes among them to obtain the exact location

of the faults. Moreover, the generated input test pattern also determines the equivalent

faults present in the circuit. In the next chapter, we summarize the main contributions

of this thesis with some future directions of the current work.

120

Chapter 6
Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis and outline some possible

directions for future work.

6.1 Summarization

This thesis deals with the generation of test patterns for testing of reversible circuits.

Circuit testing plays a major role in EDA (Electronics Design Automation) industries

to ship-out the fault-free ICs from the industries. The major drawback of conventional

digital circuits is the heat dissipation, and loss of information is one of the contribu-

tors for heat dissipation. Since there is no information loss in reversible circuits, so

the research community of the circuit design is focusing towards the use of reversible

circuits for system design. In reversible circuit domain also, circuit testing remains as

an important phase for producing fault-free ICs.

The possible fault models for reversible circuits are described briefly in this thesis

and we propose methods to generate the test set to detect faults using some of the fault

models. Also, we explore the possibilities to locate the faults for Missing Gate Fault

(MGF) model, and the MGF model is applicable to reversible circuits only. Now, we

present the brief summaries of our work.

• Our first contribution, described in Chapter 2, is the test set generation method

for detecting all single input bridging and stuck-at faults in reversible circuits. In

121

6. CONCLUSION AND FUTURE WORK

this work, it is established that the number of test vectors required to detect single

input bridging and stuck-at faults is dlog2Ne+1 for a circuit having N -input lines.

Based on the experimental results, it is evident that this approach overcomes the

limitations of the previous works [1,2] in terms of the size of the complete test set.

The experimental results show that the test set size of the proposed method is

similar for the small circuit as compared to the existing method [2]. But, when the

circuit size is large with respect to the number of input lines, then the proposed

approach provides better results. Moreover, this approach can be efficiently used

for large reversible circuits, which is tested by performing experiments with circuits

having more than 40 input lines.

• Our next contribution, described in Chapter 3, addresses an efficient complete test

set generation method for detecting all the single and multiple intra-level bridging

faults of reversible circuits. In this approach, the local test pattern is applied for

each level of the circuit that exploits the reversible properties, i.e., “controllability”

and “observability”. To obtain the complete test set for the intra-level bridging

faults in a given k-CNOT circuit, the path-level expression is introduced, which

is used to generate the minimal complete test set to detect all intra-level bridging

faults in a reversible circuit. The scalability of the proposed method is measured

with four parameters “CPU time”, “Input lines”, “Gate count”, and “Number of

faults” through experiments. Based on the performance analysis, it is observed

that the impact of the number of input lines, and the number of faults are more

significant than the number of gates present in the circuit. It is observed that

the proposed method can handle reasonably large circuits. From the experimental

results, it is noticed that the proposed work covers more faults as compared to

the previous works [2–4]. Moreover, the number of test vectors generated by this

approach is less or equal to the existing methods without using any extra circuit

overhead. The time complexity of this approach is in logarithm order for generating

the test set and also achieves 100% fault coverage.

• The next contribution, described in Chapter 4, provides an approach to generate

122

6.1 Summarization

the complete test set for detecting the single and multiple missing gate faults in

the k-CNOT based reversible circuits. This approach tries to improve the test gen-

eration process for detecting the multiple missing gate faults using the generated

test patterns of SMGFs as well as the structure of k-CNOT circuits. For achiev-

ing the minimality, a table is constructed covering the row and column faults,

which is used to formulate an ILP problem to get the minimal test set. The ex-

perimental results show that the minimized test set size is similar or smaller as

compared to the existing methods [5–9]. This method is quite reasonable in terms

of computational complexity, and efficiency is demonstrated through the experi-

ments involving various k-CNOT based circuits. This method also attains 100%

fault coverage. Moreover, the correlation of other fault models with missing gate

model is shown without changing of the generated complete test set. Through

the experimental results, it is observed that the generated complete test set of the

proposed method covers most of the SAFs and PMGFs.

• Finally, our last contribution, described in Chapter 5, presents a fault localization

method to obtain the exact location of SMGFs and MMGFs in reversible logic

circuits. This method establishes that the generated complete test set to detect

SMGFs and MMGFs can identify the location of missing gate faults. This approach

uses the complete test set for SMGFs and MMGFs, as mentioned in Chapter 4, to

extract the unique output responses for each missing gate faults in the k-CNOT

based reversible circuit, which is used to locate missing gate faults. Based on the

experimental results, the analysis is provided using three parameters “CPU time”,

“Number of faults”, and “Number of test patterns”. It is observed that the number

of faults is more significant in terms of computation cost than the number of test

patterns that is applied to the circuit for fault localization. This method is also

capable of evaluating and identifying the functional equivalent faults (FEFs) with

100% fault location coverage.

123

6. CONCLUSION AND FUTURE WORK

6.2 Future Work

The work reported in the thesis keeps several directions open and there are scopes for

future research in this area. In this section, we present some problems for future work.

• In this thesis, we have considered reversible circuits with positive controlled k-

CNOT gates for generating the test patterns for detecting faults. In mixed con-

trolled circuit topology, the polarity of control connections of a gate may be either

positive or negative. Therefore, there is a possibility to extend our work for gener-

ating the efficient test pattern for different fault models of reversible circuits with

mixed controlled circuit topology.

• In the mixed controlled circuit topology, there may be a possibility of flipping

the controls (positive and negative). To detect the errors due to the flipping of

polarity of the control connections (positive to negative or vice-versa), there may

be a requirement to introduce new fault models to detect the faults due to the

change of polarity in control connections. This may be an interesting direction to

explore the possibilities to introduce a new fault model for reversible circuits and

establish the correlation with the physical implementation of reversible gates with

some technologies like quantum gates.

• In our work, we have observed that there is a correlation among the various types

of fault models and testing approaches. There is a possibility to explore the gen-

eration of a universal test set, which can be used to detect all kind of faults in

reversible circuits.

• Throughout the thesis, we have considered NCT and GT libraries, which are

commonly used in the synthesis of reversible circuits. The proposed test pat-

tern generation approaches can be extended to the different gate libraries such

as NCTF (NOT, CNOT, TOFFOLT, FREDKIN) and newly proposed gate li-

brary [63] NCTSFPG3 (NOT CNOT TOFFOLI SWAP FREDKIN PERES G3),

etc. for test pattern generation.

124

6.2 Future Work

• In this thesis, we have considered the fault localization technique only for SMGFs

and MMGFs in reversible circuits. There may be possibilities that the proposed

fault localization approach may be extended to the other fault models in reversible

circuits.

125

6. CONCLUSION AND FUTURE WORK

126

References

[1] P. Sarkar and S. Chakrabarti, “Universal test set for bridging fault detection in

reversible circuit,” in 2008 3rd International Design and Test Workshop. IEEE,

2008, pp. 51–56. [Pg.xvii], [Pg.xix], [Pg.4], [Pg.19], [Pg.29], [Pg.38], [Pg.40], [Pg.41],

[Pg.46], [Pg.122]

[2] P. Sarkar, B. Mondal, and S. Chakraborty, “Optimal universal test set for bridging

faults detection in reversible circuit using unitary matrix,” in In Proc. of 2nd IEEE

International Workshop on Reliability Aware System Design and TEST (RASDAT).

Nil, 2011, pp. 37–42. [Pg.xvii], [Pg.xix], [Pg.29], [Pg.38], [Pg.40], [Pg.41], [Pg.42],

[Pg.46], [Pg.66], [Pg.68], [Pg.122]

[3] H. Rahaman, D. K. Kole, D. K. Das, and B. B. Bhattacharya, “Optimum test set

for bridging fault detection in reversible circuits,” in 16th Asian Test Symposium

(ATS 2007). IEEE, 2007, pp. 125–128. [Pg.xix], [Pg.4], [Pg.11], [Pg.13], [Pg.19],

[Pg.29], [Pg.46], [Pg.66], [Pg.67], [Pg.122]

[4] M. Bubna, N. Goyal, and I. Sengupta, “A dft methodology for detecting bridging

faults in reversible logic circuits,” in TENCON 2007-2007 IEEE Region 10 Con-

ference. IEEE, 2007, pp. 1–4. [Pg.xix], [Pg.4], [Pg.19], [Pg.29], [Pg.46], [Pg.66],

[Pg.67], [Pg.68], [Pg.122]

[5] A. P. Surhonne, A. Chattopadhyay, and R. Wille, “Automatic test pattern gener-

ation for multiple missing gate faults in reversible circuits,” in International Con-

ference on Reversible Computation. Springer, 2017, pp. 176–182. [Pg.xx], [Pg.4],

[Pg.20], [Pg.74], [Pg.86], [Pg.88], [Pg.89], [Pg.123]

127

REFERENCES

[6] A. Nagamani, S. Ashwin, B. Abhishek, and V. K. Agrawal, “An exact approach

for complete test set generation of toffoli-fredkin-peres based reversible circuits,”

Journal of Electronic Testing, vol. 32, no. 2, pp. 175–196, 2016. [Pg.xx], [Pg.4],

[Pg.18], [Pg.20], [Pg.73], [Pg.86], [Pg.88], [Pg.89], [Pg.90], [Pg.123]

[7] J. P. Hayes, I. Polian, and B. Becker, “Testing for missing-gate faults in reversible

circuits,” in 13th Asian Test Symposium. IEEE, 2004, pp. 100–105. [Pg.xx], [Pg.3],

[Pg.4], [Pg.11], [Pg.13], [Pg.14], [Pg.19], [Pg.72], [Pg.86], [Pg.89], [Pg.90], [Pg.123]

[8] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, “A family of logical fault models

for reversible circuits,” in 14th Asian Test Symposium (ATS’05). IEEE, 2005, pp.

422–427. [Pg.xx], [Pg.2], [Pg.3], [Pg.4], [Pg.11], [Pg.13], [Pg.14], [Pg.15], [Pg.72],

[Pg.79], [Pg.81], [Pg.86], [Pg.89], [Pg.90], [Pg.123]

[9] B. Mondal, D. K. Kole, D. K. Das, and H. Rahaman, “Generator for test set

construction of smgf in reversible circuit by boolean difference method,” in 2014

IEEE 23rd Asian Test Symposium. IEEE, 2014, pp. 68–73. [Pg.xx], [Pg.4], [Pg.73],

[Pg.86], [Pg.89], [Pg.90], [Pg.92], [Pg.123]

[10] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings

of the IEEE, vol. 86, no. 1, pp. 82–85, 1998. [Pg.1]

[11] R. Landauer, “Irreversibility and heat generation in the computing process,” IBM

journal of research and development, vol. 5, no. 3, pp. 183–191, 1961. [Pg.1], [Pg.17]

[12] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev., vol. 17,

no. 6, pp. 525–532, Nov. 1973. [Pg.2], [Pg.17]

[13] W. D. Pan and M. Nalasani, “Reversible logic,” IEEE Potentials, vol. 24, no. 1, pp.

38–41, 2005. [Pg.2], [Pg.17]

[14] M. P. Frank, “Throwing computing into reverse,” IEEE Spectrum, vol. 54, no. 9,

pp. 32–37, 2017. [Pg.2], [Pg.17]

[15] ——, “Back to the future: The case for reversible computing,” arXiv preprint

arXiv:1803.02789, 2018. [Pg.2], [Pg.17]

128

REFERENCES

[16] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:

10th Anniversary Edition, 10th ed. New York, NY, USA: Cambridge University

Press, 2011. [Pg.2], [Pg.9]

[17] X. Ma, J. Huang, C. Metra, and F. Lombardi, “Reversible gates and testability of

one dimensional arrays of molecular qca,” Journal of Electronic Testing, vol. 24,

no. 1-3, pp. 297–311, 2008. [Pg.2]

[18] C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Mach–zehnder interferometer-

based all-optical reversible logic gate,” Optics & Laser Technology, vol. 42, no. 2,

pp. 249–259, 2010. [Pg.2]

[19] R. P. Feynman, “Quantum mechanical computers,” Foundations of physics, vol. 16,

no. 6, pp. 507–531, 1986. [Pg.2], [Pg.7]

[20] T. Toffoli, “Reversible computing,” in International Colloquium on Automata, Lan-

guages, and Programming. Springer, 1980, pp. 632–644. [Pg.2], [Pg.8]

[21] E. Fredkin and T. Toffoli, “Conservative logic,” International Journal of theoretical

physics, vol. 21, no. 3-4, pp. 219–253, 1982. [Pg.2], [Pg.8]

[22] A. Peres, “Reversible logic and quantum computers,” Physical review A, vol. 32,

no. 6, p. 3266, 1985. [Pg.2], [Pg.8]

[23] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys-

ical Review A, vol. 57, no. 1, p. 120, 1998. [Pg.2], [Pg.9]

[24] D. Maslov, “Reversible logic synthesis benchmarks page (2015), online:

http://webhome.cs.uvic.ca/dmaslov/.” [Pg.2], [Pg.22], [Pg.38], [Pg.62]

[25] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib: An online

resource for reversible functions and reversible circuits,” in 38th International Sym-

posium on Multiple Valued Logic (ismvl 2008). IEEE, 2008, pp. 220–225. [Pg.2],

[Pg.22], [Pg.23], [Pg.62], [Pg.86], [Pg.115]

[26] D. A. Maslov, “Reversible logic synthesis,” Ph.D. dissertation, Fredericton, N.B.,

Canada, Canada, 2003, aAINQ98874. [Pg.2], [Pg.9], [Pg.47]

129

REFERENCES

[27] A. N. E. Al-Rabadi, “Novel methods for reversible logic synthesis and their appli-

cation to quantum computing,” 2002. [Pg.2]

[28] H. Everitt, “Special issue on experimental aspects of quantum computing: Intro-

duction,” Quantum Information Processing, vol. 3, no. 1, pp. 1–4, 2004. [Pg.2]

[29] D. P. DiVincenzo, “The physical implementation of quantum computation,”

Fortschritte der Physik: Progress of Physics, vol. 48, no. 9-11, pp. 771–783, 2000.

[Pg.2]

[30] C. Negrevergne, T. Mahesh, C. Ryan, M. Ditty, F. Cyr-Racine, W. Power,

N. Boulant, T. Havel, D. Cory, and R. Laflamme, “Benchmarking quantum control

methods on a 12-qubit system,” Physical Review Letters, vol. 96, no. 17, p. 170501,

2006. [Pg.2]

[31] N. K. Jha and S. Gupta, Testing of digital systems. Cambridge University Press,

2003. [Pg.3], [Pg.10], [Pg.11], [Pg.12], [Pg.27]

[32] J. Rice, “An overview of fault models and testing approaches for reversible logic,”

in 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing (PACRIM). IEEE, 2013, pp. 125–130. [Pg.3]

[33] K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault testing for reversible circuits,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 23, no. 8, pp. 1220–1230, 2004. [Pg.3], [Pg.4], [Pg.7], [Pg.11], [Pg.19], [Pg.28],

[Pg.85], [Pg.92]

[34] K. C. Mei, “Bridging and stuck-at faults,” IEEE Transactions on Computers, vol.

100, no. 7, pp. 720–727, 1974. [Pg.3], [Pg.12]

[35] J. Zhong and J. C. Muzio, “Analyzing fault models for reversible logic circuits,” in

2006 IEEE International Conference on Evolutionary Computation. IEEE, 2006,

pp. 2422–2427. [Pg.3], [Pg.16]

[36] M. Ibrahim, A. R. Chowdhury, and H. M. H. Babu, “Minimization of cts of k-cnot

circuits for ssf and msf model,” in 2008 IEEE International Symposium on Defect

and Fault Tolerance of VLSI Systems. IEEE, 2008, pp. 290–298. [Pg.4], [Pg.19],

[Pg.28]

130

REFERENCES

[37] I. Polian and J. P. Hayes, “Advanced modeling of faults in reversible circuits,” in

2010 East-West Design & Test Symposium (EWDTS). IEEE, 2010, pp. 376–381.

[Pg.4], [Pg.19]

[38] H. M. Gaur, A. K. Singh, and U. Ghaneka, “Design for stuck-at fault testability in

mct based reversible circuits,” Defence Science Journal, vol. 68, no. 4, pp. 381–387,

2018. [Pg.4], [Pg.29]

[39] A. Nagamani, B. Abhishek, and V. K. Agrawal, “Deterministic approach for bridg-

ing fault detection in peres-fredkin and toffoli based reversible circuits,” in 2015

IEEE International Conference on Computational Intelligence and Computing Re-

search (ICCIC). IEEE, 2015, pp. 1–6. [Pg.4], [Pg.18], [Pg.47]

[40] H. Rahaman, D. K. Kole, D. K. Das, and B. B. Bhattacharya, “On the detection of

missing-gate faults in reversible circuits by a universal test set,” in 21st International

Conference on VLSI Design (VLSID 2008). IEEE, 2008, pp. 163–168. [Pg.4],

[Pg.19], [Pg.73]

[41] M. Zamani, M. B. Tahoori, and K. Chakrabarty, “Ping-pong test: Compact test

vector generation for reversible circuits,” in 2012 IEEE 30th VLSI Test Symposium

(VTS). IEEE, 2012, pp. 164–169. [Pg.4], [Pg.73]

[42] R. Wille, H. Zhang, and R. Drechsler, “Atpg for reversible circuits using simulation,

boolean satisfiability, and pseudo boolean optimization,” in 2011 IEEE Computer

Society Annual Symposium on VLSI. IEEE, 2011, pp. 120–125. [Pg.4]

[43] A. Nagamani, S. Anuktha, N. Nanditha, and V. K. Agrawal, “A genetic algorithm-

based heuristic method for test set generation in reversible circuits,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 2,

pp. 324–336, 2017. [Pg.4], [Pg.19]

[44] P. K. Lala, “An introduction to logic circuit testing,” Synthesis Lectures on Digital

Circuits and Systems, vol. 3, no. 1, pp. 1–100, 2008. [Pg.11]

[45] G. J. Woeginger, “Exact algorithms for np-hard problems: A survey,” in Combi-

natorial optimizationeureka, you shrink! Springer, 2003, pp. 185–207. [Pg.17],

[Pg.18]

131

REFERENCES

[46] A. Chakraborty, “Synthesis of reversible circuits for testing with universal test set

and c-testability of reversible iterative logic arrays,” in 18th International Confer-

ence on VLSI Design held jointly with 4th International Conference on Embedded

Systems Design. IEEE, 2005, pp. 249–254. [Pg.19], [Pg.28]

[47] K. Ramasamy, R. Tagare, E. Perkins, and M. Perkowski, “Fault localization in

reversible circuits is easier than for classical circuits,” 2004. [Pg.20], [Pg.96]

[48] D. Pierce, J. Biamonte, and M. Perkowski, “Test set generation and fault local-

ization software for reversible circuits,” in Proc. 7th International Symposium on

Representations and Methodologies for Emergent Computing Technologies Tokyo

Japan, 2005. [Pg.20], [Pg.96]

[49] H. Zhang, R. Wille, and R. Drechsler, “Improved fault diagnosis for reversible

circuits,” in 2011 Asian Test Symposium. IEEE, 2011, pp. 207–212. [Pg.20],

[Pg.97]

[50] H. Rahaman, D. K. Kole, D. K. Das, and B. B. Bhattacharya, “Fault diagnosis in

reversible circuits under missing-gate fault model,” Computers & Electrical Engi-

neering, vol. 37, no. 4, pp. 475–485, 2011. [Pg.20], [Pg.97]

[51] N. Nayeem and J. Rice, “A simple approach for designing online testable reversible

circuits,” in Communications, Computers and Signal Processing (PacRim), 2011

IEEE Pacific Rim Conference on. IEEE, 2011, pp. 85–90. [Pg.29]

[52] A. Chakraborty, “Testing of bridging faults in and-exor based reversible logic cir-

cuits,” arXiv preprint arXiv:1009.5098, 2010. [Pg.47]

[53] X. Fang-ying, C. Han-wu, L. Wen-jie, and L. Zhi-giang, “Fault detection for single

and multiple missing-gate faults in reversible circuits,” in 2008 IEEE Congress on

Evolutionary Computation (IEEE World Congress on Computational Intelligence).

IEEE, 2008, pp. 131–135. [Pg.72]

[54] D. K. Kole, H. Rahaman, D. K. Das, and B. B. Bhattacharya, “Derivation of

optimal test set for detection of multiple missing-gate faults in reversible circuits,”

in 2010 19th IEEE Asian Test Symposium. IEEE, 2010, pp. 33–38. [Pg.73]

132

[55] B. Zhang and V. D. Agrawal, “Three-stage optimization of pre-bond diagnosis of

tsv defects,” Journal of Electronic Testing, vol. 33, no. 5, pp. 573–589, 2017. [Pg.82]

[56] R. Wille, D. Große, S. Frehse, G. W. Dueck, and R. Drechsler, “Debugging of toffoli

networks,” in 2009 Design, Automation & Test in Europe Conference & Exhibition.

IEEE, 2009, pp. 1284–1289. [Pg.96], [Pg.97]

[57] J. C. Jung, S. Frehse, R. Wille, and R. Drechsler, “Enhancing debugging of multiple

missing control errors in reversible logic,” in Proceedings of the 20th symposium on

Great lakes symposium on VLSI. ACM, 2010, pp. 465–470. [Pg.97]

[58] M. Zamani, N. Farazmand, and M. B. Tahoori, “Fault masking and diagnosis in

reversible circuits,” in 2011 Sixteenth IEEE European Test Symposium. IEEE,

2011, pp. 69–74. [Pg.97]

[59] B. Mondal, P. Das, P. Sarkar, and S. Chakraborty, “A comprehensive fault diagnosis

technique for reversible logic circuits,” Computers & Electrical Engineering, vol. 40,

no. 7, pp. 2259–2272, 2014. [Pg.97]

[60] B. Mondal and S. Chakraborty, “A novel fault diagnosis in reversible logic circuit,”

in 2014 IEEE Intl Conf on High Performance Computing and Communications,

2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl

Conf on Embedded Software and Syst (HPCC, CSS, ICESS). IEEE, 2014, pp.

709–712. [Pg.98]

[61] B. Mondal, C. Bandyopadhyay, and H. Rahaman, “A testing scheme for mixed-

control based reversible circuits,” in 2016 Sixth International Symposium on Em-

bedded Computing and System Design (ISED). IEEE, 2016, pp. 96–100. [Pg.98]

[62] ——, “Detection and localization of appearance faults in reversible circuits,” in 2017

7th International Symposium on Embedded Computing and System Design (ISED).

IEEE, 2017, pp. 1–5. [Pg.98]

[63] M. Y. Abubakar, L. T. Jung, M. N. Zakaria, A. Younesy, and A.-H. Abdel-Atyz,

“New universal gate library for synthesizing reversible logic circuit using genetic

programming,” in 2016 3rd International Conference on Computer and Information

Sciences (ICCOINS). IEEE, 2016, pp. 316–321. [Pg.124]

133

134

Appendix: A

Journal Publications:

• Mousum Handique, Santosh Biswas, and Jantindra Kumar Deka, “Test Gen-

eration for Bridging Faults in Reversible Circuits Using Path-Level

Expressions”. Journal of Electronics Testing, vol. 35, no. 4, pp. 441–457, 2019

• Mousum Handique, Jantindra Kumar Deka, and Santosh Biswas, “An Efficient

Test Set Construction Scheme for Multiple Missing-Gate Faults in

Reversible Circuits”. Journal of Electronics Testing, Springer, February 2020,

DOI: https://doi.org/10.1007/s10836-020-05855-8

Conference Publications:

• Mousum Handique, Jantindra Kumar Deka, and Santosh Biswas, “Minimal test

set generation for input stuck-at and bridging faults in reversible cir-

cuits.”. TENCON 2017-2017 IEEE Region 10 Conference, IEEE, 2017. [Best

Paper Award].

135

	1 Introduction
	1.1 Preliminaries
	1.1.1 Reversible Logic Function
	1.1.2 Reversible Logic Gates and Libraries
	1.1.3 Reversible Circuits
	1.1.4 Fault Models in Reversible Circuit
	1.1.4.1 Stuck-at Fault Model (SAF)
	1.1.4.2 Bridging Fault Model (BF)
	1.1.4.3 Missing-gate Fault Model
	1.1.4.4 Crosspoint Fault Model

	1.2 Motivation and Objectives of the Work
	1.3 Related Work
	1.4 Summary of Contributions
	1.4.1 Test Generation for Input Stuck-at and Bridging Faults in Reversible Circuits
	1.4.2 Test Generation for Bridging Faults in Reversible Circuits Using Path-Level Expressions
	1.4.3 Test Generation for Multiple Missing-Gate Faults in Reversible Circuits
	1.4.4 Fault Localization for Missing Gate Faults in Reversible Circuits

	1.5 Organization of the Thesis
	1.6 Conclusion

	2 Test Generation for Input Stuck-at and Bridging Faults in Reversible Circuits
	2.1 Introduction
	2.2 Related Work
	2.3 Proposed Method
	2.3.1 Test Generation for Single Input Bridging Fault
	2.3.2 Test Set Generation for Single Input Stuck-at Fault

	2.4 Experimental results and Discussions
	2.5 Conclusion

	3 Test Generation for Bridging Faults in Reversible Circuits Using Path-Level Expressions
	3.1 Introduction
	3.2 Related Work
	3.3 Proposed Method
	3.3.1 Local Test Pattern Generation Method
	3.3.2 Path Generation Method
	3.3.3 Complete Test Set Generation Method
	3.3.4 Complexity of the Proposed Method

	3.4 Experimental Results and Discussions
	3.5 Conclusion

	4 Test Generation for Multiple Missing-Gate Faults in Reversible Circuits
	4.1 Introduction
	4.2 Related Work
	4.3 Proposed Method
	4.3.1 Detection Technique for Single Missing Gate Fault
	4.3.2 Complete Test Set Generation for Single Missing Gate Fault
	4.3.3 Complexity Analysis of complete test set generation
	4.3.4 Complete Test Set Generation for Multiple Missing Gate Fault
	4.3.5 Complexity Analysis of complete test set TS generation
	4.3.6 Determination of Minimal Complete Test Set
	4.3.6.1 Complexity Analysis of ILP formulation

	4.3.7 Fault Coverage Evaluation with other Faults Models

	4.4 Experimental Results and Discussions
	4.5 Conclusions

	5 Fault Localization for Missing Gate Faults in Reversible Circuits
	5.1 Introduction
	5.2 Related Work
	5.3 Proposed Technique of Fault localization
	5.3.1 Module 1: Complete Test Set Generation
	5.3.2 Module 2: Test Response Generation for Fault Localization
	5.3.2.1 Enumeration of SMGFs and MMGFs
	5.3.2.2 Construction of Fault Analysis Table
	5.3.2.3 Evaluating Equivalent Faults

	5.3.3 Module 3: Construction of Fault Localization Tree
	5.3.3.1 Reduction Process for Fault Localization Tree

	5.3.4 Module 4: Traversal Process for Fault Localization

	5.4 Experimental Results and Discussions
	5.5 Conclusions

	6 Conclusion and Future Work
	6.1 Summarization
	6.2 Future Work

	References
	Appendix A: Summary of Publications

